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Abstract 

Dispersal is a fundamental process that shapes many aspects of population ecology and 

evolution. Dramatic local population declines brought about by anthropogenic-driven 

changes to ecological processes are unfortunately becoming ubiquitous and increasing 

the urgency to understand dispersal behaviour in many species. For species where direct 

methods of tracking movement and dispersal are unsuitable, other indirect methods 

need to be employed to understand and characterise these behaviours. 

The steep population decline, due to predation, at the largest EU population of Leach's 

storm-petrels Oceanodroma leucorhoa (St Kilda, Scotland), and the potential part 

immigrant birds have in buffering this threat, highlighted the need to understand 

dispersal and connectivity of widely spaced colonies in this species. The implications 

for the persistence of local colonies and the wider population of Leach's storm-petrels 

could then be assessed. 

A population genetic analysis of 9 colonies across the North Pacific and Atlantic 

distribution, using two DNA markers (mtDNA control region and microsatellites), 

revealed ocean basin differentiation (Global OST = 0.32 P <0.0001, Global Fŝ  = 0.04. P 

<0.0001) but also identified a migrant individual in the Pacific population (STRUCTURE 

migrant assignment). The Atlantic population was found to be genetically homogenous, 

with patterns of historical and contemporary gene flow, indicating that long-distance 

effective dispersal is prevalent in Leach's storm-petrels within the ocean basin. 



Bayesian stable isotope analysis of carbon and nitrogen (6"C & S'̂ N) provides 

evidence for natal dispersal as an important dispersal mechanism, and reveals 

movement of immature birds between colonies during the breeding season as a likely 

mechanism to promote inter-colony exchange and gene flow. Stable isotope comparison 

also identified mixing on wintering grounds as another possible influence on dispersal-

The potential for immigrant birds to offset the loss caused by predation at the St Kilda 

colony is supported by these studies, and will likely help the pereistence of the colony in 

the short-term. However, future viabihty is debateable considering the evidence for both 

avian and mammalian predaiion. 

This research provides a better understanding of the extent and mechanism of dispersal 

in the Leach's storm-petrel, which is important to predict the potential impact of 

enviroimiental change and, where possible, implement effective population management 

for this species. 
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Chapter 1 Introduction 

1. Introduction 

Each chapter in this thesis has been written as an independent piece of research, 

intended to be integrated together and provide an understanding of dispersal in Leach's 

storm-petrel Oceanodroma leucorhoa and assess the vulnerability of a declining 

regionally important breeding colony. In this general introduction I will first briefly 

introduce the concepts and techniques underlying the work. I will then describe the 

Leach's storm-petrel, its' global population and the decline at the largest colony in the 

EU. which initiated this research. Finally I will provide an overview of each data 

chapter. 

Concepts 

Anthropogenic-driven environmental change is impacting the viability of global and 

local populations of many species and current rates of extinction have reached levels 

equivalent to previous global mass extinctions (Bamosky et al., 2011). The capacity for 

species or populations to cope with these changes is central to their long-term 

sustainability and, therefore, needs to be assessed if declines and losses at both local and 

global scales are to be addressed. 

Dispersal has been defined as the movement of individuals (or genes) from one 

breeding area or social group to a another (Clobert era/., 2001). It is a critical ecological 

behaviour that impacts many aspects of population ecology and genetics, and can be 

crucial in population viabihty (Clobert el ai^ 2001). Natal and breeding dispersal 

represent a change of location and ultimately the mechanism for genetic exchange, 

when it results in successful breeding (effective dispersal). Fragmented populations rely 

upon dispersal to connect sub-populations (demes) and reduce isolation, which may 

lessen extinction risk (Matthiopoulos ei al.. 2005). Theory predicts that population 

genetic structure is an inverse fiinction of gene flow (Wright, 1931) and therefore 
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Chapter 1 Jntroduvlion 

genetic stnicture is negatively correlated with effective natal or breeding dispersal. 

Reveahng patterns of dispersal in fragmented populations and understanding the 

mechanisms underlying it can therefore provide insights into population dynamics, 

genetic structuring and conservation of species. However, this requires the movements 

of individuals or populations to be tracked, which has proved technically problematic, 

particularly for small, highly vagile species. Studies using marked individuals have been 

used to estimate dispersal {Paradis et al., 1998, Lebreton et al., 2003) but the sample 

sizes and intensity required can be prohibitive. The attachment of electronic tracking 

devices has also advanced the understanding of dispersal and migration (regular 

bidirectional movement) in many taxa (e.g. Hanski et al.. 2000. Godley ei al., 2002, 

Ropert-Coudert and Wilson. 2005, Egevang et al., 2010), but for some species the size 

of the device is a constraint (although this is rapidly changing). An alternative to 

unravelling dispersal behaviour and migration is to adopt an indirect approach using 

genetic markers and/or via the analysis of stable isotope ratios in tissues. These rely on 

small sample sizes and the relatively simple non-destructive extraction of blood or other 

organic material from individuals sampled on breeding or wintering grounds. 

Genetic analysis 

Genetic markers have greatly impacted population biology since the development of the 

polymerase chain reaction, or PCR (the amplification of specified stretches of DNA into 

useable concentrations), the application of evolutionarily conserved sets of PCR primers 

(to target specific genetic sequences) and the advent of routine DNA sequencing that 

enables the detection of nucleotide or fragment length differences between individuals 

(Sunnucks, 2000). Measuring heritable variation in genetic markers between species or 

populations can give estimates of genetic diversity, population structuring, divergence 

times and gene flow. Such estimates and inferences are generally based on the 
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assumption that the genetic marker being used is influenced only by the opposing forces 

of genetic drift and mutation (random events with predictable rates/strengths), and not 

by the directional force of natural selection (the neutral theory of molecular evolution 

(Kimura, 1968)). With the development of novel markers and analytical approaches for 

genetic data (reviewed in Sunnucks, 2000. Pearse and Crandall, 2004). their use has 

increased within studies interested in revealing dispersal. More sophisticated statistical 

approaches such as maximum likelihood coalescent methods, Bayesian probability 

theory and Monte Carlo Markov chain simulation (see: Pearse and Crandall, 2004), use 

more of the information in a data set than traditionally used statistics (e.g. Fsr & <PST). 

These approaches are nol restricted by the same assumptions associated with FST and its 

analogues (e.g. drift-mutation equilibrium, n-island model of dispersal), so are more 

robust, especially when considering migration rates or divergence time (Smith and 

Friesen, 2007). These have led to more detailed analysis of genetic structure to reveal 

historical and contemponiry gene flow and dispersal in wild populations (Clobert et ai, 

2001, Wakeley, 2004). Genetic distinction between populations can also enable 

individual assignment to populations and provide means for characterising dispersal 

among populations on ecological time scales (Manel et ai, 2005, Hall et ai, 2009). 

Despite the increase in genetic markers and analyses il still remains difficult to predict 

the extent of genetic differentiation in natural populations of seabirds. There is 

extensive variation among species in the degree of population genetic structure found, 

even within lineages that have similar distribution, ecology and life history traits 

(Alcidae: Mourn and Amason, 2001), Species that may have been expected to show a 

trend based on, apparent, high levels of dispersal or philopatry have been found to have 

the opposite expected population structure. (Diomedeidae: Burg and Croxall, 2001, Van 

Bekkum e! ai, 2006). This demonstrates how multifaceted the process of differentiation 

is and how research is required to elucidate different barriers to gene flow, whether 
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Chapter I Introduction 

physical, non-physicaL, ancient or contemporary, that shape this evolutionary process 

(reviewed in Friesen et ai, 2007a). Combining different types of genetic markers (e.g. 

mtDNA and microsatellites) has brought an increase in both resolution and ana!>tical 

power (Burg and Croxall, 2001) and with the growth of these studies the knowledge of 

the processes influencing population genetic structure and dispersal patterns in seabird 

species will increase. 

Studies combining molecular markers or different analytical techniques are becoming 

more common in the literature (Burg and Croxall, 2001, Kelly et al., 2005, Gomez-Diaz 

and Gonzalez-Solis. 2007). One such technique is stable isotope analysis, which when 

combined with genetic data can increase the studies explanatory power by inferring 

movement of individuals and possible mechanisms to gene flow. 

Stable isotope analysis 

Isotopes are atoms with the same number of protons and electrons but different numbers 

of neutrons in the nucleus. Stable isotopes are those that are energetically stable and do 

not decay. Due to the differing nuclear mass between stable isotopes of the same 

element they behave differently in biological and biochemical processes. This leads to 

naturally varying stable isotope abundance in the environment, which can be further 

influenced by anthropogenic factors, such as agriculture and pollution (Rubenstein and 

Hobson, 2004). Differences in relative abundance of these isotopes can be measured 

usmg a mass spectrometer and expressed as the ratio of the heavy to light form, which 

can then be standardized against international reference samples and reported in the 

delta (5) notation as parts per thousand or per mil (%o). Over the last 20 years, analysis 

of the stable isotope ratios of a number of light elements has become a powerfiil tool in 

animal ecology (Hobson, 2005, Inger and Bearhop, 2008). The ability to trace 

movement of individuals, or assign them to populations using these markers is based on 
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Chapter I Introduction 

the fact that stable isotope signatures in animal tissues reflect those of local food webs. 

The signatures can vary spatially and are passed onto the consumer within thai food 

web. The isotopically distinct signature that is retained in the animal's tissues can 

therefore reflect feeding locations. The temporal resolution of feeding location is 

dependent on the elemental turnover rates for the tissue sampled, with metabolically 

inert Iceratinous tissues like feathers, nails or hair reflecting the location of synthesis and 

metabolicaUy active tissues reflecting a range of a few days (e.g. blood plasma) to the 

lifetime of an individual (e.g. bone collagen) (Hobson, 1999). Establishing these distinct 

isotopic signatures in nature and choosing the correct tissue to reflect species movement 

over the qipropriate temporal scale is critical to studies of dispersal. For marine studies 

the primary patterns of interest are. (1) a decline in S'̂ C and S^S isotopes (heavy 

carbon and sulphur isotopies) between inshore or benthic food webs versus offshore or 

pelagic food webs (Hobson el ai. 1994. Hobson el ai, 1995); (2) the enrichment of 

6 ^ (heavy nitrogen isotope) at higher trophic levels (Cherel et ai., 2007) and (3) the 

negative correlation between latitudinal gradient and values of 6 ' C in ocean waters 

(Cherel et ai, 2007, Paiva el al., 2010). Many seabird studies have used these patterns 

of stable isotopes to infer, for example, trophic relationships (Thompson et al.. 1995. 

Cherel et al., 2007), diet and feeding ecology (Hedd and Montevecchi, 2006). feeding 

specialisation (Fumess et al., 2006). sex differences in foraging (Bearhop et al.. 2006), 

moult origins and identification of foraging locations (breeding or wintering) (Cherel et 

al., 2000. Ouillfeldt et al., 2005, Cherel et al., 2006). However, the number of studies 

addressing specifically the assignment of individuals to natal or breeding origin is 

limited for seabirds (shorebird: Wunder et al, 2005, Gomez-Diaz and Gonzalez-Solis, 

2007). 

Measuring the stable isotope ratios in tissues of consumers can be informative for 

studying foraging and wintering strategies in seabirds, for instance. Cherel et al (2000) 
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Chapter I Introdticiion 

explained differences in carbon and nitrogen signatures found in feather samples in 

terms of differences in winter foraging areas based on the change in distinct regiooal 

signature north of an ocean front (Subtropical Front, STF). However, there are areas of 

discrepancy that makes assignment of individuals to a specific location problematic. 

Firstly, using feather samples reUes on a sound knowledge of moult strategies in each 

species and the use of correct feathers that retain the location signature of interest. In 

many seabird species this is not well understood (especially for secondary feathers) 

(Bridge, 2006) and other tissues may give a more reliable location si^al . Secondly, 

Hmited knowledge of isotopic signatures in foraging locations and possible small- scale 

or annual variation in values could lead to incorrect assignment (Gomez-Diaz and 

Gonzalez-Sol is, 2007). If assignment to location is based on general isotopic patterns 

then there is also the possibility of overly with different gradients (Cherel and Hobson, 

2007). Gomez-Diaz and Gonzalez-Soh's (2007) evaluated the use of stable isotopes as 

an effective assignment tool, using morphological, genetic and biogeochemical analysis 

to assign Calonectris shearwaters to breeding colony, breeding archipelago and 

taxonomic level within the Mediterranean and east Atlantic. They analysed 8'"'C and 

5 N isotope signatures of innennost primary feathers (known to grow at breeding 

grounds) from birds of known breeding origin to construct a cladogram to determine 

any structuring that could be used for assignment. Although geographic gradients were 

found within regions these were too weak to reliably assign birds to colonies using 

isotopes alone. However, the predictive power was greatly improved when combined 

with trace elements, morphology or genetic data. This study highHghts the difficulty of 

resolution at a local scale (colonies) when using biogeochemical markers in the highly 

variable marine environment, but also suggests that using a combined, evidence-based 

approach can be useful. Such a strategy has been used with some degree of success in 

other avian taxa (Kelly et al.. 2005) 
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Leaches storm-petrel 

The Leach's storm-petrel Oceanodroma leucorhua belongs to the order 

Procellariiformes and the family Hydrobatidae (stonn-petrels). The nominate subspecies 

O. I. leucorhoa (Vieillot) has a mainly temperate, northern hemisphere distribution with 

colonies across the north Pacific and Atlantic oceans. Predominately dark blackish-

brown, it has a paler upper wing bar, white rump and distinctive forked tail. The 

wingspan is between 450-480 mm and it weighs ~45 grams (Huntingdon et al, 1996). 

The other three subspecies (O. I. champmani. O. I. socorroensis and O. I. 

cheimomnestes) are only known to breed on a few small islands off Baja California, 

Mexico, and are generally smaller widi variation of tail fork depth, rump patch and 

vocalisations (Huntingdon ei al. 1996). 

Like all procellariiforras the Leach's storm-petrel is tied to land only during the 

breeding period, outside which it is highly pelagic and migrates south to warmer waters 

during the winter period. Age at first breeding is variable but is commonly at 5-7 years. 

One chick is raised in each annual breeding e\'ent. which lasts approximately three and 

a half months from egg laying to fledging (between late May and November; 

Huntingdon ef a/.. 1996). Nests are in burrows dug on wooded or treeless islands, or in 

crevices among rocks, and individuals show high fidelity to the same burrows each year 

(Blackmer ei a!., 2004). Breeding monogamy is believed to be high, with no evidence 

for extra-pair fertilizations found in a study using DNA fingerprinting of chicks and 

parents at a small Canadian colony {Mauck. 1995 #202}. Breeding adults (and 

prospecting pre-breeding birds) are nocturnal visitors to the colonies, after foraging trips 

over and beyond continental shelves (Hedd and Montevecchi. 2006). A combination of 

regurgitates and stable isotope analyses revealed the pelagic diet, which reflects the 

available prey species in the region, with small fish and zooplankton being the major 

components (Watanuki, 1985b, Hedd and Montevecchi, 2006). Their ability- to fmd prey 
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and foraging hotspots in such a large, and we perceive homogenous, seascape is 

believed to be a combination of social and olfactory cues (Nevitt, 2008). One study 

suggests their ability to detect (smell) dimethyl sulphide, a biogenic sulphur compound 

associated with primary production, may assist in locating areas of high prey abundance 

(Nevitt and Haberman, 2003). Unpublished genetic work suggests the Pacific and 

Atlantic populations are genetically distinct (Friesen ei al., 2007a) but a preliminary 

comparison of random amplified polymorphic DNA (RAPD) markers among 3 colonies 

in the northwest Atlantic, (Paterson and Snyder, 1999) was inconclusive as to the 

structure on a regional scale. 

Global population and the St Kilda colony decline 

Global estimates of the Leach's storm-petrel breeding population are around 9,000,000 -

10,600,000 pairs, split approximately evenly between the Atlantic and Pacific Ocean 

basins (Mitchell el al., 2004). However, this does not include the juvenile and pre-

breedu3g birds that would substantially increase an overall population estimate. The 

Pacific breeding colonies are located around the north Pacific Rim from Japan in the 

west to California in the east. The Aleutian Islands, Alaska hold the most substantial 

breeding colonies, totalling around 2.000,000 - 3,500.000 pairs (Mitchell et al., 2004). 

The Atlantic popularion is of similar size but 97% of the breeding pairs are foimd on 

islands around Newfoundland, Canada, including the largest colony in the world on 

Baccalieu Island (^3,360,000 breeding pairs; Sklepkovych and Montevecchi. 1989). In 

Europe there are approximately 165,000 pairs, although the vast majority (~98%) are 

foimd in two small island archipelagos (Vestmanyjaer, Iceland -115,000 bp; St Kilda, 

Scodand -45,000 bp; Mitchell el al., 2004). 

The St Kilda colony represents -94% of the European Union population and Leach's 

storm-petrel is included in the Annex J list of rare and vulnerable species of the EU 
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Birds Directive (EU, 2009), partly because such a high percentage of the population 

occurs at this one site. Between 1999 and 2006 there was >50% decline in the St Kilda 

colony (Mitchell et a}., 2004, Newson et ah, 2008), which coincided with intense 

predation by a large population of great skuas Slercorarius skua (Votier el al., 2006). 

There had been a rapid expansion of the great skua population on St Kilda at that time, 

in part, due to immigration from other Scottish colonies (Phillips et al., 1999a). This 

relatively recent colonist is estimated to have consumed between 15.000 (Phillips et al., 

1999b) and 21,000 (Miles, 2010) Leach's storm-petrels each year since die mid-1990s. 

In a closed population, the high level of predation should have lead to extirpation of the 

St Kilda colony, even considering the potentially large numbers of juvenile or pre-

breeding birds attending the colony (Votier f/a/., 2006. Miles. 2010). TTiis suggests that 

immigration from other large colonies in the Atlantic may play a role in offsetting this 

decline. Although the skua population on St Kilda has recently stabilised, the predation 

rate remains high (Miles, 2010). Therefore the future prospect of the Leach's storm-

petrel colony on St Kilda is in doubt. 

Aims of the thesis 

The movements and dispersal of Leach's storm-petrels have been little studied, during 

either breeding or wintering periods, and any existing evidence is scant and/or 

circumstantial. The behaviour of juvenile or pre-breeding birds is even less well known 

due to the difficulties in tracking them before they settle at breeding sites (Votier ef al.. 

2011). In light of the decline at the St Kilda colony, and the suggestion that immigration 

from other colonies may offset the losses caused by predation, there is a clear need to 

understand dispersal in Leach's storm-petrels and the degree of connectivity among 

distant colonies. In this thesis I aim to reveal the extent of gene flow between Leach's 

storm-petrel colonies and a potential mechanism of dispersal that promotes this 
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exchange, using a combination of genetic techniques and stable isotopes. I also aim to 

identify other stages of the annual cycle that may influence dispersal and assess the 

implications for a colony with high annual loss of individuals from predation {St Kilda). 

Additionally, 1 hope to highlight further potential threats at the breeding grounds. 

Chapter 2 is a technical note on the characterisation of a number of microsatellite 

maricers specifically designed for Leach's storm-peirels. hi Chapter 3 these newly 

developed markers are used as part of a study to investigate historical and contemporary 

gene flow among, and between, both Adantic and Pacific colonies of Leach's storm-

petrels. By examining population structure and individual assignment probabilities 

using both mitochondrial and nuclear DNA markers, the study aimed to understand the 

dispersal dynamics of Leach's storm-petrels over large spatial scales and assess the 

potential implications for the declining St Ktlda colony. 

A potential method to characterise variation in stable isotope values of marine 

ecosystems and to reconstruct Leach's storm-petrel movement is to analyse biological 

material collected via the Continuous Plankton Recorder (CPR - one of the longest 

running measures of plankton communities worldwide). This technique uses 

preservatives to store phytoplankton and zookplankton which may have implications for 

stable isotope analysis. Chapter 4 describes an experiment that investigates the effect 

of formalin on the carbon and nitrogen stable isotope ratios in a copepod species to 

simulate storage in the CPR. Chapter 5 incorporates these findings into a study that 

uses genetic markers to confirm gene flow between 3 colonies, and stable isotopes to 

invesrigale movement of immature Leach's storm-petrel among these colonies in the 

north Atlantic. This study uses a novel application of stable isotope mixing models in a 

Bayesian framework to identify potential immigrant birds attending colonies and 

considers this movement during the breeding season as a potential dispersal mechanism 

that may lead to gene flow among colonies. Chapter 6 also investigates potential 

30 



Chapter ] Introduction 

mechanisms that may explain the high levels of gene flow in this species by examining 

evidence for mixing during the non-breeding period (an important predictor of genetic 

differentiation among populations of seabirds). Using corpses of birds found during 

wrecks in Canada and Europe, analysis of moult pattern enables the selection of 

appropriate feather tracts to determine breeding colony stable isotope signatures. Based 

upon these values it is possible to determine whether birds found dead in European 

waters during the winter months originated from multiple colonies. This could indicate 

mixing of individuals from different colonies outside the breeding season and highlight 

a behaviour that would potentially facilitate movement between colonies. 

Chapter 7 focuses on the declining St Kilda colony and aims to highlight the resident 

field mouse population as another potential source of predation on Leach's storm-

petrels. 

The general discussion in Chapter 8 attempts to bring together the main points of the 

thesis and provide an overview of how it has enhanced our knowledge of dispersal in 

Leach's storm-petrels and their capacity to cope with environmental change. 
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Characterisation and predicted genome locations of Leach'^s storm-
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2. Technical Note 

The Leach's stonn-petrel Oceandroma leucorhoa is a small highly pelagic seabird of 

the Procellariformes family. We have characterised a microsatellite marker set in this 

species in order to investigate regional and global population structure and dispersal 

between colonies. 

Existing microsatellite markers were tested for utility in the Leach's storm-petrel (LSP) 

including 7 loci isolated in a different storm-petrel species (Stm ei ai, 2009) and 47 loci 

with primer sets of engineered and/or proven high cross-species utility (Dawson et a!.^ 

2010; BbUi-TG. HvoBl-TGG, Klein et al. 2009; CaiexOJ. Calex08-ZEST. Pte24' 

CEST. HvoBl, Dawson et al. unpublished data). A microsatellite-enriched LSP genomic 

library was also created. Blood {20 |il) was collected from LSP individuals and stored in 

1.5ml of absolute ethanol. Genomic DNA was extracted using an ammonium acetate 

precipitation method. The genomic library was constructed from a single male LSP 

(SKB02) sampled at St Kilda. Scotland (Co-ordinates 57"48'N. 8"34"W) in 2008. We 

used the method of Armour et al. (1994) and enriched for the following motifs; (GT)n, 

(CT)n, (GTAA)n, (CTAAX,, {TTTC)„ and (GATA)n and their complements, which had 

been bound to magnetic beads Glenn & Schable (2005). Transformant colonies were 

directly sequenced by die NERC Biomolecular Analysis Facility at the University of 

Edinburgh. 

A total of 211 new unique LSP microsatellite sequences were isolated (EMBL accession 

numbers FR696377-FR696588). Primer sets were designed for 50 unique microsatellite 

sequences using PRTMER3 (Rozen and Skaletsky. 2000). The new LSP and existing 

loci were initially tested for amplification and polymorphism in 4-6 unrelated 

individuals sampled from Gull Island, Witless Bay, Canada (Co-ordinates: 47°15'N, 

52''46'W) in 2008. The 4-6 individuals were amplified using a gradient of 12 different 

annealing temperatures (56-65°C). The temperature producing the cleanest and 
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Strongest PCR product when observed on a 1.5% agarose gel stained with SYBRSafe 

was selected for amplification in 24 additional Gull island individuals. Each 2-JJI PCR 

contained approximately 10 ng of lyophilised genomic DNA, 0.2 ^M of each primer 

and 1 pi QIAGEN multiplex PCR mix (QIAGEN Inc.; Kenta et al, 2008). The PCR 

program used was: 95'C for ! 5 minutes, followed by 35 cycles of 94''C for 30 seconds, 

annealing temperature (Table 2.1) for 90 seconds, 72°C for 1 minute, and finally 60°C 

for 6 minutes. PCR amplification was performed using a DNA Engine Tetrad 2 thermal 

cycler (MJ Research, Bio-Rad. Heme! Hempstead, Herts.. UK). Amplified products 

were loaded onto an ABI 3730 48-well capillary DNA Analyser (Applied Biosystems, 

California, USA) and allele sizes were assigned using GENEMAPPER v3.7 (Applied 

Biosystems. California, USA). Individuals were sex-typed with the 2550F/2718R 

(Fridolfsson and Ellegren, 1999), Z002A (Dawson, 2007) and Z-037B markers 

(Dawson, DA unpublished data). 

Of fte 47 pre-existing loci tested in 6 individuals. 2 loci did not amplify or produced 

non-specific products, 30 were monomorphic and 15 were polymorphic. Of the 50 new 

LSP loci tested in 4-6 individuals, 6 loci did not amplify or produced non-specific 

product, 18 were monomorphic and 26 were polymorphic. 

Predicted chromosome locations were assigned by comparing the microsatellite 

sequences with the location of their homolog on the chicken (Gallus gallus) and zebra 

fmch (Taeniopygia guflala) genome assembly (methods as in Dawson et al. 2006 & 

2007). This allowed us to identify if any loci were located on the sex chromosomes or 

were physically linked. 

Thirty-nine of the 41 polymorphic loci could be assigned a chromosomal location with a 

BLAST hit E-value of >1E-10 with a >100 base pair match (Table 2.1. Fig. 1.1). Three 

pairs of loci were less than 1Mb apart in the zebra finch genome {OlelSiOklO, 

Oc87B:O!e03 <St Ole06:OIe22) and therefore may be physically linked. However, after a 
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sequential Bonferroni correction (Rice, 1989), no pairs of loci showed evidence of 

linkage disequilibrium (p<0.05) in the LSP. 
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Figure 2.1 Predicted chromosome locations of microsatellite loci polymorphic in the Leach's 

storm-pelrel Oceanodwma leucorhoa. Gga, chicken (Callus gallus) chromosome name.Tgu, 

zebra finch {Taeniopygia gullala) chromosome name. 

A combined total of 41 polymorphic loci were then typed in 24 unrelated individuals 

(14 male and 10 female) sampled at the Gull Island population. These displayed 

between 2 and 22 alleles (Table 2.1). Four loci displayed a genotype pattern consistent 

with linkage to the Z chromosome (Table 2.1) being homozygous (hemizygous) in all 

females (ZW) but heterozygous or homozygous in males (ZZ). in agreement with their 

Z chromosome location assignment (Figure 2.1). 01el6 was assigned to the Z 

chromosome based on sequence homologue but displayed heterozygotes in females 
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suggesting it was autosoma! in the LSP. A Fisher's Exact test comparing numbers of 

male and female homozoygotes supported dial 3 loci were Z-linked (OlJO-39. Olel2, 

Ole26; P-values <0.001) but due to low heterozygozity in males Ole20 was not 

significant, and therefore sex-linkage should be viewed with caution. 

Observed and expected heterozygosities, and predicted null allele frequencies were 

calculated using CERVUS v3.0.3 (Kalinowski et a!., 2007). Tests for departures from 

Hardy-Weinberg equilibrium (HWE) and assessment of linkage disequlibrium were 

conducted in GENEPOP v3.4 {Rousset, 2008). Only males were used when Z-linked 

loci were analysed. Prior to a sequential Bonferroni correction, 6 loci deviated from 

HWE (P<0.001; Table 2.1). After correction only 2 loci {P<0.001; OieOl and TG05-

053) deviated. Eleven loci displayed a high estimated null allele frequency (above 0.10) 

including 9 loci that did not deviate from HWE (Table 2.1). When typed in 24 

individuals, locus Ole2l showed high levels of polymorphism (>20 alleles) and 6 loci 

included Ibp allele size increments (Table 2.1). The combined first parent non-

exclusion probability for the 37 autosomal polymorphic markers is <0.0001, 
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(a) Characterisation of 15 published microsatellite loci in Leach's storm-petrel OceanoJroma leucorhoa 
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Tabic 2.1 (h) Characterisation of 26 newly isolated Lxach's storm-pelrel Oceanociroma leucorhoa microsatellite loci 
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Tgij9. 27014609(3,5e-6l) 
Gga9. 35331698 i7.4L--49) 

Tgu3,3l402896(l.5e-39) 
NomHich(Ggat 
Tgiil9, 1687821 (1.66-75) 
Ggal9, 1482233 (6.7C-86J 
Tgu8. 9452460 (1.3e-64) 
GgaK, 13826157 (3.6C-39) 
No malch (Tgu) 
Gga27,3578087(2.6c-ll8) 
Tgu3. 17145330[1.0c-88) 
Gga3. 27034682 (7.2C-48) 
Tgul. 59413510(l.4e-97) 
No malch (Gga) 
Tgul. 107441638 (8,6e-79) 
Ggal.145644036 (7.4c-280) 
No mHich(Tgu) 

Gga/.. 57547873 (6.3e-3n 

Tgul. 39467860 (1.8C-56) 
No match (Gaa) 

OleOl 

Ole02 

Ole03 

Ole04 

Ole05 

Ole06 

Olc07 

Olc08 

Ole09 

OlcIO 

Ok II 

01cI2¥ 

FR6g6377 

FR696378 

FR696379 

FR696380 

FR69638I 

FR696382 

FR696383 

FR696384 

FR696385 

FR696386 

FRfi96387 

FR696388 

01el3 FR696389 

(ACAG), 

(GAAA)„ 

(CAAA)>, 

(ATTCT),, 

(GAATA)io 

(TATT), 

(CA)i„ 

(GA), 

(CA),o 

(.CA)u 

(AG) ,4 

(AGAT),. 
(AGAT), 
AGA(TACA), 
(TG), 

F: CAtCCTGAATCCCAGAACCAAGC 
R: TCAGTGAAGGTCCACTCCGAATCC 
F: GGGTTCCTGTTACCAAAaCGC'AG 
R: CATAAGCACAAGGTTCTAGCTCCCTC 
F: TCCTTCACCACCTCTTGCTGCC 
R;ACGCATCTGTAGCTCACAAATCCCAG 
F: TGTTIATTGCACTGCCTGAAACTTGC 
R: TGTGCAACAtiCGGTCACTGAG 
F: TGGAATGGCATGGGATGGTTTGGG 
R: TGAGGCTGOAGGAGAATOrTGTG 
F: GCCAACTOC TGTTCAGTGAGCC 
R; GCCACAAACGCAAACATTCATAAACCC 
F; CCCAAGGAGTTCCTGTGCGTGC 
R: TGGCTCTGTGCTGCGCTTTACC 
F: ACTC'CACACGOACTCTGCACTG 
R: TGTGATTTGTTGTGAGGCXiACiCG 
F; GGCCTGGATTCTGCGTGTTCiGG 
R: CAGCTACAGGCCACGGGTOC 
F: ACCAGCTCCTAACTGGAACiCCAC 
R: TGCAaOTAGGTTCTCAGTATGCAAAGG 
F: TCACAACCAGAGCTGAGACACAGAG 
R: AGCCAAGGCTC;CAAGC"TTATGAAAC 
F: GCTCCTGTAGAGCTGGAAATGAACC 
R: GGCAGTGCTACCTGTGGATOC 

F: GCiGCCAGAC'ATGTATTTACTGGAGGG 
R: OTGCATCCGAGAGCCGACGC 



T a b i c 2.1 ('/?; C o n t i n u e d 

Locus 

OiL'14 

011:15 

O k 16 

Olel7 

01el8 

01el9 

oic2oe 

Ole2i 

01c22 

0!e23 

Olc24 

Ole25 

Olc2f)¥ 

E M B L 

ace ss ion 

number 

FR(iW..lW 

fR(j%.V)l 

FR6%392 

FR696393 

KRft%394 

FR69ft395 

FR6963% 

FR696397 

FR696398 

FR(.96399 

FR69f.4O0 

FR696401 

FR696402 

Repeat 

mot i f 

(AC)H 

(TO),, 

( fA ) , , 

lGT)5GO 

(GT), 

(CA)n 

(GA),„ CA 

(GA), 

(AGGf ) , 
ACT, iCAh 

{GA), , (A)„ 
(GAAA), i 
(CT). 

