Integrated biological responses and tissue-specific expression of p53 and ras genes in marine mussels following exposure to benzo()pyrene and C 60 fullerenes, either alone or in combination

Di, Y

http://hdl.handle.net/10026.1/8212

10.1093/mutage/gew049
Mutagenesis
Oxford University Press (OUP)

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Integrated biological responses and tissue-specific expression of p53 and ras genes in marine mussels following exposure to benzo(a)pyrene and C₆₀ fullerenes, either alone or in combination

Yanan Di¹, Yann Amiout², Declan C. Schroeder³, James W. Readman¹,²,⁴, Awadhesh N. Jha¹,*

¹School of Biological Sciences, Plymouth University, Plymouth, PL4 8AA, UK
²School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, PL4 8AA, UK
³Marine Biological Association of the United Kingdom (MBA), Citadel Hill, Plymouth, PL1 2PB, UK
⁴Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
⁵Present address: Institute of Marine Biology, Ocean College, Zhejiang University, PR China

*To whom correspondence should be addressed: Email: a.jha@plymouth.ac.uk
Abstract

We used the marine bivalve (*Mytilus galloprovincialis*) to assess a range of biological or biomarker responses following exposure to a model engineered nanoparticle (ENP), C$_{60}$ fullerene, either alone or in combination with a model polycyclic aromatic hydrocarbon (PAH), benzo(a)pyrene [B(α)P]. An integrated biomarker approach was used that included: (a) determination of ‘clearance rates’ (a physiological indicator at individual level), (b) histopathological alterations (at tissue level), (c) DNA strand breaks using the comet assay (at cellular level) and (d) transcriptional alterations of *p53* (anti-oncogene) and *ras* (oncogene) determined by real-time qPCR (at the molecular / genetic level). In addition, total glutathione (tGSH) in the digestive gland was measured as a proxy for oxidative stress. Here we report that mussels showed no significant changes in ‘clearance rates’ after 1 day exposure, however significant increases in ‘clearance rates’ were found following exposure for 3 days. Histopathology on selected organs (i.e. gills, digestive glands, adductor muscles and mantles) showed increased occurrence of abnormalities in all tissues types, although not all the exposed organisms showed these abnormalities. Significantly, increased levels of DNA strand breaks were found after 3-day exposures in most individuals tested. In addition, a significant induction for *p53* and *ras* expression was observed in a tissue and chemical-specific pattern, although large amounts of inter-individual variability, compared to other biomarkers, were clearly apparent. Overall, biological responses at different levels showed variable sensitivity, with DNA strand breaks and gene expression alterations exhibiting higher sensitivities. Furthermore, the observed genotoxic responses were reversible after a recovery period, suggesting the ability of mussels to cope with the toxicants C$_{60}$ and/or B(α)P under our experimental conditions. Overall, in this comprehensive study, we have demonstrated mussels as a suitable model marine invertebrate species to study potential detrimental effects induced by possible genotoxicants and toxicants, either alone or in combinations at different levels of biological organisation (i.e. molecular to individual levels).
Introduction

The aquatic environment is often the ultimate recipient of an increasing range of anthropogenic contaminants, many of which are potentially genotoxic and carcinogenic [1, 2]. Furthermore, contaminants in the environment are present in all probable combinations. In recent years therefore, environmental policies have recognised ‘mixture effects’ as a major issue in risk assessment [3]. For example, the European Union (EU) is reviewing approaches for environmental risk assessment which could take into account systematic mixture considerations [4]. In this context, there has been considerable regulatory concern with respect to the presence of contaminants, which are known to be carcinogenic, mutagenic and reproductive toxicants, so called ‘CMR’ under the Water Framework Directives (WFD) of the EU [5]. Such sub-lethal biological responses, which are inherently linked, could also have long-term effects on environmental sustainability [1,2]. Apart from ubiquitous pollutants such as polycyclic aromatic hydrocarbons (PAHs), other contaminants (e.g., metals, organometallics or other legacy and emerging organic pollutants) are also known to induce a range of negative biological responses in aquatic organisms [6]. Organisms exposed to complex mixtures of different substances can interact in many ways (e.g., additively, synergistically or antagonistically) to induce biological responses. The interactions between compounds can potentially change the responses compared to single compound exposures [7, 8]. In this context, for total carcinogenic/mutagenic risk, several researchers have simply added the risk contributions (potency × dose) from the most important carcinogens (e.g. PAHs) present in inhaled air. In some cases this additive model could be justified, but chemical-chemical multiplicative synergistic action reveals that the research is conspicuously incomplete [3]. This needs further elaboration to elucidate more realistic exposure scenarios applicable to the environment. An integrated approach is therefore required to assess the biological response at different levels of biological organisation.

It is well established that various environmental contaminants including the PAH benzo(α)pyrene [or B(α)P], nanoparticles and metals can induce a series of responses in marine mussels, Mytilus sp., at different levels of biological organisations [5,9–11]. Emerging new molecular technologies have raised our expectations to elucidate the potential interactive effects
of environmental contaminants under different exposure scenarios (e.g. chronic and acute). In this context, our previous study has suggested that gene expression patterns of \(p53 \) and \(ras \) can present tissue-specific changes after exposure to B(\(\alpha \))P [9]. Limited available information on aquatic organisms also suggests that these tissue expression patterns could also be influenced as a function of seasonal variation [12]. Whilst these molecular approaches provide the opportunity to investigate responses to mixed chemical exposures, including engineered nanoparticles (ENPs), which are being increasingly manufactured and released in the environment [13,14], these need further validation and elaboration, before they can be successfully employed for environmental hazard and risk assessments.

Fullerenes, a family of carbon allotropes in the shape of a hollow sphere are one of the most ubiquitous ENPs with \(C_{60} \) being the most prevalent. \(C_{60} \) fullerenes are released into the environment through wastewater discharges [15, 16] or to the atmosphere through combustion of common fuels [17]. In common with PAHs, they have been detected in river water, surface sediments and soils as well as on aerosols from the sea atmosphere [18–20]. A number of studies have indicated that \(C_{60} \) can potentially cause cellular damage by inducing oxidative stress [21]. They have been shown to be able to cross cellular membranes and could be preferentially localized to organelles [22 - 24]. Another consideration concerning \(C_{60} \) is the potential interactive effects between suspended \(C_{60} \) and other aquatic pollutants. This potential vector-function of \(C_{60} \) may be a significant factor, when considering their environmental effects due to possible interaction with other anthropogenic contaminants. In this context, apolar contaminants (e.g. PAHs) as well as polar contaminants (e.g. pesticides) have demonstrated a strong sorption to suspended fullerenes, suggesting that their combined presence in the environment might affect their fate, availability, exposures and consequently the biological effects [25–29]. The limited information available on the environmental levels of \(C_{60} \) ranging from pg/L to low ng/L [15, 16, 19], however, makes it difficult to estimate ecologically relevant concentrations of \(C_{60} \).

