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Abstract 

Contamination of surface waters by pharmaceuticals is now widespread. There are few data 

on their environmental behaviour, particularly for those which are cationic at typical surface- 

water pH. As the external surfaces of bacterio-plankton cells are hydrophilic with a net  

negative charge, it was anticipated that bacterio-plankton in surface-waters would  

preferentially remove the most extensively-ionised cation at a given pH. To test this  

hypothesis, the persistence of four widely-used, cationic pharmaceuticals, chloroquine,  

quinine, fluphenazine and levamisole, was assessed in batch microcosms, comprising river- 

water and bacterio-plankton, to which pharmaceuticals were added and incubated for 21 days.  

Results show that levamisole concentrations decreased by 19 % in microcosms containing  

bacterio-plankton, and by 13 % in parallel microcosms containing tripeptide as a priming  

agent. In contrast to levamisole, concentrations of quinine, chloroquine and fluphenazine  

were unchanged over 21 days in microcosms containing bacterio-plankton. At the river-water  

pH, levamisole is 28 % cationic, while quinine is 91-98 % cationic, chloroquine 99 %  

cationic, and fluphenazine 72–86 % cationic. Thus the most neutral compound, levamisole,  

showed greatest removal, contradicting the expected bacterio-plankton preference for ionised  

molecules. However, levamisole was the most hydrophilic molecule, based on its octanol- 

water solubility coefficient (Kow). Overall the pattern of pharmaceutical behaviour within the  

incubations did not reflect the relative hydrophilicity of the pharmaceuticals predicted by the  

octanol-water distribution coefficient, Dow, suggesting that improved predictive power, with  

respect to modelling bioaccumulation, may be needed to develop robust environmental risk  

assessments for cationic pharmaceuticals. 
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1. Introduction 

There are over 4000 pharmaceuticals available for human and veterinary use (Boxall 

et al. 2012). Following administration, unretained pharmaceuticals and any transformation 

products are excreted into surface waters, either directly or via treated and untreated 

wastewaters and biosolids. As a consequence, contamination of aquatic systems by 

pharmaceuticals is now extensive (Hughes et al. 2013; Cizmas et al. 2015). There remains, 

however, a marked lack of knowledge on the aquatic transport and fate of pharmaceuticals, 

and their biological effects (Boxall et al. 2012; Brooks et al. 2012; Kümmerer 2008; LaLone 

et al. 2014; Shore et al. 2014; Tijani et al. 2016). Effects of pharmaceuticals on terrestrial 

organisms have been reported, with one of the most publicised examples being the 

contribution of diclofenac residues to the almost total decline of the Gyps spp. vulture 

populations on the Indian sub-continent (Oaks et al. 2004). While such dramatic effects on 

aquatic organisms have not been reported to date, behavioural changes have been observed. 

For example, environmentally-measured concentrations of the benzodiazepines oxazepam 

and diazepam were shown to markedly alter the social behaviours of the wild European perch 

(Perca fluviatili) and adult zebrafish (Danio rerio), respectively (Brodin et al. 2013; 

Giacomini et al. 2016).  

The prediction of Adverse Outcome Pathways (OECD 2013) for a pharmaceutical 

contaminant is, inter alia, dependent on understanding its mode of action (MoA) giving rise 

to one or more molecular-initiating events within an organism, either through specific ligand-

receptor interactions or non-specific receptor interactions, which then leads to one or more 

adverse effects. Understanding the MoA in theory allows effects predictions to be 

extrapolated to other compounds with similar molecular characteristics, along with the ability 

to ‘read across’ to organisms from different taxonomic groups that share the same receptors 

(Hutchinson et al. 2013). Other important properties relevant to the manifestation of adverse 
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effects include the persistence of, and hence exposure to, the pharmaceutical and the extent of 

accumulation within susceptible biota (Arnold et al. 2014). 

For a given environmental loading, the degree of exposure of an organism to an 

pharmaceutical in surface waters is dependent on the extent of biological and physico-

chemical mechanisms on in situ, measured concentrations of the parent pharmaceutical, and 

any known transformation products. For example, in an assessment of the ability of riverine 

bacterio-plankton to transform the benzodiazepine, diazepam, and its photo-degradation 

product, 2-amino-5-chlorobenzophenone (ACB), diazepam was much more persistent than 

ACB, which was mineralised to ammonium by the bacterio-plankton in all experiments 

(Tappin et al. 2014). This indicated that a removal of diazepam, and other benzodiazepines 

photodegrading to ACB (West & Rowland 2012), could be effected even if the parent 

compound was not readily biotransformed. However, there is a lack of published studies on 

the role of microbes in the environmental cycling of pharmaceuticals, coupled with little 

discussion on biotic mechanisms of pharmaceutical removal. 

