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By 
Paul John Harris. 

Abstract 

In this thesis we consider the problem of the dynamic fluid-structure interaction 
between a finite elastic structure and the acoustic field in an unbounded fluid-filled 

exterior domain. 
We formulate the exterior acoustic problem as an integral equation over the 

structure surface. However, the classical boundary integral equation formulations 

of this problem do not have unique solutions at certain characteristic frequencies 
(which depend on the surface) and it is necessary to employ modified boundary 
integral equation formulations which are valid for all frequencies. The modified 
integral equation formulation used here involves certain arbitrary parameters and 
we shall study the effect of these parameters on the stability and accuracy of the 
numerical methods used to solve the integral equation. 

We then couple the boundary element analysis of the exterior acoustic problem 
with a finite element analysis of the elastic structure to investigate the interaction 
between the structure and the acoustic field. Recently there has been some con- 
troversy over whether or not the coupled problem suffers from the non-uniqueness 
problems associated with the classical integral equation formulations of the exterior 
acoustic problem. We resolve this question by demonstrating that the solution to 
the coupled problem is not unique at the characteristic frequencies and that we 
need to employ an integral equation formulation valid for all frequencies. 

We discuss the accuracy of our numerical results for both the acoustic problem 
and the coupled problem, for a number of axisymmetric and fully three-dimensional 

problems. Finally, we apply our method to the problem of a piezoelectric sonar 
transducer transmitting an acoustic signal in water, and observe reasonable agree- 
ment between our theoretical predictions and some experimental results. 
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1 INTRODUCTION 

The problem of the interaction between a finite elastic structure and the acous- 

tic field in an unbounded exterior domain occurs in many areas of mathematical 

physics. In particular, we are concerned with the field of underwater acoustics 

where it is desirable to determine the acoustic field either radiated by a submerged 

vibrating elastic structure or scattered by a submerged elastic structure. Here, the 

impedance mis-match between the structure and the acoustic medium is less than 

that between the structure and air, and hence it is not feasible to assume that the 

structure is perfectly rigid. Examples of this problem include that of finding the 

radiated or scattered sound field around ships and submarines. A practical prob- 

lem that we shall consider is to determine the acoustic field radiated by a sonar 

transducer and the frequency for which the maximum response is obtained. 

In general, there are very few structures for which an analytical solution to 

this problem can be found and numerical methods appear to be the only feasible 

way of obtaining solutions for arbitrary shaped structures. Our aim is to design 

an efficient and accurate numerical method to determine the acoustic field about 

an arbitrary three-dimensional structure which we can use to solve the transducer 

problem. 

The independent development of general numerical methods for both the struc- 

tural dynamics, governed by the linear law of elasticity, and the acoustic field in the 

fluid, governed by the Helmholtz equation, has made it possible for us to solve this 

coupled fluid-structure interaction problem. This is achieved by matching a bound- 
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ary element analysis of the exterior acoustic field with a finite element analysis of 

the elastic structure at the structure surface. 

Because the exterior region is unbounded, obvious diffculties arise in the use 

of domain techniques, such as finite elements or finite differences, in numerically 

solving the partial differential equation which governs the exterior acoustic field. 

For this reason many workers have chosen to re-formulate the problem as an inte- 

gral equation over the structure surface, and solve it using the boundary element 

method. This has the two major advantages that the domain of interest is re- 

duced from the infinite three-dimensional region exterior to the structure to the 

two-dimensional finite surface of the structure, and that the Sommerfeld radiation 

condition at infinity is automatically satisfied. 

Integral equation formulations for the exterior acoustic field fall into two cat- 

egories. In Section 2.2.1 we consider the indirect methods which assume that the 

solution can be represented in the form of a layer potential. This yields an inte- 

gral equation which it is necessary to solve for the unknown density function. The 

acoustic pressure in the exterior domain may then be computed from the density 

function. In Section 2.2.2 we consider direct methods which use Green's Second 

Theorem to derive a formula directly relating the pressure and its normal deriva- 

tine on the structure surface. Once both the pressure and its normal derivative 

are known on the surface, Green's formula can be used to compute the acoustic 

pressure in the exterior domain. 

Unfortunately, at the standing wave frequencies of the corresponding interior 
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problem, which we will refer to as characteristic frequencies, the classical integral 

equation formulations either fail to have a unique solution or have no solution. 

This problem is due to the integral equation formulation, and is not a feature of 

the physical problem, which will always have a unique solution. In Section 2.4 we 

give a survey of the more recent and important techniques for overcoming the non- 

uniqueness or non-existence problems. However, some of the formulations, such as 

those by Schenck 49] and Jones 1361, are only likely to yield the required solution 

for low frequencies, whilst other methods, such as those of Panich [471 and Burton 

and Miller ]13] which are valid for all frequencies, require much more computational 

effort. 

In Chapter 3 we will describe a numerical scheme for solving the exterior Neu- 

mann problem for Helmholtz equation using the direct method of formulation via 

Green's theorem. Here the Burton and Miller formulation [131.1s employed to ensure 

that the integral equation has a unique solution for all frequencies. 

Section 3.1 briefly considers some alternative numerical methods that could 

be used for solving integral equations. The following sections investigate differ- 

ent methods for representing the surface and the accuracy of various numerical 

quadrature rules for evaluating the surface integrals. 

Section 3.4 pays particular attention to the value of the arbitrary coupling pa- 

rameter present in the Burton and Miller formulation. We shall study the effect 

that different values of this coupling parameter have on the conditioning of the 

integral operators involved, since it is easier to obtain accurate numerical approxi- 
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mations to well conditioned integral operators. 

The finite element method is a well known and tested method for analysing the 

motion of an elastic structure. A method of coupling a finite element analysis of the 

structure to a boundary element analysis of the exterior acoustic field is described 

in Chapter 4. This is achieved by enforcing the conditions that the normal velocity 

is continuous at the surface, and that the acoustic pressure equals the stresses in 

the structure at the surface. 

Recently it has been suggested that it is possible to couple one of the classi- 

cal integral equation formulations of the exterior Helmholtz equation with a finite 

element analysis of the structure with no significant loss of accuracy at the charac- 

teristic frequencies of the exterior problem [19,33,48;. However, it has also been 

suggested that it is necessary to employ an integral equation formulation which 

is valid for all frequencies in order to obtain an accurate solution to the coupled 

fluid-structure interaction problem [43,62]. In Section 4.4 we shall attempt to 

resolve this apparent controversy by treating the relationship between the surface 

pressure and velocities due to the presence of the elastic structure as a Robin type 

boundary condition for the exterior field equations. Further, it is clear from our 

numerical results given in Section 4.5 that a numerical scheme based on one of the 

classical integral equation formulations of the exterior Helmholtz problem does not 

yield accurate results for frequencies close to one of the characteristic frequencies. 

It is also clear from our results that the numerical scheme employed suffers from 

ill-conditioning problems whenever the frequency is close to a natural frequency of 
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the structure. 

Finally, in Chapter 5, the numerical techniques that have been developed in 

earlier chapters are employed to analyse the acoustic field radiated by a simple 

piezoelectric sonar transducer. In particular we shall predict the frequency at 

which the maximum response is obtained from the transducer and compare the 

results to some experimental data. 

8 



2 INTEGRAL EQUATION FORMULATIONS 

OF THE EXTERIOR HELMHOLTZ PROB- 

LEM 

2.1 Introduction 

In this chapter we will consider various integral equation formulations for the 

Helmholtz equation in the infinite region exterior to a bounded three-dimensional 

structure. In later chapters the integral equation we feel is the most suitable will 

be used to provide an impedance type relationship between the acoustic pressure 

and the normal particle velocity on the surface of the structure. 

Let D_ denote the region in R3 occupied by the structure, with closed surface 

S. We assume S consists of a number of sub-surfaces each of which is of class 

CZ. The unbounded region exterior to S is denoted by D+ and is filled with a 

homogeneous acoustic medium of density pf and with speed of sound c. The unit 

normal to S, directed into D+ is denoted n. 

It is well-known that small amplitude acoustic waves propagate through D+ 

according to the linear wave equation 445, 

V2`l'(P. t) =2 c7l- 
`D(P. t) (2.1) 

where (F(p, t) is the excess pressure at the point pE D_ and at time t. If we assume 

single frequency harmonic time dependence of the form e`'< where w is the angular 

frequency (= 2r, times the frequency in hertz) then (2.1) becomes the Helmholtz 
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(or reduced wave) equation 

V (p) + 00(p) =0pED 

where cc(p, t) = s(p)e-`wt and k= w/c is called the acoustic wavenumber. 

On the surface S we assume one of the following boundary conditions 

(a) (Dirichlet condition) q5(p) = f(p) pES 

(b) (. Neumann condition) L" (P) = f(p) pcS 

(c) (Robin condition) än (p) + h(p)¢(p) = f(p) p`S 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

where f and h are known functions. Two important practical boundary conditions 

are given by ßß(p) =0 for a perfectly acoustically soft scatterer, and LO(p) =0 

corresponding to an acoustically rigid structure. Another special case is when the 

normal particle velocity v, is known on S, as an = IWpfVVn(p), pES, which 

follows from 

-pi 
av(p, t) (2 6) 

where v(p, t) is the particle velocity. 

In addition to the above boundary conditions, we need a suitable condition at 

infinity, corresponding to the physical requirement that all scattered and radiated 

waves are out-going at infinity. This was first expressed by Sommerfeld as the 

radiation condition [201 

lim r{ 
a¢(rý 

- ikc5(r)} =0 (2.7) 
r-! rI-. x 

Or 
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uniformly in r where r is the vector of length r =j r1 from a fixed origin in D_ to a 

general field point, and ? is the unit vector in this direction. A function satisfying 

(2.2) and (2.7) is known as a radiating wave function. 

THEOREM 2.1 

The solution to the exterior Helmholtz equation (2.2) subject to the radiation 

condition (2.7) and one of the boundary conditions (2.3), (2.4) or (2.5) is unique, 

provided re(k) > 0, im(k) >0 and in the case of (2.5), h satisfies im(h) >0 or 

im(h) > e(k )re(h). 
(ff 

Proof. See (14,20J. Q 

In. the practical situations considered in this thesis k is the ratio of two real 

valued physical quantities, the angular frequency and the speed of sound. It follows 

that k will always be a positive real number and so the exterior Helmholtz problems 

under consideration will always have unique solutions. 

2.2 Basic Integral Equation Formulations 

Before we formulate the exterior Helmholtz problem as an integral equation, let 

us define the single and double layer Helmholtz potentials and investigate their 

properties. Let 

Lkcr(P) jcT(q)Gk(p, 
q)dSq (2.8) 

and 

AI, o (P) = 
fs 

o(9) a GA(R q)dSq (2.9) 
q 
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where Lk and Alk are the single and double layer Helmholtz potential opera- 

tors respectively. The function Gk(p, q) is the free space Green's function for the 

Helmholtz equation. That is, it satisfies in both variables 

V 2Gk(p, q) + k2Gk(P, q) = -ö(! P-q 1) (2.10) 

(where 6 is the Dirac delta function) and the radiation condition (2.7). The function 

Gk(p, q) represents the effect at q of a unit point source at p radiating into free- 

space, and vice-versa. In three dimensions Gk is given by 

etk! p-ql 
Gk(p, q) _ (2.11) 

47r -q 

It is well known that both Lk0 and : 1lkv define radiating wave functions, see Burton 

[11;. 

It is clear from the definitions (2.8) and (2.9) of the potentials that whether 

or not the integrals exist depends on the behaviour of the layer density a, the 

singularities in the kernel functions and the nature of the surface S. If S= ýJ t Si 

and each Si E C2, then provided p is not on an edge or vertex of S, it can be shown 

that Lku(p) and Alko(p) exist for all other pE R3 provided a is continuous over S. 

The existence and continuity of the normal derivative of M,, requires that aE C2 

[14,20]. 

The Green's function Ck is closely related to the corresponding Green's function 

Go(p, q) for Laplace's equation (k = 0) and possesses the same singularity at p=q, 

since [16,20,351 

q) +o(1) as r -* 0 (2.12) Gk(p, q) =dir +o(l) = Go(p, 
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where r =1 p-q1. It is this singularity that is responsible for the jump properties 

of the layer potentials at the surface S, obtained from classical potential theory, 

which are outlined below [14,201 

Before considering the jump discontinuity properties of the layer potentials we 

introduce the following notation. Denote pE D+ by pT and the limit as p+ tends 

to pES by p+ p. Similarly denote pE D_ by p_ and the limit as p_ tends to 

pES by pl'mp. The jump discontinuity properties of Lk. Alk and their normal 

derivatives can now be stated. 

LEMMA 2.1 

The layer potential Lku(p) is continuous throughout R3. that is 

all 
P LkO'(P+) = Lkor(P) =plimp LkQ(P-) PS (2.13) 

whilst its normal derivative has a jump discontinuity at S of the form 

um 
va Lka (P+) _ -- 

-- + 8np 
Ll oPS 

(2.14) 
p lmp a Lkcr(P-) _ °(a) .}a Lka'(P) P=S. Ö71p 2 8np 

The double layer potential Alko(p) has a discontinuity at S of the form 

Pi 
P MkO-(P+) _ 

Zr) lllýý(P) pES 

p' p IkO"(P-) = -°Z() a- i11ka(P) pES 

and its normal derivative is continuous throughout 7Z3, that is 

plimp a ; 1lko(p-) =a mko(P) =plimp a ? IIko, (P-) pES. Q (2.16) 
Önp Öny ÖRp 

We denote the normal derivatives of Lk and ? Ilk by , 11, and Nk respectively, where 

9)dSQ (2.17) A lk, a (P) = 
/_Lko(p) f 

ý(9) an p PP 
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and 

lvko(P) = as Mku(P) = as fs °(9)ä G (P, q)dSq. (2.18) 
PP an, 

Strictly speaking, the derivative with respect to np in (2.18) cannot be taken inside 

the integral sign because 

82 
GA: (R 4) 

r1+ 
°(1) as q -' p (2.19) 

p 
änän4 4I P-q 13 

and the resulting kernel function is non-integrable. However, we are allowed to 

change the order of integration and differentiation (which is always done in prac- 

tice), provided the resulting hyper-singular integral is interpreted in the sense of a 

Hadamard finite part [30]. 

2.2.1 Indirect Integral Equation Formulations of the Exterior Helmholtz 

Problem. 

Since both Lk0 and AIk are radiating wave functions, it seems reasonable to 

attempt to express the solution as a layer potential. An integral equation for 

the unknown density function is obtained by enforcing the appropriate boundary 

condition on S. If we seek a solution to the Dirichlet problem in the form of a 

single layer potential, that is 

4ýP=) = Lko(p) P+ E D_, (2.20) 

then taking the limit pr -pES, using the continuity of Lk and applying the 

boundary condition (2.3) leads to 

Lko(P) = f(P) pES. (2.21) 
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This is a first kind Fred holm'integral equation for the surface density o. For the 

Robin problem differentiate (2.20) with respect to np, take the limit as p+ -pES, 

and apply the boundary condition (2.5) to obtain 

(-i + 211k + hLk)o(P) = f(p) pES (2.22) 

which is a second kind Fredholm integral equation for the surface density a. The 

Neumann problem is a special case of the Robin problem with h(p) - 0. In all of 

the above cases, once o has been determined we can use (2.20) to obtain ý(p±). 

Alternatively we can seek a solution of the form 

q5(P+) = illký(P+) P+ E D. (2.23) 

Taking the limit p+ -> pES and applying the Dirichlet condition (2.3) yields the 

second kind Fredholm integral equation 

(ZI ± Mk)cr(P) = 1(P) PES. (2.24) 

Similarly, differentiating (2.23), taking the limit as p_ --a pES and applying the 

Robin boundary condition (2.5) yields 

(Nk + h(21 ;- 11 Ik) a(P) =f (P) PES. (2.25) 

Again, we obtain the Neumann problem by setting h(p) =0 in (2.25). Once v 

is known (2.23) can be used to obtain ¢(p+). These layer potential methods for 

obtaining an integral equation representation of the solution of Helmholtz equation 

are referred to as indirect formulations since the integral equation is not solved 

directly for a field quantity such as 0 or an, but for a layer density a on S which 

has no physical significance. 
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2.2.2 Direct Integral Equation Formulations of the Exterior Helmholtz 

Problem. 

An alternative way of obtaining an integral equation formulation is to use the direct 

method based on Green's Second Theorem 

f {öc6 
ý1 2- 02 

a0i 
dS =L 

{ý1 V202 
- 

02 , 
201 } dV (2.26) 

SL On rl 

where V is a domain surrounded by a surface SV which is not necessarily simply 

connected. Since D. is unbounded, this result cannot be applied directly with 

V= D+. Let ER be a sphere of radius R completely surrounding the surface S, 

and let V be the region between S and ER. Putting ¢! =0 and ßi2 = Gk leads to 

f{«q)aGkT(P) 

99 R4 
4 _ G(p, 4)9)}dS4 +f {¢(4)a k(p. 9) _ Gk(p, 4)a(4)}dSq 

_ {g5(9)V ZGk(P, q) - Gk(p, 4)V Z°(4)}d[': 

(2.27) 

Writing the integral over ER as 

£R 
f 

{ 

(4) 
OGk(P, q) 

4 
- ikGk(p, 4) dSq -fR Gk(P: q) i 

aý (4) 

l 4 
- ik¢(4)l dSq 

. 
(2.28) 

and on taking the limit R --- oo the region V becomes D+ and the integral over 

ER becomes zero since both Gk and 0 satisfy the radiation condition. Hence 

Js 

{¢(9)8Gk(P, 4) 
_ Gk(P, 4)ao 

(9) 
dSq = 

fD+ {«(9)V 2Gk(p, 4)-Gk(P, 4) ,Z (4)}dl"q. 

aaf 

(2.29) 

Now write the integral over D+ as 

f O(9){V 2Gk(p, 4) + k2Gk(p, 9)}dV9. (2.30) 
D+ 
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If pE D_ then Gk satisfies Helmholtz equation and so the integral over D+ is zero. 

If pE Df then Gk is singular when p=q and the use of Green's theorem is not 

valid. However, if we surround the point p with a sphere of radius e with surface 

Se, Green's theorem can be applied to the remaining volume. This gives an extra 

surface integral over S, which on taking the limit e-0 gives [14,201, 

fDI+O(q)jV'ZGk(P, 
4) ± k2Gk(p, 4)}dV = ¢(P) PED. (2.31) 

If PES then we proceed as for pE D+ except that we surround p by a small 

hemisphere, and obtain [14,20] 

I b(4){V2Gk(p, 4) + k2Gk(p, q)}d6' = oZ) pES (2.32) 

provided p is not on an edge or vertex of S. 

Combining (2.29) with (2.30), (2.31) and (2.32) gives the Helmholtz formula 

I0p D_ 

j{«q)öGk(P) ,_GES (2.33) 
än9 ý(P 4) an4 2P 

O(P) PE D_ 

The equation for pES can be written in operator notation as 

an PES. (2.34) 

This equation is known as the Surface Helmholtz Equation (SHE) which is a first 

kind Fredholm integral equation for än if we have a Dirichlet boundary condition, 

or a second kind Fredholm integral equation for 0 if we have a Neumann or Robin 

boundary condition. This method of obtaining an integral equation is known as a 
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are related directly through direct method since the physical quantities 0 and an 

(2.34). 

For the problem of a structure scattering an incident acoustic wave, the total 

wave 0 can be written as = 0, + ¢=n< where ¢, is the scattered wave and O=ne 

is the incident wave. Since ¢, is a radiating wave function, it must satisfy (2.33). 

The incident wave does not satisfy (2.33) since it does not satisfy the radiation 

condition, but a similar condition [20) 

1Tm r{ 
ac( r) 

-ý ik¢(r) }=0 
r_I--ý t JJJ 

(2.35) 

uniformly in all direction r/ Ir1. Performing a similar analysis to that above yields 

10 pE D_ 
OCA: (p, q) aoinc(q) 

1s an - Ck(p, q) On 
dSl trný(n) p`S 

(2.36) 
99 

-Oinc(p) p D- 

To obtain an integral equation for the total wave function, we add (2.33) with 0 

replaced by 0, to (2.36) to obtain 

-cbinc(P) PC n- 

rS 
o(q)OGk(P, 9) 

_ 
aß(9) ý 

dSq = gy(p) 
- Js t 

ön9 
ck(P, 4) Onq 2 4hinc(P) pS 

(2.3. ) 

¢(P) -4 inc(P) PEDF 

We now briefly consider the integral equation formulations of the interior Helmholtz 

problem, which are required in the next section for determining whether or not 

unique solutions to the integral equation formulations of the exterior problem ex- 

ist. Let ßj(p) be a solution of the interior Helmholtz equation with a boundary 
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condition of the form (2.3), (2.4) or (2.5) on S. It can be shown, by applying 

Green's Second Theorem in the interior domain D_, that the appropriate integral 

relation between O; and än' is equation (2.36) with O;,,, replaced by ¢j. 

2.3 Basic Integral Equation Theory 

In this section we review some of the classical theory for operator equations of the 

form 

(-AI + K)q =f (2.38) 

where A is a complex constant and h; is a compact linear operator. Clearly the 

integral equations introduced in the previous section may be written in the form 

(2.38). Later in this section it will be established whether or not the operators Lk, 

Alk, Alk and N,. are compact. The theory may then be used to deduce that the 

solutions to the integral equations either do not exist or are non-unique for certain 

values of the wavenumber k. All the results that follow are classical results whose 

proofs can be found in 
: 
9,20,461. 

DEFINITION 2.1 

A linear operator AC X -+ Y from a normed space X to a normed space Y is 

called compact if it maps any bounded set in X into a relatively compact set in Y, 

where a set is said to be relatively compact if every sequence in the set contains a 

convergent subsequence. C 

THEOREM 2.2 

All compact operators are bounded. In addition, any linear combination of 
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compact linear operators is compact and the product of two bounded operators is 

compact if one of the operators is compact. Q 

DEFINITION 2.2 

Let X be a normed space and I be a Banach space. Let Kn :. t -Y be a 

sequence of bounded linear operators. {K�} is said to converge pointwise to K if 

11(K-K�)XIl --+ 0 as n- oo (2.39) 

for all xEX, and said to converge uniformly if 

K- K�Il -* 0 as n- oc. C, (2.40 

If {1C, 
ß} converges uniformly to A; then clearly {IC,, } converges pointwise to 1C. 

However the converse is not true. 

THEOREM 2 

Let X and Y be as in Definition 2.2. If the sequence {1C�} of compact integral 

operators converges uniformly to IC then 1C is compact. 

THEOREM 2.4 

Let K: X -' Y be a bounded linear operator with finite-dimensional range 

1C(X ). Then iC is compact. O 

We now introduce the following related operators which are required in our 

analysis. 

DEFINITION 2.3 

Let K: X-Y be an integral operator given by 

(Kcr)(P) =f k(p, 4)7(4)dSq v-X. (2.41) 
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Then the transposed operator, KT, is given by 

fk(q, 
p)(q)dSq vE _l 

(2.42) 

and the adjoint operator, K`, is given by 

fk(q, 
p)r(q)dSq o- EX (2.43) 

where k(p, q) denotes the complex conjugate of k(p, q). An integral operator K is 

said to be symmetric if k(p, q) = k(q, p) for all p and q, and is said to he self-adjoint 

if k(p, q) = k(q, p) for all p and q. Q 

It is obvious from (2.8) and (2.18) that Lk and Nk are symmetric operators, 

and from (2.9) and (2.17) that Alk' is the transpose of : llk. 

DEFINITION 2.4 

The null space of a linear operator k :. I -* X, is given by 

Null(1C) = 10 EX such that K¢ = 0}. Q (2.44) 

THEOREM 2.5 

The null space of the operator -AI ± K, where K is a compact operator, is of 

finite dimension. G 

We are now able to state an important result concerning the existence and 

uniqueness of the solution of (2.38). 

THEOREM 2.6 (Fredholm Alternative) 

Let K: X -º X and K' :Y --> Y be compact adjoint linear operators. Then. 

either A: 

Null(-AI + K) = {0} and iVull(-A1 t K') = {O} 

21 



and 

(-\I + IC)(X) = (X) and (-XI + K*)(Y) _ (Y) 

or B: 

dim(Null(-\I + K)) = dim(Null(-)1 + K*)) 

and 

(-AI + K)(X) = If EX such that (f, &) =0vE Null(-AI + )C')} 

and 

(-XI + K`)(Y) ={fEY such that (f, 0) =00E Null(-AI I K)}. 0 

The values of A for which Null(-AI , K) is not {O} are called the eigenvalues 

of K and the 40 E Null(-AI - 1C) are called the eigenfunctions. A consequence of 

this theorem is that if A is not an eigenvalue of K and provided AC is compact then 

(2.38) will always have a unique solution for fEX. If A is an eigenvalue of K, 

then (2.38) will have a solution provided 

(f, iý) =0 for all z! Null(, 1I - '). (2.45) 

That is, provided the right hand side of (2.38) is orthogonal to all the eigenfunctions 

of the adjoint operator corresponding to the eigenvalue A. However in this case the 

solution obtained will not be unique. 

THEOREM 2.7 

If A is an eigenvalue of K, then it is also an eigenvalue of KT, and a is an 

eigenvalue of )C'. 
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Proof. 

The fact that A is an eigenvalue of 1'C' follows from the Fredliolm Alternative 

Theorem (Theorem 2.6). Hence 

(-, ýI K')O = 0,0 E null(--X ± K`), ¢ 0. (2.46) 

Taking the complex conjugate of this gives the result for V. 0 

Before discussing the compactness properties of the layer potential operators r 

we must define the appropriate function spaces in which we will be working. 

DEFINITION 2.5 

Let C(S) denote the space of continuous functions, with the norm sup 

c (q). ý, q S, and let C"( S) denote the sub-space of C(S) consisting of functions 

with continuous derivatives of up to order n with norm 

Ianl+n2-3 

step azay, 2c Ra fl, n,. n3 > I) 
nj +n2 Y n3 <n q=S 

Let L2(S) denote the space of functions which satisfy 

1IýN2 =fI ß(q)12 dsq <x (2.47) 

and tlr(S) denote the Sobolev space of functions hose generalised derivatives cif 

order ºa exist and are in L2(S) and with norm 1,32; 

11ýII7 - 

[ý f[1nI rn1rn36(9) 1 
(lS n fl2 F13 ). 

ý Sj 
örni 8ynz 8, °3 4 l7 -7 

nt rn2 +n3 <n 

THEOREM 2.8 
An integral operator with a kernel function which is either continuous for all 
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p, qES, or which is continuous for all p, qcS, p$q and 

1 k(p, 9) 1C MMI 1P-q Ja-2 p-q 
(2.48) 

where Al is a positive constant and aE (0,2], is compact on C(S) and L2(S). Q 

Any kernel function which satisfies condition (2.48) above is said to be weakly 

singular. It is obvious that the free space Green's function Gk(p, q) defined by 

(2.11) satisfies (2.48) with Al =1 and a=1 and hence Lk is compact. Writing 

OGk(p, q) 
- 

(1 - ik Ip-q I)Gk(p, 4)(P - q). nq (2.49) 
ön9 - 

-firI P-412 

and noting that (p - q). nq <LIp-q 12 (see [20; ) shows that Alk is also compact. 

Similarly it is possible to show that : 11k is compact. However, in view of (2.19) Nk 

can be shown to be a non-compact operator on C(S) or L2(S), [20]. However, it 

can be shown that 

a2 

lim 
'P 

Ö7LV ÖT14 
{Gk(p, q) - Go(p, q)} =1 +o(l) (2.50) 

p-q; 9 

and hence the operator N,. - No is compact if it is treated as a single operator 

(14,201. 

Concentrating on the Sobolev space Hr(S) we have the following result, the 

proof of which may be found in Colton and Kress [20".. 

THEOREM 2.9 

The operators Lk : Hr(S) - Hr-l(S), , 11k : Hr(S) - Hr(S) and : Ilk 

Hr(S) , Hr(S) are compact. The operator : Vk : Hr(S) --, H''-i(S) is bounded. 

