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Abstract—We investigate the problem of achieving robust 

control of hand prostheses by the Electromyogram (EMG) of 

transradial amputees in the presence of variable force levels, as 

these variations can have a substantial impact on the robustness 

of the control of the prostheses. We also propose a novel set of 

features that aim at reducing the impact of force level variations 

on the prosthesis controlled by amputees. These features 

characterize the EMG activity by means of the orientation 

between a set of spectral moments descriptors extracted from the 

EMG signal and a nonlinearly mapped version of it. At the same 

time, our feature extraction method processes the EMG signals 

directly from the time-domain to reduce computational cost. The 

performance of the proposed features is tested on EMG data 

collected from nine transradial amputees performing six classes 

of movements each with three force levels. Our results indicate 

that the proposed features can achieve significant reductions in 

classification error rates in comparison to other well-known 

feature extraction methods, achieving improvements of ≈6% to 

8% in the average classification performance across all subjects 

and force levels, when training with all forces. 

 
Index Terms—Classification, Force level variation, Myoelectric 

control, Pattern recognition, Robustness, Surface 

Electromyogram (sEMG), Transradial amputees. 

 

I. INTRODUCTION 

N the United States, there are nearly 2 million people living 

with limb loss [1] with approximately 185,000 amputations 

occurring every year [2]. The main causes for limb loss 

include vascular disease (54%) and trauma (45%) with upper-

limb amputations accounted for the vast majority (68.6%) of 
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all trauma-related amputations, according to the statistics of 

National Limb Loss Information Centre [3].  

Many advances were achieved during the past decades in the 

development of multifunctional upper limb prostheses 

controlled with EMG. These include advanced research 

hands[4]–[7] and commercially available hands[8]–[11], both 

employing conventional myoelectric control strategies[12]. In 

addition, advanced control techniques such as Pattern 

Recognition (PR) based EMG control [13], [14] and 

regression techniques[14], [15] were also proposed and 

investigated. However, no prosthesis is available in the market 

that has the capability to perform multiple functions with 

reliable performance. This is partially due to a big gap 

between academia and industry, which limits the clinical 

implementation of prostheses for amputees’ use. The impact 

of such a gap is anticipated to continue expanding unless a 

change of focus in myoelectric control systems occurs [16]. 

The lack of intuitive control, poor system reliability and the 

lack of robustness against several practical problems were all 

identified as outstanding obstacles contributing to this gap 

[14], [16]. Nowadays, researchers in this field are mainly 

focused on tackling the practical problems, that may impact 

the robustness and reliability during daily life usage of PR 

systems, such as different arm positions or arm postures[17]–

[20], electrode shift [21], [22], signal non-stationarity [23], 

and force variation [13].  

The effect of the variation in the force of contraction on hand 

movement classification has received little attention, with 

most studies focusing on evaluating the performance on intact-

limbed subjects rather than the amputees. The signature of the 

EMG signal changes with varying force levels due to 

modifications in the EMG time-frequency characteristics and 

the probability density function [24], [25]. These changes may 

degrade the performance of the PR system, which may fail to 

produce the proper decision for a particular movement.  

Tkach et al. [26] studied the stability of Time Domain (TD) 

features with a Linear Discriminant Analysis (LDA) classifier 

during low and high forces with EMG signals collected from 

only intact-limbed subjects for four forearm movements. They 

found that training the classifier with low force or with 

combined low and high forces provided better accuracy than 

when training the classifier with only the high level of force. 

However, they did not include the medium force level to 

investigate the variability of the signals for a given movement. 
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Moreover, hand and finger movements were not investigated, 

which are the main movements needed by the transradial 

amputees for prosthesis control[27].  

In [13], the effect of force level variation on the performance 

of PR based EMG control was investigated for intact-limbed 

subjects who performed 9 classes of hand motion. The force 

level varied from 20% to 80% of the maximum voluntary 

contraction. TD features and an LDA classifier were also used 

for classification. To test the ability of the PR system to 

handle new forces, the classifier was trained with each force 

level, and then tested with all force levels. The classification 

error rates were between 32% and 44%, compared to 8-19% 

when training and testing with the same force level. The high 

error rates when testing with the unseen forces reflect the 

importance of the problem of force variation, which will 

render the PR system unusable at all. 

In [28], three force levels were measured (30%, 60% and 90% 

of the maximum long term voluntary contraction) for only 

intact-limbed subjects. All force levels were included in the 

training and testing. However, testing with individual force 

levels in order to examine the effect of changing the force on 

the classification performance was not performed.   

Recently, a feature extraction method based on discrete 

Fourier transform and muscle coordination was proposed by 

He et al.[29] and applied to EMG data collected from intact-

limbed subjects who performed nine wrist movements with 

three different force levels. The classification accuracy was 

increased by approximately 11% when using the proposed 

features compared to the TD feature set. However, a specific 

sensor-placement configuration, by which the EMG electrodes 

were attached on pre-specified forearm muscles, was reported 

as vital for the algorithm to perform well. This configuration is 

limited by the difficulty to place the electrodes on the 

deformed amputee stump, which may make it difficult to 

reproduce their results with the transradial amputees. 

In most of the previous work, the experiments were conducted 

only on intact-limbed subjects who benefited from visual and 

proprioceptive feedback from the hand [13], [26], [29]. In real 

life, an amputee lacks both these feedbacks because of the loss 

of the limb after the amputation process. More importantly, it 

is not known if these findings can be generalized to amputees 

since they have a different muscle structure after amputation. 

In our pilot work [30], the effect of force variation on the PR 

system performance was investigated for two transradial 

amputees who performed only four hand movements. The 

results showed that the performance of the myoelectric control 

system is degraded by up to 60% when the force level varied 

and that TD features outperformed Autoregressive (AR) and 

root mean square features. 

The dependency on the well-known time domain features and 

AR model parameters was also obvious in most of the 

previous studies in this direction, without thorough 

investigations into novel feature extraction methods. 

