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Abstract: This paper presents an efficient path-planner based on a hybrid optimization 16 

algorithm for autonomous underwater vehicles (AUVs) operating in cluttered and 17 

uncertain environments. The algorithm integrates particle swarm optimization (PSO) 18 

algorithm with Legendre pseudospectral method (LPM), which is named as hybrid 19 

PSO-LPM algorithm. PSO is first employed as an initialization generator with its strong 20 

global searching ability and robustness to random initial values. Then, the searching 21 

algorithm is switched to LPM with the initialization obtained by PSO algorithm to 22 

accelerate the following searching process. The flatness property of AUV is also 23 
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utilized to reduce the computational cost for planning, making the optimization 24 

algorithm valid for local re-planning to efficiently solve the collision avoidance 25 

problem. Simulation results show that the hybrid PSO-LPM algorithm is able to find a 26 

better trajectory than standard PSO algorithm and with the re-planning scheme it also 27 

succeeds in real-time collision avoidance from both static obstacles and moving 28 

obstacles with varying levels of position uncertainty. Finally, 100-run Monte Carlo 29 

simulations are carried out to check robustness of the proposed re-planner. The results 30 

demonstrate that the hybrid optimization algorithm is robust to random initialization 31 

and it is effective and efficient for collision-free path planning. 32 

Key words: Autonomous underwater vehicle; Pseudospectral method; Particle swarm 33 

optimization; Differential flatness; Path re-planning; Collision avoidance 34 

1. Introduction 35 

Autonomous underwater vehicles (AUVs) are vehicles that can perform underwater 36 

tasks and missions autonomously, using onboard navigation, guidance, and control 37 

systems (Yuh, 2000). In addition to various scientific underwater exploratory missions, 38 

AUVs have also been widely utilized for military tasks and inspection of underwater 39 

structures and resources (Wang et al., 2009; Lin and Tseng, 2006; Kondo and Ura, 2004; 40 

Iwakami et al., 2002; Incze, 2011; Li et al., 2012). 41 

AUVs usually operate in dynamic and cluttered ocean environments, and one main 42 

challenge in the development of advanced AUVs is to find a path planning scheme 43 

which can safely and effectively navigate and guide the AUVs in such environments. 44 

The path planner thus should be capable of reacting fast to changing environments and 45 



keeps the AUV away from various obstacles from its initial position to the final 46 

destination. Obviously, such planning must be completed on-line and follow some 47 

optimization strategy in order to ensure the safety and performance of the vehicles. 48 

In recent years, a variety of solution approaches have been developed and applied to 49 

the collision-free path planning problems of underwater vehicles. These approaches can 50 

be roughly divided into two categories: global planning and local re-planning. When 51 

the environment is completely known as a priori with static obstacles, a global path 52 

planner can be utilized off-line via optimal control theory such as nonlinear 53 

programming (Spangelo and Egeland, 1994; Kumar et al., 2005), heuristic algorithms 54 

(Likhachev et al., 2005; Carsten et al., 2006) and artificial potential field approaches 55 

(Khatib, 1986; Daily and Bevly, 2008; Sullivan et al., 2003). Another class of 56 

algorithms to this type of optimization problems are graph search methods including 57 

A* algorithm (Carroll et al., 1992; Pereira et al., 2011, 2013) and D* algorithm 58 

(Ferguson and Stentz, 2006). On the other hand, if the vehicles operate in unknown or 59 

only partially known environments with dynamic obstacles, then subsequent local re-60 

planning due to changing environments should be carried out on-line, which makes the 61 

path planning problem intrinsically NP hard (Non-deterministic Polynomial), and 62 

finding an optimum solution is not guaranteed. To deal with these problems, 63 

evolutionary algorithms have been used, such as genetic algorithm (GA) or particle 64 

swarm optimization algorithm (PSO) (Zeng et al., 2015; Aghababa, 2012). 65 

Evolutionary algorithms usually have better ability to converge to a global optimum or 66 

a near optimal solution than traditional optimization methods, and also not sensitive to 67 



initial guesses of solutions. However, evolutionary algorithms are prone to poor 68 

numerical accuracy and difficult constraints handling. 69 

In this paper, a novel hybrid algorithm is proposed for time-optimal collision-free 70 

path planning of an AUV, which combines PSO algorithm and Legendre 71 

pseudospectral method (LPM). The main idea of the algorithm is that: for the first phase, 72 