In the backdrop of the above information, to determine an holistic assessment, an integrated approach was employed in this study to evaluate the biological responses at different levels of
biological organisation in *Mytilus* sp. following exposure to B(α)P and C₆₀ either alone or in combination. This assessment included biochemical, molecular, cellular as well as physiological evaluation at the whole animal level. Whilst the genotoxic effects were evaluated using single cell gel electrophoresis or the comet assay (cellular level), histopathology of specific organs (i.e. tissue level effects) and ‘clearance rate’ as a measure of physiological effects (individual or organism level). Tissue specific transcriptomics expression of key tumour-related genes (i.e. *p53* and *ras*) as genetic or molecular responses and total glutathione (tGSH) content level in adductor muscle (at biochemical level) were also selected to indicate the potential oxidative stress. To complement the biological responses, organ specific accumulation of C₆₀ fullerenes and B(α)P in water samples were also determined.

Materials and methods

Experiment design

The overall experimental design has been presented in Figure 1. Briefly, mussels were collected at Trebarwith Strand, North Cornwall, a pristine / reference site. Mussel collection and maintenance (15 °C) procedures have been described in detail in previous publications from our laboratory [5, 9, 24, 30]. Prior to exposure, haemocyte viabilities from all the experimental scenarios mussels were checked using the Trypan Blue assay to ensure that the cells are in healthy conditions. The exposure vessels were 12 L glass tanks, each containing 10 L of seawater (filtered to 10 μm) and containing ten mussels. The tanks were aerated to maintain the water quality (i.e. pH, salinity, oxygen, ammonia) which was checked daily during the experimental period and was found to be within the expected range.

Appropriate volumes of B(α)P dissolved in acetone were added to the seawater to yield a nominal concentration of 56 μg/L with a final acetone concentration of 0.01% (v/v). This selected B(α)P concentration (56 μg/L) has been previously found to induce biological responses in mussels by us [9] and by other workers [31]. The stock suspension of C₆₀ in seawater was prepared in an ultra-sonication bath (35 kHz frequency, Fisherbrand FB 11010) for 2 h prior to the start of the experiment to ensure the C₆₀ was thoroughly suspended and was added to seawater to yield a final concentration of 1 mg/L with minimal ageing. This
concentration of C$_{60}$ was adopted from our previous study [24] which was found to induce a series of responses in this species of mussels. The combined dosing of both compounds was 56 µg/L B(α)P and 1 mg/L C$_{60}$ (Fig 1). The same concentrations of chemicals were re-dosed 1 h after the seawater was changed on daily basis and mussels were fed (2 h) every day prior to water change during 3 days of exposure [30]. After exposure, the seawater was changed and mussels were fed daily (20 min before the complete water change) for another 3 days without any addition of chemicals to allow the mussels to recover. In addition to water quality parameters, the tanks were checked for mortalities on a daily basis during the entire experiment.

Characterisation of C$_{60}$ nanoparticles

The aqueous fullerene aggregates came from a batch already characterised in our previous work [24]. As there have been very limited information with respect to characterisation of commercial C$_{60}$, a broad range of analytical approaches were adopted to the concentrated stock suspension (10 mg/L in filtered seawater). Samples (in triplicates) were analysed for hydrodynamic diameters, polydispersity index, zeta potential along with the purity of the samples in terms of element composition of discrete C$_{60}$ particles. In addition, shapes and sizes of the particles using transmission electron microscopy were also determined as described in detail elsewhere [24].

Determination of B(α)P concentration in water samples by GC-MS

The B(α)P analysis is based on a protocol previously developed and validated by us [24]. Briefly, water samples (9 cm3) were collected into glass vials and dichloromethane (1 cm3, HPLC grade, Rathburn Chemicals Ltd., UK) was added. Phenanthrene d10 (1.1 µg in 10 µL dichloromethane) was then added as an internal standard. Following thorough shaking, the mixtures were stored in the dark at 4 °C. Immediately prior to analyses, the dichloromethane layers were removed into glass micro-vials. 2 µL aliquots of the sample extracts were analysed using an Agilent Technologies 6890 N Network GC system interfaced with an Agilent 5973 series Mass Selective detector. A DB-5MS (crosslinked 5% phenyl methyl siloxane) capillary column (30 m) with a film thickness of 0.25 µm and internal diameter 0.25 mm was used for separation, with helium as a carrier gas (maintained at a constant flow rate of 1 mL/min). Extracts were injected splitless, with the injector maintained at 280 °C. The oven temperature
programme was 40 °C for 2 min and then increased at 6 °C/min to a final temperature of 300 °C, where it was held for 4 min. The mass spectrometer was operated in electron impact mode (at 70 eV) with the ion source and quadrupole analyser temperatures fixed at 230 °C and 150 °C, respectively. Samples were screened for B(α)P and phenanthrene d10 using selected ion monitoring, in which the target ions were 252 and 188 respectively. Full scan GC-MS was performed for confirmational purposes. Prior to sample extract analyses, the system was calibrated using authentic standards. With each batch of samples, a solvent blank, a standard mixture and a procedural blank were run in sequence for quality assurance purposes. B(α)P concentrations were calculated based on the internal standard.

Determination of C60 concentrations in tissue samples by Liquid Chromatography (LC-UV)

The analysis of C60 concentrations in tissues was thoroughly validated and has been previously reported [24]. Adductor muscle, digestive gland and gill tissues were dissected from individual mussels exposed to C60 only and were carefully washed with pure toluene (HPLC grade, Rathburn Chemicals Ltd., UK) to remove C60 particles adsorbed to the surfaces of the organs. Tissues were then treated by ultrasonic assisted extraction in toluene (1 cm³) for 15 min and centrifuged at 9000 rpm. The HPLC method was developed for C60 analysis using a Hypersil Elite C18 (250x4.6 mm I.D., 5 µm) column. The mobile phase was toluene (HPLC grade) at a flow-rate of 1.0 mL/min. Sample injections were performed manually with volumes of 100 µL. The UV detector was set at a 330 nm wavelength (Shimadzu SPD-6 AV, Shimadzu, Germany). Integration was performed using a Shimadzu-C-R3A Chromatopac data processor (Shimadzu, Germany). The C60 response was externally calibrated.

Determination of clearance rate, histopathological effects and DNA strand breaks

A total of 6 mussels were collected from each treatment at each sampling day. Clearance rate, histopathological effects and DNA strand break were analysed as described by us in previous publications [9,10, 24]. For clearance rate, briefly, mussels were allowed to acclimatise until their valves opened (approximately 10 min) prior to the addition of 500 µl of Isochrysis algal suspension (supplied by Cellpharm Ltd., Malvern, UK). The algae were mixed manually with a glass rod and then 20
ml of water sample was removed using a glass syringe. This procedure was repeated again after 20 min. Samples from both time zero and 20 min were analysed using a Beckman Coulter Particle Size and Count Analyser (Z2) adjusted to count particles between 4.0-10.0 μm in diameter. Clearance rate of the mussels were calculated as described elsewhere in detail [10,32].