(GT)|„ 

(ATCT)« 

(AGATU & 
(GAAA), . 
(TG)|„ 

Primer sequence (5'-3') 

Fluoro 
label 

(F) n.("a ftf 

Exp. 
allele 
size 
(bp) 

Obs. allele 
size range 
(bp) Hu ff\i 

Est. 
null 

HWE allele 
P-value freq. 

Chromosome, location 
(bp) (E-value) 

F: CCAGCCTGCAGGGCTITC'C OFAM F:57,75 60 24 3 348 339-349 0.46 0,46 1.000 -0.005 
R: CAGAGCTTTGCrTCTGTC-TTAGTCTTC R:57,36 
F: TCAGGAACAGCACTGOAAACTGGAC IILX F;58.87 60 24 2 235 232-234 0.04 0.1)4 NA -0.004 
R: TGCCACTGACTTTCX'AITCTCCCTC R:58.46 
F: GCAGfCTCCAGCCGKiAGTG HEX F:60,O4 60 24 4 232 219-232 0.75 0.71 0.134 -0.036 
R: GTGATTGCAGCAGCTCC'TCiGTCG R:60.3fi 
F; TGACATGACCACTTTCCATAGC HHX F;60,00 60 24 5 210 209-236 0.46 0..';2 0,372 0 QM 
R: AATCiTCTGTCiGTTfAAATGTGC R:59.90 
F; TGGTTTGTATGTTGTGGGTTG '>FAM F:59.2I 60 24 5 151 147-155 0.58 0.69 0.681 0.117'! 
R: GATCC'AC'ITAGCCACCCTTG R;59.55 
F: GAAGGCTCTCAAGGGTCAAG 6FAM F;59,{|| 60 23 8 242 227-377 0.56 0.80 0.012 0,164 
R:TTTGGGAGAAGTTCAGTAGAAGAAC R;59.39 
F: AGGTCAGCAGCTAAAGCATACC HEX F:59.94 60 2IF I 345 344 0.00 -
R: AGGTCCCTTCCAATCCAAAC R:60.I7 22M 2 .144-346 0.09 0.09 1.000 -0.014 
F:CCAaiAGAAATGGACATACAAC HI'X F:59.36 60 24 21 330 316-418 0.92 0.96 0.573 0.011 
R: TGAAGAACrrCCGAAATAAC'TGTG R:59.70 
F; AGCAGAGGrCACTACATCAC ITHX F:57.90 60 24 3 248 249-253 0.38 0,33 1.000 -0.096 
R: AAAATATCATAGGGGAGTAAAGAGC R:57,59 
F; TCTTTGGCATGCAATCTTTG (.FAM F:59,81 60 24 10 416 404-432 0.86 0.85 0.423 -0.014 
R: CCC'T(i(iTCAA(TGAGAAAGC H:59.a4 
F: TGTGCTGACTTGTTTATTGTTCC IIF.X I-:59,I9 60 24 5 159 156-176 0.8S 0,76 0,911 -0.087 
R: GGCX'ATCTTGATACGGC'TAC H:59.56 
F: CTTCCTCATCGTAGGGACTG HF.X F:59,67 60 24 7 390 370-392 0.88 0,80 0.695 -0,059 
R: ITAAAGGGAGCGATTCTGTTC H:59.49 
F: TCAGCTTCTGGTGCAGTTATG HEX F;59,09 60 22F 2 241 239-245 0,00- - -
R; TCCTGCTGATGGATAGGTTATG R;59.07 25M 2 239-245 0.60 0,49 0,415 -0.103 

Tgu2. 63946342 (5.6C-75) 
Gga2.4390573R(l,6c-267) 
Tgu3, 37963153 (4.9i;-38) 
Gga3.46474483 (4.9e-17) 
TguZ, 32967540 (7.5C-55) 
GgaZ. 2104154 (7.9e-65) 
No matches 

Tgu4. 15498065 (3-2e-32) 
Gga4,49917509(8.3e-19} 
Tgul2, 122157,53 (1.2e-59) 
Ggal2. ll880314(l.9e-59) 
TguZ, 45790217 (3.3e-48) 
GgaUnk.6499150(5,8e-41) 
Tgui, 70616595 (9.9cl76) 
Ggal,157S66922(l.le-204) 
No match (Tgu) 
Ggal9.2678502(1.7e-I44) 
Tgul. 58566787(3.50-79) 
Ggal, 171173789 (4.9C-65) 
No matches 

Tgu3.70OI226O(3.3e-51) 
G(ifl3, 70378881 (l.4c-74) 
TguZ. 37567887 (2.2C-230) 
No match (Gga) 

/"m- melting lemperalure; T„. annealing tcmperalure; N. number of unrelated Leach's storm-petrel Oceanodioma h-iworhna individuals; A. number of alleles; llo. observed heterozygosity; //K. 
expected heterozygosity; HWE, Hardy-Weinberg equilibrium; Est. null allele freq., eslinialed null allele frequency; Tgu, zebra finch TaeniopvgUi guttata ; Gga, chicken Callus gullus; Bold, 
Deviation from HWE; * Deviation from HWE after scquenlial Bonfcrroni correction; F', results of female individuals only; !V1, results of 24 male individuals genotypes forZ-linked loci. 6, possibly 
Z linked (see lexl). ¥, Z linked locus; J, loci with 1 ba.>ie pair size increment 
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Chapter i Long-distance dispersal and gene flow 

3.1 Introduction 

Dramatic local population declines brought about by anthropogenic-driven changes to 

ecological processes are unfortunately becoming a ubiquitous global conservation 

problem (Thomas el al.. 2004). Predicting the potential effects of adverse change is 

becoming increasingly urgent in a world beset by habitat fragmentation, climate change 

and species introductions. Therefore, understanding dispersal dynamics and population 

structuring can provide key insights into the conservation of local populations and, 

ultimately, species (Bowler and Benton. 2005). 

Dispersal is a fundamental process that shapes many aspects of population ecology and 

evolution (Clobert ei al., 2001, Bowler and Benton. 2005). Although the dispersal and 

movement of individual animals can be estimated directly via capture-recapture studies 

(Lebreton el al., 2003) or reconstructed in fine detail by attaching electronic tracking 

devices (Shaffer et ai, 2006. Sims et al., 2008), for many taxa these approaches are 

impractical due to size, abundance and/or location of individuals. An alternative is to 

apply molecular techniques, which have been widely used to examine colonization 

patterns, population genetic structure, gene flow and individual immigrants (Rousset, 

2001) and are therefore integral to our understanding of dispersal for a wide range of 

taxa (e.g. Knight et al.. 1999, Kelly et al., 2001, Jehle et al., 2005). 

Seabirds of the order Procellariiformes (Fiirbringer. 1888) are extremely vagile and 

have an extraordinary ability to travel huge distances at sea (Fumess. 1987, Shaffer et 

ai, 2006). They also exhibit high levels of philopatry, sometimes returning to colonies 

to breed within a few meters of their natal oest (Huyvaert and Anderson, 2004). They 

therefore represent something of an enigma: their extreme vagility means that 

individuals can disperse freely between populations and thus theoretically maintain high 

levels of gene flow (Van Bekkum et al.., 2006), yet conversely, strong philopatry would 

be expected to lead to pronounced genetic differentiation (Dearborn ei al., 2003). 
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Understanding these dynamics is important since seabirds tend to nest at very high 

density in a small number of sites (fragmented), such that some locations contain a 

disproportionately large proportion of the population. Moreover the life-history traits of 

most seabirds (low annual fecundity, delayed sexual maturation, biparental care, long 

life, extended chick rearing period; Schreiber and Burger, 2002) mean that populations 

are unable to respond rapidly to change and are therefore particularly sensitive to 

changes in habitat suitability (Priddel et ai, 2006). food availability (Oro and Fumess, 

2002) and predation (Votier el ai. 2006). Indeed, seabirds are among the most 

threatened groups of birds in the world (BirdLife. 2008). in part because of threats to 

their breeding colonies. Understanding movement among seabird colonies is therefore 

an essential prerequisite for successful conservation and management. 

Leach's storm-petrel Oceanodroma leucurhoa (Vieillot) is a colonial nesting seabird 

that breeds at a small number of widely spaced colonies across the North Atlantic and 

Pacific. This small (~45g) oceanic bird is inconspicuous at sea and only attends 

breeding colonies under the cover of darkness. Therefore, despite being extremely 

abundant (>10 million breeding pairs (bp) split approximately equally berween the 

Atlantic and Pacific (Mitchell et al. 2004)) many aspects of their ecology remain 

unknown. There are four sub-species in the Pacific but only one (the nominate) found in 

both oceans {Oceanodroma leucorhoa leucorhoa, Huntingdon et al., 1996), with 97% 

(4.8 million bp) of the Atlantic population breeding on a small number of islands in 

eastern North America (Huntingdon etal., 1996, Mitchell et ai, 2004, Robertson et ai, 

2006). In Europe there are approximately 165,000 pairs in -20 colonies, although 98% 

are found in two small island archipelagos (Veslmanyjaer. Iceland -115,000 bp; St 

Kilda, Scotland -45.000 bp; Mitchell et ai, 2004). The St Kilda colony represents 

~94% of the European Union population and Leach's storm-petrel is included in the 

46 



Chapter 3 Long-distance dispersal and gene flow 

Annex 1 list of rare and vulnerable species of the EU Birds EHrective (EU, 2009), partly 

because such a high percentage of the population occurs at a single site. 

The vulnerability of these densely populated but isolated colonies has been highlighted 

recently by a steep population decline at the main colony on St Kilda (Diin). Between 

1999 and 2003 there was a 48% decline, with a further 12% decline between 2003 and 

2006 (Mitchell et al., 2004, Newson el ai, 2008). These declines have coincided with 

intense predation by a large population of great skuas Stercorarius skua (Votier ei al., 

2006). This recent colonist is estimated to have consumed between 15,000 (Phillips el 

al., 1999b) and 21,000 (Miles, 2010) Leach's stomi-petreis each year since the mid-

1990s- Such heavy predation should have lead to local extinction, even considering the 

large numbers of immature individuals in the population (Votier et al., 2006, Miles, 

2010). This suggests that immigration from the other large colonies in the Atlantic may 

play a role in offsetting this decline. Therefore, an understanding of movement between 

this colony and other very large colonies in the North Atlantic is necessary for the 

effective management of this regionally important population. Moreover, understanding 

the global dispersal dynamics of this species should provide insight into how they may 

be buffered against other effects associated with global change. 

The only previously published genetic study of Leach's storm-petrels is a preliminary 

comparison of random amplified polymorphic DNA (RAPD) markers among 3 colonies 

in the northwest Atlantic, (Paterson and Snyder. 1999). We here report a more 

comprehensive study of breeding colonies using both mitochondrial DNA and 

microsatellite markers to investigate population genetic structure in nominate Leach's 

storm-petrels within the North Atlantic and between the North Atlantic and North 

Pacific. We investigate past colonization and gene flow in order to better understand the 

dispersal dynamics of Leach's storm*petrels, and used Bayesian analyses to characterize 

contemporary gene flow and movement. Based on these data we consider the 
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importance of gene flow among more widely distributed sites for Leach's storm-petrels 

in particular and fof seabird conservation in general. 

3.2 Materials and Methods 

Sample collection and DNA extraction 

Blood and tissue samples were obtained from nine colonies of Leach's storm-petrels 

across their North Atlantic and North Pacific ranges (Table 3.1; Figure 3.1). Between 

10-20^1 of blood was collected (under appropriate regional licences) from the brachial 

vein of breeding adults or chicks caught in nestmg burrows at seven of these colonies. 

Blood was collected into microfuge tubes, mixed with 1.5m] of absolute ethanol and 

stored at -20°C in a sparic-proof freezer. Burrow access on North Rona, Scotland was 

restricted so we sampled breeding birds caught in mist-nets visiting the colony at night. 

Although this approach may lead to the capture of some non-breeding birds (Fumess 

and Bailhe, 1981). we reduced this risk by categorising active breeders based on the 

following criteria: individuals caught in the highest density area of the colony without a 

chatter call lure; individuals in breedmg condition (i.e. with a bare brood patch); 

individuals regurgitating prey items assumed to be food for a waiting chick; and/or 

individuals that had a > 2 year old British Trust for Ornithology leg ring. Samples from 

Baccalieu Island, Canada consisted of striated muscle tissue from euthanized chicks. 

Tissue samples were stored in 1ml of absolute ethanol at -20"C in a spark-proof freezer. 

DNA was extracted using a standard proteinase-K ammonium acetate method (Nicholls 

etal., 2000) and diluted to -10 ng/'̂ I with low TE buffer (Tris ImM, EDTA lOmM, pH 

8.0). 
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Table 3.1 Sampling site locations and numbers of Leach's storm-petrel individuals included in mitochondrial and nuclear microsatellite DNA analyses 

Colony Geographic Location 

Number of individuals 

Abbreviation Ocean Basin Latitude/ Longitude mtDNA Microsatellite 

Buldir Island 

St Lazaria Islands 

Baccalieu Island 

Gull Island 

Bon Portage Island 

Vestmannacyjar 

ROHt 

North Ron a 

St Kilda 

Total 

Western Aleutian Islands. 

Gulf of Alaska, Alaska 

Newfoundland 

Alaska 

Witless Bay, Newfoundland 

Nova Scotia 

South Iceland 

Nordland, Norway 

Western Isles, Scotland 

Western Isles, Scotland 

9 populations 

BUL 

LAZ 

BACC 

GULL 

BON 

VEST 

NOR 

RONA 

SIX 

Pacific 

Pacific 

Atlantic 

Atlantic 

Atlantic 

Atlantic 

Atlantic 

Atlantic 

Atlantic 

52=217^/175°55'E 12 25 

56°59'N/ I35°43'W 17 32 

48°07'N / 052°48'W 12 25 

47"15'N/052"46'W 10 48 

43"2H'N/065"25'W 12 40 

63°25'N/020°17'W II 25 

67°3I'N/012°05'E 7 

59°07'N / 005°49'W 12 18 

57°49'N / 008°35'W 10 32 

103 245 
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Figure 3.1 Locations of Leach's storm-petrel colonies sampled in the North Atlantic and Pacific. Colony abbreviations detailed in Table I. Pie charts 

indicate mitochondrial DNA fragment haplotype frequencies in each colony. Each colour represents a single haplotype. 
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Mitochondrial DNA sequencing 

A 360-base pair (bp) fragment of the mitochondrial control region (Domains I and II) 

was amplified from 103 Leach's storm-petrel samples using previously developed 

primers OcL61 (Smith et al., 2007; band-rumped storm-petrel Oceanodroma castro) 

and H521 (Quinn and Wilson, 1993; generic). PCR was performed using either a G-

STORM GSl (Gene Technologies, Byfleet, UK) or an AB2720 (Applied Biosystems. 

Carlsbad, USA). PCR reactions were run using the GeneAmp Gold PCR reagent kit 

(Applied Biosystems, Carlsbad, US) in 25 \i\ reaction volumes containing 2.5 mM 

MgCb, 1 X reaction buffer (150 mM Tris-HCI and 500 mM KCl, pH 8.0), 0.2 mM each 

of the four dNTPs. 0.4 pM of each of the primers OcL61 and HS2I, and 0.75 units of 

AmpliTaq Gold DNA polymerase (Roche Molecular Systems, Inc.). The PCR profile 

consisted of an initial denaturing step (90 s at 96*'C). followed by 31 cycles of 30 s 

denaturation at 96''C. 30 s annealing at 60''C. and 1 min extension at 72°C. ending with 

a final 3 min extension step at 72''C. The amplified fragment was used as the template 

for 20 |JL cycle sequencing reaction volumes using the BigDye^ Terminator v3.1 Cycle 

Sequencing Kit (Applied Biosystems) according to the manufacturer's protocol and 

resolved by electrophoresis on an AB3I30 Genetic Analyser (Applied Biosystems). 

Both forward and reverse strands were sequenced and aligned by eye using BioEdit 

version 7.0.9.0 (Hall, 1999). 

Microsatellite genot^ping 

All samples were genotyped at 32 autosomal microsatellite loci. The loci used included 

20 species-specific Leach's storm petrel loci {OleOJ. Ole03. Ole05-U. OleB-18. 

OIe21-25; Bicknell et al., 2011), 5 loci previously developed for storm-petrels: (OllO-

39, Oc5I, Oc63, Oc84, Oc87B; Sun et al., 2009} and 7 loci engineered for cross-utihty 

in avian species: [TG02-120, TG03-034. TG04-04}. 7004-061. TG05~053. TGI3-017: 
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Dawson el ai. 2010. CAM12. FTGCCARTAAWTCCAGAGATrACC. 

R:CTGRCATTTGTCTTAAGCGTG/ Loci were amplified in seven sets of multiplexed 

reactions with optimised primer concentrafions and PCR annealing temperatures 

(Supplementary Data Table 3.1). Multiplexes 1-5 were prepared in 2 fil reaction 

volumes containing approximately 10 ng of lyophilised genomic DNA and 1 jjl 

QIAGEN multiplex PCR mix (Qiagen Inc.; Kenta et at., 2008). PCR amplification was 

performed using a DNA Engine Tetrad 2 thermal cycler (MJ Research, Bio-Rad) with 

the following program: 95°C for 15 min, followed by 35 cycles of 94X for 30 s, 

annealing temperature (Supplementary Table 3.1) for 90 s. 72''C for 1 min, and finally 

60°C for 6 min. Amplified products were resolved on an AB3730 48-weIl capillary 

DNA Analyser (Applied Biosystems). Multiplexes 6 and 7 were prepared in 10 |il 

reaction volumes containing ~I0 ng/fjl of sample DNA and Qiagen Core Kit reagents 

(25 mM MgCl2, 10 x reaction buffer (Tris-HCL KCl, (NH4)zS04, 15 mM MgCh; pH 

8.7)), 0.1 mM of each of the four dNTPs and 0.5 units of Qiagen Taq DNA 

polymerase), and amplified with PCR conditions as described in Friesen el al., (2007). 

PCR amplification was performed using either a G-STORM GSl (Gene Technologies) 

or an AB2720 (Applied Biosystems) thermal cycler. Amplified products were resolved 

on an AB3130 DNA Analyzer. Failed samples were re-nm to ensure a complete dataset 

and allele sizes for all multiplexed loci were assigned using GENEMAPPER v3.7 

(Applied Biosystems). 10% of samples were re-ran to estimate genotyping error. 

Tests of assumptions and genetic variation 

To test whether patterns of genetic variation in the mitochondrial DNA (mtDNA) 

control region sequence deviated from selective neutrality Ewens-Watterson (Ewens, 

1972, Watlerson, 1978) and Tajima's neutrality tests (Tajima, 1989) were performed in 

ARLEQUIN V3.5.1.2 (Excoffier and Lischer, 2010). Haplot>Tiic diversity (h; Nei, 1987) 
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and nucleotide diversity (Tajima, 1983) were also calculated to assess levels of genetic 

variation within colonies. Ail microsatellite loci were tested for departures from Hardy-

Weinberg equilibrium within each breeding colony and assessed for deviations from 

linkage disequilibritmi using a Markov-chain method implemented in GENEPOP V3,4 

(Rousset. 2008). Significance levels were adjusted for multiple comparisons using a 

Benjamini-Yekutieli corrections (Benjamini and Yekutieh, 2001). Estimated null allele 

frequencies were calculated using CERVUS v3.0.3 (Kalinowski era/., 2007). Observed 

and expected heterozygosity and mean numbers of alleles were calculated for each 

colony and each subsequently identified population using ARLEQUTN v3.5.l.2. Allelic 

richness and private allelic richness were calculated using HP-RARE 1.0 (Kalinowski, 

2005). Means are provided ± standard deviations unless stated. Samples from Rest, 

Norway, were not included in any microsatellite analyses due to the small number of 

samples available (n=7). 

Population structure and demographic history 

Genetic differentiation between all pairs of Leach's storm-petrel colonies was assessed 

by calculating pairwise F^j and OST values (Whitlock, 2011). A hierarchical analysis of 

molecular variance (AMOVA; Excoffier ei a!., 1992) was conducted to assess within 

Atlantic and between ocean differences (groupings based on pairwise comparison 

results). For mlDNA analyses. Kimura's two-parameter model of substitution (Kimura, 

1980) with a shape parameter (a) for the gamma distribution of 0.47 (based on a 

estimates of Domain I. 11 and 11! of the control region in finches, Fringilla and 

Carduelis app.; [Marshall. Baker, 1997]) was used. To determine whether estimates of 

genetic variation (see above) were associated with the longitude or latitude of colonies 

in the Atlantic linear regressions were used. Indices and tests were nm in ARLEQUIN 

V3.5.1.2, except for linear regressions which were run in Rv2.1l.l (R, 2011). 
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The mtDNA control region variation was used to calculate parameters of demographic 

history (i.e. population growth or decline) in ARLEQUIN v3.5.1.2, for colony groups as 

defined by the AMOVA results. Fu's Fs test of selective neutrality was performed as 

this has been shown to be sensitive to population expansion, indicated by significantly 

negative values (Hasegawa et al.. 1985). LAMARC 2.0 (Kuhner. 2006) was used to 

employ a maximum likelihood estimate based on coalescent theory to test for evidence 

of population growth. Significant population growth was determined by comparing 

twice the difference between the log likelihood at the maximum growth estimate and the 

log likelihood at zero growth with the critical x~ value for alpha = 0.05 and one degree 

of freedom. TRACER V1.5 was used to ensure that the search had reached stationary 

distribution and had searched parameter space efficiently (ESS for each population 

>200). 

Microsatellite data were checked for evidence of a recent reduction of effective 

population size in the genetically defined populations using BOTTLENECK vl.2.02 

(Comuet and Luikart, 19%). if a population has experienced a recent bottleneck the 

observed heterozgosity will be larger than the heterozygosity expected from the 

observed number of alleles under the assumption of mutation/drift equilibrium. The 

exact mutation model of microsatellites is unknown (Bhargava and Fuentes, 2010) so 

three mutation models: step-wise mutation model (SMM), infinite allele model (lAM) 

and two-phase mutation model (TPM), were used and results compared. The TPM 

incorporates both other types of mutation models and was run assuming 95% step-wise 

mutations and 5% multiple step mutations (Piryero/.. 1999). The Wilcoxon signed-rank 

test was applied to determine heterozygosity excess across loci. 

Estimating time since divergence (l -TSIlfi, where T is population divergence time in 

^f generations, @ is INipt and fi is the mutation rate per year of the mitochondrial 

fragment) and gene flow (A/, in number of females per generation) between any 
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genetically distinct populations was performed using lMa2 @ BioHPC (Nielsen and 

Wakeley, 2001, Hey and Nielsen, 2007), which implements a coalescent based Markov 

chain Monte Carlo (MCMC) analysis method under an isolation with migration model 

of population divergence. Unlike traditional methods (e.g. using 5; Wilson et ai, 1985) 

this analysis does not assume populations are in migration-drift and mutation-drift 

genetic equilibrium, which may be true in populations that share haplotypes. as has been 

suggested for other temperate seabird species with large population sizes (e.g. Morris-

Pocock et al., 2008). The program was run on the control region locus data only, 

assuming a finite site model (Hasegawa-K_ishino-Yano model; Hasegawa et al., 1985) 

that allows for multiple substitutions, particularly suitable for mtDNA. Three separate 

chains were run starting at different random seeds, with 1,000,000 bum-in and 

3,000,000 Markov chain length to ensure convergence and robustness of results. T>^ux 

and MMAA' were set at 20 and 10. respectively, after exploratory runs had confirmed a 

posterior distribution that approximated a Poisson distribution. Point estimates and 95% 

credibility intervals for M and T were determined from the respective posterior 

distributions and log-likelihood tests were performed to lest significance from zero 

(Nielsen and Wakeley. 2001, Hey, 2010). However, it is often not possible to estimate 

the upper bound of T if the likelihood cur\'es approach zero very slowly (Nielsen and 

Wakeley, 2001), so the upper bound is referred to as 'undefmed' in the results for these 

cases. 

Microsatellite Bayesian cluster and assignment analyses 

Bayesian clustering analysis implemented in STRUCTURE 2.3.3 (Pritchard el al., 2000, 

Falush e! al.. 2003) was used to identify genetically distinct Leach's storm-petrel 

populations. Tliis model-based method uses a MCMC simulation to assign individuals 

to genetic clusters (K) based on individual genotypes. Simulations were run both with 
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and without sampling location as prior population information to help check for weak 

population structure (Hubisz el al., 2009). We performed 10 replicate runs for K = 1 on 

8 genetic populations (number of sampled colonies) using the admixture model and 

assuming correlated allele frequencies (Falush ei al., 2003). A bum-in of 500,000 

followed by 1.000,000 iterations was used following exploratory runs to confirm data 

convergence. We used a uniform prior for alpha (a), with initial value of 1.0 for all 

populations, and lambda {X) set at 1.0. To evaluate the most probable number of genetic 

populations the posterior probability, Ln[P(XjK)]. was compared directly (Pritchard et 

al., 2000) and the standardized second order rate of change (AK) was examined as 

suggested by Evanno et al. (2005). 

Two methods were used to identify dispersal between genetically distinct populations. 

Migrant individuals were identified using exclusion methods as implemented in 

GENECLASS2 (Piry et al., 2004) with Bayesian estimation methods (Rannala and 

Mountain, 1997). This method calculates the probability of an individual originating 

from the population it was sampled in using the exclusion criteria Lh/Ltoia (where Lh is 

the likelihood of an individual originating from the population it was sampled in and 

L„uii is the likelihood of an individual originating from any other population) and 

Paetkau's ei al. (2004) resampling method to generate critical values for rejecting the 

null hypothesis that an individual was from its sampled population. The alpha value 

(expected type I error rate) was set at 0.001 and 0.01 to explore the effect on 

identification of possible immigrant individuals. The second method to identify 

dispersal was the assignment test implemented in STRUCTURE 2.3,3 (Pritchard ei al., 

2000, Falush el al., 2003). This method detects putative migrants along with individuals 

with recent immigrant ancestry. This fully Bayesian approach uses geographical 

locafion as prior population information and the a prior probabiUty that an individual 

was an immigrant was set at v=0.01 (Pritchard et ai, 2000). Models were performed 

56 



Chapter 3 Long-distance dispersal and gene flow 

under the assumption of correlated allele frequencies and lambda was set to 1.0. MCMC 

simulations were run with a bum-in of 500,000 followed by 1,000,000 iterations. 

3.3 Results 

Tests of assumptions and genetic variation 

Seventeen mtDNA haplotypes were obtained from 103 individuals sampled across 9 

colonies. These were defined by 11 polymorphic sites all of which were substitution 

sites, including 10 transitions and 1 transversion. One haplotype was shared across all 

colonies (LSP3) and 1 was found at high frequency only in the Atlantic (LSPi). Gull 

Island (LSP4). Buldir Island (LSPg, LSPm, LSPn) and St Lazaria Island (LSP,:. LSP,,, 

LSP|4, LSP|5, LSP16, LSP17) had uniqiie haplotypes, with the latter two colonies 

combining to produce 11 haplotypes only found in the Pacific (Figure 3.1; Table 3.2; 

Supplementary Table 3.3). Nucleotide diversity (71) was similar across all colonies 

(0.0055 ± 0.0008), but haplotype diversity {h) tends to be higher in the Pacific colonies 

(0.92 ± 0.012) compared to the Atlantic (0.66 ± 0.086) (Table 3.2). Ewens-Watterson 

(all P >0.32) and Tajima's D (all P >0.28) tests within all colonies were non-significant. 

Of the 31 microsatellite loci genotyped, 6 were removed from subsequent analyses due 

to significant deviations from the assumptions of Hardy-Weinberg or linkage 

equilibrium (0!eI3. 0/e!6. OII0-39. Oc5!. Oc84. TG05-053). Seven further loci were 

also excluded due to high levels of null alleles {TG03-034) or inconsistent amplification 

leading to reduced confidence in genotype scoring (Ole03, OleOS, O!e08. Olell. Ole2l. 
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Ole23). All other loci (18) met both assumptions after Benjamini-Yekutieli corrections 

and showed low levels of null alleles. Only 5 genotypes across all samples and loci 

could not be reliable scored and the genotypiag error rate, calculated from the i^-

scoring exercise, was <5%. 