PSO is used as an initial values generator due to its robustness to random initializations. 73 

It will be applied for the problem with a set of random initial values, in order to enhance 74 

the global searching capability. PSO stops iterating after a stopping criterion is achieved, 75 

and the algorithm goes to the second phase. In the second phase, the searching scheme 76 

is switched to LPM to achieve a faster and better convergence around the global 77 

optimum. The differential flatness property of AUV is also utilized to reduce the 78 

number of constraints and variables to be optimized in order to decrease the total time 79 

consumption. If the time taken for each optimization is less than the given time horizon 80 

for re-planning, then the hybrid planning algorithm can repeatedly be solved on-line. 81 

This re-planning approach introduces feedback to compensate for uncertainty, and the 82 

guidance law obtained for the AUV ensures obstacle avoidance and offers high 83 

performance. 84 

The contributions of this paper are as follows: 85 

 Integrating PSO and LPM as a hybrid optimization algorithm, which can improve 86 

both robustness to random initializations and convergence rate around global 87 

optimum; 88 

 Employing flatness property of AUV to reduce the time consumption of 89 



optimization ; 90 

 Using re-planning scheme to deal with the collision avoidance against both static 91 

and dynamic obstacles. 92 

The remainder of this paper is organized as follows. Section 2 introduces the 93 

mathematical models of an AUV and its flatness property; Section 3 defines the 94 

problem statement and reformulates the problem in flat outputs space by using flat 95 

transformation; Section 4 proposes the details of path re-planning scheme based on 96 

hybrid PSO-LPM algorithm; Section 5 shows the simulation results and robustness 97 

assessment of the proposed algorithm; Concluding remarks are then presented in 98 

Section 6. 99 

2. Mathematical model of an AUV 100 

2.1 Nonlinear AUV equations of motions  101 

In general, the dynamic behaviors of an AUV are commonly described in two 102 

coordinate systems, namely earth-fixed reference frame and body-fixed reference frame 103 

as shown in Figure 1.  104 
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Fig. 1. Earth-fixed and body-fixed reference frames. 115 

A general description of six-DOF nonlinear equations of AUV motions is described 116 

as follows (Fossen, 1994):  117 

)

( ) ( ) ( )
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                (1) 118 

where, T[ , , , , , ]u v w p q r is a velocity vector and T[ , , , , , ]x y z   η is a 119 

displacement vector. , ,u v w denote linear velocities along surge, sway and heave 120 

directions; , ,p q r denote rotational velocities in roll, pitch and yaw motions; , ,x y z121 

are positions along surge, sway and heave directions, respectively and , ,   show the 122 

Euler angles of the vehicle in earth-fixed frame; )J(η is Jacobian transformation 123 

matrix; M denotes system inertia matrix; ( )C  is Coriolis-centripetal matrix; ( )D  is 124 

hydrodynamic damping matrix; ( )g η  represents buoyant and gravitational forces and 125 

moments;  is the vector of control inputs. 126 

Without loss of generality, it is assumed that: (i) the center of mass (CM) coincides 127 

with the center of gravity (CG) and center of buoyancy (CB); (ii) the hydrodynamic 128 

drag terms of order higher than two can be neglected; (iii) the motions in roll and pitch 129 

directions are negligible ( 0; 0p q      ). By selecting the principal axis, the 130 

inertia matrix and Coriolis-centripetal matrix are defined as: 131 
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M C          (2) 132 

here, m is the mass of the vehicle; Iz is the moment of inertia in yaw motion. The matrix133 

( )D  is assumed to be non-coupled with only uncertain linear/quadratic damping 134 



coefficients 
| | | | | |/ , / , /u u u v v v w w wX X Y Y Z Z  and 

| |/r r rN N . Hydrodynamic damping 135 

matrix ( )D  and ( )g η can thus be described as: 136 
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D g 0    (3) 137 

T[ , , ,0,0, ]u v w rT T T T , where , ,u v wT T T and rT  represent available control inputs in 138 

surge, sway, heave, and yaw directions, respectively. The kinematic and dynamic 139 

equations of AUV can be represented as: 140 
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2.2 Flatness analysis of an AUV  142 

