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Abstract 

Morphodynamics of ebb tidal delta sandbanks in a meso to macro tidal 
environment; Teignmouth, UK. 

Nigel P. Aird 

This contribution utilises a multifaceted approach to investigate the physical processes 
responsible for the onshore migration of ebb tidal sandbanks at an estuarine inlet 
dominated by low energy waves. 

A coastal video system was used to obtain two-weekly quantitative measurements of the 
position, plan form and crest depth of the landward migrating sandbanks over a five 
year period which encompassed four consecutive events. These data were supplemented 
with a 35 year photographic record of the inlet's development. Onshore sandbank 
migration was characterised by mean and maximum rates of I to 2 m. day"1 and 5 m. day" 
1 respectively. The migration rate was found to be highly correlated (R2 = 0.7) with, and 
linearly related to the ratio of the incident wave height to the crest depth particularly 
prior to shore-attachment. The plan form, area and crest depth of the sandbanks are a 
function of the sediment availability. In the inlet's current morphologic mode two plan 
form geometries are typically observed. These are crescentic and elongate forms (high 
aspect ratios) where the latter have their major axis transversely-orientated with respect 
to the coast. Which of these forms develops is dependent on the chronology of wave 
energy and the crest depth in relation to the tidal water level variation. Elongate 
transverse morphologies are associated with low relief sandbanks which are 
synonymous with periods of relatively low sediment availability. Conversely the 
crescentic morphologies typically occur when sediment availability is higher and the 
depth to the sandbank crests is shallower. 

A unique set of in-situ measurements of waves, currents and sediment transport were 
obtained from four positions on a sandbank in the mid term of its onshore migration. 
Analysis of the data revealed that the sandbank was dominated by onshore directed 
sediment transport in the shallow surf zone where current maxima occurred. The 
gradients in transport were highest on the flood tide. An energetics analysis of the data 
revealed that short wave stirring and wave driven mean flows were the physical 
processes responsible for morphological change. The mean flows are in effect longshore 
currents since they are generated by strong refraction and focussing of the incident 
waves by the morphologies. These generate a zone of wave convergence over the 
sandbanks when in the submerged state and very oblique wave breaking along the 
flanks when the features are exposed by the tide. A numerical model (MIKE 21) was 
subsequently applied in order to simulate the wave driven patterns of erosion and 
deposition over the sandbanks using both idealised and measured boundary conditions. 
The numerical experiments determined that there exists a dichotomy in the patterns of 
erosion and deposition which are laterally constrained in the submerged state and 
divergent in the exposed state. Morphological evolution was therefore governed by the 
variable residence times of the causative wave driven processes at different tidal 
elevations. It was found that low energy waves when combined with neap tides 
promoted shoreward elongation through the dominance of the patterns of deposition in 
the shallow submerged state. Higher energy conditions were predicted to promote a 
degree of broadening in the longshore dimension and increased crest elevation. This 
was caused by the patterns of deposition being dominated by both the laterally 
constrained (high tide) and divergent (low tide) patterns due to their longer residence 
times. 

111 



Contents 

Abstract ....................................................................................... iii. 
Contents ....................................................................................... iv. 
List of Figures ................................................................................ ix. 
List of Tables ................................................................................ xvii. 
Acknowledgements 

.......................................................................... xix. 
Author Declaration .......................................................................... xx. 

Chapter 1: Introduction ........................................................................... 1. 

1.1 The importance of coastlines and sediment transport .................................... 1. 

1.2 Specific objectives ...................................................................... S. 

1.3 Thesis overview ......................................................................... 

Chapter 2: Literature review ............................................................... 9. 

2.1 Basic inlet concepts and nomenclature .......................................................... 9. 

2.1.1 Physical characteristics of ebb tidal delta sandbanks ............................. 12. 

2.2 Morphologic models of ebb tidal deltas ..................................................... 14. 

2.2.1 Natural sediment bypassing at inlet entrances ........................................... 20. 

2.3 Empirical relationships ....................................................................... 25. 

Chapter 3: Introduction to the Teign inlet ...................................................... 30. 

3.1 Physical setting ............................................................................... 30. 

3.2 Environmental conditions ................................................................... 32. 

3.3 Sediment characteristics and littoral circulation ......................................... 35. 

3.4 Nearshore morphodynamics: an historical perspective .............................. 39. 

Chapter 4: Video remote-sensing ................................................................ 48. 

4.1 Argus video system ........................................................................... 50. 

4.1.1 Brief history of the Teignmouth Argus station ......................................... 51. 

4.1.2 Camera model and coordinate transformation................ 
......................... 53. 

4.2 Contour extraction methodology and sampling strategy ............................... 5b. 

4.3 Sandbank descriptive parameters ................................................................. 62. 
iv 



4.3.1 Image spatial resolution and coordinate transformation accuracy .............. 62. 

4.3.2 Estimation of sandbank crest depth from Argus images ......................... 67. 

4.4 Results .................................................................................... 
69. 

4.4.1 Introduction ............................................................................. 
69. 

4.4.2 Contour times series and their qualitative description ............................ 70. 

4.4.3 Temporal variability in sandbank descriptive parameters ........................... 84. 

4.4.3.1 Cross-shore and longshore centre of mass position ................................ 84. 

4.4.3.2 Cross-shore migration rate .................................................................... 89. 

4.4.3.3 Crest depth .................................................................................. 96. 

4.4.3.4 Correlation between raw cross-shore migration rate and the ratio of mean 

offshore significant wave height to minimum crest depth ..................... 101. 

4.4.3.5 Plan view geometry .................................................................. 104. 

4.5 Summary 
...................................................................................... 109. 

Chapter 5: In-situ measurements............ ..................................................... 113. 

5.1 Data analysis techniques ................................................................................... 113. 

5.1.1 Sampling theory ............................................................................... 113. 

5.1.2 Time series analysis ................................................................................... 114. 

5.1.2.1 Sediment transport calculations ......................................................... 116. 

5.1.3. Frequency domain analysis and the Fast Fourier Transform ....................... 117. 

5.1.4 Spectral analysis ............................................................................. 119. 

5.1.5 Co-spectral analysis ......................................................................... 121. 

5.1.6 Energetics analysis ......................................................................... 123. 

5.2 Instrumentation .............................................................................. 125. 

5.2.1 Synchronised logger for investigation into the transport of sediment (SLOT)) 

........................................................................................... 126. 

5.2.2 Pressure transducer .................................................................... 127. 
V 



5.2.3 Electromagnetic current meter ...................................................... 129. 

5.2.4 Optical back scatter sensor ........................................................... 130. 

5.3 Data collection strategy .............................................................................. 132. 

5.4 Data processing ............................................................................... 133. 

5.5 Fieldwork environmental conditions ....................................................... 134. 

5.6 Results .......................................................................................... 13 8. 

5.6.1 Introduction to the raw data .......................................................... 138. 

5.6.2 Overview of the observed of the observed current regime ............................. 140. 

5.6.3 Comparison of cross-shore hydrodynamics and sedimentation under calm 

and low energy conditions ......................................................... 147. 

5.6.4 Comparison of third order cross-shore velocity moments under calm and 

low energy conditions .............................................................. 155. 

5.6.5 Co-spectral analysis of the cross-shore current and sediment transport 

fluxes under low energy conditions ................................................. 158. 

5.7 Summary 
........................................................................................... 161. 

Chapter 6: Numerical modelling ............................................................................... 166. 

6.1 MIKE21: NSW, HD and ST modules ............................................................ 168. 

6.2 Model calibration and validation .................................................................. 170. 

6.3 Idealised simulations ................................................................................ 174. 

6.3.1 Methodology and model setup ...................................................... 174. 

6.3.2 Results .................................................................................. 177. 

6.3.2.1 Comparison of modelled hydrodynamics and sedimentation for circular 

and elliptic sandbanks under emerged and submerged states ................. 177. 

6.3.2.2 The propensity of different combinations of hydrodynamic conditions to 

alter the aspect ratio of an offshore sandbank .................................. 187. 

6.3.2.3 Wave driven morphological change over spring and neap tidal ranges..... 191. 
vi 



6.3.3 Summary ........................................................................................... 
199. 

6.4 Teignmouth simulation ..................................................................... 
201. 

6.4.1 Methodology and model setup ............................................................ 
201. 

6.4.2 Results .................................................................................. 
203. 

6.4.2.1 Qualitative validation of the modelled and measured hydrodynamics 

using the data for the offshore extremity position .............................. 
203. 

6.4.2.2 Spatial and temporal variation in the modelled hydrodynamics and 

sedimentation ....................................................................... 
208. 

6.4.2.3 Temporal variation in the relative importance of the wave driven and 

tidal components of the mean flow regime ...................................... 
218. 

6.5.3 General summary .......................................................................... 
221. 

Chapter 7: Discussion and Synthesis .................................................................... 
230. 

7.1 Primary physical controls on short to medium term shoal 

morphodynamics................................................................................... 225. 

7.2 Refraction, diffraction and sheltering effects ................................................. 
230. 

7.3 Long term trends in the morphological evolution of the ebb tidal delta and 

landward migrating sandbanks ........................................................ 232. 

7.3.1 Seasonal trends (lower macro time scale) ......................................... 232. 

7.3.2 Supra-annual trends (upper macro time scale) .................................... 235. 

7.4 Conceptual model of the plan form morphological evolution of Teign inlet 

ebb tidal delta sandbanks .............................................................. 238. 

Chapter 8: Conclusions.................... 
.......................................................... 244. 

Appendices .................................................................................... 249. 

Appendix Al Teign inlet: c. 1976-2009 .................................................. 249. 

vii 



Appendix A2 In-situ measurement data quality tables for the different SLOT rig 

deployment positions during the May 2003 Coastview fieldwork 

program ............................................................................................. 
253. 

Appendix A3 Proceedings paper: 29th International Conference on Coastal 

Engineering, Lisbon, Portugal ........................................... 
258. 

References ......................................................................................... 
271. 

VI" 



List of Figures 

Chapter 1 
Figure 1.1: Spatial and temporal scales in relation to coastal morphological change, 
(modified from Cowell et al., 2003). 4. 

Chapter 2 
Figure 2.1: Typical ebb shoal morphology with tidal flow residuals and dominant 
transport directions indicated by arrows (after Hayes, 1975,1980). 11. 

Figure 2.2: Morphologic inlet models of barrier island inlets (left panel) after Galvin, 
(1971) and estuarine inlets (right panel) after Hicks and Hume, (1996). 15. 

Figure 2.3: Morphologic models of barrier island inlet ebb tidal delta geometry, 
Georgia, southeast USA, left panel after Oertel, (1975), and right panel after Hubbard et 
al. (1979). 18. 

Figure 2.4: Examples of conceptual models of inlet ebb shoal evolution from the United 
States Army Corps of Engineers: a) stable inlet processes (model 1), b) ebb tidal delta 
breaching (model 3), and c) outer channel shifting (model 4). Tl to T3 denote time 
chronology (after FitzGerald et al., 2000). 22. 

Figure 2.5: Conceptual profile model of onshore sandbank migration on the ebb tidal 
delta (after FitzGerald, 1988). 23. 

Figure 2.6: Inlet shoal bypassing interval in the context of inlet tidal prism (left panel) 
and ebb tidal delta volume (right panel) after Gaudiano and Kana (2001) (modified from 
Burningham and French, 2006). 27. 

Chapter 3 
Figure 3.1: Location of the Teign inlet: U. K. (left panel) and Lyme Bay (right panel) 
coastlines. (Vertical datum: shoreline at mean high water, data source: NOAA 
Geophysical Data Centre (http: //rimmer. ngdc. noaa. gov/mgg/coast/getcoast. html). 30. 

Figure 3.2: Low tide images of the Teign inlet. Upper left panel: inlet entrance flanked 
by the Ness headland to the south with Denn Spit and Spratt Sand to the north (2001). 
Upper right panel: south end of Teignmouth beach with shore-attached transverse 
sandbank (2001). Lower panel: a typical configuration of sandbanks on the ebb tidal 
delta (2007). (Upper panel aerial images are courtesy of Prof. K. Dyer, Futurecoast 
Project, Department of the Environment, Food and Rural Affairs., U. K., 2000-2002). 

33. 

Figure 3.3: Teign inlet channel and nearshore 
distribution of surficial sediments (Grain types: 
sand; 500-1000 µm: coarse sand; 250-500 µm: 
(after van Lancker et al., 2004). 

bathymetry superposed with the areal 
>2 mm: gravel; 1-2 mm: very coarse 
medium sand; 125-250 µm: fine sand) 

36. 

Figure 3.4: Conceptual model of the littoral circulation for the Lyme Bay coastal region from The Parson and Clerk headland, Holcombe to the Hope's Nose, headland, 

ix 



Torquay, and in the vicinity of the Teign inlet entrance (inset) (after Bray et al., 2004). 
37. 

Figure 3.5: Teign inlet morphological evolution from February 1967 to September 1970 
after Robinson (1975). (Dark grey shading denotes land; light grey shading denotes 
sedimentary features, and arrows indicate the prevailing tidal current direction. 40. 

Figure 3.6: Spatial representation of the dominant hydrodynamic forces (left panel), and 
littoral sediment budget at the Teign inlet after Siegle (2003). 43. 

Chapter 4 
Figure 4.1: Argus image types from camera 3 showing Teignmouth town, the main 
beach and pier: a) snapshot, b) timex, c) variance, and d) daytimex. 50. 

Figure 4.2: a) Argus station location, b) station viewpoint, c) camera rig, d) Argus II 
collection strategy (after Holman and Stanley, 2007). 52. 

Figure 4.3: a) Rectified Teignmouth Argus image, b) camera model parameters (after 
Holland et al., 1997). 54. 

Figure 4.4: The manual contour extraction process using a focussed region of a rectified 
Argus image containing the sandbank. A set of descriptive parameters that define the 
feature are subsequently extracted using the Matlab `regionprops' function. The derived 
contour is displayed on the right side of the diagram overlaid with major and minor axes 
which cross at the centre of mass of the sandbank. 58. 

Figure 4.5: Contour depth histograms for individual events. 59. 

Figure 4.6: Cross-shore 2D section through the offshore sandbank from May 2003. The 
horizontal lines depict the target contour tidal level (-1.80 m ODN) and the depth of the 
shallowest contour (-1.25 m ODN). 61. 

Figure 4.7: Cross- and longshore pixel footprint maps for the Teignmouth camera setup. 
63. 

Figure 4.8: Contour coordinates dataset and pixel footprint variability in the a) cross- 
shore direction, and the b) longshore direction. 64. 

Figure 4.9: Event 1 contour times series. 72. 

Figure 4.10: Event 1 root-mean-square wave height (upper panel) and period (lower 
panel) time series. Bold lines indicate a 7-day running mean. 73. 

Figure 4.11: Event 2 contour time series. 75. 

Figure 4.12: Event 2 root-mean-square wave height (upper panel) and period (lower 
panel) time series. Bold lines indicate a 7-day running mean. 76. 

Figure 4.13: Event 3 contour time series. 78. 

X 



Figure 4.14: Event 3 root-mean-square wave height (upper panel) and period (lower 
panel) time series. Bold lines indicate a 7-day running mean. 79. 

Figure 4.15: Event 4 contour time series. 81. 

Figure 4.16: Event 4 root-mean-square wave height (upper panel) and period (lower 
panel) time series. Bold lines indicate a 7-day running mean. 82. 

Figure 4.17: Time series of the cross-shore (points) and longshore (stars) coordinates of 
the sandbank's centre of mass position for all events. The vertical hatched lines indicate 
the approximate time of sandbank shore-attachment. Event colour key: event 1: black, 
event 2: red, event 3: green, event 4: blue. 85. 

Figure 4.18: Argus image time series depicting the offshore genesis of a new sandbank 
and its subsequent merging with the elongate event 1 sandbank. 87. 

Figure 4.19: Time series of cross-shore COM position (red line), raw migration rate 
(thin black line) and, smoothed and interpolated migration rate (thick black line) for 
events 1 to 4. The lines denoted by Al to A4 (vertical) and Si to S3 (horizontal) 
indicate the approximate time of shore-attachment and common trends (medium to long 
term) in average migration rate respectively. Key: raw cross-shore COM position: red 
line, raw migration rate: thin black line, smoothed & interpolated migration rate: thick 
black line. 90. 

Figure 4.20: Scatter plots of cross-shore COM position versus migration rate with 
polynomial trend-line (dashed line) for events 1 to 4. The trend-lines highlight periods 
of acceleration and deceleration in the sandbank morphodynamics. 91. 

Figure 4.21: Time series of the estimated sandbank crest depth with error bars. The 
vertical lines denoted by Al to A4 indicate the approximate time of sandbank shore- 
attachment (Colour key: event 1: black, event 2: red, event 3: green, event 4: blue). 

97. 

Figure 4.22: Sandbank crest depth time series for individual events. The vertical lines 
denoted by Al to A4 indicate the approximate time of sandbank shore-attachment. 

99. 

Figure 4.23: Time series of cross-shore migration rate (black) and the ratio of offshore 
significant wave height to crest depth (red) for the onshore migration events 2 to 4: a) 
event 1, b) event 2, and c) event 3. Vertical hatched lines indicate the approximate time 
of shore-attachment. 103. 

Figure 4.24: Time series of geometric sandbank parameters for all events: a) area, b) 
length of cross-shore (black) and longshore (red) axes, and c) aspect ratio (cross-shore 
length/longshore length). The approximate times of sandbank shore-attachment for 
events 1 to 4 are denoted by the vertical hatched lines Al to A4 respectively. Event key: 
event 1 diamonds, event 2: asterisks, event 3: triangles, event 4: stars. 106. 

Figure 4.25: Scatter plots of geometric sandbank parameters for all events: a) area, b) 
length of cross-shore (dots) and longshore (diamonds) axes and c) aspect ratio. Colour 
denotes event number. 107. 

xi 



Chapter 5 
Figure 5.1: Classification of time series data (after Bendatt and Piersol, 1986). 115 

Figure 5.2: Argand diagram depicting the complex number representation of a vector. 
118_ 

Figure 5.3: Spectral peak coefficient (y-axis) versus degrees of freedom (x-axis) with 
curves denoting the 80,90 and 99% confidence levels for the upper and lower error 
bars. 121. 

Figure 5.4: The Valeport SLOT system secured in-situ using steel tubing. 126. 

Figure 5.5: Contour plot of the bathymetry and topography of the study site during the 
May 2003 fieldwork program with SLOT and ADCP positions (A) superimposed. The 
contours are in metres referenced to ODN. 134. 

Figure 5.6: Images depicting the sea state at Teignmouth on a) the 14th May (calm 
conditions) and b) the 16th May (low energy conditions). (SLOT 1A deployment 
position is pictured in the foreground). 136. 

Figure 5.7: Wind and offshore ADCP (h = -5.8 m ODN) wave measurements during the 
fieldwork program. The vertical lines denote times when there was a noticeable change 
in the significant wave height conditions. Note: wind direction is measured relative to 
True North and indicates the direction the wind is coming from. Wave direction is 
measured relative to the shore normal where a 180° wave direction indicates that the 
waves are propagating onshore in a perpendicular manner to the beach face). 137. 

Figure 5.8: Raw data time series from run 3 (inner surf zone) on the 16th May for water 
depth (h), cross-shore current (u), longshore current (v), and suspended sediment 
concentration (c). Note for u and v, a positive value denotes an onshore directed current, 
and a negative value denotes an offshore directed current. 139. 

Figure 5.9: a) current vector time series from each SLOT rig deployment position using 
data averaged over 17 minute intervals for the duration of one tidal cycle. For scaling 
purposes a vertical vector denoting an onshore directed current of 0.5 m. s-1 is positioned 
to the right of each vector time series plots, b) sandbank bathymetry with SLOT rig 
deployment positions overlaid. The abbreviations AM and PM relate to the 1st and 2nd 
tides of the day. 141. 

Figure 5.10: Comparison of hydrodynamics and sediment suspension under calm (dots) 
and low energy conditions (circles) for the offshore extremity SLOT position (IA): a) 
water depth (< h >), b) wave height (< H3 >), c) mean cross-shore current (< ü >), d) the 
standard deviation of the cross-shore current (oscillatory component) (< u' >), e) the 
mean suspended sediment concentration (< c >). Note: each plotted point is a 17 minute 
time average of the data. 148. 

Figure 5.11: Comparison of the cross-shore sediment transport under calm (black dots) 
and low energy conditions (white circles) at the offshore extremity SLOT position (IA): 
a) net cross-shore sediment transport (< uc >), the mean component of the cross-shore 
sediment transport (< WE >), and the oscillatory component of sediment transport (< uc' 
>). Each plotted point is a 17 minute time average of the data. 153. 

X11 



Figure 5.12: Third order cross-shore velocity moments computed for the offshore 
extremity position (1A) at the inner, mid- and outer surf zone positions for: a) calm 
conditions (14th May), and b) low energy conditions (16th May). The runs relate to the 
flood tide and positive values denote offshore transport, negative values denote onshore 
transport. 156. 

Figure 5.13: Cross-spectral analysis of suspended sediment concentration and cross- 
shore velocity for run 3,16th May: a) SSC auto-spectrum, b) u velocity auto-spectrum, 
c) c-u co-spectrum, d) c-u phase spectrum where white circles = non coherent phase 
relation, black circles = coherent phase relation, e) c-u cross-spectrum, and f) c-u 
coherence spectrum. 159. 

Figure 5.14: Sensors at the shoreward extremity SLOT rig position after excavation on 
the 16th May. 165. 

Chapter 6 
Figure 6.1: MIKE 21 modular framework. 168. 

Figure 6.2: Teignmouth bathymetry with the stations used in the Siegle (2003) model 
calibration and validation. 171. 

Figure 6.3: Contour plots showing the bathymetries for a subset of the model domain 
focussed on the sandbank morphologies: a) circular and b) elliptic. The contour units 
are depths (m) relative to an arbitrary datum and the cross-shore and longshore axes are 
relative to the model domain origin. 175. 

Figure 6.4: Modelled hydrodynamics and sedimentation for the emerged and submerged 
states of the circular morphology. Emerged state (h = -2.0 m): a) wave height and 
direction (vectors) with water depth (colour), b) current strength and direction (vectors) 

with Hs/h (colour), c) sediment flux strength and direction (vectors) with initial rate of 
bed level change (colour), Submerged state (h = -1.0 m): d) wave height and direction 
(vectors) with water depth (colour), e) current strength and direction (vectors) with Hs/h 
(colour), f) sediment flux strength and direction (vectors) with initial rate of bed level 
change (colour). 178. 

Figure 6.5: Modelled hydrodynamics and sedimentation for the emerged and submerged 
state of the elliptic morphology. Emerged state (h = -2.0 m): a) wave height and 
direction (vectors) with water depth (colour), b) current strength and direction (vectors) 
with H/h (colour), c) sediment flux strength and direction (vectors) with initial rate of 
bed level change (colour), Submerged state (h = -1.0 m): d) wave height and direction 
(vectors) with water depth (colour), e) current strength and direction (vectors) with Hs/h 
(colour), f) sediment flux strength and direction (vectors) with initial rate of bed level 
change (colour). 179. 

Figure 6.6: Hydrodynamic and sedimentation parameters for circular (black) and elliptic 
(red) morphologies from Table 7.4: a) ratio of maximum shoaling wave height to water 
depth, b) maximum current strength (m. s"1), c) maximum sediment flux (m . day''. m'), 
and d) mean initial rate of bed level change per unit area (cm. day-'. m "). Offshore 
significant wave heights of 0.5,1.5, and 2.5 m are denoted by circles, triangles and 
squares respectively. 183. 

X111 



Figure 6.7: Conceptual diagram of the mechanisms of broadening and elongation due to 
the patterns of erosion (light grey shading) and accretion (dark grey) around the 
sandbank. The large circle denotes the plan form of the underlying sandbank. 188. 

Figure 6.8: Comparison of the ratio of the longshore lengths scales of the erosion and 
accretion contours relating to initial bed level change rates of +0.1 cm. day"' per unit 
area under a range of water levels (h = -2.0, -1.0, +1.0, +2.0 m), and offshore significant 
wave heights (HS = 0.5,1.5,2.5 m) for the: a) circular morphology, b) elliptic 
morphology. The Hs /h ratios are computed from the offshore significant wave height 
and the minimum depth over the crest of the sandbank which is located at a level of - 
1.42 in relative to the arbitrary datum (h =0 m). Negative HS /h ratios indicate that the 
morphology is emerged. 189. 

Figure 6.9: 3D contour plots showing the original circular sandbank morphology (black 
contours) and the estimated morphology after (red contours) 30 cycles of neap (tidal 
range =2 m) and spring (tidal range =4 m) tides under a range of offshore wave 
heights: a) Hs = 0.5 m, neap tide, b) H, = 1.5 in, neap tide, c) Hs = 2.5 m, neap tide, d) 
H3 = 0.5 in, spring tide, e) H3 = 1.5 m, spring tide, and f) H, = 2.5 in, spring tide. The 
contours are at 0.5 m intervals and all axes dimensions are specified in meters relative to 
an arbitrary datum (h =0 m). 193. 

Figure 6.10: 2D plan view contour plots from the -2.0 m level from the original (black 
contours) and updated (red) sandbank morphologies in Figure 7.7: a) H, s = 0.5 in, neap 
tide, b) HS = 1.5 m, neap tide, c) Hs = 2.5 in, neap tide, d) Hs = 0.5 m, spring tide, e) If, 
= 1.5 m, spring tide, f) Hs = 2.5 m, spring tide. Contours are in specified meters at 0.5 in 
intervals and referenced to an arbitrary datum. 195. 

Figure 6.11: Modelled and measured current vector time series for the offshore 
extremity SLOT rig position (IA) under similar hydrodynamic conditions. a) in-situ 
measurement data from May 16th, 2003, and b) modelled data. A vector denoting a 0.5 
m. s' onshore directed current is plotted to the right of the time series for scaling 
purposes. 204. 

Figure 6.12: Modelled (black circles) and measured (white circles) hydrodynamics and 
sedimentation under comparative offshore wave and tide conditions for the offshore 
extremity SLOT rig position (IA): a) water depth, b) cross-shore current velocity, and 
c) cross-shore sediment flux (model) with the estimated suspended cross-shore sediment 
transport rate after Jaffe et al. (1984) (in-situ measurements). 207. 

Figure 6.13: Simulated hydrodynamics and sedimentation in the vicinity of the offshore 
sandbank at Teignmouth for the 16th May, 2003. Time high tide: a) current strength 
and direction, b) sediment flux strength and direction. Black hatched lines indicate the 
shoreline position and black triangles indicate the nearest grid point to the SLOT rig 
positions used in the fieldwork program. Reference vectors are plotted at the furthest 
right hand grid point position for scaling purposes. 209. 

Figure 6.14: Simulated hydrodynamics and sedimentation in the vicinity of the offshore 
sandbank at Teignmouth for the 16th May, 2003 Time = high tide +2 hours: a) current 
strength and direction, b) sediment flux strength and direction. Black hatched lines 
indicate the shoreline position and black triangles indicate the nearest grid point to the 
SLOT rig positions used in the fieldwork program. Reference vectors are plotted at the 
furthest right hand grid point position for scaling purposes. 210. 

xiv 

bL, 



Figure 6.15: Simulated hydrodynamics and sedimentation in the vicinity of the offshore 
sandbank at Teignmouth for the 16th May, 2003. Time = high tide +4 hours: a) current 
strength and direction, b) sediment flux strength and direction. Black hatched lines 
indicate the shoreline position and black triangles indicate the SLOT positions during 
the fieldwork program. Reference vectors are plotted at the furthest right hand grid point 
position for scaling purposes. 211. 

D 
Figure 6.16: Simulated hydrodynamics and sedimentation in the vicinity of the offshore 
sandbank at Teignmouth for the 16th May, 2003. Time = low tide: a) current strength 
and direction, b) sediment flux strength and direction. Black hatched lines indicate the 
shoreline position and black triangles indicate nearest grid point to the SLOT rig 
positions used in the fieldwork program. Reference vectors are plotted at the furthest 
right hand grid point position for scaling purposes. 212. 

Figure 6.17: Simulated hydrodynamics and sedimentation in the vicinity of the offshore 
sandbank at Teignmouth for the 16th May, 2003. Time = low tide +2 hours: a) current 
strength and direction, b) sediment flux strength and direction. Black hatched lines 
indicate the shoreline position and black triangles indicate nearest grid point to the 
SLOT rig positions used in the fieldwork program. Reference vectors are plotted at the 
furthest right hand grid point position for scaling purposes. 213. 

Figure 6.18: Simulated hydrodynamics and sedimentation in the vicinity of the offshore 
sandbank at Teignmouth for the 16th May, 2003. Time low tide +4 hours: a) current 
strength and direction, b) sediment flux strength and direction. Black hatched lines 
indicate the shoreline position and black triangles indicate the nearest grid point to the 
SLOT rig positions used in the fieldwork program. Reference vectors are plotted at the 
furthest right hand grid point position for scaling purposes. 214. 

Figure 6.19: Comparison of modelled cross-shore current strength due to the combined 
effects of wave and tidally driven currents (black circles), the tide only (red circles), and 
waves only (blue circles) for the four SLOT rig deployment positions on the 16th May 
2003: a) shoreward extremity (2A), b) central crest (1B), c) southern flank (2B), and d) 
offshore extremity (IA). Positive values denote onshore directed currents and vice 
versa. Abbreviation key: WD denotes wave dominance and TD denotes tidal 
dominance. 220. 

Chapter 7 
Figure 7.1: Histogram of monthly average significant wave height compiled from 
hourly pier-mounted pressure transducer data for a) event 1, b) event 2, c) event 3, d) 
event 4, and e) ensemble average. 233. 

Figure 7.2: Camera 4 image showing the relict sandbank on the terminal lobe on the 14th 
May, 1999.235. 

Figure 7.3: Index of the boreal winter (December-March) mean NAO constructed as the 
difference in sea level pressure between Lisbon, Portugal and Stykkisholmur/Reykjavik, 
Iceland from 1960 to 2007. The black line represents the index smoothed to remove 
fluctuations with periods less than 4 years. 236. 

xv 



Figure 7.4: Sensitivity of winter monthly mean significant wave height to NAO around 
northern Europe. (Image supplied to the Department for the Environment, Food and 
Rural Affairs courtesy of David Woolf, National Oceanographic Centre, Southampton). 

237. 

Figure 7.5: Conceptual model of shoal geometry evolution during onshore migration at 
the Teign inlet. Light and dark grey shaded areas represent regions of erosion and 
deposition respectively. QIN and Qour represent supply to the ebb tidal delta. DL and 
EL are the longshore length scales of the regions of deposition and erosion. Box codes 
denote the post genesis mechanisms of morphological change due to the tendency 
towards the predominance of submerged (PG1) or emerged (PG2) patterns of erosion 
and deposition. 241. 

Appendices 
Figure Al: Chronology of the Teign inlet ebb shoal system photographed from the Ness 
headland, 1976-1979. (Courtesy of S. Hook). Upper panel: main ebb channel is 
orientated north due to the well developed Ness bar, an irregular-shaped, shore-attached 
sandbank is in the process of being dissipated. Middle panel: the main channel is 
orientated east, genesis and mid-term migration sandbanks are present. Lower panel: the 
main channel is orientated east, the migrating sandbank has a large area with crescentic 
horns developing at the landward margin of both flanks. 249. 

Figure A2: Chronology of the Teign inlet ebb shoal system photographed from the Ness 
headland, 1982-1984. (Courtesy of S. Hook). Upper panel: the main channel is 
orientated to the east, offshore sandbanks are developing on the terminal lobe and a 
relict shore-attached bar on Teignmouth main beach is in evidence. Middle panel: 
sandbank in mid-term onshore migration with crescentic horns on the landward side, the 
terminal lobe is completely submerged. Lower panel: the main ebb channel is orientated 
to the east and the Ness bar is well-developed, mid-term migration and shore-attached 
sadbanks are observed indicating high sediment availability. 250. 

Figure Al: Chronology of the Teign inlet ebb shoal system photographed from the Ness 
headland, 1986-1990. (Courtesy of S. Hook). Upper panel: the main ebb channel is 
orientated to the north due to the well-developed Ness bar, the irregular-shaped, shore- 
attached bar is in the process of being dissipated. Middle panel: a large shore-parallel 
sandbank in mid-term migration has developed horns on the landward side. Lower 
panel: a single sandbank is in mid-term migration, there are no shore-attached bars in 
evidence on the main beach and the terminal lobe is completely submerged. 251. 

Figure A2: Chronology of the Teign inlet ebb shoal system photographed from the Ness 
headland, 1992-2009. Upper panel: A large oblique sandbank gas developed on the 
terminal lobe, the main channel has been deflected to the east, a shore-attached bar is in 
evidence (Courtesy of S. Hook). Middle panel; inner (shore-attached) and outer 
sandbanks occupy the nearshore region, both features are elongate and transversely 
oriented, (Argus image panorama). Lower panel: the sandbanks in the previous image 
have merged to form a single transverse bar approximately 600 m in length (Argus 
image panorama). 252. 

xvi 

bkl 



List of Tables 

Chapter 4 
Table 4.1: Contour dataset summary statistics. 59. 

Table 4.2: Sandbank descriptive parameters. 62. 

Table 4.3: Summary of the pixel footprint variability between morphological stages. 
65. 

Chapter 5 
Table 5.1: Third order velocity moments generated by the expansion of the cubed cross- 
shore velocity component. A tilde denotes the oscillatory component and angle brackets 
denote a time average. 124. 

Table 5.2: Velocity moment terms that constitute the sediment transport at the offshore 
extremity. 156. 

Chapter 6 
Table 6.1: Significant wave height validation parameters (Siegle, 2003). 171. 

Table 6.2: Water level validation parameters (Siegle, 2003). 171. 

Table 6.3: Horizontal current velocity validation parameters (Siegle, 2003). 172. 

Table 6.4: Summary of key hydrodynamic and sedimentation experimental parameters 
for circular and elliptic morphologies under a variety of stationary water level and wave 
height conditions. Values of Hs/h, current strength, and sediment fluxes are maximum 
values extracted from around the morphologies. The initial rate of bed level change is 
the mean value per unit area based on a1 km2 region of the model domain that 
encompasses the features. 182. 

Appendices 
Table A3.1: Data quality tables for the in-situ measurements at SLOT rig deployment 
position 1A (SLOTI P1) from the 14th May to the 16th May, 2003. P1 and P2 denote 
the first and second deployment positions respectively. AM and PM denote the first and 
second respective tides for a particular date; u and v denote the orthogonal current 
direction. Instrument abbreviations: EM: electromagnetic current meter, PT: pressure 
transducer, and OBS: optical back scatter sensor. 254. 

Table A3.2: Data quality tables for the in-situ measurements at SLOT rig deployment 
positions IA (SLOT! P1) and 1B (SLOT! P2) from the 16th May to the 18th May, 
2003. P1 and P2 denote the first and second deployment positions respectively. AM and 
PM denote the first and second respective tides for a particular date; u and v denote the 
orthogonal current direction. Instrument abbreviations: EM: electromagnetic current 
meter, PT: pressure transducer, and OBS: optical back scatter sensor. 255. 

Table A3.3: Data quality tables for the in-situ measurements at SLOT rig deployment 
positions 2A (SLOT2 P1) and 2B (SLOT2 P2) from the 15th May to the 17th May, 

xvii 



2003. P1 and P2 denote the first and second deployment positions respectively. AM and 
PM denote the first and second respective tides for a particular date; u and v denote the 
orthogonal current direction. Instrument abbreviations: EM: electromagnetic current 
meter, PT: pressure transducer, and OBS: optical back scatter sensor. 256. 

Table A3.4: Data quality tables for the in-situ measurements at SLOT rig deployment 
positions 2B (SLOT2 P2) from the 17th May to the 18th May, 2003. P1 and P2 denote 
the first and second deployment positions respectively. AM and PM denote the first and 
second respective tides for a particular date; u and v denote the orthogonal current 
direction. Instrument abbreviations: EM: electromagnetic current meter, PT: pressure 
transducer, and OBS: optical back scatter sensor. 257. 

xviii 



Acknowledgements 

First and foremost, I would like to extend my deepest gratitude to Dr. Mark Davidson 

for his guidance, patience and ceaseless support, without which, it would not have been 

possible to complete this research. Many interesting moments were shared by student 

and supervisor alike when studying the energetic surf zone conditions of the SW French 

coast at first hand. These times, which I also had the pleasure of sharing with Dr. Paul 

Russell and Dr. Jon Miles, were among the most memorable and enjoyable of my PhD 

experience. 

I would also like to thank my second supervisor Prof. David Huntley who provided 

invaluable guidance through the course of this research project. In addition to this, I 

would like to thank Pete Ganderton for his expertise during the fieldwork measurement 

program in May 2003. Under Pete's guidance it was possible to successfully deploy 

instrumentation in the highly challenging marine environment of an offshore sandbank 

in the mid term of it's onshore migration cycle. 

I would also like to thank The European Commission and the Coastview Project for 

funding this research. 

Finally, I would like to thank my parents for their patience and support, and my friends 

for just being there during the many challenging times, in particular: Helen, Ismael and 

Cecillia, Marcos, Tom, Simone and Chris, Julian and Faye, Ian. 

xix 



AUTHOR'S DECLARATION 

At no time during the registration for the degree of Doctor of Philosophy has the author 

been registered for any other University award. 

This study was financed with the aid of a studentship funded by the European Union V 

Framework program (1998-2002) and the Coastview Project (1998-2002) (contract no. 

EVK3-CT-2001-0054). 

The author attended regular internal seminars attended by PhD research colleagues and 

members of the academic staff. The author also attended a series of bi-annual meetings 

between Coastview Project partners from Holland, Italy and Spain (European academic 

institutes) and coastal management professionals. Three presentations of the in-situ 

measurements analyses of the present study were given at internal research group and 

Coastview Project meetings between August 2002 and March 2004, and a further 

presentation was made at the Plymouth Marine Laboratory (January, 2005). In addition 

to the above, the author also attended the 29`h International Conference on Coastal 

Engineering, Portugal, 2004 and presented research integrating field measurements with 

video remotely-sensed data. 

Signed: N(A 

Date: c(o(co 

xx 



1 Introduction 

1.1 The importance of coastlines and sedimentation transport 

Coastlines are of significant socio-economic importance due to their being heavily 

populated. For example it has been estimated that there are 1.2 billion people living 

within a 100 km2 stretch of coastline with densities three times larger than the global 

average (Small and Nicholls, 2003). The attraction of the coastline stems from its 

usefulness as a resource and consequently extensive areas of land in close proximity to 

the shoreline are developed. Climate change is generally considered to be driving 

changes to the prevailing nearshore hydrodynamic conditions of the world's coastlines. 

The most important changes with respect to coastal habitats are considered to be sea 

level rise and an increased incidence of storms which put coastal developments at an 

increased risk of inundation, and damage due to elevated wave energy levels. For the 

U. K. it has been estimated that coastal vulnerability to inundation due to sea level rise 

and increased storminess could cause the 'I in 100 year flood factor' to become a 'I in 

10 year factor' by 2100 (House of Commons Science and Technology Committee, 

2007). The changes in wave energy levels associated with climate change have an 

additional importance with regard to sedimentary coasts because they initiate changes to 

the littoral transport. Beaches are the buffer zone between the turbulent ocean and 

developed coastal environments and their physical state is determined by the net 

sediment budget of the system. In respect of the estimated total length of the coastline 

of England and Wales, this is particularly significant because 30% (1532 km) is 

comprised of sandy beaches, of which 96% (1475 km) is unprotected 

(www. geog. plymouth. ac. uk/research/gmasselink/classification. htm1). 
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Nearshore sandbanks occur in a wide range of marine environments but in the coastal 

zone they are particularly important because they interact and modify the characteristics 

of the local wave and tidally driven current regimes, and thereby exert a physical 

control on the morphological adjustment and stabilisation of the adjacent coastline 

(Dyer and Huntley, 1999). Nearshore sandbanks are increasingly being used as a 

resource, for example for beach nourishment intervention schemes and as aggregates for 

the construction industry. Around the U. K. in the decade preceding 2004, it was 

estimated that between 13 and 16 million cubic metres of sand and gravel were mined 

per year (Hitchcock and Bell, 2004). Studies have revealed that the removal of large 

volumes of sediment from nearshore features have lead to local increases in the wave 

energy incident at the shoreline (Byrnes et al., 2004; Maa et al., 2004; Stone et al., 

2004). Therefore anthropogenic modification of nearshore accumulations of sediment 

can also lead to changes in the net sediment budget along a section of coastline hence 

initiate changes to the evolution of shoreline. 

On sedimentary coastlines shoreline change is typically manifest by the erosion and 

accretion of beaches, therefore their morphodynamic state is considered to be 

particularly important in relation to the ability of a section of coastline to mitigate the 

effects of change (Stive, 2004). The shoreline response typically associated with climate 

change and the mining of nearshore sandbanks as defined earlier is often characterised 

by erosion. For the U. K. coastline a recent estimate stated that 17% of it is eroding, but 

in respect of the combined English and Welsh coastlines this figure is significantly 

higher at 53% due to their large proportion of sandy beaches (Marine Climate Change 

Impacts Partnership, 2008). This highlights the necessity for better scientific 

understanding of the physical processes concerned so that these populated and eroding 

sections of coastline can be properly managed. 
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Sections of sedimentary coastline in which there are inlets often contain large volumes 

of sediment in the nearshore beaches and sandbanks and consequently the 

morphodynamics are particularly complex (Komar, 1996; Mehta, 1996). Our ability to 

understand these important marine environments is hindered by the lack of thorough 

understanding of nearshore physical processes. Mehta (1996) stated that this lack of 

understanding, and specifically in the case of littoral bypassing in the vicinity of inlet 

entrances, has been a deterrent to the development of global models for the prediction of 

these phenomena which are of significant importance to the evolution of the adjacent 

shorelines. Mehta (1996) also concluded that ebb tidal delta and swash platform hydro- 

and sediment dynamics are poorly understood and should therefore be a high research 

priority derived from detailed fieldwork and numerical modelling studies. Similarly, the 

motivation for the Gaudiano and Kana (2001) ebb shoal research was cited as being the 

fact that relatively little is known about the frequency and magnitude of discrete shoal 

bypassing events despite their great importance. Evidently, more research is required to 

improve our knowledge of the physical processes that govern their morphodynamic 

evolution in order to aid the development of improved approaches to numerical 

modelling and the predictability of these highly complex marine environments. 

In respect of the above the aim of the present study is to contribute to the knowledge of 

ebb shoal morphodynamics by investigating the Teign inlet on the south Devon coast of 

the U. K. This is achieved using a multifaceted approach that integrates video remote 

sensing with in-situ measurements and numerical modelling. The forces that act to on 

the system and the morphodynamic response are investigated in detail over a range of 

spatial and temporal scales which are defined in Figure l. 1. 
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Figure I. I: Spatial and temporal scales in relation to coastal morphological change, (modified from 

Cowell el al., 2003). 

The smallest scales of interest are the micro scale physical processes associated with the 

shoaling and breaking of individual waves which occur over time and spatial scales of 

seconds, and centimetres to meters respectively. Also of interest to the present study are 

the aggregated effects of the wave and tidally driven processes over a single tidal cycle 

(micro temporal scale) and over the multiple tidal cycles that comprise the spring-neap 

variation (micro to meso time scale). These aggregated physical processes alter the 

morphology of the ebb tidal delta's individual shoals and channels on spatial scales in 

the range of meters to hundreds of meters (micro to lower macro spatial scales) where 

the latter are the largest spatial scales of interest to the present study. The largest 

temporal scales of interest concern the morphodynamic periodicity of individual 

sandbanks on the ebb tidal delta which occur over years (macro time scale), and of the 

volume changes to the delta which occur over decades (lower mega time scales). 
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The present study was funded by the European Union V Framework program (1998- 

2002), and the Coastview Project (contract no. EVK3-CT-2001-0054). The latter also 

provided the resources to conduct the fieldwork program. For further detailed 

information on the project the reader is referred to the project website 

(http: //thecoastviewproject. org). 

1.2 Specific objectives 

The general aim of gaining a better understanding of the Teign inlet ebb shoal 

morphodynamics is comprised of the following set of specific objectives: 

1. To characterise and quantify the nature of the ebb shoal morphodynamics over short 

to long term time scales (weeks to years), in which the principle component is the 

episodic landward migration of large discrete shoals. 

2. To determine which physical processes are responsible for the observed behaviour. 

3. To determine the relative contrihutions of the primary hydrodynamic forces due to 

wave and tidal energy through a tidal cycle (short term). 

4. To determine the role of the spring-neap variation in tidal water level on the landward 

migration of the ebb shoals. 

5. To explain the persistent elongate and transversely oriented geometry of the shoals 

through the course of their landward migration. 

In order to achieve the primary objectives, the study focuses on the morphodynamics of 

individual shoals on the ebb tidal delta from genesis to shore-attachment and their 

subsequent dissipation. 
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1.3 Thesis overview 

The present study begins in Chapter 2 with a general review of the knowledge 

concerning inlet sandbank (ebb shoal) morphodynamics. The nomenclature is defined 

and the hydrodynamics and sedimentation are described over a range of temporal and 

spatial scales. In this chapter the Teign inlet is also framed in context with the observed 

trends in geomorphology and energy. 

In Chapter 3 there is a general description of the Teign inlet geomorphology and 

environmental settings in order to provide the reader with the relevant background 

knowledge concerning the primary factors that determine the nature of the ebb shoal 

morphology at the location. This is followed by a review of ebb tidal delta 

morphodynamics utilising a combined photographic archive and scientific research 

database spanning 35 years of the inlet's development. This provides an invaluable 

insight in to the inter-decadal morphological evolution. 

In Chapter 4 the nature of the landward migration of the sandbanks on the ebb tidal 

delta is characterised and quantified. This was achieved using a set of descriptive 

parameters that were derived from a time series of plan view contours of discrete 

sandbanks. The chapter details the methodology and defines the dataset which were 

extracted from Argus video images (Holman and Stanley, 2007). During this time the 

Argus station recorded four individual sequences of the onshore migration of a 

sandbank on the ebb tidal delta. Their derived parameters are compared and contrasted, 

in order to identify trends that help to elucidate the physical processes responsible for 

the observed behaviour. 
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Chapter 5 concerns the analysis of a unique dataset of co-located, near bed Eulerian 

measurements that were taken from the surface of a shoal in mid term migration. The 

fieldwork measurement program was undertaken in order to aid in the determination of 

the physical hydrodynamic and sediment transport processes responsible for the 

observed morphodynamic behaviour. The parameters measured were water surface 

elevation, orthogonal current strength and direction, and suspended sediment 

concentration. The chapter presents the analyses of the measured parameters in the time 

and frequency domains. 

