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Abstract

Evidence-based Accountability Audits for Cloud
Computing

Thomas Rübsamen, MSc

Cloud computing is known for its on-demand service provisioning and has now

become mainstream. Many businesses as well as individuals are using cloud

services on a daily basis. There is a big variety of services that ranges from

the provision of computing resources to services such as productivity suites and

social networks. The nature of these services varies heavily in terms of what

kind of information is being out-sourced to the cloud provider. Often, that data

is sensitive, for instance when Personal Identifiable Information (PII) is being

shared by an individual. Also, businesses that move (parts of) their processes to

the cloud are actively participating in a major paradigm shift from having data

on-premise to transfering data to a third-party provider.

However, many new challenges come along with this trend, which are closely

tied to the loss of control over data. When moving to the cloud, direct control

over geographical storage location, who has access to it and how it is shared and

processed is given up. Because of this loss of control, cloud customers have to

trust cloud providers that they treat their data in an appropriate and responsible

way. Cloud audits can be used to check how data has been processed in the

cloud (i.e., by whom, for what purpose) and whether or not this happened in

compliance with what has been defined in agreed-upon privacy and data storage,

usage and maintenance (i.e., data handling) policies. This way, a cloud customer
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can regain some of the control he has given up by moving to the cloud.

In this thesis, accountability audits are presented as a way to strengthen trust

in cloud computing by providing assurance about the processing of data in the

cloud according to data handling and privacy policies. In cloud accountabil-

ity audits, various distributed evidence sources need to be considered. The

research presented in this thesis discusses the use of various heterogeous ev-

idence sources on all cloud layers. This way, a complete picture of the actual

data handling practices that is based on hard facts can be presented to the

cloud consumer. Furthermore, this strengthens transparency of data process-

ing in the cloud, which can lead to improved trust in cloud providers, if they

choose to adopt these mechanisms in order to assure their customers that their

data is being handled according to their expectations. The system presented in

this thesis enables continuous auditing of a cloud provider’s adherence to data

handling policies in an automated way that shortens audit intervals and that is

based on evidence that is produced by cloud subsystems.

An important aspect of many cloud offerings is the combination of multiple dis-

tinct cloud services that are offered by independent providers. Data is thereby

freuqently exchanged between the cloud providers. This also includes trans-

border flows of data, where one provider may be required to adhere to more

strict data protection requirements than the others. The system presented in

this thesis addresses such scenarios by enabling the collection of evidence at

providers and evaluating it during audits.

Securing evidence quickly becomes a challenge in the system design, when in-

formation that is needed for the audit is deemed sensitive or confidential. This

means that securing the evidence at-rest as well as in-transit is of utmost im-

portance, in order not to introduce a new liability by building an insecure data

heap. This research presents the identification of security and privacy protection

requirements alongside proposed solutions that enable the development of an

architecture for secure, automated, policy-driven and evidence-based account-

ability audits.
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Chapter 1
Introduction

THE research presented in this thesis revolves around two key issues in cloud

computing: customer trust and compliance. Because of the loss of control

that is inherently associated with moving data from an on-premise data center to

a cloud service model, cloud customers have to trust cloud providers to handle

their data appropriately, and that providers protect their data sufficiently. That

trust needs to be earned by the cloud providers. This can only be achieved, if

providers act transparently and according to regulation and user expectations.

This includes the reporting of incidents, such as data breaches or data loss.

Additionally, a cloud provider should be transparent with respect to the proper

implementation of security and privacy controls. This can be achieved by provid-

ing comprehensive technical auditing capabilities that assess the level of privacy

protection, security and accountability of a cloud provider. At the core of such an

auditing system is the collection of data, that serves as evidence of (non-) com-

pliance with data handling and processing policies as well as an indicator for the

appropriateness of implemented privacy and security measures. The research

presented in this thesis shows a novel approach to evidence-based, policy-driven

and automated technical auditing of cloud environments, to enable demonstra-

tion of good data stewardship by cloud providers. The proposed system is called

Audit Agent System (AAS).

1



CHAPTER 1. INTRODUCTION

Figure 1: Hype Cycle for Emerging Technologies, 2014 [3]

1.1 State of the Cloud

This Section presents the current state of cloud adoption in the industry. Cloud

Computing is known for its on-demand computing resource provisioning and

has now become mainstream [1]. Whilst the level of hype in cloud computing

has reduced (see Figure 1), there is still a lot of potential for market growth. For

example, Forbes expect the worldwide market for public Information Technol-

ogy (IT) cloud services to grow by more than 15% in 2016 [2] (as illustrated in

Figure 2).

The nature of these services varies considerably in terms of what kind of infor-

mation is being out-sourced to the cloud provider. Frequently, sensitive data

is stored in the cloud, for instance when individuals share Personal Identifiable

Information (PII), such as their contact details or medical information. Busi-

nesses that outsource (parts of) their processes to the cloud, for instance by

using a Customer Relationship Management (CRM) Software as a Service (SaaS)

provider (e.g., Salesforce [4]), are actively participating in a major paradigm shift
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Figure 2: Cloud Services Global Market Growth 2011-2016 [2]

from having all data on-premise, and therefore under full control, to moving data

to the cloud where exercising control over data and how it is used is severely lim-

ited. A recent study from 2014 on the confidentiality of data that small and large

business based in the United Kingdom are storing on the Internet, has revealed

that said data is usually regarded to be either confidential or even highly con-

fidential (see [5] and Figures 3 and 4). This is particularly interesting, since

data loss and data breaches are still consider to be among the top threats in

cloud computing (see also Section 2.4 for a more detailed discussion security

and privacy issues associated with the cloud).

However, this stands in contrast to only about half of the organisations in Europe

having a security strategy in place for cloud computing (see Figure 5). As sensi-

tive data is moved to the cloud, a well-defined cloud security strategy becomes

increasingly important. A security strategy should include the identification and

assessment of risks associated with moving to the cloud as well as plans for the

implementation and monitoring of appropriate security and privacy controls to

3
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Figure 3: Confidentiality of the data
small businesses store on
the Internet in the UK
2014 [6]

Figure 4: Confidentiality of the data
large organizations store
on the Internet in the UK
2014 [7]

Figure 5: Company survey on information security strategies in place in 2013 by
region [8]

mitigate the risks and ensure confidentiality, integrity and availability of data.

This has become more complicated in the context of cloud use, since a lot of

required information might not be provided by the cloud provider (e.g., details of

security and privacy controls implementation at the provider’s infrastructure).
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1.2 Research Aims and Objectives

The research in this project aims at transparency and privacy protection is-

sues associated with cloud computing and accountability audits as a means to

strengthen trust in cloud services. By providing cloud auditors with a system

for auditing compliance with data handling policies, transparency and privacy

protection in the cloud shall be improved. This includes the secure and privacy-

aware collection of evidence and the automated assessment and validation of

that evidence to generate statements of compliance or non-compliance.

The research presented in this thesis is divided into the following series of ob-

jectives:

Objective 1: Improve trust in cloud providers by enabling automated secu-

rity, privacy and accountability audits at the cloud provider

At the core of this research is the question, how the fundamental trust prob-

lem in cloud service provision scenarios can be solved to facilitate an even more

widespread adoption, even if the processing of sensitive data is moved to the

cloud. Furthermore, how cloud providers can be enabled to improve trans-

parency, with respect to their infrastructures and data processing practices is

investigated. This goes beyond documentation, agreements and certifications by

using the concept of technical audits that are evidence-based, policy-driven and

automated.

Objective 2: Enable cloud providers to show that they adhere to privacy

and data security policies

Accountability is considered to be a key concept in solving the trust issue. How-

ever, the technology for demonstrating accountability is still limited. It shall

be investigated, how cloud providers can be enabled to demonstrate good data

processing practices and policy compliance to their customers.
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Objective 3: Enable cloud provider chain auditing

Cloud service provision scenarios become increasingly complex as cloud providers

start out-sourcing parts of their services or integrate additional services into

their own. It is investigated, how such policy compliance auditing can be ex-

tended from single provider scenarios to multi-provider scenarios. The major

challenges here are the introduction of organizational, technical and legislative

heterogeneity in a single cloud service provision use case.

Objective 4: Enable end-to-end security and privacy protection of collected

evidence and the audit system itself

An evidence-based approach to auditing data processing practices and policy

compliance is likely to generate huge amounts of potentially sensitive informa-

tion. To mitigate the risk of producing yet another potential security privacy

protection nightmare, methods and techniques are examined and incorporated

into the technical audit system in general and the evidence handling in particu-

lar that minimize the risks of data breaches and leaks.

1.3 The Cloud Accountability Research Project (A4Cloud)

The research that is presented in this thesis was conducted in the context of the

Cloud Accountability Project and Audit Agent System (AAS) was developed as

a contribution to the project’s toolset. A4Cloud “focuses on the Accountability

For Cloud and Other Future Internet Services as the most critical prerequisite

for effective governance and control of corporate and private data processed by

cloud-based IT services” [9]. The main goal of the A4Cloud project is to “in-

crease trust in cloud computing by devising methods and tools, through which

cloud stakeholders can be made accountable for the privacy and confidential-

ity of information held in the cloud” [9]. The interaction with other tools and

concepts that are not directly contributed by the author (e.g., the interaction

with other tools from the A4Cloud toolset that are developed by other partici-
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pants1) are highlighted, clarified and delimited where necessary. The emphasis

of this thesis is put exclusively on the author’s contribution (the AAS design

and implementation), which is concerned with enabling the automated auditing

of compliance with privacy, security and accountability policies in an evidence-

based and secure way. The integration of AAS with other tools from the A4Cloud

toolset (e.g., most notably the Accountability PrimeLife Policy Language (A-PPL)

policy language, its associated enforcement engine and the Insynd cryptographic

scheme) are illustrated in the respective chapters of this thesis. AAS’s role in this

integrated toolset is to enable evidence collection in cloud service operations and

provide automated auditing capabilities.

The A4Cloud FP7 research project [9] approach encompasses legal and regula-

tory mechanisms and a range of technological enhancements that can provide

the necessary basis for trust. Cloud customers, providers and regulators should

be supported by preventive, detective, and corrective tasks (see [10]) and, for

example, give cloud customers more control over their cloud services, ensure

providers meet their obligations, and enable cloud audits [11].

“The Cloud Accountability Project (or A4Cloud for short) focuses on the Ac-

countability For Cloud and Other Future Internet Services as the most criti-

cal prerequisite for effective governance and control of corporate and private

data processed by cloud-based IT services.” [9].

1.4 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 – Cloud Computing Fundamentals, introduces basic concepts of cloud

computing in order to build a common understanding of the key concepts and

roles specific to cloud computing. A review of the most important security and

privacy problems that are most commonly associated with cloud computing are

1 A4Cloud Participants: http://www.a4cloud.eu/consortium
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discussed to highlight the major inhibitors of even more widespread adoption of

cloud computing in the personal as well as the professional space.

Chapter 3 – Related Work, presents related work from three major topic ar-

eas. Related work from computer forensics is presented alongside work from

the area of cloud forensics to build a framework for the work presented in the

later parts of this thesis that relies on similar concepts and techniques. The sec-

ond part presents related work that is concerned with the areas of auditing and

assurance, both from a traditional and cloud-specific perspective. In the third

part, related projects from the area of software agent technology are discussed,

whereby a special focus is put on the application of agents in monitoring and

auditing.

In Chapter 4 – Cloud Privacy and Accountability Audits, the first part of the

main research conducted in this project is presented. Cloud computing is dis-

cussed from an evidence acquisition angle. Various evidence sources that are

spread across the ecosystem on multiple architectural layers are discussed. The

collection of evidence as well as the associated security and privacy risks are dis-

cussed as a basis for the following processing of evidence. Automated evidence-

driven audits and their various types are presented. The chapter is concluded

by an analysis of requirements that have been elicited from the previous sec-

tions. These requirements are the main drivers for the following chapters and

help framing the novelty and presentation of the research.

Chapter 5 – Audit Agent System Architecture presents the main research con-

ducted in this project. It presents an architecture that enables, based on the

discussion of requirements in the preceding chapter, automated, policy-driven

and evidence-based cloud auditing that improves transparency with respect to

security and privacy. After the discussion of initial architectural considerations

and their reasoning, an extension of the common definitions of cloud actors is

presented in order to specify their functions in the latter parts of this chapter.

Following that, the architecture of AAS is presented. Furthermore, the exten-
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sion of the system from one-provider scenarios towards scenarios where multiple

independent providers are involved in the service provision, is presented. The

chapter is concluded with a discussion of audit result and evidence presentation

methods and a framework for extending AAS. This discussion is performed from

a practical point of view that is based upon the implementation of AAS.

A major aspect of AAS is the focus on evidence acquisition in a guided and well-

defined way. Chapter 6 – Audit Description using Software Agents describes the

integration of three different machine-readable policy languages. The main em-

phasis is thereby put on integration of A-PPL as the main policy language used

in the current iteration of AAS. However, since there are gaps in the coverage

of that language, specifically in the context of defining audits in AAS, additional

candidates that can potentially cover these gaps are presented as well.

The presented research is evaluated in Chapter 7 – Evaluation. The evaluation

of the effectiveness of AAS in achieving the aforementioned objectives is done

from three different perspectives. The functional evaluation is concerned with

demonstrating three audit cases that are derived from the data handling prob-

lems that are associated with cloud computing: data location, data retention

and intrusion (or data breaches). The scalability focuses on management, per-

formance and presentation aspects of AAS, whereas the last part is concerned

with the security and privacy protection in AAS itself.

In Chapter 8 – Conclusion and Future Work, this thesis is concluded and a

summary of the main achievements and limitations is presented. Based on

the evaluation results, this chapter is concluded with a discussion of future

work that addresses potential extensions as well as shortcomings of the current

approach.
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Chapter 2
Cloud Computing Fundamentals

IN order to provide a common understanding of key concepts for the remainder

of this thesis, basic cloud characteristics are introduced in this chapter. The

major threats to information security in the context of cloud computing as well

as the inhibitors of trust in this technology are also presented. Additionally, the

notion of accountability in the cloud computing context is presented to provide

the framework for the auditing system that AAS provides.

2.1 Actors

This section gives a brief overview of fundamental cloud computing characteris-

tics and concepts. The National Institute for Standards and Technology (NIST)

provides a comprehensive reference architecture [12, 13] for cloud computing

that is widely accepted. This thesis makes use of the definitions provided by

that reference architecture. NIST defines cloud computing as follows:

Cloud Computing: “. . . a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable resources that can

be rapidly provisioned and released with minimal management effort or ser-

vice provider interaction” [13].
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Thus, the main defining characteristics of cloud computing are

• service provision over the Internet,

• self-service without human interaction on the provider-side,

• elasticity according to resource requirements,

• shared resources among cloud consumers.

The NIST also defines several cloud actors [12]. These definitions are used

throughout this thesis, if not stated explicitly otherwise:

Cloud Consumer: “represents a person or organization that maintains a

business relationship with, and uses the service from a cloud provider”.

Cloud Provider: “acquires and manages the computing infrastructure re-

quired for providing services, runs the cloud software that provides the ser-

vices, and makes arrangement to deliver the cloud services to the Cloud

Consumers through network access”.

Cloud Auditor: “can perform independent examination of cloud service con-

trols with the intent to express an opinion thereon”.

The terms cloud customer and cloud consumer are used synonymously in this

thesis. Depending on the specific scenario, a cloud consumer can also be a cloud

provider.

The role of the auditor is also extended and refined in the context of AAS. More

in-depth discussions of these adjustments to the roles can be found in Sec-

tion 5.2.

Beyond these roles, the reference architecture also defines a cloud broker and

cloud carrier. However, these are omitted, since they play no significant role in

this research.
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2.2 Service Models

The differentiation of cloud service provision scenarios with the help of service

models is a useful tool to describe how a service is used, and what kind of re-

source is provisioned to a cloud consumer. According to the service model, au-

dit objectives as well as sources of evidence can differ dramatically. Section 4.2

discusses these issues in more detail. It is therefore important to define a clear

understanding of the different service models in order to facilitate the discussion

of evidence sources and highlight their characteristics. The most fundamental

and common service models that are widely agreed upon for categorization, are

defined in NIST’s definition of cloud computing.

Software as a Service (SaaS): “The capability provided to the consumer is

to use the provider’s applications running on a cloud infrastructure. The

applications are accessible from various client devices through either a thin

client interface, such as a web browser (e.g., web-based email), or a pro-

gram interface. The consumer does not manage or control the underlying

cloud infrastructure including network, servers, operating systems, storage,

or even individual application capabilities, with the possible exception of

limited user-specific application configuration settings.” [13]

This service model is probably the most common form of cloud computing, with

which a typical cloud consumer (i.e., an individual person) comes into contact.

In some scenarios, such services are provisioned to organizations that them-

selves do not host services (such as corporate e-mail or conferencing software)

anymore, but rather provide their employees with outsourced services from a

cloud provider.

Platform as a Service (PaaS): “The capability provided to the consumer is

to deploy onto the cloud infrastructure consumer-created or acquired appli-

cations created using programming languages, libraries, services, and tools
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supported by the provider. The consumer does not manage or control the

underlying cloud infrastructure including network, servers, operating sys-

tems, or storage, but has control over the deployed applications and possibly

configuration settings for the application-hosting environment.” [13]

The border between application and underlying infrastructure is of particular

interest in this scenario since there is a boundary between two, usually inde-

pendent organizations. This introduces unique challenges in a globalized world,

where these organisations may not necessarily fall under the same jurisdiction

or regulatory regime.

Infrastructure as a Service (IaaS): “The capability provided to the con-

sumer is to provision processing, storage, networks, and other fundamental

computing resources where the consumer is able to deploy and run arbi-

trary software, which can include operating systems and applications. The

consumer does not manage or control the underlying cloud infrastructure

but has control over operating systems, storage, and deployed applications;

and possibly limited control of select networking components (e.g., host fire-

walls).” [13]

In Infrastructure as a Service (IaaS) clouds, the consumer is often an organiza-

tion that requires low-level computing resources, for instance to address peak

loads on its own infrastructure (cloud bursting) or because it does not have any

servers of its own. With respect to boundaries between provider and consumers,

there is typically strong isolation provided by the virtualization layer. Virtual-

izaion thereby does not only apply to the Virtual Machine (VM) resource but also

other low-level resources such as networking (e.g., by introducing concepts from

Software-defined Networking (SDN) or Virtual Private Network (VPN) for network

isolation) and storage.

A key property of the cloud is the shared responsibility between the provider and

the customer. The actual distribution of responsibility thereby depends on the
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cloud service model. For instance, in an IaaS scenario the customer has more

responsibility (e.g., ensuring patch management, vulnerability management and

access control on a VM level) than in a SaaS case, where the provider takes this

responsibility and integrates such controls in its service.

2.3 Deployment Models

The cloud deployment models help framing the scope of the AAS project. As

a basis for discussion, the well-accepted categorization by NIST is used. They

present the following four deployment models:

Private Cloud: “The cloud infrastructure is provisioned for exclusive use by

a single organization comprising multiple consumers (e.g., business units).

It may be owned, managed, and operated by the organization, a third party,

or some combination of them, and it may exist on or off premises.” [13]

While a private cloud can be provisioned by either the consuming organization

itself or a third-party, the consuming organization retains full control over the

resource pool, deployment and applications. This has implications on the op-

eration of monitoring and auditing tools and resource access control. If an or-

ganization is running its own private cloud infrastructure, it retains a certain

level of control and transparency of its own data processing, since all details are

available (at least internally). To some extent this is also true for outsourced

private clouds, where the consuming organization retains full control over the

cloud management.

Organizations can run their own private clouds using IaaS systems such as

OpenStack [14] and OpenNebula [15] or SaaS systems such as ownCloud [16].

Public Cloud: “The cloud infrastructure is provisioned for open use by the

general public. It may be owned, managed, and operated by a business,
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academic, or government organization, or some combination of them. It

exists on the premises of the cloud provider.” [13]

Typical providers of public cloud services are for example Amazon Web Services

(AWS) [17] for mostly infrastructure related services, Google App Engine [18]

for platform services and Google Docs [19] for software services. A common

concern of users of public cloud services is data protection and isolation from

other tenants. Also, the transparency problem is most distinct in public clouds,

where a consumer is reliant on the technical (e.g., transparent data transfer) and

organizational processes (e.g., having the right people to run the cloud) employed

by the cloud provider without having any real possibility to take influence.

Community Cloud: “The cloud infrastructure is provisioned for exclusive

use by a specific community of consumers from organizations that have

shared concerns (e.g., mission, security requirements, policy, and compli-

ance considerations). It may be owned, managed, and operated by one or

more of the organizations in the community, a third party, or some combi-

nation of them, and it may exist on or off premises.” [13]

The community cloud model is included for showing a complete picture of the

current understanding of cloud deployment models. An example of a commu-

nity cloud is the Regionales Zentrum für Virtualisierung (RZV) project [20] that

is run by different German universities in a collaborative effort. Thereby, the

Universities of Furtwangen, Freiburg and Offenburg form a federation of insti-

tutions while following the approach of running a single cloud infrastructure for

research and teaching purposes. The universities form a community of similar

but independent institutions that share a common interest in running a cloud

infrastructure. The actual implementation of a community cloud can share some

aspects of a private cloud, where services are not provided to the general public

and the technical operation of the infrastructure is the responsibility of a single

partner.
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Hybrid Cloud: “The cloud infrastructure is a composition of two or more

distinct cloud infrastructures (private, community, or public) that remain

unique entities, but are bound together by standardized or proprietary tech-

nology that enables data and application portability (e.g., cloud bursting for

load balancing between clouds).” [13]

The hybrid cloud is the most common way of using the cloud in enterprises,

today [21]. Hybrid clouds share the advantages of the private cloud (e.g., full

control) and the public cloud (e.g., nearly infinite resources on-demand). How-

ever, they also share the disadvantages from both, such as cost of ownership

and lack of transparency, respectively. Furthermore, there are cases to be con-

sidered when data crosses from the private to the public domain and thereby

crosses borders (e.g., by being transferred to a data center in another country).

2.4 Security, Privacy and Trust

Potential problems for data confidentiality and auditability have been expected

quite early in the cloud hype cycle [22]. These expectations have proven to be ac-

curate. In the following, the top threats to cloud computing according to Cloud

Security Alliance (CSA) are presented. In the NIST cloud computing reference

architecture it is acknowledged that “security is a cross-cutting aspect” [12] of

the cloud architecture. Therefore, cloud providers should protect privacy, which

is “the assured, proper, and consistent collection, processing, communication,

use and disposition of personal information (PI) and personally identifiable in-

formation (PII)” [23].

The methodology behind the aggregation of this list of threats to cloud computing

was a survey of relevant literature.
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Cloud Security Alliance

The CSA maintains a well-established list of critical security and privacy prob-

lems in cloud computing as they are perceived by cloud consumers that is also

updated regularly. Until now, the original report from 2010 [24] has been up-

dated in 2012 [25] and 2013 [26].

1. Data Breach: In the most recent version, data breaches are listed as the top

threat to cloud security. This is inherently also a threat to data protection

and therefore the privacy and security of cloud consumer’s data.

2. Data Loss: The loss of cloud consumer’s data, either caused by a malicious

attacker (e.g., intentional deletion) or by accident (e.g., misconfiguration or

hardware failure) is listed as the second most dangerous threat.

3. Account or Service Traffic Hijacking: Common hijacking methods, such

as phishing, can be applied to cloud scenarios as well. If, by any means,

cloud credentials are compromised, an attacker can potentially gain access

to the whole service, manipulate the service or simply eavesdrop on the

service users.

4. Insecure Interfaces and Application Programming Interfaces (APIs):

Typically, cloud services provide APIs for provisioning, management, or-

chestration, monitoring and audit. Therefore, since such APIs are at the

core of a cloud service and potentially provide access to data directly or

to information about data usage patterns, special care has to be taken to

harden them.

5. Denial of Service: Problems caused by Denial of Service (DoS) attacks are

not only related to service availability, but in more sophisticated scenarios

can be used to exploit vulnerabilities that potentially put data stored in the

cloud at risk.

6. Malicious Insiders: An insider at the cloud provider (e.g., a system admin-

istrator) has extended access to consumer resources, such as VMs, block
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storage etc. Hence, a malicious insider can potentially gain access to con-

sumer’s data if appropriate security and data protection controls are not in

place.

7. Abuse of Cloud Services: Abuse of a cloud service is of concern for cloud

providers. However, it is hard to define, what constitutes actual abuse of a

service, for instance when cloud resources are used to within the terms of

service of a provider but for a potentially harmful objective (e.g., breaking

encryption or launching attacks).

8. Insufficient Due Diligence: This threat is mainly caused by a lack of

experience with cloud technology and architecture when adopting cloud

services.

9. Shared Technology Vulnerabilities: This threat evolves around the risks

introduced by multi-tenancy. Strong isolation is required between tenants

to mitigate the risk of accidental (e.g., misconfiguration) or malicious data

breaches (e.g., side channel attacks).

European Network and Information Security Agency (ENISA)

The threats described by the CSA are similar to those identified by European

Network and Information Security Agency (ENISA) in [27], which takes a regu-

latory perspective on threats in cloud computing. The order of appearance does

not reflect any difference in severeness of the risks.

• Loss of Governance: The cloud consumer gives up control over the pro-

cessing of its data. This can lead to problems with the integration of secu-

rity mechanisms at the cloud provider. A provider may not necessarily be

able to provide sufficient protection.

• Lock-in: The migration from one cloud service to another is still an ex-

tremely resource intensive task and may not be feasible for all cloud con-
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sumers. This effectively leads to a lock-in with the provider that was ini-

tially chosen.

• Isolation Failure: The multi-tenant nature of the cloud makes the intro-

duction of suitable isolation mechanisms very important to protect con-

sumers from one another. This also includes the protection from side-

channel attacks that break isolation (see for example [28]).

• Compliance Risk: A consumer can put its certifications at risk by moving

to the cloud, when a cloud provider cannot provide evidence of compliance

or does not offer auditing capabilities to the consumer.

• Management Interface compromise: The management interfaces that are

provided to the consumers may be at risk, because they are an interesting

target for attackers since they provide access to broad resources and ten-

ant’s data.

• Data Protection: Effectively checking the data handling practices of the

provider may prove to be very difficult for the consumer, since he is lacking

the required level of insight into the cloud providers processes.

• Insecure or Incomplete Data Deletion: This is a risk in cloud comput-

ing since there may be multiple copies of data stored over which the con-

sumer does not have full control. Anti-forensic methods such as secure

deletion are still not feasible in cloud environments due to data location

transparency and distributed storage.

• Malicious Insider: Administrators at the cloud provider usually have broad

access rights on underlying layers of the cloud service. This puts con-

sumer’s data at risk, if there is a person with bad intentions.

ENISA explicitly lists data protection threats (the loss of being able to check data

handling practices) and the loss of governance (the loss of being able to control
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data) as potential threats. While the ENISA report lists risks not only with re-

spect to security and privacy protection (e.g., vendor lock-in, loss of governance),

the obvious focus is on threats similar to those described by CSA, while differing

only in level of abstraction (e.g., data protection in ENISA and data breach in

CSA) and terminology (e.g., isolation failure and shared technology vulnerabili-

ties). Threats, such as hijacking attacks, insecure interfaces, malicious insiders

of shared technology vulnerabilities indirectly impact a consumer’s privacy, if

insufficient protection and detection mechanisms are in place.

Beyond these reports, there is a substantial amount of literature and surveys

that try to capture threats and risks of cloud computing on a more concrete

level. For instance, in [29] or [30] more general threats to Information Security

(IS) that are not focused on cloud computing and originate from standards or

best practice catalogues such as ISO 27005 [31] or Open Web Application Se-

curity Project (OWASP) [32] (such as physical data center security and disaster

protection) are included as well. The threats that were discussed above can be

considered to be specific to cloud computing, while other more general threats

need to be addressed as well.

Pearson [33] and Jansen [34] consider consumer trust, which can be linked to

data protection, and compliance to be among the most important issues when it

comes to data processing in the cloud. These issues are closely tied to the loss

of control over data. When moving to the cloud, direct control over data is given

up, for instance:

• Data Location: the actual geographical location of where a certain data

object is stored (e.g., the data center, rack, enclosure or even disk).

• Access Control: the certainty of having defined access control restrictions

and the enforcement of them including the implementation of assurance

mechanisms.

• Data Handling: the fact that it is possible for a cloud provider to duplicate,
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share or otherwise process data without the awareness of the owner.

Organisation for Economic Co-operation and Development (OECD)

The “Organisation for Economic Co-operation and Development (OECD) Guide-

lines on the Protection of Privacy and Transborder Flows of Personal Data” [35]

define general guidelines for the processing of personal information. These

guidelines are not limited to data processing in Information and Communica-

tion Technology (ICT) and the cloud, but apply to any kind of data processing.

The principles defined in the OECD guidelines are as follows [35, Art. 7-14]:

Collection Limitation: when personal data is collected, this should happen

within the boundaries of the law and with consent of the data subject.

Data Quality: personal data should not be collected arbitrarily, but always with

a purpose and if the purpose changes be deleted if not required anymore.

Purpose Specification: the purpose of data collection should be always made

clear at the latest when it is collected.

Use Limitation: personal data should not be disclosed, made available or used

other than what has been specified, exception being by the authority of the

law or when consent is given by the data subject.

Security Safeguards: data protection mechanisms should be put in place (e.g.,

against loss, unauthorized access, destruction, misuse, modification, dis-

closure).

Openness Principle: there should be a general policy of openness about devel-

opments, practices and policies with respect to personal data.

Individual Participation: a data subject should have the right to know who has

data about him, access to said data and the right to challenge data includ-

ing the right to have the data erased, rectified, completed or amended.
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Accountability: A data controller should be accountable for complying with

measures which give effect to the principles stated above.

These guidelines are applicable to cloud services as well and should govern the

handling of data. However, these principles are most often only reflected in

Terms of Service (TOS).

European Data Protection Directive

In the European Directive 95/46/EC [36], which is implemented in Germany

by the Bundesdatenschutzgesetz (BDSG) [37], it is stated that “. . . the controller

must implement appropriate technical and organizational measures to protect

personal data against accidental or unlawful destruction or accidental loss, al-

teration, unauthorized disclosure or access, in particular where the processing

involves the transmission of data over a network,. . . ” [36, Art. 17]. Furthermore,

“. . . the controller must, where processing is carried out on his behalf, choose

a processor providing sufficient guarantees in respect of the technical security

measures and organizational measures governing the processing to be carried

out, and must ensure compliance with those measures” [36, Art. 17]. The con-

troller is defined as someone who “determines the purposes and means of the

processing of personal data” [36, Art. 2], whereas the processor is someone who

“processes personal data on behalf of the controller”. A new general data protec-

tion regulation [38] has been proposed, which will replace the current one and

clarify some of the obligations.

From a legal perspective, cloud providers are required to comply with the above-

mentioned regulations and legal frameworks and are obligated to implement

adequate data protection mechanisms in order to stay compliant. Therefore, ad-

equate data security and protection mechanisms have to be put in place. How-

ever, since these rules apply to European cloud providers and not necessarily

to those from the US (e.g., if they are not doing business in Europe) or other

regions, it is also important to consider the regulatory requirements depending
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on the actual scenario (i.e., location of the consumer, provider and data).

2.5 Accountability

New mechanisms and technologies have to be developed to deal with the above-

mentioned data protection issues, and address the two most pressing issues,

when it comes to adoption of cloud computing: a lack of consumer trust and

complexity of compliance [33].

Weitzner proposes information accountability as a suitable solution. It means

“that information usage should be transparent so it is possible to determine

whether a use is appropriate under a given set of rules” [39]. More transparency

would allow to hold entities responsible and accountable for misuse of informa-

tion. Transparency in this case means making failures in data handling visible.

As previously mentioned, cloud consumers do lose control over their data by

moving to the cloud. Therefore, cloud consumers have to trust cloud providers

that they treat their data in an appropriate and responsible way. This includes

providing information about data locality, isolation, privacy controls and data

processing in general. One way to enable that trust is by strengthening trans-

parency and accountability [39, 40] of the cloud provider and its services. In

the context of cloud computing, this means cloud service providers should be

enabled to become responsible data stewards by following the accountability ap-

proach [33]. Another important aspect of accountability is the demonstration

of the capability to achieve privacy objectives, which stem from criteria in law,

self-regulation and best practices. [41].

Several research projects acknowledge the existence of privacy protection is-

sues in today’s cloud computing ecosystems and accountability as a possible

solution. Distributed, automatic and enforceable logging usually serves as a

foundation for developing such systems [42]. This is the first step towards more

transparency of data handling in the cloud for cloud consumers. By introduc-
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ing methods and technical solutions supporting accountability, the consumer is

given back control over the storage and processing of its data in the cloud. How-

ever, today it is very common for cloud service providers to work on a best effort

basis regarding evidence collection for availability and security of cloud services.

The consumer should be enabled to define more detailed policies on how and by

whom its data may be accessed and processed in the cloud. Cloud providers,

which adhere to these rules inherently become more trustworthy. However, en-

abling accountability in the cloud quickly becomes very complex, the more par-

ties are involved and when applied on an international scale (e.g., third-party

providers, service composition and data crossing borders). Therefore, suitable

control mechanisms have to be put into place by cloud providers. This is what

AAS aims to achieve by providing extensive technical audit capabilities that al-

low the continuous assessment of accountability obligations and rules to enable

consumer trust.

2.6 Summary

In this chapter, cloud computing along with its main characteristics, typical ser-

vice and deployment models have been presented to establish a basis and com-

mon understanding for the research presented in the remainder of this thesis.

To frame the research conducted in this project, a special focus has been put

on current security, privacy, and trust issues. The threats to cloud computing

that are currently considered most problematic, mostly cover aspects of cloud

security, privacy protection and accountability. Additionally, it was elaborated

on how strengthening accountability and transparency of cloud providers and

their data processing practices can positively influence trust in cloud services.
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Chapter 3
Related Work

IN this Chapter, related work is presented that is either similar to the con-

cepts and approaches pursued in the AAS project or are integrated in this

work. The focus is thereby directed towards work that has been conducted in

the areas of computer forensics, cloud compliance, software agent technology

and industry projects that have similarities with the auditing approach followed

in this work. This review of relevant literature gives the reader an understand-

ing of the current problems, potential solutions and shortcomings of the current

state of the art in cloud accountability and auditing. It also helps to highlight

the contribution that is being presented in the remainder of this thesis.

The chapter begins by elaborating on the computer forensic process and digital

evidence collection in general and cloud computing in particular. Evidence col-

lection is required to acquire meaningful information for evaluation during au-

dits. Principles and processes from the field of computer forensics are thereby

helpful in preserving the usefulness of collected information. However, some

principles of digital evidence and forensics cannot be applied to the cloud di-

rectly, for example because of its dynamic nature and uncertainty of data loca-

tion. A literature review in this field was performed to prepare the elicitation

of requirements for this project and gain an understanding of the cloud specific

problems.
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In the following section, related work in the area of cloud compliance and audits

as an assurance mechanism is presented. This includes a discussion of existing

standards and best practices in the area of cloud security and privacy and how

they cover cloud computing, cloud storage integrity, security, accountability and

privacy audits. A review of research projects and literature in this area was

performed to capture the shortcomings of the current state of the art.

An overview of industrial solutions for log management, security incident man-

agement and similar systems is presented as well. The reason for considering

industrial solutions is their usefulness in providing evidence in the form of mon-

itoring information that is produced by them.

Finally, since software agents have proven to be suitable for the implementa-

tion of the system, a basic introduction to the concepts of this technology is

presented. Hereby, the focus is directed towards similar approaches that use

software agents in the context of cloud auditing and monitoring.

3.1 Computer Forensics and Digital Evidence in the Cloud

In the following, related work regarding processes and systems for the collection

of digital evidence in the cloud are presented. This includes work on cloud-

specific evidence collection mechanisms as well as work on addressing the het-

erogeneity of digital evidence. The definition of digital evidence is “information of

probative value that is stored or transmitted in binary form” [43]. This definition

is general enough to capture the fact that all data that is available or produced

in a cloud ecosystem can potentially serve as evidence to demonstrate a fact.

Processes, methodologies and techniques from (non-cloud) computer forensics

(such as descried in the well-known Electronic Crime Scene Investigation: A Guide

for First Responders [44, 45] and Guide to Integrating Forensic Techniques into In-

cident Response [46]) also apply to the cloud to a limited extent.
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3.1.1 Computer Forensic

Redfield and Date propose a system called Gringotts [47] that enables secure

evidence collection from multiple different sources. Evidential data is signed

by the system that produces it, before it is sent to a central server for archival

using the Evidence Record Syntax (ERS) [48]. They follow a pro-active approach

as well, where evidence is recorded in case it is needed later on. Their focus

is on the archival of evidence for later retrieval by an investigator and omits

automated evidence processing for audits. Introducing evidence encryption is

not considered, since Redfield and Date focus on archival and preservation of

evidence integrity. Furthermore, their approach utilizes cloud computing merely

as an enabling technology for evidence storage and do not consider evidence

collection in the cloud explicitly. It is therefore better described as a general

computer forensics tool rather than a cloud forensics tool.

Zhang et al. [49] address potential problems when storing massive amounts of

evidential data. They specifically consider possible information leaks, where

sensitive information, which is not directly relevant to the incident, could be

exposed. To solve these issues, they propose an encrypted database model that

is supposed to minimize the potential for data leaks as well as data redundancy.

However, they focus solely on the storage backend and do not provide a workflow

that addresses secure evidence collection as a whole. Similarly to Redfield’s

approach, the cloud is hereby to be considered a vehicle for provision of their

service and not necessarily the object of investigation.

Gupta [50] identifies privacy issues in the digital forensics process, when it

comes to data storage devices that typically do not only contain investigation

related data, but may also hold sensitive information that may breach privacy.

He also identifies a lack of automation in the digital investigation process, which

is typically manual and investigator-driven. To address these issues, Gupta

proposes the Privacy Preserving Efficient Digital Forensic Investigation (PPEDFI)

framework. PPEDFI automates the investigation process by including knowl-
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edge about previous investigation cases, and which kinds of files were relevant

then. With that additional information, evidence search on data storage devices

is faster. However, while Gupta considers privacy issues of the data collection

process, the PPEDFI framework is focused on classic digital forensics and may

not be applicable to a cloud ecosystem, where there is typically no way of map-

ping specific data objects to storage devices.

Preserving the integrity of digital evidence is a challenge for law enforcement.

Digital evidence can be easily manipulated if no additional precautions are put in

place. Thus, using integrity-preserving mechanisms such as hash functions to

protect evidence and detect tampering is at the core of digital evidence collection.

However, the effectiveness and efficiency of these mechanisms vary. Saleem et

al. [51] evaluated several integrity-preserving algorithms (e.g., SHAx, MDx and

CRC) for use in digital evidence acquisition.

Schatz and Clark [52] from the Common Digital Evidence Storage Format (CDESF)

working group propose an evidence framework. Their architecture focuses on

Digital Evidence Bags (DEBs), a generalized method for collecting information

about evidence and evidence metadata, while keeping evidence integrity. This

generic data format could easily be used as a container for evidence collected for

the purpose of auditing. It is also general enough to address the heterogeneity

of evidence sources.

3.1.2 Cloud Forensic

There are several problems arising when the forensic process is applied to cloud

computing.

Regarding data protection, NIST [53] names:

• The collection of evidence while protecting the privacy rights in a multi-

tenant environment. When investigators collect evidence in a multi-tenant

environment such as the cloud, this quickly becomes problematic. For in-
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stance, if a VM that is executed on a server becomes the object of interest

in an investigation, that server may be seized or live-monitored by law en-

forcement. However, co-located VMs owned by another tenant might be

impacted negatively.

• The analysis of encrypted data and the linkage between evidence and a

particular suspect are among the most important challenges. An increasing

number of cloud storage providers follow a zero knowledge approach to

storing consumer’s data, where data is encrypted before it is transferred

to the cloud (most commonly done, when only storage is required and no

processing on that data is performed in the cloud). This leads to problems,

when that data is to be analyzed as part of an investigation.

Additionally, challenges such as the following exacerbate the evidence collection

process:

• Gaining access to imaging of media, since a cloud provider may not be

willing to provide investigator the required access to physical machines

and in some cases where multiple jurisdiction are involved, the provider

may not even be obligated to do so.

• The huge volume of data that is being processed in cloud services.

• Distributed storage may break conventional investigation methods that aim

at the analysis of a single storage medium.

Additionally, cloud forensics faces challenges with respect to acquisition of evi-

dence where time synchronization and legal authority (due to distributed nature

of cloud services), the preservation of evidence integrity and chain of custody as

well as the availability of sufficient storage capacity [54].

New methodologies and techniques are being developed that address these prob-

lems in the cloud context.
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An advanced approach for using the hypervisor for providing evidence in digi-

tal forensics is Virtual Machine Introspection (VMI) [55–57]. VMI leverages the

capabilities of the hypervisor to look “inside” the VM during runtime and using

information collected this way for intrusion detection (e.g., detecting malware on

the introspected VM). Garfinkel et al. conclude that this method is suitable for

investigating cloud infrastructures, as long as the investigator has access to the

hypervisor. Dunlap et al. propose ReVirt [58], a logging and replay system for

analyzing intrusions, that runs integrated in a VM and performs the logging in

the host OS. After an attack, it can replay the whole VM process for analysis.

These are very low-level approaches to tracing the execution of VMs. However,

they provide deep insight into the operations of a VM.

Deploying additional software for evidence collection and monitoring inside vir-

tual machines can be a problem in public IaaS cloud scenarios, where the cus-

tomer has full administrative control inside a VM and therefore has the ability

to manipulate the evidence source or the collection process freely. To overcome

this issue, an out-of-guest-approach can be followed, like Carbone et al. present

in their work [59]. By moving the monitoring tool outside the focused VM and

leveraging function-call injection techniques as well as VMI, the monitoring tool

can be protected from the customer, resulting in more reliable information for

evidence collection.

Several projects work on making the VMI concept feasible for acquiring evidence

in cloud scenarios amongst which is LibVMI [60] that provides low-level monitor-

ing of VMs (supporting Xen [61], KVM [62] hypervisors and Qemu [63] emulator).

LibVMI even provides integration with the volatility [64] framework, which is a

well-known tool for memory forensics.

The approaches proposed by Garfinkel, Carbone and Dunlap provide deep in-

sight into what happens in a VM. However, depending on the service model (i.e.,

how much administrative privileges a customer has) additional evidence sources

outside the virtual machine need to be considered to provide a detailed view of
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what happens in the cloud.

Zawoad et al. [65] propose Secure-Logging-as-a-Service (SecLaaS) to enable se-

cure and trustworthy log collection in cloud forensics. Based on the assumption

that today’s cloud computing architectures lack support for cloud forensic in-

vestigations, SecLaaS provides a mechanism for log collection and verification.

They consider evidence sources that are important especially in the cloud con-

text, such as process and network logs. Also, accessing those logs is increasingly

challenging for investigators due to the black box nature of the cloud and pri-

vacy protection problems originating from multi-tenancy. They also consider

further challenges such as the level of control provided to investigators and the

willingness to cooperate that is required by cloud providers.

The most important aspects of forensics in the cloud are addressing cloud dy-

namic and the preservation of evidence integrity and usefulness. The dynamic

nature of cloud computing requires careful planning of evidence collection up-

front, since collection after the fact might not be feasible (e.g., valuable infor-

mation has already been lost because the virtual machine has been deleted,

already). Also, the location transparency of data in the cloud calls for new ways

of evidence collection that are similar to carefully planned monitoring of the

cloud than gathering data after an incident. As in common digital forensics, the

preservation of the integrity (e.g., choosing appropriate algorithms) and useful-

ness (e.g., preserving temporal order of events by using a timestamping author-

ity) of evidence is also of utmost importance. The cloud does not only introduce

new challenges, but also enables promising ways of evidence acquisition such as

VMI that allows for a detailed reconstruction of events in case of compromised

virtual machines.

3.1.3 Digital Evidence in the Cloud

In [66], Dykstra approaches the problems of digital evidence collection in cloud

computing from a legal perspective. According to him, the most prevalent prob-
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lems are:

• The availability of evidential data, where it may be problematic to request

evidence from a cloud provider that does not have that data himself because

he is using another subsequent provider (e.g., Dropbox using Amazon S3

as a storage provider).

• Access to data that is stored inside a customer’s VM, where access by the

cloud provider is usually limited in IaaS.

• The preservation of evidence when using mechanisms such as snapshots.

• Legal boundaries, regarding the ownership of cloud resources (e.g., a cus-

tomer owning the virtual machine and everything inside it, but not addi-

tional resources it uses such as the network).

• Jurisdiction and venue, when data is stored in different jurisdictions (which

is quite common in cloud computing).

• Legal basis on which to get access to the data.

• The cost of evidence acquisition in terms of time and money.

Provenance of data in the cloud (i.e., information about the history of a data ob-

ject) is discussed by Zhang et al [67]. They consider the collection of provenance

data in the cloud as a key to enhancing reliability, accountability, transparency

and confidentiality in the cloud. If that information is produced, this of course

can be valuable data for the evaluation during accountability audits, since there

would be a more complete picture about the whole history of data usage. Sim-

ilarly, Lu et al. [68] propose the adoption of the provenance concept in cloud

computing by enabling a data object to report who created it and modified its

contents. This could then also provide digital evidence for investigations by re-

porting on events from the object’s creation until its deletion.

Flaglien et al. [69] evaluated currently used storage and exchange formats for

handling digital evidence against criteria identified in recent research literature.
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Formats intended for storing evidence from highly dynamic and complex sys-

tems are characterized by incorporating additional information, which can be

processed by data mining tools.

The most important aspects of digital evidence in cloud computing are the het-

erogeneity of evidence, availability of evidence, access to evidence sources and

potentially different jurisdictions with respect to globally operated cloud ser-

vices. As discussed in Chapter 4.2, evidence is generated at various places in

the cloud by different tools using various mechanisms and formats. Address-

ing this is a major challenge in a system that audits cloud operations based on

digital evidence.

3.2 Audit and Assurance

Audit and assurance are two very important concepts that also need to be ap-

plied to the cloud. In the following, a literature review is presented that high-

lights current state of the art in the cloud auditing domain.

3.2.1 Regulatory Compliance, Standards and Best Practices

In the following, relevant standards and best practices that serve as a baseline

for evaluating security and privacy controls in cloud computing are presented.

There are several frameworks considered with security and privacy of ICT in

general (e.g., ISO 27001 [70], ISO 27002 [71], COBIT [72], PCI-DSS [73]). These

standards describe data security and protection mechanisms including techni-

cal and organizational controls. For example for preventing data breaches (e.g.,

access control, encryption), ensuring integrity (e.g., hashing, backups), ensuring

compliance (e.g., audits) and protecting privacy (encryption, access and usage

control). Organizational aspects of information security also include manage-

ment processes such as security incident management or business continuity
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management.

All of the aforementioned security and data protection controls are subject to au-

dits, which aims to ensure compliance and assure a certain level of data security.

Audits are typically conducted on the basis of one of these standards as part of

a certification or self-monitoring process. Typically, the intervals at which an

audit is repeated are quite long (often yearly or longer). In the meantime, policy

violations can potentially remain undetected for extended periods of time. One

of the main goals should be to address these periods of uncertainty by enabling

the continuous assessment of cloud operations with respect to policy compli-

ance. This would be an important step towards continuous certification. Also,

such audits usually lack automation and are performed manually by auditors

(e.g., manual security evaluation, documentation review, interviews). One rea-

son for this is that requirements and obligations stated by these frameworks are

typically not available in a machine-readable format. There are approaches to

making these requirements and obligations explicit in a machine-readable way,

for example A-PPL [74] for defining data protection and data handling-related

obligations for data processing in the cloud.

A special focus on the requirements of cloud computing, can be observed just

recently. For instance, the US government aims to standardize the assessment

and monitoring of the security of cloud services with Federal Risk and Authoriza-

tion Program (FedRAMP) [75]. It is supposed to form the basis for the adoption

of cloud computing in the US government. FedRAMP certification offers cloud

providers a way to demonstrate good security and data protection practices and

enables them to make business with the US federal institutions.

As a collection of best practices, NIST published guidelines on the security and

privacy in cloud computing. In those guidelines, NIST acknowledges security

and privacy considerations to be of critical importance [76], for instance:

Security and Privacy Planning: Carefully plan the security and privacy aspects

of cloud computing solutions before engaging them.
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Understanding Public Cloud: Understand the public cloud computing environ-

ment offered by the cloud provider.

Cloud Security and Privacy Requirements: Ensure that a cloud computing so-

lution satisfies organizational security and privacy requirements.

Client Security and Privacy Requirements: Ensure that the client-side com-

puting environment meets organizational security and privacy requirements

for cloud computing.

Accountability: Maintain accountability over the privacy and security of data

and applications implemented and deployed in public cloud computing en-

vironments.

An important institution that is concerned with the security best-practices in

cloud computing is the CSA. CSA is actively working on improving cloud security

by working on several projects such as the Cloud Controls Matrix (CCM) [77].

CCM aims to assist potential cloud customers in assessing security and privacy

risks associated with a cloud provider. It is based upon established standards,

regulations and controls frameworks, such as the aforementioned ISO27001 and

27002, COBIT, PCI-DSS but also considers cloud-focused approaches such as

NIST 800-144 and FedRAMP among others.

Another project by the CSA is the Consensus Assessments Initiative Question-

naire (CAIQ) [78]. The goal of CAIQ is to provide cloud customers and auditors

a list of questions and answers they might want to ask a cloud provider. Cloud

customers can use this questionnaire for cloud provider evaluation.

The Security, Trust & Assurance Registry (STAR) [79] is based on CCM and CAIQ

and provides a public database of cloud providers, that have completed assess-

ment based on CCM and CAIQ. There are different levels of STAR certifications

ranging from self-assessment, which is self-explanatory, certification and attes-

tation, which require an assessment by a third-party, to continuous, which is a

certification based on continuous monitoring.
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EuroCloud Star Audit [80] is an initiative that aims to “facilitate acceptance

for Cloud Services on the international market, as well as to support the con-

sumer oriented provision of those services as their needs demand”. It provides

an audit framework that underpins the EuroCloud certification process in order

to provide an assessment “provider’s profile, contract and compliance includ-

ing data privacy protection against local law, security, operations, environment

and technical infrastructure, processes and relevant parts of the application and

implementation up to interoperability and data portability” [80].

3.2.2 Cloud Auditing Frameworks

The Distributed Management Task Force (DMTF) is working on cloud audit-

ing with the Cloud Auditing Data Federation (CADF) working group. They fo-

cus mostly on developing standardized interfaces and data formats to enable

cross-provider cloud security auditing [81]. The OpenStack project [14] provides

an implementation [82] of that standard which allows the export of monitoring

events generated by its subsystems as audit events in CADF format.

A similar project is the Cloud Security Alliance’s CSA Cloud Trust Protocol (CTP),

which defines an interface for enabling cloud users to “generate confidence that

everything that is claimed to be happening in the cloud is indeed happening as

described, . . . , and nothing else” [83], which indicates an additional focus on

providing transparency of cloud services.

The adoption of these standards is currently lacking. This is in part associated

with their complexity (see CADF specification) and missing reference implemen-

tations with required maturity for being used in production systems. However,

this does not mean that there is no technical implementations of systems that

provide a deeper insight into the technical processes at cloud providers. There

are of course proprietary solutions that can be integrated into comprehensive

monitoring and auditing workflows. For instance, Amazon provides Cloud-

Trail [84] for requesting audit records using a Representational State Transfer
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(ReST) API. Other cloud providers publish similar interfaces to provide at least

some auditing capabilities. Additionally, Amazon provides a check-list for audit-

ing their services, which provides a short overview of evidence providing systems

such as CloudTrail alongside relevant certifications that Amazon provides [85].

While these services provide much needed monitoring and auditing capabilities,

they also increase the vendor-lockin problem associated with cloud computing

due to their proprietary nature.

The work presented in this thesis relies on open standards and technologies

in order to mitigate this problem, while providing the capabilities of integrating

existing services using adapters.

3.2.3 Cloud Storage Integrity Audits

One of the main concerns when moving data to the cloud is the security of that

data. This is closely related to the loss of control over the data. Whereas in a

non-cloud scenario, a data owner (e.g., a company) can typically tell, where data

is stored (e.g., on which server and which disks), this is no longer possible in

the cloud, partially due to the provider hiding that information but also due to

technical constraints such as the use of distributed filesystems. Therefore, new

mechanisms to audit the security of data in the cloud are required. A trivial ap-

proach to assuring the integrity of a cloud-based storage service, is to download

data stored at the provider and check it for completeness and integrity. However,

because of the volume of data that can be stored in the cloud, it is not a feasible

approach to repeat that process every time a check is made. Recent research

on Proof of Data Possession (PDP) and Proof of Retrievability (PoR) has come up

with mechanisms to address this problem and is described in the following.

Worku et al. define the basic requirements for data integrity proving schemes

as [86]:

Unforgeability: where no cloud provider can forge an audit result by positively
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influencing the outcome without being in possession of the actual data.

Privacy preserving: there should be no way for a third-party auditor to retrieve

the actual content during an audit.

Recoverability: a scheme should also implement hardening techniques (e.g.,

error recovery).

Blockless verification: no parts of data (e.g., file blocks) should be retrievable

(directly or indirectly).

Dynamic operation support: allowing file and block level verification.

Public auditability: enabling anyone else to verify data correctness (not just the

data owner).

These are baseline requirements for auditing cloud storage services. Wang et al.

[87, 88] extend the privacy preservation and public auditability requirements by

also demanding (in case of third-party audits, where the auditor cannot neces-

sarily be trusted):

• The auditor should be able to efficiently audit the cloud data storage with-

out demanding the local copy of data.

• The auditing process should bring in no new vulnerabilities towards user

data privacy.

These principles are addressed in recent work on PDP and PoR by several re-

search projects, which are presented below.

Outsourcing data storage and verification of the correctness (i.e., integrity of

data) is a problem that predates cloud computing. Ateniese et al. describe a

model for proving data possession. [89] It allows a client to verify that a server

(e.g., a cloud storage provider) possesses the original data that was uploaded,

without requiring the client to download the data.
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Proof of Retrievability (PoR) of data stored remotely (e.g., in the cloud) is a similar

problem that also includes the notion of being able to reconstruct the contents

of a file at any time at the client side. Several schemes have been proposed [90–

93], which differ in security and efficiency, but in general allow for effective

retrievability audit of very large files.

Similarly to PoR, there are proposed audit systems that build upon the previ-

ously described schemes and implement audit services with the introduction of

performance optimization (such as reducing the computational overhead) [94]

or focus explicitly on preserving privacy of audited data in a public auditing

scenario, where the auditor is considered trustworthy but curious [95].

At the core of any data-centric audit stands the audit for the completeness and

integrity of data stored in the cloud. The previously described approaches pro-

vide promising mechanisms to effectively and efficiently include such audits as

part of AAS.

3.2.4 Cloud Security, Accountability & Privacy Audits

Security auditing is a very important part of accountability auditing of a cloud

provider, since it demonstrates that required security controls are put in place

and are functioning correctly (i.e., data protection mechanisms are working cor-

rectly and effectively). There are projects working on the architectural and in-

terface level regarding the automation of security audits such as the Security

Audit as a Service (SAaaS) project [96, 97]. SAaaS is used to monitor cloud en-

vironments and to detect security incidents. SAaaS is specifically designed to

detect incidents in the cloud and thereby consider the dynamic nature of such

ecosystems, where resources are rapidly provisioned and removed. However, the

main focus of SAaaS is not to provide auditors a comprehensive way of auditing

the cloud provider’s compliance with privacy and accountability policies, which

requires additional security and privacy measures to be considered in the data

collection process.
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Ryoo identify the need for data transparency in the cloud as even more critical

than in conventional IT audits, since “security-relevant data is harder to obtain

as cloud service providers, rather than cloud service users, control most of the

data” [98].

There are also approaches that deal with checking compliance with data location

policies. As stated in Section 3.2.1, it may be required from a cloud consumer

to store data in distinct locations. This is against the principle of location trans-

parency of data in the cloud (i.e., a user does not know in which server, data

center or even country a specific data object is stored). Thus, new methods of

enabling customer’s to comply with regulation – a cloud customer may be re-

quired by law to enforce certain storage locations – are required. In [99], the

authors propose a system that exposes infrastructure-level location monitoring

information to the cloud customer.

A crucial part of cloud auditing is logging of actions and collection of data on

all architectural levels in a cloud infrastructure. Several systems for logging in

the cloud have been proposed. For instance, Marty [100] proposes a logging

framework and guidelines for IaaS and SaaS logging. He considers time syn-

chronization on log sources, reliable transport of logs to a central collector and

compressed and encrypted log transfer as the main issues in such distributed

environment as the cloud. The main reasons for logging are defined by business

needs (e.g., tracking business metrics), operational requirements (service health

monitoring), security requirements (e.g., security or privacy incident detection)

and compliance (legal obligation to log certain actions).

Park et al. describe cloud auditing as the evaluation of a target based on mon-

itoring results and pre-defined criteria [101]. Compared to cloud monitoring

systems, such as Amazon’s CloudWatch, a cloud audit system should be able to

use a monitoring system as a data source, compare observed events against pre-

defined criteria and come to a conclusion if the system is acting in a compliant

manner. Ideally, this happens continuously. This is in contrast to conventional
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audits based on ISO27002, COBIT or similar standards, which are not adopted

to multi-tenant cloud environments, require too much human intervention dur-

ing an audit and do not support automated continuous auditing. This is also

acknowledged by Chen et al., who in their work established a checklist for audit-

ing cloud computing [102]. The checklist includes, among others, cloud-specific

criteria such as data location, isolation and cloud-focused disaster recovery.

Especially in Platform as a Service (PaaS) and SaaS clouds, which are more

software-centric, the choice of what needs to be logged for evaluation during au-

dits is of utmost importance. According to Guts et al., this choice is typically

made by the software developer during service development [103]. This high-

lights the problem of evidence sources and whether or not logs that are produced

on these layers are complete or not. In general, this depends on the quality of

the logging mechanisms and monitoring / auditing APIs that are integrated into

the software.

As a result, it can be said that one of the most important aspects of cloud ac-

countability auditing is to carefully consider possible sources of data (e.g., logs)

and their evaluation.

3.2.5 Security Service Level Agreements

Service Level Agreements (SLAs) are typically part of a contractual relationship

between cloud providers and their customers. Security SLAs define for instance

how long it may take a service provider to resolve a vulnerability depending on

its severity. The vulnerability can thereby be uncovered by regular vulnerabil-

ity scanning, which is typically part of an organization’s baseline information

security strategy. The severity and associated mandatory time to resolve re-

quirements can be for example: high severity - 24h, medium severity - 3 busi-

ness days, low severity - 5 business days. Other metrics as part of security

SLAs could be the number and severity of published, unpatched security vul-

nerabilities or environments with missing security updates. For instance, in a
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PaaS use case, the customer is typically relying on the provider’s capability to

manage the underlying software stack. This of course also includes basic patch

and change management processes on the infrastructure as well as the platform

layer. For security-critical deployments, compliance with SLAs that cover such

metrics is crucial. The actual values are thereby subject to negotiation between

the provider and its customer.

SLA-reporting is an important tool used by providers to report on their compli-

ance with SLAs. Such reports serve as the basis for financial remediation of

failures (e.g., time resolve a security vulnerability exceeded maximum thresh-

old). For many customers, this is a sufficient tool that provides adequate assur-

ance on the correct implementation of security processes and systems at a cloud

provider.

However, SLAs need to be monitored and validated continuously by both the ser-

vice customer (is the provider acting as expected) and provider (demonstrating

compliance and contract fulfilment). A system that monitors SLA compliance

has to rely on the provision of sufficient evidence in the cloud environment.

Both, audits and SLAs enforce improved risk management and can therefore

uncover gaps in a provider’s security posture [27]. Depending on who controls

whom (e.g., the provider controlling itself or a customer / auditor controlling

the provider) different level of access and evidence sources are available. For

instance, a cloud provider could directly integrate with the patch management

system in order to monitor security patch compliance continuously. A customer

is much more limited in that regard that tight integration is not possible but he

has to rely on black box testing for vulnerabilities (e.g., by verifying an unpatched

or insecure SSL library via remote testing). Different approaches can mitigate

this problem, where either the provider grants extended access and insight into

its infrastructure to the customer/auditor or provides sufficient evidence trans-

parently via corresponding interfaces. The former approach requires increased

trust by the provider to allow for a deeper insight into the inner workings of its
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services, whereas the latter requires trust by the customer in the truthfulness

of the provided data.

3.2.6 Overview of Industry Practices and Systems

When looking at cloud audits and the associated process of collecting evidence

to assess policy compliance, it is important to look at existing industry practices

regarding monitoring and auditing. Many tools, such as the well-established Na-

gios [104], support distributed data collection for service monitoring purposes.

In more complex IT infrastructures, Security Information and Event Manage-

ment (SIEM) systems are the main source of monitoring information. They pro-

vide additional means of detecting security incidents by collecting information

from various sources in the infrastructure.

In the following, a list of the currently influential commercial SIEM solutions for

both data center and cloud monitoring is presented. This list is based on [105],

which evaluates the strengths and weaknesses of these solutions. Here, only

outstanding characteristics of the solutions are presented:

• HP ArcSight [106] is part of HP’s Enterprise Security Products (ESP) and

targets midsize businesses with preconfigured monitoring and reporting.

• IBM Security QRadar SIEM [107] includes log management, event manage-

ment, reporting and behavioral analysis of networks and applications. It

aims at midsize and large enterprises.

• LogRhythm [108] includes log management and event management. Ad-

ditionally, it supports network forensics in the form of packet capturing

capabilities and collection of data on the major operating systems using

agents.

• McAfee Enterprise Security Manager [109] provides database activity mon-

itoring, application monitoring and global threat intelligence.
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• Splunk Enterprise [110] provides log management, search alerting, real-

time correlation and a powerful query language with extensive visualisation

capabilities. It also has a very strong presence in IT operations, today.

• Logentries [111] collects and analyzes log files. It is provided as SaaS and

integrates other technologies such as AWS.

• CloudPassage Halo [112] provides security features for cloud deployments

by supporting firewall automation, vulnerability monitoring, network ac-

cess control management, security event alerting. It uses a special agent

to collect data and enforce policies.

• AWS CloudWatch [113] allows the monitoring of AWS services including the

capability to collect metics and logs, and set alarms.

• AWS CloudTrail [84] allows the logging on the AWS API (e.g., identity of the

API caller, operation etc.) including requests and responses.

• Rackspace Monitoring API [114] allows customers to query the rackspace

Cloud Management System (CMS) for performance metrics on the provider

infrastructure. Additionally, they provide an agent software for installation

on the customer’s VM that exposes similar informaion via the same API.

• Salesforce ReST API [115] exposes comprehensive monitoring information

and since the Winter 2016 release, this also includes the audit trail gener-

ation for customizations actions done by service administrators.

• Alert Logic [116] considers cloud security from a shared responsibility per-

spective where the cloud customer and the cloud provider have different

obligations with respect to information security depending on the cloud

service provision model. It thereby combines information provided by both

parties in order to monitor security posture.