0 
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Having established that the operators Lk, j11k and Alk are compact operators, 

it is necessary to consider whether or not the null-spaces of the operators in (2.21), 

(2.22) and (2.34) contain non-zero elements. If a null-space only contains the zero 

element then we shall refer to it as a trivial null-space. Consider the interior 

Helmholtz problem with a homogeneous Dirichlet boundary condition. It is well 

known that this problem has a non-trivial solution ¢t for a countably infinite set 

of values of k, denoted ID; 114]. According to the remarks at the end of Section 

2.2.2, the funcions ct; must satisfy the interior Helmholtz formula (2.36) for pE 

since this equation was derived from Green's theorem. Hence, for these values of 

k we must have a¢' 0, pES. Writing (2.36) for pES in operator notation and 

applying the Dirichlet condition gives 

Lký `=0 (2.51) 

implying that the null-space of Lk is non-trivial for k` ID- 

If k ID, let u= Lk än'. Hence by (2.36) u(p) =0 for pE D_ since 6i(p) =0 

for pES and pE D_. Then, by the continuity of Lk, it is clear that u(p) =0 

for pES. Since u(p) is a solution of the exterior Helmholtz equation, which is 

alway unique, (see Theorem 2.1), we have that u(p) = 0, pE D_. Let ä" and 

än denote the normal derivative of u for pt E Df and p_ E D. respectively, then 

a" - a" - 0. Taking the appropriate limits as pý -ý S, and applying the jump än_ - an_ 

conditions gives 

a,. au 
_- _ a¢; pES (2.52) 

an_ " an+ an 
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which implies 
an = 0. Therefore, the null-space of Lk is non-trivial if and only if 

kE ID. 

Differentiating (2.36) with respect to nP, and replacing ¢jn< with ¢i, gives 

{-) p c- D_ anp 

af ack(P, g)ds _f 
ao=(g) ack(P, g)ds a¢, (P) E anp s 

ßi(4) 
anq 4s anq anP 9z an, PCS 

0 pE D+ 

(2.53) 

Clearly 0. and an' satisfy (2.53) if they satisfy (2.36). Applying the homogeneous 

Dirichlet boundary condition to (2.53), and writing the equation for pES in 

operator notation yields 

-r+. ýrk)a¢` =o. On 
(2.54) 

If k` ID we know that a non-trivial a¢' exists, and so for these values of k, the 

null-space of -; I + i1I is non-trivial. Using a similar technique to above, it is 

possible to show that for all other values of k, the null-space of -Z I+ AIk is trivial. 

We recall from (2.22) for the Neumann problem that the operator concerned is 

-2 111T. If k¢ ID (2.22) will always have a unique solution (by the Fredholm Al- 

ternative Theorem). However, if kE 1o then a non-unique solution will exist if and 

only if the right hand side of (2.22), an = f, is orthogonal to all the eigenfunctions 

of the adjoint operator. As f can in general be any function. this condition will 

not hold and so (2.22) will not possess a solution for kE ID- We call any k` ID 

a characteristic value of the integral operators Lk and -; I '! and emphasise 

that ID denotes the set of values of k for which the operators Lk and -Z+ Alk are 
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singular (ie the values of k for which they have a zero eigenvalue). 

Let us now consider the direct formulation, from Green's Theorem, of the Neu- 

mann problem. The operator on the left hand side of (2.34) is the transpose of 

the operator in (2.54) and so, by Theorem 2.8, they have the same eigenvalues and 

characteristic values. To see if a solution of (2.34) exists, apply Green's second the- 

orem to Lkf, the right-hand side of (2.34), and ¢_, an eigenfunction of the interior 

Dirichlet problem; to obtain 

00 f_LkfdS 
- 

fsO` (19DT 

aLkf 
dS = JD_ 

{0, v2(Lkf) - Li, fV2q; }dt' (2.55) 

Since both Lk -f and ¢t satisfv Helmholtz equation in D_, and Oj(p) =0 for pES 

then 

f(Lkf)dS 
= 0. (2.56) 

But, if q5; is an interior eigenfunction (- 
21 + ! t1f l 

an =0 and hence (- 
Z 
11 + 

= 0. That is, än is an eigenfunction of the adjoint operator. Therefore, ill ý 
an 

in view of (2.56), the orthogonality condition will be satisfied for all f, and the 

formulation (2.34) for the Neumann problem will always have a solution, but it 

will be non-unique if k` ID 

We have shown that the integral equation formulations of the exterior Neumann 

problem will have a unique solution provided kd ID. The problems associated with 

the characteristic wavenumbers are only due to the integral equation formulation 

since, by Theorem 2.1, the exterior Helmholtz problem will always have a unique 

solution if k is real and positive. Clearly, for a given value of k=a say, the 
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conditioning of the integral equation (2.22) or (2.34) is inversely related to the 

distance of a from ID. If dist(a, ID), the distance between a and the nearest 

element of ID, is small then the formulation (2.22) or (2.34) is ill-conditioned and 

hence the results obtained from an approximate solution of (2.22) or (2.34) are 

likely to bear little or no resemblance to the exact solution ¢(p). It is well-known 

that asymptotically ( as k -> oo) the number of terms in ID less than a given value 

of k is proportional to k3 [14]. Clearly, as k increases, dist(k, ID) is likely to be 

small for all values of k. Hence we need to develop formulations which have unique 

solutions for all values of the wavenumber k. 

2.4 Integral Equation Formulations Valid for all Wavenum- 

bers. 

As shown in the previous section, the classical integral equation formulations of 

the exterior Helmholtz problem at best do not possess unique solutions for certain 

values of the wavenumber k. A survey of the formulations valid for all wavenumbers, 

which were proposed before 1973, is given in Burton X14]. Here we present a brief 

review of the more recent suggestions for the exterior Neumann problem, as well 

as those which are often used in practice. 

2.4.1 The Methods of Ursell and Jones. 

Some of the most elegant methods for obtaining a uniformly valid integral equation 

formulation in k use a modified Green's function. Ursell [56,571 observed that we 
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can replace Gk(p, q) by any fundamental solution to Helmholtz equation in the 

exterior domain D+ which satisfies the radiation condition. The derivation of 

the integral equations using either a direct or indirect formulation now follows 

as before, but by choosing an appropriate fundamental solution it is possible to 

eliminate all the interference from the interior eigenfunctions. \Vrite the modified 

Green's function G(p, q) as 

C(p, q) = Gk(p, q) + r(P, q) (2.57) 

where r(p, q) is an analytic wave function in D_ and let SR denote a sphere of 

radius R which is totally enclosed within S. If F satisfies 

ar(p. a) -t CF(p. 9) =UP SR (?. 58) 
an 

where C is a complex constant with im(C) > O, then the solution to the integral 

equations introduced in Section 2.2 with G replacing Gk are unique. LJrsell f56,57 

shows that h(p, q) can he chosen to be an infinite series of spherical wave functions, 

which converges quickly for small k, but more slowly as k increases. 

A modification to this method is to replace the infinite series with a finite one. 

Jones 36] suggests the choice 

. tir >n 
(2.59) 

m=0 n=O 

where 

ýrrrirtl. ýlý - 
hm(krp)Pin(cosO )cc's (2.60) 

ýmrt`ýýJ 
= 

hm(krp) 
T 

(cos BF) 
sill c�p 

(2.61) 
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and the point p has spherical polar coordinates (rp, 9P, Op). The functions hT1(krp) 

are the spherical Hankel functions of the first kind and Pnn(cos Bp) are the associated 

Legendre functions. If we label the elements of ID such that kl < k2 < ... < kn < 

... then it is possible to show that if k< kj[2 the integral equations (2.22) 

and (2.34) with Green's function (2.57) and r(p, q) given by (2.59) have a unique 

solution provided the 6�ß�'s are real and non-zero. In Kleinmann and Kress [37] it 

is suggested that the b, n,, 's are chosen so to minimise the condition number of the 

resulting integral operator. 

This method has the deficiency that, for an arbitrary surface, we do not know 

how large to take ill since, in general, we do not know the elements of ID. Also, 

as mentioned previously, the number of elements of ID less than a given value of k 

increases proportionately to k3, so for a moderately large value of k it is necessary 

to take a large number of terms. The excessive cost of evaluating f(p, q) and hence 

G(p, q) for a large number of p and q has meant that there has been little or no 

use of the modified Green's function methods for practical problems. 

2.4.2 Layer Potential Formulations Valid for all Wavenumbers. 

Methods for obtaining a unique solution to the Neumann problem using all indi- 

rect formulation typically consist of taking a combined layer potential of the form 

(Panich 47, ) 

4ýýP) _ (Lk - p: 11k)u(P) pE D+ (2.62) 
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where it is a complex constant, chosen to be +i if Re(k) >0 [14,16]. Taking the 

appropriate limit as p+ -a S, using the jump properties given in Lemma 2.1 and 

applying the boundary condition (2.4) gives 

(-Z1+'1Ik +F1Vk)o=än=f PES. (2.63) 

This expression now contains the hyper-singular operator Nk, which is not compact. 

A similar formulation, proposed by Panich [47], is to take a hybrid potential of 

the form 

O(p) = (Lko = /., IIkLo)T(P) p: DT (2.64) 

where the suffix 0 denotes putting k=0 in the definition of the potentials. The 

resulting integral equation corresponding to (2.64) is 

(-11 + Mk -- /t: VkLo)o = än =fp`S. (2.65) 

Writing NkLo = (Nk - No)Lo + NoLo and using the identity [47] 

1VoLo = (AIO + 21)(1Io - ; 1) (2.66) 

gives 

(-ZI+, 1Ik +ýý(Nk-N0)-r(11fo)2-41J)a= ýn=I (2.67) 

in which all the operators are weakly singular and hence compact. It is now possible 

to use the Fredholm theory to deduce that (2.67) has a unique solution for all real 

values of k>0 provided im(It) > 0, see Colton and Kress 20]. 
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2.4.3 The Method of Schenck. 

Various methods for obtaining a unique solution in the case of a direct formulation, 

based on taking advantage of equation (2.33) for p` D_, have been proposed. 

Equation (2.33) for pE D_ provides an integral relationship of the form 

(Lk )(P) pC D_. (2.68) 

In Schenck [49] it is shown that for any k, there is only one solution to (2.34) which 

also satisfies (2.68) for all pE D_. Copley [21] suggested a scheme for enforcing 

(2.68) at a finite number of points {PI) P2) ... , pn} in D_. But for a bad choice 

of pE D_ this does not eliminate the interference of the interior eigenfunctions 

chi. Clearly Oi must satisfy the corresponding interior equation (see equation (2.36) 

with Oi replacing ¢;,,, ) 

(I i1Ik)d; = Lk än P` D_. (2.69) 

If p lies on a nodal surface of ¢_, that is, a point where öj(p) = 0, then (2.69) is the 

same as (2.68). If this is true of all the point in D_ that we have chosen, then ¢_ 

will also satisfy (2.68) and will not have eliminated the non-uniqueness, [21,491. 

A method for overcoming this problem, suggested in Cunefare et al [22], is to 

take a linear combination of (2.68) and its normal derivative. However, as the 

points {pl, p2i ... , p�} do not lie on the surface S it is not clear how to define the 

normal derivative of (2.68). Further, it can be shown that any numerical scheme 

based on (2.68) has undesirable characteristics as the number of points increases, 

see [49]. 
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Shenck 491 devised a scheme which supplements a suitable discretisation of 

(2.34) (see Chapter 3) with some extra equations derived from discretising (2.68) 

for only a few points in D_. The resulting non-square system of equations is 

then solved by a least-squares procedure. This method is known as the Combined 

Helmholtz Integral Equation Formulation, or by the acronym CHIEF. The main 

disadvantage of this scheme is that there is no way of telling how many interior 

points are needed, or where to place them, since if they are placed on a nodal 

surface of an eigenfunction, the method will still fail for the reasons given above. 

However, since this method is relatively simple to implement, it is often successfully 

used practice for modest values of k 7,501j. 

2.4.4 The Exterior Over-Determination Formulation. 

Recently a method similar to the CHIEF but using the exterior relation 

«p) = (ilIkO)(P) - (Lkön)(P) P C- Di. 2.70) 

has been proposed in Piaszczyk and Klosner %18]. Since Q(p) for pE D+ is not 

known, we assume that there is some function Z(p) which gives a simple impedance 

relationship of the form 

O(p) = Z(p)oä(P) pES. 
(2.71) 

Substituting (2.71) into (2.70) enables 0(p) to be computed for a few points pE 

D+. Using these values and a suitable discretisation of (2.34) we form an over- 

determined system for «(p) on S, which is then solved using a least-squares pro- 
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pp- 

cedure. Once gy(p) on S has been found, we can re-compute the ¢(p) in D, and 

repeat the process until a convergence criterion is satisfied. A proof of the unique- 

ness of this solution is given in Piaszczyk and Klosner [481. This method obviously 

requires the solution of an over-determined system at each iteration, which is ex- 

pensive. The rate of convergence depends on the choice of the function Z(p), and 

there are doubts as to whether the process will converge [22]. 

2.4.5 The Method of Burton and Miller. 

The method of Burton and Miller is the direct formulation counterpart of the indi- 

rect formulation of Panich 47 . 
On formally differentiating the surface Helmholtz 

equation (2.34) in the direction of the normal to S at p, we obtain 

1Vk¢=(21ý_llk)an pES (2.72) 

Burton and `Tiller [13 suggest taking a linear combination of (2.72) and (2.34) in 

the form 

- ab (-; I+All, -a, Vk)¢- Lk +a(; 1=alk)_ pS (273) 

where a is an arbitrary coupling parameter. It has been shown [13,41] that if a is 

taken as a constant, with im(a) >0 then the homogeneous form of (2.73) 

(-121 +. 1'k +Q'Vk)O = 1) (2.74) 

has only. the trivial solution 0-0 for real values of k, hence ensuring that the 

solution of (2.73) is unique. Below we shall extend this result to the case where a 
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is taken to be a function of p (see also ['11]). This result will be used later in the 

study of the conditioning of this formulation. 

THEOREM 2.9 

Provided im(a(p)) >0 for all pES, then the only solution to (2.74) is the 

trivial solution ¢(p) = 0. 

Proof. 

Let v; (p_) = RIk¢(p_) for p_ E D_. Taking the limit as p_ ,S and substitut- 

ing v; into (2.74) gives 

-vi(P) ± C(P)aä 
=0pES. 

(2.75) 

Applying Green's Second Theorem to v; and zvi we obtain 

f= Is {vi 
D 

(i '72 avi (2. i6) 
s 8n - v`-än- dS. 

Since both v; and v; satisfy Helmholtz equation, the integral over D_ is zero. Hence, 

from (2.75), 

ra 5v zý; 
a 

5v IdS 
= 2i %im(a(P)) 1 

aV i 12 dS = 0. (2.77) 
Js 

(p) 
do cin 

(P) 
ön 0n is C9n 

If we choose a(p) to be any function satisfying im(a(p)) >0 for all pES, (2.77) 

implies that än = 0, and Bence from (2.75), vi = 0. Since aan' is continuous 

throughout R3, then 

av, =0pES 
(2.78) 

an 

where v, (p) = Mk¢(p) for pED. Now since v, is a radiating wave function, 

and since (2.78) holds, then ve(p) =0 for pE Dt as the solution to the exterior 
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problem is unique. Hence it follows that ve(p) =0 for pES, see [14]. Now, for 

pES we have 

ve=Mk¢-0 (2.79) 

and 

vi = Mk¢ 42 

which implies that 

(2.80) 

O(P) = w+(P) - t'e(P)) =0p-S. 
(2.81) 

Hence the only solution to (2.74) is ¢(p) =0 provided im(a(p)) > 0. Q 

We note that im(a(p)) >0 is a sufficient condition for a unique solution, but 

it is not necessary. It seems, therefore, that taking im(a(p)) =0 over a set of 

measure zero can be acceptable. The formulation (2_73) is robust since, with an 

appropriate choice of a(p), (see Section 3.4) it will in general be well conditioned 

and will always yield a unique solution. 

However, the formulation (2.73) introduces the non-compact operator Nk. To 

allow us to work with compact operators, and hence use the Fredholm theory to 

establish the existence of a solution, we regularise i'4 as follows [15]. 

Consider the operator equation 

K¢=} (2.82) 

where k is not a compact operator. We may regularise K by multiplying it by 

another operator K1 to obtain an operator equation of the form 

1C11C¢ _ (I - K2)¢ = 1Clf (2.83) 
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where 1ý2 is compact. We say that it is an equivalent regularisation if and only if 

the equation (2.83) and(2.82) have the same solutions. In particular, there must 

be no change in the number of solutions. 

Similar to Panich [47], Ave can write Nk = (NA: - No) + : Vo and use the operator 

identity 

LkNk = (Alk - ZI)(, 1fk + ZI) 
(2.84) 

with k=0 to obtain from (2.72) 

(Lo(Nk - No) + AIö - I)0 = Lo(ZI + Alk )n. (2.85) ä 

We cannot multiply (2.72) by Lk and apply (2.84) directly since it would not be 

an equivalent regularisation for all k, ie Lk may be singular for certain values of k. 

Equation (2.85) may now be coupled with (2.34) to yield the regularised Burton 

and Miller formulation 

P) {-ZI + Alk + a(P)(Lo(Nk - No) - Alö - 
ä110(P) = 'Lk -" a(P)Lo(; I + IIk 

an 

for pES 
(2.86) 

where all the integral operators are weakly singular and compact for S -E: CZ. We 

refer to (2.86)' as the regularised Burton and Aliller formulation. The choice of 

a(p) is arbitrary, except that im(a(p)) >0 for k> 1) (see Theorem 2.10). We will 

discuss the choice of a(p) in Section 3.4. 

The main drawback of this regularisation method. from a practical point of 

view, is having to compute the products of operators, usually by multiplying their 

matrix approximations together which is expensive. Clearly it would be much more 
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efficient to compute a direct approximation to Nk. The original reason for the use 

of this regularisation technique was to establish the existence of a unique solution 

using the classical Fredholm theory for compact operators (see Panich [471). 

However, the regularised method is often used in practice since it is not clear 

how to interpret the Nk operator directly, and consequently there is relatively little 

reported experience with (2.73). Recently some methods for the approximation of 

Nk have been proposed to allow the direct use of (2.793). 

One method for interpreting Nk is to assume that the surface S consists of a 

number of flat sub-surfaces Si. If pE Si, it is possible to write 

J 

aZGk(P, 9)¢(4)ds9 
= ý(P) f D2Gk(P, )Sq f {a(q) - ¢(P)} aä k(n' 4)s8npn4 

; Onpönq 
,p9 

(2.8ý ) 

If we assume O(p) is a constant for pE Si, the second integral on the right hand 

side of (2.8 7) is zero. Terai [551, shows that the first integral can be written as 

aýGk(p, q) 0=2.1r eikp(B) ik 
J dSq = 

L=0 
(ed8 = (2.88) 

Si ÖRpDnq 4-np( ) 

where (r, B) are local polar coordinates on the surface Si with their origin at p and 

p(O) is the distance from p to the edge of Si in the direction B. This method has 

been implemented by Terai 1551, but the results are much more satisfactory when 

S consists of a number of flat regions, such as when S is a cube. 

This method has the disadvantage that the surface must consist of a number 

of flat elements, and cannot be applied to curved surfaces without some further 

analysis. Also, the assumption that q5(p) is a constant for pE Si is not generally 
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valid. To overcome this, Terai [55] suggests expanding 0 in the second integral on 

the right hand side of (2.87) in a Taylor's series about the point p. 

An alternative method for interpreting Nk, which is applicable to any surface, 

uses a pointwise variational principle introduced in [53], to show that [44] 

Gk-(p, 4)np. ngdSq. (2.89) f a2 G1, (P, q) 

s 

2yin 
dS4 = k2 is 

P9 

«'e can now write 

02Gk(P, 4)dsq 
= 

52Gk(p, q)d Sg4k'`ch f Ck nn dS ¢(4) 
änpäny 

f{c(q)_-o(p) } 
DnpDin, 

ý 
(P) 

s 
(P q)-P'-4 4 s 

(2.90) 

The second integral on the right hand side is weakly singular and may be ap- 

proximated by an appropriate quadrature rule. The first integral contains a1 

singularity, and must be interpreted in the sense of a Cauchy principal value. An 

appropriate choice of basis functions and quadrature rule for evaluating (2.90) is 

considered in Section 3.3. 

In this section we have discussed some different integral equation formulations 

of the exterior Helmholtz equation which are valid for all wavenumbers. Of the dif- 

ferent formulations considered here, the one clue to Panich -47 provides an efficient 

method of obtaining a unique solution using an indirect formulation. Likewise. 

the Burton and Miller formulation [131 is an efficient method for obtaining unique 

solution when employing a direct formulation. Here we shall only consider the 

Burton and Miller formulation since it is simpler to couple a direct integral equa- 

tion formulation to a finite element analysis of an elastic structure for solving the 
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fluid-structure interaction problem considered in Chapter 4. 

A numerical scheme for solving the Neumann problem using the direct formu- 

lation is discussed in the next chapter where we shall give a comparison between 

the regularised and direct Burton and Miller formulations. A similar comparison 

has been carried out in Amini and Harris [7]. 
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3 NUMERICAL SOLUTION OF THE NEU- 

MANN PROBLEM FOR THE EXTERIOR 

HELMHOLTZ EQUATION 

3.1 Numerical Methods for Solving Integral Equations 

This section will consider some of the most commonly used methods for solving 

second kind integral equations of the form 

-. 1c5(P) + 
jk(p, 

q)ý(q)dSq = f(p) PcS (3.1) 

or in equivalent operator form 

(-al K)¢ = f. (3.2) 

The collocation scheme that Ave have chosen to implement will then be discussed 

in some detail. 

3.1.1 Nyström Method. 

For the Nyström or quadrature method the integral operator in (3.1) is replaced 

by a numerical quadrature rule. Let 

n ff (4)dS ýwif(4i) (3.3) 
i=I 

denote a numerical quadrature rule. where uwj denote the weights and qj the nodes. 

(3.1) is approximated by 

n 

- Acn(P) + Ew. ik(P, 4i)cn(gj) = f(P) (3.4) 
j=l 
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where 0� is an approximation to 0. Choosing p= qj, q2, ... , q� leads to the linear 

system 
n 

-Ao: + Ewik(4t, 4i)¢i =f (q=) i=1,2, ... ,n 
(3.5) 

j=l 

where Ot = 0�(qi) -- O(4i). 

Once the linear system (3.5) has been solved for 01) 02) 
... 

A (3.4) may be 

written as (the Nyström extension) 

n 
¢n(P) _ [Ewjk(P, 9i)4i - f(P)] (3.6) 

j=l 

to find an approximation to gy(p) for all pES. Clearly the function 0, ß(p) defined 

by (3.6) and the solution {¢1, 
... , 

din} of (3.5) is unique and both solutions agree 

at the nodes q1,. .., q,,. 

However, this method is not best suited for use on the exterior Helmholtz prob- 

lem since the kernel functions of the integral operators involved are not continuous. 

For example, if this method is used to discretise (2.34) then the elements of the 

matrix approximating (-; I+ Mk) are given by 

-1b+ 
aGk(4i, 4j)u (3.7) 

2 'ý önq 

where b; j is the Krondecker delta function. If i=j then än4 cannot be evaluated 

since it is unbounded and the simple application of this method breaks down. It 

is possible to overcome this problem by using a product integration technique (9], 

although this has not been done here. 
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3.1.2 Degenerate Kernel Methods. 

If the kernel function can be expressed in the form 

n 
k(p, q) = Ya=(P)b=(4) (3.8) 

i=l 

then k(p, q) is said to be a degenerate or separable kernel. Substituting (3.8) into 

(3.1) gives 

- )¢(P) ± [c1aI(P) -r c2a, (P) - ... + cna�(P)i = f(P) (3.9) 

where 

c= _ ¢(q)b&(q)dSq. (3.10) 

Taking the inner-product of (3.9) with each of the functions bi gives 

-Ac; + Eci j 
aj(q)bi(q)dS4 = 

ff(q)bi(q)dSq (3.11) 
s 

This is a system of linear equations for the constants c1, c2, ... , cn and once they 

have been found (3.9) can be used to find ¢(p) exactly. 

In general, the kernel function k(p, q) of a given integral operator 1C :X, X 

is not separable. If we let {ý"1,02, 
... 

denote an orthonormal set in X, 

k(p, q) may be expressed as a series of the form 

00 00 
k(p, 9) = _YQ=i '=(P)ý'i(9) (3.12) 

i=lj=l 

where 

a'' = 
ffk(p, 

q)O(p) t j(4)dSgdSp. (3.13) 
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To obtain a degenerate kernel approximation the series in (3.12) is truncated after 

n terms in both i and J. 

This method can be used for the exterior Helmholtz problem where S is a sphere 

and the orthogonal functions ý,; are the spherical harmonics given by 

(3.14) S' (p) = l'-(n + 1)(n-"`ýý 2Pn n(cosBp )e"Op m= -n.... 0 ... )n> 2a 2 (n-- m .: 

where the point p has spherical polar coordinates (rp. 6p, ¢P) and the P, -, 's are the 

associated Legendre functions. It can be shown that (see Morse and Feshback [45]) 

0o n 
Gk(p, q) = iky: lln(kr, )Sn (P)jn(krq)Sn (q) rP > r9 

n=0m=-n 

where jn is the spherical Bessel function and h� is the spherical Hankel function of 

the first kind. The expansion for the derivatives of Gk can be found by differenti- 

ating (3.15) term by term. The degenerate kernel method using (3.15) for solving 

the exterior Helmholtz problem is known as the T-matrix method, see Waterman 

1601. 

3.1.3 Projection Methods. 

The methods most commonly used to solve the exterior acoustic problem are the 

projection methods. Let X be a linear space and let 
. 
l� be a sub-space of .V 

spanned by the basis functions {'1, '2,. .., 
vn}. Let "P� be a projection operator 

from X onto _1,, that is P�¢ =0 for all 0 EE X,. The projection methods for 

finding an approximate solution to (3.2) are to solve 
_9 

-^1ý'! nA)cn=Tnf Y'n -: 
ýn. (3.16) 
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The residual, r, is defined by 

rn(P) = (-Al + k)o. (P) - f(p). (3-11") 

n 

Since ¢n EX there are unique constants ai such that ¢n(p) _I cj, tit(p). The 

two most commonly used examples of projection methods are the Galerkin and 

collocation methods. 

The Galerkin Method The Galerkin method requires that 

n(4)oj(4)dSq =0j=1,2,..., n. 
(3.18) (rn, Vj) = 

fs 
r 

That is, the residual is orthogonal to every element of X and so has no component 

in X,,. It is hoped that this condition will force 11r, 11 to be small, and hence expect 

that the approximate solution 0, to be close to the true solution d. Applying (3.18) 

to (3.17) gives the linear system 

n 

Ea=JsAvt(P) j(P) + (JCOt)(P)ýb. i(P))dSp = 
jf(p)(p)dSp 

j =1, ... ,n 
(3.19) 

for {al, 
... i an}- It is easy to show that this is a projection method with PT _ 

see Atkinson [9; or Baker [12]. The Galerkin method is expensive to 

use in practise as we need to evaluate a double surface integral for each value of j. 

The Collocation Method. The collocation method requires us to satisfy the 

conditions 

rn(Pj) =0j=1, ... ,n 
(3.20) 
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for n distinct collocation points {pl, p2i .... p,, }. Now it is hoped that forcing the 

residual to satisfy (3.20) will make r�(p) small for all pES. Substituting (3.17) 

into (3.20) yields 

n 
Eat{-AVi(Pj) +f k(pj, q)oi(4)dSe} = f(P. i) 7=1,..., n (3.21) 
t-i S 

which is a linear system for the coefficients {al, 
... , a�}. 

To show that this is a projection method we define P,, :X --ý X as the element 

EX which interpolates 0EX at the points {pi, 
..., pn}. The function ¢n is 

n 

of the form On _ J: ai i(p) where the ai's are chosen so that 
i=l 

n 
X: a=Wj(Pj) = «(Pi) 7=1,..., n. (3.22 

i=l 

This system is non-singular because the '; 's are a basis for 1� and so they are 

linearly independent. It is clear, from (3.22), that PO,, = 6,, for all ¢n EX and 

that "P�y5 = P,, implies that ¢(pi) = ib(pj), for j=1,... , n. Applying P� to 

(3.2) and approximating 0 by ¢� gives (3.21) and hence the collocation method 

is a projection method. The collocation method is the simplest and consequently 

most widely used projection method for the exterior acoustic problem, and is the 

approach we shall use here. 

For all projection methods we have the following result concerning the error 

and the rate of convergence of the approximate solution to the exact solution. 

THEOREM 3.1 

Let X be a Banach space, let 1C be a bounded linear operator from X onto 

X and let P� be a bounded projection operator from X onto the subspace X. 
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Assume that (-Al +')-' exists on X and that 

A: - 'P�K1, ý 
ll(-al + li)-`1 . 

(3.23) 

Then, (-)I - P, A: )-1 exists on .l with 

i(-ý1 + P�ýC)-ý ý; 
II(-AI + k)-1)Il 

(3.24) 
1- Ii(-AI + JC)-1: I IIK - 'P jCII 

If (-AI + JC)¢ =f and (-AI + Pnk)ý� = Pnf then 

Id - c, 't <I AI : '(-Al (3.25) 

Proof: See Atkinson '9'. 

The last part of the above theorem shows that the error in the approximate 

solution Q� is governed by the error in approximating 0 by Ps. 