For histopathological analyses, tissues dissected from exposed animals (i.e. adductor muscle, digestive gland, gills and mantle) were examined by normal histological methods [9, 10, 24]. Each organ was initially fixed in 10% buffered formal saline for at least 48 h. Specimens were then processed in ascending grades of alcohol. Tissue samples were embedded into paraffin and cut with a microtome at 5-7 μm thickness and mounted on slides. Slides were stained with haematoxylin and eosin (H and E) following Mayer’s standard protocols. It is to be mentioned that due to a shortage of tissue samples no histopathological analysis could be applied to mussels exposed to C₆₀ only in this study.

For the determination of DNA Strand breaks, alkaline single cell gel electrophoresis or comet assay was used. Single strand breaks in the haemocytes were determined using a standard assay as described elsewhere [9,10,24,32]. Briefly, haemolymph (200 μL) samples were obtained from the posterior adductor muscle from individual mussels and centrifuged at 9600 × g for 2 min. The supernatant was discarded and replaced with 200 μL 0.75% (w/v) low melting point agarose. The mixture was then applied as two gel-drops (100 μL) to the slides which were pre-coated with 1.5% normal melting agarose 24 hours in advance. Coverslips were placed over each gel-drop and gels were allowed to solidify at 4 °C for 1 h. The slides were then immersed in cold lysis solution [2.5 M NaCl, 100 mM EDTA, 10 mM Tris base, 1% N-Lauroyl-sarcosine, 1% Triton X 100, 10% DMSO, pH=10] for 1 h to remove membranes and histones from DNA. After the lysis period, slides were placed in a horizontal electrophoresis unit (TS-COMET-RB, Thistle Scientific, Norway) containing freshly prepared electrophoresis buffer [0.3 M NaOH, 1 mM EDTA, pH>13]. The DNA was allowed to unwind for 30 min to denature before electrophoresis proceeded at 25 V for 30 min. The slides were then removed from the electrophoresis tank and gently immersed in neutralization buffer [0.4 M Tris base, pH=7.5] to rinse (3 times) before drying overnight for visualization. The level of DNA damage in 100 cells
sample [1] was measured by Komet 5.0 Image Analysis System (Kinetic Imaging, Liverpool, UK) using an epifluorescence microscope (Leica, DMR). Data for % tail DNA are presented as a reliable measure of single-strand DNA breaks/alkali labile sites [33].

Determination of tGSH level in adductor muscle extractions

The posterior adductor muscles from three mussels (0.2 g wet weight), collected both after 3 days exposure and 3 days recovery, were dissected and were homogenized using the method as described by Al-Subiai et al. [34]. Briefly, the tissues were ground with acid-washed sand (0.5 g) using ice-cold extraction buffer [20 mM Tris-chloride, pH=7.6, containing 0.15 M KCl, 0.5 M sucrose and 1 mM EDTA, freshly supplemented with 1 mM DTT and 100 µL protease inhibitor cocktail (Sigma-P2714; reconstituted according to the manufacturer's instructions)] using a ratio of 1:3 (w/v). The crude homogenate was centrifuged for 35 min (10,500 × g at 4 ºC) and then the supernatant was separated and stored at -80 ºC until use.

The tGSH [i.e. reduced: GSH, and oxidised: glutathione disulphide (GSSG)] content in adductor muscle extract was determined as described by Al Subiai et al. [34]. Samples were treated with 5-5”'-Dithio-bis (2-nitrobenzoic acid) (DTNB) by mixing at a 1:1 ratio with buffered DTNB (10 mM DTNB in 100 mM potassium phosphate, pH=7.5, containing 5 mM EDTA). Potassium phosphate (100 mM, 235 µL, pH=7.5, containing 5 mM EDTA) and glutathione reductase (0.6 U, Sigma G-3664 from *Saccharomyces cerevisiae*) was mixed with DTNB-treated samples (40 µL). After equilibration for 1 min, the reaction was started by the addition of 60 µL 1 mM NADPH. The rate of absorbance decrease at 412 nm was measured over 5 min. A 20 µM GSH standard and a blank were used to calibrate the results. tGSH contents were measured in triplicate in 96 well plates using a microplate reader (Optimax, Molecular Devices, Sunnyvale, CA).

Gene expression analyses

Haemolymph and tissues, including digestive gland, adductor muscle, mantle and gill, were collected from a total of 6 mussels from each treatment at each sampling day. Total RNA was extracted, cleaned by DNase and reverse transcribed (10 ng of RNA) to cDNA as described in...
Real-time qPCR for target genes (p53, ras and 18S rRNA) was performed in triplicate for each sample as described in previous studies [35, 36]. Details of primers used for each gene and their PCR reaction conditions are provided in Supplementary Table 1. It is important to note that the reference gene (18S rRNA) was chosen on the outcome of the analysis of stability by geNorm qbasePLUS software (geNorm biology, USA) following manufacturer’s instruction. The software has been written to automatically calculate the gene-stability (M value, the average pairwise variation of a particular gene) which relies on the principle that the expression ratio of two ideal internal control genes is identical in all samples, regardless of the experimental condition or cell type. Genes with the lowest M values have the most stable expression [37]. In our case the reference gene 18S rRNA performed the best over actin as previously used elsewhere [9]. Relative p53 and ras gene expression was compared to the reference 18S rRNA gene expression. The comparative Ct method based on the comparison of distinct cycle differences was used [9, 38].

Statistical analyses
Statistical analyses were carried out with the aid of Minitab V15 statistical package (Minitab Inc., USA). Significant differences between untreated control and treated exposed mussels were studied using the Student’s t-test and one-way analysis of variance (ANOVA) after testing for normality of the data and homogeneity of variance. All values were provided as means ± SEM (standard error of mean). Significance was established at P<0.05.

Results
C60 nanoparticle characterisation
A summary of the C60 characterisation results is presented in Table 1. Briefly, Dynamic Light Scattering measurements indicated the formation of large and highly polydispersed aggregates (Z-average hydrodynamic diameter of 680 ± 19 nm). Micrographs obtained by transmission electron microscopy showed that the aggregates were composed of distinct particles. Size measurements of discrete particles within the agglomerates on the TEM micrographs and AFM images showed oval particles with diameters in the 100-200 nm range (Table 1). The difference
in mean diameter given by TEM (160 nm) and AFM (122 nm) can be explained by the fact that
the TEM measures the height along the surface of the grid whilst AFM height measures the
gap sizes above the muscovite surface. No significant differences were observed between
EDX-spectra acquired on C₆₀ particles and on the background carbon-coated Cu-grid indicating
that elemental impurities were below the detection limit of EDX [24].