Chapter 6 is the description and presentation of the numerical modelling experiments 

undertaken which were twofold. Initially, simplified boundary conditions are used to 

investigate the combined effect of wave-driven processes and variable water levels 

(stationary) on the patterns of erosion and accretion on a discrete nearshore sandbank. 

The variability in the patterns of erosion and deposition is demonstrated to exert an 

important control on the sandbank's sedimentation through a series of highly idealised 

or synthetic experiments. In order to determine the effects of the meso to macro tidal 

current component of the hydrodynamic regime, subsequent numerical simulations were 

conducted using the in-situ data and measured bathymetry as model boundary 

conditions. Bed level updating was not incorporated into these experiments so the 

morphological feedback mechanisms are not included in the analysis. 

In Chapter 7, the results of the primary data analyses are synthesised with the secondary 

data to provide an explanation for the observed persistent onshore migration of the 

nearshore sandbanks on the Teign inlet ebb tidal delta over a range of spatial and 

temporal scales. A conceptual model that accounts for the plan form morphological 

evolution of the migrating sandbanks is proposed. 
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The final chapter in the thesis (Chapter 8) summarises the principle findings of the 

study in a formal set of conclusions framed in the context of the specific objectives that 

were set out in Chapter 1. 
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2 Literature review 

2.1 Basic inlet concepts and nomenclature 

The term inlet is often applied to a wide variety of environments and this is illustrated 

by the following sample definition which relates to the coastal engineering discipline 

and states that an inlet is: 

"A region connecting two or more large bodies of water by a relatively short and narrow 
channel. The water bodies may be an ocean and lagoon, a large lake and a bay, or a 
river entering a sea or lake" (Seabergh, 1999). 

For the purpose of this review the definition is used to refer to the juncture between the 

ocean and landward bodies of water at river mouths (estuarine inlets) and barrier island 

inlets. As with the term inlet, estuary can also be applied to a range of river mouth inlets 

but in this review the definition is limited to those with enclosed (narrow) entrances, for 

example due to the growth of a spit as observed at the Teign and adjacent Exe inlets. 

Estuarine and lagoonal inlets have markedly different physiography of the inland area. 

River valleys are typically narrow and sinuous inland, and widen toward the mouth, 

whilst barrier island lagoons are bodies of water separated from the ocean by a 

relatively narrow, essentially shore-parallel band of land. Hayes (1975) studied the 

morphology of sand accumulations in inlets in the United States of America (U. S. A. ), 

and despite their diversity, common attributes were found which permitted the 

definition of a number of key components that constitute the basic tidal inlet system. 

The model which was based on studies of meso-tidal inlets comprises a main channel 

with two sedimentary features deposited at each end. These are termed the flood and 

ebb tidal deltas in the respective landward and seaward distal portions of the channel. 

Though the basic inlet model was originally derived for lagoonal inlets, it is equally 

applicable to estuarine inlets that share the same key attributes. The components of the 

system are described in the following paragraph to familiarise the reader with inlet 
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nomenclature. However, since this study is an investigation in to the morphodynamics 

of components of the ebb tidal delta sedimentary system, the flood tidal delta is omitted 

from further consideration, other than to acknowledge that their presence (e. g. The Salty 

inside the Teign inlet entrance), represent a potential source or sink for marine 

sediments to or from the ebb tidal delta respectively. The important influence of the ebb 

tide currents that propagate through the entrance of inlets on the formation and 

morphodynamic evolution of ebb tidal deltas is encapsulated in the name of these 

sedimentary features. The plan form geometry of the ebb and flood tidal deltas varies 

considerably in response to the resulting complex three-dimensional flow regime. In 

some cases, one of these two shoal systems may become well developed whilst the 

other is entirely absent depending on the nature of sediment exchange between inner 

and outer regions of the inlet (FitzGerald et al., 2002). 

The generic components of an ebb tidal delta are defined schematically in Figure 2.1 

where the main channel is incised into a sand (swash) platform that defines the general 

extent of the sedimentary feature. The seaward extremity of the distal portion of the 

channel is marked by an accretionary region called the terminal lobe. Secondary 

channels, often termed flood or spill-over channels link with the main channel and lie 

between the tidally exposed sandbanks on the sand platform. The sandbanks lying on 

the sand platform comprise the transversely oriented marginal linear bars which flank 

the main channel, and the more morphologically irregular sandbanks that form in the 

region of the terminal lobe (Hayes, 1975,1980; Hine, 1975; Oertel, 1972). The latter 

have been termed swash bars (see Figure 2.1) by some authors due to their formation 

being associated with wave action but since they are morphologically different to the 

swash bars associated with natural beaches, hereafter they are simply referred to as 

sandbanks or shoals. The primary sediment transport pathways in Figure 2.1 which are 
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denoted by the black arrows indicate that the longshore transport is directed toward the 

inlet entrance and offshore in the main channel where sediment is subsequently 

transported offshore to the terminal lobe. One of the key components that define inlet 

sedimentation is whether the reversing currents in the main channel are dominated by 

those during the ebb or flood tide. The current dominance in the main channel is 

principally a function of the balance between tidal and fluvial discharges but is also 

affected by the level of wave energy incident at the entrance (Section 2.2). In the meso- 

tidal model in Figure 2.1 it is the former that dominate the regime and lead to the well- 

developed ebb tidal delta depicted in the figure. 
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Figure 2.1: Typical ebb tidal delta morphology with tidal flow residuals and dominant transport directions 
indicated by arrows (after Hayes, 1975,1980). 

Ebb tidal flows dominate the main channel at the Teign inlet and consequently the 

model defined in Figure 2.1 is broadly representative of the observed morphology in the 

nearshore region. The primary difference is geomorphological whereby the Ness 

headland on the southern flank creates an offset configuration of the points of land 

ý 

11 

CHANNEL MARGIN 
LINEAR BAR. 



forming the inlet entrance. This configuration has resulted in the ebb tidal delta 

developing an asymmetric plan form in the nearshore region to the north of the channel 

(Section 3.2). The Teign inlet's ebb tidal delta shares other common attributes with the 

meso-tidal model shown in Figure 2.1 such as well defined main channel with a 

marginal linear bar on the northern flank (Spratt Sand), and additional sandbanks 

(swash bars) that form further offshore. Similarly, the nearshore region adjacent to the 

inlet is considered to be a sediment convergence zone as in the case of the meso-tidal 

model and this in evidence by the well developed system of sandbanks around the 

entrance. 

The geometry and distribution of the ebb tidal delta's channel margin linear bars and 

sandbanks, and their morphodynamic evolution are controlled by a wide range of 

factors (Section 2.2). Channel margin bars are often relatively static and in a moribund 

state, whereas the sandbanks that form on the terminal lobe are dynamic. Because the 

latter transport large volumes of sediment O(103 to 106 m) landward they are 

considered particularly important to the development of the adjacent shorelines 

(FitzGerald, 1988; Gaudiano and Kana, 2001). It is this type of sandbank that is the 

subject of the present morphodynamic study, and hence the review focuses on inlet 

sedimentation in relation to these features. The less important channel margin linear 

bars are not considered further, but it is acknowledged that these features are also 

intrinsic to inlet sedimentation as in the case of the flood tidal delta. 

2.1.1 Physical characteristics of ebb tidal delta sandbanks 

The discrete sandbanks that are observed on the terminal lobe are considered to be 

formed under the swash action the incident waves (Hayes, 1975; Hine, 1975). The scale, 

geometry and distribution of the ebb tidal delta and the overlying sedimentary features 
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is dependent on the supply of sediment, the relationship between incident wave and 

tidally-driven flow fields, freshet effects and geomorphologic factors such as headland 

sheltering, inlet throat geometry (FitzGerald, 1988,1996; FitzGerald et al., 2002; 

Hayes, 1975,1980; Hubbard et al., 1979; Hume and Herdendorf, 1990, among others). 

The most important of these factors are considered to be the geometry of the points of 

land forming the entrance, and the balance between the wave and tidally driven 

hydrodynamic forces where the latter can be significantly affected by large fluvial 

discharges during periods of high rainfall (Fitzgerald et al., 2002). The sandbanks that 

form on the terminal lobe exhibit diverse plan form geometry and orientation during 

their evolution in response to the chronology of the forcing. They are considered to have 

typical elevations in the range 1 to 3 in, major axis length scales of the order of 

hundreds to thousands of metres, minor axis length scales 0(50-100 m) (Fitzgerald et 

al., 2000), and gradients of up to 4-6° with seaward slopes typically 1-2° steeper than 

landward slopes (Buonaiuto and Kraus 2003). 

The diverse morphology and dynamic of these features is encapsulated in the selection 

of conceptual morphologic models of their evolution after FitzGerald (1988) as shown 

in Figure 2.4 (Section 2.2.1). The models depict the morphodynamic evolution of the 

discrete sandbanks associated with three inlet types through their representation in three 

vertically aligned chronological time steps. Elongate features with a range of 

orientations from shore-parallel to transverse are in evidence, along with relatively 

rotund (similar major and minor axis length scales) and arcuate or crescentic features. 

These can either be inter- or sub-tidal, and may be shore-attached or detached, and they 

are characterised by relatively steeper landward facing gradients (slip faces) than 

seaward facing gradients (see Figure 2.5, Section 2.2.1). These inlet models encapsulate 

the irregular morphology and changes in area of the sandbanks that form on the terminal 
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lobe through their evolution in response to the forcing chronology, and the 

geomorphological constraints of the different types of inlet system. Before these are 

further discussed (Section 2.2.1) the following section provides an overview of the 

relevant more generally applicable morphologic models of inlet ebb tidal deltas. 

2.2 Morphologic models of ebb tidal deltas 

Since the 1970's intensive inlet research particularly in the U. S. A. has resulted in the 

development of many conceptual morphologic models of inlets for example those after 

Galvin Jr. (1971), Hayes (1975,1980), Hubbard et al. (1979), Oertel (1975,1977), Sha 

and Vandenberg (1993), and Hicks and Hume (1996) among others. Two important 

generic concepts emerge from these models which are that the ebb tidal delta 

morphodynamics are governed firstly by the geometry or configuration of the land 

points forming the inlet entrance, and secondly by the hydrodynamic balance between 

the wave and tidal regimes which in turn control the inlet sedimentation processes. In 

this section an overview is presented of a selection of the morphologic models that 

demonstrate the observed variability in respect of these key components of the inlet 

system. 

Galvin Jr. (1971) proposed a classification system for barrier island inlets based on the 

configuration or geometry of the entrance points which is equally applicable to estuarine 

inlets in terms of their basic form. The classification comprises four inlet types which 

are the over-lapping, updrift, downdrift, and negligible offset inlets (left panel, Figure 

2.2). The concept is based on a qualitative relationship between morphological 

development shoreline and the magnitude of net longshore transport (littoral drift). In 

the figure the magnitude is depicted by the balance between the opposing transport 

components QRI and QL, which are directed toward the right and left respectively. 
14 
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Figure 2.2: Morphologic inlet models of barrier island inlets (left panel) after Galvin (1971), and estuarine 
inlets (right panel) (after Hicks and Hume, 1996). 

The inlet types form a continuum in terms of the net longshore transport (toward the 

right of the figure) where the largest is associated with the overlapping offset and this 

decreases to approximately zero net transport in the negligible offset inlet type. Coasts 

with high net longshore transport rates, such as in the overlapping and updrift offset 

inlets cases, are typically wave-dominated and high sediment supply to the updrift 

shoreline enables it to accrete (seaward growth). In the downdrift offset case, sediment 

supply due to the net longshore transport is comparatively small and the wave refraction 

and sheltering effects of the well-developed asymmetric ebb tidal delta on the downdrift 

shoreline are considered to be the key processes in the formation of this type of offset 

(Douglass, 1991; Hayes et al., 1970). In the negligible offset inlet, the net longshore 

transport is close to zero and there is no preferential accretion or erosion on either 

shoreline but in contrast to the other inlet types, the ebb tidal delta is relatively 

symmetrically-distributed about the entrance. 
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Inlets occur in a wide range of settings and consequently it has long been recognised 

that some have positional stability whilst others have been observed to be more transient 

(Escoffier, 1940). Galvin Jr. (1971) proposed a classification for inlet positional 

stability in which there are three classes: the primary, secondary and temporary types. 

The first two represent stationary and migratory (transient) inlets entrances and the third 

type represent ephemeral inlets caused for example, by the storm-induced breach of a 

barrier island. Examples of the primary type which are positionally stable include 

estuarine inlets on rocky coasts such as the Teign inlet where the stability is derived 

from the stratigraphy. The secondary and temporary types are typically found on sandy 

barrier island coasts for example on the southeast Atlantic coast of the U. S. A., which 

are prone to morphological change due to the channel bank composition not being 

resistant to the erosive hydrodynamic processes (FitzGerald, 1988). Secondary inlet 

entrances that migrate tend to do so in the direction of dominant littoral drift, these 

changes and those associated with the temporary type occur on time scales from the 

frequency of individual storm events (seasonal) to hundreds of years (Van Rijn, 1998). 

Hicks and Hume (1996) classified the natural (estuarine) inlets of the rocky pocket-bay 

east coast of North Island, New Zealand based on ebb tidal delta shape which are often 

laterally constrained by the presence of rock outcrops. Four inlet types were proposed 

which are the free form, constricted, high angle half delta, and low angle half delta types 

(right panel, Figure 2.2). The free form type denotes the case where the ebb tidal delta is 

symmetrically distributed about the main channel, and where the major axis is 

alongshore oriented due to high littoral drift conditions for example on exposed coasts. 

The remaining three types have markedly different ebb tidal delta geometry but are 

geomorphologically similar due to the offset imposed by the presence of rock outcrops. 

The constricted type is where the relationship between the incident wave conditions and 
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the effects of the offset permit only negligible growth of the ebb tidal delta in both the 

alongshore and cross-shore dimensions. In the case of the low angle half delta inlet type 

the underlying geology forces the channel to be aligned with a small angle relative to 

the shoreline and consequently sediment is deposited on the sheltered shoreward flank 

in elongate shore-parallel deposits. Alternatively, in the high angle half delta case the 

channel is positioned against the rock outcrop causing its transverse orientation and the 

growth of the ebb tidal delta offshore on the opposing side; wave sheltering and 

refraction effects of the rock outcrop and ebb tidal delta are considered important. These 

characteristics most closely resemble the Teign inlet configuration in that it is a rock 

bound estuarine inlet due to the presence of the Ness headland that has an elongate and 

relatively static channel margin bar (Spratt Sand) (Figure 3.2). 

Oertel (1975,1977) classified inlets on the coast of Georgia, South East, U. S. A. based 

on the geometry of the ebb tidal delta as determined by the balance of longshore 

currents due to waves and the transverse tidal currents in the main channel. The concept 

concerns inlets of the negligible offset configuration after Galvin Jr. (1971) and four 

types are proposed which are shown in the left panel of Figure 2.3 in which the black 

arrows indicate the relative forces due to the orthogonal current components. In Type A 

inlets the longshore currents predominate and the offshore directed current in the main 

channel is relatively weak whilst the opposite occurs in Type D inlets. The resulting ebb 

tidal deltas reflect the relative strengths of the main channel currents where in the Type 

A inlet the channel is shorter and terminated by a well-developed terminal lobe on 

account of the offshore directed channel currents being comparatively weak. However, 

in the Type D inlet the stronger reversing currents cause the channel to extend further 

offshore and the terminal lobe to be less well developed. The Type D inlet main channel 
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currents are also responsible for the formation of channel margin bars and for deposits 

of sediment in the inlet entrance. 
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Figure 2.3: Morphologic models of barrier island inlet ebb tidal delta geometry, Georgia, southeast USA, 
left panel after Oertel (1975), and right panel after Hubbard et al. (1979). 

The Teign inlet is considered to approximate to an offset variation of the Type D inlet 

since it is defined by the principle Type D inlet attributes such as strong ebb tide 

channel currents and marginal bars. Oertel (1975) also describes the bars as having 

gently sloping offshore facing slopes and steep shoreward facing slip faces which is also 

a characteristic of the dynamic Teign inlet sandbanks that are the focus of the present 

study (Figure 4.6). The principle difference of the Teign inlet from the Type D inlet 

being that the former has an asymmetric ebb tidal delta on account of it being rock 

bound to the south by the Ness headland. The remaining two inlet types concern 

variations of the Type A inlet where one or other of the longshore currents dominates 

the nearshore leading to asymmetric ebb tidal delta growth in the downdrift direction. 

Hubbard et al. (1979) also classified Georgia inlet ebb tidal deltas on the basis of the 

morphology and distribution of the shoals which in this model is considered to be 
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primarily a function of the hydrodynamic balance between wave and tidal energy. The 

model is based on the concept that deposition in the vicinity of inlet entrances occurs in 

regions where the two current regimes are in approximate equilibrium and defines three 

inlet types which are the wave-dominated, tide-dominated and transitional types (right 

panel, Figure 2.3). In the case of the wave-dominated inlets, sediment is pushed through 

entrance as the onshore wave driven current component exceeds the ebb tide dominance 

in the main channel which typically occurs in micro-tidal settings. Consequently the ebb 

tidal delta is poorly developed or absent, but in transitional inlets which tend to have the 

widest entrances, sediment is deposited in close proximity to the entrance under the 

influence of approximately equal wave driven and tidal forces. The tide-dominated inlet 

resembles the basic inlet model defined by Hayes (1975,1980), and described in 

Section 2.1 in which the primary components comprise the main channel, channel 

marginal bars and the terminal lobe at the distal end of the channel. These inlets 

typically occur where conditions are meso tidal or larger allowing the reversing currents 

in the narrow and deep main channel to develop jet-like flow conditions during peak 

ebb tide (flow acceleration). Conversely on the flood tide the inlet entrance hydraulics 

more closely resemble funnel conditions (flow deceleration) hence there is a tendency 

for there to be complex flow asymmetry over the tidal cycle and particularly in the main 

channel. Flow asymmetry can be manifest in terms of the relationship between the times 

of peak flow rates and high or low tide, in the magnitude of the ebb and flood tide 

current maxima, and in the duration of the flood and ebb tides (Hayes, 1980; Walton, 

2002). The tide-dominated inlets defined in this model are also distinguished by the 

presence of landward oriented sandbanks on the ebb tidal delta and this factor along 

with those previously cited, strongly reflects the nature of the Teign inlet ebb tidal delta 

system though the offset entrance configuration means that the shoal system has 

developed only on one side of the main channel. 
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The presence of a well-developed ebb tidal delta in tide-dominated inlets is due to the 

ebb dominance of the flow regime in the main channel under typical hydrodynamic 

conditions. However, with the exception of sheltered coasts, superposed on the tidal 

current effects are those due to waves which further complicate the hydrodynamic 

regime by assisting and opposing the flood and ebb tide currents respectively. The 

importance of the wave-driven component is also evident in the morphodynamic 

response of the individual landward migrating sandbanks which initiate significant 

shoreline changes upon attachment. Sediment involved in this process has often been 

transported to the updrift side of the inlet entrance by the prevailing longshore transport 

and then bypassed around the inlet entrance. This important process in natural inlet 

morphodynamics is term sediment bypassing and this is defined and discussed in the 

flowing section. 

2.2.1 Natural sediment bypassing at inlet entrances 

The basic inlet sediment bypassing concept is that sediment supplied to the updrift side 

of an inlet is transported to the downdrift side by involvement of the channel and ebb 

tidal delta (FitzGerald et al., 2000). The models shown in Figure 2.4 are part of a set of 

nine morphologic bypassing models defined in the United States Army Corps of 

Engineers (U. S. A. C. E. ) technical report on natural inlet bypassing mechanisms by 

FitzGerald et al. (2000). The models are based on the work of Bruun and Gerritsen 

(1959) and FitzGerald (1982,1988) among others and depict inlet evolution in terms of 

the growth and migration of the sandbanks that form on the terminal lobe and the 

development of the main channel which may change position or orientation in response 

changing hydraulics. The temporal evolution of the sandbanks is depicted in relation to 

typical tide dominated inlet conditions as opposed to those due to extreme events such 

as storm surges that can overwhelm the ebb dominated main channel flow regime and 
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significantly alter the natural sedimentation processes (FitzGerald et al., 2000). In order 

to be concise the following review of bypassing models is limited to three types which 

are the most morphologically similar to the Teign inlet. These are the stable inlet (model 

1), the ebb tidal delta breaching inlet (model 3), and the outer channel shifting inlet 

(model 4) as shown in Figure 2.4. The principle attributes that the Teign inlet ebb tidal 

delta shares with these three models are the landward migrating sandbanks that form at 

the distal margins of the main channel and the migration of the channel under changing 

hydraulics. The inlet types omitted are those in which the morphological evolution is 

related to the breaching or migration of entrance spits, wave dominance or human 

intervention (e. g. construction of entrance jetties). Whilst the Teign inlet entrance is 

enclosed by the Denn spit, the feature is not subject to significant morphological change 

or prone to breaching as in the case of the spit related models. Therefore, other than to 

enclose the Teign inlet entrance the Denn spit is not considered have a primary role in 

the morphodynamics of the sandbanks on the ebb tidal delta over the time scales of 

interest (Section 1.1). 

One of the most important aspects of the morphodynamic evolution of these inlets is the 

formation and landward migration of large coalescing sandbank complexes. A primary 

cause of the release of the sandbanks from the outer margin of the ebb tidal delta 

(terminal lobe) is considered to be the realignment of the main channel (Gaudiano and 

Kana, 2001), though exceptions to this do occur (model 1, Figure 2.4). The subsequent 

landward migration of the sandbanks is considered to be caused by landward directed 

currents over the features due to the action of wave swash hence the term swash bars as 

used by some authors (Borrelli and Watts, 2003; Hayes, 1975; Hine, 1975; Robin et al., 

2007). 
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The coalescence of sandbanks is also hypothesised to be caused by the features 

decelerating with their progression up the shore face under decreasing exposure to the 

hydrodynamic sediment transport processes (FitzGerald, 1988). This is depicted in 

Figure 2.5 which illustrates the difference in exposure for a landward migrating 

sandbank of a constant elevation. As a consequence of the increasing subaerial exposure 

the outer bars are considered to have higher migration rates than inner bars for a given 

wave energy level. 
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Figure 2.5: Conceptual profile model of onshore sandbank migration on the ebb tidal delta (after FitzGerald, 
1988). 

Prior to shore-attachment, the sheltering effects of a migrating sandbank may initiate a 

temporary reversal of the prevailing longshore current direction on the adjacent 

shoreline and at such times sediment is typically transported toward the inlet entrance 

leading to the temporary recirculation of sediment around the entrance as opposed to it 

being transported farther down the coast and out of the inlet sedimentation system. 

Upon shore-attachment, the migratory sandbanks release large volumes of sediment to 

the downdrift shoreline providing a natural form of beach nourishment which typically 

recurs over a4 to 10 year period. The process is usually shorter for smaller inlets which 

have smaller ebb tidal deltas (Walton Jr and Adams, 1976), therefore smaller volume 

bypassing sandbanks. These are formed closer to the shoreline due to the smaller ebb 
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fhe coalescence of sandbanks is also hypothesised to be caused by the features 

decelerating with their progression up the shore face under decreasing exposure to the 

hydrodynamic sediment transport processes (FitzGerald, 1988). This is depicted in 

Figure 2.5 which illustrates the difference in exposure for a landward migrating 

sandbank of a constant elevation. As a consequence of the increasing subaerial exposure 

the outer bars are considered to have higher migration rates than inner bars for a given 

wave energy level. 
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Figure 2.5: Conceptual profile model of onshore sandbank migration on the ebb tidal delta (after FitzGerald, 
1988). 

Prior to shore-attachment, the sheltering effects of a migrating sandbank may initiate a 

temporary reversal of the prevailing longshore current direction on the adjacent 

shoreline and at such times sediment is typically transported toward the inlet entrance 

leading to the temporary recirculation of sediment around the entrance as opposed to it 

being transported farther down the coast and out of the inlet sedimentation system. 

Upon shore-attachment, the migratory sandbanks release large volumes of sediment to 

the downdrift shoreline providing a natural form of beach nourishment which typically 

recurs over a4 to 10 year period. The process is usually shorter for smaller inlets which 

have smaller ebb tidal deltas (Walton Jr and Adams, 1976), therefore smaller volume 

bypassing sandbanks. These are formed closer to the shoreline due to the smaller ebb 
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tidal delta thereby providing less time for coalescence and migration to occur before 

shore-attachment and dissipation (FitzGerald, 1988; FitzGerald et al., 2000). 

Ebb tidal delta breaching inlets (Figure 2.4b) also have stable entrances but the main 

channel cyclically undergoes a gradual rotation toward the downdrift shoreline under 

the preferential deposition of sediment on the updrift side of the ebb tidal delta. The 

increasing deflection of the main channel which can become acute, causes increasingly 

inefficient hydraulics until conditions eventually allow the flow regime to breach the 

ebb tidal delta and form a new more direct channel with similar alignment to the 

original prior to deflection. Breaching typically occurs over 6 to 12 month time scales or 

in response to individual storms and once this has occurred, the abandoned channel 

undergoes a natural process of infilling. These inlets also experience the same sandbank 

morphodynamics as in the case of stable inlets but may involve larger volumes of 

sediment and this bypassing process is estimated to repeat over similar intervals as those 

in the stable inlet type (5 to 10 years). Outer channel shifting (Figure 2.4c) involves the 

same process as ebb tidal delta breaching but on a smaller scale since it only concerns 

the outer or distal portion of the channel. The smaller scale of this type of bypassing is 

therefore associated with smaller volumes of sediment in the bypassing sandbanks than 

in the previous types. 

Outer channel shifting was observed to occur at the Teign inlet during the decade 

following 1964 (Robinson, 1975) and from the photographic archive used in the present 

study that spans a period of 35 years, this is commonly observed until c. 1995. From the 

post mid 1990's to the present time, the main channel appears to have greater positional 

stability hence the Teign inlet may be better represented by the stable bypassing model 

over this period. The morphodynamics of the individual sandbanks on the Teign inlet's 
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ebb tidal delta over the 35 year period encapsulated by the photographic archive are 

fully described in the next chapter. Due to the occurrence of bypassing being observed 

repeatedly at some inlets, such events are frequently referred to as cyclic which implies 

that they are periodic (Bruun and Gerritsen, 1959; Cheung et al., 2007; Israel and 

Dunsbergen, 1999; Robinson, 1975; Sha, 1989, among others). However, in practice the 

timing and duration of consecutive events have often been found to vary hence 

bypassing phenomena are also termed episodic in the literature in recognition of this 

variability (Gaudiano and Kana, 2001; Kana et al., 1999). 

2.3 Empirical relationships 

The intensive research into the morphodynamic evolution of inlets has led to the 

formulation of many empirical equations that relate the tidal prism to the cross-sectional 

area of the inlet entrance (e. g. O'Brien, 1931,1969; Jarrett, 1976), or to the volume of 

sediment stored in the ebb tidal deltas and shoals (e. g. Gaudiano and Kana, 2001; Hicks 

and Hume, 1996; Marino and Mehta, 1987; Walton Jr and Adams, 1976). These 

relationships are based on the principle that the inlet entrance dimensions or ebb tidal 

delta volume oscillate about an equilibrium value in response to long term changes 

(years to decades) to the prevailing conditions of sedimentation. The tidal prism- 

entrance area relationships suggest that there is a dynamic equilibrium between the 

supply of sediment via longshore (littoral) transport which tends to close the inlet 

entrance and the flow rate which opposes the closure due to higher current velocities as 

the entrance becomes more constrained (O'Brien, 1969; Van Rijn, 1998). Townend 

(2005) collated data for 153 estuaries from around the U. K. mainland in order to 

examine them in context with these empirical relationships for inlets in other countries. 

Despite uncertainties in the dataset Townend (2005) was able to demonstrate that the 

U. K. 's estuaries including the Teign inlet exhibit similar trends in the tidal prism versus 
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cross-sectional area data as observed in the Holland, New Zealand and the U. S. A. The 

study found that the data formed two sub-groups which were determined by their 

geomorphology. These sub-groups were broadly defined as either unfilled geological 

basins or those that have been filled with sediment during the Holocene period. 

The empirical tidal prism-volume relationships are based on a similar principle in which 

changes to the tidal prism effect changes to the flow rate in the channel that define the 

general morphology of the ebb tidal delta hence volume. Large inlets are associated 

with larger ebb tidal delta volumes and vice versa. Walton and Adams Jr. (1976) 

utilised a `wave energy factor' to determine the effect of varying wave energy levels 

and found that larger volumes of sediment are stored in ebb tidal deltas of low wave 

energy coasts when compared with high energy coasts. This was considered to be 

caused by larger volumes of sediment being driven landward and returned to the 

adjacent shorelines, or being transported through the inlet entrance under higher wave 

energy conditions. Hicks and Hume (1996) also found that ebb tidal delta volume was a 

primary function of the tidal prism and further suggested that the angle between the 

main channel and the shoreline was an additional contributing factor. The channel angle 

affected the efficacy of the offshore directed ebb tidal currents to oppose the onshore 

directed currents due to waves hence smaller ebb tidal deltas were observed at inlets 

with acute channel angles. 

The majority of the studies of inlet morphodynamics are focussed on macro scale 

temporal and spatial changes to ebb tidal deltas whereas there are comparatively few 

studies concerning the meso-scale features such as the discrete sandbanks that overly 

the ebb tidal delta. In order to begin to address this gap in the research Kana (1995) and 

Gaudiano and Kana (2001) studied sand bypassing at inlets on the southeast coast of the 
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U. S. A. In the latter study data were collated data from nine inlets in which they found 

that trends in the volume of individual bypassing sandbanks and the average bypassing 

interval were empirically related to the tidal prism (Figure 2.6). This is intuitive given 

the apparent control that the tidal prism has on the size of the ebb tidal delta as 

summarised in the preceding paragraph. Smaller inlets typically have smaller volume 

ebb tidal deltas therefore smaller bypassing sandbanks. As a consequence of their 

smaller scale it was concluded that the average bypassing interval of smaller inlets also 

tends to be shorter than at larger ones because the cross-shore distance to traverse is 

shorter plus there is a smaller mass of sediment to be transferred. However Gaudiano 

and Kana's theory may not be universally applicable as when Burningham and French 

(2006) compared the bypassing interval of the meso-tidal gravel rich Deben estuary on 

the southeast coast of the U. K. with the Gaudiano and Kana (2001) data, they found that 

the estuary was an outlier due to the mega time scale of its cyclic morphodynamic 

behaviour (Figure 2.6). The long duration of the bypassing interval was attributed to 

reduced sediment transport efficiency due to the coarse-grained nature of the sediment 

which is predominantly in the sand-gravel fraction. 
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The periodicity of the morphological change at the Teign inlet has been estimated at 

between 1 and 5 years (Kingston 2005; Robinson, 1975; Siegle 2003) and the mean 

tidal prism at 7.8 x 106 m3 after Bernardes (2005). The average inter-tidal volume of the 

nearshore region from Kingston et al. (2005) has been used as a rough approximation of 

the ebb tidal delta volume and is estimated at 1.4 x 106 m3. These data have been used 

to plot the Teign inlet with the Gaudiano and Kana (2001) data in Figure 2.6 from 

which it can be seen that the Teign inlet broadly fits within the error bars of both 

datasets. However, it is only during times when the morphological periodicity is in the 4 

to 5 year range that the inlet best fits the trends. 

The empirical tidal prism-area equations proposed by numerous authors have been 

collated and analysed by Van Rijn (1998) in which there appears to be considerable 

variation in the coefficients (O(l04) for area-prism relationships); the variability of the 

exponents (0(10')) is also not insignificant whilst the results of Walton Jr. and Adams 

(1976). The results of Townend (2005) and Gaudiano and Kana (2001) were also 

subject to scatter, and the Burningham and French (2005) study highlighted the inability 

of the bypassing interval relationship to account for the Deben estuary. Some authors 

cite variable levels of human intervention (e. g. stabilisation structures) and data 

continuity issues as potential causes of the scatter (O'Brien, 1969; Gaudiano and Kana, 

2001; Townend, 2005). FitzGerald (1996) suggested that the uncertainty in these 

empirical relations may be partly attributable to the temporal variability induced by 

natural inlet cycles which is unaccounted for in the relationships. The fact that there is 

uncertainty in these relationships reflects the complexity of the physical processes and 

highlight the need for more detailed research particularly with regard to the dynamic 

bypassing sandbanks. The present study compliments the work of Gaudiano and Kana 

(2001) and makes an important contribution to the research concerning inlet bypassing. 
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The study characterises and quantifies inlet bypassing over meso time scales (weeks) 

and identifies trends over macro (years) time scales which is rarely undertaken in the 

research. Some authors have also highlighted the fact there are few studies concerning 

inlets with large tidal ranges (i. e. macro- and mega-tidal) (Robin et al., 2007), or that 

there are few concerning inlets with coarse-grained sediment (Bumingham and French, 

2006), and that there a few that utilise in-situ measurements (Vinther et al., 2005). The 

spring tidal cycle of the Teign inlet is in the macro-tidal category during spring tides 

(Section 3.2), the ebb shoals are comprised of sediment in the coarse to very coarse 

fraction (Section 3.3), and the study utilises a unique set of in-situ measurements 

obtained from the surface a dynamic shoal in mid term migration (Chapter 5) hence the 

present study helps to address these other gaps in the research concerning the 

morphodynamic behaviour of inlets. 

In the following chapter the characteristics of the study site are defined in terms of its 

geomorphology, hydrodynamics and sedimentation. The research concerning the Teign 

inlet ebb tidal delta morphodynamics is discussed in the final section (Section 3.4) and 

the manner in which this work moves the research forward is summarised at the end of 

the section. 
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3 Introduction to the Teign inlet 

3.1 Physical setting 

The Teign inlet is situated at Teignmouth on the South Devon coast which lies in an 

approximately central location of the broad semi-circular shaped Lyme Bay that faces 

southeast into the English Channel (left panel, Figure 3.1). The coastline of Lyme Bay 

stretches 80 km from Portland Bill in the northeast to Start Point in the south. To the 

south of the Teign inlet the coast becomes less exposed than it is to the north owing to a 

succession of small headland confined bays. The Lyme Bay coastline in the vicinity of 

the Teign inlet is dominated by cliffs of widely differing composition with few beaches 

present. Where beaches do occur they are small and comprised largely of coarse clastic 

grains eroded from the New Red Sandstone breccias, which causes their distinct red 

hue. 
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Figure 3.1: Location of the Teign inlet, U. K. (left panel) and Lyme Bay (right panel) coastlines. (Vertical 
datum: shoreline at mean high water, data source: NOAA Geophysical Data Centre 
(iiitp: //rimmer. ngdc. noaa. gov/mgg/coast/getcoast. html). 
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At a distance of approximately 10 km to the north of Teignmouth the cliffs are 

interrupted by the bar-built or spit-enclosed Exe estuary at Exmouth. The intervening 

section of coastline is partially segmented by the projecting headland known as The 

Parson and Clerk whilst the stretch of coastline to south of the Teign estuary is 

demarcated by the rocky headland known as the Hope's Nose at a distance of 

approximately 10 km. The orientation of this section of the Lyme Bay coast and the 2 

km long beach at Teignmouth face ESE into the English Channel (right panel, Figure 

3.1). The bathymetric contours of the bay are predominantly shore-parallel with seabed 

gradients in the range 0.001 to 0.005 between the depths of -50 to -25 in w. r. t. Chart 

Datum. However, toward to the west of Portland (longitude = -2.4" W, Figure 3.1) and 

the Teign inlet, the contours are interrupted by localised shoals which reduce depths by 

as much as 10 m (Nunny, 1995). 

The Teign and Exe estuaries were formed through the post-glacial submergence of 

former river valleys during the early Holocene period which commenced approximately 

10,000 years before the present time. The former estuary is small in comparison to the 

latter and this is reflected in the estimated total area of the Teige estuary which is 

approximately one fifth that of the Exe estuary at 3.7 km2 compared with 18.7 km2 

respectively. The inter-tidal area of the Teign inlet represents a large proportion of the 

total inlet area due to the meso-to macro-tidal regime of the region ("Feign inlet inter- 

tidal area = 2.2 km2, mean spring tidal range z7 4.2 m) (Buck, 1997). At lower states of 

tide, the 7 km long river channel is forced to circumnavigate a series of sharp meanders 

due to the Salty flood shoal in the outer reaches of the inlet, and the Denn Spit that 

encloses the entrance. The tidal regime is semi-diurnal (M2 primary harmonic 
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constituent) owing to the Channel's link with the Atlantic Ocean, where the tidal wave 

propagates west to east during the flood and vice versa on the ebb tide. 

3.2 Environmental conditions 

The Teign inlet entrance (Figure 3.2) is situated at the southern end of the main beach at 

Teignmouth, and the main ebb channel is flanked on its southern side by the Red 

Sandstone rock outcrop (headland) known locally as the Ness, and on its northern side 

by a channel margin linear bar known as Spratt Sand. In the outer estuary there is a 

small commercial port which necessitates the daily drag-dredging (flattening) of the 

terminal lobe so that vessels may navigate safely to the deeper section of the channel on 

the landward side. This activity has only been partly successful in achieving its 

objective as evidenced by the occasional grounding incidents which persist to the 

present time, for example five incidents were recorded between 1999 and 2002 (ABP 

Marine Environmental Research 2002, hereafter ABP MER). The inlet's terminal lobe 

which is responsible for the navigation difficulties is clearly depicted in the lower panel 

of Figure 3.2 by the white line of foam caused by wave breaking along its margin. 

Along with revealing the form of the terminal lobe, the images in Figure 3.2 also show 

two examples of the migratory sandbank in its shore-attached mode (upper right and 

lower panels), and this is a common plan form of the feature at this stage of its 

evolution as observed during the last decade, but which is observed less frequently in 

the period between 1964 and the mid 1990's. In addition to the commercial use of the 

port in the outer estuary, Teignmouth is a popular summer tourist venue which imposes 

a seasonal recreational demand on the inlet environment. 
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The mixed meso- to macro-tidal spring-neap cycle (mean range: 1.7 to 4.2 m) at the 

inlet combined with the spit-enclosed entrance (depth to width ratio z 0.03) results in 

high current velocities through the mouth at times of peak flood and ebb flow (0(2 to 3 

m. s-1)), which can be significantly increased at times of high river discharge due to the 

380 km2 catchment area (Craig-Smith, 1970). Discharge rates are typically at a 

minimum during summer (< 20 m3. s-'), and maximum during the autumn to winter 

period (z 50-100 m3. s-') (Miles et al., 1997). ABP MER (2002) analysed a 43 year 

discharge dataset for the Teign inlet (1956-1999) and concluded that discharge rates 

0(10 m;. s-') represent 4 and 9% of the spring and neap tidal prisms respectively, and 

that under more extreme events, these rates increase by an order of magnitude (0(100 

m3. s-')). Under such conditions the strong ebb dominance of the main channel will be 

significantly enhanced and if sediment supply via littoral transport is high as at times of 
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Figure 3.2: Low tide images of the Teign inlet. Upper left panel: inlet entrance flanked by the Ness headland 
to the south with Denn Spit and Spratt Sand to the north (2001). Upper right panel: south end of Teignmouth 
beach with shore-attached transverse sandbank (2001). Lower panel: a typical configuration of sandbanks on 
the ebb tidal delta (2007). (Upper panel aerial images are courtesy of Prof. K. Dyer, FutureCoast Project, 
Department of the Environment, Food and Rural Affairs., U. K., 2000-2002). 



elevated wave energy levels, it is hypothesised that large quantities of sediment will be 

transported offshore to the terminal lobe. 

Due to the orientation of the coastline (Figure 3.1), Teignmouth beach is sheltered from 

the prevailing Atlantic swells and this causes the local wave climate to be dominated by 

fetch-limited wind sea during the relatively infrequent occurrences of winds from the 

east. Draper (1991) assessed the wave climate of the coastline of the U. K. in which 

Teignmouth was characterised by significant wave heights of less than 0.5 m for 75% of 

the time, but wave heights as large as 3m can be attained during violent storm events 

(Davidson et al., 1992). This is reflected in the wave data collected in the pilot study for 

the COAST3D project (EC MAST Project No. MAS3-CT97-0086) in which the 

computed H90-1. exceedence statistic indicated that waves of 0.83 m were only exceeded 

by 10% of the observations. Therefore, henceforth the Teignmouth wave climate is 

defined as a low wave energy regime after Jackson et al., (2002). At times of easterly 

winds, the combination of waves and large tides produces reflective conditions around 

the high tide mark due to the steep upper beach gradient (z 0.1 to 0.14), and dissipative 

conditions on the shallow low tide terrace gradients (z 0.02 to 0.07) at lower states of 

tide (Davidson et al., 1992; Miles and Russell, 2004). Teignmouth beach can therefore 

be classed as an intermediate beach after Wright-Short (1984). Under the combined 

wave and tidal regime, the nearshore region can be classed as a mixed energy 

environment after Davis and Hayes (1984). 

The presence of the ebb shoal system focuses the wave energy which is strongly 

refracted and diffracted by the irregular morphology. When the local water level is 

shallow enough to permit wave breaking, dissipation over the sandbanks causes lower 
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than expected wave energy levels on the lee shoreline when compared with the exposed 

shoreline of the adjacent beach. Furthermore, the refraction and diffraction effects result 

in little directional spread of the shoaling and breaking waves at the shoreline and on the 

shoals (Bird et al., 2001). 

3.3 Sediment characteristics and littoral circulation 

The beach sediment at Teignmouth is comprised of fine to medium sand (dso = 250 gm) 

on the low tide terrace, which becomes coarse to very coarse on the upper beach (dso 

1000 gm). During the COAST3D Project, similarly coarse sediment was found in three 

lobes distributed around the main channel that defined the outer margin of the ebb-tidal 

delta and reflected the previous history of earlier channel and shoal configurations 

(Figure 3.3) (Van Lancker et al., 2004). The northern-most lobe that protrudes toward 

the pier would also appear to indicate the region where migratory sandbanks are 

released from the terminal lobe to begin their landward migration. Ebb-tidal delta grain 

size data were not sampled as part of the Coastview Project measurement program, but 

samples taken from the beach for an undergraduate study in 2003 were characterised by 

medium grain sizes as found by Van Lancker et al. (2004). Additional samples taken 

indicated that the surficial sediments of the migrating sandbank were predominantly 

coarse-grained and more closely resembled the sediment that formed the three lobes 

around the main channel. It is assumed that the presence of coarse grained sediment 

around the marginal areas of the ebb shoal is a persistent feature of the environment due 

to the winnowing action of the wave driven processes and the strong spatial gradients in 

flow regime which remove finer grains from the population. 
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Figure 3.3: Teign inlet channel and nearshore bathymetry superposed with the areal distribution of surficial 
sediments (Grain types: >2 mm: gravel; 1-2 mm: very coarse sand; 500-1000 µm: coarse sand; 250-500 µm: 
medium sand; 125-250 µm: fine sand) (after van Lancker et al., 2004). 

Littoral transport adjacent to inlets exerts a primary control on the morphological 

evolution of these environments. The southern U. K. coast littoral cell that includes the 

Teign inlet has been defined as the stretch of coast from Hope's Nose in the south to the 

Parson and Clerk in the north after Bray et al. (2004) (Figure 3.4). Their work on the 

inlet sediment budget (net exchange of sediment sources and sinks) qualitatively 

suggests that at the present time the Teign inlet nearshore region is a sediment 

convergence zone as indicated by the opposing direction of the littoral transport on 
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either side of the inlet (LT1 and LT2). Their work supports the findings of a 

morphodynamic modelling study by Siegle (2003) (Section 3.4) in which littoral drift 

was determined to be to a primary source to the inlet sediment budget under high wave 

energy conditions. 
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Figure 3.4: Conceptual model of the littoral circulation for the Lyme Bay coastal region from The Parson 

and Clerk headland, Holcombe to the Hope's Nose, headland, Torquay, and in the vicinity of the Teign inlet 

entrance (inset) (after Bray et al., 2004). 

However, it has also been suggested that the input from the north (LT2) is likely to be 

interrupted under incident wave angles > 140° when the longshore current is prone to 

short-term reversal (Siegle, 2003; Whitehouse et al., 2001). In addition, Siegle (2003) 

found that the main longshore transport input (from the north) became negligible under 

significant wave heights of less than 0.5 m. The exchange of sediment with the Lyme 

Bay offshore region is not thought to be significant (Robinson, 1975) which is intuitive 

given the coarse nature of the sediment that form the sandbanks on the ebb tidal delta. 
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The erosion of the sandstone cliffs on the adjacent coastlines (El) is a primary input of 

sediment to the nearshore and these are estimated to be eroding at a rate of 0.1-0.2 m. yr 

1. Based upon this ABP MER (2002) estimated that as much as 2000 tonnes per annum 

could be contributed to the nearshore region for an eroding section of cliff 15 m in 

height and 500 m in length. Conversely, Robinson (1975) proposed that little is added 

via this mechanism. Coarse grained fluvial input (FL I) is considered to contribute 6000 

tonnes per annum via bedload transport (Nunny, 1980) and this is likely to increase 

significantly during years in which there are more extreme rainfall events (ABP MER, 

2002). The ebb dominance of the main channel means that little sediment is able to 

enter estuary except during storms and particularly under neap tide conditions. In the 

main channel of the outer estuary there is a net seaward transport (E01) of coarse 

grained sediment particularly at times of high rainfall (Nunny, 1980). ABP MER (2002) 

state that the 6 hour daily deployment of the 3.5 tonne drag-dredge which operates to 

decrease the elevation of the terminal lobe is capable of mobilising an estimated 100 

tonnes per day. This was estimated to contribute up to 30,000 tonnes per year to the 

sediment budget which is a significant transport rate when compared with the other 

input estimates. Much uncertainty is associated with the effects of the drag-dredge 

operations at the inlet which hinders the estimation of a reliable budget for the location. 