Achieving features invariant to force levels would be a 

remarkable breakthrough towards reliable control of hand 

prostheses with PR systems. This calls for a new method to 

control the force in measurements with amputees rather than 

relying on traditional methods from the literature. Previous 

research also necessitated training the classifiers with features 

from all anticipated force levels that the subject may exert 

during real-time testing [13], [26], [28], [30]. However, such a 

scheme has not been fully explored with different feature 

extraction methods while collecting the EMG signals from 

amputees. Thus, extracting a set of EMG features invariant to 

force level variations should also be investigated, preferably 

on amputees as they are the main persons in need for such 

robust technology. 

Recently, Khushaba et al.[18] proposed a time-dependent 

spectral Feature Extraction (FE) method that extracts a set of 

power spectrum characteristics directly from the time-domain 

to reduce the impact of variation of limb position, while 

keeping a low computational cost. The proposed method 

achieved a significant reduction in classification error rates, in 

comparison to other traditional methods and it helped to 

improve the practical robustness against variation in limb 

position without the need for accelerometers as done in [17], 

[20]. However, this was only applied to EMG collected from 

intact-limbed subjects. The proposed spectral moments were 

also used in [31] to develop multi-user myoelectric interfaces 

which can adapt to novel users and maintain good movement 

recognition performance. 

This paper investigates the practical problem of variable force 

levels for PR-based systems when used by the amputees, and 

how to improve the practical robustness of the PR system 

against force variation with a proper training strategy and 

robust EMG features. More specifically, our contributions are: 

1) A modified version of Khushaba el al. [18] spectral 

moments will be proposed to reduce the effect of force 

variation [18] and they will be compared to the traditional FE 

methods across nine transradial amputees; 2) A training 

strategy will be investigated in detail to help to decrease the 

effect of force change for the amputees. 

 

II. MATERIALS AND METHODS 

A. The Proposed Feature Extraction Technique 

The proposed novel feature extraction algorithm extends the 

recent work by Khushaba et al. [18], [32] in an attempt to 

form a set of invariants to force level variations in two steps. 

In the first step, a set of power spectrum moments are 

extracted directly from the time-domain signal using signal 

norms and derivatives in a similar manner to that in [18]. The 

main idea here is to reduce the computational cost required for 

spectral moment feature extraction by directly extracting these 

features from the time domain using Fourier transform (FT) 

relations and the Parseval's theorem. Unlike the works in [18] 

and [32], we also extract the power spectrum moments from a 

logarithmically scaled version of the EMG signal, a step 

which results in a modified form of the well-known cepstral 

feature extraction [34]. In addition, since the derivatives 

employed in the first step are known to be easily affected by 

noise, it is then important to normalize the extracted feature 

values to reduce the impact of noise. For this specific purpose, 

we employ a normalization step by raising the log-scaled-

amplitudes to a suitable power[35], before implementing the 

second step in the feature extraction process, as will be fully 

explained in the next section. 

In the second step, we employ the cosine similarity to estimate 

the orientation between the extracted power spectrum 
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characteristics from the original EMG signals and their 

nonlinear cepstral version and employ the orientation vector as 

our proposed feature set. The full algorithm description is 

presented in the next section. 

 

1) Time-Dependent Power Spectrum Descriptors (TD-PSD) 

 

Given a sampled version of the EMG signal denoted as x[j], 

with j=1,2,…N, of length N and a sampling frequency fs Hz, 

the EMG trace within a certain epoch can be expressed as a 

function of frequency X[k] by means of Discrete Fourier 

transform (DFT). We start the feature extraction process by 

observing Parseval's theorem which states that the sum of the 

square of the function is equal to the sum of the square of its 

transform 

∑|x[j]|2 =  
1

N
∑|X[k]X∗[k]|

N−1

k=0

N−1

j=0

=  ∑ P[k]

N−1

k=0

 (1) 

where P[k] is the phase-excluded power spectrum, i.e., the 

result of a multiplication of X[k] by its conjugate X*[k] 

divided by N, and k is the frequency index. It is generally 

well-known that the complete frequency description as derived 

by means of the Fourier transform is symmetric with respect 

to zero frequency, i.e., it has identical branches stretching into 

both positive and negative frequencies [36]. As a consequence 

of this symmetry and because we have no direct access to the 

power spectral density from the time-domain then we are left 

with the option of dealing with the whole spectrum, including 

positive and negative frequencies. Thus, in a statistical 

approach to the shape of the frequency distribution, all odd 

moments will become zero, according to the definition of a 

moment m of order n of the power spectral density P[k] which 

is given by 

mn = ∑ knP[k]

N−1

k=0

 (2) 

  
In the above equation, when n=0 we will make use of 

Parseval's theorem in Eq.(1), and for non-zero values of n we 

will use the time-differentiation property of the Fourier 

transform. Such a property simply states that the n'
th

 derivative 

of a function in the time-domain, denoted as ∆n for discrete 

time signals, is equivalent to multiplying the spectrum by k 

raised to the n'
th

 power 

 

𝐹[∆𝑛𝑥[𝑗]] =  𝑘𝑛𝑋[𝑘] (3) 
 

To this end, we define the features utilized in this paper as 

shown in Fig.1: 

 

Root squared zero order moment (�̅�𝟎): A feature that 

indicates the total power in the frequency-domain, or simply 

the strength of muscle contraction, which is given as 

�̅�𝟎 = √∑ 𝑥[𝑗]2

𝑁−1

j=0

 (4) 

 

The resultant zero order moments from all of the channels can 

also be normalized by division by the sum of the zero order 

moments from all of the channels. 
 

Root squared second and fourth order moments: according 

to Hjorth [36] the second moment can be considered as a 

power, but then of a modified spectrum 𝑘2𝑃[𝑘], 
corresponding to a frequency function  

�̅�𝟐 = √∑ 𝑘2𝑃[𝑘]

𝑁−1

k=0

=  √
1

𝑁
∑(𝑘𝑋[𝑘])2

𝑁−1

k=0

= √∑(∆𝑥[𝑗])2

𝑁−1

j=0

 

(5) 

A repetition of this procedure gives the moment. 