Many of the above mentioned systems make use of logging information that is

generated in the IT infrastructure. The extent to which information is captured
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from the environment is thereby dependent on the focus of the tool (e.g., network

capturing, database vendor-specific adapters). Also, there are cloud-focused

solutions such as AWS CloudTrail, that allows logging on the API level with tools

that enhance analysis capabilities of AWS (such as Logentries). Most of the tools

have in common that a variety of adaptors is required to collect security events

from different sources.

3.3 Software Agent Technology in Cloud Monitoring and

Audit

The concept of software agents is not a new one. Much of the literature in this

field dates back to concept that were developed in the field of (distributed) artifi-

cial intelligence in the mid to late 90s. A brief introduction to the topic domain

is given in Section 5.1. The focus in the following literature discussion is put

on projects that leverage software agent technology similarly to AAS, especially

concerning the collection of data in distributed environments.

In [117], an approach to monitoring grids using agents is presented. Their sys-

tem aims at enabling the quick and dynamic deployment of monitoring sensors.

In addition to sensor agents, they introduce a sensor manager that exports a

subscription based interface for monitoring to consumers. The actual software

that generates sensor data is thereby loaded after agent deployment from a cen-

tral sensor repository. Similar monitoring systems that aim at networks are pre-

sented by Sladic [118] and Pugazendi [119]. In both systems, agents are used to

integrate data sources and decentralize the processing of data and reduce load

on the network by shifting workload towards the data source.

Yi et al. [120] describe an approach for information gathering in the World Wide

Web (WWW) using mobile software agents that collect specific data for a client.

These so called Information Gathering Agents (IGAs) thereby include cryptogra-

phy based mechanisms to introduce non-repudiation and authenticity into the
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gathering process.

This list of related projects is an indicator of the popularity and usefulness of

agent-based systems in the context of data collection.

Similar work on adapting Multi-agent System (MAS) to cloud monitoring is done

for instance in the mOSAIC project [121], where cloud users are enabled to

monitor their virtual resources using an infrastructure that relies on mobile

software agents to collect data and execute management operations. Beyond

that, there is also the work of Dölitzscher et al. that utilizes software agents for

performing security audits in a IaaS cloud infrastructure [96, 97].

AAS uses mobile software agents as an essential architectural paradigm for the

implementation of the evidence collection and evaluation process.

3.4 Summary

In this Chapter, related research projects have been presented. A special focus

was given to literature on the cloud digital forensics process including evidence

collection and processing, since these are very important aspects of the Audit

Agent System (AAS). In the second part, relevant literature on cloud audits and

compliance with respect to existing information security standards and regula-

tions has been presented. A major problem in cloud computing is the lack of

transparency regarding security and privacy controls implemented by the cloud

providers. In this research, it is argued that customer trust and cloud adoption

can be increased, if cloud providers act accountable by implementing appro-

priate data protection mechanisms and demonstrate compliance by providing

evidence-based audit capabilities to cloud auditors as well as customers.

From a forensics perspective, AAS combines aspects from the aforementioned

approaches and integrates them in a single system. The most important fac-

tors thereby are the use of a common evidence record format that is flexible

enough to address heterogeniety of evidence sources in the cloud and infor-
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mation security aspects that are covered largely by implementing integrity and

confidentiality-preserving mechanisms, while still maintaining a degree of scal-

ability that enables the implementation in a cloud environment. Furthermore,

standards and best practices, which are currently the basis for conventional

manual audits are enabled by AAS’s focus on integrating policy languages that

aim at making the abstract requirements contained therein, machine-readable

and evaluatable by computer systems. The AAS approach comprehensively inte-

grates all aspects and thereby provides an approach for continuous, automated

auditing of cloud provider accountability even in complex chaining scenarios.
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Chapter 4
Cloud Privacy and Accountability

Audits

IN this chapter, the requirements for AAS are elicited. To frame the discussion

in the remainder of this thesis, a general scenario is described that defines a

use case that is complex enough to demonstrate particular problems of multi-

provider scenarios, yet simple enough to be useful for demonstration of issues

throughout this document and in the scenario-based evaluation in Section 7.

The methodology of requirements elicitation thereby follows a structured ap-

proach that starts with the discussion of potential sources in the cloud. Based

on the methods and principles of digital evidence collection an overview of poten-

tial evidence sources is presented alongside a discussion of architectural layers

where evidence can be produced in the cloud.

With respect to the collection process, requirements that are mandatory in the

conventional non-cloud (or even non-digital) forensic process serve as a starting

point from which specific requirements for AAS are derived. A simple process is

proposed that serves as a framework for the implementation of the AAS proto-

type.

Beyond the evidence collection process and the discussion of potential evidence
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sources, approaches to evidence processing and evaluation in different types of

audits are discussed.

Results of the research presented in this chapter have been published in sev-

eral workshop and conference papers that focus on the discussion of evidence

sources in cloud computing for conducting accountability audits [122–124].

4.1 General Scenario

In this section, a scenario is described that serves as a tool for framing further

research in the following chapters. The main aspects to be covered are:

Combination of cloud service delivery models: the scenario should combine

at least two service delivery models (i.e., IaaS, PaaS and SaaS). The combi-

nation of different service delivery models (e.g., a SaaS provider hosting its

service on-top of an IaaS provider’s infrastructure, such as Dropbox host-

ing on Amazon EC2) provides interesting flows of data (across boundaries

between providers) and levels of data abstraction (e.g., objects in memory,

datasets in databases or files on block devices).

Interaction of multiple cloud service providers: the scenario should include

at least two distinct cloud service providers. Transparency issues can arise,

if a cloud consumer does not know of another provider taking part in the

service provision.

Focus on public cloud offerings: publicly available cloud services are to be used.

Private cloud models do not necessarily stress data protection and privacy

problems as much as public cloud services.

Processing of sensitive information: potentially sensitive data is handled by

at least one of the service providers. This is important to stress the need

for data protection mechanisms that are implemented in the cloud service

as well as the audit system.
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Requirements regarding data privacy and security: privacy and security re-

quirements do apply, either originating from the nature of the processed

data (sensitive or confidential data) or because security and privacy con-

trols are required by law.

An example scenario is depicted in Figure 6. The flow of data is depicted by

the connections between the different stakeholders. The following roles and

responsibilities are assumed in this scenario:

• A company (E) is the customer of a cloud-based Customer Relationship

Management (CRM) provider. The end-user (an employee of company E) is

using the CRM software. The user at E interacts with the CRM application

using a web-interface that enables the customization of some aspects of

the service.

• Cloud Provider 1 (CP1) provides the CRM software as a SaaS application to

E. CP1 does not possess computing resources itself, but uses third-party

cloud providers in order to provide its own service. Primarily, CP1 has

contracts with CP2 for infrastructure services and with CP3 for additional

backup services.

• Cloud Provider 2 (CP2) is specialized in IaaS services and hosts the CRM

software of CP1 on VMs.

• Cloud Provider 3 (CP3) is specialized in backup services (SaaS) and provides

this to CP1, which integrates this as an optional service in its CRM service.

This scenario is of particular interest, since transparency of data processing in

the cloud is reduced by business relationships between cloud providers that

are not necessarily openly communicated to cloud customers (here: CP1 using

a third-party service for backup provision). Employees at E handle sensitive

business-related data in the CRM software on a regular basis (e.g., customer
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Figure 6: Abstract Overview of the Demonstration Use Case

information like names, addresses and history of business transactions). There-

fore, the company is concerned about the protection of this data, because they

have no direct control over the infrastructure at CP1, CP2 and CP3 where the

CRM is hosted. To address this problem, E has carefully considered data protec-

tion and handling policies before finally settling on using the services provided

by CP1. However, E wants to have assurance that their agreements with CP1 are

being honoured and that CP1 is acting according to regulations and agreements

on which they settled. Both, CP2 and CP3 are constantly being audited by CP1

regarding privacy, accountability and security requirements.

Company E and CP1 have agreed to the following security and accountability-

related contractual clauses and policies:

• CP1 should put mechanisms in place that effectively protect E’s data. This

includes that all service providers involved in the service provision chain

need to put baseline security controls in place. Furthermore, CP1 shall

pro-actively control the effectiveness of those mechanisms.

• CP1 should adhere to a maximum data retention time after which it is

forced to delete it.

54



4.2. SOURCES OF EVIDENCE

• CP1 has to fulfill compliance requirements of E that force E to store its

data under European Union (EU) jurisdiction, only. In any case, no data

transfers outside the EU are allowed. Therefore, data must only be stored

inside the EU regardless of CP1’s performance and cost evaluations of sub-

providers.

Furthermore, all providers CP1, CP2 and CP3 are assumed to each implement

an instance of AAS as it is described in this thesis. There is also a certain level

of trust between the cloud providers that enables them to cooperatively perform

audits.

The Auditor in this scenario is considered to be a trusted third-party or a tech-

nically capable person at CP1 for the connections CP1 ↔ CP2 and CP2 ↔ CP3.

In any case, company E is informed by the auditor about policy violations that

might occur.

4.2 Sources of Evidence

Evidence in digital forensics focuses on information left behind by a (careless)

intruder and reconstructing the chain of events of an incident. Evidence collec-

tion for cloud accountability audits needs a planned approach to gain control

of the sheer amount of potential evidence data in the cloud and to not create a

potentially dangerous information repository that may leak sensitive data. Data

minimization and purpose binding (see Section 4.6 for more details) are of ut-

most importance. Therefore, the evidence sources and specific evidence objects

to acquire need to be known beforehand to enable the appropriate monitoring of

the evidence sources.
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4.2.1 Types of Evidence

The sources of evidence can be diverse, ranging from business process logging

to operational logging. Operational logging covers actions of a single cloud cus-

tomer or critical infrastructure conditions that impact all customers. In the

following, an approach of classifying evidence types for cloud privacy and ac-

countability audits is presented based on the literature review presented in Sec-

tion 3.1:

Logs: Logs are generated at many different places for all kinds of purposes such

as failure handling, compliance verification or debugging. In general, logs

are typically a collection of temporally ordered events.

Data Provenance: Recording where data originates, how, where and by whom it

is processed, as well as where (in terms of geographical location) it is trans-

ferred, is invaluable information when auditing against data processing

policies. This information is tracked typically on the software and platform

layers. On the infrastructure layer it may not be possible to track single

data objects due to the coarser abstraction of data in files and filesystems.

On that coarser level, data can be tracked for instance using the CMS’s VM

image location and migration history.

Content: Any kind of data such as e-mail messages, social network messages

or data that is being transmitted on the network.

Files: Especially in digital forensics, files and the contained information are

valuable sources of evidence (e.g., documents, configuration files, tempo-

rary files).

Cryptographic Hashes and Proofs: Methods for attestation, such as PDP and

PoR (see also Section 3.2.3) contribute as evidence to audits.

Business Process Documentation: Most commonly this kind of evidence is the

central object of interest in conventional document-revision based audits.
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Figure 7: Sources of Evidence for Accountability Audits

Anything indicative: While the aforementioned examples for evidence types are

most commonly looked at, anything that holds some information that can

contribute to either stating compliance or indicating a violation can be con-

sidered evidence.

4.2.2 Sources by Cloud Layer

In the following, a classification of potential evidence sources is presented (de-

picted in Figure 7). The categories of evidence are presented according to the

typical architectural layers of the cloud. On the lowest level, there are the net-

work and servers that provide computing and communication resources. On top

of that, there is the Hypervisor as a central component for resource allocation,

virtualizaton and tenant isolation. Based on these layers are the core cloud ser-

vice models, representing the use of infrastructure resources (IaaS), application
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runtime environments (PaaS) and software (SaaS), with the respective bound-

aries between the tenant (marked as white boxes) and provider (marked as blue

boxes) administrative domains. As a cross-spanning source of evidence, there is

also the CMS.

Network: It is required to monitor networking resources, which are utilized by

the cloud provider and by particular tenants. Networking resources can be

either physical or virtual. From the provider’s point of view, physical net-

work resources are most important. This includes active network compo-

nents such as switches, routers and physical network interface controllers

of virtualization hosts.

Flow information that is gathered on these components can be invaluable

evidence of data flows in complex cloud deployments. If a cloud provider

is using SDN, that traffic flow information is usually already converging at

a central node called the SDN controller. From a cloud customer’s point

of view (especially in IaaS) the network layer is typically a virtualized one.

A common way of segmenting networks on a tenant level is by using tech-

nologies such as Virtual Local Area Networks (VLANs) [125] (which is a

traditional non-cloud technique), Virtual Extensible Local Area Networks

(VXLANs) [126] (which extends and adapts the VLAN concept to the cloud)

or VPNs (which is typically used to bridge the gap between cloud and enter-

prise network). All of these can be used to virtualize networks and isolate

tenants from each other.

In any case, tenants share networking resources just like CPU, RAM and

storage since they are ultimately co-located on the same physical server.

For instance, in IaaS, a single physical network card in a virtualization host

is utilized by several VMs by bridging virtual interfaces to physical ones, de-

spite them belonging to different tenants. This is typical in a multi-tenant

cloud environment and one of the easiest ways to provide networking to a

customer’s VM. Distinguishing a customer’s traffic on such a shared device
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may be possible by either filtering using coarse attributes like logging IPs

and communication endpoints on the full data stream of the shared physi-

cal device or by monitoring individual virtual network interface controllers.

On higher levels like PaaS and SaaS, distinguishing between different cus-

tomers’ traffic flows can become quite difficult since virtual devices are typ-

ically not a suitable identifier of different customers. The reason for this is

that there is no clear mapping between a virtual resource, such as a virtual

machine and its flow-relevant identifiers (e.g., source IP address) anymore.

Additional identifiers from the application layer need to be considered to

clearly identify flow belonging to different customers.

Nevertheless in cloud audits, traffic flow information is important to reveal

violations of security policies related to data location and transfer (e.g., the

detection of compromised hosts that have traffic flows to disallowed loca-

tions). Logging of traffic flows is therefore an important source of evidence,

especially in IaaS deployments.

Furthermore, evidence that is coming from network device monitoring can

be required as well. That includes availability monitoring and routing in-

formation. This data can be of particular importance to uncover disallowed

cross-border flows of data due to routing changes that are caused by avail-

ability incidents. In any case, the information that is collected on this layer

provides deep insight on the flow of data in a cloud but is at the same

time very low-level information that requires extensive filtering and a clear

definition of which flows are allowed and which not.

One example for this layer is the Cisco-proprietary IOS NetFlow [127] pro-

tocol, but also information that is gathered from network components (e.g.,

performance counters such as packets transmitted) using Simple Network

Management Protocol (SNMP) (see RFCs 3410-3418).

Virtualization Host: Evidence collected on the virtualization host operating sys-

tem level (i.e., nodes hosting VMs) includes data that are produced on the
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host. Such data include operating system performance counters, system

log files (e.g., from authentication and authorization logging) or other in-

formation produced by the operating system or complementary monitoring

tools. These evidence sources are not necessarily cloud- or virtualization-

related. Since a virtualization host is just a typical server, most server

monitoring mechanisms do also apply in the cloud case. Also, this is the

layer, where most of the digital forensic techniques (e.g., file carving, mem-

ory dumping) can be used for evidence collection.

Examples for this layer are files in the VM such as documents or configura-

tion files, logs such as syslog, access log and kernel counters such as those

provided by the proc filesystem. Also, it is good practice to monitor servers

for specific parameters such as load, availability or intrusions. That moni-

toring information can be valuable as well. Typical examples of monitoring

systems that collect such information were presented in Section 3.2.6.

Hypervisor: The Hypervisor (e.g., Kernel-based Virtual Machine (KVM) [62] or

Xen [61]) operates VMs. It has full control over VMs and assigns physical

resources of the underlying virtualization host to them. The control over

the Hypervisor and the virtualization host is taken by the CMS. On this

layer, runtime statistics generated by the Hypervisor, such as resource uti-

lization, or statistics about memory ballooning, shared pages between VMs

(both of which are commonly used Linux kernel-level techniques to save

memory on the virtualization host and therefore allow it to run more VMs

in parallel) are considered potential evidence sources.

Because of the level of control that the Hypervisor exercises over VMs, ob-

servation of virtual machines from the Hypervisor’s point of view can also

provide valuable evidence. A VM’s memory is a mapped portion of the virtu-

alization host’s physical memory. It is therefore trivial for the Hypervisor to

“look into” a VM by simply scanning the right memory area. This principle

is being used in advanced intrusion detection mechanisms that have the
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goal of detecting sophisticated intrusion attempts that otherwise may not

be detectable due to anti-forensic countermeasures. VMI is one of these

approaches that allows for deep insight into the internal procedures of a

VM without modifying it or being detectable from the inside of the VM.

A review of related work in this field is presented in Section 3.1. Obviously

this level of access provides nearly limitless potential for monitoring and

collecting evidence.

Infrastructure as a Service: At this level, data are generated inside a VM or

with the use of the CMS. One of the most interesting evidence acquisition

techniques is VM snapshotting. At any time, a copy of a VM (a snapshot)

can be created to preserve the precise state of a VM at that particular point

in time. This includes the state of processor registers, Random Access

Memory (RAM) and open network connections. This is not limited to VMs,

but also includes any block storage (in this case, the state of a data object

is preserved).

While the previous layers had a strong focus on the cloud provider side,

it is noteworthy that at this level, there is a shift of the administrative

domain towards the cloud consumer. Anything running inside a VM in an

IaaS scenario, the cloud consumer has full control over. There is only very

limited possibility for the cloud provider of influencing a VM’s internals and

neither is it in his interest to do so, since this would be against the IaaS

business model.

Therefore, any evidence that is collected inside a VM in IaaS is not collected

by the provider, but the consumer. The types of data are thereby very sim-

ilar to those of the virtualization host layer as well as the PaaS and SaaS

layers depending on what the consumer uses the VM for. From a provider’s

and auditor’s perspective, this has direct influence on the trustworthiness

and usefulness of the collected data, since a VM could have been breached

due to lacking protection mechanisms or manipulated by the cloud con-
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sumer. This makes information stored on it untrustworthy.

Examples for this layer are files in the VM such as documents or configu-

ration files, logs such as syslog, access logs, kernel counters such as those

provided by the proc filesystem and also full copies of VMs that were gen-

erated by snapshotting or cloning.

Platform as a Service: In a web application development scenario, evidence

collection can be performed by the platform provider as well as the cloud

consumer (i.e., the application developer) on the PaaS layer. On the provider

side, runtime environment logging of the provided platform is of utmost im-

portance. Of course, evidence on the underlying IaaS layer is obtained as

well.

However, the virtualized resources are provisioned for the platform services

and therefore owned by the cloud provider instead of the consumer (see

IaaS layer for reference). The major concern regarding information collec-

tion on the PaaS layer revolves around the segregation of multi-tenant log

information at the provider-side. The consumer-controlled evidence source

in this layer is pushed upwards towards the application that he develops

(i.e., the VM is not under the customer’s control anymore, but the applica-

tion’s logs are). Logs and performance monitoring data can only be consid-

ered at this layer, if corresponding mechanisms are being implemented in

the application and interfaces are being exported that allow access to that

information.

Examples for this layer are logs produced by the webserver, Java Runtime

Environment, database service, identity management and access control

service and also logging that the deployed application generates.

Software as a Service: On the SaaS level, evidence may come from audit and

logging APIs provided by the SaaS service provider. Such APIs include

authentication, action and access logging. However, the actual content of

such data is highly dependent on the cloud provider and service type. Many
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cloud providers offer such APIs to consumers under the label of monitoring

or audit interfaces from which they can export that data and analyze it

further.

Another source of evidence on the SaaS layer is transient data stored on

the client side. In most cloud usage cases, the client application is a web

browser. The web browser stores information such as a browsing history or

locally-cached data from a browsing session at a service. That information

can potentially contain valuable information. However, evidence collection

on the client side requires additional mechanisms (e.g., logging actions of

users or debug logs produced by the client side logic in the browser) and

sending that information back to the service.

An example of this layer is the ability to export audit logs for an organization

that is using a SaaS service such as the Google Apps Activity API [128] or

for instance the Reports API for Google Drive [129]. For the client side

logging, a simple library such as JSNLog [130] can be sufficient.

Cloud Management System: The CMS is a major source for evidence. It is the

central controlling component of a cloud infrastructure and provides infor-

mation about user logins, cloud service usage, access rights, configuration,

resource provisioning, location and much more.

In IaaS the CMS manages physical resources and provisions them in vir-

tualized manner. In PaaS the platform manager is responsible for the de-

ployment environments and uses the underlying infrastructure manager

to deploy them. In SaaS the same happens, but the abstraction is even

more coarse and the underlying cloud infrastructure fully transparent to

the consumer. The CMS (be it IaaS, PaaS or SaaS) has therefore the most

complete picture of what is happening in the cloud and is therefore one

of the most important sources of evidence. However, the usefulness of the

provided data is highly dependent on the amount and quality of monitoring

and logging information the CMS generates as well as the APIs it provides
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to export that information.

Examples for this layer are OpenStack [14] as an IaaS focused CMS, Cloud

Foundry [131] as a PaaS focused CMS or any SaaS service that provides its

consumers with a dashboard and API.

This categorization of evidence sources shows that a system for evidence collec-

tion primarily needs to be capable of collecting data from various heterogeneous

sources. The evidence can then be evaluated during an audit and compared

against rules that govern data processing in the cloud (e.g., data location evi-

dence that is compared with restrictions on locality). The cloud’s multi-layered

and heterogeneous environment has significant influence on the proposed sys-

tem architecture described in Section 5. For instance, logs from different tools,

while being similar in general structure (e.g., typically one line per event, begin-

ning with a time-stamp), differ very much in the used syntax (e.g., time-stamp

format, order of event elements).

To address the heterogeneity of the evidence sources an adapter-based approach

for evidence collection, where each type of collector provides the capability to in-

terface with another type of source, looks promising. More precisely, for every

data source there is a specialized collector, which is aware of the syntax, seman-

tic and interface definition of the evidence source on one side and of the syntax,

semantic and interface definition of AAS on the other side. For instance, the col-

lector may use an evidence-generating tool’s API to collect information, monitor

log files for events or parse the output of analysis tools.

4.3 Evidence Collection

The term evidence collection usually refers to forensic methodology and tech-

niques. Digital forensics is a technique that covers the collection and investi-

gation of evidence that is usually tied to an incident or crime. Cloud forensics

refers to digital forensics investigations performed in cloud computing environ-
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ments. As discussed in Section 3.1, there are some special requirements and

challenges introduced by cloud computing. In the following, the adoption of the

digital forensic process for use in evidence-based cloud audits is discussed. As

a basis for the view presented in this section, well-understood principles and re-

quirements for a digital forensics process have been collected during a literature

review. In the following it is shown how principles and techniques of (digital)

forensics can be applied to improve the credibility of audit results.

4.3.1 Principles and Techniques

The core properties of evidence, and thus also digital evidence, are described

based on [132] and [133]:

Admissibility: Evidence must conform to certain legal rules, before it can be

put before a jury. It is influenced by the transparency of the collection

process and data protection regulation. Typically, a judge decides upon the

admissibility of evidence in court.

Authenticity: Evidence must be tieable to the incident and may not be manip-

ulated in any way and must be protected against any kind of tampering

(intentionally and accidentally).

Completeness: Evidence must be viewpoint-agnostic and tell the whole story.

This needs to be ensured by the evidence collection process as a whole.

It is especially important that the source from which data is collected is

known. A mechanism should complement the evidence collection process

by providing assurance that all stored data are made available as evidence,

and are not cherry-picked.

Reliability: There cannot be any doubts about the evidence collection process

and its correctness.

Believability: Evidence must be understandable by a jury. This is typically
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ensured by the interpretation and presentation by an expert in court. Since

judges and juries are usually non-technical, an abstracted presentation

and interpretation of digital evidence is required.

These principles apply to conventional evidence in non-digital forensics as well

as digital evidence. Therefore, the evidence collection process for cloud audits

has to consider special requirements, which help addressing these properties

and ensure best possible validity in audits.

4.3.2 Evidence Collection and Evaluation Process for Cloud Account-

ability Audits

The process of a digital forensics investigation can be separated into different

phases as defined by NIST in [134]. Each of these 3 phases has its own specific

purpose in the chain of proving that a cloud environment is accountable:

1. Securing Phase:

The major intention is the preservation of evidence for analysis. Data are

collected in a manner that maximizes their integrity. A bitwise copy of the

original media usually achieves this in conventional digital forensics.

As previously mentioned, this represents a huge problem in cloud comput-

ing where it is typically unknown where a specific data object is located.

Additionally, there is often no access to any physical hardware for an inves-

tigator, since this is solely under the control of the cloud service provider.

However, state-saving technologies in virtualized environments (such as

snapshotting) provide powerful tools to freeze system states. Investigations

similar to those conducted in non-cloud environments, at least in IaaS sce-

narios, are made theoretically possible by such technologies. In any recent

virtualization technology, pausing a virtual machine, saving the (volatile)

memory contents and (non-volatile) disc contents and therefore enabling
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the “saving” of the state of a system at a specific point in time, is a trivial

task.

In PaaS or SaaS scenarios, where possibly multiple distributed systems

(e.g., a n-tier architecture) are involved in service delivery, securing evi-

dence for forensics is a more complex task. The principle of pro-actively

monitoring and describing beforehand which data is required as evidence

becomes more important in the context of cloud audits. According to these

policies it can then be decided which evidence data are important.

An alternative approach to pro-actively defining relevant data sources and

event types before evidence is collected is to simply collect any data that

may become relevant for an audit. However, this leads to significant amounts

of data being transferred over the network and stored in central archives.

Amounts that can quickly become too large to handle or efficiently process.

Furthermore, building such heaps of data just in case can potentially intro-

duce privacy protection threats if correlation with human beings is possible

and the data storage is insufficiently protected against leakage or loss.

Due to the heterogeneity of potential evidence sources, the securing phase

must use approaches that are flexible enough. Using adapters that trans-

form data into a common format is a common approach to address this

problem. Of course this introduces a considerable amount of effort that has

to be invested into developing adapters for each potential evidence source.

2. Analysis Phase:

In this phase, data from multiple sources are pulled together to create a

complete picture of an incident by reconstructing the trail of events. Es-

pecially in distributed system infrastructures, like clouds, this means that

bits and pieces of data are pulled together not only from a single system or

source, but from various parts of the cloud. Because of the multi-tenancy

of cloud infrastructures, the collected information may not only come from

the administrative domain of the cloud provider (or several providers) but
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also from the cloud consumer (e.g., the customer in IaaS).

In AAS the scope and extent of the evidence analysis (e.g., simple string

searches over logs or feeding them to a complex ruleset in a rule engine)

is decided by the audit task developer based on his decision on scope and

depth required for evaluating policy compliance in an audit. Both factors

are tightly coupled to cost of computation, bandwidth and storage for the

collection and evaluation of evidence. With respect to resource require-

ments, executing the analysis in the cloud as well can be considered.

The more complex analysis techniques consider multiple evidence sources

during analysis. This however, introduces the requirement of integrating

and correlating sources that differ in format and semantic. Therefore, the

analysing entity must be aware of the types of evidence sources and meth-

ods for processing that data.

3. Presentation Phase:

The report created in this phase is a compilation of all the results, relevant

documentation and accompanying evidence from the analysis stage. The

main intention of such a report is that it clearly and understandably draws

a picture of what happened. The timeline presented in the reports is also

of high significance because of the dynamic character of cloud environ-

ments (i.e., time synchronization mechanisms are required at all evidence

sources).

The presentation of evidence and results acquired during the analysis phase

is also affected by the heterogeneity of cloud evidence. While some evi-

dences (both collected and results from the analysis phase) may be consid-

ered monitoring metrics, others can be logs or even plain text. This has to

be considered in a technical system that aims at presenting results in an

easily understandable way.

Overall, the requirement for integrating varying types of evidence sources has

a big impact on the architectural choices for AAS. This choice relies on the use
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of adapters and containers with specific tasks that are aware of the syntax and

semantics of their associated evidences.

The above-mentioned process forms the basis for the accountability audits in

AAS. The securing phase thereby follows a planned approach of collecting evi-

dence in a well-defined way and storing it securely. The analysis phase reflects

the performed analysis of evidence against policies during the audit. The pre-

sentation phase presents the audit result in a suitable way.

4.3.3 Security and Privacy Protection Threats

Pro-actively collecting evidential data for the purpose of auditing against data

protection, security and accountability policies can introduce new risks. The

main risks are, based on a literature review of [133], [65], [53] and [135] are

presented below:

Legal: Collecting certain data may be against legislation and therefore require a

search warrant. In cases where multiple jurisdictions are concerned, this

problem is intensified.

Data breach: Piling-up a lot of data that can potentially include sensitive in-

formation can make the pile a target of attacks that aim at stealing that

data. Also, the privacy of another tenant might be breached, if its data is

collected.

Broad access: Evidence collection itself does require broad access privileges on

the targeted systems. In live analysis, where evidence is collected pro-

actively, this may have negative impact.

Collection process security: The collection process itself may become a target

for manipulation.
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4.4 Evidence Processing

The processing of evidence in AAS is concerned with the automated preparation

and evaluation of evidence against rules that are defined in security, privacy

and accountability policies. In the following, different areas of application are

presented.

The processing of data includes, as a first step, the filtering and reduction of

data. According to [135] this can happen either at the acquisition (securing)

stage or at the examination (analysis) stage. While AAS conceptually supports

both approaches, the former approach is preferred in order to adhere to the

data minimization principle described in Section 3. The filtering at the collection

stage has also obvious advantages with respect to scalability when load can be

reduced (see Section 7.3).

Since the evidence collection process in AAS is pro-active and policy-driven, the

following data processing techniques can be applied at the collection stage as a

form of pre-processing:

Filtering: Evidence sources can produce a lot of data, that may not necessarily

be useful or even required for evaluating policy compliance. Filtering mech-

anisms such as selection of events based on keywords or regular expression

reduce the amount of data that is being collected.

Reduction: Depending on the evidence source, different data formats (e.g., eX-

tensible Markup Language (XML)-based, Javascript Object Notation (JSON)-

based) are collected. Reduction mechanisms aim at reducing the size of

data by removing unneeded information that is not required for the com-

pliance check (as defined by the auditor) and overhead from the input data.

Aggregation: In cases where many events are produced that share a similar

structure and maybe even redundant information, the collection informa-

tion can be reduced by carefully aggregating multiple events into one or
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removing redundancy.

Anonymization: Anonymization does not reduce the size of evidence but rather

addresses privacy issues very early in the process by removing PII unre-

versably. However, the applicability of the technique during evidence col-

lection highly depends on its impact on the usefulness of the evidence af-

terwards.

Compression: Compression can further reduce size of collected evidence, but

introduces additional computational load and requires decompression be-

fore analysis.

4.5 Audit Types

Auditing is defined as a “systematic, independent and documented process for

obtaining audit evidence and evaluating it objectively to determine the extent

to which the audit criteria are fulfilled” [136]. In this Section, two aspects that

allow for a more detailed categorization of audits are discussed: distribution and

interval. Both have a significant influence on how an automated audit is con-

ducted. While AAS supports all of the mentioned characteristics, it is important

to highlight which type is suitable for which kind of evaluation methodology and

evidence collection.

4.5.1 Event-based Analysis

The first of two general types of analysis methodologies that are considered in

AAS is the event-based approach. The event-based approach thereby has two

distinct variants.

The first variant is similar to stream processing, as the processing and analy-

sis of evidence is pushed towards the collection to achieve immediate results.

This approach is particularly interesting for rules that only require one evidence

71



CHAPTER 4. CLOUD PRIVACY AND ACCOUNTABILITY AUDITS

record for the analysis, so that those can be processed continuously as they are

collected.

The second variant is event-driven, which means a collector is monitoring an

evidence source for state changes or other triggers (e.g., modification of a file by

monitoring the filesystem) and reacts on that event by collecting evidence. This

approach is particularly interesting for cases where the triggering event fires

irregularly and a periodic collection would result in either too much redundant

evidence data or would pick-up the evidence with too much delay.

Both approaches can be used to quickly react to events and verify changes and

are therefore important enablers of continuous auditing. However, neither of

those are feasible when multiple evidence records over a period of time are re-

quired for the audit or multiple sources and therefore collectors need to be inte-

grated to build a single trail of events for analysis.

4.5.2 Analysis of History Data

The second general type of analysis methodology that is considered in AAS is the

periodic approach.

This is similar to conventional audit practices, where there are often long periods

between each interval. In AAS, periodic audits enable the audit of compliance

with rules over a period of time, while considering multiple evidence records from

multiple evidence sources. In fact, there is no theoretical limit on the amount

of evidence sources or records that can be processed during each periodic audit

but only a practical one that is defined by the length of the evaluation process,

the amount of storage required and load introduced. The length of a period can

be chosen arbitrarily depending on the audit task by the auditor. Typical periods

are: hourly, daily, weekly, monthly or yearly.
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4.5.3 Distribution Aspects of Audits

An important factor to consider in the design of a system that processes data

in the cloud is its potential distribution. In AAS the evidence collection process

happens in a decentralized way. When it comes to processing the collected data

in an audit however, centralized and decentralized approaches are suitable for

different types of audits. Key factors are the audit interval and whether an

event-driven or history-based approach is chosen.

Centralized Audits

In the centralised approach, multiple evidence collectors generate evidence records

and store them in a central evidence repository. From the repository, a set of

evidence records can be retrieved for performing policy compliance analysis. Re-

garding the aforementioned scenario in Figure 4.1 this means, there are multiple

evidence collectors deployed at different locations, for instance: a collector for

monitoring the access control module, a collector for monitoring the service in-

terface configuration for changes to security parameters such as the available

cryptographic algorithms, key material and validity of cryptographic certificates.

The hereby collected evidence is saved in the central evidence repository, from

which another entity can retrieve it during the analysis phase.

Decentralized Audits

In the decentralized approach, evidence collectors still generate evidence records

at the evidence source and store it in a evidence repository, however the repos-

itory is not centralized anymore. Additionally, the evidence evaluators of the

analysis phase are distributed as well, to achieve a tighter coupling with the

relevant collectors. By bringing collectors and evaluators closer together, the

data flow between the two can happen without requiring a centralized evidence

store in between. With this, the evidence repository is reduced to an archive of
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evidence and audit results.

4.5.4 Audit Intervals

In AAS multiple audit intervals are considered. The suitability of a specific inter-

val is dictated by the amount of evidence and the type of evaluation methodology

that are required. There are intervals that are more suitable for audits where a

constant stream of evidence is analyzed but also others for the analysis of longer

periods of time that stretch multiple days, weeks or even months of evidence

collection. In the following, three types of intervals are presented: periodic, con-

tinuous and on-demand.

Periodic Audits

In periodic mode, evidence is evaluated in an audit at specific intervals (e.g.

hourly, daily, weekly, monthly etc.). It is similar to the on-demand audit in

having the auditor setup the audit once and have it repeated at the specified

points in time, without having to take action. The most useful application of this

audit interval is a regular evaluation for policy compliance. For instance, simple

tests aimed at the correct functioning of security controls on a daily basis are

prime candidates for this interval type.

Periodic audits typically happen centralized for more complex tasks where more

than one evidence collector is involved and where historic evidence (i.e., evidence

that has been collected during previous periods) is required. This enables audits

to perform more complex analysis of larger periods.

Continuous Audits

In continuous mode, evidence is analyzed as soon as it is collected. The contin-

uous audit mode is very similar to monitoring with immediate notification if a

violation is detected. The time between evidence being recorded and actual de-
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tection of a violation or incident and its notification is minimal. However, since

evidence is analysed on-the-fly, more complex evidence analysis that relies on

taking a series of records or historic information into account is generally harder

to implement. This is especially the case, when evidence records are being pro-

duced rapidly. This type is therefore more suitable for evidence that represents

rarely happening events such as configuration changes that happen rarely if at

all.

On-demand Audits

The on-demand type does not constitute a real interval but is rather a special

case of the periodic audit, where the execution of an audit is done exactly once

and immediately after configuration. This means, the audit is planned once,

which includes the selection of evidence sources, method of evidence analysis

and presentation of one result. It needs to be considered that the lifetime of

the evidence collector does not last longer than that of the whole on-demand

audit. In fact, collectors are being distributed in the system according to their

configuration, collect as much evidence as is required and are then destroyed.

Any data that is not available at that point in time at the evidence source is not

collected and not considered during the audit. The most useful application of

this type is when a compliance verification is required immediately and it is not

possible to wait for the next evaluation interval to pass.

On demand audits can be de-centralized when a single evidence source and

therefore a single evidence collector is involved.

4.6 Requirements for Handling Evidence in Audits

In this section, requirements for cloud privacy and accountability audits are

described based on the preceding sections of this chapter. These requirements

originate partly from the digital forensics process and partly from general privacy
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ID Description
EH1 Evidence must conform to certain legal rules, before it can

be put before a jury.
EH2 Evidence must be tieable to the incident and may not be

manipulated in any way and must be protected against any
kind of tampering (intentionally and accidentally).

EH3 Evidence must be viewpoint-agnostic and tell the whole
story.

EH4 There cannot be any doubts about the evidence collection
process and its correctness.

EH5 Evidence must be understandable by a jury.

Table 1: Evidence Handling Requirements for the Audit Agent System

and security considerations.

4.6.1 Evidence Handling

The baseline requirements that arise from principles regarding the handling of

digital evidence have been discussed in Section 4.3.1. These requirements are

identified in the remainder of this thesis as described in Table 1.

Any system that collects data and tries to preserve its evidential value has to

address these requirements to a degree, where the collected data remains useful

in court. The above-mentioned evidence handling requirements can be consid-

ered equally important, while EH5 could have more impact than the others in a

court.

4.6.2 Security and Privacy Protection

Beyond ensuring the usefulness in court, additional requirements were identi-

fied, that arise from regulation, standards and best practices for privacy protec-

tion as described in Sections 2.4 and 3.2.1.

The following major requirements should also be considered in the system de-

sign:

Protection of Evidence Source: On every architectural layer of the cloud data
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is generated, which may potentially serve as evidence during audits. The

credibility and usefulness of audit results is tightly coupled with the qual-

ity of evidence sources. Therefore, the integrity of evidence data must be

guaranteed. Data collected from evidence sources must be tamper-proof

(evidence cannot be manipulated) or at least tamper-evident (any manip-

ulation is detectable). Without protection from tampering, the evidence

collection system is not reliable and audits cannot be performed based on

that data. Operational security mechanisms (such as tamper-proof logging)

and organizational measures (such as restricting access to potential data

sources and collected evidence to a minimal set of employees with authority

over evidence collection) need to be put in place.

Confidentiality: Confidentiality of data revolves around mechanisms for the

protection from unwanted and unauthorized access. Typically, crypto-

graphic concepts are used to ensure confidentiality of data. By encrypting

the collected evidence during storage and transit, compromising the privacy

of cloud customer data that has been collected in the evidence collection

processes becomes almost impossible. If done correctly, this goes as far as

being able to safely outsource the evidence storage to an untrusted third-

party. This has direct impact on the scalability of the whole system since

storage can be outsourced and does not require a trusted environment any-

more.

Data Minimization: This principle states that the collection of personal data

should be minimized and limited to only what is strictly necessary. How-

ever, data minimization has to always be considered in the context of com-

pleteness of evidence. Therefore, evidence should only be collected for per-

forming specific audit tasks, which are very limited in scope. It should

never be possible to arbitrarily collect data based on the potential that it

may or may not be needed later on.

Purpose Binding: This requirements entails that personal data should only be
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used for the purposes it was collected for. Incorporating secure evidence

collection and storage serves to differentiate data collected for auditing pur-

poses with other data collected for other purposes (e.g., for marketing).

Also, technical means such as Usage Control (UCON) [137] may be used to

enforce purpose binding on collected evidence.

Data Retention: Evidential data generated at the different layers may contain

sensitive information (e.g., communication logs depicting communication

partners, length and date). Such data must be handled carefully and

deleted as soon as it is not needed anymore or after a certain period to

ensure protection from misuse. These periods are usually defined by legal

and business requirements.

However, in the cloud actual data deletion poses a real challenge. Typi-

cally, the precise location of a data object is not directly available, (i.e., the

actual storage medium used to store a particular block is unknown) mak-

ing unrecoverable data deletion hard. However, if data has been encrypted

before storage, a reasonably safe way to ensure deletion is to discard the

key material required for decryption.

Another obstacle is that continuous audits continuously evaluate a sys-

tem. Thus, a continuous stream of evidence may be needed, depending on

the audit task, producing unclear data retention limits (e.g., when is an

evidence object not needed anymore?)

Public API: Public audit interfaces, which serve the purpose of strengthening

transparency of cloud systems and ensuring proper usage of data in the

cloud, come with several privacy issues. For instance, actual customer

data, usage profiles or any other potential PII should ideally not be exposed

to an auditor, as long as this does not negatively impact his ability to con-

duct audits. Therefore, third-party auditors should be restricted in the

amount of information they can request from audit interfaces.
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ID Description
SP1 Evidence source shall be protected.
SP2 Confidentiality of collected evidence should be provided.
SP3 Data minimization regarding evidence collection should be

considered.
SP4 Purpose binding of the collected evidence to only be used

in audits should be observed.
SP5 Observation of data retention requirements.
SP6 Provide public audit interfaces for second and third-

parties.

Table 2: Security and Privacy Protection Requirements for the Audit Agent System

To summarize, from a security and privacy protection perspective, the evidence

collection and processing architecture should fulfil the requirements listed in

Table 2. While the requirements associated with confidentiality and integrity of

evidence are of utmost importance, SP6 can be considered somewhat less impor-

tant if the audit system is used in a private cloud scenario that does not consider

complex service provision chains. However, today’s cloud use cases quite often

integrate the services of multiple cloud providers and therefore require the use

publicly available and open interfaces that follow industry standards.

4.6.3 Data Processing and Performance

As discussed previously in this chapter, evidence for cloud audits is generated

at a vast amount of different sources, while many types of audits require a cen-

tralized collection of data to build a consistent audit trail of events from multiple

sources. With a growing number of evidence collectors, central processing (e.g.,

storage and evaluation) becomes increasingly difficult to handle. Therefore, ways

have to be found to address these problems and make AAS scalable.

In Figure 8 the main problem regarding scalability of an evidence collection sys-

tem for cloud audits is depicted. A central evidence storage facility is used to

archive collected evidence records for processing. Multiple evidence collectors

at different sources feed into that evidence store. Also, the evidence processing

is done in a centralized way. It reads from the evidence store, processes and
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Figure 8: The Evidence Collection Scalability Problem

evaluates the evidence, and produces an audit result. Assuming that there are

many different collectors storing evidence, and only a single evaluator reading

from the store, three major problems become immediately visible (order of ap-

pearance reflects left-to-right view in Figure 8 and not any particular order of

importance):

• Event Storms: Events generated at the evidence collector are transformed

into evidence records and stored in the evidence store. However, if there

are no limitations on the frequency of evidence records that are created at

the collector, then, depending on the characteristics of the evidence source,

event storms can effectively overload the capacity of the evidence storage.

For instance, if the evidence source is a logging mechanism of an authen-

tication and authorization component in a big SaaS deployment, tens of

thousands of accesses per minute are not uncommon.

• Storage bottleneck: Since there is only one entity (evidence store) taking

evidence records from the collectors, the risk of overloading the system

with messages (either by the amount of messages or by the total size) may

lead to a bottleneck.

• Processing overload: A similar problem exists at the processing side, which

can be overloaded by the sheer amount of processing tasks and evidence
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Figure 9: Distribution of Evidence Collection

records that need to be evaluated.

A way to mitigate those problems is to choose an architecture design that allows

for distributing the critical components and thereby allowing for the distribution

of load. Figure 9 depicts this case, where multiple evidence sources write to mul-

tiple evidence stores that again feed into multiple evidence evaluators. In this

figure, two distinct audit tasks are depicted (e.g., access control auditing for two

different tenants). Each of the tasks is associated with its own set of evidence

collectors, evidence store and evaluators. Additionally, the underlying architec-

ture needs to allow the distribution of those components across the cloud on

different servers.

To summarize, from a data processing and performance perspective, the ev-

idence collection and processing architecture needs to fulfil the requirements

described in Table 3. All processing and performance metrics are considered

equally important. A distinction can be made for the performance requirement

PP2 where small cloud deployments may not have extensive scalability require-

ments and therefore load-balancing becomes less important.
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ID Description
PP1 Evidence collectors need to be aware of the type of evidence

source to allow for pre-processing such as filtering and ag-
gregation.

PP2 The evidence store may not be a single component, but
shall be distributed across several servers to allow load
balancing.

PP3 The evidence processing components shall be distributable
with a clear association to the evidence store that holds the
needed evidence for the audit.

Table 3: Data Processing and Performance Requirements for the Audit Agent Sys-
tem

4.6.4 Extensibility

Previously, it was often hinted towards all the different potential audit tasks that

have to be considered in a system such as AAS. Therefore, a system architecture

has to take into account the variety of evidence sources in a cloud. It is therefore

of utmost importance to provide maximum flexibility and extensibility on both

the evidence collector and evidence evaluator side. The evidence collector side

requires a different type of adapter for each evidence source due to the inherent

heterogeneity of the evidence sources and formats. The adapter can then be used

to translate the source-specific format into a common format in the evidence

store.

On the evaluator side, a similar approach should be taken to enable the in-

tegration of various analysis methods depending on the requirements of the

audit task. For instance a simple evaluator takes input evidence from the evi-

dence store and performs simple keyword searches on it. A more sophisticated

approach can require the combination of evidence from different sources in a

preparation step and feeding that into a rule engine or Artificial Neural Network

(ANN). In any case, the audit system should provide the developer community

with the necessary tools and architectural considerations to allow extension by

adding new collectors and evaluators.

To summarize, from a extensibility and usability perspective, the evidence col-
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ID Description
E1 A simple way of adding new adapters for evidence sources.
E2 A simple way of adding new ways of processing evidence

for new audit policies.
E3 A development methodology that allows the reuse of exist-

ing adapters and evaluators in new audit tasks that aim at
different requirements or obligations from policies.

Table 4: Extensibility Requirements for the Audit Agent System

lection and processing architecture needs to fulfil the requirements as listed in

Table 4. All extensibility requirements are considered equally important since

they in combination allow a more comprehensive view of compliance based on

evidence.

4.6.5 Presentation

The presentation of audit tasks and their results is a critical task. The presenta-

tion can take different forms. In more conventional (non-automated) audits, the

result is often presented in document form with overview sheets and descrip-

tions. In software supported audits such as AAS this form of presentation is

not necessarily replaced but extended with a preferably real-time overview of the

audit results.

The main purpose of a Graphical User Interface (GUI) in a cloud audit system

is to quickly provide a summary of potential violations that happened in the

system. Additionally, further information should be provided on-demand to the

auditor to allow for a manual verification of the automatically generated audit

result, and presentation of a violation with supporting evidence. However, con-

sidering the amount of cloud consumers and overall size of environments in a

typical cloud service, challenges in handling and presenting the vast amounts of

results needs to be considered. This includes choosing appropriate organization,

filtering and graphing techniques in the GUI.

The last important mechanism for presentation is the integration with incident
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ID Description
P1 Support for the generation of audit result reports.
P2 Support for presentation of current audit state in an

overview.
P3 Support for integration with incident management tools.
P4 Support for stakeholder notification.
P5 Audit-dependent selection of the appropriate presentation

method(s).

Table 5: Presentation Requirements for the Audit Agent System

management and notification tools. While an audit system detects potential pol-

icy violations, incident response is an appropriate process to act upon them.

Therefore, the integration of an audit system with incident management and re-

sponse tools or direct notification of relevant stakeholders should be supported.

To summarize, from a audit result presentation perspective, the evidence col-

lection and processing architecture should fulfill the requirements as listed in

Table 5. Report generation is an important requirement since documents that

describe the compliance state at a certain point in time may need to archived for

compliance reasons. The presentation in a dashboard (see P2) is less important

from the compliance perspective, but enables continuous tracking, alarming

and notification. The integration with incident management tools is important

from an incident handling perspective, which could lead to shorter reaction and

remediation times.

4.7 Summary

In this chapter, a use case and its major characteristics was presented to il-

lustrate a scenario with multiple cloud providers, different service models and

complex data flows. This scenario is used to demonstrate AAS’s capabilities.

Also, a general process for evidence collection as well as a classification of po-

tential sources of digital evidence for privacy and accountability audits was pre-

sented. The classification is based on the different architectural layers of a cloud
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ecosystem where evidential data can be generated.

Following the evidence discussion, methods of evidence processing during an

audit were presented. Furthermore, the types of audit were differentiated based

on distribution and frequency aspects that take into account the characteristics

of cloud environments.

Additionally, a baseline set of guiding requirements for AAS have been elicited.

The requirements for the proposed system described in this chapter were de-

rived from requirements for digital evidence and from regulation, standards and

general security principles. Together, these requirements frame the evidence

collection process and its implementation in AAS.

Table 6 summarizes the elicited requirements for the audit system presented in

the following chapters.

ID Description Ref.
SP1 Evidence source shall be protected. 5.3.5
SP2 Confidentiality of collected evidence should be pro-

vided.
5.3.5

SP3 Data minimization regarding evidence collection
should be considered.

5.3.5

SP4 Purpose binding of the collected evidence to only be
used in audits should be observed.

5.3.5

SP5 Observation of data retention requirements. 5.3.5
SP6 Provide public audit interfaces for second and third-

parties should be provided.
5.6

PP1 Evidence collectors need to be aware of the type of
evidence source to allow for pre-processing such as
filtering and aggregation.

5.3.1

PP2 The evidence store may not be a single component,
but shall be distributed across several servers to al-
low load balancing.

5.3.1

PP3 The evidence processing components shall be dis-
tributable with a clear association to the evidence
store that holds the needed evidence for the audit.

5.3.1

E1 A simple way of adding new adapters for evidence
sources.

5.3.1

E2 A simple way of adding new ways of processing evi-
dence for new audit policies.

5.3.1
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E3 A development methodology that allows the reuse of
existing adapters and evaluators in new audit tasks
that aim at different requirements or obligations from
policies.

5.7

P1 Support for the generation of audit result reports. 5.3.1
P2 Support for presentation of current audit state in an

overview.
5.3.1

P3 Support for integration with incident management
tools.

5.3.1

P4 Support for stakeholder notification. 5.3.1
P5 Audit-dependent selection of the appropriate presen-

tation method(s).
5.6

EH1 Evidence must conform to certain legal rules, before
it can be put before a jury.

Indirectly

EH2 Evidence must be tieable to the incident and may not
be manipulated in any way and must be protected
against any kind of tampering (intentionally and ac-
cidentally).

5.3.5

EH3 Evidence must be viewpoint-agnostic and tell the
whole story.

5.3.5

EH4 There cannot be any doubts about the evidence col-
lection process and its correctness.

Indirectly

EH5 Evidence must be understandable by a jury. Indirectly

Table 6: Overview of Requirements for the Audit Agent System
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Chapter 5
Audit Agent System Architecture

THIS chapter describes the fundamental aspects of the architectural design

process of AAS. It starts off by showing the basic considerations that led

to the choice of using software agents as an architectural design. Following

that, the main actors, components and the general flow of information from the

evidence-producing sources to the audit report in AAS are described. With the

basic functions in place, the architecture is extended to also address possible

approaches to cloud auditing in scenarios where multiple service providers are

involved in the provision of a single cloud service. The chapter is completed by

the presentation of user interface considerations as well as a discussion of AAS’s

approach to extensibility regarding new policy rules. The discussion follows the

requirements that have been elicited in Section 4.6.

It is important to note, that this chapter presents the final result of many iter-

ations of improving and refining the architecture design. Programming of the

prototype implementation of the resulting architecture was supported by stu-

dents under the supervision and guidance of the author.

Results of the research presented in this chapter have been published in confer-

ence papers that focus on the AAS architecture for accountability audits [124].

Security and privacy issues, especially regarding the handling of evidence and
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the integration of Insynd (a cryptographic scheme for secure messaging and log-

ging) as a suitable means for securing evidence, have been addressed and pub-

lished at conferences and in a journal paper [138, 139]. The results of extension

of the AAS for supporting cloud provider chains was accepted as conference

papers and will be published in the near future [140, 141].

5.1 Architectural Considerations

As a foundation for the architecture of AAS a suitable design has to be cho-

sen. The most fundamental question to answer when defining the architectural

choice for AAS is whether to aim for a monolithic or modular style. Thereby,

the most influential requirements for the choice of architecture are related to

efficient data processing, performance, and extensibility.

5.1.1 Multi-agent Systems Introduction

A popular example of a modular distributed architectural style are MASs (see

also Section 3.3).

Multi-agent System (MAS): “MAS represent a powerful model to solve dis-

tributed computation problems, including being able to adapt their operation

in open and dynamic environments in which the content and workload are

continuously changing” [142].

Wooldridge summarizes the work of previous research regarding the main prop-

erties of an agent and comes to the following summary [143]:

• Autonomy: an agent acts autonomously.

• Social ability: an agent communicates with other agents.

• Reactivity: an agent perceives its environments and interacts with it.
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• Pro-activeness: an agent does not only react but acts to achieve a goal.

In a more specific sense that generally stems from research in the area of Artifi-

cial Intelligence (AI), agents are characterized by these additional properties:

• Mobility: an agent travels in a network.

• Veracity: an agent does not knowingly communicate false information.

• Benevolence: an agent does not have conflicting goals.

• Rationality: an agent acts in order to achieve its goals.

Agent: “An agent is a computer system that is situated in some environ-

ment, and that is capable of autonomous action in this environment in order

to meet its design objectives.” [143]

The idea of gathering information in complex and dynamic networks such as the

WWW is not new at all and goes back into the 90’s, where Nwana noted that

mobile agents are “computational software processes capable of roaming wide

area networks (WANs) such as the WWW, interacting with foreign hosts, gather-

ing information on behalf of its owner and coming back home having performed

the duties set by its user” [144]. The cloud is a distributed computing paradigm

that at its core propose service delivery over a network.

5.1.2 Choosing an Architecture Style

Wooldridge defines four factors that indicate the appropriateness of using an

agent-based approach[145]:

1. The environment is open or at least highly dynamic, uncertain, or com-

plex: in such environments it is desirable to have components that act

autonomously.
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2. Agents are a natural metaphor: a typical metaphor for agents are entities

that cooperate to achieve a goal or compete against each other.

3. Distribution of data, control or expertise: in some environments, a central-

ized solution is very difficult or impossible to achieve.

4. Legacy systems: legacy systems may be wrapped to adapt them for use in

a modern system.

AAS is a system that operates in a cloud environment. As previously described in

Section 2, a major characteristic of cloud environments is that they are dynamic

and constantly changing. The dynamic nature of the cloud, where fundamental

infrastructure changes happen on a regular basis, requires that a system that

collects data inside it is at least as dynamic and flexible and therefore able to

react to changes.

The second factor aims at problems that already make use of the agent metaphor,

where multiple entities that normally act autonomously, interact with each other

to achieve a common goal. In AAS there are always multiple entities involved in

achieving a common goal: asserting the compliance with policies or violation

thereof. There is always a group of at least three: a collector, an evaluator and

a store. For the interaction, agents require a way of communicating with each

other.

As discussed in Section 4.2, evidential data is scattered across many different

sources at different architectural layers. Distributing collectors in the form of

agents allows to consolidate that view of evidence (see Section 4.6.3).

Due to the distribution and heterogeneity of evidence sources, specialized col-

lectors are needed. While this is not necessarily a fit in terms of legacy systems

that need to be wrapped to be integratable in a newer one, the underlying idea

is the same. In AAS, an evidence source is wrapped by an agent that enables

the interaction of the system (AAS) with a source (i.e., collection of data). The

collector is specific to the evidence source and for instance implements its API
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and is aware of syntax and semantic of logs produced by the source on the one

side and has means to communicate with AAS on the other side.

The implementation of AAS’s architecture that is described in more detail in the

remainder of this chapter, is based on the Java Agent DEvelopment Framework

(JADE) [146]. JADE is a Foundation for Intelligent Physical Agents (FIPA) [147]

compliant implementation implementation of a MAS framework written in Java.

JADE provides the Agent Communication Language (ACL) for the interaction

between agents (see [148] and [149] for a full specification). AAS uses that com-

munication language and underlying protocol to enable command and control

functionality for orchestrating agents.

The main reason for choosing an agent-based approach for AAS is the core at-

tribute of requiring adaptability in a dynamically changing environment. A cloud

infrastructure is constantly changing with for example VMs being added and

removed, new physical and virtual network paths (e.g., dynamically changing

routes in software-defined networking) being established and resources being

reconfigured to achieve elasticity. A monolithic system does not provide the

flexibility and adaptability that a MAS provides.

5.1.3 High-level Architecture Overview of the Audit Agent System

Based on the architectural considerations presented before and the choice of

an agent-based approach, Figure 10 depicts a high-level overview of the AAS’s

architecture. There are several functional areas implemented as different kinds

of agents. In chronological order from input to output of AAS, the major compo-

nents are:

Policy: A machine-readable policy that defines requirements, obligations and

controls which are being verified by the audit is the main input to the

system (besides manual input provided by the auditor). See also Chapter 6.

Audit Policy Module (APM): This set of agents is responsible for creating and
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Figure 10: Audit Agent System Design – High-level Architecture

configuring audit task agents based on the provided input. See also Sec-

tion 5.3.2.

Audit Agent Controller (AAC): This agent performs lifecycle control and moni-

toring functionality such as instantiating agents, controlling them via life-

cycle messages and monitoring their health and correct execution in the

environment continuously. This agent is considered a key agent for con-

trolling AAS. See also Section 5.3.3.

Evidence Collectors: Evidence collectors are highly specialized gatherers of in-

formation from diverse sources (refer to Section 4.2) that are mobile in the

environment. See also Section 5.3.1.

Evidence Storage: The evidence storage (for archival or later processing) is done

by specialized agents that implement a suitable persistence mechanism

that fulfill performance and security requirements. See also Section 5.3.5.
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Evidence Processing: This component refers to agents that are specialized in

using collected evidence in order to assess compliance with policies from

the input side. See also Section 4.4.

Audit Result and Evidence Presentation: Different means of presentation (e.g.,

e-mail notification or presentation on a dashboard are addressed by pre-

senter agents). See also Sections 5.3.1 and 5.6.

There are two different flows depicted in Figure 10: a data flow that indicates

on the one hand the input of a machine-readable policy on the input side and

on the other hand the flow of evidence from where it is generated and collected

down to where it is stored, processed, evaluated and presented; the second flow

relates to the AAC component that controls and monitors the other agents using

ACL messages. The remainder of this chapter presents a much closer look on

these components and how the aforementioned requirements are addressed.

5.2 System Actors

Based on the previous presentation of the usual actors that are involved in cloud

computing in general, a more detailed look at the actors participating in cloud

accountability audits are presented in the following.

5.2.1 Cloud Consumer

The cloud consumer in AAS is differentiated in two distinct variants:

• An individual or organization using a cloud service. This is the most com-

mon scenario where a service is consumed without adding further value to

it. An individual cloud consumer is not considered to be a direct user of

AAS. However, he is considered to be a recipient of (parts of) the audit re-

sults produced by AAS, since those provide assertions of data processing
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happening according to what the individual expects. The same applies to

organizations that consume the cloud service.

• A cloud provider combining services offered by third-party providers into

a new service. This is a special case, where the cloud provider is itself a

consumer of another cloud service by a different provider and uses it to

enhance or complement its own offering.

5.2.2 Cloud Provider

The cloud provider in AAS follows closely the definition of a cloud provider as pre-

sented in Section 2.1. However, it is important to note that cloud providers can

also assume the role of a cloud consumer as explained above. Cloud providers

that act as auditors of another provider are considered to be users of AAS as

stated in the next section. In any case, the cloud provider integrates AAS and

offers it to the auditors.

5.2.3 Cloud Auditor

The main actor at which the AAS is geared towards is the Cloud Auditor. Based

on the definition provided in Section 2.1, a cloud auditor examines information

security controls put in place by cloud providers. This definition does not limit

the cloud auditor to only be part of an independent third-party, but also al-

lows cloud consumers and cloud providers to act as cloud auditors. There are

differences to be considered, depending on who acts as an auditor.

Third-party as an auditor:

A third-party auditor is the most common form. In this case, the third-

party is independent and capable of making an independent assessment of

the audit object. A typical example for a third-party auditor is an external,

independent security expert that assesses another company’s security con-

trols by trying to break in (e.g., penetration testing). This kind of auditor is
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commonly seen in audit scenarios, where a company voluntarily commis-

sions a third-party to conduct an audit as part of a certification process.

In that case, the auditor needs to also be approved by the certification au-

thority.

Data protection authority as an auditor:

The Data Protection Authority (DPA) is a special case of an independent

third-party that can act as an auditor. A DPA is responsible for the over-

sight of the protection of data and privacy in the EU [36]. Typically, every

member state in the EU has its own DPA. If they deem necessary, the DPA

can conduct audits of companies to assess their compliance with data pro-

tection regulation. A popular example is the Facebook audit of 2011 by the

Irish data protection commissioner [150].

Cloud provider as an auditor:

A cloud provider that is also the object of interest in an audit can at the

same time act as an auditor. This case is typically known as self-auditing.

During such a self-assessment, a member of the organization acts as an

internal auditor. In general, this is the case when an organization (such

as a cloud provider) is required to perform audits for instance by internal

directives. This can be the case, when extra security assertions (by audits)

are regarded as a competitive advantage or simply by a sensible manage-

ment that proactively looks for potential for improvement in its privacy and

security controls and internal IT processes.

Cloud customer as an auditor:

A special case of auditor in a cloud scenario is the cloud customer itself.

Since the cloud customer is giving up control over the processing of its

data, many cloud providers opt to provide at least some degree of trans-

parency regarding what happens in their systems in return. Today, these

audit capabilities come in the form of dedicated APIs that allow cloud cus-

tomers to access data from the monitoring systems that are put in place by
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the provider. It is important to note that these audit capabilities are typi-

cally not aimed at non-technical cloud customers (e.g., service consumers

such as users of social networks), but at enterprise customers that have at

least some degree of technical know-how (e.g., a business relying on cloud

storage provided by a cloud provider).

In a cloud auditing scenario these kinds of auditors differ in the extent to which

they have access to relevant evidence. A third-party auditor or a data protection

authority may have a more extensive access to evidence. This is the case when

a cloud provider is audited. A cloud consumer acting as an auditor however,

must be confined to a limited set of data and isolated from other tenants to

prevent potential data leakage and unauthorized access to other tenant’s data.

It becomes immediately obvious that the characteristics of the cloud impose

distinct challenges regarding data protection that need to be addressed by any

technical system that supports audits. This means, special care has to be taken

to address multi-tenancy and different levels of control depending on the domain

(e.g., in IaaS, PaaS and SaaS). Therefore, depending on the internal or external

view of an organization, data protection is an issue to consider, when potential

confidential information is processed during an audit.

Two variants of that case need to be differentiated:

• Internal audit:

A cloud provider acting as an internal auditor is commonly associated with

self-auditing and self-monitoring. Thereby, the auditor is not necessarily

independent, as he is still part of the organization that is being audited.