3.1.4 An Application of the Collocation Method to the Exterior Neu- 

inanIi Problem for the Helmholtz Equation. 

The collocation scheme that we have chosen to use is the simplest one to implement, 

based on a piece«"ise constant approximation to 0. Divide S into n sub-surfaces 

Si. i=1; 
... ,n and define 

t If p c- Si 
=(P) =i=1,2...., n. (3.26) 

0 otherwise 

The n collocation points {pl 
... 7 p�} are usually chosen so that the point p= is close 

to the centroid of Si. We discuss the appropriate sub-division of S in Section 3.2. 

The solution 0 is approximated by 

n 
¢nýP) _ º4'iýP) (3.27) 
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where Substituting (3.27) into (3.21) and collocating at the points pi 

yields the linear system 

n 

-. dot + I-Oi f 
k(P=, 4)dSv =f (pi) i=1, 

... , n. (3.28) 

j=1 Si 

To find the rate of convergence of ¢� to 0 let 

h= max[max jp-q !l (3.29) 
= p, gES1 

denote the maximum of the sub-region diameters. By expanding ¢(p) for pE Si in 

a Taylor series about the point pi it can be shown that 

10 
- 

PnQII < ch (3.30) 

where c is a constant, (see Baker [12j). Using (3.311) and Theorem 3.1 we can see 

that the rate of convergence of the scheme, as h gets smaller, is governed by 

10 -0n; = 0(h). (3.31) 

Using this collocation scheme the matrix approximations to the layer potential 

operators Lk, Mk and Mk are given by 

(Lk)i; =f, Gk(pi, 9)dSq (3.32) 

ýllk)ý; _ 
IS. acafi, 9)dSq (3.33) ( 

9 

and 

, 11k );; 7- 
f UGk(p1,9)dSq (3.34) 

; 8np 

respectively. We note that the matrix AT1 is not the transpose of the matrix Lk. 

If i=j then the integrands of all three integrals are weakly singular and we must 
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take care in evaluating them. Appropriate quadrature rules are discussed in Section 

3.3. 

It follows from (3.32) and (3.33) that the matrix approximation to (2.34) is 

given by 

(- II -L 
M )b = Lk_v (3.35) 

where njT and v= [LCC1P 
fVI7 ... , tWPfLn]T = Lgn(P1)) ... r 

LO(Pn)JT 

Since we require a numerical approximation which is valid for all values of the 

wavenumber k, we have chosen to discretise the Burton and Miller formulation 

(2.8Q) introduced in Section 2.4.5. 

To discretise the regularised Burton and Miller formulation, we approximate 

the operator Nk - No by 

(ATko)ij = 
fs 

önp8nq (Gk-(Pi, 4) - Go(Pi, q))dSq. (3.36) 

The operators Lo and Mo can be approximated by using (3.32) and (3.33) respec- 

tively, with k=0. Substituting the approximations into (2.86) yields the matrix 

equation 

(-;! - t1k - : 1(LoNkO Vü Lp . 1Lo(ý! 

The matrix A can either be of the form A= aI corresponding to a constant coupling 

parameter a or a diagonal matrix «-hose elements are the values of the function 

a(p), introduced in Section 2. -1.5. at the collocation points. 

Applying the projection operator Pn to the direct Burton and Miller formulation 
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(2.90) gives 

%ý a ck(pi, q) PnJVkcn(Pi) = ý(4'ýi - Oi), 
ls an an 

dSa + q5j fsk2np. 
ngck(Pi, q)dSq. (3.38) 

j_l iP9 

The second term on the right-hand side of (3.38) is weakly singular, and can be 

approximated by an appropriate quadrature rule. If i=j in the first term on 

the right-hand side the corresponding term in the sum is zero, whilst if iýj the 

corresponding integrals are non-singular. Explicitly, the elements of the matrix : Tk 

are-given by 

( k)iý _ 
C92 Ck(Pi, 9)dSq ij (3.39) N 

; 8npi9nq s 

and 

(Nk)ti = 
jk2np. 

nqck(pi, q)dsq -n a2Gk (Pt, 4) 
ý_ýTis; 

Pi 

9 
dSq. (3.40) 

Onpa 

This yields the matrix equation 

(-zl+Jllk+A Nk)¢=iLk+A(Z1--: fIk)v (3.41) 

as an approximation to (2.73). For any of the above numerical formulations, once 

we have found 0 it is possible to obtain an approximation to ¢(p) for pED. using 

On(P) _ E¢; l 
OGk(Pý 9)dsa +> vj 

f Gk(R 4)dS9 pE D+, (3.42) 

, 
j_1 Jsj anq 

1=1 sj 

a discretisation of (2.33) for pED. 

To compute the matrix approximations to the operators Lk, : llk, , Ilk and 1Vk, 

we need to evaluate the normal derivatives of the Green's function. It is easy to 

show that the first derivatives are given by 

OGk(R q) dGk Or 
_ 

dGk (q - P)"ng (3.43) 
8nq dr ön9 dr r 
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and 
ÖGk(p, q) 

_ 

dGk or dCk (p 
- q). ýqp 

Onp dr 8n, dr r 
ý3 ýý) 

respectively, where 

dGk 
- . kr ikr -1 

,rp-q 
(3-45) 

dr 47-, r2 

The second derivative is given by 

a2Gk(p, q) 
_ 

d2Gk Or Or dGk a2r (3.46) afpOf9 dr2 alle aliq 
+ 

dr anpanq 

where 
d2C eikr 

dr2k 47rr3 ý(ikr)2 - 2ikr 2;, r =I p-qI 
(3.47) 

It can be shown that the second derivative of r can be expressed in terms of the 

first derivatives as [16] 

a2r I ar or 1np. nq (3.48) OnpD 
.T 

alle anq JJJ 

The computation of the normal vectors np and nq will be discussed in the next 

section. 

Once our integral equation has been discretised a direct method, such as Gaus- 

sian elimination, will be employed to solve the resulting linear system. However, 

recent research has shown that it is possible to modify well known iterative tech- 

niques, like the conjugate gradient method or the multi-grid method, to solve the 

final linear system of equations more efficiently, see Amini and Chen [4,51, and 

Amini et al [61. We have not employed such methods since the discretisation here 

forms only part of our solution to the coupled fluid-structure interaction problem 
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to be discussed in Chapter 4, and it is not clear how iterative methods can be 

applied to this more general problem. 

3.2 Surface Representation 

In this section we will consider how to represent the surface of an axisymmetric 

structure and also that of a fully three-dimensional structure. In particular we 

shall be using the boundary element method for representing the surface, derived 

using similar principles to those used in the finite element method. 

In general, a surface SE Ra can be represented in terms of two independent 

parameters u and v in the form 

x= r'(u, ") y= y(u, v) z= =(u: z) 
(3.49) 

where (x, y, z) are the usual cartesian coordinates. u and v may be global param- 

eters for the whole surface, or local parameters for each surface element Si. 

Using the parameterisation (3.49), an integral of the form 

I= fF(q)dSq (3.50) 

can be written as 

1= fff(u, 
v)g(u, v)dudv (3.51) 

where g(u, v) is the Jacobian of the transformation from the (x, y, z) coordinates 

to the region R in the (u, v) coordinates. Explicitly 

g(u, v) = Di + DZ + D3 (3.52) 
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where 
ay az az 

D1 
au 

D2 = 
au 

= 
By az az 

äv äL, at 

In addition, the unit normal to the surface 

a= a= ay i 
au äu- äu D3 = (3.53) 
a= a= ay 
a,: äv äv 

is given by [11] 

n= 
[Di, D2, D3JT 

(3.54) 
9 

although we need to take care to ensure that n is the outward normal. 

For an axisymmetric surface it is convenient to work in cylindrical polar coordi- 

nates (r, 0, z), where the surface is generated by rotating a given curve in the (r, z) 

plane about the z-axis [17]. If this curve can be easily parameterised as (r(s), z(s)), 

0<s<L, then 

x(s, 0) = r(s)cos(B) y(s, 0) = r(s)sin(6) z(s, 0) = z(s) (3.55) 

with 

D1 = _d3 

D2 = -dd°)r(s)sin(O) 
(3.56) 

D 3- 
dr(s) (s) - ds 

and 
22 

9(s, O) = r(s) 
(ds) 

± 
(ds) 

(3.57) 

Using this parameterisation the surface S transforms into the rectangle 0<s<L, 

0<0< 2-,. As an example of this representation, consider a sphere of radius a 

where r(s) =a sins, z(s) =a cos s, and L=;, 
. 

W'i'e now divide the rectangle in the 

(s, 0) plane into Nx Al smaller rectangles and use these smaller rectangles as our 
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surface elements S� taking the centroids as our collocation points pj. This is the 

surface representation used in Amini and Harris [7]. 

Alternatively, if there is no simple parameterisation of r(s) and a(s), we may 

take N+1 distinct data points, including the end points, along the generating 

curve and interpolate r(s) and z(s) with some appropriate functions. : mini and 

Wilton [3] used a cubic spline method to interpolate these functions. Here the 

simpler piecewise linear scheme of connecting the adjoining nodes by a straight 

line to form N linear, axisymmetric boundary elements has been used. 

Let the lines which generate the surface elements Sj, j=1, 
... 1V have end 

points (r� zj) and (rj+l, zj+l). Then we approximate r(s) and z(s) by 

T(s) = srj (1 
- s)rj+1 

0<s<1 (3.58) 

Z(S) = SZ; + (1 - S)Zj_1 

respectively, with 

D1 = (zj - zj+l)r(s) cos 0 

DZ = (zj - zjY&(s) sin 0 (3.59) 

D3 = (rj-,. 1 - ri)r(s) 

and 

9= L(1 - s)rj+i + Sri]/(rj - ri, -1)2 = (zj - z, +1)2. (3.60) 

To ensure that the normal vector given by (3.54) and (3.59) is the outward normal, 

the points (r� z3) should be ordered so that z1 > z2 > ... > zN+1. This approxi- 

mation maps each element into the rectangle 0<s<1,0<0< 2r in the (s, 0) 

plane. This rectangle is sub-divided using At divisions in the 0 direction to give us 
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Nx Al surface elements S� the centroids of which form our collocation points pi. 

This choice also ensures that the normal vector is well defined at each collocation 

point. 

If we have an axisymmetric boundary condition, it is only necessary to solve 

the integral equation for one value of 0, which is the same as collocating for only 

one of the Al sub-divisions when using the above elements, since the solution is 

independent of 0. 

For the three-dimensional case we employ a parametric mapping similar to those 

used in finite element analysis. The surface is divided into n triangular elements 

SS in the (x, y, z) space, each of which can be mapped into a reference triangle L\ 

in the (u, v) plane. This procedure will be illustrated for the three-noded linear 

and six-noded quadratic elements used in this thesis. The order in which the nodes 

should be labelled, as seen from the exterior domain, is shown in Figures 3.1 and 

3.2 respectively. This ensures that the normal to SS is directed into D+. 

The interpolation, or basis, functions are defined to be unity at one node and 

zero at all the others. The basis functions for the linear element are 

N1=1-u-v N2=u N3=v. (3.61) 

The basis functions for the quadratic element are 

N1=(1-u-v)(1-2u-2v) N2=4u(1-u-v) N3=u(2u-1) 

N4 = 4uv N5 = v(2v - 1) N6 = 4v(1 -u- v). 
(3.62) 

If the cartesian coordinates of the iah node are (xi, y;, z; ), then the (x, y, z) coordi- 
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nates of a point (u, v), in a linear element, are given by 

333 

x= Ex=N1(u, v) y= >yiNi(u, v) z= >z{N=(u, v) (3.63) 
i=l i=l i=l 

With 
Ox aX 
äu=-C2-X, ; -=X3-X1 

- Y2 Y1 av = Y3 YI 
(3-64) 

8u 
az äz 

ýu=z2-21 av-z3-Z1 
from which Di, D2, D3 and g can be evaluated. 

Similarly, for a quadratic element 

666 

= x(u, V) y= 
>yilvi(u, 

V) z=E;. ilvi(il, 'U) 
(3.65) 

i=1 i=1 i=1 

and 

Cix 
vu = (4u + 4v - 3)x1 + (4 - 8u - 4v)x2 -1 (4u - 1)r3 + 4VX4 - 4vx6 

ýu 
(3.66) 

= 
(4u 

'ý' 
4v 

- 
3)xl 

- 
4ux9 + 4vxq = (4v 

- 1)x5 (4 
- 

8u 
- ý2ý) E6 

with similar expressions for the derivatives of y and z, which are used to compute 

DI, D2. D3 and g. 

We see that both types of element map into the same reference triangle A. All 

the integrations and interpolations required for the calculation of the collocation 

solution can be carried out over L. The location of the collocation point pj E Si is 

the point corresponding to (3,3) %-, which is the centroid of Z. Nk'ith the linear 

elements this point will be the centroid of SS, and with the quadratic elements it 

will be close to the centroid of Si. 
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3.3 Numerical Quadrature 

When forming the collocation equations, it is necessary to evaluate integrals of the 

form 

Ifs; =f k(pj, 4)dSq =ff k(P1,4(u, v))g(u, v)dudv (3.67) 
Si o 

where A is the reference element and g(u, v) is the Jacobian. Clearly, the integrals 

defining the layer potentials and their derivatives are non-singular when i j. 

When i=j in (3.28) the kernel functions of Lk, : Ilk and Mk' have an inverse 

distance singularity. For the regularised Burton and Miller formulation (2.86) the 

additional operators will also have this inverse distance singularity. Using the direct 

Burton and Miller formulation (2.73) together with (2.90) and our choice of basis 

functions, the required integrals are all weakly singular. However, if we employed a 

higher order approximation to o, such as linear or quadratic, a special quadrature 

rule to evaluate the first integral on the right hand side of (2.90) would be required. 

To find the most efficient quadrature rule for evaluating these integrals we 

applied a number of rules to the representative test problem of evaluating 

j cos(5 Ip-q 1) 
dSq (3.68) 

, ýp-9I 

where Sj was taken to be a typical element, and pa typical collocation point. The 

results of evaluating the test integral are discussed below. 
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3.3.1 Axisymmetric Elements. 

We recall from Section 3.2 that each linear axisymmetric boundary element is 

transformed into a rectangle in the (s, O) plane, which is then sub-divided into 

a number of sub-rectangles in the 0 direction. If the integral over a given sub- 

rectangle is non-singular, the integral may be simply and efficiently evaluated using 

an nxn product Gauss-Legendre rule (which we will refer to as a Gauss rule). 

For the singular integrals, amini and Wilton [3] used a scheme where the rectan- 

gle in the (s, 9) plane containing the collocation point was divided into four smaller 

sub-rectangles, each having the collocation point at a vertex. The error function 

transformation [3,541 

2t f 
e-y2dy (3.69) x= erf(t) _ 7rr 

yields, in the one-dimensional case, 

2f1 
f(x)dx =-f f(erf(t))E_t'dt. (3.70) 

1V ýý -cc 

The integrand on the right hand side of (3.70) is dominated by the e-t2 term as 

t -, ±oo. The integral on the right hand side is now truncated at -P and -Q and 

approximated by an n point trapezoidal rule ; 1,541. This method of transforming 

a singular integral is known as the ERF rule. The choice of P, Q and n depends 

on the strength of the singularity in f, see : mini [1]. A product rule based on this 

scheme is applied in each of the four sub-rectangles. 

Alternatively, we can divide the rectangle into four triangles by linking the 

diagonals so that the collocation point will be at a vertex of each triangle in the 
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(s, 9) plane. To perform the integrations over the triangle with vertices (sl, B1), 

(s2,02) and (s3, B3), where the singularity is at (s1,01), we apply the transformation 

s= (1 - ii)sl + (1 - v)us2 + uvs3 
0<u, v <1 (3.71) 

B- (1 
- u)01 + (1 

- V)u02 + Uve3 

derived from a transformation introduced in Duffv [24] which transforms the tri- 

angle into a square in the (u, v) plane. The Jacobian of this transformation is 

. Sl)(e3 - 
01) 

- (S3 - s1)(82 -9)Iu. 
3.72) 

If the original integrand has an inverse distance singularity in the (s, 0) plane, the 

transformed integral in the (u, v) plane is non-singular and a product Gauss rule 

can be used to evaluate it. This transformation is similar to the one which we will 

apply to the three-dimensional elements, and is discussed in more detail in Section 

3.3.2. 

As the level of the discretisation error in our boundary element method is 

generally larger than 10-'`, we found that calculating the integrals to an accuracy 

of 10-3 sufficient to achieve the desired overall accuracy level. Our investigations 

have shown that it is Hinre efficient to apply the transformation (. 3.7 1) than the 

ERF rule. For example, applying (3.7,1) and a5y5 product Gauss rule to the test 

integral (3.68) required 100 integrand evaluations to obtain the required level of 

accuracy, whereas the ERE rule with P=Q=3 and n=9 required 32.1 integrand 

evaluations to achieve the same level of accuracy. For this reason we shall only 

consider the transformation (3.71) from now on. 
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Let us now discuss the results of our numerical experiments. All the calculations 

were carried out in double precision on a Prime 850 processor which has an accuracy 

of around 14 significant figures. Figure 3.3 shows the log of the absolute error 

in evaluating the test integral (3.68) over elements whose centroids are different 

distances from the collocation point using a number of nxn product Gauss rules. 

Where the distance between the collocation point and the centroid of the element 

that we are integrating over is zero, we have applied the transformation (3.71) 

before applying the quadrature rule to each sub-triangle. It can be seen from 

Figure 3.3 that it is possible to employ a4x4 product Gauss rule to evaluate the 

singular integrals. However, the use of a5x5 product Gauss rule will make certain 

that the desired level of accuracy is obtained. 

For the non-singular integrals it is clear that a3x3 product Gauss rule should be 

used to evaluate the near singular integrals (those over an element whose centroid 

is less than 0.4 units frone the collocation point), and a2x2 product Gauss rule 

to evaluate the remaining integrals. However, for simplicity, we have chosen to 

use a3x3 product Gauss rule to evaluate all the non-singular integrals. We 

note our results showed that increasing the order of the integration rules employed 

without refining the boundary element mesh produced little or no improvement in 

the overall accuracy of the numerical results. Further, we note that for the singular 

and near singular integrals increasing the order of the Gauss rules resulted in slow 

improvement of the accuracy, but whenever the integrand is smooth we obtained 

fast convergence as expected. 
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3.3.2 Three-Dimensional Elements. 

A non-singular integral over the three-dimensional triangular elements considered 

in Section 3.2 can be efficiently evaluated using a product Gauss rule on a triangle, 

or the Gauss type rule [23] 

1 1-u 
du 6 [f(0ý Z) - f(Z11 

- 3) f(2l 0)ý. (3. r3) 
1. 

=oft? =0 
f(u, v)dv 

which has errors of order h2 where h is the element diameter given by (3.29). 

For both the linear and quadratic elements introduced in Section 3.2 the sin- 

gularity will occur at (3,3) in the (u, v) plane. The reference triangle is divided 

into three sub-triangles by linking the point (3,3) to each of the vertices and the 

transformation 

u= (1 - s)ul -; - (1 - t)su2 + stu3 
0<s, t <1 (3.74) 

v= (1 - S)U1 - (1 - t)SU2 Stv3 

(similar to (3.71)) is applied to each sub-triangle, where (ul, vj), (u2, v2) and (u3, v'3) 

are the vertices of the sub-triangle and (ul, vi) = (ä, 3 ). From (3.63) or (3.65), 

m 

Xy-xp = 
>xi1Vj[(1-S)ulý-(1-t)SU2±Stu3i(1-S)U1 (1-t)SV2+Stv3, 

-xp 
(3.75) 

i=1 

with similar expressions for yq - yp and zq - --P and where m is the number of 

nodes in the element. It follows from (3.75) that provided the nodes of the original 

surface element are distinct 

Tý _ 
(lq 

-X P)2 
(yq 

yp)2 + (zq 
- _P)Z = ýý (3.76) 

if and only if s=0. It is easy to show that ý'Vi(u, v) can written in the form 

N (u v) =N (u v) s1V1(s i) i=1 rn 
(3.77) 
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and hence 
m 

xq - xp = 
>x; [N; (ul, v, ) + s&i(s, t)) - xp 

i-1 
m 

(3.78) 
= s>N=(s, t)xi. 

Thus 

m2m2m 
rstS, t)) yt1V=(s, t) + Ezi 

i(st))21 (3.79) 

where the term in [] is non-zero for 0<s, t, < 1. The Jacobian of the mapping 

from the (u, v) sub-triangle to the (s, t) plane is 

9 -I lug - ul)(v3 - v1) - 
(u3 

- u1)(v2 - V1) I s. (3.80) 

It can be seen from (3.79) and (3.80) that if the original integral had a -', singularity, 

the transformed integral is non-singular. 

We now present the results of applying different nXn Gauss rules and the three 

point rule (3.73) to evaluate the test integral over a number of elements whose cen- 

troids are at different distances from the collocation point. The log of the absolute 

error in the computed results using linear element is given in Figure 3.4, whilst the 

corresponding results using the quadratic element are given in Figure 3.5. When 

the collocation point and the centroid of the element that we are integrating over 

coincide we have applied the transformation (3.74) before applying the quadrature 

rule over each sub-triangle. 

It is clear that the results for each type of element are similar. For the singular 

integrals the results seem to show that a3x3 product Gauss rule will yield an 

accuracy of 10-3. However, it seems that there is little to choose between the 
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different rules, and experience has shown that it is preferable to use a5x5 product 

Gauss rule. For the non-singular integrals a3x3 product Gauss rule is required to 

achieve the desired accuracy over elements close to the collocation point, whilst a 

2x2 product Gauss rule, or the 3-point rule (3.73) will yield sufficiently accurate 

results for elements further away. However, for simplicity, we have chosen to employ 

a3x3 product Gauss rule to evaluate all the non-singular integrals. Again, we 

observed using higher order quadrature rules than those discussed above produced 

little or no improvement in the accuracy of the overall solution (ie the errors are due 

to the discretisation error in our collocation method and not due to the quadrature 

error). 
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3.4 The Choice of the Coupling Parameter 

The accuracy of the results obtained from the boundary element discretisation 

will depend on the conditioning of the integral equation. If the integral operator 

is ill-conditioned, it will be difficult to accurately approximate the solution of the 

integral equation. We recall that the Burton and : hiller formulation (2.73) contains 

an arbitrary coupling parameter a and the conditioning of this formulation will 

depend upon the choice of a. In this section the effect of different choices of a on 

the conditioning of the Burton and Miller formulation for the exterior Neumann 

problem will be investigated. 

The following theorem states a basic stability result in studying the error in the 

solution due to perturbations in the original operator equation. 

THEOREM 3. 

Let 1C :X-Y and k: X-Y be bounded linear operators with 

K. Q= f ); =J (381) 

and let 1C-1 :Y, X be a bounded linear operator. If 11X - 1ý ;ýj rL '^_ .3<1 

then 

0< cOf(r(K) jIIk - A: ý 
- 

il. f -- fly 1 
. 3.8' ) 1Icli -I- ei1Ali l TIMT IIIII I 

where cond(1C) _ ý! 1Cý'ý! ý-lH and the norms are understood in appropriate settings. 

The quantity cond(1C) is known as the condition number of the linear operator 

K, and the proof of the theorem is straight forward, see Atkinson [101. 
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Working in Hilbert space settings, it can be shown that 

ýIKjj2 = p(K"K. ) andllk-i I! ̀ = Q(K. K) (3.83) 

where p and o are the largest and smallest eigenvalue , in absolute value, of ii 

respectively. In other words, it is possible to compute the condition number of K 

without any explicit knowledge of K-'. This expression can be further simplified 

if the eigenfunctions of /C simultaneously form an orthogonal basis in both the 

Hilbert spaces X and Y. 

THEOREM 3.3 

Let A be a bounded linear operator from the Hilbert space X with inner product 

(", ")1 to the Hilbert space V with inner product (", ")y, and let (, 1,,, he the 

eigensvstecn of K. If {z,: '�} form a complete orthogonal set in A and in }', then 

cond(K) - 
IL mar (3.84) 

ILmin 

where 

3.85) 
µrrax = Sup S (Ai 1 yi 

and Amin = Inf SI )i I Yi 

t 

and 

X2 i= 
(t'ý" Z. J). ý and y (; i. 86) 

Proof. See Amini 121. E 

We note that if 
_V _V then (3.8.1) is simply the ratio of the largest eigenvalue 

of IC to the smallest, in absolute value. Even if IC does not satisfy the conditions 

of Theorem 3.3, (3.84) is often used as an approximation to the condition number. 
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In general it is not possible to obtain the eigensystems of the layer potential 

operators for an arbitrary surface S. It is possible, however, to obtain the eigen- 

systems of the layer potential operators in the special case where S is a sphere 

of radius a. Using the results from this simple case, it may be possible to obtain 

some insight into the conditioning of the Helmholtz potential operators on other 

surfaces. 

Following the analysis of Kress [39,40], we write the solution to Helmholtz 

equation in the domain exterior to a sphere of radius a as 

00 n 
«r, 0,0l =Z FJnhn`kr)an (e, 0) (3.8? ) 

n=0 m=-n 

where the hn's are the spherical Hankel functions of the first kind and the Sn 's are 

the spherical harmonics given by (3.14). For the interior problem the solution can 

be written as 
00 n 

q5i(r, B, 0) =Z Cn. ln(kr)sn (B, 0) (3.88) 

n-0 m=-n 

where the j�'s are the spherical Bessel functions. Substituting (3.87) and (3.88) 

into the appropriate integral equation (2.33) and (2.36) respectively, and noting 

that I= a-, then for each value of n we obtain an - 07r 

- Zh�(ka)Sn + h�(ka)illkSn = lýh;, (ka)LkSn (3.89) 

and 

- 
Zjn(kd)Sn T )n(ltid)1lIý Sn = ýi jn(kd)Lksn (3.90) 

where a prime denotes the derivative with respect to the argument. Using the 
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\Vronskian relationship 

jn(ka)hn(ka) 
-h 

(ka)jn(ka) 
- (ÄQ)z (3.91) 

(3.89) and (3.90) can be solved for LkSn and MkSn to yield 

LkSR = ik2a2h�(ka)jn(ka)Sn (3.92) 

and 

MkSn = (Z + ik2a2h;, (ka)j�(ka)) Sn (3.93) 

It follows from (3.93) that the eigenvalues a� of the operator -! I I+ : 11k are given 

by 

A, (--2' I+ 1'[k) = ik2a2h;, (ka)j�(ka) (3.94) 

with the corresponding 2n +1 eigenvectors Sn 
,m= -n,.. .., 

0.... n. Clearly if 

ha is a zero of in then -ZI + Alk has a zero eigenvalue and its null-space is of 

dimension 2n -1 (ie the space spanned by S, -,, m= -n, ... , 
0'... n ). 

Using the same approach as above, but using the differentiated form of (2.34) 

and (2.36) we obtain 

IN S,, = 
(j' + ik2a'hn(ka)jn(ka)) Sm (3.95) 

and 

1VkSn = 
ik3a2h (ka), n(ka)Sn 

. 
(3.96) 

The equations (3.92), (3.93), (3.95) and (3.96) could be derived using the series 

expansion (3.15) for Gk(p, q), (See Amini [21). 
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\Vc know from Theorem 2.9 that the operator -II + Alk + aNk has only a 

trivial null-space for real k, provided the function a satisfies im(a(p, k)) >0 for 

all pES. For ease of analysis, let a(p, k) = iv(p, k) where v(p, k) is some positive 

real-valued function. If v is further restricted to be a function of k only, it follows 

from (3.94) and (3.96) that 

(-; r = Alk -; - Zv(k). vk)S = ik2a'hn(ka): _; n(ka) + ikv(k)jn(ka)IS . (3.97) 

Since the Sn's form a complete ortlionormal set for both H'' and H''-', the condi- 

tions of Theorem 3.3 hold, and we can use (3.84) to compute the condition number 

of our integral equation. We note that because of the presence of the operator Nk, 

we have to treat the operator -; I Alk - iv(k)N\'k as an operator from H''(s) to 

Hi-1(s) 2_. Therefore it is necessary to evaluate sý in (3.85), the relative values 

of the norm of these basis functions in H'' and H''-1. It can be shown (see Kress 

1 401) that 

IlSRt 
IJ, n(n 1)) r 

. ýI-(n - '-) 

t 
(n m)! 

] 
(3.98) 

This yields 

? /"` 
= (1 

Tyr. 
+ n(n + 1))-' (3.99) 

which is a pleasure of the relative nornis of the e1; 7eitfunct1011s 
S; ` on [/r-`(S) 

and lIT(S). Even though it is not possible to obtain a simple function v(k) which 

mininiises the condition number of the operator -; I -- -Ilk - iv(k)Nk, it is possible 

to prove the following result. 
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THEOREM 3.4 

For the direct Burton and Miller formulation (2.73), a near optimal choice of 

v(k) is 

I 
ifk> 2 

v(k) k (3.100) 

2 ifk< 1 

For the regularised Burton and Miller formulation (2.86), the near optimal choice 

of v(k) is 

v(k) = 1. 