In this study, the persistence of a range of commonly-prescribed human and 

veterinary pharmaceuticals in incubations containing riverine bacterio-plankton was 

examined. Chloroquine and quinine are quinoline derivatives used extensively in Asia, Africa 

and South America for the treatment of malaria, although they also have a range of other 

medical applications (Achan et al. 2011; Price et al. 2014); the MoA of their anti-malarial 

properties is not well understood (www.drugbank.ca). Chloroquine is excreted from humans 

either unaltered or as N-desethyl chloroquine, and quinine unaltered or as 3-hydroxyquinine 

(Mirghani et al. 2003; Projean et al. 2003). Fluphenazine is a tri-fluorinated methyl 

phenothiazine derivative used to manage chronic psychoses including schizophrenia (Uchida 

et al. 2011); it is excreted in urine and faeces unchanged, or as 7-hydroxyfluphenazine, 

fluphenazine sulfoxide, and metabolite conjugates (McEvoy et al. 2004). Thus, these 
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compounds will enter surface waters via wastewater discharge and irrigation, and leaching 

from sewage solids applied to land. Concerns regarding the presence of neuroendocrine-

active chemicals in surface waters, and their potential biological effects, have been raised; 

particularly those pharmaceuticals, including fluphenazine, that act on widely conserved 

dopamine receptors (Villeneuve et al. 2010a; Villeneuve et al. 2010b). Levamisole is an 

imidazothiazole derivative used as a human and veterinary anthelmintic (Lanusse et al. 2009). 

It is also used as a human immuno-modulator and as an adulterant in cocaine (Bertol et al. 

2011). For veterinary use, the compound is generally applied topically, thus enhancing its 

transport to surface waters. 

There are no published data on the transformations of these pharmaceuticals in 

surface waters, although it has been predicted that lower than 1 % of the quinine load 

entering a sewage treatment plant would be transformed (Jones et al. 2002). Furthermore, 

there are few data on their toxicity in the aquatic environment. Bioassays using the 

invertebrate Daphnia magna and alga Chlorella vulgaris suggested that chloroquine may be 

harmful to aquatic organisms (Zurita et al. 2005), while fluphenazine showed inhibitory 

effects on a range of bacterial species at concentrations of ca. 40 - 200 µmol L-1 (Dastidar et 

al. 1995). Levamisole has been cited as a high priority compound for detailed environmental 

risk assessment (Capleton et al. 2006; von der Ohe et al. 2011). These pharmaceuticals are all 

included in the World Health Organization's List of Essential Medicines (WHO 2015). 

Furthermore, they are ionisable molecules that can be protonated at surface water pH, and 

there is a paucity of data on the fate of pH-dependent cationic pharmaceuticals in these 

environments.  

The potential problem of environmentally persistent pharmaceutical pollutants was 

recently recognised by the International Conference on Chemicals Management (ICCM 4, 

autumn 2015) as an Emerging Policy Issue of the Strategic Approach to International 
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Chemicals Management (http://www.saicm.org/). Furthermore, 3 pharmaceuticals were 

included on the European Union (EU) watch list of March 2015 (EU 2015), with a view to 

proposing statutory Environmental Quality Standards within the EU Water Framework 

Directive; while the latest United States Environmental Protection Agency draft Contaminant 

Candidate List (CCL4) includes 8 pharmaceuticals and 2 pharmaceutical-precursors 

(https://www.epa.gov/ccl/chemical-contaminants-ccl-4), including quinoline. These 

regulatory concerns reflect the tension between the need for medicines to maintain and 

improve health and managing their potential environmental impact.  

http://www.saicm.org/
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2. Materials and methods 

The full details of the design, testing and validation of the incubation procedure have 

been reported previously (Tappin et al. 2012; Tappin et al. 2014). 