Mean observed heterozygosity at the microsatellite loci was similar across colonies 

(0.45 + 0.02). A comparable pattern to the control region haplotypes was found for 

allelic and private allelic richness, with the Pacific colonies showing greater diversity 

than the Atlantic colonies (Table 3.2). 
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Tabic 3.2 Genetic variation at 18 microsatellite loci and a 357 bp fragment of the mitochondrial DNA control region in Leach's stonn-petrel colonies in the Pacific 

and Atlantic ocean basins 

Location 

Pacific Basin 

Buldir Island 

St Lazaria Island 

Al/anlic Basin 

Baccalicu Island 

Gull Island 

Bon Portage Island 

Vestmannacyjar 

Rost 

North Rona 

St Kilda 

Mitochondrial t'ontrol Regior 
N 

29 

12 

17 

74 

12 

10 

12 

It 
7 

12 

10 

H 

15 

9 

10 

6 

3 

4 

3 

4 

4 

3 

3 

h 

0.92 

0.91 

0.93 

0.64 

0.62 

0.78 

0.67 

0.71 

0.71 

0.62 

0.51 

K 

0.0Q54 

0.0054 

0.0054 

0.0054 

0.0048 

0.0049 

0.0059 

0,0067 

0.0069 

0.0048 

0.0048 

Mic 
N 

57 

25 

32 

18X 

25 

48 

40 

25 

-

18 

32 

osatellite Data 
A/\Qcm 

5.06 

4.33 

4.50 

4,67 

3.82 

3.89 

4.28 

3.72 

-

3,39 

3.78 

A 

3.42 

3.38 

3.45 

3.11 

3.02 

3.16 

3.21 

3.07 

-

2.91 
3.06 

"ptivme 

0.88 

0.21 

0.27 

0.57 

0.05 

0.03 

0.08 

0.05 

-

0.01 

0.03 

Hn 

0.48 

0.47 

0,48 

0.44 

0,46 

0,45 

0.46 

0.42 

-

0.41 

0.44 

HI 

0.47 

0.47 

0.47 

0.45 

0.48 

0.45 

0.46 

0.42 

-

0.41 

0.44 

,V. sample size; H. number of haplotypes; /;. Iiapbtypc divcrsiiy; K, nucleotide diversily; A/locus, mean number of alleles per locus; A. allelic richness; Apr,vDir- private allelic 
richness; H(,. observed heterozygosity; H :̂. expected heterozygosity. Microsalcllitc data were not included for the Norwegian (RHSI) colony due to small sample size 
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Population structure and demographic history 

AMOVA indicated significant population structure from the mtDNA control region 

locus (Global ^ s i = 0.32, P <0.0001). No significant colony pairwise OST values were 

found within ocean basins, but all pairwise comparisons between oceans were 

significant before Benjamini-Yekutieli correction (Table 3.3). After correction most St 

Lazaria comparisons were still significant and 3 remained for Buldir Island. The 

hierarchical AMOVA that best explained the variation was with colonies grouped by 

ocean (^cr ^ 0.32, P <0.05). The microsatellite typing results generally support the 

patterns suggested by the mtDNA data (Global Fsx = 0.04, P <0,000I). All pairwise 

comparisons between St Lazaria Island and Buldir Island and Atlantic colonies were 

significant after Benjamini-Yekutieli corrections (Table 3). Colonies grouped by ocean 

basin was again the hierarchical AMOVA that best explained the variation (Fcr = 0.045, 

P <0.05). 

There was no significant linear relationship between mtDNA diversity (both haplotype 

and nucleotide diversity) and geographic position {latitude and longitude) between 

Atlantic colonies (all P >0.05). Microsatelhte heterozygosity (slope = -0.0007, Std. 

Error (SE) = 0.0002, r = 0.66, F1.4 = 10.9, P = 0.029) and mean number of alleles (slope 

= -0.009, SE = 0.003, r- = 0.58 F1.4 = 8.1, P = 0.046) were significant in relation to 

colony longitudinal position. Heterozygosity also had a significant linear relationship to 

colony latinide (slope = -0.002, SE= 0.0006, r̂  = 0.72, F1.4 = 14.266, P = 0.019) but 

A/locus was not significant, although, showed a similar trend (slope = -0.027. SE = 

0.012, r̂  = 0.46, Fi,4 = 5.339. P = 0.082). The negative slopes of these relationships 

indicate a reduction in allelic variation moving from colonies in the northeast to 

southwest (i.e. Iceland/Scotland < Canada). 
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Table 3.3 Pairwisc C>ST estimates based on mitochondrial DNA control region (above diagonal), and Fsi estimates based on nuclear microsatellile variation (below 

diagonal). Population abbreviations arc given in Table 1, Dashes indicate pairwise comparisons not possible due to small sample size. 

Location 

BUL 

LAZ 

BACC 

GULL 

BON 

VEST 

NOR 

RONA 

STK 

BUI. LAZ 

0.009* 

().04S** 

0.046** 

0.039** 

. 0.047** 

110.056** 

0.001 

Vo.o.w** • 
0.051** 1 

0.044** 1 

0.053** 1 

• 0.070^^H 

BACC 

r6:m* 
|o .407* 

0,004 

0,005 

0.006 

0.017* 

0.005 

GULL BON 

* " 1 0.157* 0.229* 

0.113 

-0.004 

-0.001 

0.005 

-0.004 

-0.048 

0.005 

0.004 

0.013* 

-0.003 

VEST 

0.140* 

0.204* 

-0.00? 

-0.017 

-0.080 

0.005 

-0.007 

NOR 

0.248* 

mm 
-0.096 

0.032 

-0.108 

-0.086 

-

RONA 

0.407** 

-O.O'H 

0.! 1 3 

-0.048 

-0.005 

-0.096 

-0.002 

STK 

IT t̂)?** " • 
0,439** J 
-0.048 

0.186 

-0.031 

0.015 

-0.094 

-0.080 

Pink shading * ~ significant before Benjamini-Yekutieli corrections; Red shading ** = significant after Benjamini-Yekutieli corrections. 



Chapter ^ Lryn's-i/isfimrf dispersal and gene flow 

The populations delineated by the AMOVA results (Atlantic and Pacific) show differing 

demographic histories (Supplementary Table 3.2). Fu's Fs test was significantly 

negative for the Pacific (P <0.00l), suggesting historical expansion, but was positive 

and not statistically significant for the Atlantic. Results fi-om the LAMARC analysis also 

indicated the Pacific, but not the Atlantic population, had undergone significant 

population growth (P <0.0OI; Supplementary Figure 3.1). 

Significant microsateliite heterozygosity excess was observed in the Atlantic population 

using the lAM (BOTTLENECK, P <0.01) but not when using either SMM or TPM 

(BOTTLENECK, P >0.05). Heterozygosity excess was not observed using any mutation 

model for the Pacific population (BOTTLENECK, 1AM, SMM and TPM, P >0.05). 

Assuming a mtDNA control region divergence rate of 21% per million years (Quinn. 

1992) the Pacific and Atlantic populations are estimated to have diverged approximately 

13,000 years ago [95% credibility interval: 8.250 - undefined]. After log-likelihood 

tests, gene flow was only significant fi-om the Pacific to Atlantic population (and not 

vice-versa) with 1.96 females migrants per generation {-̂ 12 years) [95% credibility 

interval: 0.1172-6.181]. 

Microsatellite Bayesiao cluster and assignment analyses 

Convergence of the STRUCTURE clustering analyses was confirmed by low variance in 

ln[P(XJK)] across replicate nms and visual inspection of likelihood and estimated 

parameters. When run with prior information of sampling location the ln[P(X|K)] and 

AK for different values of K indicated K=2 as the most likely number of clusters 

(Figure 3.2). When no prior information was used in die analysis K=3 was most likely, 

but the differences in Pr(K) between 2 and 3 clusters was small. Inference of K based on 

small differences in Pr{K) should be viewed with caution (Nielsen and Wakeley, 2001), 

and on inspection of Q (probability of membership) values for K=3 revealed that 
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individuals have low probability of assignment to any clusters (Supplementary Figure 

3.1). When the extent of population genetic structure in one of the clearly defined 

populations is uncertain Pritchard el al. (2007) suggest running the analysis for only the 

individuals in that population. This analysis found no evidence of subdivision, with K=l 

being the most likely number of clusters for these individuals (only Atlantic colonies; 

data not shown). Taken together these results support the K=2 model found when 

sampling location is used as prior information. The clustering of individuals into two 

populations clearly separates with the colony locations in the Atlantic versus Pacific 

(Figure 3.2), with no subdivision within ocean basins, in agreement with the patterns 

emerging from the mtDNA sequence data. 

The methods to identify individual migrants could only be used between ocean basin 

populations due to the lack of genetic ditferentiation between Atlantic colonies. 

GENECLASS2 identified one individual as a fu-st generation migrant (Pac02; P <0.001). 

This individual was sampled at the Buldir Island breeding colony. Using the strict alpha 

value (0.001) the null hypothesis (sampling location as place of origin) could not be 

rejected for any other individual. When the alpha value was relaxed {<0.0I) two fiirther 

individuals from St Lazaria Island (Pac37) and Bon Portage Island (Atl65) were 

identified as migrants. The same individual (Pac02) had the highest posterior 

probability (PP) of being an immigrant in the STRUCTURE analysis. When v {prior 

probability) was set at 0.01 this was the only bird that had a PP >0.50 of being an 

immigrant. Both analyses identified this individual as having a high probability of being 

a migrant, suggesting movement from the Atlantic to the Pacific. 

63 



Cliiiprer -* Long-distance dispersal and gene flo^-' 

Figure 3.2 Probability of assignment (Q) of Leach's storm-petrel to two genetic clusters 

estimated using STRUCTURE with sampling location as prior information. Each line is a single 

individual and individuals are ordered by sampling location. Colours correspond to genetic 

clusters. 

Figure 3.3 Probability estimates for the Leach's storm-petrel (Pac02) most likely identified as a 

migjaot using the assignment lest in STRUCTURE (v=O.Ol). Colours correspond to three 

different categories: white = no immigrant ancestry; light grey = immigrant: dark grey = 

immigrant parent. 
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3.4 Discussion 

Here we use mtDNA control region sequence data and 18 polymorphic autosomal 

microsatellites to investigate genetic structuring and gene flow among Leach's storm-

petrel colonies within the Atlantic and between the Atlantic and Pacific basins. This is 

the first study of this species to benefit from the tjse of two molecular markers and 

complementary analyses (Fsr. Bayesian cluster and exclusion/assignment), and their 

concordance presents strong evidence for contemporary and historical gene flow among 

the Atlantic colonies and limited dispersal between ocean basins. The results are 

consistent with the evidence of gene flow found in an earlier introductory smdy in the 

North Atlantic (Paterson and Snyder, 1999). Contemporary and historical factors 

influencing gene flow and dispersal in this species, as well as their conservation 

implications are discussed below. 

Patterns of gene flow and population history - ocean basins 

Landmasses are major factors leading to population differentiation in seabirds (Friesen 

et ai. 2007a) and distinct genetic differences between the Pacific and Atlantic suggest 

that this is also the case for Leach"s storm-petrel. There is little evidence for structuring 

within the Pacific (Aleutian Islands and northwest coast of America), although sampling 

only two colonics may have inhibited detection. Leach's storm-petrels breeding m the 

Pacific have higher genetic diversity at both mtDNA control region and microsatellite 

loci than those from the Atlantic (Table 3.2). This suggests no strong population 

contraction in the past as further supported by no evidence for a recent bottleneck or 

founder event. The pattern of genetic diversity is characteristic of a Pacific source 

population and founder event in the Atlantic (Le Corre and Kremer, ! 998. Caissie e! al, 

2010). This is particularly noticeable for the control region sequences (but also for 

nuclear alleles) where all Atlantic haplotypes are nested within the Pacific variation 
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except the one at highest frequency, a pattern predicted by genetic theory (Page and 

Hoimes, 2007). The microsatellite BOTTLENECK results show some support for this 

event but this is dependent on one mutation model (lAM), which may not be suitable 

for these markers (Shriver et al^ 1993, Bhargava and Fuentes, 2010). Divergence of the 

populations, as estimated from coalescent analysis (^13,000 ya). would place the 

founding event during the last .glacial retreat when suitable habitat was becoming 

increasingly available for colonization and oceanic conditions were more favourable in 

the north Atlantic (Ruddiman and Mclntyre, 1981). 

Despite the clear genetic differences between Leach's storm-petrel populations in the 

Atlantic and Pacific, using three separate analysis (IMa2. STRUCTURE. GENECLASS) we 

also found evidence of contemporary gene flow and immigration between the Pacific 

and Atlantic. Coalescent analysis indicates low female-mediated gene flow has 

continued from the Pacific population but not to any significant degree in the opposite 

direction. More recent dispersal between oceans is found with one migrant Leach's 

storm-petrels identified in the Pacific. Given such a small number of samples relative to 

the population sizes in each ocean, this suggests the number of dispersers could be 

considerable, but still not enough to genetically homogenise the two populations. 

North Atlantic Leaches storm-petrel colonies 

The lack of population structure in the Atlantic (F^T and ^ s r analyses as lagging 

indictors; Whitlock and McCauley, 1999), suggests high historical gene flow among 

colonies. Population expansion from small refiigial populations since the last 

Pleistocene glacial retreat (10,000-14,000 ya; Ruddiman and Mclntyre, 1981) is well 

documented for many taxa (Hewitt, 2000) and has been inferred in other Atlantic 

seabird populations (Mourn and Aniason, 2001, Morris-Pocock et al., 2008). Our data 

suggest that Leach's storm-petrel may have colonised the Atlantic from a refiigium in 
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northeast North America. The progressive decrease in allelic variation with increasing 

longitude and latitude (i.e. from Bon Portage to North Rona/Vestmannaeyjar, Figure 1) 

is indicative of sequential expansion (Pruett and Winker, 2005). Tlie relatively short 

time since the estimated founding event and subsequent growth to the present large 

population size may not have allowed the Atlantic population to reach migration-drift 

equilibrium, as has been suggested for another temperate seabird species (common 

guillemots Uria aalge, Friesen et at., 1996, Riffaut et al., 2005. Morris-Pocock el al., 

2008). If migration-drift equilibrium has not been reached the population may still 

harbour some signature of ancestral variation and gene flow may be overestimated. 

Nonetheless, the consensus of evidence suggests high levels of gene flow amongst all 

colonies during and subsequent to colonization of new island habitats. 

Mechanisms of gene flow 

Our data provides strong evidence for contemporary gene flow among Atlantic 

colonies, but what are the mechanisms involved? Dispersal can be broken into three 

interdependent stages: emigration, inter-patch movement and immigration (Bowler and 

Benton, 2005). Emigration in Leach's storm-petrel is most likely via immature birds, 

since breeders exhibit high levels of philopatry after recruitment (Morse and Kress, 

1984. Himtingdon et a!., 1996). The recapture of two ringed Leach's storm-petrels 

breeding at colonies 1000s of kilometres from their natal colony (Maine, US"^ Iceland, 

Iceland-^North Rona Scotland) provides some evidence for this (Y. Kolbeinsson. pers. 

comm.). The decision to emigrate can be influenced by many factors at the natal colony 

(e.g. colony density, food and habitat availability; Bowler and Benton, 2005), but 

population mixing on wintering grounds may also play an important role among pelagic 

seabirds (Friesen et al. 2007), The distribution of Leach's storm-petrels outside the 

breeding season is poorly known but large over-winter aggregations in the Bay of 
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Biscay (>2,000,000) far exceed the relatively small European population estimates 

(Hemery and Jouanin, 1988), suggesting that North American and European birds may 

share wintering grounds and through associations with conspecifics and/or following 

activity may lead to emigration . 

Inter-patch movement appears to be an important part of selecting a place to breed 

among immature seabirds (Votier e/a/., 2011), but the extent of this behaviour is poorly 

understood. This inter-patch movement may be more extensive in pelagic species 

compared with more inshore foragers, although the evidence for this difference 

influencing gene flow is equivocal (Burg and Croxall, 2001). Nevertheless it is 

interesting to note that, in comparison to the results presented here for the Atlantic 

Leach's storm petrel population, genetic structuring has been reported among Atlantic 

and Mediterranean populations in the closely related and inshore European storm-

petrels Hydrobates pelagicus (Cagnon et al., 2004). 

Immigration can be inlluenced by various factors (Bowler and Benton, 2005), but the 

availability of suitable breeding habitat and mates is essential. It is possible that heavy 

predation, such as that recorded at St Kilda (Votier ei ai 2006; Miles 2010), could 

increase the availability of nest sites and mates, but predalion may quickly offset these 

benefits. 

The dispersal dynamics of this species is clearly an area requiring further research to 

help elucidate the mechanisms involved in this multifaceted behaviour. 

Conservation implications 

Our findings indicate that a significant barrier to gene flow between Leach's storm-

petrel colonies is large landmasses, although even these may be surmountable. For 

colonies within the same ocean basin long distance dispersal across open water appears 

to lead to high levels of gene flow. Therefore for conservation and management 
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purposes. Leach's storm petrel in the North Atlantic may fiinction as a large meta-

population (Esler, 2000) with dispersal occurring amongst all colonies. The disparity 

between persistence of the St Kilda colony and the exceptionally high predation 

estimates that would otherwise extirpate tiie local population are congruent with 

immigration from other colonies. Confident assignment of immigrants to a colony of 

origin and estimation of dispersal rates were not possible due to the lack of colony 

differentiation, but given the number of birds involved it is likely that the large colonies 

in Atlantic Canada are major contributors. We are also unable to determine whether the 

buffering occurs as a ftinction of recruitment into the St Kilda breeding population, or 

inter-colony movement of prospectors that are then predated upon, or both. 

It is unclear whether the current levels of immigration are able to buffer such predation 

in the long term, but the recent population declines suggest that this may not be the 

case. Although the great skua population on St Kilda has remained relatively stable in 

recent years, these generalist predators may show facultative switching to seabird prey 

m the face of declines in the availability of alternative foods such as fishery discards 

(Votier ei al., 2004). A selective cull of great skuas may offset heavy storm-petrel 

predation (Kokko and Lopez-Sepulcre. 2006), but this may not be appropriate for a skua 

species that only breeds in Europe and for which St Kilda retains -1.5% of the global 

population. To predict future population trends at St Kilda the combined effect of 

predation and dispersal on its demographic rates {i.e. growth and vital rates) need to be 

quantified. Although, genetic assignment has been previously used to estimate the 

impact of effective immigration on population growth in a seabird (Peery et al., 2008) 

the genetic similarity and size of the Leach's storm-petrel colonies makes it impossible 

for this species. For highly vagile species with large populations, such as Leach's storm-

petrels, other approaches to assessing dispersal rates are needed (e.g. stable isotopes and 

tracking technology), and used in combination with genetic and demographic data to 
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predict long-term population viability in the face of these impacts (Lowe and Allendorf, 

2010). 

This study shows that inter-colony movement over large spatial scales can affect colony 

resilience, thus impacts of dispersal need to be considered at both the local and meta-

population scale (Hanski. 2001). The large non-breeding component of seabird 

populations has been shown to play an important role in buffering the effects of 

stochastic mortality with compensatory recruitment (Votier e( al., 2008), and our study 

suggests immigrant recruitment from distant populations could have similar effects. 

Understanding connectivity of disjunct populations of highly vagile colonial seabirds is 

vital to appropriately manage their populations and predict the effect of increasing 

levels of environmental change. 
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4.1 Introduction 

In marine ecosystems stable isotope analysis (SIA) has become a familiar technique for 

investigating trophic relationships (Petursdottir ei al., 2008). food web structure 

(Hobson ei a/.. 2002) and movement behaviour (Hobson, 1999, Hobson, 2007). The use 

of preserved and/or archived organic material offers huge potential for the conduct of 

retrospective analyses and investigate medium to long-term ecosystem changes. Most 

natural history museums and many other institutions hold large preser\'ed collections 

that could be a major resource for such studies. However, there are uncertainties over 

the effect of different preservatives on the stable carbon and nitrogen isotope values, 

which is periiaps reflected in the scarcity of studies that utilise collections of preserved 

biological material. Understanding the effects of preservatives on stable isotope 

signatures is crucial for the appropriate interpretation of results from ecological studies. 

Ideally the chemicals used to preserve biological material should not alter their 

molecular composition, but in many instances this is not the case (Carabel el a!.. 2009, 

Ventura and Jeppesen, 2009, Syvaranta et aL, 2011). The reported changes (S'^C: <3%o, 

S'̂ N; <l%o) lack consistency in these effects (Barrow et al., 2008, Ventura and 

Jeppesen, 2009), and this precludes general conclusions being reached for particular 

preservatives. A range of preservatives has been used for short or long term collection 

storage and these preservatives have been shown to have different impacts (Barrow el 

al., 2008), so require separate investigation before collection samples can be used in 

SIA. 

The Sir Alister Hardy Foundation for Ocean Sciences (SAHFOS. Plymouth. UK) 

maintains the Continuous Plankton Recorder (CPR) Survey, which is one of the longest 

and geographically the most extensive measures of plankton communities worldwide. 

Since 1931 ships of opportunity (such as commercial and passenger vessels) have towed 

recorders for approximately 5.8 million nautical miles, continuously collecting 

73 



Chapter 4 Effeil nf formalin prfMerxaiion on a copepod 

plankton. The core survey operates in the North Atlantic but it has grown in scope to 

include the North Pacific, the Southern Ocean and the Western Atlandc. CFR data has 

been integral to understanding how the ecosystem function is regulated in the North 

Atlanric (Beaugrand et ai, 2002, Beaugrand ei ai, 2003, Edwards and Richardson, 

2004, Frederiksen et ai. 2006) leading to ftirther insights into the indirect effects of 

climate change on North Sea commercial fish stocks (Beaugrand and ICirby, 2010). The 

isotopic information available within the CPR Survey samples has great potential for 

large scale analysis of food web structures, historical ecosystem shifts and use as 

baseline marine ecosystem data. The CPR Survey uses a formalin solution to preserve 

plankton samples while vessels are at sea and later, when archived before analysis. In 

2008 two formalin grades with different methanol content were used on survey routes to 

check the quality of sample preservation, but have subsequently returned to the original 

formalin mix. Before samples from this extensive plankton collection can be 

confidently used in stable isotope studies, the impact of formalin preservatives on stable 

isotope ratios need to be clarified. 

Copepods dominate the global mesozooplankton biomass (Williams el ai. 1994) and 

are an integral part of the transfer of carbon from marine primary producers to higher 

trophic level species. Calanoid species art key components of marine ecosystems and 

their isotopic signatures have been valuable in investigating food web structures 

(Hobson and Welch, 1992, Hobson et ai. 2002) and predator-prey relationships 

(Gorokhova et ai. 2005), and they have great potential for isotopic characterisation of 

ocean regions for use in animal foraging or migration studies (Hobson, 2007, Votier et 

ai, 2010). To evaluate the impact of formalin preservation on stable carbon and 

nitrogen isotope ratios in calanoid copepock. fi^sh samples of Calanus helgoiandicus 

were used in a controlled experiment. Here we report the effect of two types of formalin 

preservative (used on the CPR Survey) and fi:-eezing, over a 12 month period. We 
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discuss the impact that this has on the use of these and other CPR Survey samples in 

ecological stable isotope studies. 

4.2 Materials and Methods 

Study species 

Calamts helgolandicns is a calanoid copepod found over a range of marine habitats (i.e. 

open ocean, coastal environments) in the North Atlantic and contributes between 6% 

and 93% to the mesozooplankton biomass in European waters (Bonnet el al., 2005). 

These copepods consume a diverse diet of protozooplankton and phytoplankton 

(Fileman et ui, 2007) and are themselves an important source of food for juvenile fish 

(Beaugrand el a!., 2003). They are a temperate water species generally found in 9-20'*C 

waters, with highest abundance from 13 to \1°C and the development to the adult forai 

takes between 26 and 42 days (Bonnet et ai, 2005). In recent decades C. helgo/atidicus 

has become more abundant and widespread in the northeast Atlantic, which has 

coincided with a northward shift in the distribution of the cold-water congener C. 

finmarchicus (Bonnet et al., 2005). The sensitivity of these two species to changes in 

water temperature apparently underlies this shift, and for this reason they are useful 

indicators of global change in marine environments. 

Sampling method and preservation 

Zooplankton samples were taken by the Dove Marine Laboratory (Newcastle 

University. Newcastle. UK) from the North Sea. close to the Northumberland coast of 

England (55°07*N, 0r2O'W), using a 200 ^m meshed WP2 plankton net in vertical 

hauls from 20m depth to the surface on 9 June 2009. Fresh C. helgolandicus from 

hauls were frozen and transported to Plymouth (UK) where they were placed in fresh 

seawater for several hours to allow gut evacuation. We removed CV and CVI adult C 
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helgolandicus and sub-divided these into five different groups: those analysed 

immediately (control) and those preserved for 3 weeks, 2 months, 6 months and 12 

months in 5 different treatments (see below). There were 4 replicates for the control 

group and a minimum of 3 replicates (3-6) for each treatment/time group. Each replicate 

contained between 10 and 15 individuals {to provide sufficient material for subsequent 

stable isotope analysis) and were stored in separate glass vials at room temperature 

(excluding the frozen treatment). 

The formalin preservatives used for the treatments were supplied by SAHFOS and are 

currently in use (Type B). or have been used (Type A), on CPR Survey routes and for 

storage of collected samples. The majority of the chemical constituents of the mixtures 

were the same (Appendix I, Supplementary Material 4) but the supplier and amount of 

methanol in the formaldehyde were different: Type A = Fisher Scientific, 

Loughborough, UK (Technical grade, 37-41% formaldehyde containing 10-14% 

methanol). Type B = Alpha-Aesar, Heysham, UK (Technical grade, 37% formaldehyde 

containing 7-8 % methanol). The treatments involve both types of formalin 

preservatives and/or a simulation of the change in concentrations during the collection 

and storage of CPR samples. For the latter, a 3 week initial period of high concentration 

mix and seawater dilution represents the potential time between collection of samples 

and delivery of the CPR device back to SAHFOS for unloading. The treatments 

(preservation methods) are summarised in Table 4.1. The type of formalin used for each 

treatment were also analysed to determine their S'̂ 'c values. 

Lipid synthesis in organisms discriminates against '•'C (DeNiro and Epstein, 1977) and 

yields low 8'̂ C values in tissues with high lipid content when compared with those 

from an organisms dietary input (Tieszen et al., 1983). The lipid content in marine 

copepods is highly variable between species (range of percentage dry weight: 2-73%) 

(Ventura, 2006), and can depend largely on their life history (Mauchline, 1998). To 
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eliminate the effect of lipids on the carbon isotope ratios in C. helgolandicus and to 

generate results with general relevance to other calanoid species, all samples were lipid-

extracted. The samples were also decalcified to remove inorganic carbon from the 

copepods exoskeleton, since these carbonates tend to be increased in S'̂ C and do not 

reflect dietary intake (DeNiro and Epstein, 1978). Other biochemical compounds 

contributing to 5 C values such as proteins, carbohydrates and chitin have been found 

to be similar across zooplankton taxonomic groups and habitats {Ventura, 2006), and 

were therefore not altered in any way. 

Once the samples had been freeze-dried and crushed, the lipids were extracted using 7% 

methanol in dichloromethane by volume (7% M DCM) and then dried overnight in a 

laboratory oven. The samples were added to 2N hydrochloric acid for 1 hour to remove 

inorganic carbonates and distilled water was used to rinse away acid and waste. The 

samples were oven-dried overnight in preparation for stable isotope analysis. 

Table 4.1 Experimental treatments used to preserve C. helgolandicus samples. 

Treatment 

ID 

Tl 

T2 

T3 

T4 

T5 

Description 

Frozen at -20°C 

Type A 40% formaldehyde mix with borax diluted to 4% with seawater 

(for first 3 weeks), then changed to Type A 4% formaldehyde mix 

Type A 4% formaldehyde mix 

Type B 40?'o formaldehyde mix with borax diluted to 4% with seawater 

(for first 3 weeks), then changed to Type B 4% formaldehyde mix 
Type B 4% formaldehyde mix 
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Sample analysis 

Homogenised C helgolandkus samples of approximately 0.70 mg were weighed and 

placed in tin capsules (5 x 3.5 mm). Formalin samples were placed in solid, flat 

bottomed tin capsules (5 mm x 2 mm) and cold-sealed with wire cutters. Each formalin 

sample was prepared less than two minutes before analysis, to minimise evaporation. 

Analyses were conducted at the East Kilbride Node of the Natural Environment 

Research Council Life Sciences Mass Spectrometry Facility via continuous flow isotope 

ratio mass spectrometry using a Costech (Milan, Italy) ECS 4010 elemental analyser 

interfaced with a Thermo Electron (Bremen, Germany) Delta XP mass spectrometer. 

Isotope ratios are reported as t^values and expressed as %o according to the equation 6X 

= [(Rsampî Rsiandard)-1] X 1000, whcrc X Is '^C or '*N and R is the corresponding ratio 

'̂ C/*^C or '"''N/'''N and Rmmdard is the ratio of the international references PDB for 

carbon and AIR for nitrogen. The standard deviation of multiple analyses of an internal 

gelatine standard in each experiment was better than 0.2%o for tJ'̂ N and ^^C. 

Data analysis 

The effects of preservation method and time on the carbon and nitrogen stable isotope 

and element ratio values were analysed by comparing preserved samples with fiesh 

samples (control) using analysis of variance (ANOVA) and Tukey's HSD post hoc 

multiple pairwise comparison tests. All data were tested for normality and homogeneity 

of variance. Statistical analyses were conducted using R version 2.12.0 (2011). 