A control system 143 

          ( , )    ,n m  R Rx f x u x u                    (5) 144 

is differentially flat or just flat, if there exist smooth maps C , A and B defining on open 145 

neighborhoods of 1 1( ) ,( )n m m  R R R and 2( )m  
R , such that 146 
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                        (6) 147 

here  and are positive integers, y is called a set of flat outputs, and the components of148 

y are not related by a differential relation (Fliess et al., 1995, Lévine J, 2011). The 149 

definition shows that if there exist a set of flat outputs with the same number of control 150 



inputs, then the state and control variables can both be expressed with them in flat 151 

outputs space.   152 

  By observing Eq. (4) carefully, a set of flat outputs can be easily found as153 

T T

1 2 3 4[ , , , ] [ , , , ]Y Y Y Y x y z  Y , and then the mathematical model of AUV can be 154 

transformed into 155 
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3. Problem formulation and transformation 158 

This paper aims at finding a time-optimal collision-free path planning scheme for 159 

AUV, where the optimization criterion is used to obtain the minimum travelling time 160 

whilst the collision constraints ensure that the path is collision-free from any static or 161 

moving obstacles with uncertainty. 162 

  Generally, the path planning problem can be formulated as an optimization problem: 163 

find a path T T[ ; ; ] [ , , , , , , , , , ]u v w ru v w r x y z      X = η  , which minimizes the 164 

performance index ( J ): 165 

 min fJ t
X

                             (9) 166 



subject to the vehicle dynamics described by Eq. (4), and the positional constraints from 167 

the given initial condition 0X and final destination
fX defined as: 168 

0 0 0 0 0( ) ( ( ); ( ); ( ))t t t t X X X    ;  
0( ) ( ( ); ( ); ( ))f f f ft t t t X X X         (10) 169 

where, 
ft is the final time. If the initial time is assumed 0 0t  , then 

ft is the total 170 

travelling time of the AUV. The rotational velocities of the thrusters mounted on the 171 

practical AUVs will have lower and upper limitations, which results in the following 172 

control inputs constraints as  173 

max| | | |                              (11) 174 

where, max should coincides to physical limitations of the thrusters.  175 

  In this section, to deal with the collision constraints, hybrid objective function is 176 

employed, and a weighting scheme is introduced to trade-off between the total 177 

travelling time and the risk of collision, the hybrid objective function is defined as  178 

1 1 2 2( ) ( ) ( )J J J  X X X                     (12) 179 

where, 1 2,  denote positive weighting values satisfying 1 2 1    and 1( ) fJ tX  as 180 

described in Eq. (9).  181 

The objective function for collision avoidance indicating distance information 182 

between AUV and obstacles is defined as (Liang and Lee, 2015) 183 
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  (13) 184 

where, j=1,2…S , S is the number of obstacles in the work space; 
jObs represents the 185 

center of the jth obstacle; 
pX is the position of AUV; 

obsj denotes the given safe 186 

distance between AUV and the jth obstacle, which can be obtained according to the 187 



length of the AUV and the radii of the obstacles. 188 

As shown in Eqs. (9-13), the optimization process needs to determine a large number 189 

of variables, which will result in a huge time burden, especially for evolutionary 190 

algorithms. Additionally, most optimization algorithms spend majority of time on 191 

dealing with the differential equations constraints caused by the mathematical models 192 

of system. 193 

By the definition of differential flatness above, if a dynamic system is flat, then its 194 

state and input variables can be parameterized in terms of a set of flat outputs and their 195 

derivatives. The above original optimization problem thus can be converted and 196 

reformulated in flat outputs space as: find a path ( 1) T[ , , ] Y Y Y Y...Y in order to 197 

minimize the objective function described as 198 

1 1 2 2
( ) ( )

( ) [ ( ) ( )]min min
t t

J J J  
Y Y

Y Y Y                 (14) 199 

subject to the positional constraints as 200 

( ) ( )

0 0 0 0 0( ( ), ( ), ( )... ( )) ;      ( ( ), ( ), ( )... ( ))f f f f ft t t t t t t t  A Y Y Y Y X A Y Y Y Y X  (15) 201 

and the input variables constraints 202 

( 1)

max| ( , , ... ) | | |  B Y Y Y Y                      (16) 203 

where, flat transformation A is defined in Eq.(7), while transformation B is provided in 204 

