
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

1993

MEASUREMENT AND ANALYSIS OF

SEA WAVES NEAR A REFLECTIVE

STRUCTURE

BIRD, PAUL ANDREW DELVES

http://hdl.handle.net/10026.1/779

http://dx.doi.org/10.24382/1305

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



MEASUREMENT AND ANALYSIS OF SEA WAVES 

NEAR A REFLECTIVE STRUCTURE 

by 

PAUL ANDREW DELVES BIRD 

A thesis submitted to the University of Plymouth 
in partial' fulfilment for the degree of . 

DOCTOR OF PHILOSOPHY 

School of Civil-and Structural-Erigineeiing 
Faculty of Technology 

June 1993 
r 

© Paul A. D. Bird 1093 



The author and student divers with the wave recorder, Plymouth Sound. 

'Remember, when discoursing about water, to induce first 
experience, then reason' 

- Leonardo da Vinci, quoted by Le Mehaute. 

III 



AUTHOR'S DECLARATION 

This work is the result of my own investigation. All other sources have been 
acknowledged. At no time during the registration for the degree of Doctor 
of Philosophy was I registered for any other award. 

I attended the International Conference on Measuring Techniques of 
Hydraulic Phenomena in London, 1986, and the cougse Design Criteria in 
Maritime Engineering at Plymouth Polytechnic in 1986. 

I have made presentions on this work as part of the programmes of research 
seminars of the School of Civil and Structural Engineering and of the 
Institute of Marine Studies at the University of Plymouth, to the Single 
Layer Armouring Research Club, to members of the Science and 
Engineering Research Council, and to the Southern Branch of the Institute 
of Water and Environmental Management at Littlehampton, West Sussex. 

In 1991 I presented the paper 'Field measurements of the wave climate' at 
the Symposium on Developments in Coastal Engineering at the University 
of Bristol. Other papers are in preparation. 

Signed 

f4wc..................................... 

Date...... 
So.... T. nQ ("l ?3 

............... 

NOTICE 

This thesis contains material that is commercially confidential. It has been 
registered as such with the University's Academic Registry, and is supplied 
to the reader in confidence. The thesis is not to be passed on to any third 
party, nor copied, without the author's permission until 1 July 1995. 

From that date the thesis will be made available for consultation in the 
library of the University of Plymouth, and may be photocopied or lent to 
other libraries for study purposes subject to the normal conditions of 
acknowledgement. Copyright will remain with the author and no quotation 
from the thesis nor information derived from it may be published without 
the author's prior written consent. 

iv 



MEASUREMENT AND ANALYSIS OF SEA WAVES 

NEAR A REFLECTIVE STRUCTURE 

by 

Paul Andrew Delves Bird 

ABSTRACT 

Methods and equipment for the measurement of ocean waves were reviewed 
and their suitability assessed for the aim of this project: field measurement 
of sea waves near a reflective coastal structure such as a breakwater. None 
was found to be suitable. The functional and performance objectives are set 
out for a new system. The evolution of the final design, based on an array 
of pressure sensors, is described. The whole system is intended to be 
deployed on the sea-bed. It is fully self contained and independent of shore 
based services. Located away from the surf zone it is well placed to survive 
storm conditions and unauthorised interference. 

Theoretical methods for the re-construction of surface elevation records 
from measured sub-surface pressures, and the experimental findings of other 
workers, are presented. Available methods of estimating the wave 
directional spectrum from a spatial array of surface elevation records are 
reviewed, and the most appropriate one implemented. 

The system has given extensive service at a number of coastal defence sites. 
The results of subsequent analysis of selected data sets are presented in 
detail. They show the pronounced nodal structure in amplitude expected in 
the presence of wave reflection, clearly demonstrating that a single point 
measurement is likely to give misleading estimates of incident wave height. 
For near-calm to moderate, shore-normal incident wave conditions the 
results were found to agree with theoretical predictions both of wave height 
as a function of distance offshore, and of the structure's 
frequency-dependent reflection coefficient. For rougher conditions, in 
which both theoretical and physical models are less applicable, the results 
agreed with visual observations. 
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CHAPTER I 

INTRODUCTION 

1.1 SCOPE OF THE WORK 

The aim of the project was to develop a new instrumentation system to 

measure, at full scale, the complex wave conditions near a reflecting 

structure. The system was to be capable of operating unattended for long 

periods, and to be robust enough to survive storms conditions. 

Specifications of the form which the instrument was to take, and its 

performance, were to be set after a review of previous work, the equipment 

available on the market, and in the light of the current state of electronics 

technology. Sophisticated analysis methods were to be developed and 

implemented in a series of software routines. These would derive from the 

measured quantities the required information on wave conditions: the 

directional wave spectrum. The wave recording system would be capable of 

acquiring long-term wave statistics at a coastal site, and also (of more 

interest initially) capable of providing information on the performance of 

coastal structures - particularly their wave reflection properties. 

The work was started in 1986. After design, development and initial trials a 

full-performance wave recording system was first deployed in 1988. A 

second system was made in 1992, and at the time of writing (1993) the two 

system have delivered a total of nearly one year's wave data from four 

different sites. 

The work falls into two main parts: the instrumentation itself, and the 

analysis of the measured data. Chapter 1 sets out the information required 

of the new system, and contains a review of wave measurement techniques 

and instrumentation available for purchase. Chapter 2 gives an account of 
how the specification for the new instrument was arrived at, and describes 

the system itself. Chapter 3 completes the instrumentation part of the 

project with a description of operational considerations such as deployment 
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and recovery from site, together with the initial data-handling procedures 

which give the files of sub-sea pressure data. 

The second part of the work consisted of the analysis procedures in which 

required information on the wave field was extracted from the measured 
data. Chapter 4 presents a brief review of the relevant aspects of wave 

theory before going into detail on how surface elevation (wave) data is 

constructed from sub-surface pressure fluctuations, and how the directional 

wave spectrum is calculated from wave records taken simultaneously from 

an array of transducers. Examples of the results are given in Chapter 5, 

together with discussion. 

The account of the project concludes at that point. The implications of these 

results for the design of coastal structures is the subject of ongoing work at 
the University of Plymouth. 

1.2 BACKGROUND TO THE WORK 

Some 35% of the coastline of England and Wales is protected by man-made 
defences from erosion or flooding, an investment valued in 1984 at four 

billion pounds, and receiving maintenance work costing one hundred 

million pounds per year. Many of these works were constructed before 

1960 so that maintenance costs are rising. The damage caused in the UK by 

the fierce storms and exceptionally high tides of January and February 

1990, together with fears of a rise in mean sea level due to global warming, 

all point to the need for more investment in coastal protection work. It has 

been argued (Maritime Engineering Group 1985, Coastal Engineering 
Research 1985, CIM 1989) that coastal protection schemes could be 

considerably more cost effective if more were known about the basic 

processes by which sea waves and currents affect structures, and how they 

erode, transport and deposit the materials making up the shoreline. 
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These phenomena are studied in three ways: by constructing computer 

programs to predict behaviour from basic physical laws; by constructing 

scale models and making measurements in the laboratory; and by making 

measurements on the sea and real shorelines and structures. This latter is in 

general the most difficult because the available site is unlikely to be 

idealised to reveal one desired characteristic alone. Also, interesting events 

do not happen to order and must be waited for, and the equipment must be 

capable of surviving storm and other damage. However the data obtained 

from field work can be the most valuable of the three as it is not subject to 

the assumptions implicit in numerical model and laboratory model 

approaches. This field data is therefore often used to check or calibrate the 

performance of the other methods. The coastal engineering research 

community has assigned a high priority to the collection of comprehensive, 

quality field data, both for the better understanding of basic processes, and 

for the validation of models. 

The present study addresses the problem of measuring sea waves near 

coastal structures. It includes the development of a new instrument, since 

no existing equipment could meet all the requirements. The two key features 

are that it should cope with rough seas (partly as those are the conditions 
for which computer and physical modelling is least useful) and that it can 

measure both incident and reflected waves. The new instrument, and the 

associated methods of analysis, will find two kinds of application in coastal 

engineering. Firstly, in the monitoring of structural performance it is 

necessary to relate measurements of, for example, impact loads, and internal 

stresses and strains, to the waves causing them - the incident waves. Any 

wave measuring device incapable of distinguishing between incoming and 

reflected waves will lead to an incorrect interpretation of the structural 

measurements. An example of such an application is in the design of 
breakwaters with single layer armouring blocks. There is an urgent need to 

obtain performance measurements for this sort of armouring to improve 

breakwater designs. New design methods and guidelines are required to 

avoid both the failure of inadequate structures (for example at Sines, 

Portugal in 1978), and the unnecessary costs of 'over-design'. Measurements 
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of internal stresses and strains in the armour units of such a breakwater are 

currently being made by collaborating organisations, and it is hoped to 

deploy the wave recorder as part of that project. 

Secondly, reflection itself is important because it causes scour that can 

undermine the structure's foundations; it causes unpleasant and dangerous 

seas states in nearby waterways; and it is a major mechanism by which a 

structure prevents wave energy reaching the shoreline (what is not 

transmitted is either reflected or absorbed). And in another application, 

wave power devices must absorb, rather than reflect, energy. The present 

system will be capable of measuring the reflection performance of 

structures. Rock island breakwaters are a new type of coastal defence, and 

the wave recorder is to be deployed next to some of these. It is hoped to 

determine how the reflection coefficient depends on, for example, angle of 

slope. 

1.3 A REVIEW OF WAVE MEASUREMENT 

1.3.1 Purpose 

Waves have been measured in the coastal zone over the past few decades for 

purposes as diverse as the interests of the organisations carrying out the 

work. The armed forces, academic and research institutions, civil 

engineering consultants and their local authority clients, oil companies, and 

national environmental monitoring agencies are all active in the field. They 

may be endeavouring to improve understanding of wave behaviour, to 
determine likely wave loading on structures, or, as in the present case, to 
improve the capabilities of wave measuring instruments themselves. 

Wave recording with instruments began seriously in the Second World War 

to help ensure the safe landing of troops on foreign shores. From a more 
theoretical point of view, observing the behaviour of real waves is an 
important input to the development of more accurate analytical descriptions 
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of waves, including the effects of non-linearities. The interaction between 

waves and currents, sea bed features, and structures is at present 
imperfectly understood and in need of further refinement. 

The engineer planning a new coastal structure needs to know as much as 

possible about the wave climate to which it will be exposed in order to 

avoid inadequate performance, or excessive cost. In particular, the 

expected return periods of waves of a given height should be known with 

some confidence, and these can only be obtained from data covering at least 

one year, and preferably longer. An estimated 55 million observations of 

wave height and wind speed have been collated by the UK Meteorological 

Office Marine Data Bank. That data is made available in printed form 

(BMT 1986, Draper 1991) and more comprehensively as a personal 

computer database (BMT 1990). The British Oceanographic Data Centre at 

the Proudman Oceanographic Laboratory, Bidston, also maintains a national 
bank of wave data, and can give sources of data for other areas. 

Having estimated the design wave conditions, the engineer then needs 
guidelines and procedures to design the structure (eg CERC 1984). These 
incorporate the experience from past structures and the outcome of a large 

body of research into the interaction between waves and structures. 

The subject of electrical power generation from sea waves has undergone 

several changes in political fortune in the last twenty years. Although a 

commercially viable device, competitive with mainland fossil fuel stations, 
has not yet been built, there may well be a brighter future for combined 
power-generating and coastal defence structures. Much wave data, with 
direction an important parameter, has been collected for the wave power 
programme (Crabb 1984). 

The need for better instrumentation to measure waves more 
comprehensively and cheaply is recognised (Dean 1981). The characteristic 
least well provided for is direction of wave propagation. Work is 

proceeding to develop methods of measuring the directional spectra of 
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waves routinely and continuously, both remotely from satellites and 

aircraft, and locally at a particular site. 

1.3.2 Methods 

The many and various ways of detecting waves are either 'direct' methods, 

in that they measure the actual height of the water surface above a datum 

(eg sea bed or mean sea level), or 'indirect', measuring a quantity that is 

related to wave height, such as pressure below the surface. Perhaps the 

easiest way to classify the methods is by location of the sensor: above the 

water surface, on or piercing the surface, and below the surface. The 

diagram in Figure 1.1 provides a graphical summary. The measurement of 

wave direction is discussed separately. All the systems described, 

particularly the remote sensing systems, have benefited from advances in 

technology. The improvements in sensors, analog integrated circuits and 

batteries have enabled greater accuracy, longer periods of unattended 

operation, and greater functionality (Bird and Bullock 1991). For example, 

the problem of measuring wave direction implies greater complexity in both 

accelerometer buoys (pitch and roll as well as heave), and also in 

subsurface sensors (synchronised reading of several channels). But perhaps 

the most significant advances have been made in the way measured data is 

accessed by the user. The old methods of data storage - rolls of paper 

charts and pens requiring frequent replacement - have given way to 

magnetic tape, and to semiconductor memory. The digital format of the 

later methods is necessary for any subsequent analysis by computer. 

1.3.2.1 Sensor above the surface 

This includes radar, the radio altimeter, laser, ultrasonic rangefinder, and 

still and video photography. The equipment may be mounted locally on a 

structure such as a pier (or possibly on a nearby shoreline), or remotely on 

an aircraft or satellite. In favourable conditions with the sensor on a stable 

platform near the sea surface very good resolution and accuracy are 

obtainable. In rough conditions the spray and aerated water of breaking 
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Figure 1.1 
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wave crests introduce uncertainty in fixing water surface level. Marex (Isle 

of Wight, UK) and TSK America produce downward-looking radar wave 
height instruments, and Thorn EMI a similar system using pulses of 

infra-red radiation. 

Measurement of wave height by ground-based radar from a greater distance 

is less reliable, although a good picture of direction of propagation may be 

gained. The image is obtained by the back-scattering of electro-magnetic 

radiation by capillary waves whose length is similar to that of the radio 

wave. Tucker (1991) describes the principles of operation. For a typical 

microwave frequency in the X band -8 to 12 GHz - the wavelength is about 

3 cm. The larger, gravity, waves distort the ruffled surface, and cause 

shadowing, so that an image of the gravity waves is obtained. A wind of at 

least 2.5 m/s is needed to create the scattering capillary waves. Range of 

operation depends on strength of the return signal, which itself depends on 

transmitted power, grazing angle (the small angle between direction of the 

radio wave and sea surface), surface slope and wind speed. 

Heathershaw et al (1980) used X band radar mounted on a breakwater to 

measure wave direction characteristics in coastal waters, and to observe 

refraction and diffraction. Wave periods were estimated, though longer 

period swell of less than 1m height was not seen by the radar due to 

inadequate slope of the wave fronts. At the University of Birmingham a 

shore-based, ground-wave hf radar wave measuring system has been 

developed (Wyatt et al 1986a). It can cover a large area - up to 200 km in 

radius by 90 degrees in azimuth. Two shore stations are needed to remove 

directional ambiguity. The system was assessed in the Netherlands/UK 

Radar and Wavebuoy Experimental Comparison (NURWEC) exercise (Wyatt 

et al 1986b). Miros A/S (Norway) manufacture a microwave radar system 
for use over shorter ranges. 

Remote sensing with radar has the potential to offer routine and reliable 

collection of data over a wide area (Carter et al 1988). The synthetic 

aperture radar (SAR) technique yields images of the high resolution 
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required for wave observation. An aircraft or satellite flies in a straight 

path, emitting pulses continuously at a precisely controlled frequency so 

that the transmitted power is coherent. The return signals are processed 

such that an antenna of aperture as long as the flight path is simulated, 

thereby giving the high resolution. Frequencies in the L band (1 to 2 GHz, 

with a wavelength of 15 to 30 cm) are normally used; small waves are again 

necessary for scattering. Clouds and rain do not attenuate signals at that 

frequency (Rayleigh scattering by water drops becomes serious at 

wavelengths of 3 cm or less) so that data can be collected during storms. 

Although it is possible to derive wave height from the data, techniques are 

still being refined (Jain 1977). 

A system developed by NASA in the USA (Walsh et al 1981) consists of a 

computer controlled radar that produces in real time a topographical map of 

the surface beneath the aircraft carrying it. Later off-line processing gives 

the directional wave spectra. In another NASA program, a radar for use on 

either aircraft or satellite was developed (Jackson et al 1981). When 

satellite mounted, spectra are produced for locations at typically every 100 

nautical miles along the satellite's track. 

The Seasat satellite launched in 1978 was equipped with a synthetic 

aperture radar (SAR) which produced images of 100 km wide strips of the 

ocean's surface. It provided information on wave direction and length, as 

well as ocean currents (Mattie et al 1980). 

However, more work is needed to bring the full potential of remote sensing 

- accurate wave measurements over large areas at reasonable cost. A 

comprehensive review of the remote sensing of waves is given by Huang 

(1982). 

In some circumstances photographic methods of recording waves are a 

possibility. For a ground-based installation there must be a support 

structure for equipment, a graduated staff, adequate lighting and a clear line 

of sight. From an aircraft, wave visibility depends on surface slope, and on 
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the alignment of the wave fronts relative to the source of illumination. In 

principle surface heights can be obtained by analysis of stereo photographs, 

although in practice in requires much analysis (Stillwell 1969). The Stereo 

Wave Observation Project (SWOP) (Cote et al 1960) was a major trial of 

this method. With these limitations, and the high cost of operating aircraft, 

aerial photography is limited to examining the spatial behaviour of waves 
(such as refraction) at a particular location, and to checking other systems 

more suited to routine measurement. 

1.3.2.2 Sensor at or piercing the surface. 

A graduated staff fixed in the sea bed or on some supporting structure, and 

observed by eye or camera, must be the simplest and most direct way of 

measuring waves. But difficulties in defining the actual water surface in a 

storm, or even in seeing the scale at all, as well as in availability of 

manpower will render this method unsuitable in many cases. 

There are electrical equivalents, widely used in the laboratory, which pick 

up the resistive or capacitive linkage between two vertical wires that pass 
through the surface. Signals from these can be logged with conventional 

equipment. In practice it is difficult to engineer a system strong enough to 

survive storms in exposed locations although a system for deployment on 
beaches has been developed by Chadwick (1989). Aeration and spray can 

complicate the interpretation, while splashing with water well above the 

true surface produces a spurious pulse that may be misleading. 

Floating buoys, located by compliant moorings and fitted with 

accelerometers (such as the 'Waverider' buoy from Datawell bv, 

Netherlands, shown in Figure 1.2) have been used extensively for many 
years. An accelerometer on a stabilised platform within the buoy's 

waterproof housing gives an electrical output proportional to vertical 
acceleration. This is integrated twice to give vertical displacement, or 
heave. The buoy is fitted with circuitry for modulating a carrier at between 
27 and 30 MHz, and sends the signal via a whip aerial to the shore station 
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platform or ship up to 50 km away. Recent advances in data 

communications technology have enabled manufacturers (such as Datawell, 

Nereides, Bergen Ocean Data Systems and Seatex) to produce buoys that 

record all the data and transmit a subset of processed parameters via the 

ARGOS system of polar orbiting satellites, yet they still contain enough 

battery capacity for 6 to 12 months' operation. Larger buoys can be fitted 

with battery packs big enough to power transmission via the geostationary 

Inmarsat or Meteosat systems. The Institute of Oceanographic Sciences 

(IOS) developed a system combining the well proven wave-following 

performance of one of its small accelerometer buoys (the Wavec from 

Datawell bv. ) with the communications capability of a large buoy (Clayson 

1989). The Wavec telemetered directional data to a nearby 'mother buoy' 

containing batteries and equipment to transmit all processed parameters, in 

near real time, to Meteosat and thence to the IOS. The Wavec is a 

development of the Waverider, having two more accelerometers to give 

pitch and roll information as well as heave. This enables an estimate of 

wave direction to be made. 

In general, wave-measuring buoys can be vulnerable to vandalism and theft, 

and since a large scope is required for the mooring cable they range over an 

area rather than remaining fixed at a point. The mooring must be carefully 
designed so that the buoy is effectively free of any frictional, inertial or 

elastic restraints. A typical arrangement is shown in Figure 1-3. Similarly, 

the shape and dynamics of the buoy's hull must be such that it follows the 

waves reasonably accurately over the frequency range of interest. 

Under-damped resonances have to be avoided and the data corrected for any 

remaining emphasis in the dynamic response. 

The Institute of Oceanographic Sciences (IOS) used a Waverider buoy in a 
long term measurement exercise off the Eddystone Rocks, south of 
Plymouth from September 1978 until August 1981 (Fortnum 1982). The 

buoy was deployed in a depth of 40 m, and relayed its data by radio link to 

a shore station at Wembury, east of Plymouth. There the demodulated 

signal was digitised and stored on magnetic cartridge for later analysis at 
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the IOS in Taunton. As a backup the analog signal was recorded directly on 

to magnetic tape. The data was received, processed and recorded for 

periods of 17 minutes every three hours, using a sampling frequency of 2 

Hz. To indicate the difficulty of working in these conditions, nearly 30% of 

the records over the three years were missing or invalid, although some of 

those were captured by the tape backup. The buoys were calibrated 

on-shore before and after deployment by rotating them in a large frame and 

examining the received radio signal. Sensitivity of the Waverider, radio 

link and demodulation equipment was stable to within +/- 3% over the 

period of deployment. 

The measurements taken during the Joint North Sea Wave Project 

(JONSWAP) in September 1973 (Hasselmann et al 1980) attempted, unlike 

the work at the Eddystone, to obtain wave direction information as well as 

surface height records. Two buoys were used: a heave, pitch and roll buoy 

from the IOS, and a 'meteorological buoy' from the University of Hamburg. 

The latter was a comprehensively instrumented conical shaped buoy, 

containing three accelerometers, a gyroscope, two inclinometers, a compass 

and two pressure transducers. 

In January 1980 the Norwegian Continental Shelf Institute deployed a 

heave, pitch and roll buoy off the coast of Norway (Andensen et al 1983) to 

measure wave height and direction. It was developed by that organisation 
in conjunction with the Christian Michelsen Institute and manufactured by 

Bergen Ocean Data. The hull was a discus shape with a subsurface leg and 

ballast weight, and on top was a mast for supporting meteorological 
instrumentation and an Argos satellite transmitting aerial, Figure 1-3. 

Inside were the accelerometers, a sea temperature sensor, and a Sea Data 

digital tape recorder. As in the previously mentioned examples the mooring 

was designed for minimum effect on the motion of the buoy. Data was 

recorded over several years, with a 10 to 20 % loss rate. Winds of up to 35 

m/s, and waves up to 19 m were experienced, resulting in the mooring 
breaking twice; here the Argos tracking system assisted swift recovery. 
Calibration was performed on shore with a vertically rotating carousel with 
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six degrees of freedom, and the heave component further checked at sea by 

comparison with a Waverider buoy. 

The shipborne wave recorder (Tucker 1956, Haine 1980) consisting of 

accelerometers and pressure sensors fitted to the hull of a ship, has also 

been extensively used. The accelerometers measure vertical displacement 

or heave of the ship, while the pressure transducers measure depth of 

immersion. Combining data from the two yields the actual water surface 

record. Measurements are normally made when the ship is stationary, and 

the transducers are carefully sited to minimise the effects due to the ship's 

pitch and roll; wave direction is not measured. These systems are more 

accurate for longer period waves than for short. They have provided a cost 

effective way of obtaining large amounts of wave data. 

The manual equivalent of the shipborne wave recorder - simple visual 

observation by mariners - has yielded an enormous quantity of wave data 

(Hogben and Lumb 1967); for many parts of the world this is the only 

source. A formal procedure for making these observations and interpreting 

the results was made in 1944 (Munk), and subsequently work has been done 

to assess their reliability (Jardine 1979). 

1.3.2.3 Sensor below the surface 

Instruments mounted below the sea surface usually have improved chances 

of survival as they are less visible, and so less at risk from vandalism and 

theft, and may be less vulnerable to storm damage. Measuring water 

pressure variations at the sea bed, or at some intermediate depth, was the 

principle used by some of the first wave recording instruments and remains 
in use today. The major disadvantage is the reduction, at depth, of the 

pressure fluctuation due to the waves. Thus a sensor near the surface would 
experience a fluctuation in pressure similar to the hydrostatic value that 

would arise from the equivalent water level changes. But at greater depth 

the pressure changes are only a small proportion of this. The effect is more 

marked with higher frequency waves, and is discussed more in Chapter 4. 
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Sub-surface pressure sensing is therefore used only if the transducer can be 

mounted at a depth of less than about 20 m. 

The pressure sensor itself may operate on a number of principles. Normally 

the pressure causes (either directly or through an interposed fluid) a 
diaphragm to flex. The amount of movement is picked up by strain gauges, 

or by capacitive or inductive changes in linked circuits. Wave measurement 
by pressure sensing at the sea bed was chosen for this project, so a more 

detailed discussion of practical considerations appears later. 

Carmel, Inman and Golik (1985) describe a measurement made from 

February 1979 to August 1981 off the coast of Israel near Haifa in which 
they used two pressure sensors in a 6m depth of water, connected by 

armoured cable to a shore based data recording system. Recordings were 

made twice daily for 25 minutes, sampling each channel at 4 Hz, on to hi-fi 

cassette tapes that were later sent to the Scripps Institute for Oceanography 

in California for analysis. The ambiguity inherent in inferring wave 
direction from just two sensors was resolved with additional information. 
Data for the first 10 months was intermittent and unreliable, but improved 
in the remaining period after modifications were made. 

Motion of water due to waves can be measured with current meters. These 

instruments are of a number of types, based on the effect of moving water 

on a spinning impeller, or on voltages induced in electromagnetic coils, or 

on the travel time of acoustic impulses between fixed points, or on 
drag-inducing shapes bending strain-gauged bars. Some of these measure 
components of current along only one axis, others are omni-directional. 

Sherman and Greenwood (1986) used two bi-directional electromagnetic 
current meters and a vertical, resistive, wave staff to measure wave heights 

and angles at Wendake Beach, Ontario, Canada. The measurement was of 
rather short duration, from 31 May to 1 June 1980, but good accuracy and 
resolution of wave direction were claimed. 
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Use of ultrasonic ranging (echo-sounding) from above the water has already 

been mentioned; echo sounders are also available that operate 'upside 

down'. They are located on the sea bed and point upwards to measure 
distance to the water surface. Temperature and salinity changes, an aerated 

surface, and noise interference can cause errors, and the devices tend to 

consume more electrical power than pressure sensors. Accuracy under 
favourable conditions, however, can be high. 

1.3.2.4 Determining wave direction 

The preceding sections have indicated that only some of the measuring 
techniques are capable of yielding the direction of propagation of waves, or 

wave components in a complex field, others giving only time histories of 

wave heights. In general if directional information is required then it is 

necessary either to use one of the imaging techniques such as radar or 

photography, or to measure a vector quantity such as water movement at a 

point (or several quantities in the case of the pitch-roll-heave buoy), or to 

measure scalar quantities simultaneously at a number of points. 

Comparative studies have been done of several possible approaches. Over a 

period of six days in March 1977, Mattie, Hsiao and Evans (1981) 

performed an experiment to determine the applicability of four methods to 

obtain wave direction. Three were remote sensing techniques: photography 
from an aircraft at a height of about 18 km, a synthetic aperture radar also 

on an aircraft, and a standard X band marine radar situated on shore. The 

fourth method was an array of five pressure transducers fixed to a tower at a 
depth of 19 m. They report good agreement in the results for wavetrains 

with a single predominant direction, but poor agreement over multiple 
wavetrains of similar period travelling in different directions. They point 
out that results from the pressure transducer array are dependent largely on 
the type of analysis used, and they used an algorithm of low directional 

resolution. The pressure sensing method was the only one able to give wave 
heights. 
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A comprehensive study of five means of obtaining wave direction was 

carried out in 1980 as part of the US Atlantic Remote Sensing Land Ocean 

Experiment (ARSLOE) (Grosskopf et al 1984). The output from four 

subsurface gauges and a shore based radar were compared. Two gauges 

contained current meters aligned orthogonally and a pressure sensor. One 

consisted of three orthogonally aligned current meters only, and the final 

gauge was an array of four pressure transducers. In general the results were 

well correlated, except that height estimates from the three current meter 

system were significantly low; it was recommended that a non-current 

means of acquiring wave height should be included. The radar could 

distinguish well wavetrains of similar period travelling in different 

directions, but not wavetrains of different period going the same way. The 

opposite was true of the subsurface gauges, although again a relatively 

simple analysis procedure for evaluating wave direction was used; more 

complex 'data-adaptive' techniques were expected to resolve directions of 

wavetrains of similar period. The paper contains a thorough discussion of 

error sources inherent in the methods, many of which were relevant to the 

present work. It is of course necessary to avoid excessive errors from all 

sources if the final results are to be accurate, and these include not just in 

the performance of sensors and electronic instrumentation but also in the 

positioning of equipment, and the processing and analysis of the results. 

The pressure sensor array was open to fewer error sources than the other 

methods examined. 

1.4 SPECIAL FEATURES OF THE MEASUREMENT 

The information required was a complete description of the wave conditions 
close to a structure. The description was to include the height of the waves, 
periods and their directions of propagation. Linearity was assumed so that 
the wave pattern could be considered made up of sinusoidal wave 
components, each with its own period and direction. The wave field was 
thus described by its 'directional spectrum', the distribution of wave energy 

over frequency and direction. As the layout of the test site was known, 
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those components corresponding to waves travelling in towards the 

structure (the incident waves) could be identified and distinguished from 

the reflected waves. Comparison of the two gives the amount of reflection 

of wave energy. 

The general arrangement of the instrumentation system needed was 

governed by operational considerations and features of the site. Firstly, 

severe storms were expected; the instrument would be expected to survive 

these and operate normally throughout. Previous experience of this type of 

work by members of the department indicated that it was difficult to design 

equipment strong enough to survive in the area of breaking waves, the 'surf 

zone'. Therefore if there were to be sub-surface sensors then it was 

desirable that any processing and recording equipment should also be 

mounted underwater. Alternatively, cables could be led to a sheltered area 

before leaving the water, but this could result in rather long cable runs. 

Secondly, there is the danger that expensive equipment left out in the open 

could be stolen or tampered with. The first test site envisaged - Plymouth 

Breakwater - was in an area extensively used by divers, fishermen and 

yachtsmen, so the new system had to be hidden from view as far as possible. 

Thirdly, long periods of operation were needed to collect data during a wide 

range of sea states without frequent attention by the operators. That 

implied either a large data storage capacity, or a means of transmitting data 

to an operator on shore a few kilometres away. 

Radar imaging was not appropriate as accurate wave height data was 

required. Optical methods placed unacceptable limits on the periods data 

would be obtainable. No suitable pier or tower existed at the test site, nor 

could one be built, ruling out the local above-surface methods. And as the 

region of interest was very close to a structure, an instrumented buoy 

ranging widely on the scope of a compliant mooring would have been 

impractical. A buoy would also have been vulnerable to theft and 

vandalism. Sub-surface sensors were clearly indicated, and in view of the 
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reasoning above, a sub-surface processing and storage unit. Acoustic 

ranging devices were expected to consume rather too much electrical power. 

The choice of sensor therefore narrowed to pressure or current. The latter 

has a high consumption of electrical power. In addition pressure 

transducers are more robust than current meters, and less prone to errors 

that are difficult to calibrate out. 

In view of these results and arguments an array of sub-surface pressure 

transducers, with suitable analysis, was the method chosen in this 

investigation to measure wave height and direction. 

1.5 A PROPRIETARY WAVE RECORDER? 

The department possessed and had used at a number of sites a self-contained 

sea-bed mounted wave recorder (the DNW-5 from NBA Controls Ltd. ), 

which used a pressure transducer and stored data on cassette tape. 

Approaches to the manufacturer revealed that it would not be practical to 

modify the design to enable a number of these units to be deployed in an 

array for synchronised operation. In any case its accuracy, data storage 

capacity, battery life and inflexibility of operation (no communication was 

possible without recovery) were not really adequate. A thorough search for 

a suitable proprietary instrument commenced with the aid of the specialist 
technical press (eg Underwater Systems Design 1987), trade exhibitions (eg 

Oceanology '86,1986), and experts in the field (Draper and Driver 1980, 

Driver 1985). A list of manufacturers approached appears in Appendix A. 

The search revealed nothing that would meet the requirements. 

Looking further afield at the general instrumentation market, it was also 
discovered that there were no general purpose data loggers capable of 
operating in such an environment without attention for long periods. A 
decision was taken to design and build a new instrument, referred to here as 
the 'new wave recording system'. Development of the instrument from the 

general requirements set out above is described in the next Chapter. 
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CHAPTER 2 

THE NEW WAVE RECORDING SYSTEM 

2.1 INTRODUCTION 

The design and manufacture of the wave recording system are described in 

this chapter. The nature of the measurement was discussed in Section 1.4 

where it was concluded that subsurface pressure transducers were to be 

used, with any processing and data storage units also mounted underwater. 

In Section 2.2 the process of refining the requirements and selecting 

equipment and methods is continued, leading to a statement of what the 

measuring system should do: the 'functional specification'. Further 

consideration of the task enables numerical limits to be put to the major 

parameters and these are expressed in the 'performance specification'. While 

fulfilling those specific objectives it was hoped to develop the new 

instrument in such a way that it would be easily adaptable to the 

measurement of other physical quantities, and so meet a need for a 

precision, high capacity data logger for automatic operation in hostile 

environments. 

The two specifications form the starting point for the design of mechanical 

and electrical hardware, and the controlling software. The design passes 

through a number of stages as different ideas and solutions are considered 
(in Section 2.4). Before that, in 2.3, the designs of related, existing, 

equipment are examined. 

The design that was finally settled on is described in detail along with the 

performances of individual parts of the system in Section 2.5. The reader 

may like to look ahead to Section 2.5.1 and Appendices B and C for a 

preview of the end point before following these next sections through. 
Included there are a descriptive data sheet of the wave recording system 
(renamed the 'Marine and Site Recorder' to emphasise its more general 
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potential applications), and a copy of a newspaper article giving a general 

overview of the recorder and its application. 

All manufacturing operations were carried out at the University with the 

exception of welding and hard anodising the aluminium case, making the 

printed circuit boards and the battery pack, and assembling underwater 

connectors to armoured cable, all of which were done by specialist 

companies. The Department was well placed to undertake this project. The 

engineering skills and workshop equipment needed to design and make such 

an instrument were in place. Two suitable boats and crews were available, 

and among staff and students were divers, to deploy and recover the 

underwater equipment. The University is situated within a couple of miles 

of a suitable site for trials - Plymouth Breakwater - and was able to obtain 

permission to work there and cooperation from the Queen's Harbourmaster 

and the Property Services Agency. The sum of £17,000 for components and 

materials was provided by the Science and Engineering Research Council. 

2.2 REQUIREMENTS OF THE WAVE RECORDING SYSTEM 

The overall requirements of the wave recording system are developed in 

this section. Those of the major component units are developed in later 

sections - the 'top-down' method. 

2.2.1 Functional Specification 

To this point it had been decided (Section 1.4) that the system should be 

self-contained and situated on the sea bed, measuring water pressure at 
several locations. Still to be considered were the means of deploying, 

operating and recovering the system at typical sites. 

As has been mentioned the environment would not be favourable for 

precision measuring equipment. Firstly, violent storms were to be expected. 
Previously at Plymouth these had pushed the 25 and 50 tonne concrete 
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armouring blocks right over the Breakwater. In 1990 a particularly bad 

storm moved two of the largest, 100 tonne, blocks over to the shoreward 

side. Secondly, no mains power could be provided. Thirdly, access to the 

data would not be easy due to the remoteness of potential sites. 

To permit different analysis techniques to be tried, and to minimise any 

uncertainty that would arise in the case of unforeseen events such as the 

loss of a transducer, the instrument was to preserve the 'raw' data - samples 

of water pressure - rather than more compact, statistical, representations of 

it. Analysis of the measured data was to be performed on a personal 

computer or workstation: hardware (and associated software) far more 

powerful than any microprocessor likely to be fitted into the underwater 

unit. The wave recording system's output was therefore required on a 

computer disc. 

Since the primary purpose was to measure waves reflected from nearby 

structures, the typical site for deployment would not be in deep water, 

enabling sea bed mounted pressure transducers to pick up wave activity. 
Records from each transducer in the array would have to be synchronised, 

providing a series of 'snapshots' of sea surface height at a number of 

locations. The wavelengths expected indicated that the array would be 

spread out over tens or hundreds of metres. 

In order to permit measurements of wave-induced loading on structures and 

other quantities, made by separate instruments, to be related to the wave 

measurements a real-time clock was required. Date and time of the records 

could then be stored along with the data. 

Based on these arguments, the following functional specification was drawn 

up. The wave recording system will: - 

- be sea bed mounted with integral power supply and data store 

- measure water pressures at several locations simultaneously 

- record times and dates of measurements 
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present the measured data on a computer disc 

have sufficient data- and battery-capacity to record pressure data over 

a fairly long period 

enable the user to set up measurement parameters, and to check for 

correct operation from time to time, without full recovery of the 

equipment 

be robust enough to survive storms, and be located to avoid 

unauthorised interference. 

2.2.2 Performance Specification 

The next stage in specifying the equipment was to add quantitative limits to 

the features described qualitatively in the previous section. Careful 

consideration was given to setting the limits to avoid, on the one hand, 

unnecessarily difficult design targets, and on the other hand 

underestimating necessary requirements. The result is the 'performance 

specification'. 

2.2.2.1 Accuracy 

In deciding the accuracy with which waves were to be measured it must be 

remembered that they are detected as small variations in pressure 

superimposed upon a much larger standing value. Additionally, as has 

already been noted, the fluctuating, wave-related, component of pressure is 

attenuated at depth. Expressing error limits as a percentage of full range of 

the transducer would be unhelpful, since any reasonable value (for example 
0.5%) would be comparable to the signal corresponding to a fairly large 

wave. The following error limits were set as an achievable target that 

would not noticeably degrade the information in the signal. 

Max. error in measuring steady component: +/- 1% of reading (steady 

part) 
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Max. error in measuring varying component: 

+/- 1% of reading (varying part) 

or 5mm (whichever is greater) 

The limits are expressed as percentages of reading rather than of full scale, 

and split into the steady (mean water level) and varying (wave) components. 

That is more meaningful in this application than an overall limit of, for 

example, 1% full scale, although the quoted limits are in absolute terms 

considerably tighter. 

Related to the question of accuracy is that of resolution: the smallest 

change in measurand that can be reliably detected. Here a figure of +/- 1% 

of the varying component (or 5mm) was chosen as being compatible with 

the accuracy specification. 

2.2.2.2 Sampling Rate 

To make best use of a given data storage capacity the rate at which the 

analog pressure signals are sampled and converted into digital form must be 

set as low as possible. Nyquist's 'sampling theorem' states that no 
information will be lost provided that the sampling frequency is at least 

twice the highest frequency component in the input signal. That is a 

theoretical limit, however, and is not attainable in practice. Also, it assumes 
that the maximum frequency of the signal is known. The highest frequency 

waves of interest for the present site are of about three seconds period (0.33 

Hz). For this maximum frequency a fairly conservative choice of 2 Hz 

sampling frequency was made - three times the Nyquist limit. At other sites 

shorter period waves might be expected so the sampling period was to be 

easily adjustable. 

2.2.2.3 Duration of operation 

The difficulty of deploying and recovering underwater equipment, even with 

skilled personnel and all the right facilities, was not to be underestimated 
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and so a long period of operation on one set of batteries was required. That 

had implications for circuit design (current consumption), battery sizing, 
instrument control (automatic powering down when not in use), mechanical 

design (corrosion and sealing), and data storage. 

It is not necessary to measure waves continuously as it is assumed that over 

the period of an hour or so their statistical properties ought not to change 

much. It has become customary for instruments to measure for some 

minutes and then switch off for several hours. That feature was to be 

included in the new unit, together with 'threshold detection', in which a 

particular sea state would initiate measurement. The threshold values need 

not be fixed at this stage; the requirement is that they can easily be set and 

changed. 

2.2.2.4 Number of transducers 

At least three point-measurements of surface elevation are needed to get an 

unambiguous estimate of wave direction, although the resolution of 
direction from that number is poor. More measurement locations lead to the 

possibility of higher directional resolution of a complex sea. (The 

resolution obtainable from various sensor patterns is discussed in Chapter 

4). Moreover, the resilience of the system is improved with more 

transducers as loss of one or two channels (not unlikely given the 

environment) will leave enough for some useful information. Unfortunately 

a large part of the overall cost is in the transducers and their housings, 

connectors and cable assemblies. Six transducers were specified. 

2.2.2.5 Data capacity 

A commonly used measurement cycle consists of 17 minutes measurement 
in every three hour period. That was used as a guide in planning the data 

storage requirements of the new instrument. So, at two readings per second 
from each of six transducers, every 17 minute cycle would generate about 
12 thousand readings, that is 96 thousand per day. The capacity needed for 
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four months would therefore have to accommodate about 12 million 

readings, rather more than was practicable at the time (1987). Sufficient 

data storage for 4 million readings was specified, with the proviso that it 

would be re-writeable in situ so that the data could be collected after any 

period up to six weeks without loss and then reset for subsequent periods of 

six weeks until the batteries became exhausted. 

2.2.2.6 Summary 

The performance of the envisaged wave recording system was specified as 
follows: - 

- Accuracy: steady component: +/- I% rdg 

varying component: +/- 1% rdg, or 5mm 

- Resolution: 1% of rdg of varying component, or 5mm 

- Sample rate: 2 Hz 

- Measuring cycle: automatic operation subject to input activity, of 

pre-set timing (typically 17 mins every 3 hours, 

but alterable). 

- Transducers: 6 No., pressure. Sea bed mounted in an array. 
(Simultaneous readings required from each). 

- Data storage capacity: 4 million readings. (May be reused after 

downloading data, without recovering instrument). 

- Battery life: Four months. 
(and housing life) 

2.3 PREVIOUS DESIGNS 

Other organisations working in the oceanographic and coastal fields had 

also come to the conclusion that there was no data acquisition system 
available which would do the job described in the last section. They were 
similarly obliged to design and build their own, and accounts of these were 
reviewed before embarking on the new design. 
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Prothero (1980) described his 'ocean bottom seismometer' of the late 1970's 

which houses three geophones, a C90 cassette drive for data storage, and a 

serial interface for downloading data to a host computer. It was housed a 

cylindrical hard-anodised aluminium casing weighing 136 kg, and powered 

by rechargeable lead-acid batteries. The Intersil IM6100 microprocessor (a 

low-power complementary metal oxide semiconductor - CMOS - type) with 

32 kilobytes (KB) of random access memory (RAM) performed rudimentary 

digital filtering on the signal before storage. Recovery was effected by 

sending an acoustic signal to the unit causing it to detonate explosive bolts 

and rise to the surface. The main problem reported was jamming of the 

cassette drive. 

