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Abstract: We compared procedures for digestion of mussel soft tissues and extraction of 24 

microplastics (MPs). Complete tissue digestion was achieved with 1M NaOH, 35% HNO3 and by 0.1 25 

UHb/mL protease, but use of HNO3 caused unacceptable destruction of some MPs. Recovery of MPs 26 

spiked into mussels was similar (93±10%) for NaOH and enzyme digestions. We recommend use of 27 

industrial enzymes based on digestion efficiency, MP recovery and avoidance of caustic chemicals. 28 
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INTRODUCTION 33 

 34 

The presence and accumulation of plastic debris within marine environments has become an issue 35 

of high priority for environmental policy [1]. Microplastics [(MPs), particles between 5 mm [2] and 1 36 

µm [3]], are reported as the most abundant pieces of plastics found in the marine environment [4] 37 

and these particles have accumulated at the sea surface on shorelines and in sediments [5]. They are 38 

also present in organisms [6] and are of toxicological concern [3]. Standardised methods for detection 39 

of MP accumulation in organisms are necessary to establish levels of exposure, facilitate comparison 40 

among studies, and to enable robust assessments of MPs risks in the environment.  41 

Mussels are particularly good candidates for assessment of MP exposure, in the same way as they 42 

are used as indicator species for other environmental contaminants in monitoring programmes such 43 

as Mussel Watch (The National Oceanic and Atmospheric Administration, NOAA, USA). If standardised 44 

methods for extraction and quantification of MPs in tissues are established and based on good 45 

laboratory practice, mussels can act as sentinel species of MP contamination applicable over a wide 46 

range of geographical scales. For instance, Mytilus spp. are intertidal mussels with a large 47 

geographical distribution, they filter large volumes of water, are relatively immobile, and are easily 48 

accessible for collection throughout the year. Laboratory studies have demonstrated ingestion of MPs 49 

by Mytilus spp [7–9], and gut retention times for MPs can be above 72 h [8]. Microplastics have also 50 

been found in both wild and cultured Mytilus spp., but different soft tissue digestion and 51 

quantification methods make comparison of results challenging. For example, particles were found at 52 

concentrations between 5 - 75 particles per mussel in Nova Scotia [10], but in other studies the 53 

reported concentrations were 0.36 particles g-1 wet weight from North Sea coasts [11]) and up to 0.34 54 

particles g-1 wet weight from various European specimens [12]. 55 
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A standardised and specific method for extraction and quantification of MPs from mussels is 56 

necessary to provide the data needed to assess levels of exposure of organisms to MPs, and to 57 

provide support for environmental monitoring programmes and management decisions. Recently, 58 

Vandermeersch et al. [12] reviewed and compared acid digestion procedures used for soft tissue 59 

digestion of Mytilus spp., but their evaluation did not consider approaches for tissue digestions that 60 

use strong bases or enzymes. Some methods used for extraction of MPs from mussels may not enable 61 

accurate quantification of MP abundance. Techniques used for extraction of MPs can alter the shape 62 

or destroy of particles present in samples. Extraction of MPs from bivalves in general, and Mytilus spp. 63 

mussels in particular, has been accomplished by chemical digestion with simple and/or mixtures of 64 

strong acids (HCl, HNO3, HClO4) [6,11,13] and bases (NaOH, KOH) [14–16]; however, some of these 65 

methods can damage and/or destroy pH-sensitive polymers [11,13]. Hydrogen peroxide (H2O2) has 66 

also been used to digest tissue prior to extraction of MPs, but limitations including incomplete soft 67 

tissue digestion and production of foam was indicated to cause lower MP recovery from samples 68 

[10,13]. Although not previously used to digest mussel tissues, enzyme digestion has been applied to 69 

extract MPs from plankton-rich seawater samples, with reported high digestion rates (up to 97.7 %) 70 

and no damage of particles [17]. Similarly, in forensic studies, enzyme digestion (industrial proteases 71 

and lipases by Novozymes) has been used as a method for soft tissue digestion, and which 72 

additionally does not cause bone damage [18], indicating the potential use of industrial enzymes 73 

(used in washing powder and food industry, for instance) to digest soft tissue in other organisms. 74 

The need for a standardised method to assess MPs from organisms, including mussels, has been 75 

highlighted by the International Council for the Exploration of the Sea (ICES) advice provided to the 76 