Chemical analyses using GC-MS and HPLC-UV

Seawater B(α)P concentrations in the exposure tanks were measured at 47±15 μg/L immediately
after spiking for 56 μg/L nominal concentrations. The calibration curve for C₆₀ showed a good
linear fit for the selected range (R²=0.996). Adductor muscle, digestive gland and gill tissue
were dissected from mussels sampled after 3 days C₆₀ (1 mg/L) exposure and after another 3
days recovery from C₆₀ exposure in fresh seawater. The analysis of all mussel tissues unexposed
to C₆₀ exhibited a very small and repeatable positive signal at the retention time of C₆₀ which
was attributed to an interfering co-extractant. The results were subsequently corrected for blanks
and showed significant C₆₀ concentrations in all three tissues after 3 days of exposure,
confirming the ability of mussels to accumulate C₆₀ in organs (Figure 2). Significantly higher
amounts of C₆₀ (14.2 ± 7.2 μg C₆₀/gww) was bioaccumulated in the digestive gland, followed by
gill and adductor muscle. After 3 days recovery in fresh seawater, C₆₀ concentrations in the
three tissues dropped below the method detection limit (<1.5 μg C₆₀/gww), indicating the C₆₀
that had accumulated in each tissue had been bio-transformed and/or excreted from the tissues
after this time.

Clearance rate

There was no significant difference in clearance rate after 1 day exposure to any
chemical/particles compared to the fresh seawater control (Figure 3). Significant increases in
clearance rate were found following exposure to the chemical/particles for 3 days. Mussels
showed the most activated feeding behaviour after B(α)P exposure only (about 2-fold increase
compared to the fresh seawater control samples) followed by fresh C₆₀. The combination of
B(α)P and C₆₀ did not change the physical response of mussels in terms of feeding behaviour.
After 3 days recovery from exposure, all mussels showed a further increase in clearance rate
including controls (but not significantly) compared to samples collected after exposure. The increase was significant compared to 1 day exposure but not significant in comparison to 3 days exposure, except for samples recovering from the B(α)P and C₆₀ combined exposure.

Histopathological analysis

Histopathological analysis of the adductor muscle, digestive gland, gill and mantle tissues showed no pathological signs in control specimens such as haemocyte infiltration, necrosis or other injuries. However, there were pathological alterations in treated mussel tissues (Figures 4.1 and 4.2).

Posterior adductor muscle: Transverse section of the posterior adductor muscle showed normal histology consisting of muscle blocks, each made of distinct bundles of muscle fibres. The bundles of muscle were surrounded with connective tissue. There was no evidence of haemocyte infiltration, necrosis or other injuries in the controls (Figure 4.1A2). The adductor muscle showed histological abnormalities after B(α)P and B(α)P in combination with C₆₀ exposures, i.e. loss of muscle bundle structure, increase in intracellular spaces and decrease in extracellular spaces of connective tissue with an extreme example of complete breakdown of bundles of muscle fibres (Figure 4.1A3).

Digestive gland: Transverse sections of the digestive gland in controls showed normal structures (several round/oval) lined by columnar epithelia. All the digestive tubules were connected to each other by connective tissue. There was no evidence of haemocyte infiltration, necrosis or other injuries in the digestive gland of control mussels (Figure 4.1B1). Most of the digestive tubules collected after B(α)P exposures showed reduced epithelial cell height and haemocyte infiltration inside the tubules and in surrounding connective tissue. The histological abnormalities after combined exposure showed different features, such as no clear distinction in some epithelial cells and destroyed architecture of digestive tubules. In some extreme cases, the complete breakdown of the epithelium was observed (Figure 4.1B3).

Gill: The histopathological analysis showed several abnormalities in gills of mussels in comparison between control and exposed conditions. Gills from the control group showed well
preserved structures including gill filaments covered with a ciliated epithelium on their external surface, simple frontal cilia, and lateral cilia. The frontal cilia are emerging from the front epithelia, while the lateral cilia are emerging from lateral cells (Figure 4.1C1). Most of the gills from B(α)P treated mussels exhibited injuries featured as swollen gill filaments filled with haemocytes, inflammation and filament necrosis. Most of gills from mussels collected after combined exposure showed abnormalities such as absence of the front epithelial border, hyperplasia in the frontal and lateral cilia, and hypoplasia in the lateral cilia. In addition, pore structures were only found in frontal epithelial of gills dissected from mussels after combined exposure (Figure 4.1C2 and C3).

Mantle: The histopathological analysis showed normal mantle tissues to contain gonads (testis for male and ovary for female) and connective tissues. Gonads consist of an organized network of branching tubules and appear as follicles. The tubules terminate into a short gonado-duct that opens into mantle cavity (Figure 4.2). There were no significant histological abnormalities in mantle tissue after B(α)P exposure, either alone or in combination with C60.

Although histopathological alterations were observed in some tissue samples after exposures to the chemicals, it is worthy to note that not all treated samples exhibited abnormalities. Figure presented here only show the examples of histopathological profiles of tissues in unexposed (control) and exposed groups. The summary of percentage of tissues that showed abnormalities is summarised in Table 2. Increased occurrence of abnormalities was found in all tissues after exposure and a slightly decreased occurrence was also found after recovery in fresh seawater for 3 days compared to the 3 days exposure period. There was no difference in percentage of abnormalities induced by the 2 types of exposure. Qualitatively, no tissue showed increased sensitivity to a particular exposure type.

DNA strand break analysis by comet assay

In our previous studies using a range of concentrations of B(a)P, C60 fullerenes and fluoranthene either alone or in combinations, no significant loss of cell viability (as determined by Trypan Blue exclusion assay) were observed [9, 24]. These observations gave us the required information for further experiments. As the amount of haemocytes to be procured from mussels...
poses restrictions (it is to be noted that in this study we also used haemocytes for gene
expression analyses), cellular viability was detected in haemocytes from individual mussels
before the exposure to ensure their health status. The results showed no cytotoxicity presented
(cell viability > 90%, supplementary Table 2). Results of tail DNA (%) showed no significant
increase in DNA strand break after 1 day exposure to B(α)P and/or C₆₀ (Figure 5). Significantly
increased DNA strand breaks (p < 0.05) were found after 3 days exposure where the highest
DNA damage (70% tail DNA) was induced by B(α)P exposure only, followed by C₆₀ only (62%)
and surprisingly only a 56% induction of DNA strand breaks for exposure to B(α)P in
combination with C₆₀. However, differences in these numerical values are not statistically
significant. After 3 days recovery, DNA damage was significantly decreased compared to the 3
days exposure samples. However, there was still a significantly increased DNA damage induced
by chemicals compared to control conditions.

tGSH analysis

The tGSH level in adductor muscle tissue was measured in mussels sampled after 3 days of
exposure to B(α)P and/or C₆₀ (Figure 6). There was an increased level of total glutathione after
exposure to chemical treatments. The increase was significant for individual C₆₀ or B(α)P
exposed samples but not significant after combined exposure compared to control samples.

Gene expression analyses

Relative quantification of p53 and ras expression in different tissues: The relative
quantification of p53 and ras expression was normalized in different tissues by $2^{-\Delta\Delta C_T}$ method [9]
using 18S rRNA as the housekeeping gene. Relative expression of 1 was defined as the control
level after normalization with housekeeping gene and control. High inter-individual variation
was found in all the gene expression results, including p53 and ras expressions in various
tissues (Supplementary Figure 1).