The hydrodynamic forces governing the ebb tidal delta sediment transport regime have 

been observed to re-circulate sediment in the inlet entrance on variable time scales of 1 

to 5 years (Kingston, 2005; Robinson, 1975; Siegle, 2003). This circulation of sediment 

in the inlet entrance is defined in the inset diagram in Figure 3.4 and the research 

concerning associated morphodynamics is described and discussed in more detail in the 

following section. 
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3.4 Nearshore morphodynamics: an historical perspective 

The need to better understand the morphological evolution of the Teign inlet by the 

scientific, commercial and recreational communities that use the resource has led to a 

number of studies dating back 200 years. One of the principle contemporary studies was 

undertaken by Robinson (1975) who used a largely qualitative approach to analyse and 

explain the complex changes to the irregular ebb shoal system based on 10 years of 

observational evidence (1964-1974). The morphological evolution of the ebb shoal 

system was analysed using a chronological series of plan view sketch maps at an 

approximate 6 month resolution. The study was also supplemented with short term 

current measurements and tracer experiments. In order to describe the evolution, 

Robinson (1975) adopts the historical terminology for shoals such that the bar closest to 

the Ness is termed the Ness pole, farther to the north is the outer pole which becomes 

the inner pole upon migrating landward. A subset of the sketch maps are presented in 

Figure 3.5. From the qualitative evidence compiled Robinson (1975) concluded that the 

cycle of sediment in the inlet entrance lasted 3 to 5 years but with the occasional 

occurrence of shorter duration events of 12 to 13 months. However the uncertainty 

associated with the latter estimate is high given the low temporal resolution of the 

dataset therefore the reliability of this result is questionable. 

The morphological diagrams in Figure 3.5 reflect those depicting the United States 

Army Corps of Engineers' (USACE) natural bypassing models (Figure 2.4) and 

illustrate the sandbank dynamics and their irregular plan form evolution. They also 

depict the manner in which the shoals evolve from elongate shore-parallel forms to 

crescentic forms after genesis which is a common feature seen in the S. Hook 

photographic archive over the subsequent 15 to 20 year period. 
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A representative subset of this archive is presented in Appendix Al. Robinson (1975) 

also reported that the outer to inner pole transition is accompanied by increases in the 

elevation of the migrating sandbanks from initial values of 0.5 m to 2.5-3.0 m (w. r. t 

chart datum). Additionally Robinson (1975) states that the migrating sandbanks can 

experience bed level changes of up to 0.7 m and changes in position of 5m between 

successive tides. 

In the first of the sequence of morphological maps (top left panel, Figure 3.5) the Ness 

bar is well-developed and there appears to be a newly released outer pole which 

migrates landward during the winter and is subsequently replaced by a new outer pole. 

From March to October 1968 the sequence is unclear due to an apparent significant 

change through the winter of 1967, but by October 1968 a large crescentic inner pole 

had developed. This sandbank is large enough to dominate the Teignmouth inter-tidal 

morphology over the subsequent 12 months where it eventually becomes shore-attached 

forming a small lagoon on the upper low tide terrace. The inner pole attachment initiates 

a large shoreline change during this onshore migration event. By comparison, the Ness 

pole appears small in area, but this increases between October 1969 and May 1970 and 

during this time a new large shore-parallel and elongate outer pole has formed. This 

sandbank subsequently migrates landward, where it once more develops a crescentic 

plan form (September, 1970). 

The sequence illustrates the characteristics of the Teign ebb tidal delta morphodynamics 

and clearly depicts the growth and landward migration (bypassing) of the sandbanks on 

the swash platform. Robinson (1975) proposes that features are released from the 

terminal lobe due to changing channel configuration under high sediment availability 
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conditions. The study also concluded that the morphodynamics are controlled by the 

balance of wave and tide driven currents with the largest changes occurring during 

storms. Finally, the analysis undertaken by Robinson (1975) seems to suggest that the 

Teign inlet fits in to the USACE inlet framework with the morphodynamic attributes of 

the natural bypassing inlets described in Section 2.2.1. 

Siegle (2003) investigated the Teign inlet ebb shoal morphodynamics for the period 

1999 to 2001 using video remote sensing coupled with a depth integrated 2D numerical 

model. The study utilised the deterministic MIKE21 model to explain the cyclic 

sedimentation of the ebb shoal system in terms of the spatial and temporal variation in 

the balance of forces that drive the hydrodynamics and sedimentation of the nearshore 

region. This balance of forces was summarised by the author in the diagram presented 

in Figure 3.6 (left panel). Siegle (2003) found that the main channel was dominated by 

offshore directed tidal currents whilst over the submerged terminal lobe, the interaction 

of tide and wave driven current regimes was complex. At this location the direction and 

strength of sediment transport depended on the balance between the onshore directed 

wave driven currents and the reversing tidal currents, which are in turn affected by the 

extent of river discharge. Over the migrating shoals the sediment transport was 

dominated by onshore directed currents under wave driven processes which begin to 

mobilise appreciable quantities of sediment under significant wave heights in excess of 

0.5 m. Siegle (2003) went on to determine the sediment budget of inlet using a 13 day 

time series of measured boundary conditions (right panel, Figure 3.6). The transport 

regime defined strongly reflects that of Bray et a/. (2004) (inset Figure 3.4) with the 

main littoral input from the north and a secondary input from the south. Note that the 
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terminal lobe is represented as a sink to sediment which is intuitive given the ebb tidal 

dominance and the drag-dredge operations which occur throughout the tidal cycle. 
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The balance of wave and tidally driven forces results in an anticlockwise sediment 

transport gyre as originally described by Oertel (1972). Siegle (2003) concluded that the 

magnitude and intensity of the resulting morphological change was primarily a function 

of high energy wave events that predominate during the winter months. The winter was 

therefore considered to be the season in which the most significant morphological 

change occurred whilst during the summer the morphology was considered to be 

comparatively stable. In addition it was found that most nearshore bed level change 

occurred during neap tides and this was attributed to the increased residence time of the 

hydrodynamic forces under the smaller tidal ranges. During the 3 year study period 

Siegle (2003) observed a single cycle of sediment which involved the sandbank genesis 

offshore, its onshore migration, shore-attachment and subsequent dissipation, and the 

start of genesis of the next offshore sandbank. This led to the conclusion that the 

morphological periodicity was approximately 3 years. 
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Marino-Tapia et al. (2006) investigated the physical processes acting over short time 

scales (seconds to hours) that control the sediment transport regime over the migratory 

sandbank at the Teign inlet in its shore-attached mode. It was found that under high 

energy conditions strong wave set-up in the surf zone leads to offshore directed 

undertow currents over and around the feature causing it to elongate in the same 

direction (offshore migration). The outer shoals differ in this respect as onshore wave 

driven flows have been shown to dominate these features under high wave energy 

conditions (Siegle, 2003). Conversely, under lower wave energy conditions (offshore 

wave height = 0.5 m) Marino-Tapia et al. (2006) showed that the strong refraction of 

the incident waves by the shore-attached bar caused them to be obliquely incident which 

resulted in onshore currents and sediment transport around the flanks (emerged low tide 

state). During higher states of the tide when the bar is submerged, the small waves 

lacked sufficient energy to mobilise the sediment therefore the transport rate was small. 

The low energy sediment transport regime over the shore-attached sandbank strongly 

reflects that on the offshore sandbank under the similar conditions, as described by 

Siegle (2003). Marino-Tapia et al. (2006) concluded that wave driven mean flows 

dominate the shore-attached shoal hydrodynamics which move the feature onshore and 

offshore under lower energy and storm conditions respectively. The results of Marino- 

Tapia et al. (2006) are comparable with those of Siegle (2003) in that they show larger 

morphological change during energetic conditions. The study by Marino-Tapia et al. 

(2006) observed a 30 m onshore bar migration during a7 day period of low wave 

energy, whilst under the storm the feature elongated 90 m in the offshore direction over 

a3 day period on account the strong mean undertow currents. 
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Kingston et al. (2005) studied the Teign inlet ebb tidal delta over medium to long time 

scales (months to years) in relation to the stability of the main channel and volume 

changes to the ebb tidal delta using a shoreline detection algorithm on a5 year Argus 

image archive (1999-2004). They used a dataset of 64 shorelines at a6 month temporal 

resolution to determine shoreline change down to a depth of -10 m w. r. t. Ordnance 

Datum Newlyn (ODN). From the results it was concluded that the morphological 

periodicity had reduced with 4 events occurring in the 5 year time span and this was 

hypothesised to be related to changes in the long term drag-dredging strategy. The main 

channel was found to oscillate between more easterly and northerly orientations where 

in the former the channel follows the line of the Ness headland. Both channel states had 

approximately equal residence times but the degree of lateral deflection was larger in 

the outer channel section (70 m) when compared with the inner section (12 m). 

Kingston et al. (2005) also suggested that the nearshore inter-tidal region had undergone 

a marginal decrease in volume whilst the nearshore region which encompassed the 

Denn spit and inlet throat had experienced a small decrease in volume. The latter result 

concurs with the findings of Bernardes (2005) who found that the inlet was undergoing 

a period of infilling with a net overall gain, but net loss from the nearshore region 

between December 2002 and November 2004. The numerical modelling study by 

Bernardes (2005) investigated the medium to long term (months to years) 

morphodynamics of the Teign inlet for the above period using the 2D Telemac system. 

The author concluded that there was a distinct seasonal pattern of deposition and 

erosion at the inlet. During the more energetic periods in the winter and autumn 

sediment is imported to both the nearshore and outer estuary regions under higher 

sediment availability conditions. The majority of the sediment is considered to be 

imported via increased littoral drift due to the more frequent higher energy wave 
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conditions for the time of year. Conversely, during the spring and summer months the 

paucity of higher energy waves allows the comparatively strong ebb tide currents in the 

outer estuary and inlet entrance to export sediment into the main channel where it is 

transported offshore. 

The image time series of the Teign inlet ebb shoal system taken from the Ness headland 

by S. Hook is too large to present in the thesis but a selection of images are presented in 

Appendix Al for reference purposes. The images were sampled at random low tide 

intervals so the variable temporal resolution of the time series means that the archive 

serves only as a useful qualitative visual record of the morphology for the 15 year 

period following 1975. The morphology of the shoals and their dynamic continued to 

exhibit the characteristics described by Robinson (1975) with the genesis and landward 

migration of large sandbanks of irregular form in which there were repeated occurrences 

of the crescentic plan form depicted in Figure 3.4. Similarly, the channel behaviour for 

the period strongly reflected the two state model proposed by Kingston et al. (2005) 

with several gradual transitions between the northerly and easterly orientations 

occurring. A qualitative assessment of the S. Hook archive has been undertaken by the 

present author observed the genesis of 15 distinct offshore sandbanks from October 

1976 to March 1990, though there were only 11 complete cycles due to the occurrence 

of several bar coalescence events. From the available archive it was estimated that the 

sedimentation cycle had a mean periodicity of approximately 22 months with maximum 

and minimum periodicities of 11 and 28 months respectively. 

The present work makes an important contribution to the work of previous authors and 

advances the knowledge of Teign inlet morphodynamics in a number of ways. On short 
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time scales this contribution analyses the hydrodynamic and sedimentation processes 

acting on the sandbank in mid term onshore migration using physical measurements 

obtained from its surface. The in-situ measurement analysis (Chapter 5) complements 

the work of Marino-Tapia et al. (2006) who conducted a similar analysis using 

measurements from the sandbank in its shore-attached mode. The study enlarges upon 

that by Siegle (2003) whose modelling work was limited to one sedimentation cycle, 

whereas the dataset used herein captures multiple (4) events. The resolution of the 

dataset permits the short term (weeks) morphodynamic behaviour to be quantified and 

the macro time scale (years) of the Argus image archive has enabled the identification 

of medium to long term (months to years) morphological trends (Chapter 4). The study 

by Robinson (1975) of the 10 year period in the inlet's evolution was based on a 

comparatively low frequency dataset (-bi-annual) of a qualitative nature that negated 

the quantification of relevant parameters. This research has benefited from advances in 

remote sensing technology so that the history of morphological change has been 

documented using a high resolution dataset of contours derived from a geo-referenced 

video system. This permits the quantification of relevant morphological parameters 

from which a more robust set of conclusions can be drawn than from qualitative data. 

By virtue of the fact that the migrating sandbanks that are the focus of this research are 

the most morphodynamic component of the ebb tidal delta, the variability captured in 

the contour dataset accounts for much of the observed morphodynamic variability of the 

system. In the next chapter the study begins with the characterisation and quantification 

of the sandbank morphodynamics from the remotely sensed video image archive. 
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4 Video remote sensing 

In order to investigate morphodynamic processes in the nearshore it is necessary to 

sample key variables over a wide range of spatial and temporal scales (e. g. surface 

water elevation (a), cross-shore (u) and longshore (v) current velocities, suspended 

sediment concentration (c) and the rate of bed level change (bz/öt)). Traditionally, 

nearshore field studies involve the cumbersome deployment of multiple arrays of 

expensive instrumentation within the inter-tidal region which is both technically and 

logistically challenging, and poses a significant financial risk when fieldwork programs 

coincide with high energy conditions. Furthermore, the difficulty in obtaining these data 

at an adequate spatial resolution using conventional methods often results in a relative 

paucity of data when considering the complexity and scale of the phenomena being 

studied. This hinders the challenging task of understanding the morphodynamics. 

The application of relatively cheap optical remote sensing equipment to nearshore 

studies was investigated at Oregon State University's in the 1980's when the usefulness 

of imaging for this purpose was first being realised. This usefulness stems from the fact 

that many of the key geophysical variables have optical signatures which are manifest in 

the pixel data. The principle advantages of imaging over traditional methods is that it 

enables the collection of important variables (e. g. wave period, wave direction) at the 

required temporal and spatial resolution without the aforementioned problems, and can 

continue autonomously for an indefinite period with minimal running costs. 

Additionally, remote sensing of the nearshore in this manner offers a safer way of 

obtaining observations during the important periods of high energy conditions, and 

represents a significantly lower financial risk in the event of equipment being damaged 

or lost altogether. Since the 1980's the Coastal Imaging Laboratory at Oregon State 
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University have developed and incorporated the technology into the Argus system for 

coastal research. The specific capability of being able to resolve inter-tidal bathymetry 

using the collected images makes the Argus station an invaluable tool for the study of 

medium to long term morphodynamics. 

4.1 Argus video system 

An Argus station (Holman and Stanley, 2007) comprises an elevated remote camera 

system focused on a coastal region of interest and an internet-connected PC for system 

control and data transmission to the archive facility. Typically, each station has five 

digital video cameras with a combined field of view of 180° covering a stretch of 

coastline up to a5 km in length. The process of data collection and storage is fully 

automated with the default setting usually configured to collect three image products 

routinely which are defined as follows: 

1. Snapshot: this is a single standard image which serves as a qualitative visual 

reference source for conditions at the data collection event. 

2. Ten minute time-exposure image (timex images): this represents the mathematical 

time-mean of all images sampled at a frequency of 2 Hz over a ten minute period. The 

averaged pixel intensity data are particularly useful for identification of regions of wave 

breaking which have then been used to determine the location of submerged 

morphological features (Lippmann and Holman, 1989). 

3. Ten minute variance image: this represents the mathematical time-mean of the 

variance of the image intensities sampled in the timex images. The averaged pixel 

variance data distinguish between regions where pixel intensities vary strongly (bright 
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signal) from those where there is little or no variation (dark signal) during the sampling 

interval. 

Each image product is collected at hourly intervals with a further timex image known as 

a `daytimex' image being generated from the average of the hourly timex images 

collected each day (Figure 4.1a to d). A single 24-bit 640 x 480 pixel RGB image 

contains approximately 900 KB of data in its raw format hence the use of jpeg 

compression for archiving purposes. This reduces the file size to between 10 and 30 KB 

depending on image type. The Argus system can also be set up to record intensity data 

from user-defined individual pixels or pixel arrays thus permitting the collection of 

pixel intensities at high temporal resolution (e. g. 2 Hz) without generating 

unmanageable quantities of data. 

a) 

c) 

b} 

dl 
Figure 4.1: Argus image types from camera 3 showing I eignmouth town, the main beach and pier: a) 
snapshot, b) timex, c) variance, and d) daytimex. 
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The relative low cost and effectiveness of the Argus station has led to their increasing 

use in the investigation of a wide range of nearshore phenomena which have been 

broadly categorised into three groups (Aarninkhof, 2003). The first group utilise timex 

images to identify nearshore regions of preferential wave breaking in order to derive the 

spatial and temporal variability of sub-tidal morphological features (Van Enckevort and 

Ruessink, 2003a, b; Lippmann and Holman, 1989; Konicki and Holman, 2000; 

Lippmann and Holman, 1990). The second group utilise high resolution pixel data to 

resolve hydrodynamic processes including the phase speed, angle and period of 

breaking waves (Lippmann and Holman, 1991), wave run-up (Holland et al., 1995), and 

the magnitude of surface currents (Chickadel et al., 2003). The third group utilise daily 

snapshot and timex images to resolve 2D and 3D sub-aerial topography (Holman et al., 

1991), inter-tidal bathymetry (Davidson et al., 1997; Madsen and Plant, 2001; 

Aarninkhof et al., 2003; Siegle, 2003), and sub-tidal bathymetry (Stockdon and 

Holman, 2000; Aarninkhof et al., 1997). These techniques require the generation of 

time series of shoreline position at different tidal elevations which can then be 

integrated and mapped. 

4.1.1 Brief history of the Teignmouth Argus station 

The Argus II video station (Holman and Stanley, 2007) was first installed on The Ness 

headland at Teignmouth in February 1999 (Figure 4.2a to d). The system uses an 

SGIO2 Unix work station with frame grabber which routinely samples and archives the 

three different image types using five analogue cameras. The analogue images which 

measure 640 x 480 pixels were digitised using an external Kramer digitisation unit. 

However, owing to the Argus II system having only one video input, each data 
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collection event was comprised of three sub-collection events in order to collect images 

from all of five cameras (Figure 4.2d). 

Argus II Collection Strategy 

Cameras Gi i Ct i C3 (C4' 

Time 1200 

)kv m 

13 

PtS Pfs 

1400 

15ao-- 

'SN - Snap, Time exposure, Variance 
`PTS - Pixel Time Series 

Figure 4.2: a) Argus station location, b) station viewpoint, c) camera rig, d) Argus 11 collection strategy 
(after Holman and Stanley, 2007). 
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Consequently the sub-collection events and consecutive image pairs are asynchronous 

with an approximate 0.25 s offset between them. This does not hinder shoreline 

extraction utilising 10 minute timex images, but does create a significant processing 

problem when resolving video-derived data that require high temporal resolution. The 

Argus station at Teignmouth has proved to be particularly reliable apart from a brief 

period during January 2001 which resulted in a depleted image archive for that period. 

The longevity of the station's operational time has meant that it has been possible to 

compile a unique six year image time series of the ebb tidal delta system at Teignmouth. 

These data are combined with the contemporaneous wave climate and environmental 

data in order to characterise the geometry and dynamics of the migratory sandbanks on 

the ebb tidal delta. 

4.1.2 Camera model and coordinate transformation 

Obtaining quantitative data from oblique images for the analysis of nearshore processes 

involves merging the images from each camera into a single image and transforming 

them into a geo-referenced and geometrically correct plan view image (image 

rectification) as shown in Figure 4.3a. The image rectification process utilises a 

calibrated camera model to transform between 3D world coordinates and 2D image 

coordinates which requires the determination of two sets of camera parameters: 

1. Intrinsic parameters: these parameters describe the physical characteristics of the 

camera, lens and image acquisition hardware. The parameters concerned are the lens 

radial distortion coefficients: k1, k2, the position of image optical centre: U� V,,, the 

vertical and horizontal pixel scale factors: A,,, A,., and the effective focal length,, f. 
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2. Extrinsic parameters: these parameters describe the cameras geometrical position (xe., 

y,., z,. ) and orientation in terms of tilt, azimuth and roll (i. e. r, 4 and t7 respectively) in 

relation to the reference frame chosen (see Figure 4.3b). 
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Figure 4.3: a) Rectified Teignmouth Argus image, b) camera model parameters (after Holland et al., 
1997). 

The camera model used in the Argus algorithm has been derived using the standard 

direct linear transformation (DLT) method from photogrammetry which accounts for 

camera roll and lens distortion effects, and digital sampling imperfections caused by the 

offset between the location of the optical and image centres and the pixel scale factor 

(Holland et al., 1997). The transformation between 3D world and 2D image coordinates 

uses linear versions of the co-linearity equations as follows: 

u_L, x+L, y+L3z+L4 (4.1) Lqx+L,,, y+L�z+l 

LSx + L,, y + L7z + Lk 
(4.2) 

L9x+L, 
(, y+L�z+l 
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Where U and V are the image coordinates, x, y, and z are the world coordinates and the 

coefficients L, for j=1 to 11 are the DLT coefficients which incorporate the camera's 

intrinsic and extrinsic parameters. The solution to the camera model involves a two step 

explicit-implicit method to solve for the intrinsic and extrinsic camera parameters and 

perform the transformation between real world and image coordinates (Holland et al., 

1997). Initially, the lens distortion coefficients, the position of the image optical centre, 

and the vertical and horizontal pixel scale factors are determined in the laboratory 

leaving the effective focal length and the 6 extrinsic parameters to be determined in the 

field. If the camera position (x(., y, and z,. ) is surveyed, then the remaining 4 intrinsic 

camera parameters (r, rp, or and, /) can be solved explicitly using the coordinates of 2 

surveyed ground control points that lie within the camera field of view. Two 

permutations of the transformation between 3D world and 2D image coordinates exist 

which require different approaches in order to obtain the final solution which are 

summarised as follows: 

1. Transformation from 3D world to 2D image coordinates: determination of the 

extrinsic and intrinsic camera parameters permits direct computation of the 2D image 

coordinates by direct substitution. 

2. Transformation from 2D image to 3D world coordinates (image rectification): 

rearrangement of the equations for u and v (equations 7.1 and 7.2) to form two 

simultaneous equations permits an iterative least squares solution using matrix algebra 

provided that z=z,; de where z,; (,,. = tidal level. 

For more detailed camera model calibration information the reader is referred to 

(Holland et al., 1997; Lippmann and Holman, 1989). 
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4.2 Contour extraction methodology and sampling strategy 

The principle objective of the video image work in the present study is to extract a plan 

view contour time series at a particular tidal reference level in order to be able to 

quantify the dynamics and characterise the geometrical evolution of the sandbank from 

the offshore accretion stage to the beach dissipation stage. The six year Teignmouth 

archive has captured four consecutive cycles of this morphological behaviour and hence 

the contour time series are an invaluable resource that enables the identification of 

similar trends between individual cycles in the offshore sandbank's morphodynamics 

through the period of onshore migration. 

Since the inception of the Argus video system a range of shoreline detection algorithms 

have been used to resolve nearshore morphology in two and three dimensions (Section 

4.1). Typically the techniques involve the processing of lengthy image time series 

necessitating automation for the efficient retrieval of the data. The algorithms delineate 

the wet and dry regions of the nearshore using their different pixel intensity or colour 

characterisation to determine the position of the shoreline. The application of a 

shoreline detection algorithm to the present study was found to be particularly 

problematic when part or the entire contour to be determined was contained within the 

inter-tidal region whilst it was exposed by the tide. The pixel signatures of minor 

adjacent inter-tidal morphological features were difficult to distinguish from those of 

the study feature due to their having nearly identical characteristics. 

The sampling strategy for this study was constrained by the resolution of the image 

archive and the vertical extent of the sandbank in relation to that of the tidal cycle. After 

undertaking a qualitative assessment of the image dataset with due consideration of the 

constraints, it was decided to use a manual contour extraction method as this was 
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considered to be the most robust approach. Based on the start and end dates of the 

Argus archive, a contour time series sampled at a frequency of one per spring tide for 

the duration of the archive would generate a data set containing approximately 130 

images, and a manageable quantity for manual contour extraction. The choice of the 

optimum tidal reference level was governed by the requirement that a representative 

contour could be extracted from the sandbank throughout its entire onshore migration 

from offshore genesis to the beach dissipation. A target tidal reference level of -1.80 m 

ODN was chosen which corresponds to the approximate local mean spring low water 

(MSLW) level. This reference level was considered to be the optimum level under the 

constraints of the methodology as it is deemed to be sufficiently placed within the 

vertical space occupied by the sandbank through the entirety of its onshore migration to 

be representative of the features morphology. 

The manual extraction process involved the visual delineation of the sandbank in each 

rectified Argus image and the recording of the coordinate set. This was undertaken 

using a Matlab algorithm based on the `ginput' function that acquires the xy coordinates 

of the cursor relative to the plotted reference frame upon operation of the mouse button; 

the values obtained from the rectified Argus image were therefore the Argus xy 

coordinates (m). The timex image type was the primary image product chosen for the 

purpose of the contour extraction but at times when spatial uncertainty existed in a 

contour, it proved beneficial to consult images from the adjacent chronology, and to 

make use of the variance and daytimex images which at times enhanced the sandbank's 

delineation. An example of the contour extraction process described is represented in 

Figure 4.4 in which an arbitrary tidal reference level of -1.18 m ODN has been used to 

extract a contour from a clearly delineated sandbank. 
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Figure 4.4: The manual contour extraction process using a focussed region of a rectified Argus image 

containing the sandbank. A set of descriptive parameters that define the feature are subsequently extracted 
using the Matlab `regionprops' function. The derived contour is displayed on the right side of the diagram 

overlaid with major and minor axes which cross at the centre of mass of the sandbank (red dot). 

The delineation of the shoreward boundary of the sandbank during the shore-attached 

stage was sometimes particularly difficult to determine. In such cases this section of the 

extracted contour is prone to the most subjectivity though the task was often facilitated 

by the different hues of the sandbank and beach sediments. The reader is referred to 

Section 4.3.1 for an analysis of the inherent uncertainty in contour position due to the 

methodology. The maximum possible shoreward cross-shore limit of the sandbank was 

defined as that of the coastal boundary as demarcated in the EDINA digital map of 

Teignmouth. 

The target tidal reference for the purpose of contour extraction was -1.80 m ODN but 

the constraints of both the temporal resolution of the Teignmouth Argus archive and the 

methodology resulted in a contour dataset obtained from a range of tidal values about 

the target level which have been plotted in Figure 4.5 and summarised in Table 4.1. 

r 
r 
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Figure 4.5: Contour depth histograms for individual events. 

The maximum and minimum mean tidal levels for individual contour datasets are -1.75 

m ODN for event 2 and -1.68 in ODN for event 4 respectively whilst the mean of the 

ensemble dataset is -1.72 m ODN. The comparatively low mean value for event 4 

indicates that this dataset contains a higher proportion of shallower contours. 

Maximum Mean Minimum 
Range No. of 

contour depth contour depth contour depth 
(m) observations m ODN) (m ODN m ODN) 

All events -1.89 -1.72 -1.25 0.65 164 
event 1 -1.89 -1.72 -1.25 0.65 66 
event 2 -1.86 -1.75 -1.42 0.43 30 
event 3 -1.87 -1.72 -1.27 0.60 39 
event 4 -1.87 -1.68 -1.26 0.61 29 

Table 4.1: Contour dataset summary statistics. 

The maximum and minimum contour depths are -1.89 m ODN and -1.25 m ODN 

respectively which are both found in the event I dataset and consequently this dataset 

has the maximum range in contour tidal levels of 0.65 m. The event 2 dataset has the 

smallest range at 0.43 m, and the mean value closest to that of the target contour tidal 

level of -1.80 m ODN. All the datasets are strongly positively skewed towards the target 

tidal reference level (Figure 4.5). 

In relation to the spread in the depth values in the contour dataset in which the outlying 

points are as much as 0.6 m distant from the target tidal level, there is a potential effect 

to be considered. This effect concerns the displacement of the centre of mass (COM) 
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position of the contours which becomes significant only in the case of the small quantity 

of contours extracted from the shallowest depths. The COM position is simply the 

centroid or geometric centre of the contour and the primary variable in the set of 

descriptive parameters derived from the image time series in order to characterise the 

nature of the migration events (Section 4.3). In the event that there is a cross-shore 

displacement of the COM position of a contour, this would subsequently affect the 

cross-shore migration rate of the individual points affected in relation to adjacent points. 

The cross-shore migration rate time series constitutes the primary dataset to be 

generated from the video work in the current study and the remainder of this section is a 

qualitative assessment of the potential impact of this effect on this dataset. The 

magnitude of a displacement in the cross-shore COM position is dependent on both the 

size of the difference between the extraction depth and the target tidal level, and on the 

gradients in the morphology of the shoreward and offshore extremities of the sandbank. 

From examination of the available Teignmouth nearshore bathymetric data, it is evident 

that the offshore extremity of the sandbank has consistently shallower gradients when 

compared with those of the shoreward extremity, and therefore it this section of contour 

on the offshore extremity of the sandbank that would be most affected by the 

phenomenon. Before shore-attachment, and in the depth range between -1.25 and -1.89 

m ODN, the shoreward extremity typically has a much steeper gradient (3 to 5°) than 

offshore extremity (1 to 2°) and this is illustrated in the cross-shore 2D section through 

the sandbank in Figure 4.6. Two horizontal lines have also been plotted on the figure 

depicting the target tidal level of -1.80 m ODN and the shallowest contour depth of - 

1.25 m ODN which help to visualise the potential impact on the COM position. 
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Figure 4.6: Cross-shore 2D section through the offshore sandbank from May 2003. The horizontal lines 
depict the target contour tidal level (-1.80 m ODN) and the depth of the shallowest contour (-1.25 in 
ODN). 

The gradients in this scenario result in the shallowest contours being associated with a 

shoreward displacement 0(18 m) in the line of the contour on the offshore extremity, 

but the potential impact of this on the COM position is mitigated by the offshore 

displacement in the line of the contour 0(13 m) on the shoreward extremity. The 

resultant cross-shore COM displacement would therefore be 0(5 m) for contours 

extracted from the minimum depth in this scenario. This could have the effect of 

artificially increasing the onshore migration rate of the COM by as much as 0.33 m. day- 

based on an average contour sample interval of 15 days. This error source is infrequent 

and random in nature but since the largest deviations from the target tidal level only 

concerns a particularly small subset of the dataset the error source is not considered to 

have a significant impact on the results. Once shore-attachment has occurred, the 

mitigating effect of the shoreward gradient in reducing the potential impact of a shallow 

contour on the COM is lost and thereby these contours may be particularly susceptible 

to error in the COM position. Shoreward of the inner extremity of the sandbank, a 

channel in the bathymetry exists which also has the potential to result in a shoreward 

displacement of the line of the contour and by as much as 40 m in this example. 

However, it should be emphasised that the sandbank is typically clearly delineated due 

it being completely surrounded by the sea. The delineation does become more difficult 

once the sandbank encroaches on the inter-tidal terrace but is much improved by the 
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shadow-casting of the steep shoreward extremity, and by the contrasting hues of the 

sandbank's sediment as compared with that of the inter-tidal terrace. 

4.3 Sandbank descriptive parameters 

The dynamics and plan view geometric evolution of each onshore migration event 

captured in the Teignmouth archive are described and quantified using a set of six 

sandbank descriptive parameters. The parameters which have been defined in Table 4.2 

were derived from the application of the Matlab `regionprops' function to binary 

matrices generated from individual sandbank contours. The sandbank parameters of 

primary importance in this study are the centre of mass (COM) or centroid of the 

contour which is used to quantify the sandbank's migration rate variability, and its 

minimum crest elevation. The remaining parameters are used to define the plan form 

geometry of the sandbanks through their morphological evolution in terms of their 

physical proportions, area and orientation. 

Parameter Description 

Centre of mass position 
Coordinate of the contour centroid or geometric 
centre of mass, (Argus y, Argus x) 

Cross-shore axis length Length between contour extremities (m) 
Longshore axis length Length between contour extremities (m) 
Crest depth Minimum depth of the sandbank crest (m ODN) 
Area Area enclosed by contour (m 

Aspect ratio 
Cross-shore axis length divided by longshore axis 
length (non dimensional) 

Table 4.2: Sandbank descriptive parameters. 

4.3.1 Image spatial resolution and coordinate transformation accuracy 

The sandbank descriptive parameters are derived from sets of contour coordinates so 

their accuracy is governed by the projection and calibration errors in relation to the 

spatial resolution of the domain covered by the rectified Argus image. A Teignmouth 
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Argus video image comprises 640 pixels in the cross-shore dimension and 480 pixels in 

the longshore dimension. The pixel matrix represents a finite physical area that is 

determined by the camera field of view and the camera-to-object distance. At the study 

site the rectified Argus image covers a nearshore region spanning 900 m in the 

longshore direction and 1000 m in the cross-shore direction (see Figure 4.7). The spatial 

resolution of the image can therefore be defined in terms of the pixel `footprint' 

variability which concerns the physical dimensions that each pixel represents at ground 

plane level (i. e. where z=0 within the site specific reference frame). The size of each 

pixel footprint is a function of the slant range between the camera and ground plane, and 

the relative position of the pixel within the image frame. Calculation of the footprint 

matrices for each camera permits the mapping of the spatial resolution of a merged and 

rectified video image (Figure 4.7). 

Cross-shore pixel resolution (m) Longshorc pixcl resolution (m) 

Argus x 

ä 
4 

ay�c x 

Figure 4.7: Cross- and longshore pixel footprint maps for the Teignmouth camera set up. 

For both of the cross-shore and longshore pixel resolution maps the image spatial 

resolution degrades in a near linear manner in the cross range direction (Argus x) but as 

R2 in the range direction (Argus y) hence as the target-to-camera distance increases in 
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the latter direction, so the footprint size stretches out significantly (Holman and Stanley, 

2007). 

In order to better visualise the effect of pixel resolution variability on the contour 

coordinate datasets, these datasets have been plotted on the pixel resolution map for the 
1 

cross-shore and longshore dimensions (Figure 4.8). 
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Figure 4.8: Contour coordinates dataset and pixel footprint variability in the a) Cross-shore direction, and 
the b) longshore direction. 
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The combination of the higher pixel resolution in the cross-shore dimension (Argus y) 

and the near linear manner in which the pixel footprint degrades in this dimension, as 

compared with that in the longshore direction (Argus x), means that the cross-shore 

coordinates are predominantly more accurate than their corresponding longshore 

coordinates. The onshore migration of the sandbank can be represented by three 

morphologic stages in the cross-shore dimension which are the offshore genesis stage, 

the elongation and onshore migration stage, and the shore-attachment and dissipation 

stage, for which qualitative definitions are provided in Section 4.4.1. The Argus 

coordinate ranges relating to each stage are detailed in Table 4.3 which summarises the 

pixel footprint variability across the stages. The greater accuracy of the cross-shore 

coordinates as compared with the longshore coordinates is clearly evident. In the cross- 

shore dimension, the pixel footprint is in unity in the range from 150 m and 400 m, and 

consequently the corresponding Argus x coordinates of the contours potentially have the 

smallest error bounds. 

Sandbank morphologic I stage 

Offshore genesis 
Elongation & Beach attachment & 
migration dissipation 

Coordinate Footprint Coordinate Footprint Coordinate Footprint 
range (m) range range (m) range (m) range (m) range (m) 

Cross- 
shore 

350 to 600 1 to 3.5 350 to 100 1 to 1.5 100 to 0 1.5 to 3 

Lon shore 400 to 600 4.5 to 8 350 to 550 2.5 to 7.5 350 to 600 3 to 6 
Table 4.3: Summary of the pixel footprint variability between morphological stages. 

In the regions further offshore and inshore of the centralised pixel unity region, the pixel 

footprint increases to a maximum of 3.5 m and 3m respectively, and with the lower 

resolution there is the greatest potential for inaccuracy (O(±2 m)) in the corresponding 

cross-shore coordinates. These peripheral regions concern contour coordinates 

associated with the sandbank's early genesis and the latter period of the beach 
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dissipation stage. The longshore coordinates are subject to the greatest potential a 

inaccuracy with the pixel footprint variability in the range from 3m to 8 m, and 

particularly coordinates from the furthest flank of the sandbank during the genesis and 

early migration-elongation stages where the pixel footprint reaches a maximum of 

approximately 8m (±4 m). The pixel footprint variability for the longshore coordinates 

from the nearside flank of the sandbank is in the range from 2.5 to 4m and are therefore 

subject to improved potential accuracy. 

The accuracy of object coordinates between transformations is governed by the 

accuracy of the geometry solution as determined by the extrinsic camera parameters. 

The position of the camera is surveyed using a Leica TC1600 total station which has 

typical accuracies of f3 mm in distance and ±500 in angle (1'c = ; r/2 x 106 radians). In 

order to retain coordinate accuracy, the extrinsic camera angles need to be determined to 

an accuracy commensurate with the cross range pixel resolution (Holman and Stanley, 

2007) which is estimated at 0.047° per pixel for the Teignmouth cameras (Siegle, 2003). 

Measuring the camera angles to this level of accuracy is physically not possible but 

instead their accurate derivation is achieved through the use of multiple ground control 

points (GCP) during the calibration procedure. Provided a sufficient number of GCP's 

are used (> 2), post transformation errors between measured and predicted coordinates 

pairs are of the order of 1 to 2 pixels (Holland et al., 1997). Based on the pixel footprint 

variability in Table 4.3, this equates to a maximum Argus x coordinate error of 7m 

which is less than 3% of the mean cross-shore axis length scale hence this error source 

is considered to be negligible. Furthermore, it only applies to a small subset of the 

Argus x coordinate dataset which are those on the lateral margins of Figure 4.8a. 
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4.3.2 Estimation of sandbank crest depth from Argus images 

In relation to the morphodynamic evolution of the sandbank, the crest depth is an 

important parameter since the depth of the sandbank crest beneath the sea surface 

controls the extent of wave breaking during periods when the sandbank is submerged. 

For the purpose of this study the crest depth is defined as the depth over the shallowest 

part of the sandbank referenced to 0m ODN. In the absence of high frequency 

bathymetric and topographic data, the Argus image archive was used to estimate the 

approximate crest depth position of the sandbank for the duration of the observation 

period. The crest depths were sampled using the same intervals as the contour time 

series. This was achieved by averaging the tidal levels of the Argus images in which the 

sandbank was first observed to emerge on the ebbing tide and vice versa for the 

flooding tide, and this was aided by making use of the images from the adjacent 

chronology which helped to verify the values. The diurnal tidal water level variation 

means that two depths were obtained for each stage of the tidal cycle and these were 

first averaged giving a single estimate to provide an estimate for the ebb and the flood 

tide stages, the mean of these was then taken to obtain the final sandbank crest depth 

estimate. 

The accuracy of the crest depth estimates is primarily dependent on the accuracy of the 

Argus system time which governs the time stamp attributed to the pier mounted 

pressure transducer measurements in the field data archive. The Argus system time is 

maintained through regular automated updates via the internet so the internal clock is 

accurate hence this error source is negligible. A secondary potential source of error 

concerns water surface topography in the region encompassing the sandbank and the 

pier-mounted pressure transducer. In order for the tidal levels of the Argus images to be 

valid for the purpose of crest depth extraction, it is necessary for the local water level 
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topography between the pier the position of the sandbank to be level. The local water 

level is controlled by both the tidal cycle and by the wave generated setup. In a previous 

study it was discovered that tidally induced water level variations as large as 0.9 m 

occurred between the estuary channel and the adjacent coastal region during the 

occurrence of spring tides, whilst being negligible (5 cm) during neap tides (Siegle, 

2003). The magnitude of the variation in local water level between the pier and the 

sandbank has never been quantified but the physical phenomenon decreases with 

distance from the channel and is considered negligible in the vicinity of the sandbanks 

and pier (Siegle, 2003). The effects of wave generated setup are more complex to 

evaluate as the extent of the setup varies both with wave height and with cross-shore 

position. However, Siegle (2003) established that the principle wave generated variation 

in water level topography in the vicinity of the migrating sandbanks occurred between 

the offshore and inshore extremities. This was calculated to be as high as 0.15 m with a 

significant wave height of 1.8 in. However, since Teignmouth is categorised as a low 

wave energy environment, the incidence of wave heights over 0.5 m is occur less than 

10% of the time (Chapter 3) and thereby the effect of wave generated setup on the crest 

depth dataset is also considered to be negligible. The uncertainty in the crest depth 

approximation in relation to the methodology was evaluated by generating error bars 

derived from the depth of the corresponding flood- or ebb-averaged value. A 

comparison of the estimated crest depths with the surveyed bathymetries indicates the 

method to be robust. For example, the surveyed sandbank crest depth from the May 

2003 Coastview field work determined that the minimum crest depth was, at 

approximately 0m ODN (Figure 4.6), and this is in good agreement with the image 

derived crest depth estimate for the same period (Figure 4.22c). 
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4.4 Results 

4.4.1 Introduction 

The primary objective of the video work is to characterise the morphological evolution 

of the onshore migration events in the ebb tidal delta sedimentation cycle in terms of the 

geometry of the feature, and to quantify the dynamics based on the centre of mass. 

Three generic morphological stages were introduced in Section 4.3.1 (see Table 4.3) 

and these are defined as follows: 

1. Offshore genesis: the initial period after the first observation when the sandbank is 

usually observed to grow in area but with an approximately stationary centre of mass 

(COM) position. 

2. Elongation and migration: the sandbank's COM propagates towards the beach which 

is observed to coincide with elongation in the cross-shore dimension and growth in area 

3. Attachment and beach dissipation: the shoreward extremity of the sandbank merges 

with the beach face forming a shore-attached transverse bar feature which gradually 

diminishes in area and cross-shore extent. 

The genesis stage in the contour time series begins after the sandbank has first been 

observed in the Argus image frame during the spring tide observation window. The first 

contour is only extracted when the sandbank has accreted sufficiently in vertical extent 

to be observable over consecutive tides which does not necessarily coincide with the 

first observation. The end of each event time series was determined when it became no 

longer possible to properly delineate the sandbank from the surrounding beach 

morphology. The morphological behaviour outlined above is manifest in all four of the 

events though despite the similarities there are also significant differences in the 
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observed behaviour between individual events which are elaborated upon in the 

following sections. 

4.4.2 Contour times series and their qualitative description 

Notes on the presentation of the contour time series 

The contour time series are presented in chronological order from event 1 to event 4. 

The series are presented in their entirety where practicable with the contours being 

displayed in a panel of plots comprised of up to six contours per row. The contour plots 

are focused on the Argus image area between 0m to 650 m in the cross-shore 

dimension (Argus x) and 300 in to 700 in in the longshore dimension (Argus y). 

Representative major and minor axes have been added to the contour plots with the 

intersection of the two being the position of the COM. The image date, the tidal level at 

the time the contour was extracted and the cross-shore migration rate computed from 

the difference in the cross-shore coordinate of the COM between consecutive contours 

are displayed in the individual plot windows. Episodes of onshore migration of the 

COM are denoted by negative values and vice versa for offshore migration episodes. 

The EDINA coastal boundary, which has been defined as the onshore limit of the 

migration of the sandbank for the purpose of this study is depicted by a grey shaded 

region and this represents the boundary denoted by the Teignmouth seawall defence on 

the main beach in accordance with the Ordnance Survey map data. The inter-tidal 

terrace typically occupies the cross-shore region between 50 m and 175 m offshore. The 

figures of the individual event contour time series are followed by plots of the root- 

mean-square (HRMs) wave height and period (TRMS) for the time corresponding to each 

set of contours. The measurements were obtained from the pier-mounted transducer and 

gaps in the wave time series correspond to periods of system downtime. The data are 
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presented in order to provide the reader with a general overview of the wave energy 

conditions hence the trends in the data have been highlighted using a7 day running 

mean. The time series are characterised by calm and stormy periods when typical 

maximum HR, S values are in the range 1 to 1.2 m conditions. The TRms time series 

oscillate between fetch-limited and long period swell conditions with typical values in 

the range 5 to 14 s. From the time series for event 2 the seasonal signal in wave energy 

levels is readily discernible (Figure 4.12). 
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Figure 4.9: Event I contour times series. 
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Figure 4.10: Event I root-tnean-square wave height (upper panel) and period (lower panel) time series. 
Bold lines denote a 7-day running mean. 

Event I 

Event I is the most enduring of the four observed onshore migration events with 957 

days between the start and end dates of the contour time series and 66 individual 

contours. A subset of the contours is presented comprising every other contour 

excepting the first seven which are without omission. The January 2000 contour is also 

absent from the time series due to there having been a short period of station downtime. 

The COM of the first contour in event I is located at 463 m and 464 in in the offshore 

and longshore dimensions respectively, and the orientation of the major axis is towards 

the estuary mouth. The sandbank genesis is evident in the image archive as early as 

April 1999 but it was not until October 1999 when the first contour is extracted as this is 

when it first becomes clearly defined in the Argus images at the target tidal reference 

level. The event I genesis is marked by a horse-shoe shaped morphology which is not 

observed in any of the subsequent events. The genesis lasts until early October 1999, 

after which the COM is observed to begin migrating shoreward, with elongation first 
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becoming evident between the December 1999 and January 2001 contours. The event 1 

elongation is noteworthy for both its magnitude and duration which culminates in the 

sandbank spanning approximately 550 m in the cross-shore dimension by May 2001. 

The area of the sandbank at this time is the largest of the entire contour dataset. The 

extension of the March 2000 contour in the offshore direction as compared with the 

previous contour suggests that there was a shoal coalescence event in which a newly 

formed sandbank merged with the offshore extremity in the preceding tour week period. 

This was confirmed from the inspection of images from the preceding and subsequent 

weeks and is analysed in more detail in Section 4.4.3.1. As the elongation process 

persists, the orientation of the sandbank's major axis initially rotates clockwise 

becoming more shore normal. However during the period between the end of December 

2000 and mid-February 2001, the outer half of the sandbank rotates anti-clockwise re- 

orientating itself towards the estuary mouth and giving it the appearance of having been 

bent. The shoreward end of the sandbank first encroaches on the inter-tidal terrace 

during April 2000, initially becoming shore-attached towards the end of September. 

During the subsequent 6 month period, the transverse sandbank is seen to twice become 

detached again suggesting successive periods of erosion and accretion. The offshore end 

of the sandbank begins to recede during the summer of 2001 which causes it to return to 

a more shore-normal orientation. The sandbank becomes fully dissipated early in the 

summer of the following year. It should be noted that due to technical problems with the 

Argus station and pier mounted pressure transducer in January and February 2001, there 

is a period ot'just over one month during which no contours were obtained causing a 

two point data gap in the time series. 
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Figure 4.12: Event 2 root-mean-square wave height (upper panel) and period (lower panel) time series. 
Bold lines denote a 7-day running mean. 