OSPAR Commission on plastic monitoring in organisms [19] and more recently by Vandermeersch et 77 

al. [12]. Our goal was to describe a procedure for extraction and quantification of MPs in marine 78 
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mussels. This method was developed specifically for Mytilus species, as the digestion of soft tissue 79 

from other organisms will differ in methodological requirements (e.g. chitinous tissues in crustaceans 80 

and gut content analysis in large fish [20]). Our approach was first to optimise the digestion efficiency 81 

of Mytilus edulis soft tissues by 3 different methods: strong acid, strong base, and a new enzyme 82 

procedure. This new enzyme procedure uses industrial enzymes that are less expensive than other 83 

enzymes used for tissue digestion in laboratory research. Rates of soft tissue digestion were 84 

compared and the effects of each digestion method on polymer integrity were assessed by FT-IR 85 

analysis of extracted MPs from spiked samples. In addition, spike recovery rates of MPs were 86 

determined, airborne fibre contamination assessed, and the industrial enzyme digestion procedure 87 

was applied to quantify MPs in M. edulis exposed in the field to waters containing MPs. To enable 88 

reproducibility, a more detailed standard operating procedure (SOP) based on Good Laboratory 89 

Practice (GLP) guidelines [21], is provided in the supplement section. 90 

  91 



5 

 

METHOD DEVELOPMENT 92 

 93 

Development of soft tissue digestion of mussels 94 

Three tissue digestion agents were tested under the same conditions to determine the method that 95 

provided the most complete digestion of soft tissue with the least damage to plastics. The 1st method 96 

used a strong acid (HNO3: 0, 9, 18, 35, 50 % (v/v); # 10050270 Fisher Scientific) and the 2nd method a 97 

strong base (NaOH: 0.25, 0.5, 1.0, 2.5, 5.0 M; # 10142590 Fisher Scientific). Both methods were based 98 

on previous procedures used for digestion of mussels for MP quantification using strong acids 99 

[6,11,19] or strong acids or bases[13,17]. Selection of NaOH was because it is a strong base and its 100 

base dissociation constant (pKb) is representative of other strong bases (e.g. KOH). The 3rd method, 101 

enzymatic digestion, used an industrial protease, Corolase 7089 (AB Enzymes), obtained from Bacillus 102 

subtilis cultures (activity of 840 UHb) at volumes of 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1 mL to 100 mL of Milli-Q 103 

water (Millipore, filtered at 0.22 µm). This enzyme is available commercially and is considerably less 104 

expensive than enzymes offered by scientific supply companies. Corolase 7089 is active at pH 6 – 9, 105 

allowing its use in water without addition of a buffer, as required by other proteases. 106 

With the exception of the agent used, all conditions for tissue digestion were constant. Blue mussels 107 

Mytilus edulis were obtained from local consumer fish markets (September and December 2014), and 108 

specimens were frozen at -20 °C prior to digestion. Mussels were defrosted at room temperature (up 109 

to 2 h); all soft tissues were removed from the shell, weighed (wet weight to 0.01 g), and placed in a 110 

250-mL glass Erlenmeyer flask for digestion (one mussel per flask). A 100 mL volume of the digestion 111 

agent at the indicated concentrations (see above, current section) was added to each Erlenmeyer 112 

flask, which were covered with aluminium foil and placed on a magnetic multi-stirrer plate (up to 10 113 

flasks simultaneously), and stirred for approximately 1 h at 60 °C. The 60 °C temperature was selected 114 
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as it is within the range of action of the industrial enzymes (optimum at 55 ºC, activity up to 65 ºC) 115 

and this temperature was unlikely to affect plastics [22]. After digestion, the final product was 116 

vacuum filtered [Whatman filters of cellulose nitrate 0.8 µm or glass microfiber 1.6 µm, when MPs 117 

were to be analysed by FTIR (see section Effect of digestion procedure on polymers)] and remaining 118 

intact soft tissue on the filter membrane was weighed (< 0.01 g). Digestion efficiency (%) was 119 

calculated as the percent of tissue that remained after digestion [i.e., (1 - final weight / initial weight) 120 