Eq. (8).  205 

  It can be found in the reformulation in flat outputs space, the constraints caused by 206 

the nonlinear model of the AUV have been completely eliminated, and all the 207 

displacement and control input variables can be parameterized by flat outputs, thus the 208 

number of variables to be optimized has also been reduced by 60% from 12 to 4. The 209 



time taken for path planning is thus considerably faster in this case, and makes the 210 

optimization algorithm more possibly to re-plan the trajectory on-line. 211 

4 Hybrid PSO-LPM algorithm for path planning  212 

This paper focuses on the path planning problem of AUVs in complicated 213 

environments with static and moving obstacles. In order to seek a collision-free path, 214 

the planner should be capable of reacting fast to any new information about the 215 

environments obtained by the corresponding software and sensors mounted on the 216 

vehicles. The path planning of AUV in such environments should be a continuous and 217 

closed-loop process, and the trajectory should be locally re-planned according to the 218 

changing environments. The main idea of the re-planning scheme is illustrated in Fig. 219 

2: where T is the re-planning time horizon, 
iMt is the ith measurement time of the 220 

sensors and
iPt is the time taken for the ith re-planning process. At time it , the AUV 221 

executes the trajectory generated by the (i-1)th re-planner (dotted line in Fig. 2), and this 222 

process will last until the time i it t , where
i ii M Pt t t   . An updated path will be 223 

obtained by the ith re-planning process according to the environment information 224 

collected by the sensors at time
ii Mt t . The AUV will be guided along the new 225 

trajectory (black line in Fig. 2) until the (i+1)th updated trajectory is obtained. It is 226 

obvious in Fig. 2 that, if iT t   , then a path update can be computed by incorporating 227 

any new information of the changing ocean environment. Moreover, if T is 228 

sufficiently short, then the environment information can be fed back to the planner in 229 

real-time, which can ensure the trajectory planned more safely and efficiently. However, 230 

the shorter the planning window is, the faster the planning algorithm is required.  231 
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Fig. 2. Re-planning scheme. 244 

4.1 PSO path planning algorithm 245 

Particle swarm optimization (PSO) is an evolutionary computation technique, which 246 

was introduced in the mid 1990s (Kennedy and Eberhart, 1995). Every particle in the 247 

swarm represents a potential path, the parameters of each particle corresponds to the 248 

coordinates of control points generating the path. An overview of the PSO-based path 249 

planning scheme is illustrated in Table 1. 250 

Table 1  251 

PSO-based path planning scheme. 252 

Initialization: Choose appropriate parameters for population size s, the maximum number 

of iterations maxK . The stopping criterion is chosen as the change of the current best particle 

fitness values between two consecutive iterations is smaller than a predefined value  . Input 

iMt

Start point of the (i+1)th re-planning 

X

Y

O

t

it i it t
iPt

1( )i it t T 



the current environmental information and initialize a set of particles positions
0

i
X and 

velocities
0

i
V randomly. 

1. Evaluate each particle’s fitness value subject to Eqs. (14-16), and store the current best 

state of each particle; 

2. Evaluate the new position’s fitness value; for each particle, if the fitness value of new 

particle is better than the original particle, swap it; 

3. Compare with all the best ever positions of each particle to find the best global position, 

and update the velocity vector of each particle in the swarm; 

4. Update the position vector of each particle, using its previous position and the updated 

velocity vector; 

5. If the stopping criterion is satisfied or the number of iterations exceeds maxK  then stop, 

otherwise, go to step2.  

In Step 3, the updating scheme for the velocity vector of each particle is given by 253 

   1 1 1 2 2

i i i i g i

k k k k k kkw c r c r

    V V P X P X              (17) 254 

where, subscript k  indicates an unit pseudo-time increment, ,i i

k kV X are the velocity 255 

vector and position vector of particle i at iteration k, 1 2,r r are two random numbers in 256 

the range [0,1] . The parameters 1 2,c c are problem-dependent, where 1c indicates the 257 

confidence level of the current particle in itself and 2c describes the confidence level 258 

in the swarm. The parameter kw  is an inertia weighting factor which controls the 259 

global/local exploration abilities of the swarm, which is proposed as  260 

max min
max

max

( 1)k

w w
w w k

k


                      (18) 261 



where, maxmin
,w w are the lower and upper bounds of kw in the whole optimization. 262 