Rather less sophisticated was Mitchell's (1981) microprocessor-based 

underwater tension meter which measured and logged the output of an 
integral load cell. The RCA 1802, CMOS, 8 bit processor was equipped 

with 512 bytes of program memory and 2 KB battery-backed RAM for 

storing the data. Sixteen dry cells gave a continuous operating time of 60 

hours. The voltage-to-frequency technique of digitising the load signal 

proved difficult to set up, and prone to drift, so it was later replaced by an 8 

bit analog to digital converter (ADC). 

A system based on a high-density cassette drive for measuring nearshore 

waves was described by Boyd and Lowe (1985). They managed to store 

about 6 MB onto a C90 data cassette, although no microcomputer is 

incorporated so that measurement scheduling was rather inflexible. 

The submersible data logging system of Papij (1986) was most interesting 

in that it was not necessary to open the case at all during normal operation, 
despite there being no electrically conductive connections. The depth, 

temperature and water conductivity sensors were all included in the 

cylindrical housing, and data was transferred through its walls inductively. 
Having recovered the unit, it was placed into the coils of a special 
transceiver assembly, which was connected to a personal computer by serial 
link. The unit's internal batteries were recharged by electrical power also 
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transferred through the case inductively, using the same coils. A review of 

inductively coupled connections for underwater was presented by Allen 

(1987). 

In 1987 Birch and Pascal described a meteorological instrumentation system 

for installation in buoys or on board ship. Like some of the above examples 

it incorporates RCA's 1802 processor, and uses the RCA Microbus to 

interface with a 12 bit analog-to-digital converter and a real time clock. 

The authors point out the importance of careful grounding and shielding of 

the more sensitive circuits, as well as DC isolation of the sensors. 

The main features of interest in these designs are the general layouts, and 

the choice of the key components. All except one was microprocessor 

controlled for increased flexibility of operation, and for provision of 
limited data processing and control of the user interface. The processors 

selected were all CMOS types for low power consumption, the CDP1802 

from RCA being one of the most popular in the late 1970's and early '80s. 

The appeal of Intersil's IM6100 was its similarity to the famous PDP-8 

minicomputer. Tape cassette was the preferred medium of data storage. 

2.4 GENERAL ARRANGEMENT 

The specifications set down in Section 2.2 define fairly closely what was 

wanted from the system, but they do not define the form of the instrument 

that will do the job. Instead, they raise questions on how to implement the 

required functions (data storage, signal conditioning etc), how to separate 
the functions into different physical units, and how these units are to 

communicate. The next stage of the design is to generate a number of 

possible options for arranging the functions, and then to select the most 

promising on the basis of ease of use, performance available from the latest 

components and circuit techniques, cleanness of the interfaces between 

units, and cost. 
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Figure 2.1 : Overview of the measurement 

All that has been specified so far are the two ends of the system: inputs 

(pressures) and output (digital data on disc). These are represented in 

Figure 2.1 . Also the assumptions have been made that the pressure 

transducers will require a number of signal conditioning stages and 

conversion into digital form, and that there will be some data compression 

and storage, and internal scheduling of measurement operations with some 
degree of control by the user. The intermediate stage shown includes any 

functions housed separately from the individual sensor units. The 

specification does not call for such a unit so it is drawn with a dotted line, 

but the arguments below indicate that it would bring benefits. 

It is often best to evaluate possible layouts by examining the implied 

interfaces between sections, and to start with the interface between 

instrument and user. 
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2.4.1 Communications link to the user 

The possibilities envisaged were: - 

a) A separate module for the data store that could be hauled aboard or 

lifted by a diver. Any control information would have to be inserted 

into the module before reconnection. 
b) A cable link to a shore station. The link could be copper or optical 

fibre. 

c) A cable link to a radio buoy transmitting to a shore station. 

d) A cable link normally lying on the sea bed that could be hauled or 

lifted aboard a boat. 

e) An ultrasonic link from boat to sub-sea unit(s). 
f) A data collection unit carried by a diver, communicating with the 

sub-sea units either by waterproof connectors or an inductive 

connection through the case wall. 

As the end point is a computer magnetic disc holding measured data, the 

system must include a disc drive. That could be in the instrument itself, or 
in a personal computer at the end of the communication link. 

Option (a) lacks flexibility, particularly in the user's control of parameters. 
If the operation is to be carried out by boat, with no diver, then there will 

be a unit of considerable value which is rather vulnerable to theft. 

However, there are advantages: the arrangement is relatively simple, it 

would permit the use of the type of memory components that need to be 

erased out-of-circuit, and (if a battery pack were included) would extend the 

duration of operation between deployments, and relax the low current 

consumption requirement. 

Option (b) would require a long cable (several kilometres) as it would have 

to be diverted to come to the surface at a sheltered location. 

Options (e) and (f) are the only ones that avoid the need for some 
intermediate unit without incurring undue complication: (e) as it might be 
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possible to communicate with all sensors at once with a sort of broadcast, 

frequency division multiplex, ultrasonic link, and (f) by the diver 

'harvesting' data from units one after the other. However routine use of the 

instrument was not to be dependent on diving support, ruling out (f). The 

ultrasonic link has the great advantage of not needing any underwater cable 

or connectors at all. However the data rates are high for the transmission 

medium of sea water and so require a narrow beamwidth and accurate 

positioning of the boat. The method is worthy of future 

investigation for. communication from a boat to a single point, although any 

'broadcast' technique would be considerably more difficult. 

Clearly, the possibility of a connection for data and control from the wave 

recorder to the Polytechnic was attractive (option c). The value of the buoy 

and its transmitting equipment would have to be kept low in case it were 

stolen. Perhaps the nicest solution for the longer term would be to use the 

radio buoy and an ultrasonic link from buoy to instrument. 

Figure 2.2 : Permanent data cable link 
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The simplest of the options - (d) - was eventually chosen in order to shorten 
development time. A cable permanently connected to a central signal 

conditioning and data storage unit lies on the sea bed, and is marked by a 

small buoy (Figure 2.2 ). 

The operator visits the site by boat, hauls aboard the cable and connects it 

to the personal computer. Instrument status may be examined on the screen, 

control parameters set from the keyboard and uploaded to the wave 

recorder, and data downloaded onto the computer's disc. (Note that 

conventional data communication terminology works upside-down in this 

application! ) The cable would be somewhat vulnerable to interference so 

precautions were taken to minimise any damage to the system in that event. 
It was necessary to ensure that a violent tug on the cable would cause 

connector breakage before threatening the case sealing. In addition, some 

protection was given against electrical damage by fitting all cable interface 

circuits with opto-isolators. 

2.4.2 Arrangement of underwater sections 

In the previous section the case was made for a single point for 

communications from the user. This implies a central unit to which all 

pressure signals are led. The question now is how much signal processing to 

include in the remote pressure sensing units, and how much in the central 

unit. The two extremes are: - 

- maximum at centre, minimum remote. Only the pressure transducers 

themselves are at remote locations, all amplifiers, signal 
conditioning, ADC, control, data store and power supplies are placed 
in the central unit; and 

- minimum at centre, maximum remote, in which all those functions are 

placed remotely except control of timing and the communications 
link. 
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Many other combinations between these extremes are possible and were 

carefully considered. 

The criteria for judging the best arrangement of functional layout include 

cost of parts: in many cases a function located centrally will serve all six 

sensors. Possibly more important is the form of the resulting interface 

between remote and central units. Ideally these interfaces should be simple 
(underwater connectors are expensive and limited in configuration), free 

from errors due to interference and ground loops, and should allow the 

system to continue to operate at reduced performance in the case of loss of 

one or two remote units. Power supply arrangements need similar 

consideration: should there be batteries with each transducer, or a larger 

pack for all components in the central unit? 

Pressure transducers for this sort of application produce only millivolt level 

signals, usually from a strain gauge bridge bonded to the back of a flexing 

diaphragm. Conducting those signals for tens or hundreds of metres would 

not result in the qualities mentioned. At a minimum, preamplification of 
the signal at the transducer would be needed. 

At the other extreme, if all the functions were included with the transducers 

there would be considerable replication, raising the total cost. However, 

the sensors would communicate to the central unit with digital signals 

which are much less prone to electrical errors than signals in analog form. 

In fact, the most significant feature of an arrangement is whether the 
interfaces are analog or digital. (A 'hybrid' method using voltage to 
frequency conversion and sending a square wave signal was also 
considered). In its favour the digital form is electrically more robust. It 

also opens the possibility of using optical fibre rather than copper (bringing 

the benefits of speed and electrical isolation) although that was discounted 

as optical fibres cannot carry power to the remote units. (Cables with 
mixtures of optical fibre and copper cores are available, but suitable 
connectors are much harder to obtain. ) 
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On the other hand, it was felt that a high level analog signal (for example: 0 

to 5 V, or 4 to 20 mA) would be acceptable. Also there were arguments for 

keeping as many as possible of the control functions central, for example, to 

achieve simultaneous timing of the pressure measurements. Also it was 

anticipated that the analog signal conditioning would turn out to be fairly 

complex in order to give the required accuracy. Features such as automatic 

range switching and calibration are more costly distributed than 

implemented centrally. 

For these reasons it was decided to place only pre-amplifiers with the 

pressure transducers and to link the high level analog signals to a central 

unit which would contain all the other functions (Figure 2.3). This layout 

had the additional advantage of enabling later adaptation to measuring other 

physical quantities. Only the transducers and initial signal conditioning 

circuits would need to be changed. The instrument could then meet the need 
for a precision, high capacity data logger for automatic operation in hostile 

environments. 
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Figure 2.3 : General arrangement of the wave recording system 
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2.5 DESCRIPTION OF THE SYSTEM 

2.5.1 Overview 

Figure 2.3 shows the general arrangement of the new wave recording 

system. The central signal conditioning and data storage unit, the 

transducers, the interface unit and the 'laptop' personal computer are 

illustrated in Plate 1. The transducers and the recorder are in sealed 

enclosures which are held in position on the sea bed in specially fabricated 

supports. Armoured cables with underwater-mateable connectors link the 

transducers to the recorder. Data can be downloaded when convenient 

through the communications cable via the interface unit to the computer. 

Control parameters may also be sent from the computer to the recorder. The 

data transfer cable normally rests on the sea bed and can be located by 

means of a small marker buoy, while both the interface unit and the 

computer may easily be carried in a boat. Consequently no diving is 

necessary for information transfer. 

The recorder has a large data storage capacity (four megabytes) in CMOS 

random access semiconductor memory. It will store typically six weeks' 

wave data from the full complement of six transducers. Thus visits by boat 

to collect the data may be up to six weeks apart; typically one would plan 

monthly visits and have two weeks in hand for unsuitable weather. After 

data collection the memory is re-used. The internal battery pack lasts for 

four months. Only after that period need the recorder be recovered, 

allowing a full winter season's use. Although the transducers could be left 

in place, normally they would be recovered at the same time for cleaning 

and calibration. 

The instrument is microprocessor-controlled to give flexibility of 

measurement scheduling, control of signal conditioning stages, and control 

of the communication link. The system conforms to the specifications set 

out in Section 2.2.2 . 
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Plate I: Wave recording system 
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Inside the housing are fitted four printed circuit board (PCB) assemblies 

and the battery pack (Plates 2 and 3). The PCB's are double sided, 

through-hole plated, glass fibre boards, except for the power supply 

assembly which is shown in prototype stripboard implementation. The data 

store assembly has a solder resist coating, that being the normal standard 

envisaged for fully developed boards. That one also has a small 

'piggy-back' circuit which would not fit in to the main area. As pictured, 

the data store has only one-sixteenth of the full memory complement fitted, 

and the signal conditioning PCB only three of the six channels The latest 

electronic components available were selected to reduce size, as well as to 

achieve low power consumption and good accuracy. Because of the fairly 

dense packing, attention had to be given to the control of electrical 

interference between sections. The board assemblies are connected to each 

other by ribbon cables with insulation displacement connectors, and to the 

wiring assemblies from batteries and transducers by heavier duty headers 

and sockets. 

In general the procedure followed the sequence of defining the 

specifications; identifying potentially the most difficult sections; searching 

the relevant literature and data sheets; making preliminary sketches and 

then breadboards; testing, modifying and re-testing (using proprietary and 

specially made test equipment), trying out with other sections; and 

designing the printed circuit boards. A formal drawing control system kept 

track of the many changes involved in the test-modify-retest cycle. 

Printed circuit boards were laid out with the aid of the computer aided 
design (CAD) package 'Redboard' from Racal Ltd, and the resulting output 

sent on floppy disk to a specialist company for laser photo-plotting and 

manufacture. Redboard's auto-route facility was unable to produce designs 

for the digital sections, tending to place the easiest 90% of the tracks and 
leaving the designer 'painted into a corner' with the remaining 10%. For the 

analog circuits no PCB CAD package at the time could, in the author's view, 

take account of the more varied requirements to produce a good design; that 

was still a job for the human designer. The layouts of all four boards were 
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Plate 2: Wave recorder chassis showing batteries, 
printed circuit board assemblies and chassis. 
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designed in rough with coloured pencils on tracing film at twice full size 

before transfer to the computer which replaced the coloured tapes of the 

older technique. 

The functional sections are shown in Figure 2.4 . These are power supply 

control, signal conditioning, microcomputer, and data store. Each section is 

implemented on its own PCB, shown in Plate 3. The fifth main section is 

the battery pack. Connections between sections are shown as broad arrows, 

with the number of conductors written in. Apportioning functions to circuit 

boards was carefully worked out to achieve logical interfaces and minimum 

interference, taking account of the different board sizes and associated 
headroom. An early scheme in which all sections were connected to a 

common 'instrument bus' turned out to be rather cumbersome and was 

abandoned. 

The six transducers are connected to the signal conditioning board where 
their outputs are amplified, filtered, multiplexed into a single channel, and 
then digitised for transfer to the microcomputer assembly. The 

microcomputer puts the readings as they are taken during a measurement 

cycle into a memory buffer. At the end of the cycle it compresses them into 

a block of data, adds the time and date, and sends the block across to the 

data store. The microcomputer schedules all the actions of the instrument, 

and handles communication with the operator's personal computer via 
isolating amplifiers (on the power supply board) and the data cable. (It is 

only by this route that the recorder can be controlled, the personal computer 
is the system's control panel. Even an on-off switch is impractical on 
sub-sea equipment. ) An early examination of the functions required soon 
ruled out any simpler instrument layout without a microcomputer, such as 
that of Boyd and Lowe (1985). 

The power supply assembly provides regulated voltages to the other 
sections, and to the pressure transducers. Supplies for digital and analog 
parts are kept separate to minimise conducted interference. The control 
circuit in the power supply acts with the microcomputer and its real-time 
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Figure 2.4 : Block diagram of wave recorder 
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clock (RTC) to shut down the instrument after a complete measurement 

cycle to save battery power, and to switch it back on again after a pre-set 
interval. Each circuit technique and component was scrutinised for its 

power demand. The battery power budget was severely limited by the 

required deployment period. 

2.5.2 Pressure transducers 

Pressure (after temperature) is one of the most commonly measured physical 

quantities in industry, so there is a large range of transducers on the market. 
This application, though demanding, did not require the design of a new 

transducer. However, a special housing to protect it from corrosion was 

needed. 

Gauge rather than absolute pressure was required, as that is related to water 
height independently of atmospheric pressure. But to obtain gauge 

pressure, atmospheric pressure must be applied to the back of the sensing 
diaphragm. That could not be done as the pressure inside the sealed 
housing would not follow atmospheric, indeed it would be strongly related 

to temperature. 'Sealed gauge' sensors contain an inert gas at standard 

pressure, and incorporate electronic temperature compensation, but these 

also are unable to account for changes in atmospheric pressure. Absolute 

pressure reading sensors were therefore selected, envisaging that a 

correction would be made to each record from a barograph at the analysis 

stage. A range of 40 metres water-gauge (40mWG), approximately 4 bar, 

was specified to permit operation down to about 30 metres (allowing one 

bar for atmosphere). Fine resolution, with low hysteresis and dead-band 

errors, was essential to pick up millimetre changes in water head within 

such a large range. 

The companies Druck, Schaevitz, RDP, ESI, Shape, Schlumberger and 

Transamerica all offered promising products. In the end (after a false start 

with a company now out of business) the PDCR 130 from Druck was 

chosen, costing about £330. This transducer (whose data sheet is reproduced 
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in Appendix D) is made of stainless steel which corrodes during long term 

immersion in sea water, so a housing was designed to incorporate an 

intermediate chamber filled with oil. The micro-machined silicon pressure 

sensor has strain gauges diffused into the surface: the 'integrated bridge' 

which is a speciality of the company. An amplifier within the body requires 

a DC supply of between 10 and 32 volts, and produces a signal of 0 to 5 

volts proportional to pressure. An un-amplified millivolt-level strain gauge 

output on a long cable run would have been too susceptible to noise and 

interference but the 5V output was suitable for this application. (Later a 

cheaper, even higher specification, transducer became available from the 

same company with a 4-20 mA interface, and this was selected for the 

second system, built in 1992). Power consumption was quoted at 20 

milliamps, but in practice most units took only 9 or lOmA. That was a 

crucial performance figure as the wave recorder's batteries had to supply six 

transducers. Non-linearity, hysteresis, and temperature related errors were 

all carefully examined to determine their effect on overall measurement 

accuracy (Section 2.5.3.7). 

To calibrate the transducers a means of applying a known pressure had to be 

found. The adjustment screws provided for gain and offset of the internal 

amplifiers could then be trimmed, or alternatively the corrections applied at 

the data analysis stage. A 'dead-weight pressure tester' is conventionally 

used to generate accurately known pressures. Employing first principles, a 

piston of known mass and diameter presses down on oil in a matching 

cylinder. Surprisingly, although the principle is very simple, it was not 

easy to get it to work. Neither a laboratory demonstration rig nor a 

geotechnics pressure tester proved to be anything like accurate or repeatable 

enough, achieving typically +\- 3%. However, when finely engineered, as 
in the Budenberg company's deadweight tester, accuracy of better than 

0.05% is obtained. The transducers were calibrated against one of these 
before each deployment. BS1780: 1985 gives advice on the calibration of 

pressure gauges. 
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2.5.3 Signal Conditioning 

2.5.3.1 Overview 

This section of the instrument, shown at the bottom right of Figure 2.4, and 

in more detail in Figure 2.5, converts the useful information in the six 

analog signal inputs into a stream of binary numbers that can be read by the 

microprocessor. Initial conditioning is applied to each channel individually 

but most of the work is done by just one set of components, the six signals 

being connected one after the other under the control of the 

microprocessor. 

Following the signal path on the diagram, the first function encountered is 

an active low pass filter which removes any 'high' frequency content (above 

about one hertz) that would, if present, be aliased down to the frequency 

range of interest. All channels are sampled (at typically 2 Hz) 

simultaneously by a track-and-hold circuit. Thus there is no appreciable 
delay between readings taken at the different seabed locations. During the 

'hold' interval the multiplexer (rotary switch in the diagram) connects each 

channel in turn through for amplification and digitisation. The rectangular 
boxes shown in Figure 2.4 connected to the microprocessor bus are latches 

which hold binary data from the microprocessor (the number of bits is 

indicated in the box) thereby permitting it to control the associated analog 
function. The one-bit latch on the right sets track or hold mode, the next 
determines which channel is connected to the amplifiers, and the other two 

set the amplifiers' offset and gain. 

Two extra positions of the multiplexer are shown on Figure 2.5. These are 

connected to accurately-set voltage levels to provide a calibration check on 

subsequent stages. This procedure is known as 'semi-automatic' calibration: 
the calibration source is applied automatically, but adjustment for any error 
is left until the data is interpreted. 
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Power supplies are brought in from the microprocessor board: separate 5V 

lines for analog and digital sections, a 10V supply, and a 12-18V 

unregulated supply for onward connection to the transducers. 

2.5.3.2 Input signal characteristics 

Signal levels 

The pressure transducers are supplied with amplifiers that produce an 

output in the range 0 to 5V corresponding to their full range of pressure: 0 

to 4 bar (absolute). This voltage is 'single-ended', that is to say it is 

referred to the OV power supply potential. 

Waves cause an excursion of only a small proportion of that pressure range. 
Most of the signal represents atmospheric pressure and the head of pressure 

corresponding to still water level. Pressure changes at the sea bed due to 

the waves themselves are attenuated with depth (the effect is described in 

Chapter 4). As an example, a wave train of 5 seconds period and 0.5m 

height in a depth of 15m will cause 5 centimetres water gauge (cmWG), or 
5mb, pressure variation. Peak to peak output will therefore be only 6.25mV 

on a standing level of 3.125V. The pressure attenuation of 10 in this 

example is the greatest envisaged in practice for this instrument. 

Signal frequency band 

Except for sheltered conditions the coastal engineer is concerned with wind 

waves whose periods are between approximately 3 and 30 seconds, together 

with long period oscillations due to harbour resonances, 'infra-gravity' 

waves and tides. Mean depth of water is also important so that the height of 

water on any neighbouring structure can be found and pressure attenuation 
with depth be predicted. The frequency band of signals of interest was 
therefore 0 to 0.33Hz. (The instrument was actually designed to be capable 
of much higher frequencies to permit measurement of other quantities at a 
later date). 
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Signal impedance 

The pressure transducers' amplifiers ensured low output impedance which 

helped to reduce interference picked up on the cable. The input impedance 

of several kilohms of typical amplifier would not appreciably load such a 

signal. 

Protection against abnormal inputs 

Each channel has a network of resistors and diodes giving protection against 

input voltages up to +/-90 V. Fuses are fitted to all lines, selected to blow 

if the wave recorder is inadvertently switched on with the underwater 

connectors not mated. (In that condition currents flow through the sea 

water causing rapid damage to the electrodes and loss of battery charge. ) 

2.5.3.3 Input filters 

When a continuous signal is sampled to obtain a representation in the form 

of a sequence of discrete values it is necessary to ensure that there are no 

signal components whose frequency is greater than half the sampling 
frequency. Any such components, whether from waves, turbulent flow or 

electrical noise, would appear in the data set at an altered frequency - the 

phenomenon of 'aliasing'. An analog low pass filter was provided for each 

channel to remove those components. 

The filter had to pass signal components from 0 to 1Hz (since the sampling 
frequency was 2Hz) and stop any above l Hz; this ideal characteristic is 

shown in Figure 2.6 . An acceptable, non-ideal but realisable, characteristic 
is also shown, and is defined by the corners - less than +/-0.02 dB 

attenuation up to 0.4 Hz, less than +/-0.1 dB up to 0.5 Hz, and greater than 

40 dB at l Hz and above. Phase response was also important since certain 
time domain analysis techniques were to be applied to the data. Phase lag 

increasing linearly with frequency was wanted as that is equivalent to a 

constant time delay for all frequencies, thus avoiding distortion of the time 

waveform. Again in practice some distortion is inevitable, so a target 

maximum difference between time delay at any two frequencies up to about 
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the 20 dB point was set at 0.1s. That figure was considered sufficiently 

small compared to the time of travel between two locations in the array. 

Unfortunately, it would have taken a 10th order Butterworth class or a 6th 

order Chebyshev class filter to achieve the amplitude response, and both 

would have distorted the waveform excessively. Also it had been hoped to 

use a second order filter, since six filters were needed in a small space. The 

solution was to increase the sampling rate to 40Hz, and thereby relax the 

specification on the analog filters. After digitisation, a digital decimation 

filter performed by the microprocessor would reduce the number of data 

points for storage back to two per second from each channel (Rabiner and 

Crochiere 1975, and Rabiner 1977). This new specification is shown in 

Figure 2.7. (At the time of writing the digital decimation filter remains to 

be implemented. ) 

This was achievable by a 2-pole Butterworth filter, implemented by a 

voltage-controlled, voltage source type active circuit that required little 

PCB area (one operational amplifier, two resistors and two capacitors) and 
having no undue sensitivity to component tolerances or op-amp 

performance. Before construction the circuit was simulated using Mentor 

Graphics' MSPICE software on an Apollo Domain workstation to verify the 

calculations. A benefit of computer aided design is the ease with which the 

effect of component tolerances can be evaluated. Contrary to expectations a 
5% tolerance on capacitor value appeared to be permissible; these were far 

cheaper than the 1% capacitors initially thought necessary. 

Board space was further economised by using a quad op-amp: the LT1014 

from Linear Technology Corporation which offers reasonably good input 

offset voltage and bias currents at low power from a single supply. 

When tested, the prototype circuit was only just inside the specification. 
However, on inspection the capacitors were found to be on the high limit; 

allowing for that the computer simulations were almost identical to physical 
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performance. Phase response was fairly linear at -45deg/Hz, giving an 

almost constant group delay of 0.125s. 

2.5.3.4 Signal sampling and selection 

Each of the six filtered and buffered input signals is next fed to a track and 

hold circuit, shown functionally in Figure 2.5 . The switches are normally 

closed so that the signals at C follow those at B. On receipt of a signal 

from the microprocessor the six switches open and points C hold their 

levels irrespective of changes at the inputs. Subsequent stages then digitise 

each channel in turn. Thus all channels are sampled at effectively the same 

instant. The two calibration sources are constant and so do not need track 

and hold circuits. 

Component selection is critical. The capacitor is a polypropylene metal-foil 

type, chosen for low dielectric absorption. The switches are CMOS 

integrated circuits for small size and easy digital control with low current 

consumption. Low power relays were considered but even the latest ones 

need rather too much coil current. Latching types are more difficult to 

interface, and in any case would take up too much board area. Another 

alternative, JFET switches, require power supply potentials outside the 

signal range. Using CMOS and quad op-amps, all track and hold circuits 

are realised by four IC's and associated passive components. Additional 

resistors and schottky diodes prevent charge stored in the capacitors 
damaging the switch and amplifier inputs. 

2.5.3.5 Amplifiers 

The 'Input signal characteristics' section above illustrates with an example 
how the wave signal is dominated by a large standing value. Figure 2.5 

shows the circuits that remove the standing value and amplify the remainder 
to the full range of the analog-to-digital converter (ADC). Four monolithic 
integrated circuits using switched capacitor and chopper stabilising 
techniques implement this function, along with precision (0.1%) resistors. 

56 



Extra components protect IC inputs and outputs from charge stored on the 

capacitors during power down. The four offset and gain settings together 

provide many combinations to suit prevailing wave conditions. The 

microprocessor controls the settings via the latches that can be seen in 

Figure 2.4 . 

The effects of different settings in systems like this one are best shown on 

signal level diagrams which trace the signals right through the system, in 

this case from pressure to ADC input. Figures 2.8 (a) and (b) give 

examples at minimum and maximum gain. In (a) it can be seen that the full 

range ADC input is traversed by a pressure change of 0.9 to 4.9 bar. On 

maximum gain Figure 2.8 (b) indicates that a span of only 1 bar corresponds 
to full ADC range, for example 0.9 to 1.9 bar, or 1.4 to 2.4 bar etc, 
depending on the offset value. A 50% overlap in ranges enables the 

microprocessor to select a high gain range in which the signal is almost 

centrally placed. 

2.5.3.6 Analog to digital conversion 

Analog signal conditioning is complete at the output of the amplifier 
described above; the signal is then ready for conversion into digital form. 

The most important specification here is the resolution. Eight, ten and 

twelve bit converters were commonly available in monolithic integrated 

circuit form. The 12-bit successive-approximation type AD 1205 from 

National Semiconductor was selected for high resolution with low power 

consumption and a microprocessor compatible interface (Electronic Design, 

1984). 

A test box was made to take the place of the microcomputer board during 

development. Switches enabled the user to set the digital control lines, and 

alpha-numeric displays showed the ADC output in hexadecimal form. A 

second specially made test box generated accurate dc levels to simulate 
transducer signals. 
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Resolution 

A 12 bit ADC resolves its full input range into 212, or 4096, steps. The 5 

volt range in this circuit is therefore divided into 1.2 mV intervals. The 

level diagrams show that that interval is equivalent to about 1 mb on a gain 

setting of unity, and 0.2 mb at a gain of 5. In terms of still water depth 

these figures correspond to 10 mm and 2 mm respectively. However, 

allowing for a worst case attenuation factor of 10 between hydrostatic and 

actual sea-bed pressure excursions makes the effective resolutions in wave 

height 100 mm and 20 mm. Referring to the overall instrument 

specification (Section 2.2.2) it can be seen that the 5 mm resolution of wave 

height will not be met at this extreme value of attenuation, although in most 

cases there will be plenty in hand. This shortcoming in performance was 

considered relatively minor. Greater amplifier gain would have improved 

resolution, but at the risk of full wave excursion going out of range, and an 

impaired signal (ie wave) to noise ratio. 

2.5.3.7 Measurement errors 

As stated in Sections 2.2.2.1 and 2.5.3.6 high accuracy was a prime 

requirement. Once the signal is turned into digital form it can be assumed 
that, barring malfunctions, no further errors will be introduced, provided 
that ADC resolution is adequate. It is therefore the analog sections, 
transducers to ADC in Figure 2.4, that require the most careful design for 

accuracy. An 'error budget' was deduced from the specifications and 
became, together with power consumption and circuit board space, one of 
the main determinants of the signal conditioning design. 

After all the components had been selected and the circuits designed to 

conform to their own allowance in the budget, an error analysis was carried 
out to ensure that the whole system was within limits. Types of error in 

such a system are many and various, and exist in all parts of the analog 
section: imperfections in transducer sensitivity and offset, resistive voltage 
drop in the long marine cables, offsets and bias currents in the amplifiers, 
resistor tolerances and dynamic errors in the switching circuits, and in the 
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analog part of the ADC. Moreover, the magnitudes of many of these errors 

are functions of environmental parameters such as temperature and power 

supply voltage. The impact of each error source on the data obtained 

depends on whether it applies to the varying (wave induced) or standing 

(mean depth) part of the signal. 

To calculate overall error, each part of the analog section was modelled as a 

functional block, multiplying its input by a factor and adding a fixed 

'offset'. Thus the factor for a transducer is its sensitivity, and for an 

amplifier, its gain. The offset produced by a transducer should be zero, and 

that produced by the offset amplifier: exactly its design value. These 

functional blocks are cascaded together and the overall error calculated. 

This is most conveniently done by referring all errors to the input: pressure. 

The treatment of errors, and the statistical basis for combining them, are set 

out in Appendix E. 

In the literature authors tend to differ somewhat on the classification of 

error types, and the terminology used to describe them. Sydenham (1982) 

takes as the broadest classification 'systematic' and 'random' errors. The 

former (alternatively called 'deterministic') are known and may be allowed 

for by calibration. Choosing the nearest available resistor value to the 

exact one required will give an error of that sort. Random errors change 

from reading to reading, and are due to fundamental imperfections such as 

noise, dead-band and hysteresis effects; these cannot be calibrated out. 

However, limits to these are normally known, either as an absolute 

maximum discrepancy, or as the standard deviation of a statistical 
distribution. Errors that depend on some environmental parameter (eg 

resistor temperature coefficient) are termed 'parametric errors', and may fall 

into either one of the two main categories. 

The question of how to treat the common tolerances in component value is 

not obvious. At the design stage these are not known, so the resulting 

errors are 'random'. However, once the circuit is made from individual 

components it can be calibrated, and the now 'systematic' errors removed by 
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adjustment or later correction of the data. In the present case, calibration was 

used extensively at circuit and sub-system levels as well as on the overall 

instrument. It is not, though, possible to calibrate out all tolerance errors due 

to the many different signal paths: six channels share the same amplifiers, and 

the amplifiers themselves have sixteen different gain and offset combinations. 

Moreover, in-circuit adjustments can be fiddly to set and often drift over time. 

The circuits, therefore, were designed to be inherently accurate enough to meet 

the specification without adjustments. 

Appendix F contains an example of an error calculation worked through for the 

case of 2 bar mean pressure (approximately atmospheric pressure plus 10m 

depth) with 0.01 bar peak-to-peak fluctuation (equivalent to an un-attenuated 

wave height of 10cm, or in the worst case to Im wave height attenuated by a 

factor of 10). The result is an error in mean depth of +2.0/-0.5% of reading, 

and in wave height of 1.0 / -0.7 % of reading, all based on maximum error 

values. If individual errors were to take their typical as opposed to their 

maximum values the total errors would fall to about one-third to one-half of the 

maximum. Calibration further reduces the figures. The dominant error was the 

ADC span error (+/- 0.73%). This could in future be adjusted out, though no 

such provision was made on the present unit. Removing this source would leave 

+0.6/-0.3% error in wave height. 
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2.5.4 Data Storage 

2.5.4.1 Data storage capacity 

Initial calculations indicated that a suitable coding scheme would enable 

each reading (full size of 12 bits) to be represented by one byte in memory. 

At four megabytes (Section 2.2.2.5) the capacity envisaged was much larger 

than that fitted into commercially available instrumentation of the type. 

Moreover, due to the specification of battery life the data store had to 

consume little current during read and write operations, and very little or 

none when just retaining data. In fact the requirements of size and 

consumption work against each other: if more capacity is available then 

data can be collected over a longer period, so that one would want a large 

data store to consume less power than a small one. The store had to be 

re-usable without special out-of-circuit erasing procedures; it had to be 

compact enough to fit inside the pressure housing; and although likely to be 

one of the most expensive parts of the system, should not take the total cost 

over budget. Fortunately there was one feature not pressed to the limit: 

reading and writing speed, which could be quite low by current standards. 

2.5.4.2 Choice of storage type 

One of the fundamental aspects of the design was the choice of a storage 

medium for the wave data. The ideal data storage device can be imagined as 

having enormous capacity in a small physical size; and as being 

non-volatile, convenient to interface (easy reading and writing of data), 

fast, requiring no current, reliable over extremes of environment, and cheap. 

The technologies available were (eg Duthie 1984): - 
a) magnetic tape and disc 

b) magnetic bubble memory 

c) semiconductor memory. 
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Most instrumentation for underwater work that was available at the 

commencement of the project used cassette tape. A typical wave recorder, 

the DNW-5 from NBA Controls Ltd, used a cassette tape, which, with an 

industry standard format, stored about 400 kilobytes (one-tenth the capacity 

required here) and had a fairly high power consumption. Research was in 

hand to increase the capacity of standard digital cassette tape by a factor of 

ten (Donnelly et al 1987) but such systems were not at the time fully 

developed. Magnetic disc storage was another possibility, but the drives 

were too bulky and drew too much current. 

Magnetic bubble memory (Jalbert et al 1983, Garcia and Pokoski 1981, and 

Jones 1986) was initially favoured. It was small for the required capacity, 

and research promised further improvements. It needed no power to retain 

data, and was finding applications in many areas such as portable 

electricity-billing machines, telephone exchanges, and communications 

satellites. However, on further investigation and after comparison with the 

fast developing field of semiconductor memory its disadvantages of 

relatively complex interfacing circuitry and high current consumption 
during read and write operations led to the selection of semiconductor 

memory. 

There are many types of semiconductor memory, and the number increases 

as manufacturers seek the ideal memory device for the enormously valuable 

memory market (eg Sommers 1985). They include the non-volatile, cheap 

read-only memory (ROM), and the random-access memory (RAM) to which 
data can be written but is lost as soon as power is removed. There is a 
spectrum of types in between: new ROM technologies acquiring the 
functionality of RAM but without the disadvantage of volatility. A 

summary of features and performance of several memory types is given in 
Appendix G. 

It was apparent at an early stage that the specification could be met with at 
least one of these storage media, so detailed design of the other sections 
could go ahead first. The decision on which type to use was deferred until 
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other sections had been designed, previous experience in the industry 

having indicated that significant improvements in performance and cost 

would be likely over the period. 

Electrically programmable ROM (EPROM) is normally programmed in a 

special unit, but it would have been possible to design the recorder to 

program the memory with data in circuit. However programming is not 

quite the same as writing data - normally programming requires 'empty' 

memory locations whereas the writing of data does not. The question then 

is whether the memory can be erased in circuit. The electrically erasable 

and programmable ROM (EEPROM) does offer that feature, but at a high 

cost and only moderate density. 

In the end battery-backed static random access memory, in the low power 

consuming complementary metal oxide semiconductor (CMOS) technology 

was chosen for its high density at reasonable cost. The dynamic RAM used 
in most mains powered computers has even more capacity (and is much 

cheaper) due to its configuration of one transistor per cell (ie per bit) 

compared to the static version's six. However the accompanying refresh 

circuits need far too much power. The memory was bought in in the form of 

single-in-line packages of 1/4 megabyte each, manufactured from industry 

standard integrated circuits. 

The pace of development in this field is so fast that such judgements 

become dated fairly rapidly. In particular Flash EEPROMS may soon 

provide a better solution, or even the miniature hard disc drives now 
becoming available. 

2.5.4.3 Implementation 

The sixteen single-in-line modules (SIMMs) of RAM with decoding 

circuits, buffers and backup battery take up one of the four printed circuit 
boards (Plate 3). (Each SIMM is referred to in this account as a 'rampack'. ) 
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Functionally it forms an extension of the microcomputer assembly and is 

connected to it by a ribbon cable (Figure 2.4). 

Power supply 

Power for the RAM is taken either from the wave recorder main battery (via 

the microcomputer) or, when that is disconnected during power-down mode, 

from an on-board lithium cell (Small 1986). A control circuit monitors 

these two supplies, together with two signal lines from the microprocessor: 

'data store connect' and 'reset'. When communication to the RAM is not 

required the control circuit generates a signal causing buffers to isolate all 

the RAM lines. Time delays are included to assure stability of the 

microprocessor before allowing it to connect to the RAM. The memory ICs 

are in CMOS technology, as are all buffers and decoders, resulting in a low 

total current drain in standby mode. 

Address decoding 

The eighteen address lines of each rampack are connected together in a bus 

which is driven by the microprocessor via tri-state buffers. The 

microprocessor selects one of the sixteen rampacks by writing four data bits 

into a latched decoder. The decoder outputs are gated with a 

microprocessor control line : 'data store select'. 

This and the safeguards mentioned above ensure that access to the data is 

only possible if the wave recorder supply is up and stable, and the 

microprocessor- is not reset, and it has signalled 'data store connect' and 
'data store select'. 

Data bus 

Like the address lines, the eight data lines of each rampack are connected 
together in a bus, interfacing with the microcomputer data bus via 
three-state transceivers. The rampacks' inputs together present a fairly 

substantial electrical load to the transceivers, which are in high speed 
CMOS technology. With the various line driving circuits all connected to 
the same bi-directional bus the condition of two circuits trying to drive the 
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same line simultaneously must not be permitted, otherwise data errors or 
damage could result. 

Bus timing 

Considerable care was taken to avoid such bus contention problems, and to 

satisfy the timing requirements of each component. Timing analysis can be 

quite intricate and generate reams of calculations covering all foreseeable 

conditions. The read, write, power-up and power-down processes are 

broken down into their basic sequences (eg: bus release by transceiver, 

output enable signal asserted, data bus driven by RAM). There are eleven 

such sequences in the data read process alone, and each of these sequences 
is the result of the actions of several preceding circuits. Each process was 

checked using the figures for propagation delay, set-up time, hold time and 

so on quoted for the devices at various temperatures and loadings. Where 

such analysis revealed any violations of specification then either the 

microprocessor was programmed to allow 'wait states', or the circuit design 

changed. 

2.5.5 Microcomputer Assembly 

It was clear from the specification that the wave recorder would need 

microcomputer control to achieve the required functions and give the user 

the ability to change settings. The tasks of such a control section include 

scheduling transducer readings, controlling the analog circuits and the 

real-time clock, reading and writing data to the data store assembly, 

managing communication to the user's personal computer, and carrying out 

simple data processing. Microcomputer hardware and software naturally 
work together to achieve these tasks, and designs of the two proceeded 
together. Overall program functions were specified first, then a suitable 
hardware 'platform' on which to run the software was sketched out. The 
detailed, low level, program modules could only be written after drawing 

the microcomputer circuits. The controlling program is described in 

Section 2.5.8 . The assembly occupies one printed-circuit board, and 
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incorporates a real-time clock (RTC) chip, backed up by its own lithium 

cell. Figure 2.4 shows how the microprocessor fits into the system. 

2.5.5.1 Microprocessor selection 

There are a number of approaches to the provision of microcomputer control 
for a data acquisition system. They can be characterised by the amount of 

design work that remains to be done to adapt the purchased components to 

the specific application. The spectrum ranges from the general purpose 

computer (eg the PC) which is readily adapted to many different tasks, 

through the proprietary single board computer (SBC), to the, purpose 

designed PCB fitted with a microcontroller or microprocessor integrated 

circuit. The parts cost of the options tend to descend in the order listed, but 

as this was a low-volume product that consideration was not as important as 

development time. This increases from the general purpose computer to the 

specific microprocessor I. C. based design. The microprocessor and 

microcontroller routes involve considerable design work in selecting 

components, designing the logic and laying out the PCB, work that is 

largely done by the manufacturers of the single-board computer and general 

purpose computer. In addition, program development requires certain 

software 'tools' (assembler and/or compiler, simulator) which are often 
incorporated into the SBC. 

Thus there were strong reasons for purchasing a SBC for this application, 
but unfortunately no proprietary product was available of the right size and 

shape to fit the housing, or with sufficiently low power consumption 
(Electronic Engineering 1985). So it was decided to design a dedicated 

assembly using a microprocessor integrated circuit. The HD64180 

microprocessor (Electronic Design 1985, EDN 1987, Hitachi 1987) from 
Hitachi was selected: a development of the well known Z80, but with a 
serial port, timers and memory management facilities all integrated on chip. 
Extra instructions were included, such as multiplication, and the part was 
available in low-power CMOS versions, and was able to operate at 
reasonably high speed. 
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2.5.5.2 Address mapping 

The 64180's 'address space' - the range of numbers that can appear in coded 

form on the address bus - in common with most microprocessors may be 

used for two purposes: for addressing memory, and for addressing 
input/output (I/O) devices. The microprocessor's 'memory enable' and 'I/O 

enable' outputs determine which type of device responds to the address. 

Two decoder integrated circuits on the PCB decode memory and I/O 

addresses. The connections to these decoders determine the allocation of 

addresses to devices; boundaries between device addresses are chosen to be 

round numbers to keep the connections simple. 

The microprocessor's memory, which may be called 'system memory' to 

distinguish it from the data store assembly, consists of 32 kilobytes (KB) of 

electrically programmable read-only memory (EPROM) to hold the program, 

and 32 KB of random access memory (RAM) for data and working area. As 

always, low power consumption in standby mode is essential whilst 

retaining reasonable speed of operation; CMOS technology chips were used. 