× 100%]. Each digestion procedure was tested with 2 independent replicates per concentration. To 121 

avoid contamination of samples by airborne fibres and other particles throughout all procedures, the 122 

recommendations of ICES [19] and Woodall et al. [23] were followed. Samples were covered to avoid 123 

air exposure, vials were capped with aluminium foil during digestion, personnel used protective 124 

cotton lab coats, equipment was thoroughly rinsed using Milli-Q water, and glassware was acid-125 

washed prior to use. Procedural blanks, ie, positive controls, to account for airborne fibres 126 

contamination, were conducted simultaneously during soft tissue digestions. 127 

 128 

Effect of digestion procedure on polymers 129 

To determine the effects of digestion on MPs, MPs of a single polymer type spiked into M. edulis 130 

samples (one individual per flask) were evaluated after digestion of mussel tissue. Particles were 131 

selected based on commonly found particles in marine litter [24] and include polyethylene 132 

terephthalate (PET), PET flakes, high-density polyethylene (HDPE), polyvinyl chloride (PVC), all 133 

between 500 - 125 μm, and Nylon, between 1,000 - 500 μm. The particles used were obtained from 134 

Plastic Industry Development Center, Taiwan, (PET, PVC), Dow Chemical Co. (HDPE) and PET 135 

Processors LLC (PET flakes). Nylon particles were cut under a dissection microscope from Nylon thread 136 

(obtained from efco), and resulting particles were sorted by size ranges using stainless steel sieves. 137 
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Based on the previous observations, overnight (> 12 h) digestions of soft tissue were performed with 138 

Corolase 7089 (1 mL to 100 mL Milli-Q water), 1 M NaOH and 35 % HNO3. For each digestion agent, 2 139 

replicates were used per type of polymer. Soft tissue was weighed to the nearest decimal (WW) and 140 

digestion efficiency was calculated as a percentage of soft tissue digested. After digestion and 141 

subsequent filtration, all filters were placed in covered plastic petri dishes and oven dried for 142 

approximately 24 h at 60 °C. Filters were observed with a dissection microscope and particles were 143 

stored in closed vials until further use (cork lid, to avoid crossed contamination by other polymers). 144 

Transmittance FT-IR (Brüker IFS 66 Spectrometer with a Bruker Hyperion 1,000 microscope) was 145 

used to determine if integrity of polymers was altered during the digestion procedures (i.e. if the 146 

polymer would still be identifiable after digestion). Prior to the analysis, MP specimens were placed 147 

into a Specac DC-2 diamond compression cell and flattened using manual pressure, reducing the 148 

thickness to allow for suitable absorbance. For each particle, the type of polymer was identified by 149 

generating a spectrum (after 32 scans) and comparing it against a spectral database of synthetic 150 

polymers (Brüker I26933 Synthetic fibres ATR-library) [24]. An FT-IR analysis was also performed on 151 

particles from the original stock of each polymer not subjected to any digestion procedure. 152 

 153 

Recovery rate of particles and assessment of airborne fibres contamination 154 

The recovery rates of MPs that were spiked into water samples prior to digestion were assessed to 155 

determine the ability of the digestion method to quantify MPs in unknown samples. In each vial, 30 156 

particles of a single type of MP [PET, HDPE, or Nylon (all particles < 500 μm)] were added and there 157 

were 3 independent replicates for each type of MP. Two procedures, enzyme digestion (Corolase 158 

7089, activity 840 UHb, dilution 1:100) and 1 M NaOH, were selected based on results of experiments 159 

described in the section Effect of digestion procedure on polymers and tested separately, only in Milli-160 
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Q water. The digestion procedure was as described in the section Effect of digestion procedure on 161 

polymers (overnight digestion in 30 mL of Milli-Q water) and samples were filtered (0.8 µm filters) 162 

before being oven dried at 60 ºC for approximately 24 h. A stereomicroscope was used to count the 163 

number of MPs on the dried filter, and particle recovery rate (%) is expressed as the number of MPs 164 

counted divided by the number of MPs spiked into the sample (i.e., MPs counted / 30 × 100 %). As 165 

selected particles were easily identifiable and distinct from possible contamination sources, the same 166 

samples were further examined for the presence of airborne fibres, i.e. the number of fibres present 167 

in the filters were quantified. Differences in recovery of MPs (i.e., percent recovery) were tested by 168 

two-way ANOVA with particle type and digestion procedure as independent factors along with the 169 

particle type × digestion procedure interaction term. The number of plastic particles (not spiked MPs) 170 

that contaminated samples (i.e., the particles that entered during digestion method or by airborne 171 

contamination) was compared between the 2 digestion methods by t-test. For all statistical tests, 172 

normality and homoscedasticity were tested and a probability level of p < 0.05 was used to determine 173 

if differences were statistically significant, and all analyses were done using the software Statistica 174 