In Step 4, the updating scheme for the position vector of each particle is 263 

described as 264 

1 1

i i i

k k k  X X V                         (19) 265 

Further, the velocity vector of a particle with violated constraints should be brought 266 

back to zero in the velocity update scheme defined as 267 

   1 1 2 21
gi i i i

k k k kk
c r c r    V P X P X                 (20) 268 

This is to ensure if a particle is infeasible, then there is a large probability that the last 269 

search direction was not feasible.  270 

4.2 LPM path planning algorithm 271 

Legendre pseudospectral method (LPM) is an efficient numerical optimization 272 

algorithm first proposed by Elnagar et al. (1995). In this paper, it is employed as a 273 

discrete optimization scheme for the NP hard problem defined by Eqs. (14-16). The 274 

main idea of LMP is to parameterize the flat outputs and their derivatives with Nth order 275 

Lagrange polynomials NL on 1N   Legendre-Gauss-Lobatto (LGL) points. Since the 276 

LGL points lie only in the interval [ 1,1]   , a linear transformation 277 

0 0[2 ( )] / ( ) [ 1,1]f ft t t t t        should be taken first to rewrite the optimization 278 

problem. The flat output functions ( )Y  can thus be approximated on 1N   LGL 279 

points as  280 
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where, LGL points 0, 0,1,..., ( 1,  1)l Nl N       are the roots of ( )NL  . ( )l 282 

is the Nth degree Lagrange interpolating basis function defined as 283 
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The first and the ( 1)th  derivatives of ( )Y at the LGL point k can be approximated 285 

respectively as  286 
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where,
1,klD are the entries of the ( 1) ( 1)N N   matrix

1D  288 
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D D              (24) 289 

The matrix 
( 1),kl D is also ( 1) ( 1)N N   , which can be easily obtained by290 

( 1)

( 1) ( 1), 1: [ ]kl



 



  D D D . 291 

Using LPM algorithm, the path planning problem shown in Eqs. (14-16) can be 292 

further converted into a NLP as: determine a set of coefficients293 

T

0 1( ) [ ( ), ( ),..., ( )]N       , which minimizes the cost function shown in Eq. 294 

(14), subject to all required constraints. 295 

One of the main advantages of LPM is offering an exponential convergence rate for 296 

the approximation of analytical functions under 2L norm, while providing Eulerian-like 297 

simplicity (Gong et al., 2006). Due to its high accuracy and competitive computational 298 

efficiency, LPM is widely used in direct optimization methods. In general, LPM has a 299 

larger radius of convergence than other numerical methods, and it may not require a  300 



set of good initial guesses for convergence. However, educated initial guesses do 301 

improve the convergence rate and robustness. In the following section, a hybrid PSO–302 

LMP algorithm is proposed to solve the collision-free path planning problem of the 303 

AUV.  304 

4.3 Path re-planning with hybrid PSO-LPM algorithm 305 

The proposed PSO–LPM is a hybrid optimization algorithm combining PSO 306 

algorithm with LPM algorithm. The main idea of the algorithm can be divided into two 307 

phases: in phase 1, PSO algorithm serves as a start engine to generate a candidate path; 308 

in phase 2, the best solution of phase 1 is loaded as an initialization for LPM-based path 309 

planner, and then run the LPM-based path planner repeatedly on-line until the AUV 310 

reaches the final destination. Finally, the obtained optimal solutions in flat outputs space 311 

should be mapped back to the state and control input spaces. The details of PSO-LPM 312 

algorithm can be summarized as shown in Table 2: 313 

Table 2 314 

Hybrid PSO-LPM algorithm for re-planning process. 315 

Initialization: Set all the parameters of PSO algorithm with appropriate values, and the 

number of LGL points is N+1. Select a proper value for re-planning time horizon T , where 

T  could be a constant, and depends on the time consumption for each re-planning process 

based on LPM-based algorithm. 

1. Rewrite the original problem in flat outputs space as shown in Eqs. (14-16) and 

approximate the flat output functions by LPM algorithm according to Eqs. (21-24); 

2. Regard the undetermined variable vector T

0 1[ , ,..., ]N    as a single particle, and run 



the PSO-based path planning algorithm in Section 4.1, until the stopping criterion is met 

or the number of iterations exceeds maxK , then stop; 

3. Store the best candidate solution, and regard it as a set of initial values for LPM path 

planner, meanwhile let i=0; 

4. Update the current ocean environments information at time it , and run the LPM path 

planning algorithm; 

5. Send the updated candidate path found in Step 4 to the AUV guidance system once the 

vehicle reaches the time i it t ; 

6. If the fitness value of the ith planning 1iJ T  , store the values of T

0 1[ , ,..., ]N    at 

time it T , and set it as an initialization for the (i+1)th re-planning. Then let i=i+1, and 

return to Step4. Otherwise, go to Step 7; 