2.1 Media and chemicals 

River water required for the microcosms and preparation of bacterio-plankton inocula 

were collected from Gunnislake, at the tidal limit of the River Tamar located in southwest 

England, UK. The river drains a rural, agriculture-dominated, catchment, and water quality is 

generally good (Tappin et al. 2012; Tappin et al. 2014), although the river and its catchment 

are impacted by historical metal mining activity. River turbidity is low (generally lower than 

15 mg L-1) and the oxygen saturation is high (generally > 90 %) at the tidal limit, while the 

mean pH is 7.4 (Environment Agency, unpublished data). The pharmaceuticals used in the 

study were purchased as levamisole hydrochloride, quinine hemisulphate monohydrate, 

chloroquine diphosphate and fluphenazine hydrochloride (Sigma Aldrich, AR grade). A tri-

peptide comprising the amino acids glycine, leucine and tyrosine (GLY; Sigma Aldrich, ≥ 98 

% purity), and representing labile organic matter, was also used to assess a priming effect on 

the bacterio-plankton population (Guenet et al. 2010) in the incubations involving levamisole 

only. Stock solutions of these compounds were made up in prepared incubation water and 

stored at 4 ºC in the dark prior to use. Structural details of the compounds are given in Table 

1. 

2.2 Microcosm experiments 

Preparation of incubation water 

River water was filtered (GF/F; 0.7 μm nominal pore diameter) to remove suspended 

particles, passed through a strong anion-exchange resin (Dowex® X-100, 200 mesh; water 

flow rate 80 mL h-1) to remove nitrate, UV-irradiated (400 W medium pressure Hg lamp, 6 h) 

to remove dissolved organic carbon (DOC) and then re-filtered through a 0.2 µm filter 
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membrane (Whatman Anodisc 47, aluminium oxide) to remove any remaining particulate 

matter. These processes reduced nitrate and DOC to concentrations which ensured that 

alternative carbon and nitrogen substrates were, as far as possible, removed and that the river 

water matrix was compatible with direct analysis of samples by electrospray ionisation–mass 

spectrometry (ESI-MS). As a final step, the water was sterilised by autoclaving (115 oC, 15 

min). 

Preparation of the inoculum 

The bacterial inoculum was prepared using river water collected within 24 h prior to 

introduction in to the microcosm. This water was filtered through a 1.6 µm pore diameter 

membrane (combusted GF/A) to remove zooplankton and particle-bound bacterio-plankton 

(Ainsworth & Goulder 1998) and then re-filtered through a 0.2 µm pore diameter membrane 

filter (Whatman Anodisc 47). The bacterio-plankton retained on the membrane was 

resuspended in a small volume of the 0.2 µm filtered water to provide the inoculum, which 

was then added to the pre-treated river water to produce a final, representative bacterio-

plankton concentration. 

Incubation experiments 

Incubation water (60 mL) was transferred to a 125 mL screw-capped amber glass 

bottle to which was added 30 - 60 µL of stock pharmaceutical solution and 1 mL of the 

bacterio-plankton inoculum. Starting concentrations of the compounds were ca. 15-30 μmol 

L-1. Control microcosms of prepared river water containing bacterio-plankton inoculum only 

and the pharmaceuticals only were also set up to account for sorption effects and to 

investigate the effects of the pharmaceuticals on the bacterio-plankton communities. In a 

separate microcosm, 30 μmol L-1 of GLY was added with levamisole. The 125 mL bottles 

were loosely-capped, placed in a re-sealable plastic bag and transferred to an orbital shaker. 

Microcosms were prepared in duplicate at ambient temperature in the dark. An incubation 
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time of 21 days was selected to reflect the river water transit time in the Tamar catchment. At 

day 0 and day 21, incubated samples were filtered using combusted GF/F filters and sub-

samples collected for analyses. 

2.3 Chemical and microbiological analyses 

The pharmaceuticals were analysed by ESI-MS using a Finnegan MAT LCQ MS, a 

quadrupole ion trap mass spectrometer with an external source atmospheric pressure interface 

capable of electro-spray ionisation. Solutions were introduced into the instrument by direct 

injection from a 250 µL Hamilton syringe at a rate of 3 µL min-1. Prior to injection, each 

sample and standard was diluted 1:1 with methanol amended with 0.1 % (v/v) formic acid. 