Event 2 

I-he event 2 onshore migration is the third longest in the series spanning 429 days 

between the first and last observations and comprising 30 contours which are presented 

in their entirety. The genesis of the event 2 sandbank first became apparent in December 

2001 though it was not until February 2002 when it became clearly defined that first 

contour of the time series is extracted. The initial contour has a COM located 410 rn 

onshore and 514 m longshore, an elliptic morphology and with the major axis 

orientated towards the estuary mouth. The genesis period is considered to have ended 

by the beginning of March 2002 as the sandbank is observed to begin its shoreward 

migration. The onset of the associated elongation in morphology in this event is delayed 

as the process first becomes apparent in September which is several months following 

the start of the onshore migration phase. Once the elongation process begins, it occurs 

over a relatively short period lasting approximately 6 weeks and culminates in 

attachment and a major axis length of approximately 350 m. The COM of the event 2 at 

t 
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the start of the sandbank's elongation was between 80 to and 90 m further inshore when 

compared with event 1. The shoreward growth of the morphology results in a clockwise 

rotation of the major axis which becomes orientated in a near shore-normal direction. 

Attachment occurs in the latter part of October 2002 after which the offshore extremity 

of the sandbank is observed to gradually diminish in cross-shore extent and become 

fully dissipated by April 2003. 
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Figure 4.13: Event 3 contour time series. 
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Figure 4.14: Event 3 root-mean-square wave height (upper panel) and period (lower panel) time series. 
Bold lines indicate a 7-day running mean. 

Event 3 

Event 3 constitutes the second longest time series with 559 days between first and last 

observations and comprising 39 contours of which those on the 30`x' June 2003,22"', 

February 2004, and the I8"' June 2007 have been omitted from the presented times 

series. The genesis of the event 3 sandbank was first detected as early as April 2002 

when it was observed to be part of the submerged terminal lobe at the distal end of the 

estuary channel. The feature was subject to intermittent erosion and accretion over the 

following 8 months and hence it was frequently absent from the low tide Argus images. 

The first contour was extracted in December 2002 after the sandbank had accreted 

sufficiently in elevation to remain in view at the target tidal level. The sandbank 

morphology is initially elliptic with the COM located 482 m offshore and 532 m 

longshore, and with the major axis orientated towards the estuary mouth. The genesis 

stage is brief but marked by the morphology of the feature becoming more circular and 

gaining in area. At then end of January 2003, the sandbank is observed to begin 
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migrating shoreward with the elongation first becoming noticeable in March. During the 

six month period to September the shoreward elongation continues in a gradual manner 

and the subsequent clockwise rotation of the major axis which evolves to form a shore 

normal or transverse bar. The transverse bar becomes shore-attached by early October 

2003 at which time the feature reaches its maximum length of approximately 350 m. 

The shore-attached end of the morphological feature initially broadens in the longshore 

dimension before narrowing again as the offshore end begins to decrease in cross-shore 

extent. The feature becomes fully dissipated by the end of summer 2004. 
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Figure 4.15: Event 4 contour time series. 
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Figure 4.16: Event 4 root-mean-square wave height (upper panel) and period (lower panel) time series. 
Bold lines indicate a 7-day running mean. 

Event 4 

Event 4 time series spans the shortest period of contour dataset with 414 days between 

the first and last observations and is comprised of 29 contours. The genesis of the event 

4 offshore sandbank was first observed in the Argus archive in late October 2003 with 

the first contour being extracted on the 23"J January 2004. The COM coordinate of the 

first contour of the genesis stage was located 416 m offshore and 535 m longshore 

which marked the beginning of an event which is noteworthy for the relatively small 

area of the morphological feature throughout its evolution as compared with the other 

events. The diminutive feature is elliptic in early genesis with the major axis orientated 

in a near shore-normal direction. The genesis stage is brief as the COM is observed to 

begin migrating shoreward from the outset with the process of elongation becoming 

evident in the third contour dated the 23"d February 2004. The morphological feature 

continues to be subject to gradual elongation for the remainder of the time series 

reaching a length of 187 m before becoming shore-attached. Thereafter the sandbank 
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reaches its maximum cross-shore length at 263 m in February 2005. Shore-attachment 

occurs at the end of December. The final contour in event 4 of the 12'1' March 2005 

depicts a sandbank that is in a partially dissipated state but owing to station downtime, 

no further images of the feature were available. 

To summarise the contour time series clearly define the onshore migration phase of the 

morphological behaviour of the sandbanks the Teign ebb tidal delta in which 

similarities can be observed. The individual events show similar plan form geometry 

during their evolution which is in contrast to the period between 1964 and c. 1990 as per 

the findings of Robinson (1975) and as seen in the S. Hook image archive (Appendix 

Al) The migration events were previously commonly manifest by large shore-parallel 

swathes of sediment (e. g. top panel of Figures AI and A3; top left panel. Figure 3.5) 

that sometimes developed large transverse crescentic forms as they approached the 

shore (e. g. middle panel, Figure A3). However, the events depicted in the time series all 

evolve into elongate transverse forms prior to attachment which suggests that the inlet 

ebb shoal system has undergone a significant change in sedimentation processes 

between the two periods in the inlet's evolution. 

In the following sections the characteristics of the migration events are quantified and 

analysed using the set of sandbank descriptive parameters that were introduced Section 

4.3. The primary descriptive parameter is the cross-shore C'OM coordinate which is 

used to quantify the cross-shore migration rate and hence the dynamic of the migrating 

sandbanks. The remaining parameters which are area, aspect ratio (cross- 

shore/longshore axis length) and eccentricity are used to define the plan form geometry 

of the features through their morphological evolution. 
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4.4.3 Temporal variability in sandbank descriptive parameters 

4.4.3.1 Cross-shore and Iongshore COM position 

The COM cross-shore and longshore time series for each onshore migration event are 

presented in Figure 4.17 along with the approximate time of sandbank shore-attachment 

as denoted by hatched lines. The cross-shore COM time series for each onshore 

migration event are also presented in Figure 4.17 in which the most significant feature is 

the persistent onshore migration of the sandbank and the relative paucity of offshore 

directed migration. This persistent onshore migration of a sedimentary feature exposed 

to wave action is atypical morphodynamic behaviour when compared with features on 

open coast beaches which typically migrate both on and offshore, e. g. shore parallel bar 

dynamics (Van Enckevort and Ruessink, 2003a). However, at tide dominated and mixed 

energy inlets the episodic or quasi-periodic onshore directed migration of ebb tidal delta 

sandbanks is the typical morphodynamic behaviour of such features (Section 2.2.1). In 

contrast to the dynamic cross-shore position variability, the longshore position of the 

onshore migration events is relatively static and constrained to the region between 450 

and 550 m alongshore. The time series suggest that the longshore position of the COM 

of the sandbanks has slowly migrated northwards by a maximum of approximately 100 

m between events I and 4. The northward trend in the alongshore migration COM 

position is likely to be a function of the longshore position at genesis where sandbank 

sediment transport is governed by waves, tides and river discharge (Figure 3.6) (Siegle, 

2003). Therefore over macro-times scales (years) the northward trend in the longshore 

position at genesis may be indicative of a long term gradual increase in the combined 

tidal and river discharge component of flow. 
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In the cross-shore dimension, the initial period of offshore genesis for all of the events 

is centred on the region between 400 and 500 m offshore after which the COM of the 

sandbanks begin migrating onshore. Genesis for event I occurs in autumn (August, 

1999), whereas the genesis for events 2 to 4 occur in winter between December and 

February which may reflect greater sediment availability during the higher energy 

winter months. Prominent in the cross-shore COM time series are clear generic 

similarities in the general variability of this parameter for events 2 to 4, whilst the event 

I time series is markedly different. These generic similarities in the cross-shore COM 

variability for events 2 to 4 are characterised by the following three chronological 

stages: 

1. An initial quasi linear section in the time series indicating a period of relatively 

steady onshore migration. 

2. A brief period in which the gradient of the COM time series is observed to flatten 

briefly before steepening which signifies a short deceleration in the onshore migration 

rate then acceleration. 

3. A final quasi linear section after shore-attachment in which the gradient is less steep 

than in the previous sections, indicating gradual deceleration during the dissipation 

process in which the offshore extremity is eroded. 

In contrast to events 2 to 4, the event I time series is characterised by a quasi-linear 

onshore migration throughout its morphodynamic evolution. The protracted duration of 

event 1 at 958 days between the first and last observations, is approximately twice as 

long as the duration of the other events. Inspection of the event 1 contour time series in 

Figure 4.9 shows that the sandbank underwent a significant morphological change 

between March and April 2000 in which there was a significant addition of sediment to 
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the offshore extremity of the sandbank which first becomes noticeable in December 

1999. This morphological change is documented in Figure 4.18 which comprises a time 

series of three Argus images spanning the period from December 23"' 1999 to April 7 ̀h 

2000 in which the supply of the new sediment to the offshore extremity is clearly 

evident. The cross-shore location of the new sediment suggests that it is the genesis of a 

new offshore sandbank which merges with the event 1 sandbank's offshore extremity. 

The merging of the two sandbanks occurs due to the offshore extremity of the event I 

sandbank still being in close proximity to the distal end of the inlet's ebb channel where 

genesis ordinarily occurs. Consequently, event 1 is comprised of the aggregation of two 

onshore migration events which results in it spanning approximately 550 m in the cross- 

shore dimension. 
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Figure 4.18: Argus image time series depicting the offshore genesis of a new sandbank and its subsequent 
merging with the elongate event I sandbank. 

This resulting sandbank is significantly larger than the subsequent features (Figure 

4.24), which provides an explanation for its atypical cross-shore COM position time 

series in relation to the other events. A further distinguishing feature of the event I 
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cross-shore COM position time series relates to the period between the end of 

November 2000 and mid February 2001, when there is a significant offshore trend in 

the position of the COM of the shore-attached sandbank. This is the only significant 

offshore movement in the sandbank COM observed in the study. During this period the 

COM moved offshore by approximately 100 m, which partly coincided with the period 

of station downtime. This resulted in the loss of two contours creating a discontinuity in 

the cross-shore COM position time series. Inspection of the available contours (Figure 

4.9) and Argus images for the period indicate that the offshore migration is caused by 

the erosion of the shore-attached extremity of the sandbank which subsequently 

becomes detached from the beach face. This is a hypothesis based on the observational 

evidence as the shoreward extremity appears to recede and become disconnected but the 

mechanism for this is unclear. The erosion of the shoreward extremity appears to have 

had the effect of shortening the major axis length of the sandbank from the shoreward 

extremity by as much as 70 m, whilst the position of the offshore extremity remained . 

stationary at approximately 500 m offshore, hence the offshore directed migration of the 

COM. After the missing observations in the time series, the initial onshore migration of 

the cross-shore COM position of the sandbank reflects the reattachment of the 

shoreward extremity during March 2000. 

Two final points of interest regarding the cross-shore COM time series in Figure 4.17 

are firstly that shore-attachment occurred when the COM was in the cross-range 

between 130 and 240 m offshore and that this typically occurred in autumn (September- 

October) though in event 4 it was a couple of months later (January 2005). Secondly, 

there is typically an overlap between events such that genesis occurs during the 

dissipation of the previous shore-attached sandbank. Therefore the shore-attached 

feature is subject to a degree of sheltering of the incident wave energy by the offshore 
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sandbank which is a function of both the area of the latter feature, and of the duration of 

the temporal overlap. The time series indicate that the duration of temporal overlap is 

shortest between events 1 and 2 when compared with subsequent events. Therefore the 

sheltering effect of the event 2 offshore sandbank in genesis on the wave energy 

reaching the event I shore-attached sandbank is lower than in subsequent events hence 

this may have assisted the dissipation process. 

4.4.3.2 Cross-shore migration rate 

In Figure 4.19 the cross-shore COM position time series of the individual events have 

been plotted with the raw, and smoothed and interpolated cross-shore migration rate. In 

Figure 4.20 on the following page the same migration rate data are presented in scatter 

plots with cross-shore distance for the horizontal axis. The smoothed and interpolated 

cross-shore migration rate has been plotted on the time series in order to highlight 

trends over the meso time scales (months) which are partially obscured in the raw time 

series due to the inherent noise introduced by the contour extraction methodology 

(Section 4.2). The primary limitation of the methodology causes variation in the 

extraction depth of the contours which has been shown to cause displacement of the 

COM position of the contours extracted from the shallowest depths after shore- 

attachment. The estimated migration rate error for a contour extracted from depths 

0(0.6 m) shallower than the target tidal level is 0(0.33 m. day-ý) using typical gradients. 

For the small subset of data points that are affected this error is statistically significant 

in relation to the migration rate variability which predominantly fluctuates in the range 

0 to 2 m. day-'. The smoothed migration rate time series were calculated by first 

applying a three point average to the raw cross-shore COM time series and then 

interpolating the data on to a monotonic 7 day sample frequency. 
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In Section 4.4.3.1 it was determined that the event 1 sandbank had an atypical cross- 

shore COM position time series when compared with the other events on account of it 

having been formed from the coalescence of two offshore sandbanks. The behaviour is 

also manifest in the migration rate time series due to the COM parameter of the 

resultant extensive swath of sediment not being as responsive to the hydrodynamic 

forcing when compared with the less expansive features observed in subsequent events. 

After the initial genesis period in early December 2000 in which the migration rate is 

close to zero, the event 1 onshore migration rate accelerates sharply to between 1 and 

1.5 m. day"1 as the sandbank begins to migrate shoreward and elongate. Following this 

period, the shoreward migration rate begins to decrease which is coincident with the 

genesis of the new sandbank and the subsequent merging episode. In the latter stages of 

the merging process at the end of March 2000, the sandbank undergoes a significant 

period of accretion at its shoreward extremity (see April 7 ̀h 2000 Argus image in Figure 

4.18) causing the migration rate to rise once again. During the remainder of the event 1 

time series, there is less variability in the migration rate than that prior to the merging 

episode. The migration rate is predominantly less than 1 m. day'' with sustained periods 

when it is close to zero. This is explained by the sedimentary feature reaching its 

maximum cross-shore extent after the addition of the new sand. 

The three chronological stages identified in the previous Section 4.4.3.1 that are 

common to events 2 to 4 are also evident in the smoothed and interpolated migration 

rate time series. In the plots for events 2 to 4 in Figure 4.23 these are denoted by regions 

marked S I, S2 and S3. The first chronological stage is reflected in the initial section of 

the COM migration rate time series by a sustained period of gentle deceleration in 

which the smoothed onshore migration rate reduces from between 1 and 2 m. day-1 to 

approximately zero (Si). A regression analysis of this chronological stage in the 
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migration rate time series produces similar deceleration values for the three events 

where event 2 is -0.006 m. day 2 (R2 = 0.9), event 3 is -0.007 m. day"2 (R2 = 0.8) and 

event 4 is -0.004 m. day'2 (R2 = 0.4) respectively (data not presented). In addition to this, 

all three deceleration periods terminate within three weeks of each other relative to the 

time of year. This typically occurs at the latter stages of the summer period between late 

July and mid August. The initial trend in the event 2 time series does not quite follow 

that of the other events since the migration rate begins close to zero before acceleration 

occurs following an influx of new sediment to the sandbank in the period between the 

first and second contours (see Figure 4.11). This results in the offshore extremity of the 

sandbank accreting further offshore and an increase in its area (see Section 4.4.3.5) 

which delays the initial onset of onshore migration of the COM. It can be seen from the 

smoothed migration rate time series for events 2 to 4 that the end of the deceleration 

period occurs in a relatively narrow cross-shore region between 260 and 320 m 

offshore. When this is considered with the seasonal timing of the end of this stage it is 

not possible to determine what the primary cause of the deceleration may be. It could be 

a product of the decreasing wave energy which reaches a minimum in the latter part of 

the summer when the deceleration stage ceases. Alternatively, it could be a function of 

the decreasing temporal exposure of the sandbank to the wave driven processes as it 

migrates landward (FitzGerald, 1988) (Figure 2.5). It is probable that both of these 

mechanisms contribute to the deceleration through this stage of the sandbank's onshore 

migration. However, since the elevation of the sandbank also varies (Figure 4.21 and 

4.22) in time then this will either enhance or mitigate the level of exposure to some 

degree depending on the magnitude of the variability. 

The second chronological stage (S2) involves a period in which the onshore migration 

rate accelerates as the sandbank approaches and attaches to the shore and this is 
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particularly pronounced in the event 2 time series. The marked onshore directed 

acceleration in the event 2 time series is caused by significant onshore directed changes 

in the cross-shore COM position between observations during this period. These 

increases were primarily the result of a period of significant elongation in the 

sandbank's morphology of 0(150 m) during September and October 2002 which 

culminates in shore-attachment (see Figure 4.11) The onshore acceleration of the event 

2 sandbank's COM increased the migration rate from an initial value close to zero to a 

peak of 2.7 m. day"'. This is the highest migration rate of the four time series and a 

regression analysis shows the associated acceleration to be 0.06 m. day-2 (R2 = 0.95) and 

is an order of magnitude larger than the initial deceleration (Si). The less pronounced 

onshore accelerations in the event 3 and 4 time series result in peaks in the cross-shore 

COM position migration rates of 1.5 and 1.9 m. day"I respectively, whilst the regression 

analyses produces corresponding accelerations of 0.01 m. day"2 (R2 = 0.8) for both 

events. The shore-attachment of the sandbanks in events 2 to 4 is observed to occur 

close to the peak in the migration rate during the onshore directed acceleration though it 

should be noted that the shore-attachment line is only an approximate indication. 

Following the peak in the migration rate, there is a subsequent period of deceleration in 

which the offshore extremity of the shore-attached sandbank begins to be eroded. 

Regression analysis of this stage shows that event 4 experiences the most rapid 

deceleration of -0.07 m. day"2 (R2 = 0.9), whilst events 2 and 3 experience similar 

deceleration magnitudes of -0.03 (R2 = 0.9) and -0.02 m. day"2 (R2 = 0.9) respectively. 

Typically, the end of the deceleration process occurs when the COM of the sandbank 

has a cross-shore range of approximately 120 m and coincides with the offshore 

extremity arriving on the low tide terrace (cross-shore range: 200-300 m). Note that the 

S2 acceleration-deceleration stage occurs through the winter season before ending prior 
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to the start of spring. The termination of the deceleration period marks the time when 

the offshore extremity begins to traverse the inter-tidal terrace. 

The final S3 stage in the smoothed and interpolated migration rate time series appears to 

be a period in which there is no sustained acceleration or deceleration during in which 

the migration rate predominantly fluctuates between zero and 1 m. day''. The S3 phase 

of the evolution marks the time when the intermittent submergence and exposure of the 

feature by the tidal water level variation is at its maximum. The rate of dissipation of the 

offshore extremity is therefore a primary function of the balance between wave energy 

levels and water level variation, with a secondary dependence on the degree of 

sheltering due to the genesis of the offshore sandbank. 

The mean migration rates of the four events have been estimated by taking the mean of 

the absolute values from the time series and these are 0.91,1.0,0.94 and 1.0 m. day" 

respectively. These magnitudes infer similar migration rate variability between events 

which is estimated at 27 to 30 m over a 30 day period. However, if the mean migration 

rate is calculated from using the cross-shore distance traversed by the COM between the 

first and last contours and the total duration of each onshore migration event then the 

estimated values are somewhat different at 11,23,21 and 21 m per 30 day period 

respectively. This statistic better reflects the observed morphological change insomuch 

as the calculation differentiates between event 1 and the other events where the duration 

of the former was approximately twice that of the other events as a result of the 

sandbank merging with another feature (4.4.3.1). 

The differences between the scatter plots of migration rate versus cross-shore position in 

Figure 4.20 infers that the influence of the cross-shore position on the sandbank's 
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migration rate is complex as there are no distinctly similar trends across all of the 

events. Events 2 and 4 do exhibit a similar form in the trend-lines but it in general it is 

difficult to draw any reliable conclusions from the plots. 

4.4.3.3 Crest depth 

The time series of crest depth estimates for the observation period are plotted in Figure 

4.21 which includes error bars indicating the uncertainty associated with each estimate 

and the approximate time of sandbank shore-attachment. The discontinuities in the crest 

depth time series occur when it has not been possible to obtain data at both of the tidal 

levels necessary to make an estimate on either the flood or ebb tide. The most striking 

trend in Figure 4.21 is the increasing depth of the sandbank's crest from event 1 to event 

4 which is reflected in the average crest depth statistic where events I to 4 have mean 

values of 0.6, -0.2,0.1 and -1.1 m ODN respectively. The maximum crest depth in the 

dataset is +2.4 m ODN which relates to the event I sandbank at around the time of 

shore-attachment but this is not reflected in the other events where the peak in crest 

depth occurs both before and after shore-attachment. 

To assist with the purpose of a more detailed comparison of the four events the 

individual crest depth time series are presented separately in Figure 4.22. The only trend 

that these time series appear to share is one of increasing elevation during the onshore 

migration and elongation stage after genesis. Apart from this there appear to be no other 

common trends in the minimum sandbank crest depth parameter which seem to increase 

and decrease randomly. 
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The initial sustained increases in the crest depth elevation in events I to 3 is not 

reflected in the event 4 time series in which the crest depth appears to be eroded shortly 

after genesis by approximately 0.5 m. It should be reiterated that the event 4 time series 

is terminated prematurely due to a period of Argus system downtime and so the 

dissipation stage is incomplete. The event 4 crest elevation does not undergo any 

appreciable accretion through its evolution and consequently it is atypical in relation to 

the others. When its deep crest depth is considered in conjunction with the markedly 

small area of the sandbank (Figure 4.15) it suggests that there may have been a 

significant reduction in the supply of sediment over the meso to macro time scale from 

event I to event 4. 

The time series for events 1 to 3 have similar initial trends in which the crest depth 

increases in a quasi linear manner before the variability becomes more random in 

nature. The event 1 crest depth time series begins with two quasi linear sections that 

culminate in the maximum crest depth of 2.4 m ODN in mid October 2000. The two 

sections are separated by a relatively short period in which the crest depth reaches an 

intermediate elevation maximum of 1.1 m ODN in early March 2000, before being 

eroded by 1 m. This intermediate maximum in crest depth elevation is coincident with 

the addition of new sediment to the offshore extremity as discussed in the previous 

subsection, which suggests that the new sediment may have been redistributed over the 

central area of the sandbank by wave action. After the peak in the event 1 crest depth 

time series in October 2000, the elevation of the sandbank undergoes consecutive 

periods of sustained erosion and accretion for the remainder of its life cycle. The event I 

minimum value of approximately -0.6 m ODN is reached towards the end of March 

2001, after which the subsequent accretionary period culminates in an intermediate 

maximum of +1.5 m ODN towards the end of August 2001. 
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By mid-December 2001, the crest depth has been eroded to a depth of -0.35 m ODN 

after which the elevation gradually increases through the shore-attached dissipation 

process. 

The event 2 crest depth time series is similar to event 4 in that it has less variability than 

in the event 1 and 3 time series. The initial quasi linear trend of increasing crest depth 

reaches a maximum at 0m ODN at the end of April 2002, after which there follows a 

sustained period to early December 2002 in which the variability in the crest depth is 

small fluctuating between -0.3 and +0.2 m ODN. In December 2002, the crest depth 

begins accreting and reaches the event 2 maximum of +0.6 m ODN in early January 

2003. Thereafter the elevation of the crest is maintained until a three week period 

between late February and early March in which the crest depth is eroded by 

approximately 0.8 m to -0.3 m ODN, after which it is relatively constant for the 

remainder of the event. 

The event 3, crest depth time series more closely resembles event 1 than events 2 and 4 

since it displays more variability and undergoes a much more sustained initial period of 

quasi linear increasing elevation, which culminates in the event's crest depth maximum 

of +1.5 m ODN in early August 2003. During this initial period, there is a notable 

increase in crest depth of approximately 1.0 m between the third and fourth estimates 

which occurred during the month of January. In the initial event 3 time series in which 

the crest depth increases to the maximum elevation, these increases occur during to 

distinct periods of accretion. The first distinct accretionary period occurs between the 

twelfth and thirteenth estimates and spans the time between mid May and early June 

2003, where the elevation rises from -0.1 to 0.5 m ODN. The second distinct elevation 

increase relates to the crest depth maximum where the peak is attained following a rise 
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in elevation of 1.0 m during the month of July. After the August 2003 maximum in the 

event 3 crest depth, during the following 6 week period the crest was eroded by 1.9 m to 

-0.4 m ODN. The remaining event 3 crest depth time series is characterised by a 

succession of two accretion events and two erosion events, and ended with the crest 

depth at a depth of -0.7 m. 

Interestingly periods of accretion and erosion of the crest both occur during the lower 

energy summer months and the higher energy winter months. This may reflect the fact 

that higher wave energy does not necessarily equate to higher sediment availability at 

the Teign inlet. Previous studies have shown that at the location the littoral drift from 

the primary input direction (i. e. from the north) is sensitive to wave direction (Siegle, 

2003; Whitehouse et al., 2001). Therefore high wave energy conditions that are not also 

high sediment availability conditions may potentially occur. For example when waves 

approach with angles of incidence exceeding 1400 the primary longshore drift input 

from the north is prone to reversal hence sediment is transported away from the inlet 

entrance and not towards it. Ultimately it is likely to be the case that, only when the 

sediment budget of the migrating shoal is undergoing a period of net gain that there 

would be sediment available for increases in elevation though the sediment may equally 

be deposited at the shoreward extremity causing elongation rather than elevation 

increase. 

4.4.3.4 Correlation between raw cross-shore migration rate and the ratio of mean 

offshore significant wave height to minimum crest depth 

In Figure 4.23 the raw migration rate time series for events 2 to 4 are plotted with the 

corresponding ratio of root-mean-square offshore wave height to crest depth. Event 1 is 
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not included due to the significant data gaps in the time series (Figure 4.10). This 

resulted in there being no wave height data available for the first II month period of the 

migration and thereafter, it was only available for intermittent periods in which data 

gaps of varying lengths up to a maximum of 7 month duration occur. The ratio of root- 

mean-square offshore wave height to the crest depth ratio was calculated using the mean 

of the 10 minute resolution offshore significant wave height time series for the period 

between estimates. The estimated minimum depth of the sandbank's crest was derived 

from the Argus image time series as plotted in Figure 4.22. Note that the data in Figure 

4.23 have intentionally been plotted using unequal y-axes to highlight the clearly visible 

correlation in the short (weeks) term variability. 

The correlation between the time series is evident and particularly for the event 2 time 

series (Figure 4.23a). A linear regression of the migration rate with the H,.,,,., /h ratio 

produced R' values of 0.70,0.36, and 0.17 for events 2,3 and 4 respectively indicating 

a decreasing correlation between the parameters though this can be partly attributed to 

the increasing number of missing data points with event number. An R` value of 0.70 

for event 2 indicates that the two parameters are well correlated and this is evident in the 

manner in which the trends in both the short (weeks) and medium (months) term 

variability are largely in phase with each other. This degree of correlation is also 

inferred from the event 3 time series in the period prior to shore-attachment (Figure 

4.23b) as the variability appear to be equally well-correlated. The lower 0.36 R` value 

for event 3 is a function of the divergent correlation between the time series after shore- 

attachment in which there are a number of transitions in which the pair of parameters 

are in anti-phase with regard to the short (weeks) term variability. 
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The event 4 time series is marked by a relatively large period of missing data which 

encompasses the time from 2 months prior to shore-attachment to the end of the 

dissipation stage. From the available time series which predominantly relates to the 

migration and elongation stage in the morphological evolution, there is reasonable 

correlation between the parameters the 13 ̀h April and the beginning of December 2004. 

Of the 16 available pairs of line segments over this period the increase and decreases 

between consecutive migration rate points are in phase with the changes in the 

corresponding points in the H,,,,,,. /h ratio for 10 of the cases (62.5%) suggesting a better 

correlation than is indicated by the low 0.17 R2 value. 

The present study is most concerned with the dynamic onshore migration phase of the 

morphological behaviour as opposed to the post shore-attachment stage and this is 

where the relationship appears to show the best correlation with the migration rate. This 

correlation indicates that both the wave energy and the depth of the sandbank crest are 

critical factors in determining the rate of onshore migration of these sedimentary 

features. After shore-attachment the time series infer that the physical processes 

involved in shore-attached sandbank dissipation are more complex as the correlation 

between the crest depth and the root-mean-square wave height becomes less well 

defined. 

4.4.3.5 Plan view geometry 

In order to conclude the video-derived characterisation of the morphological evolution 

in the onshore migration stage of the ebb shoal, the following subsections are used to 

describe the variability in the plan view geometric sandbank parameters which are the 

area, cross- and longshore axes lengths, and the aspect ratio which is computed from the 
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orthogonal axes using the longshore axis as the denominator. The data are plotted 

against time in Figure 4.24 and then the same data are presented in scatter plots in 

Figure 4.25 for the purpose of comparison. 

The trends in the area time series (Figure 4.24a) for the four events show clear 

similarities with a quasi linear increase in area through the genesis and onshore 

migration/elongation stages. The area of the sandbanks typically reaches a maximum at 

around the time of shore-attachment and then this is followed by a similar near linear 

decrease in area to the time of sandbank dissipation. The scatter in the initial trend of 

increasing area in event 1 is a product of the depth of the contours used as the 91h, 11 ̀h 

and 13`h contours were in excess of 0.4 m below the target level of -1.80 m ODN. Due 

to the shallow sandbank gradients the area parameter is sensitive to the depth of the 

contour used hence the fluctuating values for this section of the times series. Event 3 

deviates from the genesis to shore-attachment model of increasing area preceding shore- 

attachment due to a period in which the trend in the area time series decreases over a2 

month time scale from the ls` May and the 30`h June 2003. This also appears to be an 

artefact of the sensitivity of the parameter to the contour depth as during these 2 months 

the sea conditions were largely calm (Figure 3, Appendix A3) hence the sandbank was 

in a relatively moribund state. The increasing area of the sandbanks between genesis 

and shore-attachment is a function of the seabed gradient because as the sandbanks 

move landward they are subject to increasing exposure. Clearly the variability in the 

area parameter is also a function of the sandbank's as under a net positive sediment 

budget sediment is likely to be distributed around the margins of the features as well as 

on the crest. 
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The event 1 maximum of 34,600 m2 is the largest of all the events, events 2 and 3 have 

maximum areas of 20,600 and 30,000 m2, whilst event 4 has the lowest maximum of 

12,600 m2. The described trends in the sandbank's area are reflected in the trends in the 

cross-shore axis length (Figure 4.24b) time series for events 1,3 and 4. These time 

series have respective quasi linear increases and decreases before and after shore- 

attachment and a maximum at around the time of shore-attachment. In the event 2 time 

series the delayed onset of elongation as described in Section 4.4.2 is depicted in the 

time series by a protracted initial period in which the cross-shore axis length remains 

relatively constant at around 200 m. A similar delay in the onset of elongation in the 

cross-shore length parameter also occurs at the start of the event 1 time series though its 

duration is comparatively short. The longshore length parameter time series (Figure 

4.24b) differs substantially from the area and cross-shore axis length parameters since it 

is comparatively constant and varies predominantly in the range 50 to 100 m. Events 2 

and 3 have relatively short periods in the dissipation stage after shore-attachment in 

which the parameter temporarily increases to 150 and 180 m respectively. The lack of 

variability in this parameter highlights the importance of the cross-shore component of 

the sediment transport processes relative to the longshore component. 

Due to the magnitude of the cross-shore axis length being typically much larger than the 

longshore axis length, the aspect ratio time series (Figure 4.24c) are characterised by the 

same general trends as described for the cross-shore axis length parameter. Event 1 

achieves the largest aspect ratio which culminates in a ratio maximum of 7.4, and for 

the events 2,3 and 4, the maximum ratios comparatively similar with values 3.8,3.8 

and 4.7 respectively. The trends in the aspect ratio time series reflect those in the major 

axis length time series with a peak at around the time of shore-attachment. 
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In the scatter plot of the area parameter versus cross-shore distance (top panel, Figure 

4.25) the data show the absence of any distinct relationship as there are no clearly 

identifiable trends. The scatter plots of the orthogonal axis lengths and the aspect ratio 

derivative do show similar trends to those identified in the time series but there is 

considerable scatter between events. The scatter plot trends of increasing major axis 

length and aspect ratio signify that the magnitude of these parameters is a function of 

cross-shore position. However since the absolute value for a given cross-shore position 

is subject to scatter this is most likely to be a function of the long term (years) 

chronology of sediment availability. 

4.5 Summary 

In this chapter, the morphological evolution of the onshore migration stage of the 

sedimentation cycle at Teignmouth has been characterised and quantified from the 

descriptive parameters derived from the contour time series of four consecutive events 

of this morphological behaviour. The results show how the offshore sandbanks evolve 

from the more rotund genesis morphology (aspect ratios in the range 1.5 to 2) to 

become elongate (aspect ratios in the range 3 to 8) and transversely orientated before 

shore-attachment and dissipation. Based on 365 days per annum the duration from 

genesis to shore-attachment and dissipation of events 1 to 4 was estimated to be 2.6 yrs, 

1.2 yrs, 1.5 yrs and 1.1 yrs respectively. The earlier stages are sometimes marked by the 

coalescence of more than one offshore sandbank which has been shown to have a 

significant effect on their morphodynamic evolution (event 1). The migration rate of the 

sandbanks in the shore-attached stage can also in influenced by other sandbanks on the 

ebb tidal delta depending on the degree of overlap between events. Offshore genesis 

typically occurs whilst the previous sandbank is still in shore-attached mode therefore 
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the dissipation of the shore-attached feature will be affected by the degree of sheltering 

from wave energy depending on the direction of incident waves. 

The characteristics of the morphological evolution of the Teign inlet in its current 

morphologic mode have been defined using three generic chronological stages which 

are manifest in both the cross-shore COM position (Figure 4.17) and the smoothed and 

interpolated migration rate (Figure 4.19). The typical mode of onshore migration has 

been ascribed to events 2 to 4 since event 1 varied from the basic model on account of 

the sandbank coalescence event (Figure 4.18). Initially it was thought that the short term 

(weeks) migration rate of the COM of the sandbank would be a directly proportional to 

the intensity of the wave forcing but cross-correlation analyses in both the time and 

frequency domains of the two parameters yielded no statistically significant 

relationships. It was subsequently determined that the migration rate of the COM of the 

contour time series was significantly correlated with the ratio of offshore wave height to 

minimum crest depth particularly prior to shore-attachment (Section 4.4.3.4). This key 

result of the video remote sensing component of the study suggests that the onshore 

migration phenomenon is primarily wave driven but modulated by the tidal variation in 

water level relative to the crest depth. The relationship suggests that large waves 

combined with a shallow crest produce the largest migration rates. The observed 

behaviour was characterised by mean migration rates of approximately 1 m. day"' with 

maximum migration rates of up to =3m. day"1. 

The importance of the depth of the crest is evident from the direct relationship between 

the migration rate and the ratio of offshore wave height to minimum crest depth as 

described in the previous paragraph. In the inlet's current mode the crest of the 

sandbanks at genesis is between 1 and 2m below mean sea level. Typically the 
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sandbanks undergo an initial quasi linear increase in crest elevation as they begin to 

migrate onshore. This period of accretion appears to end shortly thereafter whereupon 

the sandbank's crests are subject to apparently random consecutive periods of erosion 

and accretion. The initial period of crest elevation increase occurs due to the sandbanks 

being in close proximity to the primary accretion zone at the distal end of the main 

channel during the energetic winter period. The subsequent random variability occurs 

when the sandbanks have migrated away from this zone. Under low energy conditions 

the sandbank's vertical and lateral morphological changes are considered to be 

primarily a function of the re-distribution of surficial sediment in the absence of high 

sediment availability conditions which are associated with higher energy waves. Under 

high energy conditions with high sediment availability, morphological change is also 

likely to be affected by transport pathways that lead both to and from the migrating 

sandbanks. Under these conditions the addition of new sediment is expected to add a 

degree of complexity to the morphological response (vertical versus lateral) which is 

difficult to determine. 

In terms of the sandbank's plan form geometric parameters the area was shown to 

increase from genesis to shore-attachment (Figure 4.24a) which is assumed to be caused 

by their increasing sub-aerial exposure as they traverse the nearshore gradient 

(FitzGerald, 1988). The data indicate that increases in area occur contemporaneously 

with increases and decreases in sandbank crest depth which reflects the complexity of 

processes governing shoal sedimentation through their morphological evolution. The 

inter-event trend in sandbank area is one of decreasing area and this is reflected in the 

decreasing trend in the major axis length and aspect ratio parameters. The large area of 

the event 1 sandbank evolution was attributed to a shoal coalescence event and its 

occurrence infers that there was high sediment availability during winter, 1999. During 
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the next three events there is a downward trend in sandbank area and this coincides with 

an increase in the minimum depth of the features suggesting that the availability 

sediment to the ebb tidal delta decreased over the 5 year observation period. Bernardes 

(2005) estimated that the inlet was infilling at a rate of 20 cm. yr'. The observed trends 

in the area and length parameters could therefore be evidence of the infilling process 

whereby there is a net loss of sediment from the ebb tidal delta to the outer estuary. 

The methodology used in this video remote sensing analysis is not without its 

shortcomings which include the inherent subjectivity involved in determining some of 

the criteria such as at what depth to extract the contours from, when should the first 

contour be taken, and in the delineation of the shoreward extremity of the feature when 

it has merged with the beach face. Furthermore, it was not possible to extract contours 

from the images at precisely the same depth which increases the inherent error 

particularly during the genesis and dissipation stages when the sandbank is in the 

periphery of the image. Despite these shortcomings the video analysis has achieved the 

objective of characterising the plan view meso to macro scale morphological evolution 

of the offshore sandbank during its onshore migration stage and quantifying the cross- 

shore migration rate in relation to its COM. In the following chapter the short term 

(micro to meso scale) physical processes responsible for the observed morphological 

behaviour are investigated in detail using a unique set of in-situ measurements that were 

obtained from the surface of the migrating sandbank during the May 2003 Coastview 

fieldwork program. 
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5 In-situ measurements 

This chapter presents the results and analyses of the in-situ measurement component of 

the study focussing on the cross-shore dimension. The chapter begins first with a 

description of the data analysis methods used. The objective of the in-situ measurement 

analysis is to determine the physical processes responsible for the onshore sandbank 

migration cycle observed at the Teign inlet but which is also a common feature 

associated with tidal inlets on different coastlines around the world (Chapter 2.2). 

5.1 Data analysis techniques 

5.1.1 Sampling theory 

The physical processes of interest in this study originate as continuous data which are 

converted to digital form during the sampling process. Sampling theory considers the 

question of how often a signal can be sampled so that all of the frequencies present are 

detected. The highest sampling frequency, also known as the Nyquist or folding 

frequency (Ny) is given by: 

1 
Ny __ 20t (5.1) 

Where At is the sampling interval. If frequencies higher than the Nyquist frequency are 

present in the signal being sampled then these will be `folded back' into the time series 

of measurements and appear as erroneous signals of lower frequency than their true 

value. These erroneous signals termed aliasing errors are caused by the discretisation of 

continuous signals prior to digitisation. In order to avoid them, the frequency range of 

the signal being recorded is restricted prior to digitising using an analogue low pass 
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filter. The lowest resolvable frequency, which by definition is also the bandwidth, is 

given by: 

Be 
N. Ot 

(5.2) 

Where At is the sampling interval and N is the number of points in the Fast Fourier 

Transform (Section 5.1.3). The choice of bandwidth determines the resolution of the 

estimated spectrum and is used for normalisation of spectra for the inter-comparison of 

multiple estimates. 

5.1.2 Time series analysis 

The purpose of time series analysis is to quantitatively describe the characteristics of a 

measured signal which are typically subsets of continuous processes that are sampled at 

discrete intervals. The standard techniques used in time series analysis make use of 

statistical procedures to parameterise the principle characteristics of the data set and so 

permit the analysis and inter-comparison of the variables of interest. The principle 

variables of interest in the present study are the water depth (h), the cross-shore (u) and 

alongshore (v) components of the current field, and the concentration of suspended 

sediment (c). The type of analysis technique to be used is determined by the nature of 

the data concerned of which there are two fundamental groups and these, along with 

their subgroups are summarised in Figure 5.1. In theory, a discrete (digital) time series 

of tidal variations in water depth could be categorised as deterministic data due to its 

periodicity and hence predictability. Conversely, a discrete time series of water depth 

under the influence of wind driven waves could be described as random or stochastic 

data by virtue of the fact that its variation in time or space cannot be described or 
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predicted by an explicit mathematical relationship. In practice the nature of 

oceanographic data is such that its classification usually falls somewhere in between the 

two categories. It should be noted that the ability to mathematically predict a 

phenomenon is limited by the accuracy of the prediction whereby if the prediction is 

associated with a significant error, then the variable could erroneously be classified as 

non-deterministic. Similarly, the inability to be able to predict a phenomenon may be 

the result of insufficient knowledge or understanding as opposed to it being 

unpredictable. 

I Deterministic 

Periodic Non periodic 

Sinusoidal Complex Almost Transient 
periodic periodic 

Random 

Stationary Non 
stationary 

Ergodic Non ergodic Periodic Special 
classifications 

rigure : ). i: tiassincauon of time senes aata Carter tsenaau ana riersol, 1986). 

In order for the results of statistical analysis to be meaningful the data need to be both 

stationary and ergodic. Physical data are time series of finite sample records and 

stationarity in this context is considered to mean that the process can be adequately 

described by the lower moments of its probability distributions, i. e. by its mean, 

variance and covariance, and that these will not vary significantly between sample 

records within the ensemble. Most actual stationary physical phenomena can also be 
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described as ergodic, which relates to the inter-changeability of the time average with 

the ensemble average. Therefore, if the ergodic assumption is justified, then verification 

of stationarity for a sample record is usually adequate verification that the record, and 

hence the process, is both ergodic and stationary. Thus assumptions regarding a 

physical stochastic process can be derived with some confidence from a single sample 

record (Laws, 1997). 

5.1.2.1 Sediment transport calculations 

In Section 5.6.3 the Eulerian (local) time averaged (net) sediment transport rate is 

estimated from the in-situ measurements after Jaffe et al. (1984) using the product of 

the instantaneous cross-shore current magnitude and sediment concentrations as defined 

in the following equation: 

< uc >=1 uc 
n 

(5.3) 

Where n is the number of samples, u is the instantaneous cross-shore transport and c is 

the instantaneous sediment concentration. If it is assumed that u and c can be separated 

in to steady and oscillatory components which are denoted by the overbar and prime 

symbols respectively, then it follows that the local time averaged sediment transport rate - 

(< uc >) can also be as expressed as follows: 

<uc>= <(i +u)(c+c')> 

The expansion and simplification of equation 5.5 results in: 

(5.4) 
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<uc>= ü +<u'c'> (5.5) 

Where the first term denotes the mean net transport rate and the second term denotes the 

magnitude of coupling or correlation between the two flux components. 

5.1.3 Frequency domain analysis and the Fast Fourier Transform 

Analysis in the frequency domain is a useful extension of time series analysis as it 

facilitates an improved understanding of cyclical processes through the deconstruction 

of complex signals into constituent harmonics. The importance of this type of analysis 

relates to the product of the transformation which can be used to determine the relative 

contributions of each constituent to the total energy of a process. The technique uses the 

mathematics of Fourier and relies upon the principle that any function can theoretically 

be described by one or more sine and cosine functions of different frequencies and 

amplitudes. Classical Fourier series are applicable to periodic data and are integrated 

between the limits of -oo and +co thus they require adaptation for application to the 

discretely sampled aperiodic data typical of measurements taken in the nearshore 

environment. The discrete Fourier transform was first developed for this purpose but 

has since been replaced by the computationally efficient Fast Fourier Transform (FFT) 

which uses complex exponent form derived from Euler's relation to generate an output 

with real and imaginary components (Equation 5.6): 

FFT 1X xý I (5.6) 

Where Xf= a +jb, a=A. cosO and b=A. sinO, from the complex notation for a 2D vector 

(Figure 5.2). 
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A. cosO 

j. A. sinO 

0 real axis 
Figure 5.2: Argand diagram depicting the complex number representation of a vector. 

A represents the amplitude of the signal being transformed thus the product of the FFT 

is an analysis of variance. From Pythagoras' theorem the squared amplitude of each 

harmonic is given by: 

Ant=a2+b2 (5.7) 

Where n represents the nth harmonic of the spectrum and: 

an = Asin e., (5.8) 

bn = A.. cos 6n (5.9) 

The product of the FFT also yields information about the phase relation between 

harmonics which is given by: 

©n = tan-' (b,, Ian) 
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For further information on the FFT algorithm the reader is referred to Bendatt and 

Piersol (1986). 

5.1.4 Spectral analysis 

The sequence of operations required to transform a sample record in to the frequency 

domain can be summarised as follows: 

1. Filter data to remove frequencies > Ny. 

2. Digitise analogue data (automated process with equipment used). 

3. Remove the mean and de-trend the time series. 

4 Divide the time series in to overlapping sections and apply a suitable window function 

to each segment. 

5. Apply the FFT algorithm to each segment. 

6. Compute the power spectrum from the Fourier estimate and ensemble average each 

segment to obtain a stable estimate. 

In the first operation, the filtering is usually executed during the instrument logging 

stage after signal amplification, and operations 3 to 5 are executed within Matlab's 

power spectral density (PSD) function. For a sample record of N data points, the FFT 

returns N-1 complex estimates of the variance which is symmetrical about (N/2+1), the 

raw estimate of the power spectrum is given by: 

P= (a +jb). (a -jb) 

Therefore: 

(5.11) 

119 



P,., - = a2 + b` (5.12 ) 

The plot of variance versus frequency is termed the periodograrn estimate. The use of 

the Fourier transform to convert a continuous signal from the time domain into the 

frequency domain introduces errors due to spectral leakage. Spectral leakage results 

from processing the infinite Fourier integral with finite limits, a problem that is further 

enhanced during segmentation of the time series prior to transformation. The leakage of 

energy caused by discontinuities at the end points of contiguous segments results in the 

distortion of the spectral density estimate as energy is redistributed to higher and lower 

frequency bins. The problem is minimised by forcing the data to approximate to an 

infinite series through causing it to smoothly decay to zero at both endpoints. This is 

achieved by multiplying each data segment by a suitable window function. An example 

of an appropriate `data-tapering' window for surface elevation analysis is the cosine- 

squared or Hanning window. This window function has little leakage with minimal 

amplitude error which is further reduced by overlapping. The choice of function should 

be determined by the relative importance of leakage (frequency resolution) versus 

amplitude (accuracy) in respect of the time series being analysed. 