7. Store the optimal solution as * * * * T

0 1[ , ,..., ]N    , and obtain the corresponding flat output 

variables * * * * *( 1) T( ) [ ( ), ( ), ( ),..., ( )]    Y Y Y Y Y according to Eq. (23), then map the 

flat outputs space to the state and control inputs space by flat transformation; 

8. Substitute the obtained optimal control input * into the system dynamic models, and 

obtain the actual state variables by numerical integral calculations. If the error between 

the actual final condition and the desired final condition does not meet the precision 

requirement, then increase the number of LGL points as N=N+1, and return to Step 1, 

else stop. 

5. Results and discussion 316 

To investigate the effectiveness and robustness of the proposed re-planning algorithm, 317 

numerical simulations have been carried out for two different cases with multi static 318 



obstacles and multi moving obstacles, respectively. The algorithm has been coded in 319 

MATLAB R2012a and simulations are run on the PC with 2.1 GHz CPU/2GB RAM. 320 

The NLP solver for re-planning process used here is KNITRO (Byrd et al., 2006). 321 

In the cases studies, the simulation parameters for PSO algorithm are selected as: the 322 

population size s=30; the maximum number of iterations max 1000K  ; 1 2 2c c  and 323 

the inertia weighting factor 
kw scales linearly between 0.4 and 0.9. The number of LGL 324 

points is 11 with N=10; the re-planning time horizon is given as 1T s  , and the 325 

weighting values for hybrid objective function are set as 1 2 0.5   . 326 

5.1 Case1: Static obstacles avoidance 327 

The scenario in this case study is that an AUV is travelling in 3-D workspace, from 328 

the start point [0,0,0,0,5,5,2, 4 ]T to the destination point [0,0,0,0,45,45,22, 4 ]T. 329 

Six static obstacles are considered for evaluation of the re-planning algorithm, which 330 

are assumed to be spherical with the same radius of 3m.  331 

Fig. 3 displays collision-free trajectories of the AUV obtained by only PSO algorithm 332 

with a random initialization and the time taken to arrive at final point is 183sft  . Fig. 333 

4 shows an optimal collision-free path obtained by hybrid PSO-LPM global planning 334 

algorithm with the final arrival time as 111.7sft  . This shows that the hybrid PSO-335 

LPM algorithm is able to find a better optimal trajectory compared to PSO algorithm 336 

alone. The PSO algorithm here is only used to find a set of initial guesses for LPM-337 

based algorithm rather than a global optimum.  338 

Fig. 5 shows an optimal path of AUV based on the re-planning scheme, and the total 339 

travelling time is 130.27sft  . It can be found that although the globally planned 340 



trajectory is slightly different from the re-planned one; both of them can guide the AUV 341 

to the final destination successfully without collision with any obstacles. In this case all 342 

the positions of static obstacles are assumed to be exactly known as a priori, thus the 343 

global PSO-LPM algorithm can be utilized for the purpose of collision avoidance with 344 

sufficiently enough LGL points, in order to avoid the possible collisions between any 345 

two LGL points as shown in Fig. 4(a). It should be noted as the number of LGL points 346 

increases, the complexity and time taken for the optimization will increase, resulting in 347 

a more computational burden. The proposed algorithm deals with the obstacles by local 348 

re-planning with optimized LGL points, which not only reduces the time consumption, 349 

but also reduces the risk of collision as shown in Figs. 4(b) and 5(b) respectively. 350 

However, the re-planning scheme has to evaluate the collision risk and refine the path 351 

in each local planning process to keep the AUV a safe distance from all the obstacles. 352 

It can be seen in Figs. 4(b) and 5(b), the value of objective function for local re-planning 353 

is thus almost twenty seconds longer than that of global planning. 354 
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 360 

Fig. 3. Planned trajectories of AUV by PSO algorithm in Case 1. (a) Trajectory of AUV in 3-361 

D workspace. (b) Distances between planned trajectory of AUV and each obstacle. 362 
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 371 

Fig. 4. Globally planned trajectories of AUV by hybrid PSO-LPM algorithm in Case 1. (a) 372 

Trajectory of AUV in 3-D workspace. (b) Distances between globally planned trajectory of 373 

AUV and each obstacle. 374 
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   383 