Relative expression of p53 gene in different tissues: In haemocytes, induced p53 expression
was only found after 3 days exposure to B(α)P alone (1.8 ± 0.3- fold; Fig. 7a). After exposure to
C₆₀ alone, significantly increased p53 relative expression was detected after 1 day of exposure
and kept increasing after 3 days exposure, however, the increase was not significant compared
to the 1 day exposure. After 3 days recovery from exposure, p53 relative expression decreased
dramatically, but was still significantly higher than control levels (17.2 ± 6.6- fold; Fig. 7a).
After the exposure to combined B(α)P and C60, p53 expression was significantly induced by
17.8 ± 5.6- fold. The induction increased to 98.4 ± 8.5- fold after 3 days exposure (Fig. 7a). The
induction of p53 expression after both exposure times was lower compared to C60 exposure
alone. The recovery from combined chemicals exposure showed a decline in p53 relative
expression, but was the same as the C60 exposure; the level was still significantly higher than the
control (28.4 ± 14.7- fold; Fig. 7a).

Relative expression of p53 in the digestive gland showed a similar pattern as haemocytes but
with a quicker response to C60 exposure (Figure 7b). B(α)P only induced p53 expression after 3
days exposure. The combination of B(α)P and C60 intended to induce more p53 expression
compared to B(α)P alone, about 4.5 ± 0.5-fold of p53 expression induced after 1 day exposure
and 6.3 ± 1.7- fold after 3 days exposure. Relative expression of p53 dropped to control levels
after exposure to both B(α)P alone and in combination with C60. p53 expression responding to
C60 exposure showed a different pattern. Significantly increased p53 expression (over a
thousand-fold) was found after 1 day exposure. This level dramatically decreased to 32.0 ±
15.0- fold after 3 days exposure. After recovery, the level continued decreasing but was still
higher than control level.

Relatively higher p53 expression was induced in mantle compared to the other tissues (Figure
7c). After B(α)P exposure alone, 6.3 ± 5.2- fold of p53 expression was induced after 1 day
exposure. The induction increased to 283 ± 157- fold after 3 days exposure. No induction of p53
expression was detected after 3 days recovery. After C60 exposure alone, significantly increased
p53 expression was detected after 1 day exposure. The level was similar after a longer exposure
time (3 days) but returned to control levels after recovery. Unlike haemocytes and the digestive
gland, the combined exposure showed the ability to induce more p53 expression in mantle tissue.
A significant induction about 3515 ± 2491- fold of p53 was detected after 1 day exposure.
Further increased \textit{p53} expression was induced after 3 days exposure. After recovery, induced \textit{p53} expression decreased but was still significantly higher than the control level.

In the adductor muscle, a similar \textit{p53} expression pattern was found (Figure 7d) compared to the mantle. After B(\textalpha)P exposure alone, significant induction of \textit{p53} was found after 1 day of exposure. No induction of \textit{p53} expression was found after both 3 days exposure and 3 days recovery. For C\textsubscript{60} exposure alone, highest induction of \textit{p53} expression was shown after 1 day exposure, less but still significantly induced \textit{p53} expression was found after 3 days exposure. The level was similar after recovery compared to 3 days exposure. The combined exposure of B(\textalpha)P and C\textsubscript{60} induced significantly \textit{p53} expression after 1 day exposure. Decreased expression was found after longer exposure and no induction of \textit{p53} expression after 3 days recovery. Similar to mantle tissue, combined chemical exposure induced more \textit{p53} expression compared to single chemical exposure in adductor muscle (Figure 7d).

The relative expression pattern of \textit{p53} in gill tissue after exposure was similar to digestive gland and haemocytes (Figure 7e). There was no induction of \textit{p53} relative expression after B(\textalpha)P exposure alone at any sampling time. Induced expression was found after 1 day exposure to C\textsubscript{60} alone and the level increased after 3 days exposure. \textit{p53} expression decreased after recovery. However, there was no significant difference in \textit{p53} expression when comparing different time points after C\textsubscript{60} exposure due to high variability between replicates. The combined exposure induced \textit{p53} expression after 1 day exposure. The level dropped after 3 days exposure but increased slightly after recovery. The differences in \textit{p53} expression for different time points were still not significant (Figure 7e).

\textit{Relative expression of ras gene in different tissues}: The relative expression of \textit{ras} in haemocytes (Figure 8a) showed a different trend and pattern compared to \textit{p53} expression. There was no up-regulation of \textit{ras} expression at any sampling time after any treatment. Similar results were found in gill (Figure 8e), where \textit{ras} relative expression remained at control levels after all the treatments. In the digestive gland (Figure 8b), no significant induction of \textit{ras} expression was found after B(\textalpha)P exposure alone. After C\textsubscript{60} exposure alone, \textit{ras} relative expression was significantly induced after 1 day of exposure (108 ± 19- fold). The level dramatically decreased
after 3 days exposure but returned back to the control level after 3 days recovery. The combined exposure also induced ras expression after 1 day exposure; however, the level (3.1 ± 0.2-fold) was significantly lower than C₆₀ exposure alone. A decline of ras expression was found after 3 days exposure and remained at a similar level after 3 days recovery (Figure 8b).

Relative expression of ras in mantle (Figure 8c) showed a different pattern compared to digestive gland, but similar to p53 expression in the same tissue as mentioned earlier. There was no significant induction of expression after 1 day exposure to B(α)P exposure alone, but the level increased dramatically (73.2 ± 40.2-fold) after exposure to B(α)P for 3 days. After 3 days recovery, no induction of ras expression was found in mantle. There was no induction of ras expression after C₆₀ exposure only, after all treatments in this tissue. The combined exposure of B(α)P and C₆₀ showed the ability to induce significant ras expression. After 1 day exposure, over a 200-fold increase in ras expression was found. The level increased to over 4000-fold after 3 days exposure to the combined chemicals. Unlike other tissues, ras expression in mantle remained at a relatively higher level (221 ± 220-fold) after recovery compared to control.

Expression of ras gene in the adductor muscle showed a similar expression pattern to mantle tissue but with quicker response times (Figure 8d). Expression was induced after 1 day exposure to B(α)P alone and then the level dropped to the control level after 3 days exposure and remained at a similar level after 3 days recovery. There was no induction of ras expression after C₆₀ exposure alone at any sampling time in this tissue (Figure 8d). The expression level remained slightly below the control level. The combined exposure significantly induced ras expression after 1 day exposure, approximately 647 ± 424-fold. After 3 days exposure, the induction decreased to 30 ± 28-fold higher than the control and decreased to similar to the control level after 3 days recovery in fresh seawater (Figure 8d).