(StatSoft, Inc).  175 

 176 

Application of mussel digestion method to quantify MPs in wild mussels 177 

Live M. edulis (obtained from a commercial supplier) were held in the intertidal zone for 18 days 178 

(January/February 2015) in cylindrical stainless steel mesh cages (10 x 8 cm, height and diameter 179 

respectively) in the estuary of the Forth River, Edinburgh, UK, in Port Edgar (N 55º, 59’42”, W 180 

3º,24’30”). Eight mussels from 2 cages (4 mussels per cage) were digested overnight (60 ºC) with 181 

Corolase 7089 enzyme (activity 840 UHb, dilution 1:100), and MPs quantified according the methods 182 

described in the section Effect of digestion procedure on polymers. To assess airborne fibre 183 
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contamination during this procedure, 2 Milli-Q water control samples (100 mL) were submitted to the 184 

same procedure, and 4 damp filters were held in plastic petri dishes under the same conditions as 185 

other filters and oven dried (60 ºC for ~ 24 h). All filters were examined with a stereomicroscope for 186 

enumeration of particles. Differences in the number of MPs found in mussel samples were compared 187 

between deployed cages by t-test and considered significant at a probability level of P < 0.05 188 

(Statistica, StatSoft, Inc). 189 

 190 

  191 
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RESULTS AND DISCUSSION 192 

 193 

Each of the three procedures, acid, base and enzymatic digestion, digested all of the mussel soft 194 

tissue present in the tested samples. The minimum concentrations required to achieve complete 195 

digestion of soft tissue after 1 h at 60 ºC, were 1 M for NaOH, 35 % (v/v) HNO3, and 0.5 mL of Corolase 196 

7089 to 100 mL of water. Although a 100 % digestion efficiency occurred, visual inspection of the 197 

filters revealed the presence of tissue residues (less than 0.01 g) in all tested methods. These residues 198 

were very small pieces of soft tissue that were below the range of conventional balance (< 0.01 g) and 199 

considered not to interfere with MPs quantification. To guarantee complete digestion of soft tissue, 200 

overnight (~12 h) digestion is recommended and was used in all subsequent digestions. An additional 201 

1 mL of enzyme solution to 100 mL of water was used for mussels weighting between 2 - 5 g, to 202 

ensure complete digestion. For larger mussel samples (e.g., 8 - 21 g WW of Modiolus modiolus) a 203 

similar complete digestion was achieved by increasing the enzyme volume to 2 mL of Corolase in 100 204 

mL of Milli-Q water (data not shown). 205 

We obtained higher mussel soft tissue digestion efficiencies using lower concentrations of HNO3 206 

and NaOH after a shorter period of time, than those reported by other authors. For instance, mussel 207 

samples were reported not to have been 100 % digested using 52.5 M NaOH (during 1 h at 60 ºC plus 208 

1 h at 100 ºC) [13], while complete digestion occurred in the present study at 1 M NaOH after 1 h. 209 

Similarly, for HNO3 digestion, Claessens et al. [13] reported lower digestion efficiency for M. edulis 210 

after use of 22.5 M HNO3 (98.9 % at 1 h at 60 ºC plus 1 h at 100 ºC). Our samples were fully digested 211 

at 35 % (v/v) HNO3 after 1 h and it is possible that higher digestion efficiencies obtained in our 212 

method can be explained by use of frozen samples (increased destruction of cells) and mild stirring 213 
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during the procedure (increased mechanical disaggregation of tissue and contact with chemical 214 

agents). 215 

The integrity of plastics spiked into mussels was affected by digestion method. Visual inspection of 216 

samples revealed that HNO3 digestion induced melding (i.e. fusing and/or merging) of some PET and 217 

HDPE particles, and that all Nylon fibres were no longer present at the end of overnight digestion. 218 

Plastic polymers have viscoelastic properties that can be altered by temperature and chemical action, 219 

but that will not necessarily affect their chemical composition/optical properties[25]. Despite possible 220 

changes in particle morphology, all particles present were able to be identified using FT-IR (Figure 1). 221 

However, loss of material and melding of particles done by chemical digestion may lead to erroneous 222 

quantification of MPs. Loss of nylon fibres due to strong acid digestion of mussels has been reported 223 

previously [13], and likely leads to underestimation of MPs in wild mussel samples [11]. Digestion of 224 

tissues by strong acids has also been reported to meld and/or damage MPs in the digestion of soft 225 

tissue from fish [26] and plankton [17], and was not recommended by these authors. Therefore, we 226 

discontinued further use of acid digestion and agree that acid digestion should not be used for MPs 227 

extraction and quantification. 228 

The recovery of particles spiked in to mussel samples did not differ among particle types tested 229 