Proof. See : mini [2j. ý 

(3.101) 

It has been shown in Amini and Harris [7" that the choice of v(k) as given in 

(3.100) can considerably improve the accuracy of the overall results, as compared 

to the commonly used choice v(k) = 1. 

One of our aims is to avoid computing NkO or (. V - No)¢ for all pES by 

letting v(p, k) be so small that it can regarded a zero over some large section of S. 

This is not possible with the regularised Burton and Miller formulation because we 

have to pre-multiply Nk - NO by L0. which means it is necessary to compute our 

approximation to N,. - No for all the collocation points. For this reason, we will 

now restrict our discussion to the direct Burton and _Miller 
formulation (2.73). 

For the model problem of a sphere, we now consider a general v(p, k) and expand 

aaZän using the series given in (3.15) to obtain 7 

u(p, k) 
aZaGk (p, q) 

= ik3a2v(p, k)E E 
. 
ln(itQ)ll 

n(ita')`Sn 
(Opi Op)'Sn (84) O9) 

(/ llpOnq 
n-0 m=-n 

(3.102) 
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For each (n, m) we expand v(p, h)S, (ep, Op) as 

co n' 

Y(p, k)`fin (BP, Op) 
- anm 

'`fin I (BA, op) (3.103) 
nl=0m'--nl 

where 

anm 
I-f 

v(p, k)Sn (OP, (ýP)Snýý(9 
ý ¢P)dSP (3.104) 

as the Sn 's are orthogonal. Since the functions Sn form a complete set in Hr(. S), 

the eigenfunctions of the integral operator -; 1 + Mk - -; iv(p, k)jVk can be expressed 
ao n 

in the form 0e = annSn to give 
n=0 m=-n 

00 n oo ný 

Zk2a2> anmh (ka) bnn, 6mm, jn(ka)--ZkQnm'Jn(ka) Sn 
(OP, YAP) 

n=0 m=-n n'-0 ml--n' 
00 n 

AE 1: anmSn (OA' cp) 

n=0 m=-n 
(3.1u5) 

where b,,,,, is the Krondecker delta and we have expanded any in a series using 

(3.15). Taking the inner product of both sides of (3.105) with Sn gives 

: 50 n 

Z% 
2 

! L` 
ý 

(1nn hr. (ý'Q) 'bnnbmrnJn(ka) 1ýiQnm (ka)`. 
= 

AGtnm3.106) 

n-0 m=-n 

for iz = U. 1.... and ni = -n, ... ,0,... , n. Truncating the infinite sums after V+1 

terms of the outer sum leads to the standard matrix eiäenvalue problem 

Aa=. 1a 

where a= [aoo. ai-1, aio, ... , QNNiT and 

: 1(nm)(nm) = Ik2 Q2 h (ka) 
ýnnýmrn%nýýaý `" lkQ""'( a)i. 

(3. tU 

(3.11)8) 
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"ý(nm)(nm) is the element of .4 in the row corresponding to (n, in) and the column 

corresponding to (n, m). 

The solution of (3.107) will only give an approximation to the eigenvalues of the 

operator -! I I+ jllk + ivNVk since the infinite sums have been truncated. Also, in 

general, the eigenfunctions will not be orthogonal and so the conditions of Theorem 

3.3 will not hold. However, it is hoped that this method will at least give us 

some valuable insight into the condition number of the direct Burton and Miller 

formulation for a wide choice of v(p, k). In principle, this method can be used for 

other shaped surfaces provided we can obtain appropriate series expansions for the 

Green's function Gk and its derivatives. However, there are practical problems in 

implementing this method for finding the approximate condition number. Unless 

v(p, k) is a continuous function of p, it will be necessary to take a large number of 

terms in the series (3.103) in order to obtain an accurate approximation. In general, 

for a given v(p, k) the coefficients anm ' will have to be computed numerically. As 

n increases, the associated Legendre functions Pn become more oscillatory which 

makes the integrals in (3.104) more difficult to evaluate accurately. 

We now consider an alternative method-for estimating the condition number 

using the equations derived from the piecewise constant collocation method dis- 

cussed in Section 3.1.4. Consider an integral operator ): X, Y. It is possible to 

view the collocation equations as being equivalent to some approximate operator 

K� :. ln 1.;,, where Xn and }n are subspaces of X and V. 
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Clearly any q� EX can be written in the form 

n 

on(p) = Icio=(P) pES (3.109) 

where the pi='s are the piecewise constant basis functions given in (3.26). Hence, 

for ¢� EX 
n% 

f (P) 
- 

K¢n = 
>cij k(p, Q)dSq. 
i=1 

(3.110) 

We now approximate f by fn E 1,, by applying the projection operator P, :V -- Y;, 

defined by (3.22). Define Kn = P�K :. l� , I;, to obtain 

n 

(3.111 fn (P) => cif Pn(k(p, 9)) dS9(= X'nc 
n) 

i. l 

which can be written as 

n= 

>k(Pi4)dSi(P). {3.112) 
J=1 i=1 i=1 ' 

Since the j's are linearly independent, the fi's and 6; 's are related through the 

matrix equation 

K¢ (3.113) 

where f=T and 0-= ¢1, 
.... caniT and 

Kii = 
fk(pj, 

q)dSq. (3.11.1) 

, 

Clearly K is the same matrix as the one in (3.28) for the collocation equations. 

The eigenvalues and eigenfunctions of Kn satisfy Ay = 1C�ö� or 

nnn 

AEOjJ(P) = >EOt f k(Pi, 9)dseý'i(P). (3.11) 
j=1 i=1i=1 Si 
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Since the set {ij} is linearly independent then 

AOi = >c5i f k(pj, 4)dSq j=1, ... ,n 
(3.116) 

i=1 Si 

or 

aO = x¢ (3.117) 

That is, the eigenvalues of IC,, are the same as those of K. This result is not 

surprising as the collocation operator Kn is a finite dimensional operator. WVe can 

compute the matrices equivalent to X and k,, and use (3.83) to compute cond(1C�), 

which is an approximation to cond(k). We note that the matrix equivalent to 1C;, 

is not the same as taking the complex conjugate and transpose of K. 

The following theorem gives some insight into the convergence of the condition 

number of the approximate operator. 

THEOREM 3.5 

If ilk -1Cnjl- 0 asn-+ oo then 

cond(AI + Kn) - cond(\I ± K) as n -. oc. (3.118) 

Proof. See Baker [12 1. 

This theorem shows that the approximation obtained for the condition number 

of -ZI+Alk will converge since Alk is compact and so our approximation to AIk will 

converge uniformly (see Definition 2.2 and Theorem 2.3). However, it is not possible 

to guarantee such convergence for the direct Burton and Miller formulation since 

NA: is not compact. It seems reasonable, though, to use this method to obtain an 
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estimate of the condition number of the integral operator, even though theoretically 

we can not prove that taking the limit n -* oo will yield the exact condition number. 

We recall that the coupling parameter in (2.75) is of the form a(p, k) = iv(p, k) 

n 
where v(p, k) is a real valued function. Assume that v(p, k) = X: v=(h)O (p) and 

approximate the operator -11 I -; - Il'k + aNk by 

IC = -11 + ? l1k + i-kJVk (3.119) 

where A is the diagonal matrix diag[vl, 
... , vn . The matrix approximation to the 

adjoint operator is given by 

K' = -2I (tllk) (3.120) 

The approximate condition number can now be found using (3.83). 

We can treat the condition number computed from (3.119) and (3.120) as a 

function of the n parameters {v1,... 
, vn} and try to find the values which min- 

imise cond(K,, ). However, there is no simple method for finding {vl, 
... v�} which 

minimise cond(C) and it is necessary to employ a numerical technique such as 

the simplex method, the details of which are given in Fletcher . 26 . It is not possi- 

ble to easily use other methods, such as conjugate gradients, since there are both 

theoretical and practical difficulties in computing the derivatives of cond(k�) with 

respect to {v1... v�}. 

The numerical results presented here are for surfaces with the same typical 

dimension d. For a sphere d is simply the radius, whilst for a cylinder of radius r and 

height h, d is given by d= 2". 
. 

For a spheroid of the form (Q )Z ; (4 )2 = (y )2 = 1, 
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d is given by d=2b. The particular surfaces we shall consider are a unit sphere, 

a cylinder of radius 0.6 and height 1.8 and a spheroid with a =0.75 and b =1.50. 

For all of these surfaces d =1. Each of these surfaces was modelled using 15 linear 

axisymmetric boundary elements. 

Estimates of the condition number of -ZI+ MA -; - ivNVk for the sphere, cylinder 

and spheroid are shown in Figures 3.6,3.7 and 3.8 respectively, where v(p, k) _ 

OPT denotes the choice of {v1,. 
.., v,, } which minimises the condition number. It 

is clear from these results that the near optimal choice is v(p, k) =k for larger 

values of k, which is in agreement with the results of Amini [21, and Kress [40]. 

For smaller values of k, then the appropriate values of v, as given in Theorem 3.4, 

should be used. 

One of the objectives of our analysis in this section was to see if we could still 

obtain a well conditioned integral operator by choosing v(p, k) =0 over a large 

section of the surface S, and thereby avoid having to compute an approximation 

to the differentiated equation for most of the collocation points p;. Here we have 

chosen the simple scheme of taking v(p, k) =0 over the first m elements from one 

pole of the surface, and taking v(p, k) =k over the remaining elements. 

Figures 3.9 and 3.10 show the estimated condition number of the operator 

-'I + lltk + ivNk for the sphere and the cylinder respectively, at their first three 

characteristic k. For clarity, we have not shown results when v(p, k) is zero over 

14 or 15 elements since these values of cond(1'C) are greater than 30. The corre- 

sponding numerical results are shown in Figures 3.14 and 3.15 respectively. 
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It is clear from (3.9'1) that the first characteristic wavenumber, k, of a unit 

sphere is given by k, = ; r. However, because of the way in which we have discretised 

the sphere using linear axisymmetric elements, the collocation points actually lie 

on a sphere of radius cos( 30). Hence, the first characteristic vavenumber of the 

sphere is given by k, = ;rx cos(-! ) 
0=3.1589. There is a similar change in the 

location of the other characteristic wavenumbers of the sphere. In the case of the 

cylinder the linear axisymmetric element represent the surface exactly and so there 

is no change in the location of the characteristic wavenumbers. 

It is clear from our results that when v(p, k) =0 over nearly all the elements 

then the integral operator is ill-conditioned near characteristic wavenumbers of the 

structure. However, taking v(p, k) =0 over half the surface gives an operator which 

is almost as well conditioned as the operator with v(p, k) =1 over all the surface. 

As stated before, here we chose v(p, k) =k over the parts of the surface where v is 

non-zero. However, the choice of v over the elements where it is non-zero requires 

some further investigation, since -1 may no longer be the near optimal choice. 

On the basis of the these results, we can make the following recommendations 

about the choice of v(p, k). 

(1) In order to obtain a well conditioned integral operator we should choose 

v(p, k) to be non-zero over at least half the surface. 

(2) If we choose v(p, k) to be non-zero everywhere, then we should choose v 

to be a constant with respect to the space variables, the size of which is given by 

Theorem 3.4. 
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3.5 Numerical Results 

Exact solutions in closed form, usually as infinite series of slowly converging wave 

functions, can only be obtained in special cases [45]. However, exact solutions 

can be generated for problems which are equivalent to those having acoustic point 

sources in the interior region D_ [3,311. The acoustic pressure at a point pE R3 

generated by a set of point sources at qj ` D_ with strengths A� j=1, 
... , 

Q, in 

the absence of the structure, is given by 

Q ikIp-9; 
¢(p) ==X (3.121) 

i=1 117 1p- 4i ý 

For pES we can differentiate (3.121) with respect to np to obtain 

__ = 4eikl¢ j (i Ip- qj I 
-1)(P-Qt)"nF p S. (e3.1 2) 

Onp 
j=1 --= i4-. rIp-9j 1' la-s, l 

The problem with this distribution of do on the surface S is equivalent to the point 

source problem for which the solution (3.121) is known. 

The axisvmmetric surfaces considered here are a unit sphere and a cylinder of 

height 1.8 metres and radius 0.6 metre. We also consider a spheroid of the form 

(ý' 2 -=- Q)2 (b)2 = 1, with h a=0.75 metres and b=1.51) metres. The boundary 

data for each of the axisvrnmetric structures is equivalent to a single point saure:, 

placed at (0, UJ). 5) with strength 2-3, i. The mesh fror each structure has 15 linear. 

axisyminetric elements. 

The three-dimensional surfaces considered are a unit sphere, a cylinder of length 

1.8 met res and radius 0.6 metre and a cube with sides length I metre. The bound- 

ary data for the sphere and the cylinder is equivalent to two point sources placed 

87 



at (0,0,0.5) and (0.25,0.25,0.25) with strengths 2+ 3i and -1- I respectively. For the 

cube, the boundary data is equivalent to two point sources placed at (0.5,0.5,0.5), 

the centre of the cube, and (0.25,0.25,0.25) Ncith strengths 2+ 3i and 4-i re- 

spectively. The surfaces of the sphere and cylinder have been modelled using 420 

quadratic triangular boundary elements, and the surface of the cube has been mod- 

elled using 432 linear triangular boundary elements. 

The measure of error that we have chosen to use here is the mean relative error 

(\IRE) given by 

AIRE =1I 
Q(Pj) - ¢n(Pi). 1 

(3.123) 
ni=1 I d(Pi) I 

expressed as a percentage, where ¢(pj) is the exact solution at the point pj and 

¢�(pj) the numerical solution. If any of the ö(pj) are close to zero. then this 

measure can exaggerate the error and it may be preferable to use the relative mean 

error (RMIE) defined by 

n 
yI O(pj) 

- ©n(pj) 

RME 
n 

(3.124) 
EI ©n(pj) 1 

j=1 

or the vector 2-norm of the error, although this has not been done here. 

The results for the axisvcnrnetric sphere. cylinder and spheroid are s1tn vii in 

Figures 3.11.3.12 and 3.13 respectively. These results show that, in general, the 

direct formulation ives somewhat more accurate results than the regularised for- 
C) 

mulation. This is in contrast to the the results given in : \rnini and Harris 
_7.. 

However. in 7j the surfaces of the structures were represented exactly, whereas we 

have now chosen the more general approach of approximating the surfaces using 
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linear and quadratic boundary elements. 

Figures 3.14 and 3.15 present the results for a sphere and a cylinder at their 

first three characteristic wavenumbers, where v(p; k) has been taken to be zero over 

different numbers of elements. Here we have chosen v(p, k) =0 over the first m 

elements from one pole of the surface, and v(p, k) = k' over the remaining elements. 

W'e recall that the condition numbers of these equations are shown in Figures 3.9 

and 3.10 respectively. For clarity, the results have not been shown when the error is 

greater than 25 %. It is clear that taking v(p, k) =0 over two thirds of the. surface 

elements still yields results which are accurate to within 5 %, which is the level of 

our discretisation error. In fact, there is little or no improvement in the accuracy 

by taking v(p, k) to be non-zero over a larger proportion of the surface. 

The results for a three dimensional sphere, cylinder and cube are shown in Fig- 

ures 3.16,3.17 and 3.18 respectively. In general the regularised formulation yields 

somewhat more accurate results than the direct formulation, for a fully three di- 

mensional structure. However, the regularised formulation is considerably more 

expensive to implement, in terms of both CPU time and computer storage. For 

example, it takes 48 CPU seconds to find the pressure on a surface with 112 el- 

ements using the direct formulation, whereas it takes 75 CPL- seconds using the 

regularised formulation, on the Prime 850 processor at Polytechnic South West. 

These computational considerations make the direct formulation much more at- 

tractive for use in the coupled fluid-structure interaction problem, to be considered 

in the next chapter. 

89 



The general aim of this chapter was to devise a practical numerical method 

for solving the exterior Neumann problem for Helmholtz equation accurately and 

efficiently. In Section 3.1 we identified the collocation method as being the most 

practical projection method while Section 3.2 considered both axisymmetric and 

three-dimensional surface representation. In Section 3.3 we compared some differ- 

ent quadrature rules used to compute the matrix approximations to the integral 

operators and discussed the choice of rule to give the desired accuracy. In Section 

3.4 we found that the near optimal choice of the coupling parameter is v(p, k) = kl. 

However, we also found that is possible to obtain accurate results with v(p, k) =0 

over a large part of the surface. This has the advantage that for elements where 

v(p, k) =0 we do not have to compute an approximation to the differentiated 

equation for the direct formulation. 

The numerical results of this section show that the direct formulation and 

the regularised formulation yield numerical results of similar accuracy. However, 

the regularised method is more expensive to implement, particularly if we choose 

v(p, k) =0 for most of the surface elements when using the direct formulation. 

Thus it would appear that direct Burton and Miller formulation, with the appro- 

priate choice of the coupling parameter v, is a good choice for solving the exterior 

Neumann problem for Helmholtz equation. 
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4 THE DYNAMIC FLUID-STRUCTURE IN- 

TERACTION PROBLEM 

4.1 Introduction 

The previous chapters have considered the problem of determining the acoustic 

field around an arbitrary structure where the normal particle velocities on the 

surface were assumed to be known. We shall now include the motion of the elastic 

structure in the analysis in order to predict the resulting sound radiation due to 

applied forces throughout the structure, and also to model the scattering by elastic 

structures more accurately. It is now necessary to couple the Helmholtz equation 

(formulated as an integral equation) in the fluid region D- with the equations of 

motion of the structure D_ at the surface S by ensuring that the normal particle 

velocity and the normal stress are continuous at S. 

This problem is of considerable interest in many areas of mathematical physics, 

including underwater acoustics and aeronautics, where it is required to determine 

the acoustic fields about an arbitrary three-dimensional structure. However, there 

only a few simple structures, such as spheres and infinite circular cylinders, for 

which it is possible to obtain analytical solutions. For this reason the only feasible 

way of obtaining a solution is to use numerical methods. In Chapter 5 we shall 

use the the numerical scheme developed in this chapter to model the acoustic fields 

radiated by some simple sonar transducers. 
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The analytical solution of this coupled problem for the simple case of a sphere 

is considered in Goodman and Stern [29] and Gaunaurd and Uberall [28] where 

the displacements within the structure are represented in terms of two potential 

functions. By using the classical technique of separation of variables it can be 

shown that these potentials and the exterior acoustic field can be expressed as 

series of spherical Bessel and Hankel functions, and associated Legendre functions, 

the coefficients of which are found by enforcing the continuity conditions on S (see 

Appendix A). 

We now give a brief review of the different numerical schemes that have been 

proposed for the solution of the coupled fluid-structure interaction problem. 

Chen and Schweickert [181 assume that the continuous structure can be rep- 

resented by a" system of interconnected discrete masses. It is possible to derive 

the equations of motion of these masses to give an approximation to the equations 

of motion of the structure and couple these equations to an indirect formulation 

of the exterior acoustic problem. Chen [191 also uses the finite element method to 

model the motion of the structure and couples this to an indirect boundary integral 

analysis of the acoustic-field. 

hunt et al [341 employ the finite element method to model the motion of the 

structure and the acoustic field in a sphere surrounding the structure. The acoustic 

field in the region exterior to the sphere is represented using a partial wave series, 

which avoids the use of the integral equation formulations and hence the associated 

non-uniqueness or non-existence problems. However, the fluid region between the 
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surface of the structure and the surface of the sphere forms an interior problem for 

Helmholtz equation, and for certain frequencies (wavenumbers) the solution to this 

problem will be non-unique, although Hunt et al [341 propose a solution method 

for overcoming this problem. 

One of the most commonly employed techniques for analysing the motion of an 

elastic structure is the finite element method. Wilton 61,62' proposes a number of 

different methods for coupling a direct integral equation formulation of the exterior 

acoustic field to a finite element analysis of the motion of the structure, and gives 

some results for thick elastic shells scattering an incident plane wave. Everstine et 

al [25 and Mathews [43] employ a similar scheme to model the acoustic field around 

a thin shell. Mathews [43] also gives a survey of different methods for solving the 

interaction problem, as do Piaszczyk and Klosner 
[48 . 

Seybert et al [511 use a boundary integral formulation of the equations of motion 

of the structure and couple it to a direct boundary integral formulation of the acous- 

tic field. This scheme has the advantage that all the computations are restricted to 

the surfaces of the structure. However, it has the disadvantage that if the structure 

is made of more than. one material we must include a separate boundary integral 

analysis of the displacements within each different material. Also, unlike the finite 

element method, the boundary element method does not automatically calculate 

the displacements within the structure wich may be of considerable interest. 

The method for analysing the motion of the structure employed here is the finite 

element method. It has the advantage that it can readily deal with complex struc- 

101 



plex structures made of more than one material. The finite element methods for 

analysing the motion of either an axisymmetric or a fully three-dimensional elastic 

structure are given in Section 4.2. In Section 4.3 the method is coupled with a 

direct boundary integral formulation of the exterior acoustic field, and different 

schemes for solving the coupled problem are discussed. 

In the previous chapters we have seen that as the wavenumber approaches a 

characteristic wavenumber the integral operators -; I4-itIk and Lk, and Bence their 

approximating matrices, become more ill-conditioned. Recently several authors 

49,33,481 have indicated that they have observed no great loss of accuracy in 

the solution to the coupled problem at the characteristic wavenumbers when using 

the surface Helmholtz equation to represent the exterior field. However, other 

authors 43,62] suggest that for the solution to the coupled problem to be unique 

it is still necessary to use an integral equation formulation which is valid for all 

vavenumbers. In Section 4.4 we present an argument for resolving this apparent 

controversy. 

4.2 Finite Element Analysis of the Structure 

Assume that the region D. contains an isotropic elastic structure and that the 

displacements clue to any applied forces are sufficiently small for the generalised 

IIooke's law to apply. In other words, the structure will return to its initial form 

completely after the removal of all forces, and its elastic properties are the samne 

in all directions. In this section we derive the finite element model of both an 
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axisymmetric structure and a fully three-dimensional structure. 

4.2.1 Finite Element Analysis of an Axisymmetric Structure. 

Consider an axisymmetric structure D_ which is formed by rotating a bounded 

region .4 
in the (r, z) plane (with r> 0) about the z axis. This region is discretised 

into a finite number of elements A, interconnected at a finite number of nodal 

points. The displacements (u, v) at the nodes, in the radial (r) and axial (z) 

directions respectively, are the unknown parameters of the structural part of the 

analysis. We assume that the displacements can be written as 

nn 

u(r, z) = I: u='Y=(r, z) v(r, ') = I: v=tP (r, z) (4.1) 
i=l i=l 

where n is the number of nodes. (u;, v) are the displacements at the it node and 

'Yi(r, z) is the basis function associated with the ith node. We also assume that the 

displacements have harmonic time dependence of the form e-iw'. The exact form 

of the basis functions depends on the type of finite element used, but in general '_ 

will be chosen to be unity at the iah node and zero at all the other nodes. 

The linear stress-strain relationship takes the form 
1-42,641 

u=DE (4.2) 

where Q and e are vectors of the four non-zero components of the symmetric stress 
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and strain tensors respectively [42]. The 4x4 matrix D is given by 

1-v vv0 

v 1-v v0 
_E D 

(1 -- v)(1 - 2v) 
(4.3) 

vv 1-v 0 

000 1-2" 
i 

where E (> 0) is Young's modulus and v (0 <v< is Poisson's ratio. The strain 

is related to the displacements by 

av 
aZ 

au 

E_ 
8r 

. (4.4) 
u 
r 

au av 
82 . 8r 

After substituting (4.1) into (4.4), the strain vector is of the form 

E=Bq (4.5) 

where q= ; 
FU 

I? L'1, u2. i'2...... u, . 
t-, )' 

and B= [Bl, B2, 
... 

Bn' with 

0 

0 
r 

B. 
a= 

(4.6) 
±-i 0 

r 

a ', a'', 
as ar 

The strain energy. U, of the structure is given by 

U=1ý cT Dc A=i qT Kq (4.7) 
D- 2- 
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where K is the 2n x 2n matrix known as the stiffness matrix of the structure, and 

is given by 

K =f = 2-,, f BT DBr dr dz. (4.8) 

The kinetic energy, T, of the structure is 

12 
dl' (4.9) T 

2JD_P' 

(8t )T (öt )2 

where p, is the density of the structure. For harmonic time dependence, T takes 

the matrix form 

T=- 
ýgTw2, 

llq (4.10) 

where J! is the 2n x 2n positive definite matrix known as the mass matrix given 

by 

X11 = p3NT 2rJ Ja Nr dr dz (4.11) 

where Al = [Nl, 
. Vz, 

... , 
N�] and 

10 
Ni (P) _ IMP)- (4.12) 

I) 1 

If the work done by the system is given by 

1 =QT f (4.13) 

where f is the consistent load or force vector, then the equations of motion of the 

structure, in matrix form, are given by the stationary value of 

T+U - I= 2gT(K-w2i%I)q-qTf. (4.14) 
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That is, when 

(fi - w2A()q = f. (4.15) 

This system of equations could also be obtained by starting with the linear law 

of elasticity 

divo ýFz= Ps Btz 
(1.16) 

where c is the symmetric stress tensor, F is the vector of applied forces, and u is 

the vector of the displacements, and using the techniques given in _63;. 

We have assumed that there is no structural damping. If structural damping 

is required then a term of the form iu, Cq must be included in the left hand side of 

(4.15) [64]. 
The basis functions 'I' are defined to be zero over all the elements not containing 

the ith node. If each element has n' nodes the element stiffness and mass matrices, 

denoted by Kr and Me respectively, are defined by 

Ký=2rß ff BTDBirdrdz 

AI j=2, rp, 
f NT , Vjr dr dz 

where i, j are the nodes of the element. The contributions from each element are 

added together to form the global matrices. These global matrices will be real, 

symmetric and banded. The band-width of the system can be minimised with an 

appropriate numbering of the nodes. 

The type of element employed here is an isoparametric element where the same 

basis functions are used to interpolate the coordinates of the element and the 

unknown displacements [59,64]. Each element is then mapped into a reference 
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element in the (ý, q) plane using a transformation of the form 

n' n, 

r= r=`' (ýý ý1) 4=ý? i`ýý(ý, Ii) ( x. 18) 

where n' is the number of nodes in the element, and the unknown displacements 

are interpolated by 

n' n' 
u= 

T-ui 
i(S, q) v= 

EviC(S, 
%) (4.19) 

i=1 i=1 

where Ti(ý, q) is the basis function 'P written in the local coordinates. Since the 

basis functions in global coordinates and local coordinates are equivalent we will 

not make any further distinction between them 59;. 

To evaluate the derivatives of the basis functions with respect to the global 

variables (r, z), needed to compute the stiffness matrix, the chain rule is used to 

obtain the following matrix equation 

a4, ar az 49%P; alp; 
äý äE äf 

_ 
är 

=J 
ar (4.20) 

ar az a- a 
1977 8ý 8n az az 

where the Jacobian matrix J is computed using (4.18). Hence the derivatives with 

respect to to global variables are given by 

ar 
= f-1 

a{ 
l=1... . ný. 

a4,, a q,. 
ä-- a,, 

Using the transformation (4.18), an integral of the form 

f(r, z)rdrdz 

(4.21) 

(4.22) 
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becomes 
fn 

J J, to 
fýý, 71) [riWi( 11) I det(J) I dý drj (4.23) 

where I det(J) I is the absolute value of the determinant of the Jacobian matrix 

and AO is the reference element. We see from (4.4) that for elements with nodes 

on the axis of symmetry there appears to be a1 singularity for certain integrals. 

However, a physical requirement of the problem is that u=0 when r=0, which 

cancels out the singularity. 

The particular element that is used here is the six noded quadratic triangular 

element. The basis functions for this element are given by 

IF, =(1-ý-rß)(1-2C-2rß) 41, =-lß(1 - e- q) 

'P4 ='leii T5 = q(2q -1 

413 = ß(2e - 1) 

X'6 =4q(1-ý-71) 
(4.24) 

which maps the three nodes at the vertices of a general element into the points 

(0,0), (0,1) and (1,0) in the (ý, q) plane, and the mid-side nodes into the points 

(0, 
Z 

), (Z, 0) and (Z, ; ). The relationship between the nodes of a general element 

and those of the reference element is shown in Figure 3.2. 