Fig. 5 Re-planned trajectories of AUV in Case 1. (a) Trajectory of AUV in 3-D workspace. (b) 384 

Distances between re-planned trajectory of AUV and each obstacle. 385 

Fig. 6(a) shows the time taken for each planning in the whole re-planning process, 386 

where the hollow dot represents a success in finding an optimal solution while the blue 387 

dot represents a failure. It can be found the computational time for each planning except 388 

the first one is shorter than the given re-planning time horizon 1sT  , which ensures 389 

that the re-planning scheme can be used on-line. Fig. 6(b) displays the values of 390 

objective function obtained by each re-planning process, which gradually decrease as 391 

the AUV moves closer to the target. However, the curve is not smooth enough, i.e., it 392 

drops considerably at the time t=59s and t=101s. As shown in Fig. 6(a), the 59th re-393 

planning process (marked with a circle) is successful to obtain an optimal solution, but 394 

the time consumption is excessive, which causes a sudden change in the value of 395 

objective function. Herein, the updated path obtained by previous successful re-396 

planning is applied to the AUV, until the next successful re-planning is achieved. In Fig. 397 
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6(a), the 100th re-planning process (marked with a diamond) fails to find an optimum, 398 

while the 101th re-planning succeeds, which also makes the fitness values change 399 

considerably. As shown in Figs. 6(a) and 6(b), it is found that the sudden changes in the 400 

values of objective function correspond to both excessive time consumption for re-401 

planning and the failure in finding an optimal re-planning path. 402 

a 403 

 404 
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  406 

Fig. 6. Relations between computational time and objective function. (a) Computational 407 

time for each planning. (b) Values of objective function. 408 
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In previous case, it is assumed that the positions of obstacles are precisely known, 410 

and the planned path can be executed perfectly. However, in realistic ocean fields, the 411 

locations of obstacles are not usually known precisely. In this section, the re-planning 412 

problem will tackle three moving obstacles with varying levels of position uncertainty.  413 

The model of dynamic obstacles is assumed to be a linear and discrete-time system 414 

as defined in Zeng et. al (2015): 415 

1 1i O i O i OX du   O H O Z L                    (25) 416 

where, T[ , , ]i Pi Vi UiO O OO represents the state of obstacles at time it (here, assuming 417 

0
iMt  ) measured from the on-board sonar sensors, and , ,Pi Vi UiO O O denote position, 418 

velocity and uncertainty of the obstacle at time it , respectively; 2

1 ~ (0,0.005 )iX N
 is 419 

Gaussian disturbance acting on velocity, which is independent from the disturbances 420 

caused by 0~ 2iX  ; du is the rate of uncertainty, which is set as 0.005m / sdu  . The 421 

parameter matrices are written as: 422 

1 0 0 0

0 1 0         1          0

0 0 1 0

O O O

T

T

     
     

  
     
          

H Z L              (26) 423 

Assuming the initial velocities for all the three moving obstacles are 0m/s, with the 424 

initial locations distributed randomly. Fig. 7 displays the optimal trajectory obtained in 425 

the first global planning, which can be regarded as the global planning problem in Case 426 

1 with only three static obstacles. Obviously, the global planning can easily find a 427 

collision-free path as shown in Fig. 7(b) with the objective function in total time428 

125.63sft  . In Fig. 8(a), the red line displays the re-planned optimal trajectory of 429 

AUV, while blue lines show the paths of the centers of mass of three dynamic obstacles, 430 



respectively. Further, the three spheres mark the location of each obstacle with shortest 431 

distance to the AUV in the whole re-planning process. Similarly, as illustrated in Fig. 432 

8(b), the re-planning algorithm also succeeds in finding a time-optimal collision-free 433 

path in 3-D workspace even with uncertain moving obstacles. It can be observed the 434 

objective function obtained by re-planning is 163.79sft  , since the AUV requires 435 

more time to overcome the possible collisions caused by dynamic obstacles as well as 436 

their uncertainty in both positions and velocities. 437 
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 447 

Fig. 7. Globally planned trajectories of AUV by hybrid PSO-LPM algorithm in Case 2. (a) 448 

Trajectory of AUV in 3-D workspace. (b) Distances between globally planned trajectory of 449 

AUV and each obstacle. 450 
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 458 

Fig. 8. Re-planned trajectories of AUV in Case 2. (a) Trajectory of AUV in 3-D workspace. (b) 459 