While this variant has its own set of problems with respect to auditor bias

(the auditor may be required to review systems in which he has been in-

volved during his normal work) or even lacking technical and organiza-

tional expertise (the auditor may not be familiar with common auditing

techniques or lack special tracking to conduct his auditing functions prop-

erly).

96



5.3. ARCHITECTURE COMPONENTS

However, the internal audit still remains an important function inside an

organization to uncover potential risks, areas of non-compliance and areas

of improvement. In a cloud scenario, the cloud provider conducts self-

audits to assure compliance with the law, policies that were agreed upon

with its customers and general best practices of information security and

data processing.

• External audit:

A cloud provider acting as an external auditor is associated with a ser-

vice provision chain. Here, the cloud provider that consumes another ser-

vice assumes the role of a cloud consumer and effectively becomes a cloud

user. Technical expertise in information technology and conducting secu-

rity analysis and audits can be assumed.

It is therefore important that in this scenario sufficient audit support is

being provided by the audited cloud provider. This is especially true for the

scope and depth of evidence collection mechanisms. Information that is

being collected in an external audit is used by the auditing cloud provider

to extend and increase its own audits and thereby make its own audits

more thorough.

5.3 Architecture Components

The architecture of AAS (see Figure 10) is based on using software agents to

achieve flexibility, address requirements regarding the dynamics of cloud com-

puting (e.g., rapid elasticity) and achieve the necessary extensibility. A typical

way to approach heterogeneity in software systems is to use adapters. Software

agents are used as adapters for collecting data from disparate sources in AAS

such as those described in Section 4.2. Additionally, software agents can be

deployed, moved and removed in distributed systems (as long as there is in-

frastructure support available, e.g., a runtime environment), which helps with

97



CHAPTER 5. AUDIT AGENT SYSTEM ARCHITECTURE

addressing the dynamic nature of clouds, where resources (i.e., potential evi-

dence sources) are rapidly provisioned and released.

In the remainder of this section, particular aspects of the AAS architecture are

presented. This includes the evidence format that is being used, a discussion

of the different types of agents in AAS including their classification in AAS’s

components.

5.3.1 Types of Agents

In the following, the different types of agents that together form AAS are pre-

sented. In general, four different types of agents can be differentiated: collectors,

evaluators, presenters and core agents.

Collector Agents

The most important agents in AAS are the agents responsible for collecting ev-

idence. Their main functionality is to retrieve potentially evidential information

of any kind from an evidence source and store it for evaluation in an audit,

while making sure that the properties of evidence are being preserved (see Sec-

tion 4.6). The second function that these agents fulfill is the transformation of

the data into the evidence storage format (see Section 5.3.5 for more details).

Additionally, the evidence records are enriched with meta information that is

required to preserve the meaningfulness of the evidence. This includes a times-

tamp at the exact time that the record is made, an action and actor that can be

associated with the record (if possible).

The list of collector agents that were designed and developed as part of this

thesis includes:

• Apache Configuration Monitor: an agent that monitors Apache web server

configuration files for changes on the filesystem level (i.e., write operations
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to the file).

• Apache Log Collector: an agent that collects logs events from the Apache

web server logging facility (i.e., access.log and error.log files).

• Accountability PrimeLife Policy Language Engine (A-PPL-E) Log Collector:

an agent that collects logs from an access control and data handling en-

forcement engine by receiving and consuming log messages from that en-

gine (see Section 6 for more details on the underlying A-PPL-E policy lan-

guage).

• OpenStack Snapshot History Collector: an agent that collects snapshot

event data that is generated in OpenStack by querying the Nova subsystem

for that information.

• Data Transfer Monitor (DTM) Tool Collector: an agent that collects viola-

tions (i.e., illegal data transfers between geographical regions) reported by

a DTM that monitors data location with respect to block storage volumes

and VMs.

• File Change Monitor: an agent that monitors files (configurable) for changes

by observing changes to its associated i-nodes.

Evaluator Agents

Evaluator agents take evidence records as input, build event trails, evaluate the

evidence and generate a compliance statement with respect to the policy that

served as the basis for the audit task. In the evaluation process, the evidence

is analyzed with evaluation methods that depend on the complexity and overall

goal of the audit task. However, the specifics of an evaluator agent are de-

fined by a developer during audit task development. Evaluation methods range

from simple keyword searches and calculation of metrics to more advanced and

resource-intensive data mining methods using rule engines or artificial intelli-

gence (e.g., ANNs). The generated output is the result of the audit process and
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includes a compliance statement in the form of, i) policy violation detected or ii)

the absence thereof, which is considered to be an indicator of compliance. Par-

tial compliance may also be a potential result if the audit case allows it. However,

in this work the binary choice between compliance and absence of evidence for

compliance is considered. The absence of evidence can thereby include (partial)

compliance or non-compliance, depending on a manual review of the collected

evidence by an auditor. Furthermore, the audit report constitutes important ev-

idence by itself and is therefore stored in the evidence store alongside the other

evidence records.

The list of evaluator agents that were designed and developed as part of this

thesis includes:

• Data Retention Evaluator: an evaluator that combines OpenStack snap-

shot history data and access control events from A-PPL-E in order to detect

violations of data retention policies caused by non-deleted data in the snap-

shot.

• Apache Web Server Configuration Evaluator: an evaluator that audits Apache

web server configuration files against an expected state (i.e., no unen-

crypted access available) on file-change.

• Intrusion Detector: an evaluator that audits access control events in order

to detect potential intrusion attempts.

• Simple Evaluator: an evaluator that merely forwards any input as a viola-

tion (used if collected evidence always indicates a violation).

• Keyword search: an evaluator that parses evidence for the occurrence of

specific keywords.

Since, depending on the amount evidence and computational requirements of

the chosen analysis algorithm, resource demands can be quite high running the

evaluator agents in the cloud seems like the obvious choice. However, if there

100



5.3. ARCHITECTURE COMPONENTS

are concerns with cost, trust or with monitoring the evaluator runtime, an agent

can always be moved off the cloud as long as connectivity with the evidence store

is ensured.

Presenter Agents

Presenter agents in AAS are responsible for handling the output of the evaluation

process (i.e., the audit report). The two major groups of presenter agents in AAS

are Web-based presentation and Notifications.

The web-based presentation uses a dedicated gateway agent that bridges the

software agent part of AAS to a web-application. The gateway agent thereby

exposes a publicly available, authenticated ReSTful web interface that is used

by a HTML5, CSS, Javascript (Node.js, Knockout.js) based client application.

The notifications approach allows for different active notification based ap-

proaches to be integrated as distinct agents that communicate evaluation events

(i.e., compliance or absence of evidence for compliance). This mechanism is pri-

marily intended to notify auditors, other relevant stakeholders or incident man-

agement systems in case a policy violation is detected. A notification includes

a compliance statement and if necessary, supporting evidence that backs this

claim. In any case, the notification mechanism is flexible enough to be tailored

to the requirements of the audit task. As basic notification mechanisms, AAS

implements:

• E-mail notification to a pre-defined group of recipients.

• Secure notifications based on Insynd [151].

• Notification to incident management tools that support automated incident

notification via a public ReSTful interface.

It must be noted that notification agents are defined on a per audit-task basis.

This means that different kinds of notification agents can easily coexist in the
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same system and be shared by different tasks or be exclusively instantiated per

task.

The list of presenter agents that were developed and implemented as part of this

thesis includes:

• E-Mail Notifier: a notification agent that sends a (violation) report to pre-

defined recipients via e-mail.

• REST Notifier: a notification agent that sends violation reports to an inci-

dent management tool or any other tool that provides a ReST interface for

consuming such notifications.

• File Logger: an agent that writes (violation) reports to disk (mainly used

for debugging and potentially archival on Write Once Read Many (WORM)

media).

• Dashboard Presenter: the presentation of audit results in a web-based

dashboard using a gateway agent.

Core Agents

Besides the previously described collector, evaluator and notification agents,

there are several additional agents that provide core functionality such as stor-

age, monitoring and lifecycle management in AAS. These core agents are grouped

into modules. The modules that form the high-level architecture of AAS are

called: Audit Policy Module (APM), Audit Agent Controller (AAC), Evidence Pro-

cessor and Presenter (EPP) and Evidence Store (ES). Agents implementing these

modules are basically working the same as collector and evaluator agents and

posses the same baseline capabilities (e.g., mobility) but fulfill different func-

tions. In the remainder of this chapter, these modules are described in detail.

All modules are implemented by strictly following the software agent develop-

ment paradigm, where multiple agents interact with each other to accomplish a
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task. By sticking to the agent paradigm for the core functions, advantages such

as agent mobility are preserved. However, providing these functions as a set of

core services could be an equally effective approach.

Additionally, due to the critical importance of the core agents’ availability, they

should be designed to allow for redundant operation. However, this requirement

was out of scope of this thesis, since it was assumed that the underlying in-

frastructure (physical and virtual) was implemented highly available by allowing

failover on the virtual resource layer.

5.3.2 Audit Policy Module

There are two types of input to the AAS: The main input to AAS are machine-

readable policies that describe data handling obligations (e.g., access control),

security controls (e.g., service configuration) and data protection mechanisms

(e.g., encryption). A more detailed discussion of the integration of an exemplary

policy language in AAS is presented in Chapter 6. From such policies, tasks

for collecting evidence, and rules for evaluation of the evidence with the goal of

producing a compliance statement are extracted. Additional input to the APM is

provided by the auditor since there is always a need for at least some manual

input for defining an automated audit.

Depending on the audit task, the input comprises of policies and auditor-supplied

information:

1. Policies, which define obligations that have to be fulfilled by the cloud

provider, such as data access restrictions and usage policies, requirements

for the implementation of privacy controls, data retention requirements and

general security requirements. A-PPL (see Section 6.2 for more details on

the policy language) serves as the main input to the Audit Agent System

and for defining audits. Integration aspects are discussed separately in

Chapter 6.
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2. It is possible that an input policy does not necessarily include all informa-

tion required for mapping policy requirements to specific evidence sources,

collectors (e.g., evidence source specific ReST client or log parser) and eval-

uators (e.g., API endpoints, access credentials). That information is pro-

vided by the auditor.

The APM uses both of the above-mentioned inputs to generate audit tasks. Audit

Task Extraction is the process of identifying audit objectives and tasks from an

input policy. The input policy is thereby a machine-readable document (e.g.,

XML or JSON).

Depending on the actual security control or data processing obligation, different

parts of the input policy are extracted by the APM’s language parser. The APM

possesses a dedicated parser and extraction logic for each policy language, since

different policy languages describe different areas of interest (e.g., description of

an expected cloud deployment, data handling obligations or security controls).

From the policy language representation, an object model of evidence collectors,

evaluators and a container is derived depending on the obligation or rule. A Sec-

tion that is dedicated to the analysis of potential input policy languages (focused

on privacy, security and accountability policies) and how they integrate in the

AAS as well as a description on how audit tasks are extracted from such policies

in the prototype implementation is presented in Section 6.

In the second step Audit Task Configuration, the audit task is configured with

parameters provided by the auditor. The input is collected using the AAS’s web

interface and mapped to the object model of audit task agents.

From the APM, the object model of agents is passed on to the AAC for instantia-

tion and migration.
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5.3.3 Audit Agent Controller

The AAC, can be regarded as the core component of the AAS. It is responsible for

managing the life-cycle of evidence collection agents, controlling audit execution,

storage of evidence and coordinating data flow between the components. For

instance, the AAC deploys, according to what’s specified in the audit task (as

provided by the APM), evidence collector agents across the various architectural

layers of a cloud infrastructure.

The Container and Agent Management part of the AAC is closely related to the

core agent management functionality provided by the agent framework on which

AAS is based upon (JADE). Container management is required for providing a

distributed runtime environment for the agent, which enables them to be mi-

grated or cloned from one container to another. A container is thereby part of a

platform, i.e., a container is registered as such in the agent platform and thus

extends the global platform-wide space of agents to run in.

In AAS, a container is used as an agent runtime environment that is positioned

at or close to the evidence source from which an evidence collector gathers data.

A dedicated streamlined deployment package was developed to be executed at

or near the evidence source, register with the associated AAC and thus enable

agent execution. The deployment package includes a pre-configured runtime

environment for agents that can be executed as long as a Java virtual machine is

available on the system. The agent management contains monitoring and basic

agent control mechanisms, such as migration, cloning, pausing and persistence.

This is also provided by the agent framework and extended by the AAC, with

respect to rudimentary agent monitoring and health checks.

The Agent Lifecycle Management in combination with the container and agent

management is responsible for managing groups of agents that together form

audit tasks. A typical lifecycle of such a task is depicted in Figure 11. While the

initiation part (Preparation and Configuration phases) are governed by the APM
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Figure 11: Audit Agent System Design – Audit Workflow

component, the execution and runtime parts are controlled by the AAC.

1. Preparation: The APM extracts audit task configurations from the policy,

combines it with input provided by the auditor and passes it on to the AAC.

2. Configuration: According to the input provided by the APM, the AAC config-

ures audit policies, its tasks and corresponding collection and evaluation

agents.

3. Instantiation: the AAC instantiates the previously configured agents as well

as the associated evidence store.

4. Migration: Agents are migrated from the core platform where the AAC is

running to the target platforms (agent runtime environments at the evi-

dence source).

5. Execution: This phase considers an agent’s normal execution (e.g., a col-

lector performing its job by gathering evidence).

6. Termination: The AAC disposes of the collector and evaluation agents when

they are not needed anymore. It also handles archival and / or deletion of

the corresponding evidence store in that case.

While most of the phase transitions are one way, an agent can transition back

from execution to migration in order to travel in the environment (e.g., gathering
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evidence at multiple sources). During the agents’ lifetime, the AAC monitors reg-

istered platforms and agents, handles exceptions, and coordinates the creation,

archival and deletion of evidence stores.

5.3.4 Evidence Processor and Presenter

The Evidence Processor and Presenter (EPP) component is responsible for eval-

uating policies based on the evidence gathered by the Collector Agents. This

component is, similar to the AAC, logically composed of several agents; in this

case Evaluator Agents are responsible for the evaluation of policies and Presenter

Agents responsible for outputting results to the auditor. It is irrelevant, where

these agents are executed as long as they are able to communicate via a net-

work, which helps in balancing the load that is introduced by the audit process.

The audit results are produced during the audit process and prepared by Pre-

senter Agents according to the auditor’s preferred display settings (e.g., a report

document or a web-based dashboard).

After the collector agents have gathered evidence data and stored it in the evi-

dence store, the evaluation agent(s) of an audit task retrieve that data and an-

alyze it according to the rules that have been extracted from the policies in the

preparation phase by the APM. Evaluation can happen continuously on the cur-

rently available evidence or in predefined intervals. The results (along with the

evidence that caused the violation) that are produced by the evaluation agents

are written back to the evidence store (i.e., as evidence that an audit happened).

The result can be either positive (proven compliance or the absence of a viola-

tion) or negative (a violation is detected). Additionally, the result is passed on to

presenter agents that inform the auditor and any other stakeholder (depending

on the notification configuration) about the audit result.

Currently, the presenter agents can either display the audit result in a web-

based dashboard, notify stakeholders via e-mail or pass on the violation in a

machine-readable format to other tools or services via a ReST API.
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5.3.5 Evidence Store

The Evidence Store (ES) is the central repository for securely storing evidence.

An important characteristic of evidence stored in the ES is that it is always

associated with a policy and was collected for the purpose of evaluating compli-

ance with that policy (see also Section 4.6). For each cloud tenant, there can

be at least one separate ES to ensure tenant isolation on a low level. Each ev-

idence store and its associated storage space is implemented as an agent that

provides an interface to the underlying data storage mechanism. In order to ful-

fill integrity and confidentiality-related requirements, AAS utilizes an encrypted

evidence storage.

Evidence Record Format

As part of the Cloud Accountability Project (A4Cloud) project, a storage format

for evidence in cloud ecosystems was developed collaboratively as part of the

Stream C8 work package. While the author of this thesis was heavily involved in

this work, the format specification is not to be considered a contribution (due to

the collaborative nature of its development) of this thesis but merely a minor part

that is being used in the evidence storage subsystem of AAS. There are several

approaches to harmonizing the storage format for digital evidence that can be

reused in the ES such as [48, 152, 153]. The goal of the format was to define

a storage format for all types of evidence that is lightweight, simple and easy

to extend. A basic example is depicted in Figure 12. For a complete example

evidence record, please refer to Appendix B.2, where an example is depicted

as it was collected by AAS from OpenStack in the demo scenario presented in

Section 7.2.3.

Each record has the following characteristics:

• Record identifier: this uniquely identifies an evidence record.

• Action: this identifies an action (e.g., snapshot taken, or read access event
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1 <record id="a_uuid_for_this_record">
2 <action>an_action</action>
3 <actor>an_actor</actor>
4 <policyID>a_unique_policy_identifier</policyID>
5 <supportingElements elementID="running_identifier">
6 <signature>signature_of_element</signature>
7 <element>the_actual_element</element>
8 </supportingElements>
9 <evidenceMetaData>

10 <collectingInstance>the_collector</collectingInstance>
11 <evidenceDetectionTime>time_of_collection</evidenceDetectionTime>
12 </evidenceMetaData>
13 </record>

Figure 12: Audit Agent System Design – A Common Evidence Record Format

on data).

• Actor: if available, this contains a user identifier for the entity that per-

formed the action.

• Policy Identifier: the policy that the evidence refers to.

• Supporting Elements: this contains references to or the actual evidence

(e.g., parts of the log file that was collected from).

• Evidence Metadata: this provides additional metadata, such as the identi-

fier of the collector agent or the time and date of the collection.

Each record possesses a unique identifier with which it can be addressed glob-

ally (AAS uses Universally Unique Identifiers (GUIDs)). Furthermore, if possible,

meta information is captured from the evidence source (such as the collecting

instance, agent or tool with a timestamp). An actor (e.g., a cloud user, a cloud

subsystem or a process) and an action may be available depending on the evi-

dence source (e.g., most likely available in an access control subsystem). Since

an evidence record is always associated with a policy that is audited (without a

policy it is not collected) this is put in the record as well. Supporting elements

and evidence metadata provide the actual collected data (e.g., the original log

message and a timestamp when the record was collected).
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Figure 13: Evidence Collector and Evaluator Setup Sequence for Using an En-
crypted Evidence Store

Interfacing with the Evidence Store

The evidence store as it was described previously is an abstract representation.

The implementation of AAS uses a cryptographic scheme called Insynd [151,

154, 155] to enable protection of evidence (preserving integrity and confidential-

ity) in any phase of an audit (collection, storage, evaluation). Insynd provides a

way of exchanging encrypted messages asynchronously between agents, while

also providing persistence capabilities. In AAS, the automated setup of agents

with key material (public, private keys) and registration with Insynd is partic-

ularly important. Figure 13 depicts the initialization sequence of collector and

evaluator agents with a focus on key distribution.

The following steps have to be performed to setup the evidence collection and

storage process for that particular rule:

1. In the first step, an evaluator agent is created and configured according to

the input policy and rule respectively.

2. During the setup phase, the evaluator agent sets up a key pair at the Re-

ceiver API. The Receiver API is a ReSTful service that holds private key

material and is therefore located at a trusted server.

3. After the key material has been generated, the evaluator agent registers
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itself as a recipient at the Sender API. For this, it uses a GUID under which

the receiving evaluator agent is uniquely identifiable.

4. In the last step, the AAC sets up the collector agents and connects them

with the corresponding evaluator agents by using the unique recipient iden-

tifier.

Now, it is possible for the Collector Agents to send evidence records to their cor-

responding Evaluator Agents asynchronously. The messages will be encrypted

at the Sender API service before storage, using the provided recipient’s public

key. The evaluator agent then pulls the evidence records from the ES using the

Receiver API. The records are finally decrypted using the receiver’s private key.

5.4 Interoperability in Inter-Cloud Scenarios

While a lot of today’s cloud use cases only involve one service provider for service

provision, there are also many cases where multiple providers are involved. A

prominent example is Dropbox that heavily uses Amazon’s S3 and EC2 services

to provide its own SaaS offering [156]. This section discusses the integration of

multi-provider evidence collection in the context of AAS.

For the remainder of this section, the concept of a provider chain is defined as

follows:

1. At least two cloud providers (characterized by being either IaaS, PaaS or

SaaS providers) are involved in the provision of a service to a cloud con-

sumer (who can be an individual or business).

2. One of the cloud providers acts as a Primary Service Provider (PSP) to the

cloud consumer.

3. Subsequent cloud providers do not have a direct relationship with the cloud

consumer.
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Figure 14: Provider Chains in Cloud Service Provision

4. The PSP must be and the subsequent providers can be cloud consumers

themselves, if they use services provided by other cloud providers.

5. The data handling policies agreed between the cloud consumer and the PSP

must not be relaxed if data is processed by a subsequent provider.

Figure 14 depicts a simplified general scenario where three cloud service providers

are involved in provisioning of a seemingly single service to a cloud consumer.

The SaaS provider acts as the primary service provider, whereas it uses the PaaS

provider’s platform for hosting its service. The PaaS provider in turn does not

have its own data center but uses resources provided by an IaaS provider. The

data handling policy that was agreed upon between the consumer and the PSP,

applies to the whole chain (depicted by the dashed rectangle in Figure 14). All

cloud providers produce evidence of their cloud operations. To demonstrate the

compliance with policies, it is not sufficient to audit only the PSP but subse-

quent providers have to be taken into account as well, if sensitive data owned by

the consumer is passed on beyond the PSP.

112



5.4. INTEROPERABILITY IN INTER-CLOUD SCENARIOS

5.4.1 Evidence of Compliance in Cloud Provider Chains

At the core of any audit is evidence of compliance or non-compliance that is be-

ing analyzed. The types of evidence are closely linked to the type of audit (e.g.,

security audit, financial audit etc.) and are – from a technological perspective

– especially diverse in the cloud due to the heterogeneity of its subsystems, ar-

chitectures, layers and services. Evidence collection at a single cloud provider is

already a complex task due to the diverse types of evidence sources and sheer

amount of data that is being produced continuously (e.g., logs, traces and doc-

uments). In a provider chain, these problems are intensified by the introduction

of administrative domains and the lack of transparency regarding the number

of involved providers and their relationships.

Another problem that is introduced with the concept of provider chains are

changing regulatory domains. In a simple single-provider scenario, there are

typically only two regulatory domains to be considered: the one that applies to

the cloud consumer and the one that applies to the cloud provider. Of course,

this can be complicated if the provider operates in multiple domains simultane-

ously. With the addition of more cloud providers, the complexity of achieving

regulatory compliance increases tremendously.

A simple example for such a case is the recent decision of the European Court in

2015 to declare the Safe Harbor agreement invalid, which leads to data transfers

to the outside of the European Union based on Safe Harbour to be illegal [157,

158]. In a provider chain, where a European Cloud provider transfers data about

European individuals to another provider in the US, regulatory compliance can

be lost overnight. It can be seen that regulatory domains can have a tremendous

impact on how a compliance audit may have to be performed, and on the type

of evidence that may need to be collected at the different providers.

As previously suggested, the third major challenge for evidence collection in

cloud provider chains is their inherent technological heterogeneity. APIs, pro-
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Figure 15: Scopes of Policy Applicability

tocols and data formats differ by provider and typically cannot be integrated

easily (e.g., providers offering proprietary APIs). There are some approaches to

homogenize some of the technologies, such as for example those presented in

Section 3 that aim to provide well-defined APIs for enabling cloud providers to

export transparency-enhancing information to auditors and cloud consumers.

In this approach, the technological heterogeneity at the architectural level of the

system is addressed by ensuring flexibility, extensibility and enabling the easy

development of adaptors for different evidence sources.

5.4.2 Scopes of Policy Applicability

In the following, three different scopes of policy applicability as depicted in Fig-

ure 15 are described. The same scenario as described in Section 5.4 is assumed.

Also, the PSP is assumed to be a cloud provider. This does not necessarily have

to be the case.

Scope A: Cloud Consumer / Primary Cloud Provider

In a typical cloud use case, a consumer uses the services provided by a single

cloud service provider to accomplish a given task. The details of the service

usage are governed by terms of service agreements, privacy polices etc. In this
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most common scenario, the cloud consumer and the cloud provider agree on

these terms before any service is provisioned. Typically, this happens during a

registration or contract agreement phase. With respect to data flow between the

consumer and the provider, this means that data processing is performed by

the cloud provider in compliance with the agreed-upon policies (see Policy 1 in

Figure 15). Data that is disclosed by the cloud consumer to the cloud provider

as part of regular service use, is processed by the cloud provider according to

the limits defined in the policy. One size fits all agreements as they are common

today may thereby be replaced by more fine-grained policies based on policy

languages such as A-PPL in the future.

Scope B: Primary Cloud Provider / Nth-level Cloud Provider

Similar to the approach described in Scope A, there may be similar agreements

between cloud providers. For instance, the primary cloud provider may require

resources from the sub-provider, e.g., to extend its own service offering, to ad-

dress peak loads in service usage or to outsource internal processes such as

backups. In this case, the primary cloud provider (as depicted in Figure 15)

becomes a cloud consumer itself. The integration of cloud services provided by

a sub-provider in services of the primary cloud provider is governed by a con-

tractual agreement between the two (see Policy 2 in Figure 15).

Scope C: Cloud Consumer / Nth-level Cloud Provider

In case of a cloud scenario, where multiple service providers are involved in

the provisioning of a single service, the cloud consumer may not necessarily be

aware of this. The main difference to scope C is that since the cloud consumer

has only contact with its immediate provider (the PSP in Figure 15), he might

not necessarily be aware, that the primary cloud provider is using an additional

external service. A typical example for such a scenario is a SaaS provider host-

ing its services on resources provided by an IaaS provider, or a SaaS provider

that integrates another SaaS provider’s service for data processing. Addition-
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ally, a silent change of the supplementary service provider can happen, when

the primary provider switches to another service (e.g., migrates to another in-

frastructure provider for cost or efficiency reasons). In this case, the restrictions

that governs the policy agreement between the cloud consumer and the primary

cloud provider (i.e., Policy 1) must also apply to the sub-provider, if data owned

by the cloud consumer is transferred between them. This is the case, when ei-

ther: similar policy rules exist in Policy 1 and 2, and the rules defined in Policy

2 are at least as strict as equivalent rules defined in Policy 1 (in this case, a

matching of whether or not rules from policy 1 and 2 are compatible needs to be

performed), or the downstream provider accepts rules from policy 1 directly.

5.4.3 Auditing Cloud Provider Chains

To assert compliance, the whole chain of providers including data flows that are

governed by the policies have to be considered. This means that an audit with

respect to a single policy rule may need to be split into several smaller evidence

collection and evaluation tasks that are distributed among the providers.

The importance of widening the scope of audits in such scenarios is apparent,

especially if at the same time the depth of analysis is widened beyond checking

whether or not security and privacy controls are put in place to also checking

for instance data location. In the following, two approaches are presented that

can be taken towards auditing of provider chains: i) individually auditing each

provider, and ii) delegating the audit of subsequent providers to the primary

cloud provider.

Individual Provider Audits

Figure 16 describes the process of auditing individual providers in a service

provision chain.

To audit the service as a whole, it is necessary to audit each provider separately
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Figure 16: Individual Audit in Cloud Provider Chains

and then aggregate the results to form a complete picture of the service from an

audit perspective. This means, that regarding data handling policies (e.g., loca-

tion restrictions, access control etc.), each provider that holds data is audited.

Obviously, the consumer-facing provider has to transparently disclose all his

sub-providers and notify auditors about every sub-provider his data was stored

at and where his data is currently stored.

The auditing process gains more complexity with an increasing number of Nth-

level providers. Requests must be sent to each provider separately and each

provider will deliver audit reports to the auditor, who then integrates the par-

tial results to gain a compliance view of the whole chain. The individual audit

scenario is an example of how chain audits (the scope of the audit is the whole

provider chain instead of a single provider) can be performed by more influential

stakeholders, such as data protection authorities.
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Figure 17: Delegated Audit in Cloud Provider Chains

Delegated Provider Audits

An alternative to individual audits are delegated audits (see Figure 17), where

the auditor only interfaces with the PSP that in turn takes over the auditing

of its sub-provider(s). This allows less influential stakeholders such as cloud

consumers to act as an auditor towards the PSP (assuming required skills),

while not having the same rights towards the Nth-level provider(s) and therefore

missing the complete picture. Every audit request is sent to the PSP, who will

then extract evidence requests for the subsequent providers.

5.4.4 Approaches for Collecting Evidence in Cloud Provider Chain

Audits

There are several approaches available when it comes to collecting evidence for

audit purposes in a service provider chain. These approaches differ in the fol-

lowing aspects:

1. The level of control an auditor has over the extent of the data that is being
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published (i.e., whether the auditor is limited to information that a provider

is already providing or if he has more fine-grained control and access to a

provider’s infrastructure).

2. Technical limitations imposed by the technological environment (i.e., the

extent to which cloud providers have to implement additional evidence col-

lection mechanisms).

3. The willingness or acceptance to provide such mechanisms by the publish-

ing service provider (i.e. the potential disclosure of confidential provider

information and required level of access to the provider’s systems).

In the remainder of this section, three approaches are described and rated by

the above-mentioned factors.

The first approach focuses on reusing already existing evidence sources by col-

lecting via remote APIs of systems in a cloud environment. The second approach

uses provider-provisioned evidence collectors and the third approach leverages

the mobility of software agents for evidence collectors.

Remote API Evidence Collector

The first approach for collecting evidence that is relevant to automated auditing

leverages existing APIs in cloud ecosystems. Several cloud providers such as

Amazon or Rackspace already provide transparency over their cloud operations

by providing their customers with access to proprietary monitoring and logging

facilities (see [159, 160]). The extent to which data is shared is typically limited to

information that is already produced by the cloud provider’s system (e.g., events

in the cloud management system) and restricted to information that immediately

affects the cloud customer (e.g., events that are directly linked to a tenant). Data

such as logs that are generated by the underlying systems are very important

sources of evidence, since they expose a lot of information about the operation

of cloud services, but are often out of scope in these systems.
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Figure 18: Evidence Collection in Cloud Provider Chains – Remote API Collector

The type of information is highly dependant on the actual system, the granular-

ity of the produced logs and the scope of the provided APIs. For instance, on

the infrastructure level, there are log events produced and shared that provide

insight on virtual resource lifecycle (e.g., start/stop events of VMs).

Figure 18 depicts such a scenario. The AAS at Cloud A operates a collector that

uses the API of the remote data source at Cloud B. It is configured with the ac-

cess credentials of Cloud A, thus enabling the collector to request evidence from

Cloud B. Since different services may provide different APIs (e.g., OpenStack vs.

OpenNebula API), the collector is service-specific. For instance, a collector im-

plements the data formats and protocols as defined in the OpenStack Nova API

to collect evidence about the images that are owned or otherwise associated with

Cloud A as a customer of Cloud B.

There are two general information exchange patterns that are typically used

by such systems: a pull pattern and a push pattern. The CTP protocol is an

approach by the CSA, which aims at harmonizing APIs in order to make the

cloud more transparent. It provides both approaches in its specification and is

used in the following discussion:

Figure 19 shows the individual evidence request sequence in a pull approach.

When a request for evidence (or transparency elements using CTP’s nomencla-

ture) arrives at a provider the data is sent as a response to the requester. The

evidence can either be collected on-demand or the request is fulfilled from the
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Figure 19: CTP Integration – Individual Data Requests

Figure 20: CTP Integration – Triggered Data Exchange

evidence store (e.g., from the target’s AAS instance). It is then used by the

requester check to ascertain if a policy is violated or not (i.e., the audit is per-

formed). Polling for new data in relatively short intervals can introduce load

problems at the auditing system. This issue is a common problem with pull

/ polling mechanisms. However, carefully choosing longer intervals such as

hourly, daily, weekly and monthly reports help alleviating such problems.

Information that quickly needs to be processed, like security breaches or in-

tegrity violations, can be time-critical with respect to incident response and

therefore should not rely on transport via pull mechanisms. Push mechanisms

are typically associated with an event-driven approach, where an event is fired

when a condition is met. Figure 20 (solid blue circle indicates the domain of the

auditor whereas solid white indicates the provider) shows the push notification

process. An auditor can specify the severity of an occurrence called trigger, to

ensure that only significant information is pushed. A configured trigger will only

fire when the condition set by the auditor is fulfilled.
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Whether a push or pull approach is being used, the auditee retains full control

over the published interface and therefore controls the exposure of evidence to

an auditor. Considering a scenario, where multiple AAS instance are involved

(e.g.,during an audit of a service provision chain with multiple providers), the

exchange can of course also happen using an interface such as CTP between

those instances.

• Level of Auditor Control: The amount of evidence that can be collected is

severely limited by the actual APIs that are provided by a cloud provider. It

is either: i) the evidence that an auditor is looking for is immediately avail-

able because the provider already monitors all relevant data sources and

makes that data accessible via the API or ii) the data is not available. Since

a lot of the cloud provider’s systems expose remote APIs anyway, they have

to be considered for evidence acquisition. However, the completeness of the

exposed APIs and therefore the completeness of the collectable evidence is

questionable due to the aforementioned reasons.

If an auditee for some reason does not implement or provide access to AAS,

an auditor may still collect evidence to a limited degree using this approach.

• Technical limitations: If lower-level access to the providers infrastructure

is required to collect evidence (e.g., log events generated on the network

layer or block storage-level access to data), an auditor might not be able to

gain access to that information.

• Acceptance: This approach poses some challenges with respect to secu-

rity, privacy and trust required by the auditee. Since the auditee is already

exposing the APIs publicly, it can be expected that they will be used for

auditing and monitoring purposes. The implementation of security and

privacy-preserving mechanisms on the API-level is assumed. However, the

extent to which such mechanisms are supported highly depends on the

actual implementation of the APIs on the provider side.
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Figure 21: Evidence Collection in Cloud Provider Chains – Provider-provisioned
Evidence Collector

While this way of providing evidence to auditors is likely to be accepted by

cloud providers, it may be too limited with respect to the extent to which

evidence can be collected at lower architectural levels.

Provider Provisioned Evidence Collector

In this approach, AAS still is the main component for evidence collection. All

cloud providers that are part of the service provision chain are running a local

AAS. However, the instantiation and configuration of the collector is delegated

to the auditee. The auditee assumes full control over the collector and merely

grants the auditor access to interact with the collector for evidence collection.

The collector must be obviously be capable of providing the required interfaces

to the auditor.

The auditee (see Cloud B in Figure 21) provisions evidence collectors and pro-

vides access to them to the auditor. The auditor (who is using AAS at Cloud A)

configures evidence collection for the audit to connect to the collectors at Cloud

B.

• Level of Auditor Control: The configuration of the evidence collector can

be adjusted by the auditor to a degree that is controlled by the auditee

(e.g., applying filters to logs) in that he limits means to configure a collector
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and its ability to freely migrate in the auditee’s infrastructure. At any time,

the auditee can disconnect, change or otherwise control the collector. An

auditor may be put off by the limitations posed by this approach since he

is effectively giving up control over the central part of evidence collection

and is relying solely on the cooperation of the auditee. For instance, simple

tasks such as reconfiguring or restarting a collector may require extensive

interaction between the two audit systems and potentially intervention by

a human.

• Technical limitations: This approach is only limited by the availability of

collectors for evidence sources and overhead associated with the provision,

runtime management and termination of agents that is introduced at the

provider.

• Acceptance: The auditee retains full control over the collector and the po-

tential evidence that can be collected by it. The auditor can take some

influence on the filtering of data that is collected from the evidence source

and on general parameter such as whether evidence is pushed by or pulled

from the collector. Most of the baseline configuration though, is performed

by the auditee (such as access restrictions and deployment of the collector).

The auditor’s ability to influence the collector is severely limited by restrict-

ing the auditor’s collector interactions to a well-defined set of configuration

parameters and the evidence exchange protocol. This level of control that

the auditee has over the evidence collection process may have positive in-

fluence on provider acceptance. However, due to the management overhead

introduced, acceptance of this approach at the cloud provider is unlikely

unless it is provided as a service to customers and auditors.

Mobile Evidence Collector

This approach is specific to a central characteristic of software agent systems,

which is the ability to migrate over a network between runtime environments. In
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Figure 22: Evidence Collection in Cloud Provider Chains – Mobile Evidence Collec-
tor

this approach, the migration of evidence collectors between separate instances of

AAS running at both Cloud A and B is demonstrated. The reason to use mobile

collector in this approach is leverage the potential of agents travelling to various

different data sources for evidence collection without the need of making these

sources available in any other way than being accessible by agents (e.g., no ad-

ditional public APIs). This matches well with some potential evidence sources

not having a feasible way of remotely providing information without additional

implementation effort. For instance, certain configuration file parameters (e.g.,

specific set of SSL cipher suites with which a web server might be setup at a par-

ticular point in time) may be considered evidence. However, configuration files

are typically not publicly available. A mobile agent with sufficient authorization

may easily read configuration files and collect certain parameters as evidence.

As depicted in Figure 22 the auditor prepares the required collector fully (i.e.,

agent instantiation and configuration) and then migrates (shaded box named Col-

lector) the collector to the auditee (Collector‘). There, the collector gathers evi-

dence that is sent back to the auditor for evaluation. Generally however, agents

rarely cross from one particular administrative domain to another. In this case,

the collector crosses from Cloud A’s administrative domain to Cloud B. This has

significant impact on the acceptance of that approach.
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• Level of Auditor Control: The auditor retains full control over the type

of collector and its configuration. The auditee may not in any way change

or otherwise influence the collector since this can be deemed a potentially

malicious manipulation of the agent.

• Technical limitations: Since the auditor knows best about the actual con-

figuration required for a collector, it is logical to take this approach and

simply hand-over a fully prepared collector to the auditee to which the au-

ditee only has to grant access to. However, this only works if both run the

same audit system, or the auditee at the very least provides a runtime envi-

ronment for the collector. This approach offers the most complete and most

flexible way of collecting evidence at an auditee due to the comprehensive

evidence collection capabilities.

• Acceptance: The main problem with this approach is required trust by

the auditee. Since the collector that is being handed over to him by the

auditor is in fact software that the auditee is supposed to run on its in-

frastructure, several security, privacy and trust-related issues associated

with such cross-domain agent mobility need to be addressed. Several secu-

rity controls need to be implemented to make cloud providers consider the

implementation of AAS including the approach of using mobile collectors.

The main security concerns of this approach stem from the fact that the

auditee is expected to execute software on his infrastructure over which he

does not have any control. He cannot tell for certain whether or not the

agent is accessing only those evidence sources which he expects it to.

Without any additional security measures, it cannot be expected that any

cloud provider is willing to accept this approach. However, with the ad-

dition of security measures such as ensuring authenticity of the collector,

which means the collector is in fact from the auditor it claims to be from

and does nothing except what is described, this approach becomes more

feasible. For example using collector source code reviews and code sign-
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ing can help with that problem. Based on such extensive reviews, agents

can be certified by a trusted third-party, which could improve acceptance

of this approach. The discussion of such measures depends on the tech-

nology used by the implementation. Furthermore, these measure could be

implemented by a trusted third party that conducts the audit, which would

mitigate the risks associated with opening the cloud platform to customers

on a low level. Without any additional measures, it can be assumed that

this approach is only feasible if the auditor is completely trusted by the

auditee. In that case, this approach is very powerful and flexible.

Round-up

All three approaches for evidence collection in provider chains have their very

distinct advantages and disadvantages. Using remote API evidence collectors is

simple, quickly implemented, securely and readily available, but severely limited

regarding the scope of access to evidence sources. Using provider-provisioned

evidence collectors is more powerful with respect to access to evidence sources

but requires more effort in the configuration phase and leaves full control to the

auditee. Using mobile evidence collectors is the most flexible approach that al-

lows broad access to evidence sources at the auditee’s infrastructure and leaves

full control over the evidence collection to the auditor.

With respect to sharing responsibility, the remote API and provider-provisioned

collector approaches are the best fits. They enable the interaction (i.e., transfer

of evidence) between two distinct stakeholders in scenarios where the customer

and provider run their own instances of AAS. In an IaaS model, this is more

likely to be the case, since the cloud customer is responsible for the correct

implementation of much more security controls than in any of the other ser-

vice models. The implementation of an AAS instance on the customer side is

thereby a natural fit to enable continuous compliance assessment. However, the

interaction between multiple distinct AAS instances is considered future work
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that will mostly revolve around problems stemming from defining appropriate

contractual agreements and a suitable API.

In AAS, the use of remote APIs is integrated due to its simplicity and mobile

collectors due to their flexibility and powerfulness as the main approaches for

evidence collection.

5.5 Decentralization and Pre-processing of Audit Evi-

dence Evaluation

Externally collecting evidence and merging it at a central evidence store that is

only reachable via a network can easily become a bottle-neck in audit scenar-

ios where either a lot of evidence records are produced externally or where the

record size is big. This obviously has significant impact on the scalability of the

whole system.

The problem can be addressed by making the evidence store (which is just a

specialized form of an agent with a secure storage mechanism) distributable

and also by de-centralizing parts of the evidence evaluation process. There are

two concepts implemented in AAS:

1. Pre-processing: Pre-processing allows the evidence collector agent to apply

evidence pre-processing (see Section 4.4). The goal is to reduce the amount

of collected evidence to a manageable degree (without negatively impacting

the completeness of the audit trail) and to reasonably reduce the amount of

network operations by grouping evidence records and storing them in bulk.

For example, by filtering the raw data at the evidence source for certain

operations, subjects, tenants, or time frames data that is not immediately

required for the audit the amount of evidence is reduced.

2. Intermediate Result Production: A second pre-processing strategy is to

move (parts of) the evaluation process near the collector. This means that
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Figure 23: Pre-processing and Decentralization Approaches

the collected evidence is already reduced to the significant portions that

indicate partial compliance or violation of policies.

The two approaches bring several implications with them with respect to pri-

vacy and security. Pre-processing can be considered a manipulation of evi-

dence. Therefore, the unaltered source upon which the pre-processing happened

should be protected to later be able to trace pre-processed evidence back to its

unaltered form.

Immediate result production effectively moves the evaluation step of the audit

into the domain of the auditee, where it is easy for him to manipulate the result.

However, the same applies to the collection of evidence as well, where an auditor

can intentionally manipulate the evidence source or the collector. This case

is not considered in the current iteration of AAS but it is assumed that cloud
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providers (auditees) are acting in good faith. This assumption can be justified

by the potential increase in transparency and the associated strengthening of

trust in the cloud provider that can mean a competitive advantage. On the other

hand, intentional manipulation of evidence or intermediate results can have

disastrous impact on a provider’s credibility, reputation and trustworthiness

upon detection.

Figure 23 presents a centralized and two de-centralized approaches:

1. Centralized: this approach is centralized in the way that all evaluator

agents are executed on the same server. Collector store evidence in the

ES and the evaluators pull it from there. Additionally, evaluators write

back the results as evidence in the ES.

2. Decentralized (direct): this approach considers moving the evaluator to the

runtime environment where the collector is executed. The collector directly

feeds evidence to the evaluator, which then stores the evidence and the

results in the ES.

3. Decentralized (indirect): this approach is a hybrid of the previous two,

where the general flow of evidence and results is the same as in the di-

rect approach but results are picked up from the ES by a simple agent

that does nothing more than regularly trying to detect if new results are

available.

5.6 Presentation of Audit Results

Considering the presentation of evidence and audit results is very important for

several reasons: Scalability of audit and evidence presentation is important due

to the massive scale of cloud infrastructures. Depending on the scope of an

audit, massive amounts of evidence are produced and evaluated. Thus, mecha-

nisms to manage complexity (such as filtering) and adequately presenting audit
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results (such as heat maps), gain importance.

Audit result presentation in automatically generated natural language docu-

ments (e.g., using templates) can prove to be beneficial for less tech-savvy au-

ditors such as an administrator at an Small or Medium-size Enterprise (SME)

and/or for the management.

However, not only the presentation to human recipients is discussed in the fol-

lowing, but also the integration with other tools, such as incident response tools.

5.6.1 Dashboard for Audit Management and Reporting

The main interaction point with AAS for the auditor is its GUI. It allows the

auditor to easily create audit tasks based on policies, monitor the current state

of AAS’s core components and agents, and most importantly review the result of

audit tasks.

The GUI is implemented as a web-based dashboard using state of the art tech-

nologies and frameworks:

• Hypertext Markup Language (HTML) 5: as the main language for User In-

terface (UI) controls.

• Javascript: for interaction with the ReST server (mainly KnockoutJS [161]

for templating audit tasks as described in Section 5.7 and jQuery [162]).

• Cascading Style Sheets (CSS): for defining the presentation aspects of the

UI.

• JSON: as a compact data exchange format between dashboard and ReST

service.

• Bootstrap: as a web framework that facilitate responsiveness of the fron-

tend.
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Figure 24: Audit Agent System User Interface – Landing Page

The different sections of the UI and the reasoning for their design and available

controls is presented in the following sections.

User Interaction: Overview

The landing page for the auditor (i.e., the first page he sees of AAS) is depicted in

Figure 24. The intention of this page is to provide a central hub for the auditor,

where he can quickly gain an overview of the current audit state and has access

to the most commonly used functions.

On the top, the auditor can quickly access the Audit Overview, Create Audit,

Results and Records modules. On the bottom, the auditor is presented a very

high-level overview of the current state of AAS. The left represents a count of all

currently active audit tasks, whereas the right provides a summary of recently

detected violations that might need to be reviewed by the auditor. Shortcuts are

provided for each section to provide quick access to the relevant modules.

User Interaction: Audit Task Overview

During the execution of an audit task, the auditor can check its current state in

the audit task overview module that is depicted in Figure 25. The presented in-

formation depends on the template that the audit task developer provides. This
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Figure 25: Audit Agent System User Interface – Audit Task Overview

is done to address the heterogeneity of audit tasks. The auditor is presented

with an overview of the instantiated agents, their status, configuration and lo-

cation in the environment. Furthermore, the auditor can take actions such as

deleting an audit task, which results in the deletion of the associated evidence

collector and evaluator agents as well as the disposal of any key material in order

to delete the collected data in the evidence store. The deletion log itself should

thereby be recorded as evidence of that action in the evidence store.

User Interaction: New Audit Task

The module for creating new audit tasks is depicted in Figure 26. The categories

Data Handling, Access Control and Custom are selected dynamically based on

the policy (i.e., type of rules and their association with aforementioned cate-

gories) that the auditor has provided. In this case, an A-PPL policy was used

as input, which covers the aspects of data handling and access control. In the
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Figure 26: Audit Agent System User Interface – Task Creation

respective category (e.g., Data handling policies) the result of the input policy

parsing process is presented (see Section 6.2) as a list of audit tasks that can

be executed based on the rules that are defined in the input policy. For each

audit task the auditor is given a partially pre-configured (on a best effort basis)

configuration, which he is prompted to complete. With the execute command,

the list of audit tasks and their configuration is sent to the AAS APM module,

where the configuration parameter sanity is checked (i.e., input validation) and

the instantiation process is triggered.

User Interaction: Result Presentation

In the results module (see Figure 27), violations that were detected by the audit

tasks are presented to the auditor for review. The results are categorized in three

different subsets:

• Violation: contains all violations detected by AAS that are with certainty

identified as such.
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Figure 27: Audit Agent System User Interface – Violation Report

• Needs Review: contains all audit results that potentially represent a vio-

lation, but where AAS is unable to decide with certainty. A review of the

collected evidence by the auditor is required.

• Passed: contains all results of audit tasks that directly check for compli-

ance. In the demonstration cases (see Section 7.2), AAS checks for the

occurrence of violations and potential violations and assumes the absence

thereof to be a state of compliance at least with respect to the audit tasks.

The detection timestamp and the type of violation are highlighted in an overview

list that provides additional information such as evidence that supports the vio-

lation claim. Additionally, the auditor can be provided with filtering capabilities

that work on top of the result presentation list and enables him to limit the dis-

played results to a manageable amount, based on for instance the underlying

policy or a specific period of time.
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Figure 28: Audit Agent System User Interface – Evidence Record Representation
of an Incident

User Interaction: Evidence Details

In the records module, the auditor can review the contents of evidence records

that are stored in the evidence store (as depicted in Figure 28). Here, the auditor

has access to the raw evidence that is stored in the record and on which AAS’s

audit tasks base their analysis.

5.6.2 Incident Notification

AAS can also be run without the GUI, simply by using its ReST interface. This

facilitates the integration of AAS into other tools. For instance, this way audit

tasks can be created and deleted automatically by another tool without the need

for human interaction, under the one condition that all configuration parameters

that would usually be supplied by the auditor are made available by the calling

tool.
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An important part of the reaction process after a policy violation has been de-

tected, is the notification to relevant stakeholders (e.g., the auditor or the cloud

provider in most cases, and the cloud consumer in very specific cases). AAS pro-

vides the ability to associate an appropriate notification mechanism with each

audit task. From an architectural perspective the notification mechanisms are

implemented as agents in the presentation component, which enables simple

extension with new mechanisms and a one agent per tenant approach. Each

agent provides a different kind of communication mechanism for violation re-

porting. In that sense, the notification agents function similarly to the collector

agents but as adapters for the output of AAS to other systems. However, the

notification part of an audit task is completely optional.

The following two sections are exemplary to show how notification is imple-

mented in AAS. It is differentiated between notification to persons and notifi-

cation to systems. In any case, the notification is generated from violations that

are detected and reported by the evaluator agents. Of course, an audit task is

not limited to a single notification agent but can make use of multiple.

Auditor Notification

The notification of the auditor (i.e., the person that actually created the audit

task) is the most common notification mechanism. A simple way of notification

can be implemented by using the EMailNotificationAgent that can be included

in an audit task. In this case, the auditor is required to provide a valid e-mail

address during task setup, which is later used for delivering violation notifica-

tions. However, with the addition of new notification agents that support dif-

ferent communication protocols (e.g., push notifications or instant messaging),

there are virtually no limits to ways of getting urgent notifications to the audi-

tor. Also, the notification process can become more flexible by not only allowing

the notification to the auditor but also allowing automated notification to af-

fected stakeholders (e.g., notifying consumers about an availability incident at

their cloud resources). In any case, privacy issues need to be considered when
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generating notifications both regarding the protection of other tenants privacy

as well as protection from the auditor (who is usually bound by non-disclosure

agreements).

Incident Management Reporting

The second way of notification functions almost identical but aims at sending

notifications to other computer systems, such as incident management systems

at a cloud provider. For this, AAS implements a RESTNotificationAgent that,

depending on the other system’s interface, is able to translate violation reports

and their associated evidence records into the required output format. This form

of incident notification is especially relevant for integrating AAS with incident

management tools at the cloud provider, in order to allow a more fine grained

management and reaction.

5.7 Modelling Audit Tasks

As described in Section 5.3 and Figure 10, the flow of evidence in the AAS can

be quite complex. In this Section, three different layers that evidence data has

to pass through from the collection up to the presentation of audit results are

described. Controlling the flow of evidence from the source to the presentation

is important for several reasons, such as scalability, privacy protection (correct

recipients of evidence along the trail) and load balancing. An overview of the data

flow between agents of an audit task is presented in Figure 29. The discussion in

this section is aimed towards developers that extend AAS with new audit tasks,

collectors and evaluator agents.

The design and development of a new audit task in AAS follows a set of phases.

These phases are depicted in an overview in Figure 30, whereas the remainder of

this chapter is used to describe them in more detail and provide the reader with

a sense of the system extensibility that is gained by opting for an agent-based
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Figure 29: Agents of an Audit Task and Data Flows
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Figure 30: Phases of Developing an Audit Task

approach.

5.7.1 Planning Phase

In the first phase, the input policy language is analyzed by the developer. The

main considerations are hereby:

• Review of policy rules: at foremost, an audit checks the current state

against a desired state that is usually specified as rules. The developer

considers the input policy and derives a potential audit task from it.

For instance, if there is a rule in the policy that allows the governing of

the location of VMs in a cloud, this means there is a potential audit task

that is concerned with checking compliance of the cloud deployment with

that policy. In many languages, the definition of what constitutes compli-

ance and what a violation of a rule can be extracted directly, as long as the

context of a complex cloud environment is not considered (e.g., as long as

the complexity of provider chains is ignored and only a single provider con-

sidered). This can be the case when the language has limited applicability

such as it is only concerned with the cloud from a SaaS point of view and

omitting the context of other cloud layers beneath that, where failures can

happen.

• Review of configuration parameters: The second consideration is based on
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the mandatory and optional fields supplied in the input policy that can be

used for audit task configuration. The goal is to always extract as much

information as possible from the input policy, to reduce the amount of

manual configuration that is required by the auditor. However, in some

cases where the input policy is not expressive enough, deep knowledge of

the cloud system may be required from the auditor in order to define tasks.

• Review of potential evidence sources: The final consideration is making a

list of potential evidence sources that can be used to check the compliance

with the aforementioned rule. This step requires a deep analysis of the po-

tential compliance failures that can happen (i.e., looking at all the involved

systems and their interactions and identifying potential failure scenarios

based on this information). Also, a balance between a desirable level of

certainty and effort that is required for the audit has to be defined (i.e., the

depth of the audit in conventional offline audits) as the potential for failures

is seemingly limitless in complex systems. This means, that the amount of

evidence sources that is used in a single task and the evaluation mecha-

nisms have to be chosen based on the defined balance between complexity

of the task and required level of assurance.

• Definition of an audit task strategy: the choice of the actual audit type (see

Section 4.5) needs to happen based on the policy rule that is being audited.

The developer chooses a strategy for distribution and the audit interval.

This information is important for the definition of the data flow in the audit

task.

• Definition of an evaluation strategy: the choice of a suitable evidence eval-

uation mechanism (e.g., keyword search, feeding a rule engine or using

artificial intelligence) is also prepared on the basis of the input policy. Po-

tential evaluation strategies include simple and minimalistic approaches

like keyword searches (e.g., in text such as logs, emails or documents) but

can be as complex as using rule engines or ANN for analysis.
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After these considerations, the evidence sources that have been identified are

handled in the next step.

5.7.2 Evidence Source Selection Phase

In Section 4.2.2, it was stated that evidence can be produced by diverse sources

in a cloud infrastructure. Here, the developer transforms the high-level consid-

eration of the previous step into implementations, for example:

• Operations that are logged by the CMS are considered evidence ⇒ VM life-

cycle events are collected from OpenStack’s Nova service API.

• Access Control violations are considered evidence ⇒ Access control events

that are emitted by the eXtensible Access Control Markup Language (XACML)-

based enforcement tool are collected by pushing those events from the en-

forcement tool to a ReST-based event listener in the collector agent.

After this step is complete, the developer has defined specific evidence collection

mechanisms and implementation details such as which protocols, data formats

and interfaces are being used. With this information, the agent development

phase can commence.

5.7.3 Agent Development Phase

This step covers the implementation of new and modification of existing agents

with the goal of implementing them in an audit task. It includes at least the con-

sideration of collector agents, evaluator agents and presenter agents (as depicted

in Figure 29).

Collector Agent Development

Software agents collect evidence data from the evidence source, where it is pro-

duced. At the minimum the interfacing with the evidence source and the trans-
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formation of raw data into evidence records has to be implemented. Optional

functions include: reduction, filtering, aggregation, anonymization and com-

pression of evidence as described in Section 4.4.

Every evidence collector agent in AAS is provided basic common functionality

(e.g., behaviors, storing to the ES etc.) by extending the abstract class Evi-

denceCollectingAgent.

As new evidence sources are introduced into AAS audit tasks, new collector

agents are required. Therefore, implementation effort for this kind of agents is

expected to be high at the beginning when only a limited number of agents are

available, but decreasing over time as collectors become available for reuse.

Evidence Evaluator Development

After the evidence data has been collected, it is passed to the evaluator agent and

the evidence store. The evaluator agent compares the collected evidence against

the rules defined in the policy using a suitable mechanism that was defined in

the planning phase. The evaluation mechanism as well as the ruleset are then

implemented by the developer as an agent.

Every evidence evaluator agent in AAS is provided basic common functionality

(e.g., receiving from the ES or directly from collectors) by extending the abstract

class EvaluationAgent.

As new evaluation mechanisms are introduced into AAS audit tasks, new eval-

uator agents are required. Therefore, implementation effort for these kinds of

agents is expected to be high at the beginning when only a number amount of

agents are available, but decreasing over time as evaluators become available for

reuse.

Presenter Agent Development

Finally, there are presenter agents, that complete an audit task on the agent

implementation level. It is very common to have an audit report as a document,
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which includes the audit result (compliance statement with additional informa-

tion and recommendations). Such documents can be generated automatically to

some degree by using templates for Portable Document Format (PDF) generation

(e.g., using LATEX). This form of presentation is most useful, when audit intervals

are quite long (for instance in a monthly audit).

There is also the presentation of the results in a web-based dashboard, as it

is commonly done for monitoring and SIEM solutions. This approach is more

useful if intervals are short or auditing is done continuously (i.e., as soon as a

change event triggers a re-audit), because results can be displayed immediately.

The dashboard presentation is part of AAS out of the box.

Additionally, there are notification mechanisms that can be implemented using a

presenter agent (e.g., one for each protocol). A simple ReST client for dispatching

violation notifications to other tools and an e-mail notification agent are already

implemented to highlight the flexibility.

Most often, the presenter can be reused, since in most cases it is not dependent

on the audit task objective. Also, with the provision of the two notification agents

(tool and e-mail) as well as the dashboard, the effort for implementing additional

presenter agents is expected to be minimal.

5.7.4 Audit Task Development Phase

In this phase, all individual agents are combined into an audit task. First a short

overview of the general agent class hierarchy (see Figure 31) and the structure of

a typical audit task (see Figure 32) are depicted using Unified Modeling Language

(UML) class diagrams. These serve as a guide for implementation. The general

approach to bundling agents in an audit task is presented afterwards.

In the second step, the audit task instantiation process in AAS is shown.

Finally, the approach to reducing effort in UI development and homogenizing the

look and feel by using UI templating is described.
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Figure 31: UML Diagram of Agent Class Hierarchy in the Audit Agent System

Audit Task Structure and Agent Bundling

Figure 31 depicts the general class hierarchy in AAS. An non-core agent in AAS

is always associated with a abstract representation that identifies it as either a

Notifier (with capabilities of sending messages), EvidenceCollector (with capabili-

ties of receiving/gathering input and writing to the evidence store) or EvidenceE-

valuator (with capabilities of reading from the evidence store and interacting

with notifiers). These abstract representation combine shared functionality and

enable more efficient management of agent groups by type in AAC. Every agent

in AAS at some point inherits functionality from the type AASAgent, which itself

is a specialization of the most general type Agent. At the most abstract level,

everything is a JADE Agent.

The AuditTask class (see Figure 32) bundles a set of agents and configurations

and is used as a control block in AAC during lifecycle management. It is a

simple structure for representing an audit task with its associated 1-n collectors,

1-n evaluators and n notifiers. This way, the AAC can more easily perform
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Figure 32: UML Diagram of Audit Task in the Audit Agent System

monitoring operations by simply iterating through the information contained in

the control block.

Audit Task Instantiation

The runtime flow of audit task configuration and instantiation of agents is de-

picted in Figure 33 and executed as follows (Figure 33 is based on the A-PPL

parser implemtation):

1. An auditor triggers the audit task creation process in the dashboard (action

Create Audit).

2. The APM first searches the provided A-PPL policy (which is either uploaded

or pre-configured on the AAS server-side) for possible audit tasks using

the language parser. If possible, the audit task configuration is populated

with general information such as available agent runtime environments to

migrate collectors and evaluators to.

3. All potential audit task definitions are then sent back to the auditor for

supplementation. This is carried out using JSON serialization of an audit

task’s object model in the JADE gateway, which acts as a ReST interface

into the agent system.
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Figure 33: Technical Overview of Audit Task Initialization, Configuration and
Agent Instantiation

4. The auditor is now prompted to select audit tasks based on what was de-

tected in the policy, complete missing parameters and submit the final

configuration for instantiation.

5. Once the list of finalized tasks arrives at the JADE gateway, they are for-

warded to the APM.

6. The APM maps the received JSON structure to an audit task object model,

generates a new GUID for it and passes the finalized task model to the AAC

for instantiation and deployment.

7. The AAC starts and migrates all agents.

An audit task representation in JSON possesses (at least) the following fields:

• auditTaskUUID: The unique runtime identifier of an audit task.

• type: The actual audit task class identifier.
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1 <h1>DataRetentionPolicyEvaluationAgent:</h1>
2

3 <label>Container:</label>
4 <select data-bind="options: DataRetention_1.availableContainerHelper, value

↪→ : DataRetention_1.evidenceAnalyzers[0].
↪→ DataRetentionPolicyEvaluationAgent.
↪→ PiiDataRetentionPolicyEvaluationAgent.container"/>

5

6 <label>Store VM name:</label>
7 <input data-bind="value: DataRetention_1.evidenceAnalyzers[0].

↪→ DataRetentionPolicyEvaluationAgent.
↪→ PiiDataRetentionPolicyEvaluationAgent.piiStoreVM, valueUpdate: ’
↪→ afterkeydown’"/>

Figure 34: Example of a Template for Binding User Interface Elements to Audit
Task Configuration Parameters

• displayName: The audit task name that is displayed by AAS in the dash-

board.

• description: The audit task description that is displayed by AAS in the

dashboard.

• evidenceCollectors, evidenceEvaluators & notifiers: Lists of every agent as-

sociated with the audit task.

Audit Task UI Templating

Audit tasks in AAS use Knockout.js [161] data binding to minimize effort for UI

development. In the audit task’s template folder, HTML files are used to define

the data binding between audit task model (and its agents) and the UI controls.

Figure 34 depicts a simple example, where different attributes of an agent are

bound to different input fields in the UI. This effectively builds a binding between

the UI elements and the more complex data model used in the background while

enabling automated synchronization between the two.

This approach reduces development effort on the UI-side significantly.

148



5.8. SUMMARY

5.7.5 Publishing Phase

The publishing phase is the last one of the agent development process and in-

cludes the integration of an audit task package into an AAS deployment. This

phase can be extended by additional steps that assure the authenticity of the

code that is provided, e.g., by code signing mechanisms or by putting the source

code and accompanying audit task package up for a review by a third-party.

Furthermore, introducing a public marketplace for pre-packaged audit tasks

could address the problem of having only a limited set of audit tasks and agents

available.

5.8 Summary

This chapter presented a broad overview of the design phase of AAS. The devel-

opment methodology was described and an in-depth description of the architec-

tural design was presented. It was thereby highlighted how the requirements

with respect to functionality, security and privacy protection influenced the ar-

chitectural choices. The main contributions of this chapter are the complete

architecture design for automated, evidence-based audits in multi-provider sce-

narios, including development guidelines for new audit tasks that demonstrate

AAS’s extensibility.
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Chapter 6
Audit Description using Software

Agents

AS described in the previous chapters, AAS is flexible enough to address dif-

ferent kinds of audits. As long as there is a machine-readable description

of the policy (i.e., defining rules, conditions and requirements), the APM can be

extended to incorporate parsers and adapters for these policy languages.

The incorporation of policy languages such as PrimeLife Policy Language (PPL)

[163], A-PPL [74] or Cloud Audit Policy Language (CAPL) [97] enables AAS to

cover different domains (e.g., data handling in A-PPL, infrastructure / software

configuration as presented in [164] and security measures in CAPL).