The signal sensitivity for each pharmaceutical, in positive-ion mode, was optimised by 

adjustment of instrumental parameters using in-built tuning procedures. Ion counts were 

integrated for 2 min, and 5 x 2 min replicates were recorded per sample. Ion count stability 

was followed in real-time via single ion monitoring. Quantitation of the analyte was achieved 

by generating an external standard calibration curve on each analytical day and bracketing 

individual samples with a drift calibration standard to account for variations in instrumental 

sensitivity. Changes in sensitivity were accounted for using an algorithm developed for 

automated nutrient analysis (Skalar Analytical BV 2004); in this implementation baseline 

drift was assumed unimportant (equation 1). 

U’’(n) = (U’(n) * (D1 / ((((D(b) – D(a)) / (b – a)) * (n – a)) + D(a)))                          equation 1 

U’’(n) = drift corrected ion count for sample n, U’(n)  = ion count for sample n, D1 = ion count 

of the first drift standard, D(a) = ion count of the preceding drift standard, D(b) = ion count of 

the following drift standard, n = sample number, a = sample number of preceding drift 

standard and b = sample number of following drift standard. Standards were matrix-matched 

with the water used for the incubations. The identification of m/z values for potential 

biotransformation products was informed by the EAWAG Biocatalysis and Biodegradation 
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Database (EAWAG-BDD; Ellis & Wackett 2012), now redesigned as enviPath (Wicker et al. 

2016). Nitrate + nitrite and orthophosphate were determined by colorimetry with a precision 

of lower than 1 % (Skalar Analytical BV, 2004) and ammonium by o-phthaldialdehyde 

fluorescence with a precision of 4 % (Holmes et al. 1999). 

Viable counts of bacterio-plankton were determined using 100 μL aliquots from the 

incubations. These were diluted in phosphate-buffered saline solution and 100 µL of each 

dilution spread on half strength Luria Bertani agar (Merck, Germany) and incubated at 30 °C 

for two days. Colonies were enumerated as colony forming units (cfu) mL-1 of the original 

suspensions. The extraction of DNA and PCR amplification of 16S ribosomal RNA genes for 

bacterio-plankton community analysis were undertaken on cells retained on a 0.2 µm 

membrane filter. The retained cells were disrupted in a Hybaid Ribolyser™ Cell Disruptor, 

and the DNA was subsequently extracted into hexadecyltrimethylammonium bromide and 

phenol-chloroform-isoamyl alcohol, followed by resuspension in 50 µL nuclease-free water 

(Griffiths et al. 2000). Nested PCR amplifications were performed on these samples using 

Super Taq DNA polymerase (HT Biotech Ltd, UK) and G-Storm thermal cyclers (GRI, UK). 

DNA amplification was undertaken in a 50 μL sample using 1 μmol L-1 of the universal 

primers for eubacterial 16S rRNA genes (27f and 1492r) (Lane 1991) with 1 unit super Taq 

DNA polymerase. The amplified DNA fragments were re-amplified using forward primer 

341 and reverse primer 907 (Muyzer et al. 1995). Denaturing gradient gel electrophoresis 

(DGGE) analysis (Muyzer et al. 1993) was performed on GC-clamped products of the second 

PCR amplification using the Bio-Rad D-code system to separate DNA on a 8 % 

polyacrylamide gel in Tris acetate EDTA buffer (pH 8.0) with a 20-60 % denaturant gradient, 

in which 100 % denaturant was 7 molar urea amended with 40 % formamide (Muyzer et al. 

1993). Electrophoresis was performed at 60 °C, run at 60 V (16 h) and the DNA banding 
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visualised using Sybr Green I stain (Lonza Rockland, USA) with detection and image capture 

on a Storm 860 Molecular Imager (Molecular Dynamics, UK). 
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3. Results and discussion 

3.1 Bacterio-plankton incubations 

The abiotic control studies showed that none of the compounds was lost through 

sorption to the walls of the incubation bottles or through chemical degradation, during the 

experiments. The bacterio-plankton inocula were viable throughout the incubation period, as 

concentrations of colony forming units increased by an order of magnitude in the microcosms 

containing pharmaceuticals (from lower than 10,000 cfu mL-1 at day 0 to 82,000 cfu mL-1 for 

levamisole and 220,000 cfu mL-1 for fluphenazine at day 21). There was also a large increase 

in ammonium concentrations (from 0.7 to 68.0 µmol NH4
+-N L-1) after 21 days in the 

levamisole microcosms to which the GLY peptide had been added (Fig. 1), a further 

indication of bacterio-plankton mineralisation of dissolved organic matter. The NH4
+ 

produced represented ca. 74 % of the peptide nitrogen and its degradation was consistent with 

previous results for such incubations containing GLY only or GLY plus pharmaceutical 