The elements of the matrices K and Al can be found by applying an appropriate 

quadrature rule over the reference element : lo. For the matrix Al, it can be seen 

from (4.17) and (4.20) that the integrands will, in general, be polynomials of degree 

6 in both 71 and ý which can be integrated exactly by an appropriate quadrature 

rule. Similarly, it can be seen from (4.17) and (4.20), that some elements of K will 

be polynomials of degree 4 in both i and ý, whilst others will contain aT term. 
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From the results of Section 3.3, it seems that the use of a3x3 product Gauss rule 

is a good choice of quadrature rule for evaluating the elements of the matrices K 

and Al. 

Although these finite elements may have quadratically curved sides, here we 

have chosen all the finite elements to have straight sides, and that the mid-side 

nodes should be half-way between the appropriate vertex nodes. Hence, for finite 

elements with vertex nodes on the surface S, the appropriate edge of the element 

can be used as a linear axisymmetric boundary element for the analysis of the 

exterior acoustic field. 

4.2.2 Finite Element Analysis Of A Three-Dimensional Structure. 

Here the analysis of the previous section is modified to deal with a fully three- 

dimensional structure. For the analysis of a three-dimensional structure, there are 

three components of the displacement, (u, v, w) in Cartesian coordinates, assumed 

to be of the form 

nnn 

u= 
Euiqfi(x, 

y, z) v= 
EZilpi(x, 

y, z) w=I: u''itpi(x, y, z) (4.25) 

i-1 i=1 i=1 

where (ui, vi, w; ) are the displacements of the iih node. The linear stress-strain 

relationship is of the form (4.2) where u and c are the vectors of the six components 

of the symmetric stress and strain tensors respectively [42] and D is the 6x6 stress- 
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strain matrix given by [6-1] 

_E D 
(1 + v)(1 - 2v) 

Ivv00 1) 

vIv000 

v v 1 0 0 0 

0 0 0 ' ZZ" 0 0 

0 0 0 0 1-2v 0 

000002[ 

The strains are related to the displacements by 

(4.26) 

a= 00 

0 ay 0 

1) 0 a. 
a (4.27) 

a. aý" t, a, ä= 

a, " a.. " ä. By 

au 0 au 

ä_ Or 

On substituting (4.25) into (4.27), the strain vector is of the form (4.5) with q= 

lul)vi, w1, .., n,, 'Un, Wn T and 

a 0 0 
x 8r 

0 a*i 0 8y 

0 0 a' 
- 49Z Bi = 

a% a%P; 
ay ar 

0 a*; alp; 
az ay 

a, k 0"'i 
az ax 

(4.28) 
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Following the same analysis as for the axispninetric case, we obtain the stiffness 

matrix 

K= JBTDBdV 

_ 

and the mass matrix 

1%1 = p, 
f NT Ndv 

D_ 

where N= iVn, and 

Ni =01 0l `Pi(x, y, z). 

001 

(4.29) 

(4.30) 

(4.31) 

If f is the consistent load vector of the forces applied to the structure, then the 

displacements q are given by (4.15). as for the axisymmetric case. 

We use the isoparametric concept to interpolate the coordinates of an element 

over a reference element Vr in the form 

n' n1 r. ý 

4 X= 
EXi'Pi(77: ý: ý) y= 

EZ�=`Pi(77: ý: ý) z= 
y--iPi(Tl: 

S 
C) ( 

. 
32) 

i=l i=l i=l 

where n' is the number of nodes in the element and (r;, yl, zj) are the coordinates 

of the-ith node of the element. The derivatives of the basis functions with respect 

to the global coordinates are related to the derivatives with respect to the local 

coordinates through 

a4', a4', 
ä= än 

ate, = J-1 a',. i=1,..., n' (4.33) 
ay ä 

a4', a41, 
az a' 

Ili 



where the Jacobian matrix J is given by 

ar 
aq 

j= ar 

az 
a( 

Using this transfomation, integrals over z 

aY a_ 
än & 

ay a: (4.34) 

ay az 
äS ac 

i general element l1' of the form 

I fjf(x, 
y, )dxdydz (4.35) 

are transformed to 

(4.36) 
JJ 

Li(71 
, 
ý, det(J) I drt dý d(- 

The element used Tiere is the ten noded quadratic tetrahedron. The reference 

element is the tetrahedron which has four nodes at its vertices (0,0,0), 

(I), 1,0) and (0.0.1), and the remaining six nodes at the mid-points between the 

vertices. We label the vertices 1 to 4 and introduce the functions ; 64 

Lý=l-q- -ý L2=q 
(-x. 37) 

L3L., 

The basis function for each vertex node is of the form 

`Pa(r).,, () = (2L, - 1)Li (-1.38) 

and for a node k between vertices i and j, 

`Pk(q, ý, () =-1L; L; i=1.2,3 i<j<4. (1.39) 

\Ve can see from the definition of these basis functions, (4.32) and (4.33) that the 

integrands of the integrals defining the elements of K and Al will be polynomials 
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of up to degree seven in each of the variables. Applying a4 "". 4x4 product Gauss 

rule should yield exact results. Computationally it would have been simpler to use 

the four noded linear tetrahedral element, but this represents the stresses in each 

element as constant and consequently does not give an accurate model [64]. 

For elements with nodes on the surface S, the appropriate faces of these elements 

form a quadratic boundary element which we can use for the analysis of the exterior 

acoustic field. 

It is not essential that the elastic structure be homogeneous or isotropic. The 

elastic parameters may vary between elements. although they must be constant 

within each element, and for a non-isotropic body the elements of the matrix D 

(the stress-strain matrix) merely take on the appropriate values 64!. This allows 

this method to model the displacements in a structure made of more than one 

material. 

4.3 The Coupled System of Equations 

The finite element analysis of the structure in D_ and the boundary element anal- 

ysis of the acoustic field in D, are coupled together by ensuring that the normal 

particle velocity is continuous at S, and that the surface force due to the acoustic 

pressure equals the stress in the structure at the surface. If g denotes the force 

acting on the surface, g(p) = -O(p)np where O(p) is the pressure and -nP is the 

unit normal directed into D_ 
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The consistent load vector f can be written as 

f=fk+fS (4.40) 

where fk is the consistent load vector of known applied forces, and fS is the 

consistent load vector of surface forces. We can write fS= [fi 
, ... , 

fn] where each 

fS is a vector given by 

fs =f g(4)4'1(4)dSs = -Js 6(4)`1`=(4)ngdSq. (4.41) 

In Chapter 3 it was assumed that the surface pressures are approximated by 

m 
EoiiFj(q) 

(4.42) 
i=1 

where m is the total number of collocation points for the boundary element analysis. 

From now on we shall refer to these as the fluid nodes, and the nodes of the finite 

element analysis of the structure as the structure nodes. Substituting (4.42) as an 

approximation for 0 into (4.41) gives 

rm 

_f 
s= 

-J 
ý¢i? 'i(9)`ý=(4)ngdSq. (4.43) 

Si=1 

This can be written as 

fs= -LO 

where each L; j is a vector given by 

(4.44) 

L=i = 
fij(q)tPj(q)nqdSq. (4.45) 

For an axisymmetric structure the normal n has only two independent compo- 

nents, in the r and z directions respectively, and so each L; i is a2x1 vector. If the 
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line generating the linear axisymmetric surface elements S3 has end points (ri, zi) 

and (r2, z2) and mid-point (re, z, ) then 

rn'3l 

rn2(r`+T2)1 3 
L=; 

r n' 3l 

0 

if i corresponds to (ri, : t) 

if i corresponds to (re, zý) 

if i corresponds to (r2, z2) 

otherwise 

(4.46) 

where l =(r2 - rl)2 (z2 - z1)2 and n is the constant normal to the jth boundary 

element in the (r, z) plane. 

For a general three-dimensional structure n has three components, in the x, 

y and z directions respectively, and each L; 3 is a3x1 vector. Clearly, from the 

definitions of the basis functions ', j and Ti 

L=; = (4.4 70 

if the ith structure node is not a node of the jth boundary element. In this case 

it is necessary to evaluate the non-zero elements of L numerically as the normal is 

not a constant over the surface element S. Since these integrals are non-singular, 

it seems reasonable from the results of Section 3.3 that a3x3 product Gauss rule 

is a suitable choice to evaluate the elements of L accurately. Equation (4.15) can 

be now be written as 

(K-w2Alf)q= fk - L¢. (4.48) 

The velocities V of the structure nodes are related to the displacements through 

[' =-u. (4.49) 
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The velocity at the fluid nodes pi,.. , pm is found by interpolating the velocity at 

structural nodes to give 

V(PS) = -iwN(p1)q. (4.50) 

The normal surface velocity v at the fluid nodes is then obtained from 

v(pi) = -iwnp N(pi)4. (4.51) 

Hence the vector of the normal surface velocities at the fluid nodes. L is of the form 

rq t= -iL 

where 

(4.52) 

L=j = nP Nj (pi) = np Pi(pi). (4.53) 

For the axisymmetric problem each L; j is a1x2 vector and for three-dimensional 

problems each Lij is a1x3 vector. 

Finally, the normal surface velocities at the fluid nodes are related to the acous- 

tic pressures at the fluid nodes by 

v= -iwL'(K - wZJI)-ý(fk - L¢). (4.54) 

From the boundary element analysis of the exterior acoustic field, we obtain a 

matrix equation of the form 

. -lo = iwp j BE -c (4.55) 

where A and B are the matrices obtained from the discretisation of the direct 

Burton and Miller formulation (2.73), and are given by 

A= !I+ R1k + iv! Vk and B= Lý - iv 21 d! k ("x"56) 
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respectively. The vector c represents the pressure due to an incident wave (see 

(2.37)), and is given by 

ci = cinc(pi) + ivVoinc(pi) 

rin (4.57) 

Here it is assumed that the coupling parameter v is a constant. Combining (4.54) 

and (4.55) we obtain a block matrix equation of the form 

A -iwpfB 0c 

-iwL'(K - w2A I)-'L Iv -iwL'(K - w', 1! )-1 fk 

(4.58) 

There are various options (schemes) for solving (4.58) ford and v and we shall 

briefly compare these schemes. 

Solution scheme I: Solve the 2m x 2m system (4.58) for 0 and v directly. 

Solution scheme II: Eliminate v by substituting (4.54) into (4.55) to obtain 

(ý ýZPIBL'(K - w2't1)-1L)¢ =c w2PfBL'(K - w2I[)-1 fk. (459) 

After solving (4.59) for 0, q or v can be found from (4.48) or (4.54) respectively. 

It is clear that scheme II is obtained by carrying out a block solution of scheme 1. 

Solution scheme III: Substitute (4.55) into (4.54) and eliminate 0 to obtain 

(I +w2pjL'(K - w2,1I)-1L. -ß-'B)_v = -iwL'(! i - w24II)-'(fk - L. 4 ̀ c). (4.60) 

After solving (4.60) for v we can compute 0 from (4.55). Since this scheme requires 

three matrix inversions instead of two we shall not consider it further. 

Solution scheme IV: This scheme is not based on a block solution of (4.58). 
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Substitute (1.55) into (4.18) and eliminate 0 to obtain 

(K -w2AI +w2pfL: l-'BL')4 = fk - L. 4-lc (4.61) 

which can be solved for q. We then use (4.52) to compute v followed by (4.55) 

to compute 0. A drawback of this scheme is that the matrix K- w211l is a real, 

symmetric and banded matrix, but the matrix on the left hand side of (4.61) will 

not, in general, have these properties. Also, for three-dimensional problems, the 

matrix on the left Band side of (4.61) will be large and require excessive amounts 

of storage, as pointed out by Wilton 162'.. 

Clearly each solution scheme should give the same results since they are all based 

on the same two simultaneous matrix equations. The advantages to be gained in 

using a particular solution scheme are in terms of efficiency and computer storage. 

It is clear that solution scheme II requires less computer storage than either scheme 

I or scheme IV. It is also clear, from the comments above, that both schemes I and 

II are more efficient than scheme IV. However, it is not so clear whether scheme I 

or scheme II is more efficient. Ziere we shall employ scheme II since it requires the 

least storage, a critical factor in the analysis of a three-dimensional problem. 

Regardless of the solution scheme employed, once 0 and v are known a suitable 

discretisation of (, 2.33) for pE D+ can be used to find the pressure in the exterior 

domain (see (3.42)). 
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4.4 The Conditioning of the Coupled Equations 

Here an argument is presented to show that if the SHE (2.34) is used to relate 

the surface pressure to the normal surface velocity in the fluid, the coupled bound- 

ary element and finite element analysis would also suffer from the non-uniqueness 

problems associated with the SHE at the characteristic frequencies. It is possible 

to view the solution to the linear elasticity problem as a Robin type boundary 

condition, on S, for the exterior Helmholtz equation. Assume that we can write 

ä¢ 
_ F¢ +f (4.62) 

where F is a linear operator, derived from the linear law of elasticity, which relates 

the surface pressures to the normal surface velocities. The function f is due to any 

other forces applied throughout the structure. Clearly F must satisfy FO = 0. The 

homogeneous form of (4.62) is an = , 
ý'¢. 

Using the indirect integral formulation we recall that 

( 
-Z1+. Ilk)a=an pES (4.63) 

where 0= LkQ, which, after applying the homogeneous boundary condition gives 

ý- 27 + Alk - FLk) U=0. (4.64) 

It follows from Section 2.3 and 1381 that there exists a non-trivial function a such 

that (-I + Mk )tee =0 if and only if Lkoc = 0. Consequently, a will satisfy- 

(4.64). Hence if kE ID there. is a non-trivial solution to (4.64), and if a solution 

to the coupled problem using an indirect formulation exists for kE 1D, it will be 

non-unique. 
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In Section 2.3 it was shown that the direct integral equation formulation, from 

Green's Theorem, of the exterior Neumann Helmholtz problem does not have a 

unique solution for kE ID. Applying the boundary condition (4.62), the homoge- 

neous equation is 

(-; 1 --: 1lß - Lk, F) y0 = 0. (4.65) 

Taking the transpose gives 

(-21 : Ilk - FTLk)0=0 (4.66) 

where . 
FT is the transpose of , F. Clearly if k` ID- then there is a non-trivial 

solution to (4.66) and hence by Theorem 2.7 there is a non-trivial solution to 

(4.65). It is clear from this analysis that it is necessary to employ an integral 

equation formulation that is valid for all vavenurnbers in order to obtain an unique 

solution to the coupled problem. 

Here we shall employ the direct Burton and Miller formulation discussed in 

Chapter 2 to overcome this non-uniqueness problem. Clearly, the conditioning of 

the linear system (4.59) will depend on the choice of the coupling parametr v. It 

was shown in Section 3.4 that the near optimal choice is v=k when v is a constant. 

It does not follow, however, that this is a good choice for the coupled problem since 

the condition number will depend on the physical parameters of the structure and 

the fluid. 

The conditioning of the linear system (4.59) will not just depend on the param- 

eters of the exterior acoustic problem. There are certain values of w for which the 
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homogeneous equation 

ýK-w2AI)q=0 (4.67) 

has non-trivial solutions. These values of w are known as the natural frequencies 

of the structure. These natural frequencies can be found by solving the generalised 

eigenvalue problem 

Kx = w2illx. (4.68) 

Clearly, if w is close to one of the natural frequencies, K- w2Mll will, in general, 

have a large condition number. In the physical situation, as w approaches a natural 

frequency the response of the structure increases and the phenomenon of resonance 

occurs. 

The physical parameters of the different materials considered in this chap- 

ter and in Chapter 5 are given in Table 4.1, where a blank entry means that 

particular parameter is not required. Table l. 2 presents the results of computing 

the condition number of the final linear system (4.59), where the structure is a 

spherical shell of thickness 0.5m and outer radius Ing. Here the Burton and Miller 

coupling parameter v(p, k) has been taken to be a constant with respect to the 

space variables. The condition number of the final linear svsteni (41.59) for the near 

optimal choice given in Theorem 3.1 is compared with the minimum condition 

number obtained from the computed Optimum value of v. Table -1.3 presents the 

corresponding results for a spherical shell of thickness 0.25m and outer radius lm. 

In both cases, the structural displacements were modelled using 200 axisymmetric 

finite elements and the acoustic field with 25 axisymmetric boundary elements. 
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It is clear that the choice v(p, k) =k as recommended in Section 3.4 leads to 

a relatively well conditioned set of equations. However, this may not be the near 

optimal choice in this case, and it requires further research in order to establish 

the optimal choice. 

These result also show that the condition number depends on both the geometry 

of the structure and the structural properties in addition to the frequency. This is in 

contrast to the purely acoustic problem where the conditioning depends only upon 

the geometry of the fluid-structure surface and the frequency. The system (4.59) 

becomes ill-conditioned as the frequency approaches one of the natural frequencies 

of the structure. The first seven non-zero natural frequencies of each structure are 

presented in Table 4.4, where it is seen that the thinner shell has more natural 

frequencies in the range 0-15000 rads/sec than the thicker shell. This implies that 

thin shells have more natural frequencies in the frequency range of interest and 

hence the coupled fluid-structure interaction problem may be more susceptible to 

ill-conditioning for thin shells. It may be possible to overcome this by the use of 

special shell type finite elements, although this has not been carried out here. 

It is clear from the analysis of this section that it is necessary to employ an 

integral equation formulation of the exterior Helmholtz problem which has a unique 

solution for all frequencies. It is also apparent that the coupled system of equations 

become ill-conditioned at frequencies which are close to a natural frequency of the 

structure. Since this corresponds to the physical phenomenon of resonance it may 

be a more difficult problem to overcome. 
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Young's Modulus Poission's Ratio Density Speed of Sound 

Material Nm-2 Kgm-3 ms-1 

Steel 209E9 0.30 7800 - 

i Aluminium 68.5E9 0.33 ! 2695 :ý- 

ceramic 80.0E9 0.285 7500 - 

\'Vater - 1000 1500 

Table 4.1: The physical parameters of the materials considered. 
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Steel aluminium 

w k v= k v=OPT v= v=OPT: 

1500 1 9.7286 2.3231 8.9098 2.3372 

3000 2 6.7581 2.3176 7.416') 2.5431 

4500 3 4.9742 2.8254 5.4702 3.1050 

6000 4 4.3862 3.4869 147.6597 121.3771 

7500 5 3.3963 2.7015 3.6783 3.3256 

9000 6i 2.9675 2.6769 3.0099 3.0351 

10500 7 3.4626 3.0363 4.7253 3.4724 

12000 8 4.6494 4.3754 8.2889 7.3712 

13500 91 3.1301 3.1251 10.2334 9.8895 

15000 10 3.0793 2.9565 4.0851 3.9047 

Table 4.2: The condition number of the linear system (4.59) spherical shell, thick- 

ness 0.5m. 
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Steel 
I 

Aluminium 

wk v=k v=OPT v= 'v=OPT 

1500 1 9.3316 2.3395 7.2164 

3000 2 7.6303 2.4945 11.6822 

4500 3 7.2126 7.1244 288.7537 

2.3128 

4.2753 

96.7130 

6000 4 1.9738 3.8562 13.277 7 10.6735 

7500 5 3.7685 3.7358 7.4195 6.4217 

9000 6 85.8567 51.2289 25.8885 14.2825 

10500 7 3.7705 3.6598 8.9165 7.8988 

12000 8 79.5560 48.4989 47.1273 26.9341 

13500 9 3.1475 3.1475 5.3062 4.8123 

15000 10 12.2290 7.1426 19.2692 12.5256 

Table 4.3: The condition number of the linear system (4.59) spherical shell, thick 

ness 0.25m. 
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0.5m Thick Shell 0.25m Thick Shell 

Steel Aluminium Steel I Aluminium 

6215 6015 4635 4485 

10114 9812 6581 6397 

12152 12225 8978 8748 

12450 12339 10094 10066 

14201 15648 11819 11582 

15970 17665 12008 11956 

18222 20158 15118 14738 

Table 4.4: The first seven non-zero natural frequencies of the steel and aluminium 

spherical shells. 
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4.5 Numerical Results 

In this section we present the results of applying the numerical methods developed 

in this chapter to some different test problems. In particular, we shall consider 

the problems of acoustic scattering and radiation from an elastic spherical shell 

and scattering by a solid elastic sphere. The geometry is necessarily simple in 

order to allow us to obtain an analytical solution. This will enable us to assess 

the accuracy of our numerical scheme in these particular situations and hence gain 

some insight into the error in the numerical solution of more complicated practical 

problems. To demonstrate that our numerical method yields accurate results for 

other shaped structures, we also consider the problem of a cylinder radiating an 

acoustic field. For all the problems considered here the structure is made of either 

steel or aluminium and is immersed in water. The physical parameters are all given 

in Table 4.1. 

The measure of the error that we have chosen here is the relative mean error, 

given by 
n 

O(Pi) - On(Pi) 

RAI E= i=1 
n O(pi) 

i-1 

(4.69) 

where O(pi) and 0�(pi) are the exact and numerical solution respectively, at the 

collocation points pi, ..., pn. We have chosen this measure of the error rather than 

the mean relative error given by (3.123) since, for certain points, ¢(p) is close to 

zero, and (3.123) may give a distorted measure of the error at these points. 

In Section 4.4 it was shown that the solution to the coupled problem would 
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not be unique at the characteristic frequencies if we use the surface Ilelmholtz 
i 

equation (2.34) to model the acoustic field. Figure 4.1 shows the computed surface 

pressure for a solid steel sphere scattering an incident plane wave using both the 

surface Helmholtz equation (denoted SHE on the figure) and the direct Burton 

and Miller formulation (denoted DIRECT). REAL and I\IAG are used to denote 

the real and imaginary parts of the solution. Figure 4.2 shows the corresponding 

surface velocity. The sphere was modelled using 147 axisymmetric finite elements 

and 21 axisymmetric boundary elements. Clearly employing the surface Helmholtz 

equation has failed to yield the required solution, whilst the direct formulation gives 

accurate results. It is obvious from these results that it is necessary to employ an 

integral equation formulation of the exterior Helmholtz problem which is valid for 

all wavenumbers. 

The axisymmetric structures considered in the following results are spherical 

shells of thickness 0.5m and 0.25m respectively. Both of the shells have an outer 

radius of lm. The displacements within the shells were modelled using 200 axisym- 

metric finite elements and the acoustic field was modelled using 25 axisymmetric 

boundary elements. We will also consider a_thin spherical shell of thickness O. 05m 

and outer radius 1m, where we modelled the displacements using 150 axisymmetric 

finite elements and the acoustic field with 25 axisymmetric boundary elements. 

Figure 4.3 gives a comparison between the exact surface pressures (denoted 

ELASTIC on the figure) and the surface pressures computed using our numerical 

scheme (denoted NUMMER) for an aluminium shell of thickness 0.25m scattering 
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a plane wave at an angular frequency of 7500 rads/sec. The exact solution for 

a rigid sphere of radius Im (denoted RIGID) scattering the same incident plane 

wave is also shown in order to demonstrate the necessity of taking the structural 

motion into account. In Figure 4.4 we give the corresponding results for a steel 

shell of thickness 0.05m scattering an incident plane wave at an angular frequency 

of 9000 rads/sec. In both cases our numerical scheme yields an accurate solution 

to coupled fluid-structure interaction problem which is different from the solution 

to corresponding rigid body scattering problem. 

Figures 4.5 and 4.6 show the mean relative error in the surface pressures and 

surface velocities respectively, for the spherical shell of thickness 0.5m scattering an 

(equivalent to vavenumbers incident plane wave at different angular frequencies. 

k=1,2, 
... , 10 ). Figures 4.7 and 4.8 show the corresponding results for the shell 

of thickness 0.25m. It is clear from these results that the error is increasing as the 

frequency increases, which is due to the more oscillatory behaviour of the solution 

at higher frequencies. 

Figures 4.9 and 4.10 show the relative mean error for the surface pressures and 

the surface velocities respectil"ely, for the spherical shell of thickness 0.5m, with a 

known pressure distribution on the inner surface of the shell. The corresponding 

results for a shell of thickness 0.25m are given in Figures -1.11 and 4.12. Unlike 

the scattering problem, there is not the deterioration in the accuracy of the results 

as the frequency increases. However here the solution is less oscillatory than the 

solution to the scattering problem at high frequencies. 
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For both problems we notice that for certain frequencies the errors are signifi- 

cantly larger than one might expect, particularly for the steel sphere. From Table 

4.4, we see that these peaks in the error correspond to frequencies which are close 

to the natural frequencies of the structure in vacuo. Similarly, we see from Table 

4.3 that the condition number of the final linear system, for the shell of thickness 

0.25m, is larger if . is close to a natural frequency. However, a large condition 

number does not necessarily imply poor results. For example, the results for an 

aluminium shell of thickness 0.25m with w=4500 radians per second are not noti- 

cabley less accurate than the results for other values of w, although the condition 

number is considerably larger. 

Figures 4.13 and 4.14 we show the mean relative error in the computed solution 

for a three-dimensional spherical shell, thickness 0.25m and outer radius im, with a 

known pressure distribution on the inner surface. The shell was modelled using 750 

finite elements and the acoustic field was modelled with 112 boundary elements. 

It can be seen that the results are similar to those for the axisymmetric model of 

the problem. In particular, we see that this three dimensional model has the same 

pattern of large errors due to the natural frequencies of the structure. 

Finally, in this section, we shall consider the problem of a cylinder, radius 0.6m 

and length 1.8m radiating an acoustic field due to a uniform body force in the 

positive z direction. The consistent load vector due to known body forces F is 

given by 

fý = 
JD_ NT(P)F(P)dl,; (4.70) 
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where N(p) is given by (4.12) for axisymmetric structures or (4.31) for three- 

dimensional structures. Although there is no analytical solution to this axisym- 

metric problem, it is possible to compare the results produced by an axisymmetric 

model to those produced by a three-dimensional model. The solution should also 

be computed on refined finite element and boundary element meshes to ensure that 

the numerical scheme is converging. The axisymmetric cylinder was modelled us- 

ing a coarse mesh of 54 quadratic finite elements and 15 linear boundary elements, 

and a fine mesh of 320 quadratic finite elements and 30 linear boundary elements. 

The three-dimensional cylinder gras modelled using 320 quadratic finite elements 

and 128 quadratic boundary elements. In this case it was not possible to refine the 

mesh due to the large amount of computer storage required. 

Figure 4.15 gives a comparison of the pressures computed in the exterior field 

using the different axisymmetric models at an angular frequency of 1500 rads/sec. 

COARSE and FINE denote the solution computed using the coarse and fine ax- 

isymmetric models respectively. A comparison between the computed pressure 

in the exterior field using the fine axisymmetric model and the three-dimensional 

-model 
(denoted 3D) at an angular frequency of 1500 rads, 'sec is given in Figure 

4.16. The points at which the exterior field pressures have been computed lie on 

a sphere of radius 5m, where PHI denotes the 0 coordinate of the spherical polar 

coordinates (r, 8,0). The corresponding results for an angular frequency of 1500 

rad; sec are given in Figures 4.17 and 4.18 respectively. Since there is good agree- 

ment between the results using the two axisymmetric models, and in light of the 

131 



results for spheres given above, it seems that our computed solution to this problem 

is accurate. Similarly, as the computed solution using the three-dimensional model 

is in fairly good agreement with the solution using the fine axisymmetric model, 

we conclude that the results produced using the three-dimensional model are fairly 

accurate. 

In conclusion, it would seem that we can use this technique to effectively model 

the acoustic field around an arbitrary-shaped elastic structure. It is also clear from 

our results that it is not feasible to assume that the structure is rigid, especially 

when the structure is a thin shell. 

We have also established in this chapter that it is essential to employ an in- 

tegral equation formulation of the exterior acoustic problem which is valid for all 

frequencies, if we are to obtain meaningful results. However, the method is not 

as accurate if the frequency is close to a natural frequency of the structure. It is 

possible that there are frequencies for which the coupled system may not possess 

a unique solution, but it requires more research to establish whether or not such 

frequencies exist. In the next chapter we shall demonstrate the practical use of our 

numerical methods by analysing the acoustic field radiated by a sonar transducer 

immersed in water. 
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5 THE DETERMINATION OF THE RESPONSE 

FROM SONAR TRANSDUCERS 

5.1 An Introduction to Piezoelectric Sonar Transducers 

In this chapter we shall apply the methods developed and analysed in the previous 

chapters to determine the sound field radiated by a piezoelectric sonar transducer. 

In particular, we wish to determine the frequency at which we obtain the maximum 

response. 

Before describing the transducers that are considered here, it is necessary to 

give a brief description of the piezoelectric effect. In general, the piezoelectric 

materials used in sonar transducers are certain types of ceramic and for them to 

exhibit any piezoelectric properties they have to be polarised. This is achieved by 

heating the ceramic to a certain temperature and allowing it to cool in the presence 

of a strong electric field. This causes the electric dipoles within the crystals of the 

ceramic to align in the direction of the electric field (58 
. 