In this chapter, the integration of security and accountability-related policy lan-

guages that can be considered input to the AAS to define an automated audit,

are described. The focus is thereby put on A-PPL as a language for describing

accountability policies, as this language was developed in the A4Cloud project

(no direct involvement of the author of this thesis) and was integrated as a proof

of concept for audit task extraction in AAS.

However, other policy languages and their potential for integration are discussed

as an extension, in order to highlight gaps in A-PPL. Such gaps include infras-
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tructure definition or the requirement for specific security and privacy protection

measures. Both can be addressed by choosing an alternative policy language.

For instance, Bosh Outer Shell (BOSH) is a language that enables the description

of cloud service deployments from a PaaS perspective and thereby also covers

details such as basic configuration parameters of involved VMs (i.e., VM Internet

Protocol (IP) address, gateway, subnet, VLAN, operating system and application

versions).

In general, evidence processing mechanisms highly depend on the audit task

and the complexity of detecting potential violations. While the prototype im-

plementation of AAS uses rather simple algorithms that depend on basic string

search and counting, more complex variants can be implemented as well. For

instance, a processor agent in AAS is only limited by the programming language

and resources it may consume. Therefore, an agent could integrate a rule engine

that uses collected evidence as input. There exist project that aim for integration

of rule engines in an agent-based approach that could be used as a basis for

a new AAS processor agent. Furthermore, processor agents that implement

artificial neural networks for processing evidence (e.g., metrics from monitoring)

could prove useful for certain audit goals as well.

While neither of these languages presented in the following was developed as a

contribution of this thesis, they were chosen for evaluation due to their apparent

suitability as policy languages from the cloud accountability, security audit and

infrastructure declaration domains.

6.1 Audit Task Configuration

Figure 35 depicts the policy input as well as the process of deriving audit policies

from input policies. The Policy is the collection of rules and obligations in a

machine-readable format such as A-PPL.

Based on the input policy specification, the Audit Policy with its various Audit
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Figure 35: Audit Task Definition Process

Tasks are extracted and supplemented with knowledge input by the auditor if

necessary. An audit policy always contains at least one audit task.

An audit task is a combination of evidence collector agents, evaluator agents,

their associated evidence store and their configuration (which information to

collect from a possibly very large pool) and thresholds (limits and conditions that

constitute a policy violation). Audit tasks are prepared based on templates for a

given rule for which compliance is to be audited. How an audit task is developed

(concept and implementation) is described in Section 5.7 in more detail. The

Audit Task Repository is an abstract term that describes the available set of

audit task templates. In practice, it is realized by a set of Java packages that

contain all required classes of the implementation.

For an audit target in the input policy a basic template is filled automatically on

a best-effort basis by extracting relevant information from the policy. Missing in-

formation that is not available for extraction needs to be filled in manually. The

APM integrates language parsers for different kinds of policy languages in order

to enable automated configuration. The prototype implementation integrates a

language parser for A-PPL that enables the extraction of configuration param-

eters. However, AAS’s APM component can be easily extended to also include
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parsers and task extractors for other languages as well.

Audit tasks are provided to the auditor in order to enable him to perform audits

in an automated way that is based on evidence. The configuration of an audit

task is completed by an auditor who provides additional information that is not

contained in the policy. After the configuration is completed by the auditor, the

audit task can be instantiated in the system.

6.2 Cloud Data Processing Description

One of the outcomes of the PrimeLife research project [165] was the PPL [163,

166]. The A4Cloud [9] research project developed a machine-readable policy lan-

guage based on PPL called A-PPL [74, 167, 168]. A-PPL is capable of describing

obligations providers have to adhere to in order to be considered accountable.

It therefore allows to define how data should be handled by cloud providers in

an machine-readable and enforceable way. This closes the gap, where previ-

ously there was no way of defining such policies other than in natural-language

documents such as privacy policies and terms of service where data processing

aspects such as retention periods, data sharing, usage control and data location

(i.e., data center location) are usually described. In [168], the authors described

several examples for obligations that can be represented in A-PPL. Those that

go beyond the access control part of A-PPL that is provided by the underly-

ing XACML layer, are concerning notification in case of data breaches, purpose

binding of data and the obligation to collect evidence of data deletion.

To complement A-PPL as a language, the A-PPL-E enforces policies in Java-

based applications. The engine is thereby an extension of the PPL engine [166].

Logs produced by the enforcement engine are considered an important source

of evidence of data handling.
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A-PPL AAS Mapping Description
Policy - Provides the root element and

very general information like the
PolicyId.

Target - Declaration of data types that A-
PPL applies to.

Table 7: A-PPL to AAS Mapping for Audit Task Extraction – General

6.2.1 Mapping to Audit Tasks

While A-PPL can be used to describe data processing obligations to which a cloud

provider should adhere to and A-PPL-E is used to enforce these obligations, au-

dits are required to assure the compliance with and correct enforcement of such

rules. As previously stated, data processing policies based on A-PPL are consid-

ered to be the most important input to AAS during the extraction and definition

of audit tasks. AAS integrates a parser for A-PPL that allows for automated

processing of policies.

The following Tables 7, 8 and 9 depict the mapping of A-PPL language constructs

to AAS concepts illustrated in Figure 35. From an AAS perspective, A-PPL fea-

tures three major sections:

1. General: see Table 7

2. Access control (XACML-based): see Table 8

3. Data handling (accountability extension): see Table 9

The Policy contains meta information about the policy document such as a de-

scription or namespace definitions which can be reused in AAS. The meta infor-

mation contains properties such as the PolicyId that is used by the APM to link

audit tasks to a specific policy upon which audits are performed. The tag Target

contains resource definitions that directly correlate to data for which the policy

applies.

While the general information provides little in terms of configuration parame-
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A-PPL AAS Mapping Description
Group of all
XACML rules from
the access control
section

AuditPolicy Element for grouping AuditPoli-
cies belonging to the same A-
PPL policy.

Rule (XACML) AuditTask A single check that is (part of)
the compliance check.

Table 8: A-PPL to AAS Mapping for Audit Task Extraction – Access Control

A-PPL AAS Mapping Description
DataHandlingPolicy - Container element
AuthorizationSet
(group of autho-
rizations)

AuditPolicy Element for grouping AuditPoli-
cies belonging to the same A-
PPL policy.

Authorization AuditTask Describes a set of checks (Au-
ditTasks) that need to be per-
formed to evaluate compliance
with an authorization rule.

ObligationSet
(group of obliga-
tions)

AuditPolicy Element for grouping AuditPoli-
cies belonging to the same A-
PPL policy.

Obligation AuditTask A single check that is (part of)
the compliance check.

Table 9: A-PPL to AAS Mapping for Audit Task Extraction – Data Handling

ters for actual audit tasks, the two following sections are more important.

The access control part features common language elements from XACML such

as Rule, Target, Subject and Action. All of these can be mapped to AAS’s Au-

ditPolicy and AuditTask. This is especially interesting, when access control logs

are being audited. In such an audit, logged access control operations like read

(Action) access to a resource (Target) was granted to a certain entity (Subject) are

evaluated for failures.

A-PPL possesses a data handling section and the elements ObligationsSet, Obli-

gation, AuthorizationsSet and Authorization. The tag DataHandlingPolicy thereby

serves as a container element for the data handling sections of an A-PPL policy.

Everything contained inside the section is considered a potential rule or obliga-

tion that is mapped onto an audit task.
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A-PPL Element AAS Audit Task
TriggerPersonalDataAccess-
Permitted, TriggerPersonalData-
AccessDenied

Addressed by the intrusion detec-
tion audit task described in Chap-
ter 7.2.1.

ActionNotify Addressed by the notification audit
task described in Section 6.2.5.

Purpose Addressed by the data retention au-
dit task presented in Section 6.2.3
and Chapter 7.2.3.

AuthzUseForPurpose Addressed by the location audit
task described in Section 6.2.2 and
Chapter 7.2.2.

Table 10: A-PPL to AAS Mapping for Audit Task Extraction – Audit Tasks

Each of those mappings contains further language elements that contain valu-

able information for the building of audit tasks. Table 10 highlights the connec-

tion between the language construct introduced by Azraoui et al. [169] and their

audit task counterpart in AAS.

Additional details on specific properties of each of the constructs and how they

add to an audit task are described in the remainder of this section as well as

(from an implementation perspective) in the functional evaluation that is pre-

sented in Chapter 7.

In the following, A-PPL rules and obligations are used to illustrate how audit

tasks are built. It is highlighted, which rules are being used to create audit

tasks and which information for audit task configuration can be mapped and

which has to be supplied by the auditor.

6.2.2 Example 1: Data Location

In A-PPL, the processing of data can be restricted to geographic regions. For AAS

the geographic restriction means an audit task is required that verifies that the

current location as well as the transfer history is in compliance with this rule.

Figure 36 depicts such an example, where PII processing according to that policy

may only be happen in the EU and only in the context of finance.
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1 <a-ppl:AuthzUseForPurpose>
2 <a-ppl:Purpose location="Europe">http://www.w3.org/2002/01/p3pv1/financial<

↪→ /a-ppl:purpose>
3 </a-ppl:AuthzUseForPurpose>

Figure 36: Example for a Data Location Restriction in A-PPL

The evidence sources and respective evidence collectors in this audit task are as

follows:

• Main source: data transfer monitoring. While there are rules on regional

restrictions, there must also be an enforcement or monitoring tool. Logs

that are produced by such tools and contain data provenance and loca-

tion information are collected by an evidence collector and stored in the

evidence store.

• Other sources: All system that give some indication of the current location

of a particular data object serve as an evidence source. Transfer event logs

are stored in the evidence store.

In Section 7.2.2 a demo audit is presented that is based on a data location rule

from the data handling part of A-PPL and considers a data location monitoring

tool as main evidence source.

6.2.3 Example 2: Retention Obligation

A similar example concerns the maximum data retention period for PII. An obli-

gation as depicted in Figure 37 instructs the A-PPL-E to generate log events

when PII is deleted. The rule reads as follows: every time a PII object is deleted

from the storage (TriggerPersonalDataDeleted), log the current timestamp, ac-

tion, purpose, subject and resource (ActionLog). In conjunction with the data

retention rule depicted in Figure 38, each delete operation that is executed due

to the maximum retention period (in this case 2 minutes) being reached for a

particular data object generates a corresponding log event. The rule reads as
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1 <Obligation>
2 <TriggerPersonalDataDeleted/>
3 <ActionLog>
4 <Timestamp/>
5 <Action/>
6 <Purpose/>
7 <Subject/>
8 <Resource/>
9 </ActionLog>

10 </Obligation>

Figure 37: Example for a Evidence Collection Obligation in A-PPL

1 <Obligation elementId="12374">
2 <TriggersSet>
3 <TriggerAtTime>
4 <Start>
5 <StartNow/>
6 </Start>
7 <MaxDelay>
8 <Duration>P0Y0M0DT0H2M0S</Duration>
9 </MaxDelay>

10 </TriggerAtTime>
11 </TriggersSet>
12 <ActionDeletePersonalData/>
13 </Obligation>

Figure 38: Example for a Data Retention Obligation in A-PPL

follows: store the current time at the time of storage (StartNow) and delete (Ac-

tionDeletePersonalData) the object after a set maximum duration (MaxDelay and

Duration) relative to the initial timestamp.

From the fact that there is a retention obligation that the cloud provider has

to comply with, an audit task is derived. The evidence sources and respective

evidence collectors in this audit task are as follows:

• Main source: delete events in A-PPL-E. Each time that a PII object is

deleted, a corresponding delete event is logged by the A-PPL-E. The A-PPL-

E evidence collector filters the A-PPL-E logs for delete events and records

them in the evidence store.

• Other sources: Data duplication events (such as copy, snapshot, clone

etc.) are generated at sources outside the scope of the enforcement engine

such as OpenStack’s Nova. At each evidence source there is an evidence
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1 <Rule Effect="Permit" RuleId="120394">
2 <Target>
3 <Subject>
4 <SubjectMatch MatchId="function:string-equal">
5 <AttributeValue DataType="string">Administrator</AttributeValue

↪→ >
6 <SubjectAttributeDesignator DataType="string" AttributeId="

↪→ subject:role-id"/>
7 </SubjectMatch>
8 </Subject>
9 <Action>

10 <ActionMatch MatchId="string-equal">
11 <AttributeValue DataType="string">read</AttributeValue>
12 <ActionAttributeDesignator DataType="string" AttributeId="

↪→ action-id"/>
13 </ActionMatch>
14 </Action>
15 </Target>
16 </Rule>

Figure 39: Example for an Access Control Rule in A-PPL

collector that gathers log events that is associated with the aforementioned

operations and stores them in the evidence store.

In Section 7.2.3 a demo audit is presented that is based on data retention rule

from the data handling part of A-PPL and considers the enforcement engine’s

logs and the CMS history as main evidence sources.

6.2.4 Example 3: Access Control

In Figure 39 a rule is defined that describes an access control.

This rule defines the read access privilege for users with the role Administrator.

The default decision of the access control system is thereby deny with this rule

defining an exception. This rule is enforced but needs to be audited due to the

scope of the enforcement engine. AAS takes this rule as input and forms the

basis for automated auditing of access control decision that have been made

based on that rule.

In Figure 40 an obligation is depicted that describes for which purpose a data

set may be used. It describes a purpose admin, duration of two years and region
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1 <a-ppl:AuthzUseForPurpose>
2 <a-ppl:Purpose duration=2Y region=Europe>admin</a-ppl:Purpose>
3 </a-ppl:AuthzUseForPurpose>

Figure 40: Example for a Purpose Binding Obligation in A-PPL

Europe to which it applies.

The evidence sources and respective evidence collectors in this audit task are as

follows:

• Main source: enforcement engine. Log events from the access control en-

forcement tool are of utmost importance. These decisions are compared

against the policy in effect. While there should not be any violations, as-

suming the enforcement part is working correctly, validation and analysis

that goes beyond decision making based on a single action is performed by

AAS.

In Section 7.2.1 a demo audit is presented that is based on a rule from the

access control part of A-PPL and takes the enforcement engine’s input as main

evidence source to detect intrusions.

6.2.5 Example 4: Notification Obligation

In Figure 41 a rule is defined that obligates a cloud provider to notify a certain

stakeholder in case of a detected policy violation. In this case the trigger Trig-

gerOnPolicyViolation is fired, when a violation is reported to the A-PPL-E. This

causes ActionNotify to be executed as a reaction.

For AAS, this obligation is of particular importance, when assurance is required

that all incidents (e.g., policy violations) have been notified to their according

recipients in time. In this case, an audit task is extracted from ActionNotify that

assures the correct notification and detects failures that might have been caused

by for example bounced emails due to wrong email address.
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1 <Obligation>
2 <TriggersSet>
3 <TriggerOnPolicyViolation/>
4 </TriggersSet>
5 <ActionNotify>
6 <Media>e-mail</Media>
7 <Address>stakeholder@example.com</Address>
8 <Recipients>stakeholder</Recipients>
9 <Type>Policy Violation</Type>

10 </ActionNotify>
11 </Obligation>

Figure 41: Example for a Notification Obligation in A-PPL

The evidence sources and respective evidence collectors in this audit task are as

follows:

• Violation reporting tool: The violation reporting tool, is where the violation

is detected for the first time. This can be AAS itself. The type and date of

the violation are most important. As previously stated, AAS stores violation

reports as evidence in the evidence store.

• Violation reporting events in A-PPL-E: An evidence collector sits at the A-

PPL-E engine and collects its internal logs as evidence. AAS reporting viola-

tions is one type of these log events. The A-PPL-E evidence collector filters

A-PPL-E logs for violation reporting events and stores them in the evidence

store.

• Notification mechanism: The notification event that is triggered by the vio-

lation (i.e., Mail Transport Agent (MTA) called to send an email) is recorded

as evidence of the notification process. The mail evidence collector records

logs of the emailing process (mail header, status code etc.) filtered by re-

cipient (only recipient for whom there is also an obligation) and type (i.e.,

violation notification email).

162



6.3. CLOUD SECURITY AND DEPLOYMENT DESCRIPTION

6.3 Cloud Security and Deployment Description

As part of the SAaaS research project, CAPL [97] was developed. The main

purpose of CAPL is to enable configuration of software agents to perform security

checks primarily inside virtual machines in a cloud environment. The main

security policies that were considered during the design of CAPL are:

• Malware, which includes triggers for malware scanning on VMs during an

audit.

• Filesystem monitoring, which reports file changes during a continuous au-

dit.

• Technical attribute modelling , which detects misconfigurations such as

open network ports during an audit.

• VM content, which detects mistakes in software version and license man-

agement during an audit.

• VM scalability, which enforces limitations on automated scaling of resources

depending on the continuous audit state.

• Data traces, detects potential data leaks by uncovering leftover keys, pass-

words etc. during an audit of publicly available resources.

Based on these requirements, CAPL was defined as an extension to Cloud In-

frastructure Management Interface (CIMI) [170] in order to adopt it for SAaaS.

CAPL’s most important changes to CIMI are the introduction of several new

classes that are required for conducting security audits.

6.3.1 Mapping to Audit Tasks

CAPL can be used as input to AAS in order to describe an audit based on what

evidence has to be collected and where and also how this evidence has to be
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CAPL Element AAS Equivalent Role in AAS
Group - No counterpart in AAS;

language-based grouping of
rules and resources in CAPL

Machine Client bundle Corresponds to AAS client bun-
dle in case of servers and virtual
machines

MachineTemplate - Not immediately available in
AAS but can be retrieved from
the CMS using the VM Globally
Unique Identifier (GUID)

PolicySet AuditPolicy Describes a set of rule-based
checks (AuditTasks) that need
to be performed to evaluate ac-
cess control compliance

Policy AuditTask A single rule-based check that
is (part of) the compliance check

RuleType AuditTask RuleType information is implic-
itly included in an AAS Audit-
Task

Table 11: CAPL to AAS Mapping for Audit Task Extraction

processed. Due to CAPL’s strong focus on security-related audits on the level

of VMs and physical cloud hosts, it can be regarded as an important addition

to AAS for describing security-focused policies that A-PPL, due to its focus on

accountability issues, cannot address. In the following, a mapping between core

elements of CAPL and correlating components in AAS is presented. It is also

shown, how information about audits that is described in CAPL can be extracted

and used in AAS to configure audit tasks.

By following this mapping in a CAPL extension of the APM, AAS can be enabled

to extract audit tasks and perform compliance audits based on CAPL rules. Fur-

thermore, due to the technological similarities between SAaaS and AAS it is con-

ceivable to re-use and integrate specific agents of SAaaS in AAS. The following

example elaborates on how the policy language integration could be achieved.
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1 <group xmnls="http://research.cloud.hs-furtwangen.de/capl/">
2 <id>https://aas.cloud.hs-furtwangen.de/groups/tenant-virtual-machines-1</id

↪→ >
3 <name>Virtual resources by tenant 1</name>
4 <refName>tenant-virtual-machines-1</refName>
5 <description>Group of virtual and physical reources that are provisioned

↪→ for tenant with identifier 1</description>
6 <enabled>true</enabled>
7 <machines>
8 <machine href="https://aas.cloud.hs-furtwangen.de/rest/machines/1"/>
9 </machines>

10 </group>

Figure 42: Example for a Policy Governing Unencrypted Resource Access in CAPL
– Resource Grouping

1 <RuleType>
2 <resourceURI>https://research.cloud.hs-furtwangen.de/rest/ruleTypes/

↪→ unencryptedResourceAccess</resourceURI>
3 <category>security</category>
4 <attributeKey>metric</attributeKey>
5 <attributeKey>period</attributeKey>
6 <attributeKey>threshold</attributeKey>
7 <attributeKey>filter</attributeKey>
8 </RuleType>

Figure 43: Example for a Policy Governing Unencrypted Resource Access in CAPL
– Rule Definition

6.3.2 Example: Unencrypted Resource Access

On a higher level of abstraction, a provider’s security policy or an agreement with

its customer may require that all data transfer that happens in a single cloud

service may only happen in a sufficiently protected manner. This means, a suit-

able encryption scheme should be applied such as Hypertext Transfer Protocol

Secure (HTTPS) using Transport Layer Security (TLS). While careful planning

and service configuration can reduce the risk of accidental unencrypted data

transfers (e.g., by prohibiting the use of plain Hypertext Transfer Protocol (HTTP)

or weak encryption algorithms), an audit introduces assurance, that there are

in fact no undetected misconfigurations that put data at risk of exposure. Such

an audit can easily be described using CAPL.

Figures 42, 43 and 44 show a simplified example of how such an audit policy

looks like. There are three distinct sections in this policy.
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• Resource group: This section describes a group of resources to which the

security requirement of exclusively encrypted data transfer applies. In this

particular case, this resource group consists of only a single VM that hosts

a web server (see machine tag for machine 1). Furthermore, this group of

resources is associated with a single tenant. This information is relevant

for evidence collectors in AAS.

• A custom audit description: The rule type is described in a custom Rule-

Type. The rule is identified by the complete Unique Resource Identifier

(URI) for unencryptedResourceAccess. Furthermore, the custom rule re-

quires the definition of the additional parameters metric (i.e., what and

how should be counted), period (i.e., in what period should be counted),

threshold (i.e., what is the threshold the indicates a violation) and filter

(i.e., which events should be counted). This information is relevant for the

evidence evaluators in AAS

• The actual audit rule: This section brings together the previously defined

resource group and the rule type for the audit and combines them to a

policy by associating them and providing the missing values for the abstract

rule. Unencrypted resource accesses counts serve as the metric, a period

of counting 60 seconds is relevant before the counter is reset for the next

audit interval. A threshold of zero effectively leads to a policy violation if one

or more unencrypted resource accesses are counted during a single period.

To limit the amount of events (e.g., not all resources require the same level

of protection), a filter is specified that in this case matches all resources

that are exposed by the web server running on the VM. This information is

relevant for the evidence evaluators in AAS

There are several approaches to declaratively defining cloud environments. Open

Virtualization Format (OVF) [171] is a standardized format maintained by DMTF

for building and describing distributable virtual appliances. It is agnostic to

the type of hypervisor and is used in cloud as well as non-cloud environments.
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1 <Policy xmnls="http://research.cloud.hs-furtwangen.de/capl/">
2 <id>https://aas.cloud.hs-furtwangen.de/policies/unecryptedResourceAccess</

↪→ id>
3 <name>Disallow unencrypted resource access</name>
4 <refName>encryptedacces1</refName>
5 <description>There must be no more than X requests on a resource matched by

↪→ FILTER via unencrypted HTTP in a given period of time</description>
6 <enabled>true</enabled>
7 <ruleType href="https://research.cloud.hs-furtwangen.de/rest/ruleTypes/

↪→ unencryptedResourceAccess"/>
8 <targetResource href="https://research.cloud.hs-furtwangen.de/rest/tenant-

↪→ virtual-machines-1"/>
9 <attribute key="metric">unencrypted-resource-accesses</attribute>

10 <attribute key="period">60</attribute>
11 <attribute key="threshold">0</attribute>
12 <attribute key="filter">/resources/*</attribute>
13 </Policy>

Figure 44: Example for a Policy Governing Unencrypted Resource Access in CAPL
– Policy Definition

Besides the disk image of an OVF package, the descriptor plays the most sig-

nificant role in describing a virtual appliance. The descriptor is an XML-based

(see [172] for the full schema definition) document that describes the appliance

and the details of its deployment as VM such as: network configuration, disk

images, allocation of virtual resources and more.

A language that enables the modelling of interactions between an IaaS cloud

provider and its consumers is CIMI [170]. CIMI explicitly focuses only on IaaS

aspects of the cloud and omits to consider PaaS and SaaS scenarios. It specifies

a description language for basic resources in an IaaS cloud such as networks,

machines, configurations and storage. Additionally, CIMI specifies a ReSTful

protocol for exchanging such information between the cloud provider and the

cloud consumer.

Another language that recently gained traction in the context of the PaaS cloud

project Cloud Foundry [131] is BOSH [173]. BOSH is an open source tool that

enables the provision of virtual environments in a cloud. It also supports soft-

ware developers in packaging new releases and automating deployment and life-

cycle management. BOSH’s main area of application is in enabling the deploy-

ment of PaaS environments in Cloud Foundry-based clouds. However, BOSH

167



CHAPTER 6. AUDIT DESCRIPTION USING SOFTWARE AGENTS

is flexible enough to be used in conjunction with many different IaaS providers

and also outside of the context of cloud computing.

BOSH is built upon the concept of stemcells, which are similar to common vir-

tual machine templates. A stemcell is a lightweight virtual machine that in-

cludes a BOSH agent. When a stemcell is instantiated (for instance by using

the resources provided by an IaaS provider), BOSH interacts with the agent to

install further software on the VM and perform configuration tasks. In that way,

the simple stemcell that does not serve much purpose initially, can grow into a

full application. Runnable cloud environments are called deployments in BOSH.

A deployment is described by a deployment manifest, which is a configuration

file written in JSON.

Deployment manifests in BOSH are suitable to describe an expected state of

a virtual environment. This does not have to be always coupled with a full

Cloud Foundry deployment. Because of BOSH’s simplicity and extensibility, it

is suitable to be parsed by APM to provide additional information for defining

audits based on policies described in A-PPL or CAPL.

Additionally, BOSH and other infrastructure description languages can be suit-

able during audits where the objective is to assure that the actual cloud de-

ployment (resources and software) is identical with the expected deployment as

described in such language.

6.4 Audit Description

AAS provides the technological framework for auditing policy compliance by giv-

ing the auditor access to a repository of audit tasks and associated agents to

choose from. They support the auditor by encapsulating repetitive tasks of set-

ting up automated audits. However, an audit task cannot be fully captured by

the policy language alone, due to the limitations of expressiveness and scope of

the policies. This was demonstrated using languages from three different do-
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mains. While A-PPL captures high-level aspects and obligations with respect

to accountability, it does not define how a audit can be performed to assure

compliance. The same holds true for CAPL and BOSH as well. This is why

a semi-automated approach to audit task definition has been chosen in this

project that incorporates a combination of agents (see Section 5.3.1 for list of

developed agents) into a task that is associated with a specific type of rule.

6.5 Summary

In this chapter, three different policy languages were explored for their suitabil-

ity as a baseline for describing audit tasks in AAS. As a proof of concept, the

implementation of A-PPL-support in AAS was described using three different ac-

countability rules. Furthermore, CAPL was discussed as a potential language for

describing security focused audits. For both languages, a mapping of language

constructs to concepts in AAS was presented that form the basis for the audit

task extraction and configuration process in AAS’s APM.

Additionally, BOSH was presented as a language that is used in PaaS cloud sce-

narios for describing deployments on virtual infrastructures. While it does not

define rules similar to A-PPL or CAPL, it does provide a (should-be) declarative

description of a cloud-based virtual environment based on resources such as

VMs or networks and software configurations. These properties make BOSH a

candidate, for both providing additional infrastructure information to the task

parsing process that cannot be provided by either A-PPL or CAPL, and for audit-

ing actual cloud deployments against an expected state that is defined in BOSH.
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Chapter 7
Evaluation

IN this Chapter, the AAS research results alongside its prototype implementa-

tion are evaluated and discussed from three different perspectives:

• Functional perspective

• Scalability perspective

• Privacy protection and security perspective

Based on this discussion, strengths and weaknesses of the AAS approach are

presented with suggestions for future extensions that could address its short-

comings.

The demonstration scenario and deployment has served as a foundation for the

evaluation of research results that have been published in the aforementioned

papers associated with this thesis. This section contains, consolidates and ex-

tends these separate evaluations.

7.1 Deployment and Evaluation Scenario

For the development and evaluation of the AAS prototype, a demo deployment

was built that matches the following story: the IaaS provider in this deployment
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refers to CP2 in the scenario described in Section 4.1 and provides infrastruc-

ture level resources to its customers (i.e., the SaaS provider CP1) using Open-

Stack [14]. The deployment has the following properties:

• Two physical servers with dual 6-core Xeon X5660 processors and 40GB

RAM, each.

• One of the servers acts as an OpenStack compute node that is only hosting

VMs.

• The other server acts as an OpenStack controller and compute node hy-

brid, which hosts VMs as well as OpenStack’s core services (such as Nova

for computing resources) and optional services (such as the Horizon dash-

board).

• Both servers provide AASs runtime environments for executing software

agents on the hypervisor and host level.

• Two VMs simulate CP1’s service. The VMs are distributed on the physical

servers.

The definition of the scenario follows that provided in Section 4.1, with the limi-

tation of the number of cloud providers that are involved in the service provision

to two (i.e., CP1 and CP2) in order to simplify the functional demonstration.

The deployment is depicted in Figure 45. Blue elements are associated with

the IaaS provider’s (CP2) administrative domain, whereas orange elements are

associated with the SaaS provider’s (CP1) domain. Both providers run their own

instance of AAS, which is depicted as the element Core + UI. Several Runtime

elements provide the required agent runtime environments.

The evidence sources that are required for the audit cases demonstrated in the

remainder of this chapter are:

• Host and IaaS level: the host level is depicted by CP2’s AAS Runtime envi-
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Figure 45: Audit Agent System Prototype Deployment for Evaluation

ronments on the actual physical servers and CP1’s AAS Runtime environ-

ments inside its VMs.

• DTM: CP2 runs a dedicated tool for monitoring data transfers, which is

used as an evidence source. This tool is external to AAS.

• Openstack’s Nova service: This part of the CMS layer is made available to

authorized users as an evidence source by CP2.

• Enforcement engine: the policy enforcement engine (A-PPL-E) of CP1’s ser-

vice is used as an evidence source as well.

The flow of evidence is depicted in the figure. Agents running at the Runtime

component collect evidence and send it to evidence stores at the Cores. The

border between the administrative domains of the two providers is crossed on

the controller node, where a collector agent from CP1’s core (orange) can be

migrated to CP2’s runtimes on both servers (blue) in order to collect data for

example from the nova or DTM services.
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7.2 Functional Evaluation

The functional perspective aims at evaluating AAS regarding its capability of en-

abling automated, evidence based and policy-driven audits of privacy, security

and accountability policies (see objective 1 and 2 in Section 1). The evaluation

methodology is based on a set of sample audit cases that focus on different in-

teraction scenarios, evidence sources and evaluation mechanisms. The main

reason for this approach is the ability to highlight AAS’s flexibility as a frame-

work for evidence-based audits.

The first audit case for evaluation deals with an approach to detecting poten-

tial breaches of a cloud service based on access patterns. The approach is

lightweight (in terms of the complexity of the used evaluation mechanism to

find violations) but provides added value due to its ability to uncover potentially

unwanted data access.

The second approach shifts most of the evidence collection and violation detec-

tion work to another tool that is concerned with detecting potential data loca-

tion violations. This scenario highlights AAS’s capability to incorporate already

existing monitoring and auditing tools that may be limited in their scope but

complement AAS’s evidence collection capabilities.

The final approach is used to show the integration of different evidence sources

that are scattered vertically (on different architectural layers) and horizontally (at

different providers) into a single audit case (refer also to objective 3 in Section 1).

This shows the extensibility and complexity of audits that can be performed by

AAS.

The steps for setting up the audit task and triggering the violation are executed

automatically on the demo deployment using fully automated shell scripts.

The timing information is specific to the runs that were used to generate the

data that is presented here. Due to the nature of the system and external fac-

tors such as host, network load and latency these are expected to differ slightly
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between runs. The timing information are derived from AAS’s internal logging

mechanisms that is used to record events in the system during its runtime for

debug purposes. The original logs used for this evaluation are available in the

Appendix C in a mostly raw state as they have been produced by AAS during

the tests. Some information has been cut in order to reduce the overall volume

of the logs. However, these cuts are clearly indicated and do not influence the

validity of the logs in any way.

The logs generally are formatted as follows: timestamp SEP event_type SEP

raw_data

The timestamp indicates the time and date at which the message was recorded

by AAS’s logging facility. This is not necessarily the same time as the occurrence

of the actual event in the system. The SEP character is simply a designated

separator to enable automated parsing of the log since it is considered a tracing

and debugging facility of AAS. The occurrence time is typically included in the

field raw_data. The event_type is any of the constant event types defined in

Table 12.

Type Description Logger
audit_task_-
created

Indicates details about an audit task that
was created in AAS either via the dash-
board or the API. The message contains the
audit task type and configuration.

APM

spawning_-
task_agents

Indicates details about the preparation
and migration of agents required for an au-
dit task.

AAC

evidence_-
record_created

Indicates the collection and storage of an
evidence record in the ES.

All collec-
tor agents

received_-
apple_log

Indicates the collection of certain messages
from A-PPL-E as evidence. Contains sub
types “PII store message” and “PII delete
message”

A-PPL-E
collector
agent

snapshot_-
detected

Indicates the collection of snapshot history
for a VM from OpenStack.

OpenStack
collector
agent

policy_-
violation_-
detected

Indicates the detection of a policy violation.
Contains sub types for “data retention”,
“data location” and “intrusion” for the au-
dit tasks

All evalua-
tor agents
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evidence_-
record_for_-
violation_-
created

Indicates that a detected policy violation
was stored as evidence in the ES

All evalua-
tor agents

notification_-
email_sent

Indicates that a notification has been sent
via email alongside the message’s content
and its recipient.

E-mail no-
tification
agent

notification_-
sent_to_IMT

Indicates that a notification has been sent
to an incident management tool alongside
the message’s content.

IMT no-
tification
agent

Table 12: Logging Event Types in the Audit Agent System Internal Logging

The field raw_data contains any kind of data that provides context to the event

type. This can be an evidence record for the evidence related event types or for

instance the complete notification for the notification-related event types.

7.2.1 Example Audit Case 1: Intrusion Detection

The first audit case for evaluation is concerned with a simple method of detecting

potentially unwanted data access on the application level that is either caused

by an insecure API or by a compromised user account that holds sufficient priv-

ileges to cause a severe data breach. It is assumed that there is no direct access

to a lower level representation of data (e.g., on a database or VM level), but all

accesses happen over a service’s public interface. An unusual access pattern

is considered an indicator of a potential violation. AAS’s goal is to detect such

patterns during regular audits.

This is a single-provider scenario with respect to evidence sources considered,

where the service is offered by CP1 to consumers (see Figure 46 for reference).

With respect to the agent placement in the demo deployment, the audit task

looks as follows:

• The A-PPL-E log collector agent runs at the AAS runtime environment on

VM 2 owned by CP1.
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Figure 46: Intrusion Detection Audit Example

• The associated evaluator agent runs at the AAS runtime environment on

VM 2 owned by CP1.

• The Incident Management Tool (IMT) notification agent runs at the AAS

runtime environment on VM 2 owned by CP1.

• The evidence store runs at VM 1 owned by CP1.

Associated Policies

While none of the policy languages that AAS is aimed at supports defining rules

such as “no data shall be leaked” explicitly, they can do this implicitly by defin-

ing authentication and authorization rules. However, there are cases, where

an intrusion or data leak may happen although the accessing user was prop-

erly authenticated and authorized (e.g., when a user’s access credentials were

compromised).

This audit case is part of the custom audit tasks, that are originating from well-
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known best practice catalogues (e.g., running a system for intrusion detection),

such as those defined in IT-Grundschutz [174]. Language integration for access

control rules and the integration in AAS was discussed in Section 6.2.4.

Evidence Sources

The sole evidence source in this scenario is the access control logging performed

by the service that CP1 offers. In that service, access to PII is logged on the

application level using A-PPL-E. This includes granted as well as denied access

requests with additional event details such as timestamps, the object identifier

and the accessing subject. The log events emitted by the access control system

are picked-up by the evidence collector. A typical event log produced by A-PPL-E

is depicted in Listing 7.1. It contains the owner of the PII object, the subject

that is requesting access, the timestamp and the operation for which access is

requested. The structure of the log is specific to A-PPL-E.

1 Message: Date:Thu Mar 03 15:39:39 CET 2016 Event associated with personal data

↪→ ’Country’ belonging to ’Panos’, access attempt by subject ’Employee’:

↪→ Access permitted for, for action ’read’

2 piiAttributeName: Country

3 piiOwner: Panos

4 date: 2016-03-03 15:39:39.0

Listing 7.1: Intrusion Detection Audit Example – Access Control Log as collected

from A-PPL-E by AAS

Evaluation Mechanism

The evaluation mechanism in this case can cover a wide range of complexity.

In this demo scenario, a simple approach was chosen that merely counts the

number of access control events that are issued by a single subject in a given

period of time. Accordingly, a periodic audit was chosen that uses the same in-

terval. Only read operations are considered and counted in ReadOpCounter (in a

more complex case this could be extended for instance by access denied events,

178



7.2. FUNCTIONAL EVALUATION

but for simplicity reasons this was omitted in this example). If the counter ex-

ceeds the value of Threshold this means a policy violation. If a given threshold of

events is passed in a period, AAS considers this to be a potential violation (e.g.,

a compromised account is used to “dump” the PII database).

Triggering Violations

To trigger a violation in the evaluation deployment, the following steps are exe-

cuted:

1. The auditor creates an audit task that aims at detecting potential data

breaches among events that, seen individually, do not indicate a violation.

2. The audit interval is set to two minutes by the auditor.

3. The audit task’s filter is set to only consider read events on data sets owned

by a data subject.

4. A threshold of 5 operations per period is set.

5. 20 read operations on a data set owned by the data subject are triggered in

rapid succession using the service’s API (i.e., A-PPL-E’s getPii() interface).

6. AAS detects the violation (20 operations exceed allowed 5) and presents it

as an audit result in the dashboard.

Validation by an Automated Test Case

Figure 47 depicts the timeline of events in the automated test case. A log of

this test case is available in the Appendix C, Listing C.1. The log is complete in

the sense that all events are recorded that happen during the given time frame.

However, some redundant information was removed for the sake of readability

(this is pointed out explicitly where applicable).

In the following, the order of events is described. Events that are denoted above

the timeline in Figure 47, relate to actions that are internal to AAS, whereas
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Figure 47: Intrusion Detection Audit Example – Timeline of Events

events that are denoted below the timeline indicate test case specific external

events such as intentionally triggering a violation.

1. The relevant events in the first step are audit_task_created and spawn-

ing_task_agents. These events are artifacts of a new audit task being cre-

ated in AAS. In this case, this happens via AAS’s ReST interface1. Both

events also reflect additional debugging information that was added to the

task (e.g., the IP address of the target containers for the agents).

2. The audit task is setup to take into account access control events that

occur in 1 minute intervals. Here the audit interval start at 07:54:18 and

ends at 07:55:18 after which all events are analyzed.

3. Figure 47 marks the first and last access requests (at 07:54:30 and 07:55:02,

respectively; 20 in total) that are being performed during the test case.

4. The policy_violation_detected and evidence_record_created events are pro-

duced by the evaluation agent that counts the access control events as

previously described and generates an evidence record for the violation.

An excerpt of the logged event (as collected from A-PPL-E) is presented in

Listing 7.1.

1 via HTTP GET: http://141.28.98.114/rest/setAuditTask?task=Intrusion%20attempt%
20detection&container=1412898117&period=60000&threshold=5
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5. The test case is concluded by the notification of another tool using their

ReST interface and message format (as logged in event notification_sent_to_IMT ).

It is important to note that there is a case where a violation may not be triggered

when the access operations fall partially in two consecutive audit periods. How-

ever, this is a limitation of the weak detection algorithm. In a real-world scenario,

this algorithm should be replaced with more sophisticated approaches that use

more history data (i.e., events collected during previous periods) and more ad-

vanced evaluation algorithms to detect anomalies in data access patterns (e.g.,

ANN and more complex rule sets).

For this demo, the chosen algorithm was sufficient to demonstrate the feasibility

of integrating access control logging as a vital source of evidence.

7.2.2 Example Audit Case 2: Data Location

The second evaluation audit case is concerned with data location restrictions put

on the storage of PII. The focus is put on the underlying storage facility provided

by CP2 (infrastructure) to CP1. The actual location of the virtual block storage

device that is used for CP1’s VM is transparent to CP1. Relocation of the device

can happen at any time, if CP2 chooses to do so (e.g., based on load balancing

algorithms that migrate VMs between data centers to achieve Quality of Service

(QoS) goals). Transfer events can either be captured directly with a collector

agent that monitor’s OpenStack’s internal message bus or by interfacing with

another monitoring tool that provides similar functionality. It is assumed that

migration events are detectable by those tools.

In the scenario depicted in Figure 48, the approach of interfacing with other,

more specialized tools is presented to highlight the flexibility of AAS. The actual

implementation of the scenario relies on the integration of a DTM [175] at the

infrastructure provider that analyses transfer events according to the data lo-

cation policy in effect and reports these events as well as detected violations to
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Figure 48: Data Location Audit Example – Overview

AAS. Data on the IaaS level can be “transferred within the infrastructure due to

mechanisms such as snapshot, replication, instance migration etc.” [175]. The

DTM monitors OpenStack’s API for these events, fills a data tracking knowledge

base with them and in conjunction with a topology knowledge base detects data

location violations caused by infrastructure level operations. Since this requires

low-level access to the provider’s infrastructure, this tool needs to be run by the

provider and exposed to the customer by a secure interface.

The DTM used in this scenario is a tool that was developed independently from

the work presented in this thesis and where no contribution other than the

integration in AAS was made by the author. For the execution of this demo

audit, static but realistic log data that was provided by the tool authors was

used as evidence, since there was no access to a running instance of the DTM

tool.

With respect to the agent placement in the demo deployment, the audit task
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looks as follows:

• The DTM log collector agent runs at the AAS runtime environment on the

OpenStack controller owned by CP2.

• The associated evaluator agent runs at the AAS runtime environment on

the OpenStack controller owned by CP2.

• There is no notification agent.

• The evidence store runs at VM 1 owned by CP1.

Associated Policies

The most important input is the rule that defines allowed locations for the virtual

machine and its storage. As previously described in Chapter 6, A-PPL is a policy

language that supports the definition of data location rules. AAS provides an

audit task based on the existence of a data location rule in the input policy.

Language integration for access control rules and the integration in AAS was

discussed in Section 6.2.2.

Evidence Sources

In this case, the DTM acts as the sole evidence source that generates and logs

data transfer events as well as potential violations to AAS. However, in more

complex cases, data transfer events are also generated on other layers, for ex-

ample:

• Host layer: a virtual block devices is transferred to another location via

S-FTP.

• PaaS layer: the application provides bulk transfer operations on the API

level with logging of the requester’s IP address (e.g., location identification

via GeoIP).
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• IaaS layer: same log information as on the PaaS layer but collected using

web server logging (e.g., using Apache’s access.log).

1 148712 INFO com.sap.a4cloud.ruleengine.RuleEngine - Potential violation

↪→ detected: "Volume" name "EU Data vol.", moved from original host in "

↪→ Europe" to new host in "US"

Listing 7.2: Location Audit Example – Location Violation as Received from DTM by

AAS

Listing 7.2 depicts an example of a violation that is reported by DTM. AAS acts

as a receiver of such events using the DTM collector agent. DTM reports the

transfer (detaching a volume from data center Europe to a VM in data center

US). AAS picks up and stores these messages. Violation detection is performed

by DTM.

Evaluation Mechanism

The evaluation mechanism in this example audit case is kept rather simple, due

to the fact that the DTM tool already performs a verification of data transfers.

All events that are collected from DTM are filtered for keywords that indicate

a violation. If such an event is detected, the audit is failed and a violation

produced. In the absence of such an event, the audit is passed.

Triggering Violations

The following steps are taken in AAS to setup an audit task and trigger a viola-

tion:

1. The auditor creates an audit task that aims at detecting potential data

transfer violations by comparing the current location to the restriction de-

fined in the A-PPL policy.

2. All checks are performed by the external tool DTM.
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Figure 49: Data Location Audit Example – Timeline of Events

3. AAS continuously collects evidence from DTM (data transfer events and

detected violations).

4. A data transfer event is triggered in OpenStack by either moving a VM

to another zone or by detaching and attaching a block device to VMs in

different zones.

5. AAS picks up violations (by keyword filtering) and presents them as an

audit result in the dashboard.

Validation by an Automated Test Case

Figure 49 depicts the timeline of events in the test case. A log of this test case

is available in the Appendix C, Listing C.2. The log is complete without any

restrictions. No data was removed for the sake of readability due to the relative

simplicity of the audit case and its data flows.

In the following, the order of events is described. Events that are denoted above

the timeline in Figure 49 relate to actions that are internal to AAS, whereas

events that are denoted below the timeline indicate test case specific external

events such as intentionally triggering a violation.

1. The relevant events in the first step are audit_task_created and spawn-

ing_task_agents. These events are artifacts of a new audit task being cre-
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ated in AAS. In this case, this happens via AAS’s ReST interface2. Both

events also reflect additional debugging information that was added to the

task (e.g., the IP address of the target containers for the agents).

2. The audit task is setup to continuously take into account all incidents

reported by the data monitoring tool. Therefore, an audit interval is omitted

in Figure 47.

3. Figure 47 marks the beginning and end of a period, where a transfer viola-

tion is detected by the DTM tool.

4. AAS receives that violation notification from DTM via thespecialized DTM

collection agent and stores it as evidence.

As long as no additional evidence sources are introduced in the task, AAS in

this case mainly serves the purpose of documenting the timeline of events by

archiving evidence and double-checking the data that is provided by DTM.

7.2.3 Example Audit Case 3: Data Retention

The third evaluation audit case, assumes the following scenario: In case of

a breach of a service’s database, sensitive information can be leaked. The

database is hosted alongside CP1’s service on a cloud infrastructure provided

by CP2. Effectively, this means that the data is stored inside a virtual machine,

to which CP1 has root / administrative access to. Since the cloud infrastructure

provider personnel has administrative access to the underlying physical ma-

chine hosting the tenants virtual machines, copies of the data can be created. A

data retention rule is applicable to the data stored in the PII database. This rule

is enforced by CP1’s service. However, there are many points where data can be

duplicated that are beyond the direct control of CP1. The places where the data

can duplicated are the following:

2 via HTTP GET: http://141.28.98.114/rest/setAuditTask?task=DTMTAuditTask&container=
1412898110&intervall=60000&dataTrackLocations=Europe,Africa
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• On the host layer by the cloud infrastructure provider: due to the in-

frastructure provider being in full control over the physical computing re-

sources, a low-level access to a customer’s virtualized resources is always

possible. A person with administration-level access rights to the underlying

virtualization hosts or storage subsystem can always access and duplicate

a virtual machine, regardless of the actual owner of the data that is con-

tained inside it. Encryption of the virtual machine can be a suitable safe-

guard but is easily circumvented as the virtual machine must be decrypted

for execution.

• On the virtual machine layer by the SaaS provider: the SaaS provider uses

virtual resources (as in storage, network and machines) to host its ser-

vice. Part of it is a database running on a virtual machine. A person with

administration-level access rights to the underlying virtual machine (i.e.,

root credentials) can, at any time, copy the databases backing files (if file-

level storage backend is used instead of a block-level backend).

• On the CMS layer by the SaaS provider: Similarly to the copying of the

virtual machine image, clones and snapshots can duplicate data in a more

controlled way (i.e., operations are logged, authentication and authoriza-

tion is enforced on a higher level of abstraction than filesystems). A person

with sufficient access rights to administration operations in the CMS can

issue the creation of a clone or snapshot of a virtual disk image, which is

the underlying or attached storage that is associated with a VM.

• On the application and database layer by the SaaS provider: On an even

higher level of abstraction, data can also be copied by leveraging service-

level interfaces or the database management system. A person with suffi-

cient access rights to administration operations in the database manage-

ment system can easily create a copy of the data by dumping (reading all

records using SQL) the contents of tables or by exploiting web service APIs

to extract data sets.
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Figure 50: Data Retention Audit Example (Provider Chain) – Overview

Figure 50 depicts the implemented evaluation audit case, where evidence is col-

lected from two different cloud providers and is combined to evaluate whether

or not the data retention mechanisms that are incorporated into CP1’s service

are actually effective.

This case illustrates the combination of two different evidence sources at two

different providers into a single audit task.

With respect to the agent placement in the demo deployment, the audit task

looks as follows:

• The OpenStack Nova collector agent runs at the AAS runtime environment

on the OpenStack controller owned by CP2.

• The A-PPL-E log collector agent runs at the AAS runtime environment on

VM 2 owned by CP1.

• The associated evaluator agent runs at the AAS runtime environment on

VM 2 owned by CP1.

• The IMT notification agent runs at the AAS runtime environment on VM 2
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owned by CP1.

• The evidence store runs at VM 1 owned by CP1.

Associated Policies

The policy that is associated with the audit task is tightly coupled with data

retention requirements. A maximum data retention period for a specific set of

data can thereby stem from different origins. While there are legal obligations

that dictate the deletion of data after a certain period of time, there may also

be a need by the customer to protect its data by forcing the provider to veri-

fiably delete data after a given period of time. Data retention obligations that

are associated with a particular data owner can be represented in a machine-

readable way using A-PPL. Language integration for data retention rules and the

integration in AAS was discussed in Section 6.2.3.

Evidence Sources

The evidence sources that are relevant to this scenario are scattered across two

different cloud providers. The information on whether or not a PII object was

deleted by the service at CP1 due to data retention is provided by an operations

log at that service. The information on lower-level duplicates (VM snapshots in

particular) is provided by OpenStack owned by CP2. However, since CP1 is a

tenant at CP2, it is provided access to that lower level information via the Nova

service API as this is a public API that is commonly exposed. The evidence collec-

tion can therefore follow the remote API approach (as described in Section 5.4.4).

However, the mobile collector approach works equally well.

To illustrate the potential complexity of this problem, Figure 51 shows an exten-

sion of this scenario, where additional evidence sources from both the host layer

(i.e., the monitoring of low-level operations such as copy and sftp transfer on the

VM backing file) and the IaaS layer (i.e., the monitoring of low-level operations
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Figure 51: Data Retention Audit Example (Provider Chain) – Extension

such as copy and sftp transfer on the database (DB) backing file) are added.

Most of these additional evidence sources on the host level are not directly ex-

posed to CP1. Therefore, CP2 has to provide the capability to deploy mobile

collectors in their system. This can of course only be used if the cloud provider

allows it.

Listing 7.3 depicts two events as they are collected by the A-PPL-E collector.

In conjunction with the aforementioned snapshot information, data retention

violations are detected.

1 Message: PII storedtype: policy admnistration

2 piiAttributeName: Country

3 piiOwner: Panos

4 date: 2016-03-02 12:04:27.0

5
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6 Message: PII deleted type: policy enforcement

7 piiAttributeName: Country

8 piiOwner: Panos

9 date: 2016-03-02 12:06:28.0

Listing 7.3: Data Retention Audit Example – Logged Data Retention Enforcement

Event

Evaluation Mechanism

The evaluation mechanism that is integrated in the evaluator agent of this audit

task, follows two general steps:

1. Construct a timeline of events relevant to data retention.

2. Perform checks on timeline to uncover snapshots that hold copies of data.

The timeline of events is constructed based on events that are collected as evi-

dence from the service and the CMS OpenStack. The service provides for each

dataset the action, timestamp and owner, where an action follows CRUD (create,

read, update and delete). For clarity of the demonstration, a filter was introduced

to limit the number of events to only those belonging to a certain owner. Simi-

lar information is provided by the collector at OpenStack that regularly gathers

information about the VM that holds the database with the datasets. This infor-

mation includes the VM and snapshot identifiers, timestamp and action, where

the only relevant action in this case is: snapshot. All events are ordered by

time in order to construct a timeline of events for the analysis in the second

step. The physical system clocks are synchronized using Network Time Protocol

(NTP), while the hosted VMs share the system time with their physical hosts.

The checks that are performed in the second step follow the algorithm presented

in Figure 1.

For a dataset the timestamps of the create and delete events are taken and the

dataset lifetime is calculated. If the calculated value exceeds the maximum that
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Algorithm 1 Evaluation Mechanism for Data Retention

RetentionT imeDataset ← TimestampDatasetDelete − TimestampDatasetCreate

RetentionT imeMax ← RetentionT imeAPPL

if RetentionT imeDataset > RetentionT imeMax then
return Failed

end if
if TimestampSnapshotCreateEvent ∈ RetentionT imeDataset then

if TimestampSnapshotDeleteEvent ∈ RetentionT imeDataset then
return Passed

else
return Failed

end if
else

return Passed
end if

is defined in the policy, the test fails. Next, the information is combined with that

of potential duplicates. If there is no snapshot event for the relevant VM during

that period, the check is passed. Also, if during that lifetime a snapshot was

created (i.e., there is a snapshot event in the timeline), it is checked whether or

not that snapshot still exists. If the snapshot does not exist anymore, the check

is passed else it is failed. A slightly condensed (due to space constraints non-

essential information was removed) example of a violation evidence record, that

includes all events that are associated with a retention violation is presented in

the Appendix B.2.

Triggering Violations

The following steps are taken in AAS to setup an audit task and trigger a viola-

tion:

1. The auditor creates an audit task that aims at detecting potential data

retention violations. The necessity of such an audit is derived from the

A-PPL policy that defines a maximum data retention requirement.

2. The audit task is configured.

3. AAS continuously collects evidence from OpenStack and the PII enforce-
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Figure 52: Data Retention Audit Example – Timeline of Events

ment tool (PII create and delete events) to construct trails of events during

an audit.

4. A snapshot is created after a PII is created in the system but before its

maximum retention period is reached.

5. AAS picks up violations and presents them as an audit result in the dash-

board.

Validation by an Automated Test Case

Figure 52 depicts the timeline of events in the automated test case. A log of

this test case is available in the Appendix C, Listing C.3. The log is complete in

the sense that all events required for the depiction of the test case are recorded.

However, the log was shortened and information was removed for the sake of

readability (this is pointed out explicitly where required).

In the following, the order of events is described. Events that are denoted above

the timeline in Figure 52 relate to actions that are internal to AAS, whereas

events that are denoted below the timeline indicate test case specific external

events such as intentionally triggering a violation. It needs to be noted, that

evidence records do not necessarily need to be collected in a temporally ordered
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way, but the order of events is reconstructed during the evaluation process.

1. The relevant events in the first step are audit_task_created and spawn-

ing_task_agents. These events are artifacts of a new audit task being cre-

ated in AAS. In this case, this happens via AAS’s ReST interface3. Both

events also reflect additional debugging information that was added to the

task (e.g., the IP address of the target containers for the agents).

2. The audit task is setup to continuously collect snapshot information for the

given VM, see snapshot_detected event at 21:45:36 that contains the snap-

shot history provided by OpenStack Nova service and received_apple_log_PII

store message at 21:45:38 (actual write event was at 21:44:36) and re-

ceived_apple_log_PII delete message at 21:46:39 (actual delete event was

at 21:46:36 i.e., after a retention period of 2 minutes) event pairs that are

collected from the A-PPL-E instance running on that VM, which produces

store and delete events for PII as depicted in Listing 7.3.

3. The policy violation is detected as data_retention_policy_violation_detected

at 21:47:41, when all evidence is available at the evidence store and the

evaluation is performed at the end of the audit interval.

4. Finally, an incident management tool is notified (see notification_sent_to_IMT ).

This audit case highlights a more complex case, where evidence sources that

are scattered across a cloud service provision chain are used to detect policy

violations.

7.3 Scalability Evaluation

Since there are a vast number of evidence sources and therefore a potentially

equal number of collectors, ensuring the scalability of the AAS collection and
3 via HTTP GET:

http://141.28.98.114/rest/setAuditTask?task=dataRetentionPii&container=1412898117&
vmName=CP1_Service&Username=Panos&osContainer=1412898110&intervall=60000
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audit process, as well as the implementation is very important. Besides the

obvious match of the adapter metaphor that enables the integration of heteroge-

neous evidence sources, the distributability property of MAS was a driving factor

in the architecture design of this system. However, like any distributed system,

MAS come with their own set of challenges regarding the scalability of systems

that leverage that design. This has been discussed extensively in the literature

before.

For instance, Rana et al. propose in [176] a categorization of performance met-

rics in system parameters and coordination mechanisms. Whereas system pa-

rameters are concerned with the agent management, their operations and agent

transfer, the coordination mechanisms are concerned with parameters such as

number of messages that agents exchange or the total number of agents in-

volved. Many of the metrics of the system category, such as time to setup an

agent or scheduling of agent activities on a host are more related to the imple-

mentation of the underlying agent framework.

The following discussion will however focus more on the scalability issues that

are introduced by the evidence collection and auditing processes in AAS. The

discussion is performed from three different perspectives that cover manage-

ment aspects, performance aspects (that cover both system and coordination

parameters), and presentation aspects.

7.3.1 Management Perspective

The management perspective focuses on organizational scalability aspects when

performing an audit. For instance, in a cloud ecosystem, there are typically a

lot of different tenants sharing the same resources. Also, the number of services

provided by a cloud provider can be equally large. From an AAS point of view,

this means that an auditor needs the tool to enable him to efficiently manage

a large number of audit policies for large numbers of services and many cus-

tomers. Furthermore, the preparation of AAS has to account for dynamically
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changing infrastructure at the provider.

Risks

The scalability risks from management perspective in AAS are as follows:

• Custom policies and agreements: the audit tasks are generated on the

basis of policies for which compliance should be checked. However, policy

languages such as A-PPL intentionally move away from one-size fits all

approaches towards customized policies, on which the service consuming

party has some degree of choice or influence. This means that audit tasks

may not necessarily be generalizable in a way that allows the check of a

single rule, but variants of that rule for each active policy variant.

• System preparation in a dynamic environment: a central feature of the

cloud is its dynamic nature in both the data center at the provider (e.g.,

extension storage, servers and networks) and the consumer (elasticity of

virtualized resources). With this dynamic, evidence sources are continu-

ously introduced and removed, which creates the need for AAS to grow or

shrink with such changes.

Countermeasures

When considering custom policies, the need for customized evaluation parame-

ters during an audit become apparent. The AAS system addresses this by offer-

ing the ability to extract tasks and parameters based on single policies. However,

if policies differ between multiple parties, this approach is problematic since it

requires the auditor to parse separate policy documents for each party and cre-

ate widely similar audit tasks with minimal differences. This is not problematic,

if the required audit tasks can be generated fully-automatically. But, as soon

as manual input by the auditor is required, this approach fails. Therefore, addi-

tional tools are required that support the auditor during the extraction of audit
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task from policies (i.e., making bulk operations more easy).

Due to the dynamic of the cloud, a manual approach of adding new evidence

sources to the system is not feasible. Therefore, a lightweight runtime envi-

ronment for the AAS agents was created to allow for easy deployment at new

evidence sources. The runtime environment is packaged as a single compressed

file that includes a simple configuration that has parameters for the core plat-

form and a platform identifier. The platform identifier uniquely identifies the

runtime environment at the evidence source, whereas the core platform identi-

fier specifies to which AAS core instance it is supposed to connect to at initial-

ization. This self-registration process allows for automated deployment of the

required runtime environment alongside for example new virtualization servers

using configuration management tools (e.g., Puppet [177]).

7.3.2 Performance Perspective

The performance perspective focuses on aspects that relate to the execution

properties of AAS. For instance, with the growing number of audit tasks (e.g.,

due to more tenants or more complex policies to audit) the number of agents

in the system increases. With that the number of evidence records that are

collected and sent over the network, and the load produced by the evaluation of

that evidence is increased as well.

Risks

The scalability risks from a performance perspective in AAS are as follows:

• Data transfer volume: amount of data being transferred over the network.

This corresponds to the size of all messages that are being sent among

agents over the network. This relates closely to the type of evidence source,

the evidence requirements of the audit task and the granularity of single

evidence data sets.
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Case Original Mes-
sage

Evidence
Record Size

Relative Over-
head Intro-
duced

1 Access Re-
quest

337 Byte 1826 Byte 82%

10 Access Re-
quests

3370 Byte 7318 Byte 54%

100 Access Re-
quests

33700 Byte 65181 Byte 48%

Table 13: Overhead Introduced by Formatting in Evidence Records

• Message volume: amount of evidence message transmissions over the net-

work. This corresponds to the number of messages that are being ex-

changed among agents from their instantiation (migration-related trans-

missions), over control (for instance agent monitoring and control messages

via ACL) and evidence collection (the transmission of evidence records and

results).

• Storage volume: amount of storage required for evidence. This metric

considers the size required for storing current as well as archived evidence

in the evidence store.

• Encryption overhead: performance impact introduced by encryption and

decryption. With an increasing number of messages, the encryption over-

head increases as well.

• Load increase: amount of system load introduced by the agent manage-

ment, evidence collection and evaluation.

For the evaluation with respect to those categories, three different cases have

been considered that are all based on the aforementioned intrusion detection

audit case (see Section 7.2.1). The actual detection of potential intrusions is not

considered relevant but only the view on storage size and efficiency (associated

overhead).

Three samples were collected based on the number of access requests that are

logged and collected as evidence: case 1 collects a single access request, case 2
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Figure 53: Overhead of Record Formatting in Evidence Storage

collects 10 and case 3 collects 100. The threshold limit is set to 1 and period to

1 minute, which leads to a single violation evidence record being produced. Only

the records produced by the evidence collector are considered for this analysis.

However, the same conclusions apply to violations that are stored as evidence

records by evaluator agents.

As can be seen in Figures 53 and 54, the overhead introduced into the system

is quite significant. Table 13 depicts the actual sizes for the three different

cases and highlights the amount of overhead introduced by using the XML-

based evidence record format (see Section 12 for details). It compares the three

cases based on the size of the original log message that is collected by the agent

(blue), the same message but formatted in an evidence record (orange) and the

relative overhead introduced by the amount of log messages contained in a single

record. It is immediately obvious that an approach that buffers events on the

input side and stores the whole package less frequently is more efficient that an

approach where each event is stored as evidence separately.

Table 14 presents the amount of overhead introduced by using Insynd as an en-

cryption scheme to securely store evidence records. It compares the size of the
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Case Encrypted Ev-
idence Record
Size

Total Size Relative Over-
head Intro-
duced

1 Access Re-
quest

2058 Byte 5455 Byte 62%

10 Access Re-
quests

9762 Byte 20863 Byte 53%

100 Access Re-
quests

86910 Byte 175163 Byte 50%

Table 14: Overhead Introduced by Using Insynd

Figure 54: Overhead of Encryption in Evidence Storage
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part of the Insynd data structure that contains the encrypted evidence record

(blue), the total on disk size with additional fields (e.g., for key material, hashes

etc.) and the relative overhead introduced by the scheme. While a similar con-

clusion can be made regarding the efficiency of buffering events and storing

them in bulk, the effect is not quite as pronounced. However, when looking at

absolute values such as the original message size from Table 13 and comparing

it to the actual evidence on the output side (Total Size from Table 14) a vast gap

can be observed: On the input side the log message is merely 337 Bytes long,

whereas the size of the message in the evidence store is 5455 Bytes. An increase

by a factor of more than 16.

Countermeasures

To address the problem of congestion due to the number of messages that are

being exchanged between the agents, central components have been removed

as much as possible. All components of AAS are implemented as agents. While

there are agents that are centralized (e.g., UI gateway, APM and AAC), agents

that produce the most load on the network and servers are grouped into audit

tasks and distributed (e.g., collector, evaluator and associated evidence store

agents). This enables load balancing strategies for at least the evidence store

agents and evaluators. A prerequisite is load monitoring that can be performed

by those agents and reacted to accordingly.