4 J Results 

Overall effect of formalin 

In general formalin preservation and the amount of time for which the samples had been 

preserved influenced both the S'̂ C (Treatment: F4.77 = 20.66, P <0.0001. Time: F4.77 = 
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25.07, P <0.0001) and the S'̂ N values (Treatment: F4.7R = 3.09, P = 0.02. Time: F4,7g = 

5.96, P = 0.0003) in C. helgolandicus samples. Compared with firesh samples all the 

n 

formalin treatment samples (T2-T5) were significantly depleted in 5 C (mean range = -

0.48 - -0.67, all P values <0.05) and significantly emiched in 5'"''N (mean range = 0.46 

- 0.74, P values <0.05) (Table 4.2). 

Effect of time stored in formalin on 5 C and S ' ^ 

The amount of time for which samples were preserved in formalin had a pronounced 

effect on 5 C (Figure 4.1). 5 C decreased significantly in all formalin treatments after 

6 months and 12 months (all Tukey's HSD tests, P <0.05), except for treatment 5 where 

the value did not change significantly after 12 months (Tukey's HSD test, P = 0.16). In 

contrast, 5''N values changed significantly when C helgolandicus were stored in 

formalin however there was no obvious trend over time (Figure 4.2). After Tukey's 

multiple comparison tests, the 6'̂ N values fi"om treatment 2 were not significantly 

different from those from fresh samples at different time intervals, although the overall 

enrichment was significant (F120 = 5.18,/*= 0.03 [Table 4.2]). The increase was 

significant after 3 weeks in treatment 4 {Tukey's HSD test P = 0.004) and 2 months in 

treatments 3 and 5 (Tukey's HSD tests. T3: P <0.001, T5: P 0.034). This significant ' ^ 

enrichment generally continued up to 12 months in treatments 4 and 5 but reduced for 

the final sampling period in treatment 3 (Tukey's HSD test, P = 0.06) (Figure 4.2). 

Effect of freezing samples on 6"C and S'̂ N 

The fi-ozen samples (Tl) where not significantly different fi^om fi-esh samples for either 

6'-̂ C (F4.H = 0.85 P = 0.52) and 5'̂ N {F4.11 = 0.87, P = 0.51), but were significantly 

different fi-om samples that had undergone formalin treatments (all Tukey's HSD tests, 

P <0.00l) except for the S'̂ N values from treatment 2 (Tukey's HSD test, P = 0.18). 
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The 5 ' ^ values appeared to change over time for samples stored frozen (Figure 4.2), 

but these changes were not statistically significant. 

Table 4.2 Mean (± 1 standard error) S'̂ C and 6'*N values of fresh C. helgolandicus and the 

differences (± I standard error) from fi«sh values for treated samples over 12 months. C:N -

ratio of carhon to nitrogen atoms, %C~ percentage dry weight of carbon, %/V - percentage dry 

weight of nitrogen. # and * indicates significant difference from fi^sh at P <0.05 (ANOVA and 

Tukey's HSD post-hoc test respectively). 

d''C 

3 weeks 
2 months 
6 months 
12 monlhs 
Overall 

^'N 

3 weeks 
2 months 
6 months 
12 months 
Overall 

C.N 

3 weeks 
2 months 
6 months 
12 months 
Overall 

%C 

3 weeks 
2 months 
6 months 
12 months 
Overall 

%N 

3 weeks 
2 months 
6 months 
12 months 
Overall 

Fresh 

(«») 

"19.34 

9.56 

3,95 

46.02 

11.66 

±S-E, 

0.26 

O.tl 

0.13 

0,74 

0.24 

Tl 

{%.!) 

0.07 ±0.06 
0.10+0.13 

-0.29 ±0.05 
-0.15 ±0.10 
-0.07 ±0.06 

0.48 ±0.17 
0.15+0.38 
0.09 ±0.25 

-0.03 ±0.14 
0.17 ±0.12 

0.12 ±0,03 
0.04 ±0.04 

-0.01 ±0.04 
0.04 ±0.02 
0.05 ±0.05 

-0.57 ±0.18 
0.37 ±0.33 

-1.46 ±5.44 
1.22 ±4.44 

-0.11 ±1.53 

-0.50 ±0.13 
0.00 ±0.19 

-0.31 ±1.40 
0.21 ±1.14 

-0.15 ±0.40 

T2 

(•^1 

-0.49 ±0.08 
-0.42 ±0.02 

-0.99 ±0.03* 
-0.68 ±0.03* 
-0.64 +0.06# 

0.57 ±0.08 
0.19+0.19 
0.77 ±0.12 
0.33 ±0.22 

0.46 ±0.09# 

0.08 ±0.01 
0.03 ±0.03 

-0.07 ±0.02 
-0.08 +0.07 
-0.01 ±0.02 

-0.81 ±0.12 
-0.42 ±0.26 
0.19 ±0.81 
1.51 ±1.63 
0.14+0.50 

-0.42 ±0.05 
-0.17 ±0.11 
0.28 ±0.23 
0.60 ±0.54 
0.07+0.18 

T3 

(%o) 

-0,43 ±0.08 
-0.39 ±0.06 

-0.79 ±0.11* 
-0.93 ±0.08* 
-0.66 ±0.07# 

0.33 ±0.12 
0.84 ±0.10* 
0.73 ±0.1!* 
0.49 ±0.12* 
0.60 +0.07# 

0,07 ±0.02 
0.05 ±0.02 

-0.03 ±0-02 
-0.12 ±0.02 
-0.01 ±0.02 

-1.45 ±0.37 
-1.10 ±0-26 
-1.46 ±0.33 
1.89 ±1.82 

-0.53 ±0.53 

-0-55 ±0.15 
-0-42 ±0.09 
-0.25 ±0.11 
0-84 ±0-46 

-0.10 ±0.16 

T4 

(%.) 

-0.46 ±0.05 
-0-53 ±0.06 

-0.83 ±0.04' 
-0.88 ±0.05* 
-0.67 ±0,05# 

0.75 ±0.09* 
0.92±fl,10* 
0.51 ±0.16 

0.67 ±0.16* 
0.73 ±0.07# 

0.02 ±0.01 
0.16 ±0.03 
0.02 ±0.02 

-0.01 ±0-04 
0.05 ±0.16 

-1.22 ±0.29 
-0.69 ±0.18 
-0.62 ±0,92 
0.23 ±2.07 

-0.57 ±0.54 

-0.32 ±0.06 
-0.64 ±0.08 
-0.16 ±0.21 
0,13 ±0.43 

-0.25 ±0.14 

T5 

(%..) 

-0.26 ±0.13 
-0.29 ±0.13 

-0.77 ±0.11* 
-0.55 ±0.12 

-0.48 ±0.08# 

0.60 +0.07 
0.67 ±0,21* 
0.67+0.16* 
0.80 ±0.08* 
0.68 ±0.07# 

O.Of +0.00 
0,13 ±0,03 

-0,05 ±0.02 
-0.02 ±0.04 
0.01 ±0,02 

-1,39 ±0-11 
-0,93 ±0,20 
-3.09 ±0.86 
-1.32 ±4.00 
-1.77 ±0.90 

-0.36 ±0.03 
-0.61 ±0-14 
-0.59 ±0.19 
-0.27 ±1-11 
-0.47 ±0.24 

Tl = Treatment 1.T2 = Treatment 2. T3 =Treaimeni 3,T4 = Treatmeni4. T5 = Treatment 5 (described 
in Table I), %o = parts per thousand deviation from standard. 
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Figure 4.1 Mean (+ 1 standard error) difference in 5 C values after 3 weeks, 2 months. 6 

months and 12 months for the 5 preservative treatments compared to the fresh control samples 

(0.0 on y axis). T1-T5 treatments as described in Table 1. Black spots represent significant 

difTcrences from control samples (P <0.0.^). 
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Figure 4.2 Mean (± 1 standard error) difference in 6 ' ^ values after 3 weeks, 2 months, 6 

months and 12 months for the 5 preservative treatments compared to the fresh control samples 

(0.0 on y axis), T1-T5 treatments as described in Table I. Black spots represent significant 

differences from control samples (P <0.05). 
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%Q %N, C:N ratio and formalin 

Change in the ratio of carbon to nitrogen (C.AO across treatments when compared with 

fi^sh sample values was minor (Table 4.2; all Tukey's HSD test, P >0.05). Significant 

deviation frxjm homogeneity of variance was found over the duration of the experiment 

in treatments 3 and 5 for percentage dry weight of carbon (%C Levene's test, T2: F^̂ o = 

3.087 P = 0.04, T4: F4.16 = 4.699 P = 0.01) and nitrogen (%N Levene's test, T2: F4.20 = 

3.093 P = 0.04. T4: F4.16 = 5.030 P = 0.01). The mean 6'^C values (±1 SD) were similar 

for formalin preservative with the same chemical constituents across manufacturers: 1) 

40% formaldehyde mix with borax diluted to 4% with seawater. Type A= -44.63 

±0.05%o. Type B= -44.07 ±0.56%o. 2) 4% formaldehyde mix. Type A= -29.52 ±0.24%o. 

Type B= -29.94 ±0.30%o. 

4.4 Discussion 

Our study provides evidence for a significant effect of formalin preservation on the 

stable carbon and nitrogen isotope values in C helgolandkus over rime, but there was 

no significant difference between batches of samples stored frozen and room 

temperature confrols over the same period. The possible mechanisms involved in the 

isotopic alteration and the implications that these preservative effects have for the use of 

C helgolandicus and other CPR zooplankton samples in stable isotope analyses, are 

discussed below. 

EfTects of formalin on 5'^C and S'̂ N 

The decrease of 5'^C for C helgolandiciis samples stored in formalin is consistent with 

the majority of previous studies investigating the effect of formalin preservation on a 

variety of marine, freshwater and terrestrial species (Sarakinos el al., 2002. Barrow ei 
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al, 2008). However, the degree of depletion (~l%o) was considerably less than reported 

in the only other study on the effect of formalin on marine zooplankton (2-3%o)(MuIlin 

et al., 1984). The results also indicate that the isotope signatures continue to change 

with time, although it took approximately 6 months of preservation for this effect to 

become statistically significant. The only other previously obser\'ed depletion over time 

was in a freshwater clam Corbicula fJuminea, although the fresh samples in this study 

were extremely depleted resulting in an overall enrichment of 6"C (Syvaranta ei al., 

2011). and highlighting the difficulties in predicting these effects. Two mechanisms 

have been proposed to account for the depletion of C. First, the formalin preservative 

promotes the leaching of compounds enriched in ' C from the tissues and therefore 

modifies the apparent carbon isotope signature (Hobson er al., 1997, Bosley and 

Wainwright, 1999). The formaldehyde hydrolyzes proteins that are enriched in '"C 

compared with lipids, so depletion in tissue '"'C could reflect the relative increase in 

lighter lipid carbon. However, given that we extracted lipids from the C helgolandicus 

samples before stable isotope analysis this seems unlikely. Secondly, the uptake of 

isotopically lighter carbon from the formalin into the tissues could shift the signature 

toward that of the preservative (Gloutney and Hobson. 1997. Hobson et al.. 1997, 

Bosley and Wainwright, 1999, Sarakinos ei al., 2002). The low 6'^C values found in the 

formalin used in this study (-29%(i and -45%o) would therefore suggest the incorporation 

of lighter carbon from the preservative is the most likely explanation for this effect. The 

composition and/or manufacture of the formalin preservative may contribute to the 

degree of carbon uptake into tissues (Sweeting et al., 2004). Although the samples that 

were subjected to the lowest concentration of formaldehyde and methanol (T5 - Type B 

4% formalin) showed slightly less overall '̂ C depletion, there was little evidence for 

differences between the two manufacturers and formalin composition used in this 
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experiment. The comparable formalin 5' C values between manufacturers may have 

resulted in these similarities. 

Previous woric has shown highly variable and somewhat contradictory impacts of 

formalin preservation on 5'"N (Barrow et ai. 2008), although generally the effects are 

shght with only one study showing an effect of > 1.0%a (Bosley and Wainwright, 1999). 

Here we found a significant increase in 6 N values for C helgolandicus stored in 

formalin that is consistent with previous work on freshwater zooplankion (0.8%o 

increase) (Feuchtmayer and Grey, 2003), but contrasts with a significant '̂ N depletion 

shown for marine zooplankton (decrease <l%o) (Mullin el at., 1984). Formalin does not 

contam nitrogen so uptake of any preservative fractions into tissues will have no effect 

on 5' 1̂  values. Instead the effect of formalin is through disproportionate hydrolysis or 

leaching of isotopically lighter or heavier materials (Gloutoey and Hobson. 1997, 

Hobson ef ai, 1997, Bosley and Wainwright. 1999). For C helgolandicvs and the type 

of formalin used in our study this seems to be the loss of '"'N to the preservative with the 

resulting increase of 6'^N, although an expected increase in the C:N ratio with loss of 

nitrogen was not observed. The increase was sUghtly higher in the Type B formalin 

mix, which is siuprising because it contains slightly less formaldehyde (the hydrolysing 

agent) than the Type A mix, but may be a result of different manufacturing processes or 

raw materials (Bugoni et al., 2008). It is apparent from this study and previous reports 

that the effect of formalin on S'̂ N is not as predictable as for S'̂ C and therefore 

requires species-specific experiments. 

Use of CPR zooplankton in ecological stable isotope analyses 

Significant changes in S'̂ C and 6'̂ N values of C. helgolandicus stored in formalin 

could potentially bias stable isotope values if unchecked- The ~0.6%o mcrease in S'̂ N 

observed in this study could be regarded as minor in relation to the 2-3.5%o shift found 
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between consumers and prey (Minagawa and Wada, 1984, Post, 2002), so may not be 

significant if used in stable isotope trophic position and food web studies. However, 

comparing preserved and unpreserved samples could produce misteadiug results and a 

simple correction factor should be considered on a species-specific basis in this 

situation (Edwards ef al, 2002). The increase in 5"C per trophic level is much more 

conservative {<l%o) and more closely represents the primary carbon source of the 

marine ecosystem. An approximate 0.8%o '"'C depletion in samples due to preservation 

could therefore lead to biased results if used in multiple isotope food web analysis or for 

regional baseline ecosystem signatures in migration studies. These analyses rely on 

appreciable distinction between S'̂ C values and any bias >MI1 be most pronounced when 

the differences are relatively small. It has previously been proposed that as long as the 

5''C difference is more than 2.0%o an equivalent depletion in preserved specimens (-

2.0%o) will not obscure the results (Edwards et al., 2002). For study systems where 

differences in carbon sources are considerable, e.g. C? and C4 plants (>14%o) {OTeary, 

1988), or terrestrial vs marine (>7%o) (Fry and Sherr, 1989), or known through previous 

research, the small effect of formalin preservation may be unimportant, but S'̂ C 

differences can be small and gradual over large spatial scales in marine systems 

(Graham et a!., 2010). The effect of preservation will be problematic if the results are 

ambiguous, and correction of 6'"C values would be appropriate in these instances. 

The shifts of S'^C and S'̂ N in this study are consistent in direction across treatments but 

show variation in strength with time, making it difficult to predict the degree of change 

beyond the study period. TTie majority of archived samples collected by the CPR Survey 

have been preserved for much longer and the effect on these samples cannot be 

confidently estimated fi'om this study. However, for C. hefgo/andicus samples collected 

by the CPR Survey within 12 months of analysis a correction factor specific to the type 

of formalin and time preserved may be appropriate to counter the effect and enable their 
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use in stable isotope studies. The extraction of lipids before analysis removed the high 

vanation of this compound found in marine calanoid copepod species and should enable 

any corrections to be applied to other Calanus species, such as C. finmarchicus, 

collected and preserved by die CPR in the previous 12 months. 

4.5 Conclusions 

Our experiment was designed to establish whether the formalin preservative used to 

collect and store samples on CPR Survey routes significantly changes the signature of a 

zooplankton species over 12 months and how this may impact its use in ecological 

stable isotope studies. For Ca!am4s copepods the preservative significantly affects 

carbon and nitrogen ratios but the lack of a predictable trend or stability in results does 

not allow estimation of the effect on preserved samples older than 12 months. However, 

application of specific correction factors may be appropriate for samples collected 

within this period to remove any bias m stable isotope analyses. The ubiquitous nature 

of this genus in the marine environment makes it ideal for use in large-scale ecological 

studies and the long-term, global collection of samples available through the CPR 

Survey could be a valuable resource to be used in contemporary and historical isotope 

analysis. However, our findings and contradictory results found in other studies 

investigating formalin preservation would suggest there is no general correction for this 

preservative and its effect needs to be experimentally established for individual species 

or genera specifically, over periods applicable to the preserved collection. Caution 

should be taken when deciding whether to use formalin preserved samples in stable 

isotope analyses. Preservation effect and isotopic differences within the study system 

need careful consideration when assessing the utility of the samples for the proposed 

research and, if used, whether or not correction factors are appropriate. 
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Chapter 5 

Itinerant young: Movement of immature Leach's storm-petrels 

Oceanodroma leucorhoa leads to genetically homogenous populations 

across an ocean basin 
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5.1 Introduction 

Highly firagmented populations are particularly reliant upon dispersal to maintain 

genetic and demographic connectivity (Bowler and Benton, 2005, Lowe and Allendorf, 

2010), and isolation of these subpopulations (demes) can make them vulnerable to 

extinction via stochastic events {Matthiopoulos et al, 2005) or prolonged environmental 

change. Establishing the extent of connectivity and the mechanism by which dispersal 

takes place is essential to predict population dynamics and the effect of increasing 

environmental change (Kokko and Lopez-Sepulcre. 2006). 

Dispersal can occur both through relocation of breeders (breeding dispersal) and the 

recruitment of young to non-natal breeding sites (natal dispersal) (Greenwood and 

Harvey, 1982). Natal dispersal is prevalent among birds and mammals (Greenwood, 

1980), a likely consequence of the increased cost of movement for established breeders, 

such as, increased mortality while dispersing, loss of reproductive events and the risk of 

moving to a worse quality habitat (Clobert el al., 2001, Danchin and Cam, 2002). A 

combination of genetic and environmental factors influence the likelihood of either 

natal or breeding dispersal, so imderstanding the system and degree of dispersal is 

important to assess the \uliierability of species to local adverse events (Clobert ei al., 

2001). 

The colonial breeding behaviour of seabirds naturally creates fragmented populations 

with the potential for vulnerable isolated colonies. Fidelity to breeding locations is 

known to be high in many seabirds (Schreiber and Burger, 2002, Newton. 2008) and 

suggests natal dispersal is important for inter colony exchange (Clobert ei a/., 2001). 

The Leach's storm-petrel Oceanodroma leucorhoa (Vieillot, 1818) is a small (-~45g) 

highly pelagic seabird with island breeding sites widely spread across the North Atlantic 

and Pacific (Huntingdon ei al, 1996). They are siuface feeders, mainly consuming 

small fish and zooplankton caught over and beyond the continental shelf (Hedd and 
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Montevecchi, 2006). Although globally very abundant, they are particularly vulnerable 

because a very high proportion of the population depends on just a few breeding sites. 

Fidelity to breeding locations is high (Morse and Kress. 1984, Blackmer el al., 2004) 

but recent work has revealed high levels of gene flow among colonies in the North 

Aflantic (Chapter 3). Connectivity within the Atlantic reveals populations are not 

isolated and the decline of a regionally important colony on St Kilda, Scotland (~54% 

decline between 1999-2006: Newson et al., 2008) could potentially be buffered via 

immigration. Heavy predation by great skuas Stercorarius skua (between 15.000-21,000 

a year: Phillips et al., 1999b. Miles, 2010) on St Kilda. die likely cause of this 

reduction, far exceeds the observed population decline and it has been suggested that 

immigrants from other colonies may be eaten by skuas (Newson et al., 2008; Chapter 

3), Determining whether juvenile and pre-breeding birds (hereafter immatures) move 

between colonies in the North Atlantic would provide a potential dispersal mechanism 

(i.e natal dispersal) and substantiate this potentially important buffering effect The life-

history traits of seabirds (delayed sexual maturation, long life; Schreiber and Burger. 

2002) produce large numbers of immatures that can comprise >50% of the population 

(Klomp and Fumess. 1992). Therefore the large breeding population of Leach's storm-

petrels in the North Atlantic (~5 million breeding pairs) should be associated with huge 

numbers of immatures. Although an important component of the population, virtually 

nothing is known about the dispersal and movement of immature Leach's storm-petrels 

once they leave the natal colony. 

Dispersal between populations can be estimated directly using capture-mark-recapture 

methods (Paradis et al.. 1998. Lebreton et al.. 2003) or via bio-logging technology 

(Votier et al.. 2011). However diese approaches are unsuitable for many species 

(Koenig et al., 1996). For instance, some species may be too cryptic or have very low 

encounter rates for robust capture-recapture studies. Altematively they may be too small 
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to carry tracking devices or recovery rates of devices too low to enable meaningful 

interpretation. Dispersal is often the behaviour of immature animals (Dobson, 1982, 

Greenwood and Harvey. 1982), which can be difficult to track and recapture (Daunt et 

al., 2007), or identify with confidence. Leach's storm-petrels are too numerous to 

conduct an ocean wide capture-recapture study and too small for fine scale tracking. 

Therefore indirect techniques are required to characterise dispersal behaviour in this 

species. 

Genetic markers {e.g. nuclear microsatellites and mitochondria! DNA[mtDNA] 

fragments), and an array of associated analytical approaches, can be used to investigate 

historical and contemporary gene flow (the consequence of effective dispersal). They 

provide evidence for gene flow among colonies by interpreting the spatial distribution 

of neutral genetic marker variation (Slatkm, 1987), where genetic differentiation is an 

inverse function of gene flow (Wright. 1931). Thus genetic homogeneity across demes 

implies high levels of effective dispersal. While this approach is extensively used, it 

does not reveal the mechanism behind any genetic exchange. 

Stable isotope analysis (SIA) is used regularly in ecological studies of community 

structure (Post. 2002), diet reconstruction (Inger er al., 2006), as well as to trace 

migration and dispersal (Hobson, 2007). This technique utilises naturally occurring 

gradients of elemental isotope ratios, which are reflected in consumer tissues. To 

reconstruct animal movements regional isotopic differences are important, and these 

differences must be characterised &om known sources (Hobson. 2007). 5 ' "^ shows a 

stepwise increase of 2.5-5%o (Peterson and Fry, 1987) at each trophic level and 

ultimately reflects the nitrogen pools that support primary producers at the base of 

different food webs (Owens, 1987, Jennings and Warr, 2003). S'̂ C values also increase 

at each trophic level (-l%o) but are more representative of the primary carbon source of 

a distinct food web and show a number of spatial gradients (such as inshore vs offshore, 
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pelagic vs benthic. and latitude (Hobson. 2007)). Different animal tissues are 

syDthesised and replaced at different rates, thus reflecting the trophic position or food 

web signatures over a range of timescales. For example, blood plasma has a high turn­

over rate and will yield information for the previous few days, while feathere will 

provide data spanning the period they were grown. Using tissue signatures, multi-source 

stable isotope mixing models offer the potential to infer movement of immature birds 

between regions and identify likely immigrants. This technique is typically used to 

estimate the proportional contribution of different prey types within consumer tissues 

(Inger e/a/., 2006. Moreno et al., 2010. Votiere/a/., 2010). However it can be adapted 

to estimate the probability of immature birds originating from different colonies 

(reflecting different marine food webs). The Bayesian mixing model used in SIAR 

(Stable Isotope Analysis in R) offers advantages over earlier models by incorporating 

sources of natural variation and uncertainty to generate probability estimates of source 

proportions (Pamell et al., 2010). 

Following the previous study of Leach's storm-petrel (Chapter 3). we use two genetic 

markers to confirm gene flow among three colonies in the North Adantic. In addition 

we use Bayesian stable isotope mixing models to determine whether immature birds 

attending colonies at night may have visited multiple sites, therefore testing the 

hypothesis that natal dispersal is the primary mechanism for gene flow in this 

population. Analysis of baseline primary consumers (zooplankton) and breeding 

Leach's storm-petrels provides known isotopic end-points, which are then used to infer 

movement of immature birds of unknown origin. We also consider the effect immature 

dispersal may have on the persistence of a declining population under threat from 

extreme predation. 
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5.2 Materials and Methods 

Sample collection 

For genetic and stable isotope analysis (SIA) blood samples were obtained during the 

breeding season from Leach's storm-petrel colonies at Gull Island. Canada (GULL) 

(47°15'N, 52''46'W) and St Kilda. Scotland (STK) {57°49'N, 08°35'W) in August 2008, 

and Vestmannaeyjar, Iceland (VEST) {63''25'N, 20°17'W) in August 2009 (Table 1; 

Figure 1). 10-20|j.l of blood was collected (under appropriate regional licences) from the 

brachial vein of breeding adults or chicks caught in nesting burrows and immature birds 

caught using a mist-net at night. For the SIA adult breeder samples were used for 

isotopic signatures of individuals from known locations/regions. Only confirmed 

breeders caught in burrows on chicks or eggs were used. To ensure the stams of 

immatures only individuals that met all of the following criteria were included: caught 

away from the main breeding areas; attracted by a charter call lure played on speakers 

close to the mist-net; did not regurgitate prey items when caught or handled; and had no 

obvious brood patch. Blood samples used in stable isotope analysis were separated into 

plasma and red blood cells (RBC). using a centrifuge within 2-3 hours of sampling, and 

stored frozen until preparation for analysis. The RBC isotope values reflect the dietary 

intake in the --3-4 weeks prior to sampling (Bearhop et al.. 2002). and herein we use 

S'̂ N and 6'"'C values from this tissue in stable isotope analyses. Samples used in the 

genetic analysis were stored in absolute ethanol at -20''C. 

For isotopic characterisation of the continental shelf slope and offshore oceanic areas 

(the main foraging areas) adjacent to the three Leach's storm-petrel colonies, we 

analysed zooplankton (primary pelagic consumers). These archived samples were 

collected by the Continuous Plankton Recorder Survey (CPR) managed by the Sir 

Alistair Hardy Foundation for Ocean Science. The CPR utilises merchant "ships of 

opportunity" that traverse the world's oceans and seas on regular monthly shipping 
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routes. Adult life stages (CV and CVI) of Calanus helgolandicus and C. fmmarchicus 

individuals were removed from 27 formalin preserved "silks" (collection mesh 

representing 10km towed transects) -8 months after they were collected on ship survey 

routes that passed close to each study colony during July 2008 (Figure 5.1). Adult 

copepods were analysed to ensure comparable feeding trophic levels between regions. 

4BWH' 

-TDOtTN 

-3)0(rN 

•'^WH 

«!iirw 3DTnr* otnr 

Figure 5.1 Locations of Leach's storm-petrel colonies and CPR sampling in the North Atlantic. 

Colony abbreviations detailed in Table I. Black = Canada. Green ^ Iceland and Red = Scotland, 

Stars = colony locations. Triangles = CPR sample locations. 
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Table 5.1 Sampling site locations, species and numbers of samples (N) included in genetic and stable isotope (SIA) analyses. 

Location 

Colonv 

Gull Island, Canada 
VestTiiannaeyjar, Iceland 
St Kilda, Scotland 

Atlantic Rccion 

Newfoundland Shelf 
Reykjancs Ridge/lceland Basin 
North-East Rockall basin 

Abbreviation 

GULL 
VEST 
STK 

Canada 
Iceland 
Scotland 

Species 

Oceamidroma Icucorhoa 
Oceariodromu leucorhoa 
Oceanodrnma ieucorhou 

Cakinus ftnmarchicus 
Culainis finmarchictis 
Cakmus he/^olatidiciis 

Type 

Red blood cells 
Red blood cells 
Red blood cells 

Whole organism 
Whole organism 
Whole organism 

N 
Genetics 

(Whole blood) 

nitDNA 

10 
11 
in 

-

Microsatellite 

48 
25 
32 

-

SIA 

04(b), 61 (imm) 
12(b), 22 (imm) 
18(b). 51 (imm) 

36* 
29* 
18* 

b = breeding adult Leach's storm-petrel, imm = immature Leach's storm-petrel, * = each sample represents 10-20 individual copepods. 
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Molecular analysis 

Mitochondrial DNA and microsatellile hci 

DNA was extracted fcom all Leach's storm-petrel blood samples using a standard 

proteinase-K. ammonium acetate method (Nicholls et al., 2000) and diluted to ~10ng/fjl 

with O.OIM TE buffer. A 360-base pair (bp) fragment of the mitochondrial control 

region {Domains I and II) was amplified in 31 of the breeding adult or chick Leach's 

storm-petrel samples (i.e. known provenance) using the primers, PCR methods and 

sequencing as described in Chapter 3 (Quinnaod Wilson. 1993, Smith era/.. 2007). 

All samples were genotyped at 18 microsatellite loci previously developed for LSP 

{OleOI. Ole()4. Ole06-07. OIe09-J0. Olel4-J5, Olel7-18. OlelO. Ole22. Ole25; 

Bicknell el al., 2011, Chapter 2). storm-petrels {Oc63. Oc87B: Sun e( al., 2009) and 

cross-utiUty in avian species (TG04-041. TGI3-017; Dawson ei al., 2010, CAMI2; 

Ball. A. unpublished data). The multiplexes, PCR conditions and allele scoring are 

described in Chapter 3. 

Tests of loci assumptions and genetic variation 

To test whether patterns of genetic variation in the mitochondrial DNA (mtDNA) 

control region sequence deviated from selective neutrality Ewens-Watterson (Ewens, 

1972, Watterson. 1978) and Tajima's neutrality tests (Tajima, 1989) were performed in 

ARLEQUIN V3.5.1.2 (Excoffier and Lischer, 2010). Hapiotypic diversity (h; Nei, 1987) 

and nucleotide diversity (Tajima, 1983) were also calculated to assess levels of genetic 

variation within colonies. Microsatellite loci were tested for departures from Hardy-

Weinberg equilibriimi within each breeding colony and assessed for linkage 

disequilibrium using a Mariiov-chain method implemented in GENEPOP v3.4 (Rousset, 

2008). Significance levels were adjusted for multiple comparisons using sequential 

Benjamini-Yekutieh corrections (Benjamini and Yekutieli, 2001). Predicted null allele 
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frequencies were calculated using CERVUS v3.0.3 (Kalinowski et aJ., 2007). Observed 

and expected heterozygosities and mean numbers of alleles were calculated for each 

colony using ARLEQUIN v3-5.l.2. Allelic richness and private allelic richness were 

calculated using HP-RARE 1.0 {Kalinowski, 2005). 