[HDPE, PET and Nylon particles (p = 0.06)] or digestion method [NaOH, Coralase, (p = 0.74)]. Although 230 

not statistically significant, the mean recovery of the Nylon particles was lower than for the other 231 

polymers, as well as more variable: mean recovery of Nylon was 85 % ± 13.2 SD (n = 6) compared to 232 

97 % ± 6.3 SD (n = 6) for PET and 98 % ± 2.0 SD (n = 6) for HDPE. This was likely due to difficulties in 233 

working with Nylon particles because they appeared to have higher static electricity and prevention of 234 

particle loss was more difficult. The mean recovery rate for enzymatic digestion was 93 % ± 10.8 SD (n 235 

= 9) and for 1 M NaOH digestion was 94 % (± 10.0 SD, n = 9), with a total mean recovery rate of 93 % ± 236 
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10.1 SD (n = 18). These spike recovery values are consistent with the 93.6 - 98.3 % recovery rates after 237 

acid digestion of mussels reported by Claessens et al. [13]. 238 

The suitability of the enzymatic digestion protocol was verified in M. edulis live specimens placed in 239 

the field, showing practical applicability of the method. Fibres, films and particles (spherules, 240 

spongious and other particles) were extracted and quantified (Table 1). Specimens from 2 different 241 

cages placed in the field did not present any difference in amount or type of particles extracted (p > 242 

0.40). The number of particles is within the expected range with fibres reaching 10.4 per g mussel 243 

WW ± 3.42 SD), particles detected were 0.9± 0.99 g -1 mussel WW ± while films was 1.3 ± 2.38 g -1 244 

mussel WW. Mussels from the North Sea collected in Belgium were reported to have 0.36 particles g-1 245 

wet weight soft tissue [11]. 246 

Airborne fibres contamination did not differ between tested digestion methods NaOH and Corolase 247 

(p = 0.15) and the mean number of fibres observed per sample was of 5 ± 6.4 SD fibres per sample (n 248 

= 18). In the enzymatic digestion of field samples, the observed airborne fibre contamination within 249 

the same range (3 and 6 fibres). This level of airborne fibre contamination is consistent with reported 250 

contamination of the method used by De Witte et al. [6] for acid extraction of MPs of mussels (limit of 251 

detection of airborne fibres between 1.5 - 4.7 fibres per analysis). Some earlier studies, eg [16] on 252 

MPs quantification in mussels failed to report on airborne fibres contamination. Other studies, such 253 

as Mathalon and Hill [10], reported up to 100 plastic fibres per digested sample that were attributed 254 

to airborne contamination. The use of procedural blanks for systematic monitoring of fibre 255 

contamination and the application of good laboratorial practices is essential for quality assurance for 256 

quantification of MPs in tissues. Contamination from airborne fibres can occur at any time during the 257 

digestion procedure, but samples are possibly more vulnerable during initial stages, such as open-air 258 

dissection and weighting of samples. According to our results, in the filters only submitted to oven 259 
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drying (n = 4), when samples were covered, the mean airborne fibre contamination was low, 0.8 ± 1.5 260 

SD fibres per filter. Therefore, special care should be taken during initial procedural stages (e.g. 261 

dissection, sample digestion, and processing), and the manipulation of samples in a confined and 262 

clean room and/or laboratorial hood is recommended. The use of procedural blanks during the entire 263 

procedure is essential to monitor the presence of airborne fibres contamination and to assure a more 264 

accurate quantification of observed MPs from field samples. Quality assurance and data reliability of 265 

data are important considerations, and must be consistent with international recommendations for 266 

good laboratory practice (GLP) as recommended by the EFSA Panel on Contaminants in the Food 267 

Chain (CONTAM) [20]. 268 

Based on soft tissue digestion efficiency, ability to maintain MP integrity during digestion, and high 269 

MP spike recovery, the enzyme digestion method described in the present research is offered to 270 

become a standard method for MP quantification in mussels (see supplemental data for Standard 271 

Operating Procedure, SOP). We believe that our method provides not only a high MP recovery rate, 272 

but it also enables recovery of sensitive MPs without damage, and increases the utility of this 273 

extraction method for a more accurate estimation of the number of MPs present in bivalves. 274 