(Tappin et al. 2012; Tappin et al. 2014). In addition, our previous results, using clone 

libraries, showed that bacterio-plankton sampled from the Tamar water microcosms 

contained Gram negative (α-proteobacteria, β-proteobacteria) and Gram positive (Firmicutes) 

groups previously reported for freshwaters, which are capable of biotransforming xenobiotic 

contaminants (Tappin et al. 2014). 

3.2 Persistence of pharmaceuticals 

Between days 0 and 21, the concentration of levamisole decreased from 33.2 μmol L-1 

to 26.9 μmol L-1 (19 % removal) in the biotic incubation (Fig. 1; t-test, p < 0.001, n = 10), 

and to 28.6 μmol L-1 (13 % removal) in the biotic incubation with added peptide (Fig. 1a; t-

test, p = 0.002, n = 10). While solid - solution partition coefficients (Kd) are not available for 

levamisole, Kds for ionisable pharmaceuticals are generally relatively low. The measured 

decreases in dissolved levamisole concentrations were almost certainly due to uptake into the 
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bacterio-plankton, rather than simple sorption to cell surface components as the suspended 

solids concentration was lower than 1 mg L-1 in the incubations. A DGGE fingerprinting of 

the amplified 16S rRNA marker genes of the bacterio-plankton communities incubated with 

and without levamisole, showed that species composition (genotype) profiles were similar 

under all incubation conditions. In contrast to levamisole, the concentrations of quinine, 

chloroquine and fluphenazine remained constant in the microcosms over the 21 day period 

(Fig. 2), indicating that these pharmaceuticals were persistent. 

Passive uptake of low molecular mass (lower than 500) compounds into prokaryotic 

Gram negative and positive bacterio-plankton is more likely to occur with hydrophilic 

moieties, as the outer cell walls of these bacterio-plankton are hydrophilic (Hancock & Bell 

1988; Nikaido & Vaara 1985). They also have a net negative charge which, in principle, 

should favour the electrostatic sorption of positively-charged compounds. The octanol-water 

solubility coefficients (log Kow) of the pharmaceuticals in this study indicate that levamisole 

was the most hydrophilic (Table 2). Their acid dissociation constants (pKa), on the other 

hand, indicate that fluphenazine, chloroquine and quinine would be extensively positively 

ionised at pH 7.4, the mean pH of Tamar river water (Table 2), potentially promoting 

sorption to the cells by electrostatic attraction, while increasing their inherent water solubility 

(Gulde et al. 2014; Rendal et al. 2011a). These physico-chemical characteristics can be 

combined to yield a net hydrophilicity, the octanol-water distribution coefficient (log) Dow, 

which may better explain any observed loss of pharmaceutical from solution (Manallack et al. 

2013; Warhurst et al. 2003). For a monoprotic base (e.g. levamisole), the net hydrophilicity 

can be calculated from equation 2: 

log Dow = log Kow – log [1 + 10(pK
a 

– pH)]                                                         equation 2 

For a diprotic, basic pharmaceutical (e.g. quinine, chloroquine and fluphenazine), equation 3 

is used, where pKa1 > pKa2: 
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log Dow = log Kow – log [1 + 10(pK
a1

- pH) + 10(pK
a1

+ pK
a2 

- 2pH)]                           equation 3 

The calculated log Dow values at pH 7.4 are given in Table 2. In principle, the smaller the 

value, the more hydrophilic is the compound, and thus the easier for uptake into the cells of 

the bacterio-plankton present in the current study. The results of these calculations suggest 

that chloroquine is the most hydrophilic pharmaceutical, fluphenazine the least, and 

levamisole and quinine intermediate, but this did not correspond with the measured loss of 

pharmaceutical from solution in this study. Similarly poor correlations between estimated log 