If a force is applied to the 

ceramic in the direction of the polarisation, this will cause a potential difference, 

or voltage, across the surface of the ceramic. Conversely, applying a potential 

difference to the ceramic in the direction of the polarisation will cause a deformation 

of the ceramic material [58;. It is this relationship between the applied voltage and 

the deformation that is known as the piezoelectric effect. If the applied electric 

potential has harmonic time dependence of the form e- ', so will the displacements 

151 



within the ceramic. 

The types of transducers considered here are the ring transducers which consist 

of a ring of ceramic material, rectangular in cross section, which may be surrounded 

by an outer ring made of a metal such as aluminium, (see Figure 5.1). For the three 

transducers considered here, denoted A, B and C, the inner radius of the ring is 

50.8mm, the height 28mm and the thickness of the ceramic material is 6.35mm. 

Transducer A does not have an outer ring of metal. Transducers B and C have outer 

rings of aluminium of thickness 1.5875mm and 4.7625mm respectively [271. The 

elastic constants of the ceramic material and the aluminium are given in Table 4.1. 

It can be seen from Figure 5.1 that these transducers are axisymmetric about the 

central axis. It is the case that many practical sonar transducers are axisymmetric 

in design. The transducer is excited by an alternating voltage applied across the 

inner and outer surfaces of the ceramic ring, which are coated with a conducting 

paint to ensure that the potential is evenly distributed. 

5.2 Loading on the Structure 

In order to compute the frequency at which a peak response is obtained it is 

necessary to model the stresses within the ceramic part of the transducer due to 

the piezoelectric effect. We can write the linear modified stress-strain relationship 

(4.2) as 
. 
52; 

Z=De - ua . 
(5.1) 
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um 

HEIGHT 

Figure 5.1: A typical ring type sonar transducer. 
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where va is the stress due to the piezoelectric terms. Explicitly 

o-o = ep E (5.2) 

where E is the electric field strength and ep is the tensor of piezoelectric parameters. 

The electric field strength is related to the electric potential t' through 

E_ý[: (5.3) 

If the potential on the inner and outer surfaces of the ceramic ring is ['; and 1', 

respectively, then E is given by 

cos 0 

E= sin 0 (5.4) 
a 

0 

where a is the thickness of the ceramic ring, and (r, B, z) are cylindrical polar 

coordinates whose origin is the centroid of the transducer. 

Because of the way in which the ceramic material is polarised, and the way 

in which the electric field is applied across the ceramic material, the only stress 

due to the piezoelectric effect will be in the radial direction. In an axisymmetric 

formulation o will be of the form [64] 

0-r 

0 

0 

0 
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where o is the radial stress. In a three-dimensional formulation co is given by 

QT COS 0 

o-,. sin 0 

0 
co = 

0 

0 

0 

(5.6) 

The magnitude of o,. depends on the piezoelectric parameters of the ceramic 

material and the strength of the electric field applied to the ceramic ring. In the 

examples considered here the exact values of the piezoelectric parameters are not 

known, but it is clear from (5.2) and (5.4) that o is a constant. It is possible 

to assume an arbitrary value for o and use this to determine how the response 

changes with frequency and then compare the shape of this response function to 

the one obtained experimentally. 

By treating the vo term as a pre-stress term in the finite element model of the 

transducer, we obtain the consistent load vector 1`641 

fk= fBodV (5.7) 

where B is the elastic strain-displacement matrix, given by (4.6) for an axisym- 

metric structure, or (4.28) for a three dimensional structure. 
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5.3 Experimental Determination of the Response 

In order to validate our numerical method for predicting the frequencies at which 

the maximum response occurs, we make a comparison between our computed re- 

suits and some experimental results. The experimental results for each of the three 

transducers described in Section 5.1 were obtained using the procedure described 

below. 

As an initial guess to the resonant frequency in water, we determine the resonant 

frequency in air by performing a loop test on the transducer as follows. A known 

voltage is applied to the transducer at different frequencies and the impedance of 

the transducer is measured at each frequency. The frequency which minimises the 

impedance is the resonant frequency of the transducer. The resonant frequency in 

air is now used as a starting point for finding the resonant frequency in water. 

Each transducer was immersed in water in a test tank which was approximately 

2.3 metres wide by 5.25 metres long and 2 metres deep. The transducer was excited 

by a unit alternating voltage applied across the electrodes at different frequencies, 

and the acoustic pressure was measured one metre from the transducer. Clearly 

this situation was not ideal since there was a strong possibility of reflections from 

the sides and the bottom of the tank and, to a lesser extent, from the surface of the 

water, although sides of the tank were covered in a material designed to minimise 

any reflections. To further complicate the situation, the transducer had to be put in 

a bag of castor oil, since the water would short circuit the terminals of the ceramic 

ring. Castor oil was used since it has almost identical acoustic properties to water 
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Number of Number of 

Transducer Finite Elements Boundary Elements 

A 40 24 

B 60 26 

C 80 28 

Table 5.1: The number of finite elements and boundary elements used to model 

each transducer. 

but is a poor conductor. We assumed any effects the bag had on the acoustic field 

were negligible. The full experimental set-up is shown in Figure 5.2. 

This set-up is likely to introduce a number of sources of experimental error into 

the results that we obtain. To minimise the effect of these errors, the experiment 

was repeated a number of times in different positions in the tank, and the results 

averaged. 

5.4 Results and Conclusions 

The numbers of quadratic, axisymmetric finite elements and linear, axisymmetric 

boundary elements used to model each transducer are shown in Table 5.1. 

To find the peak response the problem must be solved for a number of different 

frequencies. However this is expensive since the boundary element matrices have 

to-be re-computed for each new frequency. We can obtain an initial guess for 

the frequency which gives the peak response by finding the natural frequency of 
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STIC BAG 
TAINING CASTOR OIL 

VSDUCER 

Figure 5.2: The experimental set-up for determining the peak response of the sonar 

transducer. 
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Computed Natural Experimental Resonant 

Transducer Frequency Frequency in Air 

A 9634 9755 

B 10058 10225 

C 10593 10770 

Table 5.2: The appropriate natural frequency, in Hz, of the sonar transducers 

considered. 

the structure, in a vacuum, which has an- eigenvector, or mode shape, similar 

to the displacements which we are inducing in the transducer, and hopefully the 

frequency giving the peak response is close to this natural frequency. Table 5.2 

gives the appropriate computed natural frequency in vacuo (in hertz) for each 

type of transducer with the experimental resonant frequency in air. There is close 

agreement between the computed and experimental natural frequency, which gives 

us some confidence in our measuring instruments. Since all three transducers have 

a natural frequency at about 10 Khz, we shall study the response in the frequency 

range 5-15 KHz. We note that it is possible to use these high frequencies, and hence 

high wavenumbers, since the dimensions of the transducers are relatively small. For 

example, using the largest transducer, C, the maximum value of d =1 p-qI is 

0.12695m. For f =15 KHz we have w =94247.78 and k =62.8319, and hence the 

maximum value of kd is 7.9766. 

The results presented here are for the absolute value of the acoustic pressure 
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0 
at one metre from the transducer in both the radial and the axial directions. The 

numerical results have been scaled to give pressures of the same magnitude as 

the experimental results. This is allowed since we have chosen the value of or 

arbitrarily. 

Figures 5.3,5.4 and 5.5 show the acoustic pressure one metre from transducers 

A, B and C respectively in the radial direction, over the entire frequency range 

considered. 

Figures 5.6,5.7 and 5.8 show the acoustic pressure one metre from transducers 

A, B and C respectively in the radial direction, around the frequency giving the 

peak response. It can be seen that there is a good agreement between the com- 

puted results and the experimental results for transducers A and B. The results 

for transducer C do not agree so well, but the measured pressure for transducer C 

is smaller than that for A and B and so could be more susceptible to experimental 

error due to reflections and other spurious acoustic waves in the tank. 

Figures 5.9,5.10 and 5.11 show the results for measuring the pressure one metre 

from the transducers a, B and C respectively in the axial direction. We note that 

there is a peak in the response in the axial direction at the same frequency as 

for the radial direction, but this peak is not as big. In this case the numerical 

solution is increasing for the higher frequencies, but only the experimental results 

for transducer C seem to show this trend. 

It is clear that this numerical technique can be used to predict the response 

patterns of sonar transducers. If accurate data is available on the piezoelectric 
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properties of the ceramic part, then it is feasible to extend the finite element method 

to obtain an accurate model to predict the exact response [52'. 

On the experimental side, it would seem that we need to obtain more accurate 

results when we are trying to measure the smaller pressures. However, this would 

probably require us to use a bigger test tank to reduce the interference from any 

echoes. 
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A The Analytical Solution for a Hollow Elastic 

Sphere in an Acoustic Medium. 

We now present an analytical solution to the problem of acoustic scattering and 

radiation from a spherical isotropic elastic shell, outer radius a and inner radius 

b. The displacements in the shell can be represented in terms of two potentials ? P, 

and Lid which satisfy [28,29 

(V2+ke)V, =0 (V2+k2)L'd=0 (A. 1) 

where k, _L and kd =- and c, and Cd are the speeds of shear and dialational 

waves in the shell. These are related to the elastic parameters of the shell through 

C2 _ li C2 
A+? u (A. 2) 

d 

where p and A are the Lame elastic parameters, which in turn are related to Young's 

modulus and Poission's ratio through 

== 
(A. 3) 

(1"V)(1_2v)ý %l 2(1+L). 

Let (r, 0,0) be spherical polar coordinates whose origin is at the centre of the 

sphere, and assume axial symmetry about the z axis, so the solution is independent 

of gyp. Then, the normal displacements u are given by 

2L� = är [vd + är (ry'3)] + rk; ',. (A. 4) 

The three boundary conditions on the outer surface r=a are 

Trr = -ýl un =-i 
ay5, 

Tre =0 
(A. 5) 

PJ 

i 



where qt is the total acoustic pressure in the exterior field. The normal stress r,.,. 

is given by [281 

z 
"ýTrr = -Ak 'd + 211 

2 
Od äf ýTT�aý (A. 6) 

and the shear stress 7,9 is given by 

TrO = /I {`? ä [r äe (L'd + ar(rv, )) ]+; ääý } (a. 7) 

On the inner surface r=b we have the boundary conditions 

Trr = tint Tr9 =0 
(A. 8) 

where O; nt is some known pressure distribution on the inner surface. If the interior 

of the shell is a vacuum then dint = 0. We assume that ¢i�t can be written in the 

form 

00 
Pint = Ei; otEZ, PP(Cos 0). (A. 9) 

n-0 

It can be shown that the potentials can be written in the form [28,29] 

00 
= eiw'tEPP(cos 0) [b. ln(k, r) ± dnyn(ksr). a<r<b (a. 10) 

n-o 

and 

VId = e11> Pn(cos e)[cjn(k3r) + enyn(kjr) ar<b (A. 11) 
n=0 

where jn and y,, are the spherical Bessel and Neumann functions respectively, and 

P� are the Legendre polynomials. In the exterior acoustic field we have Ot = ¢, +c i 

where ¢; and ¢, are the incident and scattered (radiated) sound fields, given in the 

form 

CC 
Oi = eiý'ty: xnPn(cos0), n(kT) 

(A. 12) 

n=0 

11 



and 
00 

0e =. 
'Ea, Pn(cos 0) Zn(kr) (A. 13) 

n-0 

where hn are the spherical Hankel functions of the first kind. 

Substituting these into the boundary conditions yields, for each value of n, the 

linear system 

Da=r 

where a= [an, 6,,, cn, d,,, ¬T and 

r= 

-Jn(ka)k2Q2? 
/ xn 

Ps 

kaj (ka)xn 

0 
%_ 

S_P, -, n 

0 

The elements of the 5x5 matrix D are given by 

D11 = kJa2hn(ka)Pf 

P., 

D21 = -kah;, (ka) 

D31 =0 D41 =0 D51 =O 

D12 = (2n(n -; - 1) -k a2)jn(kda) - 4kdajn(kda) 

D22 = kdaj (kda) 

D32 = 2(jn(kda) - 
kdajn(kda)) 

D42 = (2n(n + 1) - k, 2 b2)jn(kdb) - lkdbjn(kdb) 

(A. 14) 

(a-15) 
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D52 = 2(jn(kdb) 
- kdbjn(kdb)) 

Dis = 2n(n + 1)(k, aj' (k, a) -j (k, a)) 

D23 = n(n - 1)j, (k3a) 

D33 = 2k, ajn(k, a) + (k; a2 - 2n(n + 1) + 2)jn(k, a) 

Das = 2n(n + 1)(k., bjn(k, b) - jn(k, b)) 

D53 = 2k, bj�(k, b) ± (k; b2 - 2n(n + 1) + 2)j�(k, b) 

D14 = (2n(n -7 1) - k, a2)yn(kda) - 4kday, 
ý(kda) 

D24 = kdayn(kda) 

D34 = 2(yn(kda) - kdayn(kda)) 

D44 = (2n(n + 1) - k, b2)yn(kdb) - 4kdbyn(kdb) 

D54 = 2(yn(kdb) - kdbyn(kdb)) 

D15 -= 2n(n + 1)(k, ayn(k, a) - yn(k, a)) 

D25 = n(n + l)yn(k3a) 

D35 = 2k, ayn(k, a) + (k'a2 - 2n(n + 1) + 2)yn(k, a) 

D45 = 2n(n + 1)(k5byn(k3b) - yri(k3b)) 

D55 = 2k, by, (k, b) + (k; b2 - 2n(n + 1) + 2)y�(k, b). 

If the incident wave is a plane wave of amplitude ¢o then the coefficients x are 

given by 

xn = Ooi'(2n 1). (A. 16) 

IV 



If the structure is a solid sphere, we set b=0, and see that the d� and e� must 

be zero since the solution must be finite at r=0. Since there no inner surface, we 

omit the boundary conditions there, and hence the last two equations in the above 

system, to obtain a3x3 system for the remaining coefficients. 

Once we have found the coefficient a� we can use (A. 12) and (A. 13) to find the 

total pressure on the surface or in the external domain. The normal velocity on 

the surface can be found using 

_ 
a¢t Un 

_ wpf or 
(A. 17) 

v 
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Figure Captions 

Figure 1: Condition number of Burton and Miller's formulae (2.6) for 

a unit sphere. 

Figure 2: Condition number of Burton and Miller's regularised formulae 

(2.12) for a unit sphere. 

Figure 3: Formulation (2.6) for a unit sphere, using a 40 x 40 subdivision. 

Figure 4: For a unit sphere, using a 20 x 20 subdivision. 

Figure 5: For an axisymmetric ellipsoid with b/a - 3, using a 20 x 20 

subdivision. 

Figure 6: CHIEF method for a unit sphere, using a 40 x 40 subdivision. 

Figure 7: For a family of right circular cylinders at k-1, using a 

20 x 20 subdivision. 



Abstract 

Classical boundary integral formulations of the Helmholtz equation in 

the exterior domain either via the Helmholtz formulae (leading to direct 

formulations) or via layer potential representation of the solution (leading 

to indirect formulations) fail to have a unique solution for certain real 

values of the wavenumber. In this paper we consider three of the most 

commonly used formulations which are valid for all wavenumbers. We carry out 

a systematic comparison between these formulations, investigating their 

suitability for use in a general boundary element code. We study the effect 

of parameters in these formulations on the stability and the attainable 

accuracy of the discretised equations. The computational aspects of our 

boundary element methods, such as the numerical evaluation of singular 

integrals and the efficient solution of the resulting linear systems are also 

discussed. 



1. Introduction 

In recent years many boundary value problems- of mathematical physics and 

engineering have been formulated as integral equations over the finite 

boundary of the domain of interest and subsequently solved by finite element 

type methods (8,22,401. Here we are interested in the solution of time 

harmonic acoustic or electromagnetic radiation or scattering, by a three 

dimensional body whose bounded surface S belongs to the class C2. We denote 

by D_ the interior of S, by D+ the unbounded domain exterior to S, whilst n 

denotes the unit normal to S directed into D+. The governing equation is the 

Helmholtz (reduced wave) equation defined by 

(o2+k2) '(p) -0 peD+, Re(k), Im(k) >0 (1.1)a 

with either of the boundary conditions 

s'(p) - f(p) pES (1.1)b 

or 

(p) + h(p) gy(p) - f(p) pES, Re(h) >0 (1.1)c U-n 

and 9 also satisfying the Sommerfeld radiation condition: 

l im r[A (p) - ik ap(p) 
]-0 

Ipt°r 

uniformly for all directions p/IpI. 

In this paper we study various direct boundary integral formulations of 

the above problem. The indirect formulations, based on layer potential 



representations of the unknown function, [9,13,32], yield integral equations 

which are similar to those obtained by the direct formulation. Furthermore 

we concentrate mainly on the radiation problem (the Neumann problem); that is 

we seek a "radiating wave-function" (solution of (1.1)a and (1.1)d) also 

satisfying (1.1)c with h(p) x 0. The starting point for the direct 

formulation of the exterior acoustic problem is the well-known Helmholtz 

formulae 

V(P) PED+ 
8Ck {ß(9) (P, 9) -- (q) (; k (P, 9)} dSq i (1.2) ýO(P) PES 

S0 peD_ 

where 

Gk(P, q) - eikip-ql 4xip-qI 

is the fundamental solution or the free-space Green's function for (1.1)a. 

We note here that if S is non-smooth, that is at some points pES, the tangent 

to S at p is non-unique, the term on the right hand side of (1.2) has to be 

suitably modified [9). 

Let us define similar to the treatment of-the potential problems [22], 

the following radiating wave functions known as Helmholtz single and double 

layer potentials respectively: 

(LkQ)(P) s 
Jcr(q) 

Gk (P, q) dSq (l. 3) 

(Mka)(p) a Q(q) 
öG 

(p, q) dSq (1.4) 
Sq 



where a is a surface density function. Let us also denote the derivative of 

the operators Lk and Mk in the direction of np, the normal to S at peS, by 

MkT and Nk respectively (9,13). It can be shown that the operators 

Lk, Mk, MkT: Hr(S) - Hr(S) are compact, where Hr(S) denotes the Sobolev space 

of r times continuously differentiable functions in the sense of 

distributions; see also [13,27,31] for smoothness results for these operators 

over other function spaces. Furthermore the operator Nk: Hr(S) 4 Hr(S) is an 

unbounded operator, though Nk: Hr(S) --) H(r-1)(S) is a bounded linear 

operator, but not compact, [13]. 

From (1.2), the boundary integral equation for the Neumann problem can 

be written in the form 

[+ Mk , 
ý(P) _[ Lk Tn- 

, (P) - (Lkf)(P) PES; (1.5) 

known as the Surface Helmholtz Equation (SHE). Once V(p) is known on the 

boundary S, we use (1.2) to obtain gy(p) for pcD+ In the form 

cap 
'P(p) - Mk'P(p) - Lk (p). The kernel of the operator Mk in (1.5) has only 

a weak singularity of the form 1/ip-ql and the Fredholm-Riesz theory [13) can 

be used to deduce that for a countable set of values of k, say IS, the 

operator Mk will have z as an eigenvalue and hence for such values of k, the 

equation (1.5) should not be used as (-2+Mk) is not invertiable. Clearly for 

a given value of k=k* say, the conditioning of the integral equation (1.5) is 

inversely proportional to the distance of k* from IS. If dist(k*, IS) is 

small then the formulation (1.5) is ill-conditioned and hcnce the results 

from a boundary element solution of (1.5) are likely to bear little or no 

resemblence to the exact solution '(p). It is well-known [9) that 

asymptotically (as k-x) the number of terms in IS less than a given value of 



k is proportional to k3. Clearly as k increases the dist(k, IS) is likely to 

be small for all values of k. For example, assuming that S is a unit sphere, 

it can be shown [4]- that the eigenvalues of the operator (-J+Mk) are given by 

>1 
n(-12+Mk) - ik2jn(k)hn(k) n-0,1,2,... (1.6) 

where jn denotes the spherical Bessel functions and hn the spherical Hankel 

functions of the first kind. It follows from (1.6) that, [1,4], 

IS - (kljn(k) - 0, n'0,1,... ). Here 

IS - (..., 20.12,20.18,20.20,20.37,20.54,20.98.... ), indicating the density of 

the eigenvalues; (eigenvalues given correct to 4 significant figures only). 

Therefore In general there is a need for formulations which do not suffer 

from non-uniqueness at these (irregular) frequencies. 

2. Formulations Valid for all Wave-numbers 

Over the past twenty years many formulations have been suggested in 

order to overcome the non-uniqueness at irregular frequencies associated with 

(1.5); see for example [9,10,23,24,38,39). Here we shall concentrate on 3 

such formulations which are used most commonly in practice, at present. 

2.1 Method of Schenck (1968) 

Schenck [35] shows that the equation (1.5) has a solution for all 

wavenumbers, but when kEIS the solution is not unique. This follows from the 

Fredholm alternative theorem by establishing that for keIS, the function 
. 

Lk äßp/än, the right hand side of (1.5), is orthogonal to all the 



f 
eigenfunctions 0i, k(p), i-1,2,..., Q of the operator I4, the adjoint of Mk. 

On the other hand, the interior Helmholtz functional relation, (1.2) 

with pcD_, 

(Mký)(p) - 
(Lk ýý(P) 

peD_ (2.1) 

always has a unique solution 9, (p), peS, which is however difficult to compute 

numerically [14,35]. Schenck [35] suggests the following numerical procedure 

for obtaining an approximation to the common solution of (1.5) and (2.1) 

(which would be the required solution to our problem). Let us assume that on 

discretising (1.5) using a boundary element method (eg. a collocation method 

with the collocation points p1, p2,..., pNES) see section 3, we obtain an NxN 

linear system of equations in the form 

(-2IN - Mk)SQ -b. (2.2) 

We then choose M- M(k) «N- N(k) points pN+1.... PN-}-MED_ and discretise 

(2.1) similarly, to obtain an MxN linear system in the form 

Mkt =c. (2.3) 

Schenck suggests combining (2.2) and (2.3) to obtain (M+N) equations for the 

N unknowns SQ, which would then be solved in a least square sense. This 

method, based on the Combined Helmholtz Integral Equation Form"ilation is 

commonly referred to by the acronym CHIEF. The success of CHIEF in resolving 

the non-uniqueness of (1.5) for keIS depends on the choice of the interior 

collocation points pN+1.... PN+MED_. It Is possible that if all these points 



are chosen sufficiently close to the nodal surfaces of the interior Dirichlet 

eigenfunction [9,35] this method may fail to adequately resolve the 

non-uniqueness of the surface Helmholtz equation.. To be precise If 

IS - (ko, k1.... ) with ki > ki+,, I-0,1,... and If k- kjEIS, then provided 

min{kj-kj_,, kj+, -kj) Is sufficiently large, relative to the discretisation 

error in our method, we expect Schenck's method to work adequately provided 

at least one of the M Interior points is sufficiently removed from the nodal 

surfaces corresponding to kj. For large k however, it is possible that 

several of the values of kIeIS, say kp, kp+,,..., kp+m are sufficiently close 

to k. In this case we may expect that at least m+Q+1 of the M interior 

collocation points should avoid the corresponding nodal surfaces, see 

Figure 4. (We must emphasise that perhaps at such high frequencies other 

methods may be more suitable [12)). 

In general however, neither the critical wavenumbers IS nor their 

corresponding interior eigenfunctions are known. Therefore, we need to 

choose M sufficiently large in the hope that the rank of the (N+M) by N 

matrix, (2.2) + (2.3), is equal to N and furthermore its N singular values 

(16) are sufficiently away from zero to ensure that the non-uniqueness 

problem has been adequately resolved; see Figure 6. 

2.2 Method of Burton and Miller (1971) 

This method is closely related to the indirect formulation of Panich 

(32). On differentiating (1.5) In the direction of np, the normal to S at p 

towards D+, we obtain, using appropriate jump conditions of the layer 

potentials [9,13), the first kind equation 



NkV(P) -(+ MkT) CELP (P) pES (2.4) 

This equation is also singular for kFJS, where JS Is the countable set 

of the elgenvalues of the interior Neumann problem. For example, if S is a 

unit sphere, it can be shown [4] that the eigenvalues of the operator Nk are 

defined by 

Xn(Nk) - ik3hn(k)jn(k) n-0,1,2,... (2.5) 

and hence JS - (kijn(k) - 0, n-0,1,... ). In fact for this case 

JS - (..., 20.22,20.37,20.52,20.56,20.68,20.81,,, ); Indicating the density of 

the eigenvalues; (eigenvalues given correct to 4 significant figures). 

Burton and Miller [11) suggest coupling (2.4) with (1.5) to obtain the 

following second kind integral equation 

((-'+Mk) + ivNk)ýO(P) - (Lk + iv (2+MkT)) (p) peS (2.6) 

where i2 - -1 and v is an arbitrary positive coupling parameter. It can be 

shown that the formulation (2.6) Is valid for all wavenumbers and can be used 

for the Dirichlet problem as well as the Robin problem. In the latter case 

we replace äp/an by f(p)-h(p)ýo(p); see (1.1)c. 

Before the formulation (2.6) can be used in a numerical calculation we 

need to address the following two outstanding issues, namely (I) the effect 

of v on the conditioning of the problem and (ii) the interpretation of the 

hyper-singular operator Nk, suitable for use in numerical calculations. 



2.2.1 Choice of the Coupling Parameter 

Although in theory equation (2.6) is valid for all wavenumbers provided 

v>0, the choice of v greatly affects the conditioning of this integral 

equation. For a given surface S and a value of r the eigenvalues of the 

integral operators in (2.6), though never zero, can become close to it for 

certain values of k. Ideally we should choose .- r(S, k) so as to minimise 

the condition number of the integral operators (le. to avoid Ill-conditioning 

of the formulation). Restricting S to be a unit sphere it is possible to 

obtain the eigensystems for all the integral operators involved [4) and hence 

choose v- v(S, k) so as to minimise the condition number of the integral 

equation (2.6); see [3,4,25). In [4,25) the choice r(S, k) - 1/k was shown to 

be "almost optimal" for Sa sphere. In general provided the surface is not 

too thin or elongated, the same choice can be shown to yield well-conditioned 

integral operators [4). 

The choice of v(S, k) x1 has often been used in practice. In Figure 1, 

values of the condition number of the operator (-2+Mk) + ivNk in (2.6) are 

plotted against (v, k)E[O. 1,10] x [0,10]. It can be seen that the choice of 

coupling parameter can greatly affect the conditioning of the equation (2.6) 

and, as can be seen in Figure 3, influence the attainable accuracy by a 

numerical method; see also [4] for more details. 



2.2.2 interpretation of the Operator Nk 

It can be shown that 

a2c (p, q) - 0(ip-qi-3) as p4q; p, gES (2.7) 
np nq 

Let us recall that 

Nk'P(P) - 
J, 

(q) 
_ 

Gk (p, q) dSq 
pq 

(2.8) 

In order to view Nk as an integral operator with the kernel a2Gk/anpanq, 

(which is ideal for numerical calculations) we need to change the order or 

differentiation and Integration in (2.8). Because of (2.7) however, this 

change of order is not strictly valid as the resulting integral operator will 

have non-integrable singularity. We are however allowed to change the order 

of integration and differentiation (which is always done in practice) 

provided the resulting hypersingular Integral Is interpreted in the sense of 

Hadamard finite part [18). Clearly one needs to carry out some mathematical 

analysis on Nkjo before employing a numerical quadrature to approximately 

evaluate such integrals. Various methods [10,37) have been proposed and here 

we employ the formulation used in [29) which follows from the pointwise 

variational principle Introduced in [36]: 

ýP(q) 
i 

(p, q) dSq - k2 (P) 
fs Jflp. 

flq Gk(P, q) dSq + 
is 

Pq 

JI tß(9)-p(P)) 
awn 

(P, 4) dSq (2.9) 
Sp4 



The second integral on the right hand side of (2.9) still has O(Ip-ql-2) 

signularity and care must be taken in numerically evaluating it whenever the 

collocation point is in or near the element over which integration is carried 

out; see section 3. 

2.3 Regularised Burton and Miller Formulation 

In an attempt to avoid the hyper-singular operator Nk in the formulation 

(2.6), Burton [10); suggested, following the work of Panich [32], to 

regularise the operator Nk. By applying Green's second theorem in the 

interior domain D_, to the function Gk(p, q) and Mko(p), it can be shown that 

[10] 

LkNka(P) - (Mk + 2)(Mk - z)Q(P) pCS . 
(2.10) 

Burton (10) suggests premultiplying the equation (2.4) by Lo, using (2.10) 

with k-0 to obtain in place of (2.4) the equation 

(P) peS (2.11) (Lo(Nk-No) + Mo-4)ß(P) - Lo(2+MkT) U-n 

This equation is now coupled with (1.5) to yield the regularised version 

of (2.6) in the form 

((-Z+Mk)+iv[LO(Nk-No)+Mo-ä))ß(P) _ [Lk+ivLo(2+MkT)) (p), PeS. (2.12) 

It can be shown that 



a2 
n-Jnq 

(Gk(p, q) - Co(p, q)) - 0(ßp-ql'') + 0(1) (2.13) 
p 

and hence all the integral operators in the regularised formulation (2.12) 

are compact and perhaps more amenable to accurate numerical solutions [6]. 