�̅�𝟒 = √∑ 𝑘4𝑃[𝑘]

𝑁−1

k=0

=  √∑(∆2𝑥[𝑗])2

𝑁−1

j=0

 (6) 

 
In this case, taking the second and fourth derivatives of the 

signal reduces the total energy of the signal; hence, we apply a 

power transformation to normalize the range of 

𝑚0, 𝑚2, and 𝑚4and to reduce the effect of noise on all 

moments based features as follows 

𝑚0 =
�̅�𝟎

𝜆

𝜆
 

𝑚2 =
�̅�𝟐

𝜆

𝜆
 

𝑚4 =
�̅�𝟒

𝜆

𝜆
 

       (7) 

 

With 𝜆 empirically set to 0.1. The first three extracted features 

from these variables are then defined as. 

𝑓1 = log(𝑚0) 

𝑓2 = log(𝑚0 −  𝑚2) 

𝑓3 = log(𝑚0 −  𝑚4) 

(8) 

 

Sparseness: this feature quantifies how much energy of a 

vector is packed into only a few components. It is given as 

𝑓4 =  𝑙og (
𝑚0

√𝑚0−𝑚2√𝑚0−𝑚4
)        (9) 

Such a feature describes a vector with all elements equal with 

a sparseness measure of zero, i.e., 𝑚2 and 𝑚4 =0 due to 

differentiation and log(𝑚0/𝑚0)=0, whereas for all other 

sparseness levels, it should have a value bigger than zero[18].  
 

Irregularity Factor (IF): a measure that represents the ratio 

of the number of upward zero crossings divided by the number 

of peaks. According to [37], the number of upward zero 

crossings (ZC) and the number of peaks (NP) in a random 

signal can be expressed solely in terms of their spectral 

moments. The corresponding feature can be written as 
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𝑓5 =
𝑍𝐶

𝑁𝑃
=  

√
𝑚2

𝑚0

√
𝑚4

𝑚2

= √
𝑚2

2

𝑚0𝑚4

=  
𝑚2

√𝑚0𝑚4

 (10) 

 

Waveform Length Ratio (WL): Given the definition of the 

waveform length feature as the summation of the absolute 

value of the derivative of the signals, then we define our WL 

feature as the ratio of the waveform length of the first 

derivative to that of the waveform length of the second 

derivative.  

𝑓6 = log (
∑ |∆𝑥|𝑁−1

j=0

∑ |∆2𝑥|𝑁−1
j=0

) (11) 

 

The waveform length feature was shown to be very relevant 

for EMG classification tasks [38]. However, the proposed WL 

feature further extends the work in the literature to form a 

feature that is invariant to amplitude scaling. 

According to the schematic in Fig. 1, we first extract the 

proposed six features from each EMG record x and form a 

vector denoted as 𝐚 =[𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6]. An additional 

feature vector, denoted as b=[𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6] is then 

extracted from a logarithmically scaled version log (x
2
) to end 

up with two feature vectors: 𝐚 (from the EMG record) and 𝐛 

(from a nonlinearly scaled version of the EMG record), each 

made up of 6 elements. Our final features, being 6 extracted 

features per each EMG channel, are then extracted as the 

orientation of the two vectors given by a cosine similarity 

measure as defined below 

𝑓𝑖 =  
−2 𝑎𝑖𝑏𝑖

𝑎𝑖
2 + 𝑏2

 ,        𝑖 = 1,2,3, … 6 (12) 

  
The features represented by the resultant vector 𝐟 are used in 

the classification process. These features can be thought of as 

a type of cepstral representation of the EMG activity. 

However unlike the well-known speech cepstral features (a 

nonlinear spectrum-of-a-spectrum or the inverse FFT of the 

logarithm of the spectrum, depending on the implementation 

[34]), we derived our EMG features as the orientation between 

the features extracted from a nonlinearly mapped EMG record 

and the original EMG record according to Eq.(12). Our main 

justification for not using 𝐚 or 𝐛 feature vectors directly as our 

resultant features is that feature vector 𝐟 is less affected by the 

level of contraction efforts than 𝐚 and 𝐛 feature sets, as the 

resultant vector  𝐟 is a measure of orientation and not 

magnitude. The orientation based feature extraction methods 

were recently shown to be of significant importance to the 

problem of EMG classification under varying force levels, 

when tested on intact-limbed subjects, as force production 

relies on the coordination of multiple hand muscles[29]. 

However, no previous experiments were made to test the 

effectiveness of such features on amputees. In the next 

subsections, we prove the suitability of the proposed 

orientation based feature set to classify the EMG signals, with 

variable forces levels, for the transradial amputees. In the rest 

of the paper, we denote our final feature set 𝐟, concatenated 

from all channels, as the Time-Dependent Power Spectrum 

Descriptors (TD-PSD). 

B. Amputee Participants, Electrode Placement and Signal 

Acquisition  

Nine transradial amputees (seven traumatic and two 

congenital) with unilateral amputation participated in this 

study. The details of the demographic information for each 

amputee are shown in Table1. The EMG datasets for amputees 

TR1-TR6 (Transradial 1 to 6) were collected at the Artificial 

Limbs and Rehabilitation Centers in Baghdad (Iraqi Army) 

and Babylon (Ministry of Health), Iraq, while the EMG 

datasets for TR7 (Transradial 7), CG1 (Congenital 1) and 

CG2(Congenital 2) were collected at Plymouth University, 

UK. All amputees missed their left hand apart from CG2. The 

local ethical committee at the School of Computing and 

Mathematics, Plymouth University approved this research. 

The aim of the experiments was explained to the participants, 

and they gave their written informed consent to participate in 

the study.TR1-TR7 did not wear myoelectric prosthesis while 

CG1 and CG2 used it for a certain time of their life. 

 
Table 1. Demographic information of the amputees who participated in the 

study 

G=Gender, Cir= Circumference, Traum=Traumatic, Cong= Congenital, 

Amp=Amputation, prost= prosthesis, Myo=Myoelectric, BP=Body Powered, 

Cos=Cosmetic 

 

 Before the placement of the sEMG electrodes, the skin of 

the subjects was cleaned with alcohol and abrasive skin 

preparation gel (NuPrep
®
, D.O. Waver and Company, USA) 

was applied. Eight pairs of Ag/AgCl electrodes (Tyco 

healthcare, Germany) connected to a differential amplifier 

were placed around the left stump in one or two rows for all 

amputees apart from CG2 where the electrodes were placed on 

the right stump. Fig. 2 shows the electrode locations for CG1 

as an example. European recommendations for sEMG 

(SENIAM) were followed for placing the surface electrodes, 

and the elbow joint was used as reference to mark the 

electrode locations.  