Dow and the biotransformation of the basic pharmaceuticals atenolol, ifenprodil and 

propranolol in batch incubations with river water have been reported elsewhere (Yamamoto 

et al. 2009). The lack of predictive power using Dow may be attributed to poorly constrained 

log Kow and / or pKa values, particularly for basic pharmaceuticals (ECETOC 2013; Kah & 

Brown 2008; Manallack et al. 2013). Additionally, it may contribute to our lack of insight to 

the importance of hydrophobic partitioning of ionisable pharmaceuticals relative to possible 

mechanisms of hydrophilic interaction (ECETOC 2013; Manallack et al. 2013). Whatever the 

explanation, an important observation to be drawn from the current study is that it was the 

most hydrophilic pharmaceutical, based on log Kow alone, and least ionised, based on pKa 

alone, that was removed from river water containing bacterio-plankton.  

Studies of pharmaceutical uptake by eukaryotes (animals and plants) have reported 

that it is the non-ionised forms of the pharmaceutical that show greatest partitioning into cells 

(Rendal et al. 2011b; Warhurst et al. 2003) while recently, the extent of bacterial 

transformation of pharmaceuticals incubated with sewage sludge was shown to be generally 

proportional to the fraction of un-ionised, neutral, species present (Gulde et al. 2014). It may 

be concluded, therefore, that of the total pharmaceutical pool present, it is the non-specific 

biotransformation of the neutral or weakly-ionised pharmaceutical fraction that is most likely 

to occur in surface waters, irrespective of cell type. 
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The loss of levamisole did not result in identifiable biotransformation products 

detected by ESI-MS (Fig. 1), even though these were predicted from the EAWAG-BBD, via 

initial de-alkylation of the tertiary amine to yield secondary and primary amines. Indeed, the 

dominance of the observed de-alkylation of pharmaceuticals containing a tertiary amine has 

been reported recently (Gulde et al. 2016). The m/z values of the predicted transformation 

products are marked in Figure 1, and did not correspond with detected peaks. This suggests 

that, if biotransformation molecules were produced, they were not released into solution but 

were further metabolised rapidly, or were present at concentrations below the limit of 

detection under these conditions.  

The 3 pharmaceuticals that were persistent all contain at least one tertiary amine, 

while chloroquine also contains a secondary amine group (Table 1). As noted above, the 

EAWAG-BBD predicts bacterio-plankton alteration of these functional groups via de-

alkylation (Gulde et al. 2016). In contrast, the mono-N-substituted heterocyclic ring in the 

quinolone derivatives quinine and chloroquine is more difficult to decompose (Alexander 

1999), though heterocyclic ring opening of quinoline by bacteria has been reported (Griese et 

al. 2006). The EAWAG-BDD does not take into account the polarity of the molecule under 

consideration, however, and the persistence of these pharmaceuticals is thus probably 

attributable to their extensive (positive) ionisation under the incubation conditions and lack of 

cell uptake; the presumed electrostatic attraction appeared to have no measurable influence 

(Gulde et al. 2014; Rendal et al. 2011a; Rendal et al. 2011b).  While quantitative estimates of 

the relative speeds of cell uptake by ionised and non-ionised basic pharmaceuticals are 

lacking, equivalent studies on acidic moieties show uptake speeds 103–104 lower for the ionic 

forms relative to the neutral species (Rendal et al. 2011b). 
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3.3 Investigation of a priming effect 

The addition of labile organic matter (LOM) to accelerate bacterio-plankton 

biotransformation of more persistent organic matter is known as the priming effect, although 

there are few systematic studies of this phenomenon in aquatic systems (Gontikaki et al. 

2013; Guenet et al. 2014). The presence of LOM, as wastewater effluent DOC added at 

relatively high concentrations, has been proposed to enhance pharmaceutical loss from river 

and estuarine coastal waters (Benotti & Brownawell 2009; Lim et al. 2008), but reports of 

decreased biotransformation of the target molecule, or no change, has also been reported and 

a range of mechanisms has been invoked to explain these varied outcomes (Bengtsson et al. 

2014). In the current work, levamisole was incubated with the peptide as LOM - equivalent to 

ca. 500 µmol C L-1 and ca. 90 µmol N L-1, concentrations which are typical of UK rural and 

semi-rural rivers, and of the same magnitude as the concentrations of DOC reported to 

enhance pharmaceutical loss in surface waters (Benotti & Brownawell 2009; Lim et al. 