The 64180 (in the version chosen) has nineteen address lines, enabling it to 

address 512 K locations: the 'physical address space'. Machine instructions 

can only address 64 K locations: the 'logical address space'. Conversion 

between the two is done by the microprocessor's on-chip memory 

management unit (MMU). 

Figure 2.9 shows a map of the memory address space. In normal operation 
pressure readings are written to the system RAM one by one as they are 
taken. Both the RAM and ROM are mapped by the MMU into the first 64 K 

of address space. At the end of a measuring period (say 17 minutes), before 

the wave recorder powers down, the MMU registers are changed and the 

resulting block of data is transferred to the next free section of one of the 

rampacks. 
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Figure 2.10 shows a map of the input/output address space. The device 

addresses are distributed on an 8K grid for simple decoding. Their 

functions are explained in more detail below. Figure 2.4 gives the overall 

arrangement. 

2.5.5.3 Datastore interface 

The 64180's ability to address 1/2 MB of memory rather than the 64 KB 

more usual for its type is an advantage, but is still not enough for the 4 MB 

in this application. Further memory management had to be implemented to 

select one of the sixteen 1/4 MB rampacks to appear in the top half of the 
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microprocessor's physical address space (Figure 2.9). This is done by 

providing a register on the data store board as an I/O device to which the 

microprocessor can write a byte specifying the active rampack. In addition, 

a number of control signals is required by the data store: read, write, chip 

select and page select. These are generated on the microcomputer board and 

connected across to isolating buffers on the data store assembly along with 

the address and data buses. 

2.5.5.4 Analog interface 

The microprocessor is required to control the track/hold circuit, 

multiplexer, programmable gain amplifier, and analog to digital converter 

(ADC) on the signal conditioning board, as well as to read the ADC's data. 

The latter has a microprocessor-compatible interface so the 64180 data bus 

is taken across to the signal conditioning board for direct connection. 

Control lines for the other circuits, though, are provided by a peripheral 

interface adaptor (PIA) -a proprietary IC which contains the latched, 

bi-directional registers needed to interface a microprocessor to typical 

peripheral circuits. Fourteen of the sixteen PIA outputs are used to control 

those circuits, one is used as a control line to connect data store to 

microprocessor buses, and the remaining output carries the 'power down' 

command signal to the power supply assembly. Level shifters convert 

between the 5 volt microprocessor supply to the 10 volt analog supply. 

Since the data bus was to be connected to the signal conditioning board it 

would have been possible to put the PIA (or discrete latches) also on the 

signal conditioning assembly. The pros and cons of each arrangement were 

quite finely balanced; as in many other decisions of this sort the effect of 

each option is evaluated on board space, functional simplicity, connector 

requirements, signal interference, signal loading, current consumption and 

development time. 

A clock signal is required by the ADC. This is derived from the 

microprocessor system clock and connected across to the signal 
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conditioning board. Three flip-flops and a selector switch give the choice 

of a number of divide ratios so the ADC clock can be kept within limits 

over a wide range of system clock speed. The system clock speed was 6 

MHz in development, but could be raised to a 12 MHz maximum for the 

integrated circuits selected. 

2.5.5.5 Real-time clock 

The real-time clock (RTC) performs two functions. It provides the 

microprocessor with the current date and time so that measured data can be 

stored time and date stamped. It also acts as an alarm clock when the 

recorder is powered down, sending a 'wake up' signal to the power supply at 

the start time of the next measurement cycle. It is therefore equipped with 
its own lithium cell so that when the wave recorder is switched off the RTC 

remains active, though in a very low power standby mode. 

The real-time clock is connected to the address and data buses, and is 

treated as a set of I/O registers by the microprocessor. It has a small 32 

kHz watch crystal attached. This gives limited accuracy of time keeping, 

but errors may be calibrated out during the data decoding process. 

The Intersil ICM7170 was selected from a number of RTC chips for 

microprocessor bus interfacing (Liebson 1986, Kahn and Alexander 1987, 

Peek 1986). Its advantages include the ability to switch over automatically 
from system power to backup power, and the provision of an 'alarm' signal. 
The details of this circuit required particularly careful consideration: track 
layout of the oscillator section was critical, the alarm signal requires level 

translation from negative voltages, and it was found that not all types of 
lithium cell had acceptable terminal voltages. (More information on the 

power supply switching arrangements is given in the 'Power supply control' 
section below. ) 
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2.5.5.6 Signal timing and loading 

Once the major chips had been selected and the intervening logic and signal 

connections designed, it was necessary to check that all the timing 

requirements were met. The procedure is similar to that described in 

Section 2.5.4.3 for the data store, but applied to the ROM, RAM, RTC, PIA, 

ADC and power supply control circuits. 

2.5.6 Power Supply 

The power supply section consists of a printed circuit board assembly and 
battery pack (Figure 2.4). Its function is to provide electrical power for the 

six remote transducers and the analog and digital circuitry within the wave 

recorder. 

The user (via the data link), the microprocessor and the real-time clock are 

all able to initiate switching power on and off. In addition, battery 

condition detector circuits make the power supply switch off before low 

voltage levels can cause unreliable operation. A control section is therefore 
incorporated within the power supply to handle these commands in an 

ordered and reliable manner. 

2.5.6.1 Batteries 

A pack of twenty-eight D size alkaline-manganese cells provide the wave 

recorder's electrical power requirements for approximately four months. 
That number of cells can be neatly arranged into a cylinder of four banks of 
seven cells. It fills half the space inside the recorder (Plate 2). The cell 
terminals are wired to form series and parallel combinations with outputs of 
20 amp-hour capacity at 10 to 18 volts, and 10 amp-hours at 6 to 9 volts. 

Primary cells were chosen as they have much greater capacity than 

secondary (rechargeable) types. Also, recharging from a boat was not 
practical as it would take several hours. Volumetric energy densities and 
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discharge curves for several battery couples were considered, the former to 

achieve maximum capacity in the available space (weight was not 

important), and the latter to maximise use of that capacity. A steep 

discharge curve (the plot of terminal voltage against time as current is 

drawn) is undesirable because a linear regulator drops the difference 

between terminal voltage and regulated voltage across a power-dissipating 

element. Switched-mode regulators make use of this energy, but they are 

more complex and generate electrical noise and so need careful shielding. 

The alkaline - manganese dioxide couple was selected for its good 

performance and low cost. The other contender was lithium thionyl 

chloride, and it would be possible to specify that type in the future. That 

type would provide three times the charge capacity, but at four times the 

price. 

2.5.6.2 Regulators 

Figure 2.11 shows the four supplies provided: 12V (nominal) for the 

transducers, 10V and 5V for the analog circuits, and a 5V line for the 
digital circuits (separated from the analog to avoid interference). 

Distribution is carefully organised to minimise interference arising from 

currents sharing non-zero impedance paths. The transducers have their own 
built-in regulators, and can accept a supply anywhere in the range 10 to 32 

volts. Hence only a switch, consisting of a power MOSFET, appears 
between battery and transducer supply line. This component has a low 'on' 

resistance and does not draw the coil energising current a relay would 
require. The 10 volt supply to the analog circuits is derived from this 

switched line by a low-dropout integrated-circuit regulator. The 5 volt 
output, led separately to the analog and digital sections, is regulated by a 
MOSFET operating as a linear pass element which can supply more current 
than the IC alternative. This 'cascade' arrangement, in which a regulator 
depends on the one before, has the advantage that only one control line is 

needed. Operating that line initiates a 'domino effect', switching all 
supplies on and off together. 
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To maximise battery life linear regulators should have a low dropout 

voltage (the minimum difference between input and output that permits 

correct operation), and should consume little current. Most proprietary 

regulators do not offer those characteristics, though the Linear Technology 

Corp. integrated circuit selected does, up to a limit of 125 mA. In the 5 

volt regulator, advantage was taken of the availability of higher voltage 

lines. These are used to supply its control circuit and enable, with the 

MOSFET, the design of a very low dropout voltage. 

Protection 

Fuses are fitted to each of the battery supply lines. The 5 volt output has a 
'crowbar' circuit to limit it to a maximum of 6 volts in case of regulator 
failure. Also each PCB assembly has diodes to guard against reverse 

polarity power supply line connection, and zener diodes as extra insurance 

against over-voltage. Circuits that use several power supply levels are at 

risk if those voltages do not rise, and fall, in the correct sequence, or if the 

circuit inputs remain present after the supply has fallen. Even with the 

centralised power supply arrangement described here there is a considerable 

number of potential failure modes that can arise from power supply 

sequencing; all of these have been guarded against with extra passive 

components. This potential for failure is an argument against an 

arrangement of distributed regulators. 

All PCB assemblies have power supply filtering components fitted near 
their connectors, and ceramic capacitors at each group of integrated circuits 
to decouple the effects of rapidly changing currents. 

2.5.6.3 Power supply control and supervision 

This part of the circuit receives inputs from a number of other sections and 
generates the 'power on' signal that controls the main MOSFET switch in 

the regulator section. It also controls the microprocessor's RESET input. 
The arrangement is shown in Figure 2.12 .A battery-condition monitoring 
circuit is included for both battery supplies. These compare terminal 
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voltages against two levels. The 'low battery' condition is indicated to the 

microprocessor which places a message, with time of occurrence, in the 

parameter page of the data store for the user to see during a subsequent 

communication session. The 'dead battery' condition, in which the terminal 

voltage is too low for reliable operation, causes immediate power down 

without reference to the microprocessor. 

Figure 2.12 also shows the other inputs to the control section. 'Power down' 

may be initiated by the microprocessor at the end of a measurement period, 

or by an on-board push-button for use in development, or by the 

'dead-battery' condition signal. In addition, a switch inside the interface 

box gives the user the ability to switch off the wave recorder. (Switching 

off and on again is the only way to reset the microprocessor from the 

surface. ) Three inputs cause the control circuit to switch power on. These 

come from the real-time clock's alarm, from the interface box, and from the 

test push-button on the power supply board. 

The control arrangements of instruments that can switch themselves on and 

off usually require careful thought if they are to perform correctly in all 

circumstances. In this case, firstly, the seven inputs originate in different 

parts of the wave recorder, many of which have different power supply 
levels, and which may or may not be switched on. Level translation is 

therefore needed between sections. The safest method, adopted here, is an 
'open-collector' convention. Thus the sender circuit indicates an active state 
by connecting one of the receiver's lines to ground. At other times the line 
is allowed to float. 

Secondly, logic levels that represent control signals must be chosen in the 
light of prevailing on/off states. For example, the microprocessor's 'power 
down' output signal should be active-high, otherwise the low signal level 
the microprocessor is bound to produce when switched off would prevent 
the wave recorder's power ever being switched on. Also the 'power-on' 

signal should be active-high, so that the signal cannot be made without 
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there being at least a few volts from the battery to ensure the battery 

condition monitors are working. 

Thirdly, stable but illegal logic states must be forseen and designed out. 

An example of such a state is power off without the real-time clock alarm 

set, or set to a time before the time of switch off. The arrival of interrupts 

at awkward moments can bring this about and so are guarded against. 

Another illegal state may occur if, for example, the microprocessor enters a 

'HALT' state or an endless loop, thus failing to reach the power down 

procedure. That one is particularly serious if the interrupts are disabled, 

resulting in incoming commands being ignored. A further example concerns 

the latches in the control section. Their output states must be defined in the 

case of contradictory inputs arriving simultaneously. 

Fourthly, the system must deal with unstable and transitional states, 
including contact bounce in switches and differing rise times of the power 

supply rails on each board. Controlled delays are inserted where necessary. 
Also, the control section incorporates a latch so that the appropriate output 

change is maintained even if the input transition is brief. The software 

reinforces this latching action. For example, on receipt of a 'low battery' 

signal the program should not switch the recorder off only to let it go on 

again as soon as the low battery signal is de-asserted. This would cause 
'hunting' as the battery terminal voltage dropped under load and recovered 

when disconnected. Rather, the program causes controlled termination of 

the measuring period including setting the RTC's alarm. 

All the power supply control circuits operate continuously, even when the 

main circuits are of, and so are made from low-current devices. 

2.5.7 Communication to User's PC 

The arrangement chosen to allow the user to set recording parameters and to 

recover measured data was described in outline in Section 2.4.1 . It is 

shown in block diagram form in Figure 2.13 . 
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A parallel interface would have been preferred for increased data transfer 

rate, but to economise on connector costs the simpler serial scheme was 

chosen. 

The HD64180 microprocessor is equipped with two serial ports, one of 

which incorporates hardware 'handshaking', or flow-control. In the wave 

recorder these lines drive opto-coupler circuits and amplifiers before going 

to the data cable and interface unit. The opto-couplers ensure DC isolation 

of the wave recorder from the equipment on the boat to avoid ground loop 

interference. 

The amplifiers are designed to drive the 30 metre data cable at 19200 baud. 

A higher rate would have required more current. That is equivalent to about 
2 kilobytes per second (KB/s). At that rate it would take half an hour to 

download all 4 MB of data. Initially, this rate was not achieved because the 

Amstrad PPC640 laptop PC in use with the system could not accept more 

than 9600 baud, and that only with long pauses to allow its buffers to clear. 
In later deployments data rates closer to the design value were anticipated 

with higher performance portable PCs. The download time would clearly be 

shorter if the user were to select which records to collect, and leave those 

which a knowledge of weather conditions over the period suggests will be 

uninteresting. 

The RS232 signals 'transmit data', 'receive data', 'request-to-send' and 
'clear-to-send', are all used, although they do not conform to that standard's 

voltage levels or polarities. Conversion to these is carried out in the 
interface unit so that the lines are electrically and mechanically compatible 
to the standard PC serial port. 

The interface unit has its own batteries, and is housed in a robust, sealed 
(though not submersible) box. It has a switch to generate the ' wake-up' 
signal. The user operates this switch if he wants to communicate with the 

wave recorder when it is powered down between measurement cycles. The 

user's 'power-down' facility has already been mentioned. 
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The user's laptop personal computer (PC) plays a relatively simple part in 

the system. It acts as a terminal to the wave recorder's microcomputer and 

provides mass storage to collect the data. A proprietary communications 

package is run on the PC, giving the user control over its serial interface 

and disc drive. When the user presses a key its ASCII code is sent down to 

the wave recorder. When the wave recorder issues a character code to the 

PC it is displayed on the screen, and (if desired) stored on disc. 

The operating system running in the wave recorder recognises certain 

characters, such as 'T', 'P', '0', '1', '2' etc and takes the appropriate action. 
Others result in the message 'unrecognised' being sent back for display on 

the PC screen. More detail on the command set is given in the next section. 
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2.5.8 Controlling program 

The wave recorder's controlling program occupies about 2 KB of the 

microcomputer PROM. It has five main tasks: 

i) Measurement control: scheduling the transducer readings, operating 
the track-and-hold and multiplexer circuits, setting the auto-range and 

auto-offset amplifiers, and controlling and reading the ADC. 

ii) Measurement processing: compressing the readings to 1 byte each, 

implementing the decimation filter', time and date stamping the 

records, comparing wave activity with a pre-set threshold'. 

iii) Memory control: loading and restoring status parameters (such as 

address of the next free page in the data store and messages for the 

user) to the non-volatile data store, loading and reading measured 

records, memory bank switching. 
iv) Power supply control: calculating and setting RTC alarm time, 

handling low-battery interrupt. 

v) Handling the communication link: receiving and interpreting 

characters, sending status information and data to PC, accepting 

user-supplied measurement settings'. 
(Functions marked with an asterisk had not been implemented at the time of 

writing) 

The program was written with the aid of design structure diagrams 

(BS6224: 1987) in a 'top-down', modular fashion. The modules were 
designed to be as independent as possible. This enabled easier testing, 

clearer logical flow, and improved reliability of the complete program; and 
it facilitated any subsequent modification or extension. The top level of the 

version called 'DEP3' is illustrated in Figure 2.14 by its design structure 
diagram. The upper half shows the preliminary sections of the listing that 

set values for the assembler. The run-time sections follow. There are three 

possible entry points to the code: microprocessor reset following power-up 
(initiated for example by the RTC alarm, or by the user via the interface 

unit), an interrupt signalling that a character has been received on the 
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communication link, and an interrupt from the power supply unit warning of 

a low-battery condition. 

The module 'cycle' is part of the second level of the structure diagram, and 

is shown in Figure 2.15. The symbol for each of the modules is a box which 

contains the module's name, its start address in ROM, and the sheet number 

in the diagram where its own structure may be found. Brackets with dotted 

connecting lines supply further information. Flow passes from top to 

bottom, always taking a branch before continuing down the diagram. In a 

loop-type control structure the parallel bars indicate the point at which the 

loop test is made, with the test condition itself written at the head of the 

loop. 

Data compression 
To start with the simple method was used of masking off the four most 

significant bits of the twelve bit ADC output, leaving only one byte to be 

stored for each reading. Full length readings were stored at the beginning 

and end of each record. The full ADC range is thus effectively split into 16 

segments. The 8 bits stored give the position within a segment, but 

identification of the segment is not defined. That was determined at the data 

decoding stage, based on the departure from the previous reading. It is 

expected that a more sophisticated compression scheme will be implemented 

at a later date. 

Program development 

The complete program contained about 40 modules, defined on a similar 

number of sheets. It was written in the microprocessor's assembly language 

(Hitachi 1987), on a 286-type personal computer, using a standard ASCII 

editor, and cross-assembled into 64180 object code. A relocating linker took 

all the modules' object files and linked them into absolute code for 
downloading to a PROM programmer. The loaded PROM was then 
transferred to the microcomputer board assembly. During development an 
EPROM emulator was used. This machine contained RAM that plugged into 

the EPROM socket on the microcomputer board, and was connected to the 
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Figure 2.15 :. Design structure diagram for the level 2 module 'cycle'. 
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669 ; *************************************************** 
670 
671 title meas (subroutine) 
672 defn measures chO to ch7 & stores * 
673 in RAM once at start & end. * 
674 ; HI & LO bytes. 
675 measures ch2,3,4,5,6,7 at 1\2s* 
676 ; intervals RDGTOT times. LO byte* 
677 ; notes uses hl to point to RAM 
678 ; address for data. 
679 MMU must be reset before exec. * 
680 
681 ; ******: * ******************************************* 
682 
683 org 2000h 
684 
685 2000 meas ; subroutine start 
686 2000 F5 push of 
687 2001 C5 push be 
688 2002 D5 push de 
689 2003 E5 push hl 
690 
691 2004 21 A000 ld hL, BUFFST ; init buffer pointer 
692 2007 22 800A ld (BUFFPTR), hL 
693 
694 200A 21 8020 ontimerd : Ld hL, ONT01S ; read on time 
695 200D CD 2800 call rtcrd 
696 2010 21 8020 Ld ht, ONTO1S ; transfer to buffer 
697 2013 ED 58 800A Ld de, (BUFFPTR) 
698 2017 01 0010 ld bc, 0010h 
699 201A ED BO Ldir 
700 201C ED 53 800A Ld (BUFFPTR), de; update buffer pointer 
701 
702 
703 2020 CD 2800 call initsc ; offset, gain , track 
704 
705 2023 CD 2380 call meastong ; measures and stores alt 
706 ; channels, 2 bytes each. 
707 
708 2026 CD 2400 call measshrt ; measures and stores 
709 ; in RAM, transducers 
710 ; RDGTOT times, 1 byte ea 
711 
712 2029 2A 800A ld hl, (BUFFPTR); align neatly in record 
713 202C 23 inc hl 
714 202D 23 inc hl 
715 202E 23 inc hl 
716 202F 23 inc hl 
717 2030 22 800A ld (BUFFPTR), hl 
718 
719 2033 CD 2380 call measlong ; measures and stores all 
720 ; channels, 2 bytes each. 
721 
722 2036 CD 3880 call offtime ; reads rtc into scr 
723 ; and last line of buff 
724 
725 2039 measend 726 2039 El pop hl 
727 203A Dl pop de 
728 203B Cl pop be 
729 203C Fl pop of 730 
731 203D C9 ret 732 

Figure 2.16 : Listing of the level 3 module 'meas' 
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PC by a serial link, so new sections of code could be tried quickly without 

the lengthy process of erasing and programming a PROM. The emulator also 

provided some simple de-bugging facilities such as setting breakpoints and 

tracing program flow. 

An in-circuit emulator would have been superior, but the greater cost was 

not considered justified. Similarly, it would have been quicker to write the 

program in the higher-level language 'C', but cross-compilers were much 

more expensive than cross-assemblers. A page of the 2000 line listing file, 

the assembled code from the 3rd level module 'meas', is reproduced in Figure 

2.16. 

2.5.9 Mechanical Design 

The wave recording electronics and pressure transducers were fitted into 

watertight pressure housings capable of reliable long-term sealing to a 

depth of 100 metres in sea water. Section 2.5.9.1 to 2.5.9.5 refer mainly to 

the wave recorder housing. Transducer housings are described separately in 

Section 2.5.9.7. 

Plates 1,4 and 5 show the recorder housing. It is of tubular construction, 

with removable end caps sealed by '0' rings and retained by nuts and bolts 

through the flanges. Connectors for the transducers are fitted to the end 

caps and also sealed using '0' rings. 

Polyacetal brackets provide a non-conducting (to avoid galvanic corrosion) 

means of securing the instrument to its frame, and points of attachment for 

the detachable rope carrying handle, as well as protection against damage to 

the casing when set down on a rough surface. The method of fixing the 
instrument to the brackets, and the brackets to the frame, is designed to 
deter theft. To ease the removal of end caps during disassembly threaded 
holes are provided that take nylon jacking bolts. These bear on the flanges 

to draw out the end caps against any partial vacuum. 
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Plate 4: Recorder housing fitted to its support frame. 

Plate 5: Recorder housing components 
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The diameter of the housing (150 mm) is determined mainly by the 

arrangement of connectors, allowing enough clearance for a diver to turn 

the locking rings. Its length (675 mm) provides adequate space for batteries 

and printed circuit boards, making allowance for future development. The 

complete recorder weighs 18 kg in air, and displaces 14.8 litres so that in 

sea water it weighs a more convenient 3.3 kg. 

2.5.9.1 Material Selection 

Acrylonitrile butadiene styrene (ABS) and other plastics, mild steel, 

stainless steel, some nickel based alloys, bronzes, and aluminium were 

considered for the housings (Tuthill and Schillmoller (1965), Fulmer 

Research Institute, Elliot and Tupholme). The material was selected 

primarily for properties enabling the achievement of a good, reliable seal. 

ABS was ruled out for the more critical recorder housing due the difficulty 

of machining '0' ring grooves (also called housings) to the correct 

dimensional tolerances and surface finish, although it had the advantages of 

corrosion resistance, easy fabrication and low cost. Mild steel corrodes too 

fast unless given a protective coating which would itself degrade tolerances 

and finish of the '0' ring housings. Stainless steels have a tendency to 

suffer pitting and crevice corrosion in sea water, and corrode quickly if 

immersed for long periods in water with insufficient oxygen to maintain the 

protective oxide layer. Again, the danger was to the seal integrity so this 

material was not selected for the recorder. However, 'A4' grade stainless 

steel (BS6105, BS3643, BS3692 and BS4168) comprising approximately 18 

per cent chromium and 12 per cent nickel (previously known as 'type 316', 

BS970) was used for the fasteners. Nickel based alloys, such as Monel 

metal, were too expensive. 

Aluminium alloy was selected as it is easy to machine and weld and is light 

and cheap. Its disadvantage of high corrosion rate was overcome by the 

application of a hard anodic oxide coating. The particular alloy chosen was 

type 6082 (BS1471, BS1474) (previously designated H30 by the same 

standards before amendment), an alloy containing silicon, magnesium and 
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manganese which is well suited to machining, welding and hard-anodising 

operations, and which is readily available in bar and tube form. Tube for 

the housings was bought in in drawn rather than extruded condition since 

the softness of the latter would permit deformation under machining. 

Lengths of round bar for the end caps were supplied in extruded condition. 

Weld filler rod recommended for use with this alloy is type 4043A 

(previously designated N21), (BS3019). 

2.5.9.2 Sealing 

The joint between each end cap and the tube is sealed by three elastomeric 
toroidal sealing rings ('0' rings), one in axial compression (a 'face seal'), 

and two in radial compression ('piston seals'), Plate 5. The simpler gasket 

seals were not considered sufficiently reliable. The housings in which the 

'0' rings sit are formed in the end caps to precise dimensional tolerances 

and surface finish. Design of these details and selection of the '0' rings 

was made in accordance with BS4518, Dowty Seals Ltd(1990) and BS6442. 

A good design imparts the right amount of squeeze to the ring, while 

ensuring that stretch is not excessive, that it does not tend to 'spiral' on 

assembly, nor extrude under pressure. Tolerances on the '0' ring housing 

dimensions, clearance between components, corner radii, lead-in chamfers 

and surface roughness were all carefully controlled. A medium hardness 

nitrile rubber was selected for its compatibility with sea water. 

2.5.9.3 Machining and Fabrication 

Drawn tube and plates were initially prepared on a centre lathe. A local 

engineering company attached the flanges to the tube by tungsten inert gas 
welding, following a weld procedure that incorporated the requirements of 
BS3091, BS499 and BS2901. 

Machining the welded assembly was continued on the lathe. Supporting the 

workpiece was carefully considered: one end was held in the jaws of the 

chuck and the other supported on running centres bearing on a short length 
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of tube already turned to a precise outside diameter. This arrangement took 

advantage of the known roundness and concentricity of the (previously 

machined) flanges, while avoiding inaccuracy due to the out-of-round 

surface of drawn tube. The short machined sections of tube were used later 

to take the plastic support brackets. 

However, even this procedure did not permit the tight tolerances of the bore 

to be obtained, and it turned out excessively oval. The problem was 

rectified by selecting fatter '0' rings, re-calculating dimensions and 

tolerances, and further machining. It was concluded that the correct tool for 

machining the bore is a horizontal borer in which the workpiece remains 

stationary and the cutting tools rotate in a circle that does not depend for its 

accuracy on other surfaces of the workpiece. 

The two polyacetal (Delrin) support brackets, and the faired discs for the 

transducers described below, were cut from 25 mm thick sheet material on a 
Bridgeport computer numerical controlled (CNC) universal milling 

machine. 

Surfaces touching the '0' ring seals were finished to the specified average 

roughness figure by lapping with diamond paste. Surface roughnesses were 

checked with a Rank Taylor Hobson Talysurf 5-120 gauge, and by 

comparison to electro-formed surface roughness standards. Dimensional 

tolerances were checked with a variety of standard bore-, micrometer- and 

vernier- gauges. 

2.5.9.4 Surface Protection 

Aluminium left unprotected would not have survived the required 
immersion time without severe corrosion. This would have led first to 
failure of the seals, and possibly even to complete penetration of the six 
millimetre wall-thickness case. The tube assembly and end caps were 
therefore sent out to receive a hard anodic oxide coating to BS 5599. This 

process, which is to be distinguished from the softer 'architectural' 
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anodising treatments, produces a 50µm layer of aluminium oxide of very 

high electrical resistance and resistance to corrosion. About 2511m extends 

down into the original dimension of the metal. (Allowance was made for the 

build up during design of the '0' ring grooves. ) Adhesion is excellent. The 

surface has a hardness comparable to that of a tool steel, and thus very good 

resistance to abrasion, but the underlying metal is relatively soft, and so 

care had to be taken during manufacture and later handling to avoid heavy 

impacts. 

The colour of hard-anodised aluminium is a 'drab olive green' (Plate 5) - 
difficult to see in water that may be rather murky. A yellow chlorinated 

rubber topcoat was applied on to a two-part liquid plastic copolymer 

priming coat. The chlorinated rubber topcoat was selected for its claimed 

resistance to a wide range of chemicals (including the ones likely to be 

present in this application) as well as its durability and hard wearing 

qualities. 

A range of adhesive labels was tested underwater, and a satisfactory one 

chosen to carry the Department's name and telephone number, together with 

the instrument's function and warnings to deter unauthorised interference. 

2.5.9.5 Chassis 

A framework of square and round bars, and discs, mainly in aluminium, was 
designed and fabricated to support the circuit boards and battery pack (Plate 

2). Particular attention was paid to strength and stiffness, and to the 

accommodation of dimensional tolerances, and to minimise electrical 
interference between circuit boards. 

The chassis is fixed to one of the end caps. Although not as rigid as if half 

of the weight were taken by each end cap, the arrangement does avoid the 

need for connectors to join the two halves midway along the tube, with the 

consequent tricky tolerancing and difficult access. 
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Cells were supplied by the manufacturer already made up into a battery 

pack, glued together, and connected electrically as called for in the 

purchase specification. The pack was held by a cage of bars and discs close 

to the supporting end cap (since the battery pack is the heaviest 

component), in an arrangement permitting adjustment for pack length. 

The circuit board frame consisted of two discs separated by six square bars. 

The boards were arranged to provide a logical flow of signals (minimising 

cable lengths and interference ) subject to the mechanical constraints of 

component heights and required board area. Thin tin-plated steel sheets 

were folded and fitted in between boards and their supporting bars to shield 

electrically the low level analogue signals from fast high level digital 

signals. 

2.5.9.6 Sea-bed fixings 

Plate 4 shows the recorder fastened to its mounting frame, specially 
fabricated on the quay side from heavy section plates and I-beams. 

Stainless steel blocks with pre-drilled and tapped fixing holes were welded 

onto the plate. Doughnut shaped Delrin bushes were incorporated into the 

ends to give a straight, chafe-free lead in for the cables. The frame weighed 

about half a tonne. The whole layout is designed to avoid as far as possible 

the danger of damage due to fouling by debris and marine equipment. If an 

anchor fluke should catch a cable, then the connector would break its 

locking ring and pull out rather than drag the instrument from the frame, or 
frame from the sea bed. 

Each transducer is held in place on the sea bed by a concrete mounting 
block (Plate 6) incorporating a vertical mild steel post with a fixing plate 
on top. The blocks were fitted with eyes for attaching locating chains and 
cable ties. All the steelwork was protected against corrosion by zinc 
sacrificial anodes. 
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Plate 6: Transducer mounting blocks 

Plate 7: Transducer housing 
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2.5.9.7 Transducer Housing 

The transducers are made from stainless steel which can corrode badly after 

prolonged immersion in sea water. A special casing was therefore designed 

for the transducer (Plate 7). It transfers sea water pressure to the pressure 

port via an intermediate oil-filled chamber. The transducer is screwed into 

one side of a stainless steel circular plate. A drilling through the centre of 
the plate leads to a depression on the other side which is filled with 
degassed silicone oil. That is covered with a neoprene diaphragm, the other 

side of which is in contact with the sea water. The transducer housing and 

electrical connector are kept dry by a tubular housing in ABS that butts up 
to the stainless steel disc. Sealing arrangements and material selection are 

not as critical as they are in the recorder housing as the consequences of 
failure are much less serious. (No sealing failures, though, have yet 

occurred. ) The white disc with well rounded edges in the photograph is 

designed to reduce small pressure fluctuations due to eddy currents; 
drillings allow water through to the neoprene diaphragm below. 

2.5.9.8 Underwater connectors 

The wave recording system consists of eight separate units: the recorder, 

six transducer assemblies and the portable computer interface unit. 
Considerable thought was given to the way electrical power and signals 
were to be transferred between units as it was known that interconnection 
deficiencies were a common cause of failure in this type of equipment. The 

problem was to transfer reliably a number of signals and power lines 
through the wall of a housing, all insulated from one another and without 
allowing water to penetrate. Various methods of inductive and capacitive 
coupling had been tried (Papij 1986, Allen 1987) which did not require 
holes in the housing, but these would have taken substantial development 
for this application, and may have degraded accuracy. Alternatively, 
optical fibres could have conveyed the information in digital form, but 

suitable connectors were not readily available, and the decision had been 
taken to keep the interfaces in analog form (Section 2.4.1). So conventional 
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electrically conductive paths were provided between sections: a conductor 

passes through a hole in the casing, but is separated from it by insulating 

material. The simplest way of achieving this is to drill the case and pass 

the insulated cable through, sealing the joint with an adhesive. The 

experience of other workers , 
however, had indicated that this sort of 

approach was unreliable, with failure of bonding likely after a short time. 

Furthermore, a 'water-block' is desirable at each entry point, so that if the 

cable were to be cut, water entering and travelling along inside ('wicking') 

would be prevented from getting into the case. Some sort of feed-through 

or 'penetrator' is therefore needed, and after giving some thought to making 

these directly in the housing it was concluded that the most reliable seal 

would be obtained by buying in components from specialist manufacturers 

who have experience of the relevant materials and processes and fitting 

them to the case with conventional '0' rings. 

Connectors, rather than feed-throughs, were used to ease deployment on 

site; substantial lengths of armoured cable can be unwieldy even without 

equipment attached to the ends. Furthermore, these connectors were to be 

coupled underwater, so waterproof ones for mating in the dry would not do: 

underwater-mateable (also called 'wet-pluggable') types were needed. Many 

of these are extremely expensive: one type to a military specification cost 

over £1000 per pair. A list of manufacturers contacted is given in Appendix 

H. The 'Subcon' range, imported into the UK by PDM Ltd, was finally 

selected as an economic and effective type, available in configurations 

suitable for both the transducer and data signals. Both halves are moulded 
in neoprene, with each individual socket-way having a set of four annular 

ridges that close onto the plug like '0' rings, insulating it (together with a 

small amount of trapped water) from the sea water outside. The body of the 
bulkhead mounting half is sealed to the case with an '0' ring, while the free 
half is soldered to the cable conductors and moulded by the supplier to the 

cable sheath. These cost in the region of £60 per pair, and have performed 
well. 
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Plate 8: Marine cable connection detail 

Various alternative arrangements were examined to reduce the number of 

connectors needed. 'Daisy-chaining' the transducers was the most effective, 

but unacceptable due to the resulting dependency of the system on one 

connection. Bifurcated cables, allowing cables from two transducers to use 

a single connector to the recorder, and a 'manifold box' splitting one large 

cable from the recorder into six were other options, but none was 

considered superior to the simple one-per-transducer layout, and so that was 

retained. 
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Plastic locking rings keep the connectors properly mated, and extra plates 

(at the recorder) and sleeves (at the transducers) prevent sideways loads 

causing excessive bending (Plates 7 and 8). 

The system may therefore be lowered to the sea-bed in sections, but it is 

important that no voltage be applied to the connectors until mated. An 

experiment carried out in the laboratory, in which 20V dc. was applied 

between two pins of a Subcon plug immersed in a beaker of sea water, 

resulted in vigorous electrolysis and a current flow of over I A. The fuses 

fitted to the input lines are designed to blow if this occurs in practice. The 

control software allows the user to disable the automatic 'wake-up' signal 

after power-down to prevent connector damage during deployment. 

2.5.9.9 Underwater cable 

Like the specialised connectors described above, cable conforming to the 

exacting electrical and mechanical specification for this application tends to 

be rather expensive. The error analysis of Section 2.5.3.7 implied a 

maximum resistance in the transducer signal connections, which imposed a 

minimum cross sectional area for the copper conductors. Screening of the 

signal wires was also required. Mechanically, the cable had to be strong, 

resistant to chafe, and waterproof. 

For the first deployment a non-armoured cable was chosen to speed 

development; later a full-specification cable was manufactured to special 

order by De Regt Special Cable by, Holland. Other companies approached 

are listed in Appendix I. Seven conductors of 0.75mm2 cross sectional area 

are laid together, and covered by a winding of aluminium tape with a 'drain' 

wire to form a screen. This is covered by a pvc sheath, a helically-wound 

armouring layer of galvanised steel wire, and finally by a jacket of 

polyurethane. The grade of polyurethane is selected for nominally static 

use in temperate climates. This cable cost £10 per metre for the minimum 

order quantity of 300m, with a charge of £500 for shipping from the 
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manufacturer to the connector supplier. Complete moulded cable 

assemblies were then called off from the latter as required. 

The data cable has eight conductors, arranged as four screened pairs. It is a 

standard cable, not armoured, as failure would probably not disrupt 

measurement. 
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CHAPTER 3 

USING THE WAVE RECORDING SYSTEM 

3.1 INTRODUCTION 

The wave recording system has now been described; this chapter discusses 

the problems considered in putting it to use in the difficult environment just 

seaward of a breakwater. These include how best to fix the equipment to 

the sea bed so that it stays in place undamaged, and how to survey the 

transducer positions accurately underwater. Also discussed are the 

procedures for collecting data, processing it into standard format files of 

pressure measurements, and archiving. The word 'processing' is used here 

to mean converting the raw, compressed data from the recorder's datastore 

into pressure records. The term 'analysis' is reserved for subsequent 

operations such as deriving surface elevation records from the measured 

sub-sea pressures, and estimating directional spectra. More detail on the 

topics covered in this chapter is contained in the Operator's Manual (Bird, 

1992) 

3.2 DEPLOYMENT AND RECOVERY 

Mindful of the harshness of the environment into which the recorder was to 

be used careful thought was given to the arrangements for keeping the 

equipment in place. Movement, including tilting of the transducers, over 
time had to be minimised, and chafe and stress concentration in the cables 

avoided. 

A rectangular steel platform of about 400 kg was provided for the recorder, 
and six smaller platforms of concrete and steel for the transducers. Lengths 

of chain running from one platform to the next in the array served to define 

the spacings, and to restrain the cables which were fixed to the chain at 
intervals with plastic ties. Tying cables at intervals to rock-bolted fixings 
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was considered, but apart from increasing the difficulty of deployment this 

would have created undesirable local flexing. 

The steel recorder platform and concrete transducer mounting blocks were 

set out first, with the blocks previously having been linked together by the 

chain. Spread along the side of the deploying vessel, the platforms were cut 

free as the vessel moved along the line of the array (Plate 9). The line was 

straightened by an extra pull on the last block before it was released. The 

off-line platform in the array was dropped into its approximate position and 

manoeuvred by divers with the aid of air-bags. Good weather conditions 

were essential as the vessel was working close to the armouring blocks on 

the breakwater. Also, excessive rolling would have increased the risk of 

injury from heavy pieces of equipment. 

Originally it had been planned to place two large cruciform-shaped anchors 

at the inner and outer extremities of the array so that the boat could be 

moored and its position controlled by hauling on lines. These were 
fabricated and placed, but unfortunately they were carried away before the 

date of deployment by, it is thought, people trying to steal the buoys, chain 

and shackles. 

In the next stage the recorder, and transducers with cables attached, were 

taken down to their platforms and bolted on (Plate 10). The cables were 

then unrolled from the transducers to the recorder and tied at intervals to 

the chain. Finally the connectors were mated at the recorder, and the 

locking rings tightened. 

The array pattern of transducers is selected to suit the analysis method 

subsequently to be used and the range of wave periods expected: the next 

chapter describes that procedure. Figure 3.1 shows a typical arrangement. 
It is not in general practical to place each component into position with 
great accuracy, so that after deployment a survey was made to establish 
actual positioning. Results from the survey are used in later analysis. Two 

methods of fixing transducer locations were carried out (Rendell 1989): 
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measuring with tapes the distance between selected pairs of transducers, 

and taking horizontal angles of each location with theodolites. The latter 

procedure required buoys to be floated above each transducer at slack tide 

in calm weather. Two theodolites set up at reference stations on the 

breakwater took horizontal angles for each buoy. Standard surveying 

software packages processed the measurements from each method to provide 

coordinates, and these were then compared. It was estimated that the fixes 

were accurate to within at most 0.5 metres, though the error was probably 

less. 

The jobs of setting out the platforms, fitting the instrumentation and 

surveying took about a day each, and involved teams of specialists (divers, 

boat handlers, and surveyors) and careful planning. The recovery procedure 

was simpler as no surveying operations were involved. 

3.3 OPERATION, DATA COLLECTION AND CALIBRATION 

The measurement process proceeds in a number of phases; these are 
described by the following terminology illustrated in Figure 3.2: - 

A 'deployment' is the period during which the system is set out on site, 

normally limited by battery life or operational constraints. In this period 
the transducer array, the modification standard of the electronic assemblies, 

and the version of the internal software are fixed. Currently, measurement 

parameters are also fixed, but future versions will permit changes via the 
laptop PC. 

A 'measurement operation' is defined as the period between two 'start' 

commands, during which the data store is filled with records taken at fixed 
intervals after the start time. If the store becomes full before the second 
start command is received, the wave recorder ceases measurement and 
remains powered down until the user switches it on to begin a 
communication session. Existing data is therefore retained. 
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Figure 3.2 shows, for illustration only, a system deployed for the seventh 

time, in mid November. Short measurement operations in preceding days 

for checking and calibration are labelled with letters. A similar operation 

was started immediately after installation at the site to check that all 

connections had been correctly made. Before leaving the site the start 

command is again given to commence data collection proper: operation I. 

Measurement operations 1 and 2 are shown terminated by the user before 

the data store was full, possibly to avoid gaps in the data, or to take 

advantage of good weather, or to recover data from a particularly 

interesting event as soon as possible. Operations 3 and 4 run on until the 

data store is full, and so gaps in the data follow. The system is shown 

recovered in about mid-April, ending deployment 7. 

Each operation is composed of a number of 'measuring cycles', lasting 

typically 3 hours each. In a cycle the wave recorder is switched on for a 

period of, typically, between 10 and 20 minutes: a 'measuring period'. For 

the remainder of the cycle it is switched off. The choice of these time 

intervals is a compromise between the acceptable interruptions to the 

availability of data and the conservation of battery and data store 

capacities. The three hours, and 17 minutes, durations are traditional 

choices (Driver, 1980a). Each record then yields 2048 measurements, a 

convenient number for the Fast Fourier Transform analysis operation, and 

records are separated by an interval long enough to allow wave conditions 
to change. For any given deployment there may be other constraints, such 

as synchronisation with other measurement apparatus. It may also be an 

advantage to have a cycle duration of about 3.1 hours so that measurements 

are taken at similar points in the tidal cycle. There are other considerations 
that influence choice of duration of the measuring period: the stationarity of 
the record, and the statistical reliability of spectral estimates that can be 
derived from it. These are examined in the next chapter. Each measuring 
period generates a block of data which is stored in the next available page 
of the rampacks. The block ultimately yields one file of pressure data. 
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The wave recorder's command list is as follows: 

KEY 
(case 
sensitive) 

FUNCTION 

T WR sends code representing value of its real time clock. 
This command is used for calibrating the RTC against 
an accurately set wrist watch. 

P Causes WR to switch off, with real time clock alarm disabled. 
(WR will not power up again until the 'wake-up' switch is 

operated. ) This command is used before deployment or 
recovery to prevent power being applied to open connectors. 

S Starts a measurement operation. 

0,1,2, or 3 WR dumps data in the specified rampack. 