A custom-build, multi-channel EMG acquisition system was 

used to acquire the data at a sampling rate of 2000Hz. A 

virtual Instrument (VI) implemented in LABVIEW (National 

Instruments, USA) was used for signal acquisition and 

display. This was used by the amputees to help to produce the 

needed force level.  

 

ID Age 
(y) 

G Type 
of 

Amp. 

Stump 
length 

(cm) 

Stump 
Cir 

(cm) 

Time 
since 

Amp (y) 

Type of 
pros  

TR1 25 M Traum 13  27 4 Cos 

TR2 33 M Traum 18  24  6  None 

TR3 30 M Traum 29  23.5  28  COS 
TR4 27 M Traum 16  23 4  BP 

TR5 35 M Traum 23  26  8  Cos 

TR6 29 M Traum 24  26 7  Cos 
TR7 57 M Traum 14  27  3  None 

CG1 19 F Cong 9  19  N/A Myo 

CG2 31 F Cong 10.5  27  N/A Myo 

http://en.wikipedia.org/wiki/Cepstrum
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EMG Signal

First 
derivative

Second
derivative

m0m2m4

log(m0) log(m0-m4) log(S) log(IF) Log(WL)

f6 f5 f4 f3 f2 f1

Power 
Transformation

Power 
Transformation

Power 
Transformation

log(m0 -m2) 

xd1d2

 
Fig. 1.  Block diagram of the proposed feature extraction process. 

 

 

Fig. 2 .The surface electrodes locations for the amputees showing the left 

stump for CG1. 

 

C. Experimental protocol  

Six movements including different grip and finger movements 

were investigated in this paper. These movements were 

discussed with some of the amputees, and they thought that 

they may be important to them. The gestures are: 1) Thumb 

flexion; 2) Index flexion; 3) Fine pinch; 4) Tripod grip; 5) 

Hook grip (hook or snap); 6) Spherical grip (power). 

To examine the effect of force variation on the performance of 

EMG-based PR systems, the following experimental protocol 

was used. After electrodes placement, each amputee was 

asked to examine the EMG signals on the screen in real-time 

and familiarize themselves with the changes in force of 

contraction for different movement. The objective was for 

them to see how the amplitude changed according to the force. 

They were given a couple of minutes to explore this.  

It is very challenging for the amputee to produce a different 

force level of contraction for a given movement because of the 

loss of visual and proprioceptive feedback from the hand after 

the amputation. The aim was to record lower and higher levels 

of force than the moderate level of force that the prosthesis 

usually works with. This intended to simulate the daily life 

scenario when the force of contraction may vary with 

everyday use. 

The amputees used their intact-hand to help them to imagine 

the needed movement with the required force. In addition, 

they used Visual Feedback (VF) from the Labview screen to 

see the EMG channels. This was useful for them to produce 

the needed force. It is worth mentioning that TR7 had diabetes 

mellitus, which caused the limb to be amputated. In addition, 

the participant was visually impaired with little vision 

capability, and he did not use glasses during the experiment. 

Instead, he used the intact-limb to help him to imagine the 

needed movement. In Fig. 3, TR5 is performing spherical grip 

with the help of the intact hand and VF from the EMG 

channels. 

 

 
Fig.3 Amputee TR5 executing the protocol for recording different force 

levels. He used the VF and intact limb to produce the spherical grip, as it can 

be seen in the picture. 
 

For each of the six grip patterns, the amputees produced three 

force levels: low, medium and high. For each force level, five 

to eight trials were recorded for each amputee where each trial 

is a holding phase lasting 8-12 seconds. Thus, the total number 

of trials performed by each amputee was equal to the number 

of movements× number of force levels ×number of trials for 

each movement.  

The following protocol was used for the recording of 3 forces 

levels: 

-Low Force: To record the EMG with different forces, each 

amputee was asked to produce the constant non-fatiguing 

contraction with “low level of force”, which is lower than the 
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usual moderate level and hold it for 8-12 seconds. It is worth 

noting that the amputees found the visual feedback very 

helpful in producing a low level of contraction.  

-Moderate Force: In this step of the protocol, the amputees 

were asked to produce a moderate force level slightly higher 

than low level produced in the previous step, with constant 

non-fatiguing contraction and hold the position for a period of 

8-12 seconds for each movement. 

-High Force: A higher than moderate force level was 

produced by the amputees with the help of visual feedback 

and the intact-hand. They were instructed to produce high 

force level at a comfortable level to them, and to hold the 

contraction for 8-12 seconds. The Maximum Voluntary 

Contraction (MVC) was avoided since it might have caused 

fatigue due to the non-use of the muscle for long time. 

Preliminary investigation with some amputees to produce 

MVC for a given movement on the same day of the 

experiment caused some pain and fatigue. For this reason, 

MVC was not included in the recording protocol. 

In general, producing the low and high force levels was 

difficult for some amputees, as they had not used their 

remaining muscles in the stump for long time. Furthermore, 

the high force of the contraction produced a tremor on some 

occasions while performing the trial. It is worth noting CG1 

had some muscle twitches while she was performing the 

experiment. She took a longer relaxation time than other 

amputees between the sessions in order to avoid fatigue. Fig.4 

shows an example of one trial EMG signal for one channel 

with 3 levels of forces (low, medium, and high) for spherical 

grip for the TR3. The EMG datasets for all transradial 

amputees are available for download from the second author’s 

website (http://www.rami-khushaba.com/electromyogram-

emg-repository.html). 

 
Fig.4 Single trial of one channel EMG signal for TR3 for different levels of 

contraction for spherical grip gesture. Top) Low force. Middle).Medium 

force. Bottom) High force. 