Genetic differentiation and Bayesian cluster analysis 

Genetic differentiation between the Leach's storm-petrel colonies was assessed by 

calculating pairwise Osr and Fsi values (Whitlock, 2011) for the mtDNA locus and 

microsatellite loci, respectively. Kimura's two-parameter model of substitution 

(Kimura. 1980) with a shape parameter (a) for the gamma distribution of 0.47 (based on 

a estimates of Domain 1, 11 and III of the control region in finches, FringiUa and 

Carduelis spp.; [Marshall. Baker, 1997]) was used for mtDNA locus analysis. 

Microsatellite Bayesian clustering analysis implemented in STRUCTURE 2-3.3 {Pritchard 

el ah, 2000, Falush et al., 2003) was used to identify genetically distinct colonies or 

populations. This model-based method uses a Markov chain Monte Carlo (MCMC) 

simulation to assign individuals to genetic clusters (K) based on individual genotypes, 

regardless of sampling location. We performed 5 replicate runs for K.= l to 3 genetic 

populations (number of sampled colonies) using the admixmre model and assuming 

correlated allele frequencies (Falush et al., 2003). A bum-in of 500,000 followed by 

1,000,000 iterations was used following exploratory runs to confirm data convergence. 

We used a uniform prior for alpha (a), with initial value of l.O for all populations, and 

lambda (k) set at 1.0. To evaluate the most probable number of genetic populations the 

posterior probability, Ln[P(X|K)], was compared directly (Prilchard et a!., 2000). 
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Stable isotope analysis 

Sample preparation 

All samples were freeze-dried, homogenised and -0.7 mg weighed into a tin cup for 

analysis. Each zooplankton sample (tin cup) consisted of approximately 10-20 

individuals. Lipid synthesis in organisms discriminates against '̂ C (DeNiro and 

Epstein, 1977) and generally yields low 5''C values in tissues with high lipid content 

when compared with an organisms dietary input (Tieszen el ai, 1983). Lipid content is 

highly variable between marine copepod species (Ventura, 2006) so to eliminate the 

effect of Hpids on carbon ratios in C. helgolandtcus and C finmarchicus lipids were 

extractMl prior to analysis. Inorganic carbonates were also removed from these samples, 

as these tend to increase ^^C and do not reflect the organism's dietary intake (DeNiro 

and Epstein, 1978). Extraction and removal methods are described elsewhere (Bicknell 

et ai. In press. Chapter 4). The low lipid content of RBC does not necessitate hpid 

extraction (Cherel et ai, 2005). 

Analyses were conducted at the East Kilbride Node of the Natural En\ironment 

Research Council Life Sciences Mass Spectrometry Facility via continuous flow isotope 

ratio mass spectrometry using a Coslech (Milan, Italy) ECS 4010 elemental analyser 

interfaced with a Thermo Electron (Bremen, Germany) Delta XP mass spectrometer. 

Isotope ratios are reported as (^-values and expressed as %o according to the equation: 

S X = [(Rsa„,plc/Rs.ax.dard)-1] X 1000 ( E q 1) 

where X is '-̂ C or ' ' ^ and R is the corresponding ratio '"^C/'̂ C or '̂ N/''*N and Rŝ ndaid is 

the ratio of the international references PDB for carbon and AIR for nitrogen. The 

standard deviation of multiple analyses of an internal gelatine standard in each 

experiment was better than 0.2%ii for 5'"̂ N and 6'^C. 
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Regional characierisalion 

The 6'^N and 5' C values in RBC and zooplankton samples were used to determine the 

degree to which breeding and immature birds caught at the three Atlantic colonies 

segregated isotopically and whether this could be a function of variation in foraging 

behaviour during the breeding season. In doing so, we assume that any potential 

differences in assimilation efficiency or physiology between breeders and immatures 

does not influence the relationship between isotope values in prey and blood. Breeding 

adults are restricted to regular returns to the colony to attend eggs or chicks during the 

breeding season (1-4 days; Ricklefs et at., 1985), whereas immature Leach's storm-

petrels have no such restriction to their movemenl and may show variation in their 

behaviour. Although lipid content varies between Calanus copepod species (Ventura, 

2006). once lipids were extracted from C. helgolandicus and C. finmarchicus samples 

collected in the same ocean region no significant differences in 5'''C and S'̂ N were 

found (Bicknell, A. unpublished). The formalin preservative used to archive material 

collected by the CPR Survey increases 5'"*N and decreases S'̂ C values in C. 

heigolandicus, therefore a correction factor of •0-9%o for 5'*N and +1.0%o for 5"C was 

applied to all copepod sample values before subsequent analyses (Bicknell ei uL, In 

press. Chapter 4). 

To ftirther describe any variation in food webs for geographic regions the trophic 

position of breeding adult Leach's storm-petrels was calculated using the following 

formula: 

TU„„,un,er = X + (S '^N,^^^- S'-̂ Nbasc) / A " N (Eq 2) 

where; X is the trophic position of the organism used to estimate 5'Nbasc, 5 "Nconsumtr is 

measured directly and A6 N is the nitrogen trophic enrichment factor (TEF) used for 

the food web of interest. For the three food webs in this study the following calculation 

was used: 
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TUw = 2 + ( 5 " N bird - 6"Ncopcpods) / 2.75%o (Eq 3) 

where; 2 is the assumed trophic level of pelagic zooplankton (Hobson ei ai, 1995, 

Sherwood and Rose. 2005, Petursdottir et ai. 2008) and a mean nitrogen TEF of 

+2-75%o was taken from a recent review by Caut et ai (2009), 

The Tl^ini values were subsequently used to correct S'̂ C for trophic level enrichment 

variation between food webs and allow further direct comparison of estimated primary 

carbon source values. This was calculated using the following formula: 

5 CTLcraicdcd = 6 Cconsumir " (TLcoosiuncr " A " C ) (E<1 4 ) 

where; 6 Cconsumer is measured directly, TLconsumer is derived from Eq 2 and A'"C is the 

carbon TEF used for the food web of interest. A mean carbon TEF of+0.75%o (Caut et 

ai, 2009) was used in this study. 

Statistical analysis 

To investigate segregation of Ŝ Ĉ and 5 rJ values in RBC of colony breeders 

multivariate analysis of variation (MANOVA) was conducted. Univariate analysis of 

variance (ANOVA) and Tukey's HSD post-hoc multiple pairwise comparison tests 

followed where significant differences were found. All statistical analyses were 

conducted using R version 2.12.2 (R, 2011). 

SIAR isotope mixing models 

The SIAR multi-isotope mixing model was used to estimate the proportion contribution 

of the three Leach's storm-petrel colony signatures (sources), to each individual 

immature birds RBC isotope signatures (mixture). The colony sources were defined 

using 6'^C and 5'^N of aduh breeding Leach's storm-petrels RBC (see section above). 

Key to effective use of mixing models is comprehensive characterisation of possible 

end points. Here we examined, by eye, whether the isotope values of immature birds of 
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unknown origin were nested within isotope values from known populations. Mean (± 

SD) percentage dry weight of carbon and nitrogen in the adult breeder samples were 

used to incorporate concentration dependence in each colony source. As there is no 

trophic enrichment to be considered between RBC values of breeders and non-breeders, 

a TEF was not required in the mixing model. A low source proportion estimate for an 

individual non-breeders colony of capture would represent variation in the foraging 

region of a bird during the last ~3-4 weeks. 

5.3 Results 

Genetic analysis 

Tests of loci assumptions and genetic variation 

Only five mtDNA locus haplotypes were obtained from 31 individuals sampled over the 

3 colonies. Three were shared across all locations with I each unique to GULL and 

VEST. Mean haplotype diversity was similar between GULL (0.78 + 0.09) and VEST 

(0.71 ± 0.1), but lower in STK (0.51 ± 0.16). Mean nucleotide diversity (JE) was similar 

between GUI,L {0.0049 ± 0.004) and STK (0.0046 ± 0.003), but slightly higher in 

VEST (0.0067 ± 0.004). Ewens-Watterson (all P >0,30) and Tajima"s D (all P >0.50) 

neutrality tests within colonies were non-significant. 

None of the microsateUite loci deviated from either Hardy-Weinberg or linkage 

equilibrium assumptions after Benjamini-Yekutieli corrections and showed low levels 

of null alleles. Mean number of alleles per locus, allelic and private allelic richness, and 

observed heterozygosity for the microsatellites were similar across colonies (^/locus, 

3.9 + 0.08; A, 3.1 ± 0.06; ^pnvaie, 0.04 ± 0.01; Ho, 0.44 ± 0.02) (Supplementary Table 

5.1). 
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Genetic differentiation and Bayesian duster analysis 

No evidence for genetic differentiation was found among the three Leach's storm-petrel 

colonies; all pairwise 4>ST and FST values were not statistically significant (Table 2). 

Table 5.2 Pairwise Osr estimates based on mitochondrial DNA control region (above diagonal), 

and FsT estimates based on nuclear microsatellite variation (below diagonal). P>0.05 for all 

values. Population abbreviations are given in Table 5.1. 

GULL VEST STIC 

GULL -0.017 0.186 

VEST -0.001 0.015 

STK -0.004 -0.007 

The convergence of the STRUCTURE Bayesian clustering analyses was confirmed by 

low variance in In[P(X|K)] across repHcate runs and visual inspection of likelihood and 

estimated parameters. The analysis also found no evidence of subdivision, with K=l 

being the most likely number of clusters within the 105 individuals. 

Stable isotope analysis 

Regional characlerisation from breeders andcopepods 

Breeding Leach's storm-petrel RBCs were isotopically segregated among colonies 

(MANOVA, Pillai, Fa^i ^ 50.859, P <0.0001). Univariate analysis and post-hoc 

multiple pairwise comparison test (Tukey's HSD test) revealed S'̂ N was significantly 

different between all colonies (ANOVA, Fz.3i = 55.182, P <0.000l; Tukey's HSD test, 

Table 3) and 5"C was significantly different between VEST and the other colonies 

(ANOVA, F.J, = 46.052, P <0.000l; Tukey's HSD tests. Table 5.3). while GULL and 

STK values were similar. 
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The Catanus copepods were also isotopically segregated among the geographic regions 

(MANOVA, Pillai, F..so = 93.173. P <0.0001), but in a different panem to the breeding 

birds. Univariate analysis and post-hoc tests showed significant 5''̂ N differences 

between Iceland and the other regions (ANOVA, Fj.m = 212.84, P <0.0001; Tukey's 

HSD tests, Table 5.3), while Scotland and Canada were similar. 5 C differences were 

found among all regions (ANOVA, F2.K0 = 208.55. P <0.0001; Tukey's HSD tests. 

Table 5.3). 

Table 5.3 6 C and 6 N values for Leach's storm-petrels and Calanus helgolandicus 

copepods from three colonies and adjacent regions in the North Atlantic. The statistical 

results show the Tukey's HSD multiple pairw-ise comparisons tests, comparing: Leach's 

storm-petrel isotope values between breeders from different colonies (first column), 

between breeders and immatures within colonies (second column) and between 

immatures from different colonies (third column). Comparison of copepod values 

between regions are also shown in the first column. 

Samples 

Leach"s slurm-netrels 

GULL Breeders 
GULL Immatures 

STK Breeders 
STK Immatures 

VEST Breeders 
VEST hnmatures 

Copepods 

Canada 
Scotland 
Iceland 

S'̂ C 

-19.11 
-19.15 

-19.10 
-19.21 

-19.77 
-19.64 

-21.49 
-19.53 
-22.94 

±SD 

0.17 
0.14 

0.23 
0.35 

0.14 
0.14 

0.48 
0.30 
0.74 

Statistical 
Results 

1. 7 
7. 15 

1. 8 
8. 15 

2. 9 
10. 16 

a 
b 
c 

6''̂ N 

14.66 
14.16 

11.90 
12.15 

13.07 
12.79 

1 

7.68 
7.88 
5.28 

±SD 

0.12 
0.42 

0.61 
0.50 

0.42 
0.26 

0.57 
0.31 
0.55 

StaiisticaJ 
Results 

4. 11 
12. !7 

5. 13 
13, 18 

6. 14 
14. 19 

d 
d 
e 

Same number or letter = not significantly different (P>0.05), different number or letter 
= significantly different (P<0.05), SD = standard deviation. 

103 



Chapter 5 Movement of immature Leach's slorm-perrels 

The trophic positions calculated using the copepod S'̂ N as baseline values for each 

region suggest the breeders from GULL (TL = 4.9) and VEST (TL = 5.1) were feeding 

at approximately 1 trophic level higher than the STK breeders (TL = 3.8) (Figure 5.2). 

When 6'"'C values were corrected for the different trophic levels, significant differences 

were found among all colonies (ANOVA, F2.31 = 272.10, P <0.0001; All Tukey's HSD 

test P <0.0O0I) (Figure 5,3) suggesting variation in carbon sources at the base of each 

food web. 
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Figure 5.2 Nitrogen stable isotope plot (mean ± standard deviation) showing 6'^N 

values for breeding Leach's storm-petrels and Caianus copepods in each sampling 

region. TL represents assumed (copepod) and calculated (breeder) trophic levels. 

Closed squares = copepods, closed diamond, triangle and circle = breeding birds. 
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Immature birds 

Immature Leach's storm-petrels showed similar patterns of regional mean stable 

isotopes as those found for breeders (Table 5.3; Figure 5.4). however 5 C and 6 'N 

variance was significantly different (Levene's test, S'^C. F2.i33= 12.76, P<0.0001; S'^N, 

13/ 
F3,i33 = 3.58, P = 0.03), which was not the case for colony breeders (Levene's test, 6 C 

;15 
and8''N.P>0.05). 

LSP Breeders-SrXfn^f 8)-

Cafant/s helgolandkus (n=18) • 

LSP Breeders-GUU.fn=4)-

Calanus fmmarchicus (n=3S) • 

LSP Breeders-VEST (n=12)-

Ca/ani/s rmmarchkus {n=29) • 

4 

f-4H 

Scotland 

Canada 

Iceland 

L m 1 

' • ' 

1 1 1 1 

4 -22 -20 -18 -16 

5"C (%o) 

Figure S3 Carbon stable isotope plot (mean ± standard deviation) showing corrected 

S'"'C values for breeding Leach's storm-petrels and raw values for Calamts copepods in 

each sampling region. Closed squares = copepods, closed circles = breeding birds. 
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SIAR analysis 

Ail but one of the isotope values for immatures were nested within the values for 

breeders (Figure 5-4), indicating a good characterization of possible isotopic sources. Of 

the 134 non-breeding Leach's storm-petrels analysed using the SIAR mixing model. 17 

individuals had estimated proportions of <50% for their colony of capture (Figure 5.5), 

suggesting that they had recently arrived at the capture point from another Atlantic 

region. Of these 17 individuals, 2 were captured at GULL, 13 at STK and 2 at VEST, 

with proportions ranging from 3-44% for their presumed source colony (Figure 5.6). 
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Figure 5.4 Dual stable isotope plots of nitrogen-carbon (mean ± standard deviation) 

showing the isotopic signature of breeding and immature Leach's storm-petrels sampled 

at three North Atlantic colonies. Dashed line = breeder variation, dotted line = immature 

variation. 
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Figure 5.6 Results of SIAR mixing model (95, 75 and 50% credibility intervals) for 

individual non-breeding Leach's storm-petrels that were found to have proportion 

estimates <0.5 for their colony of capture. Dotted line = 0.5 proportion level. 

5.4 Discussion 

This study combines genetic and biochemical marker analyses to investigate gene flow 

and natal dispersal among three widely distributed Leach's storai-petrel colonies in the 

North Atlantic. The congruence of mtDNA and microsatellite loci analyses of breeding 

birds presents evidence for potentially high levels of contemporary gene flow among 

colonies. Moreover. Bayesian mixed model isotope analysis shows evidence for inter-

colony movement of immatures during the breeding season, which may lead to the 
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observed gene flow. The findings and utility of the stable isotope analysis, as well as the 

likely implications for a Leach's storm-petrel colony under threat are discussed below. 

Geae flow and dispersal of immature birds 

The genetic evidence suggests the vast expanse of the North Atlantic ocean is no barrier 

to gene flow in Leach's storm-petrels and, from previous research, large continental 

landmasses are key physical barriers limiting long distance dispersal (Chapter 3). The 

lack of genetic differentiation or structure among colonies indicates both historical (FST 

and DST analyses as lagging indicators; Whitlock and McCauley. 1999) and 

contemporary gene flow (Bayesian cluster analysis). 

Breeding Leach's storm-petrel are believed to be highly site faithful (Mauck et al, 

2004) suggesting that natal dispersal is the most likely mechanism for gene flow. Our 

study presents evidence lo support this. Based upon distinct isotopic sources (breeding 

Leach's storm-petrels of known provenance), we used Bayesian isotope mixing models 

to infer movement of immature Leach's storm-petrels among colonies. The majority of 

immatures (88%) had model estimates (>0.5: Figure 5.5) that strongly suggest feeding 

close to the colony of capture, consistent with tracking studies that show immature 

seabirds are site faithful to a single colony (Votier et al., 2011). Of the remaining 17 

birds, four (Individual 4, 6, 12. 14; Figure 5.6) had estimates that clearly indicated 

recent feeding in a different isotopic region (>0.7 proportion estimates for a colony not 

captured on). The further 14 birds included individuals that had high contributions for 

two regional sources, which meant their origin was not as clear. Consequently, less 

confidence can be associated with inferring movement of those individuals. Moving 

between isotopically distinct regions will not instantaneously lead to isotopic 

differences in consumer tissues, i.e. a dietary switch can take >30 days to reach isotopic 
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equilibrium in avian blood (Bearhop et al., 2002). Therefore it is expected that there 

will be some intermediate values if individuals have changed locations very recently, 

and might explain the high estimates found for two sources in some individuals. 

However, an alternative explanation is the isotopic signatures reflect raid/central North 

Atlantic regions where immatures could have spent long periods before returning to the 

same colony. Although a possibility, it would seem reasonable to assume that 

iramatures caught visiting colonies at night are prospecting for breeding opportunities, 

therefore in breeding condition. Spending large periods of time away from colonies 

would reduce their chance of recruitment and therefore is proposed to be an unlikely 

behaviour. 

Characterizing all potential contributing sources to immature bird isotopic signatures is 

necessary to produce reliable estimates in this analysis and was the case for all but one 

individual. The much higher S'̂ C of this particular STK bird suggests it had been 

foraging in a region influenced by wanner waters, which had not been included as a 

source in the model. It could potentially be a late migrant returning from warmer 

wintering waters with enriched "C isotope values {e.g. Gomez-Diaz and Gonzalez-

SoHs, 2007). 

Using the distinction between the North Atlantic regions the SIAR analysis provides 

persuasive evidence for the movement of immature Leach's storm-petrels during the 

breeding season and seems the likely mechanism promoting natal dispersal and 

ultimately gene flow. For species unsuitable for direct tracking there are few options to 

determine attendance of immigrant individuals at breeding locations. The SIAR mixing 

model approach provides an alternative indirect method to identify animals that show 

evidence of recent movement and are possible immigrant individuals. 
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Isotopic characterisation of regional food webs 

Establishing isotopic differences between regional food webs w ^ essential before using 

SIAR to infer movement of immature Leach's storm-petrels (Hobson. 1999). The S'̂ C 

and S ' ^ values of Leach's storm-petrel colony breeders and Cahnus copepod samples 

separated well into isotopically distinct regions close to the colonies, suggesting both a 

difference in the primary carbon source for each food web but also a possible variation 

in food web structure or feeding behaviour (Figures 5.1, 5.2 & 5.3). All samples were 

collected during 2008. with the exception of Vestmannaeyjar, Iceland, which was 

sampled in 2009. Although annual variation in isotope signatures could iniluence our 

results, the copepod samples were broadly consistent and, therefore, we believe it 

reasonable to assume that any inter-annual regional variation is not large enough to 

significantly affect the between region differences found in the breeding Leach's storm-

petrels. 

The lower S'̂ C values in Iceland and Canada are consistent with the tendency for 

depleted ' C with decreasing temperature, a consequence of changes in dissolved carbon 

dioxide during carbon fixation (Lourey et ai, 2004. Lara e! ai, 2010). These higher 

latitudes are influenced by colder Arctic waters (Afanasyev et a/., 2001, Astthorsson el 

a!., 2007) compared with the warmer waters from the Gulf stream around Scotland 

(Reide/a/.,2001). 

Leach's storm-petrels breeding on St Kilda had lower 6'̂ N values than elsewhere in the 

North Atlantic (Figure 5.2). This may be due to birds feeding at a lower trophic level or 

because of variation in baseline nitrogen or food-web complexity among regions 

(Jennings and Warr, 2003). The similarity in 5 "N values for copepods in Canada and 

Scotland (Figure 5.2) suggests comparable nitrogen pools influencing the two regional 

food webs. Therefore the difference in S'̂ N between breeding birds is more likely a 

trophic level effect. Assuming similar nitrogen pools the trophic disparity could either 
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be a change in foraging behaviour between regions or variation in food web structures. 

Small meso-pelagic fish and zooptankton species have been identified as the main prey 

of Leach's storm pjetrels at Pacific and Atlantic colonies (Watanuki, 1985b, Vermeer, 

1988, Hedd and Montevecchi, 2006). The prey composition is thought to reflect the 

local marine food web (Hedd et ai, 2009), rather than a change in foraging behavioiu" 

between different regions. A more likely explanation for trophic variation could be 

different food web structures, as has been found in other aquatic systems (Matthews and 

Mazumber, 2003). Lower S'̂ N could also be attributed to dominance of lower trophic 

prey in the diet, but is reliant on distinct differences in prey communities in Canada and 

Iceland versus Scotland. Data on Leach's storm-petrel diet in Europe and the meso-

pelagic fish and zooplankton communities in the North Altanlic are not comprehensive 

enough to determine the cause of regional trophic differences in breeding Leach's 

storm-petrels - this is an area where further studies are required. Although the cause(s) 

of the regional S'̂ N change is unclear, there is clear isotopic dislincrion between the 

regions based on both S'̂ C and 6'"^, which can be used to infer movement of immature 

birds. 

Colony implications 

Previous evidence that the North Atlantic Leach's storm-petrel colonies function as a 

large meta-population (Chapter I) is supported by both genetic and stable isotope 

analyses in this study. Inter-colony movement of immature Leach's storm-petrels 

prospecting for breeding opportunities is a likely mechanism for dispersal in this species 

and could provide an important buffering or "rescue effect" for colonies (Inchausti and 

Weimerskirch. 2002). The extreme level of predation found on St Kilda (Phillips el a!., 

1999b, Miles, 2010) should have lead to local extinction if this was a closed population 

(Miles, 2010) but the colony still persists. The SIAR results imply approximately 1 in 4 
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of immature birds attending STK. are potential immigrants from other regions of the 

North Atlantic. Caution needs to be taken with these estimates (as discussed) but based 

on estimates of attending natal immature birds (-35,000; Miles, 2010) this could 

indicate a substantial number of immigrants (>8,000) at any one time. Although 

exploratory, this does not seem unrealistic considering the continued persistence of the 

relatively small St Kilda breeding colony (-45,000 bp). despite annual losses of 

between 15,000-21,000 individuals. The immigrant birds could potentially buffer such 

loss (Klomp and Fumess, 1992). but long term viability is questionable if high predation 

continues. With a predation threat, an increase in emigration rate might be expected 

(Ciobert er a/., 2001), which may exacerbate the decline. However, the emergence of 

such anti-predator behaviour seems unlikely in the short-term given their long 

generation times (~12 years). It is difficult to confidently predict the future population 

trend for the STK. colony, but regular breeder census and predation estimates would be 

the least required to monitor the long-term sustainabilily of this important European 

colony. 

Leach's storm-petrel is an example of a mobile species with highly inter-connected 

spatially discrete colonies, subject to meta-population dynamics, i.e. source-sink 

colonies (Hsler, 2000). This has led to local colony persistence through prospecting 

and/or recruitment of immature birds. Understanding the extent and mechanism of 

dispersal in such vagile species is important to predict the potential short- or long-term 

impact of environmental change and implement effective population management. 

Although some degree of breeding dispersal cannot be discounted in Leach's storm-

petrels, especially after breeding failure or adverse conditions (Schmidt, 2004), this 

study indicates natal dispersal is most likely a mechanism to explain high levels of gene 

flow among North Atlantic colonies. 
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Population mixing of Leach''s storm-petrel during the non-breeding 

season: evidence from analysis of moult and stable isotopes in wrecked 

birds 
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Chapter 6 Population mixing on wintering ground 

6.1 Introduction 

The mechanisms that facilitate, or limit, gene flow have important consequences for 

population dynamics and species conservation- The factors influencing gene flow may 

be multifaceted and many remain poorly understood (Friesen el al., 2007a). Various 

stages of an animal's annual cycle may contribute to these factors and need to be 

considered. Seabirds are highly vagile and have the ability to disperse over huge 

distances (e.g. Gonzalez-Sol is ei al., 2007, Egevang ei al., 2010), but physical 

(geographic) and non-physical barriers can still limit the extent of gene flow between 

populations. For example, population segregation during the non-breeding season was 

found to be strongly correlated with population structuring in seabirds (Friesen ei a!., 

2007a), highlighting the influence of over-wintering distribution and mixing for gene 

flow. Therefore, for migratory species, determining the extent to which individuals from 

different breeding colonies migrate to the same wintering grounds is important to 

understand the potential mechanisms that facilitate dispersal and, ultimately, gene flow 

(Webster eM/., 2002). 

Colonial nesting of seabirds makes them relatively easy to study during the breeding 

season but collecting data to study migratory connectivity, i.e. the degree to which 

individuals from different breeding colonies mix on wintering grounds (Webster et al.. 

2002), is more challenging. Ring recovery data of birds individually marked at breeding 

colonies can be used to infer migratory patterns (Clark et al., 2009), but for pelagic 

seabirds the number of birds recovered may be low and there may also be bias 

associated with finding ringed birds (Wemham et al.. 2002). Alternatively, tracking 

devices (e.g. geolocators) can be used to re-construct migratory routes and provide 

important information on over-wintering location and behaviour (Shaffer et al., 2006, 

Gonzaiez-Solis ei al., 2007), but for some small species this is still currently impractical 

due to the size of devices. Also to establish connectivity, birds from multiple colonies 

would need to be tracked, which although possible, would greatly increase time and 
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cost. Another solution to reveal the over-winter behaviour is to use mass mortalities or 

wTecks of seabirds to provide specimens for analysis. Wrecks are the unexpected death 

of large numbers of individuals from apparent natural causes, which occur sporadically 

around the world (Newton, 2007). They are usually associated with severe weather and 

can provide samples from different periods of the annual cycle. These dead birds can be 

used to provide important information, such as biometrics, genetics, contaminants and 

stable isotopes. Where such metrics are known to vary among potential source 

populations, they can be used to determine origins (Gomez-Diaz and Gonzalez-Solis, 

2007) and mixing on migration or wintering grounds. 

Natural variation in the stable isotopic composition of animal tissues reflect those in the 

local environment, and since feathers are metabolically ineri after synthesis they reflect 

the birds diet during the rime of growth (Thompson and Fumess, 1995). Feathers are 

often used in stable isotope analyses to infer geographic origins of birds and to establish 

migratory connectivity between breeding, wintering and stop-over sites (Hobson, 2005). 

Therefore, understanding the timing and sequence of moult enables the use of 

appropriate feathers in these analyses. Isotopic distinction between regions or 

ecosystems is also a prerequisite to conduct such analyses and requires knowledge of 

natural isolopic gradients and/or collection of geographic baseline isotope data (Hobson, 

1999). 

Moult is an energetically demanding activity in birds (Murphy and King, 1992), and its 

pattern and timing are usually adjusted to minimize overlap with other demanding 

activities, e.g. reproduction and migration (Pietiainen et ai. 1984, Espieera/., 1996). In 

seabirds this often means that flight feather moult takes place outside the breeding 

season (Bridge, 2006). Therefore, because seabirds are generally at sea during this 

period, moult is rather poorly understood and more information is required to enable 

appropriate use of stable isotope analj^is. 
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The Leach's storm-petrel Oceandroma leucorhoa is a small (~45g) highly pelagic 

seabird that is rarely seen close to land outside the breeding season and little is known 

about distribution and behaviour on the wintering grounds. Breeding colonies are on 

islands widely spread across the North Atlantic and North Pacific. Several thousand 

pairs breed in Europe, the majority of which are at two large colonies in Scotland (St 

Kilda) and Iceland (Vestmannaeyjar). but the vast majority of the Atlantic population 

nest in Newfoundland, Canada (>4 million breeding pairs). Previous work suggests high 

levels of gene flow among colonies within the Atlantic, and also evidence of migration 

between the Atlantic and Pacific (Chapter 2). Moreover analysis of stable isotopes in 

tissues of the abundant immature population (Leach's storm-petrel do not breed until 

age 5) suggests that natal dispersal is the likely mechanism connecting these distant 

colonies (Chaptere 2 and 4}. However given the importance of mixing on the non-

breeding grounds for population structuring (Friesen el al.. 2007a), it is key to establish 

how strong migratory connectivity is for colonies in the North Atlantic. 

Here we use Leach's Storm-petrel corpses associated with three wrecks (one in Canada 

and two in the north-east Atlantic) to better understand the extent of population mixing 

in the winter quarters. We firstly ase corpses of wrecked birds to characterise the extent 

of flight feather moult to determine the most appropriate feather tract for isotopic 

analysis. We then compare the European wrecked birds' isotopic values with Canadian 

wrecked birds, and known regional isotopic end-points, to assess whether these 

originated from colonies in North America. 