Any other WR only echoes the character and sends message 
'unrecognised'. 

character (Pressing such a key is a good way of seeing whether the WR is 

on and the data link is working. ) 

When the wave recorder's response to any key (except P) is finished it 

immediately starts a measurement cycle. Measurement records are put into 

the next free page of data store; only command S causes previous pages of 

the data store to be overwritten. However the records taken after the 

communication session will be taken at times referred to the end of the 

session rather than referred to the operation's original start time. 

Calibration 

The instrument is calibrated at a number of stages in order to give the 

greatest possible assurance that the readings obtained are accurate. Before 

each deployment the recorder and transducers are calibrated separately, the 

former by applying known voltage sources to the inputs, and the latter by 

measuring their output voltages over a range of pressures generated by a 
Budenberg dead-weight tester (Section 2.5.2). An adapter was made to 

enable the tester to apply pressure to the transducer housings, but in use it 

turned out to be inconvenient and inadequately repeatable due to the large 

volume of oil needed and the inclusion of air pockets. Instead the 
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transducers were calibrated out of their housings, and any changes to the 

ambient reading after assembly noted. 

In the next stage of calibration the system as a whole is set to take a 

measurement record at ambient pressure, and the results compared to a 

mercury-in-glass or precision aneroid barometer. 

The system and its components were re-calibrated after recovery to check 

for any drift over time. Other opportunities to cross-check the system's 

performance were taken as they presented themselves, such as an 

independent reading of water pressure next to a transducer, or the output of 

a tide gauge and barometer. However, those measurements tend to be rough 

checks only as they are likely to be less accurate than the recorder's output. 

An additional check on the electronic circuits is provided by the internal 

calibration sources which are measured and recorded at the beginning and 

end of each measurement period. All calibration data was assessed and 

combined into correction factors which were incorporated into the data 

processing software. 

In a similar way the accuracy of the real-time clock was assessed during the 

deployment by using the 'T' command and comparing the recorder's 

response to the correct current time. A correction factor was then applied 

by the data processing software. 

3.4 DATA PROCESSING 

Two programs, written in Fortran and running on either the portable or a 
desktop PC, convert the coded and compressed dumpfiles into pressure 

records in standard form (Figure 3.3). 

Paginate 

The first few lines of a typical dump file are shown in Figure 3.4 . That file 
is simply an image of one of the wave recorder's rampacks, with each of the 
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Report to printer/ 
file 

Program 

PAGINATE" 

Dumpfile 
(one) 

(on floppy disk 
from laptop PC) 

Report to printer/ 
file 

Program 
`DECODE 

Paginated files 
(up to 32) 

(on hard disk 
on desk-top PC) 

Decoded 
files 

(on hard disk) 
(on desk-top PC) 

Figure 3.3 : Data processing block diagram 

262,144 bytes represented as a pair of hexadecimal characters. The first 

step is to split the dump file up into files containing one measurement 

record each. This is done by the program 'Paginate' which also forms six 

columns of data, one for each transducer. An example of the resulting file 

is given in Figure 3.5. The first line contains a coded representation of the 

time the first set of six readings were taken, and the second contains the 

first six readings in uncompressed form (4 characters each) together with 

readings of the two calibration sources. These eight readings are taken 

again at the end of the measurement period. Paginate constructs names for 

these new files from the name of the dump file in such away as to enable 
J 

any processed file to be traced back to its origin in the wave recorder's data 

store. The correspondence is listed in a report that Paginate sends to the 

printer, shown in Figure 3.6. The 'format error' column records the result of 
checks that pages of the dumpfile conform to the expected structure. (F 

stands for 'false' - no error. ) 
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1 
dumping rmpk 01 

Rampack number 
4003 0115 0401 
OOCF 0734 03D1 
D383 E3B8 07DE 
07E6 CE7D E2B7 
DEBA 02E3 CC7B 
CB7D E3BE 05DD 
01DF CD7E E6BF 
E3C1 02E4 CA7B 
CA7B EOBD 02DD 
07E0 CD7C E1B7 
EOB5 08EO D080 
CD7C E1B7 02E2 
FDEO CB7D E2BC 
E4BD 01EO CA7B 
CA7C DFBC 05E1 
07DD CA7A DFBA 
EOB9 09DD CD7D 
CD7C E1BD 01E2 
FEE2 CA7D E6B9 
EOBB FEE3 D07D 
CE7D E1B7 06DD 
07DD CF7E EOB8 
E3B8 05E0 C97E 

: 01 
5900 
0381 
D381 
05E7 
DDBE 
CC7E 
02E1 
E3CO 
CC7C 
09E1 
DEB5 
CB7B 
FBDE 
E4BD 
CC7B 
08DC 
EOBD 
CB7B 
FEE3 
EOBA 
D07F 
07E0 
E3B9 

Pa; 
0000 
03E6 
E2B7 
CD7C 
02E1 
ESBD 
CC7E 
02E2 
DEBA 
CE7D 
05E1 
E2BB 
CC7D 
03E2 
DEBB 
CA7A 
07DF 
E4BC 
CC7F 
01E1 
EOB7 
CD7D 
03E0 

;e number : 00 
0000 0000 0000 
03B8 0406 03DC 
07E1 D07F E1B8 
EOB8 02E5 CC7B 
CB7C EOBF 04DF 
05DE CC7D E6BE 
E4C1 01E3 CA7C 
C97B E2BF 01DF 
04DE CC7C DFB7 
E1B6 09E1 D07F 
CF7F DFB7 04E2 
OOE1 C97C E2BC 
E3BC FEDF CB7C 
C97C E2BE 05E2 
05E0 CB79 DFBA 
E0B7 09DC CB7B 
CE7D EOBF 04E1 
FFE1 C97B E6B9 
E3BB FDE3 CD80 
CE7C E1B7 04E0 
07DE D080 EOB7 
E2B7 06E0 CB7D 
CB7D EIBE 03DF 

Figure 3.4 : First few lines of a 'dump file' (DEP6.4R1) 

Rampack number : 01 Page number : 00 
4003 01 15 0401 5900 0000 0000 0000 0000 
OOCF 07 34 03D1 0381 03E6 03B8 0406 03DC 

D3 83 E3 B8 07 DE 
D3 81 E2 B7 07 El 
DO 7F El B8 07 E6 
CE 7D E2 B7 05 E7 
CD 7C EO B8 02 E5 
CC 7B DE BA 02 E3 
CC 7B DD BE 02 El 
CB 7C EO BF 04 DF 
CB 7D E3 BE 05 DD 
CC 7E E5 BD 05 DE 
CC 7D E6 BE 01 DF 
CD 7E E6 BF 02 El 
CC 7E E4 Cl 01 E3 
CA 7C E3 Cl 02 E4 
CA 7B E3 CO 02 E2 
C9 7B E2 BF 01 DF 

, CA 7B EO BD 02 DD 
CC 7C DE BA 04 DE 
CC 7C DF B7 07 EO 
CD 7C El B7 09 El 
CE 7D El B6 09 El 
DO 7F EO B5 08 EO 
DO 80 DE B5 05 El 
CF 7F DF B7 04 E2 

Figure 3.5 : First few lines of a 'paginated' file (D604R1. P00) 
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Program running : PAGINATE Version : 3.0 1030 16.3.89 

Input pathname - A: DEP6.4R1 

LINE 1 OF INPUT PAGE O/P FILE FORMAT ERROR 

Yes 
Rampack number 01 Page number 00 C: \WR1\DATA\D604R1. P00 No 
Rampack number : 01 Page number : 01 C: \WR1\DATA\D604R1. PO1 No 
Rampack number O1 Page number : 02 C: \WR1\DATA\D604R1. P02 No 
Rampack number : 01 Page number 03 C: \WR1\DATA\D604R1. P03 No 
Rampack number : 01 Page number : 04 C: \WR1\DATA\D604R1. P04 No 
Rampack number : 01 Page number : 05 C: \WR1\DATA\D604R1. P05 No 
Rampack number : 01 Page number 06 C: \WR1\DATA\D604R1. P06 No 
Rampack number : O1 Page number : 07 C: \WR1\DATA\D604R1. P07 No 
Rampack number : 01 Page number 08 C: \WR1\DATA\D604R1. POS No 
Rampack number : 01 Page number 09 C: \WR1\DATA\D604R1. P09 No 
Rampack number : 01 Page number : OA C: \WR1\DATA\D604R1. P10 No 

. Rampack number : 01 Page number : OB C: \WR1\DATA\D604R1. P11 No 
Rampack number : 01 Page number OC C: \WR1\DATA\D604R1. P12 No 
Rampack number 01 Page number OD C: \WR1\DATA\D604R1. P13 No 
Rampack number : 01 Page number OE C: \WR1\DATA\D604RI. P14 No 
Rampack number : 01 Page number : OF C: \WR1\DATA\D604R1. P15 No 
Rampack number 01 Page number : 10 C: \WR1\DATA\D604RI. P16 No 
Rampack number : O1 Page number : 11 C: \WR1\DATA\D604R1. P17 No 
Rampack number : 01 Page number : 12 C: \WRI\DATA\D604R1. P18 No 
Rampack number : O1 Page number : 13 C: \WR1\DATA\D604R1. P19 No 
Rampack number : 01 Page number : 14 C: \WR1\DATA\D604R1. P20 No 
Rampack number : 01 Page number : 15 C: \WR1\DATA\D604R1. P21 No 
Rampack number : 01 Page number : 16 C: \WR1\DATA\D604R1. P22 No 
Rampack number 01 Page number 17 C: \WR1\DATA\D604RI. P23 No 
Rampack number : 01 Page number : 18 C: \WR1\DATA\D604R1. P24 No 
Rampack number : 01 Page number : 19 C: \WR1\DATA\D604RI. P25 No 
Rampack number 01 Page number 1A C: \WR1\DATA\D604RI. P26 No 
Rampack number 01 Page number : 1B C: \WR1\DATA\D604R1. P27 No 
Rampack number O1 Page number : 1C C: \WR1\DATA\D604R1. P28 No 
Rampack number : 01 Page number : 1D C: \WR1\DATA\D604R1. P29 No 
Rampack number : 01 Page number : 1E C: \WR1\DATA\D604R1. P30 No 
Rampack number : O1 Page number IF C: \WR1\DATA\D604R1. P31 Yes 

Last line of C: \WR1\DATA\D604R1. P31 invalid 

Figure 3.6 : Paginate Report for D604R1. Pnn (The last file is valid, the 
format error arose because it was not followed by another file) 

Decode 

This program operates in batch mode on the series of files produced by 
Paginate, producing for each one a new file with a text header and six 
columns of pressure data in millibars, Figure 3.7. These new files are 
automatically given names related to the originals in order to maintain 
traceablilty. The header contains all the information needed to make use of 
the file, including start time, references to the modification standard of 
drawings and software, and the calibration figures applied (by Decode) to 
the pressure readings. As Decode runs it sends a report to a log file similar 
to the one in Figure 3.8 which may later be printed. 
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Decode's function is to work out the actual pressure readings from the 

compressed values in the Paginated files, applying to those the values of the 

amplifier gain and offset settings, the ADC transfer function and the 

pressure transducer characteristic. Corrections are applied to the pressure 

and the real time clock readings from calibration readings supplied by the 

user. 

The Decode Report forms a convenient summary of the data obtained during 

a deployment. It also provides a rough indication of wave activity in the 

file by printing the maximum signal range in millibars of the channels in 

the record. The internal calibration readings are also presented; in this case 

the true values were 2000 and 4000 millivolts. (The first pair are from the 

beginning of the record, and the second from the end. ) Excessive deviation 

is automatically flagged by the 'Cal' column, where F means no error. While 

evaluating pressure values 'Decode' has to restore the full 12 bit precision 

of the readings from the least significant 8 bits that are available from the 

Wave recorder 
Mod standard 

Location 
Transducer layout 
Time/Date Ist rdg 

"Data element values 
" Data array columns 

Data array rows 
Reading interval 

"Tr. o/s errors used 
". File created by 
it Version 

1408 1415 1437 1425 
1410 1417 1433 1425 
1410 1415 1432 1424 
1407 1413 1431 1425 
1405 1411 1432 1424 
1404 1410 1430 1425 
1403 1409 1428 1427 
1403 1409 1427 1431 
1402 1410 1430 1432 
1402 1411 1433 1431 
1403 1412 1436 1430 
1403 1411 1437 1431 

WR1, System No. 2 1" 
Deployment 6 0't 

Elmer, W. Sussex 0" 
WR1-0079 iss A Oil 

06 Jul 92 1734: 33 : 0" 
Abs pressures, mb lit 

6, ch2 to ch7 : 6" 
1356, sim. rdg sets : 1356" 

500 ms : 500" 
40, -48,33, -2,74,4 : 0" 

DECODE4 0't 
4.1 3.7.92 : 0" 

1428 1416 
1429 1418 
1429 1421 
1429 1427 
1427 1428 
1424 1426 
1424 1423 
1424 1421 
1426 1419 
1427 1417 
1427 1418 
1423 1419 

Figure 3.7 : First few lines of a 'decoded' file (D604R1. A00) 
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Program running DECODE4 
version 4.1 3.7.92 

at 29 Jun 93 120S: 54 

Operation start at: 02 Jul 92 2033: 30 
RTC error factor 1.00000000 

I/P FILE O/P FILE FIRST RDG AT Prange ERRORS CAL VOLTAGES/mV 
/mb Rng Cal 0,0 0,1 1,0 1,1 

C: \WR1\DATA\D604R1. P00 . A00 06 Jul 92 1734: 33 29 F F 1999 3995 1999 3996 
C: \WRI\DATA\D604R1. PO1 . A01 06 Jul 92 2034: 35 25 F F 1997 3996 1999 3996 
C: \WR1\DATA\D604R1. P02 . A02 06 Jul 92 2334: 37 12 F F 1999 3995 1999 3996 
C: \WR1\DATA\D604R1. P03 . A03 07 Jul 92 0234: 39 29 F F 1998 3995 1999 3995 
C: \WRI\DATA\D604R1. P04 . A04 07 Jul 92 0534: 41 22 F F 1999 3995 1999 3996 
C: \WR1\DATA\D604R1. P05 . A05 07 Jul 92 0834: 43 27 F F 1998 3995 1999 3996 
C: \WR1\DATA\D604R1. P06 . A06 07 Jul 92 1134: 45 4 F F 1999 3995 1999 3996 
C: \WR1\DATA\D604R1. P07 . A07 07 Jul 92 1434: 47 26 F F 1999 3996 1999 3996 
C: \WR1\DATA\0604R1. P08 . A08 07 Jul 92 1734: 49 41 F F 1997 3995 1999 3996 
C: \WR1\DATA\D604R1. P09 . A09 07 Jul 92 2034: 51 37 F F 1999 3995 1999 3996 
C: \WRI\DATA\D604R1. P10 . A10 07 Jul 92 2334: 53 5 F F 1999 3995 1999 3996 
C: \WR1\DATA\D604R1. P11 All 08 Jul 92 0234: 55 24 F F 1998 3995 1999 3996 
C: \WR1\DATA\D604R1. P12 . A12 08 Jul 92 0534: 57 41 F F 1997 3995 1999 3996 
C: \WR1\DATA\D604R1. P13 . A13 08 Jul 92 0834: 59 35 F. F 1997 3995 1999 3996 
C: \WR1\DATA\0604R1. P14 . A14 08 Jul 92 1135: 01 8 F F 1999 3995 1999 3996 
C: \WR1\DATA\D604R1. P15 . A15 08 Jul 92 1435: 03 23 F F 1999 3995 1999 3996 
C: \WRI\DATA\D604R1. P16 . A16 08 Jul 92 1735: 05 33 F F 1997 3995 1999 3996 
C: \WR1\DATA\D604R1. P17 . A17 08 Jul 92 2035: 07 36 F F 1999 3995 1099 3996 
C: \WR1\DATA\D604R1. P18 . A18 08 Jul 92 2335: 09 15 F F 1999 3995 1999 3996 
C: \WR1\DATA\D604R1. P19 . A19 09 Jul 92 0235: 11 15 F F 1999 3995 1999 3996 
C: \WR1\DATA\D604R1. P20 . A20 09 Jul 92 0535: 13 30 F F 1997 3995 1999 3996 
C: \WR1\DATA\D604R1. P21 . A21 09 Jul 92 0835: 15 33 F F 1999 3995 1999 3996 
C: \WRI\DATA\D604R1. P22 . A22 09 Jul 92 1135: 17 21 F F 1997 3995 1999 3996 
C: \WR1\DATA\D604R1. P23 . A23 09 Jul 92 1435: 19 18 F F 1999 3995 1999 3996 
C: \WR1\DATA\D604R1. P24 . A24 09 Jul 92 1735: 21 31 F F 1999 3995 1999 3996 
C: \WR1\DATA\D604R1. P25 . A25 09 Jul 92 2035: 23 28 F F 1997 3995 1999 3996 
C: \WR1\DATA\D604R1. P26 . A26 09 Jul 92 2335: 25 25 F F 1997 3996 1999 3996 
C: \WR1\DATA\D604R1. P27 . A27 10 Jul 92 0235: 27 8 F F 1997 3995 1999 3996 
C: \WRI\DATA\D604R1. P28 . A28 10 Jul 92 0535: 29 24 F F 1997 3995 1999 3996 
C: \WR1\DATA\D604R1. P29 . A29 10 Jul 92 0835: 31 19 F F. 1999 3Q95 1999 3996 
C: \WR1\DATA\D604R1. P30 . A30 10 Jul 92 1135: 33 24 F F 1998 3995 1999 3995 
C: \WR1\DATA\D604R1. P31 . A31 10 Jul 92 1435: 35 8 F F 1997 3996 1999 3996 

Figure 3.8 : Decode Report for D604R1. Ann 

datastore. Any errors in this -process discovered by the program's checking 

routines are flagged in the 'Rng' column. 

The decoded files form the output of the wave recording system: pressure 

readings that contain all available calibration corrections and context 
information. The files are in ASCII, and may therefore be inspected and 
printed using a text editor or DOS commands. They may also be read into 

analysis programs written in languages such as Fortran or Basic, or into 

proprietary analysis packages. 
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Name of dumpfile 

Name of file of data 

Deployment Numb 

Operation Number 

Rampack Number 

F 
DEPx. yRz 

from one measurement record 

DxOyRz. PnnPage 

number in Rampack 

Type of data 

eg P- paginated 

A- decoded 

a) binary and ASCII files 

Isuffix required by package 

DxyzCnnk. DAT 

of-data Transducer number -Type 
(x = whole set) 

eg C- surface elevation 

S- spectrum (from surface elevation) 

G- spectrum (from pressures) 

b) files from proprietary packages (suffix reserved) 

Figure 3.9 : Filename conventions 

Managing the data 

A typical deployment generates several hundred measurement records, each 

yielding a paginated file and a decoded pressure file. Further analysis 

creates many other data sets, such as - surface elevations and spectral 
densities. Applying just the basic analysis steps generates many thousands 

of files, adding up to many hundreds of megabytes, per deployment. 

However it is important to be able to connect all related information to the 

corresponding data files (Driver 1980b). Figure 3.9 indicates how 

filenames are constructed (within MS DOS constraints) to preserve 
traceability. 
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Examples of other information that must be related to the data are: - 

i) Fieldwork notes: Records of any fieldwork event such as placing 

platforms, deploying and recovering the system, recovering data. 

Times and dates, actions, commands and responses, personnel, notes 

of any difficulties, and special observations are recorded on a 

'fieldwork record sheet'. 
ii) Site survey data: Plans of the site; EDM, levelling and tape survey 

data; drawings of structure and transducer locations worked up from 

the data. 

iii) Equipment modification standard: Drawings of transducer layout, 

serial numbers and cable numbering, and modification standards of 
hardware and operating software. 

iv) Calibration and test data: Records of transducer calibration in the 

laboratory; printouts and associated calculations for system test data 

taken in the laboratory; calculations on accuracy of still water level 

measurements and real time clock value made from field data during 

deployment; and survey data on transducer positions. 

v) Observations: Independent measurements or observations of related 
factors such as tides, wave height and period, direction, atmospheric 

pressure etc. 
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CHAPTER 4 

DATA ANALYSIS 

4.1 INTRODUCTION 

The subject of this chapter is the analysis of the data from measurements 

already described, with the aim of extracting as much information as 

possible about the wave conditions and on the properties of the adjacent 

coastal structure. 

The approach taken is governed by the overall measurement objectives: 
1) To estimate the incident wave spectrum from pressure records at fixed 

locations in a reflective wave field. 

2) To provide time records showing the movement of individual crests 

as suitable 'input data' for other measurements, for example of wave 
impact, loading, aeration and wave transformation, and 

3) To estimate the wave reflection properties of the nearby coastal 

structure. 
The measurement of long-term wave statistics is one which could be 

achieved by the wave recorder, but is less relevant to this study. 

The analysis is carried out on complete data sets rather than data arriving in 

real time, so plenty of processing time on powerful desk-top personal 

computers was available. Signal processing techniques directed towards 

optimising processing time are therefore of less interest than those aimed at 
extracting maximum possible information from the data. 

The analysis is implemented using a range of software tools: most routines 
required the flexibility of a high level language such as Fortran and the 
functional power of a signal analysis package. (ASYSTR from Keithley 
Instruments was used initially, and subsequently MATLABR from 
MathWorks Inc. ) Interactive packages were more convenient for first 

examination of records, and quick testing of new ideas before more rigorous 
coding. 
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A great deal is known about the behaviour of waves in a deterministic sense 

from the study of hydrodynamics; the salient results of the wave theories 

are presented in the next section. This serves to define the nomenclature 

and conventions adopted, and to present relevant results of theory for 

convenient reference. In Section 4.3 deterministic wave theory is used to 

derive water surface elevation records from the sub-sea pressure records. 

Section 4.4. contains a review of methods for estimating the directional 

wave spectrum, and in 4.5 an analysis scheme is described that incorporates 

the most appropriate of these methods. 

The selection of the analysis tools and details of the methods of application 

are as much a matter of engineering judgement as mathematical rigour. 
Each technique draws out certain features of the data, but each has 

weaknesses in particular situations. The underlying processes and the 

overall measurement problem must be carefully idealised or modelled. One 

way of thinking about the problem is as follows: an unknown, stochastic, 
input signal (the incident, irregular, wave field) is applied to a system 
(sea-bed and structure of known geometric form). The system transforms 

the input in what may or may not be a linear fashion to provide an output, 
the reflected wave field. The observations available are the time records of 

surface elevation from the mixture of incident and reflected wave fields, 

taken at a sample of six locations fixed with respect to the structure. The 

problem is therefore one of system identification: one wants to know what 
the system is doing to the input. The experimenter does not have control 
over the choice of input, although after a long deployment a considerable 
variety of inputs will have been applied. 

Another approach is to attempt to separate incident from reflected waves 
from the observed data alone, without reference to any knowledge of the 

structure (Kajima, 1969, Gilbert and Thompson, 1978). It was not clear at 
the outset to what extent that was possible in the case of an unknown angle 
of approach. 
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However, in each case the objective is to analyse or decompose a measured 

sea state into its components. The whole wave pattern is thus to be 

expressed in the form of a distribution over frequency and direction: the 

directional wave spectrum. 

4.2 WATER WAVES 

Waves on the surface of the sea are caused by wind (wind waves), the pull 

of the moon and sun (tides), underwater earthquakes and volcanoes 
(tsunamis), and the motion of ships (wakes). The shortest in period are 

capillary waves and the longest are the tides. Wind waves have periods 

within the range of 1 to 30 seconds, although they can undergo processes at 

the shoreline to produce oscillations of up to several minutes period. 
Figure 4.1 classifies ocean waves by their period, and gives an indication of 

the typical amplitudes of each type. The range of period from about 3 to 20 

Wave period 
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and moon 
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.r 
10 1 10-' 10-2 10-s 10-4 10-5 
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Figure 4.1 : Classification of ocean waves according to wave period 
(from Horikawa, 1978) 

127 



seconds is of most interest here. The term gravity waves is also used for 

these waves from the restoring force that drives them. 

The way these waves behave, and the mathematical descriptions of them, 

are not simple. Propagation is dispersive so that wave speed, and 

consequently length, are functions of period and depth. Thus in the area of 

a storm a wide range of wave frequencies is generated creating a confused 

water surface ('sea'), but at a distant shoreline the longer period waves 

arrive first so there a more regular wave pattern ('swell') is seen. 

As they approach shallower coastal waters waves undergo changes, 

collectively known as wave transformation. Speed and length decrease and 

the profile alters from approximately sinusoidal to one of sharper peaks and 

longer troughs, until in the limit breaking occurs. Speed changes resulting 
from dispersion in regions of uneven depth lead to refraction. Reflection 

occurs at obstacles and other discontinuities such as sand bars, and 
diffraction occurs around them. 

4.2.1 Deterministic wave theories 

Because of this complex behaviour a complete and general mathematical 

theory describing waves in all conditions has not yet been devised. The 

principal difficulty is that one of the boundary conditions, the free surface, 
is one of the unknowns. So far, a number of theories has been developed, 

each describing with greater or lesser accuracy waves in particular 

conditions. All the theories mentioned below assume that water is 

incompressible and inviscid. 

Wave motion may be divided into two main categories: oscillatory, in which 
there is no net mass transport (except for second order effects), for example 

wind generated waves, and translatory, for example tidal bores. The former 
have been sub-divided into small amplitude waves, finite amplitude waves, 

and long waves. The small amplitude wave equations are linear in wave 
height enabling superposition of simple components to form more complex 
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wave patterns. If the assumption of small amplitude is not valid then a 

better description will be provided by the higher order, non-linear, theories 

such as those of Stokes, and cnoidal theory. Long wave theory describes 

the behaviour of tides, and wind waves in very shallow water. 

Selection of an appropriate theory to use depends on the relative values of 

three parameters: wave height H, wave length L and the mean depth d (Fig 

4.4). These are combined into wave steepness HIL, relative height H/d, and 

relative length Lid (or its reciprocal d/L the relative depth). In deep water 

it is the steepness that matters most: if that is not too great then small 

amplitude, linear, theory provides good results. The sinusoidal form of 

'linear' waves is shown in Figure 4.2 a). From fundamental hydrodynamics 

the constraint HIL < 1/16 tanh 2nd/L ensures that the non linear terms in H 

are less than 5% (Komar, 1976, Muir-Wood, 1969). For steeper waves the 

higher order Stokes equations fit better (Figure 4.2 b). In shallow water 

relative height is most significant; linear theory applies if that is small, and 

cnoidal theory if not (Figure 4.2 c). For intermediate depths the Ursell 

(a) AIRY WAVE: DEEP WATER SMALL WAVE STEEPNESS 

(b) STOKES WAVE: DEEP WATER, LARGE WAVE STEEPNESS 

(C) CNOIDAL WAVE : SHALLOW WATER 

Figure 4.2 : Wave profiles from major wave theories 
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parameter, U., 
2(2n) 

ýL) (L) 3 
(of the form steepness x the cube of relative 

length) is the guide as it is a measure of the relative importance of the type 

of flow which leads to terms in H2. Linear theory will produce acceptable 

results if this parameter is sufficiently small (Ursell, 1953). 

Longuet-Higgins (1956) quantified this limit suggesting HL2/d3 < 32n2 /3 . 
Long wave theory is not relevant to the data to be analysed in this work. 

Much work has been done to estimate the ranges of applicability both 

experimentally and numerically of the theories (Horikawa 1978, Sarpkaya 

and Isaacson 1981). The motivation is often to show that linear theory may 
be applied in particular circumstances since most analysis techniques are 
founded on the assumption that complex waves are the superposition of 
independent sinusoidal components. Komar (1976) and LeMehaute (1976) 

have presented charts that predict theoretically the expected ranges of 

validity of the theories. Sarpkaya and Isaacson's redrawing of the latter in 

non-dimensional form is reproduced here in Figure 4.3. Guza and Thornton 
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Figure 4.3 : Ranges of suitability of various wave theories 
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(1980) investigated the performance of linear theory in a series of 

measurements of surface elevations, pressures and currents over a beach, 

from the region of wave breaking to a depth of 10m. Wave frequencies 

were between 0.05 and 0.3 Hz, and Ursell numbers less than 0.05 in 10m up 

to numbers much greater than unity in Im in the area of breaking. At a 

point, comparison of measured surface elevation to that predicted from 

sub-surface pressure was reasonably good until close to the region of 
breaking. Guza and Thornton point out that the accuracy of the theory 

depends on which of the parameters are compared, and that errors due to 

any weak non-linearity accumulate over distance as the waves shoal towards 

the beach. 

4.2.2 Small amplitude (linear) wave theory 

Developed by George B. Airy in 1845 this theory assumes the wave height 

to be sufficiently small in comparison to other dimensions that terms in H 

to the power two or more are negligible. The equations for surface 

elevation are therefore linear in H and are relatively easy to solve. The 

principle of superposition applies, and a complex sea state may be modelled 

as a combination of sinusoidal, long-crested wave trains of different heights 

and directions of propagation. Linear theory has been used for most of the 

analysis described in this chapter. 

Figure 4.4 defines a coordinate system and the relevant wave parameters. 
The single period wave component (also known as a 'regular wave') is 

long-crested: there is no variation in the y direction, all motion is 

2-dimensional. The parameters are: - 
H wave height, crest to trough. (Amplitude is therefore H/2. ) 

L wave length 

d depth, mean water level (MWL) to sea-bed. 

11 instantaneous surface elevation relative to MWL. 

In addition to those on the diagram are: - 
T wave period 
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c wave speed, (also known as celerity and phase velocity). From 

the definitions of L and T, c=L/T. 

C9 group 'velocity' (the speed at which wave groups, and energy, 

travel). 

p pressure (function of x, z and t). 

(D velocity potential (function of x, z and t). 

V particle velocity, V= -grad (D. 

Some of these parameters are commonly expressed in alternative forms: - 
k wave number = Zit/ L 

f wave frequency = 11T 

Co radian frequency = 2nf 

so that c= co/k. 

The theory predicts wave speed, length, group velocity, particle velocities 

" and displacements, shape of the free surface, pressures and average energy 

Figure 4.4 :. Coordinate system and definition of variables 
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flux in terms of the basic parameters T, H, L, and d. Each of the resulting 

expressions may be simplified, both for deep and for shallow water. Table 

4.1 gives some of these results in full and simplified forms. 

It can be seen that: 

i) The shape of the wave profile is sinusoidal. 

ii) The function for wave length is implicit, and so has to be solved 

numerically. 
iii) As depth reduces the waves get shorter. Since the period is unchanged 

they also slow down. 

iv) In deep water wave length and speed are functions of period but not 
depth. This dispersion causes the surface pattern in a complex sea to 

change as the constituent sinusoidal waves envisaged by the theory move 
in and out of phase. 

v) In shallow water speed is a function of depth but not period. There is 

no dispersion. 

vi) Pressure below the surface has a hydrostatic component proportional to 

distance below surface, and a component caused by the wave. The 

latter diminishes in amplitude with increasing depth and wave 

frequency. Pressure variation at a point is at the same frequency as the 

wave, and is in phase. (The absence of phase shift is an important 

property for this work as any phase lag between pressure and surface 

elevation would have made it difficult to base a directional wave 

recorder on pressure measurement alone. ) 

Expressions for more complex sea states formed by adding these sinusoidal 

components together can be derived using basic trigonometrical identities. 

For example a standing wave is produced by adding two components equal 

in size and frequency but travelling in opposite directions, such as occurs 

with perfect wave reflection. Less perfect reflection produces a partial 

standing wave. Two similar waves moving in slightly different directions 

produce a short crested sea, with humps and hollows appearing in a diamond 

shaped pattern. Two waves of slightly different frequency produce the 

familiar 'beating' interference pattern at the difference frequency, 
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resembling a series of groups of waves. Owing to the dispersive nature of 

wave propagation the groups move more slowly than the wave crests making 

up the group. 

4.2.3 Wave Reflection 

When waves meet an obstruction, the part of their energy that is not 
dissipated (by mechanisms such as wave breaking) or transmitted (through a 

porous structure or by overtopping) is reflected. The degree of reflection is 

characterised by a 'reflection coefficient'. In general the reflection 

coefficient is a strong function of wave frequency, and is also dependent 

upon the shape, roughness and porosity of the reflecting surface. 

For regular waves the reflection coefficient may be defined simply as the 

ratio of reflected to incident wave height: 
H, 1 H, ý4.1) 

For random waves the frequency dependency of the reflection coefficient is 

acknowledged by the modified definition: 

(4.2) Cl 
Et 

where E denotes the energy (proportional to H2) integrated over the 

frequency band of gravity waves. 

Perfect 2D reflection from a wall 

A vertical, smooth, non-porous wall rising from a flat sea-bed will reflect 

all incoming wave energy, and for linear, regular waves produce the classic 

pattern of nodes and anti-nodes shown in Figure 4.5. This form is derived 

analytically by adding the incident wave 

11= 
2` 

cos(0) t-kx) (4.3) 

to the reflected wave 

11, = 
L' COS(cN+kx) (4.4) 
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Figure 4.5 : Standing wave system, perfect reflection from a barrier 

to give for Hi = Hr 

11 =H; cos(kx) cos (cot) (4.5) 

Terms in time and distance are separate so the water surface motion is 

sinusoidal, and at all places in phase except for the changes of sign between 

adjacent pairs of nodes. 

Perfect 2D reflection from a sloping surface 

As has been noted the length and speed of waves decrease as they move into 

shallower water. Therefore if regular waves encounter a sloping structure 

such as a beach or a breakwater then the node and antinode positions will be 

more closely spaced inshore than offshore. In the absence of breaking and 

other energy dissipating mechanisms the reflection coefficient will be unity. 
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Lamb (1932) solved the linear long wave equations for this case, and 

Friedrichs (1948) the linear small-amplitude equations. Both predict a 

nodal structure which is described in terms of zero-order Bessel functions. 

Amplitudes are given as a function of offshore distance x by: 

11pk=aJo()+bYo(2w gi, a) (4.6) 

where a and b are coefficients with dimension length determined by the 

boundary conditions. Hotta et al (1981) developed a method of predicting 

nodal structure over a double slope (although their interest was primarily in 

waves of period greater than 15 seconds). Simultaneous equations for 

amplitude (of the form in Equation 4.6) and particle velocity on each slope 

were solved with the constraint that those quantities respectively match 

across the slope intersection line. Davidson (1993) has extended this 

solution to more complex slopes, enabling the modelling of breakwaters 

fronted by a berm. 

Partial 2-D reflection 

If some of the energy is dissipated or transmitted then the reflection 

coefficient will be less than unity. The equations describing such water 

behaviour are complicated and not, in general, linear. However in less 

extreme conditions it may be possible to consider the overall effect of these 

mechanisms as a linear process when observed from a distance. That is to 

say the process may be regarded as a 'black box' which produces an output 

that is related to its input according to the normal criteria for linearity. If 

the incident waves are modelled as the sum of sinusoidal components, the 

linear process applies fixed amplitude and phase changes to each component 

according to its frequency, and independently of the size of the other 

components. However, in many cases these simplifications will not apply, 

and non-linearity must be taken into account in interpreting the data and 

characterising the performance of the structure. 

The amplitude change imposed by the black box is equivalent to the 

reflection coefficient. For the two-dimensional case, at a sufficient distance 
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from the structure for linear wave theory to apply, the incident and reflected 

waves add to form a mixture of standing and progressive waves. There will 
be regions of lower amplitude waves at partial nodes and enhanced 

amplitude waves at partial antinodes. To the eye the crests appear to 

perform a 'swooping' motion as they pass slowly through the antinodes and 

quickly through the nodes. Combining the incident and reflected waves of 

Equations 4.3 and 4.4 gives: 

1i =Hi cos((ot-kx) + H, cos(cot +kx) (4.7) 

but in this case H, < H, . 

From this it may be shown (Sarpkaya and Isaacson, 1981) that 

Hmax=Hr+H, (4.8) 

and Hmin=H, -H, (4.9) 

so that if Hm, 
x and Hm; 

n are estimated (conveniently done in the laboratory by 

a travelling wave gauge) then H, and H, , and hence r, may be found. 

The question of whether waves would break or not on a sloping beach was 

addressed by Miche (1944), who postulated that waves below a critical 

steepness while in deep water would not break. Reflection in that case 

would be complete. Waves of greater than the critical steepness would 

break. Miche envisaged a process of saturation in which reflected wave 

height increases with the incident wave height until the latter reaches 

critical steepness. The reflected wave height then stays at that level even as 

incident wave height and steepness rise further. Miche's critical steepness, 

a function of beach slope angle 0 is: 

(. 
_ 

(ii. ) 2 tan2 (4.10) 
crº1 71 

where the subscript 0 denotes the deep water value. 

The Iribarren number is often used as a predictor of the degree of reflection 

at a slope: 
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Hº, o 2 1, =tang/(Lo) (4.11) 

These methods assume substantially monochromatic waves; the position is 

complicated for waves of two or more components of widely separated 

frequencies. The tendency of a small wave component to break will be 

affected by the presence of a larger component of different frequency. 

Detailed examination of the wave reflection properties of structures is 

outside the scope of this work. 

Non-normal incidence 

Waves approaching a vertical structure obliquely reflect from it so that the 

angle of reflection is equal to the angle of incidence. The corresponding 

crests and troughs take on a diamond pattern which appears to propagate 

along the structure. The corresponding geometry is described by Silvester 

(1974), and Sarpkaya and Isaacson (1981, pp254-256). Reflection of 

oblique waves from gently sloping structures such as beaches is 

considerably more complex, the description given by Guza and Bowen 

(1975) involving confluent hypogeometric functions. 
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The first term is the hydrostatic component, and the second and third are 
due to the waves, with the third term being the contribution of local kinetic 

energy. This, being of second order, is usually ignored leaving the signal 

component (denoted by the prime): 

p/ = pC (4.13) 

The profile of a linear progressive wave of height H and radian frequency co 

is: 

i1(x, t)= 1 cos(wt-kx) (4.14) 

and the pressure signal becomes: 

p/=PC 
pro 2 coshk(d+z) () 4.15 

öt k sinh (kd) 

Substituting the dispersion relation (Table 4.1) 

gives: 

p_ P9q 
coshk(d+z) (4.16) 

cosh (kd) 

or in terms of head of pressure: 

pý 
_ 

cosh k(d+ z) 
Pg = ll cosh(kd) 

(4.17) 

a sinusoid of peak-to-peak magnitude 

Hp =H 
cosh k(d + z) (4.19) 

cosh (kd) 

The subsurface peak-to-peak pressure head at depth z is therefore equal to 

wave height multiplied by a factor related to wavenumber k (and hence 

frequency) and mean water depth z. This factor, termed the 'pressure 

attenuation factor', is graphed in Figure 4.6 for several mean depths. The 

severe attenuation of higher frequency waves in depths over about 20 metres 

imposes limitations on the sensing of waves by sub-surface pressure. In 

order to predict the wave height from measured pressure head Equation 4.19 
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Figure 4.6 : Wave pressure attenuation with frequency and depth 
(from Driver, 1980) 

is transposed to give Equation 4.20 in which the subscript 'a' denotes that 

the estimate has been obtained with linear (Airy) theory. 

Ha =Hp coshkd (4.20) 
cosh k(d +z) 

The assumption of linearity enables the pressure attenuation factor (which 

is derived above for a single sinusoid) to be applied frequency by frequency 

to a complex sea composed of many such components. 

4.3.3 Review of experimental work 

Since pressure transducers were first used 'to sense waves there has been a 

need to establish the accuracy of conversion of measured pressure to surface 

conditions. Unfortunately the accuracy was not found to be particularly 

good in certain cases, and many studies have been carried out since to 
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determine both the sources of error, and possible methods of correction. 
Most writers introduce a simple factor to account for all the shortcomings, 

whatever their causes. Normally designated 'N' it is the ratio of actual wave 
height to that predicted by subsurface pressure and linear theory: 

N=H/Ha (4.21) 

A value for N greater than unity therefore signifies an underestimate of 

height by the pressure method. 

Disagreement on the size of the discrepancy can be gauged from the 

following comments: 

'In Japan the value N=1.3 to 1.35 is normally applied' (Horikawa, 

1978) 

and 'as more evidence has accumulated it is seen that the error can vary in 

different installations from nothing to as much as 20%, so nowadays 

the classical formula [Equation 4.20] is usually used to correct for 

depth attenuation, with the possibility of some error being borne in 

mind. ' (Tucker, 1992). 

Hom-ma et al (1966) conclude from their measurements that N is a function 

of relative depth d/Lo, taking a value of around 1.5 (field) or 1.2 

(laboratory) for shallow water (d/Lo = 0.1), and reducing to around 0.6 

(field and laboratory) for a relative depth of 0.7. 

Grace (1978) from field measurements at Honolulu and laboratory 

measurements in a 100m flume shows a similar trend in N with relative 

depth, although with a smaller deviation from unity. 

Cavaleri, Ewing and Smith (1978) carried out a comparison of pressures, 

velocities and heights taken at an instrumented tower near Venice, and 

presented the dependency of N upon frequency (after spectral analysis of the 

signals) rather than relative depth. Values for N range from 1.25 (at 

142 



0.11 Hz) to 0.9 (at 0.23 Hz). They also confirm the predicted zero phase 

shift between pressure and surface. 

Crabbe, Driver and Haine (1983) also analysed field results on a spectral 

basis, using a laser based device for surface elevation at the NMI tower in 

Christchurch Bay. They found a 10% underestimate (N = 1.1) at 0.6 Hz, 

falling through N=l at 0.2 Hz and becoming smaller progressively with 

higher frequencies. Similar results were found by Lee and Wang (1984) 

from data obtained during the Atlantic Remote Sensing Land Ocean 

Experiment (ARSLOE). 

Further work carried out by Bishop and Donelan (1987) has N ranging from 

0.9 to 1.07, leading to the conclusion (after a careful review of possible 

sources of error) that '... a well designed pressure transducer system with 

proper analysis techniques should give estimates of surface wave height to 

within +1-5%'. 

4.3.4 Reasons for a non-exact transformation 

The factor N merely signifies that the two sets of measurements which were 

expected to agree in fact did not. It covers all sorts of imperfections, and 

all the investigators referred to above speculated on the causes of 

disagreement. 

Measurement and analysis 

Possibly receiving less than its full share of the blame is straightforward 

measurement error. The calibration of the pressure transducers in Grace 

(1978) showed an average 20% error. Although this was allowed for there 

was much scatter over the tests which undermines confidence in the 

corrected results. There have been significant improvements in transducer 

and signal processing performance since that time. Meniscus error in the 

surface piercing gauges is thought to lead to a -3mm error in H. Small 

wave heights at the higher frequencies will be proportionately the most 

affected, leading to a reduction in N in that region (Bishop and Donelan, 
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1987). It is interesting that the study using the laser surface gauge 

produced the smallest values for N. The presence of electrical noise will 

have the same effect: as the pressure signal drops off so markedly with 

frequency, so does the signal to noise ratio. 