The number of segments chosen determines the statistical confidence in the FFT 

estimate for segments which is derived using the following equation provided a 

Hanning window has been applied: 

Degrees of freedom (D. O. F. ) = 3.82N -3.2 
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Where m= length of the segment, N= number of points in the sample record. The 

number of degrees of freedom can then be used to calculate the error bar multiplication 

factor for each spectral peak using Figure 5.3 after Jenkins and Watts (1968). 
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Figure 5.3: Spectral peak coefficient (y-axis) versus degrees offreedom (x-axis) with curves denoting the 
80,90 and 99% confidence levels for the upper and lower error bars. 

5.1.5 Co-spectral analysis 

Co-spectral analysis of a pair of signals enables the identification and quantification of 

coherent in-phase frequency based relationships between two variables that are 

measured simultaneously. The co-spectra and quadrature spectra are the principle 

components of cross-spectral analysis which yield information about the correlation and 
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phase of two variables. Similar to spectral analysis, the variables are first FF"I"d 
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generating complex outputs. The co- and quadrature periodograms are then estimated 

from the multiplication of the complex output of the first variable by the complex 

conjugate of the second. The raw estimate of the cross and quadrature spectra is given 

by: 

Px, = (a +jb). (c -jd) (5.14) 

Therefore: 

Pxy = (ac + bd). +j(bc - ach) (5.15) 

Where (ac + bd) is the co-spectrum and j(bc - ad) is the quadrature spectrum and the 

phase spectrum is defined as the cotangent of the former divided by the latter. The phase 

spectrum varies between -r and 7r where a value of zero signifies that the variables are 

in phase, and values of -n and n signify anti-phase. A tertiary component of co-spectral 

analysis is the coherence spectrum which is a measure of the frequency correlation 

between the variables. The coherence spectrum is given by: 

PZ 
XY CXY = 

P. . P,, (5.16) 

Such that 0: 5 Cam, >1 and the hats denote ensemble averaging. A value of zero indicates 

that the two variables are not correlated and a value of one indicates that there is 

correlation. 
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5.1.6 Energetics analysis 

In order to assess the relative contributions of the mean and oscillatory cross-shore 

velocity components to the net sediment transport, an energetics analysis is undertaken 

after Bailard (1981). The analysis technique originates from the two dimensional stream 

flow theory developed by Bagnold (1963) which applies the principle of energy 

conservation and utilises an efficiency factor to give the following sediment transport 

equation: 

i=Kcw (5.17) 

Where i= total dynamic transport rate, k= efficiency factor, w= available fluid power 

per unit boundary area, and the term `total' means the combined transport due to bed 

load and suspended sediments. Bailard and Inman (1981) modified the analytical 

approach to incorporate the oscillatory flow component and key surf zone processes 

important to nearshore sediment transport such as wave skewness. They define the non- 

dimensional efficiency factor in the transport equation as follows: 

K_ rate of energy expended in transporting sediment 

rate of energy production of the stream 
(5.18) 

The product of co and K in Equation 5.17 includes a cubed cross-shore current term that 

can be decomposed into three components such that: 

U3 ;= 
(W+ üs + ü, )3 (5.19) 
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Where ut = the total cross-shore current, ü= mean component, and il, = short wave 

oscillatory component, ü= long wave oscillatory component. An expansion of Equation 

5.19 generates a polynomial with ten third order velocity moment terms, each one 

representing a different nearshore hydrodynamic process (Table 5.1). According to the 

energetics theory, the transport rate (i) is proportional to the cross-shore current 

magnitude (u) therefore each term is a proxy for the sediment transport rate due to the 

hydrodynamic process that it represents. 

No Term Description 
1. C4 mean velocity cubed 
2. u'S short wave velocity skewness 
3. long wave velocity skewness 
4. 3<u, >ü stirring by short waves & transport by mean flow 
5. 3<u , >ü stirring by long waves & transport by mean flow 
6. 6<u's. u'i>ü non zero three way correlation 
7. 3<u'i . u's> long wave variance & short wave velocity correlation 
8. 3<u'S . u'>> short wave variance & long wave velocity correlation 
9. 3<u'S>. ü time average of oscillatory component =0 
10. 3<u>>. ü time average of oscillatory component =0 

Table 5.1: Third order velocity moments generated by the expansion of the cubed cross-shore velocity 
component. A tilde denotes the oscillatory component and angle brackets denote a time average. 

Terms 6,7 and 8 each contain a product in the bracketed part of the expression which 

will only have finite values when the two components have a degree of correlation. If 

however, one of the components inside the brackets is a random signal or noise, then it 

is likely to be small in comparison to the other component and the whole term will tend 

towards zero. Similarly, the magnitude of terms 9 and 10 which have had the mean 

removed will also be close to zero since they are computed from the time average of a 

signal that oscillates about zero. Parameterisations of nearshore hydrodynamics and 

sedimentation involve assumptions and approximations that omit to incorporate all of 

the important physical processes and introduce uncertainty in to the estimates. Some of 

the assumptions and approximations included in the energetics analysis are the 

assumption that the drag coefficient is a constant, that there is no threshold condition for 
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the initiation of sediment movement, and that the approach does not properly consider 

the effects of breaking induced turbulence (Marino-Tapia, 2003). However, despite the 

limitations, Bailard-type models have a robust theoretical basis and have proved useful 

for the analysis of cross-shore sediment transport processes in a range of studies (Guza 

and Thornton, 1981; Marino-Tapia et al., 2007; Ruessink, 2000; Russell and Huntley, 

1999). 

5.2 Instrumentation 

Surf zone measurements of primary variables such as u (the cross-shore current 

component), v (the longshore current component), and c (the concentration of 

suspended sediment) are of fundamental importance in nearshore studies of sandy 

coastlines because they provide invaluable insight in to the physical mechanisms that 

constitute the hydrodynamics and sedimentation processes which drive the medium to 

long term morphological evolution. This chapter utilises unique measurements of u, v, 

and c obtained directly from the offshore sandbank during May 2003 when the feature 

was in the mid-term of its onshore migration (event 3), with the objective of elucidating 

the physical processes responsible for the persistent onshore migration of the feature as 

observed in the Argus image time series. Physical measurements of waves, orthogonal 

currents and the concentration of suspended sediment taken from an inlet sandbank in 

mid migration across the ebb tidal delta are thought to be unprecedented. These results 

therefore make an important contribution to the knowledge of ebb tidal delta shoal 

sediment dynamics in inlet research. 
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5.2.1 Synchronised logger for investigation into the transport of sediment (SLOT) 

The field measurements were obtained using the Valeport SLOT system (see Figure 

5.4) which enables the recording of synchronous, near bed measurements of hydrostatic 

pressure, biaxial currents and sediment suspension. The co-located pressure transducer 

(PT), electromagnetic current meter (EMCM) and optical back scatter (OBS) sensors 

are secured to a framework together with a power supply and data logger which is 

designed to be deployed in the inter-tidal zone. Power is supplied to the data logger and 

instrument array when a sea switch unit fixed at below sensor height to one of the piles 

becomes submerged 

I '; 

The data logger has a 12 bit resolution and logs data continuously during the submerged 

period obtaining time series of near bed measurements of h, u, v and c through the tidal 

cycle. The data are corrected for internal clock drift by a GPS receiver unit that applies 

corrections between submersion events. In respect of the vertical sign convention used 

in this study, the origin is the still-water surface level. Therefore increasing positive 

values of h denote increasing depth. 
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5.2.2 Pressure transducer 

The pressure transducer (PT) used on the SLOT rigs is the Druck PDCR 1830 strain 

gauge model in which there is a micro-machined silicon element contained within a 

titanium pressure module assembly. The assembly is housed in a cylindrical titanium 

unit that is fully sealed from the surrounding media. The measurement of hydrostatic 

pressure depends on the near linear relationship between the pressure (p) exerted by a 

column of fluid above the sensor and the height of the column (z) (z = -h), such that the 

former expressed in decibars (dbar) is a good approximation of the numerical value of z 

expressed in meters. The hydrostatic pressure causes element displacement which is 

converted into a voltage output by means of a bridge configuration of piezo-resistance 

strain gauges. The voltage output is a function of the resistance change due to the strain 

exerted on the element (Morris, 1993). The very small voltages generated by the strain 

gauges are first amplified then low pass filtered before being output. The PT operates 

within a range of 0 to 200 kPa absolute with a resolution of 0.1 kPa and a corresponding 

voltage output range of 0 to 100 mV. The Druck PTs are calibrated in-house using 

precision pressure calibration equipment traceable to international standards. The 

process is undertaken in a controlled environment and involves simultaneous 

incremental pressure increases being applied to both the sensor undergoing calibration 

and a reference standard instrument, whereupon the output voltage of both can be 

directly compared. Calibration coefficients and offset values relating the pressure 

exerted on the transducer and the output voltage are obtained through linear regression. 

The calibration procedure is undertaken in a vacuum, hence a gauge pressure of I dbar 

is equivalent to z= -1 m which is derived from an equation of the following: 

+ Zinst 
(5.20) 
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Where h is depth (m), m is the calibration coefficient (m. V'' ), Vo�rp�r is the output 

voltage (V), Vofse: is the offset voltage at the start of the calibration (V) and z,., is the 

height of the instrument above the seabed (m). 

The measurement of surface elevation using a PT in the nearshore environment yields 

two parameters which are the depth due to the tidal excursion (mean component) and 

the wave height (oscillatory component). In terms of the mean component, the 

manufacturer specifies the error due to the combined non-linearity, hysteresis and 

repeatability of the PT as ±0.1 % of the full scale which equates to a measurement error 

of ±1 cm in a depth of 1 m. The measurement error involved in the oscillatory 

component arises from the following equation (Miles, 1997): 

Q= cosh(k(z+h)). (cosh(kh))"' (5.21) 

Where Q is the attenuation, k is the wave number (m'), h is the water depth (m) and z is 

the height of the PT (m) above the seabed. The current study involved depth 

measurements in shallow water (h. = 3.5 m) under low energy conditions (maximum 

HS = 0.6 m), the primary objective of which is to determine the principle mechanisms 

responsible for onshore sediment transport. In order to estimate the maximum error in 

wave height measurement applicable to the PT data obtained, the following parameters 

have been used: h=0.5 m, z= -0.25 m, wave amplitude (A) = 0.3 m and peak wave 

period (Tn) =5s thus wavelength (A) = 11.07 m from shallow water wave theory hence 

k=0.57 m''. Inserting these values into Equation 5.21 gives an under estimation of 

wave height by the PT of < 3%, therefore for a 0.6 m wave in a depth of 0.5 m, the 

wave height would be recorded as 0.582 m. The magnitude of this error is deemed 

sufficiently small to negate the application of a correction algorithm to the data for the 
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purposes of this study. The instruments are considered to have good measurement 

stability over the long term with the maximum drift error specified by the manufacturer 

at ±0.1 mV. annum-1. 

5.2.3 Electromagnetic current meter 

The EMCM used on the SLOT rigs is the Valeport 2-axis flow sensor 802 model with a 

spherical 5.5 cm diameter moulded plastic head containing the flow sensor components 

which is mounted axially on a metal shaft. The measurement of flow is based on 

Faraday's laws of electromagnetic induction which state that: 

9 An electromagnetic force (EMF) is induced when a conductor is passed through a 

magnetic field. 

" The strength of the EMF is proportional to the rate of change of the flux through the 

circuit. 

. The direction of the induced EMF depends on the orientation of the field. 

The EMCM head contains an electromagnetic coil and two pairs of orthogonal 

electrodes, seawater acts as the conductor thus the sensor is capable of measuring the 

strength and direction of flow of both components in accordance with Faraday's laws. 

Due to the very small voltages induced by the currents measured a preamplifier is 

incorporated into the head of the shaft to boost the voltage output range to ±5 V. The 

flow data is low pass filtered after amplification then logged in the range 0 to ±3.5 m. s'I 

at a resolution of I mm. s"l. The sensing volume of the EMCM's is three times that of 

the head diameter which translates to a requirement that no other solid object be placed 

within 5.5 cm of the face of the sensor head. The Valeport EMCMs are calibrated in- 

house using a series of tests in which the sensors are towed in a tank of water at 
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precisely known velocities. The experiment is repeated in both positive and negative 

flow directions. The output voltages are converted to flow measurements (m. s'') using 

an equation of the following form: 

ý_ m(Vgauge - Vojjset) (5.22) 

Where f is flow (m. s"'), m is the calibration coefficient (m. s''. V"'), Vo,,, p�r is the output 

voltage (V) and Vollset is the offset voltage at the start of the calibration (V). The 

magnitude of the EMCM offset of each instrument deployed in the field is verified 

before and after each experiment by immersing the sensor head in an in-situ water 

container. The manufacturer specifies the accuracy of the EMCM's as ±1% of the 

reading plus zero drift for average flow which has been estimated to translate to a 

maximum error of ±1.5 cm. s"1 in a flow of 1 m. s"1 (Miles, 1997). 

5.2.4 Optical backscatter sensor 

The optical back scatter sensor (OBS) used on the SLOT rigs is the Downing & 

Associates Instruments OBS-3 in which a high intensity infrared (IR) emitting diode 

and a detector consisting of four photodiodes are housed in a glass filled polycarbonate 

unit made of optical grade epoxy. The OBS sensor emitter radiates a high intensity 

conical beam and the subsequent measurement of material in suspension depends on a 

semiconductor detector changing its electrical characteristics in response to being 

illuminated by IR radiation scattered back from particulate matter in suspension. The 

strong attenuation of IR radiation in water, e. g. the intensity decreases by 63% per 5 cm 

travelled in clear water, makes this type of radiation particularly suitable for the 

measurement of suspended particulate matter in close proximity to the sensor head, and 
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also reduces the potential contamination due to the IR component of solar radiation. The 

beam width at a distance where the IR radiation has spread to half of its power density 

at source is 50° in the axial plane and 30° in the horizontal plane, the absolute distance 

being dependent on the optical properties of the surrounding fluid. The detector 

integrates back scattered IR radiation between 140° and 160° which is amplified and low 

pass filtered. The OBS-3 has a dynamic measurement capability of 2 to 100,000 mg. l"' 

with a frequency response of 10 Hz and a voltage output range 0 to 5 V. 

The calibration of the OBS sensors used on the SLOT rigs needs to be undertaken prior 

to instrument deployment using sediment collected from the site under investigation. 

This is due to the fact that for a given volume of fluid, the amount of backscatter is a 

function of both grain size and sediment concentration. This is particularly important for 

suspended sediment measurements on the offshore sandbank at Teignmouth due to its 

coarse nature (dso =3 mm) which settle out of suspension rapidly. The rapid settling 

velocity of coarse sediment complicates the calibration process, for this reason it was 

decided to adopt the method developed by Butt et al. (2002) in which glycerol is used in 

place of water due to its higher viscosity, thereby reducing the settling velocity of the 

grains. The method involves the addition of measured quantities of sediment to a known 

volume of glycerol which is stirred to maintain the grains in suspension. Justification 

for the use of glycerol relates to the fact that stirring ceases at the moment the OBS 

reading is taken. The coarseness of the sediment on the offshore sandbank meant that it 

was difficult to maintain a spatially homogenous sediment suspension in water for the 

period between the cessation of stirring and taking the reading but this was greatly 

improved by using the higher viscosity medium. Measurement errors can occur should 

the gain be set incorrectly. As a consequence of there being a5V upper limit on the 

output voltage, if the gain is set too high, there is the potential to lose data due to 
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`saturation' of the detector at below-peak concentrations. Conversely, setting the gain 

too low could result in poor resolution of the data. The manufacturer specifies the OBS- 

3 error due to nonlinearity as 3.5% with a maximum additional contribution due to 

hydrodynamic noise of 5% RMS of the mean signal which is deemed insignificant. 

5.3 Data collection strategy 

Obtaining in-situ data for the present study site was facilitated by the Coastview project 

which required that six-monthly topographic and bathymetric surveys of the beach and 

nearshore regions were undertaken. The deployment of the instrumentation was 

synchronised with the project's survey program in order to optimise data collection. The 

Coastview survey program was scheduled to coincide with periods of maximum spring 

tide excursion for ease of instrument deployment, maintenance and data downloading. 

The measurements presented in this chapter were obtained during the Coastview survey 

in the summer of 2003 which occurred between the 12`h and 19`h May. At the time of the 

survey, the new offshore sandbank that had formed in the latter months of 2002 had 

already migrated a significant distance onshore (z 200 in, see Figure 4.13) which meant 

that it became sufficiently exposed at spring low tide to afford the unique opportunity of 

deploying instruments on an migrating ebb tidal delta sandbank. The choice of where to 

position the instrumentation was primarily driven by observations of strongly oblique 

waves breaking along the flanks of the sandbank at times when it was not submerged. 

The oblique waves were considered to be important in the general onshore migration of 

the feature, but also it was thought that they may be a significant factor in the elongation 

of the sandbank that is typical of its observed morphological evolution. The principle 

aim therefore, was to concentrate the instrumentation on the flanks of the sandbank. The 

crest of the sandbank was selected as a secondary position for the location of 
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instrumentation since at times when the sandbank is completely submerged and the 

local water depth over the sandbank is shallow (h <_ h6), strong wave refraction over the 

top of the feature creates a zone of wave convergence. It was thought that these periods 

in the tidal cycle were likely to be periods of increased sediment transport over the crest 

of sandbank and hence also important in the features sedimentation. 

On the following page Figure 5.5 shows the bathymetry and topography of the 

Teignmouth nearshore region at the time of the fieldwork program along with the 

instrument deployment positions (SLOT rigs and ADCP). Two instrument rigs were 

deployed on the sandbank and these are denoted in Figure 5.5 by the numbers 1 and 2. 

Each rig was initially deployed at the positions denoted by the suffix A, and then moved 

to secondary positions denoted by the suffix B. The results presented in this chapter are 

supplemented by environmental data obtained from a pier-located meteorology station 

and pressure transducer, an offshore seabed located acoustic Doppler current profiler 

(ADCP), and surficial sediment samples taken from various locations around the 

sandbank morphology. 

5.4 Data processing 

The data for each instrument were sampled at 4 Hz and low-pass filtered to prevent 

aliasing errors (Section 5.1.1). After correcting the EMCM data for the temporal offset 

introduced by the integrated analogue filter, instrument calibration coefficients, gain and 

offsets were applied in order to convert the measurements into hydrostatic pressure, 

horizontal orthogonal current velocities and suspended sediment concentrations. 

Subsequently the data were subdivided into 17 minute data runs and scrutinised for the 

presence of dry runs and anomalies e. g. spikes and instrument drop out (Appendix A2). 

The length of the data subdivisions is determined by the need to satisfy the conditions 
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for stationarity and ergodicity (Section 5.1.2), and in order to have 2" data points per 

data string (i. e. 211 = 4096 data points in this instance) so that the FFT algorithm could 

be applied (Section 5.1.3). 
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Figure 5.5: Contour plot of the bathymetry and topography of the study site during the May 2003 
fieldwork program with SLOT and ADCP positions (A) superimposed. The contours are in metres 
referenced to ODN. 
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5.5 Fieldwork environmental conditions 

The field measurement period took place between the 14`h and 19`h May and the 

different conditions experienced can typically be expected to occur 75% of the time 

(Section 3.2). The wind and offshore wave conditions (h = -5.8 m ODN) for the field 

measurement period are presented in Figure 5.7 along with vertical lines denoting times 
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when noticeable changes occurred in the significant wave height conditions. In the 

following chapter the term `calm conditions' is used to describe the 14 ̀h May conditions 

in which offshore winds produced a calm sea surface that was accompanied by small 

waves (H,. < 30 cm) which are typical conditions at Teignmouth when the wind has a 

westerly component (Figure 5.6a). The term `low energy' is used to describe the choppy 

conditions of the 16`h May that are generated by onshore winds producing significant 

wave heights of between 0.5 m to 1.0 m Figure 5.6b (Section 3.2). The three periods of 

differing incident wave conditions that are demarcated by the vertical lines in Figure 5.7 

are summarised in terms of the significant wave height variability as follows: 

1.0000 firs 14/05/08 to 1000 firs 15/05/08: calm wave conditions, H, z 0.2 m. 

2.1000 hrs 15/05/08 to 2200 hrs 16/05/08: H, increases and peaks at a maximum of 
0.79 m before decreasing to 0.3 m (low energy conditions). 

3.2200 hrs 16/05/08 to end of measurement period: H, fluctuates in the range 0.3 to 0.6 
m (low energy conditions). 

The observed changes in the significant wave height during the measurement period 

were brought about by changes in the local wind strength and direction though it should 

be reiterated that at no time were high energy conditions recorded. In the first wave 

height subdivision, Teignmouth was under the influence of westerly winds in the range 

2 to 5 m. s-1 and as a consequence of these being offshore directed they produced calm 

sea conditions (H, < 0.2 m). The ADCP struggled to resolve the period and direction of 

the incident waves during this initial period of low energy conditions which is manifest 

in the time series by the observed large and random variability in both parameters. On 

the morning of the 15`h May at the start of the second wave height subdivision, a 

developing ridge of high pressure over the U. K. brought a period of onshore directed 

south-easterly winds (maximum strength z6m. s-1) which increased the significant 

wave height culminating in a peak of 0.8 mat approximately 1330 hrs on the 16th May. 
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During this period of increased wave height, the wave period was observed to increase 

from 3s to a maximum of 6s with the predominant wave direction from the SSE. 
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Figure 5.6: Images depicting the sea state at Teignmouth on a) the 14"' May (calm conditions) and b) the 
16'x' May (low energy conditions). (SLOT IA deployment position is pictured in the foreground). 
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At approximately 0100 hrs on the 16 ̀h May the wind direction began to change and by 

1300 hrs was observed to have a westerly component. Over the remainder of the 

fieldwork period the wind direction was from the SSW, whilst the wind speed 

fluctuated in the range between I and 6.5 m. s-'. The 3rd period is noteworthy for the 

frequency of relatively strong winds as compared with the previous periods as on three 

separate occasions during this period, the wind strength is observed to reach 6 m. s-1. 

However, since the direction was from the SSW, the elevated winds did not result in the 

significant wave height increasing to that observed in the second period but was 

maintained in the range 0.3 to 0.6 m until it began to decrease in the afternoon of the 

19`h May. The predominant wave period and direction in the 3rd period remained 

unchanged from those of the 16`h May. The range of the spring tidal cycle during the 

fieldwork period varied between 3.7 and 4.5 m with the maximum excursion occurring 

on the 16 ̀h May. 

5.6 Results 

5.6.1 Introduction to the raw data 

A sample of the typical raw data obtained from each sensor at the offshore extremity 

deployment position (IA) is presented in Figure 5.8. A preliminary assessment of the 

raw data at the different positions around the sandbank determined that under the calm 

and low energy conditions of the fieldwork period sediment suspension was confined to 

the inner surf zone region. The sample presented in Figure 5.8 is extracted from run 3 

on the 16`h May which was during the flood tide on the afternoon when the incident 

wave conditions were increasing to their maximum. 
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The plotted data are particularly relevant to the current study because it is during the 

repeated incidences of low energy conditions that the onshore migration of the 

sandbank is maintained between storm events. The following observations are made on 

the time series: 

9 The cross-shore current is predominantly onshore directed and has a mean of 0.27 

m. s-1. In the longshore component neither direction clearly predominates over the other 

hence the mean is close to zero at 0.06 m. s-1. 

" The maximum onshore directed current is 75% larger than the maximum longshore 

directed current (u, 
n,, = 1.45 m. s-1, v,,, LT = 0.83 m. s-1). 

" The longshore component of the current has a higher frequency of oscillation than 

the cross-shore component. 

9 The cross-shore component of the current has a saw-tooth form in which onshore 

directed acceleration of the current is more rapid than the corresponding deceleration. 

"A very low background concentration of suspended sediment exists in the inner surf 

zone region under low energy conditions. The occurrence of relatively significant 

sediment suspension events (> 10 g. 1') is episodic but related to the peak onshore 

current velocities. 

5.6.2 Overview of the observed current regime 

In Figure 5.9a time series of current vectors derived from the 17 minute time average of 

the u and v current data are presented from each of the SLOT rig deployment positions. 

A contour plot of the bathymetry of the offshore sandbank with the deployment 

positions overlaid is presented in Figure 5.9b. 
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The deployment of two SLOT rigs in rotation between positions 1 and 2 means that i 

contemporaneous vector time series for all four SLOT deployment positions cannot be 

presented. Wherever possible time series were selected from the higher energy 

period of wave activity as highlighted in Section 6.5 in which the significant wave 

height increases to +0.5 m. In the absence of data being available for this period at the 

central crest position (1B), time averaged current vectors for the 18`h May are presented } 

Since each of the vector time series in Figure 5.9a relates to the period after the onset of 

the wind sea conditions, the vectors define the sandbank's mean flow regime under 

typical low energy conditions. Therefore it follows that the observed trends in the 

magnitude and direction are representative of the current regime under low energy 

conditions. The focus of the current study is to better understand the processes that lead 

to the onshore migration of the feature under the prevailing lower energy conditions as t 
fi 

opposed to high energy events (H3 > 1.0 m). High energy events have been shown to 

generate large morphological changes over short time periods and are thereby important 

to the evolution of the system (Marino-Tapia, 2006; Siegle, 2003). However the time 

series of the COM position of the sandbanks (Figure 4.17, Section 4.4.3.1) shows that i 

their onshore migration is a continuous and not restricted to the incident of storms. 

Therefore it follows that morphological change is also occurring under the lower energy 

conditions between storm events hence the importance of assessing the physical 

processes under these conditions. In the following sections, this is addressed by 

applying a range of analytical techniques to in-situ measurements of u, v and c obtained 

from the sandbank under the type of low energy conditions that prevail at the Teign 

inlet. 
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Sandbank morphology 

During the fieldwork program, the instrumented sandbank had an elongate transverse 

morphology that was 240 in in length and had a maximum width of 95 m that narrowed 

sharply on the southern flank, decreasing it to approximately 50 m for the shoreward 

130 m section of its length. The sandbank had a maximum height of between 2.5 and 

3.0 m and extended to a maximum depth of approximately -2.5 m ODN. Along the 

central axis of the sandbank, the relatively flat crest region of the feature extended for 

100 m in the cross-shore direction at a constant level that was close to 0m ODN (Figure 

4.6, Section 4.2). The gradients of the slopes around the sandbank tend to be steeper on 

the northern flank and shoreward extremity (up to 1: 10) when compared with the 

southern flank and offshore extremity (typically in the range 1: 15 to 20). Due to the use 

of a 10 m grid spacing, the Matlab `contour' function has not fully resolved the crest of 

the narrow shoreward section of the sandbank in the region of the central crest SLOT 

rig position (1B) and hence the apparent disparity between the SLOT z value at this 

location and the adjacent contour. 

Resultant current vector time series 

Each plotted current vector is a 17 minute time average of the measured orthogonal 

currents which can be scaled against the 0.5 m. s"1 onshore directed current vector 

displayed to the right of each time series. The purpose of Figure 5.9a is to present the 

reader with an overview of the typical spatial and temporal variability in the mean 

current magnitude and direction under low energy conditions. A more detailed analysis 

of the hydrodynamics and sedimentation is provided in the following sub-sections. The 

vector time series reveal the spatial and temporal proliferation of onshore directed 

143 



The deployment of two SLOT rigs in rotation between positions 1 and 2 means that 

contemporaneous vector time series for all four SLOT deployment positions cannot be 

presented. Wherever possible time series were selected from the higher energy 2nd 

period of wave activity as highlighted in Section 6.5 in which the significant wave 

height increases to +0.5 m. In the absence of data being available for this period at the 

central crest position (1 B), time averaged current vectors for the 18`h May are presented. 

Since each of the vector time series in Figure 5.9a relates to the period after the onset of 

the wind sea conditions, the vectors define the sandbank's mean flow regime under 

typical low energy conditions. Therefore it follows that the observed trends in the 

magnitude and direction are representative of the current regime under low energy 

conditions. The focus of the current study is to better understand the processes that lead 

to the onshore migration of the feature under the prevailing lower energy conditions as 

opposed to high energy events (Hs > 1.0 m). High energy events have been shown to 

generate large morphological changes over short time periods and are thereby important 

to the evolution of the system (Marino-Tapia, 2006; Siegle, 2003). However the time 

series of the COM position of the sandbanks (Figure 4.17, Section 4.4.3.1) shows that 

their onshore migration is a continuous and not restricted to the incident of storms. 

Therefore it follows that morphological change is also occurring under the lower energy 

conditions between storm events hence the importance of assessing the physical 

processes under these conditions. In the following sections, this is addressed by 

applying a range of analytical techniques to in-situ measurements of u, v and c obtained 

from the sandbank under the type of low energy conditions that prevail at the Teign 

inlet. 
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Sandbank morphology 

During the fieldwork program, the instrumented sandbank had an elongate transverse 

morphology that was 240 m in length and had a maximum width of 95 m that narrowed 

sharply on the southern flank, decreasing it to approximately 50 m for the shoreward 

130 m section of its length. The sandbank had a maximum height of between 2.5 and 

3.0 m and extended to a maximum depth of approximately -2.5 m ODN. Along the 

central axis of the sandbank, the relatively flat crest region of the feature extended for 

100 m in the cross-shore direction at a constant level that was close to 0m ODN (Figure 

4.6, Section 4.2). The gradients of the slopes around the sandbank tend to be steeper on 

the northern flank and shoreward extremity (up to 1: 10) when compared with the 

southern flank and offshore extremity (typically in the range 1: 15 to 20). Due to the use 

of a 10 m grid spacing, the Matlab `contour' function has not fully resolved the crest of 

the narrow shoreward section of the sandbank in the region of the central crest SLOT 

rig position (1B) and hence the apparent disparity between the SLOT z value at this 

location and the adjacent contour. 

Resultant current vector time series 

Each plotted current vector is a 17 minute time average of the measured orthogonal 

currents which can be scaled against the 0.5 m. s" onshore directed current vector 

displayed to the right of each time series. The purpose of Figure 5.9a is to present the 

reader with an overview of the typical spatial and temporal variability in the mean 

current magnitude and direction under low energy conditions. A more detailed analysis 

of the hydrodynamics and sedimentation is provided in the following sub-sections. The 

vector time series reveal the spatial and temporal proliferation of onshore directed 
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currents across the majority of the sandbank, and throughout the tidal cycle. The 

strongest of these occur in the shallow surf zone region (h < 0.5hb) with maximum mean 

values of 0.65 m. s'' for the initial flood tide runs at the central crest (IB) and southern 

flank (2B) SLOT positions. The general trend is one of relatively strong currents in the 

initial runs (inner surf zone) that abate with increasing water depth, though at the 

southern flank (2B) and offshore extremity (IA) positions there is a secondary 

resurgence in the current strength that peaks at around the time of high tide (up to 0.3 

m. s'1). During the first half of the ebb tide, the current vector time series display greater 

temporal variability in direction; at all SLOT deployment positions except the southern 

flank (2B), the currents increase in strength and rotate northwards until becoming 

approximately longshore orientated with respect to the shoreline of Teignmouth main 

beach. Subsequently, at the southern flank the mean current diminishes to near zero 

before becoming offshore directed and increasing in strength temporarily (up to 0.3 m. s 

'). Significantly offshore directed currents are only observed during the ebb tide and 

only occur at the offshore extremity (IA) and southern flank (2B) SLOT positions. 

They occur in the surf zone (h < hb) during runs 24 to 28, and 31 to 34 respectively but 

the currents are relatively weak with maximum values of approximately 0.3 m. s'' and 

do not persist for more than four runs. Before the period of increased significant wave 

height (period 1 from Section 5.5) offshore directed currents were also observed in the 

surf zone at the offshore extremity SLOT position (IA) during the two flood tides (data 

not presented). However, upon the onset of increasing significant wave height, these 

offshore directed flood tide currents were replaced by onshore directed currents as seen 

in the time series for the 16`h May presented in Figure 5.9. As the tide continues to ebb 

and the water depth decreases towards the breaker depth (hb), the mean current at the 

offshore extremity (1A) which is at this time flowing in an approximately longshore 

manner (NNE), rotates offshore in a similar manner to the current at the southern flank 
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(2B) but these are then replaced by increasing onshore directed currents in the last three 

runs. The mean currents at the two shoreward SLOT positions (central crest and 

shoreward extremity) which are also very oblique initially decrease during this stage of 

the tide before increasing and becoming onshore directed in the shallowest run. 

The mean flow over different parts of the sandbank is variable and complex but the key 

features of the current regime can best be summarised as follows: 

" Onshore directed currents dominate over all areas of the sandbank on the flood tide. 

" The strongest currents occur in the surf zone region (h < hb) and are predominantly 

onshore directed. 

" The current strength decreases with increasing water depth but the manner in which 

this occurred displayed some variability between locations. 

" The ebb tide currents show greater directional variability. After high tide the mean 

current direction rotates northward and increases in strength until becoming 

approximately longshore directed with respect to the main beach. Subsequently the 

current becomes offshore directed at the two outermost SLOT positions and onshore 

directed at the two innermost. 

" The incidence of offshore directed currents is comparatively rare and confined to the 

mid to outer surf zone region. 

It is clear from the current vector time series in Figure 5.9 that there is a spatial and 

temporal dominance of onshore directed currents over much of the sandbank throughout 

the tidal cycle. However it is the concurrence of the onshore directed currents in the surf 

zone with sediment suspension events that provides the physical mechanism for the 

onshore migration of the morphological feature under low energy conditions. Mean 
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offshore and longshore directed currents (w. r. t. Teignmouth main beach) are also 

present on the sandbank under certain conditions, and they do reach similar magnitudes 

to the onshore component, but the incidences of these are relatively infrequent and they 

usually occur during deeper water runs. However, at the shoreward extremity, there is a 

strong component of the mean longshore current in run 1 but due to the cross-shore 

component being of similar magnitude, the net flow is still onshore directed. 

It should be clarified at this point that the onshore directed currents that act over the 

sandbank particularly down the flanks when the feature is exposed by the tide are 

generated by waves that have been strongly refracted by the morphology of the feature. 

The strong refraction leads to the shoaling and breaking waves having very oblique 

angles of incidence therefore the currents are in effect longshore currents. With respect 

to the Teignmouth main beach these currents are actually of an approximate shore- 

normal orientation. In order to avoid potential confusion of terminology in the text these 

currents are referred to as onshore directed currents through the course of the work. In 

the following sections, the relative importance of the cross-shore current strength in 

relation to the incidence of sediment suspension is investigated through the use of time 

and frequency domain techniques. The offshore extremity SLOT position (1A) has been 

selected for this purpose because the data spans the period from the 14`h May to the 17' 

May thereby enabling the comparison of sediment transport under the calm conditions 

versus the low energy conditions. 
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5.6.3 Comparison of cross-shore hydrodynamics and sedimentation under calm 

and low energy conditions 

In Figure 5.10 the time averaged water depth (< h >), significant wave height (< HS >), 

mean component of the cross-shore current (< ri >), the oscillatory component of the 

cross-shore current (< u' >), and the concentration of suspended sediment (< c >) are 

presented for the calm (14`h May PM), and low energy conditions (16`h May PM). The 

longshore component has been omitted from this analysis since in the shallow water 

runs when sediment suspension is occurring, its magnitude is negligible when compared 

with the cross-shore component (Section 5.6.2) and therefore its contribution to the 

onshore migration of the sandbank is not considered significant. The following 

description of the form of the data focuses on the changes brought about by the onset of 

wind sea conditions. 

Water depth 

In Figure 5.1Oa the time averaged water depth shows the passage of the tidal cycle over 

the SLOT rig with high tide occurring during run 17 and maximum mean tidal heights 

of 3.0 m and 3.5 m ODN for the 14`h and 16`h May respectively. The increasing 

divergence of the two series as they tend towards high tide can be attributed to the 

difference in tidal range between the two days, the 16th May being the day with the 

largest spring tidal range (4.7 m) for the fieldwork period. There exists an asymmetry in 

the tidal curve with steeper gradients during peak ebb tide as compared with peak flood 

tide, which is accentuated in the 16`h May dataset due to its greater range. 
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Figure 5.10: Comparison of hydrodynamics and sediment suspension under calm (dots) and low energy 
conditions (circles) for the offshore extremity SLOT position (IA): a) water depth (< h >), b) wave height 
(< H, >), c) mean cross-shore current (< ü >), d) the standard deviation of the cross-shore current 
(oscillatory component) (< u' >), e) the mean suspended sediment concentration (< c >), (Note: each 
plotted point is a 17 minute time average of the data). 
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Significant wave height 

The time series of significant wave height on both days is asymmetric with larger waves 

occurring on the flood tide. On the 1e May, the maximum mean significant wave 

height was 0.35 in which occurred during run 6, whilst the maximum on the 16th May 

was 0.63 in which occurred during run 7. The occurrence of the maximum mean 

shoaling wave height in these two runs suggests that these represent the outer limit of 

the flood tide surf zone on the respective days but on the ebb tide, the outer limit of 

wave breaking is less clearly defined. On the 14`h May, the conditions were effectively 

calm, though the data indicate that very small waves were breaking on the offshore 

extremity of the sandbank but only during the initial one or two runs, whilst on the 16`h 

May, the larger ebb tide waves were still breaking in run 3. There is an apparent 

secondary peak in the mean significant wave height in run 5 on the 16th May, but with a 

mean water depth of 2.4 in, the water is too deep for the small waves (< H, 3 >=0.47 m) 

to be breaking. In the deeper water outside of the surf zone the significant wave height 

decreases to minimum values in run 20 with mean significant wave heights of 0.16 m 

and 0.35 m for the 14`h and 16`h May respectively. 

Mean and oscillatory cross-shore current components 

In Figure 5.10c and d, the cross-shore current time series have been decomposed in to 

the steady (mean) and oscillatory (standard deviation) components in order to assess 

their relative contributions to the sediment transport on the offshore sandbank. The 

following description of the cross-shore current component concentrates on the inner 

surf zone runs where sediment is being brought in to suspension. The general form of 

the mean cross-shore current time series for the 1401 May has a w-shaped profile which 

is the typical form usually found on open coast beaches. The profile takes this form due 

to the variability in the mean cross-shore current which can be onshore or offshore 
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directed depending on the conditions. Onshore directed mean currents occur in the 

initial runs which subsequently become offshore directed for most of the surf zone 

region. These are subsequently replaced by onshore currents in the deeper water depths 

beyond hb. Typically, the same current profile is repeated on the ebb tide and hence the 

w-shape. The 10 May mean current profile emulates that typically found on open coast 

beaches exposed to wave action but with an asymmetry in which the ebb tide mean 

currents are generally weaker. The profile for the 160' May has a similar form to the 14`h 

May profile but, importantly the weak inner surf zone mean currents (< 0.1 m. s"') have 

been replaced by significantly stronger onshore directed mean currents (= 0.4 m. s-1). 

The general form of the mean oscillatory cross-shore current in both profiles is one of 

higher mean values in the surf zone region due to wave shoaling effects which then 

become abated in water depths > hb. The effect is pronounced on the flood tide due to 

the tidal asymmetry in wave height. The magnitude of the mean oscillatory cross-shore 

current in the inner surf zone for both days is similar on the flood tide (= 0.3 m. s"') but 

over the majority of the profile, they are a minimum 0.1 m. s"' stronger on the 16`h May 

than on the 10 May owing to the higher energy conditions. The profiles of the mean 

cross-shore current on the two days converge outside of the surf zone (between runs 14 

and 29) but inside the surf zone the currents diverge due to the contribution of the 

incident waves. There are significantly stronger mean currents in the inner surf zone on 

the 16`h May when compared with the 14`h May. the inner surf zone mean cross-shore 

currents reaches nearly 0.4 m. s 1 on the flood tide, and 0.3 m. s'' on the ebb tide whilst 

on the 14`h May the magnitude is close to zero in both cases and the maximum mean 

cross-shore current (= 0.2 m. s"') occurs in run 4. 
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Under low energy conditions, the key effects of the onset of the wind sea conditions that 

are important to the sediment transport at the offshore extremity of the sandbank occur 

in the shallow water runs and are as follows: 

" Under calm conditions, the inner surf zone mean cross-shore current is close to zero 

but under low energy conditions, it increases to between 0.3 and 0.4 m. s"' depending on 

the state of tide and is onshore directed. 

" Under low energy conditions the mean oscillatory currents throughout the tidal 

cycle are a typically 0.1 m. s"1 larger than under calm conditions. In the shallow flood 

tide runs the mean values converge at approximately 0.3 m. s"1. 

" The mean cross-shore current profiles are asymmetric with stronger and more 

sustained inner surf zone currents on the flood tide than on the ebb tide. 

Suspended sediment concentration 

The maximum suspended sediment concentration on the 14`h May occurred in run 1 (2.9 

g. 1-1) and is significantly higher in terms of their relative magnitudes than the 

corresponding 16`h May maximum concentration of 2.0 g. 1'' (run 1). This apparent 

anomaly is considered to be a factor of the inherent errors introduced when undertaking 

the particularly difficult task of measuring key parameters in the nearshore. It is not 

intuitive for there to be higher suspended sediment concentrations occurring under calm 

conditions versus low energy conditions, but the results do suggest that even under calm 

conditions sediment is being brought in to suspension in the shallowest flood tide run, 

and that the concentrations may be of comparable magnitudes to those found under low 

energy conditions. On the 14th May, with increasing water depth there is a rapid 

decrease in the flood tide concentration of suspended sediment as compared with that on 

the 16th May. Under the higher energy wave conditions the rate of decrease over the 
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first three flood tide runs is negligible but subsequently decreases rapidly in run 4 

culminating in a near zero concentration by run 5. As a consequence of the tidal 

asymmetry in the wave and current fields, the ebb tide mean concentration is near zero 

throughout the surf zone on the 14`h May whilst on the 16`h May, suspended sediment is 

confined to the two inner zone runs in which the maximum mean concentration in run 1 

(z 0.7 g. 1"') is less than 50 % of that on the flood tide (z 2.0 g. 1-1). 

Key point summary: 

" Under calm conditions, sediment is still being suspended in similar magnitudes to 

those under low energy conditions but only in the shallowest flood tide run. 

" Under low energy conditions, the incidence of relatively significant sediment 

suspension events (> 10 g. 1"') is confined to the inner surf zone. 

" The asymmetry in the mean suspended sediment concentration profile reflects the 

asymmetry in the current profile with higher concentrations enduring for longer on the 

flood tide than on the ebb tide. 

In the following sub-sections, the associated sediment transport resulting from the 

observed hydrodynamics and sedimentation are investigated in more detail. 

Cross-shore sediment transport rates 

The time averaged sediment transport rates for the offshore extremity position (IA) 

have been computed after Jaffe et al. (1984) (Section 5.1.2.1) and the results for the 

calm and low energy conditions are presented in Figure 5.11. 
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Figure 5.11: Comparison of the cross-shore sediment transport under calm (black dots) and low energy 
conditions (white circles) at the offshore extremity SLOT position (IA): a) net cross-shore sediment 
transport (< uc >), the mean component of the cross-shore sediment transport (< üc >), and the 
oscillatory component of sediment transport (< u'c' >). Each plotted point is a 17 minute time average of 
the data. 

Since the strongest currents and highest sediment suspension events occur in the inner 

surf zone, this is where the mean net transport rates are highest. On the 14`x' May the 

calm conditions are generally not capable of suspending and transporting significant 

quantities of sediment and this is reflected in the negligible time averaged values over 

the tidal cycle. The peak 14th May sediment transport rate occurs in run 4 which is close 

to zero (-0.07 g. m"3. s"') and is offshore directed on account of the mean flow that has the 

characteristics of an undertow current (Figure 5.10c). Correspondingly, the mean and 

oscillatory transport component rates on the 14th May are negligible over the whole tidal 

cycle. In run 1 when most suspension of sediment occurred the mean and oscillatory 

current components (W= +0.16 g. m'3. s'1, u'= -0.13 g. m 3. s"1) act in opposite directions 
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resulting in a negligible but onshore directed transport rate. In contrast to the 14t' May, 

the higher energy conditions on the 16th May resulted in onshore directed sediment 

transport occurring in the inner surf zone on both flood and ebb tides as the asymmetry 

observed in the wave and current time series (Figure 5.10b and c) is translated in to the 

sediment transport time series. Consequently under the low energy conditions, there are 

higher maximum inner surf zone transport rates that endure for longer on the flood tide 

compared with the ebb tide. The run 1 maximum flood tide net transport rate is 0.9 g. m 

3. s"' (run 1), with comparable rates being sustained in runs 2 and 3 until a subsequent 

rapid decrease reduces the value to near zero by run 5. During the weaker ebb tide 

conditions, the maximum net sediment transport rate which occurs in the shallowest run 

(run 31) decreases to 0.5 g. m . s"' which rapidly reduces to close to zero in the adjacent 3 

deeper run (run 30). Of the two cross-shore components, the mean cross-shore current is 

dominant on the flood tide through the inner to mid surf zone (runs I to 4) where the 

maximum mean transport rate of 0.7 g. rn 3. s'' (run 1) is 350 % larger than the maximum 

oscillatory rate of 0.2 g. m 3. s"1. The mean transport rate decreases in a near linear 

manner from the run 1 maximum value to close to zero by run 5 whilst the oscillatory 

rate increases to its maximum of 0.3 g. m 3. s" in run 3 before decreasing in a similar 

manner. Conversely on the ebb tide during the shallowest run, the situation is reversed 

with the oscillatory component being the greater constituent of the net onshore transport 

rate (ri = 0.1 g. m 3. s"1, ü=0.4 g. m 3. s''). 

The key points regarding the cross-shore sediment transport rates in relation to 

suspended sediment transport over the sandbank reflect the key points from the previous 

waves and current sub-sections: 
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" There is a strong tidal asymmetry in the transport rate magnitudes and, due to this it 

is primarily during the inner surf zone flood tide period in which the highest transport 

rates occur. 

" On the flood tide, the transport due to the mean component dominates over that due 

to the oscillatory component with rates that are between 50 and 300% higher through 

the surf zone. 