6.2 Materials and Methods 

Wrecked Leach' storm petrels 

Large numbers of Leach's storm-petrels were driven ashore following three separate 

storm events: (1) >200 birds during early September 2006 in Newfoundland (following 

part of Hurricane Florence), (2) unknown numbers (but potentially >500) in December 
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2006 in Britain and France (following an extra tropical cyclone that tracked across the 

Atlantic), and (3) again unknown numbers (but at least 100 were found in France), in 

November 2009 in Britain (following a series of intense low pressure systems in the 

north-east Atlantic). Many of these birds were discovered dead or dying by the general 

public and following requests, 18 corpses from the Newfoundland wreck and 18 corpses 

from the wrecks in Britain and France were available for feather moult and stable 

isotope analyses (Figure 6.1). 

Moult 

Before scoring, each bird was aged as either aJi adult (>1 year old) or juvenile (<l year 

old) on the basis of feather wear. For each individual bird tail and flight feather moult 

was scored between 0 and 5. where 0 represents an old feather, 1-4 represent 

progressions of feather growth and 5 a fully grown new feather (Ginn and Melville, 

2007). Wing feather tracts were numbered: Primaries, Pl-> PIO ascending outwards 

from the carpel joint; secondaries, SI ->S11 ascending inwards from carpel joint; and 

tertials, T1->T3 ascending inwards from last secondary towards the body. To enable 

close inspection of feather replacement and stage of growtii of flight feathers, the 

underwing-coverts were removed before scoring. Tail feathers (rectrices) were 

numbered in pairs from the centre outwards, Rl -^R6. 

Stable isotope samples and analysis 

Preliminary analysis of the extent of moult indicated that tail feathers were completely 

replaced on the breeding grounds (see Results). Therefore stable isotope values from 

new tail feathers of wrecked birds were used to reflect the isotopic signature of the last 

breeding colony attended. The tip (-0.5 cm) of the outer most tail feather (R6) from all 

birds wrecked in the UK and France (hereafter European) was removed using sterile 

scissors. Not all Canadian wrecked birds had moulted R6 (instead these were retained 
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from the previous annual moult), so only !0 of the 18 were sampled in the same 

manner. Feather samples were washed in 1:2 chloroformimethanol solution to remove 

residual dirt and oil that migbt bias isotope values (Paritte and Kelly, 2009), and air 

dried for24hours-

For regional north Atlantic isotopic end-points we obtained blood samples from 

breeding adult Leach's storm-petrels at major colonies in Canada (Gull Island. 47'*15"N, 

52"46'W) and Scotland (St Kilda, 57°49'N. 08°35'W) during August 2008, and Iceland 

(Vestmannaeyjar, 63°25'N. 20''17'W) during August 2009 (Chapter 5). Between 10-

20fil of blood was collected (under appropriate regional hcences) from the brachial vein 

of breeding adults in nesting burrows. Blood samples were separated into plasma and 

red blood cells (RBC), using a centrifiige, within 2-3 hours of sampling, and were stored 

frozen until preparation for analysis. The RBC isotope values reflect the dietary intake 

in the ~3-4 weeks prior to sampling (Bearhope/a/., 2002). 

All samples were freeze-dried, homogenised and -0.7 mg weighed into a tin cup for 

analysis. The S'"^ and 6'^C values from feather and RBC samples were used in the 

stable isotope analysis. 

Analyses were conducted at the East Kilbride Node of the Natural Environment 

Research Council Life Sciences Mass Spectrometry Facility via continuous flow isotope 

ratio mass specfrometry using a Costech (Milan, Italy) ECS 4010 elemental analyser 

interfaced with a Thermo Electron (Bremen. Germany) Delta XP mass spectrometer. 

Isotope ratios are reported as t^-values and expressed as %o according to the equation: 

8 X = [(Rsample/Rs.a™hrf)-I] X 1000 

where X is '"V or '̂ N and R is the corresponding ratio ' C/''C or '^N/ ' ' 'N and Rstandaid is 

the ratio of the international references PDB for carbon and AIR for nitrogen. The 

standard deviation of multiple analyses of an internal gelatine standard in each 

experiment was better than 0.2%o for 5'^N and Ŝ '̂ C. One sample failed during analysis, 

which reduced the sample size for the 2006 European wreck to 17. 
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In addition, 5'^C and 6''N data for tail feathers of breeding adult Leach's storm-petrels 

from Baccalieu Island, Canada (Figure 6.1) in 2001 and 2002 were obtained from Hedd 

and Montevecchi (2006), to provide fiirtber information on potential regional 

differences in isotopes. 
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Figure 6.1 Locations of wrecked Leach's storm-petrels in 2006 and 2009, and the main 

breeding colonies in Canada and Europe. Black triangle = Canadian mass wreck 2006, nsd 

triangles = sites of wrecked birds in Europe 2006, red squares = sites of wrecked birds in 

Europe 2009. 

:!:*/ :1-S 

Statistical analysis 

To investigate segregation of 5"C and 6"N values in RBC of colony breeders 

multivariate analysis of variation (MANOVA) was conducted. Univariate analysis of 
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vanance (ANOVA) and Tukey's HSD post-hoc multiple pairwise comparison tests 

followed where significant differences were found in a MANOVA. All statistical 

analyses were conducted using R version 2.12.2 (R, 2011). 

6.3 Results 

Moult of wrecked Leach's storm-petrels 

All 36 wrecked birds were at least one year old with wing feathers appearing worn and 

brown with clear signs of abrasion. 

Canada 

No Canadian birds were in wing moult. Tail moult had started in 15 of the 18 Canadian 

birds. Many had only recently commenced tail moult and no birds had replaced all tail 

feathers (Figure 6.2). The Tail moult is broadly symmetrical with suggestions that the 

inner and outer most feathers are replaced first. 

Europe 

All European birds had fresh completely moulted tail feathers, and were in active wing 

moult (Figure 6.3 a and b). Moult of primary feathers had started in all birds and was on 

average -50% complete, with a clear symmetrical ascending progression on both wings. 

PI, P2 and P3 feathers had been replaced in all birds (Figure 6.3 a) and had completely 

re-grown. Moult of secondary feathers was not as advanced as primary feathers and one 

individual retained all old secondary feathers. Over 50% of birds had dropped S5 and 

S6 from the centre of the feather tract, and S11 from the proximal portion, suggesting 

possible focal points for secondary moult (Figure 6.3 a). Moult in tertial feathers had 

started in all birds but there was no obvious pattern or focal point (Figure 6.3). 
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Figure 6.2 Tail feather moult in 18 Leach's storm-petrels wrecked in Newfoundland, Canada 

during Septen^r 2003. a) Percentage of birds that have moulted each tract, b) mean moult 

scores ± 1 standard deviation. Wrecked birds found in Europe during November and December 

had completed tail moult. 

Stable Isotope analysis of wrecked Leacb's storm-petreis 

5'^C of tail feather (R6) values ranged from -20.71 to -17.62 and 5'*N values fivm 

12.24 to 16.05 (Figure 6.4). With the exception of one individual with very high S'̂ N 

and low S'^C, the birds found in Canada clustered within ~0.6%o for 6"C and ~1.5%o 

for S'^N. Overall birds found in Europe had much more varied S'̂ C and S ' ^ values but 

8 individuals clustered with similar isotopic values as the majority of Canadian birds 
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Figure 6.3 Wing moult in Leach's storm-petrels wrecked in Europe during November 2006. a) Percentage of birds that have moulted each 

feather, b) the mean moult scores ± 1 standard deviation. Sample of 18 wrecked birds. 
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(Figure 6.4). European birds wrecked in 2009 had higher S'̂ C values than all other 

birds. 

Stable isotope analysis of Leach's storm-petrels of known origin 

Breeding Leach's storm-petrel RBC were isotopically segregated among three colonies 

in Scotland, Iceland and Canada (MANOVA, Pillai, F2,3i = 50.859, P <0.0001; Figure 

6.5), and in subsequent univariate analysis and post-hoc multiple pairwise comparison 

test (Tukey's HSD test) 5 ' ^ was significantly different among all colonies (ANOVA, 

F2.11 = 55.182, P <0.0001; Tukey's HSD test, P <0.0001) and 6"C was significantly 

different between Iceland and the other colonies (ANOVA, F2.31 = 46.052, P <0.0001; 

Tukey's HSD tests, IcelandrCanada P <0.0001, Iceland:Canada P <0.0001), while 

Canada and Scotland values were similar (Figure 6.5). S'̂ C and S'̂ N mean (± I 

standard deviation) values for tail feathers from breeders caught in 2001 and 2002 

(Hedd and Montevecchi. 2006) had much larger variation in carbon compared to the 

RBC values from colony breeders in subsequent years (Figure 6.5). 5 ' ^ is shown as the 

main regional distinction between Canada and Scodand, but it is S'''C that distinguishes 

the Icelandic region (Figure 6.5). 
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6.4 Discussion 

The isotope analysis presented here provides evidence that Leach's storm-petrels 

wrecked during mid-winter in Europe originated from a number of different colonies 

(including Canada) and therefore suggests population mixing during the non-breeding 

period. Flight feather moult was consistent with previous studies but also provided 

revealing evidence of replacement in the little studied secondary and terlial feathers. 

Moreover, the analysis established tail feathers as an appropriate tract to reflect the 

breeding colony in stable isotope analyses. The results of both moult and stable isotope 

analysis, and the trans-Atlantic movement of Leach's storm-petrels are discussed below. 

Moult 

The flight feather moult in wrecked Leach's storm-petrels are consistent with previous 

data for this species (Ainley et al.. 1976. Cramp and Simmons, 1977). Tail moult in 

birds wrecked in Canada must have started during the chick rearing period (late July to 

mid September; Huntingdon ei al., 1996), as had previously been observed at 

Newfoundland colonies (Hedd and Montevecchi, 2006). Wing moult was only found in 

birds wrecked in Europe after the breeding period, probably a strategy to reduce the 

overlap of these energetically demanding activities (Murphy and King, 1992. Bridge, 

2006). Primaries were the first flight feathers to be dropped and showed a symmetrical 

ascending progression, which is important for aerodynamics and maneuverability 

(Thomas, 1993, Swaddle and Witter, 1997). Secondary and tertial moult in Leach's 

storm-petrel is pooriy described (but see: Ainley el ai, 1976) and can be difficult to 

score reliably in live birds, so the opportunity to investigate this was of particular 

interest. The progression of grow1:h in secondaries and tertials (S5. S6. SIL Tl and T2) 

suggests similar start of moult in these tracts. In general tertial and in particular 

secondary moult was complex. Secondary moult showed three centres of feather 
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replacement; S5, S i 1 and SI (in respective order of growth). Progression is ascendant 

from S5 and S1, and descendant from S11, but showed some individual variation. 

Multiple focal points of moult in secondaries is a common pattern in non-passerines 

(Edelstam, 1984), including the closely related European storm-petrels Hydrobates 

pelagicus (Arroyo el al.. 2004). This moult pattern may reflect the need to reduce the 

size of gaps in this feather tract and limit its effect on flight capability (Edelstam, 1984). 

Wing symmetry in secondaries and tertials was not as high as in primaries, a pattern 

also found in the European storm-petrels (Arroyo el a!., 2004), presumably because of 

the relatively lower functional importance of flight feathers closer to the body (Meller 

and Swaddle, 1997). 

The stress experienced by birds during the severe weather may have influenced 

progression of moult, and possibly caused loss of feathers in the wrecked birds. 

However, the overall patterns are consistent with other studies and therefore we believe 

they give a reliable snapshot of moult at these times. 

Suitable feather tracts for stable isotope analysis 

Knowledge of the pattern and timing of moult in a species is paramount to confidentiy 

use feather isotope signatures to infer geographic origins or movement. Although moult 

is well understood in many species, timing is less well known and there is much 

individual variation which may be problematic for isotope studies (Inger and Bearhop, 

2008). Inspection of wrecked Leach's storm-petrels confirmed the onset of tail feather 

moult during the breeding season (Hedd & Montevecchi 2006), and therefore was 

assumed to reflect the isotopic signature of prey consumed al that time. Primary moult 

indicates that the main replacement of these feathers is during migration but timing is 

less clear. Outer tail and the innermost primary feather isotope signatures from the same 

individual are poorly correlated (Bicknell, A. unpublished data), indicating onset of 
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primary moult does not always take place at the breeding grounds. Variability in 

primary moult means caution should be taken using these feathers for isotope analyses, 

however it is reasonable to assume the outermost feathers (P8-^P10) most likely reflect 

wintering areas (Cherel et ai., 2000). Because of the complexity both among and within 

individuals, application of secondary and tertiary feathers for isotope analysis would 

only be appropriate to broadly characterise the non-breeding period. 

Stable isotope analysis 

The most striking pattern found in the S'̂ 'C and S ' ^ of tail feathers was clustering of 

values from birds wrecked in Canada and Europe (Figure 6.4 & 6.5). This suggests 

these birds had been feeding in regions with similar isotopic signatures at the end of the 

breeding period and. potentially, that a number of Leach's storm-petrels wintering in 

European waters originated from Canadian colonies. 

Trans-Atlantic movement of Leach's storm-petrels outside the breeding season provides 

evidence for potential mixing of individuals from distant colonies on migration and at 

winter grounds, with potential coasequences for dispersal and gene flow (Webster ef aL, 

2002). Previous circumstantial evidence also hints at North American Leach" storm-

petrels travelling to European waters. Estimates of birds wintering in the Bay of Biscay 

are far in excess of the known European populations, suggesting input from North 

America (Hemery and Jouanin. 1988). Therefore the high levels of gene flow between 

Leach's storm-petrel colonies (Chapter 2) may arise because of a combination of 

mixing of different populations on the wintering grounds or because of immature birds 

prospecting at multiple colonies during the breeding season lead to natal dispersal 

(Chapter 4). However, it is still unclear whether the birds wrecked in Europe and 

identified as of Northwest Atlantic origins were on migration, or had been displaced by 
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the severe weather systems. Wrecks (or observations) of native North American 

seabirds in Europe are extremely rare and suggests displacement of birds across the 

Atlantic is uncommon. Moreover, the previous genetic and isotopic evidence (Chapter 2 

and 4) indicates trans-Atlantic movement occurs, providing further evidence that natural 

migration is most likely. 

Caution needs to be taken with analyses, such as ours, that use samples of different 

tissues and years. Different tissue fractionation (the isotopic shift from prey to 

consumer) and inter-annual variation can potentially influence the results (Inger and 

Bearfiop, 2008). However, the regional segregation seems to persist in different tissue 

types and the general partem of h i ^ 5 ' ^ in the Northwest Altantic was confirmed in 

both colony breeders and Canadian wrecked birds (Figure 6.5). 

This opportunistic study of wrecked Leach's storm-petrels has helped increase our 

understanding of moult patterns and timing in this species, but also revealed the 

potentially importance of colony mixing out of the breeding season. In combination 

with the previous genetic and isotope analyses (Chapters 2 and 4) this presents evidence 

for a highly connected meta-population of Leach's storm-petrel colonies within the 

North Atlantic. 
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Probable predation of storm-petrel eggs by the St Kilda field mouse 

Published as : 

BICKNELL, T. W. J, REID. J. R. & VOTIER. S. C. 2009. Probable predation of 

Leach's Storm-petrel Oceanodroma leiicorhoa eggs by St Kilda Field Mice Apodemiis 

sylvaticiis hirlensis. Bird Study, 56:3, 419-422, 
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7. Short Communication 

The introduction of non-native mammals to island habitats has caused significant 

changes in species composition and ecosystem structure {Roemer et ai. 2002, Towns et 

al., 2009). and may also lead to species extinction (Moors and Atkinson, 1984). 

Colonial nesting seabirds have been particularly badly affected by the introduction of 

ground predators, such as rats, Rauiis spp., feral cats Felis caftis and North American 

mink Musfela vison (Burger and Gochfeld, 1994, Craik, 1997). As seabirds tend to 

breed on remote, predator free islands, they have evolved behavioural traits (burrow, 

ground or crevice nesting; hmited chick defensive behavior) and life-history 

characteristics (low annual fecundity) that renders them especially vulnerable to 

introduced mammalian predators (Croxall and Rothery. 1991). 

Introduced rats, Raiiiis spp., are considered to be the largest contributor to seabird 

population declines and extinctions (Jones et al.. 2008), facilitated by human 

colonization of remote islands. Mice share similar characteristics, and although were 

previously thought to have a negligible impact on island ecosystems (Chapuis et a!., 

1994), recent studies on Gough Island, South Atlantic Ocean, suggest they can prey on 

seabird eggs and chicks at such a level to cause population declines (Wanless et al., 

2009). 

The St Kilda island archipelago is one of the major seabird breeding stations in the 

North Atlantic, with internationally important populations of several species. For this 

reason, along with its unique cultural landscape and indigenous species, it has been 

designated a Worid Heritage Site by United Nations Educational, Scientific and 

Cultural Organization (UNESCO). It is home to the endemic St Kilda field mouse 

Apodemiis sylvaficus hirtensis, a sub-species of the long-tailed field mouse or wood 

moused, sylvaticus (Berry, 1969), which has been living sympatrically with seabirds on 

St Kilda for at least 1000 years. Considering this is an endemic subspecies, resident on a 

135 



Chapter 7 Pmhahle predation hv St Kilda field rrn m •• t 

designated World Heritage Site, there is surprisingly little known about its breeding 

ecology, diet and population dynamics (but see; Harrisson and Moy-Thomas, 1933, 

Boyd, 1956). The two St Kilda islands known to be occupied by mice, Hirta and DiJn. 

have large colonies of burrow nesting Manx shearwater Piiffinus puffmus, Atlantic 

Puffin Fratercula arctica. Leach's Storm-petrel Oceanodroma leucorhoa and European 

Storm-petrel Hydrobales pelagicuSy but it is not known whether they form part of the 

mouse diet. 

Hie Leach's Storm-petrel (hereafter LSP) population on St Kilda is of particular 

conservation concern due to the recent steep decline of the main colony on Dim (a 48% 

decline between 1999-2003) (Newson el al, 2008). This coincided with heavy 

predation of adult storm-petrels by a large population of Great Skuas Stercorarius skua 

(Votier et al., 2006), estimated to consume approximately 15,000-21,000 adults each 

year (Phillips et ai, 1999b, Miles. 2010). It is unclear whether this level of predation 

will continue but declines in alternative food sources may lead to increased reliance on 

seabirds as prey (Votier et al., 2004). Although globally numerous (-10 million 

breeding pairs), St Kilda colonies contain 94% of the EU's breeding LSP population. 

Identifying and understanding potential threats to the population is essential for 

effective conservation management at the European level. No formal study to determine 

the occurrence or impact of predation by the endemic mouse has been conducted, but 

during a detailed study of LSP breeding on Hirta and Dim, evidence was obtained to 

indicate that they prey on eggs and possibly chicks. Here we discuss whether mouse 

predation could have significant implications for the sustainability of the population of 

LSPs on St Kilda. 

Between late June and mid October 2008 45 LSP breeding burrows on Hirta. St Kilda 

(57°49'N, 08°35'W) were monitored using an endoscope on average every 10 days (SD 
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± 12 days). On each visit nest contents were recorded, as well as an assessment of 

possible causes of egg or chick loss. 

Of the 45 nests, 11 failed at the egg stage, three at the chick stage and a further two 

failures at an unknown stage. This equated to an overall productivity (hatching success 

X fledging success; see Table 1) of 64%. Only one failure was clearly due to 

abandonment of the egg. while the other 15 either failed leaving a broken egg in the nest 

(6) or an empty nest chamber with no egg or chick (9). Broken egg remains were also 

found on three occasions close to or in the entrances of burrows not being monitored. 

Although there were no direct observations of predation, mice were regularly observed 

in and around LSP burrows on Hirta and Diin, and one recorded egg showed chew 

marks consistent with those of a mouse (Blight and Ryder, 1999). LSPs are not known 

to remove broken eggs or dead chicks from burrows (Huntingdon el a/., 1996). 

Therefore our findings most likely represent predation or scavenging and as the only 

predatory terrestrial mammal on Hirta. this is almost certainly by the field mouse. Skuas 

are known predators of adult storm-petrels on St Kilda (Votier el at., 2006) and 

although corvids have been observed excavating storm-petrel burrows (Huntingdon et 

al.. 1996), such behavior is not known on St Kilda, presumably because of the 

compacted substrate and long burrows. 

Whether the behavior on Hirta is scavenging or predation is unclear but the ability of 

mice to consume seabird eggs or chicks is not in question (Wanless et al., 2007). 

Although scavenging of unviable eggs probably occurs, the disappearance of an egg 

within two days of being brooded by an adult (observed once during monitoring) 

suggests predation of viable eggs. Egg neglect during the incubation period is not 

uncommon in LSPs (Wilbur. 1969) and has been observed for periods of up to three 

days in the Hirta colony (Money el al., 2008), giving the field mouse ample time to find 

and remove viable eggs without encountering protective adults. 

137 



Chapter 7 Probable predation by Si Kilda field mouse 

A comparison of the breeding success of LSP colonies where various mammalian 

and/or avian predators are present provides no clear evidence of population level effects 

(Table 7.1). The productivity of 64% for the Hirta colony is consistent with published 

estimates for colonies in North America and Japan (48-73%) with loss at the egg stage 

being the main cause of breeding failure (16-35%). However, mammalian and/or avian 

predators are present at all of the surveyed colonies, and we are unable to control for 

potential confounding effects of food availability, making it difficult to infer the likely 

impacts of predators. 

Although the evidence for predation of LSP nests is circumstantial, the data suggest up 

to 15,000 nest failures could be a result of this behavior. Whether this level of egg/chick 

predation is likely to cause population decline on its own is uncertain, but a cumulative 

effect with high aduh mortality needs to be considered. Active management of the St 

Kilda population to alleviate any such effects would be impractical due to the 

conservation status of the endemic mouse and globally restricted Great Skua population. 

Further research aimed at understanding the St KJIda field mouse population dynamics, 

behaviour and possible impacts on the LSP population is desirable. Moreover, our study 

further highlights the importance of mouse predation at seabird colonies and the need to 

consider the possible impact of these somewhat overlooked mammalian predators. 
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Tabic 7.1 Reproductive success and potential predator impact at breeding colonies of Leach's storm-petrels, Hatching success = % of laid eggs liial luUchcd, 

Fledging success = % of hatched eggs that fledged. Productivity = Hatching success x Fledging success, Data from present study highlighted in bold. 

Colony Site Year(!i) Colony Size Number uf llatcliing Fledging ProducllvUy Mammalian Predalon 
Estimate Nests IVIunilored Success (HS) Success (FS) (I*) 

Avian Predators 

Kent [., New 
Brunswick 

tiiili; Duck 1,. 
Maint 

Diiikoku I.. 
Japan 

lilrta.SlKl]da 
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I9K5-
19H9 
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2.000-15.(K)0-' 
(BP) 

4,000 (BP)'' 

4I5.000(BPf^ 

45^33 (AOS) 

Pi-irc! I. HritiBh 1983 10.666 (BP/ 
Cdliimbin 
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1.253' 

351' 

45 
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Muskrats 
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iCIeilirinntimya nifiK-airii.\)['}) 

Field mice 
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(Liilrci canadensis) 

Northern saw-whet owl {Aegolius 
acadiciis) 
Herring dull (Lams argenlcilus) 
Herring gull (L ar^enlaltis) 
Great Black-backed gull (L. marinus) 

Slaiy-backcd gull iLanis schislisagus) 

Jungle eri'W iCorviis macmrhyiichos) 

Great skua (S. skua) 

Snowy owl (Nyctea xvandiai-a)('!) 
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Northern raven fT. a>raxl['?) 

Nurthweslcm crows (C. Lciritiiws)('!) 
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Northern raven (C. coraxK'?) 

Atnt-rieati crow (C.hrachyrhynchosK'!) 
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8. Discussion 

While each of the chapters in this thesis has been written as a separate piece of research 

in its own right, they may be integrated to provide a better understanding of Leach's 

storm-petrel Oceanodroma leiicorhoa dispersal and the potential behaviours that 

facilitates the exchange of individuals (and genes) among distant colonies. They also 

intend to address the importance, and potential implications, of connectivity between 

naturally iragmenled populations, specifically in the case of a regionally important 

colony that is experiencing predation from a recent colonist and a resident mammal. In 

this general discussion I aim to draw together the main points addressed in each chapter 

and discuss how the use of indirect methods has revealed aspects of Leach's storm-

petrel movement and dispersal. 1 also consider how it may impact local and large-scale 

population dynamics and potentially influence this species' ability to cope with 

unfavourable change. 

Population structure, gene flow and migrants 

Our prior knowledge of genetic connectivity among Leach's storm-petrel colonies 

suggests gene flow within a regional (Nova Scotia and Newfoundland; Paterson and 

Snyder, 1999) and ocean scale (unpublished but see; Friesen el ai, 2007a) based on 

single genetic markers. In the present smdy we found no genetic structure across the 

entire north Atlantic population using two types of genetic marker, indicating 

potentially high gene flow and long-distance effective dispersal across the Atlantic 

(Chapter 2 and 3). Evidence strongly suggests the colonies in the Atlantic are not 

isolated, and the vast expanse of ocean is not a barrier to gene flow. Leach's storm-

petrels would seem to exhibit a random dispersal pattern among breeding locations, 

which would allow gene flow to counter genetic drift more effectively and reduce 

population structure (Friesen et al., 2007a). They are also pelagic feeders with the 
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potential to range widely across the oceans, especially as immature, and increase the 

possibility of common foraging areas that may promote interchange and reduce genetic 

differences between colonies (Burg and Croxall, 2004). The Pacific and Atlantic 

populations are genetically distinct but inter-ocean exchange was still evident with the 

identification of a first generation migrant. Although land is an elTective barrier to gene 

flow among seabirds on a wider scale (Friesen et ai, 2007a), this migrant individual 

highlights this species remarkable ability to disperse between two ocean basins. The 

evidence of historical colonisation and gene flow also suggests movement from the 

Pacific to the Atlantic, followed by unobstructed colonisation and interchange within 

the Atlantic once suitable habitat became available. The exchange between ocean basins 

does beg the question "How?" Future technology may eventually answer this question 

directly, but currently we have to rely on several lines of indirect evidence to determine 

the most likely mechanisms leading to such wide-scale levels of gene-flow. The 

existence of two small southern hemisphere colonies off the South African coast and on 

the Chatham Islands, New Zealand (Huntingdon ei al., 1996) reveals the extent of their 

southern distribution and raises the possibility of movement around the southem tip of 

South America and Africa. Alternatively the potential for global wandering in immature 

birds during the "lost years" (Reich ei aL, 2007) before breeding could also lead to 

wide-scale dispersal that could conceivably lead to movement between ocean basins. 

Dispersal mechanisms 

Genetic approaches to determine effective dispersal provide evidence for genetic 

coimectivity and can identify individuals as potential immigrants (Chapter 3), but it 

does not reveal the dispersal mechanism that ultimately causes gene flow. Breeding site 

fidelity is common in seabirds in general (Schreiber and Burger, 2002, Newton, 2008) 

and for Leach's storm-petrels in particular (Blackmer el al., 2004), and therefore this 
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suggests natal rather than breeding dispersal is the more likely mechanism. However, 

without extensive multi -year and -colony tagging studies (Dearborn e( al.. 2003. 

Coulson and Coulson, 2008) it is difficult to distinguish between these two processes. 

Using a novel SIAR mixed model approach to estimate movement of immature Leach's 

storm-petrels, a proportion of these birds were found to be visiting more than one 

colony during a breeding season (Chapter 4 and 5). a likely prospecting behaviour to 

find a suitable breeding colony (Votier et al., 2011). The approach provides evidence 

for dispersal and connectivity of the three sampled colonies, and given the high levels of 

gene flow and known breeding site fidelity (Blackmer et ai, 2004), suggests effective 

natal dispersal is the likely mechanism for gene flow in Leach's storm-petrels. 

However, the level of breeding dispersal was not studied in this thesis and some degree 

may occur, especially after breeding failure or during adverse conditions (Schmidt, 

2004). 

Population connectivity 

There are various factors and behaviours during ah organism's annual cycle that can 

influence population structuring and effective dispersal (Friesen el al., 2007a). 

Prospecting of immature Leach's storm-petrels at different colonies during the breeding 

season (Chapter 5) is a behaviour that connects distant colonies in the north Atlantic 

and presents evidence for this to facilitate effective dispersal and gene exchange. 

Mixing of different populations during migration and on wintering grounds can also 

have an important influence on dispersal and connectivity (Webster ei ai, 2002, Friesen 

ei al., 2007a). The evidence for mixing of Leach's storm-petrel fi-om colonies in Canada 

and Europe on east Atlantic wintering grounds (Chapter 6) indicates that this is another 

potential factor that may influence population genetic structure. Conspecifics are 

thought to be play an important role in decision making in seabirds (Oro and Ruxton, 
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2001) and mixing of birds from various colonies on migration or wintering grounds 

presents opportunities for interactions and associations to fomi. which may lead to 

movement and prospecting at different colonies. These findings are also consistent with 

the hmited evidence from ring recoveries and at-sea surveys. One chick and 1 breeding 

adult ringed at Atlantic coast colonies in North America were subsequently found dead 

in Spain and France in January 1988 providing clear evidence of transatlantic movement 

from west to east (Wemham ei al., 2002). Moreover counts from the Bay of Biscay at 

this time were estimated to be up to 2.000,000, which would far exceed the colony 

estimates in Europe and suggests extensive mixing of birds from other Atlantic colonies 

(H^mery and Jouanin, 1988). Mixing of juvenile grey-headed albatross Thalaisarche 

chrysostoma from different colonies on foraging grounds has been proposed as the 

reason for lack of genetic structure in this species (Burg and Croxall, 2001), and mixing 

of immature Leach's storai-pefrels on wintering grounds may be have a similar effect. 

The evidence provides strong support for high genetic connectivity in the north Atlantic 

population, potentially facilitated by behaviour of immature birds during the breeding 

period and mixing of birds from different colonies on the wintering grounds. 