Following on from the measurements themselves, the data analysis can 

contribute small errors: the spectral leakage discussed later in Section 4.5 

affects the transformation of the components of the pressure record adjacent 

to the spectral peaks preferentially, in this case tending to make N larger at 

higher frequencies. 

Hydrodynamic factors 

These include all the effects that result in the transducer diaphragm 

experiencing pressure changes other than those from the second term in 

Equation 4.12. For example the vertical kinetic energy term ? pw2 will 

produce such a deviation if the flow is forced to stagnate at the housing. 

Bishop and Donelan (1978) record a small influence of housing shape on 

pressure readings. Tucker (1992) draws attention to a consistent feature of 

the comparative studies: that N is nearer unity in tank tests than in the field, 

and he expresses the view that the local sea bed features are important. Any 

current present will also have an effect on the transformation due to the 

Doppler effect (Gabriel and Hedges, 1986). 

Theoretical factors 

The applicability of linear theory was discussed in Section 4.2. Any 

non-linearity in the waves will put the classical relationship of Equation 

4.16 in error. If operating in significantly non-linear conditions it would be 

necessary to consider a more complicated conversion. Isaacson (1976) has 

implemented a numerical solution based on cnoidal theory. A digital filter 

that incorporates second order corrections, as well as water level changes 

due to set-up, has been developed by Wang, Lee and Garcia (1986). Fenton 

(1986) proposed a polynomial method of converting pressure to surface 

elevation. 

144 



In conclusion, the approach to be adopted here will be Tucker's - to assume 

a perfect linear theory correspondence between pressure and surface, not to 

apply an arbitrary N, but to be aware of the possible errors. 
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4.4 THE DIRECTIONAL WAVE SPECTRUM 

4.4.1 Introduction 

Underlying the concept of the directional wave spectrum is the idea that the 

wave system can be described as the superposition of a number (or in the limit 

a continuum) of simple free progressive wave components. For this idea to be 

valid each of the components must be a linear (Airy) wave. It may be specified 

by amplitude a, wavenumber vector k, frequency w, and phase (relative to some 

reference) c. 

A single such component is illustrated in Figure 4.7 

The magnitude of the wave number, k, is a 'spatial frequency', with units of 

radians per metre. Its components along the axes are 

kx =k cos (6) and ky =k sin (6) . 
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Figure 4.7: Surface elevation at instant to due to single 
plane wave component k. 

(4.25) 

146 



For 0< 450 it can be seen that kX > ky, but because of the inverse relationship 

between wavenumber and wavelength, the apparent wavelength along they axis 

is greater than that along x. The sum of all such components is: 

i(x, y, t)_ Z a� cos(k�x cosh�+k�ysin8�-(ýl+E�), (4.26) 
n=I 

The set of amplitudes ci leads to a wavenumber-frequency variance-density 

spectrum S(k, co) such that in a small wavenumber and frequency interval 

�2 
S(k, ca) ýk 0w =2 (k, w) 

k Co 
(4.27) 

In general, with no fixed relationship between k and w, or fixed wave speed c, 

(the case for seismic waves) a wave system can be characterised by plots of 

variance density against k, with a separate plot needed for each frequency (eg 

Capon, 1969). For ocean waves the situation is simpler, the dispersion relation 

fixing the magnitude k for a given frequency. In this case the 

wavenumber-frequency spectrum simplifies to the directional spectrum: 

O+A( U+ ill n, 
S((O, e) ow oe =E 2"((O, 6) 

. 
(4.28) 

o) 0 

This may be written as the product of the omni-directional spectrum and a 

normalised, dimensionless directional distribution for each frequency: 

sdºº-(w, e) = S(w) G(O; (0) 
where 

n 

f c(e; co) a =1 

(4.29) 

(4.30) 

For a sea comprising a single regular wave component, G will be a delta 

function at the angle corresponding to the wave's direction. Waves in the open 

sea are not so simple, and the energy is distributed more evenly in direction and 
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frequency. Cartwright (1963) proposed a 'directional spreading' function of 

form 

G(6) = F(s) coszs(° 2, ") (4.31) 

where 6m is the mean direction, and the parameters is chosen to suit particular 

wave conditions. F(s) is defined in terms of the Gamma function in order to 

satisfy Equation 4.30. Figure 4.8 (reproduced from Tucker, 1991) illustrates G 

for several values of s. 

The analysis is based upon certain assumptions. The wave system over the array 

is treated as a stochastic process. Such processes can be envisaged as 

producing actual time-series outputs which are drawn at random (but according 

to a particular probability distribution) from an 'ensemble' of possible outputs. 

The process is assumed to be: 

i) Weakly stationary. The major statistics, such as mean aad variance, 

evaluated for a particular time instant across all possible ensemble 

3 

2 

G(O) 

1 

0 

Figure 4.8 : Directional spreading functions 
(from Tucker, 1991) 
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members, are not functions of time. The conceptual problem with this is 

that no ensemble member other than the measured one is available. In 

these circumstances a common test for stationarity splits up the available 

record into segments and checks that the statistics of the later ones are 

similar to the earlier ones. In fact wave records are usually not even 

weakly stationary. Tide produces a significant trend in the data, and 

although that can be removed computationally, the effects of changing 

mean depth on wave behaviour are not so easily dealt with. Also the 

non-linear effects of wave groups (surf beat and bound long waves) may 

have a period of the same order as the wave records. 

ii) Homogeneous (in a statistical sense). Each ensemble member possesses 

similar statistics (when these are evaluated over time for each member). 

This condition is similarly difficult to test for. A random process that is 

both stationary and homogeneous is termed ergodic, and has the 

important property that the expected value of any (future) output is 

equal to the time average of the available output (which can be 

measured). These properties are discussed in texts such as Bendat and 

Piersol (1986) and Jacobs (1969). When space is an independent 

variable as well as time these definitions become more involved. Jeffreys 

(1987) takes the property of homogeneity to require that the statistics of 

any sensor's record should be independent of its position. This precludes 

any significant phase locking of the components and the attendant nodal 

structure, of the kind to be discussed in Section 4.4.3.6. He illustrates 

the importance of ergodicity in both laboratory scale tests and numerical 

simulation. However, since phase-locking due to reflection imposes a 

fixed, not random, relationship between locations, it could be argued 

that such a wave system is still ergodic. It is necessary, of course, that 

the analysis methods take account of the phase interaction. 

Some of the effects of deviations from these assumptions are discussed in 

Section 4.5. 

149 



The wave system is also assumed to be homogeneous in another sense. 

Individual components of the wave field (as opposed to the combination of 

components) should not change their characteristics across the area of the 

sensor array. This implies in practice that the array is set out over a reasonably 

flat region of sea bed so that shoaling and refraction effects are small. It does 

not imply that records from each sensor have the same amplitudes: that will 

depend on the form of any constructive or destructive interference (due to 

reflection) at each sensor location. 

It is considerably easier to extract a frequency distribution from the data than 

a directional distribution as there are, in the present case, about 1500 time 

samples available, and only six transducer locations or 'space samples'. 

Consequently the temporal harmonic analysis for S(o) is done first, on each of 

the records independently, and then G(0) is estimated at each frequency of 

interest. Methods for the former are well established, and detailed discussion is 

left to Section 4.5 . 
Techniques of directional analysis are not so well known, 

and will be described in the remainder of this section before details of 

implementation are given in Section 4.5 . 

There are many approaches to direction finding from spatial arrays, and they 

come from diverse subject areas such as radar, sonar, acoustics, seismology, 

radio astronomy and tomography (reviewed in Haykin, 1985) as well as coastal 

engineering and oceanography. The approaches will be presented in a sequence 

that is imposed by the degree of prior knowledge of the actual directional 

distribution, together with the fineness of detail wanted. Thus to start with, a 

method is described suitable for use in a flume in which waves can only travel 

in either direction along a line. A range of other methods is then described, 

ending with a 'data adaptive' technique for high resolution of direction and 

which can accommodate reflected waves. 

Notes on iernrinology 

The term two-dimensional (2D) waves will be used, as is conventional in 

hydrodynamics, to mean waves propagating in either direction along a straight 
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line. That is, the particle motion, rather than wave direction, is constrained to 

two dimensions. Three dimensional (3D) waves can propagate anywhere over 

the surface. In common with other fields a simple linear wave component will 

sometimes be referred to as a plane wave, although a water surface wave crest 
is actually a line rather than a plane. 

The variance of a wave system is related to its energy. Wave energy is the sum 

of potential and kinetic energy associated with the wave field in a certain area 

of water surface, at an instant in time. The energy per unit area of the 

component wave of amplitude a� is: 

2 pgan joules/metre2 (4.32) 

The variance of the sinusoidal surface elevation component of Equation 4.26 is 

'/2a�2, and the wave system's frequency characteristics may be expressed as the 

variance density spectrum, or when scaled by the factor pg, the energy density 

spectrum. 

The power of the component is the rate at which it transports its energy past a 

line parallel to the crests: 

pganCg� watts/metre crest length (4.33) 

where cg� is the group velocity for the component at frequency n. 

It is common in the field of signal processing is to substitute for the word 

'variance' the equivalent appropriate to a signal voltage applied across a1 ohm 

resistor. The variance of that signal is the average power over the record, and 

the energy dissipated (which has no value at an instant) is the time integral of 

variance. Frequency distributions therefore are often referred to as power 

density spectra. However, in the case of ocean waves the energy and power 

spectra are of different form due to the frequency dependency of cg in Equation 

4.33. Hence the term 'power spectrum' will not be applied here to wave-related 

variables. 
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4.4.2 Two Dimensional Waves 

4.4.2.1 Single frequency (regular) waves constrained to a channel 

For the relatively simple case of regular waves constrained to a channel - 
but which due to reflection are moving in both directions - the common 

method of establishing the magnitude of incident and reflected waves relies 

on Equations 4.8 and 4.9 in Section 4.1. At the partial anti-nodes, wave 

height is (H, +H, )/2, and at the partial nodes, (H; H, )/2 where H, is the height 

of the incident wave component, and H, of the reflected. When the wave 

system is established a wave gauge fixed to a trolley is moved along the 

channel so that these maximum and minimum heights can be estimated. 

The two equations are solved for H, and H,. 

4.4.2.2 Multiple frequency (random) waves, in a channel or normal to the 

shore 

The above approach is of no use in the field where waves are unlikely to be 

regular, or where a travelling wave gauge is impractical. However, if waves 

propagate normal to the reflector the 'frequency response function method' 

is able to yield the incident and reflected wave components over a spectrum 

of irregular waves from measurements taken at just two fixed points. 

Kajima (1969) showed how the incident and reflected wave spectra can be 

calculated by the cross-correlation of surface elevation records from two 

fixed points. Gilbert and Thompson (1978) presented an alternative 

derivation that calculates the cross-spectrum by means of the fast Fourier 

transform (FFT). Using the spectra (however calculated) these writers 

derived for the incident and reflected wave spectra: 

S. + Sri - 2c cos (kl) - 2q sin (kt) 
(4.35) 

4 sin2(kl) 
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S+ Sri - 2c cos (kl) + 2q sin (kt) 
Srr = (4.36) 

4 sin2(kl) 
where S., and Syy are the autospectra of surface elevation measured at 

sensors X and Y, 1 is the sensor separation (along the direction of wave 

travel), c is the co-spectrum (real part of the cross spectrum) and q the 

quadrature spectrum (imaginary part): 
S. ,y= c+jq (4.37) 

Singularities occur at spacings of integer multiples of half wavelengths, (ie 

at kl=nic, n=1,2,... ) so that in practice three or more unequally spaced 

sensors are provided to cover the whole spectrum without singularities. 

Bullock and Murton (1989) describe this analysis method in use in the 

University of Plymouth's 20 metre wave channel. Davidson (1992) has 

developed a software routine that takes wave records from three sensors 

and automatically rejects any pair close to the above spacings for the 

relevant part of the spectrum. 

4.4.2.3 Single frequency (regular, long-crested) waves of unknown direction 

If it is known in advance that waves are propagating in one predominant, 

not necessarily shore-normal, direction then it is possible to estimate that 

direction with the output of two sensors by, in effect, timing the 

propagation of the wave profile over the known distance. The propagation 

delay may be obtained via the cross correlation or the cross spectrum. 

There is, however, an ambiguity over which side of the line joining the 

sensors the wave is coming from. The ambiguity can in some cases be 

resolved by knowledge of the site, or of weather conditions, or by the 

output of a third sensor. 

Using cross-correlation 

The simplest method of obtaining predominant wave direction is to evaluate 

the propagation delay by cross-correlating the record from each sensor. 

The delay is equal to the number of discrete lags in the cross-correlation 

function that correspond to the function's maximum value. At the chosen 

sampling interval of 0.5 seconds it is worth interpolating between time-lags 
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for greater precision. Linear theory predicts wave speed from period 

(available from either sensor's record) and mean depth. Angle of 

propagation is then deduced by simple trigonometry. 

Three sensors 

As stated above a third sensor resolves the directional ambiguity implicit in 

any analysis from a line array: the third sensor's output (if it is not in line 

with the other two) will be consistent with only one of the two 

possibilities. 

In addition the third record may be used to avoid the step of estimating 

wave speed. Two simultaneous equations, derived from the two pairs of 

sensors, are solved to eliminate speed and yield the average direction. If 

desired, a useful check can be made by finding the value of speed from the 

equations and comparing it with the predictions of linear theory. 

4.4.2.4 Multiple frequency (random) waves of unknown direction 

The above method is less successful with random wave records if the 

spectral width is large enough for dispersion to produce a significant 

variation in wave speed and hence significant variation in wave profile over 

distance. The problem due to dispersion may be overcome by splitting the 

records into their component sinusoids by Fourier analysis, and 

cross-correlating those, one frequency at a time, to obtain propagation 

delays. The value of speed of propagation must be determined from the 

dispersion relation for each frequency. However, if it proposed to take the 

trouble to carry out a harmonic analysis then the phase relationships (and 

hence propagation delays) can be found more directly from the 

cross-spectrum. 

These relatively simple techniques are not well suited to this project in 

which reflection is expected, as wave propagation will not be confined to a 

single predominant direction. 
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4.4.3 Three dimensional waves 

In general two sensors can only provide an estimate of a single direction of 

wave propagation. If there are wave components from more than one direction 

then the method gives a 'weighted average' of those present. For example if 

there are two equal components separated by a certain angle the energy will be 

ascribed to a direction half way between them - even though there is no energy 

from that direction at all. 

Extra sensors enable resolution of seas with several discrete directional 

components, and an approximation to a continuous directional spread. The 

more sensors there are the more components can be uniquely resolved. 

However, in the general case one does not have prior knowledge of the number 

of dominant wave components, and so there is an infinite number of possible 

combinations that could give rise to the measured records. The analysis 

method is selected to suit the type of sea expected. Some cope well with a few 

virtually plane wave components, and others manage better with a wide 

directional spread. A sea including reflections in which some components are 

phase locked, and therefore correlated with others, is dealt with in Section 

4.4.3.6. 

Methods fall into two main types: parametric (or 'model fitting') and model 

independent (Davis and Regier, 1977). If it is known that the directional 

character of the sea may be adequately described by a mathematical model 

(such as Cartwright's spreading function, Equation 4.31) then the model 

parameters - in this case 's' - can be adjusted for a best fit. Examples may be 

found in Long and Hasselmann (1979) and Hasselmann, Dunckel and Ewing 

(1980). The danger of this approach is that if an inappropriate model is selected 

then the method can 'over adjust' the model to force it to fit the data. This 

leads to an estimate of the directional make-up of the sea which is highly 

unlikely, although theoretically possible. The common parametric models do 

not describe the conditions in relatively shallow water close to a structure and 

so model fitting methods were not used in the present application. 
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Model independent methods themselves fall into two classes: 'a priori' and 

'data-adaptive'. In principle they all apply a set of phase shifts and weights to 

the records from each sensor before summing them in order to assess the 

contribution from a particular direction. Each test direction, (also called 'look 

direction' and 'target direction', Dudgeon, 1977) is examined around the full 

circle by applying to the signals the set of weights and phase shifts appropriate 

to that direction. The next methods to be described are of the 'a priori' type, so 

called because the phase shifts and weights are fully specified in advance of 

operating on any data. The 'data adaptive' methods are capable of greater 

resolution by exploiting particular features of a data set. They cannot be 

specified fully without reference to the data set under analysis. 

4.4.3.1 The delay-and-sum beamformer 

The delay-and-sum beamformer (or 'phased array') forms the physical, and 

conceptual, basis for all the techniques that follow. The method was originally 

developed by radio and radar engineers to enhance signals received from a 

known direction, but its application to ocean wave directional analysis is 

presented here. Rather than for signal enhancement the beamformer is used to 

assess signal strength from given directions. The following is adapted from 

Dudgeon (1977), Haykin (1985, ch4) and Haddad and Parsons (1991, ch7). 

A line array of equally spaced sensors is set up as in Figure 4.9. In the general 

case the wave propagating across the array is a non-deterministic function of 

time. If the signal received by the sensor at the origin is then the signals 

at the other sensors will be delayed versions of this: r),, =r1jI-7/n)] where Tu(n) 

is the propagation delay from the origin to sensor n. Referring to Figure 4.9, 

7' (11) = 
distance of propagation 

_ 
nD cos 0' (4.40) 

speed of propagation 

156 



..... .......... . 

t 

t 

\\e 
tit 

. ý_ 

ý 
. -- 

. .. _ 

\ 

---" z PP P3 PN_i 
N--i 

D 

Figure 4.9 : Equi-spaced line array of N sensors 

Applying the delay T,, (n) = Tp(N-n) to each of the signals ri(n) achieves a 

'constructive interference' for wave field components of speed c and direction 

0'. Other components will not be enhanced so much, or may interfere 

destructively. 

The beamformer output 
N-1 

g(1) _F 71n(t-Td(n)) (4.41) 
n=o 

which is the sum of the delayed signals, therefore gives some measure of the 

proportion of the signal moving in that direction. Test directions will be 

denoted by 0 while wave direction by 0'. A directional analyser could be built 

on this principle by evaluating sets of Td corresponding to each test direction. 

If many frequency components are present, the distortion in the time records 

due to dispersion will cause errors just as in the cross-correlation method 
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above. Analysis therefore proceeds one frequency component at a time, and the 

delays Td are replaced by phase shifts Ad. For a particular frequency component 

c _it _ co 
. 
27t 

_w (4.42) 
2n kk 

and so the propagation delays and phase shifts are 

rnDcos0' knDcose' T, -c-w 

and 4p(n) = ImD cos0' 

(4.43) 

(4.44) 

The set of phase shifts that must be applied to bring all the signals from this 

component into phase alignment is 

Mn)_4p(N-n)=k(N-n)Dcose" where O'= 0 (4.45) 

Figure 4.10 is a schematic of this process. 

I N-1 
ON-1(9) 

ý N-2 
o'-, (G) 

. 

ý9 re) 

Figure 4.10 : Schematic of the delay-and-sum beamformer 
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In the present case real time operation is not required and so the wave field is 

decomposed into a set of sinusoids by Fourier transformation of the whole 

record. 

Consider a wave train of wavenumber vector k and height H propagating across 

the array of Figure 4.9. It gives rise to a surface elevation record at Po of 

(where c is an arbitrary phase), and at any other point on the x axis 

where i is a unit vector in the direction of the x axis. Therefore at sensor P. 

the elevation is 

For each test direction 8 (typically 0 to 360" in 10" steps) the corresponding set 

of phase shifts 4d is applied, and g(O) evaluated. Thus the required estimate of 

directional energy distribution is obtained. 

Moving to exponential notation by applying Euler's theorem, 

cos a=2 [exp (ja) + exp (j(x)] 

rib =2 cos(cu! +E) (4.46) 

rI(x)= 2'cos(wt-k"xi+E) (4.47) 

rý� - Z' cos(cot -knDcosA' +c). (4.48) 

(4.49) 

Equation 4.48 becomes 

Letting 

rl� ='-' exp[j(cat-/n1DcosO'+c)]+ exp[-j(wt -knDcos6'+e)ý (4.50) 

a= 11 exp(iE) (4.51) 

gives qn =crexp(j(oI) exp(-jknDcosO'))+a' exp(-jwu) exp(jlrDcos0') 
(4.52) 

which may be thought of as a conjugate pair of phasors of length 4 rotating at 

angular frequency w. 
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Applying the set of phase shifts ýd from Equation 4.45 for a particular test 

direction 0 to the beamformer of Equation 4.41 gives 

Iv-I I 
g(O) =a exp[ jk»DcosO ] exp[+jknDcosO] exp[ jkNcosOJ (4.53) 

n=o 

plus conjugate terms. Dropping the exponential independent of it 

g(6) =a exp[ jknD(cos01-cos0)] (4.54) 
n=O 

plus conjugate terms. 

= a. W(v) (4.55) 

where v=k(cos6'-cosh) (4.56) 

N"-1 
and W(v) _ exp(-j nDv) (4.57) 

n=4 

W is called the window function (or alternatively the radiation pattern, beam 

pattern, array function, or array pattern). It may be noted that: 

i) All the array information (geometry and applied phases) is contained in W. 

ii) W acts like a spatial filter, passing some proportion of the signal which 

depends on its direction. To estimate the directional spectrum g(O) is 

evaluated over an appropriate set of test directions spanning the arc of 

interest and separated by some convenient interval. 

The limit on resolution available is imposed by the array geometry, rather than 

by the step size chosen for 0. The latter just sets the intervals at which the 

underlying estimate is evaluated. In order to discover the characteristics of the 

array, the array function W must be examined. Noticing that W takes the form 

of a geometric progression, with first term exp[-j0], common ratio exp[+jDv] 

and N terms, it may be shown that 

W- sin(NvD/2) exp[j(N- 1)vD/2] (4.58) 
sin(vD/2) 
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V 

Figure 4.11 : The window function for a delay-and-sum beamformer with N =7 
(from Dvdgeovt 1q 7i 

The exponential term is merely an overall phase shift arising from the arbitrary 

choice of origin in the array. The array function is plotted for 7 sensors in 

Figure 4.11. 

The effect of W on the estimate of directional distribution is analogous to the 

effect that a data window applied to the time record has on the estimated 
frequency distribution. Figure 4.11 shows that when the beam is 'steered' to the 

test direction 0 the array passes any signal component at that direction, 0'=O, 

together with a certain proportion of any component not travelling in that 
direction (for which 0ý0 and so v# 0). The array and associated processing 
may be thought of as a 'spatial window'. Put in other words one is looking 

through an imperfect window and seeing only a blurred picture of the true 

directional distribution. 

Turning to the form of the function in Figure 4.11 a number of features are 

apparent. 
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i) W is periodic in v with repeating lobes at integer multiples of 27t/D 

(sometimes called 'grating lobes' by analogy with the diffraction grating). 
Permitting IvI to take values > 2n/D produces an angular aliassing effect, 
placing a maximum value on D of L/2 for the measurement of any 

particular kA given sensor spacing D thus fixes the high end of the 

working frequency band. Since the analysis is done on one frequency at a 
time there is no danger of unexpected shorter wavelengths aliassing, 

analogous to the situation in normal harmonic analysis provided the data 

has been filtered before sampling. 

ii) For good resolving power the array function should exhibit a narrow main 
lobe, or 'beamwidth'. This is a major design objective for a beamformer. 

Increasing the number of sensors N achieves this, as does lengthening (or 

increasing the 'aperture') of the array. The former is usually limited by 

cost, and the latter by angular aliassing considerations. Two wave trains 

of the same frequency will not be resolved if their directions of 

propagation differ by less than one standard beamwidth. 

iii) Just as with the data window in time, the resolution and leakage properties 
of this spatial window may be tailored by weighting the data points. This 

approach will be discussed later. 

The beam former as a Fourier analysel. 
Comparing Equation 4.54 to the general definition of the Fourier series of a 
discrete sequence: 

y-I X(92) _ ý. Z x[n] exp [-% f2,, ] (4.59) 
n=p 

it is apparent that the beamformer output is similar to a discrete Fourier 

transform, an amp/dude spectrum. Haykin (1985, ch4) calls this process the 
'Fourier Method', a processing scheme closely related though not the same as 
that described as the 'Direct Fourier Transform Method' by oceanographic 
writers and presented later. The signal x[n] is a sequence of N spatial samples 

of the surface elevation 11. The term exp[-jknD cos 0] in 4.54 is equivalent to 

the basis set exp[-111nr]. This term is orthogonal to the signal term for all 0 
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except 0=0'. For an infinite array of sensors the sum (or integral) of the 

product over » would tend to zero, unless 0=0'. The finite array does not 
behave so well but nevertheless gives some estimate of amplitude distribution 

over A. 

The directional energy spectrum is the sum of the products of the phase shifted 

signals, which is shown in the next section to be the spatial Fourier transform 

of the cross spectrum: 

ANV 

S(6)= ZZQ,,, 
� exp[j(x�kcos0-x,,, kcos6)] (4.60) 

�l=i �=i 

Frequency dependence 

The foregoing analysis was developed with one component of a certain height, 

direction and frequency. The analysis is linear so that it is assumed that a 

complex sea may be resolved into a directional dist'ribQh jof simple components, 

subject to the accuracy of estimating the frequency distribution of each sensor 
record and to the limitations of the spatial window W. Since k, and hence v, 
are functions of frequency (fixed by the dispersion relation) W is also a 
function of frequency. 

4.4.3.2 The direct Fourier transform method (DFT) 

The problem of estimating the directional spectrum from a spatial array may be 

generalised from the linear array to encompass the polygonal array. 

The presentation here is based on that of Barber (1963), and the subsequent 
descriptions in Kinsman (1965) who coined the name for it of 'direct Fourier 

transform method', and Goda (1985), except that their route to obtaining a 

variance spectrum via cross-correlation is here re-cast to include the more 

modern direct multiplication of Fourier series coefficients. Also, vector 

notation is used instead of the x and }' coordinates of wave number and 

position. 
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Surface elevation at a position defined by vector r from the origin of the frame 

of reference, and at time t is denoted by tl(r, t). The signal may be represented 

by its three-dimensional Fourier transform to give its distribution in frequency 

cu, and wavenumber k, defined as: 

w all 

Z(k, w) =jf i(r, /) exp[-Jk . r] exp[-. %w! ] dr di (4.61) 

(where Z is a directional amplitude, not a variance, spectrum. ) 

As before, since the data is much better sampled in time than in space, the 

transform with respect to time is done first: 

a 

: (r, co)= 
J 

11(r, 1) exp(-j cof)ill (4.62) 

so that 
Z(k, co) =j z(r, co) exp(-jk " r) dr (4.63) 

where z(r, (o) is the omni-directional amplitude spectrum of surface elevation at 

any point specified by r. 

The wavenumber-frequency variance spectrum is the product of the signal's 

Fourier transform and its conjugate: 

S(k, w) = Z* (k, (0) " Z(k, co) 

That is 
S(k, ca) _ : (r, (o) exp [-j k" r] dr]*. [f 

: (r, w) exp k" r] dr 

=J: `(r, (o) exp [j k" r] dr J: (ro) exp [-j k" r] dr 

=$ 
f 

; *(r, (o) exp[jk" r]. z(r', w) exp[ jk" r']dr dr' 

(4.64) 

(4.65) 

But : '(r, c)). z(r-', ca) is the cross-spectrum between the signals at two points 

specified by r and r'. So 

S(k, w) =ffO,.,., exp [-j k. (r' - r)] dr dr' (4.66) 
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The wavenumber-frequency spectrum is seen to be the Fourier transform of the 

cross-spectrum O. 0 is a complex quantity whose magnitude is constant for 

any pair of sensor locations in and it (in a homogeneous sea state) and whose 

argument is a weighted sum of terms such as Compatible with the 

terminology of the previous section, k' is the wavenumber of a simple 

component wave train and k the general wavenumber variable. Although the 

Fourier transform of real quantities is more familiar, examination of Equation 

4.66 on the Argand diagram shows that exp[-jk. (r,, -rm)J is indeed orthogonal to 

all component waves responsible for 0 that are not of wavenumber k', so that 

Equation 4.66 acts as a Fourier transform, sifting from Q successive estimates 

of energy at wavenumber k. 

O is a function of relative position between the sensors rather than a function 

of the sensors' absolute positions. The domain of relative positions is 

traditionally known as 'lag-space' from the older practice of evaluating O from 

the cross-correlations. With N sensors, 0 may be observed at only N2 points in 

the lag space. These are not independent as ()n,,, =(),,,, '. 

Barber's estimate of the directional spectrum therefore becomes 

S(k, w) _ ýý�ýn(ca) exp [-j k" (rn - rný)] (4.67) 
mn 

the circumflex over the spectrum indicating that the latter is only an estimate of 

the true spectrum, since n�,,, is only a sampled version of the continuous O. A 

program has been written to evaluate S(k, (o) using Equation 4.67, the direct 

Fourier transform method, although its performance is much inferior to the 

schemes described below. 
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Array design 

The directional resolving power of a particular array of sensors is most easily 

assessed by examining its window function, although that is determined by the 

subsequent processing method as well as by the array itself. One of the major 

contributions of the aforementioned paper by Barber (1963) was a method for 

predicting the window function of an irregular polygonal (as opposed to a 

uniformly spaced linear) array with DFT processing. For the data adaptive 

methods to be described later it is not possible to predict the beam pattern 
independently of the data, but it seems reasonable that an array geometry which 

performs well for the DFT will also be suitable for other processing methods. 

Barber's method is presented here, again re-cast to avoid using the now 

superseded route to obtaining spectra via 'correlograms', and with some 

reference to image processing techniques, from for example Haddad (1991). It 

will then be applied to the transducer array used for measurements at Plymouth 

Breakwater. 

It is convenient to resolve the wavenumber vector into its x and y components, 

kx and k,.. Also the cross-spectrum is a function of the relative position between 

two points rather than of the absolute position of those points with respect to 

some coordinate frame. These relative-position independent variables will be 

denoted by X and Y. 

If there are N sensors at positions n=1,2,..., N, then there are N2 pairs of 

sensors, with relative positions (X,,,,,, Yb,,, ) where X.,,, - x�xand Yn, 
n= Yn yffl, 

m=1,2,..., N and n==1,2,..., N. It is possible to calculate the cross-spectrum 0 

only for these N2 shifts 
U�I� = Q(X, ), º,, Y,,, n) (4.68) 

Since there are only N(N-1)-2 independent pairs (because there are 

only N(N-1)- 2+ 1 distinct samples of O. 

The non-ideal window function is a consequence of knowledge of the 

continuous 0(X, Y) being limited to samples at a number of discrete relative 
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positions. 0 
,,, may be modelled as the product of Q and a two-dimensional 

sampling function ir(X, Y) 

0,.,,, = C)(X, )) w(X, Yins, ) (dropping (o for simplicity) (4.69) 

where iiw is a set of unit impulses located at those values of X and Y for which Q 

is available (the 'bed of nails' function): 
NN 

s+v(X, Y, m, n) =ZF S(X -X,,, n , 
Y- Y,,,,, ) (4.70) 

,,, =1 n=I 

Our estimate S of the true spectrum S is therefore the spatial transform of the 
product Qw (Equation 4.67). By the convolution theorem this is equal to the 

convolution of their transforms: 

A 

S=F. T. { Q(X, 1)) **F. T. (lt, (X, Y)} (4.71) 

= S(k) ** W( kx 9 ky) (4.72) 

The Fourier transform of w is 

co co 
W(kx., kk. ) =fJ iv exp(Jk, X) exp(jk,. Y)dXdY (4.73) 

which by the sifting property of the delta function reduces to: 

NN 
W(ky"ks")= ZZ expI J(k. X,,, +k). Y,,, f)] 

(4.74) 
,,, =i n=i 

Noting that X.,,, = -X�,,, and applying Euler's theorem 

W(k, ks") _I+2ZZ cos(k X,,, +k. Y,,,, )" (4.75) 
un n 

As in the harmonic analysis of time series, the convolution may be visualised as 

a filtering and a summing operation. Making an estimate of the energy at k,, k,, 

contained in spatial variable Q(X, Y) can be visualised as placing the origin of a 

plot of W over the point k,, k,, on a plot of the true spectrum of the signal. The 

estimate will consist as it should of energy at k,, k,,, but will also include all the 
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other components in the true spectrum weighted by the corresponding values of 

W. This smearing or loss of resolution is due to the spectral leakage arising 

from the limited extent, or aperture, of the array. Further, W is periodic in 'k, 

and k,,. If there are components in the true spectrum greater than half the 

periodic spacing from the estimated wavenumber kr, k,, the 'filter' will collect 

them into the estimate with full weighting. This aliasing effect is due to the 

spectral leakage that arises from sample points in ijw (ie the sensors) being too 

widely spaced. The description of the linear, equi-spaced beamformer's window 

function (Equations 4.55 to 4.58) 
, 
is a special case of the above. 

From this it is evident that it is the relative, rather than the absolute, positions 

of the transducers that are important, and that in general one should aim at an 

even coverage of the XY space. Consequently it is helpful to examine the 

'co-array' of shifts XY instead of the sensor positions themselves. Davies and 

Regier (1977) give the illustration reproduced in Figure 4.12. 

Array Coorray 
x, p 

a) .... xxxx 

b) .. xxxxxxx 
C) .. 0"xxxxx 

Figure 4.12 : Linear arrays and their associated co-arrays 
(from Davis and Regier, 1977) 

The regularly spaced linear array a) contains several redundant separations, and 

does not produce good coverage of the XY space, while b) uses the same 

number of sensors to much greater effect. Davis and Regier comment that an 

array that looks regular to the eye is likely to have a poor co-array. 

For this project the recommendation of Isobe and Kondo (1984) was followed: 

a linear array of exponentially increasing spacings, with values chosen to suit 

the range of wavelengths expected. In addition, one extra sensor was placed 

off-line to resolve the linear array's implicit semi-circular ambiguity. A plot of 

sensor positions (surveyed) for the Plymouth Breakwater deployment is shown 
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in plan in Figure 4.13a). The actual positions indicated are more irregular than 

those designed because of placement error. This is no bad thing (provided the 

survey of the actual positions is accurate) as it increases the coverage of the 

co-array. The equivalent co-array is given in Figure 4.13b). Figure 4.14 

illustrates the beam pattern for this array, spanning a range in kx and ky of +/- 

0.6 radians/m from the central peak. To give a better view of the magnitudes, 

cross sections along the k, and k,, axes are plotted in Figures 4.15a) and b). The 

lack of a single sharp peak results in poor directional resolution. For sea waves 

the phenomenon of dispersion mitigates the position somewhat. For a given 

(temporal) frequency, energy should exist only in a small range of the 

magnitude of k. On a plot of the directional spectrum this corresponds to a 

narrow annulus of radius k. Therefore in evaluating the directional distribution 

of the energy in a particular frequency component the important feature of the 

beam pattern is its cross section around a circle whose radius is k, and which is 

located on the beam pattern plot (Figure 4.14) so that the line from its centre 

to the point (k, ýO, k,. -0) is the vector k, the wavenumber for which energy is 

being estimated. 

Even with a relatively extensive array of six transducers the beam pattern does 

not give good resolution. The simpler arrays in Barber's paper are even worse. 

These results provide a motivation to seek more sophisticated methods of 

directional analysis. 

4.4.3.3 Other a priori methods 

The estimate of Equation 4.67 would seem to be a logical adaptation of the 

true relationship of Equation 4.66 to the real situation, in which only a limited 

number of sensors is available. However it is not the only one. A more general 

form is 

S(k, co) _ cc,,,,, (k, (o) ((o) (4.76) 
WI? 

which differs from Equation 4.67 in that the weights a may have a non-unity 
magnitude. Davis and Regier (1977) show how the weights cc,,,, may be 

optimised with respect to particular criteria, such as the resolution of wave 

components, or the rejection of noise (either measurement or statistical). They 
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conclude that Barber's estimate, whilst not truly optimal (for example total 

energy must be obtained afterwards by normalising from the autospectra) does 

have reasonable resolution and noise rejection. Moreover it is computationally 

relatively simple. Davis and Regier describe two alternative scheme, both of 

which give an improved performance over a particular range of k at the expense 

of a degradation if signals are present of k outside that range. The methods are 

therefore appropriate for analysis of waves in a medium with a fixed dispersion 

relationship. The first, the omni-directional a priori (OAP) scheme makes no 

assumption about wave angle, whereas the second, the steered a priori (SAP) 

method, uses weights that perform better on data sets with waves confined to 

certain ranges of direction. Both schemes include parameters that the user can 

adjust to optimise noise and resolving power based on his assumptions about 

the wave field under analysis. It can be seen from the results of trials with 

numerically generated data (reproduced in Figure 4.16) that none of the a 

priori schemes (DFT, OAP or SAP) has particularly high resolution when 

presented with a simple wave train. 

This is particularly so for the longer period, 0.1 Hz , wave. At 0.3 Hz spurious 

peaks occur. Simulated wave fields with greater directional spread are handled 

more accurately (b, c, d). Interestingly, only the SAP correctly renders the rather 

extreme, isotropic, case in f). The array geometry used for these simulations 

was that of the floating spar buoy 'FLIP', consisting of six sensors arranged 

approximately along the arms of a 'V' of height 15m, oriented so that the apex 

pointed into the predominant wave direction. 

The data adaptive methods 
The limitations in performance of the DFT method were seen in the last section 

to be expressible in terms of its poor wavenumber window. A desirable window 

would (as in the case of analysis of time records) have a narrow passband and 

small sidelobes that do not extend far from the centre. The OAP and SAP 

processing schemes bring some improvement, but major enhancements are 

possible if the window shapes itself automatically to suit the data as well as 
being defined by the array geometry. The estimate of the power in a particular 
direction is adjusted so as to be least disturbed by the energy present in others. 
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The effective window function is thus adapted to the data being analysed, and 

such a method is called 'data adaptive' by Lacoss (1971). 

Two techniques that achieve this are the Maximum LiWihood Method and the 

Maximum Entropy Method. 
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4.4.3.4 Maximum likelihood method (MLM) 

This data adaptive technique was proposed by Capon (1969) for the 

determination of wavenumber-frequency spectra of the seismic waves detected 

by the Large Aperture Seismic Array in Montana, USA. A very marked 

improvement is demonstrated over the conventional DFT method. To develop 

the theory Capon envisaged a tuneable 'maximum likelihood ' filter whose job 

was to make an estimate of signal energy at a particular wavenumber. 

Two specifications are made for the filter: 

i) If its input consists only of a signal at wavenumber k then its output 

power should equal the input power. 

ii) Inputs of any other wavenumber, and of noise, must make a minimum 

contribution to the output. 

(In view of (ii) some writers refer to this as the 'minimum variance method, for 

example Kay (1981). Capon himself merely calls it the high-resolution method. ) 

Most writers describe the derivation in the form in which it is applied to finding 

the frequency spectrum of evenly discretised time-series data, and then indicate 

its extension to the wavenumber spectrum of unequally sampled spatial data. 

That approach will be followed here, adapting the presentation of Lacoss 

(1971), Haddad (1991) and Huntley (personal communication). 

Let x(n) be a uniformly sampled time record whose spectrum S(w) is to be 

estimated. It may consist of a sinusoid at frequency w, as well as others at 

different frequencies (which are therefore uncorrelated) and uncorrelated noise. 

These others are collectively denoted by g(»). 

x(n) = Ac''`"" + q(n) (4.77) 

If x is applied to a non-recursive filter with N coefficients a(,, a,, ..., aN., the 

output will be 
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/v-I 
y(») _ 2: ak x(nn - k) (4.78) 

A-O 

where here k stands for a sample index and not a wavenumber. Substituting 

Equation (4.77): 

)<») ak[Aexp(j(o(n-k)) + 9(»-k)] (4.79) 
k=O 

From requirement i) above, if q(n) = 0, then 

y(n) = x(n) 
that is 

N- I 
F, ak[A exp (jco(n - k))) =A exp (j c, )») (4.80) 
k=O 

and so 
. v-I 

ak exp(ok)= 1 (4.81) 
L-0 

Requirement ii) in conjunction with requirement i) implies that with noise and 

other spectral components in the input, the output power should be as close to 

the input power as possible. Since these other components are uncorrelated 

with the signal we are looking for at w, it follows that the output power P 

should be as small as possible subject to its containing at least the input power 

at Co, that is 

P= (y2(ir)) (4.82) 

and P is to be minimised subject to the constraint of Equation (4.81). 

The brackets denote the expectation value over record length. 

v-I 

akx(n- 1) ak, _Ox'(n-k') L-0 k'=O 

=1: E akak*, (x(»-k)x*(»-k")) (4.83) 
k k' 

But the expression (x(n-k)x'(n-k')) is the value of the autocorrelation 
function of x at a lag of (k'-k), rk. k. So 
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P=ýý akak'rkl-k (4.84) 
k k' 

From this point matrix notation becomes more concise. 

Letting a=[ ao a, a, ... ah., ]T 

and e=[1e. ' e, 12' ... e. I(N+ho) ]T 

where T indicates transposition. 

Equation (4.81) becomes 

e'1 a=1 (4.85) 

and (4.84): 

P= a*'* Ra (4.86) 

where R is the autocorrelation matrix, element R;,. being the autocorrelation 
function at lag ik: r, k. 

To minimise P in Equation (4.86) subject to the constraint in Equation (4.85) 

the method of Lagrangian multipliers is used, and it is found that 

a 
R'-Ie 

e*T R-1 e 
(4.87) 

The coefficients of the (imaginary) filter are functions of frequency (in e) and 

of the data itself (in R) -a 'data adaptive' filter. 

The filter's output is therefore 

P= a''"' R a= 
1 

e'1' R'' R R'' e (4.88) 
(e-OT R-' e)2 

but R. R-' = I, the identity matrix, so 

p= 
e*. T 

1 
_l e 

(4.89) 
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This is the spectral estimate S(co) of the filter for the frequency w in x. 
Reverting to normal notation, 

S(w) =I_1 (4.90) 
e*'r R-` eZr; J expI J (i - k)w ] 

To apply this method to the analysis of spatial data the underlying independent 

variable is the position vector r rather than time 1, and the signal x(n) is 

replaced by the Fourier coefficient of surface elevation, z: 

z(r, co) = F. 7. (tj (r, 1)) (4.91) 

Temporal frequency co in Equation 4.90 is replaced by spatial frequency k 

(reverting to its previous meaning). An co remains in 4.91 as all these quantities 

are functions of frequency, but it is the distribution over k that is of interest 

here. The equivalent of <x'(»-i) x(in-k)> is the cross-spectral component 
Q, k =:: k (4.92) 

where i and k now identify sensors, and the spectral estimate is: 

SR (a) =I ()-'(co) expo Jk" (r, - rk)] 
ik 

(4.93) 

Somewhat surprisingly after all this development Equation (4.93) shows that 

the computation needed to evaluate the MLM is little more than that for the 

DFT, being only the inversion of the cross-spectral density matrix O. 