Discussion

Determination of B(α)P concentration by GC-MS and C₆₀ concentration by LC-UV

The measured concentrations of B(α)P in the water samples were on average 16% lower than
nominal, in agreement with B(α)P’s low solubility in seawater [9]. Regarding C$_{60}$ analyses, the digestive gland was found to accumulate more C$_{60}$ after exposure compared to the other two tissues. This was not surprising given that its main function is to digest absorbed compounds. C$_{60}$ tissue concentrations after the 3 days recovery period in fresh sea water suggest that all three tissues are able to metabolise or excrete the C$_{60}$ back to control levels. This ability appears to exhibit a tissue-specific pattern which is consistent with previous studies e.g. different concentrations of C$_{60}$ were recorded in rat tissues after tail vein administration [39]. However, the exact mechanism of how each tissue at whole organism level functions to metabolise, excrete or eliminate C$_{60}$ remains unknown. Several studies aimed to determine the interactions between nanoparticles and tissues have been performed using transmission electron microscopy (TEM) or confocal laser scanning microscopy (CLSM). These studies have shown diffusion and localization of selected nanoparticles [e.g.: TiO$_2$, poly (D, L-lactide-co-glycolide) nanoparticles] into cells at different sites [40–42]. However, measuring the interaction between absorbed C$_{60}$ and *Mytilus sp.* tissues following exposures using microscopic techniques is technically very challenging because it is not possible to distinguish between C$_{60}$ and naturally occurring carbon present in the cells/tissues or with cell structure within the same size range as C$_{60}$/C$_{60}$ aggregates [43].

Clearance rates

In general, the largest increase of clearance rate was for B(α)P alone followed by C$_{60}$ alone. Surprisingly, the lowest stimulation of feeding was from the combined treatment. Variability in the measurements is, however, quite substantial. The explanation for enhanced feeding activities in treated groups might relate to higher energy demands and metabolic activities required to deal with accumulated chemicals in mussels meaning that the mussels feed more to get the energy to maintain metabolic activities [44]. Following the recovery period, clearance rate / feeding activity increased further and whilst quite variable, were quite similar, although was highest for the combined mixture. It is to be noted, however, that after the 6 days, clearance rates also marginally increased in the control as well, possibly indicating that an unknown environmental variable may have contributed to the increase in feeding.
Histopathological alterations

Histopathology indicated physiological changes in the mussel tissues following exposure. Mussels exposed to B(α)P and B(α)P with C₆₀ tended to exhibit more tissue damage compared to unexposed mussels. The observations are in accord with previous studies [9]. Overall, the histopathological observations provide evidence for the toxic effects of B(α)P and C₆₀ which can cause tissue abnormalities even at these exposure scenarios. These tissue abnormalities could then lead to suppression of immune function over time and subsequently development of pathophysiological conditions such as neoplasia in the natural environment [45]. It is important to note that no samples after C₆₀ exposure alone were examined for histopathological analysis due to the tissues being specifically preserved for C₆₀ concentration analyses rendering them unsuitable for histopathology. It has been reported previously by our group that C₆₀ is able to cause tissue abnormalities following exposure to the concentration used in the present study [10]. In addition, after exposure to both B(α)P and C₆₀, gill tissues showed different abnormalities in comparison to B(α)P alone with pore structures observed in frontal cilia of gill. This observation has also been reported previously with the suggestion that it could be either the structure of nanoparticles themselves after their accumulation in the tissues or due to their accumulation in the tissues [46].

DNA strand breaks

DNA strand breaks measured by comet assay reflect the degree of DNA damage and also can be influenced by factors such as cellular viability [47]. This suggested that haemocytes collected from the experimental mussels were in the healthy condition. Significant increases in DNA strand breaks were observed after 3 days exposure to the chemicals. The highest level of DNA damage was induced by B(α)P alone followed by C₆₀ alone and then by the combined exposure of chemicals. There was no significant DNA damage after 1 day of exposure. This probably suggests that organisms take time to switch on the essential machinery to manifest the detrimental effect, i.e. the induction of DNA damage, after exposure to xenobiotics. It is interesting that the mixture actually induces slightly less damage than the individual exposures. After 3 days recovery, DNA damage was significantly less compared to 3 days exposure. This
suggests the involvement of DNA repair processes. It is also likely that the damaged cells are
replaced by cellular proliferation or through apoptosis [48]. The replacement of damaged cells
by newly generated cells could therefore also dilute the observed responses. The results
confirmed that, similar to B(α)P, C₆₀ can induce DNA strand breaks, which is consistent with
previous studies [49].

Total glutathione levels

It has been reported that the nicotinamide adenine dinucleotide phosphate (NADPH)-dependent
metabolism of B(α)P in the digestive gland of marine mussels results in the production of
hydroxyl and superoxide anion radicals, which are extremely potent oxidants and capable of
reacting with critical cellular macromolecules, including DNA and proteins [50,51]. C₆₀, itself,
has also been reported to generate oxidative stress in cells [52]. Therefore, biomarkers which
can indicate the ability of cells to cope with oxidative stress are required for analysis of C₆₀
induced responses in organisms. It is well documented that total glutathione (tGSH), including
both reduced and oxidized forms, is widely distributed among living cells and participates in
essential aspects of cellular homeostasis [53]. Cell injury induced by electrophiles was long
believed to be the mere result of alkylation of cellular macromolecules by their reactive
metabolites [54]. Several studies, however, highlight that, in some instances, most of the cell
injury occurs after total GSH depletion and may actually depend on the onset of extensive,
uncontrolled oxidative processes [55–57]. Our results show that C₆₀ or B(α)P alone can increase
the glutathione level, suggesting that antioxidant defences have been switched on in response to
pollutant exposure by generating more glutathione. This result is consistent with previous
studies where up-regulation of glutathione has been correlated with increased burden in the
bivalve *Perna viridis* [50]. Although both C₆₀ and B(α)P are able to induce oxidative stress in
mussels, the interaction between these two chemicals did not lead to higher glutathione levels
compared to the single chemical treatments.

In this study we measured total glutathione levels to detect oxidative stress induction. It is being
also suggested that total glutathione concentration is not sufficient to provide a holistic picture
of oxidative stress and should be accompanied by measurement of oxidized glutathione. It is to
be noted that glutathione is widely distributed in living cells and composed of reduced and oxidized forms. In healthy cells, oxidized GSH (GSSG) can be produced when the oxidative stress increases, and it can be further catalyzed into reduced GSH by glutathione reductase. Therefore, by measuring the total glutathione and GSSG concentration and calculating the ratio of reduced/oxidized GSH, can directly indicate the oxidative stress. However, total GSH dose not only circulate between its two forms, it can also be the substrate in xenobiotics metabolism (both phase I and phase II reactions) catalyzed by GSH-S-transferase. Glutathione is consumed to maintain cells in a reduced condition. Consequently, glutathione levels are expected to be changed in cells at different health stages.