TmplicatioDs for colony and population persistence 

Leach's stomi-petrel colonies in the north Atlantic are not genetically isolate! and the 

movement of birds between distant locations may have important consequences for the 

persistence of individual colonies, as well as for the entire population. Site fidelity for 

species with spatially discrete breeding locations can have severe implications for 

growth of populations and the risk of extinction, if not coupled with dispersal to link 

locations or colonise new sites (Mattbiopoulos et a!., 2005) The persistence of the St 

Kilda Leach's storm-petrel colony, despite the extremely high annual loss through 

predation, provided circumstantial evidence that this site was not isolated, and that 
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immigration of birds from other colomes may be offsetting the loss. The prospecting of 

immature Leach's stonn-petrel during the breeding season could potentially have two 

effects at the St Kilda colony. Firstly, these birds may be consumed by great skuas 

reducing the numbers of breeders that are eaten. Conspicuous vocalisation during 

advertisement for a mate increases the risk of predation in petrels {Mougeot and 

Bretagnolle, 2000). and therefore prospecting birds looking to attract a partner may be 

more vulnerable compared with estabhshed and paired breeders. Secondly, immigrant 

birds may help buffer the decline with compensatory recruitment into the breeding 

population (Klomp and Fumess, 1992. Votier el a!., 2008). In other words, a large pool 

of new recruits may offset losses of established breeders. Distinguishing between the 

two processes was not within the scope of this thesis but the regional isotopic 

distinction established in this work could potentially help. The great skua regurgitates 

that contain Leach's storm-petrel remains (e.g. indigestible feathers and bone), would 

retain isotopic signatures that may identify them as immigrant or natal birds. The 

proportions of immigrants would then give an indication of the extent this process plays 

in buffering breeder predation. The additional threat of egg predation by the St Kilda 

field mouse (Chapter 7), although not as devastating as adult mortality to seabird 

colonies, in combination with adult loss could increase the reliance on buffering or 

recruitment from natal or immigrant birds. It might also be expected that the predation 

threats would lead to emigration of individuals from the breeding site (Clobert el a!.. 

2001) and exacerbate the decline, but breeding site fidelity may constrain this species in 

the short term and mean breeding birds are unable to adapt to rapidly changing 

environmental conditions. The management options for alleviating the pressure of 

predation on St Kilda LSP population are limited due to the conservation stams of the 

great skua and an endemic mouse, both breeding on a UNESCO World Heritage site 

partly designated for its wildlife. A selective cull of great skuas could benefit the petrel 
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population (Sanz-Aguilar et al., 2009), but this may not be appropriate for a species that 

only breeds in Europe and for which St Kilda retains -1.5% of the global population. To 

predict future viability of the St Kilda colony the combined effect of predation and 

dispereal on its demographic rates (i.e. growth and vital rates) need to be quantified. In 

the wider context of the Leach's storm-petrel Atlantic population, die connectivity and 

movement of birds between spatially discrete colonies suggest that it may be subject to 

meta-jwpulation dynamics, i.e. source-sink colonies, and the extremely large colonies in 

Canada have the potential to act as sources to help sustain unviable colonies, and reduce 

their extinction risk (Esler, 2000). These dynamics benefit sink colonies with high 

immigration but could also impact the source colonies (high emigration) and eventually 

affect the overall pyopulation persistence (Gundersene/a/,. 2001). 

Conclusions 

For species that are unsuitable for direct methods of study, the application of indirect 

techniques is currently the only option to characterise dispersal and connectivity 

between populations. This approach is central to this thesis and proved valuable in 

revealing dispersal and movement in the Leach's storm-petrel. The genetic analysis 

provided the key evidence for effective dispersal and this was complemented by the 

stable isotope analyses to reveal a potential dispersal mechanism. Leach's storm-petrels 

are clearly travelling across ocean basins and only their inability to cross land (or ice) 

limits their movement between colonies. This immense capacity to disperse and 

potentially colonise new habitats could help the populations cope and persist in an 

increasingly changing world. It is difficult to predict the future of the St Kilda colony, 

but immigration from larger breeding colonies across the Adantic may sustain it in the 
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Chapter 8 General Discussion 

short-term. However, if predation continues at the estimated levels it would seem 

unlikely it could be sustained in the long-term. 
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Supplementary Table 3.1 PCR conditions, fluorescent labels, allele sizes and optimized primer concentrations for microsatellite loci multiplexes. 

FW, forward primer; RV, reverse primer. 

Multiplex 

1 

2 

3 

4 

5 

6 

7 

Annealing 
Temp (T) 

61 

61 

63 

56 

61 

56 

58 

I.Ol'US 

OlcOl 
0!eW 
OlelO 
Old 6 
OIc22 

TG03.034 
Olc06 
t)lel)S 
Old 5 
Old 8 
Olc23 
Ole24 
Ole03 
OleOS 
OldlT 
Old l 
Old.l 
Ole25 
O ld? 

TGGI2 
TG02-I20 
TG04-04I 
TGI3-0I7 

Old 4 
01c2l 

rG04-061 
TGO5-053 
Ol 10-39 

Oc84 
Oc63 

OtS7B 

Fluorcaccnl label 

6FAM 
6FAM 
6FAM 
HEX 
HEX 

6FAM 
6FAM 
HEX 
HEX 

6FAM 
6FAM 
HEX 
HEX 
HEX 
HEX 

hFAM 
HEX 
HEX 
HEX 

6FAM 
6FAM 
HEX 
HEX 

6FAM 
HEX 
HEX 

(iFAM 
PET 
NED 
VIC 
PET 

Observed allele size range 
{base pairs) 

213-217 
149-153 
232-238 
219-232 
249-253 
177-179 
198-202 
212-214 
232-234 
147-155 
404-432 
156-i76 
421-485 
297-353 
153-157 
46K-472 
242-246 
370-392 
209-236 
327-33H 
236-244 
176-178 
204-210 
339-349 
316-418 
161-169 
211-213 
134-138 
302-306 
174-188 
261-277 

Conceniraiion of FW and RV 
primers (MM) 

0.1 
0.1 
0.1 
0,15 
0.1 
0.1 
0,1 
0,1 
0,05 
0.1 
0.4 
0,1 
0.2 
0.2 
0.05 
0.1 
0,1 
0.3 

0,15 
0.2 
0.1 

0.15 
0.1 
0,2 
0.2 
0.1 
0,2 

0.25 
0.15 
0,1 
0,2 

PCR volume and reagents 

2|iL. QiagenQ-mix 

2nL. Qiagcn Q-mix 

2^QiBgenQ>[nix 

2ML, Qiagcn Q-niix 

2nL, Qiagen Q-mix 

lOnUQiagenCorcKil 

lOfiL, Qiagen Core Kil 



Supplementary Table 3.2 Demographic history test results for Leach's storm-petrel 
populations in the Atlantic and Pacific oceans. 

Population 

Atlantic 
Pacific 

Fu's Fs 
test 

1.42 
-10.88*** 

Growth X" critical value 
(MLE) comparison {1 df) 

34.57 ns 
1150.83 <0.001*** 

ns, nonsignifficant; *, significant at 0.05 level: ***. significant at 0.001 level; SSD. 
sums of squared deviation; MLE, maximum likelihood estimate; x »chi-squared; df, 
degrees of freedom. 

Supplementar>' Table 3.3 Frequencies of mtDNA control region haplot^pes and 
sample sizes (N) for Leach's storm-petrels from 9 colonies in the Pacific (P) and 
Atlantic (A) oceans. Population abbreviations are given in Table 1. Bold = allele present 
in population-

Allele 

N 

LSPi 
LSP^ 
LSP, 
LSPA 

LSPs 
LSP5 
LSP-, 
LSPs 
LSP., 
LSPio 
L S P M 

LSP,2 
LSP,3 
LSP„ 
LSP,5 
LSPifi 

LSP,7 

BUL 

12(P) 

0.00 
0.08 
0.33 
0.00 
0.08 
0.08 
0.08 
0.08 
0.08 
0.08 
0.08 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

LAZ 

17(P) 

0.00 
0.00 
0.18 
0.00 
0.00 
0.06 
0.06 
0.18 
0.00 
0.00 
0.00 
0.06 
0.06 
0.18 
0.12 
0.06 
0.06 

BACC 

12(A) 

0.58 
0.25 
0.17 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

GULL 

10(A) 

0.20 
0.40 
0.30 
0.10 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

BON 

12(A) 

0.50 
0.17 
0J3 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

VEST 

11(A) 

0.45 
0.09 
0 J 6 
0.00 
0.09 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0,00 

NOR 

7(A) 

0.57 
0.14 
0.14 
0.00 
0.00 
0.14 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

RONA 

12(A) 

0.58 
0.25 
0.17 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

STK 

10(A) 

0.70 
0.10 
0.20 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
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Supplementary Figure 3.1 Proportional membership (Q) of Leach's storm-petrels to 

genetic clusters (K) for K=2 and K=3 as estimated by STRUCTURE with no prior 

information of sampling location. Each line is a single individual and individuals are 

ordered by sampling geographic sampling location. Colours correspond to genetic 

clusters. 

fcWii 
BACC BON GULL 

« ! ! ^ 

K=2 

VEST STK nONA 8UL LAZ 

BON GULL VEST STK RONA BACC VEST STK RONA BUL LAZ 

K=3 
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Supplementary Material 4 

Chemical composition of fonnaiin preservatives used on the CPR survey and for 

storage of samples. 

1. 40 % formaldehyde (100 % formalin) 

Chemical constituents: 

• 30 g sodium tetraborate (borax) 

• 1000 ml of 37-41 % formaldehyde solution 

This solution is used for filling the tank in the internal mechanisms before deployment 

The borax is added to the formaldehyde for buffering purposes 

2. Sieedman's solution 'concentrate' approx. 13 % formaldehyde (32 % formalin) 

Chemical constituents; 

• 1200 ml 37-41 % formaldehyde solution 

• 250 g sodium tetraborate (borax) 

• 240 ml propylene phenoxytol (1 phenoxy-2 propanol) 

• 2400 ml propylene glycol (propane-2. 2-diol) 

This 'concentrate' mixture is used for making up the 4 % formaldehyde solution. Borax 

is dissolved in the 37-41 % formaldehyde solution and the propylene phenoxytol is 

dissolved in the propylene glycol. The formalin solution is added to the propylene 

solution and mixed well. 

3. 4 % formaldehyde (10% formalin) 

Chemical constituents; 

• Use 1 L of the 'concentrate' as described in 2.1.2 

• Add 2 L of tap water and mix well 

This 4 % solution is used to store unloaded routes, spray onto samples during the 

cutting process and when analysing samples. 
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Supplementary Tabic 5.1 Genetic variation at 18 microsatellites and a 357 bp fragment of the mitochondrial DNA control region in 3 

Atlantic Leach's storm-petrel populations, 

Mitochondrial Control Region Microsatellile Data 

Location 

Atlantic Colonies 

Gull Island 

Vestmannaeyjar 

St Kilda 

n 

10 

11 

10 

H 

4 

4 

3 

h 

0.78 

0.71 

0.51 

K 

0.0049 

0.0067 

0.0046 

n 

48 

25 

32 

/f/locus 

3.89 

3.72 

3.78 

A 

3.16 

3,07 

3.06 

'^privme 

0.03 

0.05 

0.03 

Ho 

0.45 

0.42 

0.44 

H, 

0.45 

0.42 

0.44 

A', sample size; H, number of haplolypes; A, haplotype diversity; 7t, nucleotide diversity; A/locus, mean number of alleles per locus; A, 
allelic richness; Aprivaic, private allelic richness; Ho, observed heterozygosity; HE, expected heterozygosity. 
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SHORT REPORT 

Probable predation of Leach's Storm-petrel 
Oceanodroma leucorhoa eggs by St Kilda 
Field Mice Apodemus sylvaficus hirtensis 

T O N Y W J . BICKNELL ' * , JAMES B. REID^ a n d STEPHEN C. VOTiER' 

'Marine Biology & Ecology Hesearch Centre, University of Plymouth, Plymouth, P14 8AA, UK and ^Joint 

Nature Conservation Committee, Dunnet House, 7 Thistle Place, Aberdeen, ABIO WZ, UK 

C a p s u l e Leoch's Storm-petrels Oceonodroma leucorhoa may be depredated by endemic St Kiida Field 

Mice Apodemvs sylvaticus hirtensis. 

T h e introduct ion of non-nat ive mammuls r.o island 
habitars has caused siynilicanr changes in species 
composition and ecosystem stnicture (Rocmer et al. 

20C2, Towns et nl. 2009), and may also lead to species 
exrincrion (Moors iSi Atkinson 1984)- Colonial nest­
ing seabirds have been particularly badly affected by 
the inrroduction of ground predators, such as rats, 
RflttHJ. spp., Feral Cats Felis cniti}' and North American 
Mink Mustela tdson (Burger &. Gochfeld 1994, Craik 
1997). As seabirds rend to breed on remote, predator-
frcc islands, they have evolved behavioural traits 
{burrow, ground or crevice nesting; limited chick 
defensive K-haviour) and life-historv character is r io 
{Uiw annual fecundity) that render them especially 
\-uInerable to introduced mammalian predators 
( C r o x a l l & R o t h e r y 1991)-

introduced rats, Kunits spp., arc considered to he the 
latgesr contnbutor to seahird population declines and 
extinctions (Jones et al. 2008), facilitated hy human 
colonization of remote islands. Mice share sunilar char­
acteristics, and although were previously dioupht to 
have a negligible impact on island ecosystems (Chapuis 
ei al. 1994), tecenl studies on Cough Island, South 
Atlant ic Ocean, suggest they can prey on seabird eggs 
and chicks at such a level to cause population declines 
(WanJess .'( al. 2009). 

T h e St Kilda island archipelago is one of the tnajor 
seabird breeding stations in the Nor th Atlantic, with 
internationally important populations of several >pecies. 
For this reason, along with its unique cultural landscape 

'Correspondence autlior. Email: anlhony.bielcrwll@plymouth oc uk 

and indigenous species, it has been designated a World 
Heritage Site by the United Nations Educational. 
Scientific and Cultural Organisation (U N E S C O) . It is 
home to the endemic St Kilda Field Mouse Apodnmua 

syh'oticm hhxcnsii. a sub-species of the Long-tailed Field 
Mouse or Wood Mouse A. syiwiticus (Berry 1969), 
which has been living sympatrically with seabirds on St 
Kilda for at leasr ICOO years. Considering this i> an 
endemic subs-pecies, resident on a designated World 
Heritage Site, there is surprisingly lirrle known aKiut its 
breeding ecology', diet and population J>-nam!cs (but see 
Harrisson & Moy-Thomas 1931, Boyd 1 9 % ) . T h e two 
St Kilda islands known to be occupied by mice, Hirta 
and Dun, have large colonies of burrow-nesting Manx 
Shearwater Puffimis (mffmm. Atlantic Puffin Fratercula 

araica. Leach's Srorm-petrel Oceanndruma kucurhixi and 
European Storm-petrel Hydn^Kues, pek^us, but it is not 
knowTi whether they form parr of the mouse diet. 

The Leach's Storm-petrel (hereafter LSP) ptipularion 
on St Kilda is of particular corvservation concern due to 
the recent steep decline of the main colony on EXin (a 
4y% decline between 1999 and 2001) (Newson ei d. 

200t!). This coincided with heav^' predation of adult 
Storm-petrels hy a large population of Great Skuas 
Sierarrarni'i skua (Vorier et al. 2006), estimated to con­
sume approximately 15000 adults each year (Phillips ct al. 

1999). It is unclear whether this level of predation will 
continue hut declines in alternative ftHxJ sources may lead 
to increased reliance on st-abirds as prey (Viitier e( til. 

2004). Although globally numerous (—10 million breed­
ing pairs), St Kilda colonies contain 94% of the EU's 
breeding LSP population. Idenrifiing and understanding 
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p(irential threats lo the pnpubticn is essential for effective 
conscr\'ation management at the European level. N o 
toraial snidy to detennine the occunence or impact oi 
predation hy the endemic mice has been conducted, but 
during a detailed siud^'ofLSPhfteding on Hirta and Dim, 
evidence was o t ta in td to indicate that they prey on eggs 
and possibly chicks, 

Hett- we discus.'i whether mouse predatioii could have 
significant implications for the susrainability of the 
population of LSPs on St Kilda. 

Between lati; June and mid-Octoher 2008 45 LSP 
breeding bunrows on Hina . St KUda ('i7''49'N, 08°"!5'W) 
were monitored using an endoscope on average ever^' 10 
days (sd ± 12 days). O n each visit nest contents were 
recorded, as well as an assessment of poaibie causes of 
egg or chick loss. 

Of the 45 nests, 11 failed at the e ^ stage, 3 at the 
chick stage and a fiirther 2 failures at an un tnown stage. 
This equated to an overall pr(xluctivity (hatching 

success X fledging success; .see Table 1) ot 64%. Only 1 
failute was clearly due to abandonment crf̂  the ^ g , while 
the other 15 either failed leaving a bmken egg in the 
nest (6) or an empty nest chamber with no egg or chick 
(9). Broken egg remains were also found on three occa­
sions close to or in the entrances of burrows not being 
monitored. Although there were no direct obser\'aiions 
of predation, mice were regularly observed in and around 
LSP burrows on Hirta and Dun, and one recorded egg 
showed chew mark.'- coasistent with those of a mouse 
(Blight i t Ryder 1999). LSPs are not knowTi to remove 
broken eggs or dead chicks from burrows (Huntingdon 
et al. 1996). Thetcfore, our findings most likely reprcsenr 
predation or sca\'engmg and as the only predatory ter­
restrial mammal on Hirta, this is almost certainly by field 
mice. Skiia'i are known predators of adult Storm-petrels 
on St Kilda (Phillips et d. 1999. Votier ei al. 2006) and 
althiHigh cof\ids have been observed excavating Storm-
petrel burrows (Huntingdon et al. 1996), such behavitiur 

Tabl« 1 . Reproductive success ond potenliol predator impoct o l breeding colonies of Leach's Storm-petrels Hatching success (HS) ^ % of 
b i d eggs that holched. fledging success (FS) " % of holched eggs that Redged; productivity (P) = HS x fS. Data from present study ore 
highlighted in bold. 

Cotony site 

Kent 1 , New 
Brunswick 

Little Duck 1,. 
Maine 

Daikolui 1., 
Japan 

H i r t a , St 

K i l d a 

Petrol 1. Sritish 
Columbia 

Greot 1 , 
Newfoundland 

Yeorls; 

1955 -95 

1985 -89 

1962 

2 0 0 8 

1983 

1 9 8 2 - a d 

esrimate 

2 0 0 0 -
15000^= (BP| 

4 0 0 0 (BP)* 

4 1 5 0 0 0 (BP|S 

4 5 4 3 3 (AOS) 

10666 (8P)» 

2 7 0 0 0 0 (BP)' 

Number oF 

nests monitored 

1 0 0 4 1 ' 

1253 ' 

351 = 

4 S 

86« 

1604 ' 

HS 

7 6 % ' 

84%' 

75%^ 

7 1 % 

6 5 % * 

6 8 % ' 

FS 

9 3 % ' 

83%' 

92%^ 

9 1 % 

88%" 

7 2 % ' 

P 

7 3 % - ' 

7 0 % ' 

6 9 % * 

6 4 % 

5 7 % ' 

4 8 % ' 

Mommalion 

predators 

Musk rots 
(Ondolra 

zibelhirusj l?) 

Voles 
fC/erfifionom/s 
fufoajnusj (?) 

F ie ld M i c e 
(A, syhfotieus 

hirttnsis) 

Rivet Oiler flulro 
canadensiij 

Avian precsalQrs 

Northern Sow-whet Owl 
(Aego/iui acadicuij 

Herring Gull /torus orgentahis) 

Herring Gull 
ft. orgenttWujJ 

Great Biack-bacfeed Gull 
f i mar/nusj 

Sloty-bocked Gull 
(iarui ichiitisagus) 

Jungle Crow 
fCofvuj /nocfor/tj-ncfios/ 

G r e a t Skua 
(S. skva) 

S n o w y O w l 
(Nyefea icantiiaca) [?] 

G r e a t B l a c k - b a c k e d G u l l 
(L marinus) (?) 

Nofff>arn Saw.whet Ow) 
\A. acodiaisl 

Northern Rovsn fC. coraxj (T| 
Noflhweslem Crow 

tC. caurinuij (?] 

Herring Gull (1. argenlohis/ 
Northern Ravan (C. caiaxj (7j 

American Ciow 
(C brachyrhyrchoi} (?) 

*n (for Hedging success in yeors I 9 9 1 - i 9 9 3 j = loO, BP - breeding poirs, AOS - apparently occupied sites, (?) - polentiol predator, not 
documented. 'Huntingdon el al. (1996); 'Cannell 4 Moddox (1983), W i l b u r (1969); ' C h i y i i (1999); Wa tanuk i [1985); ^Vermoer (1988), 
'Stenhouse & Montevecchi (2000) 
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is not known on St KilJa, presumahly because of the 
compacted substrate and b n g hutriiws. 

Whether the beha\inur on Hirta is scave i^ng or pre­
dation is unclear hur the ahilii^- of mice to consume sea-
bird eggs or chicks is not in question (Wanlessi't a/, 2007)-
Although scavenging of unviable eggs probably occurs, 
the disappearance of an e ^ within two days of being 
brooded by an adult (observed once during monitoring;) 
suggesL-i predation of viable eggs, ^ g neglect during the 
incubation pencxj is not uncommon in LSPs (Wilbur 
1969) and has been observed tor periods ot up to three 
days in the Hirta colony {Money et al. 2CX}8). giving Field 
Mice ample time to find and remove viable eggs without 
encountenng protecti\'e adults. 

A comparison of the breeding success of LSP colo­
nies where \'arious mammalian ;mJ/or avian predators 
are present pro\'ides no clear evidence of population 
level effects {Table I) . Tlie producrivity of 64% for the 
Hirta colony is consistent wirh published estimates for 
colonics in North America and Japan (4t^-71%) with 
loss at t he egg stage being the main cause of breeding 
failure (16-15%) . However, mammalian and/or avian 
predators are present ar all of the su^^'eyed colonies, 
and we are unable to control lor potential confounding 
effects of food availability, making it difficult ro inter 
rhe likely impacts of predators. 

Although the evidence tor predation of LSP nesLs is 
cu-cumstantial, the data suggest up to 15000 nest failures 
could he a result of this behax'iour. Whether this level of 
egg/chick predation is likely to cause pi>pulanon decline 
on its own is uncertain, but a cumulative effect with 
high adult mortality needs to be considered. Active 
managemeni of the St Kilda population to alleviate any 
such effects would be impractical due to the conserva­
tion status oi the endemic mice and globally restricted 
Great Skua population. Further research aimed at under­
standing the St Kilda Field Mouse population dynamics, 
behaviour and possible impacts on the LSP population is 
desirable. Moreo\-er, our study further highlights the 
importance of predation by mice at seabird colonies and 
the need to consider the possible impact of these some­
what o\'crkK)ked mammalian predatura. 
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Effects of formalin preservation on stable carbon and nitrogen 
isotope signatures in Calanoid copepods: implications for the 
use of Continuous Plankton Recorder Survey samples in stable 
isotope analyses 

Anthony W. J. Btcknell^*, Maria Campbell ^ Mairi E. Knight\ David T. Bi l ton\ 
Jason Newton^ and Stephen C. Votier^ 
'Marine Biology and Ecology Research Centre, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK 
^Sir Alisler Hardy Foundation fof Ocean Science, The Laboratory, Citadel Hill, Plymouth PL1 2PB. UK 
^NERC Life Sciences Mass Spectromeify Facility, Scottish Universities Environmental Research Centre, Scottish Enterprise 
Technology Part(, East Kilbride G75 OQF, UK 

IVeserved and archived oi^anic material offers huge potential for the conduct of retrospective and long-term 
historical ecosystem reconstructions using stable isotope analyses, but because of isotopic exchange with 
preservatives the obtained values require validation. The Cont inuous Plankton Recorder (CPR) Survey is the most 
extensive long-term monitoring program for plankton communit ies wor ldwide and has utilised ships of opportuni ty 
to collect samples since 1931. To keep the samples intact for subsequent analysis, they are collected and preserved in 
formalin; however, previous s tudies have found that this may alter s table carbon and nitrogen isotope ratios in 
zooplankton. A maximum -0.9%o increase of 6'*N and a time dependent maximum -1.0%o decrease of S " C were 
observed when the copepod, Calanus heJgolandicus, was experimentally exposed to two formalin preservatives for 
l l m o n t h s . Applying specific correction factors to 6 " N and 6'^C values for similarly preserved Calanoid species 
collected by the CPR Survey within 12 months of analysis may be appropriate to enable their use in stable isotope 
studies. The isotope values of samples stored frozen did not differ signi6caiitly from those of controls. Although the 
impact of formalin preservation was relatively small in this and other studies of marine zooplankton, changes in 
isotope signatures are not consistent across taxa, especially for &^'K, indicating that species-specific studies may be 
required. Copyright © 2011 John Wiley & Sons, Ltd. 

In marine ecosystems stable isotope analyst'; (SI.\) has 
t>ecome a familiar technique for investigating tropiiic 
relationships,''' food web structure'^' and movement behav­
iour.' '̂  The use of preserved and/or archived organic 
material oHiers huge potential for the conduct of retrospective 
analyses and investigate medium to long-term ecosvstem 
changes. Most natural history museums and many other 
institutions hold large preserved collections that could be a 
major resource for such studies. However, there are 
uncertainties over the effect of different preservati\'es on 
the stable cart>on and nitmgen isotope values, which is 
perhaps retlected in the scarcity' of studies that utilise 
collections of preserved biological material. Understanding 
the effects of preseA'ati^'es on stable isotope signatures is 
crucial for the appropriate interpretation of results from 
ecological studies. 

Ideally, the chemicals used to preserve biological material 
should not alter their molecular composition, but in many 

* Correspondence to: A. W. ]. Bicloiell, Marine Biology and 
Ecology Research Centre, University of Plymouth, Drake 
Circus,' Plymouth PL4 8AA, UK. 
E-mail; anthony.biclunell@plvmouth.ac.uk 

instances this is not the case. '^^ The reported changes (6 C: 
<3%o. o'^N: <.l'X>n) lack corLsistency in these effects,'"''*' and 
this precludes general conclusions being reached for partic­
ular presen-atives. A range of preser\'ati\'es tias been used for 
short- or long-term collection storage and these preservatives 
ha\'e all been shown to have different impacts,'"' so require 
separate investigation before collection samples can be used 
inSL^-

The Sir Alister Hardy Fountain for Ocean Science {SAHFOS, 
Plymouth, UK) maintains the Continuous Plankton Recordo" 
(CPR) Survey, which is one of the longest and geographical­
ly the most extensive measures of plankton communi­
ties worldwide. Since 1931 ships of opportunity (such as 
commercial and passenger vessels) have towed recorders for 
approximately 5.8million nautical miles, continuously col­
lecting plankton. The core survey operates in the North 
Atlantic but it has grown in scope to include the North 
Pacific, the Southern Ocean and the Western Atlantic. CPR 
data has been integral to understanding how the ecosystem 
function is regulated in the North Atlantid""''' leading to 
further insights into the indirect effects of climate change on 
North Sea commercial fish stocks.'"' The isotopic informa­
tion available within the CPR SuA'ey samples has great 
potential for large-scale analysis of food-web structures. 

Rspid Comniun. Mass Spettram. 2011,25, 1794-1800 Copyri^t E 2011 John Wiley Sc. Sons, Ltd. 
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hbtorical ecosystem shifts and use as baseline marine 
ecosystem data The CPR Survey uses a formalin solution 
to preserve plankton samples while vessels are at sea and 
later, when archived before analysis. In 2008 two formalin 
grades with different methanol content were used on survey 
mutes lo check the quality of sample preservation, but have 
subsequently returned to the original formalin mix. Before 
samples from this extensive plankton collection can be 
confidentiy used in stable i.-wtope studies, the impact of 
formalin preservatives on stable isotope ratios need to be 
clarified. 

Copepods dominate the global mesozooplankton bio-
mass""*' and are an integral part of the transfer of carbon 
from marine primary producers to higher trophic level 
species. Calanoid spedes are key components of mariiw 
ecosystems. Their isotopic signatures have been valuable in 
investigating food \^'eb structures'^-'••! and ppedator-prey 
relationships,'"'' and they have great potential for isotopic 
characterisation of ocean regions for use in animal foraging 
or migration studies.'^•''^' To evaluate the impact of formalin 
preservation on stable carbon and nitrogen isotofje ratios in 
calanoid copepods, fresh samples of Calanus he!go!a»idicus 
were used in a controlled experiment. Here we report the 
effect of two types of formalin preservative (used on the CPR 
Survey) and freeang. over a 12-month period. We discuss the 
impact that this has on the use of these and other CFR Survey 
samples in ecological stable isotope studies. 

E X P E R I M E N T A L 

Study species 

C. helgolaiulicui is a calanoid copepod found over a range of 
marine habitats (i.e. open ocean, coastal environments) in the 
North Atiantic and contributes between 6% and 93% to the 
mcsozoop lank ton biomass in European waters.""' These 
copepods c<>nsume a diverse diet of protozooplankton and 
phvtopiankton and are themselves an important source of 
food for juvenile fish.'''' Thev are a temperate water species 
generally found in ^ 2 0 °C waters, with highest abundance 
fixim 13 to 17°C, and development to the adult form takes 
between 26 and 42 days"*' 'In recent decades, C. hriyotomficas 
has become more abundant and widespread in the northeast 
Atlantic, which has coincided with a northward shift in the 
distribution of the cold-water congener C. finmarhicus. ''*' The 
sensitivity of these two spedes to changes in water tempera­
ture apparently underlies this shift, and for this reason they are 
useftil indicators of glt^^al change in marine environments. 

Sampling method and preservation 

Zooplankton samples were taken by tfie Dove Marine 
Laboratory (Newcastle University. Newcastle, UK) from the 
North Sea, dose to the Northumberland coast of England 
(55=07'N, Ora) 'W), using a 200jmi meshed WP2 plankton 
net in vertical hauls from 20 m depth to the surface on 9 June 
2009. Fresh C. Iielgolandicus from hauls were frozen and 
traRSported to Plymouth (UK) where they were placed in 
fresh seawater for several hours to allow gut evacuation. We 
removed CV and CVI adult C. helgolandkus and sub-divided 
these into five different groups; those analysed immediately 

(control) and thosepreservedlbr3weeks,2months, 6months 
and 12months in five different treatments (see below). There 
were four replicates for the control group and a minimum 
of three replicates (3-6) for each treatment/time group. 
Each replicate contained between 10 and 15 individuals (to 
provide suffident material for subsequent samples) and were 
stored in separate glass vials at room temperature (exduding 
the frozen treatment). 