Oakley and Lozow (1977) give an expression for the window function of the 

MLM for a given array, which in this terminology becomes: 

eXPI .l k' " r,,, ] U-,,:, exPI1 k"r,, ] 
yV(k, kl) =� (4.94) 

expl .lk"r,,, ] Q;, ', expU k"r,, 
, nn 

where k' is the wavenumber of the signal, and k the wavenumber being 

estimated. As expected it includes (in 0) terms dependent on the data itself. 
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In view of the relatively high resolution that the MLM offers it was chosen 

(subject to a modification for reflection, Section 4.4.3.6) for the analysis of 

wave records in this project. 

Data adaptive spectral estimator 

Referring back to Figure 4.16, the MLM (labelled MLE - maximum likelihood 

estimator - by Davis and Regier) is successful in picking out a plane wave, but 

tends to 'over-focus' wider directional spreads. Davies and Regier proposed a 

modification in which constraint (i) is changed so that it is the integral of 

output over some (user specified) wavenumber region that is set to unity. 

Labelled the DASE in the figure, it does show some improvement for the 

wider-spread seas. 
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4.4.3.5 Maximum Entropy Method (MEM) 

This method is philosophically quite different to the ones described above. The 

Fourier transform is based on the assumption that the original signal is infinite 

in duration. In the real case only a limited portion is available for analysis. The 

application of various windows to the measured signal attempts to reduce the 

unwanted consequences of a limited data set. Outside the available range the 

data is assumed either to be zero or made up of endless repetitions of the 

segment that does exist. As a consequence the estimate is degraded by spectral 

leakage. 

Burg (1972,1975) rejected this approach and made no assumptions about the 

data outside its actual range. The requirement for his (notional) spectral 

estimation filter is that its output assumes as little as possible of the unknown 

region (and so has maximum uncertainty, or entropy) while being consistent 

with the data that is known. 

The form of Burg's maximum entropy spectral estimator is, for discrete time 

data (Haddad, 1991): 

S(c)) =± q� exp(jw»1) 
n=-p 

(4.95) 

where p defines the extent of the known data. Finding the coefficients q, which 

include the data itself, is by no means straightforward. Use is made of the 

theory of linear prediction and the auto-regressive process (Parzen, 1969). 

A key parameter is the order of the auto-regressive process by which the MEM 

models the data. Too low an order fails to resolve close spectral components, 

the optimum order can show excellent resolution, but too high a value causes a 

spurious splitting of the true spectral lines. Without prior knowledge of the 

input choice of order is difficult: Akaike (1969) has proposed criteria for the 

choice, and Alvarez and Louriero (1986) demonstrate the influence of order on 

the analysis of Waverider buoy records. Lacoss (1971) compared the 
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conventional DFT, MLM and MEM methods in computing the spectra of short 

time series. An example is produced in Figure 4.17. 

Clearly the resolution of the MEM can be very good. For spatial data Burg 

noted that it is very difficult to apply the method to unevenly spaced arrays. 

(McDonough, 1974, describes its application to equally-spaced arrays. ) 

Another complication is that the MEM's peaks represent the square of spectral 

density rather than spectral density itself. Consequently the MEM was not 

selected for use in this project, and so a more detailed description is not given 
here. 

4.4.3.6 Including reflected waves 

So far in the analysis of the 3D wave system the assumption has been made that 

the sea state is homogeneous: amplitudes of the frequency components are the 

same at all locations. Under these conditions the auto-spectra, and the 
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magnitudes of the cross-spectra, are independent of sensor location. In 

addition, the phases of the cross-spectra from any pair of sensors with a certain 

vector separation are independent of the absolute position of the pair. Whilst 

the time records at the locations may not look the same, due to dispersion, the 

average powers will be identical. This is the state of affairs that exists when no 

two wave components are correlated, so that their products averaged over time 

tends to zero, and the total power is the sum of the two components. The 

frequencies of the components may be similar but are not identical, and their 

phase relationship is not fixed over time. 

However, that assumption is not valid in wave conditions near a partially 

reflecting barrier, since the reflected components will be 'phase locked' to their 

incident counterparts. Power at a point is not the sum of the powers of the 

components and a structure of partial nodes and antinodes is observed. For the 

present case those were the conditions in which waves were to be measured, 

and so it was necessary to use a processing scheme that took account of any 

phase interaction between wave components. 

Isobe and Kondo (1984) modified the MLM to include phase-locked reflected 

waves. The 'modified maximum likelihood method' - MMLM - gives an 

estimation of the spectrum covering two cases. In the derivation of the MLM 

spectral estimator (Section 4.4.3.4) the signal x(n) was modelled as a sinusoid 

whose magnitude was to be determined, together with uncorrelated noise and 

signals at different frequencies. Because of the lack of correlation (ie phase 
locking) the expected value products containing those components was zero. 
Isobe and Kondo made the modification of setting the signal equal to the 

elevation from an incident plane wave component and its reflection, together 

with uncorrelated signals and noise. 

If k' is the wavenumber vector of the reflected wave (so that its magnitude 
k'=k, and its angle is such that the angle of incidence equals the angle of 

reflection) then, in the notation of Sections 4.4.3.1 and 4.4.3.2, 

11n=a(w)exp(j(cot -k"r�)]+CGaexpU((iI -k". r,, )] (4.96) 
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where Cp. is the reflection coefficient. After applying some geometry this 

becomes 

rl� =a (w) exp [j (wt -k" r�)] +Crn exp [j (cot -k" r�)] (4.97) 

where rn' (designated r., below) is the position vector to the image of the point 

n in the reflection line, that is (in the coordinate system of Section 4.5) the 

point with the same y coordinate as it but the negative of the x coordinate. 

Carrying out the steps of the MLM's derivation on this modified signal gives 

the following result. For any test direction that indicates a spurious negative, 

or zero, reflection coefficient the estimated directional spectrum is the same as 

the MLM (Equation 4.93): 

AK 
S(k, co) = Z 2: Omn exp[j k' (i'n - rni) 

in n 

but for a positive reflection coefficient: 

A 

S(k, w) =x- 

IF, F, L7M1 (cu)IzýPll6(r�-rý�)I+expI. ik"(rý, -rM)1)ý2 
u, n JJJ 

eXPL/ k" (rn - r.., ) ]- 
pit u, n 

(4.98) 

the extra term in the denominator being called the 'phase interaction term'. 

The proportionality constant x is set so that the resulting estimated directional 

spectrum, when integrated over angle, agrees with the auto-spectra at any of 

the locations: 

Qmm\w) =J[ '(ki, co) +2 S(ki, o) S(k,, co) cos [k, " (x�, -Xu, r)] + S(kr, ü) ]i 

(4.99) 

the subscript i specifying the incident range of k, and it the reflected, so that 
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AA 

S(k, ", (0) = Co* S(k,, (0) (4,100) 

Isobe and Kondo present the results of tests on their method using numerically 

generated, simulated, wave data, based on the Cartwright/Mitsuyasa spreading 

model of Equation (4.3 1 ). Their findings may be summarised: 

i) The effects of phase interaction diminish with distance (as a proportion of 

wavelength) from the reflection line. The rate of fall is faster for seas of 

wide directional spread, and for wave directions off the shore normal line. 

ii) Resolution is greatly improved by increasing the number of sensors. Isobe 

and Kondo test arrays of between two and five sensors. 

ii) Array shape is less critical than it is for DFT processing. 

iv) The method is sensitive to noise (as is the MLM), with sharpness of 

resolution falling quite markedly for only 1% noise level, but stabilising 

quickly with more, so that there is little difference between 10 and 20% 

noise. 

v) The MMLM sometimes generates spurious peaks in the directional 

distribution, and may split the peak of a uni-modal distribution into two. 

This appears to be the result of spatial aliassing. Isobe and Kondo 

indicate that this will not occur if the shoreward sensor is < 0.2L from the 

reflection line, and state that if present these artifacts should not be 

difficult to identify. 

vi) Minimum and maximum sensor separations are recommended to be 0.2L 

and 1.5L. 

vii) The method does not constrain the reflection coefficients to be constant 

for all frequencies (since the directional analysis is done on each 
frequency separately) nor for all angles. The accuracy of the reflection 

coefficient estimate declines as wave direction deviates from the 

shore-normal. 

The MMLM was much the most suitable published method for the present 

application. 
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4.5 ANALYSIS SCHEME 

4.5.1 Overview 

The implementation of these data analysis procedures to the measured wave 

records is now described. Figure 4.18 shows the overall scheme in four 

main stages: 
I Data preparation 

II Removing the tidal trend and mean level 

III Calculating the (omni-directional) spectra 

IV Calculating the directional spectrum. 

At each stage additional files of plots and statistics are produced. With 

many hundreds of records (as well as the simulated data records) together 

with the associated information on sensor positions and site topography, 

and the calibration data, care is needed to maintain the correct association 

between files. This is done by applying a logical file-naming and directory 

structure. Also the files contain, as far as possible, all the variables needed 

for a complete interpretation without reference to information kept 

elsewhere. 

Most of the 25 or so programs that carry out these functions were written in 

the mathematical analysis language MATLAB®, and the others are in 

FORTRAN. Examples of the output will be found in Chapter 5. 

4.5.2 Stage I: Data preparation 

Chapter 3 described the decoding of wave recorder 'dump' files so that each 

measurement record of pressure readings ended up with its own file, in 

standard ASCII form, with all the instrument calibration information 

applied. The next step is converting the sub-surface pressures into surface 

heights above the sea bed. Equation 4.20 is implemented in a program 

described by Davidson (1992). The user supplies the applicable atmospheric 

pressure value for the record, and a list of transducer heights above the sea 

bed. A typical water density (1025 kg/m2) is assumed. Mean depth is found 
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Figure 4.18 : Main stages in the analysis 
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from the data and the inverse factor for the pressure head attenuation, for 

each frequency (or rather its corresponding wavelength), is evaluated 

iteratively. This gain function is then applied, as a digital filter in the 

frequency domain, to the Fourier transform of the pressure record. Phases 

remain unchanged. The resulting record is inverse transformed and the mean 

added back in to give a time record of surface heights. 

(Previously a non-recursive, time domain, filter had been used, but this lost 

more data than the frequency domain filter due to its inferior impulse 

response , and its advantage of ability to work in real-time was not relevant 

here. ) 

Whilst the magnitude response is dictated by Equation 4.20, the higher 

frequencies cannot be amplified without limit. Referring to Fig. 4.6 a 

4-second wave (chosen as the highest frequency of interest) will require 

multiplication by 1.43 (ie 1/0.7) if occurring in three metres of water, but 

20 (ie 11.05) in 15m. A judgement must be made on the degree of 

amplification permissible, and that will depend on the signal to noise ratio 

of the measurement. Noise sources comprise contributions from all the 

amplifiers, as well as 'hydrodynamic noise': any pressure fluctuation 

appearing at the transducer diaphragm not related to the passage of waves. 

Other effects such as dead band and hysteresis errors in the transducers and 

quantisation noise from the A/D converter also contribute. An overall 

calculation may be made along the lines of the error calculations in 

Appendix F, choosing the appropriate signal paths from Figure 2.8. 

However this lengthy process can be circumvented by examining the actual 

performance of the system, in the laboratory and using selected field data 

sets. That shows that quantisation noise dominates, as had been hoped at 

the instrument planning stage (Section 2.2.2) in which a (possibly 

conservative) maximum amplitude of 10 was envisaged. 

The files of surface heights are, at this stage, self-contained. That is, 

instrument settings, calibration data and physical variables have all been 

applied to the data. The file header identifies the drawing number of the 
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transducer layout, and one remaining instrument setting - the sampling 
interval. The file header also identifies the site, time and date of record 

start, and the units of the data in the file. 

Numerical simulations 

A program was written to construct files of simulated surface heights for 

use in assessing the performance of the analysis procedures. These are 
fairly simple, allowing the user to specify a number of components of 

different frequencies and directions, with associated reflection coefficients. 

The files are used mainly for fault-finding rather than for a thorough 

validation, for which more complex and realistic simulations would be 

required. 

Site information 

The directional analysis programs (as well as the simulation program if it is 

to include reflection) must be supplied with the position vectors of the 

transducers with respect to the apparent reflection line. The location of this 

line is a variable that depends on tide level and the slopes of the structure, 

and possibly (it is hoped to a small extent) on the wave angle. This is 

discussed in Section 4.5.5. 

4.5.3 Stage II : Removing the tidal trend and mean level 

Most records of surface height show a strong trend due to the tide. This, and 

the mean water level, are removed to leave surface elevations from the 

still-water level. Since linear waves are assumed, the results have a zero 

mean value. To remove a trend Bendat and Piersol (1986) (Section 11.1) 

recommend fitting a polynomial to the data set by the least squares method, 

and then subtracting it from the data. This was done here with a second 

order polynomial. 

In addition to the surface elevation records the output file contains: a vector 

of sampling instants (in seconds after the record start time) which 

corresponds row for row with the data array, and a vector of quality flags, 
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one for each column (ie. transducer). This enables the user to earmark data 

from any malfunctioning, or non-existent, sensor. subsequent programs use 

the flags to size arrays automatically and conduct all calculations on the 

good data only. The file also carries with it the mean depth that was 

removed from the surface heights. 

4.5.4 Stage III : Calculating the spectra 

One of the purposes of producing auto- and cross- spectra for each record is 

to provide the directional analysis programs with estimates of signal 

magnitude and phase for each frequency value of a distribution. These must 

be as reliable as possible because errors here can upset the much more 

complicated directional analysis procedures. Spectra are obtained in the 

normal way by taking the fast Fourier transform (Cooley and Tukey, 1965) 

and multiplying it by its conjugate. This supercedes the equivalent route 

used earlier of transforming the signal's autocorrelation function 

(summarised in Blackman and Tukey, 1959). For the cross-spectrum the 

Fourier transform of one signal is multiplied by the conjugate of the Fourier 

transform of the other of the pair. 

The practical problems of carrying this out on sets of random data of 

limited length are well known (see for example Lynn and Fuerst, 1989, 

Bendat and Piersol, 1986, or Harris, 1978). Firstly the sampling process 

introduces a spurious periodicity into the transform which causes the 

aliasing of any frequency in the input greater than half the sampling 

frequency. This is dealt with by anti-aliasing filters, Section 2.5.3.3. 

Secondly, the limited duration of 'window' through which the data is viewed 

imposes a limit to the frequency resolution in the transform (no matter how 

fast the sampling rate). It also introduces a 'leakage' of energy from other 

frequencies in the input to the one being estimated. This can be thought of 

as a result of the implicit repetition of the windowed data set - if there are 

large jumps in data values at the joins in the repetitions then spectral 

leakage will be severe (Harris, 1978). Tapering the ends of the window 
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reduces these discontinuities (and their derivatives) and reduces the 

leakage, but at the cost of frequency resolution, and of losing some of the 

data. 

Thirdly, the number of time samples in the record determines the number of 

frequency samples in the transform. The true Fourier transform of a sampled 

data sequence is a continuous function of frequency. The FFT yields only 

samples of the continuous function. If a spectral line in the underlying 

transform lies between two samples its power will be shared between 

adjacent samples, and therefore difficult to discern. This is the so-called 

'picket-fence' effect (Haddad and Parsons, 1991, Section 7.2). Zero-padding 

either end of the windowed data set increases the number of frequency 

samples, though not the underlying resolution. Zero padding, and the 

application of any window other than the rectangular, require an appropriate 

scaling in amplitude to preserve total power in the signal. 

Finally, for random data, there is the question of statistical reliability. It 

was stated in Section 4.4.1 that the physically realised (and measured) 

record is modelled as only one outcome of many possibilities, the others of 

which did not actually occur: one member of an ensemble with common 

statistics. But if the members' time records are different then their Fourier 

transforms will also be different. In many studies the general characteristics 

of a wave field are of more interest than the detailed forms and timings of 

the wave trains. Similarly, in the frequency domain the form of the 

spectrum of the underlying random process would be of interest, not the 

spectrum of any particular record. In these circumstances an assessment is 

made of the statistical significance of measured spectra. The null hypothesis 

is made: that the time series is completely random and contains no 

particular dominant frequencies. Each of the Fourier coefficients is assumed 

to be a Gaussian random variable. The significance of a certain number of 

observations of this coefficient is assessed and expressed as a confidence 

band around an expected value. The method is presented in texts such as 

Jenkins and Watt (1968) and also by Huntley (1992). It turns out that if 

only one measurement of a Fourier coefficient is available then the standard 
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deviation will be as great as the expected value. Even if twelve are 

available, then the confidence band is still very wide, extending from 0.6 to 

1.8 times the expected value. In practice it is often difficult or impossible 

(due to lack of stationarity) to acquire data of adequate duration for that 

many independent Fourier transforms. 

However, the main interest to date in using the wave recorder has been to 

measure the reflection performance of coastal structures, and not the 

general characteristics of the wave field. The pessimistic conclusions of the 

above analysis would apply if it were possible to measure incident and 

reflected wave characteristics only at different times, then to compare 

spectral peaks to deduce reflection coefficient. That is not the case here. 

Any particular wave record contains both the (incident) input to the 

wave-structure system and the (reflected) output. The fact that the input 

wave conditions were drawn at random from a set of possibilities is less 

important than whether the system's output is well correlated with its input. 

Some non-deterministic elements do remain, such as instrument noise, and 

imperfections in the analysis. The standard methods of improving statistical 

significance will be used, but the level of confidence in the spectrum of a 

particular record is higher than in the spectrum of a general sea state. 

There are three standard methods: 

i) Neighbouring frequency estimates are split into groups and averaged. 

ii) Neighbouring frequency estimates are smoothed with, for example, a 

moving-average low pass filter. 

iii) Block- (or ensemble- ) averaging. A single time record is split into 

segments which are individually transformed, and the corresponding 

frequency estimates from the spectrum of each segment are averaged. 

All methods result in a loss of frequency resolution. 

Procedure for obtaining Omni-directional spectra 

Method (iii) ('the Welch method', Oppenheim and Schafer, 1975, p556) was 

adopted as it allows more flexibility in the way the window is applied to the 
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data. The time series of about 1350 samples were sectioned into nine 

partially overlapping blocks, then windowed, transformed and averaged. 

Overlapping the blocks brings the advantage that data which would have 

been attenuated in the tails of a window is included in the neighbouring 

block. Careful choice of the overlap ratio results in the loss of only a few 

data points while permitting block lengths to be integer powers of 2 (in this 

case 256) to suit the FFT. (Zero padding, or the use of a Winograd Fourier 

transform algorithm (eg Press et al, 1989, Chapter 12) are other ways of 

retaining the computational efficiency of the FFT and not losing data). One 

wants as many independent blocks as possible for maximum statistical 

reliability, but a minimum block size is set by the required frequency 

resolution. That in turn is limited by the errors caused in the MMLM from 

the range in wavelength contained within the frequency 'bins'. The 

compromise chosen was a block size of 256 half-second samples giving a 

frequency bin width of 1/128, or 0.0078, Hz. Tests were done to assess the 

errors arising from spectral leakage into adjoining bins. The effect is that 

the MMLM produces spurious peaks as the phases in Q do not agree with 

the wavelength assumed from the incorrect frequency. These peaks were 

found to be acceptably small for the block size chosen. 

Many data windows have been developed. Harris (1978) defines a number of 

performance criteria and compares over twenty common windows. Selection 

of an appropriate window requires a judgement of how its various 

characteristics will affect the type of data to be analysed. The Hanning 

window was chosen as a reasonable compromise between close-in resolution 

and leakage from frequencies distant from the central lobe. (This choice is 

reasonable but may not be the optimum; more work is needed. ) 

Stage III produces an output file containing the auto-spectra of each 

transducer's wave record, cross-spectral density matrices Qmn for all 

transducer pairs (one matrix for each frequency bin), coherence matrices, a 

vector of frequency values to enable the matrices to be interpreted as 

spectra, and the quality flags copied through from Stage II. That constitutes 

193 



all the measured (as opposed to site) information that the directional 

analysis programs need. 

4.5.5. Stage IV: Calculating the directional spectrum 

Equations 4.93,4.98 and 4.99 define the modified maximum likelihood 

method (MMLM). The general procedure is, for each frequency bin: 

i) evaluate the cross-spectral matrix Q (Section 4.5.4) 

ii) invert it (necessary only once per frequency) 

iii) for each test direction in steps of 10° around the circle: 
iv) evaluate the four matrices of phase shifts, ie exp(f k. (rn-rm)] etc 

v) apply these phase shifts, element by element, to Q` 

vi) combine the terms in the denominator of Equation 4.98 

vii) reciprocate and scale by evaluating k with Equation 4.99. 

In practice there can be a number of difficulties in following this procedure. 

Inverting the cross-spectral matrix 
In some cases the matrix Q can be singular or nearly singular, and therefore 
impossible to invert. With real, measured, wave data the matrix is usually 

well-conditioned, but with simulated data of a few components and no 

added noise the coherences are unity, and Q singular. To overcome this Q is 

perturbed by increasing the elements of the leading diagonal by one part per 

million - small compared to the error specification of the measurements, but 

large compared to the precision of computation. 

Locating the apparent reflection line 

The MMLM assumes that reflection occurs at a long vertical barrier of a 

certain, not necessarily unity, reflection coefficient. Whilst this is true of 

some sea walls and breakwaters it is not true for coastal structures with 

compound, inclined slopes. However, as observed from the transducer array, 

the wave field of interacting incident and reflected components can be 

equivalent to such an idealised case. The problem is to find the position of 
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this equivalent idealised barrier relative to the transducers. Davidson (1993) 

has implemented in software, and extended, the solutions of Hotta et al 

(1981) and Suhayda (1974) evaluating the complex nodal structure 

(envelope of wave height versus cross-shore distance) near a multi-slope 

reflecting barrier. A cross-correlation technique predicts from this 

amplitude profile the location of the apparent reflection line. The 

theoretical basis relies on the shallow water approximation to linear wave 

theory (Table 4.1). Application is therefore limited to the lower frequency 

end of the wind wave range. 

Additional information was gained from model tests carried out in the 

University of Plymouth's wave channel (Hiscock, 1992). Also, for shore 

normal waves it is proposed to adapt the frequency response method to give 

distance to the reflection line. 

This work is continuing: it is hoped to build up a picture of how the 

reflection line location at a structure is influenced by tide height, wave 

frequency and spectral form, wave height, and angle of approach. This will 

both advance the understanding of the reflection process, and provide the 

necessary input to the MMLM with more confidence than is presently 

possible. 
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CHAPTER 5 

RESULTS 

5.1 INTRODUCTION 

At the time of writing (Spring 1993) two wave recording systems had been 

manufactured, and measurements made at four sites. This chapter describes 

two of these sites, and presents in detail four measurement records from the 

many hundreds obtained (Table 5.1). The measurements at the other two 

sites - Bovisand Bay near Plymouth and Felpham near Bognor Regis - were 

carried out to provide data in support of separate research programmes; 

reflection of waves was low. The breakwaters at Plymouth and Elmer were 

of more relevance to this study. 

5.2 FIELD SITES 

5.2.1 Plymouth Breakwater 

Built by Rennie between 1811 and 1842 to protect the naval port of 

Plymouth, this armoured rubble-mound breakwater is founded on a rock 

shoal at the entrance to Plymouth Sound (Figure 5.1 and Plate 11). It is 

nearly two kilometres long and consists of about four million tonnes of 

limestone taken from local quarries (Rennie, 1848). The upper sections are 

surfaced with dovetailed granite paving. Since the 1920's rectangular 

concrete blocks ranging in weight from 25 to 100 tonnes have been placed 

on the berm in an attempt to dissipate the force of the waves. The seaward 

side is made up of sections of different gradients (Figure 5.2). The unusual 

shape and the considerable width of the base are partly due to shifting and 

settlement of the material over the long construction period. Though very 

stable, these gradients would be considered uneconomical today. 
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Penlee Point to the west of the Sound and Renney Point, Wembury to the 

east restrict incident waves to those from bearings of 140° to 235°. Longer 

wave components are limited to an even smaller range due to refraction. The 

area in front of the breakwater is reasonably flat so that waves do not shoal 

noticeably over the array. The depth, at about 8 metres below chart datum, 

was convenient for diving operations. Moreover that was deep enough for 

linear wave theory to be a reasonable approximation, while not so deep that 

pressure fluctuations at the sea bed would be unacceptably attenuated. The 

transducer layout is shown in Figure 5.3. The separations shown on brackets 

are the design values; actual surveyed values are in Figure 3.1. 

5.2.2 Elmer, West Sussex 

In 1990 the authority with responsibility for the frontage, Arun District 

Council, constructed two 'rock island' breakwaters to the design of 

consultants Robert West and Partners (1991) to protect the village of Elmer 

(near Bognor Regis) from flooding by storm waves overtopping the sea 

wall. Each of the structures was 90m long, and constructed from 10,000 

tonnes of 6 to 8 tonne rocks. They were located on the foreshore 130m from 

the sea wall (Figures 5.4 and 5.5 and Plate 12). The seaward face had the 

unusually steep slope of 1: 1.1. That was partly experimental: the 1990 work 

was an intermediate step for 'emergency' protection; modification was 

envisaged for 1992. Apart from providing a partial barrier to incident waves 

these breakwaters cause a shoreward build up of beach material. During the 

summer of 1991 over 11,000 m3 of sand and shingle had accumulated. 

The flat foreshore around the structure ensured wave homogeneity over the 

transducer array, and allowed placement close-in to what was expected to be 

a barrier of high reflectivity. The depth, however, was less than ideal. At 

1.5 m below Ordnance Datum the site dried out at low water spring tides. 

That resulted in the equipment being situated in the surf-zone. Extra 

precautions against storm damage were therefore taken: new transducer 

mounting blocks and wave recorder platform were designed to enclose the 

units completely in steel plate, except for the faired top plates of the 
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transducers. The blocks and platform were dug into the chalk bed with the 

aid of a mechanical excavator. Bearing in mind that the expected intensity 

of the wave climate was lower than that at Plymouth it was hoped no 

damage would occur. This has in fact been the case. 

The restricted depth had implications also for the analysis. The assumption 

of linear theory would hold less well. Also tide would cause a greater 

fractional depth change over a record, leading to a loss of stationarity. On 

the other hand, shallow water measurement did bring the benefit of smaller 

pressure attenuation. The transducer layout is shown in Figure 5.6. 

5.3 DESCRIPTION OF SELECTED DATA SETS 

Two records from the January - March 1989 deployment at Plymouth 

breakwater and two from the Elmer deployment of 1992 are selected for 

presentation here. The first from Plymouth consists of a long swell, and 

the second is of a storm. Visual observations were taken at the same time as 

the latter record and provide a rough check on the measurement and 

directional analysis. The first from Elmer is a low-intensity swell, in which 

the waves would not have been breaking, and the second contains the 

largest waves of the deployment. 

5.3.1 Plymouth - long period swell (Figures 5.7 to 5.19) 

The first and last parts of the file of measured pressures are shown in Figure 

5.7. The six columns are arranged in the order of the electronic channel 

numbers in the wave recorder. Unfortunately, for deployments 3 and 4 it 

was not possible (for reasons of underwater connector compatibility) to 

match this order to the location numbers on the transducer layout plan 

(Figure 5.5). The plan does, however, show the correspondence between 

locations and channels: numbers I and 5 are interchanged. The appropriate 

correction is carried out in a later stage of the analysis. The rows contain 
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the pressure readings in millibars, taken simultaneously, each row separated 
by 0.5 seconds. The text header provides further information. 

When corrected to surface heights by frequency domain filtering (where the 

'surface height' is the dimension in metres from sea bed - not transducer 

sensing level - to the instantaneous water surface) the file in Figure 5.8 

results. (The version of the program carrying this out did not modify the 

text header correctly. ) The next step, for the Plymouth data, is to swap 

columns 1 and 5 so that from that point the column numbers correspond to 

transducer location numbers. 

The pressure readings of Figure 5.7 are plotted in Figure 5.9, and the 

surface elevations (surface heights with means removed) in 5.10. The 

correspondence between these two is seen more clearly in the shorter 

section in Figure 5.11. To make the comparison pressures have been 

converted to surface elevations using the simple hydrostatic relationship, 

that is with no allowance for attenuation with depth (full line). Calculated 

surface elevations, applying Airy wave theory, are shown in the dotted line. 

As expected, the higher frequency components in the pressure record have 

been amplified substantially, but the phases remain unaltered. The 

erroneous points at the beginning and end due to the impulse response of 

the filter have been deleted, losing nine seconds at each end. 

The program that de-trends and de-means these files also produces tables of 

statistics, and these are given in Figures 5.12 and 5.13 for pressures and 

surface heights respectively. Significant wave height is fairly low, in the 

region of 0.75 metres. The differences between mean surface height in each 

column show the variation in sea-bed level over the array. Maximum 

excursions are displayed in standard deviations as well as the base units to 

indicate any outliers that may require checking. 

Frequency distributions of both pressures and heights (taking the form of 

periodograms rather than spectral densities, units: mb2 and m2) are given in 

Figures 5.14 and 5.15: the action of the pressure-to-surface filter can again 
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be seen. The frequency range plotted is 0 to 0.4 Hz. Plots at the appropriate 

vertical scale of the full range up to the Nyquist frequency of 1 Hz show no 

energy above 0.4 Hz. 

The cross-spectral matrices for some of the higher-energy frequency 'bins' 

are tabulated in Figure 5.16, and the corresponding coherences in 5.17. The 

cross spectral matrices are the 'raw material' for the directional analysis that 

follows. The leading diagonals are the auto spectra. In a sea with no phase 

locking these would be of similar magnitude. A large disparity (as in 

frequency bin 8) suggests a high degree of reflection: some of the 

transducers are close to the partial nodes for that particular frequency, and 

others close to the partial anti-nodes. 

The output of directional analysis by the modified maximum likelihood 

method (MMLM, Chapter 4) is shown in Figure 5.18 as a contour plot, with 

the directional distribution of the most energetic frequency bin in 5.19. The 

angle scale in the MMLM refers to the direction of wave propagation with 

0° directly offshore from the breakwater and increasing positive 

anticlockwise, Figure 5.20. Incident waves therefore occupy the range of 

angle from 90° to 270° (the centre section of the direction axis of the plots) 

and reflected waves 0° to 90° and 270° to 360°. In this record reflection is 

quite marked, as would be expected from the long period and low height of 

the swell. 

5.3.2 Plymouth - storm (Figures 5.21 to 5.32) 

Results are presented in the same form for the remaining three records. This 

one is of a storm in which large waves were breaking on the structure. Most 

of the energy was dissipated and very little reflected. The wave system 

appears to consist of two predominant frequencies, the higher energy one at 

190° and the lower at 160°. 

5.3.3 Elmer - low intensity swell (Figures 5.33 to 5.45) 
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The array diagram for the Elmer deployment is shown in Figure 5.6. The 

dimensions are smaller than at Plymouth as the expected wave periods and 
lower mean depth result in shorter wavelengths. This record is of 
long-period waves which are too small to break. Given also the steep 

gradient of the breakwater a high degree of reflection was expected. 

The comparison of measured pressure and calculated surface height, Figure 

5.37, displays the closer correspondence appropriate to the smaller depth of 

pressure measurement. 

5.3.4 Elmer - moderate sea (Figures 5.46 to 5.57) 

With a significant wave height of around 0.75 metres these were the largest 

waves from the Elmer deployment. As in the last example, high reflection is 

evident. 

5.4 COMPARISON WITH OTHER OBSERVATIONS 

The ideal validation of the wave recording system would be a comparison 

over the full range of input conditions to another wave recorder, possibly 

working on a completely different principle but in whose performance one 

had full confidence. That ideal was impractical; had such a system existed it 

would not have been necessary to develop a new one. However, 

opportunities were taken whenever practical to assess performance against 

other measurements in the field, and against calibration standards. The 

process was necessarily piecemeal: different facets of both measurement 

and analysis were checked in a number of independent ways, and confidence 

in the system gradually built up. 

The calibration procedures for pressure sensors alone, electronic sections 

alone, and of the two together, were described in Chapter 3. Additional 

checks were made from time to time against tide data, divers' depth gauges 

and similar information as the opportunities arose. In general those sources 
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were not as accurate as the wave recorder and so did not count as true 

calibration. 

The process of which there was least experience was the directional 

analysis. Simulated wave data files were used during development, but as 

these were highly idealised versions of a real sea they provided only checks 
for gross errors. However, it was possible to make two important checks on 

the directional analysis of some of the data sets: predominant wave 

direction compared to visual observation, and conformity with the 

theoretically predicted nodal structure in a reflective sea, and with the same 

measured on a laboratory model. These are described below. 

5.4.1 Visual observation 

At the time of the storm record from Plymouth (0900 hrs, 24.2.89) it was 

possible to observe the sea conditions from a vantage point just north of 

Heybrook Bay (Bullock 1989). The main crest lines were estimated to be at 

an angle about half way between those of the centre section and the western 

arm of the breakwater, corresponding to a direction of wave propagation of 

about 70 to the east of the normal line, 173° on Figure 5.20. No great 

accuracy could be claimed for the observation as the viewpoint's elevation 

angle was low, and visibility during the storm poor. The direction, 

nevertheless, agrees reasonably well with the results in Figures 5.31 and 

5.32. 

5.4.2 Theoretical models 

Inspection of the auto-spectra (leading diagonals) for certain of the records, 

eg Figures 5.16 and 5.42, reveals the considerable variation in wave height 

between locations expected in a reflective wave system. Two methods of 2D 

analysis were applied to these data sets, and the results found to be 

reasonable and consistent. They thus provide a check and increase 

confidence in the analysis, although they do not constitute a true 

calibration. 
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5.4.2.1 Frequency response function method 

The method was described in Chapter 4, and a computer program written to 

implement it by Davidson (1992). Applying it to the data in D303R3. CO1, 

long period swell at Plymouth, gives the incident and reflected spectra in 

Figure 5.58 a). The result is substantially the same whichever of the three 

possible pairs of locations is chosen. The reflection coefficient (Figure 5.58 

b) is calculated to be a reasonable 50% at 0.05Hz (20s wave period), 

decreasing slowly with increasing wave frequency as expected. 

Furthermore, values of reflection coefficient are similar for all the 

frequencies processed (above 0.04Hz) even for frequencies of very low 

signal level - the greatest energy component, at 0.057Hz, corresponds to an 

incident wave height of only 0.2m. 

The same features are seen in the first of the records from Elmer, Figure 

5.59 a) and b). The reflection coefficient is higher, around 70%, due to the 

steeper slope. The harmonic analysis procedure used in this method was 

similar but not identical to that producing Figure 5.41. The latter did not 

resolve the dip at 0.125Hz so clearly. Further work is needed to determine 

the optimum window for this type of data. 

5.4.2.2 Theoretical prediction of nodal structure 

The technique of Davidson (1993, and mentioned in Chapter 4) for 

calculating the magnitude of the wave envelope as a function of position 

from the reflective barrier gives, for the geometry of Plymouth Breakwater, 

the profile in Figure 5.60, and for the Elmer breakwater that in Figure 5.61. 

The theory assumes linear waves and the shallow water approximation, as 

well as an absence of loss mechanisms such as wave breaking or friction so 

that the reflection coefficient is unity. The shallow water approximation is 

only valid for lower frequencies, and the theory has not been applied to 

cases were the resulting error would be greater than 5% 
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The envelope magnitudes at the antinodes decay with cross-shore distance 

over the structure until a level sea bed is reached. The measured signal 

levels are superimposed as shaded squares. 

This analysis is at an early stage. The vertical scaling is arbitrary, and in 

the measured sea, unlike the theoretical model, reflection is not perfect. 
However it can be seen qualitatively that lower and higher signal strengths 

occur at approximately the distances predicted. Agreement is better at 

Elmer where reflection was greater and the sensor array was closer to the 

reflection line. 

5.4.3 Physical model 

A model at scale 1: 15 was constructed and tested in the University of 

Plymouth's 20m wave channel (Hiscock, 1992, Bullock and Murton 1989). 

The wave envelopes for certain discrete frequencies were measured at points 

over the model, and are plotted in Figure 5.62. The theoretical curves from 

the method of Section 5.4.2 are superimposed and agree well, except for 

some wave set-up of the model waves. By extension, the full scale results 

agree qualitatively with those from the physical model. 