 

D. EMG pattern recognition Analysis 

MATLAB
®
 2013a software (Mathworks, USA) was used to 

perform the analyses. An overlapped segmentation scheme 

was used with 150 ms segment length and 50 ms segment 

overlap. The average controller delay for this setting is 100+τ 

ms (τ is the processing time for each segment), calculated 

according to the new average controller delay equations 

proposed in [39]. This delay lies within the acceptable 

controller delay for the EMG controlled prosthesis [40].  

An ideal feature set should be immune (or, at least, robust) to 

force change while maintaining a good class separability in 

order to be able to distinguish between many movements with 

multiple forces. Therefore, we test the performance of our 

proposed TD-PSD feature set, against other well-known 

feature extraction methods from the literature. These include: 

1)Reduced spectral moments by Vuskovic and Du (denoted as 

VD-MOM) [41]; 

2) Time-domain features (denoted as TD) [13] which contain 

the following: integral absolute value, waveform length, zero 

crossings, slope sign changes, and kurtosis. It was shown that 

kurtosis is a good measure to characterize the force level 

changes based on an analysis of the probability density 

function of the EMG signal [24] and it has been used in the 

literature with EMG signals. For that reason, kurtosis was 

added to the TD feature set. 

3) A combination of time-domain and Autoregressive model 

parameters, with an AR model order of 5, (denoted as 

AR+RMS) [42]; and 

4) Wavelet features, represented by the energy of the 

coefficients at each node of Symmlet-8 family tree with 5 

levels decomposition with the wavelet family and the 

decomposition levels chosen empirically. 

The total number of features for each force level was 48, apart 

from the TD set which had 40 features (number of features × 

number of EMG channels).The dimensionality of the extracted 

feature setwas reduced using the Spectral Regression (SR) 

dimensionality reduction method proposed by Cai et al. [43] 

and also used in [44]. SR maps the original feature set into a 

new domain with c−1 features only, with c being the number 

of classes, i.e., 5 features in our problem. 

In order to perform the classification of the reduced sets of 

features extracted in the previous step and to check the 

robustness of the proposed features to diverse classification 

schemes, four different classifiers were utilized in the 

experiments: Linear Discriminant Analysis (LDA) [13], [45], 

Naive Bayes (NB) [46], Random Forest (RF) [47], and k-

Nearest Neighbor classifier (kNN) with k= 3 [18]. Majority 

Voting (MV) was not used in the post-processing of the 

classifications since it causes additional delays [39]. 

E. Impact of the Signal Processing and Training Strategies 

on the Performance of PR-based EMG Control under 

Changes in Force Level. 

We hypothesize that training data should be acquired from 

multiple forces to improve the robustness of the PR-based 

control against changes in force levels. In this section, we 

describe diverse experimental schemes set up to test this 

hypothesis. We will also determine the best force levels from 

which the training data should be acquired if considering only 

one level of contraction. The three experimental schemes are: 

1) Training the classifier with a single force level and testing it 

with the same level of force (Experimental Scheme 1, often 

used in the literature in studies disregarding the effect of force 

variations). 

2) Training the classifier with a single force level and testing it 

with the untrained (unseen) two force levels (Experimental 

Scheme 2). 

3) Training the classifier with all 3 levels of force and testing it 

with a single level of force at a time (Experimental Scheme 3). 
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In our first investigation, three trials for each movement are 

used for training and the rest of the trials are used for testing 

(two to five trials). 

F. Statistical Tests 

Finally, in order to validate the statistical significance of the 

achieved classification results, a Bonferroni corrected 

Analysis of Variance (ANOVA) test with a significance level 

of 0.0 5was utilized under the null hypothesis that the 

classification error rates achieved by TD-PSD and the rest of 

the feature extraction methods that we compare against are not 

significantly different from each other. In such a case, small p-

values of less than 0.05 casts doubt on the null hypothesis and 

suggest that the performance of each of the different methods 

being compared is significantly different from each other. As 

we have multiple factors and factor levels to test against, then 

a repeated measures ANOVA could be utilized here with 

factors including the different force levels (3 levels: low, 

medium, and high), different subjects (9 levels: TR1-CG2), 

and different feature extraction methods (5 levels: including 

TD-PSD, VD-MOM, AR+RMS, TD, and Wavelets). 

However, we focus here on analysing the statistical 

differences between the results achieved by our proposed 

feature extraction method versus each other method and 

therefore the resultant p-values were corrected with 

Bonferroni analysis. In this case, for nine amputees each 

performing various movements at three levels of forces, we 

have concatenated the results across all subjects and force 

levels to form larger vectors each of 27 elements (9 subjects x 

3 force levels) for each feature extraction method;and ran 

Bonferroni corrected ANOVA on that, i.e., comparing our 

method versus each other method while considering two 

factors with multiple levels and correcting the output with 

Bonferroni analysis. 

III. RESULTS 

A. Impact of the Signal Processing and Training Strategies 

on the Performance of PR-based EMG Control under 

Changes in Force Level. 

1) Experimental Scheme 1: Training with single force level 

and testing with the same force level  

The average errors of classification for nine amputees are 

shown in Fig. 5 when training and testing the classifier with 

the same force (Experimental Scheme 1) with five feature sets 

(Section II. D) and four classifiers. The objective is to 

examine the effect of force level variation on the performance 

of PR based EMG control for six classes of movements. The 

standard deviation across 9 amputees is shown with error bars.   

Clearly, it can be seen that the errors for TD-PSD are 

relatively small for all three forces, as compared to the errors 

of other FE methods for all classifiers investigated, and they 

are near the errors for a usable system, hypothesized to be 

bounded at 10% by Scheme and Englehart [13]. When 

validating the results with the statistical significance tests, the 

returned p-values indicated significant differences between 

our proposed feature set and all other feature sets when using 

the LDA classifier with p<0.001 for TD-PSD vs VD-MOM, 

p= 0.0029 for TD-PSD vs. AR+RMS, p<0.001 for TD-PSD 

vs. TD, and p<0.001 for TD-PSD vs Wavelet features. The 

achieved p-values with other classifiers also agreed on the 

superiority of the TD-PSD feature set in this testing scheme 

with all tests returning p-vales< 0.01 (all Bonferroni 

corrected), thus asserting the statistical significance of the 

lower classification error rates achieved by our TD-PSD 

versus all other methods from the literature. Moreover, very 

little differences among classifiers were observed. 