2008). While levamisole concentrations decreased in the presence of bacterio-plankton and 

LOM, the loss was not significantly different to that observed in parallel incubations without 

added LOM (t-test, p = 0.142, n = 11). This outcome indicates that the biotransformation of 

levamisole occurs in surface waters, but that there would not necessarily be a priming effect, 

constraining transformation of the molecule to lower than 20 % of the total load. 
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3.4 Environmental implications 

The data from this study suggest that all of the molecules examined would be stable, 

to varying degrees, in surface waters, at least with respect to biotransformation by riverine 

bacterio-plankton. This finding, coupled to their probable continual loading to the 

environment, would suggest they may be persistent or, in the case of levamisole, pseudo-

persistent in surface waters. While it is difficult to contextualise this outcome in relation to 

potential environmental impacts on aquatic organisms due to the absence of data on other 

ameliorating processes (e.g. photo-degradation or sorption to sediments), it may be 

hypothesised that, individually, these compounds will not inflict acute toxic effects at the 

concentrations anticipated. This assessment is supported by the viability of the bacterio-

plankton communities shown in this work, coupled to the lack of community succession 

throughout the incubations for all the pharmaceuticals (indicated by the consistency of the 

DGGE fingerprint patterns across the experiments). Nevertheless, environmental implications 

arising from continual and chronic exposure of aquatic organisms to these pharmaceuticals, 

either as single entities or as mixtures, remain to be addressed. 

Malaria is endemic in the low and low-middle income countries (LLMIC) of Asia, 

Africa and central and South America (http://www.cdc.gov/malaria/about/distribution.html) 

and it is in these regions that use of chloroquine and quinine to combat malaria are likely to 

be highest, and contamination of wastewater with these pharmaceuticals most frequent. Many 

LLMIC make extensive use of wastewater for the irrigation of agricultural and horticultural 

crops, particularly in southern Asia and western South America (Lautze et al. 2014; Lees et 

al. 2016). The implication is that these quinolones will be continually added to surface 

waters, with possibly unforseen environmental consequences given their poorly understood 

modes of action. 
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Dopamine receptors occur in almost all vertebrate and invertebrate animals (Barron et 

al. 2010), while some bacteria and many plant species synthesise dopamine. Unlike in 

animals, the function(s) of, and receptor(s) for, dopamine in plants has yet to be elucidated 

(Kulma & Szopa 2007). The presence in surface waters of dopamine inhibitors like 

fluphenazine and other frequently prescribed behaviour-altering psychiatric and anti-

depressant pharmaceuticals is a cause for concern. It has been reported that the antipsychotic 

pharmaceutical haloperidol, a dopamine inhibitor, may affect the behaviour of some fish 

species (Villeneuve et al. 2010a; Villeneuve et al. 2010b), while benzodiazepenes also 

elucidate behavioural changes in fish (Brodin et al. 2013; Giacomini et al. 2016). If these 

groups of neurotransmitters are persistent in the aquatic environment, then unanticipated and 

undesired impacts may emerge (Brodin et al. 2014). 

The inability to accurately model the bioaccumulation of ionisable pharmaceuticals 

using established physico-chemical metrics, including the compounds examined in this study 

but also more widely, will prevent the development of a robust and comprehensive risk 

assessment of pharmaceutical fate and impact in aquatic systems. Given the projected 

increases in pharmaceutical use across the globe (IMS 2015) it would appear prudent to 

significantly improve our predictive capability with respect to bioaccumulation. 
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4 Conclusions 

This study found that microbially-mediated pharmaceutical loss from river water 

containing bacterio-plankton occurred, to an extent, but only for a pharmaceutical expected to 

be largely un-ionised under the conditions of the experiment. No losses occurred, under 

similar conditions, for the three pharmaceuticals expected to be ionised to a much greater 

degree. This observation is consistent with the paradigm that, in the absence of specific 

uptake mechanisms, small non-polar compounds are more easily sorbed by living cells, 

compared to small polar moieties. The contrasting net hydrophilic values calculated for the 

pharmaceuticals indicated that the explanation is less straightforward, although some of the 

data underpinning the calculations may not be well constrained. Thus, an improved predictive 

bacterio-plankton cell uptake capability for ionisable cationic pharmaceuticals in aquatic 

systems would appear to be imperative. 