Hiscock also measured the model's reflection coefficient for a range of 

wave conditions. For those equivalent to the data set of Figure 5.58, 

long-period (0.055Hz scaled), low height swell with no breaking, he 

recorded approximately 66%. The result in the figure from the field data 

shows about 56% at the peak frequency. Since the model was idealised 

(smooth and regular slopes with no armouring blocks, monochromatic 

waves) the results appear to agree quite well. 
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Figure 5.2 Plymouth, Breakwater - cross section at the centre 
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It Wave recorder : WR1 : i" 
" Mod standard : DEP3 0" 
" Location : Plymouth Bkwater 0" 
It Transducer Layout : WR1-0049 iss A: 0" 
it Time/Date 1st rdg : 12 Feb 89 1200: 05 : 0" 
" Data element values : Abs pressures : 1" 
" Data array columns : 6, ch2 to ch7 : 61' 
11 Data array rows : 1354, sim. rdg sets 1354" 

Reading interval : 500 ms 500" 

File created by : DECODE 0" 
Version : 3.0 1120 20.3.89 : 0" 

2288 2237 
2293 2240 
2295 2241 
2295 2244 
2293 2246 
2288 2250 
2281 2254 
2274 2258 
2268 2260 
2264 2261 
2264 2260 
2267 2258 
2273 2254 
2279 2249 
2284 2243 
2288 2239 
2288 2237 

2264 2227 
2264 2226 
2264 2226 
2264 2226 
2265 2227 
2263 2227 
2261 2228 
2258 2229 
2255 2228 
2251 2226 
2249 2223 
2250 2219 

2258 
2261 
2264 
2266 
2268 
2269 
2270 
2271 
2271 
2270 
2268 
2264 
2261 
2258 
2257 
2258 
2261 

2246 
2247 
2247 
2247 
2247 
2246 
2245 
2244 
2242 
2240 
2238 
2237 

2294 
2295 
2296 
2297 
2299 
2300 
2300 
2298 
2294 
2290 
2286 
2286 
2288 
2293 
2299 
2304 
2307 

2263 
2263 
2262 
2261 
2259 
2257 
2253 
2249 
2245 
2242 
2240 
2241 

2202 2267 
2205 2262 
2207 2260 
2210 2260 
2214 2263 
2217 2266 
2222 2269 
2226 2269 
2229 2268 
2231 2264 
2230 2258 
2228 2250 
2224 2242 
2220 2236 
2215 2230 
2211 2226 
2207 2223 

11 
I1 

2185 2228 
2184 2226 
2183 2224 
2182 2224 
2183 2224 
2184 2226 
2186 2228 
2187 2229 
2187 2231 
2187 2232 
2182 2234 
2178 2236 

Figure 5.7 Plymouth, 1200 12.2.89 - file of pressures, D303R3. A01 (first 
and last few lines) 
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Wave recorder : WR1 1" 
Mod standard : DEP3 0" 

" Location : Plymouth Bkwater : 0" 
Transducer Layout : WR1-0049 iss A 0" 
Time/Date 1st rdg : 12 Feb 89 1200: 05 0" 

" Data element values : Abs pressures 1" 
" Data array columns : 6, ch2 to ch7 6" 
it Data array rows : 1354, sim. rdg sets 1354" 
is Reading interval : 500 ms : 500" 

of File created by : 
" Input created by : DECODE 

13.106 12.261 12.765 13.439 12.094 12.378 
13.044 12.338 12.920 13.389 12.042 12.298 
12.974 12.544 13.031 13.241 12.087 12.253 
12.885 12.780 13.046 13.024 12.223 12.303 
12.755 12.944 12.946 12.816 12.413 12.464 
12.599 12.985 12.780 12.699 12.580 12.684 
12.461 12.899 12.622 12.674 12.644 12.891 
12.391 12.702 12.507 12.675 12.568 13.039 
12.420 12.440 12.427 12.652 12.378 13.104 
12.535 12.195 12.377 12.616 12.121 13.062 
12.666 12.040 12.363 12.590 11.851 12.911 
12.742 11.990 12.361 12.578 11.638 12.699 

'12.758 12.015 12.331 12.590 11.551 12.524 
12.769 

I 

12.072 
I 

12.278 
I 
I 

12.655 
I 

11.602 
I 
I 

12.478 

12.610 

I 

12.125 12.491 

I 

12.569 11.781 12.692 
12.799 12.157 12.552 12.637 11.708 12.635 
12.985 12.254 12.552 12.744 11.720 12.567 
13.120 12.371 12.530 12.885 11.797 12.504 
13.177 12.452 12.537 13.022 11.903 12.454 
13.132 12.467 12.595 13.092 12.002 12.424 
13.005 12.431 12.707 13.068 12.066 12.424 
12.867 12.401 12.857 12.988 12.069 12.443 
12.774 12.436 12.985 12.897 12.036 12.460 
12.729 12.557 13.010 12.807 12.035 12.470 
12.716 12.711 12.898 12.716 12.119 12.491 
12.735 12.799 12.701 12.645 12.252 12.523 
12.781 12.767 12.515 12.610 12.346 12.545 
12.815 12.630 12.412 12.608 12.333 12.543 
12.803 12.442 12.412 12.631 12.211 12.530 
12.759 12.251 12.483 12.682 12.023 12.517 
12.724 12.123 12.575 12.752 11.835 12.494 
12.729 12.125 12.651 12.809 11.713 12.456 

THE SOURCE DATA FILE IS CALLED :-C: \WR1\DATA\DEP3\D303R3. AO1 
THIS DATA FILE IS CALLED :-C: \WR1\DATA\DEP3\D303R3. CO1 

Figure 5.8 Plymouth, 1200 12.2.89 - file of surface heights, D303R3. C01 

224 



2300 

-im E 
2200 

2300 

E 
2200 

f. 2 

E 

2 

E 
`ý 2 

2300 

E 
`2200 

S 2 

.a E vS 
L 

100 200 300 400 500 600 

column 5 

0 100 200 300 400 500 600 t %s 

Figure 5.9 Plymouth, 1200 12.2.89 - plot of pressures, D303R3. A01 
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Figure 5. lOPlymouth, 1200 12.2.89 - plot of surface eleva(-ioj D303R3. C01 
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Figure 5.11 Plymouth, 1200 12.2.89 - comparison of pressure and surface 
records. Full line - elevation from pressure with no allowance 
for depth attenuation. Dotted line - elevation from pressure using 
Airy theory. 
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STATISTICS FROM FILE D303R3. AO1 

No. rows in press. dat 
first data points (press) 
first data points (pwave) 

means (mb) 

means (relative) (mb) 
tidal changes (mb) 
range (de-trended) (mb) 

max pressure excn (mb) 

max press. exc. (std-devs) 

min pressure excn (mb) 
min press. exc. (std-devs) 
std devs (de-trended)(mb) 
vars (de-trended) (mb^2) 

0-f Lags 

1356 
2202 2237 2258 2294 2288 2267 
-1.7 2.5 6.2 11.4 18.4 9.7 

2191.2 2229.7 2248.6 2268.9 2268.0 2243.3 
0.0 38.5 57.4 77.7 76.8 52.1 

-20.5 -8.5 -6.1 -23.4 -4.8 -20.7 
89.8 82.9 72.2 69.7 63.1 98.1 
45.9 42.6 39.5 34.9 33.6 44.9 

3.0 3.1 3.4 3.2 3.1 2.9 

-44.0 -40.3 -32.7 -34.8 -29.5 -53.2 
-2.9 -2.9 -2.8 -3.2 -2.7 -3.4 
15.2 13.9 11.6 10.9 10.9 15.4 

230.6 192.8 134.8 117.9 118.9 238.5 

1 1 1 1 1 1 

Figure 5.12 Plymouth, 1200 12.2.89 - statistics from pressure record 

STATISTICS FROM FILE D303R3. CO1 

No. rows in surf. dat 
first data points (surf) 
first data points (wave) 

Hs (m) 
means (m) 
tidal changes (m) 
means (relative) (mm) 
range (de-trended) (m) 
max wave excn (m) 
max wave excn (std-devs) 

min wave excn (m) 
min wave excn (std-devs) 
std devs (de-trended)(m) 
vars (de-trended) (m^2) 
refl. coeff. > 

Q_f Lags 

1320 
12.094 12.261 12.765 13.439 13.106 12.378 
-0.077 -0.219 0.107 0.478 0.271 -0.348 

0.85 0.81 12.066 12.449 
-0.186 -0.071 

0 383 
1.324 1.268 
0.706 0.681 

3.3 3.4 
-0.618 -0.587 

-2.9 -2.9 
0.213 0.203 
0.045 0.041 
0.102 

11 

0.73 
12.831 
-0.035 

765 
1.216 
0.639 

3.5 
-0.577 

-3.2 
0.182 
0,033 

0.85 12.587 
-0.197 

521 
1.473 
0.621 

2.9 
-0.852 

-4.0 
0.213 
0.045 

1111 

Figure 5.13 Plymouth, 1200 12.2.89 - statistics from surface height record 
D303R3. CO1 

0.73 0.69 
12.638 12.840 
-0.050 -0.214 

572 774 
1.036 1.107 
0.542 0.608 

3.0 3.5 
-0.493 -0.500 

-2.7 -2.9 
0.182 0.173 
0.033 0.030 
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Figure 5.14 Plymouth, 1200 12.2.89 - frequency distribution of variance from 
pressure record D303R3. A01 
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Figure 5.15 Plymouth, 1200 12.2.89 - frequency distribution of variance from 
surface height record D303R3. C01 
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CROSS-SPECTRAL DENSITY MATRICES FROM: D303R3. C01 
XSD_f(i, j) 

frequency: 0.03 9Hz frequency index : 6 
magnitude /(10^- 6 m^2 ): phase /degrees: 

269 255 223 193 151 199 0 3 12 27 39 131 
255 243 213 184 146 187 -3 08 23 35 126 
223 213 189 166 134 160 -12 -8 0 15 25 113 
193 184 166 149 121 133 -27 -23 -15 0 9 96 
151 146 134 121 110 123 -39 -35 -25 -9 0 71 
199 187 160 133 123 225 -131 -126 -113 -96 -71 0 

frequency: 0.04 7Hz frequency index : 7 
magnitude /(10^- 5 m^2 ): phase /degrees: 

455 416 332 264 201 452 0 4 14 33 62 146 
416 381 305 243 185 414 -4 0 10 30 58 142 
332 305 244 195 149 329 -14 -10 0 19 48 131 
264 243 195 158 120 261 -33 -30 -19 0 28 112 
201 185 149 120 97 207 -62 -58 -48 -28 0 80 
452 414 329 261 207 479 -146 -142 -131 -112 -80 0 

frequency: 0.05 5Hz frequency index : 8 
magnitude /(10^- 5 m^2 ): phase /degrees: 

850 767 591 477 376 873 0 4 16 40 73 149 
767 693 537 435 343 785 -4 0 12 36 68 144 
591 537 422 345 277 604 -16 -12 0 24 53 130 
477 435 345 285 229 488 -40 -36 -24 0 28 106 
376 343 277 229 217 430 -73 -68 -53 -28 0 70 
873 785 604 488 430 977 -149 -144 -130 -106 -70 0 

frequency: 0.06 3Hz frequency index : 9 
magnitude /(10^- 5 m^2 ): phase /degrees: 

229 201 144 118 122 276 0 6 25 53 100 162 
201 178 132 109 109 238 -6 0 18 46 88 153 
144 132 107 93 93 172 -25 -18 0 28 56 127 
118 109 93 83 86 144 -53 -46 -28 0 23 94 
122 109 93 86 132 206 -100 -88 -56 -23 0 54 
276 238 172 144 206 403 -162 -153 -127 -94 -54 0 

frequency: 0.07 0Hz frequency index : 10 
magnitude /(10^- 6 m^2 ): phase /degrees: 

298 292 298 292 341 378 0 14 40 70 81 163 
292 293 310 307 353 354 -14 0 25 55 62 146 
298 310 352 354 427 367 -40 -25 0 29 32 112 
292 307 354 364 439 366 -70 -55 -29 0 2 80 
341 353 427 439 594 511 -81 -62 -32 -2 0 67 
378 354 367 366 511 602 -163 -146 -112 -80 -67 0 

Figure 5.16 Plymouth, 1200 12. 2.89 - cross-spectral matrices for the most 
energetic frequency bins from D303 R3. C01 
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COHERENCE MATRICES FROM: D303R3. CO1 
COH_f(i, j ) 

frequency : 0. 039Hz frequency index: 6 

1.000 0.998 0.977 0.926 0.767 0.656 
0.998 1.000 0.986 0.940 0.790 0.640 
0.977 0.986 1.000 0.974 0.864 0.603 
0.926 0.940 0.974 1.000 0.884 0.530 
0.767 0.790 0.864 0.884 1.000 0.614 
0.656 0.640 0.603 0.530 0.614 1.000 

frequency : 0. 047Hz frequency index: 7 

1.000 0.999 0.994 0.973 0.916 0.939 
0.999 1.000 0.997 0.977 0.924 0.938 
0.994 0.997 1.000 0.984 0.942 0.927 
0.973 0.977 0.984 1.000 0.939 0.904 
0.916 0.924 0.942 0.939 1.000 0.925 
0.939 0.938 0.927 0.904 0.925 1.000 

frequency : 0. 055Hz frequency index: 8 

1.000 0.998 0.973 0.941 0.768 0.917 
0.998 1.000 0.985 0.957 0.785 0.911 
0.973 0.985 1.000 0.985 0.835 0.883 
0.941 0.957 0.985 1.000 0.849 0.855 
0.768 0.785 0.835 0.849 1.000 0.873 
0.917 0.911 0.883 0.855 0.873 1.000 

frequency: 0. 063Hz frequency index: 9 

1.000 0.990 0.847 0.731 0.496 0.827 
0.990 1.000 0.910 0.809 0.504 0.792 
0.847 0.910 1.000 0.974 0.614 0.684 
0.731 0.809 0.974 1.000 0.674 0.621 
0.496 0.504 0.614 0.674 1.000 0.800 
0.827 0.792 0.684 0.621 0.800 1.000 

frequency: 0. 070Hz frequency index: 10 

1.000 0.974 0.844 0.789 0.658 0.798 
0.974 1.000 0.932 0.885 0.717 0.710 
0.844 0.932 1.000 0.981 0.871 0.635 
0.789 0.885 0.981 1.000 0.892 0.613 
0.658 0.717 0.871 0.892 1.000 0.730 
0.798 0.710 0.635 0.613 0.730 1.000 

Figure 5.17 Plymouth, 1200 12.2.89 - coherence matrices for the most 
energetic frequency bins from D303R3. C01 
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Figure 5.18 Plymouth, 1200 12.2.89 - directional wave spectrum from 
D303R3. C01 as a contour plot 
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Figure 5.19 Plymouth, 1200 12.2.89 - directional wave distribution from 
D303R3. C01 : 0.055 Hz 
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It Wave recorder : WR1 it. 
if Mod standard : DEP3 0" 
" Location : Plymouth Bkwater 0" 
" Transducer Layout : WR1-0049 iss A 0" 
if Time/Date 1st rdg : 24 Feb 89 0858: 09 : 0" 
" Data element values : Abs pressures : 1" 
" Data array columns : 6, ch2 to ch7 : 6" 

Data array rows : 1354, sim. rdg sets : 1354" 
Reading interval : 500 ms 500" 

File created by : DECODE 0" 
Version : 3.0 1120 20.3.89 0" 

2343 2350 
2334 2346 
2328 2338 
2324 2328 
2320 2317 
2314 2306 
2308 2297 
2303 2292 
2303 2290 
2308 2290 
2321 2291 
2339 2290 
2358 2289 
2374 2287 
2386 2286 
2394 2288 
2394 2296 
2387 2309 
2378 2325 
2366 2339 

2356 
2341 
2327 
2315 
2307 
2303 
2303 
2305 
2307 
2308 
2307 
2306 
2306 
2309 
2316 
2326 
2339 
2353 
2364 
2368 

2376 
2359 
2346 
2336 
2327 
2321 
2318 
2318 
2320 
2325 
2332 
2341 
2350 
2360 
2371 
2383 
2396 
2406 
2413 
2414 

2320 2284 
2319 2286 
2315 2292 
2308 2302 
2299 2314 
2288 2329 
2276 2343 
2266 2356 
2259 2367 
2255 2374 
2253 2376 
2252 2376 
2252 2373 
2251 2367 
2251 2358 
2251 2343 
2255 2325 
2264 2304 
2278 2285 
2293 2272 

2353 2246 2272 2326 2212 2265 
2365 2241 2285 2334 2199 2275 
2368 2244 2301 2341 2193 2292 
2363 2255 2319 2344 2195 2311 
2351 2272 2335 2341 2208 2328 
2334 2293 2344 2333 2228 2339 
2315 2311 2344 2319 2250 2342 
2300 2323 2336 2305 2271 2340 
2292 2325 2319 2296 2285 2330 
2295 2319 2298 2292 2290 2318 
2307 2303 2279 2295 2283 2305 
2327 2284 2268 2304 2268 2296 
2349 2267 2271 2320 2250 2291 
2366 2258 2284 2338 2234 2290 
2375 2261 2305 2356 2222 2291 
2374 2273 2330 2372 2221 2290 
2366 2292 2351 2385 2231 2288 
2355 2313 2365 2391 2246 2285 
2343 2331 2370 2389 2265 2280 
2335 2341 2364 2380 2282 2277 
2332 2342 2351 2365 2295 2275 

Figure 5.21 Plymouth, 0858 2 4.2.89 - file of pressures, D304R2. A00 
(first and last few lines) 
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Wave recorder : WR1 1" 
Mod standard : DEP3 0" 

41 Location Plymouth Bkwater 0" 
Transducer Layout WR1-0049 iss A 0" 
Time/Date 1st rdg : 24 Feb 89 0858: 09 0" 

" Data element values : Abs pressures 1" 
" Data array columns : 6, ch2 to ch7 6" 

Data array rows : 1354, sim. rdg sets 1354" 
Reading interval 500 ms 500" 

File created by 
Input created by DECODE 

14.777 13.417 14.299 14.517 12.969 13.958 
14.548 13.846 14.635 14.920 13.148 13.519 
14.353 14.271 14.796 15.317 13.476 13.168 
14.195 14.571 14.775 15.527 13.860 12.967 
14.076 14.685 14.622 15.429 14.191 12.934 
14.009 14.611 14.371 14.983 14.364 13.086 
13.979 14.400 14.062 14.236 14.334 13.415 
13.938 14.136 13.775 13.393 14.147 13.849 
13.850 13.888 13.594 12.767 13.895 14.286 
13.720 13.693 13.535 12.596 13.655 14.636 
13.586 13.559 13.550 12.875 13.446 14.848 
13.497 13.477 13.589 13.413 13.256 14.903 
13.490 13.429 13.633 13.987 13.095 14.820 
13.582 13.402 13.678 14.440 13.002 14.644 
13.793 13.386 13.710 14.687 12.997 14.425 
14.129 13.382 13.727 14.731 13.035 14.208 
14.539 13.406 13.745 14.680 13.049 14.034 
14.912 13.464 13.797 14.679 13.037 13.927 
15.172 13.555 13.916 14.807 13.064 13.879 

14.356 13.665 14.187 14.429 13.032 13.569 
14.613 13.788 14.135 14.215 13.146 13.606 
14.816 13.874 14.032 14.014 13.282 13.605 
14.878 13.920 13.941 13.927 13.417 13.523 
14.753 13.930 13.929 13.976 13.540 13.382 
14.455 13.900 14.028 14.068 13.624 13.263 
14.044 13.857 14.198 14.106 13.631 13.287 
13.626 13.871 14.341 14.085 13.584 13.540 
13.319 13.979 14.370 14.063 13.556 13.970 
13.186 14.128 14.260 14.053 13.597 14.376 
13.199 14.209 14.032 14.002 13.678 14.550 
13.302 14.148 13.730 13.868 13.724 14.426 
13.469 13.941 13.415 13.688 13.687 14.046 
13.691 13.634 13.163 13.550 13.565 13.490 
13.948 13.303 13.029 13.540 13.357 12.898 
14-. 229 13.014 13.033 13.687 13.046 12.519 
14.522 12.805 13.170 13.963 12.647 12.588 
14.776 12.702 13.434 14.294 12.258 13.120 

THE SOURCE DATA FILE IS CALLED :-C: \WR1\DATA\DEP3\D304R2. A00 
THIS DATA FILE IS CALLED C: \WR1\DATA\DEP3\D304R2. COO 

Figure 5.22 Plymouth, 0858 24-. 2.89 - file of surface heights, 
D304R2.000 (first and last few lines) 
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Figure 5.23 Plymouth, 0858 24.2.89 - plot of pressures, D304R2. AO0 
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Figure 5.24 Plymouth, 0858 24.2.89 - plot of surface elevationD3O4R2.000 
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FROM FILE D304R2. AOO 

No. rows in press. dat 
first data points (press) 
first data points (pwave) 

means (mb) 
means (relative) (mb) 
tidal changes (mb) 
range (de-trended) (mb) 

max pressure excn (mb) 
max press. exc. (std-devs) 
min pressure excn (mb) 
min press. exc. (std-devs) 

std devs (de-trended)(mb) 
vars (de-trended) (mb^2) 

Q_f lags 

2316.8 
55.0 
-9.7 

256.0 
121.6 

2.7 
-134.4 

-3.0 
44.7 

1999.4 

2339.8 
78.0 

-23.7 
274.8 
134.1 

2.9 
-140.6 

-3.0 
47.0 

2207.9 

2336.4 2311.4 
74.6 49.6 
-8.7 -29.0 

246.6 257.2 
125.5 121.9 

2.7 2.7 
-121.1 -135.2 

-2.6 -3.0 
46.1 45.0 

2121.8 2025.0 

111111 

Figure 5.25 Plymouth, 0858 12.2.89 - statistics from pressure record 
D304R2. A00 

STATISTICS FROM FILE D304R2.000 

No. rows in surf. dat 
first data points (surf) 
first data points (wave) 

Hs (m) 
means (m) 
tidal changes (m) 
means (relative) (mm) 
range (de-trended) (m) 
max wave excn (m) 
max wave excn (std-devs) 
min wave excn (m) 
min wave excn (std-devs) 
std devs (de-trended)(m) 
vars (de-trended) (m^2) 
refl. coeff. > 

Q_f lags 

3.00 
13.893 
-0.116 

546 
4.815 
2.365 

3.2 
-2.450 

-3.3 
0.751 
0.564 

3.21 
14.122 
-0.250 

775 
4.404 
2.464 

3.1 
-1.940 

-2.4 
0.801 
0.642 

3.08 2.99 
14.089 13.837 
-0.091 -0.279 

741 489 
4.720 4.625 
2.456 2.312 

3.2 3.1 
-2.264 -2.313 

-2.9 -3.1 
0.771 0.747 
0.594 0.558 

111111 

Figure 5.26 Plymouth, 0858 24.2.89 - statistics from surface height record 
D304R2.000 

1356 
2320 2350 2356 2376 2343 2284 
45.0 43.2 33.6 21.6 2.5 -46.5 

2261.8 2298.7 
0.0 36.9 

-23.0 -13.7 
253.9 245.7 
127.8 121.5 

2.7 2.7 
-126.1 -124.2 

-2.7 -2.8 
46.6 45.2 

2173.1 2039.6 

1320 
12.969 13.417 14.299 14.517 14.777 13.958 
-0.506 -0.378 0.345 0.244 0.650 -0.046 

3.01 3.00 
13.348 13.714 
-0.219 -0.141 

0 366 
4.924 4.814 
2.858 2.672 

3.8 3.6 
-2.067 -2.142 

-2.7 -2.9 0.752 0.749 
0.566 0.561 
0.035 
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Figure 5.27 Plymouth, 0858 2'. 2.89 - frequency distribution of variance from 
pressure record D304R2. A00 
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Figure 5.28 Plymouth, 0858 24.2.89 - frequency distribution of variance from 
surface height record D304R2. A00 
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CROSS-SPECTRAL DENSITY MATRICES FROM: D304R2. COO 
XSD_f(1, j) 

frequency: ... 0.094Hz frequency index: 13 

magnitude /(10^-4 m^2 ): phase /degrees: 

702 677 621 612 626 563 0 14 41 82 98 -153 
677 655 604 594 609 550 -14 0 27 68 84 -167 
621 604 565 554 575 521 -41 -27 0 40 55 165 
612 594 554 555 566 510 -82 -68 -40 0 15 124 
626 609 575 566 607 552 -98 -84 -55 -15 0 109 
563 550 521 510 552 543 153 167 -165 -124 -109 0 

frequency: 0. 102Hz frequency index: 14 
magnitude /(10^-4 m^2 phase /degrees: 

521 494 472 447 531 418 0 18 54 96 115 -109 
494 471 454 427 508 406 -18 0 36 77 97 -128 
472 454 445 419 497 405 -54 -36 0 40 60 -164 
447 427 419 458 469 388 -96 -77 -40 0 20 158 
531 508 497 469 565 460 -115 -97 -60 -20 0 135 
418 406 405 388 460 436 109 128 164 -158 -135 0 

frequency: 0. 109Hz frequency index: 15 
magnitude /(10 ^-4 m^2 ): phase /degrees: 

805 789 815 857 868 779 0 22 61 97 124 -87 
789 775 802 841 852 768 -22 0 39 74 101 -110 
815 802 838 880 892 811 -61 -39 0 34 62 -150 
857 841 880 1028 933 891 -97 -74 -34 0 28 179 
868 852 892 933 971 888 -124 -101 -62 -28 0 148 
779 768 811 891 888 859 87 110 150 -179 -148 0 

frequency: 0.117Hz 
magnitude /(10^-4 m^-2 ): 

853 864 894 896 952 921 
864 876 909 914 965 935 
894 909 946 957 1005 978 
896 914 957 1083 1009 1051 
952 965 1005 1009 1095 1069 
921 935 978 1051 1069 1100 

frequency 
phase /degrees: 

0 22 60 
-22 0 39 
-60 -39 0 
-84 -62 -23 

-131 -109 -70 
79 101 140 

ind 

84 
62 
23 

0 
-47 
163 

ex: 16 

131 -79 
109 -101 

70 -140 
47 -163 

0 150 
-150 0 

frequency: 0.125Hz frequency index: 17 
magnitude /(10^-4 m^2 ): phase /degrees: 

302 298 294 262 297 235 0 22 63 91 137 -59 
298 296 295 267 297 243 -22 0 41 68 114 -82 
294 295 298 -277 301 259 -63 -41 0 26 73 -123 
262' 267 277 316 282 282 -91 -68 -26 0 46 -151 
297 297 301 282 309 271 -137 -114 -73 -46 0 163 
235 243 259 282 271 305 59 82 123 151 -163 0 

Figure 5.29 Plymouth, 0858 2.4.. 2.89 - cross-spectral matrices for the most 
energetic frequency bins from D304R2.000 
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COHERENCE MATRICES FROM: D304R2. COO 
COH_f(i, j ) 

frequency : 0. 094Hz frequency index: 13 

1.000 0.997 0.973 0.960 0.921 0.833 
0.997 1.000 0.986 0.970 0.933 0.850 
0.973 0.986 1.000 0.979 0.966 0.884 
0.960 0.970 0.979 1.000 0.952 0.862 
0.921 0.933 0.966 0.952 1.000 0.925 
0.833 0.850 0.884 0.862 0.925 1.000 

frequency : 0. 102Hz frequency index: 14 

1.000 0.994 0.960 0.838 0.957 0.769 
0.994 1.000 0.982 0.846 0.968 0.803 
0.960 0.982 1.000 0.863 0.982 0.844 
0.838 0.846 0.863 1.000 0.850 0.754 
0.957 0.968 0.982 0.850 1.000 0.858 
0.769 0.803 0.844 0.754 0.858 1.000 

frequency : 0. 109Hz frequency index: 15 

1.000 0.997 0.983 0.886 0.964 0.878 
0.997 1.000 0.992 0.888 0.966 0.886 
0.983 0.992 1.000 0.900 0.978 0.914 
0.886 0.888 0.900 1.000 0.873 0.901 
0.964 0.966 0.978 0.873 1.000 0.946 
0.878 0.886 0.914 0.901 0.946 1.000 

frequency : 0. 117Hz frequency index: 16 

1.000 0.998 0.991 0.870 0.972 0.904 
0.998 1.000 0.996 0.880 0.970 0.907 
0.991 0.996 1.000 0.894 0.976 0.919 
0.870 0.880 0.894 1.000 0.859 0.927 
0.972 0.970 0.976 0.859 1.000 0.949 
0.904 0.907 0.919 0.927 0.949 1.000 

frequency : 0. 125Hz frequency index: 17 

1.000 0.994 0.961 0.717 0.943 0.599 
0.994 1.000 0.983 0.759 0.968 0.656 
0.961 0.983 1.000 0.816 0.987 0.736 
0.717 0.759 0.816 1.000 0.817 0.828 
0.943 0.968 0.987 0.817 1.000 0.782 
0.599 0.656 0.736 0.828 0.782 1.000 

Figure 5.30 Plymouth, 0858 2't. 2.89 - coherence matrices for the most 
energetic frequency bins from D304R2.000 
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Figure 5.31 Plymouth, 0858 24.2.89 - directional wave spectrum from 
D304R2.000 as a contour plot 
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is Wave recorder : WR1, System No. 2 1" 
Mod standard : Deployment 6 0" 

Location : Elmer, W. Sussex : 0" 
Transducer Layout : WRl-0079 iss A: 0" 

Time/Date 1st rdg : 05 Jul 92 0233: 15 : 0" 
" Data element values : Abs pressures, mb 1" 
" Data array columns : 6, ch2 to ch7 : 6" 
" Data array rows : 1356, sim. rdg sets 1356" 

Reading interval : 500 ms : 500" 
" Tr. o/s errors used : 40, -48,33, -2,74,4 0" 

File created by : DECODE4 : 0" 
Version : 4.1 3.7.92 : 0" 

1411 1420 1445 1432 1427 1436 
1413 1421 1443 1431 1428 1433 
1414 1421 1441 1431 1429 1430 
1415 1421 1438 1431 1432 1427 
1417 1421 1436 1430 1432 1424 
1416 1420 1434 1430 1434 1422 
1414 1418 1434 1431 1435 1421 
1413 1417 1434 1434 1436 1422 
1409 1415 1436 1436 1435 1421 
1407 1415 1438 1439 1434 1424 
1406 1415 1438 1440 1433 1426 
1405 1414 1440 1441 1432 1429 
1404 1414 1441 1442 1432 1431 
1403 1413 1443 1441 1432 1433 
1402 1414 1444 1438 1433 1432 
1402 1415 1443 1437 1434 1429 
1404 1416 1440 1434 1433 1427 
1406 1415 1437 1432 1433 1423 
1409 1415 1431 1430 1433 1421 
1410 1414 1430 1429 1433 1421 

1416 1423 1446 1457 1434 1435 
1418 1423 1445 1456 1431 1435 
1419 1424 1446 1455 1430 1436 
1421 1426 1448 1452 1430 1438 
1424 1429 1452 1448 1430 1442 
1427 1435 1455 1446 1431 1445 
1430 1437 1458 1442 1434 1447 
1432 1439 1459 1439 1437 1449 
1431 1439 1459 1436 1440 1448 
1432 1438 1457 1434 1443 1444 
1430 1436 1455 1434 1446 1441 
1427 1432 1451 1433 1449 1437 
1424 1429 1446 1432 1452 1434 
1421 1426 1440 1432 1452 1430 
1419 1423 1438 1433 1451 1427 
1417 1420 1436 1435 1450 1426 
1413 1417 1434 1440 1447 1424 
1409 1414 1436 1445 1444 1424 
1404 1413 1438 1452 1441 1427 
1402 1414 1441 1456 1437 1430 
1402 1414 1446 1460 1437 1435 

Figure 5.33 Elmer, 0233 5.7.92 - file of pressures, D604R0. A19 (first 
and last few lines) 
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" Wave recorder : WR1, System No. 2 1" 
" M od stand ard : Deplo yment 6 0" 

Locat ion : El mer, W. Sussex 0" 
" Transd ucer Lay out : WR1-007 9 iss A 0" 

Time/D ate 1st rdg : 05 Jul 92 0233: 15 0" 
" Data ele ment val ues : Abs pressu res, mb 1" 
" Data ar ray colu mns : 6, ch2 to ch7 6" 

Data array r ows : 135 6, sim. r dg sets 1356" 
Readi ng inter val : 500 ms 500" 

" Tr. o/s errors u sed : 40, -48,33, -2,74,4 It File created by : 
Input created by : DEC-OD E4 

4.257 4.527 4.589 4.532 4.650 4.422 
4.295 4.511 4.527 4.535 4.647 4.415 
4.308 4.481 4.493 4.517 4.662 4.424 
4.294 4.460 4.488 4.475 4.677 4.422 
4.275 4.468 4.500 4.437 4.674 4.401 
4.272 4.496 4.518 4.434 4.650 4.383 
4.294 4.529 4.537 4.469 4.620 4.398 
4.325 4.550 4.567 4.515 4.598 4.452 
4.344 4.556 4.611 4.543 4.587 4.523 
4.335 4.554 4.664 4.551 4.582 4.575 
4.306 4.554 4.709 4.558 4.580 4.593 
4.279 4.556 4.730 4.587 4.577 4.587 
4.276 4.563 4.720 4.629 4.572 4.576 
4.302 4.571 4.690 4.657 4.567 4.567 
4.338 4.579 4.659 4.644 4.571 4.553 
4.361 4.578 4.642 4.597 4.594 4.524 
4.356 4.561 4.635 4.547 4.637 4.482 
4.331 4.534 4.624 4.527 4.686 4.437 
4.305 4.512 4.593 4.536 4.725 4.404 

4.391 4.668 4.840 4.669 4.760 4.712 
4.456 4.707 4.798 4.631 4.792 4.683 
4.487 4.711 4.730 4.592 4.797 4.623 
4.491 4.681 4.659 4.548 4.791 4.533 
4.487 4.638 4.611 4.513 4.797 . 4.440 
4.482 4.611 4.592 4.506 4.814 4.386 
4.467 4.609 4.594 4.536 4.831 4.397 
4.437 4.616 4.603 4.590 4.840 4.464 
4.396 4.611 4.620 4.639 4.847 4.547 
4.353 4.588 4.654 4.657 4.856 4.606 
4.319 4.566 4.707 4.639 4.860 4.631 
4.294 4.562 4.769 4.610 4.846 4.635 
4.279 4.579 4.811 4.609 4.810 4.634 
4.280 4.601 4.807 4.655 4.764 4.628. 
4.299 4.610 4.757 4.731 4.724 4.610 
4.332 4.599 4.689 4.796 4.694 4.576 
4.363 4.578 4.640 4.815 4.666 4.545 
4.380 4.562 4.633 4.790 4.637 4.533 

THE SOURCE DATA FILE IS CALLED :-C: \WR1\DATA\DEP6\D604RO. A19 
THIS DATA FILE IS CALLED :-C: \WR1\DATA\DEP6\D604RO. C19 

Figure 5.34 Elmer, 0233 5.7.92 - file of surface heights, 
D604R0. C19 (first and last few lines) 
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Figure 5.35 Elmer, 0233 5.7.92 - plot of pressures, D604R0. A19 
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Figure 5.36 Elmer, 0233 5.7.92 - plot of surface eJevcý&; c, ns D604R0. C19 
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Figure 5.37 Elmer, 0233 5.7.92 - comparison of pressure and surface 
records. Full line - elevation from pressure with no allowance 
for depth attenuation. Dotted line - elevation from pressure using 
Airy theory. 
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STATISTICS FROM FILE D604R0. A19 

No. rows in press. dat 
first data points (press) 
first data points (pwave) 

means (mb) 

means (relative) (mb) 

tidal changes (mb) 

range (de-trended) (mb) 

max pressure excn (mb) 

max press. exc. (std-devs) 

min pressure excn (mb) 

min press. exc. (std-devs) 

std devs (de-trended)(mb) 

vars (de-trended) (mb^2) 

Q_fLags 

1356 
1411 1420 1445 1432 1427 1436 

2.9 4.4 8.2 -0.8 -3.6 10.4 

1414.0 1421.3 1443.0 1438.6 1436.3 1431.7 
0.0 7.4 29.0 24.6 22.3 17.7 

11.2 10.6 11.1 10.7 10.9 11.0 
36.4 26.3 262 . 41.1 35.1 27.0 
19.2 13.1 12 .2 19.5 17.8 13.6 

3.2 3.0 29 . 3.0 3.0 3.2 
-17.3 -13.2 .0 -14 -21.5 -17.3 -13.4 

-2.9 -3.0 -33 . -3.3 -3.0 -3.2 
6.0 4.4 .2 4 6.5 5.8 4.2 

36.5 19.4 17.8 42.7 34.1 17.8 

1 1 1 1 1 1 

Figure 5.38 Elmer, 0233 5.7.92 - statistics from pressure record 

STATISTICS FROM FILE D604R0. C19 

No. rows in surf. dat 
first data points (surf) 
first data points (wave) 

Hs (m) 
means (m) 
tidal changes (m) 
means (relative) (mm) 
range (de-trended) (m) 
max wave excn (m) 
max wave excn (std-devs) 
min wave excn (m) 
min wave excn (std-devs) 
std devs (de-trended)(m) 
vars (de-trended) (m^2) 
refl. coeff. > 

1320 
4.257 4.527 4.589 4.532 4.650 4.422 

-0.017 0.019 0.001 -0.006 0.014 -0.045 

0.27 0.21 
4.332 4.565 
0.108 0.103 

0 233 
0.415 0.318 
0.222 0.175 

3.2 3.4 
-0.194 -0.143 

-2.8 -2.8 
0.069 0.051 
0.005 0.003 
0.191 

0.21 
4.651 
0.111 

319 
0.318 
0.151 

2.9 
-0.167 

-3.2 
0.052 
0.003 

0.30 
4.596 
0.107 

265 
0.490 
0.241 

3.2 
-0.249 

-3.3 
0.075 
0.006 

0.28 0.20 
4.694 4.528 
0.107 0.108 

362 196 
0.437 0.358 
0.221 0.169 

3.2 3.3 
-0.216 -0.189 

-3.1 -3.7 
0.069 0.051 
0.005 0.003 

a_fLags 111111 

Figure 5.39 Elmer, 0233 5.7.92 - statistics from surface height record 
D604R0. C19 
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Figure 5.40 Elmer, 0233 5.7.92 - frequency distribution of variance 
from pressure record D604R0. A19 
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Figure 5.41 Elmer, 0233 5.7.92 - frequency distribution of variance 
from surface height record D604R0. C19 
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CROSS-SPECTRAL DENSITY MATRICES FROM: D604R0. C19 
XSD_f(i, j) 

frequency: 
magnit ude 

655 446 
446 312 
209 14S 
706 452 
569 382 
144 9E 

frequency: 
magnit ude 

506 321 
321 211 
274 176 
628 381 
648 406 
144 8a 

0.102Hz 
/(10^ -6 m^2 

209 706 
149 452 
132 286 
286 961 
203 609 
104 242 

0.109Hz 
/(10^-6 m^2 

274 628 
176 381 
207 413 
413 924 
382 835 
111 242 

frequency: 0.117Hz 
magnit ude /(10^ -6 mA2 

433 261 282 551 
261 162. 170 324 
282 170 222 389 
551 324 389 751 
639 383 433 826 
188 114 151 251 

frequency: 
magnit ude 

196 114 
114 72 
187 109 
239 13E 
270 159 
182 106 

0.125Hz 
/(10^ -6 m^2 

187 239 
109 138 
210 249 
249 327 
275 363 
198 223 

frequency: 
magnit ude 

248 10E 
108 51 
250 105 
246 10E 
251 1.16 
302 12! 

0.133Hz 
/(10^ -6 m^2 

250 246 
105 106 
301 268 
268 270 
261 271 
335 300 

): 

569 144 
382 96 
203 104 
609 242 
589 151 
151 118 

648 
406 
382 
835 
895 
206 

639 
383 
433 
826 
972 
290 

270 
159 
275 
363 
419 
248 

251 
116 
261 
271 
292 
298 

): 

144 
80 

111 
242 
206 
100 

): 

188 
114 
151 
251 
290 
122 

frequency index: 14 
phase /degrees: 

0 10 93 163 -38 91 
-10 0 75 151 -49 70 
-93 -75 0 50 -136 -17 

-163 -151 -50 0 159 -60 
38 49 136 -159 0 139 

-91 -70 17 60 -139 0 

frequency index: 15 
phase /degrees: 

0 16 112 156 -31 133 
-16 0 89 137 -49 110 

-112 -89 0 37 -145 5 
-156 -137 -37 0 173 -27 

31 49 145 -173 0 162 
-133 -110 -5 27 -162 0 

frequency index: 16 
phase /degrees: 

0 20 119 157 -28 146 
-20 0 94 135 -49 121 

-119 -94 0 34 -148 29 
-157 -135 -34 0 175 -7 28 49 148 -175 0 175 
-146 -121 -29 7 -175 0 

frequency index: 
phase /degrees: 

182 0 31 123 161 -21 
106 -31 0 85 127 -54 
198 -123 -85 0 36 -144 
223 -161 -127 -36 0 180 
248 21 54 144 -180 0 
205 -137 -101 -15 22 -159 

frequency index: 
): phase /degrees: 

302 0 34 144 175 -10 
125 -34 0 99 137 -46 335 -144 -99 0 31 -151 300 -175 -137 -31 0 178 
298 10 46 151 -178 0 
400 -153 -114 -9 22 -163 

Figure 5.42 Elmer, 0233 5.7.92 - cross-spectral matrices for the most 
energetic frequency bins from D604R0. C19 
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COHERENCE MATRICES FROM: 
COH_f(i, j) 

frequency: 0.102Hz 

1.000 0.973 0.503 
0.973 1.000 0.541 
0.503 0.541 1.000 
0.792 0.684 0.647 
0.839 0.793 0.529 
0.269 0.247 0.686 

0.792 0.839 
0.684 0.793 
0.647 0.529 
1.000 0.654 
0.654 1.000 
0.515 0.325 

frequency: 0.109Hz 

D604R0. C19 

frequency index: 14 

0.269 
0.247 
0.686 
0.515 
0.325 
1.000 

frequency index: 15 

1.000 0.962 0.720 0.844 0.928 0.411 
0.962 1.000 0.707 0.743 0.872 0.302 
0.720 0.707 1.000 0.893 0.788 0.592 
0.844 0.743 0.893 1.000 0.844 0.635 
0.928 0.872 0.788 0.844 1.000 0.471 
0.411 0.302 0.592 0.635 0.471 1.000 

frequenc y: 0. 117Hz frequency index: 16 

1.000 0.970 0.831 0.935 0.970 0.672 
0.970 1.000 0.800 0.860 0.929 0.654 
0.831 0.800 1.000 0.908 0.871 0.846 
0.935 0.860 0.908 1.000 0.934 0.686 
0.970 0.929 0.871 0.934 1.000 0.709 
0.672 0.654 0.846 0.686 0.709 1.000 

frequenc y: 0. 125Hz frequency index: 17 

1.000 0.928 0.847 0.893 0.889 0.820 
0.928 1.000 0.792 0.807 0.843 0.761 
0.847 0.792 1.000 0.907 0.861 0.911 
0.893 0.807 0.907 1.000 0.963 0.744 
0.889 0.843 0.861 0.963 1.000 0.715 
0.820 0.761 0.911 0.744 0.715 1.000 

frequenc y: 0. 133Hz frequency index: 18. 