 
Fig. 5 Average classification errors for nine amputees when training and 

testing the classifiers with the same force level (Experimental Scheme 1) with 

five feature sets and four classifiers (LDA, RF, NB and kNN). Standard 

deviations are shown with error bars. Ts denotes testing with a specific force. 

 

2) Experimental Scheme 2: Training with single force level 

and testing with the untrained (unseen) two force levels. 

Fig. 6 displays the average errors of classification for nine 

transradial amputees to examine the effect of force level 

variation on the performance of PR based EMG control for six 

classes of movements. The classifiers are trained at a given 

force level and tested with the unseen force levels 

(Experimental Scheme 2). The standard deviation across nine 

participants is shown with error bars. Clearly, the error rates 

are much higher than when training and testing with the same 

level of force as shown in Fig. 5. The drastic change in 

classification accuracy when using a classifier trained with a 

non-appropriate force (>50%) may occur during the daily life 

usage of the prosthesis when the amputee may change the 

force level inadvertently. Thus, it is a very serious practical 

problem. It may be noticed in Fig. 6 that TD-PSD features 

outperformed other FE methods, for all classifiers and for all 

training forces. The results of the statistical tests indicated that 

there were significant differences between the performance of 

our proposed feature set and all other feature sets with 

p<0.001 for TD-PSD vs. VD-MOM, p= 0.0041 for TD-PSD 

vs. AR+RMS, p<0.001 for TD-PSD vs. TD, and p=0.0036 for 

TD-PSD vs. Wavelet features. These results clearly indicate 

the statistical significance of the reduction in classification 

error rates achieved by our TD-PSD versus all other methods 

when training with a signal force level and testing with two 

unseen force levels. An additional important point to note in 

this training scheme is that training with medium force level 

and testing with low and high force levels achieved 

significantly lower, with p< 0.001, error rates than when 

training and testing on the other levels.  

3) Experimental Scheme -3: Training the classifiers with all 

force levels and testing with single level of force 

The results for training the classifiers with the three force 

levels (low, medium, and high) and testing the classifier with a 
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single level of force at a time (Experimental Scheme 3) for 

nine amputees are shown in Fig. 7. It can be noticed that the 

error rates dropped significantly from those displayed in Fig.6 

for the case of unseen forces. The error rates are 

approximately 7-18 % when testing with low and medium 

forces, which is much closer to the acceptable level of error 

for a usable system [13] than the performance reported in Fig. 

6. When training with all forces, TD-PSD features 

outperformed other FE methods for all classifiers used. The 

utilized ANOVA test results indicated significant differences 

with p<0.001for TD-PSD vs. VD-MOM, p<0.001 for TD-PSD 

vs. AR+RMS, p<0.001 for TD-PSD vs. TD, and p<0.001for 

TD-PSD vs. Wavelet features (all results were corrected with 

Bonferroni analysis). In Fig. 5, Fig. 6 and Fig. 7, and for all 

cases, TD-PSD outperformed other FE methods and for all 

classifiers investigated. This may suggest the suitability of 

TD-PSD features for a PR system trained with multiple forces 

based on the analysis of amputees' EMG signals. 

 
 

Fig. 6 Classification errors of nine amputees when training the classifier with 

one force and performing the testing with unseen force levels (Experimental 
Scheme 2). Standard deviation is shown with error bars. Tr denotes training 

with a specific force. 

 

 
 

Fig. 7 Classification errors for nine amputees when training with all force 

levels and testing the classifier with each level of the three forces 
(Experimental Scheme-3). Standard deviation is shown with error bars. Ts 

denotes testing with a specific force. 

 

In order to choose the best classifier to perform the subsequent 

analysis, we calculated the processing time needed to perform 

Dimensionality Reduction (DR) and classification for all 

classifiers for all amputees when we train with all forces on a 

Pentium-4 computer with an 2.6 GHz Intel Core i5 processor, 

8 GB RAM with MATLAB 2013a. Table 2 displays the 

processing time needed to perform the DR and classification 

for each window of the EMG of length of 150 ms, once the 

system had been trained, averaged across all FE methods for a 

given classifier. The table also shows the average 

classification error for all classifiers. Clearly, it can be noticed 

that the LDA classifier achieved the lowest processing time 

and classification error compared to other methods. For that 

reason, LDA classifier was chosen to perform the subsequent 

analysis of inter-individual differences in the paper. 

 
Table 2 Average processing time (ms) and average classification error for DR 

and classification when training with all forces displayed in Fig. 7 

Classifier 

 

Average error rates when 

testing with three forces 

Time for DR and 

classification (ms) 

LDA 17.42 0.0129 
RF 17.97 2.04 

NB 19.07 0.013 

kNN 19.14 0.784 

 

In order to evaluate the processing time of each window with 

the different feature sets, we calculated the processing time to 

perform the FE with LDA classifier when we train with all 

forces. Table 3 shows the processing time calculated in ms for 

the 5 FE methods investigated in this paper. TD-PSD achieved 

the fastest processing time of 0.3 ms compared to other FE 

methods.  
Table 3The processing time (ms)for FE classified with LDA classifier when 

training with all forces. 

Feature set Time for FE (ms) 

TD-PSD 0.2922 

VD-MOM 2.2245 

AR+RMS 1.9794 
TD 0.7887 

Wavelet 0.41 

A more comprehensive way for experimental Scheme 3 with 

the results for each amputee with TD-PSD and LDA classifier 

is shown in Fig.8 For testing with low force, TR1 was the 

worst performer whereas TR5 was the worst performer when 

testing with medium and high forces. On the other hand, TR6 

was the best performer when testing with medium and high 

forces while CG1 was the best performer when testing with 

low force. Fig.8 suggests that the performance for the 

amputees was variable. Such variability in the results between 

the subjects may be due to different level of amputation and 

time since amputation for each amputee [45]. 