In this study, there were two reasons for looking solely at total glutathione rather than measuring both the reduced and oxidised forms, and looking at the ratio. The first is the accurate measurement of GSSG requires relatively large amount of cell samples, usually pooled haemolymph samples from several mussels to reduce statistical errors. In this study, haemolymph collected has been used to assess DNA strand breaks, tGSH concentration and gene expression. Insufficient sample was available for additional oxidative GSH concentration analysis. The second reason relates to the level of oxidative stress that is expected. If the level of oxidative stress is low then the expectation is that there will be a response by the organism to up-regulate antioxidant defences, one possibility being to increase the synthesis of glutathione (as shown here, and elsewhere, in mussels). Under these circumstances, where the organism is able to deal with the oxidative stress, it would be expected that there would be little change in the GSH:GSSG ratio, and hence little to be gained from separate measurements of GSH and GSSG, but the increase in total glutathione is clear evidence in itself of oxidative stress. At higher levels of oxidative stress then, depression of the GSH:GSSG ratio may occur, followed by transport of GSSG out of cells in an attempt to maintain the ratio, in which case there will be a decline in total intracellular glutathione. If total glutathione levels are below control levels (which is not the case here) then it might be worth looking at the GSH:GSSG ratio to confirm that it is depressed.
Gene expression

Expression of p53 and ras genes in different tissues in untreated organisms

The expression abundance of p53 and ras in different tissues under control conditions were analysed before the relative expression analysis was carried out to take into account the expression of the housekeeping genes (i.e. 18S rRNA). As expected, the expression abundance trend of results for p53 and ras after normalization with 18S was the same as the actin normalized results [9]. p53 tends to be more expressed in the digestive gland, followed by gill, mantle and adductor muscle tissues. ras was expressed at similar levels in the digestive gland, gill and adductor muscle and less in mantle tissue. These results confirm that the change in housekeeping gene for normalisation does not affect the normalization results and make the results comparable to the previous study.

Relative expression of p53 and ras in haemocytes following exposure to B(α)P and/or C₆₀

In bivalves, the haemocytes are responsible for cell mediated immunity through phagocytosis and various cytotoxic reactions [58]. In the marine mussels, haemocytes have been shown to represent a sensitive target for a number of environmental contaminants, including heavy metals and organic xenobiotics, with consequent immunotoxic effects or stimulation of immune parameters, leading to inflammation, depending on the compound and on the conditions of exposure [59,60]. In particular, changes in lysosomal membrane stability and phagocytosis, and stimulation of lysosomal enzyme release and oxyradical production have been observed in response to different contaminants. Many of these effects are known to be due to interference with components of the signalling pathways involved in activation of the immune response [61, 62]. Therefore, analysis of the expression of key genes in haemocytes will represent the generic genetic response of mussels to environmental contaminants.

The increased expression of p53 in haemocytes after exposure to B(α)P and/or C₆₀ confirmed its function in DNA repair and cell cycle related process. The reduced level of expression after recovery in all the treatment suggests that mussels are able to cope with the applied exposure concentration because there is no need for more p53 to be expressed. The damaged DNA has
either been repaired and cells are allowed to pass through the cell cycle checkpoint, or the
damage cannot be repaired and has led the cell to the apoptosis pathway. These results are
closely related to the DNA strand break results, where less DNA damage has been found after
recovery. However, higher p53 expression after exposure to B(α)P in combination with C60 was
found with no significantly induced DNA damage compared to B(α)P exposure alone,
suggesting that potentially more B(α)P was delivered through the combination[23]. It is also
possible that DNA strand breaks detected by comet assay cannot cover all types of DNA
damage induced by exposure as reported by Canesi et al [63], or p53 is involved in a common
signalling pathway which can sense a wide range of stress, apart from DNA damage [64].
Therefore, p53 expression was induced in response to DNA repair rather than DNA strand
breaks. A higher p53 was induced after C60 exposure alone compared to the other two exposures.
This could be attributed to haemocytes being either more sensitive to C60 or to the combination
with B(α)P which can protect cells from the toxic effects of C60 alone. This might occur by
changing the structure or acting as radical scavengers [39, 46]. Information about the
mechanisms of how organisms process nanoparticles after absorption is however limited. p53
expression in haemocytes collected from combined and C60 exposure showed very high level of
expression even after recovery, indicating that haemocytes are probably still under stress and
either need more time for recovery or cannot cope with the stress completely. This could
potentially impair immune function of the individuals and could lead to other
pathophysiological conditions.

Expression of ras gene did not show any changes in haemocytes after all the treatments. Down-
regulation was found after 3 days exposure to chemicals suggesting ras is still kept in the proto-
oncogene form which is not as closely involved in the DNA repair process as p53. Ruiz et al.
[65] found no mutation in ras gene at the traditional hotspots, i.e. codons 12, 13 and 61 in
mussels after exposure to heavy fuel and styrene, suggesting ras was still in proto-oncogene
(inactive) form following exposure to these contaminants. Whilst ras has been proven to
function in cell differentiation and proliferation in mammalian cells [66], its function in
invertebrates is still to be well established. Our results indicate that ras, as a proto-oncogene, is
involved in cell growth by pathways other than directly involved in DNA repair as no significant difference in expression between treated and recovered group was detected. Non-induction of ras was not surprising as over expression of ras has only been reported in tumour cells [67].

When comparing the three different exposure scenarios, B(α)P was found to induce more DNA strand breaks compared to the other two treatments, p53 expression was higher in C$_{60}$ alone exposures, and total glutathione analysis showed highest GSH induction after C$_{60}$ exposure alone. Taken together, this suggests antagonistic effects of combined exposure of B(α)P and C$_{60}$ with reduced oxidative stress. This observation is consistent with previously reported alteration of phagocytic activity after exposure to TCDD and n-TiO$_2$ either alone or in combination[63].

In our study, using the same target cells (i.e. haemocytes), we have shown a direct comparison of levels of induced DNA damage, anti-oxidative ability (tGSH) and expression of a key gene (i.e. p53) involved in processing the damage. Due to technical limitations (e.g. amount of haemocytes available for analyses etc.), we could not perform modified comet assay to determine oxidative DNA damage or oxidative GSH in the present study.

Relative expression of p53 and ras genes in different tissues following exposures

Even though the expression of p53 and ras genes in haemocytes following different treatments showed concomitant induction of DNA damage, the expression patterns of these two genes in different tissues are of interest. In the previous study [9], mussels exposed to B(α)P at the same concentration (i.e. 56 µg/L) for 6 and 12 days showed significantly increased expression for both genes in adductor muscle and mantle tissues. However, no recovery analysis was included and no B(α)P was re-dosed on a daily basis in the previous study. After improving the limitations of the previous experimental design, both p53 and ras gene expression showed a dramatic increase after the combined exposure in the mantle and to a lesser extent in the adductor muscle. The interaction between B(α)P and C$_{60}$ has an increased effect in these two tissues, possibly as a result of ‘Trojan Horse’ effects. Interestingly, the gene expression levels recovered from combined exposure were close to control in adductor muscle, whereas p53 and ras remain at a high level of expression in mantle. This suggests that cells in the mantle cannot
cope with the combined exposure and this could potentially leads to the development of pathophysiological conditions. This theory is supported by research on mussels collected from contaminated sites, where only leukaemia (haemocytes) and gonadal (mantle) neoplasia have been found. No neoplasia has been found in other tissues of mussels [68]. Mantle is the main tissue to produce germ cells and requires rapid development compared to other cells. Therefore, DNA abnormalities are under higher risk to be passed to next generation and un-repaired damage could initiate neoplastic development.