1.000 0.823 0.837 0.903 0.870 0.917 
0.823 1.000 0.640 0.725 0.805 0.690 
0.837 0.640 1.000 0.887 0.775 0.935 
0.903 0.725 0.887 1.000 0.933 0.835 
0.870 0.805 0.775 0.933 1.000 0.760 
0.917 0.690 0.935 0.835 0.760 1.000 

Figure 5.43 Elmer, 0233 5.7.92 - coherence matrices for the most 
energetic frequency bins from D604R0. C19 
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Figure 5.44 Elmer, 0233 5.7.92 - directional wave spectrum from 
D604R0. C19 as a contour plot 
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it Wave recorder : WR1, System No. 2 1" 
" Mod standard : Deployment 6 0" 
It Location : Elmer, W. Sussex 0" 
of Transducer Layout : WR1-0079 iss A 0" 
to Time/Date 1st rdg : 13 Jul 92 2332: 09 0" 
" Data element values : Abs pressures, mb 1" 
It Data array columns : 6, ch2 to ch7 6" 
it Data array rows : 1356, sim. rdg sets 1356" 
of Reading interval : 500 ms 500" 
" Tr. o/s errors used : 40, -48,33, -2,74,4 0" 
It File created by : DECODE4 0" 
of Version : 4.1 3.7.92 0" 

1368 1375 
1362 1371 
1357 1372 
1357 1381 
1366 1396 
1378 1406 
1390 1403 
1397 1387 
1385 1364 
1359 1344 
1348 1340 
1350 1353 
1351 1372 
1354 1389 
1358 1400 
1366 1408 
1379 1409 
1390 1397 
1393 1383 
1387 1374 

1400 
1412 
1426 
1433 
1427 
1410 
1391 
1373 
1357 
1348 
1358 
1387 
1421 
1446 
1450 
1443 
1429 
1412 
1400 
1389 

1427 
1424 
1404 
1379 
1368 
1364 
1369 
1383 
1404 
1424 
1427 
1418 
1403 
1394 
1393 
1398 
1397 
1395 
1387 
1 379 

1402 1403 
1415 1428 
1414 1433 
1405 1416 
1400 1390 
1403 1368 
1406 1354 
1404 1346 
1392 1344 
1377 1353 
1366 1372 
1362 1397 
1364 1423 
1376 1444 
1397 1451 
1418 1443 
1432 1411 
1435 1373 
1426 1347 
1409 1343 

1391 1377 1373 1410 1400 1372 
1379 1364 1378 1401 1412 1371 
1373 1363 1389 1390 1422 1382 
1370 1370 1399 1385 1425 1389 
1372 1383 1406 1389 1421 1395 
1374 1394 1410 1396 1410 1398 
1377 1399 1411 1403 1396 1400 
1380 1398 1416 1408 1384 1404 
1381 1392 1415 1411 1375 1407 
1374 1381 1413 1414 1370 1407 
1369 1373 1413 1420 1367 1403 
1363 1371 1413 1426 1372 1395 
1367 1380 1412 1424 1385 1390 
1374 1393 1409 1418 1403 1387 
1384 1400 1405 1403 1416 1392 
1393 1397 1403 1382 1420 1400 
1394 1392 1408 1365 1419 1407 
1382 1385 1410 1361 1415 1408 
1379 1387 1407 1370 1412 1402 
1384 1395 1399 1386 1405 1389 
1388 1395 1390 1407 1402 1381 

Figure 5.46 Elmer, 2332 13.7.92 - file of pressures, D604R2. A26 (first 
and last few lines) 

259 



" Wave recorder : WR1, System No. 2 it, 
If M od stand ard : Deplo yment 6 0" 
it Locat ion : El mer, W. Sussex 0" 
it Transd ucer Lay out : WR1-007 9 iss A 0" 
of Time/D ate 1st rdg : 13 Jul 92 2332: 09 0$' 
" Data ele ment val ues : Abs pressu res, mb 1" 

Data ar ray colu mns : 6, ch2 to ch7 6" 
Data array r ows : 135 6, sim. r dg sets 1356" 

Readi ng inter val : 500 ms 500" 
" Tr. o/s errors u sed : 40, -48,33, -2,74,4 
If File created by : 

Input created by : DECOD E4 

4.090 4.303 4.299 4.388 4.850 3.852 
4.151 4.166 4.236 4.187 4.717 3.489 
4.135 4.088 4.161 3.854 4.451 3.435 
4.069 4.061 3.999 3.663 4.173 3.613 
3.998 4.059 3.803 3.808 4.006 3.856 
3.950 4.070 3.705 4.214 4.008 4.037 
3.925 4.088 3.796 4.592 4.143 4.137 
3.897 4.098 4.050 4.680 4.302 4.214 
3.837 4.079 4.362 4.478 4.375 4.326 
3.740 4.041 4.627 4.229 4.332 4.471 
3.645 4.042 4.787 4.177 4.242 4.591 
3.626 4.145 4.823 4.336 4.213 4.608 
3.737 4.340 4.732 4.501 4.283 4.487 
3.957 4.516 4.530 4.472 4.392 4.265 
4.184 4.542 4.278 4.252 4.445 4.032 
4.300 4.386 4.062 4.024 4.409 3.883 
4.262 4.158 3.952 3.951 4.349 3.853 
4.130 4.018 3.949 4.016 4.353 3.903 
4.006 4.037 4.005 4.079 4.438 3.962 

4.125 4.206 4.154 4.123 4.871 4.111 
4.094 4.042 4.163 3.868 4.688 4.065 
4.042 4.014 4.163 3.770 4.417 4.001 
3.997 4.124 4.140 3.845 4.268 3.901 
3.992 4.286 4.114 4.009 4.307 3.820 
4.025 4.374 4.099 4.188 4.426 3.836 
4.053 4.310 4.087 4.365 4.474 3.975 
4.008 4.116 4.077 4.526 4.383 4.179 
3.866 3.907 4.118 4.609 4.233 4.361 
3.680 3.823 4.282 4.534 4.140 4.469 
3.561 3.938 4.567 4.305 4.153 4.500 
3.600 4.212 4.844 4.048 4.217 4.466 
3.800 4.501 4.912 3.937 4.246 4.370 
4.063 4.645 4.665 4.051 4.208 4.211 
4.253 4.565 4.210 4.295 4.153 4.022 
4.276 4.309 3.814 4.475 4.166 3.874 
4.143 4.019 3.703 4.446 4.290 3.831 
3.949 3.840 3.891 4.228 4.487 3.905 

THE SOURCE DATA FILE IS CALLED :-C: \WR1\DATA\DEP6\D604R2. A26 
THIS DATA FILE IS CALLED C: \WR1\DATA\DEP6\D604R2. C26 

Figure 5.47 Elmer, 2332 13.7.92 - file of surface heights, D604R2. C26 (first 
and last few lines) 



column 1 
1450 

-0 1400 

1350 

0 100 200 300 400 500 600 

column 2 

1450 

i fill 1400 

1350 

0 100 200 300 400 500 600 

column 3 

1450 

0 1400 

1350 

0 100 200 300 400 500 600 

column 4 

1450 

1400 
11114191h Iý 

Ihlllý 
OHMAJ I 

LI1 III 
6111AIA 

- 
hi 

1350 -771 

0 100 200 300 400 500 600 

column 5 

1450 

C 1400 

1350 

0 100 200 300 400 500 600 

column 6 

1450 

1400 

1350 

0 100 200 300 400 500 600 E /S 

Figure 5.48 Elmer, 2332 13.7.92 - plot of pressures, D604R2. A26 
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column 1 

0.5 

E0 Wyly I 

-0.5 

0 100 200 300 400 500 600 

column 2 

0.5 hAIIIII. J 

Ep 
-I vqr 

-0.5 

0 100 200 300 400 

column 3 

0.5 

0 

-0.5 

0 

0.5- 

E0 

-0.5 

0 

0.5 

0 

-0.5 

500 600 

0 100 200 

0.5 

0 

-0.5 

300 400 500 600 

column 6 

0 100 200 300 400 500 600 t /S 

Figure 5.49 Elmer, 2332 13.7.92 - plot of surface elevaUbq D604R2. A26 
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STATISTICS FROM FILE D604R2. A26 

No. rows in press. dat 
first data points (press) 
first data points (pwave) 

means (mb) 
means (relative) (mb) 
tidal changes (mb) 
range (de-trended) (mb) 
max pressure excn (mb) 
max press. exc. (std-devs) 
min pressure excn (mb) 
min press. exc. (std-devs) 
std devs (de-trended)(mb) 
vars (de-trended) (mb^2) 

Q_f lags 

1356 
1368 1375 1400 1427 1402 1403 
-5.0 -7.0 -3.3 27.5 5.4 10.9 

1373.8 1382.3 1403.5 1399.8 1396.6 1392.1 
0.0 8.5 29.6 26.0 22.7 18.2 
1.5 1.2 1.0 0.7 1.0 0.9 

81.0 95.0 110.8 96.0 97.1 117.7 
39.5 43.0 50.8 47.9 46.7 58.9 

3.3 3.3 2.7 3.1 2.7 3.2 
-41.5 -52.0 -60.0 -48.1 -50.3 -58.9 

-3.5 -4.0 -3.2 -3.1 -2.9 -3.2 
11.9 13.1 18.6 15.5 17.1 18.3 

141.7 172.0 347.0 239.4 292.9 333.1 

111 1" 11 

Figure 5.50 Elmer, 2332 13.7.92 - statistics from pressure record 

FROM FILE D604R2. C26 

No. rows in surf. dat 
first data points (surf) 
first data points (wave) 

Hs (m) 
means (m) 
tidal changes (m) 
means (relative) (mm) 
range (de-trended) (m) 
max wave excn (m) 
max wave excn (std-devs) 
min wave excn (m) 
min wave excn (std-devs) 
std devs (de-trended)(m) 
vars (de-trended) (m^2) 
refl. coeff. > 

4_f lags 

1320 
4.090 4.303 4.299 4.388 4.850 3.852 
0.163 0.135 0.054 0.182 0.556 -0.265 

0.67 0.84 
3.928 4.172 
0.007 0.008 

0 243 
1.170 1.549 
0.560 0.760 

3.4 3.6 
-0.611 -0.789 

-3.7 -3.7 
0.167 0.211 
0.028 0.045 
0.216 

1.03 
4.251 
0.010 

323 
1.685 
0.831 

3.2 
-0.854 

-3.3 
0.258 
0.067 

0.90 
4.207 
0.008 

278 
1.429 
0.744 

3.3 
-0.685 

-3.0 
0.226 
0.051 

0.97 1.00 
4.294 4.127 
0.006 0.012 

365 199 
1.458 1.708 
0.737 0.929 

3.1 3.7 
-0.721 -0.779 

-3.0 -3.1 
0.241 0.249 
10.058 0.062 

111111 

Figure 5.51 Elmer, 2332 13.7.92 - statistics from surface height record 
D604R2. C26 
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Figure 5.52 Elmer, 2332 13.7.92 - frequency distribution of variance from 
pressure record D604R2. A26 
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X 10-3 column 1 

N5 

0 0.1 

x10 column 3 

cJ 

0 
0 0.1 

x10 

5 
E 

0 
0 0.1 0.2 0.3 0.4 

Frequency (Hz) 

X10 -3 column 2 

N5 

0 
0 0.1 

X le 

N5 
E v 

A 

0.2 0.3 0.4 

column 4 

0 0.1 0.2 

x 103 column 6 

0-1 N5 
E 

0 
&Cwhd 

0 0.1 0.2 0.3 0.4 
Frequency (Hz) 

Figure 5.53 Elmer, 2332 13.7.92 - frequency distribution of variance 
from 'surface height record D604R2. C26 
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CROSS-SPECTRAL DENSITY MATRICES FROM: D604R2. C26 
XSD_f(i, j) 

frequency: 0. 141Hz frequency ind ex: 19 
magnitude /(10 ^-5 m^2 ): phase /degrees: 

125 114 250 148 126 224 0 72 128 -175 39 149 
114 115 245 150 143 199 -72 0 51 112 -31 74 
250 245 556 323 292 454 -128 -51 0 61 -79 18 
148 150 323 210 200 251 175 -112 -61 0 -146 -39 126 143 292 200 228 206 -39 31 79 146 0 100 
224 199 454 251 206 425 -149 -74 -18 39 -100 0 

frequency: 0. 148Hz frequency ind ex: 20 
magnitude /(10 ^-5 m^2 phase /degrees: 

132 145 329 151 164 258 0 82 126 -163 76 146 
145 170 378 174 209 287 -82 0 43 117 -4 60 
329 378 861 384 444 667 -126 -43 0 73 -45 17 
151 174 384 196 223 284 163 -117 -73 0 -127 -55 164 209 444 223 312 318 -76 4 45 127 0 59 
258 287 667 284 318 554 -146 -60 -17 55 -59 0 

frequency: 0. 156Hz frequency ind ex: 21 
magnitude /(10^-5 m^2 ): phase /degrees: 

83 113 228 98 168 189 0 81 119 -136 97 142 
113 161 322 142 248 258 -81 0 37 144 16 57 
228 322 649 282 494 532 -119 -37 0 107 -21 20 

98 142 282 136 228 221 136 -144 -107 0 -131 -89 168 248 494 228 410 399 -97 -16 21 131 0 38 
189 258 532 221 399 478 -142 -57 -20 89 -38 0 

frequency: 0. 164Hz frequency ind ex: 22 
magnitude /(10^-5 mA2 ): phase /degrees: 

70 106 184 102 173 157 0 72 110 -122 97 134 

. 
106 168 287 163 277 240 -72 0 37 168 25 58 
184 287 498 274 472 427 -110 -37 0 131 -12 21 
102 163 274 167 271 220 122 -168 -131 0 -144 -111 
173 277 472 271 466 394 -97 -25 12 144 0 31 
157 240 427 220 394 404 -134 -58 -21 111 -31 0 

frequency: 0.172Hz frequency index: 23 
magnitude /(10^-5 m^2 phase /degrees: 

43 67 106 64 100 88 0 68 104 -118 99 136 
67 111 175 108 165 152 -68 0 34 176 31 63 

106 175 281 167 260 245 -104 -34 0 141 -4 30 
64 108 167 114 165 138 118 -176 -141 0 -144 -118 100 165 260 165 259 218 -99 -31 4 144 0 32 
88 152 245 138 218 270 -136 -63 -30 118 -32 0 

Figure 5.54 Elm er, 2332 13.7 . 92 - cross-spectral matrices fo r the most 
energetic fre quency bins from D604R2. C26 
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COHERENCE MATRICES FROM: 
COH_f(i, j) 

D604R2. C26 

frequency: 0.141Hz frequency index: 19 

1.000 0.895 0.895 0.828 0.554 0.943 
0.895 1.000 0.938 0.929 0.779 0.805 
0.895 0.938 1.000 0.895 0.671 0.873 
0.828 0.929 0.895 1.000 0.833 0.706 
0.554 0.779 0.671 0.833 1.000 0.440 
0.943 0.805 0.873 0.706 0.440 1.000 

frequenc y: 0. 148Hz frequency index: 20 

1.000 0.939 0.952 0.887 0.650 0.909 
0.939 1.000 0.977 0.914 0.823 0.876 
0.952 0.977 1.000 0.874 0.735 0.933 
0.887 0.914 0.874 1.000 0.814 0.744 
0.650 0.823 0.735 0.814 1.000 0.587 
0.909 0.876. 0.933 . n. 744 0.587 1.000 

frequenc y: 0. 156Hz frequency index: 21 

1.000 0.956 0.969 0.849 0.835 0.900 
0.956 1.000 0.990 0.919 0.932 0.865 
0.969 0.990 1.000 0.896 0.915 0.912 
0.849 0.919 0.896 1.000 0.932 0.749 
0.835 0.932 0.915 0.932 1.000 0.813 
0.900 0.865 0.912 0.749 0.813 1.000 

frequenc y: 0. 164Hz frequency index: 22 

1.000 0.955 0.961 0.886 0.910 0.860 
0.955 1.000 0.982 0.946 0.979 0.850 
0.961 0.982 1.000 0.899 0.961 0.906 
0.886 0.946 0.899 1.000 0.943 0.715 
0.910 0.979 0.961 0.943 1.000 0.824 
0.860 0.850 0.906 0.715 0.824 1.000 

frequenc y: 0. 172Hz frequency index: 23 

1.000 0.936 0.931 0.853 0.904 0.678 
0.936 1.000 0.981 0.912 0.943 0.771 
0.931 0.981 1.000 0.867 0.929 0.790 
0.853 0.912 0.867 1.000 0.922 0.622 
0.904 0.943 0.929 0.922 1.000 0.681 
0.678 0.771 0.790 0.622 0.681 1.000 

Figure 5.55 Elmer, 2332 13.7.92 - coherence matrices for the most energetic frequency bins from D604R2. C26 
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CHAPTER 6 

CONCLUSIONS 

6.1 GENERAL 

The wave recording system is a fairly complex instrument comprising about 

2000 bought-in components mainly assembled at the University, and 

defined by approximately 100 drawings backed up by a part numbering and 

engineering change control system. Some of the lessons learnt during 

development and operation, and its performance, are discussed in this 

chapter. 

The results and validation described in Chapter 5 indicate that the wave 

recorder has fulfilled the objective of measuring sea waves near a reflective 

structure. It has provided data from a number of sites, and is currently 

underpinning a number of research projects (eg SERC 1991 and 1992) and 

playing an important part in others (eg PCFC 1992). The first of these 

includes the deployment of the wave recorder at sites in addition to the 

original one at Plymouth Breakwater with the objective of learning more 

about their wave reflection characteristics, and of the reflection process in 

general. 

That work is an extension to, but falls outside, the scope of this project. 

However it can be seen from the initial examination of results contained in 

the last chapter that for no wave breaking, reflection coefficients are 

slightly greater at low frequencies, and increase also with steeper gradients 

in accordance with expectations. For large waves, reflection coefficients are 

low as most of the energy is dissipated in breaking. It is for those 

conditions, in which theoretical models are less well developed, and 

laboratory models suffer more from scale effects, that the system will be of 

most value in investigating structural performance. 

In the other two current projects the wave recorder establishes the input 

conditions for measurements of structural loadings and performance. These 
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include wave impact pressures, the effectiveness of a breakwater in 

preventing the transmission of waves, and the degree of scour of bed 

material. The essential feature is the ability to determine incident wave 

energy from the mixture of incident and reflected, for that is the true 'input'. 

A single point measurement fails to distinguish between the two, and (as 

Figures 5.58 and 5.59 show) produces a value anywhere from the difference 

to the sum of the two constituents, depending on location within the nodal 

structure, which is itself a function of frequency. Field measurements in the 

past heve relied on such measurements, or on the deduction of input 

conditions at the shoreline from offshore measurement, or on hindcasting 

from weather records. However since the purpose of field work in coastal 

engineering is to explore effects outside the range of current theories (or to 

validate or extend theoretical knowledge) then it would seem desirable to 

acquire input conditions directly. 

A second advantage of measuring close to the shore comes from the extra 

detail obtainable: wave crests may be followed in across the array and 

related to individual impact events, whereas predictions and hindcasts yield 

only statistical summaries of the wave conditions. 

6.2 SEA BED FIXINGS AND DEPLOYMENT PROCEDURE 

The sea bed fixing arrangements have proved satisfactory at both Plymouth 

(13m below chart dataum) and Elmer (in the surf zone), given that extra 

protective steelwork was provided for the latter site. 

At Plymouth the system was in place (though not, unfortunately recording) 
during a particularly violent storm that washed two of the 100 tonne and 

many smaller armouring blocks right over the breakwater, and caused 

millions of pounds worth of damage to the city. On recovery the system was 

found to be substantially intact, although one cable had been damaged. 
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The deployment and recovery procedures were effective but proved to be 

major operations that had to be spread over several days' work. It is hoped 

to reduce this to a one day exercise by redesigning the mounting blocks and 

platforms, and employing new equipment such as through-water diver 

communications, two-way radio for surface communications, and a Global 

Positioning System (GPS) receiver. 

6.3 MECHANICAL DESIGN 

Experience has shown that, despite good intentions, handling conditions are 
likely to be rough for heavy equipment deployed by boat in difficult 

conditions. The anodised aluminium pressure housing performed well 

against abrasion, but its resistance to impacts was less satisfactory due to 

the softness of the aluminium. Once the protective coating had been 

damaged corrosion rates were high. The housing for the second system was 

re-designed in polyacetal (cg delrin), with silicon bronze fastenings. So far 

that has shown excellent resistance to corrosion and fouling, while retaining 

dimensional stability. 

Stainless steel performed badly underwater, and the transducer housings 

were redesigned to replace the central plate in that material (on which 

sealing depended) with, again, polyacetal. There have been no sealing 
failures in any of the units to date. 

Silt can accumulate in the depression above the neoprene diaphragm. This is 

not thought to cause appreciable error as it remains in suspension while the 

unit is immersed. Also the transducer is very 'stiff, deforming little with a 

change in pressure. Tucker (1992) reports good performance from similarly 

arranged pressure transducers under tens of centimetres of sand. 
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6.4 ELECTRONICS DESIGN 

Components and techniques in electronic engineering have advanced at a 

rapid pace. At the time the design was started (1987) the key devices were 

all either fairly new or just introduced. Inevitably, by the time of writing 

even better products have become available. The same performance could 

now be achieved at less cost and in a smaller space, although the cost of the 

complete system is dominated by the mechanical components, wet-mateable 

connectors and cable. 

Performance has met expectations. Figures 5.41 and 5.61 indicated that the 

instrument successfully handled wave components down to 0.3x10'' ml, or 

approximately 17mm, in height even though within a 14mWG standing 

signal and having passed through all the data analysis procedures. 

Inspection of the 'cal voltages' columns in the Decode reports (Figure 3.8) 

shows that the major parts of the analog sections held their calibration well, 

with no adjustments, over a period of years. 

It was mentioned in Chapter 2 that the anti-aliasing decimation filter had 

not been implemented. Protection against aliasing was therefore only 

provided above 20Hz, by the analog filters, leaving a gap between I and 20 

Hz. However inspection of the records consistently showed an absence of 

energy anywhere near the Nyquist ferquency of I Hz or above, and it seems 

unlikely (given the dependence of pressure attenuation on frequency) that 

any aliasing was occuring. 

The data compression scheme was simple. In view of the volume of research 

that has taken place recently in this field it is likely that a more advanced 

scheme could be selected and implemented to maximise the effectiveness of 

the data store. 

280 



6.5 DATA ANALYSIS 

Futher research will undoubtedly increase the information that can be 

extracted from the data. Provided the data is archived in its original state it 

remains possible to try out new procedures. The main areas for further work 

are the conversion from sub-surface pressure to surface elevation, and the 

directional analysis. A comparative test is at the time of writing underway 

to establish the corresondence between the elevation predicted by the wave 

recorder and that measured directly by a wave staff. 

As stated in Section 4.5 the location of the effective reflection line is an 
input to the Modified Maximum Likelihood Method (MMLM) of directional 

analysis that is not yet fully resolved. This is receiving further attention. 

The data set length, for the results presented here, was fixed at about 12 

minutes, and that is now considered to be rather short. A useful 

improvement in the statistical reliability of the spectral coefficients would 

be given by a length of , say, 17 minutes. The trade-offs are data storage 

capacity, battery life and reduced stationarity of the records on rising and 

falling tides. As mentioned in Chapter 4 the reliability of these coefficients 

is critical for the good behaviour of the directional analysis. Work is also 

proceeding on identifying the optimum window function for sea wave data. 

The wave simulation programs written so far have been relatively simple, 

designed for fault-finding rather than true validation, and it is proposed to 

extend them to gain more experience with directional analysis techniques. 

6.6 FUTURE ENHANCEMENTS 

Data storage technology has, as expected, advanced quickly, and a 

quadrupling of the capacity to 16MB would be achievable if desired. Two 

developments currently underway at the University of Plymouth, however, 
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will remove this parameter as a limitation (PCFC, 1992). These are firstly a 

radio buoy to allow communication with the recorder from a distance of up 

to l0km, and secondly a satellite link between Plymouth and the shore 

station at the remote site. 

The limiting factor for deployment period would then be battery capacity, 

and this could be multiplied several times by using lithium cells with 

relatively minor modifications to the regulators and control circuits. 
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APPENDIX A: 

LIST OF MANUFACTURERS OF OCEANOGRAPHIC MEASURING 

EQUIPMENT (19g7) 

Anderaa Instruments Bergen Norway 

(agent: WS Ocean Systems) 

Ameeco (Hydrospace) Andover UK 

B&P Instrumentation Hull UK 

BAJ Ltd Weston-S-Mare UK 

Benthos Inc North Falmouth, MA USA 

Burmarc Ltd Liphook UK 

NBA Controls Ltd Farnborough UK 

Niel Brown Inst. Systems Inc Cataumet, MA USA 

Chelsea Environmental Instrum ents Colchester UK 

Kahl Scentific Instr Corp El Cajon, CA USA 

Klein Associates Inc Salem, NH USA 

Liebnitz-Lann Ltd Nairn UK 

Magnevox Systems Slough UK 

Marine Electronics Ltd Guernsey UK 

Marintech NW Ltd Manchester UK 

Metocean Data Nova Scotia Canada 

MIROS Ltd Colnbrook UK 

Navitronic A. S. Aarhus Denmark 

Nekton Systems Swindon UK 

Nereides Paris France 
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Oceano Instruments (UK) Ltd Edinburgh UK 

Paroscientific Inc Redmond, WA USA 

Qubit Ltd Aldershot UK 

Sea Data Corp Newton, MA USA 

(agent: Burmarc Ltd) 

Seastar Instruments Sidney, BC Canada 

Seatronics Ltd Alton UK 

Sipro A. S. Sandefjord Norway 

Slingsby Engineering Ltd Kirkbymoorside UK 

Sonardyne Ltd Fleet UK 

Suber Brest France 

Tower Computer Systems Newmarket UK 

Valeport Marine Scientific Ltd Dartmouth UK 

WS Ocean Systems Haslemere UK 

Waverley Electronics Weymouth UK 
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MARINE ANI) SIII I)A'IA RI I'ORI1AK 

The Marine and Site Data Recorder is a high capacity, intelligent mcacuring instrument fur uti(" 
in remote and hostile environments. It was originally develulxcl at t Iniversity of Plymouth to 
measure waves near breakwaters and sea wall. 

Feat ores: 

" self contained 
" rugged 
" high data storage capacity 
" high-precision 
" automatic self calibration 
" flexible operation 
" PC interface 

Description 

The signal processing, semiconductor data storage, battery pack and microprocessor conti(d 
sections are all housed in a sealed pressure casing. Sensors and transducers, and the personal 
computer link, are connected by wet-mateable connector. The instrument and transducers ni \ 
he deployed to measure over a long period before recovery is necessary to change the hatterics. 
At any time a PC may be connected via the interface box and cable shown in the photograph 
to change measurement parameters or to download measured data. 

For further details please contact: 

Paul A. D. Bird School of Civil and Structural E: nwtneenni, 
University of Plymouth, Palace Court, Palace Street. Plvmouth PU 21W l el (0752) 233(b4 

F) 1 

The Marinc and Sitc I ); it, j Rc: &, rdc[ 
with three sub-sea pressure transducers 



Spccitication 

Some of the performance figures depend on the precise application. For example since external 
transducers may be powered by the internal batteries of the recorder, battery life will depend on 
those, as well as on measuring intervals which arc under the control of the user. Generally 
applicable information is given below, together with, in brackets, figures for the Marine and Site 
Recorder as used to measure sea waves with six pressure transducers. 

Input channels (6 no., 0-5 volt analog) 
(input impcdancc 47 kilohm) 
Ovcr voltagc protcction on cach channcl. 

Signal processing Anti-alias filter on each channel. 
Track-and-hold for simultaneous readings of all channels. 
Amplifiers have 4 gain settings and 4 offset settings, selectable 
automatically or manually to ensure full use of ADC resolution. 
On automatic - settings chosen as function of input signal 
excursions. 

Accuracy Dcpcndcnt on gain and offsct setting. Accuracy of individual 
circuits is better than 0.1% 
Automatic self-calibration using internal voltage references. 

A to D Converter 

Data Storage 

Capacity 

12 bit resolution (1 part in 40%). 
100 microsecond conversion time. 

4 megabytes 

Organisation Subject to software version installed. 
Typically: - 
1) an area for instrument parameters such as memory remaining 
and battery condition, and 
2) measurement data rccords, date and time stamped. First and 
last readings at 2 bytes per reading, the rest compressed to I byte 
per reading, giving a capacity of about 4 million readings. 

PC link Serial 9600 baud with 30m cable, 19200 with shorter cable. 
RTS/CTS handshaking. All lines opto-coupled for electrical 
isolation. 

Power Supply Main battery pack: primary, alkalinc-manganesc. 
(Including six pressure transducers, and measuring for 17 minutes 
every 3 hours, battery lifc is 4 months). 
Measuring intervals may be prc-set, or automatic governed by 
comparison of input signal activity with a threshold. 

Mechanical Double O-ring scaled pressure housing in corrosion resistant 
materials. 

Dimensions 875 mm long, 150 mm diameter (220 mm over flanges). 

Weight 18.5 kg (in air) 
3.3 kg (in water) 
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APPENDIX C: ARTICLE IN THE SUNDAY TIMES, 25 MARCH 1990 
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APPENPIX ID 

D Druck 

AMPLIFIED OUTPUT 
PRESSURE TRANSDUCERS 
Types: PDCR 130/W & PDCR 13:, /W 
Excellent linearity 
±0.1 % B. S. L. lorallranges 

Aircraft compatible excitation: 
10-32 V d. c. or i 15 V d. c. 

Amplified output 
Up to 10V 

Input/output isolation 
PDCR 130/Wseries 

Integral zero and span adjustments 

Stainless steel wetted parts 

Good thermal stability 
1 1.5% total error band -20` to +80°C 

This series of pressure transducers provide the user 
with a high level output signal for industrial, marine 
and aerospace applications, with all wetted parts 
manufactured from stainless steel. 

Military grade electronic components are used to ensure 
maximum integrity, and the units are individually tested 
and compensated before despatch. 

Zero and span potentiometers are provided in the rear of 
the transducer body and user access is via two sealed 
blanking plugs. 

Linearizing and temperature compensation is provided 
within the instrument, and the rationalised outputs 
ensure interchangeability without system re-calibration. 

During manufacture the transducers are set to customer 
requirements for any intermediate pressure range or 
pressure units specified. 

Operating pressure range 
350mbar, 700mbar, 1,1.5,2,3.5,5,7,10,15,20,35,60 
and 70 bar gauge or absolute. 175mbar gauge only. 
135,200,350,500 and 700 bar sealed gauge or absolute. 
Other pressure units can be specified, e. g. psi, kPa, etc. 

Overpressure 
The rated pressure can be exceeded by3he following 
multiples causing negligible calibration change: - 
1OXfor 175mbar range 
6xfor 350 mbar range 
4Xfor 700mbar to 15 bar ranges. 

100 bar for 35 bar to 70 bar ranges 
2Xfor 135 bar to 500 bar ranges. 

Pressure media 
Fluids compatible with 316 stainless steel. 

Supply voltage. PDCR 135/W and PDCR 135/W/C 
+15,0, -15 Volts d. c. 
+15 Volts (±0.5 Volts)1 mA nominal 
-15 Volts (±0.5 Volts) 6mA nominal 
These currents are quoted forzero output current. 
+ 12,0, -12 Volts d. c. available. 

Supply sensitivity. 0.02% F. S. O. Nolt 

Supply voltage. PDCR 130/W and PDCR 130/W/C 
10-32V d. c. ® 20mA isolated from output. 

Supply sensitivity. 0.005% F. S. O. Nolt 
Polarity reversal protected. 

Output voltage (isolated on PDCR 130/W) 
±2.5V maximum for 175mbar range 
±10V maximum for 350mbar range and abdve.. 

Output current' 
PDCR 135: 5mA maximum. PDCR 130: 2mA maximum. 

Combined non-linearity and hysteresis 
±0.1 %a B. S. L. for all ranges. 
±0.05% B. S. L. available for ranges up to 20 bar on request. 

Zero offset and span setting 
Integral trim potentiometers giving total adjustment of 
nominally 10% F. S. O. available on most models. 

Operating temperature range 
-40° to +80°C standard 
-40° to +125°C connector version 
This temperature range can be extended. 

PDCR 130/W & PDCR 13b/W 

DI 

Transduction principle 
Integrated silicon strain gauge bridge. 



Temperature effects 
±0.5% total error band 0' to 50'C 
±11.5% total error band -20* to +80*C 
175mbar range, ±0.5% total error band 10* to 40'C. 
Forspecial applications it is possible to give improved 
temperature compensation overa wider range. 

Natural frequency (mechanical) 
10.5kHz for 350mbar range increasing to 210kHzfor 35 
bar range. 

Amplifier band width -3dB at 2kHz nominal 

Acceleration sensitivity 
0.044% F. S. O. /g for 350mbar range decreasing to 
0.0005% F. S. O. /g for 35 bar range. 

Mechanical shock 
1000g for 1 ms in each of three mutually perpendicular 
axes will not affect calibration. 

Weight. 250 grams nominal. 

Electrical connection. PDCR 1301W and PDCR 135/W 
1 metre integral vented cable supplied. 
Longerlengths available on request. 

Electrical connection. PDCR 130/W/C and PDCR 135/W/C 
6 pin Bayonet fixed plug tested to MIL-C-26482 or 
DEF 5325 shell size 10. Free mating socket not supplied. 
Free mating socketAmphenol type 62GB-16F10-6S 
available on request 

Options available 
Internal "R" calibration facility. 
An extra electrical connection is provided on the 
transducer and if the voltage applied (referenced to the 
signal 0 Volt) is less than 0.8V (or open-circuit) the R-cal 
will not operate, and if greater than 2.4V the output will 
change in a positive direction by a percentage specified 
during manufacture (up to the maximum output 
available). 
General purpose gauge transducer PDCR 135 and PDCR 
130 (separate data sheet). 
Differential transducer PDCR 130/WL and PDCR 1351WL 
(separate data sheet). 
Submersible transducer: contact manufacturer. 
Flush mounting transducer: contact manufacturer. 

Ordering information 
Please state the following: - 
(1) Type number 
(2) Pressure range 
(3) Gauge, sealed gauge or absolute 
(4) Temperature range 
(5) Pressure connection 
(6) Pressure media 
(7) Supply voltage 
(8) Output voltage 
(9) Mating electrical socket (if required) 
Fornon-standard requirements please specify in detail. 

Continuing development sometimes necessitates 
specification changes without notice. 

038 12 

ýý T-ý 

Pressure connections 
G '/, B } Flat end Y. ' N. P. T. 

Installation 
Dimensions: mm 

Druck Limited 

Fir Tree Lane, Groby, 

15 57 14 

Pressure connections 
G/'B 1 

Flatend '/. ' N. P. T. J 
G'/. B 60' Internal cone 
'/,; U. N. F. as MS. 33656-4 
M12X1.5Ermeto 
M14x1.5mm 6 DIN 
Others available on request 

Leicestershire LE6 OFH, England. 
Telephone: Leicester (0533) 878551 
Telex: 341743 
Facsimile: (0533) 875022 

PDCR 130/W & PDCR 135/W 

D2 

38 

PDCR 130/W & PDCR 135/W 

Connector 
version 

Cable 
version 

Function Function 

Pin Colour POCK 130 POCR 135 

A Red ' Supply positive Supply positive 
0 White SupplyOV Sdpplynegative 

B Yellow Output positive Output positive 
C Blue Output negative OVcommon 

F connected to C - R cal when spec. R cal when spec. 
E Orange 

Agent: 

10/85 



APPENDIX E: 

METHOD FOR ESTIMATING OVERALL SYSTEM ACCURACY 

The effects of individual component inaccuracies on the standing part of the 

pressure signal (corresponding to mean depth) and on the time-varying part 
(wave activity) of the whole system are calculated separately. Figure E. 1 shows 

the effect of gain and offset error on these two parts of the pressure signal. 

In the figure: - (a) shows the actual signal: a 10 mb peak-to-peak variation 

about a 2000 mb mean, while 
(b) gives the result of this measurement for the case of a 10% gain error. Both 

standing part ( still water level) and varying part (wave) are too small. 
(c) shows the effect of an offset error in the circuits: only the standing part is 

affected. Gain errors are expressed in relative terms (eg -10% ) while offset 

errors may be expressed either in relative (eg -5% of full scale) or absolute (eg 

-100mb) terms. 

(d) gives the case of a gain error applying to the varying part of the signal only, 

as may arise from inaccuracy in an amplifier placed after the offset-subtracting 

circuit. 

The system may be modelled quantitatively as in Figures E. 2 and E. 3. Figure 

E. 2 shows the simple case of two gain blocks, GI a pressure transducer and G2 

some sort of amplifying or attenuating function. Clearly 

B=(; 2A=(; x(; 21' 

In Figure E. 3 two offset voltages have been added. These may be intentional 

such as the output of the offset amplifiers, or undesirable such as input errors 

of an operational amplifier gain block. We now have 

8=(; 2 A +Z2 = (; 2(Gl P+Zl)+Z2 

= PG1 G2 +Z1 (i2 +Z2 (E. 1) 
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Thus, the output of the system B is the sum of a term proportional to the input 

pressure P and two offset terms. When using the system, its output is known 

and the measurand (pressure) is inferred assuming that the gains and offsets are 

as they should be, that is: 

pl = 
B-(Z1 G2 +Z2) 

G1G2 
(E. 2) 

with the subscript denoting indicated pressure. As stated above, for comparison 

to the specification the standing and varying parts of the pressure signal are 

considered separately. If these are denoted by suffices s and v, then: 

P, + PIP 

and B=B, +B,, 

The varying part of P will therefore be: 

B'' 
G1 G2 

since the other terms from Equation E. 2 are constant over time and the standing 

part: 

Pis _ 
B. P -(Z1G2+Z2) 

G Gil (E. 3) 

The effect of errors in gains and offsets is therefore to cause an incorrect 

pressure to be inferred from the known output according to Equations E2 and 

E3. Offsets have no effect on the varying part, but both gains and offsets affect 

the standing part. The terms containing the offsets Z in Equation E3 are each 

the respective offset referred to the input, and may be denoted by a prime: 

Z, G2 
_ 

Z, Z, G, G2 G, 

and 
Zz 

G1 G2 = -2 

E4 



In the system error calculations, of which an example is given in Appendix F, all 

offset errors are referred to the input and expressed in millibars before they are 

combined. 

Combining errors 
Overall relative (ie fractional) gain error may be considered the sum of the 

relative gain errors of each contributing stage, since they are small and second 

order effects may be ignored. Overall offset errors, referred to the input, are 

also the sum of those frone each contributing stage. 

However. in the case of random (as opposed to systematic) errors, simple 

addition leads to an overly pessimistic result as they are very unlikely all to be 

at maximum limit and of the same sign. Instead these are combined into an error 

for the 99% confidence interval using the statistical arguments below. 

If a quantity Q is a function of some other variables, Xk. 

0= O(X1, X2, ..., Xk, ... Xn) (E. 5) 

and if these variables are random with a Gaussian distribution (means: zk and 

standard deviations: ß.,, ) then 0 will also have a Gaussian distribution (mean: 

standard deviation: ß,, ). 

It can be shown (Massey 1986) that the standard deviation of 0 is related to 

those of the x's by 

21Q22 
(aQ)2 

2 +... + 
(Iöo) 

6 

2ßrk+... 
ýE. sU = -I) ßxl+LE1X2) art 

\Öxk) 
5) 

So, for the model of Figure E. 3 we have, for the offsets: 

7ºo<<, i =Zi+ Z2 + 7_, +... (E. 6) 

E5 



The total offset referred to the input is the sum of the contributory offsets. For 

the random errors in offsets we apply Eq E5, in which the terms dQ/dxk are all 

unity and so 

"Z,,,,. 
/ 

62+ Q2, + Qlr + 
... Zý Z2 

3 
(E. 7) 

that is, the total standard error (ie standard deviation) in offset is the root of 

the sum of the squares of the contributing standard errors. 

Component data sheets quote 'typical' or 'maximum' errors rather than standard 

errors. For a Gaussian distribution there is a 99% likelihood that the actual 

error will fall within 2.576 standard deviations, and so that figure is equated to 

the data sheet's maximum error value. (Caution is in order here, though, as 

common selection processes result in highly non-standard distributions. ) 

Substituting into Equation E7, it follows that 

/ /2 " ZTrlna, 
I rm. u 

+ZZrmiiC +Z3rtnn, + (E. 8) 

There is a 99% chance that the overall offset error (denoted by suffix e), 

referred to the input, is less than the root of the sum of the squares of the 

contributing offset errors. There is a 1% chance that the overall offset error will 

fall between this value and the arithmetic sum of the contributing errors. 

In the case of gains, for three contributing stages: 

%T =Gi G2 G3 
... (E. 9) 

,cC;, _G1 G3 etc (E. 10) 
cG 1 C6 2 

and for random errors in gain (from E5): 

ßc;, = (; (; ß?; i + (; G3 aC2 + Gi G2 aG3 (E, 11) 

and dividing throughout by G. 
r: 

E6 



iý ( GT 

"GI 
+ 

(II 
?\+ 

(6i 

(E. 12) 

the total fractional standard error in gain is the root of the sum of the squares 

of the contributing fractional standard errors. 

Finally, to the 99% confidence limit: 

(Jrrtoaý 
AG 

Irma Nl 

Z+ 
L" 

--, G . 

rmnýý 

Z+ ýý3r 
mný 1 

(jT (_; ý 
J 

(. i1 
J 

REFERENCE 

Massey B. S. (1986) 
Measures in science and enngineering p81 ff 
Ellis Horwood Ltd UK 

(E. 13) 
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APPENDIX F: ERROR CALCULATION 

On the analog sections from pressure transducer to ADC 

NOTES 

1) Input is assumed to be 10mb peak-to-peak on a 2000mb standing 
level. 

2) Maximum (not typical) data sheet values are used. 

3) Systematic errors are combined by arithmetical sum. 
Random errors are combined by root sum of squares. 
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' APp vDI x Cr 
SEMICONDUCTOR M. MORTFS 

1. Mask ROM Mask Programmed Read Only Memory 
Program defined by a mask during assembly. 

Strengths : v. cheap, high capacity. Weaknesses: changes expensive, long lead time, difficult 
stock control, slow. 

Applications: v. high volume. 
character generators, look up tables, 
compilers, operating systems, games. 

Example Hitachi HN 62412P 
2Mb (256 8). CMOS, 5 uW standby, 5 V, 150 ns 
£5 each (100,000 up). Mask charge £4000. 

2. PROM Programmable Read Only Memory 
Normally means programmable by blowing fusible link4 on the 
chip, either by user or distributor 

Strengths : cheap, high capacity, changes and stock 
control easier than mask ROM, fast. 

Weaknesses: still cannot re-program the chip. 

Applications: fairly high volume. 
peripheral controllers, digital equipment 
control. 

3. EPROM Electrically Programmable Read Only Memory 

UVEPROM Ultra-Violet erasable and Electrically Programmable ROM 

Programmed on dedicated machine, with 10 to 30 V pulse. 
Erased by exposure to UV'light for about 30 minutes. 

Strengths : fairly cheap, high capacity, re-programmable. 
Weaknesses: requires special package with quartz window, 

and a socket for 
ire-programming out of 

circuit. Erases all data together. 
limited number of erase/program cycles (eg 
1000) 

Applications: low volume, or prototypes for high volume 
products. 

Example: Hitachi HN27C301G-20 
1 Mb (1268), CMOS, 5 uW standby, 5 V. with 
12.5 V programming pulse, 200 ns. 
920 each (100 up). 
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OTP EPROM One Time Programmable Electrically Programmable ROM 

Chip is same as UVEPROM but in standard plastic package. 

Strengths : 15% cheaper than UVEPROM. 
surface mount packages possible. 

Weaknesses: cannot be re-programmed 

Applications: for those UVEPROM applications in which 
changes are not likely, but where quantites 
are not high enough for Mask ROM or PROM. 

4. EEPROM Electrically Erasable and Programmable ROM 
(floating silicon gate NMOS technology) 

(& EAROM Electrically Alterable ROM 
metal-nitride - MNOS - technology) 

Strengths : may be programmed and erased in circuit 
Weaknesses: low capacity, expensive 

(1 generation behind EPROMS). 
still not like RAM - limit of about 10,000 
write cycles. 

Applications: wherever changes required to product in normal 
operation - 
instrument calibration constants, PABX, point 
of sale systems, engine management, program 
development 

Example Xicor X28256AP 
256 Kb (32K*8), read acces 150 ns, byte write 
78 us, total memory re-write 2.5 s, £150 

, 
(1 

up) 

Flash EEPROM As-EEPROM but density nearly as good as EPROM 
100 - 10000 write cycles 

5.. NOVRAM Non Volatile Random Access Memory 
Static RAM overlaid (bit for bit) on chip by EEPROM ("shadow" 
EEPROM) 
Access through RAM only. Store and recall signals copy RAM 
into EEPROM. Individual bits, bytes, or pages may be copied. 

Strengths : no limit to the number of write cycles 
(genuine RAM) 

Weaknesses: low capacity, expensive (6, * EPROM) 

Applications: as RAM where non-volatility is required 
programme development 

Example Greenwich Instruments NVR8 
64 Kb (8K * *), 150 ns read, several ms store, 
968 (1 up) 
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6. Static RAM Static Random Access Memory ( or Read - Write Memory ) 

Strengths : medium capacity, no limits to number of write 
cycles, no special voltage levels, low power 
(if CMOS). 

Weaknesses: volatile. 

Applications: computer main memory 

Examples . CMOS - Hitachi HM622561-LP8 
256 Kb (32K * 8), 10 uW standby, 5 V, 85 ne, 
19 (100 up) 
Bipolar (ECL) - Hitachi HM6785-25 
64 Kb (64K * 1), approx 500 mW, 25 ns 
937 (100 up) 

7. Dynamic RAM Dynamic Random Access Memory 
As static RAM but data must be re-written to eAch bit every 
2 ms (refreshing) 

Strengths : as static RAM but greater capaity, and 
cheaper. 

Weaknesses: volatile, requires refreshing circuitry. 

Applications: computer main memory 

Example -Hitachi HH511001 
1 Mb (1M * 1)', 10 mW standby, 5 V. 100 ne. 
£1-9 (100 *up) 

8. Ferrite Original computer memory -a matrix of ferrite beads. 

Strengths : resistant to radiation, high temperature 
Weaknesses: very expensive, $1 per bit, compare above! 

low capacity - 512 bit max 

Applications: very specialised, high rad, high temp 
environments 

Ferroelectric technology using thin-film & photolithographic 
techniques are now being developed. 

P. A. D. Bird 

¬c o 
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APPENDIX H: 

LIST OF MANUFACTURERS OF UNDERWATER CONNECTORS ((g87) 

Brantner & Assoc, Inc El Cajon, CA USA 

(agent: Techmation Edgeware UK) 

Ferranti ORE Great Yarmouth UK 

Glenair International Mansfield Woodhouse UK 

Groove Associates Ltd Emsworth UK 

Hawke Cable Glands Ltd Ulveston UK 

Hellermann Deutsch Ltd East Grinstead UK 

Hughes Microelectronics Ltd Glenrothes UK 

Hydro-Bond Engineering Ltd Aberdeen UK 

PDM Unelco Farnham UK 

Slingsby Engineering Ltd Kirkby moorside UK 

Souriau UK Ltd High Wycombe UK 
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APPENDIX I: 

LIST OF MANUFACTURERS OF UNDERWATER CABLE (1c1$'7) 

BICC Electronic Cables Ltd Warrington 

Boston Insulated Wire (UK) Ltd Esher 

De Regt Special Cable 

(agent: D. C. Cables 

Jaques Rotork 

Norsk Data 

(office in London) 

PDM Unelco Ltd 

Rotterdam 

Wilmslow 

Ely 

Drammen 

Farnham 

Ii 

UK 

UK 

Holland 

UK) 

UK 

Norway 

UK 