Fig. 9 shows the average confusion matrix for nine amputees 

with TD-PSD and LDA classifier with experimental scheme 3 

when testing with Top)low, Middle) medium and Bottom) 

high forces. The average classification accuracy when testing 

with low force was 93% while for medium and high forces; 

the classification accuracy was 90.3% and 82%, respectively. 

The data suggest a tendency for errors to occur in the fine 

pinch and spherical grip in all forces. This will be further 

discussed in Section IV. 

We compared the classification performance of the proposed 

TD-PSD to the state-of-the-art FE method based on Discrete 

Fourier Transform (DFT) with 2 normalization schemes 

(Norm-1 and Norm-2) [29]. Table 4 illustrates the average 
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classification errors with their standard deviation across 9 

amputees when training with all forces and testing with a 

single force level at a time with LDA classifier. We also 

calculated the processing time to perform FE with DFT 

method and the proposed TD-PSD for the sake of comparison 

on a Pentium-4 computer with an 2.6 GHz Intel Core i5 

processor, 8 GB RAM with MATLAB 2013a. 
 

 
Fig.8 The results the experimental Scheme3 for nine amputees when training 

with all forces with TD-PSD and LDA classifier for nine amputees. The mean 
of all amputees is shown and error bars represent standard deviation. 

 
Table 4 Average classification errors in percent ( and their respective standard 
deviation) for 9 amputees when training with all forces and testing with each 

force level for several FE methods available in the literature, including the 

recently proposed DFT features (LDA classifier was used). 

Feature Set Low Medium High 

TD-PSD 7.70 ± 2.89 9.91 ± 3.91 18.54± 7.37 

VD-MOM 17.74 ± 7.35 18.82 ± 5.78 30.82 ± 10.78 

AR+RMS 10.71 ± 4.33 12.75 ± 5.00 20.89 ± 7.62 

TD-PSD 12.98 ± 8.23 15.54 ± 6.19 27.83 ± 7.86 

Wavelet 13.38 ± 7.28 15.95 ± 5.11 27.75 ± 10.31 

DFT-Norm-1 25.13 ± 10.68 25.40 ± 7.85 36.95 ± 10.75 

DFT-Norm-2 21.26 ± 9.45 22.54 ± 6.23 33.43 ± 8.50 

 

IV. DISCUSSION 

We have explored the important practical problem of 

developing robust PR-based system for the myoelectric 

control of hand prostheses in the presence of force variations. 

This problem is recognized as a major barrier to the 

widespread use of this kind of prostheses[13]. We investigated 

the impact of the force variations in the classification 

performance for a relatively large group of transradial 

amputees and evaluated the improvements that can be 

achieved when training with more than one force level. This 

evaluation comprehensively tested four classifiers and five 

feature extraction algorithms. In this regard, it must be noted 

that we also proposed a modified set of features (TD-PSD) 

that proved practically to be more robust to variations in the 

force level than other feature extraction methods. This is due 

to the fact that it is based on the orientation of the EMG power 

spectrum features rather than the amplitude of the EMG 

power, which is significantly affected by variations of force 

levels. When considering the level of classification errors and 

processing time, our results suggests that a PR system based 

on TD-PSD features, SR feature reduction and LDA as a 

classifier might provide a reliable control of hand prostheses 

with six movements for amputees with eight EMG channels. 

In the next subsections, we discuss the major contributions of 

this paper in details. 

 

 

 

Fig.9 Confusion matrices while training the LDA classifier on the data from 

all forces and testing the classifier on TD-PSD features extracted from EMG 

data collected at Top) Low force, Middle) Medium force, Bottom) High force. 
Results averaged across nine amputees performing six classes of hand 

movements at each force level and standard deviation is shown. Numbers 

represent the following:1) Thumb flexion; 2) Index flexion; 3) Fine pinch; 4) 
Tripod grip; 5) Hook grip (hook or snap); 6) Spherical grip (power). 

A. Impact of the Signal Processing and Training Strategies 

on the Performance of PR-based EMG Control under 

Changes in Force Level. 

Experimental scheme 1 evaluated the performance when 

training and testing the classifiers with the same force level on 

a sample size of amputee people larger than previous 

studies[48]–[50]. As expected, the errors rates were low for all 

three force levels, as shown in Fig.5. Statistical tests showed 

that there were significant differences between the 

performance of TD-PSD and all other features. This is the 

typical setting used in the literature and this setting can be the 

missing part of the restrictions faced in real life resulting in the 

prostheses not having been applied to the real world yet. 

The results for the experimental scheme 2, which investigated 

the real life situation when the force level varies, showed that 

the error rates >60%, which suggest that the PR system alone, 

even with a robust feature extraction, may not be enough to 

solve this problem. Indeed, the high level of errors may make 

the system unusable. It is worth noting that the performance of 
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TD-PSD was better than that of all FE methods in all the cases 

investigated. The highest error rates occur when the system 

was trained with low force and tested with unseen forces (Fig. 

6). The experiment was conducted in single-day sessions, and 

the amputees were not trained well to produce specific muscle 

patterns at different forces. The performance may be improved 

by training the amputees for several days to produce many 

forces for a specific movement.   

In order to solve the real practical problem illustrated in Fig. 6, 

we assessed the training strategy of including all force levels 

in the training set, aiming to reduce the effect of force 

variation, which was investigated in experimental scheme 3. 

Ideally, a system must be robust enough so that its 

performance when training with all forces and testing with 

different forces would be better than, or at least equal to, the 

performance that would be obtained when training and testing 

with forces individually. The results shown in Fig. 7 suggest 

that this training approach helped to reduce the error rates 

caused by force variation and bring the errors down to a near 

usable system (classification error <= 10%) with TD-PSD 

performing better than all FE methods for testing with the low, 

medium and high forces, as confirmed by statistical tests. This 

finding is constituent with the finding of [13] where training 

with all forces of EMG from intact-limbed subjects helped to 

reduce the errors to that of a usable system. 