Clearly the formulation (2.12) is more complicated (and hence more expensive 

in numerical computation) than that of (2.6), however it is possible to 

reduce this extra computational cost if we were to store the matrix 

approximations to Lo and Mö and use them to solve the problem for a range of 

values of k; [3]. 

The work of Amini [4] on the conditioning of the regularised formulation 

(2.12) indicates that the equation (2.12) has a smaller condition number than 

that of (2.6) for all values of k and P. In Figure 2 values of the condition 

number of the integral operator (2.12) for a unit sphere are plotted against 

(v, k)c[O. 1,10]x[0,10]. It can be seen that there are peaks in the value of 

the condition number which cannot be avoided by simple variation in v; see 

[4]. In general the choice of v(S, k) N1 ensures that the formulation (2.12) 

is reasonably well conditioned. 



3. Numerical Methods 

3.1 General Remarks 

The formulations (1.5), (2.6) and (2.12) are boundary integral equations 

of the second kind which may be represented in a common operator notation by 

(X*_K)fp(P) - 8(P) PCS , (3.1) 

where X*tC is some complex constant and K: X4Y is a bounded integral equation 

from some Banach space X to a Banach space Y, with S as its domain of 

integration. The most commonly used numerical methods for solving (3.1) are 

the weighted residual methods which are based upon seeking a solution 

wN(p) = '(p), from a finite dimensional subspace X1JcX, spanned by some 

linearly independent basis function In general fi has "local 

support"; that is fi(p) is non-zero only over a small portion of S; for 

i-1,2,..., N. We have 

N 

'PN(P) - aifi(P) pCS (3.2) 
i-ý 

Replacing (3.2) into (3.1) and attempting to minimise "in some sense" the 

residual function rN(p) - g(p) - (X*-K)s(p), results in a linear system of 

algebraic equations of the form 

(X*IN-KN)aN ° ZN (3.3) 

to be solved for the N unknowns a,, a2,..., aN. Once RN is known, the equation 

(3.2) may be used to find '(p) = V(p) for pcS. 



3.2 Our Numerical Method 

The most commonly used weighted residual method for 3-D problems is the 

collocation method; (see also [17] and references therein for a variational 

approach). Here in order to obtain the linear system (3.3) we choose N 

collocation points p1, p2,..., pN on S, appropriately and impose the condition 

rN(pi) -0 for 1-1,2,..., N. The results presented in this paper are based on 

the collocation method with the simplest choice of the basis 

functions, namely piecewise constant functions. The surface S is divided 
N 

into N disjoint subsets Si where U Si -S and (fi) are chosen as follows: 
i-I 

1 if peSi 

; (P) -i-1,2,..., N . (3.4) 

0 otherwise 

The collocation points are chosen with picSi and whenever possible close to 

the centroids of Si. In this case the unknowns ai in (3.3) satisfy 

al - pN(pi) = c(pi); i-1,2,..., N. The elements of the NxN complex values 

matrix KN are given by 

(KN)ij -J 
Si 

K(pi, Q)dsq i, j - 1,2,..., N , (3.5) 

which in general have to be evaluated numerically. Collocation methods where 

the integrals (3.5) are calculated numerically are referred to as "discrete 

collocation methods". We would expect that provided the quadrature rules are 

sufficiently accurate any error estimate and analysis for the collocation 

method [7) to be also valid for the discrete collocation method. 

In practice we are often forced to make a further approximation, namely 



the surface elements Si's are approximated by Si, where in general Si is a 

linear or quadratic curved element approximating Si. The results of [28] 

indicate the importance of a good approximation S_- U Si for S. The 
i-1 

surfaces considered for the results in this paper are all axisymmetric, which 

lend themselves to accurate and cheap parametrisation by cubic splines [5j. 

The cylindrical polar coordinates (p, B, z) is a convenient system for 

axisymmetric structures with z as the axis of symmetry. We consider the 

parametric representation of the surface S in the form 

x- x(s, O) - p(s)cos(B) 

y- y(s, O) - p(s)sin(O) 

z- z(s) 

0(s<L 

0<0< 21r 

(3.6) 

where s is the arc-length from one end of a generating curve (with 6-0 say) 

with total length L. The surface S is now globally transformed to a 

rectangle in s-B plane with the Jacobian of the transformation given by p(s); 

[5]. The integral operator in (3.1) is transformed to 

KV(p) - 
12, r 

IL K((s*, B*), (s, 8)) '(s, O)p(s)dsdO , (3.7) 
00 

where (s*, O*) and (s, 9) refer to the surface points p (collocation) and q 

(integration) respectively. The rectangle in s-B plane is then subdivided 

into mit=N subrectangles with 0- so < s, < ... < sm -L and 

0- 00 < B1 < ... < On - 27. The collocation points pQ 3E (si(Q), Bt(Q)), 

P=1,2,..., N are chosen as the centroids of these rectangles. 

The general boundary element method consists of the following two steps: 

(1) setting up the coefficient matrix in (3.3), ie. the evaluation of N2 



double integrals of the form (3.5), (ii) solving the NxN complex linear 

system (3.3). For moderate values of N, the computational cost of setting up 

the matrix forms a major part of the total cost. . 
if the system (3.3) is 

solved by Gaussian elimination type methods, as N gets larger the solution 

time will begin to dominate the total computing time. Precisely how large N 

has to be in order for this to be true depends on the kernel K(p, q) as well 

as the specific machine used (ie. sequential or parallel processors). 

Let us now briefly discuss our numerical method of dealing with the 

above two steps. 

3.2.1 Numerical Integration Scheme 

Here all the calculations are carried out on the rectangles in the s-B 

plane. If the collocation point is outside the region of integration, the 

integrands are non-singular and a 3x3 product Gauss-Legendre rule is 

employed. Referring back to (3.5), we must point out that If pitSj, but 

dist(pi, SJ) Is small, It may be necessary to use a more accurate integration 

scheme even though the integrand is non-singular; see (19] and references 

therein. 

The diagonal elements of KN involve the integration of singular 

integrals, where piESj (ie. here i=j). A very effective method of dealing 

with weakly singular integrands, based on the error function transformation, 

was employed in [5] and analysed in [2]. Here we shall employ a 

transformation method similar to [15,26] which is equivalent to a polar 

coordinate transformation in order to annihilate the O(lp-qi-') 



singularities and subsequently employ a product Causs-Legendre rule to 

approximate the non-singular integrals. Let us refer back to the rectangles 

in the s-B plane, with the collocation points (si., B* 
si_1+si 

, 
8J_ß+Bj 

for 1-1,2,..., m and J-1,2,..., n. We now divide the rectangle containing the 

collocation points Into 4 triangles each having the collocation point as a 

vertex, by joining the two diagonals. If we are integrating over a triangle 

in s-B plane with vertices (sl, 81), (s2,02) and (s3,83) say, where the 

singularity in the integrand is at vertex (sl, 61), we use the following 

transformation 

s (1-, )s1 + (1-E), s2 + Eis3 

B= (1-ß)B1 + (1-E)g02 + E'03 
0<E,. q <1 (3.8) 

to map the triangle into a unit square in Z-t) plane. The Jacobian of this 

transformation is 

J- i(s2-sl)(03-81) - (s3-s1)(62-61)In . (3.9) 

If the original Integrand had an inverse distance singularity in the s-8 

plane the transformed integral in E-n plane is non-singular. 

Let us remark here that although on the original curved surface S the 

singularity is of the form 0()p-qt-1) after the transformation to the s-B 

plane followed by the E-n transformation the resulting integrand though 

non-singular, is not as smooth as the integrands for the calculation of the 

off-diagonal elements of KN. For this reason we employ a 5x5 product 

Gauss-rule in i: -j plane. Furthermore, as piecewise constant function 

approximation is employed here, the evaluation of the second integral on the 



right hand side of (2.9) causes no difficulty as p(p) and p(q) are assumed to 

be equal whenever p and q are on the same element. If higher order function 

approximation Is employed then careful analysis Is required In evaluating 

those singular Integrals; see [19,37]. 

3.2.2 Solution of the Linear System (3.3) 

The direct solution of a full NxN simultaneous linear equations by 

Gaussian elimination type method requires 0(N3) floating point operations. 

As the number of collocation points increases the cost of solving the full 

non-hermitian complex matrix equation (3.3), by direct methods will begin to 

dominate the total computing costs. 

The work of [6] shows that for integral equations of the second kind 

with compact operators the conjugate gradient method [16,21) can yield 

accurate results, to the level of the truncation error of the underlying 

collocation method, very efficiently. Other iterative procedures such as the 

multigrid methods (33) or the 2-grid method of Atkinson (7], can be used for 

solving (3.3) with 0(N2) operations and should be Implemented for large 

problems; see also [3). For arbitrary shaped 3-dimensional structures with 

edges the underlying integral operators will be non-compact and in general 

the problem will have non-smooth solutions. In such cases unless special 

care Is taken (in splitting the operator into a smooth and a non-smooth part 

[33)) the iteratiNe techniques are unlikely to work efficiently and hence the 

direct solution of the linear system (3.3) may be the only viable alternative. 



4. ýi rical Results 

4.1 Test Problems 

Exact solutions in closed form, usually as infinite series of slowly 

converging wave functions, can only be obtained in special cases [29]. 

However, exact solutions for any geometry can be generated for problems which 

are equivalent to those having acoustic point sources in the interior region 

D_; [5,20]. The field at any point p(R3, generated by a set of point sources 

at gjeD_ with strengths Aj, j-1,2,.., Q, in the absence of the structure is 

given by 

eiklp-qjl 
I P_gjI 

(4.1) ýiP) Aj 

i-ý 

For peS, äp/önp - op. np can be easily calculated from (4.1) by re-introducing 

the body. A problem with this distribution of 6-plane on the structure is 

then equivalent to the point source problem for which the solution (4.1) is 

known. 

Here we consider a family of axisymmetric ellipsoids, characterised by 

(x/a)2 + (y/a)2 + (z/b)2 - 1, with the major axis b and minor axis a, 

normalised so that d- (a+a+b)/3, the typical length of the surface is 

unity. We also consider a family of right rectangular cylinders with radius 

r and heigh 2h. Here again we choose r and h so that d- (r+r+h)/3 - 1. 

The boundary data considered for the family of ellipsoids is equivalent 

to that of two point sources placed at (0,0,0) and (0,0,0.5) with strengths 

(-2+31) and (2+1) respectively. For the family of cylinders, we consider the 



problem equivalent to having 1 point source placed at (0,0,0) with strength 

(2+31). 

4.2 Results and Discussion 

Here the measure of the error is the Mean Relative Error (MRE) expressed 

as a percentage, where 

N 
N Iv(P; )-ýO(Pi)I 

MRE - Iý(Pi)I 
(4.2) 

i=i 

The points pieS, i-1,2,..., N, are the collocation points and '(pi) is the 

computed approximation to the exact value d(pi). Clearly if Iýp(pi)I is small 

for some the measure (4.2) may exaggerate the error and it may 

be preferable to use the Relative Mean Error (RME) defined by 

NN 
RME -ý Icp(Pi)-ý(pj) i/ 1ý0(Pi)i ; (4.3) 

i-i i-I 

though this has not been used here. 

Figure 1 is the plot of the condition number of the operator (-12+Mk)+ivNk in 

the Burton and Miller formulation (2.6), for a unit sphere over the range of 

values of (v, k)e[0.1,10] x [0,10). Clearly for a given value of the 

wavenumber k, the choice of the coupling parameter v can seriously affect the 

conditioning of (2.6). Furthermore the choice of v- 1/k (with vat for k<z) 

does appear to be an "almost optimal" choice; see [4,25) for more details. 



Similarly, Figure 2 is the plot of the condition number of the regularised 

formulation (2.12) for a unit sphere over the same range of values of (v, k) 

as in Figure 1. Clearly, the condition number of (2.12) Is generally smaller 

than (2.6). However, a simple relation for an "almost optimal" choice of v 

as a function of k does not seem possible. The choice of r$1, appears to be 

quite satisfactory for a large range of values of k. 

In Figure 3 we present the mean relative error obtained for a unit sphere 

with the formulation (2.6), (here on referred to as the direct formulation 

due to the direct evaluation of the hyper-singular operator NO for a range 

of values of k and with 2 choices of values of v, namely the commonly used 

choice of vnl and the almost optimal choice of v; l/k (with P-2 if k<'). The 

number of subdivisions in s-6 plane is 40 x 40, but due to the axisymmetric 

nature of the problem we only collocate at the 40 points in s-direction (for 

a fixed value of B). Clearly as k increases, with a'fixed number of 

collocation points, we would expect the errors to increase, however for the 

case v; l, near k-10 the (relative) ill-conditioning of the equation (2.6), 

(see Figure 1) has significant effect on the accuracy of the result, 

emphasising the importance of the choice of P. From here on the almost 

optimal choice of v is used for the direct formulation and vxl for the 

regularised formulation (2.12). 

In Figure 4 we present a comparison between the three methods, on a unit 

sphere with a 20 x 20 subdivisions. For the CHIEF formulation we have used 2 

interior points. Both the regularised and the CHIEF method yield somewhat 

more accurate results than the direct formulation, though the regularised 

formulation Is computationally the most expensive and CHIEF is the least 



expensive of the three. 

Figure 5, is similar to that of Figure 4 except that here the region of 

interest is an axisymnetric ellipsoid with the ratio of major to minor axis 

b: a as 3: 1. The errors are somewhat larger than that for a unit sphere, 

though in this case all three methods yield results with similar accuracy. 

In Figure 6, we present results for the CHIEF method on a unit sphere at 2 

wave numbers, namely k-20 and k-20.18, on a 40 x 40 mesh with various number 

of interior points (ie. CHIEF points). The wavenumber k-20 is not an 

eigenvalue of the problem and hence the Surface Helmholtz Equation (1.5) 

(le. the method of CHIEF with no Interior points) does yield a reasonable 

result, though two or three CHIEF points seem to annihilate any 

ill-conditioning due to the eigenvalues of the (1.5) close to k-20. On the 

other hand k-20.18 is an eigenvalue of (1.5) and hence in theory we require 

one good CHIEF point, see [34), to overcome the non-uniqueness at this 

wavenumber. In practice however, because of the proximity of 20.18 to other 

eigenvalues of (1.5), namely 20.12,20.20 and 20.37 we require at least 4 

good CHIEF points to annihilate their effect on the conditioning of the 

equation. 

Finally, in Figure 7 we present a comparison of the three methods on a right 

circular cylinder at k-I, for various ratios of height/radius, using a 

20 x 20 subdivision. Both the regularised and the CHIEF method (with 2 

interior points) are considerably more accurate than the direct method, 

though the results become less accurate as the ratio height/radius decrease. 



4.3 Conclusion 

Here we have presented some numerical results based on the collocation method 

as applied to three of the most commonly used formulations of the exterior 

acoustic problem which are designed to overcome the non-uniqueness of the 

classical boundary integral formulations. All three methods are shown to 

resolve the non-uniqueness problem adequately and yield reasonable results 

for a large class of test problems. The CHIEF method Is much the easiest 

formulation though sufficient number of Interior points should be taken to 

ensure that the effect of eigenvalues of the surface Helmholtz equation (1.5) 

near the wavenumber of interest has been annihilated. Furthermore, the choice 

of the coupling parameter v plays an important role in the conditioning of 

(2.6). The regularised formulation (2.12) on the other hand is the most 

complicated formulation amongst the three, though it appears to be 

well-conditioned and does not require any special consideration to yield 

accurate results. Indeed the Integral operators in (2.12), having weakly 

singular kernels are compact, making the numerical evaluation of the 

integrals more amenable to accurate approximation. Furthermore, in this case 

the final linear system of equations can be solved efficiently by iterative 

methods [6]. 
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1. INTRODUCTION 

In this paper we are concerned with the numerical 
solution of the dynamic fluid-structure interaction of a 
finite elastic structure immersed in an infinite homogeneous 

acoustic medium. The equations to be solved are of the same 
form as those in wave scattering, electrostatics, wave forces 

on structures and so on. In our area of interest, the field 

of underwater acoustics, it Is desirable to determine the 
acoustic field, both radiated by a submerged vibrating 
structure and also scattered by a submerged elastic 
structure6,9,10,14,18,19. Here the Impedance mismatch is much 
less than that between a structure and airll and hence it is 
not feasible to assume perfect rigidity of the structure. 

Let us denote the surface of an arbitrary shaped 
structure by S where S belongs to the class C2. We denote by 
D_ the interior of S and by D+ the unbounded domain exterior 
to S, whilst n denotes the unit normal to S directed into D. 
Small amplitude acoustic waves propagate through an ideal 
homogeneous medium according to the linear wave equation 

1 
ý-7 Ut2 (D(P, t) _ý (1) V2(D(P, t) - 

where c is the speed of sound in the medium and 4(p, t) 
represents the excess acoustic pressure at a point p and at 
time t. The sound pressure is related to the particle 
velocity through 

V4(p, t) -Pf Y(P, t) (2) 

where pf represents the density of the fluid. 

The motion of the elastic structure contained in S is 



governed by the linear equation of elasticity 

V. v(p, t) + F(p, t) = PS 
- 

U(p, t) (3) 

where a(p, t) is the stress tensor, F represents the external 
forces, ps is the structure density and U(p, t) is the 
particle displacement. 

The natural numerical method for solving this coupled 
fluid-structure interaction problem, equations (1) and (3), is 
that of matching a finite element analysis of the vibrational 
motion of the structure, governed by equation (3), with a 
boundary element analysis of the exterior acoustic problem, 
governed by (1), at the structure-fluid interface19,6,9,14. 
In section 2 we discuss various aspects of integral equation 
formulations of the acoustic problem (1). For any surface S, 
it can be shown that the classical direct boundary integral 
formulation for the time harmonic solution of (1) via Green's 
second theorem suffers from non-uniqueness at a countable set 
of frequencies which depends upon S. We consider a 
formulation which is valid and well-conditioned for all 
frequencies. In section 3 we discuss the finite element 
analysis of the structural equation (3), whilst in section 4 
the coupled problem is considered. A major objective in this 
paper is to investigate whether for the coupled problem it is 

still necessary to use integral formulations valid for all 
wavenumbers9'14, or can the elasticity of the vibrating 
structure modify the acoustic equations to an extent that the 
simple (classical) integral formulation is adequate and no 
longer suffers from ill-conditioning near characteristic 
wavenumbers7'9'16. These points will be investigated in 
section 5 by considering some scattering and radiation 
problems near their characteristic wavenumbers. 

2. BOUNDARY INTEGRAL FORMULATIONS OF THE ACOUSTIC PROBLEM 

- Assuming time harmonic time dependence of the form e-lit, 
the linear wave equation (1) reduces to the Helmholtz equation 

(O2+k2)ýO(p) -0 peD+ (4) 

where 4(p, t) = e-iwt9(p) is the excess pressure and k= w/c is 
the acoustic wavenumber, w being the angular frequency of the 
sound source. It now follows from (2) that the normal 
particle velocity v(p) is related to So through 

0 -\o (P) - iipf v(P) " PES (5) Tn- 



For the existence of a unique solution of equation (4), as 
well as the Neumann boundary condition (5) (assuming v(p) is 
known for the moment), we also need to impose on the 
Sommerfeld radiation condition (or similar conditions) 

limit r[ 
(p) 

- ik yi(p) 
,-0 

1 pI=r- 
(6) 

uniformly for all directions p/Ipl. The radiation condition 
(6) ensures that the scattered and radiated waves are outgoing 
at infinity. 

Various direct as well as indirect boundary integral 
formulations of (4)-(6) have been proposed in the literature; 
see Burton4 for an excellent survey of these formulations. 
Assuming that an incident wave Vinc on S results in a 
scattered wave c'scatt' it follows from Green's second theorem 
that the total acoustic pressure Va Winc + c'scatt satisfies 
the Helmholtz integral formula4 

4'(P)-'inc(P) PED+ (7a) 

{ýo(q) (P, q) Gk(P, q) 
(9)1dSga ýý(P)-ýinc(P) PeS (7b) 

nq BTq J 
S 

-Pinc(P) PED- (7c) 

where Gk(p, q) is the fundamental solution or the free space 
Green's function for the Helmholtz equation (4) and is given by 

iklp-ql 
Gk(p, q) 4x p-q 

(8) 

Equation 7(b) is a second kind integral equation for p(p), 
pcS, and is known as the Surface Helmholtz Equation (SHE) 

_ 
which, in operator notation, may be written as 

[-Zi + Mk, V a 
[Lk U, 

(P) - SPinc(P) PES (9) 

where, similar to the treatment of the potential problem12, 
we define 

(Lkcr)(P) ° JT(q)Gk(P)dsq (10) 

and 

(MkQ)(P) ° u(q) - Gk(P, q)dSq X11) 
ts 

q 

which are known as the Helmholtz single and double layer 



potentials respectively4,7. Once both fp and Etip/än are known 
on S we may use (7a) to calculate c(p) for pcD+. 

In our formulations below we also require the derivative 
of the operators Lk and Mk in the direction of np, the normal 
to S at peS, which we denote by MkT and Nk respectively4'7. 
It can be shown that the operators Lk, Mk, MkT: Hr(S)-Hr(S) are 
compact, where Hr(S) denotes the Sobolev space of r times 
continuously differentiable functions in the sense of 
distribution 7. Furthermore, the operator Nk, the derivative 
of the double layer potential, is a hypersingular operator and 
it can be shown that Nk: Hr(S)-Hr-'(S) is bounded but not 
compact. 

Let us denote the spectrum of the operator Mk by E(Mk)- 
For the second kind equation (9) the Fredholm-Riesz theory can 
be applied to establish existence of a unique solution 
provided z/E(Mk); that is provided (-zl+Mk)-l exist. Clearly, 
even if IVE(Mk) but dist(2, £(Mk)) is small the equation (9) 
will suffer from ill-conditioning and should not be used as a 
basis for numerical approximations. In fact in general it can 
be shown that for a countable set of values of the wavenumber 
k, say IS, the operator Mk will have Z as an eigenvalue. 
Furthermore it can be shown that asymptotically (as k-) the 
number of elements in IS less than k is proportional to k3. 
For example, taking S to be a sphere of radius a we can show 
that1,13 

IS - (kljn(ka) -0, n=0,1,2,... ) (12) 

where in denotes the spherical Bessel function. 

Clearly therefore there is a real need for formulations 
which unlike (9) do not break down at characteristic 
frequencies and are well conditioned for all values of k. 

2.1 Formulations valid for all wavenumbers 
Over the past two decades many formulations have been 

proposed to overcome the breakdown of (9) at irregular 
frequencies15,17,5,16. In a recent paper Amini and Harris2 
have evaluated several such formulations. The specific direct 
boundary integral formulation that we present and employ here 
is due to Burton and Miller5 (and Burton4 in regularised form) 

which are closely related to the earlier indirect formulation 

of Panich15. On differentiating (9) in the direction of np, 
we obtain the first kind integral equation 

(Nký)(P) ° (*I+MkT) 
.- Pinc(P) peS (13) 

which itself suffers from non-uniqueness at a countable set of 
values of k, say JS. However, it can be shown that the 
formulation obtained by taking a linear combination of (9) and 
(13) in the form 



n 
(14) {(-zI+Mk)+ivNk}ý _ (Lk+iv(ZI+MkT)) -ýýinc + jr 

with iz = -1 and v an arbitrary positive parameter, is valid 
for all wavenumbers k with Re(k) > 0. To avoid discretising 
the hypersingular operator Nk in (14) we regularise equation 
(13) before coupling it with equation (9). It can be shown 
that15,4 

(LkNk)cT(P) = (Mk+zI)(Mk-ZI)Q(P) pcS . (15) 

By premultiplying (13) by Lo (ie. Lk with k=o) we obtain in 
place of (13) the equation 

(Lo(Nk-No)+Mö- I)W(P) ° Lo(ZI+MkT) 
ý(P)_ 

Lo 
ýinc(P) 

pS (16) 

which when coupled with (9), similar to (14), yields the 
regularised integral equation 

{(-ZI+Mk)+iv[LO(Nk-No)+Mö-äIj}ý - [Lk+ivLo(2I+MkT)] 
ä 

(zinc+ivL0 
zinc 

) (17) 

Regarding the operator (Nk-No) it can be shown that 

Z) 2 

ate (Gk(P, q) - Go(p, q)) - O(lp-ql-') + 0(1) (18) 
Pq 

and hence all the operators in (17) are compact and perhaps 
more amenable to accurate numerical evaluation2+3. 
Furthermore the work of Aminil, has shown that equation (17) 
is generally well conditioned and unlike the formulation (14) 
the choice of the coupling parameter v=1 is satisfactory for a 
large range of values of k and surfaces S. 

2.2 Discretisation of the Integral Equations 
Here the integral equations (9) or (17) are discretised 

using the collocation method, based on piecewise linear 
approximation of both the surface S as well as the funtions 

V and äp(p)/än s iwpfv(p). For moderate number of degrees of 
freedom (collocation points), the most crucial and time 
consuming aspect of a 3-D boundary element analysis-is that of 
accurate and efficient evaluation of the elements of the 
matrices approximating the integral operators3,2. Here the 
non-singular integrals (the off-diagonal elements) are 
evaluated using Gauss-Legendre rules whilst for the evaluation 
of the diagonal elements the simple transformation introduced 
by Duffy8, designed to deal with vertex singularities, is 
used. For more details on this, the choice of the coupling 
parameter v, and other issues such as efficient solution of 



the linear equations for large number of collocation points we 
refer the reader to Aminii and Amini and Harris2. 

Using n collocation points, p1, p2,.... pneS, discretising 
(9) or (17) we obtain a matrix equation in the form 

A4n = icpf B_vn + cn (19) 

where ý2n - 191,..., 'Pn]T IV(P0), '(Pz),..., w(Pn)]T and 
similarly (yn)i = v(pi) with obvious definitions for the nxn 
matrices A and B and the n-vector cn. 

In the next section we obtain a similar set of equations 
from the structural analysis which we then have to solve 
together with (19) to obtain approximations to gy(p) and v(p) 
for peS. 

3, STRUCTURAL ANALYSIS 

The discretisation of the linear equations of elasticity 
(3) by finite element methods is now a familiar technique20 
and any of the commercially available packages may be used. 
The results presented in this paper are based on our own 
finite element program, as most commercial codes do not easily 
allow the extraction of relevant matrices which we need to use 
in conjunction with the boundary element equation (19). 
Assuming harmonic time dependence of the form e'lcOt the finite 
element equations for the structural analysis, in the absence 
of structure damping, can be written In the form20 

(K-)2M)gm - f(k) + f(p) (20) 

where K and M represent the stiffness and mass matrices 
respectively and gm is the vector approximating the 
displacement u(p) at nodal points where U(p, t) - e-iwtu(p). 
In equation (20) fýk) is a consistent load vector resulting 
from known applied forces and f1P) is a consistent load vector 
representing the interaction forces generated by the acoustic 
fluid acting on the fluid-structure boundary. The interaction 
force vector fcP) can be related through a coupling matrix L 
(of dimensions mxn with m» n) to the nodal pressure 
distribution SQn where 

fmP)a -L Vn . (21) 

From (20) and (21) it follows that the structural equations 
relate the structural displacements gm to the acoustic 
pressure Wn at the fluid-structure interface; see Wilton" for 
more details. 



4. COUPLED EQUATIONS OF MOTION 

To obtain the solution of the interaction problem we need 
to combine the acoustic equation (17) with the structural 
equation (20). Various procedures for the coupling of these 

two equations have been proposed19 and examined14. Here we 

use the preferred fluid variable method first given by 

Wilton19. In this approach the structural equation is 

substituted into the acoustic equation to yield a full 

complex-valued linear system of equations similar to (19) for 

the surface pressure 4n. Briefly, it follows from (20) and 
(21) that 

gm - (K-WZM)-' If(k) - I. cn) (22) 

Now, assuming that the fluid and structure meshes coincide at 
the boundary, we can relate the structural displacement to the 

normal particle velocity on S in the form 

_vn - -iwL'gm (23) 

where elements of the nxm matrix L' are simply the 
components of the outward normals at the surface nodesl9. 
Finally, using the expression for gm from (22) into (23) and 
then substituting the resulting expression for 

_vn 
into the 

acoustic equation (19) we obtain 

(A+DL)ýn - Df(k) + cn (24) 

where 

D- wzpf BL'(K-w2M)_' (25) 

Once (24) is solved for $2n, we obtain the displacement gm from 
(22), the normal particle velocity from (23) giving nodal 
values of äyß/an through (5) and hence equation (7a) can-be 
used to yield an approximation to gy(p) for pED+. 