Furthermore, the number of messages and their size is heavily influenced by the

type of audit task (i.e., the evidence type that is required and the characteristics

of the evidence source). As previously mentioned in Section 4.4, collectors can

be developed and configured to perform filtering and aggregation on the evidence

source, as long as this is acceptable with respect to the evidence properties and

audit goals. Also, in some cases the evaluation can be moved to the edge of

the network near the collector, which can be used to further distribute load

(see Figure 23). This would help especially in cases where evaluation is very
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compute intensive, for instance, where the amount of evidence sources that

need to be combined in order to generate a complete statement on compliance

need to considered, or where the evaluation algorithm itself is very resource

intensive (e.g., in cases where artificial intelligence is used to detect potential

violations). In cases where both compute and storage requirements are high, it

may be required to move evidence storage and evaluation to dedicated zones in

the cloud. This can go as far as deploying a separate, smaller audit cloud that

facilitates the scalability of audit tasks. Such an audit cloud may as well by

offered as a service by a third party, which can solve some of the trust issues

previously described in this thesis.

7.3.3 Presentation Perspective

Presentation of audit state and results can quickly become challenging the more

audit tasks collect evidence and produce results simultaneously.

Risks

The scalability risks from a presentation perspective in AAS are as follows:

• Representation of compliance: the presentation of audit results can quickly

become overwhelming for an auditor considering the number of tasks that

can run in parallel.

• Working with evidence: the number of evidence records associated with

an audit task and result, is highly dependent on the nature of the task and

grows with the number of active audit tasks.

Countermeasures

Basic countermeasures have been implemented in AAS to address both of these

problems on a UI level. The auditor can filter violations in the dashboard by

202



7.4. PRIVACY PROTECTION AND SECURITY MECHANISMS EVALUATION

periods and associated policies. This can be extended to provide even more

fine-grained filtering capabilities to make the results more manageable.

The same filtering capabilities can be added to the presentation of evidence

records. Furthermore, if an auditor reviews a violation and wants to access

associated records, he can do this directly by following the links. More details

on the UI implementation are presented in Section 5.6.

The potential countermeasures are very basic and are expected to not be suf-

ficient in larger deployments with rapidly increasing numbers of audit tasks.

New ways of visually presenting the state of compliance based on thousands of

smaller checks need to be found. AAS’s dashboard can be easily extended by

additional visualization techniques such as for example heat maps.

7.4 Privacy Protection and Security Mechanisms Evalu-

ation

In the following, security and privacy protection mechanisms are described ac-

cording to the requirements presented in Section 4.6.2. Two perspectives on the

system are utilized to categorize these mechanisms:

• Evidence perspective: this perspective covers all aspects that concern the

handling of evidence from its collection at the data source, over the inter-

mediate and long-term storage, to processing during an audit.

• Agent perspective: this perspective covers all aspects that concern security

and trust issues that are introduced by the MAS-based architecture and

indirectly affect the evidence handling.
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7.4.1 Evidence Protection and Security

The protection of data can be split into three categories: at-rest, in-transit and

in-use. The following views are presented alongside the audit process, where

evidence is collected in the first step, stored in the second and finally processed

and presented.

The example audit case 3 (see Section 7.2.3) is used to demonstrate the effective-

ness of the integrated protection mechanisms (see also objective 4 in Section 1).

The protection mechanisms used are thereby applicable to all other audit tasks

in AAS as well.

The collector agent required for the above scenario communicates with our

OpenStack CMS to gather evidence of the CMS behavior regarding virtual ma-

chine snapshots. The evaluator agent contains the logic for detecting snapshot

violations. The collector agent is deployed at the CMS controller node and has

access to OpenStack’s ReSTful API. The evidence store is located on a separate,

untrusted virtual machine. Now, the following steps are performed:

1. The collector agent opens a connection to the OpenStack ReST interface

and requests a history of snapshot events for a tenant’s virtual machine.

HTTPS is used to secure the communication between the collector agent

and the CMS. Since the policy only requires information about snapshots

to be collected, the CMS agent limits evidence record generation to exactly

that information, nothing more.

2. The collector agent sets up the receiver of the evidence according to the

process depicted in Fig. 13 and sends the collected records to the evidence

store. The communication channel is encrypted using HTTPS and the pay-

load (evidence records) is encrypted with the receiving agent’s public key.

3. The evaluator agent pulls records from the evidence store in regular inter-

vals, analyses them and triggers a notification in case of a detected vio-
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lation. The communication between the evaluator agent and the evidence

store is again secured using HTTPS.

4. In the last step, evidence records are deleted because their retention limit

has been reached. This is done by discarding the keys required for decryp-

tion.

A core technology for evidence protection in AAS is Insynd. In the following,

the integration of Insynd is evaluated against the requirements described in

Section 4.6. Furthermore, additional measures, that are not directly influenced

by the integration of Insynd in AAS, are discussed.

Security Controls

At first, the evidence source needs to be considered. Depending on the type of

evidence source, different protection measures and security controls need to be

implemented to prevent the direct manipulation of the source itself. There is

potential for manipulation of evidence at the earliest phase of evidence collec-

tion, by either manipulating the source to generate false data or by manipulating

generated data, before it is picked-up by the collector agent (e.g., manipulating

a log). AAS alone cannot solve that problem. Therefore additional security mea-

sures have to be implemented to protect evidence sources (e.g., system hard-

ening, management network isolation, etc.). However, AAS works under the

assumption that cloud providers (who effectively provide most of the evidence

sources) act in good faith and do not intentionally manipulate AAS or its evi-

dence sources, similarly to how it is not in their interest to manipulate already

existing monitoring systems.

Addressed requirement: SP1 – Evidence source shall be protected.

Confidentiality

As soon as evidence is collected by an evidence collector agent (i.e., the data

is still located at or near the evidence source) its confidentiality needs to be

205



CHAPTER 7. EVALUATION

ensured. It is thereby not sufficient to only consider the safe transfer (i.e., in-

transit protection) of the evidence to the evidence store, but also while it is stored

at it (i.e., at-rest protection).

For protecting both data in-transit and at-rest, a cryptographic scheme called In-

synd [154, 155] is integrated into AAS. Insynd provides cryptographic properties

to the underlying database that is used for storing records. A central property of

Insynd is that it is always encrypting data using public-key cryptography. This

enables AAS to generally store all collected evidence records encrypted. By en-

crypting the evidence store, compromising the privacy of cloud customer data

that has been collected in the evidence collection processes, becomes almost im-

possible by attacking the evidence store directly. This goes as far as being able

to safely outsource the evidence store to an untrusted third-party.

Additionally, it is good practice to also encrypt communication on the transport

layer. Therefore, the communication between collector agent and evidence store,

evidence store and evaluator agent, and also communication among core agents

is performed over TLS-secured transport channels.

Addressed requirement: SP2 – Confidentiality of collected evidence should be

provided.

Data Minimization

Data minimization as a guiding principle can be considered to be a prerequisite

for privacy protection. AAS follows this principle in two ways. First, collector

agents are always configured for a specific audit task, which is very limited in

scope of what needs to be collected (i.e., the least amount of data that is required

to audit a rule). Agents are never configured to arbitrarily collect data just in case

it may prove useful later on, but are always limited to a specific source. This

is in contrast to digital evidence collection that usually happens after the fact

and considers also sources that might contain useful information. But, since in

audits, the types of evidence sources that indicate compliance or violations are
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usually known to the auditor, a more restrictive approach is chosen in AAS,in

order to improve privacy protection by not being able to leak information that

is not relevant to the audit task because it has never been collected in the first

place.

Addressed requirement: SP3 – Data minimization regarding evidence collection

should be considered.

Purpose Binding

Purpose binding of collected data is difficult to achieve and enforce. However, in

AAS there is always one single goal that guides all data collection, which is the

assertion of compliance with policies in a secure and automated way.

Agent collectors, after they have gathered data have only two options: send it to

the evidence store or additionally send it to the evidence evaluator (as mentioned

before in Section 5.5). Both recipients are fixed in the sense that all agents are

part of a specific audit task. To enforce that evidence is only used for audit

purposes in AAS, only the evaluator agent that is associated with the task is

able to decrypt the collected evidence by making private key material owned by

it (i.e., it is the sole recipient in terms of Insynd).

Addressed requirement: SP4 – Purpose binding of the collected evidence only

to use in audits should be observed.

Data Retention

While today’s storage isolation techniques can prevent some leakage risks of

data from one tenant to another, secure deletion as it is common practice or

even required in businesses, cannot be easily applied to the cloud. The reason

for this is that in cloud computing, the precise location of a data object is usually

not directly available, i.e., the actual storage medium used to store a particular

block is unknown, making data deletion (e.g., secure wiping) hard. It becomes

next to impossible to reliably delete a piece of information from all providers or
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even tracking who is or was in possession of that data.

If data has been encrypted before storage, a reasonably safe way to ensure “dele-

tion” is by discarding the key material required for decryption. Since evidence

in AAS is encrypted on a per audit task basis at the collector and decrypted at

an evaluator, this principle can be applied. That way, data retention rules can

be applied to the evidence store in AAS by discarding the required key material

for decryption of evidence records. Of course, this can only be done, if the data

contained in the evidence store is not needed anymore (e.g., has been evaluated

and is considered useless), or obviously if a maximum data retention time for

that data has been reached.

Addressed requirement: SP5 – Observation of data retention requirements.

Integrity

The second evidence store property that is enabled by integrating Insynd is the

detection of integrity failures. Insynd ensures that data cannot be tampered

with, once it is stored in the evidence store. This property is guaranteed by

Insynd’s underlying data structure called Balloon [155]. More precisely, Insynd

guarantees forward integrity as well as deletion detection. Both properties are

highly desirable when handling evidence, since any manipulation of evidence,

even its destruction, can be detected in the evidence store.

Addressed requirement: EH2 – Evidence must be tieable to the incident and

may not be manipulated in any way and must be protected against any kind of

tampering (intentionally and accidentally).

Completeness

The completeness of evidence is supported by the audit automation. A collec-

tor simply collects evidence according to its implementation and configuration.

The implementation is performed by a programmer whereas the configuration is

done by an auditor. If done correctly, the agent will collect evidence and feed it
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into the evidence store. While Insynd as a cryptographic scheme cannot directly

influence the evidence collection process, it can complement the evidence col-

lection process by providing assurance that all data stored in the evidence store

are made available as evidence, and not cherry-picked.

Addressed requirement: EH3 – Evidence must be viewpoint-agnostic and tell

the whole story.

Reliability

The reliability of AAS is supported by the high degree of automation (i.e., im-

plemented collection and analysis mechanisms can be reviewed in source code),

integration of necessary mechanisms into the evidence collection process (such

as Insynd) and the general operations logging as described in Section 7.4.2.

Addressed requirement: EH4 – There cannot be any doubts about the evidence

collection process and its correctness.

7.4.2 Agent and Platform Protection and Security

From a MAS perspective, there are a couple of important privacy protection and

security considerations to take into account. In this section, the main security

and privacy protection problems and threats are described. The list of topics

has been compiled based on literature review in the fields of agent security and

distributed systems. The potential problems that come alongside MAS, have

been considered in many publications such as by Wayner who stated back in

1995 that “. . . agents will not be able to work for very long in a serious environ-

ment if there can’t be some way to extend trust across the network” [178]. For

that problem, he proposed the introduction of Pretty Good Privacy (PGP)-based

encryption into the system to allow encryption of data and verifiability of agent

identities. Chess [179], Schelderup [180], Varadharajan [181] and Bürkle [182]

worked on defining security models and identifying potential threats during the

years. Additionally, Jansen et al. present in [183] and [184] a comprehensive re-
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view of threats, security requirements and potential countermeasures for mobile

agent systems. All models can be summarized and linked to the main categories

that are presented in the following. Based on identification of potential security

problems, suitable technical mechanisms were introduced in AAS. These are

presented alongside the relevant categories.

Schelderup [180] mentions four elements of security in agent systems. The run-

time environment, which is the Java Virtual Machine (JVM) in the case of AAS,

acts as a protection layer between the host and JVM. Code signing can be used

as an integrity-preserving mechanism that should reveal tampering with agent

code. Host authentication is also required to identify hosts, when agents are

mobile and migrate across the network. And lastly securing the channel over

which agents travel across the network is required. As long as the underlying

hosts are trusted, Schelderup considers these four mechanisms to be sufficient.

Authentication

The authenticity of mobile agents is of utmost importance in an open environ-

ment. Malicious agents that are injected into a system can potentially compro-

mise the integrity and confidentiality of data in the system or the behaviour of

the system itself. Since in AAS agents as data collectors play a central role, the

importance of a reasonable security measure quickly becomes obvious. A MAS

can be protected by protecting the environment it runs in for example by protect-

ing a data center Local Area Network (LAN) with firewalls and therefore hindering

external agents to join the platform. This approach breaks if the environment

is opened or MASs that are operated by distinct independent organizations try

to migrate agents between each other. In the latter case, the migration of agent

from one environment to another without putting security controls into place or

asserting the trust in the agent can be considered a code-injection that is poten-

tially harmful for the receiving party. Such a code injection is generally not too

different from how a computer virus acts [182].
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Host authentication in AAS is achieved by the provision of the agent runtime

environment by the provider. Most of the evidence sources in the cloud are

under the control of the provider anyway (see a discussion on exceptions from

that rule in Section 4.2).

With respect to agent authentication in JADE the Java Authentication and Au-

thorization Service (JAAS)-based extension JADE Security AddOn [185] can be

used. However, this extension does not authenticate components and agents on

an individual level, but rather authenticates all of them en-block by associating

them with the identity of the user who started the agent platform.

Authorization

The collection of evidence in AAS requires comprehensive access rights on the

infrastructure. A malicious agent with comprehensive access rights may have

access to unintended sources.

In AAS there are no restrictions on the access rights of the authenticated agent

towards data that it collects. An agent is executed in the context of a JVM and

is restricted to the same access rights. The access rights of the runtime envi-

ronment should be configured to follow the principle of least privilege. Least

privilege is thereby tightly coupled with the type of evidence source that a col-

lector agent needs to gather from.

Since for many evidence sources, broad access rights (i.e., administrative level)

are required to be able to collect data, no further restrictions are put into place.

Authorization should therefore be limited on the runtime environment level to

the lowest possible depending on the evidence source. For many cases, it is

sufficient to grant read-only access (e.g., grant read access to system logs for

the agent process).

Service Interference

The fact that AAS is running alongside the actual cloud service (and all its sub-
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systems), faulty agents could have a negative impact on the service operation.

This holds especially true for collector agents that are not strongly isolated from

their evidence source. Considering a system log of a VM as an evidence source,

the collector needs to operate on that same VM in order to fulfil its purpose.

AAS performs basic agent availability monitoring via the AAC. This could be

extended to monitor the load that is introduced by the collectors in order to

react before services are negatively impacted.

Denial of Service

Agent system disruption: as any networked computer system today, MASs in

general and AAS in particular are susceptible to DoS attacks.

At this point, AAS does not implement specific countermeasures.

Traceability

Since AAS plays such an important role in the provision of evidence and the

demonstration of a provider’s policy compliance, traceability of events in the

agent system itself becomes a desirable property.

In AAS traceability is achieved by internal logging of actions and states of the

system (i.e., its agents). Tis is done by specialized internal logging agents, that

interact with other agents and record their internal log messages. This approach

improves transparency of AAS and its inner workings. This is a necessity for en-

abling audits and certification of AAS itself. Internal logging in AAS that enables

traceability was introduced in Section 7.2. With this logging facility, the operator

of the AAS can trace operations in AAS.

7.5 Adoption in Private and Public Cloud

Major obstacles can be expected when it comes to potential integration of this so-

lution into public cloud services. As discussed, it is unlikely that cloud providers
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adopt a system that provides so much insight into the inner workings of their

service (as the AAS) unless there is a significant competetive advantage asso-

ciated with it. As the cloud business matures and more workloads are moved

to the cloud (for obvious reasons), customer requirements towards the cloud

provider (especially regarding transparency and security) can be expected to rise.

Cloud providers that proactively improve their services and provide means that

make data processing practices more transparent could leverage this as an ad-

vantage. In the future, it would be a major achievement to have a public cloud

provider integrate AAS’s approaches and offer it as a service. As it stands now,

AAS may be used as long as there full control over assets (VMs for executing AAS

components and evidence sources), i.e., a private cloud. The AAS implementa-

tion presented in this scenario was developed in a private cloud scenario.

In private cloud scenarios, fewer obstacles are to be expected with respect to the

adoption of a system like AAS. The main reason for this, is the level of control, the

provider can exercise over the cloud infrastructure, platform and the auditing

system, since he owns them all. Customers in a private cloud scenario are in a

business environment typically part of the same organization (e.g., departments).

Therefore, they are typically bound by the same internal directives and policies.

Implementing a system that automatically and continuously inspects the com-

pliance with those policies is just the next logical step to take.

7.6 Summary

In this chapter, the AAS was evaluated with respect to its functionality, scalabil-

ity, and privacy and security protection mechanisms. The evaluation was per-

formed based on a prototype implementation of several exemplary audit tasks.

These audit tasks were created based on typical policy rules and compliance

failure scenarios that are associated with those rules. Also, shortcomings in the

current solution were highlighted.
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It was shown, how AAS addresses security and privacy issues in a holistic way by

leveraging encryption and integrity-preserving mechanisms end-to-end from the

collection phase, throughout processing until presentation. The main contribu-

tions of this system are the automated collection and evaluation of evidences

produced in a cloud service provision scenario. Other approaches from the

forensics field lack in automation and usually rely on manual acquisition and

evaluation of evidence. This is also true for conventional audits that rely on sup-

porting tools but generally do not support continuous collection and evaluation

but rely on periodic (e.g., yearly) repetition. AAS enables continuous auditing of

cloud providers for compliance and accountability issues that may occur during

operations. Furthermore, it was demonstrated how complex provider chain sce-

narios (a key problem of current cloud deployments) can be addressed by AAS.

Other approaches for automation of audits or compliance checks do not sup-

port multi-provider scenarios, but are limited to smaller scopes (i.e., a provider’s

infrastructure or a tenant’s virtual deployment).
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Chapter 8
Conclusion and Future Work

CLOUD computing is an increasingly popular paradigm for outsourcing of ser-

vice provision and data. The research project AAS focuses on privacy and

accountability issues in today’s cloud landscape and tries to address them by

enabling privacy and accountability focused audits of cloud services. The follow-

ing summarizes the major contributions and achievements of this project.

In Chapter 2, the current state of the cloud landscape, growth potential and

privacy, security and accountability-related risks that are commonly associated

with the adoption of cloud computing were presented. Additionally, fundamental

concepts of cloud computing and accountability were discussed to provide a

common understanding for the presentation of the rest of the thesis.

In Chapter 3, an overview of relevant literature and research projects was pre-

sented. Many of the core properties and principles of AAS originate from de-

velopments in the area of digital evidence and cloud forensics, especially with

respect to evidence collection and processing, which is why a special focus has

been put on the discussion of concepts and approaches related to these areas of

research. Furthermore, related work in the areas of cloud audit and assurance

were discussed. As a driving technology, AAS uses software agent technology,

which is why a discussion of related work regarding the collection of data or
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monitoring using software agents was included as well.

Chapter 4 started off with the introduction of a general scenario that is used

throughout the remainder of the thesis to demonstrate examples. Based on the

discussion of potential evidence sources that can be leveraged for compliance

evaluation in an audit, the introduction and discussion of an adopted evidence

collection process and the introduction of evidence processing, the general re-

quirements of AAS were elicited. The most significant contribution of this chap-

ter is the model of evidence sources specific to cloud computing as well as the

application of evidence acquisition and processing techniques in the context of

cloud audits. This allowed for building a more robust architecture that follows

important data protection and security principles.

Based on the insights gained from Chapter 4 an architecture discussion of AAS

is presented in Chapter 5. The architecture of AAS allows for the collection

of evidence in dynamic, heterogeneous environments such as the cloud, where

evidence is continuously produced at various sources. The reasoning behind

choosing general characteristics of AAS, such as relying on software agent tech-

nology are discussed first. Following that, AAS is decomposed into modules

that are described in detail. After the complete architecture was presented,

AAS is extended to evidence collection in multi-provider scenarios with a discus-

sion of several approaches which each have their own set of (dis-)advantages.

Since scalability is an important property of cloud systems, different optimiza-

tion strategies and approaches were discussed that improve scalability of AAS.

The Chapter is closed with recommendations on audit result and evidence pre-

sentation aspects and a guide for extending AAS using its plugin-like approach.

The major contribution of this chapter is the definition of a system that enables

cloud providers to effectively and continuously audit their operations in order

to assure compliance with accountability policies. This is a major step towards

improving transparency of cloud services in order to improve trust in cloud com-

puting on the consumer side. Furthermore, the contributions presented in this
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chapter also consider cloud service provision scenarios to become increasingly

complex by the aggregation and chaining of providers. An important contribu-

tion of the system was to consider security and privacy protection as early as

possible in the design process.

At the start of any audit, there is a set of policies for which compliance is to

be evaluated. Chapter 6 is focused on the integration of machine-readable lan-

guages that cover three different aspects: infrastructure, security controls and

data handling / accountability. The integration of the A-PPL policy language

that enables the definition of accountability rules and obligations is described,

as well as the process of extracting audit tasks from such policies. Four differ-

ent examples were thereby presented that relate to the concepts of notification,

access control, data retention and data location.

The results of the AAS project are evaluated in Chapter 7. The evaluation thereby

follows a scenario based approach covering three different perspectives: func-

tionality, scalability, and privacy and security protection.

Based on the evaluation, shortcomings and achievements of AAS are discussed

to finalize the thesis.

The research conducted as part of this thesis has met the objectives that have

been defined in Chapter 1. The AAS implementation combines the research

results in a system that enables cloud providers to continuously audit their op-

erations for compliance with accountability audits. Furthermore, a wide range

of dissemination activities has been performed, which includes multiple publi-

cations at well-recognized, international conferences, a journal publication as

well as the presentations at workshops and project presentation sessions.

8.1 Limitations

While AAS has achieved most of the goals regarding enabling the automated,

evidence-based auditing of cloud service chains against accountability-related

217



CHAPTER 8. CONCLUSION AND FUTURE WORK

policies, there are still some open issues that require further research. In the

following, a set of shortcomings in the current approach are presented alongside

a discussion of suggested solutions.

8.1.1 Limitations of the Evidence Collection Approach

At the core of AAS is the evidence collection process. In order for AAS to be

accepted as a useful tool and not being seen as yet another system that can

potentially leak data if attacked, security must be thoroughly implemented.

Section 7 presented a discussion of attack vectors against AAS and its com-

ponents. Additionally, the problems of MAS systems with respect to security

have been discussed. However, while AAS internally implements adequate pro-

tection mechanisms to secure evidence collection and handling, the resilience of

the underlying agent system technology has to be improved.

Another important aspect is the trustworthiness of the data that is collected by

AAS. In this research, the cloud provider is assumed to act in good faith and

to not intentionally be manipulating evidence sources or the collector agents.

This is reasonable under the assumption that the cloud provider uses AAS to

enable auditors a deeper insight into the inner workings of its infrastructure

to demonstrate that its acting according to the policy that were set. However, if

that assumption changes and the cloud provider is seen as a potential adversary

that wants to hide compliance failures, AAS cannot detect that. It is doubtful

that this can be changed as long as the provider has full control over most of the

evidence sources.

8.1.2 Limitations of the Evidence Processing and Evaluation Ap-

proach

In general, AAS supports an auditor by automating much of the monitoring and

assurance process. However, this may lead to a false sense of security with re-
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spect to being compliant. As demonstrated in the data retention example, there

are cases where the number of potential policy compliance failures regarding a

single rule can become enormously complex or even impossible to assess with-

out doubt (e.g., proving that data is in fact unrecoverably deleted).

Therefore, the level of assurance is tightly coupled with the quality of the imple-

mented audit tasks. The quality of the tasks is thereby dependent on the choice

of evidence sources and evaluation mechanisms. This is a similar problem to

the choice of depth in a conventional audit. A balance must be struck between

level of assurance and effort. Effort in an AAS audit is thereby the complexity of

the task and its implementation (e.g., number of evidence sources and choice of

evaluation mechanism).

8.1.3 Limitation Regarding Applicability In Court

The applicability of evidence that has been collected by AAS in court is expected

to be unlikely at first due to AAS not being a proven forensics tool. A system

such as AAS has to undergo rigorous review, audits and certification or even

standardization. Potential measures that could be taken are opening the source

code of AAS’s agents in order to improve transparency but also code certification

(i.e., code signing of agents) are promising approaches.

8.2 Future Work

While this project presents important contributions especially with respect to

automated acquisition of evidence for accountability audits of cloud providers,

there are some areas that need to be addressed in future work:

Extension and Optimization

Future development based on AAS should focus on widening the scope of its ap-

plicability by supporting additional policy languages. Furthermore, a community-
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driven approach towards supporting new incident detection scenarios and policy

languages should be taken in order to further automate security, privacy and ac-

countability audits.

Bigger Infrastructures

From a deployment perspective, AAS should be moved towards large cloud de-

ployments in order to enable its evaluation in a more realistic environment.

Standardization and Certification

Facilitating the adoption of results that were presented in this thesis could be

done by standardization. Formats, protocols and interfaces used in AAS and

in the area of evidence acquisition, audits and accountability can only be suc-

cessful if they are standardized. Furthermore, the believability and usefulness

of evidence and audit results in court as they were presented in this thesis need

to be improved.

Development of new forensic tools and techniques

While this work has advanced the field of evidence acquisition in cloud comput-

ing, further research should be conducted in this area in order to enable more

thorough auditing and develop new techniques for evidence acquisition in cloud

services that are becoming ever more complex.

Development of a Comprehensive Audit Description Language

Policy languages have been considered to be an important input to AAS but lack

in comprehensiveness with respect to details on how to perform audits. A lan-

guage that covers all aspects from the high-level rules to evidence sources and

the required steps for evaluating evidence in an audit is needed. However, this

is a difficult task since a variety of levels of abstraction of rules and obligations

on the one hand need to be considered as well as supplementary information.
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Appendix B
AAS Prototype Evidence Record

Listings

B.1 OpenStack Nova Evidence Record Example

Listing B.1 presents an evidence record as it was collected by an evidence collec-

tor in AAS and store in the evidence store. It depicts the existence of a snapshot

and its history at a specific point in time.

1 <evidenceContainer>

2 <record id="17542194-9832-11e5-8994-feff819cdc9f">

3 <action>Snapshot 6b0a9a97-0ca7-4fa1-9d68-0714fe3b03c2</action>

4 <actor>OpenStack_UID d336b4929ef043c990755c67d695a1b9</actor>

5 <policyID>1042</policyID>

6 <supportingElements elementID="0">

7 <signature>m0Z9Pp2BGp+4/0fGl8mu2zM9Mrq4hWvDHAAczlW1ldI=</signature>

8 <element xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/XMLSchema"

↪→ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

9 NovaImage{id=4844e48b-1d9d-447d-8b0d-adc08b5b1b9a,

10 name=PIISnap, status=ACTIVE, progress=100, size=1244200960, minRam

↪→ =1024,

11 minDisk=40, created=Tue Oct 20 07:56:03 CEST 2015, updated=Tue Oct 20

↪→ 07:56:48
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12 CEST 2015, metadata={instance_uuid=6b0a9a97-0ca7-4fa1-9d68-0714fe3b03c2

↪→ ,

13 image_location=snapshot, image_state=available, instance_type_memory_mb

↪→ =4096,

14 user_id=d336b4929ef043c990755c67d695a1b9, image_type=snapshot,

15 instance_type_id=1, ramdisk_id=null, instance_type_name=m1.medium,

16 instance_type_ephemeral_gb=0, instance_type_rxtx_factor=1, kernel_id=

↪→ null,

17 instance_type_flavorid=3, instance_type_vcpus=2, os_type=None,

18 instance_type_root_gb=40, base_image_ref=a86aa4ed-5df8-4452-bfd0-1

↪→ d6e3d872839,

19 instance_type_swap=0, owner_id=93d3fa8a411e4cf0ad40889e153eba41},

20 links=[GenericLink{href=http://controller:8774/v2/655

↪→ bf47adead485fa497d9a37b1060bd/images/4844e48b-1d9d-447d-8b0d-

↪→ adc08b5b1b9a,

21 rel=self}, GenericLink{href=http://controller:8774/655

↪→ bf47adead485fa497d9a37b1060bd/images/4844e48b-1d9d-447d-8b0d-

↪→ adc08b5b1b9a,

22 rel=bookmark}, GenericLink{href=http://172.28.64.50:9292/655

↪→ bf47adead485fa497d9a37b1060bd/images/4844e48b-1d9d-447d-8b0d-

↪→ adc08b5b1b9a,

23 rel=alternate, type=application/vnd.openstack.image}],}

24 </element>

25 </supportingElements>

26 <evidenceMetaData>

27 <collectingInstance>PiiSnapshotEventCollector_ce7a6546-9831-11e5-8994-

↪→ feff819cdc9f@Main-Container</collectingInstance>

28 <evidenceDetectionTime>2015-10-20T07:56:03+02:00</evidenceDetectionTime>

29 </evidenceMetaData>

30 </record>

31 </evidenceContainer>

Listing B.1: AAS Evidence Record – Collected OpenStack Nova Snapshot Event
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B.2 Violation Evidence Record Example

Listing B.2 presents an evidence record for a detected violation in the data re-

tention audit case. It includes both the PII store and delete events that were

collected from A-PPL-E as well as an associated VM snapshot event. Some

further snapshot evidence records have been removed since they are deemed

non-essential for this example (i.e., all records needed to detect a violation are

present).

1 <evidenceContainer>

2 <record id="0">

3 <action>PII Data Retention Violation - Snapshots of PII Store(Kardio-

↪→ Mon-PII-Store) available between 2015-12-09 10:29:41.0 and

↪→ 2015-12-09 10:31:43.0 (contains PII of Panos )@Main-Container

↪→ (10.0.0.6)</action>

4 <actor>DataRetentionPolicyEvaluationAgent_1042_Main-Container</actor>

5 <policyID>1042</policyID>

6 <supportingElements elementID="0"><signature>ycsqNPoCOX5ARMgGXWehyXSF+

↪→ ZHwtfzEns6sBKUAluI=</signature>

7 <element xsi:type="xs:string"><?xml version="1.0" encoding="UTF-8"

↪→ standalone="yes"?>

8 <evidenceContainer>

9 <record id="0">

10 <action>PII store message@Main-Container(10.0.0.6)</

↪→ action>

11 <actor>PiiDataRetentionAgent_1042_Main-Container</actor

↪→ >

12 <policyID>1042</policyID>

13 <supportingElements>

14 <signature>XE/

↪→ ZyplowLcEOB93vok80SW2XYhMDVKttHgLO85pQy8=</

↪→ signature>

15 <element xsi:type="xs:string" xmlns:xs="http://www.

↪→ w3.org/2001/XMLSchema" xmlns:xsi="http://www

↪→ .w3.org/2001/XMLSchema-instance">de.hfu.

↪→ A4Cloud.Agents.intrusionAttemptDetection.
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↪→ ApplMessageWrapper@52188e99

16 Message: PII storedtype: policy admnistration

17 piiAttributeName: Country

18 piiOwner: Panos

19 date: 2015-12-09 10:29:41.0

20 </element>

21 </supportingElements>

22 <evidenceMetaData>

23 <collectingInstance>PiiDataRetentionAgent_1042_Main

↪→ -Container</collectingInstance>

24 <evidenceDetectionTime>2015-12-09T10:31:01.703+01

↪→ :00</evidenceDetectionTime>

25 </evidenceMetaData>

26 </record>

27 </evidenceContainer>

28 </element>

29 </supportingElements>

30

31

32 <supportingElements elementID="1"><signature>

↪→ OevSjwXB5vAtjMGs5WTcRlMCBmhYDc2V4+Q8PfNyMIA=</signature><element

↪→ xsi:type="xs:string"><?xml version="1.0" encoding="UTF-8"

↪→ standalone="yes"?>

33 <evidenceContainer>

34 <record id="1">

35 <action>PII delete message@Main-Container(10.0.0.6)</

↪→ action>

36 <actor>PiiDataRetentionAgent_1042_Main-Container</actor

↪→ >

37 <policyID>1042</policyID>

38 <supportingElements>

39 <signature>ASWyvEJSVfdMZGj0TaffeGu3SiI0B0bYUu+

↪→ L6loGw5k=</signature>

40 <element xsi:type="xs:string" xmlns:xs="http://www.

↪→ w3.org/2001/XMLSchema" xmlns:xsi="http://www

↪→ .w3.org/2001/XMLSchema-instance">

41 Message: PII deleted type: policy enforcement
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42 piiAttributeName: Country

43 piiOwner: Panos

44 date: 2015-12-09 10:31:43.0

45 </element>

46 </supportingElements>

47 <evidenceMetaData>

48 <collectingInstance>PiiDataRetentionAgent_1042_Main

↪→ -Container</collectingInstance>

49 <evidenceDetectionTime>2015-12-09T10:32:02.101+01

↪→ :00</evidenceDetectionTime>

50 </evidenceMetaData>

51 </record>

52 </evidenceContainer>

53 </element>

54 </supportingElements>

55

56 <supportingElements elementID="2">

57 <signature>E7X+JPH4WyzU8E+z/mnx4R8BMEprX7Oej1wnVNtNsNY=</signature>

58 <element xsi:type="xs:string"><?xml version="1.0" encoding="UTF-8"

↪→ standalone="yes"?>

59 <evidenceContainer>

60 <record id="1">

61 <action>SnapshotExists(1)_6b0a9a97-0ca7-4fa1-9d68-0714

↪→ fe3b03c2(Kardio-Mon-PII-Store)@null

↪→ (172.28.64.50,,,,,,,,,,,,,,)</action>

62 <actor>PiiSnapshotCheckAgent_1042_Main-

↪→ Container@AAS_Core_Container</actor>

63 <policyID>1042</policyID>

64 <supportingElements elementID="0">

65 <signature>

↪→ qtJtgU4OzdGkD53SqfjQzrr898fky0XiDbLpmUz9F8k=

↪→ </signature>

66 <element xsi:type="xs:string" xmlns:xs="http://www.

↪→ w3.org/2001/XMLSchema" xmlns:xsi="http://www

↪→ .w3.org/2001/XMLSchema-instance">NovaImage{

↪→ id=54dd8d3e-f933-4df1-8853-f609b4bdddcc,

↪→ name=PIISnap, status=SAVING, progress=25,
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↪→ size=0, minRam=1024, minDisk=40, created=Wed

↪→ Dec 09 10:30:35 CET 2015, ... , type=

↪→ application/vnd.openstack.image}],

67 }</element>

68 </supportingElements>

69 <evidenceMetaData>

70 <collectingInstance>PiiSnapshotCheckAgent_1042_Main

↪→ -Container</collectingInstance>

71 <evidenceDetectionTime>2015-12-09T10:31:01.532+01

↪→ :00</evidenceDetectionTime>

72 </evidenceMetaData>

73 </record>

74 </evidenceContainer>

75 </element>

76 </supportingElements>

77

78 <!-- more periodically collected snapshot information removed for

↪→ clarity-->

79

80 <evidenceMetaData>

81 <collectingInstance>DataRetentionUsagePII</collectingInstance>

82 <evidenceDetectionTime>2015-12-09T10:33:03.820+01:00</

↪→ evidenceDetectionTime>

83 </evidenceMetaData>

84 </record>

85 </evidenceContainer>

Listing B.2: AAS Evidence Record – Detected Data Retention Violation
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AAS Prototype Logs

C.1 AAS Trace of Automated Test Case Intrusion Detec-

tion

Listing C.1 contains a log of events that are generated during the automated test

case execution in AAS. This trace of events was used to build the timeline infor-

mation and order of events demonstrated in Section 7.2.1. Some non-essential

information was removed for clarity. This is indicated where required.

1 2016-03-24 07:54:17.939 task_received "IntrusionAttemptDetectionAuditTask [

↪→ targetContainer=null, mailAddress=null, argsEmailNotificationAgent=null,

↪→ argsSimplePolicyEvaluationAgent=null,

↪→ argsIntrusionAttemptDetectionAgent=null, agents=null, intervall=60000,

↪→ threshold=5]"

2

3 2016-03-24 07:54:18.02 audit_task_created IntrusionAttemptDetectionAuditTask [

↪→ targetContainer=1412898117, mailAddress=null, argsEmailNotificationAgent

↪→ =[null], argsSimplePolicyEvaluationAgent=[1412898117, 1004, admin, ABCD,

↪→ https://141.28.98.114, https://141.28.98.114,

↪→ IntrusionAttemptDetectionAuditTask, 8189, 8289],

↪→ argsIntrusionAttemptDetectionAgent=[60000, 1412898117,

↪→ IntrusionAttemptDetectionAuditTask, 5, 1004, admin, ABCD, https

↪→ ://141.28.98.114, https://141.28.98.114, admin, ABCD, http
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↪→ ://141.28.98.117, http://141.28.98.117, apple, aas, 8181, 8282, 8189,

↪→ 8289], agents=[ConfiguredAgent [agent=de.hfu.A4Cloud.Agents.

↪→ intrusionAttemptDetection.IntrusionAttemptDetectionAgent, args=[60000,

↪→ 1412898117, IntrusionAttemptDetectionAuditTask, 5, 1004, admin, ABCD,

↪→ https://141.28.98.114, https://141.28.98.114, admin, ABCD, http

↪→ ://141.28.98.117, http://141.28.98.117, apple, aas, 8181, 8282, 8189,

↪→ 8289], name=IntrusionAttemptDetectionAgent_1004_1412898117],

↪→ ConfiguredAgent [agent=de.hfu.A4Cloud.Agents.EmailNotificationAgent.

↪→ EmailNotificationAgent, args=[null], name=

↪→ EmailNotificationAgent_1004_1412898117], ConfiguredAgent [agent=de.hfu.

↪→ A4Cloud.Agents.SimplePolicyEvaluationAgent.SimplePolicyEvaluationAgent,

↪→ args=[1412898117, 1004, admin, ABCD, https://141.28.98.114, https

↪→ ://141.28.98.114, IntrusionAttemptDetectionAuditTask, 8189, 8289], name=

↪→ SimplePolicyEvaluationAgent_1004_1412898117], ConfiguredAgent [agent=de.

↪→ hfu.A4Cloud.Agents.imtNotification.ImtNotificationAgent, args=[/opt/Core

↪→ /AgentConfig.cfg], name=IMT_NotificationAgent_1004]], intervall=60000,

↪→ threshold=5]

4

5 2016-03-24 07:54:18.022 spawning_task_agents

↪→ spawning_agents_for_task_IntrusionAttemptDetectionAuditTask_"

↪→ ConfiguredAgent [agent=de.hfu.A4Cloud.Agents.intrusionAttemptDetection.

↪→ IntrusionAttemptDetectionAgent, args=[60000, 1412898117,

↪→ IntrusionAttemptDetectionAuditTask, 5, 1004, admin, ABCD, https

↪→ ://141.28.98.114, https://141.28.98.114, admin, ABCD, http

↪→ ://141.28.98.117, http://141.28.98.117, apple, aas, 8181, 8282, 8189,

↪→ 8289], name=IntrusionAttemptDetectionAgent_1004_1412898117]" "

↪→ ConfiguredAgent [agent=de.hfu.A4Cloud.Agents.EmailNotificationAgent.

↪→ EmailNotificationAgent, args=[null], name=

↪→ EmailNotificationAgent_1004_1412898117]" "ConfiguredAgent [agent=de.hfu.

↪→ A4Cloud.Agents.SimplePolicyEvaluationAgent.SimplePolicyEvaluationAgent,

↪→ args=[1412898117, 1004, admin, ABCD, https://141.28.98.114, https

↪→ ://141.28.98.114, IntrusionAttemptDetectionAuditTask, 8189, 8289], name=

↪→ SimplePolicyEvaluationAgent_1004_1412898117]" "ConfiguredAgent [agent=de

↪→ .hfu.A4Cloud.Agents.imtNotification.ImtNotificationAgent, args=[/opt/

↪→ Core/AgentConfig.cfg], name=IMT_NotificationAgent_1004]"

6 2016-03-24 07:55:24.741 received_apple_log "de.hfu.A4Cloud.Agents.

↪→ intrusionAttemptDetection.ApplMessageWrapper@2a6ba10d
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7

8 2016-03-24 07:55:24.753 received_apple_log "de.hfu.A4Cloud.Agents.

↪→ intrusionAttemptDetection.ApplMessageWrapper@790b91cf

9 Message: Date:Thu Mar 24 07:54:30 CET 2016 Event associated with personal data

↪→ ’Country’ belonging to ’Panos’, access attempt by subject ’Employee’:

↪→ Access permitted for, for action ’read’

10 piiAttributeName: Country

11 piiOwner: Panos

12 date: 2016-03-24 07:54:30.0

13 "

14

15 ___SHORTENED (REPEATED CONSECUTIVE ACCESSES)___

16

17 2016-03-24 07:55:24.87 received_apple_log "de.hfu.A4Cloud.Agents.

↪→ intrusionAttemptDetection.ApplMessageWrapper@46417f28

18 Message: Date:Thu Mar 24 07:55:02 CET 2016 Event associated with personal data

↪→ ’Country’ belonging to ’Panos’, access attempt by subject ’Employee’,

↪→ for purpose http://www.w3.org/2002/01/P3Pv1/admin, for action ’read’

19 piiAttributeName: Country

20 piiOwner: Panos

21 date: 2016-03-24 07:55:02.0

22 "

23

24 2016-03-24 07:55:24.87 received_apple_log "de.hfu.A4Cloud.Agents.

↪→ intrusionAttemptDetection.ApplMessageWrapper@46417f28

25 Message: Date:Thu Mar 24 07:55:02 CET 2016 Event associated with personal data

↪→ ’Country’ belonging to ’Panos’, access attempt by subject ’Employee’,

↪→ for purpose http://www.w3.org/2002/01/P3Pv1/admin, for action ’read’

26 piiAttributeName: Country

27 piiOwner: Panos

28 date: 2016-03-24 07:55:02.0

29 "

30

31 2016-03-24 07:55:24.871 policy_violation_detected

↪→ intrusion_detection_with_threshold_5_and_20_accesses_in_60000ns

32

33 2016-03-24 07:55:25.228 evidence_record_created <?xml version="1.0" encoding="
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↪→ UTF-8" standalone="yes"?>

34 <evidenceContainer>

35 <record id="0">

36 <action>read(Possible Intrusion Attempt - 20 accesses)@1412898117

↪→ (10.0.0.5)</action>

37 <actor>Data Subject</actor>

38 <policyID>1004</policyID>

39 <supportingElements elementID="0">

40 <signature>1yvZkpyzGKcL1Lg77gjSKNyQ+pLvHM9n+3CYk+7w3VA=</signature>

41 <element xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/

↪→ XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

↪→ instance">de.hfu.A4Cloud.Agents.intrusionAttemptDetection.

↪→ ApplMessageWrapper@790b91cf

42 Message: Date:Thu Mar 24 07:54:30 CET 2016 Event associated

↪→ with personal data ’Country’ belonging to ’Panos’,

↪→ access attempt by subject ’Employee’: Access permitted

↪→ for, for action ’read’

43 piiAttributeName: Country

44 piiOwner: Panos

45 date: 2016-03-24 07:54:30.0

46 </element>

47 </supportingElements>

48

49 ___SHORTENED (REPEATED CONSECUTIVE EVIDENCE RECORDS)___

50

51 <supportingElements elementID="19">

52 <signature>e1KOpo0YLIv+qULLIH/VqqgGlIvYb9YFvCHm0qyCa18=</signature>

53 <element xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/

↪→ XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

↪→ instance">de.hfu.A4Cloud.Agents.intrusionAttemptDetection.

↪→ ApplMessageWrapper@6dd552d4

54 Message: Date:Thu Mar 24 07:55:01 CET 2016 Event associated

↪→ with personal data ’Country’ belonging to ’Panos’,

↪→ access attempt by subject ’Employee’: Access permitted

↪→ for, for action ’read’

55 piiAttributeName: Country

56 piiOwner: Panos
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57 date: 2016-03-24 07:55:02.0

58 </element>

59 </supportingElements>

60

61 2016-03-24 07:55:25.659 evidence_record_for_violation_created <?xml version

↪→ ="1.0" encoding="UTF-8" standalone="yes"?>

62 <evidenceContainer>

63 <record id="1">

64 <action>read(Possible Intrusion Attempt - 20 accesses)@1412898117

↪→ (10.0.0.5)@1412898117(10.0.0.5)</action>

65 <actor>SimplePolicyEvaluationAgent_1004_1412898117</actor>

66 <policyID>1004</policyID>

67 <supportingElements elementID="0">

68 <signature>wwDuBNiqLPCHisIcKzAEh6EiFOLQDVK01DiZxxBTUcQ=</signature>

69 <element xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/

↪→ XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

↪→ instance"><?xml version="1.0" encoding="UTF-8" standalone="

↪→ yes"?>

70 <evidenceContainer>

71 <record id="0">

72 <action>read(Possible Intrusion Attempt - 20 accesses)@1412898117

↪→ (10.0.0.5)</action>

73 <actor>Data Subject</actor>

74 <policyID>1004</policyID>

75 <supportingElements elementID="0">

76 <signature>1yvZkpyzGKcL1Lg77gjSKNyQ+pLvHM9n+3CYk+7w3VA=</signature>

77 <element xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/

↪→ XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

↪→ instance">de.hfu.A4Cloud.Agents.intrusionAttemptDetection.

↪→ ApplMessageWrapper@790b91cf

78 Message: Date:Thu Mar 24 07:54:30 CET 2016 Event associated

↪→ with personal data ’Country’ belonging to ’Panos’,

↪→ access attempt by subject ’Employee’: Access permitted

↪→ for, for action ’read’

79 piiAttributeName: Country

80 piiOwner: Panos

81 date: 2016-03-24 07:54:30.0
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82 </element>

83 </supportingElements>

84

85 ___SHORTENED (REPEATED CONSECUTIVE EVIDENCE RECORDS)___

86

87 <supportingElements elementID="19">

88 <signature>e1KOpo0YLIv+qULLIH/VqqgGlIvYb9YFvCHm0qyCa18=</signature>

89 <element xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/

↪→ XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

↪→ instance">de.hfu.A4Cloud.Agents.intrusionAttemptDetection.

↪→ ApplMessageWrapper@6dd552d4

90 Message: Date:Thu Mar 24 07:55:01 CET 2016 Event associated

↪→ with personal data ’Country’ belonging to ’Panos’,

↪→ access attempt by subject ’Employee’: Access permitted

↪→ for, for action ’read’

91 piiAttributeName: Country

92 piiOwner: Panos

93 date: 2016-03-24 07:55:02.0

94 </element>

95 </supportingElements>

96

97 2016-03-24 07:55:27.834 notification_sent_to_IMT "{

98 "id" : "2ff32d23-405e-4897-ba74-01470e4d66fd",

99 "type" : {

100 "id" : "b2a086f8-a63b-40da-9fde-c52f5e1d84d3",

101 "name" : "Access Control",

102 "endpoint" : "http://141.28.98.125:8800",

103 "incidents" : [ {

104 "id" : "26c5eda5-d18a-4950-9154-4bfbc73104a5",

105 "name" : "Intrusion Attempt Detection assumption",

106 "type" : {

107 "id" : "a4b4e021-2e17-4e4c-bf54-3f13239f0feb",

108 "name" : "Intrusion Attempt",

109 "description" : "This incident regards the right to know vs. need to

↪→ know security scenario. Incidents of this type are possible

↪→ detected intrusions analyzing the accesses in a time frame

↪→ executed by a subject.",
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110 "consequence" : 0.5

111

112 ___TRUNCATED (DUE TO MESSAGE SIZE OF NOTIFICATION)___

Listing C.1: Intrusion Detection Audit Example – Trace of Test Case (Internal AAS

Logs)

C.2 AAS Trace of Automated Test Case for Data Location

Audit

Listing C.2 contains a log of events that are generated during the automated test

case execution in AAS. This trace of events was used to build the timeline infor-

mation and order of events demonstrated in Section 7.2.2. Some non-essential

information was removed for clarity. This is indicated where required.

1 2016-03-23 21:07:33.674 task_received "DTMTAuditTask [targetContainer

↪→ =1412898110, mailAddress=null, argsEmailNotificationAgent=null,

↪→ argsSimplePolicyEvaluationAgent=null, argsDTMTRecipientAgent=null,

↪→ agents=null, intervall=60000, locations=Europe,Africa]"

2

3 2016-03-23 21:07:33.74 audit_task_created DTMTAuditTask [targetContainer

↪→ =1412898110, mailAddress=null, argsEmailNotificationAgent=[null],

↪→ argsSimplePolicyEvaluationAgent=[1412898110, 1005, admin, ABCD, https

↪→ ://141.28.98.114, https://141.28.98.114, DTMT check, 8189, 8289],

↪→ argsDTMTRecipientAgent=[60000, 1412898110, DTMT check, 1005, admin, ABCD

↪→ , https://141.28.98.114, https://141.28.98.114, admin, ABCD, https

↪→ ://141.28.98.110, https://141.28.98.110, dtmt, aas, Europe,Africa, 8189,

↪→ 8289, 8181, 8282], agents=[ConfiguredAgent [agent=de.hfu.A4Cloud.Agents

↪→ .dtmtCommunication.DTMTRecipientAgent, args=[60000, 1412898110, DTMT

↪→ check, 1005, admin, ABCD, https://141.28.98.114, https://141.28.98.114,

↪→ admin, ABCD, https://141.28.98.110, https://141.28.98.110, dtmt, aas,

↪→ Europe,Africa, 8189, 8289, 8181, 8282], name=

↪→ DTMTRecipientAgent_1005_1412898110], ConfiguredAgent [agent=de.hfu.

↪→ A4Cloud.Agents.SimplePolicyEvaluationAgent.SimplePolicyEvaluationAgent,

↪→ args=[1412898110, 1005, admin, ABCD, https://141.28.98.114, https
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↪→ ://141.28.98.114, DTMT check, 8189, 8289], name=

↪→ SimplePolicyEvaluationAgent_1005_1412898110]], intervall=60000,

↪→ locations=Europe,Africa]

4

5 2016-03-23 21:07:33.749 spawning_task_agents spawning_agents_for_task_DTMT

↪→ check_"ConfiguredAgent [agent=de.hfu.A4Cloud.Agents.dtmtCommunication.

↪→ DTMTRecipientAgent, args=[60000, 1412898110, DTMT check, 1005, admin,

↪→ ABCD, https://141.28.98.114, https://141.28.98.114, admin, ABCD, https

↪→ ://141.28.98.110, https://141.28.98.110, dtmt, aas, Europe,Africa, 8189,

↪→ 8289, 8181, 8282], name=DTMTRecipientAgent_1005_1412898110]" "

↪→ ConfiguredAgent [agent=de.hfu.A4Cloud.Agents.SimplePolicyEvaluationAgent

↪→ .SimplePolicyEvaluationAgent, args=[1412898110, 1005, admin, ABCD, https

↪→ ://141.28.98.114, https://141.28.98.114, DTMT check, 8189, 8289], name=

↪→ SimplePolicyEvaluationAgent_1005_1412898110]"

6

7 2016-03-23 21:08:38.892 evidence_record_for_violation_created <?xml version

↪→ ="1.0" encoding="UTF-8" standalone="yes"?>

8 <evidenceContainer>

9 <record id="1">

10 <action>DTMT Location violation@1412898110(10.0.0.1)@1412898110

↪→ (10.0.0.1)</action>

11 <actor>SimplePolicyEvaluationAgent_1005_1412898110</actor>

12 <policyID>1005</policyID>

13 <supportingElements elementID="0">

14 <signature>BJAMX0EqFABskzUqydPes5D+9ZcWHBO5F1SqLcYivSI=</signature>

15 <element xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/

↪→ XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

↪→ instance"><?xml version="1.0" encoding="UTF-8" standalone="

↪→ yes"?>

16 <evidenceContainer>

17 <record id="0">

18 <action>DTMT Location violation@1412898110(10.0.0.1)</

↪→ action>

19 <actor>DTMTRecipientAgent_1005_1412898110@1412898110</

↪→ actor>

20 <policyID>1005</policyID>

21 <supportingElements elementID="0">

262



C.2. AAS TRACE OF AUTOMATED TEST CASE FOR DATA LOCATION AUDIT

22 <signature>+BIFwjDbLavZC3UrE5wglhIS+

↪→ wlZlk9KWPhPFZ0bR/M=</signature>

23 <element xsi:type="xs:string" xmlns:xs="http://www.

↪→ w3.org/2001/XMLSchema" xmlns:xsi="http://www

↪→ .w3.org/2001/XMLSchema-instance">148712 INFO

↪→ com.sap.a4cloud.ruleengine.RuleEngine

↪→ - Potential violation detected: "Volume"

↪→ name "EU Data vol.", moved from original

↪→ host in "Europe" to new host in "US" </

↪→ element>

24 </supportingElements>

25 <supportingElements elementID="1">

26 <signature>

↪→ gJrlCmdRQveKlpeib1RI7qkA5FoAW7iopxEYFTo1ltY

↪→ =</signature>

27 <element xsi:type="xs:string" xmlns:xs="http://www.

↪→ w3.org/2001/XMLSchema" xmlns:xsi="http://www

↪→ .w3.org/2001/XMLSchema-instance">Record UUID

↪→ : 927b325f-b687-4b08-8992-bd28c23253bc</

↪→ element>

28 </supportingElements>

29 <evidenceMetaData>

30 <collectingInstance>

↪→ DTMTRecipientAgent_1005_1412898110</

↪→ collectingInstance>

31 <evidenceDetectionTime>2016-03-23T21

↪→ :08:37.860+01:00</evidenceDetectionTime>

32 </evidenceMetaData>

33 </record>

34 </evidenceContainer>

35 </element>

36 </supportingElements>

37 <supportingElements elementID="1">

38 <signature>caAjbe76RuiwivubduGHdwKiNFAN74O2m7Jt+X4mJqc=</signature>

39 <element xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/

↪→ XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

↪→ instance">Record UUID: 3b065c8d-d3c1-46c5-97e7-c5a2cb5dbdb0
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↪→ </element>

40 </supportingElements>

41 <evidenceMetaData>

42 <collectingInstance>DTMT check</collectingInstance>

43 <evidenceDetectionTime>2016-03-23T21:08:38.755+01:00</

↪→ evidenceDetectionTime>

44 </evidenceMetaData>

45 </record>

46 </evidenceContainer>

Listing C.2: Data Location Audit Example – Trace of Test Case (Internal AAS Logs)

C.3 AAS Trace of Automated Test Case for Data Reten-

tion Audit

Listing C.3 contains a log of events that are generated during the automated test

case execution in AAS. This trace of events was used to build the timeline infor-

mation and order of events demonstrated in Section 7.2.3. Some non-essential

information was removed for clarity. This is indicated where required.

1 2016-03-23 21:44:32.209 task_received "DataRetentionAuditTask [targetContainer

↪→ =1412898117, agents=null, argsOpenStackRESTAgent=null,

↪→ argsEmailNotificationAgent=null, argsDataRetentionPolicyEvaluationAgent=

↪→ null, argsPiiSnapshotAgent=null, argsPiiApplMessageCheckAgent=null,

↪→ policyID=1002, ruleID=null, recipient=1002, username=Panos, password=

↪→ null, endpoint=null, port=null, tenant=null, intervall=60000, vmName=

↪→ CP1_Service, existenceTime=null, directory=null, mailAddress=null,

↪→ duration=null, configPath=null, osContainer=1412898110, taskContainer

↪→ =1412898117]"

2

3 2016-03-23 21:44:32.237 audit_task_created DataRetentionAuditTask [

↪→ targetContainer=1412898117, agents=[ConfiguredAgent [agent=de.hfu.

↪→ A4Cloud.Agents.imtNotification.ImtNotificationAgent, args=[/opt/Core/

↪→ AgentConfig.cfg], name=IMT_NotificationAgent_1042], ConfiguredAgent [

↪→ agent=de.hfu.A4Cloud.Agents.dataRetention.PiiSnapshotCheckAgent, args
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↪→ =[1412898110, 1412898117, 1042, DataRetentionUsagePII, CP1_Service, /opt

↪→ /Core/AgentConfig.cfg, 60000], name=

↪→ PiiSnapshotCheckAgent_1042_1412898110], ConfiguredAgent [agent=de.hfu.

↪→ A4Cloud.Agents.dataRetention.PiiApplMessageCheckAgent, args=[1412898117,

↪→ DataRetentionUsagePII, CP1_Service, /opt/Core/AgentConfig.cfg, 1042,

↪→ 60000, /opt/Core/policy/policy1.xml], name=

↪→ PiiDataRetentionAgent_1042_1412898117], ConfiguredAgent [agent=de.hfu.

↪→ A4Cloud.Agents.EmailNotificationAgent.EmailNotificationAgent, args=[null

↪→ ], name=EmailNotificationAgent_1042_1412898117], ConfiguredAgent [agent=

↪→ de.hfu.A4Cloud.Agents.DataRetentionPolicyEvaluationAgent.

↪→ PiiDataRetentionPolicyEvaluationAgent, args=[1002, 1412898117, admin,

↪→ ABCD, https://141.28.98.114, https://141.28.98.114,

↪→ DataRetentionUsagePII, 1042, 1042, CP1_Service, /opt/Core/policy/policy1

↪→ .xml, 8189, 8289], name=

↪→ DataRetentionPolicyEvaluationAgent_1042_1412898117]],

↪→ argsOpenStackRESTAgent=null, argsEmailNotificationAgent=[null],

↪→ argsDataRetentionPolicyEvaluationAgent=[1002, 1412898117, admin, ABCD,

↪→ https://141.28.98.114, https://141.28.98.114, DataRetentionUsagePII,

↪→ 1042, 1042, CP1_Service, /opt/Core/policy/policy1.xml, 8189, 8289],

↪→ argsPiiSnapshotAgent=[1412898110, 1412898117, 1042,

↪→ DataRetentionUsagePII, CP1_Service, /opt/Core/AgentConfig.cfg, 60000],

↪→ argsPiiApplMessageCheckAgent=[1412898117, DataRetentionUsagePII,

↪→ CP1_Service, /opt/Core/AgentConfig.cfg, 1042, 60000, /opt/Core/policy/

↪→ policy1.xml], policyID=1042, ruleID=1042, recipient=1002, username=Panos

↪→ , password=null, endpoint=null, port=null, tenant=null, intervall=60000,

↪→ vmName=CP1_Service, existenceTime=null, directory=null, mailAddress=

↪→ null, duration=null, configPath=/opt/Core/AgentConfig.cfg, osContainer

↪→ =1412898110, taskContainer=1412898117]

4

5 2016-03-23 21:44:32.274 spawning_task_agents spawning_agents_for_task_Data

↪→ Retention PII Task_"ConfiguredAgent [agent=de.hfu.A4Cloud.Agents.

↪→ imtNotification.ImtNotificationAgent, args=[/opt/Core/AgentConfig.cfg],

↪→ name=IMT_NotificationAgent_1042]" "ConfiguredAgent [agent=de.hfu.A4Cloud

↪→ .Agents.dataRetention.PiiSnapshotCheckAgent, args=[1412898110,

↪→ 1412898117, 1042, DataRetentionUsagePII, CP1_Service, /opt/Core/

↪→ AgentConfig.cfg, 60000], name=PiiSnapshotCheckAgent_1042_1412898110]" "

↪→ ConfiguredAgent [agent=de.hfu.A4Cloud.Agents.dataRetention.
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↪→ PiiApplMessageCheckAgent, args=[1412898117, DataRetentionUsagePII,

↪→ CP1_Service, /opt/Core/AgentConfig.cfg, 1042, 60000, /opt/Core/policy/

↪→ policy1.xml], name=PiiDataRetentionAgent_1042_1412898117]" "

↪→ ConfiguredAgent [agent=de.hfu.A4Cloud.Agents.EmailNotificationAgent.

↪→ EmailNotificationAgent, args=[null], name=

↪→ EmailNotificationAgent_1042_1412898117]" "ConfiguredAgent [agent=de.hfu.

↪→ A4Cloud.Agents.DataRetentionPolicyEvaluationAgent.

↪→ PiiDataRetentionPolicyEvaluationAgent, args=[1002, 1412898117, admin,

↪→ ABCD, https://141.28.98.114, https://141.28.98.114,

↪→ DataRetentionUsagePII, 1042, 1042, CP1_Service, /opt/Core/policy/policy1

↪→ .xml, 8189, 8289], name=

↪→ DataRetentionPolicyEvaluationAgent_1042_1412898117]"

6

7 2016-03-23 21:45:36.212 snapshot_detected "<?xml version="1.0" encoding="UTF-8"

↪→ standalone="yes"?>

8 <evidenceContainer>

9 <record id="1">

10 <action>SnapshotExists(1)_a04437e1-2cb4-47a5-b2f5-0ba73cbe7bf3(

↪→ CP1_Service)@1412898110(172.28.64.50,,,,,,,,,,,,,,)</action>

11 <actor>PiiSnapshotCheckAgent_1042_1412898110@1412898110</actor>

12 <policyID>1042</policyID>

13 <supportingElements elementID="0">

14 <signature>T1hiNg89Q/jUVCHfQzpG8GKSOltMyQFe44NVH2ymbBM=</signature>

15 <element xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/

↪→ XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

↪→ instance">NovaImage{id=d840f4cb-11f1-432f-bc1f-3a7b922c1cce,

↪→ name=DemoSnap, status=SAVING, progress=25, size=0, minRam

↪→ =1024, minDisk=40, created=Wed Mar 23 21:45:13 CET 2016,

↪→ updated=Wed Mar 23 21:45:13 CET 2016, metadata={

↪→ instance_uuid=a04437e1-2cb4-47a5-b2f5-0ba73cbe7bf3,

↪→ instance_type_memory_mb=4096, user_id=

↪→ d336b4929ef043c990755c67d695a1b9, image_type=snapshot,

↪→ instance_type_id=1, instance_type_name=m1.medium,

↪→ instance_type_ephemeral_gb=0, instance_type_rxtx_factor=1,

↪→ instance_type_root_gb=40, instance_type_flavorid=3,

↪→ instance_type_vcpus=2, instance_type_swap=0, base_image_ref=

↪→ a86aa4ed-5df8-4452-bfd0-1d6e3d872839}, links=[GenericLink{
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↪→ href=http://141.28.98.110:8774/v2/655

↪→ bf47adead485fa497d9a37b1060bd/images/d840f4cb-11f1-432f-bc1f

↪→ -3a7b922c1cce, rel=self}, GenericLink{href=http

↪→ ://141.28.98.110:8774/655bf47adead485fa497d9a37b1060bd/

↪→ images/d840f4cb-11f1-432f-bc1f-3a7b922c1cce, rel=bookmark},

↪→ GenericLink{href=http://172.28.64.50:9292/655

↪→ bf47adead485fa497d9a37b1060bd/images/d840f4cb-11f1-432f-bc1f

↪→ -3a7b922c1cce, rel=alternate, type=application/vnd.openstack

↪→ .image}],

16 }</element>

17 </supportingElements>

18 <supportingElements elementID="1">

19 <signature>gTQQPM/CSkaqoD6todgFEEYfQNKjJW1G/i/gVuCZVQo=</signature>

20 <element xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/

↪→ XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

↪→ instance">Record UUID: c4efe83c-856f-47a8-8db8-b998dab96616

↪→ </element>

21 </supportingElements>

22 <evidenceMetaData>

23 <collectingInstance>PiiSnapshotCheckAgent_1042_1412898110</

↪→ collectingInstance>

24 <evidenceDetectionTime>2016-03-23T21:45:36.081+01:00</

↪→ evidenceDetectionTime>

25 </evidenceMetaData>

26 </record>

27 </evidenceContainer>

28 "

29

30 2016-03-23 21:45:38.571 received_apple_log_"PII store message" "<?xml version

↪→ ="1.0" encoding="UTF-8" standalone="yes"?>

31 <evidenceContainer>

32 <record id="0">

33 <action>PII store message@1412898117(10.0.0.5)</action>

34 <actor>PiiDataRetentionAgent_1042_1412898117</actor>

35 <policyID>1042</policyID>

36 <supportingElements>

37 <signature>ZKR9xs8d1XhyrHM+iaLXmBz3na+vZeV4HKNvVKQlZ2c=</signature>
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38 <element xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/

↪→ XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

↪→ instance">de.hfu.A4Cloud.Agents.intrusionAttemptDetection.