" During the weaker ebb tide conditions, onshore sediment transport also occurs in the 

shallowest inner surf zone, but in contrast to the flood tide, it is the oscillatory 

component that dominates the near bed sediment transport regime at this stage of tide. 

5.6.4 Comparison of third order cross-shore velocity moments under calm and low 

energy conditions 

In Figure 5.12 the 3rd order cross-shore velocity moments computed for the calm 

(Figure 5.12a) and low energy conditions (Figure 5.12b) are each presented in a series 

of three histograms for the inner, mid- and outer surf zone positions. Each histogram is 

orientated such that the velocity moment terms are the ordinates and their magnitude are 

the abscissas. Negative histogram values denote offshore transport and vice versa. In the 

absence of a clear and consistent spectral valley the short and long wave components 

were separated at a frequency of 0.05 Hz after Miles and Russell (2004). The magnitude 

of individual velocity moments are not considered in this analysis since they are derived 

from the cube of a velocity and therefore have units that are not meaningful in terms of 

sediment transport (m3. s"3) but it is their relative magnitudes and directions that is 

interest to the current study. The results of the analysis indicate that terms 1,2,4 and 5 

are the most significant transport terms which are re-summarised in Table 5.2. 
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No Term Description 
1. ü mean velocity cubed 
2. us short wave velocity skewness 
4. 3<u 3 >ü stirring by short waves & transport by mean flow 
5. 3<u I">5 stirring by long waves & transport by mean flow 

a) 

b) 

g 

Table 5.2: Velocity moment terms that constitute the sediment transport at the offshore extremity. 
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Figure 5.12: Third order cross-shore velocity moments computed for the offshore extremity position (IA) 
at the inner, mid- and outer surf zone positions for: a) calm conditions (14`h May), and b) low energy 
conditions. The runs relate to the flood tide and positive values denote offshore transport, negative values 
denote onshore transport. 

The energetics analysis produces a mean transport component (term 1) that dominates 

over the other terms and which has a variability in magnitude and direction that reflects 

that of the net transport computed after Jaffe et al (1984) in the previous section. The 

mean velocity moment term on the 14th May (Figure 5.12a) has a negligible magnitude 

and is onshore directed in the inner surf zone. It becomes offshore directed in the mid 

surf zone where it peaks in magnitude, before decreasing in the outer surf zone. On the 

16`h May (Figure 5.12b) the mean velocity moment term in the inner surf zone is much 

larger than on the 14`h May and at its maximum in the inner surf zone, the positive sign 

indicating that the transport is onshore directed. The much larger magnitude of term 1 
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on the 16`h May in the inner and mid surf zone as compared with the 14`h May indicates 

the significant increase in sediment transport caused by the wind sea conditions. The 

energetics analysis also indicates that the wave stirring effects of short waves coupled 

with the onshore velocity phase (term 4) in the inner and mid surf zone is important to 

onshore sediment transport under low energy conditions which is intuitive given the 

fetch limited wave climate. A small contribution is made to the inner and mid surf zone 

onshore transport by the stirring effects of long waves (term 5). The contribution of 

short wave velocity skewness (term 2) to onshore sediment transport is comparatively 

small but largest in the outer surf zone where it is generally too deep for sediment 

suspension under low energy conditions. Conversely it is negligible in the inner surf 

zone where sediment suspension is highest and therefore only makes a small 

contribution to onshore sediment transport in the mid surf zone. 

The results of the energetics analysis are in good agreement with the sediment transport 

analysis following Jaffe et al. (1984) (Section 5.6.3) as they predict both the significant 

increase in the sediment transport rates generated by the onset of the wind sea 

conditions. The results reiterate the importance of the mean component (term 1) to 

sediment transport on the offshore sandbank under low energy conditions. The wave 

driven mean flow in addition to secondary short wave stirring effects were also found to 

be important in the sediment transport regime and morphodynamics of the shore- 

attached mode of the sandbank (Marino-Tapia et al., 2006). 
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5.6.5 Co-spectral analysis of the cross-shore current and sediment transport fluxes 

under low energy conditions 

A co-spectral analysis of the components of the cross-shore current and suspended 

sediment data from run 3 on the 16`h May has been undertaken and the results plotted in 

Figure 5.13. The periodograms were estimated using 16 segments containing 256 data 

points and a 50% overlap. A Hanning window function is applied to the data to reduce 

spectral leakage between adjacent bins and then the FFT applied. The averaged spectral 

density estimates have a bandwidth of 0.0016 Hz and 58 degrees of freedom at the 95 % 

confidence level with upper and lower error factors of 1.5 and 0.7 times the spectral 

estimate respectively. Since the process of converting a signal from the time domain in 

to the frequency domain involves removing the mean, the co-spectral analysis relates 

only to the oscillatory flow component. This has previously been shown to be the less 

important to the sediment transport over the sandbank under low energy conditions 

(Section 5.6.3) constituting between 20 and 50% of the transport depending on cross- 

shore position within the surf zone. However, though this contribution is smaller than 

that of the mean component it is not insignificant and the co-spectra are therefore 

worthy of investigation. Their analysis will provide further insight in to the contribution 

of the wave driven transport component under low energy conditions. Run 3 from the 

16`h May low energy was selected for the co-spectral analysis because there is a small 

peak in the computed sediment transport rate due to the oscillatory component in this 

run (Figure 5.11c). 

The c and u auto-spectra (Figure 5.13a and b respectively) have two peaks, one at the 

incident wave frequency (0.17 Hz, T=5.9 s) and one at infra-gravity frequency (0.0 16 

Hz, T= 63 s). The two peaks in the u auto-spectrum are of similar magnitude though the 

peak at the incident wave frequency is the stronger and more dominant. 
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There are also two peaks in the c auto-spectrum at the incident wave and infra-gravity 

frequencies but in this spectrum, it is the lower frequency peak that dominates. The 

peaks at the incident wave energy and the infra-gravity frequencies are also present in 

the c-u co-spectrum (Figure 5.13c) but in addition to this there is a tertiary peak that 

occurs at a intermediate or harmonic frequency (z 0.05 Hz, T= 20 s). The positive sign 

of the co-spectral density at the peak frequencies indicates that the sediment transport is 

onshore directed. The black circles in the phase spectrum show the frequencies at which 

the phase relation between the cross-shore current and sediment suspension is coherent 

where the coherence threshold is given by: 

Coherence threshold = 1-0.05(1/(0.5. DOF)-1) (5.23) 

Where DOF = number of degrees of freedom (Equation 5.13). A coherence threshold of 

0.103 was computed for the data therefore the c-u phase relation is only coherent at the 

peak intermediate frequency (z 0.05 Hz) that was observed in the co-spectrum (Figure 

5.13c). This is the frequency at which high cross-shore velocities occur simultaneously 

with sediment suspension events, and since the coherent phase relation occurs close to 

zero, c and u are in phase. Therefore the sediment is moved onshore under the onshore 

component of the cross-shore current, which concurs with the c-u co-spectrum. 

A final point to note is that the lower frequency coherent peak in the c-u coherence 

spectrum is still in the short wave frequency energy band hence the dominance of term 

4 over term 5 in the energetics analysis (Section 5.6.4). 
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5.7 Summary 

The objective of the in-situ measurement analysis was to elucidate the physical 

processes responsible for the observed morphodynamic behaviour. The persistent 

onshore migration of the offshore sandbank at Teignmouth is the typical behaviour for 

sandbanks that form on the terminal lobe of ebb tidal deltas. When considered in the 

context of sedimentary features on exposed coasts (e. g. inter-tidal and sub-tidal 

alongshore uniform bars) which move both on- and offshore over comparable distances, 

the morphodynamic behaviour of these inlet sandbanks is aberrant. Typically, the effect 

of waves on open coast beaches is to generate an offshore directed bed return flow or 

undertow current and it is this physical process that provides the primary mechanism for 

the offshore migration of such features in these environments. Similarly, in nearshore 

environments adjacent inlet entrances strong offshore directed ebb tide currents flowing 

in shallow water over the shoals can entrain sediment and provide a potential 

mechanism for the movement of sediment offshore in addition to that occurring in the 

primary and secondary channels (Section 6.5.2.2). However at Teignmouth, the current 

vector time series from the four different SLOT rig positions indicate that offshore 

currents are relatively scarce and of low importance to the evolution of ebb shoals 

(Figure 5.9a). At the offshore extremity and southern flank positions where offshore 

currents are present, they occur outside of the surf zone which is where sediment is 

being suspended and transported under low energy conditions. It is this paucity of 

offshore directed currents in the surf zone that is the fundamental reason for the 

observed atypical morphodynamic behaviour of the offshore sandbank at Teignmouth. 

The detailed analysis of the sedimentation at the offshore extremity SLOT rig position 

was undertaken since it permitted the comparison of calm versus low energy conditions. 

This comparative analysis revealed an important atypical response of the 
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hydrodynamics to increasing wave height that helps to explain the paucity of offshore 

directed currents at this position (Figure 5.10c). In contrast to the typical open coast 

scenario, an increase in significant wave height resulted in offshore directed flood tide 

surf zone currents being replaced by onshore directed currents. It should be mentioned 

here that this occurred when the sandbank was exposed by the tide as opposed to it 

being submerged. If the offshore directed surf zone currents were caused by the 

radiation stress of the incident waves then an increase in wave height is expected to 

strengthen the undertow (Masselink and Black, 1995) but this was not the case. A 

potential explanation for the disappearance of the flood tide undertow may be that larger 

waves are not able to cause setup against the offshore extremity of the sandbank due its 

narrow longshore dimension. Consequently, the onshore directed momentum generated 

by the incident waves is thought to be redirected around the flanks of the feature. This 

explanation for the lack of undertow under the larger waves infers that for isolated 

nearshore features exposed to wave action that have narrow longshore dimensions, there 

may be an upper radiation stress limit or threshold value that initiates the redirection of 

the onshore directed momentum upon being exceeded. Since the phenomenon only 

happens on the flood tide, this suggests that the specific combination of wind, wave and 

current conditions needed to initiate this hydrodynamic response exists in the continuum 

between the different conditions on flood and ebb tides of the 160' May. 

The in-situ measurements results also showed that there is a considerable tidal 

asymmetry in the transport regime and that it is during the flood tide surf zone 

conditions that most sediment is being brought in to suspension and transported. The 

analyses revealed that it is the mean flow component that is most important to the net 

transport which can be as large as three times the magnitude of the oscillatory 

component under low energy conditions. However the oscillatory component is not 
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insignificant to the transport of sediment (Figure 5.11 c) but it is the stirring action of the 

incident wave orbital motions that is of greatest importance (Figure 5.12b). The peaks in 

the c-u co-spectra indicate that the stirring action of the waves is suspending sediment at 

times of maximum onshore velocity at three different frequencies but only the longer 

period onshore oscillations of the cross-shore current at the infra-gravity and harmonic 

frequencies were of importance to mid surf zone (run 4) sediment transport at the 

offshore extremity. Previous studies have shown that towards the inner surf zone the 

infra-gravity contribution increasingly dominates the c-u co-spectra due to the 

dissipation of the incident wave frequencies (Davidson et al., 1993; Miles and Russell, 

2004), and under low energy conditions at the offshore extremity this is where the 

sediment transport is at its maximum. The coarse grained composition of the sandbank's 

sediment assists the process of onshore sediment transport because the coarse grains 

which are entrained in to the water column during the higher peak onshore velocities 

rapidly fall out of suspension before flow reversal can take place (Bowen, 1980; 

Richmond and Sallenger, 1984). 

The analysis of the in-situ measurements has shown that in addition to the onshore 

directed mean flows, an additional primary factor in the persistent onshore migration of 

the offshore sandbank at Teignmouth under low energy conditions is the relative 

paucity of offshore directed currents over the sandbank. The physical process that 

results in this and is responsible for strong onshore directed inner surf zone currents is 

the strong refraction of the incident waves by the contours of the feature as evidenced 

by the linear form of its flanks (Figure 5.5b). During times when the sandbank is not 

fully submerged, sediment entrained at the offshore extremity is transported onshore 

along the flanks of the sandbank by significant onshore directed inner surf zone mean 

flows that are driven by the strong refraction of the incident waves. These currents are 
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in effect longshore currents with respect to the sandbank due to their very oblique angle 

of incidence. When the sandbank becomes submerged and h< hl,, the strong refraction 

leads to wave focussing over the sandbank's crest where the associated currents 

converge and transport sediment over the top of the feature to the shoreward extremity 

(Figure 5.9a). The intense wave refraction over the crest in the shallow submerged state 

on the flood tide produces flow constriction over the crest which has a jet-like form 

(Choi et al., 2009) and this is when onshore transport is greatest. 

It is the combination of these two transport regimes that erodes sediment from the 

offshore extremity and transports it along the flanks or over the crest to the shoreward 

extremity where it is deposited. This leads to the observed onshore migration of the 

morphological feature under the typical low energy conditions between storms. The 

effectiveness of these processes at transporting the sediment onshore between high 

energy events was highlighted when the SLOT rig sensors were found to have been 

completely buried during the tide on the morning of the 16 ̀h May indicating a local 

increase in seabed elevation of the order of 20 cm (Figure 5.14). The results clearly 

show that the transport over the sandbank under the typical low energy conditions is not 

negligible therefore the onshore migration of the features continues between storms 

albeit at a slower rate. 

In Chapter 6 the depth-averaged 2D Mike 21 numerical model is used to investigate the 

patterns of erosion and deposition around the offshore sandbank to try to better explain 

the plan form morphological evolution of the feature, and to determine the relative 

contributions of the tide and wave driven components to the mean flow. 
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6 Numerical modelling 

The increasing socio-economic importance of the coastal zone (Section 1.1) has led to 

the development of a wide range of numerical models for the study of nearshore 

processes. The different modelling approaches (e. g. conceptual, probabilistic, and 

deterministic) incorporate varying levels of complexity in order to simulate the marine 

environment over a wide range of temporal and spatial scales. The current state of the 

art numerical models are the two and three dimensional deterministic models that 

encapsulate theory through sets of complex governing equations that describe the 

underlying physical processes. These models are through necessity founded on 

simplifying assumptions which reduce the accuracy of model outputs but despite this 

they are still capable of making quantitatively reliable predictions (De Vriend, 1987). 

Consequently, their application has become standard practice in scientific and 

engineering disciplines. The numerical simulation of the marine environment enhances 

our analytical capability by helping to overcome the problems associated with an 

inherent paucity of measurements of key parameters and because it provides the 

scientist with a degree of experimental control that would not otherwise be attainable. 

Furthermore, the important advantage gained by undertaking numerical simulations in 

the present study is that they reveal how the physical Eulerian measurements fit 

(Chapter 5) within the 2D flow regime as it develops through the tidal cycle. In 

particular, the simulations show how the funnel flow conditions of higher states of tide 

evolve into the jet-like conditions during lower states when the flow becomes 

segregated in the channels between shoals. The combination of the modelling analyses 

with the physical measurement and video analyses provides detailed information about 

the system over a wide range of spatial and temporal scales thereby helping to overcome 

one of the primary limitations of research in to nearshore morphodynamics which is 
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poor data resolution. Studies taking a similar approach have already proved immensely 

useful in improving our understanding of the physical processes acting in the nearshore 

environment, and how they interact with, and control the morphological evolution of 

sandy coastal environments (Reniers et al., 2001; Lafon et al., 2005; Siegle et al., 2004; 

Siegle et al., 2007). 

In this component of the study, the industry standard MIKE 21 model developed by the 

Danish Hydraulic Institute (DHI) is applied in two experiments which are as follows: 

1. The effects of different hydrodynamic conditions on the geometry and distribution of 

the regions of erosion and accretion in the vicinity of a nearshore sandbank are 

investigated using a simplified modelling approach and idealised bathymetries. 

2. Measured bathymetry, wave and tidal data are used as model boundary conditions to 

investigate the sediment transport regime of the offshore sandbank under the low energy 

conditions experienced during the May 2003 fieldwork program. The objective is to 

quantify the relative contributions of the cross-shore wave and tidal current components 

to the onshore transport of sediment over the migrating sandbank. 

MIKE 21 is a two dimensional depth-integrated model with a suite of modules that can 

be used individually or in combination for the simulation of a wide range of nearshore 

processes. In this study the nearshore spectral wave (NSW), hydrodynamic (HD) and 

non cohesive sediment transport (ST) modules are applied using the modular framework 

presented in Figure 6.1 for the calculation of sediment transport fluxes and initial rates 

of bed level change in response to different hydrodynamics. 
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6.1 MIKE21: NSW, HD and ST modules 

The first step in the application of the MIKE 21 modules is the initialisation of NSW 

model which is a parametric spectral model that describes the propagation, growth and 

decay of short period, short crested wind waves in nearshore areas. The numerical 

scheme solves the equations for the conservation of spectral wave action density 

(Holthuijsen et al., 1989) for the computation of the stationary or quasi-stationary wind 

generated wave field. 

Bathymetry Wave data 

Nearshore wave model 

Radiation stresses I Wave field 

------------------------ ---------------------------------------- 
Bathymetry Boundary conditions 

(water levels & fluxes) 

Hydrodynamic model 

Water level and current 
flux magnitude & direction 

-------------------------------- ---------- ---------- ---------- 
Sediment data 

Sediment transport model 

Sediment transport flux 
& initial 8z/8t rate 

Figure 6.1: MIKE 21 modular framework. 
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The NSW model does not include wave reflection and diffraction, or non-linear wave- 

wave interaction and wave blocking but does incorporate the effects of: 

1. Wave refraction and shoaling due to varying depth. 

2. Energy dissipation due to bottom friction. 

3. Energy dissipation due to wave breaking (Battjes and Janssen, 1978). 

4. Wave-current interaction. 

5. Directional and frequency spreading. 

The output files are integral or spectral wave parameters such as significant wave 

height, mean wave period, mean wave direction, directional standard deviation and 

wave radiation stress. The spatial gradients in the surf zone radiation stresses determine 

the wave induced contribution to the flow field which is then used as input to the HD 

module. The second model to be initialised is the HD model which calculates water 

level and horizontal current field parameters due to a variety of forcing functions using 

the depth-integrated continuity and momentum equations. In addition to wave forcing, 

the model is able to incorporate tidal forcing and wind shear stress effects. The HD 

model outputs horizontal current velocity and fluxes which are then used as input to the 

ST model. The ST model is an advanced non-cohesive sediment transport model with a 

choice of two parameterisations (Bijker method and the DHI's deterministic STP 

formulation) for the computation of sediment transport fluxes and initial bed level 

change rates due solely to tidal currents or due to a combination of tidal and wave 

driven currents. The model incorporates the effects of breaking and non-breaking 

waves, complex bathymetry and sediment gradation. 
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6.2 Model calibration and validation 

MIKE 21 has previously been used to investigate Teignmouth morphodynarnics during 

which it was rigorously calibrated and validated using a comprehensive dataset from the 

COAST3D project (Siegle, 2003). The important implication of this for the present 

study is that the model is capable of simulating the complex horizontal circulation with 

a good degree of skill and without further model calibration. The process involved the 

iterative adjustment of tuning parameters (calibration) until the time series of modelled 

data most accurately replicated the time series of measured data (validation). Initially 

the hydrodynamic model was calibrated using the water level, wave height and 

horizontal current measurement data and after satisfactory comparative results were 

obtained, the validation process was then repeated for the sediment transport model. 

Using the comprehensive COAST3D dataset Siegle (2003) was able to calibrate the 

model at several locations across the model domain (Figure 6.2) and over a range of 

incident wave and tidal conditions. Siegle (2003) quantified the model's performance 

using a Relative Absolute Mean Error (RMAE) analysis for the hydrodynamic variables 

and a Brier Skill Score (BSS) analysis for the sedimentation. The validation was 

undertaken using a simulation period of one month which included the spring-neap tidal 

range and wave heights in the range 0.1 to 1.7 m. The results for the wave, water level 

and current fields are presented in Tables 6.1,6.2 and 6.3 respectively. The low RMAE 

values for all variables indicate that the model is competent at simulating the 

hydrodynamic conditions at Teignmouth. The wave height and direction, and the tidal 

amplitude and phase were shown to be in very good agreement with the measured data. 

The HD model was less skilful in the prediction of the horizontal current velocity field 

as indicated by the higher RMAE values in Table 6.3. 
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Figure 6.2: Teigmnouth bathymetry with the stations used in the Siegle (2003) model calibration and 
validation. 

Station 
number 

Measured 
(m) 

Predicted 
(m) 

MAE RMAE Qualification 

7 0.46 0.35 0.11 0.02 Excellent 
4 0.46 0.36 0.10 0.01 Excellent 
25 0.36 0.26 0.10 0.01 Excellent 

Avera re 0.43 0.32 0. l0 0. (1I Excellent 

Table 6.1: Significant wave height validation parameters (Siegle, 2(R)3). 

Station Measured 
number (m) ODN 

8 0.894 
11 0.863 

Average 1 0.879 

Predicted 
(m) ODN 1 

MAE RMAF 

0.890 } 0.01 1 0.012 
0.842 0.051 0.059 
0.866 0.031 0.035 

Table 6.2: Water level validation parameters (Siegle, 2003). 
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Station 
number 

Measured 
m. s"1 

Predicted 
m. s'' 

MAE RMAE Qualification 

14 0.156 0.164 0.104 0.346 Reasonable 
24 0.159 0.173 0.118 0.429 Reasonable 
26 0.134 0.083 0.093 0.326 Reasonable 
9 0.070 0.071 0.071 0.296 Good 
28 0.126 0.184 0.107 0.450 Reasonable 
25 0.377 0.432 0.139 0.237 Good 
5 0.083 0.066 0.055 0.066 Excellent 
33 0.070 0.054 0.055 0.071 Excellent 

Average 0.146 0.153 0.092 0.277 Good 

Table 6.3: Horizontal current velocity validation parameters (Siegle, 2003). 

But despite this it was still able to reproduce the general circulation pattern and achieve 

an aggregate skill level of `good' according to the stringent standards set out in Van 

Rijn et al. (2003). The modelled currents deviated from the measured data principally in 

the under estimation of both the alongshore current magnitude during calm conditions 

and the cross-shore current magnitude under larger wave conditions. Siegle (2003) 

attributed this to the coarseness of the model resolution (10 x 10 m grid) which 

prevented it from being able to resolve micro-scale processes (e. g. sub-grid scale 

turbulence and topographic steering of currents), and the inequality between the 

parameters being compared (i. e. depth-averaged values as compared with Eulerian point 

measurements). The latter point is supported by the notable improvement in current 

prediction capability for stations not in close proximity to the complex morphology 

associated with ebb shoal system (e. g. stations 5 and 33). For a complete description of 

the model calibration the reader is referred to Siegle (2003). 

After obtaining satisfactory validation results for the hydrodynamic model, the sediment 

transport model is validated in a similar manner by comparing modelled 

erosion/accretion rates with Argus observations of the morphological evolution. Siegle 

(2003) used an iterative approach to bathymetry updating in which bed level changes 

were manually applied after one complete cycle of the modular framework. The BSS 
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used to quantify the performance of the ST model computes the accuracy of predictions 

relative to a baseline prediction after Sutherland et al. (2001). The validation of the ST 

model was undertaken for the region at the distal end of the estuary channel in which 

the offshore sandbank is observed to grow and begin migrating onshore. Siegle (2003) 

used surveyed bathymetries from the COAST3D project and 14 day simulation periods 

with which to make the comparisons. The results of the BSS analysis were measured 

against a predetermined threshold value (0.2) after Sutherland et al. (2001) whereby a 

BSS greater than the threshold indicated that the model was capable of simulating the 

morphological evolution and vice versa. The ST model permits the use of two distinct 

sediment transport formulations, the Bijker method and DHI's STP deterministic model. 

The former can be tuned using the bed load transport coefficient in the Bijker method 

which was defined as spatially varying in order to attain the best sediment transport 

predictions. The STP deterministic approach utilises user-generated sediment transport 

tables which are tuned to give the best prediction results at the table generation stage 

using the critical Shields parameter. After calibrating the ST model, Siegle (2003) 

demonstrated that it was satisfactorily able to predict the morphological evolution in the 

region of the offshore sandbank using both formulations with BSS values of 0.24 and 

0.36 respectively, despite the limitations of the simplifying assumptions and the 

iterative approach to morphology updating. The rigorous model calibration and 

validation undertaken by Siegle (2003) showed that the NSW, HD and ST models 

within the MIKE 21 modular framework are capable of simulating the hydro- and 

morphodynamics at Teignmouth with sufficient accuracy and confirmed it's suitability 

for application to the study area. The modelling chapter begins with synthetic modelling 

experiment hence begins with a description of the methodology and the model setup 

used. 
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6.3 Idealised simulations 

6.3.1 Methodology and model set up 

The model domain in this experiment covers a2 km square nearshore region at a5m 

resolution and is separated into two planar regions representing the beach face and the 

nearshore region from the foot of the beach face to the offshore boundary. The beach 

face occupies the shoreward 100 m of the domain and has a steeper gradient of 0.11 

compared to the nearshore region which has a gradient of 0.01. The gradients used for 

each planar slope were estimated from the topographic and bathymetric surveys of the 

study site. The sandbank morphologies are derived from two orthogonal Gaussian 

curves superimposed on the slope of the nearshore region at a cross-shore distance of 

380 m from the foot of the beach face. The generation of the morphologies using 

Gaussian formulae is useful since it allows the user to define the position of the feature 

relative to the model boundaries as well their cross-shore and longshore dimensions. 

The addition of the simple linear equation describing an inclined plane with that for the 

Gaussian plane results in the equation of the form: 

-7 Y-Y 
f (x, y) = mx+c+axe4 °` 

). 

aye4 °y 
) 

(6. i) 

Where m is the planar gradient, c is a constant, a is the amplitude, a is the standard 

deviation, and 7 and 57 specify the location of the orthogonal peak in the Gaussian 

planar curve. Contour plots of the circular (aspect ratio = 1) and elliptic (aspect ratio 

2) sandbank geometries generated using Equation 6.1 are presented in Figure 6.3. A2 

km model domain was chosen so that the lateral boundaries would be sufficiently 

distant from the region of interest and therefore would not influence the modelled 

conditions in the vicinity of the sandbank. 
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Figure 6.3: Contour plots showing the bathymetries for a subset of the model domain focussed on the 
sandbank morphologies: a) circular and b) elliptic. The contour units are depths (m) relative to an arbitrary 
datum and the cross-shore and longshore axes are relative to the model domain origin. 

The choices of model grid resolution and the length of the time step to be used are a 

compromise between having a sufficiently fine grid to be able to resolve the physical 

processes of interest in addition to keeping the computation time down and maintaining 

model stability. The appropriate choice of model resolution and time step length is 

assessed using the dimensionless Courant number which is equated as follows: 

C, 
At 

(6.2) 

Where At is the time step, Ax is the grid resolution and c is celerity which is given by: 

c= gh (6.3) 

Where g is gravity and h is water depth. For the MIKE 21 HD module it is 

recommended that Courant numbers should not be allowed to reach values in the range 

8 to 10 (Delft Hydraulics Institute, 2004). In this series of simplified numerical 

modelling experiments, a relatively fine grid resolution of 5m was chosen which meant 

that a small time step of 2 seconds was needed to keep the Courant number below the 
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maximum recommended values. This combination generated a maximum Courant 

number of 5.6 during the HD module flow simulations which is comfortably inside the 

recommended limits. The modular procedure initially involves using the NSW module 

to model a single wave event (stationary time description) in order to generate the 

radiation stress, wave parameter fields which are used as input to the HD module. The 

HD module simulation period used was 1 hour which includes a half hour warm up 

period to enable the stationary conditions to be reached. The module computes the wave 

driven flow field from the radiation stress field at each time step which is subsequently 

applied in the ST module in order to estimate the sediment fluxes and initial rates of bed 

level change at each grid point. 

Since the idealised numerical modelling experiments are used to investigate the effects 

of different hydrodynamic conditions on the plan form and distribution of the regions of 

accretion and erosion, this analysis is not concerned with the absolute magnitudes of the 

sediment transport fluxes and initial rates of bed level change output by the ST module 

but in the trends in their relative magnitudes, plan form and distribution. Initially a 

series of sensitivity tests were carried out to assess whether the inclusion or omission of 

the spatially varying bottom dissipation and eddy viscosity tuning parameters would 

significantly affect the trends. The tests revealed that their inclusion did not 

significantly affect the results of the experiments and so spatially constant values were 

used. 
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6.3.2 Results 

6.3.2.1 Comparison of modelled hydrodynamics and sedimentation for circular 

and elliptic sandbanks under emerged and submerged states 

From the Teignmouth Argus image archive it has been seen that during the genesis 

period of the offshore sandbank at Teignmouth, the feature typically has a rotund form 

which subsequently elongates in the shore-normal direction during the course of its 

onshore migration. In order to investigate how the hydrodynamics and sedimentation 

may result in elongation as the offshore sandbank migrates in to shallower water, 

idealised modelling experiments were undertaken using circular and elliptic sandbank 

morphologies where the former is representative of the rotund sandbank observed 

during the genesis stages and the latter is representative of the morphology observed 

during the elongation and migration stage of the inlet in its current mode. In the initial 

series of idealised modelling experiments, the sandbank crest height is at a depth of - 

1.42 m relative to the arbitrary water level datum (h =0 m), and the hydrodynamics and 

sedimentation are modelled using water levels of -2.0, -1.0, +1.0 and +2.0 m, and 

offshore significant wave heights of 0.5,1.5 and 2.5 m. In Figure 6.4 and Figure 6.5 the 

modelled results for the emerged (h = -2.0 m) and submerged (h = -1.0 m) tidal states 

are presented for the circular and elliptic sandbank bathymetries under an offshore 

significant wave height of 0.5 in. Each modelling experiment is encapsulated in a row 

of three plots per water level that define the wave, flow and sediment transport in the 

vicinity of the sandbank at the specified water level. The hydrodynamics and 

sedimentation are depicted using individual vectors plotted at each model grid point. In 

both the emerged and submerged states, the model results indicate that sediment is 

eroded from the offshore extremity and deposited shoreward of the region of erosion. 
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The different modes of erosion and deposition associated with the emerged and 

submerged states are both driven by the strong refraction of the shoaling incident waves 

by the morphology of the sandbanks as indicated by the wave direction arrows in Figure 

6.4a and d, and Figure 6.5a and d. Wave breaking induces strong onshore directed 

currents in regions where Hs/h is in the range 0.4 to 0.8 which occur around the flanks 

in the emerged state and, over the top of the sandbank in the submerged state. The wave 

induced flow regime interacts with the sandbank morphology leading to sharp gradients 

in the current velocity which in turn cause gradients in the sediment fluxes that result in 

the regions of accretion and erosion. The model results in Figure 6.4 and Figure 6.5 

show that the distribution of these regions around the sandbank and the intensity of bed 

level change within each one are dependant on the aspect ratio of the sandbanks 

morphology in addition to the specific combination of water level and wave height. In 

the emerged circular sandbank case when h= -2.0 m (Figure 6.4c), sediment is eroded 

from the offshore extremity and deposited on the shoreward extremity in two side lobes 

separated by a region in which no appreciable change occurred. Conversely, in the 

submerged state when h= -1.0 m (Figure 6.4f), the eroded sediment from the offshore 

extremity is deposited over the shoreward portion of the sandbank in a single centralised 

region of the crest. The varying colour intensities of the regions of erosion and accretion 

indicate that the magnitudes of the initial rates of bed level change are higher at the -1.0 

m water level when the morphology is only just submerged than when it is emerged (h 

= -2.0 m). The different hydrodynamic states that are responsible for the observed 

variation in the form, distribution and intensity of these regions cause similar patterns of 

sedimentation around the elliptic morphology except that in the emerged state, the two 

side lobes are importantly replaced by a narrow, near continuous band of accretion 

around the flanks of the feature that extends to the shoreward extremity. In order to 

analyse the trends in the idealised modelling results, key hydrodynamic and 
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sedimentation parameters derived from the matrices output by the NSW, HD, and ST 

modules have been collated in Table 6.4 and plotted in Figure 6.6 to aid the 

identification of the underlying trends. The parameters are extracted from over and 

around the sandbank morphologies and are defined as follows: 

a) The ratio of maximum shoaling wave height to the minimum water depth (H, 1h). 

b) The maximum current strength (m. s"1). 

c) The maximum sediment flux (m3. day-l. m 1). 

d) The mean initial rate of bed level change per unit area estimated over aI km2 subset 

of the model domain that encompasses the sandbank bathymetry. 

In the mean initial rate of bed level change estimate for the emerged sandbank state 

when h= -2.0 m, the calculation includes an inherent error due to the inclusion of the 

exposed area of the sandbank (= 8000 m2 for the circular morphology), but since this 

area represents less than 1.0 % of that used in the estimate (1 km2), the maximum error 

introduced is negligible. With the depth to the top of the sandbank at -1.42 m below the 

arbitrary reference level (h =0 m) the crest is exposed in the -2.0 m water level 

experiments and submerged at the -1.0, +1.0 +2.0 m water levels. Based on the breaker 

index (yb) of 0.8 that was used in the model setup, the maximum water depth that the 

0.5,1.5 and 2.5 m waves can break in is estimated at 0.6,1.9,3.1 m respectively. The 

main trends under different wave heights and water levels in Figure 6.6 are summarised 

in the following sub sections along with the differences between the two morphologies. 

Ratio of H9lh 

Figure 6.6a highlights the tidal water level control on the intensity of wave breaking 

over the surface of the sandbank. 
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Figure 6.6: Hydrodynamic and sedimentation parameters for circular (black) and elliptic (red) morphologies 
from Table 7.4: a) ratio of maximum shoaling wave height to water depth, b) maximum current strength 
(m. s'), c) maximum sediment flux (m3. day'. m'), and d) mean initial rate of bed level change per unit area 
(cm. day-'. M-2). Offshore wave heights of 0.5,1.5, and 2.5 m are denoted by circles, triangles and squares 
respectively. 

When the sandbank is in the exposed (h = -2.0 m) and shallow submerged (h = -1.0 m) 

states wave breaking occurs under all three wave height conditions. At these water 

levels the intensity of wave breaking around the flanks and over the crest is at a 

maximum and close or equal to the limit imposed in the model setup. Intuitively, as 

water levels deepen the magnitude of the ratio diminishes and fewer waves are break. 

The rate of decrease is highest for the smallest waves (hl, = 0.5 m) which highlights the 

ephemeral nature of the sandbank's low energy surf zone processes under meso to 

macro scale tidal water level variation. In this idealised experiment where the crest is 

positioned below mean tidal level, onshore directed wave driven sediment transport 

only occurs over the crest and around the flanks under lower states of tide under low 
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energy conditions. The differences in the trends in the ratio between the circular and 

elliptic morphologies are negligible. 

Current maxima 

In Figure 6.6b the current maxima increase with wave height and the trend due to 

varying water level reflects the trend in the H, 1h ratio with the largest current maxima 

occurring at the -2.0 and -1.0 m water levels due to wave breaking (surf zone) 

processes. Once the sandbank becomes submerged (h = +1.0 and +2.0 m) the wave 

driven current maxima become increasingly weaker with increasing depth. A minor 

peak in the maximum flow rate occurs at the -1.0 m water level when the sandbank is in 

the shallow submerged state. The flow rate over the crest is enhanced under these 

conditions as strong wave refraction over the morphology forces the waves to converge 

(Choi et al., 2009). When the sandbank is exposed by the tide the high current maxima 

along the flanks (longshore currents) are due to the very oblique angle of the strongly 

refracted breaking waves. The current maxima for the elliptic morphology are typically 

higher than for the circular morphology under the same hydrodynamic conditions due to 

the stronger wave refraction over its steeper bathymetry. Under low energy conditions 

the difference between shoal current maxima is only appreciable in the shallow 

submerged state. 

Sediment flux maxima 

In Figure 6.6c the sediment flux maxima trend for the 0.5 m wave height case 

corresponds to the trends in the H, �h ratio and current maxima with the highest 

magnitudes occurring in the exposed (h = -2.0 m) and shallow submerged (h = -1.0 m) 

states. With increasing submergence the flux maxima decrease to close to zero as the 

relatively weak surf zone radiation stresses cease to be effective in mobilising and 
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transporting sediment. Under larger waves (H5 = 1.5 and 2.5 m) the trends identified in 

the previous parameters are not the same since the sediment flux maxima reach their 

largest values at the +1.0 m water level. This was unexpected and the cause is unclear 

but the flux maxima at this water level may be caused by the breaking of larger waves 

in deeper water. The elliptic morphology typically has higher sediment flux rates under 

the same hydrodynamic conditions when compared with the circular morphology. 

Mean rate of initial bed level change 

In Figure 6.6 the trends in the mean initial rates of bed level change show that the 

highest rates occur in the shallow submerged state under all wave height conditions. 

Typically, increasing wave height leads to increasing mean rates of initial bed level 

change hence the trends in previous parameters are largely reflected in the initial rates 

of bed level change. However, for this parameter the trend between the circular and 

elliptic morphologies is opposite to that seen in previous parameters since the average 

rates of bed level change are consistently higher for the circular morphology than for the 

elliptic morphology. The reason for this unclear but it is likely to be a function of the 

larger area of circular sandbank which means that there is a greater area in which wave 

energy is eroding and depositing sediment at the higher rates hence the higher mean 

values. 

Summary of key points: 

1. Wave shoaling (outer surf zone) and wave breaking (inner surf zone) processes 

govern the distribution of the patterns of erosion and accretion depending on the water 

level. 
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2. Morphologies that are broad in the longshore dimension have significantly different 

patterns of erosion and deposition when compared with much narrower morphologies 

and this becomes significant when the sandbank is emerged at lower states of tide. 

3. The elliptic shoal has relatively narrow patterns of erosion and accretion (i. e. 

constrained in the longshore dimension) under both submerged an emerged states. 

Importantly, due to the larger longshore length scale of the circular morphology these 

regions become separated under the emerged state leading to much broader patterns of 

deposition. 

4. Strong wave refraction over the morphologies focuses the wave energy which 

intensifies wave breaking over the sandbank crest and around the flanks depending on 

the water level. These effects are often largest over the elliptic morphology which has 

steeper bathymetry along its flanks than the circular morphology. 

5. The highest mean initial rates of bed level change occur when the two morphologies 

are only just submerged (h = -1.0 m) with the second highest changes occurring when 

the features are emerged (h = -2.0 m). 

In this section, the idealised modelling experiment results for the emerged and 

submerged states of circular (aspect ratio = 1) and elliptic (aspect ratio = 2) 

morphologies have been presented with a description and analysis of the hydrodynamics 

and resulting sedimentation under a variety of different combinations of stationary 

water level and wave height conditions. The results underpin the findings of the video 

image and in-situ measurement analyses by reiterating the importance of wave shoaling 

and breaking processes on the sedimentation of discrete sandbanks. These processes are 

critically controlled by both the amount of wave energy and the vertical position of 

sandbank's crest relative to the water level since the manner with which they interact 

governs the nature of the patterns of erosion and deposition around the sandbank. 
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In the next section, the regions of erosion and accretion are used as a method of 

quantifying the propensity of different combinations of stationary hydrodynamic 

conditions to alter the aspect ratio of the morphologies. In particular this is investigated 

in relation to shoreward elongation in the cross-shore dimension through the 

comparison of the longshore length scales of the different regions with the original 

sandbank contour. 

6.3.2.2 The propensity of different combinations of hydrodynamic conditions to 

alter the aspect ratio of an offshore sandbank 

The principle objective of the idealised model experiments is to try to determine which 

physical processes cause the offshore sandbank at Teignmouth to elongate during its 

onshore migration. In the previous section the modelled results revealed how the spatial 

distribution and plan form of the regions of erosion and accretion vary under different 

water levels. In order to quantify the tendency of certain combinations of hydrodynamic 

conditions to cause shoreward elongation in the cross-shore dimension, the ratio of the 

longshore length scale of the contours of erosion and accretion at a prescribed level 

were used as an indicator. The basic premise for using the contours is that if the length 

of the longshore dimension of the primary region(s) of erosion in the vicinity of the 

sandbank is(are) less than that of the primary region(s) of accretion, then if the idealised 

conditions persisted then the sandbank's longshore dimension would tend to decrease 

causing an increase in the aspect ratio (longshore narrowing), and vice versa (longshore 

broadening). These mechanisms for morphological change have been defined 

conceptually in Figure 6.7. On the basis of this concept the ratio of the longshore 

lengths of these contours is considered to be a proxy for the tendency of the morphology 

to elongate or broaden. The erosion and accretion contours resulting from wave driven 
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sediment transport (tidal currents not modelled) for an arbitrary bed level change rate of 

±0.1 cm. day-' per unit area were extracted from the modelled results at four individual 

tidal levels that spanned a vertical distance approximately equal to the spring tidal range 

at Teignmouth (4 m). The longshore lengths of the different regions were estimated 

from the contour data using the Matlab `regionprops' function as described in Section 

4.3 

longshore dimension 
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Figure 6.7: Conceptual diagram of the mechanisms of broadening and elongation due to the patterns of 
erosion (light grey shading) and accretion (dark grey) around the sandbank. The large circle denotes the 
plan torm of the underlying sandbank. 

The H, /h ratios were calculated using the offshore significant wave height and the 

minimum depth over the crest which is situated at a level of -I. 42 rn relative to the 

arbitrary datum (h =0 m). Negative values of the H, /h ratio indicate that the sandbank is 

emerged and vice versa. The results for circular and elliptic morphologies are presented 

in figure 6.8a and b respectively. 

narrowing 
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The effects of the different stationary hydrodynamic conditions on the ratio of the 

contours follow the results of the previous section and strongly suggest that the 

combination of wave energy with a submerged sandbank state (/i = +1.0 and +?. () m) 

generates the largest aspect ratios of the longshore dimensions of the selected erosion 

and accretion contours. These hydrodynamic conditions are therefore considered to 

promote elongation significantly whilst at lower states when the sandbank is just 

submerged or exposed by the tide there appears to be no such tendency. 
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Figure 6.8: Comparison of the ratio of the longshore length scales of the erosion and accretion contours 
relating to initial bed level change rates of ±0.1 cm. day-' per unit area under a range of water levels (it - 
2.0, -1.0, +1.0, +2.0 m), and offshore significant wave heights (l/, -- 0.5,1.5,2.5 in) tier the: a) circular 
morphology, h) elliptic morphology. The H, /h ratios are computed from the offshore significant wave height 

and the minimum depth over the crest of the sandbank which is located at a level of-1.42 in relative to the 
arbitrary datum (h =0 m); negative H/h ratios indicate that the morphology is emerged. 

For both the circular and elliptic morphologies the maximum aspect ratio generated in 

the experiments was approximately 4.5 (H., = 1.5 m) for both morphologies. This 

indicates that the sediment is being eroded from regions that are significantly wider in 
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the longshore dimension than the regions of accretion. Sandbanks with relatively deep 

crests in relation to the tidal water level variation will therefore tend to narrow with 

shoreward migration causing a transverse and elongate geometry. Conversely, the more 

emerged the sandbank becomes the less elongation is promoted until under the largest 

waves (HS = 2.5 m) and lowest water levels (h = -2.0 and -1.0 m) the shoal sediment 

transport regime may lead to a small longshore broadening effect. The results suggest 

that the propensity of the wave driven sediment transport regimes to promote elongation 

whilst submerged varies with wave height, though all wave height conditions do so to 

some degree especially in the case of the elliptic morphology. 

Summary of key points: 

1. The erosion-deposition patterns suggest that the combination of deeper submerged 

conditions with wave energy promotes shoreward elongation. 

2. In the shallow submerged (h = -1.0 m) only the lower the levels of wave energy (Hs = 

0.5 and 1.5 m) appear to promote elongation and this is accentuated for the elliptic 

morphology. 

3. There is a no propensity for elongation under the exposed (h = -2.0 m) conditions. 

2. High wave energy conditions coinciding with low water levels in relation to the 

sandbank crest promote small scale longshore broadening. 

The idealised modelling experiments have been conducted using stationary water level 

conditions and therefore do not provide insight into the net effect of the different 

sediment transport regimes on the morphologies through the typical tidal cycle. The 

significance of tidal water level variation is that it imposes a temporal constraint on the 

on the residence times of the wave driven processes. This is exacerbated under low 

energy conditions since small waves are only able to break in shallower water depths. In 
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the next section an idealised modelling experiment is undertaken which estimates the 

aggregate morphological change due to one complete tidal cycle. The effect of the tidal 

cycle is introduced by the addition of the bed level change data at each grid point over a 

range of water levels which together represent the spring-neap variation in tidal range. 

These are subsequently used to update the original bathymetry to provide an estimate of 

the net morphological change. 

6.3.2.3 Wave driven morphological change over spring and neap tidal ranges 

In order to estimate the morphological change associated with the passage of one 

complete tidal cycle a similar conceptual approach to the previous experiments is 

adopted which uses stationary water levels. The water levels used span vertical ranges 

of 4 and 2m to simulate the spring and neap tide excursions respectively. The tidal 

ranges were first divided in to equal intervals of 0.5 m for the spring tide and 0.25 m for 

the neap tide. The wave and flow conditions under each stationary water level and wave 

height combination are modelled and the output initial rates of bed level change 

matrices are then weighted according to their vertical position. This is undertaken in 

order to simulate the variation in the rate of change of tidal level through a typical cycle 

since this governs the duration of exposure to the different sediment transport regimes. 

This was considered important to the net morphological change following the results of 

the previous idealised modelling experiments which revealed how water level exerts a 

significant control on the variation in the plan form, distribution and intensity of the 

regions of erosion and accretion. The resultant matrices are summed to obtain an 

aggregate estimate for one tidal cycle and subsequently multiplied by a factor of 30. The 

data are multiplied by 30 in order to exaggerate the effects of the different permutations 

on the morphological evolution and so aid in the identification of trends between 
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experiments. The modelling experiment applies to the situation where the crest of the 

sandbank is relatively deep (h,, e.,, = -1.42 m) with respect to the tidal range. This reflects 

the typical depth to the crest at the start of the onshore migration-elongation stage in 

events 2,3 and 4 (Figure 4.22b, c and d). The idealised experimental setup does not 

include the tidal current component or updating of the bathymetry but despite such 

limitations, the approach is useful because it reveals the potential aggregate effects of 

the variable residence times of the different wave driven erosion-deposition patterns 

under the large water level changes associated with meso to macro scale tides. 