In Fig. 7, the error rates for the high forces were much higher 

than the low and medium forces for all amputees. In general, 

high force is difficult to perform for an amputee since it 

requires a lot of effort from them. Additionally, producing a 

high force level and maintaining it for long time may produce 

fatigue, since the amputees have not used their stump muscles 

for long time. This may explain why the error rates were much 

higher for the high force levels than for the low and medium 

levels of force, in addition to the changes that the EMG signal 

undergoes with high force levels [24]. It is worth mentioning 

that TD-PSD achieved 0.3 ms window processing time which 

is faster than other methods which suggests its suitability for 

real time implementations. It may be also seen that the lowest 

error was when the system is trained with all forces and tested 

with low force. This may be helpful in the everyday scenario, 

since the amputee could use the prosthesis in two modes (the 

low and moderate force levels). 

Fig. 8 displayed the errors for experimental scheme 3 in a 

more comprehensive way to examine the errors for each 

individual amputee when training with all forces and testing 

with single force with TD-PSD and LDA. TR6 was the best 

performer when testing with medium and high forces while 

CG1 was the best performer when testing with low force. 

Moreover, TR7 achieved a relatively good performance 

compared to other amputees despite his vision problems that 

restricted his use of the VF. 

We found the performance of the 2 congenital amputees (CG1 

and CG2) to be similar or comparable to that of traumatic 

amputees, unlike the findings of [49], [50] where the recruited 

traumatic transradial amputees had a performance better than 

the other two congenital amputees. This may be explained by 

the fact that CG1 and CG2 used a myoelectric prosthesis for 

around 8 years (Table 1) which emphasises the effect of 

training on reproducing specific muscle patterns to improve 

performance. 

It can be seen in Fig. 7 that testing with high force was worse 

than testing with medium force or low force for all amputees. 

This finding is in agreement with [13], who found that the 

larger errors were achieved at higher force levels than those 

achieved in small force levels, based on EMG signals of 

normal subjects for multiple forces for nine classes of 

movements with eight electrodes. In this study, a similar 

finding to that of [13] has been revealed. However, it must be 

noted that we have verified this for a larger sample of nine 

amputees than previous articles. 

From examining the confusion matrices in Fig.9 (Top), fine 

pinch and spherical grips are the movements with the highest 

errors. When testing with the medium force Fig.9 (Middle), 

the errors were in the aforementioned movements as well as 

hook grip. As for Fig.9(Bottom), all the movements have an 

error rates around 20% apart from the thumb and tripod grip. 

It is worth noting that thumb flexion was one of the 

movements with low errors in all cases for all amputees which 

is constituent with the finding of [45]. 

As illustrated in Table 4, the classification performance of the 

DFT features was not as good as that of our proposed TD-PSD 

features. On the other hand, the processing time for DFT was 

0.2 ms, which is slightly faster than the proposed TD-PSD (0.3 

ms as shown in Table 3). The performance drop of the DFT on 

amputee datasets may be explained by the limitation that was 

acknowledged in [29]. The DFT FE requires specific 

configuration by which the EMG electrodes should be 

attached on a specified forearm muscles in order for the 

algorithm to work. When working with amputees, it is very 

difficult to locate the muscle locations on the stump. 

Moreover, He et al. investigated only grip and wrist 

movements, which are controlled by superficial muscles. In 

our study, we investigated finger, grip and wrist movements. 

Since thumb and index fingers are controlled by deep muscles 

in the forearm [45], this make it impossible to reproduce the 

configuration of He et al. [29] on amputee people. 

Additionally, the DFT method relies mainly on percentage of 

power or strength of muscles contraction along certain 

frequency bands in relation to the total power by all muscles, a 

technique that proved to perform well in terms of 

classification accuracies when tested on intact-limbed subjects 

[29]. However, when dealing with amputees, the degree of 

muscle power coordination between the different muscles may 

not be the most significant feature as factors like the level of 

amputation, the time since amputation, the innervation of 

these muscles and others can all significantly affect the 

performance of such a method. We hypothesize that this is 

what happened when we tested the method by He et al. on 

amputees as our results in Table. 4 show. In contrast, our 

method relies on the orientation of the power features 

extracted from individual muscles and a reference feature 

vectors extracted from the same muscles, rather than as a 

percentage of that the power produced by all other muscles, 

which in this case proved to be of significant importance to the 

amputees. 

As a final remark, it should also be noted that the experimental 

protocol of the current study focused on finger and grip 

movements, whereas He et al. [29] focused more on wrist 

movements. This may explain why DFT performance (the 

muscle coordination-based method) was not as good as our 
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proposed TD-PSD. It is anticipated that the muscle 

coordination method in [29] may work well for gross-kind of 

movements such as wrist movements, rather than the more 

precise-controlled movements such as finger movements. 

B. Limitations and future work 

The study has a potential limitation that the analysis of the 

nine amputees EMG signals was performed offline and the 

amputees did not use a virtual environment or actuated 

prosthesis to perform the PR experiments. Another limitation 

is that no quantified information of force level was provided to 

the amputees during experiment. Further analyses are 

warranted in this research direction to perform real- time 

experiments with the transradial amputees. In addition, the use 

of an alternative method of contraction will be investigated by 

using ramp contractions instead of static contractions to see if 

they can help to reduce the effect of force variation. 

V. CONCLUSION 

The practical problem of force level variation with everyday 

use of the prosthesis was investigated for large number of 

amputees. Significant improvements of ≈ (6-8) % in the 

classification performance on average across all subjects and 

force levels when training with all forces were reported due to 

the use of TD-PSD features, which outperformed all feature 

extraction methods for all classifiers. Therefore, a major 

recommendation of this study is that it is important to take into 

account the effect of force change on the performance of 

multi-functional upper-limb prosthesis controlled by the EMG 

for both congenital and traumatic transradial amputees. This 

effect is important for non-amputee control subjects and even 

more for the amputees since many factors are changed after 

the amputation process, such as the loss of visual feedback and 

the loss of part of the muscle structure. The proposed feature 

extraction method achieved low levels of error and fast 

response time compared to other methods based on testing 

with EMG signals acquired from large number of amputees. 

TD-PSD can be a potential candidate to replace the existing 

FE methods to enable the clinical implementation of PR-based 

systems for amputees' use. In addition, it is important to train 

the PR systems for controlling the prostheses with a variety of 

force levels to ensure a classification robust to the force 

variation. 
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