↪→ ApplMessageWrapper@cb1ae5d

39 Message: PII storedtype: policy admnistration

40 piiAttributeName: Country

41 piiOwner: Panos

42 date: 2016-03-23 21:44:36.0

43 </element>

44 </supportingElements>

45 <supportingElements elementID="1">

46 <signature>i3U+vhHrtnDseVzk7vnm6zk1FZa2dkFmd8ODfqu66KA=</signature>

47 <element xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/

↪→ XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

↪→ instance">Record UUID: 7099e7fb-ea90-44b6-bd73-66c4fc722c8a

↪→ </element>

48 </supportingElements>

49 <evidenceMetaData>

50 <collectingInstance>PiiDataRetentionAgent_1042_1412898117</

↪→ collectingInstance>

51 <evidenceDetectionTime>2016-03-23T21:45:38.106+01:00</

↪→ evidenceDetectionTime>

52 </evidenceMetaData>

53 </record>

54 </evidenceContainer>

55 "

56

57 2016-03-23 21:46:39.217 received_apple_log_"PII delete message" "<?xml version

↪→ ="1.0" encoding="UTF-8" standalone="yes"?>

58 <evidenceContainer>

59 <record id="1">

60 <action>PII delete message@1412898117(10.0.0.5)</action>

61 <actor>PiiDataRetentionAgent_1042_1412898117</actor>

62 <policyID>1042</policyID>

63 <supportingElements>

64 <signature>cO4ypyc4FA6Mox+PTIfydcOKHgqt9u01uNEvS2Gxxis=</signature>

65 <element xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/
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↪→ XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

↪→ instance">de.hfu.A4Cloud.Agents.intrusionAttemptDetection.

↪→ ApplMessageWrapper@72da2335

66 Message: PII deleted type: policy enforcement

67 piiAttributeName: Country

68 piiOwner: Panos

69 date: 2016-03-23 21:46:36.0

70 </element>

71 </supportingElements>

72 <supportingElements elementID="1">

73 <signature>6MbfJukIPJhpq5FWm4HzllxxjR6lOcVEvubxkA4JWkE=</signature>

74 <element xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/

↪→ XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

↪→ instance">Record UUID: ce6f116b-06f2-477e-baad-9039facfd243

↪→ </element>

75 </supportingElements>

76 <evidenceMetaData>

77 <collectingInstance>PiiDataRetentionAgent_1042_1412898117</

↪→ collectingInstance>

78 <evidenceDetectionTime>2016-03-23T21:46:39.060+01:00</

↪→ evidenceDetectionTime>

79 </evidenceMetaData>

80 </record>

81 </evidenceContainer>

82 "

83

84 2016-03-23 21:47:41.862 data_retention_policy_violation_detected "<?xml version

↪→ ="1.0" encoding="UTF-8" standalone="yes"?>

85 <evidenceContainer>

86 <record id="0">

87 <action>PII Data Retention Violation - Snapshots of PII Store(CP1_Service)

↪→ available between 2016-03-23 21:44:36.0 and 2016-03-23 21:46:36.0 (

↪→ contains PII of Panos )@1412898117(10.0.0.5)</action>

88 <actor>DataRetentionPolicyEvaluationAgent_1042_1412898117</actor>

89 <policyID>1042</policyID>

90 <supportingElements elementID="0">

91 ___TRUNCATED (DUE TO MESSAGE SIZE OF VIOLATION - HAS PREVIOUSLY SHOWN EVIDENCE
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↪→ RECORDS ATTACHED)___

92

93 2016-03-23 21:48:31.576 notification_sent_to_IMT "{

94 "id" : "4d226def-5c82-4edd-acad-b8f0599a1a75",

95 "type" : {

96 "id" : "e169c243-d60d-4c39-b3ce-4c7abd4c04e1",

97 "name" : "PII snapshot exists notification",

98 "endpoint" : "http://141.28.98.125:8800",

99 "incidents" : [ {

100 "id" : "1b007583-3df9-4c06-98e6-47fe89c68e6f",

101 "name" : "PII Data Retention Violation",

102 "type" : {

103 "id" : "9749f483-0ba9-4bc0-8a1f-956140965a5f",

104 "name" : "PII Data Retention Snapshot Violation",

105 "description" : "PII should be completely deleted but still exists in

↪→ snapshot",

106 "consequence" : 0.5

107 },

108 ___TRUNCATED (DUE TO MESSAGE SIZE OF NOTIFICATION - HAS PREVIOUSLY SHOWN

↪→ EVIDENCE RECORDS ATTACHED)___

Listing C.3: Data Retention Audit Example – Trace of Test Case (Internal AAS

Logs)
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A4Cloud Cloud Accountability Project.

AAC Audit Agent Controller.

AAS Audit Agent System.

ACL Agent Communication Language.
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ANN Artificial Neural Network.
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face.
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Language.
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B
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C
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CAPL Cloud Audit Policy Language.
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CDESF Common Digital Evidence
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CIMI Cloud Infrastructure Manage-
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CMS Cloud Management System.

CRM Customer Relationship Manage-

ment.

CSA Cloud Security Alliance.
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CTP CSA Cloud Trust Protocol.

D
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DEB Digital Evidence Bag.

DMTF Distributed Management Task

Force.

DoS Denial of Service.

DPA Data Protection Authority.

DTM Data Transfer Monitor.

E

ENISA European Network and Infor-

mation Security Agency.

EPP Evidence Processor and Presenter.
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ES Evidence Store.

EU European Union.

F

FedRAMP Federal Risk and Authoriza-

tion Program.
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cal Agents.

G

GUI Graphical User Interface.

GUID Universally Unique Identifier.

H

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Se-

cure.

I

IaaS Infrastructure as a Service.

ICT Information and Communication

Technology.

IGA Information Gathering Agent.

IMT Incident Management Tool.

IP Internet Protocol.

IS Information Security.

IT Information Technology.

J
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rization Service.
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work.

JSON Javascript Object Notation.

JVM Java Virtual Machine.

K

KVM Kernel-based Virtual Machine.

L

LAN Local Area Network.

M

MAS Multi-agent System.

MTA Mail Transport Agent.

N

NIST National Institute for Standards

and Technology.

NTP Network Time Protocol.

O

OECD Organisation for Economic Co-

operation and Development.

OVF Open Virtualization Format.

OWASP Open Web Application Security

Project.

P

PaaS Platform as a Service.

PDF Portable Document Format.

PDP Proof of Data Possession.

PGP Pretty Good Privacy.

PII Personal Identifiable Information.

PoR Proof of Retrievability.

PPEDFI Privacy Preserving Efficient

Digital Forensic Investigation.

PPL PrimeLife Policy Language.

PSP Primary Service Provider.

Q

QoS Quality of Service.

R

RAM Random Access Memory.

ReST Representational State Transfer.

RZV Regionales Zentrum für Virtual-

isierung.

S

SAaaS Security Audit as a Service.

SaaS Software as a Service.

SDN Software-defined Networking.

SIEM Security Information and Event

Management.
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SLA Service Level Agreement.

SME Small or Medium-size Enterprise.

SNMP Simple Network Management

Protocol.

STAR Security, Trust & Assurance

Registry.

T

TLS Transport Layer Security.

TOS Terms of Service.

U

UCON Usage Control.

UI User Interface.

UML Unified Modeling Language.

URI Unique Resource Identifier.

V

VLAN Virtual Local Area Network.

VM Virtual Machine.

VMI Virtual Machine Introspection.

VPN Virtual Private Network.

VXLAN Virtual Extensible Local Area

Network.

W

WORM Write Once Read Many.

WWW World Wide Web.

X

XACML eXtensible Access Control

Markup Language.
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Thomas Rübsamen1, Christoph Reich1, Nathan Clarke2 and Martin Knahl3
1Institute for Cloud Computing and IT Security, Furtwangen University, Robert-Gerwig-Platz 1, Furtwangen, Germany
2Centre for Security, Communications and Network Research, Plymouth University, Portland Square, Plymouth, United

Kingdom
3Furtwangen University, Robert-Gerwig-Platz 1, Furtwangen, Germany

{thomas.ruebsamen, christoph.reich, martin.knahl}@hs-furtwangen.de, nathan.clarke@plymouth.ac.uk

Keywords: Cloud Computing, Audit, Federated Cloud, Security, Digital Evidence

Abstract: With the increasing importance of cloud computing, compliance concerns get into the focus of businesses
more often. Furthermore, businesses still consider security and privacy related issues to be the most prominent
inhibitors for an even more widespread adoption of cloud computing services. Several frameworks try to ad-
dress these concerns by building comprehensive guidelines for security controls for the use of cloud services.
However, assurance of the correct and effective implementation of such controls is required by businesses
to attenuate the loss of control that is inherently associated with using cloud services. Giving this kind of
assurance is traditionally the task of audits and certification. Cloud auditing becomes increasingly challeng-
ing for the auditor the more complex the cloud service provision chain becomes. There are many examples
for Software as a Service (SaaS) providers that do not own dedicated hardware anymore for operating their
services, but rely solely on other cloud providers of the lower layers, such as platform as a service (PaaS)
or infrastructure as a service (IaaS) providers. The collection of data (evidence) for the assessment of policy
compliance during a technical audit is aggravated the more complex the combination of cloud providers be-
comes. Nevertheless, the collection at all participating providers is required to assess policy compliance in the
whole chain. The main contribution of this paper is an analysis of potential ways of collecting evidence in an
automated way across cloud provider boundaries to facilitate cloud audits. Furthermore, a way of integrating
the most suitable approaches in the system for automated evidence collection and auditing is proposed.

1 INTRODUCTION

As cloud computing becomes more accepted by main-
stream businesses and replaces more and more on-
premise IT installations, compliance with regulation,
industry best-practices and customer requirements be-
comes increasingly important. The main inhibitor for
even more widespread adoption of cloud services still
remain security and privacy concerns of cloud cus-
tomers (Cloud Security Alliance, 2013). In Germany,
a preference for cloud providers that fall under Ger-
man jurisdiction and also run their own data centers
in Germany or at least inside the European Union
can be observed recently (Bitkom Research GmbH,
2015). This comes as no surprise when privacy vio-
lations that have become known to the general popu-
lation in recent years are considered (e.g., NSA and
Snowden revelations). A feasible way to assess and
ensure compliance of cloud services regularly is by
using audits. For any technical audit, information has
to be collected in order to assess compliance. This

automated process is called evidence collection in our
system. In our previous work on cloud auditing, the
focus was put on automating the three major parts of
an audit system, i) evidence collection and handling,
ii) evaluation against machine-readable policies and
iii) presentation of audit results (Rübsamen and Re-
ich, 2013; Rübsamen et al., 2013; Rübsamen and Re-
ich, 2014; Rübsamen et al., 2015).

Today, it is common to not only have a single
cloud provider to provision a service to its customers,
but multiple. The composition of multiple services
provided by different providers can already be ob-
served where Software as a Service (SaaS) providers
host their offering on top of the computing resources
provided by an Infrastructure as a Service (IaaS)
provider. For instance, Dropbox and Netflix both host
their services using Amazon’s infrastructure. These
composed services - they can be considered to form
a chain of cloud providers, therefore cloud provider
chain - can become very complex and opaque with
respect to the flow of data between providers. Several



new challenges for the auditing of such cloud provider
chains can be identified, which will be discussed in
this paper. The other major contribution of this paper
is a proposed solution to auditing of cloud provider
chains, which is an extension to our previous work in
this area.

This paper is structured as follows: in Section 2,
related research projects and industrial approaches are
discussed. Following that, in Section 3 the authors
elaborate on the definition and properties of cloud
provider chains and auditing. Afterwards, a discus-
sion of three different approaches to evidence collec-
tion for provider chain auditing in Section 4 is pre-
sented. In Section 5, the architectural integration of
the approaches in a system for automating cloud au-
dits is presented and evaluated for their effectiveness
using a fictitious scenario. Section 6 concludes this
paper.

2 RELATED WORK

Standards and catalogues such as ISO27001 (ISO,
2005), Control Objectives for Information and Re-
lated Technology (COBIT) (Information Systems Au-
dit and Control Association, 2012) or NIST 800-
53 (National Institute of Standards and Technology),
2013) define information security controls. A major
part of these frameworks is auditing, both in regu-
lar auditing as an control itself and by using audits
to ensure the correct and effective implementation of
the controls. They are typically generic and target in-
formation systems in general and do not address the
specifics of cloud computing.

There are some extensions to the previous frame-
works such as the Cloud Controls Matrix (Cloud Se-
curity Alliance, 2014). It aims at the integration
of aspects from ISO and COBIT, and NIST’s more
cloud-focused security and privacy protection recom-
mendations 800-144 (National Institute of Standards
and Technology, 2011), as well as domain-specific
frameworks such as PCI-DSS (PCI Security Stan-
dards Council, 2015) or FedRAMP (U.S. General Ser-
vices Administration, 2014), into a common controls
framework for cloud computing that facilitates the
risk assessment of using cloud services. CSA’s Secu-
rity, Trust & Assurance Registry (Cloud Security Al-
liance, 2015) enables comparison of cloud providers
based on self-certification of cloud providers using
the Cloud Controls Matrix. However, conducting au-
dits based on these standards is mostly a manual pro-
cess, still. Our proposed approach supports the au-
tomatic collection and evaluation of evidence based
on policies that may stem from these frameworks and

therefore could enable continuous certification.
Monitoring systems provide similar functional-

ity to audit systems with respect to the collection
of data and synthesizing metrics that are compared
against defined thresholds. There are several solu-
tions for IT monitoring such as Nagios (Nagios En-
terprises, LLC, 2014) or Ganglia (Ganglia, 2015) and
several big commercial solutions. However, they of-
ten have a very distinct heritage in data center, clus-
ter and grid monitoring and are therefore not neces-
sarily suitable for the cloud due its dynamic infras-
tructure and potential chaining of cloud providers.
More specialized monitoring systems such as Ama-
zon’s CloudWatch (Amazon Web Services, 2016) or
Rackspace’s monitoring (Rackspace, 2016) are nat-
urally proprietary and do not support chaining out-
side of the providers own set of services. The inte-
gration of an evidence collection system with such
widely used monitoring systems is of great impor-
tance, since they provide deep insight into cloud ser-
vices and therefore are considered valuable sources of
evidence.

Auditing and monitoring in cloud computing has
gained more momentum in recent years and a growing
number of research projects is addressing their unique
challenges. Povedano-Molina et al. (2013) propose
Distributed Architecture for Resource manaGement
and mOnitoring in cloudS (DARGOS) that enables
efficient distributed monitoring of virtual resources
based on the publish/subscribe paradigm. They uti-
lize monitor agents to gather information for their
centralized collector node. Katsaros et al. (2012) de-
scribe a similar approach to cloud monitoring with
virtual machine units (VMU) that contain data collec-
tors (scripts). Their focus is on self-adaptation of the
monitoring system by adjusting monitoring intervals
and other parameters. While they introduce isolation
of tenants in cloud environments, they do not at this
stage show how their system would work in a multi-
provider scenario.

Massonet et al. (2011) propose an approach to
monitoring data location compliance in federated
cloud scenarios, where an infrastructure provider is
chained with a service provider (i.e., the service
provider uses resource provided by the infrastructure
provider). A key requirement of their approach is
the collaboration of both providers with respect to
collecting monitoring data. Infrastructure monitoring
data (from the IaaS provider) is shared with the ser-
vice provider (SaaS provider) that uses it to generate
audit trails. However, their main focus is to monitor
virtual execution environments (VEE) that ”are fully
isolated runtime modules that abstract away the phys-
ical characteristics of the resource“, which roughly



translates to virtual machines. The actual infrastruc-
ture layer is out of scope. Also, opposed to our ap-
proach, monitoring probes (data collectors) do not
have a way to be dynamically deployed where needed,
but rather are included in the VEE on deployment
time.

Kertesz et al. (2013) follow the idea of tightly inte-
grating monitoring into their management system for
federated clouds, inorder to facilitate provider selec-
tion on the basis of availability and reliability met-
rics. They introduce service monitoring by reusing
SALMonADA (Muller et al., 2012). Their approach
is geared towards provider decision making for state-
less services based on performance metrics and does
neither include protection mechanisms and dynamic
collector distribution that are required in a system for
evidence collection in the cloud.

Montes et al. (2013) introduce an important aspect
to cloud monitoring by also including the client-side
in the data collection in addition to the cloud provider.
However, they do not consider integrating third-party
cloud providers as well.

Xie and Gamble (2012, 2013); Xie et al. (2014)
describe an approach to inter-cloud auditing on the
web service level, where audit assets are requested
from a federated service.

3 COMPLEX CLOUD PROVIDER
CHAINS FOR SERVICE
PROVISION

While a lot of today’s cloud use cases only involve
one service provider for service provision, there are
also many cases where multiple providers are in-
volved. A prominent example is Dropbox that heav-
ily uses Amazon’s S3 and EC2 services to provide its
own SaaS offering (Tom Cook, 2015).

There are several terms for the concept of provider
chains such as federated cloud, inter-cloud and cloud
service composition. In this work these terms are used
synonymously. The concept of a provider chain is de-
fined as follows:

1. At least two cloud providers (characterized by be-
ing either IaaS, PaaS or SaaS providers) are in-
volved in the provision of a service to a cloud con-
sumer (who can be an individual or business).

2. One of the cloud providers acts as a primary ser-
vice provider to the cloud consumer.

3. Subsequent cloud providers do not have a direct
relationship with the cloud consumer.

4. The primary service provider must be and the sub-
sequent providers can be cloud consumers them-
selves, if they use services provided by other
cloud providers.

5. The data handling policies agreed between the
cloud consumer and the primary service provider
must not be relaxed if data is processed by a sub-
sequent provider.

The terms cloud consumer and cloud customer are
used synonymously as well, while relying on the def-
inition of a cloud consumer and auditor provided by
NIST (Liu et al., 2011).

Figure 1 depicts a simplified scenario where three
cloud service providers are involved in provision-
ing of a seemingly single service to a cloud con-
sumer. The SaaS provider acts as the primary service
provider, while it uses the PaaS provider’s platform
for hosting its service. The PaaS provider in turn does
not have its own data center but uses resources pro-
vided by an IaaS provider.

The data handling policy applies to the whole
chain (depicted by the dashed rectangle in Figure 1).
Data handling policies thereby govern the treatment
of data such as data retention (the deletion of data
after a certain time), location (geographical restric-
tions) and security requirements (access control rules
and protection of systems that handle the data).

All cloud provider produce evidence of their cloud
operations.

Figure 1: Cloud Provider Chains for Service Provision.

3.1 Evidence of Compliance in Cloud
Provider Chains

At the core of any audit is evidence of compliance or
non-compliance that is being analyzed. The types of
evidence are closely linked to the type of audit (e.g.,
security audit, financial audit etc.) and are - from a
technological perspective - especially diverse in the
cloud due to the heterogeneity of its subsystems, ar-
chitectures, layers and services. The notion of evi-



dence for cloud audits was discussed in our previous
work in more detail (Rübsamen and Reich, 2013).

In general, we follow the definition of digital ev-
idence that is “information of probative value that
is stored or transmitted in binary form” (Scientific
Working Groups on Digital Evidence and Imaging
Technology, 2015). This means, that the types of
evidence are diverse and include for example logs,
traces, files, monitoring and history data from cloud
management system like OpenStack’s Nova service.

Evidence collection at a single cloud provider is
already a complex task due to the diverse types of
evidence sources and sheer amount of potentially re-
quired data that is being produced continuously. In
a provider chain, these problems are intensified by
the introduction of administrative domains and the
lack of transparency regarding the number of involved
providers and their relationships.

Another problem that is introduced with the con-
cept of provider chains are changing regulatory do-
mains. In a single-provider scenario, there are typi-
cally only two regulatory domains to be considered:
i) the one that applies to the cloud consumer and
ii) the one that applies to the cloud provider. With
the addition of more cloud providers, the complexity
of achieving regulatory compliance increases tremen-
dously.

A simple example for such a case is the recent de-
cision of the European Court in 2015 to declare Safe
Harbor invalid, which leads to data transfers outside
the European Union that are only governed by Safe
Harbor to be invalid. In a provider chain, where a
European Cloud provider transfers data about Euro-
pean individuals to another provider in the US, reg-
ulatory compliance could have been lost overnight.
Here, it can be seen that regulatory domains can have
a tremendous impact on how a compliance audit may
have to look like, and on the type of evidence that may
need to be collected at the different providers.

As previously suggested, the third major chal-
lenge for evidence collection in cloud provider chains
is their inherent technological heterogeneity. APIs,
protocols and data formats differ by provider and typi-
cally cannot be integrated easily (e.g., providers offer-
ing proprietary APIs). There are some approaches to
homogenize some of the technologies, such as for ex-
ample CSA CloudTrust Protocol (Cloud Security Al-
liance, 2016) that aims to provide a well-defined API
that enables cloud providers to export transparency-
enhancing information to auditors and cloud con-
sumers. In this approach, the technological hetero-
geneity on the architectural level of the system is ad-
dressed by ensuring flexibility and extensibility and
enabling the easy development of adapters for differ-

ent evidence sources.

3.2 Audit Frameworks

Policy compliance assessment and validation is the
main goal of our audit system. Policies can be of var-
ious kinds, for instance, a data protection policy is
a typical tool used by cloud providers to frame their
data protection and handling practices. In such poli-
cies, limits and obligations that a provider has to ful-
fill are defined. Typically, these documents are not
machine-readable and are geared towards limiting li-
ability of the provider.

Additionally, there are well-known standards,
frameworks and industry best practices, which de-
fine various aspects of how data handling and protec-
tion should be implemented in practice. Such frame-
works are for instance the well-known ISO27001 for
information security management in general, COBIT
for IT governance and CSA’s Cloud Controls Matrix
(CCM) (Cloud Security Alliance, 2014) for cloud-
specific risk assessment. However, requirements and
obligations stated by these frameworks are typically
not available in a machine-readable format. There are
approaches to making these requirements and obliga-
tions explicit in a machine-readable way, for example
Accountability Primelife Policy Language (Azraoui
et al., 2014) for defining data protection and data
handling-related obligations for data processing in the
cloud.

Traditionally, policy compliance is evaluated us-
ing audits and asserted with a certification of compli-
ance (e.g., ISO27001 compliance certification). Typ-
ically, the intervals in which an audit is repeated are
quite long (often yearly or longer). In the meantime,
policy violations can potentially remain undetected
for extended periods of time. One of our main goals
is to address these periods of uncertainty by enabling
the continuous assessment of cloud operations with
respect to policy compliance. This is an important
step towards continuous certification.

3.3 Auditing Cloud Provider Chains

According to NIST, a cloud auditor is defined as
“A party that can conduct independent assessment of
cloud services, information system operations, perfor-
mance and security of the cloud implementation” (Liu
et al., 2011). In our proposed system, the auditor is
supported by a system for automated evidence collec-
tion and assessment. Evidence in the audit system is
any kind of information that is indicative of compli-
ance with policies or a violation of those. Typically,
evidence is collected at the auditee. In general, an au-



ditee is an organization that is being audited, which in
this paper, is always a cloud provider.

Complex cloud service provision scenarios in-
troduce new challenges with respect to auditing.
While in a typical scenario, where there is one cloud
provider and one cloud consumer, policies can be
agreed upon relatively easily between the two, this is
not as easy in a provider chain. In fact, the cloud con-
sumer might not be aware of or even interested in the
fact that there is an unknown third-party that might
have access to his data as long as his expectations re-
garding the protection and processing of his data are
fulfilled. However, to assert compliance, the whole
chain of providers, including data flows that are gov-
erned by the previously mentioned policies, have to
be considered. This means that an audit with respect
to a single policy rule may need to be split into several
smaller evidence collection and evaluation tasks that
are distributed among the providers.

For instance: assuming there is a restriction on
data retention put in place that states that certain types
of data (e.g., Personal Identifiable Information PII)
has to deleted by the provider after a certain fixed
period of time and no copies may be left over. This
restriction can stem from regulatory framework such
as the European Data Protection Directive or sim-
ply preferences that were stated by the data subject,
whose data is being processed in the cloud. Such
requirements can be formulated and enforced in for
example the Accountability PrimeLife Policy Lan-
guage (A-PPL) and its enforcement engine (A-PPL-
E) Azraoui et al. (2015).

Auditing for compliance with such a policy re-
quires, on a higher level, the check for the implemen-
tation of appropriate mechanisms and controls at each
provider where the data itself or a copy thereof could
have been stored. On a lower-level, the correct en-
forcement of the data retention rule could be evalu-
ated in an audit by using evidence of data deletion
that is being collected from all the cloud providers. In
the overview depicted in Figure 1, that evidence could
comprise of:

• Data deletion enforcement events generated by
the service at the primary service provider as a
reaction to the retention period being reached,

• Database delete log events produced by a database
management system at the PaaS provider,

• And scan results on the IaaS level for data that
may be still available outside of the running ser-
vice in a backup subsystem provided by the IaaS
provider.

The importance of widening the scope of audits
in such dynamic scenarios is apparent, especially if at

the same time the depth of analysis is widened beyond
checking whether or not security and privacy controls
are put in place.

4 APPROACHES FOR
COLLECTING EVIDENCE IN
CLOUD PROVIDER CHAIN
AUDITS

There are several approaches available when it comes
to collecting evidence for audit purposes in a service
provider chain. These approaches differ in the follow-
ing aspects:

1. The level of control an auditor has over the extent
of the data that is being published, i.e. whether the
auditor is limited to information that a provider is
already providing or if he has more fine-grained
control and access to a provider’s infrastructure.

2. Technical limitations imposed by the technolog-
ical environment, i.e. the extent to which cloud
providers have to implement additional evidence
collection mechanisms.

3. The expected willingness or acceptance to pro-
vide such mechanisms by the publishing service
provider, i.e. the potential disclosure of confiden-
tial provider information and required level of ac-
cess to the provider’s systems.

In the remainder of this chapter, three approaches
are described and rated by the above-mentioned fac-
tors.

The focus lies thereby on inspecting common
components at two exemplary cloud providers that
form a provider chain for the provision of a service.
These components are:

AuditSys An audit system that enables automated,
policy-based collection of evidence as well as the
continuous and periodic evaluation of said evi-
dence during audits.

Collector A component that enables the collection
of evidentiary data such as logs at various archi-
tectural layers of the cloud, while addressing the
heterogeneous nature of said evidence sources by
acting as an adapter.

Source A location where evidence of cloud opera-
tions is generated.

Implementation details of these components are
discussed in our previous work. The following dis-
cussion focuses on the different approaches to extend
the system for cloud provider chains.



The first approach focuses on reusing already
existing evidence sources by collecting via remote
APIs of a cloud system. The second approach uses
provider-provisioned evidence collectors and the third
approach leverages the mobility of software agents (as
used in the prototype implementation of our system)
for evidence collection.

4.1 Remote API Evidence Collector

The first approach for collecting evidence that is rele-
vant to automated auditing, leverages already existing
APIs in cloud ecosystems. Several cloud providers,
such as Amazon or Rackspace, already provide im-
proved transparency over their cloud operations by
providing their customers with access to proprietary
monitoring and logging APIs (see (Amazon Web Ser-
vices, 2016; Rackspace, 2016)). The extent to which
data is shared is typically limited to information that
is already produced by the clod provider’s system
(e.g., events in the cloud management system) and
restricted to information that immediately affects the
cloud customer (e.g., events that are directly linked to
a tenant).

Data such as logs that are generated by the under-
lying systems are very important sources of evidence,
since they expose a lot of information about the op-
eration of cloud services. A specific example of such
evidence are for instance: VM lifecycle events (cre-
ated, suspended, snapshotted etc.) including times-
tamp of the operation and who performed. This can
be requested from OpenStack’s Nova service via its
REST interface. The type of information is highly
dependent on the actual system, the granularity of the
produced logs and the scope of the provided APIs.
For instance, on the infrastructure level, there are log
events produced and shared that provide insight on
virtual resource lifecycle (e.g., start/stop events of vir-
tual machine).

Figure 2 depicts such a scenario. The AuditSys at
Cloud A operates a collector that implements the API
of the remote data source at Cloud B. It is configured
with the access credentials of Cloud A, thus enabling
the collector to request evidence from Cloud B. Fur-
thermore, since different services may provide differ-
ent APIs (e.g., OpenStack vs. OpenNebula API), the
collector is service-specific. For instance, a collec-
tor implements the data formats and protocols as de-
fined in the OpenStack Nova API to collect evidence
about the images that are owned or otherwise associ-
ated with Cloud A as a customer of Cloud B.

Figure 2: Remote API Evidence Collector.

4.1.1 Level of Auditor Control

The amount of evidence that can be collected is
severely limited by the actual APIs that are provided
by a cloud provider. It is either: i) the evidence that
an auditor is looking for is immediately available be-
cause the provider already monitors all relevant data
sources and makes that data accessible via the API or
ii) the data is not available. Since a lot of the cloud
provider’s systems expose remote APIs anyway, they
have to be considered. However, the completeness
of the exposed APIs and therefore the completeness
of the collected evidence is questionable due to the
aforementioned reasons.

If an auditee for some reason does not implement
or provide access to the audit system, an auditor may
still collect evidence to a limited degree using this ap-
proach.

4.1.2 Technical limitations

If lower-level access to the providers infrastructure is
required to collect evidence (e.g., log events gener-
ated on the network layer or block storage-level ac-
cess to data), an auditor might not be able to gain ac-
cess to that information.

4.1.3 Acceptance

This approach poses some challenges with respect to
security, privacy and trust required by the auditee.
Since the auditee is already exposing the APIs pub-
licly, it can be expected that they will be used for au-
diting and monitoring purposes. The implementation
of security and privacy-preserving mechanisms on the
API-level is therefore assumed. However, the extent
to which such mechanisms are implemented highly
depends on the actual implementation of the APIs on
the provider side.

While this way of providing evidence to auditors
is likely to be accepted by cloud providers, it may be
too limited with respect to the extent to which evi-
dence can be collected at lower architectural levels.



4.2 Provider Provisioned Evidence
Collector

In this approach, the audit system still is the main
component for evidence collection. Here, all cloud
providers that are part of the service provision chain
are running a dedicated system for auditing. How-
ever, the instantiation and configuration of the collec-
tor is delegated to the auditee. The auditee assumes
full control over the collector and merely grants the
auditor access to interact with the collector for evi-
dence collection.

The auditee (see Cloud B in Figure 3) provisions
evidence collectors and provides access to them to the
auditor. The auditor (who is using AuditSys at Cloud
A) configures evidence collection for the audit to con-
nect to the collectors at Cloud B.

Figure 3: Provider-provisioned Evidence Collector.

4.2.1 Level of Auditor Control

The configuration of the evidence collector can be ad-
justed by the auditor to a degree that is controlled by
the auditee (e.g., applying filters to logs). He is pro-
vided limited means to configure a collector but no
direct, low-level access such as freely migrating the
collector in the auditee’s infrastructure. At any time,
the auditee can disconnect, change or otherwise con-
trol the collector. An auditor may be put off by the
limitations posed by this approach, since he is effec-
tively giving up control over the central part of evi-
dence collection and is relying solely on the cooper-
ation of the auditee. For instance, simple tasks such
as reconfiguring or restarting a collector may require
extensive interaction between the two audit systems
and potentially intervention by a human (e.g., an ad-
ministrator).

4.2.2 Technical limitations

This approach is only limited by the availability of
collectors for evidence sources.

4.2.3 Acceptance

In this approach, the auditee retains full control over
the collector and the potential evidence that can be

collected by it. The auditor can take some influ-
ence on the filtering of data that is collected from the
evidence source and on general parameters, such as
whether evidence is pushed by or pulled from the col-
lector. Most of the baseline configuration though, is
performed by the auditee (such as access restrictions
and deployment of the collector). The auditor’s abil-
ity to influence the collector is severely limited by the
restriction of interactions to a well-defined set of con-
figuration parameters and the evidence exchange pro-
tocol. This level of control that the auditee has over
the evidence collection process may have positive in-
fluence on provider acceptance.

4.3 Mobile Evidence Collector

This approach is specific to a central characteristic of
software agent systems, which is the ability to mi-
grate over a network between runtime environments.
In this approach, the migration of evidence collectors
between separate instances of the audit system run-
ning at both Cloud A and B is proposed.

In our implementation, we opted for the
well-known Java Agent Development framework
(JADE) JADE (2014) for implementing collectors.
The migration of collectors between providers is
thereby performed by using JADE’s mobile agent ca-
pabilities.

As depicted in Figure 4, the auditor prepares the
required collector fully (i.e., agent instantiation and
configuration) and then migrates the collector (shaded
box named Collector) to the auditee (Collector‘).
There, the collector gathers evidence that is sent back
to the auditor for evaluation. Generally however,
agents do not cross from one particular administrative
domain to another, but remain at one. In this case, the
collector crosses from Cloud A’s administrative do-
main to Cloud B. This may have significant impact
on the acceptance of the approach.

Figure 4: Mobile Evidence Collector.

4.3.1 Level of Auditor Control

The auditor retains full control over the type of collec-
tor and its configuration. The auditee may not in any



way change or otherwise influence the collector since
this could be deemed a potentially malicious manipu-
lation.

4.3.2 Technical limitations

Since the auditor knows most about the actual con-
figuration required for a collector, it is logical to take
this approach and simply hand-over a fully prepared
collector to the auditee. However, this only works if
both run the same audit system, or the auditee at the
very least provides a runtime environment for the col-
lector. In any case, this approach offers the most com-
plete and most flexible way of collecting evidence at
an auditee due to the comprehensive evidence collec-
tion capabilities.

4.3.3 Acceptance

The main problem with this approach is required
trust by the auditee. Since the collector that is be-
ing handed over to him by the auditor is in fact soft-
ware that the auditee is supposed to run on its in-
frastructure, several security, privacy and trust-related
issues associated with such cross-domain agent mo-
bility need to be addressed. Several security con-
trols need to be implemented in order to make cloud
providers consider the implementation of an audit
system including the proposed approach of using mo-
bile collectors.

The main security concerns of this approach stem
from the fact that the auditee is expected to execute
software on his infrastructure over which he does not
have any control. He cannot tell for certain whether or
not the agent is accessing only those evidence sources
which he expects it to.

Without any additional security measures, it can-
not be expected that any cloud provider is willing to
accept this approach. However, with the addition of
security measures such as ensuring authenticity of the
collector (e.g., using collector code reviews and code
signing) this approach becomes more feasible. The
discussion of such measures depends on the technol-
ogy used by the implementation and is out of scope
of this paper. Without any additional measures, it can
be assumed that this approach is only feasible, if the
auditor is completely trusted by the auditee. In that
case, this approach is very powerful and flexible.

4.4 Round-up

All three approaches for evidence collection in
provider chains have their distinct advantages and dis-
advantages. Using remote API evidence collectors
is simple, quickly implemented, securely and readily

available, but severely limited regarding access to ev-
idence sources. Using provider-provisioned evidence
collectors is more powerful with respect to access to
evidence sources, but requires more effort in the con-
figuration phase and leaves full control to the auditee.
Using mobile evidence collectors is the most flexible
approach that allows broad access to evidence sources
at the auditee’s infrastructure and leaves full control
over the evidence collection to the auditor. There-
fore, a balance has to be struck between broad ac-
cess to evidence sources when using mobile collec-
tors (effectively having low-level access to logs and
other files for evidence collection) and more limited
access when using remote APIs (evidence limited to
what the system that exposes the API provides).

In the audit system, the use of remote APIs is inte-
grated due to its simplicity and mobile collectors due
to their flexibility and powerfulness as the main ap-
proaches to evidence collection.

5 SCENARIO-BASED PROVIDER
CHAIN AUDITING
EVALUATION

In the previous Section 4, the approaches that can be
taken when collecting evidence for auditing purposes
in cloud provider chains were described. In this sec-
tion, it is demonstrated how to incorporate the feasi-
ble approaches into an extension of the proposed audit
system to enable automated, policy-driven auditing of
cloud provider chains. The focus is put on the Remote
API Evidence Collector and Mobile Evidence Collec-
tor approaches (see Section 4.1 and 4.3 respectively).
The approach is validated by discussing a fictitious
use case.

5.1 Audit Agent System

In Figure 5, an example deployment of the automated
audit system is depicted. This deployment is not nec-
essarily representative of real-world cloud environ-
ments but used to highlight possible combinations of
services and data flows that can happen in a multi-
cloud scenario. There are four cloud providers, which
are directly or indirectly involved in the service pro-
vision. The SaaS provider A1 uses the platform pro-
vided by a PaaS provider B1, who does not have its
own data center but uses computing resources pro-
vided by yet another IaaS provider C1. The IaaS
provider C2 provides a low-level backup as a service
solution that is used by provider C1. To enable au-
diting of the whole provider chain, each provider is



running its own instance of the audit system (Audit-
Sys, as described in Section 4).

5.2 Provider Chain Auditing Extension

The auditor that uses AuditSys at the primary ser-
vice provider A1 defines and configures continuous
audits based on data protection and handling policy
statements. Since these policy statements do not in-
clude any information about the service architecture,
the auditor introduces his knowledge about the cloud
deployment into the audit task, by defining evidence
collection tasks that gather data on the PaaS and IaaS
layer and also at the primary service provider. An
audit task consists of collector, evaluator and notifica-
tion agents. The type of evidence collection approach
that has to be taken (as described in Section 4) is also
defined by the auditor.

In this scenario it is assumed that all providers
allow the auditor at A1 to collect evidence using
the mobile evidence collectors and that the infras-
tructure providers also provide the auditor with ac-
cess to their management system’s APIs. As previ-
ously mentioned, the auditor is assumed trustworthy
by all parties, which enables broad access to all cloud
providers. Additionally, it is assumed that all cloud
providers are acting in good faith and see the au-
dit process as an opportunity to transparently demon-
strate that they are acting in compliance with data
handling policies.

As depicted in Figure 5, the auditor uses A1’s Au-
ditSys to define and audit task based on the data han-
dling policy that is in effect. That task refers to the
data retention obligation that was described earlier in
Section 3.3. The retention time is defined as 6 months
for every PII data record that is gathered about the
users of provider A1. If the retention time is reached,
the following delete process is executed as part of the
normal operation of the service A1 provides:

1. The delete event fires at A1 due to max retention
time being reached and the event is propagated to
B1.

2. The data record is deleted from the database at B1.

3. The database is hosted on virtual machines pro-
vided by C1 and therefore does not require any
delete actions.

4. A backup of the B1’s database is available in C2’s
backup system and the delete action was not trig-
gered in C2.

As part of the delete event, the following evidence
is collected by the mobile evidence collectors as part
of building an evidence trail for compliance evalua-
tion at A1.

1. The data retention event is recorded as evidence
by the collector running at A1.

2. The delete action of the database is recorded as
evidence by the collector running at B1.

3. No evidence is recorded by the collector at C1
since there are no leftover copies such as virtual
machine snapshots available.

4. The backup’s meta-data such as creation times-
tamps are recorded as evidence by the collector
at C2.

The evidence from all collectors (A1, B1, C2) is
sent to the AuditSys at A1, where it is evaluated and a
policy compliance statement is generated for the au-
ditor. In this particular case, a policy violation is de-
tected, because the audit trail shows that the record
that should have been deleted is still available in a
backup at C2. Provider A1, and B1 acted compliant
by deleting the data, whereas C1 never stored a copy
outside of B1’s database.

5.3 Pre-processing and Intermediate
Results of Audit Evidence
Evaluation

The audit system uses a component at the AuditSys
that is responsible for storing evidence records that
are collected by the collector agents. Externally col-
lecting evidence and merging it at a central evidence
store that is only reachable via the network, can easily
become a bottle-neck in audit scenarios where either
a lot of evidence records are produced externally or
where the record size is big. This obviously has sig-
nificant impact on the scalability of the whole system.

The problem can be addressed by making the ev-
idence store (which is just a specialized form of an
agent with a secure storage mechanism) distributable
and also by de-centralizing parts of the evidence eval-
uation process. There are generally two concepts:

1. Pre-processing: Pre-processing allows the evi-
dence collector agent to apply filtering and other
types of evidence pre-processing. The goal is
to reduce the amount of collected evidence to a
manageable degree (without negatively impacting
the completeness of the audit trail) and to rea-
sonably reduce the amount of network operations
by grouping evidence records and storing them in
bulk. For example, by filtering the raw data at the
evidence source for certain operations, subjects,
tenants, or time frames. Data that is not immedi-
ately required for the audit is filtered out.

2. Intermediate Result Production: A second pre-
processing strategy is to move (parts of) the eval-



Figure 5: Provider Chain Auditing Architecture.

uation process near the collector. This means that
the collected evidence is already reduced to the
significant portions that indicate partial compli-
ance or violation of policies. However, this strat-
egy requires specific audit task types (where an
audit result can be produced by combining several
intermediate results).

The three concepts bring several implications with
them with respect to privacy and security.

Pre-processing can be considered a manipulation
of evidence. Therefore, the unaltered source upon
which the pre-processing happened should be pro-
tected to later be able to trace pre-processed evidence
back to its unaltered form.

Immediate result production effectively moves the
evaluation of evidence step of the audit into the do-
main of the auditee, where it would be easy for him
to manipulate the result. However, the same applies
to the collection of evidence as well where an audi-
tor can intentionally manipulate the evidence source
or the collector.

This case is not considered in the current iteration
of the system but it is assumed that cloud providers
(auditees) are acting in good faith. This assumption
can be justified by the potential increase in trans-
parency and the associated strengthening of trust in
the cloud provider that can mean a competitive ad-
vantage. On the other hand, intentional manipula-
tion of evidence or intermediate results can have dis-
astrous impact on a provider‘s credibility, reputation
and trustworthiness upon detection.

6 CONCLUSIONS

Cloud auditing is becoming increasingly important as
cloud adoption increases and compliance of data pro-
cessing is put into focus of the cloud consumer. The
key to making cloud audits a useful tool is the effec-
tiveness of collection process that is used to build the
basis for the evaluation of policy compliance or lack
thereof.

While there are many systems for monitoring
cloud providers (with varying level of completeness),
there are fewer systems that automate audit tasks
and even fewer still that enable continuous auditing,
which is a key enabler of continuous certification. As
long as there is only one cloud provider involved in
service provisioning to the cloud consumer, monitor-
ing and auditing is relatively simple (with the above
mentioned restrictions). However, in more complex
scenarios where there are chains of providers (or fed-
erations of cloud providers), current approaches are
severely limited.

In this paper an extension to our previous work on
automating continuous cloud audits that enables the
collection of evidence across the boundaries of mul-
tiple cloud providers in a cloud provider chain was
presented. The concept of cloud provider chains and
three different approaches to evidence collection with
their advantages and disadvantages were discussed.
Furthermore, their implementation in an audit system
was presented and validated using a scenario-based
approach. It was shown how automated cloud audits
can be extended to scenarios, where more than one



cloud provider is involved in the service provision.
In the future, the analysis of the different ap-

proaches and their integration in our system will be
expanded in two main areas: i) expanding the secu-
rity mechanisms that are already present to account
for the notion of provider chains and ii) demonstrat-
ing the scalability and efficiency of the system.
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Abstract: Although cloud computing can be considered mainstream today, there is still a lack of trust in cloud providers,
when it comes to the processing of private or sensitive data. This lack of trust is rooted in the lack of trans-
parency of the provider’s data handling practices, security controls and their technical infrastructures. This
problem worsens when cloud services are not only provisioned by a single cloud provider, but a combination
of several independent providers. The main contributions of this paper are: we propose an approach to auto-
mated auditing of cloud provider chains with the goal of providing evidence-based assurance about the correct
handling of data according to pre-defined policies. We also introduce the concepts of individual and delegated
audits, discuss policy distribution and applicability aspects and propose a lifecycle model. Our previous work
on automated cloud auditing and Cloud Security Alliance’s (CSA) CloudTrust Protocol form the basis for the
proposed system for provider chain auditing.

1 INTRODUCTION

An important problem that is commonly associated
with the use of cloud services is the loss of con-
trol about who is processing data, how it is used and
whether or not it is shared with third parties. A pos-
sible approach to mitigate this problem is to provide
additional information to stakeholders (cloud users,
cloud auditors). That information can be obtained as
a part of regular cloud audits where evidentiary infor-
mation about data processing is collected and com-
pared against agreed-upon policies (such as terms of
service or privacy policies). This way, what happens
in the cloud becomes more transparent to the user,
which could lead to improved trust in the cloud by
providing additional information on data processing
in a cloud service. Therefore, a system for automated
audits is needed that provides meaningful evidence
and shows how and where data is processed.

With lacking transparency comes low trust (Kn-
ode, 2009). Low trust in the cloud (especially in
the security and privacy of data) hinders the growth
of cloud computing as a business (Cloud Security
Alliance, 2013). Customers are less likely willing
to move their business applications into the cloud
when they have no chance evaluating, whether or not
their data is processed according to company poli-
cies. Transparency is not just showing cloud con-
sumers how and where data is processed, it is also

important to know by whom the consumer’s data is
processed. However, transparently showing by whom
the data might be processed is not common practice
today. Furthermore, cloud providers can incorporate
services provided by Nth-level providers into their
own, which makes it even harder for the auditor to
follow where the consumer’s data is currently being
stored.

It makes sense for Software as a Service (SaaS)
providers to utilize a third-party Infrastructure as a
Service (IaaS) provider for service hosting. We con-
sider such cloud provider chains to become increas-
ingly important to look at, when a complete picture
about data processing in a particular service should be
provided. Most importantly, the compliance with data
processing and privacy policies of all involved parties
needs to be assessed. For instance, in some situations
a cloud provider might be forced to transfer consumer
data from one cloud provider to another, or from one
geographic location to another for load-balancing or
cost optimization. In such a case, the new provider
has to ensure that all policies are covered just as much
as the others in the chain have to.

Cloud auditing is becoming increasingly impor-
tant for certification (e.g., FedRAMP (FedRAMP,
2015), ISO27001 (ISO, 2013) with the proposed
ISO27017 (ISO, 2015) and ISO27018 (ISO, 2014)).
However, the required audit is still largely a manual
process. In this paper, we propose an extension to



our previous work see (Rübsamen and Reich, 2013;
Rübsamen et al., 2015)) on automated, evidence-
based cloud auditing, that provides improved trans-
parency to cloud stakeholders about data process-
ing in the cloud. The extension introduces the con-
cept of cloud provider chains, data processing and
privacy policies with an extended scope on all in-
volved providers, and audit evidence exchange. The
main contribution of this paper introduces the concept
adapting CSA CloudTrust Protocol (CTP) (Cloud Se-
curity Alliance, 2015) for the use in inter-provider ex-
change of evidence during cloud audits.

Using the introduced CTP extension, additionally
generated evidence (i.e., information not specified in
the original CTP) will be used to enhance CTP re-
ports. Furthermore the extension enables auditing of
third-party contractors within provider chains to show
that each statement made by the provider, with respect
to the users established policies (e.g., data location,
service availability), is fulfilled.

This paper is organized as follows: In the next
Section 2 related work is presented. Section 3 in-
troduces the concept of service provision chains and
discusses the scopes and applicability of policies. In
Section 4 two approaches towards cloud auditing are
introduced. After that, we propose a lifecycle model
for delegated auditing of cloud provider chains in
Section 5. Next, we focus on data exchange pat-
terns (Section 6) that are used in Section 7, where
we present our proposed system. Following that, sec-
tion 8 evaluates the presented results using a scenario
description and a discussion of the threat model. In
Section 9 we conclude this paper.

2 RELATED WORK

Security and privacy auditing are increasingly impor-
tant topics in cloud auditing. They demonstrate that
security controls are put in place by the provider and
also that they are functioning correctly (i.e., data pro-
tection mechanisms are working correctly and effec-
tively). There are some projects working on the ar-
chitectural and interface level regarding the automa-
tion of security audits, such as the Security Audit
as a Service (SAaaS) project (Doelitzscher et al.,
2012; Doelitzscher et al., 2013). SAaaS is specif-
ically designed to detect incidents in the cloud and
thereby consider the dynamic nature of such ecosys-
tems, where resources are rapidly provisioned and re-
moved. However, SAaaS does not address provider
chain setups or treat gathered data as evidence.

ABTiCI (Agent-Based Trust in Cloud Infrastruc-
ture) describes a system used for monitoring (Saleh,

2014). All relevant parts of a cloud infrastructure
are monitored to be able to detect and verify unau-
thorized access. Integrity checks are done at boot-
time, using Trusted Platform Module (TPM) boot or
at runtime. Monitoring hardware and software con-
figurations allow the system to detect changes at run-
time. The aforementioned system is similar to our ap-
proach. Instead of using agents we utilize CTP. Fur-
thermore, our approach relies on evidence collection
through audits with pull and trigger mechanisms.

A centralized trust model is introduced by Rizvi
et al. (Rizvi et al., 2014). Trust between consumer
and provider is established by using an independent
third-party auditor. With the adoption of a third-party
auditing system, consumers are able to create baseline
evaluation for providers they have never worked with
to generate initial trust. The model acts as a feed-
back mechanism providing valuable insight into the
providers processes. After initial trust was generated
the third-party auditor continues to obtain trust values
for the consumer. We see initial trust in the provider
as a given factor and focus on obtaining trust values
based on evidence within a multi-provider scenario.

A completely different approach is proposed by
Gonzales et al., where the authors introduce an ar-
chitecture for the measurement of integrity and confi-
dentiality of a cloud provider (Gonzales et al., 2015).
Their approach is based on best practices and secu-
rity metrics. It uses trust zones to delineate resources
(physical, logical or virtual) within multi-tenant IaaS
infrastructures. Such a zone is used to separate in-
terests. Sensitive business data is located in a Gold
Zone, non-business partners are located in a less privi-
leged zone and can’t access the Gold Zone. The focus
in this work lies in the separation of concerns. Trust
is generated using best practices and security metrics.
There is no provider auditing involved, but everything
is estimated based on metric values. Whereas, in our
approach metrics can be used to collect additional in-
formation but the focus lies in evidence collection.

The DMTF is also working on cloud auditing with
the Cloud Audit Data Federation (CADF) working
group. They focus on developing standardized in-
terfaces and data formats to enable cloud security
auditing (Distributed Management Task Force, Inc.
(DMTF), 2014). A similar project is the Cloud Se-
curity Alliance’s Cloud Trust Protocol (CTP), which
defines an interface for enabling cloud users to “gen-
erate confidence that everything that is claimed to be
happening in the cloud is indeed happening as de-
scribed, . . . , and nothing else” (Cloud Security Al-
liance, 2015), which indicates an additional focus on
providing additional transparency of cloud services.
The latter two projects, however, do not elaborate on



how the interfaces should be implemented nor do they
describe explicitly focus on privacy and accountabil-
ity. We use CTP as a basis and propose its extension
and use in our proposed auditing system to enable au-
tomated auditing of cloud provider chains.

There are approaches that deal with checking
compliance with data location policies. The princi-
ple of location transparency of data in the cloud (i.e.,
a user does not know in which server, data center or
even country a specific data object is stored) is con-
trary to data locality requirements some cloud con-
sumers have to fulfill (e.g., a legal obligation to en-
sure a certain geographic storage location). Massonet
et al. propose a system that exposes infrastructure-
level location monitoring information to the cloud
consumer (Massonet et al., 2011). We use data loca-
tion as an use case for the demonstration of our sys-
tem.

A crucial part of cloud auditing is the collection
of data on which an audit can be based upon. That
data can be produced on all architectural layers of the
cloud (e.g., on the bare-metal, in a VM, in a subsys-
tem). Several approaches to addressing the unique
requirements of cloud logging have been proposed.
For instance, Marty presents a logging framework
and guidelines for IaaS and SaaS logging (Marty,
2011). We have also previously discussed the differ-
ent sources of data that can be used as evidence dur-
ing audits. (Rübsamen and Reich, 2013). We demon-
strate, how such data can be collected and more im-
portantly used for auditing in a multi-provider sce-
nario.

The CloudTrust Protocol (Cloud Security Al-
liance, 2015) establishes a mechanism that allows
users to audit a CSP. An auditor can choose from a set
of transparency elements for instance: geographic lo-
cation of data objects and affirmation or results of lat-
est vulnerability assessments. CTP has 23 pre-defined
transparency elements and supports user-specified el-
ements on which cloud consumer and provider agreed
on. The purpose of the CTP is to transparently pro-
vide the user with important information about the
cloud to show that processing is done as promised.
By providing information about the inner-workings
of the cloud service (with respect to the transparency
elements), trust between the cloud provider and the
consumer is supposed to be strengthened. If a con-
sumer can trust his provider he is more likely willing
to move sensible business processes into the cloud.

There are two main problems the protocol tries to
solve:

• Restoration of control and freedom of choice at
the cloud consumer by enabling him to specifi-
cally request information on configurations, vul-

nerabilities and data integrity.
• The provision of a standardized process, which

enables providers to generate and expose ad-
ditional information with respect to the trans-
parency elements.
CTP needs to be beneficial for both cloud

providers and consumers. Providers won’t invest into
structural changes of their services if the expected
payoff is small. For this reason the protocol can be
adjusted to the trust needs of consumers as well as
operational circumstances of the provider. Only the
request/response process and the associated data for-
mats are specified, whereas there are no additional re-
strictions put on the actual implementation of the in-
formation gathering process.

Communication handling in CTP is done by two
managers. The auditor is using CTP’s Request Man-
ager whereas the provider is using the Response Man-
ager. These two architectural components are respon-
sible for communication, tracking pending requests,
CTP translation into service specific API calls and
data conversion into CTP format. The data format
for reporting is based on XML (used in an extended
form in the proposed system) for the 2.0 version, re-
spectively JSON for the currently proposed version
3.0 of CTP. In general CTP’s protocol design follows
the RESTful paradigm.

3 CLOUD SERVICE PROVISION
CHAINS

In this chapter, we describe complex cloud service
provision scenarios. We thereby focus on use cases
where multiple cloud service providers are involved
in the provision of a single cloud service (as perceived
by the cloud consumer). In these use cases, the agree-
ment on data processing and privacy policies, that ap-
ply on the whole service provider chain, can quickly
become a difficult problem. Therefore, the auditing of
compliance with such policies along the chain, both
increases in complexity and difficulty.

In the following discussion of the different scopes
of policy applicability, we assume the following defi-
nitions:
Cloud Consumer

We use the definition provided by NIST where a
cloud consumer is ”a person or organization that
maintains a business relationship with, and uses
service from, Cloud Providers” (Liu et al., 2011).

Cloud Service Provider
We use to the definition provided by NIST where a
cloud provider is ”a person, organization, or entity



Figure 1: Audit Policy Scopes.

responsible for making a service available to inter-
ested parties” (Liu et al., 2011). Furthermore, we
define the provider facing the consumer as the pri-
mary provider and each succeeding provider who
interacts with the primary provider is defined as a
Nth-level provider.

Cloud Service Provider Chain
A Cloud Service Provider Chain is characterized
by at least two cloud service providers being part
of providing a service by composing their individ-
ually offered services.

In the following, we describe three different
scopes of policy applicability as depicted in Figure 1.
In that scenario we assume a cloud service (provided
by a primary cloud provider) that is provided to a
service consumer, while utilizing an additional third-
party service (provided by the sub-provider on the Nth
level).

Scope A: Cloud Consumer / Primary Cloud
Provider In a typical cloud use case, a consumer
uses the services provided by a single cloud service
provider to accomplish a given task. The details
of the service usage are governed by terms of ser-
vice agreements, privacy polices etc. In this most
common scenario, the cloud consumer and the cloud
provider agree on these terms before any service is
provisioned. Typically, this happens during a regis-
tration or contract agreement phase. With respect to
data flow between the consumer and the provider, this
means that data processing is performed by the cloud
provider in compliance with the agreed-upon policies
(see Policy 1 in Figure 1). Personal data that is dis-
closed by the cloud consumer to the cloud provider as
part of regular service use is processed by the cloud
provider according to the limits defined in the policy.

Scope B: Primary Cloud Provider / Nth-level
Cloud Provider Similar to the approach described
in Scope A, there may be similar agreements between
cloud providers. For instance, the primary cloud
provider may require resources from the sub-provider,
e.g., to extend its own service offering, to address

peak loads in service usage or to outsource internal
processes such as backups. In this case, the primary
cloud provider (as depicted in Figure 1) becomes a
cloud consumer itself. The integration of cloud ser-
vices provided by a sub-provider in cloud services
provided by the primary cloud provider is governed
by a contractual agreement between the two providers
(see Policy 2 in Figure 1).

Scope C: Cloud Consumer / Nth-level Cloud
Provider In case of a cloud scenario, where mul-
tiple service providers are involved in the provision-
ing of a single service, the cloud consumer may not
necessarily be aware of this. Since the cloud con-
sumer has only contact with its immediate provider
(primary cloud provider in Figure 1), he might not
necessarily be aware, that the primary cloud provider
is using an additional external service. A typical ex-
ample for such a scenario is a SaaS provider hosting
its services on resources provided by an infrastructure
provider, or a SaaS provider that integrates another
SaaS provider’s service for data processing. Addi-
tionally, a silent change of the supplementary service
provider can be imagined, when the primary provider
switches to another service (e.g., uses another infras-
tructure provider for cost efficiency reasons). In this
case, the restrictions that governs the policy agree-
ment between the cloud consumer and the primary
cloud provider (i.e., Policy 1) must also apply to the
sub-provider, if data owned by the cloud consumer is
transferred between them. This is the case, when ei-
ther: i) similar policies policy rules exist in Policy 1
and 2, where the rules defined in Policy 2 are at least
as strict as equivalent rules defined in Policy 1 (in this
case, a matching of whether or not rules from policy
1 and 2 are compatible needs to be performed), or ii)
the downstream provider accepts rules from policy 1
directly.

4 AUDITING CLOUD PROVIDER
CHAINS

In this chapter, we illustrate different variations of au-
diting cloud provider chains. We thereby focus on
traditional individual audits and delegated provider
audits. Furthermore, we present several information
delivery patterns.

4.1 Individual Provider Audits

Figure 2 describes the process of auditing individual
providers in a service provision chain. All policies



will be distributed to each provider (as seen in Fig-
ure 2). Policy distribution can either be:

1. Manual policy evaluation: This approach is based
on the specified policy documents (e.g., terms
of service in human-readable form) given by the
provider. The auditor manually maps statements
of such documents to information requests for the
providers (e.g., asking for specific process docu-
mentation or monitoring data and audit logs).

2. Deploying machine-readable policies: In this ap-
proach the auditor deploys a machine-readable
policy document (XML, JSON) onto the provider.
The provider will then automatically audit the
tasks specified within the document. The audi-
tor can request the results for the audited policy
rules to verify if everything is fulfilled. The policy
needs to be deployed to each involved provider.
Within this approach new policies can easily be
added and deployed for automated auditing.

The audit results are used to assure the consumer
that policy and rule compliance is given or not. As
previously described, a service provision chain con-
tains at least one provider. In this case, two providers
- a primary and a 2nd-level provider. To audit the ser-
vice as a whole, it is necessary to audit each provider
separately and then aggregate the results to form a
complete picture of the service from an audit perspec-
tive. This means, that regarding data handling poli-
cies (e.g., location restrictions, access control etc.),
each provider that holds data is audited. The same
is true for the auditing of security and privacy con-
trols that are put in place at the providers. Obvi-
ously, the consumer-facing provider has to transpar-
ently disclose all his sub-providers and notify auditors
about every sub-provider his data was stored at and
where his data is currently stored. Even though not
every provider will get the consumer’s data, the audit-
ing process gains more complexity with an increasing
number of Nth-level providers. Requests must be sent
to each provider separately and each provider will de-
liver audit reports to the auditor.

4.2 Delegated Provider Audits

An alternative to individual audits are what we call
delegated audits, where the auditor only interfaces
with the primary service provider that in turn takes
over the auditing of its sub-provider(s). Therefore the
auditor only has to audit the primary service provider
to obtain policy compliance results of all involved ser-
vice providers. This allows less influential stakehold-
ers such as the cloud consumer to act as an auditor to-
wards the primary provider while not having the same

Figure 2: Individual Audit.

Figure 3: Delegated Audit.

rights towards the Nth-level provider(s). Whereas
the individual audit scenario is an example of how
chain audits could be performed with more influen-
tial stakeholders, such as data protection authorities.
Figure 3 depicts the delegated provider audit scenario.
Every audit request is sent to the primary provider
who will then extract CTP calls from a previously
deployed policy document (machine-readable docu-
ment deployed by the auditor). Since the primary
provider is acting as a mediator he has to delegate
requests and communication. Existing problems re-
garding policy compliance is of major concern for the
primary provider because complaints will always be
addressed to him, even if he is not responsible for a
failed audit. For the case a given audit response did
not satisfy policy compliance the consumer will con-
tact the primary provider with a complaint (e.g, data
was transferred outside valid location). On the other
hand the consumer’s payoff can be much higher due
to the centralized structure using a mediator ensuing
low complexity for the auditor. Therefore, he can al-
ways rely on the data controller to forward his request
to the data holding sub-provider without the need of
adaption (send requests to different entities, use dif-
ferent API-calls).



Figure 4: System Lifecycle.

5 Audit Lifecycle in Delegated
Provider Audits

In the following section the audit system lifecycle
is described. Figure 4 illustrates the three phases: i)
Preparation, ii) Processing and iii) Presentation. In
the following, we describe each phase in more detail:

5.1 Preparation Phase

The first phase of the lifecycle is the Preparation
Phase in which the system is prepared. The most im-
portant task during the Preparation Phase is resource
identifier distribution, which is required for request
handling.

Request handling is done using unique resource
identifiers (URI), which are used to identify any kind
of resource that is part of an audit. A URI unambigu-
ously identifies an object within a provider’s domain.
In our approach, each provider has its own namespace
in which identifiers can be assigned arbitrarily.