The morphological change between the original (black contours) and resultant (red 

contours) morphologies for each of the modelling experiments is represented in a series 

of 3D contour plots in Figure 6.9. In the figure, the upper panel shows the estimated 

change due to offshore significant wave heights 0.5,1.5 and 2.5 m and neap tides, 

whilst the lower panel shows the same but for spring tides. 

The predicted contours of the resultant morphologies suggest that the aggregate effects 

of meso to macro scale water level variation when combined with wave energy on a 

discrete sandbank can lead to onshore elongation or longshore broadening. The 

experiments predict that elongation is promoted the most under low energy wave 

conditions. Under increasing wave energy conditions the aspect ratio of the sandbank 

undergoes a small degree of broadening which reflects the predicted morphological 

response for an exposed sandbank under high wave energy conditions in the previous 

experiment (Section 6.3.2.3). The plan form geometry of the upper contours in Figure 

6.9c and f infer that the small broadening effect of higher energy waves is not 

appreciably different under spring and neap tidal ranges. 
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Under low energy conditions the difference in the upper contours in Figure 6.9a and d 

indicates that the neap tides significantly promote elongation but spring tides do not. No 

broadening is apparent under low energy neap tide conditions and these conditions 

appear to show the least morphological change. In Figure 6.9c and f the high energy 

spring tide conditions result in significant accretion on the crest of the sandbank though 

the scale of the accretion is exaggerated due to the disparity in scaling between the 

vertical and horizontal axes. The sediment responsible for the accretion has been eroded 

from the offshore extremity and deposited on the sandbank crest during the higher stets 

of tide when the feature is submerged due to the highly energetic waves. This accretion 

is absent in the low energy response because the waves are incapable of maintaining the 

gradients in sediment transport when the water levels over the sandbank become to deep 

at the higher states of tide. The idealised approach may also be a contributing factor to 

the elevation increases since tidal currents are absent and the feedback between the 

hydrodynamics and changing morphology are not included. 

In Figure 6.9 the amount of change between the contours is difficult to properly assess 

and so to facilitate a better comparison the -2.0 m contours of the original and updated 

morphologies from each case have been extracted and plotted in Figure 6.10. Since the 

crest of the morphology is 1.4 m below the arbitrary datum the contours used are 

extracted from 0.6 m below the shoal crest. In each case the contours show that 

sediment is eroded from the offshore extremity and deposited in a shoreward central 

region and this causes the contours to move forward relative to their original position. 

Onshore migration occurs in all cases but the patterns of deposition change with wave 

energy level leading to varying degrees of change to the major and minor axis length 

scales (aspect ratio). The contours from the neap tide small wave condition (Figure 

6.1 Oa) indicate that the sediment deposition pattern is laterally constrained. 
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Consequently the new contour has a slightly smaller longshore length scale than the 

original and narrows toward the shoreward extremity. With increasing wave height 

(Figures 6.1 Ob and c) greater quantities of sediment are eroded from greater depths on 

the offshore extremity. This sediment is transported onshore and deposited in a central 

region that becomes increasingly broader than the original contour with increasing wave 

height. The high energy patterns of erosion and deposition cause the resultant contours 

to broaden slightly but despite this the major and minor axes retain similar length scales. 

This contrasts strongly with the predicted form of the contour for the small wave energy 

neap tide conditions in which the cross-shore axis of the resultant contour has 

experienced sufficient growth to cause an appreciable increase in the sandbank's aspect 

ratio. In the idealised spring tide case (Figure 6.10d to 1) the morphological response is 

similar to that described for the neap tide with the primary difference being that the 

degree of elongation under low wave energy conditions has decreased. As the wave 

energy increases the contour of the sandbank becomes increasingly broad in a similar 

manner to the neap tide case though the shoreward extremity has developed a more 

sharply defined point. 

As a consequence of the tidal currents not being included in the idealised experimental 

setup, the trends in contour change from low energy to high energy conditions in either 

of the tidal cases are due solely to the differences in wave energy levels. Clearly the 

variation in wave energy levels causes appreciable differences in the sediment erosion- 

deposition patterns around the sandbank. If the neap tide case (Figure 6.10a to c) is 

considered in isolation then the observed differences are attributed to two factors. 

Firstly the depth to which sediment is mobilised and transported under different wave 

energy levels varies, and secondly the residence time of the different sediment transport 

processes over the range of water levels also varies. Under increasing wave energy 
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levels, the gradients in sediment transport are maintained at increasingly greater depths 

and this is evident in the contours of the offshore extremity in Figure 6.9 for both of the 

idealised tidal conditions. The variable residence times due to the tide mean that the 

sediment transport regimes at the lower and higher states of the tide endure for longer 

and are therefore dominant compared with those at intermediate water levels. These two 

factors account for the observed broadening and crest accretion trends under increasing 

wave energy levels. The prolonged duration of the low tide gradients in sediment 

transport (exposed state) deposit sediment in two side lobes (Figure 6.4c) hence the 

broadening of the contour (Figure 6.7). In a similar manner the prolonged duration of 

the high tide transport gradients (submerged state) deposit sediment in a central region 

of the crest (Figure 6.4f) causing the elevation to increase. The combined effect results 

in the morphological response observed in Figure 6.9c and f. Under low energy wave 

conditions the analogy is different since the largest morphological response appears to 

occur after low tide when the sandbank is in the shallow submerged state and residence 

times are shorter. This is explained by the enhanced gradients in sediment transport over 

the crest (Figure 6.6d) where waves are converging due to the strong refraction of the 

incident waves by the morphology. At higher states of tide when the sandbank is 

submerged under relatively deep water the low energy waves are incapable of 

mobilising and transporting sediment. This imbalance in the residence times of the 

different water level dependant patterns of erosion and deposition leads to the observed 

shoreward elongation of the upper contours under low energy conditions as depicted in 

Figure 6.1Oa and d. 

The observed differences in the trends between the idealised spring and neap tide cases 

are less well defined. However, the less pronounced elongation under low wave energy 

spring tide conditions is largely a product of the shorter residence times leading to less 
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wave driven sediment transport over the sandbank and therefore less morphological 

change. This is also reflected in the high wave energy cases where the lower residence 

times associated with the spring tide results in less accretion on the crest (Figure 6.90 

compared with the neap tide (Figure 6.9c). 

Key point summary: 

The following points apply to the case where the sandbank has a relatively deep crest 

(i. e. below mean sea level): 

1. Wave shoaling and breaking on the sandbank create cross-shore gradients in sediment 

transport which result in the landward displacement of the sandbank contours hence 

onshore migration. 

2. The response of the morphology is determined by the dominance of sediment 

transport regimes at certain stages of the tide, and on the depth to which the gradients in 

sediment transport are maintained under the different wave energy levels. 

3. High energy waves combined with both spring and neap tidal conditions are 

predicted to promote a degree of broadening in the longshore dimension and crest 

accretion due to the dominance of both the low and high tide sediment transport 

regimes. These dominate over the intermediate water levels due to their longer 

residence times. 

4. Low energy waves combined with neap tides are predicted to promote shoreward 

elongation due to the dominance of the sediment transport regime in the shallow 

submerged state. Under these conditions the gradients in sediment transport over the 

crest are enhanced due to the convergence of refracted waves. This generates larger 

morphological change than at low tide state despite the shorter residence time of the 

physical processes. 
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6.3.3 Summary 

In relation to the morphological evolution of the offshore sandbanks at Teignmouth, the 

results of the idealised modelling experiments have been useful in identifying potential 

mechanisms for shoal elongation following genesis. The findings of the idealised 

experiments support those of the Argus video analyses by reiterating the importance of 

the water level relative to the vertical position of the crest in controlling the wave driven 

sedimentation over and around the sandbanks. In addition to this, the initial experiments 

revealed the existence of a dichotomy of erosion-accretion patterns that depends on 

whether the sandbanks are submerged or exposed. When the sandbank is exposed, 

sediment eroded from the offshore extremity is transported onshore and deposited along 

either flank, whereas when the feature is submerged deposition occurs in a single 

centralised region of the crest. Typically, the pattern of deposition is constrained in the 

longshore dimension due to the strong refraction of the incident waves. This is 

exacerbated in the case of the elliptic morphology which has steeper gradients along its 

flanks than the circular morphology. The regions of accretion on the shoreward 

extremity of the exposed circular sandbank differed from the elliptic case since 

deposition occurred in two side lobes. Subsequently further idealised experiments were 

performed that investigated the effects of variable wave energy and meso to macro scale 

water level variation. When the aggregate effects of the water level variation were 

incorporated the results suggested that low energy wave conditions when combined 

with neap tides promote the most shoreward elongation. High energy conditions were 

predicted to promote a degree of broadening in the longshore dimension and an increase 

the elevation. These morphological responses are attributed to the dominance of 

sediment transport regimes at certain stages of the tide, and on the depth to which the 

gradients in sediment transport are maintained under the different wave energy levels. 

High energy waves are capable of maintaining gradients in sediment transport in deeper 
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water than low energy waves. Consequently, the morphological response under high 

energy conditions is primarily a function of the longer residence times of both the high 

and low tide sediment transport regimes. In contrast to this when low energy conditions 

exist, morphological change is restricted to the lower states of tide and is predicted to be 

dominated by gradients in transport under shallow submerged conditions which 

promote elongation. 

The experiments concerning the aggregate effects of meso to macro scale water level 

variation on the sandbank's sedimentation relate to the circular sandbank morphology 

and to the case where the crest of the sandbank is positioned below mean sea level 

(MSL). At Teignmouth the elevation of the sandbank crest typically rises above MSL 

during the migration-elongation stage and in the inlet's current mode, the morphology 

has already become elongate and transversely orientated by this time. Therefore the 

resultant patterns of erosion and accretion will be constrained in the longshore 

dimension regardless of the relationship between the crest height, tidal excursion and 

the chronology of wave energy. Consequently, after the sandbank morphology has 

become elongate and transversely orientated it will retain the form through to the shore- 

attachment and dissipation stage. 

This result appears to account for the observed morphological behaviour of the offshore 

sandbanks on the ebb tidal delta at the Teign inlet in its current mode. Genesis occurs 

when the sandbanks crests are deep with respect to MSL and this combined with the 

prevailing low energy wave conditions promotes the initial shoreward elongation. The 

hydrodynamics and sedimentation were investigated in respect of the specific case 

where the crest is deeper than the mid tidal level but the identified trends are more 

generally applicable and lead to a set of hypotheses. The hypotheses initially concern 
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sandbanks in genesis where it is proposed that those with deeper crests (hCres1 » MSL) 

will undergo preferential shoreward elongation under prevailing conditions of low 

energy waves and meso to macro scale tides. Sandbanks that occur under high sediment 

availability conditions are likely to accrete more and therefore have higher elevations at 

genesis (hcresr > MSL). For these sandbanks the duration of the exposed state increases 

with the elevation of the crest, therefore it is proposed that the aspect ratio of these 

sandbanks may remain relatively unchanged or have a tendency to broaden in the 

longshore dimension under the same conditions. If higher energy conditions prevail 

then it is proposed that the tendency for ebb tidal delta sandbanks to broaden will 

increase. These concepts are subsequently used in a conceptual model of the plan form 

evolution of the sandbanks on the Teign inlet ebb tidal delta in Section 7.5. 

6.4 Teignmouth simulation 

The idealised modelling experiments did not incorporate the tidal current component 

and in order to be able to assess their effect on the patterns of erosion and deposition 

around and over the migrating shoal it was necessary to conduct further simulations. In 

these experiments the measured bathymetric, wave and tidal data from the May 2003 

Coastview Project fieldwork program are used as the simulation boundary conditions. 

The next section of the thesis begins with a brief description of the model setup. 

6.4.1 Methodology and model set up 

The analysis of the in-situ measurement data revealed that strong onshore directed mean 

flows were the primary mechanism for onshore directed sediment transport under 

typical hydrodynamic conditions (Sections 5.6.2 to 5.6.4). This was reflected in the 

idealised modelling experiments which showed how the wave driven mean flow (depth 
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averaged) creates gradients in sediment transport that lead variable patterns of erosion 

and deposition. These patterns appear to explain the mechanism that causes the 

sandbanks at Teignmouth to evolve into their elongate and transverse forms (Section 

6.3.2). Therefore it is reasonable to assume that it is the mean flows that lead to the 

observed morphological behaviour. The primary objective of using the model to 

simulate the physical conditions at Teignmouth is to determine the relative importance 

of the wave and tidally driven components of the mean flow field. This is particularly 

important in the case of the tidal currents since their effect on the patterns of erosion and 

deposition has not yet been investigated. In order to achieve this, two identical 

modelling experiments were set up but in the second experiment the waves were 

omitted in order to isolate the flow due to the tide. Subsequently, the current due solely 

to the waves was estimated from the difference between the two time series. 

The topographic and bathymetric survey data from the May 2003 Coastview fieldwork 

program were merged to provide the surface data for the model domain. This covers the 

coastline 2 km to the north, 1.5 km to the south of the Teign estuary and extends 

approximately 3.5 km offshore at a resolution of 10 m. A plot of the bathymetry 

focussed on the region of interest is presented in Figure 5.5 (Section 5.3). The wave and 

water level boundary conditions were obtained using a regional sized model that 

encapsulates the Teign estuary and utilised the wave and water level data from the 

seabed located offshore ADCP. The model runs covered two complete tidal cycles 

which spanned the afternoon of the 15`h and morning of the 16`h May. The bottom 

dissipation and eddy viscosity parameterisations were defined after Siegle et al. (2003) 

using spatially varying values of the Nikuradse roughness parameter and Chezy 

number. The simulation covered the period between 1600 hours on the 15thMay and 
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1230 hours on the 16th May using a time step of 10 minutes and a warm up period of 30 

minutes. 

In order to simulate the south easterly incident wave direction on the 16`h May, 2003, it 

was required to rotate the bathymetry in the NSW model setup but owing to an error in 

this procedure, the resultant mean wave direction (MWD) time series used was in the 

range 109 to 112° as opposed to the 143 to 160°. The impact of this error is however 

small due to the strong refraction of the incident waves which results in little directional 

variation over the sandbank morphology (Bird et al, 2001). The simulation did not 

incorporate the bed level changes therefore the morphology is not updated between time 

steps. 

6.4.2 Results 

6.4.2.1 Qualitative validation of the modelled and measured hydrodynamics using 

the data for the offshore extremity SLOT rig position 

To provide a qualitative validation of the model setup, in this section the modelled 

hydrodynamics and sedimentation are compared with the data May 2003 fieldwork data 

for the same period. Initially, the current vector time series are compared (Figure 6.11) 

and in order to facilitate the comparison the 10 minute resolution of the model output 

current vector time series has been interpolated on to a 17 minute resolution. The 

parameters that are being compared in Figure 6.11 are time averages of the measured 

Eulerian currents at z= 14 cm, (Figure 6.11 a, previously presented in Figure 5.6a), and 

the modelled depth averaged currents over one tidal cycle (Figure 6.11 b). 
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Figure 6.11: Modelled and measured current vector time series for the offshore extremity SLOT rig position 
(IA) under similar hydrodynamic conditions. a) in-situ measurement data from May 16`h, 2003, and b) 

modelled data. A vector denoting a 0.5 m. s' onshore directed current is plotted to the right of the time series 
for scaling purposes. 

The general trends in the magnitude of the cross-shore component of the modelled 

vector time series show similar trends to those in the in-situ measurement vectors whilst 

in the longshore direction the differences become more appreciable. The longshore 

component of the sediment transport has previously been shown to be less important in 

the sedimentation of the sandbanks with the inlet in its current mode so the impact of 

the greater inaccuracy of the modelled longshore currents on this analysis is mitigated. 

Some of the differences in the time series can be attributed to the fact that the 

parameters being compared are not precisely equivalent with the model data being depth 

averaged estimates whilst the in-situ data are time averaged Eulerian measurements at 

one vertical position. 

In terms of the trends in the cross-shore component of the modelled and measured 

current vectors there are identifiable similarities between the two time series. In the 
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shallow flood and ebb tide water the currents are strongest and onshore directed in both 

datasets. The manner in which the measured time averaged currents decrease during the 

flood tide is reflected in the modelled currents. The same also applies to the current 

variability that occurs on the ebb tide where it first becomes offshore directed before 

reversing in the shallow waters at the end of the ebb tide. The principle discrepancy 

between the trends in the measured versus modelled results for the cross-shore 

component is in the relative timing of when the onshore directed flood tide currents 

turns offshore. The model prediction occurs at around the time of high tide whilst in the 

measurement time series it occurs approximately 1 hour 40 minutes later. Additionally, 

the model does not predict the short but significant increase in the current strength that 

occurs at around the mid ebb tide (Figure 6. lla, run numbers 23 and 24). The error in 

the modelled incident wave direction may have affected the longshore component of the 

modelled current time series which is skewed about the cross-shore axis in the direction 

of the estuary mouth though the impact on the relative strength of the cross-shore 

current through the tide is considered to be negligible. The modelled current vectors 

show less randomness in their longshore variability when compared with the measured 

vector time series and the cause of this unclear but may be due to non-linear wave- 

current and wave-wave interactions that are not accounted for in the model 

parameterisation (Delft Hydraulics Institute, 2004). In terms of the variation in the 

magnitude of the modelled versus measured currents, the modelled currents tend to be 

smaller than the measured currents though this is considered to be a function of the 

depth averaging used in MIKE21 estimate. 

An additional qualitative validation of the model set up for the Teignmouth experiment 

is now undertaken using the comparative measured and modelled parameters profile 

plots presented in Figure 6.12 which show the water level, cross-shore current and 
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cross-shore sediment transport from the offshore extremity SLOT rig position. The 

plotted parameters pertain to the morning on the 16th May, 2003 therefore the data are 

equivalent with the exception that the mean wave direction input to the model was in 

error (Section 6.4.1). In this comparison the in-situ measurement data have been 

interpolated from the 17 minute resolution of the original time series on to the higher 10 

minute resolution of the model data. The model data are depth averaged compared with 

the in-situ measurement data which are Eulerian point measurements. The data are 

presented in a similar manner to the earlier time series plots in the in-situ measurement 

chapter (Section 5.6.3) with the depth and cross-shore current profiles depicted in a) and 

b) respectively. In Figure 6.12c the modelled cross-shore sediment flux profile is plotted 

with the net cross-shore sediment rate computed after Jaffe et al. (1984). 

From the comparison of the measured and modelled data in Figure 6.12 it can be seen 

that the accuracy of the model prediction varies for the three parameters. The trends in 

the water depth and cross-shore sediment fluxes are well correlated. The modelled and 

predicted cross-shore current time series display the largest divergence which is most 

pronounced in water depths greater than 1.5 m. At the start of the flood tide, the shallow 

surf zone current strength is initially under estimated by approximately 33%, but over 

the subsequent three time steps the two datasets converge. On the ebb tide, the profiles 

begin to converge at time step 56 and the model subsequently predicts the changes in 

the cross-shore current strength reasonably well. The model is unable to simulate the 

atypical mid ebb tide surge in the resultant current strength. This response of the current 

regime to the hydrodynamic forcing appears to be a real hydrodynamic response as it 

also observed in the resultant current datasets at other SLOT rig positions. The cause of 

this phenomenon has not been determined but its occurrence highlights the complexity 

206 



of the hydrodynamics that govern the sedimentation of migrating sandbanks on ebb 

tidal deltas. 
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Figure 6.12: Modelled (black circles) and measured (white circles) hydrodynamics and sedimentation under 
comparative offshore wave and tide conditions for the offshore extremity SLOT rig position (IA): a) water 
depth, b) cross-shore current velocity, and c) cross-shore sediment flux (model) with the estimated 
suspended cross-shore sediment transport rate after Jaffe et al. (1984) (in-situ measurements). 

The trends in the modelled cross-shore sediment fluxes are well correlated with the 

trends in the fluxes that were estimated from the in-situ measurements. The coarse- 

grained sediment combined with low energy conditions only generates appreciable 

sediment fluxes in the shallowest water depths around the low tide mark. The trend in 

the ebb tide sediment transport rate is predicted particularly well but the duration is 

underestimated on the flood tide when compared with the measurement profile. 

Despite some divergence between the correlation in the trends in the time series in 

Figure 6.11 and Figure 6.12 shows that MIKE21 is reasonably well calibrated and 
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encapsulates the fundamental physical processes concerned. In the following two 

sections the experimental results are first presented for a range of discrete tidal levels 

then the relative contributions of the wave and tidally driven components to the mean 

flow at the different offshore extremity SLOT rig position are quantified and compared. 

6.4.2.2 Spatial and temporal variation in the modelled hydrodynamics and 

sedimentation 

The spatial and temporal variation in the current and sediment flux strength and 

direction in relation to the sandbank morphology at discrete tidal levels through the 

duration of one tidal cycle are presented in Figure 6.13 to 6.18. Each figure is 

comprised of upper and lower panels showing the modelled flow and sediment transport 

regimes at each respective tidal level. Each vector plot shows a subset of the model 

domain focussed on the sandbank morphology. To the left (south) of the plotted grid 

domain the bathymetry begins to shallow towards the channel margin bar termed Spratt 

Sand whilst at the top of the grid (north) the bathymetry shallows more sharply due to 

the contours of Teignmouth main beach. On the northernmost flank of the sandbank the 

contours define a gently gully which ceases abruptly next to the shoal and more gently 

in the direction of the adjacent beach. In the following paragraphs a brief description of 

the synoptic scale hydrodynamics is followed by a discussion of the important aspects 

of the predicted patterns of sedimentation in respect of the migrating shoal. 

At the turn of the tide in Figure 6.13a the tidal circulation is weak and since the wave 

energy is low the submerged shoal is subject to weak onshore directed current over the 

crest. 
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Figure 6.13: Simulated hydrodynamics and sedimentation in the vicinity of the offshore sandbank at 
Teignmouth for the 16th May, 2003. Time = high tide: a) current strength and direction, b) sediment flux 

strength and direction. Black hatched lines indicate the shoreline position and black triangles indicate the 
nearest grid point to the SLOT rig positions used in the fieldwork program. Reference vectors are plotted at 
the furthest right hand grid point position for scaling purposes. 
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Figure 6.15: Simulated hydrodynamics and sedimentation in the vicinity of the ollshore sandbank at 
Teignmouth for the 16'x' May, 2003. Time z high tide 14 hours: a) current strength and direction, h) 

sediment flux strength and direction. Black hatched lines indicate the shoreline position and black triangles 
indicate the SLOT positions during the tieldwork program. Reference vectors are plotted at the furthest right 
hand grid point position for scaling purposes. 
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Figure 6.16: Simulated hydrodynamics and sedimentation in the vicinity of the offshore sandbank at 
Teignmouth for the 16'f' May, 2003. Time = low tide: a) current strength and direction, b) sediment flux 
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212 

L 



time step = 57 tidal level = -1.32 in OD N 

50 - 
01 % 

If 100 -----ý 'ý_ 

150 
M_ eddy 

ti 200 ý` ._ 
13 

% 
250 

300 

350 

400 
eddy 

450 

500 . '. 

a) 300 400 500 600 700 800 

time step = 57 tidal level = -1.32 m ODN 

50'ý 
i -, 

100 ------ I 

150 

0O 
as -' 

250 ' 

300 
\ O. S (1 ll. % 

'. 
111 

11 

p 350 - '- 

400 

450- 

b 
00 l -1__- __ -1:. 300 400 500 600 700 900 

longshore distance (m) 

Figure 6.17: Simulated hydrodynamics and sedimentation in the vicinity of the offshore sandbank at 
Teignmouth for the 16'x' May, 2003. Time z low tide 12 hours: a) current strength and direction, h) sediment 
flux strength and direction. Black hatched lines indicate the shoreline position and black triangles indicate 

nearest grid point to the SLOT rig positions used in the fieldwork program. Reference vectors are plotted at 
the furthest right hand grid point position for scaling purposes. 
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Figure 6.18: Simulated hydrodynamics and sedimentation in the vicinity of the offshore sandbank at 
Teignmouth for the 16`h May, 2003. Time z low tide +4 hours: a) current strength and direction, b) sediment 
flux strength and direction. Black hatched lines indicate the shoreline position and black triangles indicate 
the nearest grid point to the SLOT rig positions used in the fieldwork program. Reference vectors are plotted 
at the furthest right hand grid point position for scaling purposes. 
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Following mid ebb tide (Figure 6.14a) the sandbank is only just submerged and the 

depth to the crest has decreased (h,,,.,,, < 0.5 m) strong offshore directed currents 0(0.5 

m. s-1) have developed to the south of the shoal and over Spratt Sand due to the fully 

developed ebb tidal currents issuing from the inlet entrance. This offshore directed tidal 

current regime weakens with distance from the inlet entrance until it becomes 

completely reversed by the strong onshore wave driven currents (0(0.5 m. s 1)) over the 

crest of the migrating shoal. Strong wave refraction particularly on the steeper northern 

flank focuses the wave energy over the shallow crest causing the onshore gradients in 

current strength to become locally enhanced. 

At the shoreward extremity the onshore directed currents over the shoal are deflected to 

the east due to the proximity of the beach shoreline where they return offshore in a 

manner resembling a rip current. The reversing flow conditions between Spratt Sand 

and the migrating shoal, and the rip current-like circulation associated with the latter 

feature cause the formation of two temporary meso scale eddies on either side of the 

sandbank which have been marked in Figure 6.14a and subsequent plots. 

The circulation observed in Figure 6.14a forms the basic circulation pattern throughout 

the ebb tide except that flow becomes segregated around the emerging sandbank. On the 

exposed southern flank of the offshore extremity, the onshore directed wave driven 

currents (longshore currents) breaking along the flank oppose the offshore directed tidal 

currents (Figure 6.15a). At this location the wave driven currents eventually become 

overwhelmed by the ebb tidal currents so that by low tide offshore directed currents 

dominate the southern flank (Figure 6.16a). This contrasts with the sandbanks northern 

flank which is subject to strong onshore directed wave driven currents throughout the 

ebb tide. At low tide the feature connects with the beach forming a transverse shore- 
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attached sandbank. The flow regime on the flood tide is similar except that onshore 

directed currents proliferate and the magnitude of those around (Figure 6.17a), and over 

(Figure 6.18a) the sandbank are stronger due to the additive flood tide component. 

The small predicted sediment transport rates for the boundary conditions made scaling 

of the individual transport plots difficult. The data were plotted using Matlab's `quiver' 

function which does not facilitate the scaling of vectors between different plots. 

Consequently, a single vector has been added to each of the vector plots to enable the 

relative scaling between different figures. 

Under the low energy simulation the predicted synoptic scale sediment transport regime 

is relatively simple when compared with the hydrodynamics. There are two principle 

regions where sediment transport is predicted to occur through the tidal cycle and these 

were on the left of the plotted domain near the Spratt Sand bar and in the vicinity of the 

migrating shoal. 

Initially under the high tide conditions there is no sediment transport evident in any part 

of the plotted domain (Figure 6.13b) since both the tidal and low energy wave driven 

currents are too weak to mobilise sediment. Shortly before mid tide (Figure 6.14b) the 

water depth has become sufficiently shallow for a zone of comparatively strong offshore 

sediment transport to develop close to the Spratt Sand bar on the left side of the plotted 

domain. At the same stage of tide a zone of onshore sediment transport has developed 

over the crest of the migrating sandbank (hcrest < 0.5 m). When the morphology becomes 

exposed with the ebbing tide (Figure 6.15b) this central zone of onshore directed 

sediment transport diverges creating gradients in sediment transport down the either 

flank. Relatively strong gradients occur on the northern flank where the slope of the 
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morphology is steeper. On the southern flank where the ebb tide currents oppose the 

wave driven currents the gradients in sediment transport are weaker and restricted to the 

outer portion of the flank. The zone of offshore directed transport close to Spratt Sand 

has moved further offshore which it brings it into close proximity to the southern flank 

of the offshore extremity. As the low tide is reached sediment transport becomes 

concentrated along the northern flank of the migrating sandbank (Figure 6.16b). On the 

flood tide the gradients in transport are maintained along the flanks of the sandbank 

(Figure 6.17b) until the feature becomes submerged which once more focuses the zone 

of transport over the crest (Figure 6.18b). 

The marginal sediment transport conditions predicted by the model appear to reiterate 

the findings of the in-situ measurement chapter by demonstrating that low wave energy 

conditions can maintain morphological change between storms. The degree of transport 

is however marginal therefore when H, s < 0.5 m morphological change is expected to 

become negligible. The Teignmouth modelling experiments have also revealed that 

there is no appreciable littoral drift from the updrift beach therefore the addition of 

sediment to the system is unlikely unless there is particularly high fluvial discharge. In 

addition to this, the results suggest that there is a net export of sediment from the 

channel during the ebbing phase of the spring tide. This could be important to the 

migrating shoal since its close proximity means that it represents a potential source of 

new sediment to the sandbank when it is in mid term onshore migration and far 

removed from the terminal lobe accretion zone. 

In the following section the relative importance of waves and tides to the cross-shore 

flow regime at the different SLOT rig deployment positions are investigated using the 

data from the present experiment. The longshore contribution has been omitted on the 
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basis that the hydrodynamics and sedimentation being studied are dominated by cross- 

shore flows in shallow water depths when sediment transport occurs (Section 5.61.1) 

and this is also evidenced by the lack of longshore growth of the migrating shoals 

during their evolution in the current inlet sedimentation mode (Section 4.4.2). 

Key point summary: 

1. Onshore directed sediment transport under low energy conditions occurs over the 

crest and along the flanks on the sandbank. No offshore directed transport was apparent. 

2. In the shallow submerged state the gradients in sediment transport over the crest 

move surficial sediment from the crest toward the shoreward extremity 

3. In the exposed state the zone of sediment transport is redirected along the flanks and 

particularly the northern flank which has a steeper slope. 

4. In the absence of onshore directed transport on the flood tide, Spratt Sand appears to 

be a net offshore transporter of sediment under low wave energy conditions. This may 

therefore be a potential source of sediment to the feature during the mid term of the 

sandbank's onshore migration. The export of sediment will be accentuated during 

spring tides and large river discharge. 

5 Under the low energy conditions the model predicts that there is no appreciable 

longshore transport of sediment between the shoreward extremity of the migrating 

sandbank and the beach shoreline. 

6.4.2.3 Temporal variation in the relative importance of the wave driven and tidal 

components of the mean flow regime 

In Figure 6.19 the total cross-shore current strength under the combined effects of 

waves and tide (black) is plotted with the tide (red) and wave (blue) driven components 

218 



at the four SLOT rig deployment positions. The wave driven component was computed 

from the difference between the model runs with both waves and tide, and tide only. 

The plotted cross-shore current component profiles have been annotated with the 

principle periods of wave (WD) and tide driven current dominance (TD). Since the data 

have been plotted using equivalent axes the different elevations of the various positions 

around the sandbank are reflected in the relative start and end points of the four times 

series and their respective lengths. It should be noted at this stage that the May 2003 

sandbank was in the mid term of its onshore migration therefore the crest had accreted 

to approximately 0m ODN. The four plots reveal that the interaction of the two current 

components becomes increasingly complex in shallower water depths but despite this 

complexity similar trends are observed. In the following paragraphs the key aspects of 

the cross-shore current variability are briefly summarised. 

Flood tide 

During the initial flood tide onshore directed wave driven currents dominate to some 

degree in the shallow water depths at all positions on the sandbank. The duration of the 

wave driven current dominance varies at the four positions due to their different 

elevations. The duration is longer at the offshore extremity and southern flank positions 

since they have lower elevations. At the central crest position which is approximately 2 

m above the offshore extremity and southern flank positions submergence occurs over 

2.5 hours later. By this time the tidal flow has gained momentum and the rate of change 

of the rising water level has increased. Consequently the tidal current strength increases 

more sharply after submergence and the duration of the shallow submerged state has 

shortened. This is also observed at the shoreward extremity except that there is an initial 

period where the currents due to both waves and tide remain negligible. Once the water 

the level has increased sufficiently the wave driven current due to the low energy 
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conditions is negligible and onshore directed tidal currents dominate over all areas of 

the sandbank. 
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Figure 6.19: Comparison of modelled cross-shore current strength due to the combined effects of wave and 
tidally driven currents (black circles), the tide only (red circles), and waves only (blue circles) for the four 
SLOT rig deployment positions on the 16'h May 2003: a) shoreward extremity (2A), b) central crest (1B), c) 
southern flank (2B), and d) offshore extremity (IA). Positive values denote onshore directed currents and 
vice versa. Abbreviation key: WD denotes wave dominance and TD denotes tidal dominance. 

Ebb tide 

At the offshore extremity and southern flank positions both the tidal and wave driven 

components of the cross-shore current are negligible during the initial stage of the ebb 

tide when the water depth is relatively deep (h =3 to 4 m). In contrast to this the model 

predicts that there is a weak (z 0.1 m. s I) onshore directed wave driven component to 

the depth averaged flow at the shallower central crest and shoreward extremity positions 

shortly after the tide begins to ebb and this persists through most of the ebb tide. As the 

tide ebbs further and conditions become relatively shallow over the sandbank the wave 
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driven current component at the central crest position increases and peaks first as the 

wave shoaling and breaking processes take effect. A similar wave driven cross-shore 

current dominance is later observed at the offshore extremity though the strength is 

diminished by the presence of an offshore directed tidal current. In the shallow emerged 

state the southern flank which is closest to the inlet channel is dominated by relatively 

strong offshore directed tidal currents. 

Key point summary: 

1. The meso to macro tidal regime imposes a temporal constraint on the residence times 

of the hydrodynamic processes and this also varies depending on vertical position 

within the sandbank's morphology. For the case where the sandbank crest is positioned 

at around MSL, the upper portions of the feature are exposed to shorter residence times 

than lower portions due to the differential rate of change in the tidal water level. 

2. When the water depth is relatively shallow (h < hh) on the flood tide, wave driven 

onshore directed currents dominate over all parts of the sandbank. Under similar ebb 

tide conditions, wave driven currents only dominate over the central crest and offshore 

extremity positions. The southern flank position is dominated by offshore directed tidal 

currents in shallow water due to its close proximity to the main channel. 

6.5 General summary 

The numerical modelling experiments were undertaken with the objective of trying to 

determine the mechanism for sandbank elongation and to verify that the tidally driven 

mean flow component was relatively unimportant to the physical processes that drive 

the onshore migration of ebb tidal delta sandbanks at Teignmouth. 
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In Section 6.4.2.3 it was determined that the cross-shore flow regime over the May 2003 

sandbank was dominated by wave driven onshore directed mean flows. These occur in 

shallow water depths where they drive the gradients in sediment transport which result 

in the observed morphodynamic behaviour at Teignmouth. Offshore directed tidal 

currents were predicted to occur on the sandbank particularly on the southern flank but 

they are typically weak and ephemeral. Consequently they are not considered to be a 

significant factor in the evolution of the sandbanks though this may not be the case on 

the southern flank when extreme river discharge events coincide with spring tides. Tidal 

currents were however predicted to transport sediment offshore in the vicinity of Spratt 

Sand when it is in the shallow submerged state under spring tide conditions. This 

morphological feature was therefore identified as a potential net exporter of sediment to 

the terminal lobe region which may also have an important impact on sandbanks that 

are in the mid term of their onshore migration. The reason for this is that the transport 

pathway passes close to the sandbank therefore sediment may become advected into the 

shoal sedimentation system. Consequently this may represent a potential mechanism for 

the addition of sediment to the shoal budget long after the feature has become distant 

from the main accretion zone at the distal end of the inlet channel. A net offshore 

transport over a channel marginal bar is contrary to the findings of authors who have 

studied ebb tidal delta shoals in micro tidal settings (e. g. Hubbard, Oertel and 

Nummedal, 1979; Dean and Walton, 1973). This therefore suggests that the process 

may only be common to tidal inlet inlets with macro scale tidal regimes. A final point of 

note regarding the results of the Teignmouth modelling experiments was that negligible 

longshore sediment transport toward the inlet entrance was predicted to occur under low 

energy conditions. This infers that little sediment is returned to the main channel for 

transportation offshore to the terminal lobe, therefore in the absence of extreme river 

discharge events low energy conditions are associated with low sediment availability. 
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The results of the idealised modelling experiments were particularly useful with respect 

to the identification of the potential mechanism for sandbank elongation at Teignmouth. 

In Section 6.3.2.1 it was determined that there is a dichotomy in the patterns of erosion 

and deposition between the submerged and exposed states of the sandbank and 

particularly in the case of the broader circular morphology. When meso to macro scale 

water level change was introduced to the modelling experiments the divergent patterns 

of deposition were predicted to provide the potential mechanism for broadening in the 

longshore dimension under high energy conditions (Section 6.3.2.3). The effect was 

accompanied by an elevation increase and the combined morphological response was 

attributed to the longer residence times of the high and low states of the tide. In contrast 

to this low energy conditions were predicted to promote elongation under dominant 

spatial gradients in sediment transport when the sandbank is in the shallow submerged 

state. These promote elongation by mobilising and transporting surficial sediment from 

the top of the sandbank which when transported to the shoreward extremity promotes 

elongation. Under higher states of tide the low energy wave driven currents are too 

weak to maintain the gradients in transport over the feature therefore there exists a 

temporal constraint or bias on morphological change towards the lower states of tide. 

The numerical modelling experiments have contributed significantly to the present 

study by revealing the spatial and temporal variation in the physical processes that 

govern the evolution of ebb tidal delta sandbanks. These results have led to the 

formulation of a set of hypotheses that are subsequently used to formulate a conceptual 

model in the following chapter. The hypotheses state that sandbanks with relatively 

deep crests (hcrest » MSL) will undergo preferential shoreward elongation under 

prevailing conditions of low energy waves and meso to macro tidal water level 

variation. Additionally, sandbanks that occur under high sediment availability 
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conditions are likely to accrete more and therefore have higher elevations (hceS, > MSL) 

and as a consequence, they are more likely to broaden particularly under higher energy 

wave conditions. 
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7 Discussion and Synthesis 

7.1 Primary physical controls on the short to medium term shoal morphodynamics 

On time scales of weeks the average migration rate was found to have a linear 

dependency on the wave forcing through its correlation with Hlh (Section 4.4.3.2) 

emphasising the dependency on the shoal crest depth (h). This parameter is important in 

that it influences when wave breaking occurs and its intensity during the submerged and 

exposed stages of the tidal cycle. Further evidence of the linear relationship between the 

sandbank's COM migration rate and the wave forcing over shorter time scales was 

determined from work undertaken by the author for the International Conference on 

Coastal Engineering at Lisbon, Portugal in 2004 (Aird et al., 2005). In this study it was 

established that a net 42 m onshore migration of the event 3 sandbank during April 2003 

was in direct response to the wave forcing. When a linear regression between the 

migration rate and wave energy between was performed the correlation was statistically 

significant (R2 = 0.9). The wave forcing generated an average migration rate of 1.4 

m. day"' for that month which was attributed to a sequence of elevated wave energy 

periods. This contrasted strongly with the following month in which there was only one 

appreciable wave energy wave event albeit of lower intensity than in the previous 

month. This had the effect of reducing the net onshore migration distance for a 

comparable period to just 8m (Figure 3 and Table 2, Appendix A3). 

The in-situ measurement (Section 5.6) and deterministic numerical modelling analyses 

(Section 6.5) showed that sediment transport under low wave energy conditions is 

confined to the shallow surf zone region where the residence time of the causative mean 

wave driven flows due to shoaling and breaking processes over the migrating sandbank 

are controlled by the water level variation due to the astronomic tide. When the shoal is 
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under the influence of wave energy the chronology of wave driven sediment transport 

processes has previously been found to be strongly modulated at semi-diurnal 

frequencies by the tidal water level variation (Bird et al., 2001) and to a lesser extent at 

fortnightly frequencies by the variation due to the spring-neap cycle (Bemardes, 2005). 

These findings were also reflected in the results of the idealised experiments of the 

present study. The semi-diurnal modulation of the residence times of the sediment 

transport processes by the water level variation has been shown to be of primary 

importance to the sedimentation of the migrating shoal, whereas the spring-neap tidal 

variation affects the residence times (Section 6.3.2). However, the semi-diurnal water 

level variation is still of secondary importance to wave energy since without the waves 

the rate of morphological change would be negligible. The importance of the semi- 

diurnal tides stems from the meso to macro scale vertical change in water level over 

each tidal cycle which exerts a significant temporal constraint on the wave driven 

sediment transport processes. Under the prevailing low energy conditions this creates a 

bias towards the processes that occur at lower states of tide. In the inlet's current mode 

the crest of the sandbanks after genesis are typically deep in relation to mean sea level 

and this has been shown to promote shoreward elongation under low energy conditions 

(Section 6.3.2.3). The effect of tidal currents on the migrating sandbanks was predicted 

to be negligible (Section 6.4.2.3). 

From the in-situ measurement analyses it was determined that the primary wave driven 

processes controlling sediment transport on and around the sandbank are the wave 

orbital motions which stir sediment into suspension, and the wave driven near bed mean 

flows that transport the suspended sediment and bed load around the shoal (Section 5.6). 

Under the wind sea conditions of the May 2003 fieldwork short wave stirring was the 

primary mechanism for sediment suspension in the surf zone whilst that due to long 
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waves played a secondary role. Short wave velocity skewness was found to make a 

tertiary contribution to the onshore directed sediment transport over the sandbank and 

this increased with distance offshore (Section 5.6.4). During the May 2003 Coastview 

fieldwork program the Teign inlet initially experienced near calm conditions followed 

by low energy wave conditions and no high energy conditions occurred (Section 5.5). 

Consequently, the estimated maximum net suspended transport rates for the main 

fieldwork wave event were relatively small (depth averaged transport flux maximum 

0.9 gm. s"I. m') with the highest rates occurring on the flood tide as opposed to the ebb 

tide (Sections 5.6.3 and 6.4.2.2). This transport was predominantly onshore directed and 

despite the small magnitude of the estimated transport rates, the resultant transport due 

to the combined bed load and suspended sediment was significant since it was capable 

of initiating sufficient accretion at the shoreward extremity to bury sensor heads on the 

SLOT rig (Figure 5.14). By comparison, the estimated net transport rates for the near 

calm period preceding the low wave energy event (data not presented) showed that 

suspension still occurred to some extent on the flooding tide but the transport was not 

sustained, and suspension and transport was entirely absent on the ebb tide. 

The described change in computed transport rates from negligible quantities to the more 

substantive quantities between the near calm and low wave energy states, infers that a 

threshold energy level for morphological change was exceeded. During times when the 

feature is subject to persistent near calm conditions for example in June and July, the 

negligible transport will cause the feature to be moribund. Conversely, under higher 

wave energy levels (H5 > 0.5 m) the flow regime is capable of mobilising and 

transporting sufficient concentrations of surficial sediments to initiate shoreward 

migration of the shoal with the distance traversed being directly proportional to the ratio 

of HH/h. In-situ measurements on the mid term migrating shoal under large wave 
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conditions were not available but the same physical processes increase the intensity of 

onshore transport over the sandbank which has been shown to increase the rate of 

morphological change (Siegle, 2003). The high energy waves generate higher orbital 

velocities and depth of penetration (larger orbital radius of motion) which increase wave 

stirring hence there is greater sediment mobilisation and to greater depths. This 

sediment is subsequently transported onshore by the stronger mean flows. 

The results of the idealised modelling experiment that simulated the effects of meso to 

macro scale water level variation showed that the morphological response was governed 

by two factors (Section 6.3.2.3). Firstly, the residence times of the wave driven 

sediment transport processes govern the duration of exposure to the hydrodynamic 

processes responsible for the sediment transport over and around the sandbank. 

Secondly, the level of wave energy determines the depth to which the gradients in 

transport can be maintained. Under high energy waves the longer residence times of the 

lower and higher states of the tide caused the sandbank morphology to undergo 

preferential broadening in the longshore dimension and increased crest elevation (Figure 

6.9). The broadening response is caused by sediment deposition in two side lobes at the 

lower states when the sandbank is exposed. During higher states of tide when the 

sandbank is submerged the more energetic waves are capable of maintaining the 

gradients in sediment transport in deeper water. The eroded sediment is deposited over a 

central area causing the elevation to increase. Under low wave energy conditions the 

principle differences are that sediment transport is restricted to the lower states of tide 

and is dominated by the gradients created under the shallow submerged state. This 

promotes the observed shoreward elongation as surficial shoal sediment is eroded from 

the upper shoal surfaces and transported to the shoreward extremity. 
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Potential evidence of the erosion of deeper sediments from the offshore extremity under 

elevated wave energy levels and its subsequent deposition on a shoreward central 

portion may be in evidence when the cross-shore section through the approximate shoal 

centre line as presented in Figure 4.6 is considered in conjunction with the wave height 

time series for the weeks preceding the survey date (Figure 3, Aird et al., 2004, 

Appendix A3). The cross-section which was derived from the May 2003 Coastview 

bathymetric survey shows an accretion of sediment (bulge) on the central region 

shoreward of the offshore extremity as described above. If the wave record for the 4 

week period immediately prior to this is scrutinised, it can be seen that it was 

punctuated by a succession of elevated wave energy events in which H, � frequently 

exceeded 1.0 m. However, in the absence of high resolution survey data it is not 

possible to verify whether this deposition resulted from the episodic occurrence of 

higher energy waves. Additionally, if the crest depth time series in Figure 4.22 are 

studied in conjunction with the wave height time series for the each event (Section 

4.4.2) then one might expect to observe periods of crest elevation increases more 

frequently during the winter months but this is not apparent. A potential explanation for 

this is that this morphological response (elevation increase) was elicited whilst using a 

circular morphology. In the inlet's current mode the sandbank morphologies after 

genesis are typically more rotund with the smallest aspect ratios compared with the 

other stages in their evolution (Figure 4.24c). Subsequently, the sandbanks rapidly 

become elongate and transversely orientated which results in their sediment transport 

patterns becoming constrained in the longshore dimension. Consequently, the steeper 

gradients on the flanks generate greater refraction and focussing of the wave energy 

over the submerged crest. This increases the onshore gradients in transport over the 

crest thereby reducing the potential for accretion on top of the features. 
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7.2 Refraction, diffraction and sheltering effects 

Wave refraction around shoals and the focussing effect of their geometry has been 

shown to enhance transport over and around the shoal during the submerged and 

emerged states. The wave refraction induced by the sandbank morphologies is 

sufficiently strong to minimise the effect of variable wave direction. Consequently, the 

gradients in sediment transport are always strongest in the cross-shore dimension 

therefore shoreward migration is currently the prevailing mode of morphological 

change. West (2002) showed that for optimum refraction and wave focussing a reef 

needs to be longer (cross-shore dimension) than it is wide (longshore dimension) and 

should have a small elevation in relation to the horizontal dimensions. In the inlets 

current mode the geometry of the migrating sandbanks often meets these criteria during 

their evolution. For example they have typical elevations 2 to 4 orders of magnitude 

smaller than their typical horizontal dimensions, and elongate aspect ratios that are often 

2 to 4 times longer in the cross-shore dimension than they in the longshore dimension 

(Figure 4.24c). 