Furthermore, the use of industrial enzymes is a safer procedure than use of NaOH, and can be 275 

conducted without use of a fume cupboard. Compared to other enzymes used in laboratory 276 

procedures, industrial proteases have the advantage that they are supplied in a liquid form that does 277 

not need to be buffered, and they present lower hazard problems compared to powder forms. In 278 

summary, the method advocated here consists of soft tissue digestion overnight (~ 12h) at 60 ºC, in a 279 

stirred preparation of water and industrial proteases. After digestion, the preparation is filtered, the 280 

filter paper is dried in a covered plastic petri dish at 60 ºC (~ 24 h), and quantification of MPs is 281 

conducted by examination with a stereomicroscope (60 - 310 x magnification). This method is 282 
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relatively inexpensive, can be applied in most laboratories, and if employed as described will enable 283 

direct comparison of MPs quantification among future studies. The application of this method as a 284 

standardised procedure will enable MP assessment to be integrated into existing environmental 285 

monitoring programmes, such as the Mussel Watch (The National Oceanic and Atmospheric 286 

Administration, NOAA, USA). 287 

 288 

  289 
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SUPPLEMENTAL DATA 367 

 368 

Standard operating procedure for digestion of mussel soft tissues and extraction of microplastics:  369 

1. Recommendations to avoid airborne sample contamination: 370 

Samples should be covered to avoid air exposure, vials capped with aluminium foil during 371 

digestion, personnel should use protective and clean cotton lab coats, equipment must be 372 

thoroughly rinsed using Milli-Q water, and glassware should be acid-washed (nitric acid 2 %) 373 

prior to use. The use of blanks during the whole procedure is highly recommended, to allow 374 

for airborne fibre contamination to be quantified. 375 

2. Samples processing: 376 

a. Allow samples, ie mussels, to freeze (-20 °C) for at least 24 h as this process helps 377 

breaking down fibres and softening tissues 378 

b. Before processing the samples allow them to thaw (room temperature, < 2 h), then cut 379 

adductor muscles using scalpel and open shell. Scrap all soft tissue and register wet 380 

weight (to 0.01 g) 381 

3. Soft tissue digestion: 382 

a. Place tissue in a 250 mL glass Erlenmeyer (1 mussel per vial) 383 

b. Add 100 ml of MilliQ water and 1 mL of Corolase 7089 enzyme aqueous solution (AB 384 

Enzymes) 385 

c. Add stirring magnet and cover the top of the vial with aluminium foil 386 

d. Place vials on a magnetic multi-stirrer plate and allow samples to digest overnight at 60 387 

°C 388 
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e. Blank should be submitted to the same procedure but no sample should be placed in 389 

the dedicated vial 390 

4. Filtration and drying: 391 

a. When present in the samples, microplastics are recovered through vacuum filtration 392 

using a glass Whatman filter holder device 393 

b. Filter pore size is a trade of between the minimum size of the particles to be recovered 394 

and how fast/efficient the filtration procedure is – for small particles recovery use 395 

filters of 0.8 - 1.6 µm 396 

c. It is advisable for filters to be of cellulose nitrate, but glass microfiber material can be 397 

more suitable for particles to be analysed using FT-IR 398 

d. After vial and sample cool down, pour mixture into Whatman filter funnel, rinsing 399 

digestion vial thoroughly with MilliQ water and active the filter pump 400 

e. Once filtration ends, collect the filter carefully, place it in a plastic petri dish, and allow 401 

filter to oven dry (covered) at 60 °C for 24 h 402 

f. Filters can be stored for later observation under a stereomicroscope (60 – 310 x 403 

magnification) 404 

  405 
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Figure 1. FT-IR spectra of tested polymers (PVC, HDPE, PET and Nylon) spiked in mussel samples: 1) 406 

not submitted to digestion (original particles) and 2) after Corolase digestion (post dig.) 407 

 408 



Table 1. The number (mean ± SD, n = 18) of microplastics (fibres, particles and films) per 

mussel and per g wet weight (WW) of mussel 

 

 Fibres Particles Films 

MPs / mussel 10.4 ± 3.42 0.9 ± 0.99 1.3 ± 2.38 

MPs / g (ww) 2.0 ± 0.42 0.2 ± 0.21 0.3 ± 0.59 

 

 



 

 

 