The formalin preservatives used for tfie treatments were 
suppliedbySAHFOSandarecurraitly inusefTypeB), orhave 
beei used (Type A), on CPR Survey routes and for storage of 
collected samples. The majorit\' of the chemical constituents of 
the mixtures were the same (Appendix !, see Supporting 
Information) but the supplier and amount of methanol in 
the formaldehyde were different; Type A = Fisher Sdentific, 
Loughborough, UK (Techrucal grade, 3 7 ^ 1 % formalde­
hyde containing 10-14% methanol). Type B = Alpha-Aesar. 
Heysham. UK (Technical grade, 37'''a formaldehyde contain­
ing 7-8% methanol). The treatments involve both types of 
formalin preservatives and/or a simulation of the change in 
concentrations during the collection and storage of CPR 
samples. For the latter, a 3-week initial period of high 
concentration mix and seawater dilution represents the 
potential time between collection of samples and delivery of 
the CPR device back to SAHFCB for unloading. The treatments 
(preservation methods) are summarised in Table 1. The type of 
formalin used for each treatment were also analysed to 
determine their o'^C values. 

Lipid synthesis in oi^anisms discriminates against '^c'"^' 
and yields low 6'^C values in tissues with high Upid content 
compared with those from an organism's dietary input.''^'' 
The lipid content in marine copepxxis is highly variable 
between spedes (range of fjercenlage dry weight: 2-73%),'^' 
and can depend largely on their life history.' ' To eliminate 
the effect of lipids on the carbon isotope ratios in C. 
helgcilandicits and to generate results with general relevance 
to other calanoid spedes, all samples were lip id-ex traded. 
The samples were also decalcified to remove inorganic 
carbon from the copepods exoskeleton, since these carbon­
ates tend to be increased in fi'^T and do not reflect dietarv 
intake. ' Other biochemical compounds contributing to 
fi'-'C values such as proteins, carbohydrates and chitin have 
been found to be similar across zooplankton taxonomic 
groups and habitats, '^ ' and were therefore not altered in 
any way. 

Once the samples had been freeze-dried and crushed, the 
hpids were extracted using 7% methanol in diehloromethane 
by volume (77o M DCM) and tiien dried overnight in a 
laboratory oven. The samples were added to 2N hydro­
chloric add for I h to remove inorganic carbonates and 
distilled water was used to rinse away add and waste. The 
samples were oven-dried overnight in preparation ftir stable 
isotope analysis. 

Sample analysis 

Homogenised C. helgolandkus samples of approximately 
0.70 mg were weighed and placed in tin capsules (5 ̂  3 5 mm). 
Formalin samples were placed in solid, flat-bottomed tin 
capsule: (3 mm x 2 mm) and cold-sealed with wire cutters. 
Each ftirmalin sample was prepared less than 2 min before 
analysis, to minimise evaporation. Analyses were conducted 
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Table 1- Experimental treatments used to preserve C. helgolandiais samples 

Treatment 
ID 

Description 

Tl 
T2 

T3 
T4 

T5 

F r o ^ n a t - 2 0 = C 
Type A 40% formaldehyde mix with borax diluted to i^/n witii seawater (for first 3weeks), then changed to 
Type A 4% formaldehyde mix 
Type A 4% formaldehyde mix 
Type B 40"'u formaldehyde mix with borax diluted to 4% with seawater (for first 3weeks), then changed to 
Type B 4% formaldehyde mix 
Type B 4% formaldehvde mix 

Table 2. Mean (±standaid error) fi'\: and fi'lM values of fresh C. 
fresh values for Ireatec 
carbon, %N -
Tukey's HSD 

6''C 
3 weeks 
2 months 
6 months 
12 months 
Overall 
6^~^N 
3 weeks 
2monais 
6 months 
12 months 
Overall 
ON 
3 weeks 
2 months 
6 months 
12 months 
Overall 
%C 
3 weeks 
2 months 
6 months 
12 months 
Overall 
%N 
3 weeks 
2 months 
6 months 
12 months 
0\'erall 

samples over 12months 
percentage dry w 
post-hoc 

Fresh 
(%o) 

-19,34 

956 

3.95 

46,02 

11.66 

Tl = Treatment 1, T2 = 
%o = parts per thousan 

eight of nitroffin. 
test respectively) 

±S,E. 

0.26 

0.11 

0,13 

0.74 

0,24 

Tl 
(%.,) 

0.07 + 0.06 
0.10 + 0.1.1 

-0.29 ±0,05 
-0.15 ±0-10 
-0.07 ±0.06 

0.48 ±0.17 
0.15 ±0.38 
0,09 ±0,25 

-0,03 ±0,14 
0.17±0.12 

0,12 ±0-03 
0,04 ±0.04 

-0.01 ±0,04 
0.04 ±0.02 
0,05 ±0.05 

-0.57 ±0.18 
0-37 ± 0.33 

-1,46 + 3.44 
1.22 + 4.44 

-0.11 ± 1,53 

-0.50 ±0-13 
0.00 + 0.19 

-0.31 ±1.40 
0.21 + 1.14 

-0.15 ±0-40 

helgolandiais and the differences (±1 standard error) from 
C:N ~ ratio of carbon to nitrogen atom; 

# and * indicates 

T2 
(%,) 

-0.49 ±0,08 
-0.42 ±0,02 
-0,99 ±0.03* 
-0.68 +0.03" 
-0,64±0.06# 

0.57 ±0.08 
0.19±0.19 
0,77±0,12 
0-33 ±0,22 
0.46 + 0.09# 

0.08 ±0,01 
0-03 + 0.03 

-0-07 + 0.02 
-0.08 ±0.07 
-0.01 ±0,02 

-0-81 ±0.12 
-0,42 ±0.26 

0,19±0.ei 
1,51 ±1.63 
0,14 ±0.50 

-0,42 ±0.05 
-0,17±0.11 

0,28 ±0.23 
0,60 ±0.54 
0,07 ±0.18 

, "/oC - percentage dry weight of 
significant difference from ftesh at P < 

T3 
(%.) 

-0.43 + 0.08 
-0-39 ±0.06 
-0.79 ±0-11" 
-0.93 ±0.08* 
-0.66±0.07# 

0.33 ±0,12 
0.84 ±0,10* 
0.73 + 0.11* 
0.49+0,12" 
0.60±0,07# 

0.07 ±0.02 
0.05+0.02 

-0.03 ±0.02 
-0.12 ±0-02 
-0.01 ±0.02 

-1.45 ±0,37 
-1,10 ±0-26 
-1,46 ±0,33 

1,89 ±1.82 
-0.53 ±0,53 

-0,55 ±0,15 
-0.42 ±0,09 
-0.25±0,11 

0.84 ±0,46 
-0,10±0,16 

T4 
{%>) 

-0.46 ±0.05 
-0.53 ±0.06 
-0.83 ±0.04* 
-0.88 ±0-05* 
-0-67 ±0-05# 

0-75 ±0,09* 
0.92 ±0,10-
0.51 ±0,16 
0.67 ±0,16' 
0,73±0-07# 

0,02 + 0.01 
0.16 + 0.03 
0,02 ±0.02 

-0.01 + 0.04 
0,05+0.16 

-1.22 ±0.29 
-0-69 ±0.18 
-0.62 ±0.92 

0.23 ±2.07 
-0.57 ±0.54 

-0,32 ±0.06 
-0.&t±0.08 
-0,16 ±0,21 

0.13 ±0.43 
-0.25 ±0.14 

0,05 (ANOVA and 

T5 

r..") 

-0.26 ±0-13 
-0.29 + 0,13 
-0.77 ±0,11' 
-0.55 ±0,12 
-0.48±0.08# 

0,60+0.07 
0.67±0.2!* 
0.67 + 0,16* 
0-80 ±0.08* 
0.68±0.07# 

0,01 ±0,00 
0,13 ±0,03 

-0.05 ±0.02 
-0,02 ±0,04 

0,01 ±0.02 

-1J9±0.11 
-0,93 ±0.20 
-3,09 ±0.86 
-1.32 ±4.00 
-1.77 ±0.90 

-0,36 ±0.03 
-0,61 ±0,14 
-0.59 ±0,19 
-0.27 ±1.11 
-0.47 ±0.24 

Treatment 2, T3 = Treatmoit 3, T4 = Treatment 4, T5 = Treatment 5 (described in T^ le 1). 
d deviation from standard. 

at the East Kilbride Node of the Natural Environment 
Research Council Life Sciences Mass Spectrometry Facility 
\'ia continuous flow isotope ratio mass spectrometry using 
a ECS 4010 elemental analyser (Costech, Ivlilan, Italy) 
interfaced with a Delta XP mass spectrometer (Thermo 
Electron, Bremen, Germany), Isotope ratios are reported as 
&-values and expressed as %. according to the equation 

) - 1] X 1000, where X is '^C or ">J 
and R b the corresponding ratio '^C/ ' -C or ' ' N / ' * N and 
R-,M.jard is the ratio of the international references Pee Dee 
Belemnite (PDB) for carbon and AJR for nitrogen. The 
standard deviation of multiple analyses of an Internal 
gelatine standard in each experiment was better than Q2%o 
for h ' ^ and 6"C-
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Data analysis 

The effects of preservation method and time on the carbon 
and nitrogen stable isotope and element rabo values were 
analysed by comparing preserved samples with fresh 
samples (control) using analysis of variance (ANOVA) and 
Tukey's HSD post-hoc multiple pairwise comparison tests. 
All data were tested for normality and homogeneiti,' of 
variance. Statistical analyses were conducted i^ing R version 

R E S U L T S 

Overall effect of formalin 

In gHieral formalin preservation and the amount of time for 
which the samples had been preserved influenced both the 
6 ' ^ (Treatment: F4,77 = 20.66. P<O.0ffl)l, Time: F̂ .77 = 25.07, 
P<0.(K)01) and the 8 ' ^ values (Treatment: F4,;^=3.09, 
P=0.02, Time: F4.7B=3.%, P = 0 . 0 0 0 3 ) in C. helgolandkus 
samples. Coinpared with Iresh samples all the formalin 
treatment samples (T2-T5) were significantly depleted in 
o'^C (mean range = -0.48 to -0.67, all P values <0.05) and %C, %N, C:N ratio and fonnalin 

different ftxjm those from the fresh samples at different time 
intervals, although the overall enrichment was significant 
( F i ^ = 5.18, P = 0.03; Table 2), The increase in iS'TM was 
significant after 3 weeks in treatment 4 (Tukey's HSD test 
P=0.(X)4) and 2montfis in treatments 3 and 5 (Tukey's HSD 
tests, T3: P<0.001, T5: P 0.034). This significant '^N enrich-
m&\t generally continued up to 12 months in treatments 4 anii 
5 but reduced for the final sampling period in treatment 3 
fTukey's HSD test, P = 0.06: Fig. 2). 

Effect of freezing samples on A'^C arid 6'^N 

The frozen samples (Tl) were not significantly different 
from fresh s a m p l e for both 6'^C (F4,,i =0.85, P=0.52) and 
6'^N (F^,„ = 0.87, P = 0.51), hut were significantly different 
from samples that had undergone formalin treatments (all 
Tukey's HSD tests, P<0.001) except for the A'TNI values 
from treatment 2 {Tukey's HSD test, P^O.18). The h'^N 
values appeared to change over time for samples stored 
frozen (Fig. 2), but these changes were not statistically 
significant. 

significantly enriched in 6 ' ^ (mean range = 0.46 to 0.74, 
P values <0.05) (Table 2). 

Effect of time stored in formalin on S^^C and &^̂ N 

The amount of time for which samples were preserved in 
formalin had a pronounced effect on 6 ' t (Fig. 1). 6 ' ^ 
decreased significantly in all formalin treatments after 
ftmonths and Umonths (all Tukey's HSD tests, P<0.05), 
except for treatment 5 where the \'alue did not change 
signifirandy after 12months (Tukey's HSD test, P=0.16). In 
contrast, ft' TM values cfianged significantty when C. Iielgdarulkus 
were stored in formalin; however, there was no obvious trend 
over time (Fig. 2), After Tukey's multiple comparison tests, 
the fi'^N values from treatment 2 were not aignificantiv 

Change in the ratio of carbon to nitrogen iC:N) across 
treatments compared with fresh sample values was minor 
(Table 2; all Tukey's HSD test, P>0-05). Significant deviation 
from homogeneity of variance was found over the duration 
of the experiment in treatments 3 and T for percentage dry 
weight of carbon (7oC Levene's test, T2: Fj^u = 3.087, P = 0.04, 
T4: F4.,6=4.699, P=0.01) and nilnigai (%N Levene's test, 
T2: F.,^0-3.093, P=0.04, T4: FVi„ = 5.030, P=0.01). The mean 
o'-'C values (±1 SD) were similar for formalin preserv'ative 
with the same chemical constituents across manufacturers: 

(1) * 3 % formaldehyde mix with borax diluted to 4% with 
seawatei. Type A='-44.63±0.05%o, Type B = ^4.07±0.56%». 
(2) 4% formaldehyde mix. Type A ' = - 2 9 . 5 2 ± 0 . 2 4 % . . Type 
B--29.94±0.30%«. 

n-Tim" nryptA ur.^m r».Tw.B 

Figure 1. Mean {±standard error) difference in t i ' ^ values after 3 weeks, 
2months, 6months and 12months for the five preservative treatments from 
those of the fresh control samples (0.0 on y axis). T1-T5 treatments as described 
in Table 1. Black spots represent significant differences from control samples 
{P<0.05). 
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Figure 2. Mean (istandard error) difference in 6 ' ^ values after 3 weeks, 2 months, 
6 months and 12months forthe five preser\'ative treatments from those of the fresh 
control samples (0.0 on v aids). T1-T5 treatments as described in Table 1. Black spots 
represKtt significant differences from control samplra (P<0.05). 

D I S C U S S I O N 

Our study provides evidence for a significant effect of formalii\ 
preservation on the stable carbon and nitrogen isotope values 
in C. hclgolandkuf over time, but there was no significant 
difference between batches of samples stored frozen and room 
temperature controls over the same period. The possible 
mechanisms involved in the isotopic alteration and the 
implications that these preservative effects have for the use 
of C. Iielgolaiidicus and other CPR zooplankton samples in 
stable isotope analyse, are discussed below. 

Effects of formalin on 8 " C and ft^^ 

The decrease in 6"C for C. heigolandkus samples stored in 
formalin is consbtent with the majority of previous studies 
investigating the effect of formalin preservafion on a variety 
of marine, freshwater and terrestrial species. Hnwe\ei, 
the degree of depletion (~l%o) was considerably less than 
reported in the only other study on the effect of formalin on 
marine zooplankton (2-3%u).'"''' TTie results also indicate that 
the isotope signatures continue to change with time, although 
it took approximately 6 months of preservation for this effect 
to become statistically significant. The only other previouslv 
observed depletion over time was in a freshwater c!am 
Corbkula fluminca, although the fresh samples in this studv 
were extremeiv depleted, resulting in an overall enrichment 
of 6"C'"' and highlighting the difficulties in predicting these 
effects. Two mechanisms have been proposed to account 
for the depletion of '^C. First, the formalin presen'ati\-e pro­
motes the leaching of compounds enriched in '""C from the 
t i^ues and therefore modifies the apparent carbon isotope 
signature.'^'^' The formaldehyde hydrol\ses proteins that 
are enriched in '•'C compared with lipids, so depletion in 
tissue '^C could reflect the relative increase in lighter lipid 
carbon. Howe\'er, given that we extracted lipids from the 
C. heigolandicus samples before stable isotope analysis this 

seems unlikely. Secondly, the uptake of Lsotopically lighter 
carbon from the formalin into the tissues could shift the 
signature toward that of the preservative.'^''"''"'^'' The low 
6 ' C values found in the formalin used in this study (—29%ii 
and -45%o) would therefore suggest the incorporation of 
lighter carbon from the preser\-ative is the most likely 
explanation for this effect. The comptisition and/or manu­
facture of the formalin preser\'ative may contribute to the 
degree of carbon uptake into tissues.'^' Although the 
samples that were subjected to the lowest concentration of 
formaldehyde and methanol (T5 - Tj-pe B 4''b formalin) 
show^ed slightly less overall '^C depletion, there was little 
e\'idence for differences between the two manufacturers and 
formalin composition used in this experiment. The compa­
rable formalin ii"C values between manufacturers may have 
resulted in these similarities. 

Previous work has shown highiv variable and somewhat 
contradictor\' impacts of formalin preservation on 6 ' ^ , ' " ' 
although generally the effects are slight with only one study 
showing an effect nf >1.0%o.'^'' Here we found a significant 
increase in f i ' ^ \'alues for C. helgotaiidkus stored in formalin 
that isconsjstent with previous work on freshwater zooplank­
ton (O.S™ increase),'-' ' but contrasts with a significant '^N 
depletion shown for marine zooplankton (decrease <1 %o)P^ 
Formalin does not contain nitrogen so uptake of any 
preservative fractions into tissues will have no effect on ii'^N 
\'aiues. Instead the effect of formalin is through dispropor­
tionate hydrolysis or leaching of isotopically lighter or heavier 
materials.'^'*"'' ' For C, helgohndkus and the type of formalin 
used in our study this seems to be the loss of '""N to the 
preservative ^vith the resulting increase of ft'^N', although an 
expected increasein the C.N ratio with loss of nitrogen was not 
obser\'ed. The increase was slightly higher in the Type B 
formalin mix, which is surprising because it contains slightly 
less formaldehyde (the hydrolysing agent) than the Type A 
mix, but may be a result of different manufacturing processes 
or raw materials. It is apparent from this study and 
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previous reports that the effect of formalin on fi^^ is not as 
predictable as for fi'^'C and therefore requires spedes-spedfic 
experiments. 

Use of CPR 20oplankton in ecological stable isotope 
analyses 

Significant changes in b"C and 8 " N v a l u ^ of C. heigoiandicus 
stored in formalin could pwtentially bias stable isotope values 
if unchecked. The ~0.6%t, increase in fi'"'T'J crfjsen'ed in this 
study could be regarded as minor in relation to the 2-3.5%o 
shift found between consumers and prey,'*^'^' so may not be 
significant if used in stable isotope trophic position and food-
web studies. However; comparing preserved and unpreserved 
samples could produce misleading results and a simple 
correction factor should be considered on a species-specific 
basis in tfiissituation.'' ' 'The increase in 6' 'C per trophic level 
is much more conservative (<1 %») and more closely represents 
the primary carbon sotin» of the marine ecosystem. An 
approximate 0.6%<. '•'C depletion in samples due to preserva­
tion could therefore lead to biased results if used in multiple 
isolofje food web analysis or for regional baseline ecosystem 
signatures in migration studies. These analyses rely on 
appreciable distinction between 6'"'C values and any bias will 
be most pronounced when the differences are relatively small. 
It has previously been proposed that, as long as the fi'^'C 
difference is more than l.Q'X.,, an equivalent depletion in 
preserved specimens (-2.0%i>) will not obscure the results.''"^ 
For study systems where differences in carbon sources are 
considerable, i.e. Cj and Q plants (>14%n),'^' terrestrial vs. 
marine (>7%.v),'^' or known through previous research, the 
small effect of formalin preservation may be urumportant, but 
^'"'C differences can be small and gradual over large spatial 
scales in marine systems.'**' The effect of preservation will be 
problematic if the results areambiguous and correction of t i ' ^ 
values would be appropriate in these instances. 

The shifts of 6' C and ii'^N in this study are atnsistent in 
direction across treatments but show variation in strength 
with time, making it difficult to predict the degree of change 
beyond the stud\' period. The majority' of archived samples 
collected by the CPR Sun'ey have been presen'ed for much 
longer and the effect on these samples cannot be confidently 
estimated from this study. However, for C JielgolanJicus sam­
ples collected by IheCPR Survey within 12 months of analysis, 
a correction factor specific to the type of formalin and time 
preserved may be appropriate to counter the effect and to 
enable their use in stable isotope studies. The extraction of 
lipids before analysis removed the high variation of this 
compound found in marine Calanoid copepod spedes and 
should enable any corrections to be applied to other Calanus 
spedes, such as Cfinmarchicus. collected and presen-ed by the 
CPR in the previous 12 months. 

CONCLUSIONS 

Our experimenl was designed to establish whether the 
formalin preservati\'e used to collect and store samples on 
CPR Suivey routes significantly changes the signature of a 
zooplankton spedes over 12 months and how this may 
impact on its use in ecological stable isotope studies. For 

Caianus copepods the preservative significantly affects the 
carbon and nitrogHi raficis but the lack of a predictable trend 
or stability- in results does not allow us to estimate Efie effect 
on preserved samples older than ]2months. However, the 
applicafion of spedfic correction Actors may be appropriate 
within this period to remove any bias in stable isotope 
analyses. The ubiquitous nahire of this genus in the marine 
environment makes it ideal for use in large-scale ecological 
studies and the long-term, global collection of samples 
available through the CPR Suney could be a valuable 
resource to be used in contemporary and hisforical isotope 
analysis. Howei'et, our findings and the contradictory results 
found in other studies investigating formalin pi^iervation 
would suggest there is no general correction for this 
preser\'ative and that its effect needs to be experimentally 
established for individual spedes or genus specifically, over 
periods applicable to the preserved collection. Caution 
should be taken when dedding whether to use formalin-
preserved samples in stable isotope analyses. The preserva­
tion effect and Lsotopic differences witfun the study system 
need careful consideration when assessing the uHlitj' of the 
samples for the proposed research and, if used, whether or 
not correction factors are appropriate. 

SUPPORTING INFORMATION 

Additional supporting information may be found in the 
online version of this artide. 
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Abstract Forty-one microsatellite loci were found lo be 
polymorphic in the Leach's siorm-peirel Oceiinodronia 
leuciirhoa when characterised in 24 unrelated individuals 
sampled from a pi»puluiion located at Gull Island. New­
foundland. Canada. Sequence homology was used to assign 
a predicted chromosome location for 39 of the polymorphic 
loci. Four polymorphic microsaleltite loci were Z-linked 
based on the typing of known ses individmJs and/or 
sequence homology. The sel of 37 autosomal markers will 
be suitable for population and parcniage studies of the 
Leachs sform-petrel (combined first parent non-e.>;clusion 
probability <().<)0()1). 

lite Keywords Aves Ixach's storm-petrel • Microsaiellite 
Predicted genome locations - Pn^ellariidae - Z-linked loc 

The Loach's storm-petrel Oceandroma leuiorhim is a small 
highly pelagic seabird oi the Procellariformes family. We 
have characterised a micro.saietlite marker set in this spe­
cies in ord^ to investigate regional and global population 
structure and disper^ lieiween colonies. 

Existing microsatellite markers were tested for utility in the 
Leach's storm-petrel (LSP) including 7 toci isolated in a 

A. W. J. Bjfknell D. A. Dawwn G. J. Hnrshurgh 
NERC Biomolccular Anulyjis Fatiliiy. Department <>i .Animal 
and Plant SciencLii. Univer>ity of Sheflield. Wt-sicm Bank. 
Sheffield. Siwth Yorkshire SIO 2TN. UK 

A. W. J. BickiwII ( O ) - M. E. Knight D, T. Billon 
S. C. VMier 
Marine Biology and Ecology Research Centre. 
University of Plymouth. Davy Building. Dnkc Circus. 
Plymouth PLJ « 'AA. UK 
e-mail: anthony.bickncll@plynHHith.ac.uk 

different stotm-petrel species (Sun ei al, 3I)()9) and 47 
loci with primer sets of engineered and/or proven high 
CTDS.s-species utility (Dawson etal. 2UI0: BhIII-JG. HvoBl-
TGG. Klein et al. 2()09; CulexOI. CulexDfi-ZEST. Pie24-
CEST. HvuBI. Dawson et al. unpublished data). .\ microsai-
elliie-enriched LSP genomic library was also created. Blood 
(20 ul) was collected from L-SP individuals and stored in 
U ml of absolute ethanol. Genomic DNA was e.xtracted 
using ao ammonium acetate precipitation method. TTie 
genomic library was constructed from a single male LSP 
[SKB02) sampled at St Kilda. Scotland (Co-ordinates 
57°48-N. g^M'W) in 2008. We used the method of Armour 
et al. (14441 and was enriched for the following moitfs: (GT)n, 
(CT)„. (GTAA)n. ((TTAAĵ . |TTTC)„ and (GATAj^ and their 
complements, which had been bound to magnetic beads 
(Glenn and Schable 2l)()5l. Transfomiant colonies were 
directly sequenced by liie NERC Biomolecutar Analysi.s 
Facility at tfje University of Edinburgh. 

A total of 2! 1 new unique LSP microsaiellile sequences 
were isolated fEMBL accession numbers FR696377-
FR696588). Primer sets were designed ftw 50 unique 
microsatelliie sequences using PRIMER3 (Rozen and 
Skaletsky :;0()(l). The new LSP and existing loci were 
initially tested for amplification and polymorphism in 4-6 
unrelated individuals sampled from Gull Island. Whitless 
Bay. Canada (Co-ordinates: 47°15'N. S2'̂ 46"W) in 2008. 
The 4-A individuals were amplified using a gradient of 12 
different annealing temperatures (56-65°C). The tempera­
ture producing the cleanest and strongest PCR product 
when observed on a ].^'^ agarose gel stained with 
SYBRSafe was .selected for amplification of the polymw-
phic loci in 24 additional Gull Island individuals. Each 2 \i\ 
PCR contained approximately 10 ng of lyophilised geno­
mic DNA, 0.2 jiM of each primer and 1 pj QIAGEN 
multiplex PCR mix (QIAGEN Inc.: Kenta et al. 2008). The 

© Springer 
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Rg. I Predicted chromosome locations of microsatellile loci polymorphii; in ihc Leach's slorm-pctrel OceaniHlrmnii leuvarhua. Tgu. ixbni 
finch {Tatniopygia guittaa) chroaiosame immi:. Gga, chicken (Gallui gallus) chromosome name 

PCR program used was: 95°C for 15 min. followed by 35 
cycles of 94°C for 30 s, annealing temperature (Table 1) 
fOT 90 s. n'C for I min. and finally 60X for 6 min. PCR 
amplification was performed using a DNA Engine Tetrad 2 
ihermal cycler iMJ Research. BitvRad. Hemel Hempstead. 
Herts.. UK). Amplified prtxJuccs were loaded on an ABl 
3730 48-wetl capillary DNA Analyser (Applied Biosys-
lems, California. USA) and allele sii^es were assigned using 
GENEMAPPER v3.7 [Applied Biosysiems. California. 
USA). Individuals were ses-lyped with the 2550F/2718R 
(Fridolfs.son and Ellegren IW*)). Z002A (Dawson 2007) 
and Z-037B markers (Dawson. DA unpublished data). 

o r the 47 existing loci te.sled in 6 individuals. 2 loci did 
not amplify or produced non-specific pn.>ducts. 30 were 
monomorphic and 15 were polymorphic. Of the 50 new 
LSP loci tested in 4-6 individuals. 6 loci did not amplify or 
piwiuced non-specific pnxluci, 18 were inonomorphic and 
2ft were polymorphic. 

FVedicted chromosome locations were assigned by 
comparing Ihe microsalellile sequences with the location of 
their homolog on the chicken (Gallus ^allust and zebra 
finch {Taenwpygia guitaia) genome assembly (methods as 
in Dawson et al. 2006, 2007). This allowed us to identify if 
any loci were located on the sex chromosomes or were 
physically linked. 

Thirty-nine of the 41 polymorphic loci could be assigned a 
chromosomal location with a BLAST hit E-valueof > lE-
10 with a > 100 base pair match (Table 1, Fig. I), Three 
pairs of loci were less than 1 Mb apan in the zebra finch 
genome lO!e23:OleI0. OiH7B:OleO} & Ole06:Ole22) and 
therefore may be physically linked. However, after a 
sequential Bonferroni correction (Rice 19S9). no pairs of loci 
showed evidence of linkage disequiHhrium(/' < O.U5)inthe 
LSP. 

A combined total of 41 polymwphic loci wert then 
typed in 24 unrelated individuals (14 male and 10 female) 
belonging lo the Gull Island population and displayed 
between 2 and 22 alleles (Table 1). Four loci displayed a 
genotype pattern consistent with linkage to the Z chnv 
mosome (Table 1) being homozygous (hcmizygousi in all 
females (ZW| but heterozygous or homozygous in males 
(ZZ). in agrBcmeni with their Z chromosome location 
assignment (Fig. 1). Otelfi was assigned to the Z chro­
mosome ba-sed on sequence homologue but displayed 
heterozygous in females suggesting il was autosomal in 
the LSP. A Fisher's Exact test comparing numbers of male 
and female homozoygotes confirmed that 3 were Z-linked 
(0110:19. Olel2. Oie26: /"-values < O.OOI) but due to low 
heterozygozity in males. Ole20 was nol significant and 
therefore should be viewed with caution. 
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Observed and expecied heleix)zygosilies. and predicled 
null allele lTei|iieneies were calculated using CERVUS 
v3.0.3 (Kalinowski el al. 211(17). Tests lor departures from 
Hardy-We in berg equilibriuin (HWE) and assessnieni of 
linkage disequlibrium were conducted in GENEI*OP v3.4 
(Rouiiset 20(IS), Only males were used when Z-linked loci 
were analysed. Prior to a sequential Bonferroni correction. 
6 loci deviaied from HWE (/»< 0.001; Table I). After 
correction only 2 loci (P < 0.001: OUm iind TG05-053) 
deviated. Eleven loci displayed a high eslimated null allele 
frequency (above 0.10) including 9 loci that did nol deviate 
from HWE (Table i I. When typed in 24 individuals, ktcus 
Okll showed high levels of polymorphism (>20 alleles) 
and 6 loci included 1 bp allele size increments (Table I). 
The combined lir\t parent non-exclusion prohahiliiy for the 
37 aulosumal polymorphic markers is <0.(HX)l. 
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