Although studies of pharmaceuticals in surface waters of high income countries is 

now in its fourth decade, their remains little systematic understanding of pharmaceutical 

transport, fate and impact. This is all the more concerning for lower income countries, where 

pharmaceutical use is forecast to increase significantly in the foreseeable future, with 

attendant increased losses of pharmaceuticals to the environment, and losses in many cases 

fuelled by the aspiration for the increased use of waste water for the irrigation of agricultural 

and horticultural crops. This will only enhance the widespread diffuse contamination of 

aquatic systems by pharmaceuticals, with potential unforeseen consequences.
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Table 1: Structural information on the compounds studied. 

Compounda IUPAC namea CAS No. Structurea 

peptide 

(C17H27O5N3) 
Glycyl-L-leucyl-L-tyrosine 4306-24-5 

 

Chloroquine 

diphosphate 

(C18H26ClN3) 

N'-(7-chloroquinolin-4-yl)-N,N-diethyl-pentane-1,4-diamine 50-63-5 

 

quinine hemisulfate 

monohydrate 

(C20H24N2O2)a 

(R)-(6-methoxyquinolin-4-yl)((2S,4S,8R)-8-vinylquinuclidin-

2-yl)methanol 
303137-00-0 

 

fluphenazine 

hydrochloride 

(C22H26F3N3OS) 

2-[4-[3-[2-(trifluoromethyl)-10H-phenothiazin-10-

yl]propyl]-piperazin-1-yl]ethanol 
69-23-8 

 

levamisole 

hydrochloride 

(C11H12N2S)a 

(6S)-6-phenyl-2,3,5,6-tetrahydroimidazo[2,1-b][1,3]thiazole 16595-80-5  

 
a Main molecule only.
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Table 2: Acid dissociation constant (pKa)
a, octanol-water solubility co-efficient (log Kow)a 

and octanol-water distribution co-efficient (log Dow) data for chloroquine, quinine, levamisole 

and fluphenazine. Calculated extent of pharmaceutical ionisation is also shown. 

 

 
a These data include both measured and predicted values, and were obtained from 

www.drugbank.ca and references/links given within 

b Calculated from:  
1

1+10−1(𝑝𝐻−𝑝𝐾𝑎1)
 (ECETOC, 2013) 

c Environment Agency of England, unpublished data 
d Calculated from equations 2 and 3 in the text 
 

 pKa1 pKa2 log Kow % Ionisedb 

(at pH 7.4c) 

log Dow
d 

(at pH 7.4c) 

Chloroquine 9.94 – 10.87 7.44 – 8.50 3.93 – 5.28 > 99 -0.67 – 2.42 

Quinine 8.4 – 9.05 4.13 – 4.32 2.51 – 3.44 91 - 98 0.85 – 2.40 

Levamisole 6.98  1.84 – 2.36 28 1.70 – 2.22 

Fluphenazine 7.84 – 8.21 3.98 3.97 – 4.4 72 - 86 3.10 – 3.83 
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Figure 1: (a) Concentrations of levamisole, ammonium, nitrate+nitrite and orthophosphate in 

each microcosm at days 0 and 21. 1, t = day 0; 2, t = day 21 abiotic control; 3, t = day 21 

bacterio-plankton + levamisole; 4, t = day 21 bacterio-plankton + levamisole + labile organic 

matter. Error bars represent ± 1σ of the results from duplicate incubations with each sample 

analysed 3–5 times (n = 6–10). < LoD, lower than limit of detection. Concentrations of 

levamisole were reduced by 19 and 13 % in incubations 3 and 4, respectively. (b) Ion 

chromatograms (relative abundance of ion (%) vs. m/z) of levamisole in solution in a standard 

(left panel) and at day 21 (right panel). The horizontal bar shows the range in m/z values of 

possible transformation products predicted by the EAWAG Biocatalysis and Biodegradation 

Database.  
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Figure 2: Concentrations of (a) fluphenazine, (b) quinine and (c) chloroquine in each 

microcosm at days 0 and 21. 1, t = day 0; 2, t = day 21 abiotic control; 3, t = day 21 bacterio-

plankton plus pharmaceutical. Error bars represent ± 1σ of the results from duplicate 

incubations with each sample analysed five times (n = 10). Concentrations of the 

pharmaceuticals were not significantly different after 21 days under the different incubation 

conditions. 
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