The preparation process Policy adding allows the
auditor to create new rules based on already existing
policies. For instance, he can specify a new data loca-
tion rule to ensure that his data will not leave his coun-
tries jurisdiction. Newly added rules are written into a
machine-readable audit policy that describes evidence
that is to be collected, and checks that are to be per-
formed during the audit. From the new rule, auditable
elements are derived, that an automated audit process
provides all necessary information to enable the pos-
sibility of policy compliance assessing. Auditable el-
ements include for example the location of data, logs
and configurations.

The Policy mapping process, maps each new
added rule or policy to transparency elements and as-
sociated requests. If a newly added rule cannot be
mapped to an already existing transparency element
a new element needs to be created. The mapping is

done based on the specified policies. For this reason
the policy adding process is limited to already defined
policies and the associated rules within the contract.
During the mapping each non-standard policy (i.e., a
policy that requires a transparency element that is not
part of CTP) will receive an URI and all necessary
data sources needed to answer a request. The map-
ping process generates URIs and defines all auditable
attributes for an element.

The preparation process Policy distribution prop-
agates the resource identifiers throughout the system.
Each sub-provider sends his resource identifiers to the
primary provider. Afterwards, when all identifiers are
known by the primary provider, he will forward them
to the auditor.

5.2 Processing Phase

With the end of the Preparation Phase the second life-
cycle phase starts. In Processing Phase all elements
will be collected. For instance, all essential infor-
mation for the inquired elements are retrieved from
the evidence store and written into a CTP response.
A policy evaluation is done to determine the policy
compliance. All information, collected for one ele-
ment are written into a response and sent back to the
requesting entity.

5.3 Presentation

The last phase in the lifecycle is the Presentation
Phase. Within this phase the auditor will be presented
with the audit results. Thereby, each requested ele-
ment will be presented to him containing the name
of the policy rule as well as its achieved compliance
state.

The lifecycle is complete, when the results were
presented to the auditor. After this the lifecycle can
continue with Preparation Phase again. Returning
to the Preparation Phase is necessary if new poli-
cies/rules were added or in a continuous auditing sce-
nario, where policy compliance is audited in short in-
tervals or event-driven (e.g., on new or changed pol-
icy, on infrastructure change or on custom triggers
defined by the auditor). During the new cycle only
newly generated URIs will be distributed.

6 Audit Information Exchange

In this section two information exchange patterns
are described that are used for different purposes in
our proposed system. Obtaining information as well



Figure 5: Individual Audit Data Requests.

as providing information can be a difficult task de-
pending on how timely data is needed. Therefore, we
specify a pull pattern (see Section 6.1) for non-critical
information (e.g., evidence used during infrequent au-
dits) and a push pattern (see Section 6.2) for critical
information (evidence used during continuous audits).

6.1 Data Requests (Pull)

Within a pull scenario audit results (transparency ele-
ments request results) are only delivered, if there is an
existing pull request for an element. Figure 5 shows
the individual data request sequence. The shown fig-
ure does not imply the use of a pull mechanism, but
can be used with one. For each pending request its
corresponding data is pulled form a database. Pulled
information will run through a compliance check af-
terwards, to verify if a requested policy with its cor-
responding rule is fulfilled. This means, that audit
data request results are only delivered to the auditor
if there is an existing request. When a request for
transparency elements arrives the data is pulled from
a database (evidence store) and will then go through a
validity check to ascertain if a policy is fulfilled or not.
The auditor will not necessarily receive critical infor-
mation in a timely manner, unless he requested the
data during the incidents occurrence, which is highly
unlikely. Also, choosing the right request interval can
quickly become a scalability issue. Polling for new
data in relatively short intervals can introduce load
problems at the auditing system. This issue is a com-
mon problem with pull / polling mechanisms. How-
ever, reasonable and usually quite common interval
choices such as hourly, daily, weekly and monthly re-
ports do not introduce such problems.

6.2 Triggered Notification (Push)

Critical information that quickly needs to be pro-
cessed (e.g., forwarded to an analysis tool or pre-
sented to an auditor) like security breaches or integrity
violations are time-critical and therefore cannot rely
on transport via pull mechanism. Immediate notifi-
cations are necessary to avoid data control depriva-
tion. Push mechanisms promise a more reactive and
rapid way of transporting critical data. Push mech-
anisms are typically associated with an event-driven

Figure 6: Triggered Audit Data Exchange.

approach, where an event is fired when a condition is
met. Such an event could be the occurrence of a data
relocation. Such an event needs to be audited if there
are policy rules limiting allowed geographical loca-
tions. Figure 6 shows the push notification process.
An auditor can specify the severity of an occurrence
called trigger, to ensure that only significant informa-
tion are pushed. A configured trigger will only trigger
when the condition set by the auditor is fulfilled. After
the occurrence an incident notification will be pushed
to the auditor. There is no need to define a trigger for
all possible auditable elements. Therefore, it is not
feasible to send a notification for every small change
in the system. If a breach occurred or a vulnerability
was found during the audit, a notification is pushed
and countermeasures can be taken faster which will
immensely reduce reaction time.

7 EXTENDING CLOUDTRUST
PROTOCOL FOR PROVIDER
CHAIN AUDITING

In our approach, we leverage CTP as a means for ev-
idence exchange between cloud providers in complex
cloud auditing scenarios. Additional functions and
components are located above the protocol (as seen
in Figure 7) and are responsible to exchange requests
and responses with the CTP. This structure enables
us to utilize the benefits of CTP out of the protocol’s
operational area without changing the protocol itself.
Although the operational structure of CTP remains
unchanged some optimisations for audit reports are
required to be able to transfer additional information
e.g. more detailed user access lists. In this case, the
additional information would give the auditor not only
authorized users but also since when they have autho-
rization and who authorized user permissions.

Figure 7 illustrates the systems architecture in a
two provider scenario. Within the figure it is assumed,
that the Preparation Phase did end and all for the au-
dit request necessary policies and rules were already
mapped and distributed. Incoming transparency ele-
ment requests will directly go to the Remote Evidence
Collection component. In the following paragraph the
system components of our proposed approach are de-



scribed:

Remote Evidence Collection
• Request handling: Every incoming audit request

will arrive at the Request handler of the primary
provider. A decision is made which resource iden-
tifier should be used based on current data loca-
tion (Nth-level provider, primary provider). The
resource identifiers are used to set up CTP-calls.
Therefore, it will forward each request to the CTP
Request Manager. Each request is processed sep-
arately to guarantee that context information or
states do not get mixed up.

• CTP Request Manager: The Request Manager,
sends each given request to the CTP Response
Manager of a Nth-level provider(solid line in Fig-
ure 7 between both providers) using a pull pattern
(see Section 6.1). Inter-provider communication
is initiated by the Request Manager.

• Context information extraction: An incom-
ing CTP-response contains the general response
(specified in (Cloud Security Alliance, 2015)) as
well as the corresponding context information and
the compliance state for the requested element.
The context information are extracted from the
response and securely stored inside the evidence
store. The remaining information which are used
for report creation are stored as well for the audit
report creation.

• CTP Response Manager: After receiving a re-
quest the Response Manger pulls data from the
evidence store if the Nth-level provider is not able
to determine the compliance state of his own or
receives the data from the Evaluator. Obtained
results are packed into a CTP-response and sent
back to the primary providers CTP Request Man-
ager. In case a trigger is fired the Response Man-
ager will push the response immediately to the
primary providers CTP Request Manager even in
the absence of an audit request for the triggered
element. A primary provider might be a Nth-
level provider of another provider and thus needs
a Response Manager. Requests for context infor-
mation are send from the auditor to the primary
providers Response Manager. Like a normal re-
sponse the Manager pulls the context information
for the requested object from the evidence store
and writes them into a CTP-Response.

Evidence Store: The Evidence Store is a database
containing all audit results (including context infor-
mation) for the primary and its Nth-level providers.
Each participating provider has its own evidence store

where his achieved audit results are stored and can be
pulled from by pending requests. The main purpose
of the evidence store is to provide audit evidence and
to make them accessible to the auditor. If no data was
relocated to a Nth-level provider, a response will be
generated from audit entries for the primary provider
located in the evidence store.

Evaluation and Reporting

• Evaluator: The Evaluator runs policy compliance
checks on all obtained results used for report cre-
ation. Achieved results can get one of three pos-
sible compliance states depending on the level of
fulfillment:

– State 1 successful: The results obtained from
the database fulfills the policy.

– State 2 partially: A policy is partially fulfilled.

– State 3 failed: No records for this policy were
found or the given results were unsatisfying.

Configured triggers (see Section 6.2) are fired if a
compliance check for a request failed or a devia-
tion from the trigger specification is identified.

• Report creation: The stored content (state, CTP
transparency elements results) is used to create the
final report. The report can be of different types,
for instance a representation of the results on a
web dashboard or in a auto-generated document.

• Notification: An audit can take some time to fin-
ish. This largely depends on the size and scope of
the audit. Therefore, asynchronous mechanisms
are required to present audit results. An auditor
can be notified via mail when his audit is finished
and his audit report is available.

Implementation of each above described part is
mandatory for every provider. It is possible that a pri-
mary provider is a Nth-level provider in a different
audit-chain, whereas a Nth-level provider might be a
primary provider in another audit chain.

8 EVALUATION

In the following Section, we evaluate our proposed
approach towards auditing cloud provider chains. We
split the evaluation in two parts: i) a functional
evaluation using a fictitious cloud scenario with two
providers involved in the service provision, and ii) a
security analysis of the proposed approach.



Figure 7: Multi-Provider Audit System Architecture.

8.1 Functional Analysis by Scenario

For the functional look at our proposed solution, we
assume the following scenario (as depicted in Fig-
ure 1):

• Cloud provider 1 (CSP1) is a SaaS provider (and
primary cloud provider) that hosts on the virtual
resources provided by CSP2.

• Cloud provider 2 (CSP2) is an IaaS provider (and
Nth-level cloud provider) with a data center in
Germany and in Russia.

• A Cloud consumer (CC) uses the service provided
by CSP1.

• CC and CSP1 agree that CC’s data must not leave
Germany.

• The auditor checks the compliance with the data
location requirement on behalf of CC.

In this case the consumer may believe that his data
is located within CSP1’s datacenter in Germany. Due
to CSP1 not having actual computing resources by
its own, the data is actually located in CSP2’s data
centers, either in Germany, Russia or both. However,
CSP1 is still obligated to adhere to the data locality re-
striction. CSP2 enables CSP1 to audit policy compli-
ance by offering access to our tools for automated au-
diting. CSP1 establishes regular audits and evidence
collection that is focused on data location. The au-
ditor now audits the provider chain with CSP1 as a
starting point. CSP1 also runs our audit tool. Its main
user is the auditor acting on behalf of the consumer.
The communication between the audit tools is imple-
mented using CTP as described in Section 7. Both
providers use the audit tool to collect information re-

quired for the audits. In the following, the request /
response process for this scenario is described:

1. CSP1 is forwarding the audit to CSP2, requesting
audit results regarding data location if the data is
pulled or waiting till the data was moved which
would cause the trigger to fire. For most elements
it may be sufficient to list their state in a report but
there are elements where immediate notification is
indispensable. Such elements require CTPs trig-
ger mechanism as described in Sections 6.2 and 7.
In this case the data location request does not need
a trigger.

2. At a later point, after the trigger has fired or the
information was pulled, the response arrives at
CSP1’s Request Manager.

3. After receiving the response, CSP1 begins to ex-
tract all context information from the response
and stores it in the evidence store. This step is nec-
essary to ensure that the audit trail remains avail-
able and protected for either archival purposes
(e.g., required by law) or re-use at a later point
in time to claim remediation. This way, an auditor
that feels the need to further investigate a state-
ment made by any of the providers, can retrieve
stored evidence from the evidence store.

4. The remaining information (state, CTP response)
are used to create the final audit report. The final
report for the element contains the policies name
as well as the compliance state. The policy com-
pliance check showed that the policy is partially
fulfilled. Such an outcome would mean, that the
data left Germany at one time.

5. Now the auditor has the possibility to request con-
text information. To access the evidence store



CTP is used and each request requesting con-
text information is sent directly to the Response
Manager. The Evidence Store will then create
a standardized report containing context informa-
tion, about where the data is currently being stored
(city, state, data center) and where it had been
(country code), and send it back to the auditor.
With the additional information the auditor can
validate how severe the policy breach was. There-
fore, network efficiency in multi-tenant environ-
ments is required to satisfy each tenants expecta-
tions.

8.2 Threat Model

It is important to consider the security of the proposed
system to achieve confidence in the acquired audit re-
sults. Therefore we perform a security analysis of our
proposed approach to cloud provider chain auditing.
We follow a simple methodology of defining threat
scenarios, categorizing them using the STRIDE (Mi-
crosoft Developer Network, 2014) threat model and
proposing mitigation strategies for each of the iden-
tified threats. The mitigation of the threat cate-
gories will be discussed in more detail in section 8.3.
STRIDE categorizes threats as follows:

• Spoofing Identity

• Tampering with Data

• Repudiation

• Information disclosure

• Denial of Service

• Elevation of Privilege

We have identified the following major threats to
the evidence transfer and processing in multi-provider
audits:

• Unauthorized access (S,I): Using our system ex-
poses valuable information such as internal log-
ging, infrastructure design etc. to external enti-
ties in an automated way. A malicious external
user may steal or otherwise illegitimately gain ac-
cess to the API that is used for data exchange
between the providers. While there is no direct
access to consumer data provided by our system,
transferred information usually contains metadata
about a consumer’s system/data properties. The
given responses has the potential to expose poten-
tially sensitive metadata. Such information may
include but is not limited to data regarding config-
uration, access control lists and installed software
from which vulnerabilities and attack vectors can

be deferred. Another potential adversary is a ma-
licious insider at a cloud provider. He can poten-
tially gain access evidence data by directly attack-
ing the evidence store or by intercepting commu-
nication between the system components on the
internal network.

• Data leakage (I): Audit trail data may intention-
ally or unintentionally become available. By
collecting audit trails from the various evidence
sources into the evidence store, a new data source
becomes available. Security mechanisms of the
evidence store may fail, which could lead to data
leakage.

• Eavesdropping, (I): A malicious external user
may try to eavesdrop on audit information while
it is being transmitted either to the auditor (au-
dit result including audit trails), between cloud
providers (information on transparency elements)
or internally at a cloud provider (raw data flowing
between evidence source and evidence store).

• Denial of Service (D): Denial of Service attacks
have unfortunately become a very common type
of attack against networked computer systems,
that’s in many cases trivial to carry out. Exter-
nal adversaries attack either the system directly by
exploiting flaws in the implementation or by gen-
erating bogus load with the goal of shutting the
service down completely.

• Audit trail manipulation (T,R,I): The data gener-
ated by our system is supposed to be used dur-
ing automated audits. The results of these audits
should be dependable and believable. An adver-
sary may manipulate audit trail data at various
points in the system. For instance, a malicious in-
sider may manipulate the results that are returned
by the API. Preserving the integrity of the audit
data is therefore of utmost importance.

8.3 Security Analysis by Scenario

Some of the aforementioned threats can be mitigated
by implementing appropriate security controls. In the
following we present, how the threat categories are
addressed in our system:

In order to mitigate the risk of spoofed identities
and unauthorized access, we use strong authentication
mechanisms based on user and system identification
using certificates. This way simple brute force attacks
against our publicly available API in order to guess
access credentials can be prevented.

Risks of information disclosure and tamper-
ing/manipulation (i.e., data integrity) are typically ad-
dressed by introducing data encryption and hashing



schemes. We encrypt data at rest (e.g., while it is
stored in the evidence store) and in transit (e.g., while
it is transmitted between providers and/or the audi-
tor or between system components). To have a full
protection against data leakage, ideally there is also
encryption of data during processing. While not the
focus of this paper, more details on the data at rest
and in transit encryption as well as the integrity pro-
tection implementation in our system can be found
in (Rübsamen et al., 2015). However, this currently
severely limits the usefulness, processing options and
processing performance (Lopez et al., 2014).

Denial of Service risks can only be addressed by
considering the software and the environment it runs
in. Directed attacks on the application level can be
mitigated using application level firewalls, code au-
dits and security checks, whereas network-based at-
tacks typically require the capability to filter mali-
cious traffic upstream.

9 CONCLUSIONS

In this paper we introduced a system which allows
automated auditing of provider chains. We dis-
cussed two different types of chain audits: i) indi-
vidual provider audits where the auditor has to audit
each Nth-level provider separately and ii) delegated
provider audits where the primary cloud provider acts
as an mediator. Our proposed system focuses on
the latter approach. We consider the main goal of
our cloud audit system to strengthen trust and trans-
parency in cloud services. This could lead to an even
better adoption of cloud computing. We also dis-
cussed the applicability of data handling and privacy
policies and how they apply in complex scenarios
where multiple providers share a cloud consumer’s
data. In the latter part of this paper, we focused on the
architectural integration of the CloudTrust Protocol in
the evidence collection and transport of our audit sys-
tem. Finally, we concluded this paper with an eval-
uation of our proposed approach. We evaluated the
functional soundness by demonstrating an audit sce-
nario that involves a cloud consumer using a service
that is intransparently provided by two different cloud
providers. Additionally, we evaluated our approach
by defining a threat model using threat scenarios and
addressing those threats.

In our future work, we focus on even more com-
plex service provision scenarios, where even more
layers of service providers are involved. We will also
put special focus on ensuring the scalability of our ap-
proach. Another interesting topic emerges, when any
of the cloud providers is considered untrustworthy.

This can be the case when a malicious insider tries
to intrude in our system. We consider ensuring the in-
tegrity of evidence in the whole chain of providers to
be a major challenge.
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Abstract. Cloud accountability audits are promising to strengthen trust
in cloud computing by providing reassurance about the processing data
in the cloud according to data handling and privacy policies. To effec-
tively automate cloud accountability audits, various distributed evidence
sources need to be considered during evaluation. The types of information
range from authentication and data access logging to location informa-
tion, information on security controls and incident detection. Securing
that information quickly becomes a challenge in the system design, when
the evidence that is needed for the audit is deemed sensitive or confiden-
tial information. This means that securing the evidence at-rest as well
as in-transit is of utmost importance. In this paper, we present a system
that is based on distributed software agents which enables secure evidence
collection with the purpose of automated evaluation during cloud account-
ability audits. We thereby present the integration of Insynd as a suitable
cryptographic mechanism for securing evidence. We present our reason-
ing for choosing Insynd by showing a comparison of Insynd properties
with requirements imposed by accountability evidence collection as well
as an analysis how security threats are being mitigated by Insynd. We
put special emphasis on security and privacy protection in our system
analysis.

1 INTRODUCTION

Cloud Computing is known for its on demand computing resource provisioning
and has now become mainstream. Many businesses as well as private individu-
als are using cloud services on a daily basis. The nature of these services varies
heavily in terms of what kind of information is being out-sourced to the cloud
provider. Often, that data is sensitive, for instance when Personal Identifiable
Information (PII) is being shared by an individual. Also, businesses that move
(parts of) their processes to the cloud, for instance by using Customer Relation-
ship Management Software as a Service, are actively participating in a major
paradigm shift from having all data on-premise to moving data to the cloud.



2 Evidence Collection in Cloud Audits

However, many new challenges come along with this trend. Two of the most
important issues are customer trust and compliance [14, 22]. These issues are
closely tied to the loss of control over data. When moving to the cloud, direct
control over i) where data is stored, ii) who has access to it and iii) how it is
shared and processed is given up. Because of this loss of control, cloud customers
have to trust cloud providers that they treat their data in an appropriate and re-
sponsible way. One way to enable that trust is by strengthening transparency and
accountability [12, 30] of the cloud provider and services. This includes providing
information about data locality, isolation, privacy controls and data processing
in general.

Cloud audits can be used to check how data data has been processed in the
cloud (i.e., by whom, for what purpose) and whether or not this happened in
compliance with what has been defined in previously agreed-upon privacy and
data handling policies. This way, a cloud customer can regain some of the infor-
mation he has given up control of by moving to the cloud. A central responsibility
of cloud audits is the collection of data that can be used as evidence. Depending
on the data processing policies in place, various sources of evidence need to be
considered. For instance, logs are a very important source of evidence, when it
comes to auditing the cloud operation (e.g., access logs and error logs). However,
other sources of information are also important, such as files (e.g., process doc-
umentation) or events registered in the cloud management system (e.g., access
control decisions, infrastructure changes, data transfers).

To capture evidence from this variety of sources, centralized logging mecha-
nisms are not enough. We therefore propose a system for accountability evidence
collection and audit. With this system, cloud providers are enabled to demon-
strate their compliance with data handling policies to their customers and to
third-party auditors in an automated way.

In our previous work, we proposed a concept [28] for cloud accountability au-
dits, that enables automated collection of evidential data in the cloud ecosystem
with the goal of performing accountability audits. A key mechanism of this sys-
tem is the secure and privacy-friendly collection and storage of evidence. In our
previous work we also explored the use of a somewhat homomorphic encryption
scheme to secure evidence collected in the evidence store [17], which has proven
practical but very limited in terms of performance and functionality.

In this paper, we present a more practical alternative that imposes less re-
strictions on evidence collection.

The contributions of this paper are:

– An architecture for automated evidence collection for the purpose of cloud
accountability audits

– A process for secure and privacy-protecting evidence collection and storage

The remainder of this paper is structured as follows: in Sect. 2 we present
related work in the area of secure evidence collection and cloud auditing. The
core principles of Insynd are introduced in Section 3. Section 4 introduces the
Audit Agent System (AAS) and its architecture. Following that, we present in
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Sect. 5 a mapping of typical characteristics of digital evidence and secure evi-
dence collection in the cloud to how these are addressed by integrating Insynd in
our audit agent system. In Sect. 6 we describe the architectural details of the
Insynd integration. We also present a scenario-based evaluation of our system in
Sect. 7 and conclude this paper in Sect. 8.

2 RELATED WORK

Redfield and Date propose a system called Gringotts [27] that enables secure
evidence collection, where evidence data is signed at the system that produces
it, before it is sent to a central server for archival using the Evidence Record
Syntax. It is similar to our system with respect to the automatic collection of
evidential data from multiple sources. However, their focus is on the archival of
evidence, whereas we propose a system that also enables automated evidence
processing for audits. Additionally, our system also addresses privacy concerns
of evidence collection in a multi-tenant environment such as the cloud by intro-
ducing evidence encryption, whereas Redfield and Date focus on archival and
preservation of evidence integrity.

Zhang et al. [31] identify potential problems when storing massive amounts
of evidential data. They specifically address possible information leaks. To solve
these issues, they propose an efficient encrypted database model that is supposed
to minimize potential data leaks as well as data redundancy. However, they focus
solely on the storage backend and do not provide a workflow that addresses secure
evidence collection as a whole.

Gupta [11] identifies privacy issues in the digital forensics process, when it
comes to data storage devices that typically do not only contain investigation re-
lated data, but may also hold sensitive information that may breach privacy. He
also identifies a lack of automation in the digital investigation process. To address
these issues, Gupta proposes the Privacy Preserving Efficient Digital Forensic In-
vestigation (PPEDFI) framework. PPEDFI automates the investigation process
by including knowledge about previous investigation cases, and which kinds of
files were relevant then. With that additional information, evidence search on
data storage devices is faster. However, while Gupta acknowledges privacy is-
sues, the PPEDFI framework is focused on classic digital forensics and may not
be applicable to a cloud ecosystem, where there is typically no way of mapping
specific data objects to storage devices, in full.

The Security Audit as a Service (SAaaS) system proposed by Dölitzscher et
al. [9, 10] is used to monitor cloud environments and to detect security incidents.
SAaaS is specifically designed to detect incidents in the cloud and thereby con-
sider the dynamic nature of such ecosystems, where resources are rapidly provi-
sioned and removed. However, the main focus of SAaaS is not to provide auditors
with a comprehensive way of auditing the cloud provider’s compliance with ac-
countability policies, which requires additional security and privacy measures to
be considered in the data collection process.
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3 INSYND

Insynd is a cryptographic scheme where a forward-secure author sends messages
intended for clients through an untrusted server [24, 23]. The author is forward-
secure in the sense that the author is initially trusted but assumed to turn into
an active adversary at some point in time [5]. Insynd protects messages sent
prior to author compromise. The server is untrusted, which is possible thanks
to the use of Balloon, a forward-secure append-only persistent authenticated
data structure [23]. This means that the server storing all messages can safely
be outsourced, e.g., to traditional cloud services. Clients are assumed trusted to
read messages sent to them by authors. Insynd contains support for clients to
also be in the forward-security model, by discarding key-material as messages
are read. For sake of ease of implementation, Insynd is designed around the use
of NaCl [6], an easy-to-use high-speed cryptography software library.

Insynd provides the following properties:

Forward Integrity and Deletion Detection Nobody can modify or delete
messages sent prior to author compromise, as defined by Pulls et al. [25].
This property holds independently for Balloon (the data structure) and the
Insynd scheme. For Balloon, anyone can verify the consistency of the data
structure, i.e., it is publicly verifiable [23].

Secrecy Insynd provides authenticated encryption [2].
Forward Unlinkability of Events For each run by the author of the protocol

to send new messages, all the events sent in that run are unlinkable. This
implies that, e.g., an attacker (or the server) cannot tell which events belong
to which client [24]. When clients receive their events by querying the server,
if they take appropriate actions including but not limited to accessing the
server over an anonymity network like Tor [8], their events remain unlinkable.

Publicly Verifiable Proofs Both the author and client receiving a message
can create publicly verifiable proofs of the message sender (the author),
the receiving client (by registered identity), and the time the message was
sent relative to e.g. a time-stamping authority [24]. The proof-of-concept
implementation of Insynd uses Bitcoin transactions [20] as a distributed
time-stamping server.

Distributed settings Insynd supports distributed authors, where one author
can enable other authors to send messages to clients it knows of without
requiring any interaction with clients. Client identifiers (public keys) are
blinded in the protocol, ensuring forward-unlinkable client identifiers be-
tween different authors [24].

Pulls and Peters show that Insynd provide the above cryptographic proper-
ties under the assumptions of the decisional Diffie-Hellman (DDH) assumption
on Curve25519, an unforgeable signature algorithm, an unforgeable one-time
MAC, a collision and pre-image resistant hash function, a IND-CCA2 secure
public-key encryption scheme, and the security of the time-stamping mechanism
(in our case, the Bitcoin block-chain) [24]. The prototype implementation of In-
synd shows performance comparable to state-of-the-art secure logging schemes,
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like PillarBox [7], securing syslog-sized messages (max 1KiB) in the order of
hundreds of microseconds on average on a commodity laptop. We stress that
Insynd is subject to its own review and evaluation; in this paper, we use Insynd
as a building block to facilitate secure evidence collection and storage for cloud
accountability audits.

4 Audit Agent System

In the following, the main actors, components and the general flow of information
from the evidence-producing source to the audit report in our Audit Agent
System (AAS) are described.

4.1 Privacy and Accountability Cloud Audit System Actors

The main actor using the AAS is the Cloud Auditor. According to NIST, a cloud
auditor is a “A party that can conduct independent assessment of cloud services,
information system operations, performance and security of the cloud imple-
mentation.” [16] In general, a cloud consumer, cloud provider or an independent
third-party can act as a cloud auditor. Depending on the actual stakeholder that
assumes the role of the auditor, isolation issues can arise:

– A data protection authority (DPA) typically acts in good faith as a third-
party and assesses privacy policies. Therefore, they typically have broad
access to a provider’s internal documentation, infrastructure and potentially
customer’s data.

– A commercial third-party auditor is usually a specialized service provider
(e.g., a penetration or security testing specialist) acting on behalf of the
cloud provider. Their access to information is similar to that available to the
DPA.

– A customer can also assume the role of an auditor, however with a much
more limited scope of available information. We consider two major sub-
types, businesses as customers and individuals as customers.

In our proposed system, we consider business customers (e.g., companies us-
ing cloud services to replace their IT) to be potential auditors but exclude private
individuals. Additionally, providers use the AAS internally for self-auditing to
regularly and continuously assess their policy compliance and detect potential
violations in a timely manner. Depending on the view on an organization (i.e.,
depending on who assumes the role of cloud auditor), data protection is an issue
to consider, when potential confidential information is processed during an au-
dit. This means data confidentiality, integrity and isolation have to be preserved
during an automated audit.
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4.2 Architectural Components Audit Agent System

The architecture of the Audit Agent System (see Fig. 1) is based on the use of
software agents. This allows for improved flexibility by allowing to rapidly react
on infrastructure changes, and improved extensibility especially with respect to
data collectors that are used to gather information that is evaluated during an
audit. The collectors are adapters for the various heterogeneous sources of evi-
dence in a cloud environment. In Sect. 6.1, we describe more details of how the
collectors work. The architecture of the AAS comprises of the following com-
ponents: Audit Policy Module (APM), Audit Agent Controller (AAC), Evidence
Processor and Presenter (EPP) and Evidence Store (ES). Especially the Evi-
dence Store and the aforementioned collection agents make heavy use of Insynd
to assure that data protection requirements are being met. To a lesser extent,
the AAC and EPP also utilize Insynd for securely transporting evidence.

Fig. 1. Privacy and Accountability Cloud Audit System Architecture

All components are implemented as software agents based on the Java Agent
DEveleopment framework (JADE) [13] and make heavy use of the JADE Agent
Communication Language (ACL) for agent interaction. In the following, we de-
scribe the architecture components:

Audit Policy Module
The main input to the AAS are machine-readable policies that describe data
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handling obligations (e.g., access control), security controls (e.g., service config-
uration) and data protection mechanisms (e.g., encryption). From such policies,
tasks for collecting evidence, and rules for evaluation of the evidence with the
goal of producing a compliance statement are extracted. Additional input to the
APM is provided by the auditor. We assume, that there is always a need for at
least some manual input for defining an automated audit because the input pol-
icy might not be complete with respect to all the parameters that are required
for an automated audit. Such parameters include the audit type (periodic or
event-driven), the frequency (e.g., daily, monthly. . . ) but also more task-specific
information that is not provided by the input policy. Depending on the actual
audit task, the input comprises of policies and auditor-supplied information:

1. Policies, which define obligations that have to be fulfilled by the cloud
provider, such as data access restrictions and usage policies, requirements
for the implementation of privacy controls, data retention requirements and
general security requirements. The A4Cloud [1] research project develops a
machine-readable policy language based on the Primelife Policy Language [3]
called Accountability PPL [4]. The A-PPL is capable of describing obliga-
tions providers have to adhere to, such access control rules and data handling
(e.g., data location, purpose etc). A-PPL serves as the main input to the Au-
dit Agent System and for defining audits.

2. It is possible that an input policy does not necessarily include all information
required for mapping policy requirements to specific evidence sources, collec-
tors (e.g., evidence source specific REST client or log parser) and evaluators
(e.g., API endpoints, access credentials). That information is provided by
the auditor.

With the above mentioned data, the APM builds audit tasks - a combination
of evidence collector, processor and presenter agents - and passes that task on
to the Audit Agent Controller for instantiation.

Audit Agent Controller
The AAC is the core component of the Audit Agent System. Its main responsi-
bility is the management (i.e., instantiation, configuration, deployment) of any
type of agent in the AAS. The main input comes from the APM, which effec-
tively instructs the AAC on how to setup specific audit tasks. A typical audit
task deployment in AAS is called an audit workflow. The typical audit workflow
(depicted in Fig. 2) is as follows:

1. Preparation: The APM extracts audit task configuration from the policy,
combines it with input provided by the auditor and passes it on to the AAC.

2. Configuration: According to the input provided by the APM, the AAC con-
figures audit policies, its tasks and corresponding collection and evaluation
agents.

3. Instantiation: the AAC instantiates the previously configured agents as well
as the associated evidence store.
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Fig. 2. Audit Agent System Architecture - Audit Workflow

4. Migration: Agents are migrated from the core platform where the AAC is
running to the target platforms (agent runtime environments as close as
possible to the evidence source).

5. Monitoring : During the agents’ lifetime, the AAC monitors registered plat-
forms and registered agents, handles exceptions, and manages the creation,
archival and deletion of evidence stores

6. Termination: The AAC disposes of the collector and evaluation agents when
they are not needed anymore. It also handles archival and / or deletion of
the corresponding evidence store in that case.

Evidence Processor and Presenter
After the collector agents have gathered evidence data and stored it in the ev-
idence store, the evaluation agent(s) of an audit task retrieve that data and
analyze it according to the rules that have been extracted from the policies in
the preparation phase by the APM. The results that are produced by the evalu-
ation agents are written back to the evidence store. A result can either positive
(e.g., a message of proven compliance or the absence of a violation) or negative
(e.g., a violation that is detected by the evaluation agent). Additionally the re-
sult is passed on to presenter agents that inform the auditor about the audit
results. Currently the presenter agents can either display the audit result in a
web-based dashboard or pass on the violation in a machine-readable format to
other tools or services via a REST API. The whole of processor and presenter
agents logically forms the EPP component. It is thereby irrelevant, where these
agents are running as long as they are able communicate via a network, which
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helps in balancing the load that can be introduced with complex analysis mecha-
nisms or the sheer amount of evidence data that needs to be analyzed. According
to the complexity of task, due to the amount of obligations, or the volume of ev-
idence to analyse, different verification processes may need to be considered for
the evaluation agents, ranging from log mining, checking for predefined tokens
or patterns, to automated analysers and automated reasoning upon the audit
trail.

The processing or analysis of evidence consists of two steps:

1. Retrieve the appropriate information from Evidence store.
2. A verification process, which checks the correctness of recorded events ac-

cording to defined obligations and authorizations.

Evidence Store
The ES is the central repository for storing evidence. Some of the more im-
portant characteristics of evidence are that they are associated with a policy
for which they were collected and contain supporting information such as log
entries collected by an agent, which points out a potential policy violation or
incident. For each cloud tenant, there is a separate ES to ensure basic data pro-
tection principles are being adhered to by isolating tenants and their data. This
addresses some of the confidentiality and privacy issues associated with a share
data pool for potentially sensitive information.

There are several approaches to harmonizing the storage format for digital
evidence that can be reused in the ES such as [26, 15, 29]. AAS uses a custom
evidence format that is based on concepts described in [26] and [29].

Securing the transport and storage of evidence is a considerable challenge.
The remainder of this paper focusses on how this is achieved in AAS by utilizing
Insynd.

5 AUDIT EVIDENCE STORAGE REQUIREMENTS

In this Section, we present a comparison of general evidence attributes, how they
apply in the context of evidence collection for cloud accountability audits and
how the integration of Insynd solves key issues in evidence storage.

5.1 Requirements of Digital Evidence

In [19] the core principles of any evidence are described as:

Admissibility Evidence must conform to certain legal rules, before it can be
put before a jury.

Authenticity Evidence must be tieable to the incident and may not be manip-
ulated.

Completeness Evidence must be viewpoint agnostic and tell the whole story.
Reliability There cannot be any doubts about the evidence collection process

and its correctness.
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Believability Evidence must be understandable by a jury.

These principles apply to common evidence as well as digital evidence. There-
fore, the evidence collection process for audits has to consider special require-
ments, which help in addressing these attributes and ensure best possible validity
in audits and applicability in court.

In Table 1 we present a mapping of the previously described evidence at-
tributes and how they are supported by the integration of Insynd as a means of
storing evidence records. We thereby focus on the key properties of Insynd as
described in Sect. 3.

Table 1. Mapping the Impact of Insynd Properties to Evidence Attributes.

Insynd
Forward Integrity and Publicly Verifiable Proofs
Deletion Detection

E
vi
de

nc
e

St
or
e

Admissibility
Authenticity
Completeness
Reliability
Believability

Admissibility of digital evidence is influenced by the transparency of the
collection process and data protection regulation. Digital evidence can be any
kind of data (e.g., e-mail messages, social network messages, files, logs etc.).
Insynd does not have any direct influence on the admissibility of the evidence
stored in it.

Authenticity of digital evidence before court is closely related to the integrity
requirement put on evidence records. Evidence may not be manipulated in any
way and must be protected against any kind of tampering (willingly and acci-
dentally). Insynd ensures that data cannot be tampered with once it is stored.

Completeness is not directly ensured by Insynd, but rather needs to be en-
sured by the evidence collection process as a whole. Especially important are
the definition of which evidence sources provide relevant evidence that need to
be considered during the collection phase. Insynd can complement the evidence
collection process by providing assurance of that all data stored in the evidence
store are made available as evidence, and not cherry-picked.

Reliability is indirectly supported by integrating necessary mechanisms into
the evidence collection process, such as Insynd.

Believability of the collected evidence is not influenced by implemented mech-
anisms, but rather by the interpretation and presentation by an expert in court.
This is due to judges and juries usually being non-technical, which requires an
abstracted presentation of evidence. Insynd does not influence the believability
in that sense.
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5.2 Privacy Requirements

Not all requirements that a secure evidence storage has to fulfill can be captured
by analyzing the attributes of digital evidence. Other aspects have to be taken
into account to address privacy concerns. Protecting privacy in the process of
evidence collection is utmost importance, since the collected data is likely to
contain personal data. For cloud computing, one limiting factor may be whether
or not the cloud provider is willing to provide deep insight into its infrastructure.
Table 2 presents a mapping of privacy principles and properties of our evidence
process.

Table 2. Mapping of Insynd properties to Evidence Collection Requirements

Insynd
Secrecy Forward Unlinkability Forward Unlinkability

of Events of Recipients

E
vi
de

nc
e

St
or
e

Confidentiality
Data Minimisation
Purpose Binding
Data Retention

Below we summarise some key privacy principles:

Confidentiality of data evolves around mechanisms for the protection from
unwanted and unauthorized access. Typically, cryptographic concepts, such
as encryption, are use to ensure confidentiality of data.

Data Minimization states that the collection of personal data should be min-
imized and limited to only what is strictly necessary.

Purpose Binding of personal data entails that personal data should only be
used for the purposes it was collected for.

Retention Time is concerned with how long personal data may be stored and
used, before it needs to be deleted. These periods are usually defined by legal
and business requirements.

Insynd and our evidence process provides various mechanisms that support
these privacy principles.

Confidentiality A central property of Insynd is that it is always encrypting
data using public-key cryptography. By encrypting the evidence store, compro-
mising the privacy of cloud customer data that has been collected in the evidence
collection processes becomes almost impossible by attacking the evidence store
directly. This goes as far as being able to safely outsource the evidence store to
an untrusted third-party, a key property of Insynd [24].

Data Minimisation Furthermore, Insynd provides forward unlinkability of
events and client identifiers, as described in Sect. 3, which helps prevent several
types of information leaks related to storing and accessing data. Collection agents
are always configured for a specific audit task, which is very limited in scope of
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what needs to be collected. Agents are never configured to arbitrarily collect
data, but are alway limited to a specific source (e.g., a server log) and data
objects (e.g., a type of log events).

Purpose Binding Neither Insynd nor our evidence process can directly in-
fluence the purpose for which collected data is used. Indirectly, the use of an
evidence process like ours, incorporating secure evidence collection and storage,
may serve to differentiate data collected for auditing purposes with other data
collected e.g., for marketing purposes.

Retention time poses a real challenge. In cloud computing, the precise lo-
cation of a data object is usually not directly available, i.e., the actual storage
medium used to store a particular block is unknown, making data deletion hard.
However, if data has been encrypted before storage, a reasonably safe way to
ensure “deletion” is to discarding the key material required for decryption. In-
synd supports forward-secure clients, where key material to decrypt messages
are discarded as messages are read.

In Sect. 7, we also describe the threat model for the system described in this
paper and present an evaluation of how Insynd is used to mitigate these threats.

6 SECURE EVIDENCE STORAGE ARCHITECTURE

In this Section, we provide an architectural overview of the integration of Insynd
into a secure evidence collection and storage process. We describe the overall
architecture and its components, how the components of Insynd are mapped
into the Audit Agent System and which setup process is required to use Insynd
for securing evidence collection and storage.

6.1 Architecture

In this Section we discuss the architectural integration of Insynd as an evi-
dence store in our audit system. There are basically three different components
required to perform secure evidence collection. Figure 3 shows an overview of
these components - Evidence Source, Evidence Store and Evidence Processing
(see Sect. 4 and Fig. 1 for reference) - as well as the flow of data between them.
From the various sources of evidence in the cloud, evidence records are collected
that will be stored in the evidence store on a per-tenant basis. The evidence store
is thereby located on a separate server. As previously mentioned, the server may
be an untrusted third-party cloud storage provider. This is important to ensure
so that this approach scales well with a growing number of tenants, evidence
sources and evidence records.

Evidence Collection
There are various evidence sources to be considered, such as logs, cryptographi-
cal proofs, documentation and many more. For each, there needs to be a suitable
collection mechanism. For instance, a log parser for logs, a tool for cryptograph-
ical proofs or a file retriever for documentation. This is done by a software agent
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Fig. 3. Evidence Collection, Storage and Processing Workflow

called Evidence Collection Agent that is specifically developed for the data col-
lection from the corresponding evidence source. The collection agent acts as an
Insynd Author meaning it uses the Sender API to store evidence into the Ev-
idence Store. The encryption happens in the Sender API. Typically, this agent
incorporates or interfaces with a tool to collect evidential data, for instance foren-
sic tools, such as file carvers, log parsers or simple search tools. Another type
of collection agent have client APIs implemented to interface with more com-
plex tools, such as Cloud Management Systems (CMS). Generally, these agents
receive or collect information as input and translate that information into an
evidence record, before storing it in the Evidence Store.

Evidence Storage
From the Evidence Collection Agent, evidence records are sent to the Evidence
Store. The Evidence Store is implemented by the Insynd Server. Since Insynd
functions as a key-value store for storing evidence records (encrypted messages
identified by a key) NoSQL or RDBMS-based backend for persisting evidence
records can be used. All data contained in the Evidence Store is encrypted. Each
record is addressed to a specific receiver (e.g., an Evidence Processing Agent).
The receiver’s public key is used in the Sender API to encrypt the record on
the Evidence Store. This means that only the receiver is able to access the
evidence data from the Evidence Store. Isolation between tenants in a single
Evidence Store is achieved by providing one container for each tenant where
his evidence records are stored. However, even stronger isolation is also possible
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by providing a separate Evidence Store hosted on a separate VM. Additionally,
Evidence records require a unique identifier in the Evidence Store to enable
selective retrieval of records. In our implementation, we use a combination of a
policy identifier and a rule identifier (where a rule is part of a policy) to enable
the receiver to reduce the amount of records to receive to a manageable size.

Evidence Processing
Evidence Processing components are located at the receiving end of this work-
flow. The Receiver API is used by the processing agent (Insynd Client) to retrieve
evidence records from the Evidence Store. The receiver can request multiple
records from a period of time at once. The Client is also in possession of the
corresponding private key to decrypt evidence records, which means records can
only be decrypted at the Client.

6.2 Identity Management and Key Distribution

Since asymmetric encryption is such an important part of our system, we de-
scribe the encryption key distribution sequence next. In this software agent-based
system, the automated setup of key material and registration with Insynd is par-
ticularly important. Figure 4 depicts the initialization sequence of collection and
processing agents with a focus on key distribution.

Fig. 4. Evidence Collection Setup Sequence

In Fig. 4, we introduce an additional component beyond those already de-
scribed in the general architecture: the Controller. The Controller serves as an
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entry point that controls the agent setup and distribution process in the au-
dit system. It is an important part of the lifecycle management of the system’s
agents (e.g., creating and destroying of agents or migration between platforms).

In Fig. 4, we describe the initialization sequence for a simple scenario, where a
particular tenant wishes to audit compliance with a policy and one rule included
in that policy in particular. The following steps have to be performed to setup
the evidence collection and storage process for that particular rule:

1. In the first step, a Processing Agent is created and configured according to
the input policy and rule respectively for the tenant.

2. During the setup phase, the Processing Agent sets up a key pair at the
Receiver API. The Receiver API is a RESTful service that holds private key
material and is therefore located at the same servers hosting the Processing
Agents (i.e., a trusted environment).

3. After the key material has been generated, the Processing Agent registers
itself as a recipient at the Sender API. For this, it uses a unique identifier
generated from the policy ID and the rule ID (i.e., policyID.ruleID).

4. In the last step, the Controller sets up the required Collection Agents and
connects them with the corresponding Processing Agents by using the unique
recipient identifier.

Now, it is possible for the Collection Agents to send evidence records to
their corresponding Processing Agents. The messages will be encrypted at the
Sender API service before storage, using the provided recipient’s public key. The
Processing Agent then pulls the evidence records from the Evidence Store using
the Receiver API the records are decrypted using the receiver’s private key.

7 EVALUATION

In this Section we present an informal security evaluation of the system we have
implemented for secure evidence collection. We describe the evidence collection
work flow using a fictitious scenario. By applying the evidence collection and
storage process to the setting described in this scenario, we demonstrate how
the requirements stated in Sect. 5 are addressed. Additionally, we provide a
model that states threats and adversaries to the process as well as the mitigation
functions introduced by Insynd.

In this scenario, the CCOMP company is a customer of the Infrastructure
as a Service provider CloudIA. In particular, we analyze the security properties
of the evidence collection process by looking at the data at rest as well as the
data in transit protection at any time during the flow from the evidence source
to its processor. We thereby assume that CloudIA is using OpenStack [21] as a
its Cloud Management System (CMS), since this a widely popular open source
CMS, which we use for developing our audit agent system. However, any other
CMS could be used as well as long as it provides the needed monitoring interfaces.
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7.1 Scenario

CloudIA is specialized in providing its customers with virtualized resources in
the form of virtual machines, networks and storage. CCOMP has outsourced
most of its IT services to CloudIA. Among them is a service that processes data
of CCOMP’s customers. For that data, CCOMP has to guarantee data reten-
tion. CCOMP has identified snapshots to be one major problem with respect
to the data retention policy, since the virtual machine’s storage is duplicated
in the process. This means for CCOMP that in order to be compliant with the
data retention policy, a snapshot of that virtual machine may have a maximum
lifetime of one day, which limits its usefulness to e.g., backing up before patch-
ing. Now, we assume a trustworthy but sloppy administrator at CCOMP who
creates a snapshot before patching software on the virtual machine, but then
omits deleting the snapshot after he is done. However, an automated daily audit
of its cloud resources was put in place by CCOMP to detect such compliance
violations.

7.2 Implementation

The collection agent required for the above scenario communicates with our
OpenStack CMS to gather evidence of the CMS behavior regarding virtual ma-
chine snapshots. The processing agent contains the logic for detecting snapshot
violations (i.e., base virtual machine and a maximum age of the snapshot de-
rived from the retention policy). The collection agent is deployed at the CMS
controller node and has access to OpenStack’s RESTful API. The processing
agent is located on the same trusted host as the controller agent (see Fig. 3
for reference). The evidence store is located on a separate, untrusted virtual
machine. Now, the following steps are performed:

1. The collection agent opens a connection to the OpenStack RESTful API
on the same host and requests a history of snapshot events for CCOMP’s
virtual machine. Despite there being no communication over the network,
HTTPS is used to secure the communication between the collection agent
and the CMS. Since the policy only requires information about snapshots
to be collected, the CMS agent limits evidence record generation to exactly
that information, nothing more.

2. The collection agent sets up the receiver of the evidence according to the
process depicted in Fig. 4 and sends the collected records to the evidence
store (Insynd). The communication channel is encrypted using HTTPS and
the payload (evidence records) is encrypted with the receiving agent’s public
key.

3. The processing agent pulls records from the evidence store in regular intervals
(e.g., every 24 hours), analyses them and triggers a notification of a detected
violation. The communication between the processing agent and the evidence
store is secured using HTTPS.

4. In the last step, evidence records are deleted because their retention limit has
been reached. This is done by discarding the keys required for decryption.
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7.3 Threat Model

To demonstrate which security threats exist for the evidence collection process
and Insynd is used to mitigate them, we describe the threat model for this system
categorized according to the STRIDE [18] threat categorization:

– Spoofing Identity
– Tampering with Data
– Repudiation
– Information disclosure
– Denial of Service
– Elevation of Privilege

We have identified the following major threats to the evidence collection and
storage process:

– Unauthorized access to evidence (S,I): the protection of evidence from be-
ing accessed by unauthorized persons. Possible adversaries are a malicious
third-party evidence storage provider (cloud service provider), another ten-
ant (isolation failure) or an external attacker. Using Insynd for evidence
collection and storage addresses this threat since recipients of messages are
authenticated using appropriate mechanisms such as user credentials for API
authentication and public keys for encryption.

– Data leakage (S,I): the protection from unintentional data leakage. This
could be caused by misconfiguration (e.g., unencrypted evidence being pub-
licly available). Using Insynd for evidence collection and storage addresses
this threat by encrypting data by default.

– Eavesdropping, (T,I): the protection of evidence during the collection phase,
especially in transit. Possibly adversaries are another tenant (isolation fail-
ure) or external attackers in case evidence is transported to an external
storage provider or auditor. Using Insynd for evidence collection and storage
addresses this threat by using transport layer as well as message encryption.

– Denial of Service (D): the protection of the evidence collection and storage
process from being attacked directly with the goal of disabling or shutting it
down completely (e.g., to cover-up simultaneous attacks on another service).
Possible adversaries are external attackers. This is a very generic threat that
cannot be addressed by a single tool or control but rather requires a set a
measures (on the network and application layer) to enhance denial of service
resilience.

– Evidence manipulation (T,R,I): the protection of evidence from intentional
manipulation (e.g., deletion of records, changing of contents, manipulation of
timestamps). Possible adversaries are malicious insiders and external attack-
ers. Using Insynd for evidence collection and storage addresses this threat,
since Insynd provides tampering and deletion detection.

Some of these threats can be mitigated by implementing appropriate secu-
rity controls (i.e., using Insynd for evidence transport and storage). It provides
effective protection by employing security techniques described in Sect. 3.
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7.4 Requirements Evaluation

In this section, we evaluate the integration of Insynd against the requirements
described in Sect. 5. In step 1 of the fictitious scenario, the data minimization
principle is being followed because the specialized agent only collects evidence
on the existence of snapshots.

This workflow is secure as soon as the collection agent inserts data into the
evidence store in step 2. More precisely, evidence records are tamper-evident
and encrypted. This is true, even though the evidence is actually stored on an
untrusted virtual machine. The only way to compromise evidence now, is to
attack the availability of the server hosting the Insynd server.

When the processing agent in step 3 retrieves records for evaluation, it can
be assured of the authenticity of the data and that it has been provably collected
by a collection agent. Since evidence records may be subject to maximum data
retention regulation, records that are not needed anymore are deleted.

As previously mentioned in Sect. 6 we use JADE as an agent runtime. To
secure our system against non-authorized agents, we use the TrustedAgents add-
on for the JADE platform. This ensures that only validated agents are able to
join our runtime environment. This effectively prevents agent injection attacks,
where malicious agents could be inserted at either the collection or processing
side to compromise our system.

As can be seen, the evidence records are protected all the way from the
evidence source to the processing agent using only encrypted communication
channels and having an additional layer of security (message encryption) pro-
vided by Insynd. Additionally, while the evidence is being stored, it remains
encrypted.

7.5 Scalability

Obviously, since there is a vast amount of evidence sources and therefore a
potentially equal number of collection agents, ensuring the scalability of the
process and the implementation is very important. This has been considered
very early in the design process by choosing an software agent-based approach
for the system architecture. Software agents are inherently distributable and
allow for complex message flow modeling in an infrastructure. Therefore, the core
components evidence collection, storage and processing become distributable as
well. In our future work, we’ll focus on the scalability aspects. We will follow a
methodology where we focus on the following technical key scalability indicators:

– Data transfer volume: amount of evidence data being transferred over the
network

– Message volume: amount of evidence message transmissions over the network
– Storage volume: amount of storage required for evidence
– Encryption overhead: performance impact introduced by encryption and de-

cryption
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Based on the identified performance impact of each of these indicators, in the
second step, we model different message flow optimization strategies to alleviate
their impact and ensure scalability.

8 Conclusion and Future Work

In this paper, we presented our system design and implementation for secure
evidence collection in cloud computing. The evidence provides the general basis
for performing cloud accountability audits. Accountability audits take a large
variety of evidence sources and data processing requirements into account.

We showed what the requirements for a secure evidence collection process
are and demonstrated how these issues are addressed by incorporating Insynd
into our system. We described how the core principles of digital evidence are
addressed by our system. Additionally, we considered data protection principles
for the evidence collection process, how they influence our approach and how
they are addressed in our system by integrating Insynd. For this, we presented
the relevant architectural parts of our prototype. Additionally, we provided an
overview of how the evidence collection is integrated in our system for automated
cloud audits.

In our future work, we will focus on the scalability of our audit system in
general and the scalability of the components involved in evidence collection in
particular. For that reason, we will focus on the distribution of the audit system
and evidence collection not only in the same domain (i.e., in the same infras-
tructure), but also taking into account outsourcing and multi-provider collection
scenarios.
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Abstract: Cloud accountability audits can be used to strengthen trust of cloud service customers in cloud computing by
providing reassurance regarding the correct processing of personal or confidential data in the cloud. However,
such audits require various information to be collected. The types of information range from authentication and
data access logging to location information, information on security controls and incident detection. Correct
data processing has to be proven, which immediately shows the need for secure evidence record storage that
also scales with the huge number of data sources as well as cloud customers. In this paper, we introduce
Insynd as a suitable cryptographic mechanism for storing evidence for accountability audits in our previously
proposed cloud accountability audits architecture. We present our reasoning for choosing Insynd by showing
a comparison of Insynd properties with requirements imposed by accountability evidence collection as well
as an analysis how security threats are being mitigated by Insynd. Additionally, we describe an agent-based
evidence collection process with a special focus on security and privacy protection.

1 INTRODUCTION

Cloud Computing is known for its on demand com-
puting resource provisioning and has now become
mainstream. Many businesses as well as private in-
dividuals are using cloud services on a daily basis.
The nature of these services varies heavily in terms
of what kind of information is being out-sourced to
the cloud provider. More often than not that data
is sensitive, for instance when Personal Identifiable
Information (PII) is being shared by an individual.
Also, businesses that move (parts of) their processes
to the cloud, for instance by using a Customer Rela-
tionship Management Software as a Service provider,
are actively participating in a major paradigm shift
from having all data on-premise to moving data to the
cloud.

New challenges come along with this trend. Two
of the most important issues are customer trust
and compliance (Jansen and Grance, 2011; Pearson,
2011). These issues are closely tied to the loss of con-
trol over data. When moving to the cloud, direct con-
trol over i) where data is stored, ii) who has access to
it and iii) how it is shared and processed is given up.

Because of this loss of control, cloud customers
have to trust cloud providers that they treat their
data in an appropriate and responsible way. This in-

cludes providing information about data locality, iso-
lation, privacy controls and data processing in gen-
eral. One way to enable that trust is by strengthening
transparency and accountability (Haeberlen, 2009;
Weitzner et al., 2008) of the cloud provider and ser-
vices.

To regain information on the kind of data process-
ing, cloud audits can be used to check how it has been
done. An important part of cloud audits is evidence
collection. Depending on the data processing policies
in place, various sources of evidence need to be con-
sidered. Logs are a very important source of evidence,
when it comes to auditing the cloud operation (e.g.,
access logs and error logs). However, other sources of
information are also important, such as files or events
registered in the cloud management system. To cap-
ture evidence from this variety of sources, centralized
logging mechanisms are not enough. We therefore
propose a system for accountability evidence collec-
tion and audit. With this system, cloud providers are
enabled to demonstrate their compliance with data
handling policies to their customer’s and third-party
auditors in an automated way.

In our previous work, we introduced a sys-
tem (Ruebsamen and Reich, 2013) for cloud account-
ability audits, that enables automated collection of ev-
idential data in the cloud ecosystem with the goal of



performing accountability audits. A key mechanism
of this system is the secure and privacy-friendly col-
lection and storage of evidence. In our previous work
we also explored the use of a somewhat homomorphic
encryption scheme to secure evidence collected in the
evidence store (Lopez et al., 2014). In this paper, we
present a more practical alternative that imposes less
restrictions on evidence collection. The contributions
of this paper are:

• An architecture for automated evidence collection
for the purpose of cloud accountability audits

• A process for secure and privacy-protecting evi-
dence collection and storage

The remainder of this follow-up paper is struc-
tured as follows: in Section 2 we present related work
in the area of secure evidence collection and cloud au-
diting. The core principles of Insynd are introduced
in Section 3. Following that, we present in Section 4 a
mapping of typical characteristics of digital evidence
and secure evidence collection in the cloud to how
these are addressed by integrating Insynd in our audit
agent system. In Section 5 we describe the architec-
tural details of the Insynd integration. We present a
scenario-based informal evaluation of our system in
Section 6 and conclude this paper in Section 7.

2 RELATED WORK

Redfield and Date propose a system called
Gringotts (Redfield and Date, 2014) that en-
ables secure evidence collection, where evidence
data is signed at the system that produces it, before
it is sent to a central server for archival using the
Evidence Record Syntax. It is similar to our system
with respect to the automatic collection of evidential
data from multiple sources. However, their focus
is on the archival of evidence, whereas we propose
a system that also enables automated evidence
processing for audits. Additionally, our system also
addresses privacy concerns of evidence collection
in a multi-tenant environment such as the cloud by
introducing evidence encryption, whereas Redfield
and Date focus on archival and preservation of
evidence integrity.

Zhang et al. (Zhang et al., 2013) identify potential
problems when storing massive amounts of evidential
data. They specifically address possible information
leaks. To solve these issues, they propose an efficient
encrypted database model that is supposed to mini-
mize potential data leaks as well as data redundancy.
However, they focus solely on the storage backend

and do not provide a workflow that addresses secure
evidence collection as a whole.

Gupta (Gupta, 2013) identifies privacy issues in
the digital forensics process, when it comes to data
storage devices that typically do not only contain in-
vestigation related data, but may also hold sensitive
information that may breach privacy. He also identi-
fies a lack of automation in the digital investigation
process. To address these issues, Gupta proposes the
Privacy Preserving Efficient Digital Forensic Investi-
gation (PPEDFI) framework. PPEDFI automates the
investigation process by including knowledge about
previous investigation cases, and which kinds of files
were relevant then. With that additional informa-
tion, evidence search on data storage devices is faster.
However, while Gupta acknowledges privacy issues,
the PPEDFI framework is focused on classic digital
forensics and may not be applicable to a cloud ecosys-
tem, where there is typically no way of mapping spe-
cific data objects to storage devices, in full.

The Security Audit as a Service (SAaaS) system
proposed by Doelitzscher et al. (Doelitzscher et al.,
2012; Doelitzscher et al., 2013) is used to monitor
cloud environments and to detect security incidents.
SAaaS is specifically designed to detect incidents in
the cloud and thereby consider the dynamic nature
of such ecosystems, where resources are rapidly pro-
visioned and removed. However, the main focus of
SAaaS is not to provide auditors with a comprehen-
sive way of auditing the cloud provider’s compli-
ance with accountability policies, which requires ad-
ditional security and privacy measures to be consid-
ered in the data collection process.

3 INSYND

Insynd is a cryptographic scheme where a forward-
secure author sends messages intended for clients
through an untrusted server (Pulls and Peeters, 2015b;
Pulls and Peeters, 2015a; Pulls et al., 2013). The
author is forward-secure in the sense that the author
is initially trusted but assumed to turn into an active
adversary at some point in time (Bellare and Yee,
2003). Insynd protects messages sent prior to au-
thor compromise. The server is completely untrusted,
which is possible thanks to the use of Balloon, a
forward-secure append-only persistent authenticated
data structure (Pulls and Peeters, 2015a). This means
that the server storing all messages can safely be out-
sourced, e.g., to traditional cloud services. Clients
are assumed trusted to read messages sent to them by
authors. Insynd contains support for clients to also
be in the forward-security model, by discarding key-



material as messages are read.
Insynd provides the following properties:

Forward Integrity and Deletion Detection
Nobody can modify or delete messages sent
prior to author compromise, as defined by Pulls
et al. (Pulls et al., 2013). This property holds
independently for Balloon (the data structure)
and the Insynd scheme. For Balloon, anyone can
verify the consistency of the data structure, i.e., it
is publicly verifiable (Pulls and Peeters, 2015a).

Secrecy Insynd provides public-key authenticated
encryption (An, 2001) thanks to the use of
NaCl (Bernstein et al., 2012).

Forward Unlinkability of Events For each run by
the author of the protocol to send new messages,
all the events sent in that run are unlinkable. This
implies that, e.g., an attacker (or the server) can-
not tell which events belong to which client (Pulls
and Peeters, 2015b). When clients receive their
events by querying the server, if they take ap-
propriate actions including but not limited to ac-
cessing the server over an anonymity network like
Tor (Dingledine et al., 2004), their events remain
unlinkable.

Publicly Verifiable Proofs Both the author and
client receiving a message can create publicly
verifiable proofs of the message sender (the au-
thor), the receiving client (by registered identity),
and the time the message was sent relative to
e.g. a time-stamping authority (Pulls and Peeters,
2015b). The proof-of-concept implementation
of Insynd uses Bitcoin transactions (Nakamoto,
2008) as a distributed time-stamping server.

Distributed settings Insynd supports distributed au-
thors, where one author can enable other authors
to send messages to clients it knows of with-
out requiring any interaction with clients. Client
identifiers (public keys) are blinded in the pro-
tocol, ensuring forward-unlinkable client identi-
fiers between different authors (Pulls and Peeters,
2015b).

Pulls and Peters show that Insynd provides for-
ward integrity and deletion detection, secrecy, pub-
licly verifiable proofs, and forward-unlinkability of
client identifiers in the standard model under the as-
sumptions of the decisional Diffie-Hellman (DDH)
assumption on Curve25519, an unforgeable signa-
ture algorithm, an unforgeable MAC, a collision
and pre-image resistant hash function, and the secu-
rity of the time-stamping mechanism (in our case,
the Bitcoin block-chain) (Pulls and Peeters, 2015b).
Forward unlinkability of events is provided in the
random oracle model under the DDH assumption

on Curve25519 (Pulls and Peeters, 2015b). The
prototype implementation of Insynd shows perfor-
mance comparable to state-of-the-art secure logging
schemes, like PillarBox (Bowers et al., 2014), secur-
ing syslog-sized messages (max 1KiB) in the order of
hundreds of microseconds on average on a commod-
ity laptop. We stress that Insynd is subject to its own
review and evaluation; in this paper, we use Insynd as
a building block to facilitate secure evidence collec-
tion and storage for cloud accountability audits.

4 AUDIT EVIDENCE STORAGE
REQUIREMENTS

In this Section, we present a comparison of general
evidence attributes, how they apply in the context
of evidence collection for cloud accountability audits
and how the integration of Insynd solves key issues in
evidence storage.

4.1 Requirements of Digital Evidence

In (Mohay et al., 2003) the core principles of any ev-
idence are described as:

Admissibility Evidence must conform to certain le-
gal rules, before it can be put before a jury.

Authenticity Evidence must be tieable to the inci-
dent and may not be manipulated.

Completeness Evidence must be viewpoint agnostic
and tell the whole story.

Reliability There cannot be any doubts about the ev-
idence collection process and its correctness.

Believability Evidence must be understandable by a
jury.