If the simpler integral equation (9) is discretised in 

place of (17) to yield the matrix equation (19) then for k 

close to IS, the set of characteristic wavenumbers, the 

operator (-zl+Mk) and hence its matrix approximation A in (20) 

will be ill-conditioned. Recently several authors6,9,16 have 

indicated that by coupling the structural equations (20), 

along the lines suggested here, with the discretisation of (9) 

they have observed no great loss of accuracy at characteristic 

wavenumbers. However, other authors19,14 suggest that in 

general for equation (24) to have a unique solution, it is 

necessary to use an integral formulation such as (14) or (17) 

which is valid for all wavenumbers. 

In the next section we shall attempt to resolve this 
apparent controversy by testing both approaches on various 



scattering and radiation problems. 

5. NUMERICAL RESULTS AND DISCUSSION 

Here we present some numerical results for a vibrating 
hollow sphere and a plane wave scattered by both a solid 
sphere and a solid cylinder. The fluid and structure 
parameters are as follows: 

Youngs modulus, E=2x 1012 dynes/cm2 
Poissons ratio, n=0.25 
Structure density, PS =8 grms/cm3 

Fluid density, Pf -1 grm/cm3 

Speed of sound, c-1.5 x 105 cm/sec 

This data corresponds to a steel structure immersed in water. 

The measure of error that we have chosen to use is the 

mean relative error, expressed as a percentage, given by 

n 
MRE sn 

`P(pýýp P)x 100 (26) 

i-i 

where S'(pi) represents the computed value and d(pi) the exact 
value at the collocation point pi. 

In the Figures below we refer to the method using the 
Surface Helmholtz Equation (9) in conjunction with the 
structural equation (20) as the SHE method and the method 
using equation (17) with (20) as the Regularised method. 
Figure 1 shows a typical mesh for a domain which generates a 
solid sphere when rotated. We used the mesh in Figure 1 with 
21 linear axisymmetric surface elements to approximate a 
solid sphere of radius 1cm. Taking the midpoint of the 
surface elements as the collocation points for the 
discretisation of the boundary integral formulations (9) or 
(17), it is easy to see that these points lie on a sphere of 
radius a= cos(a/42). It now follows from (12) that k=3.15 
(ie. ka = w) Is a characteristic wavenumber for this surface. 
Figure 2 shows the surface pressure on a solid sphere of 
radius 1cm which is scattering an incident plane wave at 
k=3.15. It can be seen that the computed results using the 
regularised formulation are very accurate whilst the results 
based on the equation (9) are in general inaccurate. 

In Figure 3 we emphasise that the accuracy of the 

numerical results based on equation (9) deteriorates sharply 

whenever k is in a neighbourhood of a characteristic 
wavenumber. This is demonstrated by computing the pressures 
on the surface of a vibrating hollow sphere, of inner radius 
0.75cm and outer radius 1cm, for a range of values of k around 
3.15. The results are based on a discretisation with 21 



linear axisymmetric elements, similar to that in Figure 1. 

Figure 4 shows the exact and the computed surface 
pressures for a solid cylinder of radius 1cm and height 2cm, 

scattering an incident plane wave at k-3.957 which is one of 
its characteristic wavenumbers. The results based on a 
subdivision with 20 linear axisymmetric surface elements 
clearly demonstrates the inadequacy of the SHE method. 

6, CONCLUSIONS 

We have shown that it is possible to obtain accurate 
results for the dynamic fluid-structure interaction problem by 

combining a finite element analysis of the structural 
equations with a boundary element analysis of the exterior 
acoustic field. Furthermore, our results overwhelmingly 
demonstrate the need for using a boundary element formulation 

which is valid for all wavenumbers if we are to overcome the 
ill-conditioning at characteristic frequencies. 
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Figure 1: A typical finite element mesh for a solid sphere. 
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Figure 2: The surface pressure for a unit sphere scattering 
a plane wave at k=3.15. 
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Abstract 

In this paper we study an efficient Boundary Element Method for the determination 

of the acoustic field around arbitrary-shaped finite structures immersed in an infinite 

homogeneous acoustic medium. 
The direct boundary integral equation due to Burton and Miller is used to overcome 

the non-uniqueness and non-existence of solution associated with the classical boundary 

integral formulations of the exterior Helmholtz equation. The choice of the coupling 

parameter in the Burton and Miller formulation is discussed in order to minimise the 

condition number of the boundary integral equation. 

Efficient numerical quadrature rules, based on suitable variable transformations, are 

studied for the evaluation of the singular and nearly-singular elements .: n the discrete 

collocation equations. 

The large full non-hermitian linear systems arising form the discretisation of the 

integral equations are then solved by the multi-grid method. 

Numerical results are presented for the problem of acoustic radiation from several 

structures of practical interest. 



1 Introduction 

Since the early 1970*s many linear boundary value problems of mathematical physics and 

engineering, traditionally solved by domain methods, have been increasingly reformulated as 

integral equations over the boundary of the domain of interest 8,9,10,11,161 In cases where 

the domain of interest is of infinite extent boundary integral equations and their subsequent 

discretisation by finite element type methods, known as boundary element methods, offer an 

obvious advantage over the domain methods, as the dimensionality of the problem is effectively 

reduced by one. 

In this paper we are concerned with the determination of the acoustic field radiated (or scat- 

tered) by an arbitrary shaped, finite. vibrating structure immersed in an infinite homogeneous 

acoustic medium. Such a problem is of considerable interest in many areas including under- 

water acoustics and aeronautics. In the field of underwater acoustics where the impedance 

mismatch between the structure and water is much less than that between a structure and air, 

the assumption of perfect rigidity of the structure is no longer valid. The approach considered 

in this paper can provide an impedance relationship at the structure surface, to be matched 

with a similar relationship from a finite element or boundary element analysis of the structure 

dynamics [5,28,31.. 

In section 2 we consider the "direct" boundary integral formulation of the exterior Neu- 

mann problem for the Helmholtz equation. We discuss briefly the problem of existence and 

uniqueness of solutions of various formulations and also consider the conditioning of these 

equations. In section 3 we present an overview of our numerical methods based on piecewise 

constant collocation over linear triangular elements. 

Since boundary element methods yield large systems of full non-hermitian linear equations, 

whose soluticon, for many practical problems, dominate the computational cost, iterative meth- 

ods are naturally used for efficiency. In section I we introduce a modified multi-grid method 

which allows us to employ these highly efficient iterative methods, even when dealing with 

"hyper-singular" operators, namely the derivative of the double layer potential. Finally in 

section 5 we present the results of our numerical methods for the acoustic radiation from a 

sphere, an ellipsiod and a cylinder. 

2 



2 Formulation 

Let S be a closed, bounded, piecewise smooth surface is W. We denote the interior and 

exterior of S by D_ and D+ respectively. The propagation of small amplitude acoustic waves 

through a homogeneous medium is modelled by the linear wave equation 

CZý(Rt) - 
är=ý(P, t) =0pE Dý (2.1) 

where the scalar complex-valued function f(p, t) may be the acoustic pressure or the velocity 

potential at time t and c is the speed of sound in the medium. Sound pressure is related to 

particle velocity through 

-p8t(P, t) (2.2) 
where p denotes the density of the medium. If we assume a harmonic time dependence of the 

form e`t, where w is the angular frequency of the sound source, equation (2.1) becomes the 

Helmholtz (reduced wave) equation 

(V- + k2)c(p) =0pt D+ (2.3) 

where D (p, t) = e-'-"O(p) and k= w/c is the acoustic wavenumber. It now follows from (2.2) 

that 
am(r) 

= iwpvn ö -n (P) PES (2.4) 
where n denotes the unit outward normal to S and i�(p) denotes the normal particle velocity, 

which we assume is known. To ensure the existence of a unique solution to (2.3) with the 

Neumann boundary condition (2.4) on the finite boundary, we also need to impose on 0 the 

Sommerfeld radiation condition (or a similar condition) 

lim rP(a 
ýp) 

- ikcp(p). (2.5) 
ry -x 

where p= (rp, Op, OF) 
'- 

r3. 

Here we consider a direct boundary integral formulation or equations (2.3). It follows from 

Green's second identity that ¢(p) a radiating wave function, (i: e. 

(2.5)), satisfies the so called Helmholtz integral formulae for the ex 

O(P) 

On. 
(P, 9)-" Ck(P, 9)ßn (4)}dS9 äx-c(P) I {c (9) 

G 

0 

one satisfying (2.3) and 

terior region, given by 

PC- Df 

PES (2.6) 

PC. D_ 
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where a(p) is the solid angle subtended by D. at pES (for p on a smooth part of the surface 

a(p) - 27r ), and 

Gk(P: 9) =air, r =1 P-9t (2.7) 

is the free-space Green's function, or the fundamental solution for (2.3). Assuming for the 

moment that S is a smooth surface, the equation (2.6) for p`S, known as the surface 
Helmholtz equation, can be written in the form 

(-ZI - 1Ik)«(P) = (Lk )(P) PtS (2.8) 

where 

(Lka)(P) =1I v(4)Gk(P, 9)dSq (2.9) 
s 

and 
f 

°(q) an 
k (p. q)dSq (2.10) 
a 

are the single layer and double layer Helmholtz potentials respectively. If the second kind 

integral equation (2.8) could be solved for O(p) ,pES, then it follows from (2.6) for pED. 

that the solution of (2.3) is given by 

O(p) = (A1kc)(P) - (Lk )(P) PED.: (2.11) 

which involves a simple integration. 

It is well known, however, that for a countable set, ! 1(S) , of values of k referred to as 
'irregular frequencies', the operator - 2I - 1I, k is singular. ii-lany formulations valid for all 

wavenurnbers have been proposed since 1965, viz 
. 
11.1.17,21,241. Here we employ one such 

formulation, due to Burton and Miller : 101. Briefly, differentiating (2.8) in the direction of np, 

the outward normal at p, we obtain 

(. Vkc)(p) 1r irk) 
- 

(2.12) 

where ATk = dn, 11k and ilI[ =a Lk. The operator Nk is also singular at a countable set, 

12(S), of values of k. If we couple equations (2.8) and (2.12), we obtain 

f(-I2 I- Alk) +ig1Yk}¢(P) _ {Lk }- iq(21 , k)}Yý (2.13) 

with i2 =-1, which can be shown to possess a unique solution for all w"avenurnbers k, provided 

the coupling parameter 77 satisfies Re(k)q > U. 



The operator Nk, the derivative of the double layer potential 

(lVko, )(p) = as 
fcr(q)--_Gk(p, 

q)dSq 
n 

(2.14) 
P9 

is a hyper-singular operator. In general some mathematical analysis should be carried out 
before employing a numerical quadrature rule to approximate this operator : 19.301. Here we 

adopt the formulation of ,, Vk used in [19] which follows from the pointivise variational principle 
introduced in i'29'1 

a(9 
z 

dP n9 
(P, 4)dse =k z0, (P) fs 

nP ' n9Gºý(P, 4)dsa + 
j{cr(q) 

- a(P)} 
zýt 

änyd r9 
(R 9)dsq J S, 

(2.15) 

The operators on the right hand side of (2.15) are now more amenable to numerical approxi- 

mation; see section 3. 

It is possible to regularise the operator k to yield a modified equation (2.10) before 

coupling it with (2.8). It can be shown that [9,21; 

(LkNvk)cr(P) = (, llk + ZI)(ýIk - ZI)o(P) p : -= S (2.16) 

By premultiplying equation (2.12) by Lo, (i. e. Lk with k= 0) Nve obtain 

{Lo(Nk - No) - Arö - 1I)}gy(p) = Lo(Z I+ 1llk) pES (2.17) 4 

which when coupled with (2.8), similar to (2.13), yields the regularised Burton and Miller 

formulation 

{(- ý1 
+ Alk) - iq. Lo(Ni. - X1'0) + , %I - 

411}¢ 
_ [Lk + igLo(21+ A! f )Ian (2.18) 

All the operators in (2.18) are compact and in general more amenable for accurate discretisa- 

lions. 

We now have a choice of 2 boundary integral formulations for (2.3)-(2.5) which are valid 

for all wavenumbers. Before attempting to discretise them let us discuss briefly the choice of 

the coupling parameter. q. Ideally one should choose q= r7(S; k) so as minimise the condition 

number of the integral operators in (2.13) and (2.18). For a general surface S, analytical 

evaluation of the condition number of an integral operator is not possible. However to gain 

some insight, the case of S being a sphere of diameter 2a has been considered [ 1,18 where 

it was found that the choice of r7 = kä 
is an "almost optimal" choice for (2.13) whilst ri =ä 
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was found to be satisfactory [11 for a large range of values of k for (2.18), as in this case 

the equations are naturally well-conditioned. For a non-spherical surface S, which is not too 

elongated, it can be argued that q= kd and may be chosen in (2.13) and (2.18) respectively, 

where d= max p-q1, p, qES is the "diameter" of S. 

3 Numerical Methods 

The numerical method used in this paper for discretising (2.13) and (2.18) is the collocation 

method based on piecewise constant approximations over linear triangular elements. Consider 

the second kind integral equation 

0(P) - fs K(P: 9)«(9)dSv = f(P) PES (3.1) 

where S is a piecewise smooth surface in R3. To be precise S= Sl 
.. 

S2 U""".. Sj. where each 

Si is a smooth surface in V. We then divide (and approximate) each Si into a number of flat 

triangles St� j=1,2, 
... , n; having their corners on S. Hence 

I n, n 

S~UUSij=UL; =S� (3.2) 
i-1 j-1 i=1 

where n=1n; and the z ! 'is are simply a renumbering of the Sijs. Assuming a piecewise 

constant approximation for ¢(p), the equation (3.1) can be approximated by 

k (P 9)dSv = f(P) P'= Sn (3.3) 

It is convenient to write (3.3) in the operator form 

(I -- ýn)ýn =I (3.4) 

where 
n_ 

( cr)(p) L= Cr(Pi) 
J 

11 (, 9)dSq (3.5) 

j=I Ji 

where 0', (p) -- gy(p) and Oj ¢(p), p vj. Now choose n collocation points pi, i=1,2, 
... , it 

where each p, is the centroid of "l;. By insisting that ý', (p; ) = ¢;, We obtain the usual pieceWise 

constant collocation equations 

ýý ýi=I Ojfo, k(pj. q)dS4 = f(pi) i= L2,..., n (3.6) 
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which is a full system of linear equations to be solved for 0= (¢IA, 
... , 0�JT. The equation 

(3.3) is of considerable importance in our analysis. Firstly, once (3.6) has been solved to yield 

¢t, 02, ... A, we may use (3.3) to obtain the iterated collocation solution 

n(P) = rý_i ci fA, K(P, 4)dSv 1 f(p) pES, (3.7) 

which is, in general, a continuous function and known to be globally a more accurate approxi- 

mation to ¢(p) than the collocation solution (though 0 , 
(pi) = c; ) 27]. Secondly (3.7), similar 

to the Nyström extension, allows us to interpolate (and smooth at the same time) values at 

non-collocation points, which is to be exploited in the multi-grid solution of (3.6). 

The computational complexity of a boundary element method can be divided into 2 major 

parts, (i) the set up stage, that of evaluating the elements of the nxn matrix in (3.6), and 

(ii) the solution stage. that of solving the system (3.6). In general the set up time is of the 

form c1n2 where cl is a very large positive constant, as the kernel K(p. q) is rather costly 

to evaluate. Efficiency of the integration rules play a major role in reducing this cost. The 

solution time by direct methods is of the form c2n3 where c2 is in general a very small number 

compared with c1. Therefore, for small values of n, the total cost is dominated by the set-up 

time. For practical 3-D problems, the value of n could be large and therefore the solution 

time by direct methods would dominate the computation time. In cases where the integral 

operators are compact, having desirable smoothing and spectral properties (zero as the only 

point of accumulation of their countable set of eigenvalues 1201 ), their discrete approximations 

possess similar properties which can be exploited to obtain an efficient iterative scheme such as 

the conjugate gradient method 14,3,23" and the multi-grid method [3,22,25,261. Such schemes 

can yield solutions to (3.6) to within the level of the discretisation error in cane operations, 

where c3 is a moderately small constant. In this case therefore the substantial part of the 

computation is in the set-up stage. Much recent work has been carried uut to reduce this time 

13,231 

Let us briefly consider the numerical integration of the collocation equations. The integrals 

in (3.6) are of the form 

Kt; =f K(p;, q)dSq = ju / K(p; (u, v), q(u, v))dudv (3.8) 

where A is the reference right angled unit triangle in the (u, v) plane with corners at (u, v) _ 

(U, 1), (0,0) and (1,0). The constant /LJ is the Jacobian of the linear transformation taking Aj 



to 0, which is twice the area of . j. Here the integrals are non-singular if irj and singular 
if i=j. In the former case however, the closer the collocation point is to the integration 

region i2 j, the more peaked, ("nearly singular") the integrand K(p;, q) will be for q near to 

p;. To retain a given level of accuracy in numerical integration, more accurate rules should be 

employed for "near-singular" integrals, see X2,7:. 

Here, away form the singularity , we use the 3-point rule 

ff (u, z)dudv 6lf(2ý0) + f(, )+ f(0, (3.9) 

with degree of precision 2, whilst for the near-singular integrals we employ the product 3- 

point Gauss rule (on the triangle). For the evaluation of the singular integrals K;;, similar to 

Atkinson [7}. we divide the region of integration _Aj into three smaller triangles by joining the 

collocation point pi to each corner of 21j. Each smaller triangle is then transformed to the 

reference triangle with the singular point pi transformed to the (0,0) corner in each case. We 

are now faced with the evaluation of three integrals of the form 

I= fo f (u; L )dude (3.10) 

with a singularity at (0; 0). Introducing the change of variable X7,12] 

u= (1 - s)t, v= st 0<s, t <1 (3.11) 

we obtain 

1=f1f if((1 - s)t.. st)dsdt (3.12) 
00 

The integrand in (3.12) can be shown to be no longer singular in the case of potential type 

Green functions. The integral (3.12) can be adequately approximated by a product m-point 

Gauss rule. Here we choose nn=5. We point out here that ''then transformations such as polar 

coordinate or error function transformations can be used '? to yield similar results. 

Finally we note in passing that in our case of pieceivise constant approximation, the second 

integrand in (2.15) is everywhere non-singular as ¢(q) - O(p) is appoximated by 0 for p, qEAj. 

However for higher order approximations, special quadrature rules need to be employed to deal 

with Cauchy type singularities. 
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4 Iterative Solution of Linear Systems 

The numerical solution of the full linear discretized system by iterative techniques has been 

previously studied for 2D acoustic problems (31, [41) and potential problems ([231). In [3[, both 

the conjugate gradient method and the multi-grid type methods are applied to equations with 

compact operators. In such cases the numerical analysis can be carried out for these methods 

using the well-known theory of compact operators V. From our experience we concluded that 

the two grid methods are more efficient than the conjugate gradient method and nearly as 

efficient as multigrid methods, yet being much easier than the latter to implement; (see [3 

and [221). For a second kind integral equation 

(XI - n. )u =f (4. i) 

with the compact operator n, discretizing it as in §3 on a coarse grid G]n; and a fine grid Gm] 

with n and m subdivisions respectively, we obtain two discrete collocation equations similar 

to (3.6) in the form 

(Al + Kj)u, =f, with 1=n, in. (4.2) 

The idea is to solve the equation (4.2) with 1=m, using the information from the solution of 

(4.2) with 1=n. To implement the two grid method, we require the following quantities : 

K,,, :mxm matrix with (K,,, )ij = fl K(p;, q)dSq; 

Kmn mxn matrix with (Kmn)jjs = fAA,, K(p;, q)dSq; 

K� nxn matrix with (K�)i, 
jt = f_,., 

# 
K(p;,. q)dSq; 

and vectors f,,,, f� with (fm)j = f(Pp) and (f�)i' = f(ps), for i, j=1...., m and i', j' = 

1. """, n. Then starting from an initial guess u,,, = 0, we can describe the two-grid algorithm 

as foilows(writing x for a vector x frurn here onwards) : 

0) Set rm = fm, um =0 and go to step 3); 

1) Find the residual on C(m., rm = fm - 
Aum 

- nmum; 

2) Perform smoothing on G`ml, 1L�1 = it,,, -- rmý/A and rm _ -Kmrm/ 
A; (optional step) 

: 3) Restrict the residual rm to C[a_, r� = Rmrm: 

4) Solve exactly on G nl, (Al Kn)vn =. rn ; 
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5) Interpolate vn to obtain vm on G[nil, v,,, = (rm - KmnVn)/A ; 

6) Add on the correction v�, to Um, Um = 1Lm + v,,,; 

7) If F v,,,; ' < TOL exit with solution in um; otherwise go to step 1). 

Here R;, is a restriction operator which can be taken to be the so-called injection operator, 

provided that we choose the nodes of Gin to coincide with those of Gmj. Note that step 

4) is in general carried out by a direct solver where the LU decomposition is kept for use in 

each iteration. The algorithm given above is similar to Atkinson's method II(. based on the 

residual correction principle, see [3]). Missing out the smoothing step 2) will give rise to the 

corresponding method I of Atkinson. In general, method I may be preferable if the operator 

n is sufficiently smooth, since each iteration of this version requires roughly half the number 

of operations compared with method II. For example, it is easy to show that the convergence 

of the iterative scheme above is governed by the quantity ([6. ) 

3= +PI + Kn)-1 (Km 
- Kn)K-11 (4.3) 

If is is a compact operator, it can shown that 0 -> 0 as n -" oc. 

Recall from §2 that the regularised Burton and Miller's formulation (2.18) involves compact 

operators only and therefore the above algorithm can be readily applied to it. But the major 

disadvantage of the regularised formulation, from the practical point of view, is the excessive 

computational cost and complexity of setting up the various discrete operators 15'!. On the 

other hand, due to the presence of the non-compact operator Nk, the direct application of 

the above iterative method to the formulation (2.13) simply does not work. As far as we are 

aware, no efficient techniques have been developed to deal with the discretization of (2.13) 

and therefore the direct solution has been used (19. ). 

The equation (2.13) is of the form (4.1) with K= ill . 
V, where the subscripts k have been 

dropped and N denotes iq h' fier ease of notation. Roughly speaking, the problem here is that 

because of the non-compact operator N, the quantity R(, K, - rcn)n�1: can not be shown to 

be small for all m>n and n sufficiently large; a crucial factor in the convergence analysis of 

the 2-grid methods. We shall show that by modifying steps 2) and 5) of the procedure above, 

to reduce the non-smoothing effect of N, we are able to restore the fast convergence of the 

algorithm for (2.13). 
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To explain our modifications, which are in a sense similar to the operator splitting idea 

of . 26_ and (25J, let us rewrite the step 2) of the algorithm explicitly, in a form suitable for 

analysis 

um = um + rm% A and Fn = -Kmrm/A, 
(4.4) 

or egivalently 

um = (fn + IlmUm)/A and rm = fm 
- 

. \ÜLm 
- 

Kmtlm. 

Concentrating on the second term in (4.4), the residual smoothing step, we have (with A= 

-1; 2and Km=1"m Nm) 

Tm = 2( ilim + Nm)rm 

= 2(, 11m + N,,, - Dm)rm (4.5) 

where Dm is the diagonal matrix of diagonal elements of rV,,, and 'Vm = N, - Dm. We propose 

to modify the smoothing step 2) given by (4.5) in the form 

(I - 2Dm)im = 2(Al1m + iilm)rm, (4.6) 

or 

Tm = 2(1 
- 

2D, ) '(/1im + Nm)Tm" 

Observe that this step increases the computational cost of the original step 2) by m divisions 

only. Similar splitting of the operator Nm should be carried out for the interpolation step 5). 

We shall see in the next section that the above modification of the 2-grid method, based on 
diagonal splitting of the NI, operator, results in the convergence of the scheme as applied to 

the discretisation of (2.13). 

5 Numerical Experiments 

Here we present some numerical results for the iterative solution of the boundary integral 

equations for the exterior acoustic problem. We consider the problem of acoustic radiation 

from three structures: (SI) a unit sphere. (S2) an axisymmetric ellipsoid (ä; -+= 1) 

with the ratio of major to minor axis bj a=2; (choosing a=3/4 , 
b=6/4 so that the average 

dimension (a 1- a+ b)/3 = 1). (S3) a right circular cylinder with height=2 and base radius=1. 



In each case the surface of the structure is approximated by n=112 linear triangular ele- 

ments. Each triangle is then subdivided into 4 smaller triangles by joining the mid-points of 

its sides, giving m=4n=448. The test problem considered in all cases is the radiation prob- 

lem equivalent to that generated by placing 2 point sources inside the structure at locations 

q, _ (0.0,0.0,0.5) and q2 = (0.25,0.25,0.25) with the strengths . 
A1 =2+ 3i and . 

42 =4-i 

respectively; +2,14;. The field generated is then given by 

O(p) = . 
41 

eikIP-9iI 
+ -42 

eikp_gzI 
(5.1) 

lP-41I IP-q I 

from which gy(p), for pES can be calculated. The measure of the error chosen here is the 

mean relative error (SIRE) defined as 

14(Pi) - o(Pi) 1 
11RE =1 (5.2) 

o(pi) 
i. l ' 

where pi's are the collocation points and ¢(pi) represents the computed approximation to 

c(pi)" 

In table 1 we present the results of discretising the regularised equation (2.18) for the case 

of structures (Si) and (S3) near their first characteristic wavenumbers k=3.142 and k=3.04 

respectively. The coupling parameter i=1 is chosen in both cases. The results are for 

(method I) the iterative algorithm in section 4 without the smoothing step 2. We observe 

that the convergence of the 2-grid method is rapid. Indeed, for the iterative solution, the total 

compuational time is greatly reduced. We point out here that in table 1 the difference in set-up 

time is due to the fact that for the direct solution, the matrix multiplications corresponding to 

product operators Lo(N,. - No), I%10, and Lo(;! ± 1! A, ) have to be carried out explicitly, whilst 

in the latter case this is not required (since y= . 
4Bx can be carried out as v= Bx followed 

by y -:: Av). (All programs were run on Prime 75)) at Plymouth Polytechnic and the value of 

TOL in our iterative algorithm was set to I(I-3). 

\Ve shall now concentrate on the computationally more attractive formulation (2.13) where 

the suggested modification to the 2-grid algorithm is essential for its convergence. We also 

found the smoothing step 2 to improve the convergence rate of the scheme. The results in tables 

2-6 below are therefore for the modified algorithm with smoothing step 2 included. In tables 2, 

4 and 6 the set-up time is around 600 CPU seconds and the direct solution time is around 920 

CPU seconds. We observe that in all cases the modified 2-grid algorithm substantially reduces 
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Table 1: Regularised Burton and Miller, equation (2.18). 

Direct Method Iterative Method 

} set up solution set up number of solution SIRE 

Structure time time time iterations time I (%) 

Si (k=3.142) 7000 920 940 4 330 3.8 

S3 (k=3.04) 7000 920 940 4 330 4.0 

Table 2: (S1) Sphere, Formulation (2.13) 

number of 2-Grid 

k Iterations Solution Time SIRE (%) 

3.142 3 64 4.2 

56 112 5.4 

the solution time. In tables 3 and 5 we present results of the sound-field calculations in the 

exterior domain using (2.11). It is well known that the exterior field solution are in general 

more accurate than the surface values, as a result of the integration (which is a smoothing 

operator). 

6 Conclusion 

Efficient solution of the discrete boundary element equations are of paramount importance in 

practical applications. We have shown that the modified 2-grid method can be efficient for 

the non-compact integral equations arising in the field of acoustics. (The superiority of the 

iterative methods over direct solution methods can only be fully appreciated when the number 

of equations is large). 

Table 3: (S I) Sphere. Error in the exterior field. 

°. c Error `, c Error c Error 

k at (0.0,2) at (0,0,3) at (0,0,5) 

: 3.142 2.0 2.2 2.2 

5 2.0 2.2 2.2 
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Table 4: (S2) Ellipsoid. Formulation (2.13) 

number of 2-Grid 

k Iterations Solution Time DIRE (°, 'o) 

3! 3 66 5.9 

514 82 6.2 

Table 5: (S2) Ellipsoid. Error in the exterior field. 

c% Error % Error "o Error 

kj at (0,0,2) at (0,0,3) at (0,0,5) 

3 2.4 2.4 2.4 

5 4.3 3.9 3.5 

Table 6: (S3) Cylinder. F", rmulation (2.13) 

number of 2-Grid 

k Iterations { Solution Time AIRE (c) 

3.04 4 82 4.7 

5 6 111 -1.2 



If the non-smoothness of the integral operator is due to the non-smoothness of the surface 

S, then the iterative techniques will need to be suitably modified [25,26]. The numerical 

analysis of iterative solution of boundary integral equations with non-compact operators is an 

area of much current interest by many researchers. 
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