Distances between re-planned trajectory of AUV and each obstacle. 460 

Fig. 9 plots the time taken for each re-planning and the relations between the values 461 

of objective function and the time taken for the whole re-planning process. In both Figs. 462 

6(a) and 9(a), it can be found the first global planning takes the longest time than the 463 

rest re-planning process, since it is the sum of the time consumed for both PSO 464 

optimization process and LPM optimization process. And, the (i+1)th re-planning takes 465 

the solution obtained in the ith re-planning as an initialization to decrease the total time 466 

consumption. 467 
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 476 

Fig. 9. Relations between computational time and objective function. (a) Computational 477 

time for each planning. (b) Values of objective function. 478 

5.3 Robustness assessment  479 

In this subsection, Monte Carlo simulations with random initial values will be 480 

carried out to demonstrate the robustness of the proposed re-planning algorithm. First, 481 

simulations are performed on a 100-run basis for Case 1 discussed in Section 5.1, and 482 

the results are illustrated in Fig. 10. Fig. 10(a) displays the shortest distances between 483 
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AUV and the obstacles in the whole re-planning process, where the positive values 484 

represent safe condition, while the negative values mean collision. It is obvious in Figs. 485 

10(a-b), although the first global planning is superior to the re-planning scheme in 486 

objective functions, it fails to avoid collision for almost half of the 100-run Monte Carlo 487 

simulations. Fig. 10(c) plots the terminal error of AUV, which is defined as the distance 488 

between the desired final position and the actual planned destination of AUV. It is 489 

obvious that the terminal errors here are acceptable in realistic applications, and an 490 

improvement could be obtained by increasing the number of LGL points. 491 

Fig. 11 shows the 100-run Monte Carlo simulation results also for Case 1 without 492 

considering the flatness property of AUV. It can be seen that the average time 493 

consumption for each re-planning is longer than the given re-planning time horizon T , 494 

which causes a majority of plannings failing in the whole re-planning process, the re-495 

planning thus cannot be executed on-line as expected. An obvious phenomenon is that 496 

the values of objective function obtained without considering flatness property are 497 

much longer than those displayed in Fig. 10(b). On the other hand, this set of Monte 498 

Carlo simulation results illustrate the flatness property of AUV is effective to reduce 499 

the time usage of planning, which sometimes is a necessary condition for the 500 

application of re-planning scheme on-line.  501 

Fig. 12 runs 100 Monte Carlo simulations with random initial values to assess the 502 

robustness of proposed algorithm for Case 2. The results show that the PSO-LPM 503 

algorithm is not only effective for the ocean environments with static obstacles but also 504 

successful in dealing with moving obstacles with varying levels of positional 505 



uncertainty.  506 
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 518 

Fig. 10. Results of 100-run Monte Carlo simulations for Case 1. (a) Shortest distances 519 

between AUV and obstacles. (b) Values of objective function. (c) Terminal errors. 520 

 521 

Fig. 11. Results of 100-run Monte Carlo simulations for Case 1 without flatness property of AUV. 522 
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 547 

Fig. 12. Results of 100-run Monte Carlo simulations for Case 2. (a) Shortest distances 548 

between AUV and obstacles. (b) Values of objective function. (c) Terminal errors. 549 

6. Conclusions 550 

  This paper presents an on-line collision-free path planning strategy of AUV, which 551 

incorporates PSO algorithm with LPM-based re-planning scheme to continuously 552 

refine the optimal trajectories in complex ocean environments. Simulation results 553 

illustrate that the proposed path planner succeeds in collision avoidance against both 554 

static and dynamic obstacles with uncertainty in positions and velocities, and by using 555 

PSO as an initialization generator, the hybrid PSO-LPM planner is shown to be capable 556 

of finding a more optimal solution than PSO algorithm alone. In addition, due to the 557 

differential flatness property of AUV, the time consumption for each planning process 558 

is further reduced, which ensures that the re-planning scheme can be applied on-line. 559 

Finally, Monte Carlo simulations demonstrate the robustness of the proposed scheme. 560 

The next stage in this work is to improve the practicability of current algorithm in 561 

realistic and complex ocean environments. The ocean environments are composed of 562 

obstacles, irregularly shaped terrains and strong current fields which vary over time 563 
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both in directions and strength. Thus a natural extension of the above work is to develop 564 

an efficient path planner, which can integrate current forecasts information to allow 565 

mission planning over long time duration through variable currents. 566 
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