In contrast to the mantle and adductor muscle, the combination of B(α)P and C_{60} induced an antagonistic rather than an additive effect in the digestive gland. C_{60} concentrations measured in different tissues after exposure showed that digestive gland accumulated more C_{60} than the adductor muscle and gill which might explain the higher response level of gene expression in this tissue. Although, a high level of p53 and ras expression was induced after exposure, the level dropped to control levels after recovery, suggesting the digestive gland is capable to cope with the chemical concentrations applied in this study or it is more resistant to induced stress.

Conclusions

B(α)P and/or C_{60} induce tissue and DNA damage in exposed mussels, confirming their function as genotoxicants. The effects of individual or combined exposures to B(α)P and C_{60} compounds at the same concentrations are diverse. For example, concerning genotoxicity (Comet assay), the mixture actually shows marginally less damage than the individual exposures. The same is true for total glutathione level. Explanations for these observations require further investigation.

The experimental exposures also induced expression of tumour-regulating genes (i.e. p53 and ras) with high inter-individual variation. B(α)P and/or C_{60} induced p53 and ras expression in a tissue specific manner with the mantle and adductor muscle being more sensitive to the combined exposure and the digestive gland being more sensitive to C_{60} exposure alone. The adductor muscle and digestive gland were found to respond more quickly compared to the mantle and haemocytes. Gill was found to be more tolerant to the chemical exposures and did not exhibit dramatic change for the expression of p53 and ras genes.
Direct measurement of DNA damage in the haemocytes as the target cell type correlated with expression of tumour-regulating genes. In addition, it has been suggested that both \(p53 \) and \(ras \) function is closely related to post-transcriptional modification in response to DNA damage \([69,70]\). With each stress, the responses may show some levels of similarities, but there will also be differences essential for eliciting a unique molecular signalling outcome. It appears, therefore, that multiple sites targeted by an integrated network of signalling pathways highly sensitive to genotoxic stresses must be modified to yield functional \(p53 \) and \(ras \) responses.

Funding

YD was awarded a grant to study for her PhD degree from Plymouth University under Overseas Research Students Award Scheme (ORSAS). YA, JWR and ANJ would like to acknowledge the support received from Natural Environment Research Council (NERC), UK (Grant No. NE/L006782/1; PI: ANJ). YD acknowledges support from National Natural Science Foundation of China (No. 41506133).

Acknowledgements

We are grateful to Dr Bjorn Stople and Professor Jamie Lead (University of Birmingham, Birmingham, UK) for their help in thorough characterisation of the \(C_{60} \) fullerenes samples via the NERC Facility for Environmental Nanoscience Analysis and Characterisation (FENAC). We would like to acknowledge the technical support provided by Mrs Patricia Frickers (Plymouth Marine Laboratory, Plymouth, UK) for the analysis of \(C_{60} \) and \(B(\alpha)P \) in tissue and water samples. Drs Sherain Al-Subiai and Will Vevers (Plymouth University, Plymouth, UK) are also being thanked for their help and support during the experiments. Dr A. John Moody (Plymouth University, Plymouth) is thanked for helpful discussion.
References

Figure and Table Legends

Figures:

Figure 1. Overall experimental design to determine the biological impacts of B(α)P and C₆₀ in vivo exposure in mussels.

Figure 2. C₆₀ concentration in tissues after 3 days C₆₀ exposure. Star indicates significantly increased concentration in exposed mussel tissues in comparison to control maintained in fresh seawater only.

Figure 3. Clearance rate in mussels sampled after 1, 3 days exposure and 3 days recovery (n=6). * indicates significant difference between treated and control group at same sampling day. # indicates significant difference between samples collected after 6 days incubation compared to 1 and 3 days incubation within control group.

Figure 4.1. Light micrographs of sections through digestive gland, gill, adductor muscle of M. edulis showing histological structures of control and treated mussels stained with H & E at 5-8µm thickness. A1-C1: control; A2-C2: exposed to B(α)P; A3-C3: exposed to B(α)P with C₆₀. A: adductor muscle (×200 times); B: digestive gland (×400 times); C: gill (× 400 times). dt = digestive tubule; ct=connective tissues; fc=frontal cilia; lc=lateral cilia; gf= gill filaments; amb=adductor muscle block. Black triangle indicates abnormalities. Scale bar = 20 µm.

Figure 4.2. Light micrographs of sections through mantle of M. edulis showing histological structure of control mussels stained with H & E at 5-8µm thickness. MF: female mantle; MM: male mantle; MC: mantle connective tissue. mgt= male gonad tubule; fgt= female gonad tubule; ct= connective tissue. Scale bar = 20 µm.

Figure 5. Induction of DNA strand break (represented as % Tail DNA) in Mytilus sp. haemocytes following 1 & 3 days in vivo exposure to B(α)P and/or C₆₀. * indicates significant increase of % Tail DNA in exposed groups compared with control group (p < 0.05). # indicates significant differences of % Tail DNA among different time treated samples (p < 0.05).
Figure 6. Total glutathione level in adductor muscle after 3 days exposure to chemicals. * indicate significant increase compared to control (p<0.05).

Figure 7. Relative quantitative p53 expression pattern in haemocytes (a.), digestive gland (b.), mantle (c.), adductor muscle (d.) and gill (e.) exposed to B(α)P at 56 µg/L and/or C60 1 mg/L for 1 and 3 days followed by 3 days recovery. Each Histogram represents the means of 6 replicates (n=6) and S.E.M are indicated by error-bars. Histogram marked with the letter (a to e) indicate no significant difference when one mean value compared to another, based on the statistical analysis. * indicated significant up-regulated genes expression compared to control only. # indicated significant down-regulated genes expression compared to control only.

Figure 8. Relative quantitative ras expression pattern in haemocytes (a.), digestive gland (b.), mantle (c.), adductor muscle (d.) and gill (e.) exposed to B(α)P at 56 µg/L and/or C60 1 mg/L for 1 and 3 days followed by 3 days recovery. Each histogram represents the means of 6 replicates (n=6) and S.E.M are indicated by error-bars. Histogram marked with the same letter (a to f) indicate no significant difference when one mean value compared to another, based on the statistical analysis. * indicated significant up-regulated genes expression compared to control only. # indicated significant down-regulated genes expression compared to control only.

Tables

Table 1. Characterisation measurements of C₆₀ fullerenes particles.

Table 2. Percentage of histopathological abnormalities in different tissues following in vivo B(α)P exposure alone or in combination with C₆₀.

Supplementary Information

Supplementary Figure 1. Constitutive p53 (a.) and ras (b.) genes expression pattern in various tissues. The gene transcript levels were semi-quantified in tissues using real-time qPCR and are expressed relative to 18S level. Each histogram represents the mean of 6 replicates examination (n=6) and S.E.M were indicated by T-bars. Histograms marked with different letters (a, b or c)
indicate significant difference when one mean value compared to another, based on the statistical analysis.

Supplementary Table 1. Primers designed for each gene and their PCR reaction conditions.

Supplementary Table 2. Cell viability of haemocytes collected from posterior adductor muscle of experimental mussels prior to exposure (n=16).