Once the sandbanks have migrated away from the terminal lobe accretion zone the wave 

driven sediment transport processes then become influenced by the wave diffraction and 

sheltering effects caused by the genesis of new offshore sandbanks that form on the 

terminal lobe. This usually coincides with the third stage of the morphodynamic 

evolution which is when the sandbanks have become shore-attached. This stage in their 

evolution is characterised by low migration rates that fluctuate close to zero. This is a 

function of two factors. Firstly, due to the fact that the shore-attached sandbanks are in 

effect anchored at the shoreward extremity, the migration rate of their COM is less 

dynamic due to them being largely determined by the on or offshore movements of the 

offshore extremity. Secondly, shore-attached sandbanks are also sheltered by the 
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presence of new offshore sandbanks that undergo genesis on the terminal lobe 

contemporaneously with the dissipation of the shore-attached features. 

Wave refraction on the sandbanks and the sheltering effects of the ebb tidal delta and 

Ness headland are also important since they create alongshore gradients in the wave 

energy incident upon the adjacent shoreline. This is caused by the less proximal parts of 

the shoreline being more exposed to wave energy whilst those in the lee of the shoals 

are subject to varying degrees sheltering (Section 2.2). The degree of sheltering 

typically varies depending on wave direction which can initiate temporary reversals in 

the longshore transport that controls the nearshore supply of sediment to the ebb tidal 

delta. Furthermore, if these changes become more frequent over inter-annual time scales 

then this can lead to long term trends in the patterns of erosion and deposition. These 

are manifest by changes in the volume of the ebb tidal delta and morphology of 

individual shoals in response to changing channel hydraulics. Previous studies of the 

Teign inlet suggest that it is undergoing morphological change on inter-annual time 

scales (Bernardes, 2005, Kingston et al., 2005) and this may be in evidence from the 

combined 35 year image archive of the Teign inlet used in the present study. In the 

period between 1976 and c. 1990 one of the primary modes of the cyclic 

morphodynamics involved the genesis of large shore-parallel swathes of sand that 

extended northwards from the distal portion of the channel adjacent to the Ness 

headland (Ness Pole) (Section 4.4.2). Consequently, the major axes of the sandbanks 

that were released from the terminal lobe were often larger in the longshore dimension 

than in the cross-shore dimension. This behaviour does not typify the morphodynamic 

behaviour of the ebb tidal sandbanks in the inlet's present mode which may be 

indicative of long term changes to the ebb tidal delta volume. Similarly, the trends of 

decreasing sandbank area (Figure 4.24) and crest elevation (Figure 4.21) for the period 
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between 1999 and 2005 (Argus archive), could also be symptomatic of these long term 

changes. The mechanisms for ebb tidal delta volume change relate to changes in the 

littoral and fluvial supply of sediment to the inlet and a proposed explanation fir this is 

presented in the following section. 

7.3 Long term trends in the morphological evolution of the ebb tidal delta and 

landward migrating sandhanks 

7.3.1 Seasonal trends (lower macro time scale) 

The morphodynamic cycle of the 'reign inlet ebb tidal delta was characterised by a three 

stage evolution which begins with the genesis of the sandbanks on the terminal lobe 

(stage I ). This is followed by landward migration and elongation in the cross-shore 

dimension (stage 2) which leads to shore-attachment and dissipation (stage 3) (Section 

4.4.3.1). A three stage evolution was also manifest in the smoothed and interpolated 

migration rate time series (Figure 4.15), hereafter termed the average migration rate (S I 

to S3) (Section 4.4.3.2). Following genesis there is a decelerating trend (SI) in the 

migration rate time series for events 2 to 4 (Figure 4.15b to d). The average migration 

rate of the COM then undergoes a period of acceleration and deceleration (S2) which 

creates a `bulge' in the time series. This stage results in the sandbanks becoming shore- 

attached, after which the migration rate fluctuates close to zero as the offshore extremity 

is eroded (S3). This three stage evolution of the average migration rate time series is 

largely attributed to the seasonality in wave energy levels but it may also be a function 

of increasing sub-aerial exposure with proximity to the shoreline (Section 2.2.1). The 

seasonality in wave energy is evident in the ensemble histogram of average H, that was 

compiled from the raw wave data from the pier mounted pressure transducer (Figure 

7.1). This seasonality involves negligible wave energy levels in June and July (monthly 
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average H. z 0.1 m), which increases to maximum levels in December and January 

(monthly average H,, 0.3 m) before decreasing through spring. 
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Figure 7. I: Ilislogram of monthly average significant wave height compiled f om hourly pier-mounted 
pressure transducer data for a) event I. h) event 2, c) event 3, d) event 4, and e) ensemble average. 

The genesis of the offshore sandbanks in events 2 to 4 (S I) occurred in the energetic 

winter months when sediment is episodically input into the system via littoral dritt and 

high river discharge events. The greater frequency of higher energy wave events (II, > 

1.0 m) in winter causes the new offshore sandbanks to he relatively dynamic from the 

outset. As the season progresses towards the less energetic summer months and the 

shoreward migrating sandbanks become increasingly exposed during the tidal cycle the 

smoothed and interpolated migration rate gradually decreases (Figure 4.19). The 

migration rates reach minimum values June and July which is the least energetic period 

of the year. Subsequently, the sandbanks appear to undergo a relatively short period of 

acceleration then deceleration which causes a bulge in the time series (S2). The period 

of acceleration coincides with the onset of higher wave energy levels in autumn and 
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winter therefore the acceleration stage is attributed to increased wave energy levels. The 

subsequent deceleration period is considered to be a function the sandbanks becoming 

shore-attached which inhibits the dynamic of the COM as the migration rate largely 

becomes a function of the erosion or accretion of the offshore extremity. The last stage 

(S3) begins when the deceleration ceases and is characterised by a fluctuating migration 

rate that is close to zero. The decreased dynamic of the shore-attached dissipation stage 

is primarily attributed to the sheltering effects of the new offshore sandbank and the 

decreased residence times of the wave driven processes. At this stage in their evolution 

the offshore extremities of the sandbanks are high on the inter-tidal terrace and they are 

therefore exposed to wave driven transport processes for less time. Additionally, when 

wave energy is present, longshore transport processes become increasingly important 

with proximity to the shoreline and this may also account for the decreased cross-shore 

dynamic of the sandbanks whilst are being dissipated. 

Event l was the only event in which coalescence occurred and this is considered to be 

due to the timing of the sandbank's genesis on the terminal lobe. Genesis for this event 

occurred comparatively early in August. This suggests the sandbank was either a relict 

feature from the previous winter season or that the wave energy levels in the summer- 

autumn months of 1999 generated high sediment availability conditions. Wave data are 

not available for the summer months of 1999 but the wave energy levels in this season 

are typically low (Figure 7.1). The wave energy levels through autumn were also low 

and only increased significantly in November (Figure 4.10). This fact favours the relict 

feature theory whereby the sandbank had begun accreting early in 1999 but the 

accretion was insufficient to cause it to be properly exposed it prior to the onset of 

summer. This is substantiated by the Argus video image archive in which the flanks of 

the horseshoe-shaped sandbank can be seen during the summer (Figure 7.2). The 
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sandbank lay in a moribund state through the summer and then quickly accreted when 

wave energy levels increased in autumn and this exposed it to the wave driven sediment 

transport processes causing it to begin its landward migration. Consequently, elevated 

wave energy levels and high sediment availability conditions through the winter of 

1999-2000 caused the genesis of the next sandbank on the terminal lobe. This new 

sandbank was able to catch up and coalesce with the former sandbank due to sheltering 

effects of the outer sandbank on the inner feature. 

0 

7.3.2 Supra-annual trends (upper macro time scale) 

The study by Robinson, (1975) indicated that the periodicity of the primary 

morphodynamic cycle was 3 to 5 years for the observation period from 1964 to 1974. 

The historic image archive taken by S Hook from the Ness headland over the period 

1976 to 1990 were also used to determine the morphodynamic periodicity which was 
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i 
estimated at I to 2 years (Section 3.4). This is similar to the estimated 1.5 to 2.5 year 

periodicities of the events analysed in the present study but it should be reiterated that 

the Argus video image-derived estimates were based on a subjective approach to 

genesis identification which means that the duration of each migration event might be 

longer depending on how genesis is defined. If the variability in the Teign inlet 

morphodynamic cycle from 1964 to 2004 are considered together then there appears to 

be evidence of long term changes (supra-annual) to the cycle periodicity and these 

appear to correlate with trends in the North Atlantic Oscillation (NAO) index which has 

been studied by Hurrell et al. (2003) (Figure 7.3). This is a measure of the winter sea 

level pressure differential between Portugal and Iceland and it is used to characterise the 

variability in the strength of the westerly winds. 

2 

X 

2 

1960 1980 2000 
year 

Figure 7.3: Index of the boreal winter (December-March) mean NAO constructed as the difference in sea 
level pressure between Lisbon, Portugal and Stykkisholmur/Reykjavik, Iceland from 1960 to 2007. The 
black line represents the index smoothed to remove fluctuations with periods less than 4 years (modified 
from Hurrell et al., 2003). 

236 

ký 



The index used in the study by Hurrell et al. (2003) is based on the winter pressure 

differential when annual wave energy levels are at their maximum at Teignmouth. 

Westerly winds largely control the level of wave energy on west facing sections of the 

U. K. coastline that are exposed to the Atlantic Ocean. High positive NAO indexes are 

predicted to increase the incidence of storms but since the Teign inlet is sheltered from 

Atlantic Ocean swells it is not expected to be influenced by NAO index. The sensitivity 

of Lyme Bay to the NAO index was briefly cited in a report by the Department for 

Environment, Food and Rural Affairs (2005) which stated that 13% of the variance in 

the location's significant wave height can be explained by the variability in the NAO 

index. This is reflected graphically in Figure 7.4 in which the sensitivity of the winter 

monthly mean significant wave height in Lyme Bay is in the range 0.1 to 0.2 m per unit 

of index. 

0.5 

ký 
V" 

oE 

ýý 

a 

-0.5 
Figure 7.4: Sensitivity of winter monthly mean significant wave height to NAO around northern Europe 
(Image supplied to the Department for the Environment, Food and Rural Affairs courtesy of David 
Woolf, National Oceanographic Centre, Southampton). 

In terms of the present study the evidence in support of this is summarised as follows: 
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1964-1974: high negative index with a decreasing trend which coincides with a 

relatively long cycle periodicity (>_ 3 years). 

1975-1990: increasingly positive index that peaks c. 1990 which is coincident with the 

minimum cycle periodicity (0.9 to 2.3 years, mean periodicity = 1.8 years). 

1999-2005: decreasing positive index which is coincident with an increasing periodicity 

(+1.1 to +2.6 years, mean periodicity = +1.6 years). 

For the last time period between 1999 and 2005 the positive sign in front of each figure 

denotes the fact that they are minimum estimates based on the subjective interpretation 

of when genesis occurred. The identified trends infer that there is an inverse linear 

relationship with the NAO index whereby a high positive index is coincident with short 

cycle periodicity and vice versa. It is proposed that the system is responding to 

fluctuations in the ebb tidal delta volume that are a function of wave energy levels and 

sediment availability. Higher volume ebb tidal deltas are associated with slower cycle 

periodicities and this is attributed to the migrating sandbanks having greater volumes of 

sediment. In addition to this, on larger ebb tidal deltas there are typically greater cross- 

shore distances for the dynamic sandbanks to traverse in order to reach the shoreline 

(Section 2.3). 

7.4 Conceptual model of the plan form morphological evolution of the Teign inlet 

ebb tidal delta sandbanks 

Based on the synthesis of the combined video, in-situ measurement and modelling 

analyses a conceptual model is proposed. The conceptual model accounts for the 

observed medium term (months) plan form evolution of the sandbanks from genesis to 

shore-attachment for the current morphologic mode of the Teign inlet. The results of the 
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analyses undertaken in the present study have shown that the shoal evolution is 

primarily controlled by the following key parameters: 

1. The chronology of the wave energy level. 

2. The relationship between the shoal crest depth and tidal water level variation. 

3. The shoal geometry which governs the degree wave of refraction and focussing. 

4. The variable level of sediment supply to the ebb tidal delta (sediment availability). 

The key concepts relating to these parameters that are applied in the model are as 

follows: 

1. Wave energy transports shoal sediment onshore and deposits it in a laterally 

constrained region of the shoreward extremity (Sections 5.6 and 6.3.2). 

2. The response of the shoal plan form geometry is governed by the ratio of the relative 

longshore length scales of the regions of erosion (EL) and deposition (DL) (Section 

6.3.2). 

3. Deeper crests (hcrest » MSL) undergo preferential elongation under wave energy as 

the patterns of erosion and deposition tend toward the submerged case in which they are 

the most laterally constrained, This process is most pronounced under low tide neap 

conditions (Section 6.3.2.3). 

4. Shallower crests (hcr,, t > MSL) will tend to maintain similar proportions or tend to 

broaden since the patterns of erosion and deposition are less laterally constrained. This 

process is most effective under high energy conditions (Section 6.4.2.2). 

5. The volume of sediment in the migrating shoals is primarily a function of the long 

term (supra-annual) evolution of the ebb tidal delta which is dependant on sediment 

availability (Sections 2.3,3.4 and 7.3.2). 
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Together these factors govern the vertical (crest accretion and erosion) and lateral 

(onshore migration and elongation) redistribution of shoal sediment and therefore they 

control the morphodynamic evolution of the sandbanks. These five key concepts have 

been developed throughout the thesis and provide the framework for the conceptual 

model which is encapsulated in a schematic diagram in Figure 7.5. In the Teign inlet's 

current morphologic mode the onshore migration of sandbanks on the ebb tidal delta is 

characterised by two typical plan form geometries which are either horseshoe-shaped 

(crescentic), e. g. event I sandbank at genesis, or elongate and transversely orientated. 

The proposed conceptual model accounts for this morphologic behaviour based on the 

relationship between shoal elevation (crest depth) and mean sea level. 

Time is represented on the vertical scale and the uppermost section denotes the 

sandbank just prior to the time when it has accreted sufficiently to be affected by the 

wave energy (shoal under genesis). Once the sandbank has accreted sufficiently and 

wave energy has begun to act on the shoal surfaces the patterns of erosion and 

deposition will control the features morphological evolution. The left hand transition 

from genesis (PG I) to the first post genesis phase represent low sediment availability 

which is primarily due to low littoral drift conditions (QiN > Qo>t,,, ). This causes the 

shoal elevation to remain relatively deep after genesis (h(, .,, » MSL) hence the patterns 

of erosion and deposition will tend to the submerged state case. This is where the 

patterns of deposition are constrained in the longshore dimension and the length scale of 

the region of deposition (DL. ) is less than that of the region of erosion (Ei) which 

promotes shoreward elongation. The right had transition (PG2) represents high sediment 

availability conditions which causes the sandbank to have a higher crest elevation at 

genesis (h,,,., t > MSL) and the patterns of erosion and deposition tend to the exposed 

state case. 
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Figure 7.5: Conceptual model of the plan form evolution of the offshore sandbanks during their landward 
migration. Light and dark grey shaded areas represent regions of erosion and deposition respecti%cly. I he 
balance between Qis and Q0� i represents sediment availability on the ebb tidal delta. 1), and I.., are the 
respective longshore length scales of the regions of deposition and erosion. Box codes denote the post 
genesis modes of morphological change due to the tendency towards the submerged (P(, I) or exposed 
(PG2) patterns of erosion and deposition. 
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Consequently, the patterns of deposition are relatively broad in the longshore dimension 

which causes the sandbank to either maintain a similar aspect ratio or to broaden in the 

longshore dimension (DL >_ EL) depending on the chronology and intensity of the wave 

energy. This PG2 pathway naturally leads to the crescentic shaped morphology through 

more divergent patterns of deposition. 

In the post genesis phases of the morphological evolution of the landward migrating 

sandbanks the same principles are applied. The main difference with the post genesis 

phases is that the supply of sediment to the sandbanks is more circuitous as the features 

become more distant from the primary accretion zone that is the terminal lobe. For an 

elongate sandbank in post genesis phase 1, both the PG1 and PG2 mechanisms result in 

the perpetuation of the elongate form due to the laterally constrained patterns of erosion 

and distribution which are a function of the shoal geometry. In the case of crescentic 

sandbanks these can either become elongate via the PG1 mechanism or continue 

migrating shoreward as a relatively broad feature via the PG2 mechanism. For the 

crescentic morphology in post genesis phase 1 where sediment availability is low and 

the crest is relatively deep, the PGI mechanism will first lead to the development of an 

intermediate stage in which the morphology develops an arrowhead plan form. This is 

observed in the early post genesis stage of the event I evolution and depicted clearly in 

Figure 4.7. The PG mechanisms described are then reapplied in further steps to denote 

subsequent morphological sequences hence PG1 will predominate under high sediment 

availability conditions and vice versa for the PG2 mechanism. 

This conceptual model is generally applicable to landward migrating sandbanks on the 

ebb tidal deltas of meso to macro tidal inlets since the physical mechanism that are 

responsible are not exclusive to the Teign inlet ebb tidal delta. The landward migrating 

242 



sandbanks at the Teign inlet have been observed to have markedly different 

morphologies between 1964 and c. 1990. The cause of this appears to be that there was a 

much larger volume of sediment in the ebb tidal delta. One of the key morphologic 

responses of the sandbank system during such times is the formation of sandbanks on 

the terminal lobe that are significantly broader in the longshore dimension than in the 

cross-shore dimension. This leads to broad patterns of deposition in both the submerged 

and exposed states and these are typically maintained throughout the landward 

migration process. The broad patterns of deposition lead to the sandbanks developing 

landward facing protuberances or horns on either flank which can be observed in the 

lower panel of Figure Al (28/03/1979) and the middle panel of Figure A3 (29/10/1987). 
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8 Conclusions 

The present study has made a significant contribution to the knowledge of the 

morphodynamic behaviour of landward migrating sandbanks on the ebb tidal deltas of 

meso to macro tidal inlets. Previous studies of the landward migrating sandbanks on ebb 

tidal deltas have focussed on meso tidal environments and are typically based on 

qualitative analyses over mega time scales. In contrast to this the present study utilised a 

multi-faceted approach in order to quantify the morphodynamic behaviour of the 

dynamic Teign inlet ebb tidal delta sandbanks. Initially, four distinct episodes of the 

landward migration of the ebb tidal delta sandbanks were characterised and quantified 

on meso to macro time scales using an Argus video system developed by Oregon State 

University. The physical processes that are responsible for the observed behaviour 

which act over micro time scales were subsequently determined using a unique set of 

near bed Eulerian point measurements that were obtained directly from the surface of a 

sandbank in the mid term of its landward migration. The final data analysis strand 

utilised numerical modelling in order to analyse the spatial and temporal variability in 

the patterns of erosion and depositions on the sandbanks in order to understand how the 

physical processes lead to the plan form morphologies observed in the Argus image 

archive. The modelling was also used to assess the relative contributions of the wave 

and tidally driven current components to the observed behaviour as this was difficult to 

determine from the in-situ measurement data. In terms of the specific objectives of the 

present study that were set out in Section 1.2, the principle conclusions are as follows: 

" To characterise and quantify the nature of the ebb shoal morphodynamics over short 

to long term time scales (weeks to years), in which the principle component is the 

episodic landward migration of large discrete shoals. 
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This was achieved using a times series of contours that were extracted from rectified 

Argus images at an approximate fortnightly resolution over the 5 year period between 

1999 and 2004. During the observation period the landward migration of the ebb tidal 

delta sandbanks was characterised by three principle morphological stages which were 

are defined as follows: 

1. Offshore genesis or growth of the bar in the distal portion of the main channel. 

2. Onshore migration and elongation. 

3. Shore-attachment and dissipation. 

A set of six descriptive parameters were derived from the contours and this enabled the 

episodes of onshore migration to be quantified in terms of the dynamic of their centre of 

mass, crest depth, area and aspect ratio which is a function of the ratio of the orthogonal 

axes length scales. Genesis typically occurs at a cross-shore distance of between 400 

and 500 m offshore relative to the origin of the Argus coordinate system. In the inlet's 

current mode the plan form geometry of the landward migrating sandbanks is 

predominantly elongate and transversely oriented after genesis. The aspect ratio which 

was computed with the longshore length scale as the denominator was closet to unity at 

genesis 0(1.5 to 2). Subsequently, as the sandbanks migrate landward the aspect ratio 

increases until reaching maximum values at around the time of shore-attachment 0(3 to 

8). The minimum, mean and maximum contour areas at the target depth (-1.8 m ODN) 

across the four events were 2.2 x 104 m2,1.6 x 104 m2 and 3.5 x 104 m2 respectively. 

The area is observed to increase as the features traverse the nearshore slope which 

causes them to become increasingly exposed. The crest depth of the sandbanks is 

typically between 1 and 2m below mean seal level at genesis. During the initial part of 

the onshore migration process the crest of the sandbank typically accretes before 
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undergoing apparently random periods of accretion and erosion for the remainder of the 

morphological evolution. Analysis of the centre of mass time series determined that the 

migration rate was linearly related to the ratio of the incident wave height to the tidally 

averaged crest depth. Typical migration rates between observations were in the range of 

1 to 2 m. day'1 with a maximum magnitude of 5 m. day''. When the raw migration rate 

time series were smoothed and interpolated to reveal the longer term trends the results 

strongly suggested that the migration rate was governed by the seasonal adjustment of 

wave energy levels. 

" To determine which physical processes are responsible for the observed behaviour. 

Analysis of the in-situ measurement data determined that the prevailing low energy 

conditions (Hs < 1.0 m) were capable of maintaining the onshore migration of the 

sandbanks between storm periods. Low wave energy levels typify the location and 

under these conditions it was found that onshore directed, wave-driven cross-shore 

currents dominate the shoal flow regime with maximum currents 0(75%) larger than 

the longshore component. Analysis of the time averaged current strength revealed that 

the strongest flows (< ü>=0.5 m. s'1) occurred in the shallow surf zone (h « hb). The 

maximum mean suspended sediment transport (< c >) occurred on the flood tide and 

was estimated to be O(1.0 g. m'2. s''). This was five times the maximum magnitude of the 

corresponding oscillatory component (Figure 5.11). An energetics analysis of the data 

determined that under low energy short period wave energy short waves were the 

primary mechanism for sediment suspension over the migrating sandbank. The 

suspended sediment was then transported onshore by wave-driven mean flows. 

Undertow was not observed to develop on the offshore extremity of the sandbank under 

these conditions. 
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" To determine the role of the spring-neap variation in tidal water level on the 

landward migration of the ebb shoals. 

The effects of meso to macro scale water level variation on the sandbank's 

sedimentation were investigated using idealised numerical modelling experiments under 

stationary water levels and variable wave energy. The model setup simulated the 

configuration of the sandbanks at the Teign inlet just after genesis when the aspect ratio 

is closest to unity and the crest of the sandbank is between 1 and 2m below mean sea 

level. The experiments found that when low energy conditions coincide with neap tides 

the resultant patterns of erosion and deposition promote the shoreward elongation for 

sandbanks with an aspect ratio in approximate unity. With increasing wave energy 

levels the patterns of erosion and deposition caused the sandbank to undergo a degree of 

broadening in the longshore dimension and an increase in elevation. The differences in 

the between the two morphological responses was found to be a function of the variable 

residence times of the causative processes. Under low energy conditions these are 

biased towards the lower states of tides dominated by the patterns of erosion and 

accretion under the shallow submerged state. Tidal currents were found to have 

negligible sediment transport capability hence are not considered to significantly affect 

the evolution of the sandbanks. 

" To explain the persistent elongate and transversely oriented geometry of the shoals 

through the course of their landward migration. 

This morphodynamic behaviour is initially governed by the geometry of the sandbanks 

at genesis. In the inlet's current morphologic mode the aspect ratio of the sandbanks 

after they have undergone genesis is closest to unity. Consequently, they typically 
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evolve into elongate and transverse forms due to their crests being deep in relation to 

mean sea level. This causes their patterns of deposition to be constrained in the 

longshore dimension due to the effects of strong wave refraction and focussing over 

their crests. The resultant elongate and transversely orientated form the sandbanks is 

then maintained through to the shore-attachment and dissipation stage because the 

variability in wave direction is mitigated primarily due to the strong refraction of the 

incident waves by the sandbank morphologies. The process is assisted by the relatively 

infrequent occurrence of high energy waves which are predicted to promote longshore 

broadening. 
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Appendix Al: Teign inlet: c. 1976-2009 
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Figure Al: Chronology of the Feign inlet ebb shoal system photographed from the Ness headland, 1976- 

1979. (Courtesy of S. Hook). Upper panel: main ebb channel is orientated north due to the well developed 

Ness bar, an irregular-shaped, shore-attached sandbank is in the process of being dissipated. Middle 

panel: the main channel is orientated east, genesis and mid-term migration sandbanks are present. Lower 

panel: the main channel is orientated east, the migrating sandbank has a large area with crescentic horns 

developing at the landward margin of both flanks. 
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Figure A2: Chronology of the 'Feign inlet ebb shoal system photographed from the Ness headland. 1982- 
1984. (Courtesy of S. Hook). Upper panel: the main channel is orientated to the east, offshore sandbanks 
are developing on the terminal lobe and a relict shore-attached bar on Teignmouth main beach is in 

evidence. Middle panel: sandbank in mid-term onshore migration with crescentic horns on the landward 

side, the terminal lobe is completely submerged. Lower panel: the main ebb channel is orientated to the 
east and the Ness bar is well-developed, mid-term migration and shore-attached sadbanks are observed 
indicating high sediment availability. 
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Date: 11/04/86 

Figure A3: Chronology of the Teign inlet ebb shoal system photographed from the Ness headland, l986- 
1990. (Courtesy of S. Hook). Upper panel: the main ebb channel is orientated to the north due to the well- 
developed Ness bar, the irregular-shaped, shore-attached bar is in the process of being dissipated. Middle 

panel: a large shore-parallel sandbank in mid-term migration has developed horns on the landward side. 
Lower panel: a single sandbank is in mid-term migration, there are no shore-attached bars in evidence on 
the main beach and the terminal lobe is completely submerged. 
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Figure A4: Chronology of the I eign inlet ebb shoal system photographed from the Ness headland, 1992- 
2009. Upper panel: A large oblique sandbank gas developed on the terminal lobe, the main channel has 
been deflected to the east, a shore-attached bar is in evidence (Courtesy of S. Hook). Middle panel; inner 
(shore-attached) and outer sandbanks occupy the nearshore region, both features are elongate and 
transversely oriented, (Argus image panorama). Lower panel: the sandbanks in the previous image have 

merged to form a single transverse bar approximately 600 m in length (Argus image panorama). 
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Appendix A2: In-situ measurement data quality tables for the different SLOT rig 

deployment positions during the May 2003 Coastview fieldwork program 
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Appendix A3: Proceedings paper from the 29th International Conference on Coastal 

Engineering, Lisbon, Portugal, 2004 
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This paper utilises Argus video observations and in-situ measurements to elucidate the 
processes responsible for the onshore migration of a dynamic, coarse-grained sand bank 
situated adjacent an estuary on the south coast of the U. K during summer 2003. Using 
video observations combined with an image contouring technique, it was found that the 
sand bank had a net onshore migration during April and May, but that the rate during the 
former month (ßl. 5 m. day'') was significantly higher than that of the latter (0.3 m. day ' 
'). The difference in migration rates is attributed to wave energy given that the tidal 
contribution for both months was approximately equal. April experienced a series of short 
term, higher energy wave events (offshore H,,,, x =0.6 to 1.8 m) which occurred much less 
frequently, and on a reduced scale during May. Field measurements obtained during one 
such event showed that onshore directed sediment transport occurs in the inner to mid 
surf zone region at times when the sand bank is not submerged. Short wave stirring 
suspends sediment which is then transported by mean flows around the margins of the 
sand bank in a shoreward direction. The onshore directed sediment transport is further 
assisted by the absence of a well developed undertow on the offshore flank of the sand 
bank. Under the smallest wave conditions of the measurement period (H" :z0.3 m), the 
onshore directed momentum flux is able to setup against the offshore flank of the sand 
bank producing a weak undertow current in the surf zone. However, under higher wave 
conditions (H,,, 1 = 0.6 m),, the undertow disappeared entirely on the flood tide and only 
manifest as a particularly weak offshore current on the ebb tide. This may be attributable 
to the geometry of the sand bank which is narrow in the longshore direction and 
approximately dome shaped, enabling the onshore directed momentum flux to be 
redirected around the sand bank margins, which in turn contributes to the onshore 
directed mean current along the sand bank margins. 

1. Introduction 

Accumulations of sand are important morphologic features in the coastal 
zone which occur in a wide range of geomorphological environments and 
exhibit diverse morphology. Their importance stems from two primary factors: 
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Figure I: Site location map. (Robinson I 980; 

Byrnes et al. 2004). 

They can exist in a variety of morphodynamic states; those occurring offshore 

can be moribund and in a state of static equilibrium with the local 

hydrodynamics, whilst those occurring in the nearshore on exposed open coast 
beaches are typically more dynamic and capable of attaining migration rates of 
50 m. day t (van Enckevort and Ruessink 2003). The processes controlling their 

morphodynamic evolution are fairly well understood as evidenced by their 

successful encapsulation in top-down models (Plant and Holman 2001; Marino- 

Tapia et al. 2003). However, the processes controlling the onshore migration 

component of their evolution are much less well understood (1loefel and FIgar 
2003). This contribution utilises Argus video images and in-situ measurements 

of waves, currents and sediment suspension in order to elucidate these processes 
in the context of an elongate nearshore sand hank at an estuarine location in the 

south west of the U. K (Figure I ). 

2. Study Site and Data Collection 

Data were obtained from the sand bank at Teignmouth on the south coast of 
the U. K. Figure 2(a) is a merged and rectified, Argus plan view image of the 
study site which has a uniform 2 km long beach that faces ESE into the English 
Channel. The beach is flanked to the north and south by red sandstone 
headlands and is backed by a sea wall. At the southern end of the beach, the 
entrance to the Teign estuary is situated which is considered to be in a state of 
near sedimentary balance (Dyer 2002). The estuary mouth has been deepened 

and narrowed due to the encroachment of The Denn' spit from the north which 
has resulted in significant tidal currents at peak tides creating a jet-like outflow 
which is ebb-dominated close to the mouth. The region experiences semi- 
diurnal macro-tides with a spring-neap cycle of 4.2 to 1.7 in that generate 
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Figure 2. (a) Merged and rectified Argus image ofTeignmouth, I5"' May, 2003, and (b) 'l cignmouth 
morphology, May, 2003. Depths in meters relative to ordnance datum New lyn, U. K. 

dissipative conditions at low tide which become progressively reflective towards 

the high tide. Short period wind waves with typical heights of between 0 and 0.5 

in dominate the surf zone 75% of the time although these can reach up to 3m 
during gales with an easterly component. Coincident with the presence of the 

estuary mouth is the presence of' an asymmetric, coarse-grained ebb shoal 
system. Complex 31) wave and current fields enhanced by refraction and 
dissipation processes have been observed to transport the sediment in a cyclical 

manner around the estuary mouth with a periodicity of between 3 and 5 years 
(Robinson 1975; Siegle 2003). The cycle begins with the growth of the offshore 
sand bank at the end of the estuary channel. As the volume of' the sand bank 
increases, the shoreward margin of the sand hank begins to migrate onshore 
until becoming shore-attached. Subsequently, the offshore margin of the sand 
bank retreats shoreward until the feature has become entirely dissipated. 
Prevailing longshore currents transport the sediment south into the estuary 
channel which returns it offshore where the process begins again. The offshore 
sand bank is clearly visible in Figure 2(a) as the dark region situated between 

the estuary channel and pier. This sand hank is of particular scientific interest as 
it appears to migrate onshore under all conditions which is evidenced by 5 years 
of Argus video observations of the study site. The period of interest of this study 
are the months of April and May 2003, the latter being the month in which a 
field campaign was undertaken. During the field campaign, in-situ 

measurements were obtained between the 12'x' and I9'ß' May from a number of 
locations on the offshore sand bank using two instrument rigs comprising 
pressure transducers (PTs), optical backscatter sensors (Ol3Ss) and electronic 
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Figure 3. Offshore maximum wave height (H,,.. l), and tidal elevation for the period between t° 
April and 2nd June 2003. (Vertical lines indicate the times at which sand bank contours were 
extracted from the Argus archive). 

current meters (EMCMs). Offshore wave height was recorded using an acoustic 
doppler current profiler (ADCP) located on the seabed at an approximate depth 

of 4 m, and a sensor situated at the end of the pier recorded meteorological 
conditions. This study focuses on the measurements taken from the instruments 

positioned on the seaward facing flank of the sand bank. The PT, OBS and 
EMCM instruments were secured to mountings which were buried deep into the 
sand to ensure stability during the measurement period, both the data logger and 
power unit were attached to the unit to avoid the problems associated with the 
use of cables. The PT, OBS and EMCM were fixed at elevations above the 
seabed of 25,5 and 14 cm respectively and the data were sampled at a 
frequency 4 Hz. The beach topography and inter-tidal morphology (Figure 2(b)) 

were surveyed using Trimble real time kinematic GPS equipment and an 
ODOM portable echo sounder respectively. 

3. Results 

3.1. Argus Video Observations 

The complex nearshore morphology in the vicinity of the estuary mouth is 
presented in Figure 2(b). The beach topography and nearshore bathymetry were 
surveyed during the May field campaign although, due to the absence of 
significant morphological change during this period, it is also representative of 
the morphology during April. Figure 3 shows the maximum offshore wave 
height (H,,, ) superimposed over tidal elevation at the study site for the period 
between the 2"d April and 2"d June 2003. Vertical lines indicate the times at 
which Argus video images focused on the sand bank were extracted for analysis 
from the Teignmouth archive. April and May experienced markedly different 
wave conditions. The former begins with daily offshore maximum wave heights 
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of approximately 0.2 m which are typical for the study site. After the 6`h April, 
the remainder of the month is punctuated by short pulses of higher wave energy 
associated with incidents of easterly winds, which repeatedly cause H,,, to 
increase to between 0.6 m and 1.0 m for short periods of time. In contrast to 
April, May experienced conditions of much lower wave energy with persistent 
Hm.,, values of around 0.2 m. 

Variable Parameter 
Location of centre of mass Migration path, distance 
Length of major and minor axes Aspect ratio, orientation 
Arca/volumc Erosion, accretion 

Table 1. Sand bank variables and their associated parameters. 

In order to facilitate the analysis of the morphological evolution of the sand 
bank for the period between the 2"d April and the 2"d June, a manual contour 
extraction technique has been used to extract sand bank contours at a constant 
but arbitrary tidal level, in this case approximately -1.2 m below ordnance 
datum Newlyn, U. K. The technique enables the generation of a number of sand 
bank variables that can be used to facilitate the quantitative analysis of its 

morphodynamic evolution (see Table 1). The centre of mass of the sand bank 

can be used to document changes in position, the major and minor axes can be 

used to analyse changes in sand bank shape through calculation of the aspect 
ratio, and area can be used to analyse the extent of sand bank erosion or 
accretion through the analysis of changes in horizontal slices taken through the 
sand bank at different tidal elevations. Using the contours in Figure 4 panels (a) 
to (f), the set of variables have been calculated for the sand bank and the results 
are presented in Table 2. For the study period, the changes in the aspect ratio 
and orientation of the offshore sand bank were not significant when compared 
with the migration distance and rate of the sand bank's centre of mass. The 
maximum variation about the mean in area and orientation was of the order of 
10% and the aspect ratio remained virtually unchanged. The latter factor has 
important implications when considering the sand bank's migration in terms of 

Descriptor Up to 2"d 2° - 6" 6'h-17'h 17'h - 21" 21" Apr 6'b May - 
Apr Apr Apr Apr -6'"Ma 2idJun 

Migration 
rate N/A -0.4 (±0.1) 1.6 (±0.04) 1.4 (±0.1) 1.4 (±0.03) 0.3 (±0.01) 
m. da 

Migration 
distance N/A -1.7 (±0.4) 17.5 (±0.4) 5.6 (±0.4) 20.7 (±0.4) 8.2 (±0.4) 
(m) 
Area m 2 10822 11383 10865 11419 9523 9959 
As ct ratio 2.7 2.6 2.7 2.7 3.0 2.7 
Orientation 
(deg from 
longshore 71.6 75.3 71.7 74.3 72.5 64.8 
axis 

Table 2. Calculated sand bank parameters. 
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Figure 4. Offshore sand bank contours extracted from Argus images at an 
approximate depth of -1.2 m below ordnance datum, Newlyn, U. K. for: (a) 
2. d April, (b) 6° April, (c) 17° April, (d) 21" April, (e) 64 May, and (f) 2 
June. 

its centre of mass especially during periods when migration distances are small. 
The lack of significant changes in sand bank geometry during the period of 
study mitigates this potential source of error. Similarly, consideration of the 
inherent error associated with the contouring technique is also important hence 
the inclusion of the standard error values in the table which relate to the 
repeatability of the technique, other error sources were considered negligible. 
Figure 4 panels (a) to (f) show the time series of the morphological evolution of 
the sand bank at around the -1.2 m contour level. The date and tidal elevation 
for each image from which the contours were extracted are specified in the 
bottom left comer of each panel; each one covering the same spatial domain of 
the study site. The maximum variation in tidal elevation between contoured 
images is less than 10 cm and, plotted on each is the sand bank's centre of mass. 
Panels (a) to (e) document the sand bank's position from the 2"d April to the 6'h 
May. Analysis of the position of the sand bank's centre of mass reveals that 
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there is a net onshore migration of 42 m (±0.6m) over this period (Table 2. ). 
Conversely, the observed difference between the position of the centre of mass 
on the 6`h May as compared with that on the 2"d June is very small and 
represents a net onshore migration of just over 8 in. The difference in the 

nearshore current field between comparative periods can be attributed to wave 
energy which suggests that the principle mechanism responsible for the onshore 
migration of the sand bank at Teignmouth is wave driven. Direct comparison of 
migration distance between periods is not appropriate due to the temporal 
disparity between them. However, a Spearman's non-parametric correlation test 
between the calculated wave intensity for each observation period and the 
corresponding migration distance produces a value of 0.9 suggesting significant 
correlation. This is reflected in the increased migration rates for the observation 
periods in April (=1.5 m. s'1(±0.05)) as compared with May (=0.3 m. s 1 (±0.01)). 
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Figure 5. In-situ measurement time series for the 14'" and 16te May: (a) & (e) surface elevation, (b) 
& (t), mean cross-shore current (c) & (g), and oscillatory cross-shore current (d) & (h). Vertical 
lines denote breaker depth position. 

3.2. In-situ measurements 

The field conditions during the May 2003 field campaign were typical of 
those experienced 75% of the time at the study site with small short period, 
wind sea waves with maximum offshore wave height of about 0.2 in (Figure 3) 
coming from the SSE, and with a period of approximately 7 s. On the morning 
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of the 15th May, the wind shifted onshore and increased from 2 to 7 m. s', 
resulting in short-crested, sea conditions. The peak wave height during the 
following day had increased to 0.6 m with a period of 5 s. The peak direction of 
the incident waves was from the SSE which remained largely constant for the 
measurement period. The in-situ measurements recorded on the offshore sand 
bank before and during the period of increased wave height are presented in 
Figure 5 in which each plotted point represents a 17 minute time average. Panels 
(a) to (d) are the surface elevation, wave height (Hmo), mean cross-shore 
velocity and oscillatory cross-shore velocity respectively for the 14`h May; 

panels (e) to (h) represent the same 
'. " , (a) set of measurements for the 16th 

CA May. On the 14th May, the 0.5 onshore ' maximum tidal elevation was 
°' 0 """"ý"offshore ý""""ý"ý"" approximately 3.0 m above 
c0 

10 20 30 ordnance datum Newlyn and the 

,., 
. maximum recorded wave height 

, to I (b) was 0.35 m which produced 
0.5 

""ý 
onshore maximum mean and oscillatory 

" cross-shore currents of -0.2 m and 
E0 "t'""""""""""""""""t"" "'ý 0.3 m. s"' respectively. The structure 

offshore 
0 10 20 30 of the mean cross-shore currents 

through the tidal cycle on the 14th 
(c) May is typical of those experienced 

X0.5 
onshore on open coast natural beaches with 

.a "" " an offshore directed undertow in the 
ö0 ""º ................... " 

offshore surf zone and onshore directed 
0 10 20 30 currents outside the surf zone. 

run number Panels (e) to (h) represent the 
Figure 6. Computed sediment transport rates for hydrodynamic conditions on the 16t° May 2003: (a) net transport, (b) mean 
transport component, oscillatory transport 16th May. The maximum tidal 
component. elevation increased to just under 3.5 

m and wave height to approximately 0.6 m which generated mean and 
oscillatory cross-shore currents of approximately 0.3 m. s t and 0.4 m. s'' 
respectively. On both days the maximum wave height occurred on the flood tide 
suggesting that the tide may be responsible for modulating incident wave height. 
This in turn has an effect on the current regime whereby on both days maximum 
cross-shore currents occurred on the flood tide. The combination of an increased 
tidal range combined with an increase in wave height on the 16`s May resulted 
in an atypical mean cross-shore current time series (Figure 5(g)) which was 
persistently onshore directed during the flood tide. Figure 6 depicts the time 
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averaged sediment transport rates for the 16th May computed after Jaffe et al 
(1984). Due to the small magnitude of the maximum currents on the 10 May 
and the coarse nature of the sediment on the sand bank, transport by sediment 
suspension was negligible on both the flood and ebb tides. Conversely, on the 
16`h May the increased mean and oscillatory currents on the flood tide in the 
inner to mid surf zone were sufficient to suspend particles and initiate onshore 
sediment transport. Significantly, at its maximum, the magnitude of the onshore 
sediment transport rate due to the mean current component was three times 
larger than that of the oscillatory component. On the ebb tide, the offshore 
directed undertow current in the mid to outer surf zone was again too weak to 
cause significant sediment suspension, whilst in the inner surf zone, onshore 
transport occurred but on a smaller magnitude compared to that on the flood 
tide. 

No Term Description 
1. ü mean velocity cubed 

short wave velocity skewness 
3. ü, long wave veloci skewness 
4. 3<A-2ü stirtin by short waves & transport by mean flow 
5. 3<%'>Q stirring by Ion waves & transport by mean flow 
6. 6<ü, 01>ü non zero three way correlation 
7. 3<ü1üs> long wave variance & short wave velocity correlation 
8. 3<0,20, > short wave variance & long wave velocity correlation 
9. 3<üs>tº time average of oscillatory component r* 0 
10. 3<ü, >ü time average of oscillatory component b0 

Table 3. Computed third order velocity moments 

4. Discussion 

The results of the image analysis suggested that the increased onshore 
migration rate of the sand bank during April was driven by a sequence of short 
term (1 to 4 days) low energy wave events. Observations from the following 
month appear to support this as the migration rate decreased by 80% in the 
absence of such low energy wave events. The results of the in-situ 
measurements analysis reveal that mean flows are much more important in the 
transport of the coarse-grained sediment on the sand bank than the oscillatory 
flows which had larger but shorter duration maximum values. In order to further 
analyse the relative contribution of the mean and oscillatory components of the 
cross-shore velocity controlling the onshore migration of the sand bank, third 
order velocity moments were computed for the surf zone (Bagnold 1963; Bowen 
1980; Bailard 1981) which are summarized in Table 3. The results of the 
analysis for the 14`h and 16`h May at shallow surf zone, mid surf zone and 
breaker depth locations are plotted in Figure 7. Negative values denote offshore 
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Figure 7. Computed third order velocity moments for the inner surf 
zone, mid surf zone and breaker depth on (a) 14'" May and, (b) 16'" 
May 2003 (not normalised). 

transport potential and vice versa; short and long waves were separated about 
the location of a spectral valley which was situated at 0.05 Hz. Of the ten terms, 

the first five were found to be of most importance with the `mean cubed' term 
dominating the velocity moments on both days. On the 14`h May, a weak 
offshore undertow current that was strongest in the mid surf zone was measured 
which is reflected in the negative `mean cubed' terms. Conversely, on the 16`h 
May, the undertow was overcome by the significant onshore directed mean 
flow. This mean flow, which is strongest in the inner to mid surf zone during 

periods when the sand bank is not submerged are driven by strong refraction of 
the short period incident waves. The magnitude of terms 4 and 5 indicates the 
importance of both short and long wave stirring in suspending the sediment in 
the inner to mid surf zone. Wave skewness was not found to be important in the 
onshore transport of sediment under low energy conditions which is intuitive 

given that the majority of the transport occurs in the inner surf zone. 

5. Conclusions 

This study utilised Argus images and in-situ measurements to elucidate the 
processes that are responsible for the onshore migration of a sand bank adjacent 
an estuary under low energy conditions. The data showed that the process 
occurs in the inner to mid surf zone region through the suspension of sediment 
principally by short wave stirring but assisted by long waves. Strong refraction 
of the incident waves leads to a significant mean flow that drives the suspended 
sediment shoreward along the margins of the sand bank, at times when it is not 
submerged, and particularly on the flood tide. The onshore sediment transport is 
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further assisted by the absence of a well developed undertow on the offshore 
flank of the sand bank. Under the smallest wave conditions of the measurement 
period (Hmo = 0.3 m) the onshore directed momentum flux is able to setup 
against the offshore flank of the sand bank producing a weak undertow current 
in the surf zone. However, under higher wave conditions, the undertow 
disappeared entirely on the flood tide and only manifest as a particularly weak 
offshore current on the ebb tide. This may be attributable to the geometry of the 
sand bank which is narrow in the longshore direction and approximately dome 

shaped, enabling the onshore directed momentum flux to be redirected around 
the sand bank margins, which in turn contributes to the onshore directed mean 
current along the sand bank margins. 
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