These principles apply to common evidence as
well as digital evidence. Therefore, the evidence col-
lection process for audits has to consider special re-
quirements, which help in addressing these attributes
and ensure best possible validity in audits and appli-
cability in court.

In Table 1 we present a mapping of the previously
described evidence attributes and how they are sup-
ported by the integration of Insynd as a means of stor-
ing evidence records. We thereby focus on the key
properties of Insynd as described in Section 3.

Admissibility of digital evidence is influenced by
the transparency of the collection process and data
protection regulation. Digital evidence can be any
kind of data (e.g., e-mail messages, social network
messages, files, logs etc.). Insynd does not have any



direct influence on the admissibility of the evidence
stored in it.

Authenticity of digital evidence before court is
closely related to the integrity requirement put on ev-
idence records. Evidence may not be manipulated in
any way and must be protected against any kind of
tampering (willingly and accidentally). Insynd en-
sures that data cannot be tampered with once it is
stored.

Completeness is not directly ensured by Insynd,
but rather needs to be ensured by the evidence collec-
tion process as a whole. Especially important are the
definition of which evidence sources provide relevant
evidence that need to be considered during the col-
lection phase. Insynd can complement the evidence
collection process by providing assurance of that all
data stored in the evidence store are made available
as evidence, and not cherry-picked.

Reliability is indirectly supported by integrating
necessary mechanisms into the evidence collection
process, such as Insynd.

Believability of the collected evidence is not influ-
enced by implemented mechanisms, but rather by the
interpretation and presentation by an expert in court.
This is due to judges and juries usually being non-
technical, which requires an abstracted presentation
of evidence. Insynd does not influence the believabil-
ity in that sense.

Table 1: Mapping the Impact of Insynd Properties to Evi-
dence Attributes.

Insynd
Forward
Integrity
and
Deletion
Detection

Publicly
Verifiable
Proofs

ES

Admissibility
Authenticity
Completeness
Reliability
Believability

4.2 Privacy Requirements

Not all requirements that a secure evidence storage
has to fulfill can be captured by analyzing the at-
tributes of digital evidence. Other aspects have to be
taken into account to address privacy concerns. Pro-
tecting privacy in the process of evidence collection is
utmost importance, since the collected data is likely to
contain personal data. For cloud computing, one lim-
iting factor may be whether or not the cloud provider

is willing to provide deep insight into its infrastruc-
ture. Table 2 presents a mapping of privacy principles
and properties of our evidence process.

Below we summarise some key privacy principles:

Confidentiality of data evolves around mechanisms
for the protection from unwanted and unautho-
rized access. Typically, cryptographic concepts,
such as encryption, are use to ensure confidential-
ity of data.

Data Minimization states that the collection of per-
sonal data should be minimized and limited to
only what is strictly necessary.

Purpose Binding of personal data entails that per-
sonal data should only be used for the purposes
it was collected for.

Retention Time is concerned with how long per-
sonal data may be stored and used, before it needs
to be deleted. These periods are usually defined
by legal and business requirements.

Insynd and our evidence process provides various
mechanisms that support these privacy principles.

Confidentiality A central property of Insynd is that
it is always encrypting data using public-key cryp-
tography. By encrypting the evidence store, compro-
mising the privacy of cloud customer data that has
been collected in the evidence collection processes
becomes almost impossible by attacking the evidence
store directly. This goes as far as being able to safely
outsource the evidence store to an untrusted third-
party, a key property of Insynd (Pulls and Peeters,
2015b).

Data Minimisation Furthermore, Insynd provides
forward unlinkability of events and client identifiers,
as described in Section 3, which helps prevent several
types of information leaks related to storing and ac-
cessing data. Collection agents are always configured
for a specific audit task, which is very limited in scope
of what needs to be collected. Agents are never con-
figured to arbitrarily collect data, but are alway lim-
ited to a specific source (e.g., a server log) and data
objects (e.g., a type of log events).

Purpose Binding Neither Insynd nor our evidence
process can directly influence the purpose for which
collected data is used. Indirectly, the use of an ev-
idence process like ours, incorporating secure evi-
dence collection and storage, may serve to differen-
tiate data collected for auditing purposes with other
data collected e.g., for marketing purposes.

Retention time poses a real challenge. In cloud
computing, the precise location of a data object is
usually not directly available, i.e., the actual storage
medium used to store a particular block is unknown,
making data deletion hard. However, if data has been



encrypted before storage, a reasonably safe way to
ensure “deletion” is to discarding the key material
required for decryption. Insynd supports forward-
secure clients, where key material to decrypt mes-
sages are discarded as messages are read.

Table 2: Mapping of Insynd properties to Evidence Collec-
tion Requirements

Insynd
Secrecy Forward

Unlink-
ability
of
Events

Forward
Unlink-
ability
of Re-
cipients

ES

Con-
fiden-
tiality
Data
Minimi-
sation
Purpose
Binding
Data
Reten-
tion

In Section 6, we also describe the threat model for
the system described in this paper and present an eval-
uation of how Insynd is used to mitigate these threats.

5 SECURE EVIDENCE STORAGE
ARCHITECTURE

In this Section, we provide an architectural overview
of the integration of Insynd into a secure evidence col-
lection and storage process. We describe the overall
architecture and its components, how the components
of Insynd are mapped into the audit agent system and
which setup process is required to use Insynd for se-
curing evidence collection and storage.

5.1 Architecture

In this Section we discuss the architectural integra-
tion of Insynd as an evidence store in our audit sys-
tem. There are basically three different components
required to perform secure evidence collection. Fig-
ure 1 shows an overview of these components - Evi-
dence Source, Evidence Store and Evidence Process-
ing - as well as the flow of data between them. From
the various sources of evidence in the cloud, evidence
records are collected that will be stored in the evi-
dence store on a per-tenant basis. The evidence store

is thereby located on a separate server. As previously
mentioned, the server may be an untrusted third-party
cloud storage provider. This is important to ensure so
that this approach scales well with a growing number
of tenants, evidence sources and evidence records.

Our architecture is built around using software
agents for evidence collection, evidence evaluation
and controlling the overall system. Agent technology
helps with extensibility by allowing us to easily intro-
duce new evidence sources and processors by build-
ing new agents. On top of that, it allows the audit sys-
tem to address rapid infrastructure changes, which are
very common in cloud infrastructures by easily de-
ploying and destroying agents when needed. We base
our system on the Java Agent DEvelopment Frame-
work (JADE, 2015). This effectively means that any-
where, where a Java runtime environment is available,
a collection agent can be deployed.

5.1.1 Evidence Collection

There are various evidence sources to be considered,
such as logs, cryptographical proofs, documentation
and many more. For each, there needs to be a suit-
able collection mechanism. For instance, a log parser
for logs, a tool for cryptographical proofs or a file re-
triever for documentation. This is done by a software
agent called Evidence Collection Agent that is specifi-
cally developed for the data collection from the corre-
sponding evidence source. The collection agent acts
as an Insynd Author meaning it uses the Sender API to
store evidence into the Evidence Store. The encryp-
tion happens in the Sender API. Typically, this agent
incorporates or interfaces with a tool to collect evi-
dential data, for instance forensic tools, such as file
carvers, log parsers or simple search tools. Another
type of collection agent have client APIs implemented
to interface with more complex tools, such as Cloud
Management Systems (CMS). Generally, these agents
receive or collect information as input and translate
that information into an evidence record, before stor-
ing it in the Evidence Store.

5.1.2 Evidence Storage

From the Evidence Collection Agent, evidence
records are sent to the Evidence Store. The Evidence
Store is implemented by the Insynd Server. Since In-
synd functions as a key-value store for storing ev-
idence records (encrypted messages identified by a
key) NoSQL or RDBMS-based backend for persist-
ing evidence records can be used. All data contained
in the Evidence Store is encrypted. Each record is ad-
dressed to a specific receiver (e.g., an Evidence Pro-
cessing Agent). The receiver’s public key is used in



Figure 1: Evidence Collection, Storage and Processing Workflow

the Sender API to encrypt the record on the Evidence
Store. This means that only the receiver is able to ac-
cess the evidence data from the Evidence Store. Iso-
lation between tenants in a single Evidence Store is
achieved by providing one container for each tenant
where his evidence records are stored. However, even
stronger isolation is also possible by providing a sep-
arate Evidence Store hosted on a separate VM. Addi-
tionally, Evidence records require a unique identifier
in the Evidence Store to enable selective retrieval of
records. In our implementation, we use a combination
of a policy identifier and a rule identifier (where a rule
is part of a policy) to enable the receiver to reduce the
amount of records to receive to a manageable size.

5.1.3 Evidence Processing

Evidence Processing components are located at the
receiving end of this workflow. The Receiver API is
used by the processing agent (Insynd Client) to re-
trieve evidence records from the Evidence Store. The
receiver can request multiple records from a period
of time at once. The Client is also in possession
of the corresponding private key to decrypt evidence
records, which means records can only be decrypted
at the Client.

5.2 Identity Management and Key
Distribution

Since asymmetric encryption is such an important
part of our system, we describe the encryption key
distribution sequence next. In this software agent-
based system, the automated setup of key material
and registration with Insynd is particularly important.
Figure 2 depicts the initialization sequence of collec-
tion and processing agents with a focus on key distri-
bution.

In Figure 2 we introduce an additional component
beyond those already described in the general archi-
tecture: the Controller. The Controller serves as an
entry point that controls the agent setup and distribu-
tion process in the audit system. It is an important part
of the lifecycle management of the system’s agents
(e.g., creating and destroying of agents or migration
between platforms).

In Figure 2 we describe the initialization sequence
for a simple scenario, where a particular tenant wishes
to audit compliance with a policy and one rule in-
cluded in that policy in particular. The following steps
have to be performed to setup the evidence collection
and storage process for that particular rule:

1. In the first step, a Processing Agent is created and
configured according to the input policy and rule
respectively for the tenant.

2. During the setup phase, the Processing Agent



Figure 2: Evidence Collection Setup Sequence

sets up a keypair at the Receiver API. The Re-
ceiver API is a RESTful service that holds pri-
vate key material and is therefore located at the
same servers hosting the Processing Agents (i.e.,
a trusted environment).

3. After the key material has been generated, the
Processing Agent registers itself as a recipient at
the Sender API. For this, it uses a unique identifier
generated from the policy ID and the rule ID (i.e.,
policyID.ruleID).

4. In the last step, the Controller sets up the re-
quired Collection Agents and connects them with
the corresponding Processing Agents by using the
unique recipient identifier.

Now, it is possible for the Collection Agents to
send evidence records to their corresponding Process-
ing Agents. The messages will be encrypted at the
Sender API service before storage, using the provided
recipient’s public key. The Processing Agent then
pulls the evidence records from the Evidence Store
using the Receiver API the records are decrypted us-
ing the receiver’s private key.

6 EVALUATION

In this Section we present an informal security eval-
uation of the system we have implemented for secure
evidence collection. We describe the evidence collec-
tion work flow using a fictitious scenario. By applying
the evidence collection and storage process to the set-
ting described in this scenario, we demonstrate how
the requirements stated in Section 4 are addressed.
Additionally, we provide a model that states threats
and adversaries to the process as well as the mitiga-
tion functions introduced by Insynd.

In this scenario, the CCOMP company is a cus-
tomer of the Infrastructure as a Service provider
CloudIA. In particular, we analyze the security prop-
erties of the evidence collection process by looking at

the data at rest as well as the data in transit protection
at any time during the flow from the evidence source
to its processor. We thereby assume that CloudIA is
using OpenStack (OpenStack, 2015) as a its Cloud
Management System (CMS), since this a widely pop-
ular open source CMS, which we use for developing
our audit agent system. However, any other CMS
could be used as well as long as it provides the needed
monitoring interfaces.

6.1 Scenario

CloudIA is specialized in providing its customers
with virtualized resources in the form of virtual ma-
chines, networks and storage. CCOMP has out-
sourced most of its IT services to CloudIA. Among
them is a service that processes data of CCOMP’s cus-
tomers. For that data, CCOMP has to guarantee data
retention. CCOMP has identified snapshots to be one
major problem with respect to the data retention pol-
icy, since the virtual machine’s storage is duplicated
in the process. This means for CCOMP that in order
to be compliant with the data retention policy, a snap-
shot of that virtual machine may have a maximum
lifetime of one day, which limits its usefulness to e.g.,
backing up before patching. Now, we assume a trust-
worthy but sloppy administrator at CCOMP who cre-
ates a snapshot before patching software on the virtual
machine, but then omits deleting the snapshot after
he is done. However, an automated daily audit of its
cloud resources was put in place by CCOMP to detect
such compliance violations.

6.2 Implementation

The collection agent required for the above scenario
communicates with our OpenStack CMS to gather
evidence of the CMS behavior regarding virtual ma-
chine snapshots. The processing agent contains the
logic for detecting snapshot violations (i.e., base vir-
tual machine and a maximum age of the snapshot de-



rived from the retention policy). The collection agent
is deployed at the CMS controller node and has access
to OpenStack’s RESTful API. The processing agent
is located on the same trusted host as the controller
agent (see Figure 1 for reference). The evidence store
is located on a separate, untrusted virtual machine.
Now, the following steps are performed:

1. The collection agent opens a connection to the
OpenStack RESTful API on the same host and re-
quests a history of snapshot events for CCOMP’s
virtual machine. Despite there being no commu-
nication over the network, HTTPS is used to se-
cure the communication between the collection
agent and the CMS. Since the policy only requires
information about snapshots to be collected, the
CMS agent limits evidence record generation to
exactly that information, nothing more.

2. The collection agent sets up the receiver of the ev-
idence according to the process depicted in Fig-
ure 2 and sends the collected records to the evi-
dence store (Insynd). The communication chan-
nel is encrypted using HTTPS and the payload
(evidence records) is encrypted with the receiving
agent’s public key.

3. The processing agent pulls records from the ev-
idence store in regular intervals (e.g., every 24
hours), analyses them and triggers a notification
of a detected violation. The communication be-
tween the processing agent and the evidence store
is secured using HTTPS.

4. In the last step, evidence records are deleted be-
cause their retention limit has been reached. This
is done by discarding the keys required for de-
cryption.

6.3 Threat Model

To demonstrate which security threats exist for the ev-
idence collection process and Insynd is used to miti-
gate them, we describe the threat model for this sys-
tem categorized according to the STRIDE(Microsoft
Developer Network, 2015) threat categorization:

• Spoofing Identity

• Tampering with Data

• Repudiation

• Information disclosure

• Denial of Service

• Elevation of Privilege

We have identified the following major threats to
the evidence collection and storage process:

• Unauthorized access to evidence (S,I): the protec-
tion of evidence from being accessed by unautho-
rized persons. Possible adversaries are a mali-
cious third-party evidence storage provider (cloud
service provider), another tenant (isolation fail-
ure) or an external attacker. Using Insynd for ev-
idence collection and storage addresses this threat
since recipients of messages are authenticated us-
ing appropriate mechanisms such as user creden-
tials for API authentication and public keys for en-
cryption.

• Data leakage (S,I): the protection from uninten-
tional data leakage. This could be caused by mis-
configuration (e.g., unencrypted evidence being
publicly available). Using Insynd for evidence
collection and storage addresses this threat by en-
crypting data by default.

• Eavesdropping, (T,I): the protection of evidence
during the collection phase, especially in transit.
Possibly adversaries are another tenant (isolation
failure) or external attackers in case evidence is
transported to an external storage provider or au-
ditor. Using Insynd for evidence collection and
storage addresses this threat by using transport
layer as well as message encryption.

• Denial of Service (D): the protection of the ev-
idence collection and storage process from be-
ing attacked directly with the goal of disabling or
shutting it down completely (e.g., to cover-up si-
multaneous attacks on another service). Possible
adversaries are external attackers. This is a very
generic threat that cannot be addressed by a single
tool or control but rather requires a set a measures
(on the network and application layer) to enhance
denial of service resilience.

• Evidence manipulation (T,R,I): the protection
of evidence from intentional manipulation (e.g.,
deletion of records, changing of contents, manip-
ulation of timestamps). Possible adversaries are
malicious insiders and external attackers. Using
Insynd for evidence collection and storage ad-
dresses this threat, since Insynd provides tamper-
ing and deletion detection.

Some of these threats can be mitigated by imple-
menting appropriate security controls (i.e., using In-
synd for evidence transport and storage). It provides
effective protection by employing security techniques
described in Section 3.

6.4 Requirements Evaluation

In this section, we evaluate the integration of Insynd
against the requirements described in Section 4. In



step 1 of the fictitious scenario, the data minimiza-
tion principle is being followed because the special-
ized agent only collects evidence on the existence of
snapshots.

This workflow is secure as soon as the collection
agent inserts data into the evidence store in step 2.
More precisely, evidence records are tamper-evident
and encrypted. This is true, even though the evi-
dence is actually stored on an untrusted virtual ma-
chine. The only way to compromise evidence now,
is to attack the availability of the server hosting the
Insynd server.

When the processing agent in step 3 retrieves
records for evaluation, it can be assured of the au-
thenticity of the data and that it has been provably col-
lected by a collection agent. Since evidence records
may be subject to maximum data retention regulation,
records that are not needed anymore are deleted.

As previously mentioned in Section 5 we use
JADE as an agent runtime. To secure our system
against non-authorized agents, we use the TrustedA-
gents add-on for the JADE platform. This ensures that
only validated agents are able to join our runtime en-
vironment. This effectively prevents agent injection
attacks, where malicious agents could be inserted at
either the collection or processing side to compromise
our system.

As can be seen, the evidence records are protected
all the way from the evidence source to the processing
agent using only encrypted communication channels
and having an additional layer of security (message
encryption) provided by Insynd. Additionally, while
the evidence is being stored, it remains encrypted.

6.5 Scalability

Obviously, since there is a vast amount of evidence
sources and therefore a potentially equal number of
collection agents, ensuring the scalability of the pro-
cess and the implementation is very important. This
has been considered very early in the design process
by choosing an software agent-based approach for the
system architecture. Software agents are inherently
distributable and allow for complex message flow
modeling in an infrastructure. Therefore, the core
components evidence collection, storage and process-
ing become distributable as well. In our future work,
we’ll focus on the scalability aspects. We will fol-
low a methodology where we focus on the following
technical key scalability indicators:

• Data transfer volume: amount of evidence data
being transferred over the network

• Message volume: amount of evidence message
transmissions over the network

• Storage volume: amount of storage required for
evidence

• Encryption overhead: performance impact intro-
duced by encryption and decryption

Based on the identified performance impact of
each of these indicators, in the second step, we model
different message flow optimization strategies to alle-
viate their impact and ensure scalability.

7 CONCLUSIONS

In this paper, we presented our system design and im-
plementation for secure evidence collection in cloud
computing. The evidence provides the general basis
for performing cloud accountability audits. Account-
ability audits take a large variety of evidence sources
and data processing requirements into account.

We showed what the requirements for a secure
evidence collection process are and demonstrated
how these issues are addressed by incorporating In-
synd into our system. We described how the core prin-
ciples of digital evidence are addressed by our system.
Additionally, we considered data protection princi-
ples for the evidence collection process, how they in-
fluence our approach and how they are addressed in
our system by integrating Insynd. For this, we pre-
sented the relevant architectural parts of our proto-
type.

In our future work, we will focus on the scalabil-
ity of our audit system in general and the scalability
of the components involved in evidence collection in
particular. For that reason, we will focus on the dis-
tribution of the audit system and evidence collection
not only in the same domain (i.e., in the same infras-
tructure), but also taking into account outsourcing and
multi-provider collection scenarios.
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I. INTRODUCTION

Cloud Computing is an increasingly popular paradigm
for service delivery in today’s Internet [1] and may lead to
significant advantages such as reduced upfront investments [2],
rapid provisioning and automatic scaling of resources [3].
However, the adoption of cloud computing is accompanied
with several security and privacy problems. For instance, data
breaches and data loss are amongst the major threats in
cloud computing [4]. Therefore, two of the key issues are
customer trust and compliance [2], [5]. Because of the loss of
control, cloud customers have to trust cloud providers to handle
their data appropriately and that sufficient data protection
mechanisms are in place. Cloud Providers use terms of service
(TOS), which are generally non-negotiable [5], and privacy
agreements to describe how data will be handled in their
services. However, beyond such documents, there is usually a
lack of transparency regarding details about security processes
and controls. Trust is also an issue when service providers use
additional services provided by third-parties, because trust will
not necessarily be transitive in such complex scenarios [2].
This lack of trust can be addressed by strengthening trans-
parency and accountability [6], [7] on the cloud provider side.

The Audit Agent System proposed in this paper, strives to
enable automated cloud accountability audits by addressing
transparency and privacy protection issues associated with
cloud computing. Accountability is regarded as a means to
strengthen customer trust in cloud services. By auditing com-
pliance with data policies, transparency and privacy of the
cloud shall be improved. This includes the secure and privacy-
aware collection of evidence supporting claims made in audit
reports. In this paper, we describe an architecture for the Audit
Agent System.

This paper is structured as follows: in Section II a brief
overview about current research projects and industrial ap-
proaches is given. In Section III, we describe the proposed
system architecture for the Audit Agent System. We close this
paper with a conclusion in Section IV.

II. RELATED WORK

There are several academic approaches to various aspects
of cloud auditing. For instance, security auditing is a very
important part of accountability auditing of a cloud provider,
since it demonstrates that required security controls are put in
place and are functioning correctly. There are some projects
working on the architectural and interface level regarding the
automation of security audits such as the Security Audit as
a Service (SAaaS) project [8]. The Distributed Management
Task Force (DMTF) is also working on cloud auditing with the
Cloud Auditing Data Federation (CADF) working group. They
are focusing mostly on developing standardized interfaces and
data formats to enable cloud security auditing [9]. A similar
project is the Cloud Security Alliance’s (CSA) Cloud Trust
Protocol (CTP), which defines an interface for enabling cloud
users to “generate confidence that everything that is claimed
to be happening in the cloud is indeed happening as described,
. . . , and nothing else” [10], which indicates an additional
focus on providing additional transparency of cloud services.
The latter two projects, however, do neither detail an actual
architecture and how the interfaces shall be implemented nor
do they describe explicitly focus on accountability.

A lot of current research is not focused on the overall au-
tomation of cloud accountability audits, but rather on aspects,
that would be part of such an audit (i.e., may be implemented
as part of the system described in this paper). Such approaches
are for example concerned with the provenance of data in the
cloud [11], proof of retrievability and provable data posses-
sion [12], virtual machine introspection [13] and replay as an
advanced monitoring and forensic analysis technique.

When looking at cloud audits and the associated process of
collecting evidence to assess policy compliance, it is important
to look at industry practices regarding monitoring. Many such
tools, such as the well-established Nagios [14] support agent-
based data collection. New Relic [15], a Software as a Service
(SaaS) software analytics solution enables the collection of
data on various different scopes and devices. However, most
of these tools are mainly concerned with performance mon-
itoring and tracing, whereas our approach mainly considers
the automation of security and accountability auditing. Secu-
rity Information and Event Management (SIEM) systems are
the main source of monitoring information in today’s more
complex IT infrastructures. They provide additional means
of detecting security incidents by collecting information from
various sources in the infrastructure. However, when it comes
to auditing policies on the level data objects and regarding
accountability requirements specific to individual customers,



there is still lacking functionality.

III. ARCHITECTURE

In this Section, we describe the high-level architecture of
the Audit Agent System and its components. We also describe
the input to the Audit Agent System in the form of account-
ability policies and illustrate the data flow of evidence from
its source to the processing components across the different
architectural layers.

A. Audit Agent System Architecture Introduction

In Figure 1 the overall architecture of the Audit Agent
System is depicted. In the following, we describe the tool’s
main actors, components and the general flow of information
from the evidence-producing source to the audit report.

AAS Actors:
There is one actor using the Audit Agent System: the auditor.
According to NIST, a cloud auditor is a “A party that can
conduct independent assessment of cloud services, information
system operations, performance and security of the cloud
implementation.” [16] Based on this, a cloud customer, cloud
provider or any third-party can act as a cloud auditor. From
this, requirements regarding depth and presentation of audit
results can be derived. Also, since an auditor can be internal or
external to an organization (i.e., a cloud service provider), data
protection is an issue to consider, when potential confidential
information is processed during an audit. These issues shall be
addressed by the presentation and anonymization components
described later in this section.

AAS Components:
The architecture of the Audit Agent System is based on using
software agents to achieve flexibility, address requirements re-
garding the dynamics of cloud computing (e.g., rapid elasticity)
and achieve the necessary extensibility required by the cloud,
where evidence data may need to be gathered from highly
diverse evidence sources. The proposed architecture comprises
of four major functional components: Audit Policy Module
(APM), Audit Agent Controller (AAC), Evidence Processor and
Presenter (EPP) and Evidence Store (ES). For a high-level
overview of the system, refer to Figure 1.

Audit Policy Module: There are two types of input to the
Audit Agent System:

1) Accountability policies, which define obligations that
have to be fulfilled by the cloud provider, such as
data access restrictions and usage policies, data reten-
tion requirements and general security requirements
(e.g., use of encryption). The A4Cloud [17] research
project develops a machine-readable policy language
based on the Primelife Policy Language [18] called
Accountability PPL [19], which will serve as input
to the Audit Agent System.

2) Since the A-PPL does not address technical aspects,
such as mapping policy requirements to specific tools
to use for evidence collection and details of the
processing of such evidence, additional manual input
is required by the cloud auditor.

The Audit Policy Module (APM) uses both inputs to
generate audit tasks. Audit tasks are managed by the Audit
Agent Controller.

Audit Agent Controller: The Audit Agent Controller
(AAC), can be regarded as the core component of the Audit
Agent System. It is responsible for managing the life-cycle of
evidence collection agents, controlling audit execution, storage
of evidence records and managing data flow between the
components. For instance, the Audit Agent Controller deploys,
according to what’s specified in the audit policy and audit
task, evidence collection agents across the various architectural
layers of a cloud infrastructure (i.e., in a virtual machine, on
a virtualization host, in an application server). From there,
data, such as logs, object storage information, block storage
information and analysis application output is collected.

Evidence Processor and Presenter: The Evidence Pro-
cessor and Presenter (EPP) component is responsible for
evaluating policies based on the evidence gathered by the
audit agents. This component is, similar to the Audit Agent
Controller, logically formed by several agents; in this case
Processing Agents are responsible for the evaluation of audit
policies and Presentation Agents responsible for outputting
results to the auditor. The audit results are produced by the
audit process and prepared by Presentation Agents according to
the auditor’s preferred display settings (e.g., a report document
or a web-based dashboard).

Evidence Store: The Evidence Store is the central reposi-
tory for storing evidence records. Some of the more important
characteristics of evidence records are, that they are associated
with an accountability policy for which they were collected and
contain supporting information such as important log entries
collected by an agent, which points out a policy violation.
For each cloud tenant, there is a separate Evidence Store.
This addresses some of the confidentiality and privacy issues
associated with a share data pool for potentially sensitive
information. Only authorized persons in the role of an auditor
may access the Evidence Store.

Multi-layer Evidence Collection:
Collecting evidence in a cloud infrastructure is a very complex
process. The main problem lies in integrating a multitude of
heterogeneous and distributed sources. As a basis for evidence
source classification, we use a simple cloud architecture stack
as depicted in Figure 1. There, we consider low-level evidence
sources, such as data extracted from the network layer using
NetFlow or SNMP, information collected on a virtualization
host, information collected inside a customer’s virtual machine
and also information provided by the software layer (as in SaaS
logging). Last, but not least, we consider the cloud manage-
ment system (CMS), such as OpenStack or OpenNebula to be
among the most important sources of evidence, since lots of
information provided by CMS logging is directly relevant for
auditing against accountability policies (e.g., virtual resource
life-cycle and data transfer events for data provenance, and
authentication and authorization logging for data security).

B. Policy Input and Audit Task Definition

In this Section, we describe the input to the Audit Agent
System, which is derived from A-PPL policies. A-PPL policies
capture accountability-related obligations in a policy language.
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A-PPL is not part of the Audit Agent System but rather serves
as a means for describing what to audit and to decide which
accountability requirements need to be fulfilled. A-PPL is
developed as part of the A4Cloud research project. It is an
extended version of the PrimeLife Policy Language (PPL),
which itself is based on the well-established XACML access
control management policy language. Therefore, XML as a
defining technology, is a given.

Figure 2 depicts the policy-related input as well as the
process of deriving audit policies from A-PPL policies. Based
on the A-PPL policy input, Audit Tasks are extracted. An
Audit Task is a combination of an evidence collection agent
(describes where to collect information using which tool), its
configuration (which information to collect from a possibly
very large pool) and thresholds (limits and conditions that
constitute a policy violation). Audit tasks are prepared some-
what similar to templates. For instance, a cloud management
system agent is a program that is able to interface (e.g., via
the logging and monitoring API) with the CMS and extract
certain information. For this, it needs a basic configuration

(e.g., how to connect to the CMS). The program and the basic
configuration form a template. In the actual audit, the template
is populated with all the required basic information (such as
authentication credentials and IP address of the CMS), the
actual information to collect (e.g., the agent is instructed to
build a list of all life-cycle of a virtual machine in a specific
time-frame) and possibly a failure condition (e.g., snapshot
events are a policy violation).

An Audit Policy, similar to an A-PPL policy containing
multiple rules and obligations, contains at least one Audit Task.
Several Audit Tasks may need to be executed to be able to
evaluate a policy. Performing the reasoning in case of multiple
evidence items is part of the Evidence Processor and Presenter.

C. Audit Data Flows

As described in Section III-A, the actual flow of informa-
tion in the Audit Agent System can be quite complex. In this
Section, we describe three different layers that evidence data
has to pass through from the collection up to the presentation
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compareevidencecollectedby multipleagentsagainstthe
policy.Sinceasingleagentcanonlyevaluatepartsofthe
morecomplexauditpolicy,theEvaluatorisrequiredtoput
theindividualresultsintocontextandgenerateanauditresult
forthewholeauditpolicy.Evaluatorsareimplementedasan
additionalagenttype(similartocollectors,andaggregators).
Theevaluationfunctiongreatlydependsontheinputpolicy
andcanbeassimpleaskeywordsearchintextfilesbutalso
morecomplexwhentimelinesfromvariouslogsourcesneed
tobeconstructedandanalyzed.TheAggregatorisusedto
combinetheresultsofmultipleauditpoliciesintoasingle
baseforthePresenter.TherearemultiplePresenters,onefor
eachmethodofpresentationandalsodifferinginlevelof
detaildependingonthetechnicalknowledgeoftheauditor.
Itisverycommontohaveanauditreportasadocument,
whichincludestheauditresult(compliancestatement)andif
necessarysupportingevidencethathasbeencollected.Such
documentscanbegeneratedautomaticallytosomedegree.
Thisformofpresentationismostuseful,whenauditintervals
arequitelong(forinstanceinamonthlyaudit).Thereisalso
thepresentationoftheresultsinaweb-baseddashboard,as
itiscommonlydoneinmonitoringsolutions.Thisapproach
is moreuseful,ifintervalsareshortorauditingisdone
continuously(i.e.,assoonasachangeeventtriggersare-
audit),becauseresultscanbedisplayedimmediately.

IV. CONCLUSION

Inthispaper,wepresentedasoftwarearchitecturefor
performingaccountabilityauditsoncloudecosystems. We



based our approach on the use of software agents, to address
problems arising from the wide range of data sources pro-
ducing evidence and the dynamics of cloud infrastructures.
The Audit Agent System is extensible, by allowing to easily
develop new agents either on the collection, processing or
presentation layer.

We also discussed the input and output interfaces of the
Audit Agent System to demonstrate, how such a system can
potentially be used by a cloud auditor to automate audit tasks
and enable continuous auditing.

By providing cloud customers with such auditing function-
ality, transparency of cloud services as well as data processing
in the cloud can be increased, which may have positive influ-
ence on the trust in such services. Additionally, the proposed
system enables cloud providers to demonstrate, that they are
acting according to the agreed upon policies (between them
and their customers), which is a major part of demonstrating
accountability.
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Abstract—In this paper we present an implemented system to
model and visually represent the functioning of accountability
mechanisms for cloud computing (such as policy enforcement,
monitoring, intrusion detection, logging, redress and remediation
mechanisms) over provider boundaries along the supply chain of
service providers. Service providers can use these mechanisms,
among others, in a variety of combinations to address data
protection problems in the cloud, such as compliance failures,
losses of governance, lock-in hazards, isolation failures, and in-
complete data deletion. The focus here is on technical mechanisms
for the purposes of simulation (the currently implemented tool
demonstrates policy enforcement, monitoring and logging); in
general, an accountability approach requires a combination of
technical measures and legal and regulatory support, of course.
We survey existing work on accountability in the cloud and dis-
cuss ongoing research in the context of the Cloud Accountability
project. We discuss modelling considerations that apply in this
context namely, how accountability may be modelled statically
and dynamically. Details of the current implementation of the
Accountability Simulation Engine (ASE), and the first version of
a graphical animation of data flows in the cloud, are described.

Keywords–accountability; data protection; modelling language;
simulation; visualisation; sticky policies; policy enforcement; log-
ging; redress

I. INTRODUCTION

In this paper we present the background and modelling
considerations associated with Accountability Simulation En-
gine (ASE), a simulation framework to model and visualize
accountability mechanisms for cloud computing. We will dis-
cuss the motivation and objectives behind ASE, as well as
the features that have been implemented so far. As this is
still ongoing work, the primary purpose of the paper is to
inform the community and to impart some structure on the
development activities; a detailed discussion of future work
has also been included.

The starting point for this work is the realization that both
cloud computing service providers, as well as customers of
cloud computing services, need to have a good understanding
of the controls that may be used for managing data flows in the
cloud while complying with prevailing data protection laws,
rules and regulations, as well as industry standards, best prac-
tices, and corporate data handling guidelines in an efficient yet
demonstrable manner. The massive scale of cloud computing
infrastructures, as well as the enormous complexity of legal
and regulatory compliance across multiple jurisdictions, makes
this a significant and difficult challenge that service providers,
customers, regulators and auditors need to meet on a continual
basis.

Accountability for cloud computing service provision is
emerging as a holistic approach to this set of issues, and
is being actively developed in the context of the Cloud
Accountability Project (A4Cloud). Drawing on a multitude
of sources, including legal and regulatory frameworks for
accountability, as well as technical solutions for achieving
data protection compliance, this project aims to provide cloud
service providers, auditors, regulators and others with a con-
crete set of tools for achieving accountability. The simulation
framework described in this paper is a research tool whose
purpose is to demonstrate how such tools might work, and
what problems they are intended to address.

As seen in Section II, accountability encompasses a number
of different controls that may be used by a cloud service
provider to ensure appropriate governance of their customers
data. By developing a simulation of how these controls might
or should function, we can reason about their necessity and
suitability to particular data handling scenarios. We are mainly
interested in technical, automated means of achieving account-
ability; higher-level mechanisms (e.g. legal rulings or prece-
dents, new regulations, ethical guidelines) are only implicitly
modelled as rules incorporated in technical enforcement mech-
anisms (such as privacy or access control policies).

In order to better understand what form of simulation
would be appropriate, we surveyed a number of existing
simulation tools and frameworks (Section III). We identified
two classes of tools discrete-event modelling formalisms
with mostly textual output, as well as visual simulation tools,
which permit rapid prototyping, and the creation of graphical
animations.

An important part of this work has been identifying what
components a suitable simulation model might include, as
well as what use cases and scenarios might best illustrate the
functionality of accountability mechanisms. These topics are
discussed in Section IV. It is interesting to note that there are
both static and dynamic aspects of accountability, and different
types of simulation are suited to these aspects.

The next section details our model namely, what actors,
behaviours and relationships we have chosen to include. The
design choices are not definitive, and are likely to vary
across use cases. However, this section establishes which
kinds of issue could be demonstrated during a simulation,
and which responses or mechanisms are appropriate when an
accountability-based approach is taken. Section V describes
our current implementation of an accountability simulation
engine (ASE), which comprises (i) a domain-specific mod-



elling language for accountability scenarios, (ii) an actual
simulator for accountability related events, (iii) a web-based
user interface for inputting scenario descriptions and observing
simulation output, and (iv) a web service which links (ii) and
(iii) together. An example of ASEs functionality is given in
Section VI, with a simulation of the dynamics of a simple
cloud service provision chain. Finally, we conclude with a
discussion of future work; this includes prototyping a visual
animation of data flows using existing simulation tools and
extending the current implementation of ASE with graphical
output.

II. THE NEED FOR ACCOUNTABILITY IN THE CLOUD

As identified by Pearson [1], accountability ”for complying
with measures that give effect to practices articulated in given
guidelines” has been present in many legal and regulatory
frameworks for privacy protection; certainly the notion orig-
inates from the data protection context, and carries with it
the idea of responsible data stewardship. The Galway project
attempted to define accountability in this context as follows:

Accountability is the obligation to act as a responsible
steward of the personal information of others, to take responsi-
bility for the protection and appropriate use of that information
beyond legal requirements, and to be accountable for any
misuse of that information.

Pearson [1] observes that the key elements of notion of
accountability implied by this definition are transparency,
responsibility, assurance and remediation. In Pearson and
Wainwright [2] it is argued that, to support these elements, it
is possible to co-design legal and technical controls for cloud
service providers belonging to three categories (i) preventive
controls (e.g. risk analysis decision support tools, policy en-
forcement using machine-readable policies, privacy enhanced
access control and obligations), (ii) detective controls (e.g.
intrusion detection systems, policy-aware transaction logs, and
reasoning tools, notification mechanisms), and (iii) corrective
controls (e.g. liability attribution tools, incident management
tools). Other categories of controls exist for different kinds of
participants in a cloud service provision ecosystem, including
end users and regulators.

Our interest is in creating a simulation framework, which
enables us to address concerns such as the following:

• What problems can arise in a cloud service provision
chain when controls such as those described above are
absent from service providers infrastructures;

• What benefits the adoption of such controls can have
on service providers operational responses to prob-
lems, such as data breaches;

• How accountability can be maintained along a supply
chain of cloud service providers;

• What potential impact the introduction of a new con-
trol can have on a service providers operations.

While the goal of designing the simulation is to demon-
strate the added benefits of adopting an accountability ap-
proach, in order to do so it is necessary first to identify the
problems and events of interest that this approach provides

responses for; both the events and the responses to these events
can then be explicitly accounted for in the simulation model.
Additionally, audit plans can be derived from this model more
precisely and more fully.

A. Data Protection Problems

Based on the risk categorization presented in [3], we
identify here five typical classes of data protection problems
that cloud service providers need to mitigate:

• Compliance failures

• Losses of governance (e.g. data breaches)

• Lock-in hazards

• Isolation failures

• Incomplete data deletion

Compliance failures. As mentioned in the introduction,
cloud service providers need to ensure compliance with pre-
vailing laws and regulations (see [4] and [5]) in the jurisdic-
tions where customers data are stored. This is a non-trivial
matter, given that cloud data centres are located in multiple,
different locations across the globe, and data often needs to
be relocated from one data centre to another for efficiency,
bandwidth or other considerations. To ensure compliance on an
ongoing basis, applicable local rules need to be checked before,
during and after data relocation and evidence has to be given by
audits. What makes this particularly complex is that rules are
not consistent everywhere, and often transformations need to
be applied to the data itself (e.g. in the case of anonymisation
of personal data) before a transfer can occur. Any failure to
comply with laws and regulations carries significant conse-
quences for the reputation and profits of a service provider;
therefore it is of paramount importance to ensure immediate
corrective action if any case of non-compliance is detected
(e.g. by audits).

Compliance hazards are not confined to legal and regula-
tory requirements, of course; in order to maintain industrial
certifications and badges, service providers need to ensure
compliance with appropriate industry standards, whether spe-
cific to cloud computing practices, data handling practices, or
quality control, among other things. These are typical tasks of
a cloud audit system. Failure to maintain such compliance can
result in loss of accreditation and, again, loss of reputation for
a cloud service provider.

Losses of governance. As data flows from service provider
to service provider and beyond, problems can occur at the
boundaries: the controls employed by a service provider can
only directly ensure appropriate governance of data within the
boundaries of that providers infrastructure. The primary cloud
service provider within a service provision chain namely, the
main cloud service provider in a chain, interacting directly with
an enterprise customer loses control over data as it is handed
over to that customer. If an entity with malicious intent gains
control at the cloud service provider customer interface, this
loss of governance on the part of the cloud service provider
can have serious consequences for the confidentiality, integrity
and availability of the customers data. Data provenance mech-
anisms, which are not restricted to a single cloud service
provider might help to mitigate these problems [6].



Lock-in Hazards. Cloud service providers can create vendor
lock-in issues for customers by forcing them to use particular
formats for data. If those formats are not widely accepted,
it may be very difficult to extract and convert the data for
use further down the cloud service provision chain. A hazard
can occur during an attempted conversion of data to another
format particularly if the format in which the data is stored
is encrypted, as such encryption is necessarily lost during the
process, thus revealing the data to a potential attacker.

Isolation failures. In a multi-tenanted cloud environment,
multiple customers data are stored on the same infrastructure
by a cloud service provider; a standard contractual requirement
in such a scenario is that isolation of different customers data
and operations is maintained; in the absence of such isolation,
attacks and hazards affecting one customer can affect another,
due to interactions occurring on the common underlying
infrastructure. Isolation failures can cause rapid propagation
of viruses, worms and similar infections, affecting multiple
customers data and damaging the cloud service providers
reputation.

Incomplete data deletions. Data retention laws typically
require cloud service providers to maintain customer data
for a certain period of time after service has terminated.
After this period has lapsed, the data has to be deleted from
the cloud service providers infrastructure and, depending on
the contractual terms applicable for the particular customer,
disposed of using particular technical means. Failure to delete
data in accordance with the relevant contractual terms can have
serious consequences, and could even cause integrity issues for
new customers using the same infrastructure if only partially
overwritten.

Data protection problems such as the above are illustrative
of issues that we need to instantiate in a simulation framework
for accountability in the cloud.

B. Addressing Data Protection Problems: Controls for Ac-
countability

While an accountability-based approach to data governance
combines a number of mechanisms, ranging from high-level,
legal obligations, all the way down to technical controls, our
interest is in demonstrating just the latter namely, how techni-
cal measures, particularly automated tools, can be introduced
into a cloud service providers infrastructure to address issues
such as those presented in the previous section. As we have
seen, we can classify controls into three categories preventive,
detective, corrective depending on whether they are intended
as measures to be deployed prior to or after a problem occurs.

Next we describe the types of controls that we are mod-
elling in the ASE framework.

Among preventive controls, we focus on policy enforce-
ment mechanisms, in particular tools that allow organisations
to ensure that pre-defined, machine-readable policies are en-
forced automatically within their IT infrastructures. For the
purposes of simulation, we will define accountability policies
and the types of rules that may be encountered in such policies.

Detective controls usually take the form of background
processes or aspects in a system; such controls can be active or
passive, or some combination of the two. Active controls such

as monitoring or intrusion detection react to particular events
and patterns of behaviour, such as threats or data breaches.
Passive controls include, for example, logging tools, whose
function is to record all events that take place (with the source
of the event, type of event, and other details) so that a service
provider can (i) trace particular activities and identify sources
of problems (this relates to attribution capabilities needed for
accountability), (ii) prove compliance (with rules, regulations,
standards, best practices and more) to external parties such as
auditors. An example for such passive controls is Amazon’s
AWS CloudTrail [7], which provides cloud customers with an
API call history and logs.

For corrective controls there is a lack of previous work;
mechanisms that are relevant are tools for providing redress
to customers in cases where data protection problems have
not been mitigated by preventive or detective controls. Inci-
dent management tools are relevant here, but exactly what
remedies or responses are appropriate for different types of
incidents remains an ongoing research challenge. For the pur-
poses of simulation using ASE, we will assume that financial
remedies (including payment of fines and other penalties
for service providers) are suitable responses. The introduction
of additional preventive measures, such as storage encryption
depending on the type and sensitivity of stored data may also
be a response. However, for the purpose of this paper, this is
out of scope.

III. REVIEW OF SELECTED CURRENT SIMULATION
TOOLS AND PLATFORMS

Although we have developed the ASE simulation frame-
work from the ground up, we have surveyed and experimented
with a number of existing simulation tools; only discrete-
event simulation tools have been considered, since our interest
is in understanding behaviours and mechanisms that can be
effectively modelled using this paradigm.

The tools of interest include software libraries providing
dedicated simulation functionality, such as built-in data struc-
tures for event queues, random number generation using differ-
ent probability distributions, timing information and more, as
well as visual tools for designing simulations using predefined
components.

Discrete-event simulation is detailed in the authoritative
text by Law [8], which also includes a library for use in C
programs, named simlib. This enables one to make use of
commonly used data structures for simulation, as mentioned
above. There are other libraries with similar capabilities, and
indeed simlib has been rewritten and adapted for use in other
programming languages (e.g. Brian J. Huffman has produced a
Java version of the library [9]). We are also aware of the Java-
based Greenfoot framework [10], which allows simulations
to be prototyped easily; so far we have not found a way to
turn Greenfoot code into web-based applications, which was
desirable for our purposes.

An interesting, more recent Java-based simulation library
that we experimented with is the agent-based simulation frame-
work MASON [11], which also includes graphical animation
capabilities. The distinctive feature of MASON is that it
allows one to produce animated graphical user interfaces to
demonstrate interactions in multi-agent systems. Since the



demonstrations we have been building are currently relatively
small-scale, as opposed to its usual applications, we abandoned
MASON early on. Nevertheless, its modular design and graph-
ical capabilities may well be used in future versions of the
accountability simulator.

Another approach that we considered included the
use of industrial-strength visual simulation tools, such as
MATLAB

TM
-Simulink

TM
[12] and Simio

TM
[13]. Using the

trial version of Simio
TM

, we were able to produce a simple,
3D graphical animation of data flows between cloud service
providers, as shown in Figure 1. We were not able to simulate
accountability mechanisms using the trial version, as this
would require building/coding a significant number of Simio

TM

processes, a feature that is limited. This will be included in
our future work. However, we were able to gain visual insight
into the nature and purpose of the simulation, which will be
discussed in the next section.

	  Figure 1. Screenshot of simulated data flows between cloud service providers

IV. MODELLING CONSIDERATIONS

As we have seen in previous sections, in order to build a
simulation of accountability in the cloud, we need to identify
a way to show (i) data protection problems that arise in cloud
ecosystems, and (ii) how accountability controls or mecha-
nisms work to mitigate and respond to these problems. The
objective of this work is to build a graphical simulation which
can provide insight for a variety of stakeholders, including
cloud service providers, regulators, auditors and even the
general public interested in how accountability can be achieved
in a complex chain of cloud service provision. But what should
be the underlying conceptual model of the simulation? There
are different aspects to consider here.

A. Static Modelling: Actors and Relationships

One aspect to consider is the set of relationships (and
the properties of these relationships) between different cloud
service providers in a service provision chain. From the
data protection point of view, there are different roles for
cloud service providers when it comes to handling personal
data terms used in the European Data Protection Directive
95/46/EC [5] for these roles are data controller and data
processor. Depending on the service offering, providers may

TABLE I. THE POSSIBLE ROLES THAT THE DIFFERENT KINDS OF
ACTORS CAN TAKE ON IN A GIVEN SCENARIO AS PER OUR MODEL.

Actor Type Possible Roles
Individual Data subject
Cloud service provider Data controller

Data processor
Third party Data controller

Data processor
Accountability Agent

Auditor (Auditor)
Accountability Agent

Regulator (Regulator)
Accountability Agent

take one or both of these roles, with complex and ambiguous
cases arising frequently. Modelling what this implies in terms
of concrete obligations for cloud service providers is what we
will refer to as static modelling of accountability.

The static modelling of a cloud service provision chain
involves identified actors, roles and responsibilities and the
relationships between them.

1) Actors, Roles and Responsibilities: In our model, in
a cloud ecosystem there are five different kinds of actors
individuals, cloud service providers, third parties, auditors
and regulators. We classify the different types of roles that
these actors may take on in a particular scenario into six kinds
data subject, data controller, data processor, accountability
agent, auditor and regulator. A particular scenario is defined
as a specified set of roles for a specified set of actors.

The possible roles that the different kinds of actors can
take on in a given scenario as per our model are defined in
Table I.

The roles that we have included take into account the
static modelling discussion in Section IV-A. Accountability
agent represents a role that is intended to encompass internal
oversight activities within an organization (e.g., self-auditing),
as opposed to the roles of auditor (an external entity perform-
ing an audit on behalf of enterprise) and regulator (typically
a government entity responsible for setting, implementing
and monitoring standards), which by definition correspond to
oversight external to an organization; note that we model two
classes of organizations here cloud service providers and third
parties, the latter being providers of non-cloud services. The
distinction becomes clearer when we consider relationships
that can exist between actors.

2) Relationships: Cloud service providers are characterized
in the model by the kind of relationship they have with other
providers, in particular, what kind of service they offer to
others. A cloud service provider provides one of three kinds
of service: IaaS (infrastructure-as-a-service), PaaS (platform-
as-a-service), SaaS (software-as-a-service). These are the only
kinds of relationships considered here between cloud service
providers. Third parties are entities that enter into complex
contractual relationships with cloud service providers, relation-
ships that are not of the same kind. Further investigation is
needed here, but for the purposes of modelling and simulation
we do not need to restrict the kinds of relationship that third
parties may have (with each other and with cloud service
providers).



B. Modelling System Dynamics: Data Transfers and Account-
ability Mechanisms

While static modelling would enable us to simulate what
effect particular assumptions might have on the obligations of
a cloud service provider, modelling system dynamics enables
us to simulate data flows between cloud service providers,
data protection problems and their consequences when ac-
countability controls are in place (and similarly when such
controls have not been introduced). For a dynamic simulation,
the main entities that need to be modelled are personal data;
at each step of the simulation, personal data flow through
a chain/sequence of service providers, which are predefined,
and together constitute a model of a real-world cloud service
provision chain. The purpose of the simulation becomes to
show what happens to the data as they flow through the chain,
and what effect these flows have on properties of the overall
system.

So, what is our model? The entities modelled have been
discussed in the previous subsection, along with their relation-
ships; next, we discuss their expected behaviours, and the types
of issues or problems that can be simulated using our model,
and the responses that different entities can have and should
have to such problems if accountability is to be achieved.

1) Behaviours corresponding to different types of role:
First, consider the behaviours of individual data subjects. In
our model, a data subject is an entity that can engage in one
of the following actions at any time during a simulation:

• Create data (a datum is modelled simply as a pair of
strings an identifier and a value)

• Modify/edit data

• Delete data

• Change preferences regarding usage of data (initially,
a data subjects policy is simply a statement of for what
uses data can be processed, and whether the data can
be shared with third parties)

• Request summary of data and preferences held

For service providers, which are typically data controllers
or data processors, the following actions are possible:

• Store data

• Encrypt and store data

• Decrypt data

• Check preferences and share data

• Create new policy over data

• Generate log of activity over data

• Enable/disable logging mechanisms

• Enable/disable monitoring mechanisms

• Enable/disable policy enforcement mechanisms

Regulators and auditors are modelled as having the follow-
ing possible actions:

• Check compliance of data controller/processor with a
specified rule or set of rules

• Check compliance of organizational policies with min-
imum requirements

• Create new rules specifying allowed uses of cus-
tomer data, and penalties/remedies in case of non-
compliance or other problem

• Create new rules specifying mechanisms that must be
used to protect data subjects, and penalties/remedies
in case of non-compliance or other problem

• Enforce penalty or other remedy in case of non-
compliance or other problem

• Audit a data controller/processors system logs (esp.
check origin, route, destination of data; intended use;
protection mechanisms used, whether customers pref-
erences were enforced)

Accountability agents are initially to be modelled as a variant
of auditor, with the only difference that they cannot perform
enforcement, only (implicitly) inform the organization they are
associated with of any events of interest (e.g. failures, non-
compliance). Further work may reveal other actions/events of
interest.

2) Simulated Issues: In the simulation, we should be able
to represent and visualize some of the issues discussed previ-
ously in Section II.A. Compliance failures, data breaches and
direct attacks on a service providers infrastructure are specific
events that we have so far considered in this work.

3) Simulated Responses: In Table II we can see how the
different accountability mechanisms considered in our model
can help to address the simulated issues. We note that this
list is not exhaustive, as it only includes the mechanisms
we have considered so far; other mechanisms could include,
for example, automated tools for punishment or remediation;
also, we have so far avoided detailing what types of rules
are allowed in policies. In the Cloud Accountability Project,
which is the context in which the simulation has been built,
there is ongoing work on developing an accountability policy
language; for the purposes of our simulation, we have so far
assumed that rules restrict to whom and under what conditions
data can flow; the distinction between data controller and data
processor may well imply additional restrictions, and similarly
there are restrictions on when data can be transferred to third
parties (this is modelled as a preference that data subjects can
set).

As we can see from the table, when none of the ac-
countability mechanisms are enabled in a simulation, none of
the problems considered trigger any response (thus allowing
hazards and failures to occur). Of interest is the fact that
hazards can then propagate (cascade) from one provider to
another, and/or to any third parties. All other cases cause a
response, thus demonstrating how accountability mechanisms
work in practice.

V. IMPLEMENTATION

We have implemented three software components as part of
the accountability simulator: a simulation engine, a web-based
animation of data flows between cloud service providers, and
a web service that draws data from the simulation engine.
Currently we are continuing implementation work until all



TABLE II. PROBLEM AND THE SPECIFIC RESPONSES TRIGGERED BY
ACCOUNTABILITY MECHANISMS IN THE SIMULATION MODEL

Problem Mechanism

None Policy enforce-
ment Monitoring Logging

Compliance
failure X All problems

correspond to
specific policy
violations;
Policy violation
will be
detected;
Parties notified

Patterns of non-
compliance can
be detected

All failures will
be logged and
shown to audi-
tors

Data breach X

Monitoring
interaction
of service
providers
with untrusted
third parties
can provide
advance
warnings

All breaches
will be logged
and shown to
auditors

Attack X

Intrusion
detection
systems can be
used to thwart
attacks

All attacks will
be logged and
shown to audi-
tors

three components have been fully integrated. In this section
we present the functional structure of the simulator and then
detail each of the implemented components.

The input file is a description of a scenario to be simulated,
and is written in the accountability model description language,
described in the next section. A scenario consists of a specified
set of actors (so far we have not made the distinction between
actors and roles in the language, but this is forthcoming in
future versions), a specified set of relationships, configuration
of options/parameters and the triggering of actions of particular
actors.

When an input file is supplied to the simulator (via a
web-based interface or through the command line), its con-
tents are parsed using the language interpreter, which invokes
appropriate methods in the accountability simulation engine.
The accountability simulation engine contains the current state
variables and the log of events executed so far; it constitutes
the backend of the application and is written in plain Java.

In order to feed the state of the simulation, timings and
outcomes to the web-based user interface, we have imple-
mented a RESTful web service using the Java-based Restlet
EE framework [14].

The initial version (designated v1) of the web-based user
interface was implemented using HTML forms, and the data
it receives from the web service consist of plain text strings
that are displayed and updated as the simulation progresses,
without any graphical animation.

The latest version (designated v2) of the web-based user
interface has been developed separately, as a graphical anima-
tion, and work is ongoing to link it up to the web service. This
will be discussed further in Section V-C below.

A. Accountability Model Description Language

Scenarios to be simulated are described by the user of the
simulator in a custom modelling language we have built for this
purpose. At this stage of development we have only included a
core set of commands and mechanisms that can be included in
scenarios, but we expect to add constructs in the language so
as to allow inclusion of detailed privacy policies, access and

usage controls, and other features. In particular, in the Cloud
Accountability Project there is ongoing work on developing a
dedicated accountability policy language, and it is likely that
the constructs of that language will be incorporated into the
language of the simulator.

Listing 1 shows the productions for the languages grammar,
using the syntax of the SableCC [15] parser generator that
we have been using to build the interpreter. The nontermi-
nals in the grammar are command (for top-level commands),
declare (used to declare actors of different types), type (rep-
resenting the different actor types, namely user, cloud service
provider, auditor and regulator), servicetype (for the different
types of cloud service), objectaction (this is for expressions
representing a property or action of a given actor), action
(properties or actions), mode (for data protection problems
that can be simulated using the trigger command), mech (for
accountability mechanisms that can be enabled or disabled
as needed). Commands setgraph, setpolicy and setconstraint
are experimental; the command graph allows us to access the
internal data structure of the accountability simulation engine
and visualize it using AT&T GraphViz [16].

B. Accountability Simulator (Backend component)

The accountability simulation engine is responsible for
maintaining and updating the current state of the simulation,
and currently its main visible function is to display that state
on the console or supply it (through a web service) to another
application.

We can denote the internal state of the simulation engine
by a tuple (see Equation 1)

(A, T, ρ, σ,M, ξ) (1)

where A is the set of actors that have been declared,
T is the set denoting the types of the actors, is the set
of relationships between cloud service providers (the only
relationships modelled are between these types of actor), is
the store of data values held by the different actors (indexed
by A), M is the set of accountability mechanisms enabled and
is the output stream (this represents e.g. the standard output
or a pipe to another application, or a web service).

command =
{ declaration } declare |
{ custdeclaration } customer lparen

[ fst ]: identifier [q ]: comma
[snd ]: identifier [z ]: comma
servicetype rparen |

{action} objectaction |
{ trig } trigger mode identifier |
{setgraph} setgraph arglist |
{ setpol} setpolicy lparen identifier comma

str rparen |
{setcons} setconstraint lparen [ fst ]: identifier

[q ]: comma [snd]: identifier [z ]: comma
str rparen |

{enablemech} enable mech |
{disablemech} disable mech |
{graphing} graph;



declare = { declplain } type identifier |
{ declqualified } type identifier str ;

type = {userdec} user |
{cspdec} csp |
{auddec} auditor |
{regdec} regulator ;

servicetype = { iaastype} iaas |
{paastype} paas |
{saastype} saas ;

objectaction = { actionref } identifier dot action ;

action = { actionsenddata} senddata
lparen identifier comma str rparen |
{ evalstate } state ;

mode = {databreach} databreach |
{attack} attack ;

mech = {polenfmech} polenf |
{logmech} logging |
{monmech} monitoring;

Listing 1. SableCC grammar of the Accountability Simulator input language
(only the main productions are shown)

The output of the simulation depends on which account-
ability mechanisms have been enabled; if no mechanisms
are enabled (in which case the value of M above would be
the empty set, ∅), then there is no change in the output ξ
when a problem is triggered. However, when mechanisms are
enabled and a problem is triggered, the effect (as described in
Table II) is made visible on the output. In other words, the
Function of the simulator (see Function 2) can be summarized
operationally as a state transition of the form:

(A, T, ρ, σ,M, ξ)→ (A, T, ρ, σ′,M, ξ′) (2)

such that ξ′ differs from ξ as it contains a notification of
a compliance failure, data breach or attack when the trigger
command is issued and one of the following is true:

({policyenforcement : enabled} ∈M) or

({logging : enabled} ∈M) or

({monitoring : enabled} ∈M)

It would not be difficult to use the above notation to derive
a full operational semantics for the simulator, but for our
purposes here it is sufficient to note that the main function
of the tool, which is to behave differently depending on which
type of problem is being simulated, and which mechanisms are
enabled. So far we have assumed ξ represents textual output,
namely strings describing the overall system state, such as lists
of actors, their data values and more. Of course, the exact
output consists of messages corresponding to the responses
shown in Table II. In the next section we turn to work we
have done on developing a graphical visualization.

C. Web-based Front-End

The vision for the web-based user interface has always
been to have a graphical animation of data flows between
individuals, cloud service providers, auditors and regulators
and third parties. Demonstrating flows of data and the changes
that occur to data and providers in the process emphasizes the
dynamic aspect of the simulation. A screenshot of our current
prototype of version v2 is shown in Figure 2.

	  Figure 2. Visualisation front-end for the Accountability Simulator

It is very important to note that this version has been
developed as a separate, standalone animation. Thus, it has not
yet been linked to the web service component and, hence, the
main simulation engine. However, it does show an instantiation
of a random set of cloud service providers of different kinds
(IaaS, PaaS, SaaS, and how a data item can be routed between
providers. In the animation, the scenario is assumed to be
random, rather than specified in the accountability modelling
language; this is changing presently.

We expect to have dedicated controls (form buttons) to
trigger particular data protection problems, and panels showing
the responses produced by the simulator. In the screenshot
in Figure 2 two tabs are shown at the bottom. While the
(currently random) animation is shown on the Canvas tab, the
other tab (titled Scenario Description) will allow the user of
the simulation to supply an input file in future, written in the
accountability modelling language of Section V-A, and this
will be used to generate the animation in the next version.

VI. AN EXAMPLE INPUT FILE

Listing 2 shows an example input file that we have tested
with the current version of the simulator. It describes a scenario
in which there are two individual users, four cloud service
providers, an auditor and a regulator. The relationships between
the individuals and service providers are then declared. John
and Mary then create some data, which is sent and stored
on the specified service providers infrastructure. In line 15
a data breach problem is triggered; this has no effect when
simulated as no accountability mechanisms have been enabled;
the remaining lines enable different mechanisms, and trigger



a data breach and attack. Naturally the simulator produces
a sequence of long warnings when interpreting lines 17, 20
and 22, as the policy enforcement, monitoring and logging
mechanisms kick in.

User john ”John Wayne”;
User mary ”Mary Wollstonecraft”;
CSP salesforce ” Salesforce .com”;
CSP amazon ”Amazon Web Services”;
CSP rackspace ”Rackspace”;
CSP hpcs ”HP Cloud Services”;
Auditor kpmg ”KPMG”;
Regulator cnil ”CNIL”;
Customer(john,amazon,SaaS);
Customer(mary, salesforce ,SaaS);
Customer(rackspace,hpcs,IaaS) ;
Customer( salesforce , rackspace ,PaaS);
john .Senddata(amazon,”somedata”);
mary.Senddata(hpcs ,”marydata”);
Trigger Databreach salesforce ;
Enable Polenf ;
Trigger Databreach salesforce ;
Enable Monitoring;
Enable Logging;
Trigger Databreach salesforce ;
amazon.State ;
Trigger Attack amazon;

Listing 2. Example script written in the accountability simulation language.)

VII. CONCLUSION

In this paper we have presented the design and imple-
mentation of a simulator for accountability mechanisms in the
cloud. We have discussed data protection problems, and how
mechanisms for accountability such as policy enforcement,
monitoring and logging can help to address such problems;
the simulator we have built is a tool to assist understanding
and modelling of real-world scenarios and will hopefully be a
useful aid to cloud service providers, regulators and end users
as it is extended with more features.

Future work will focus on integrating the v2 web-based
UI with the accountability simulation engine and web service,
and enriching that UI with more controls. Subsequently we
will work on animating the accountability mechanisms and
modelling additional ones.

It is also worth noting that a new EU Data Protection
Regulation will eventually replace the current directive, which
is under discussion in the European Parliament. This is likely to
include new accountability rules and obligations, and must be
taken into consideration in future work. For the purposes of this
paper, however, we have focused on modelling the dynamics
of accountability controls and how they impact data and data
flows in cloud infrastructure.
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Abstract—In this paper, we provide privacy enhancements
for a software agent-based audit system for clouds. We also
propose a general privacy enhancing cloud audit concept which,
we do present based on a recently proposed framework. This
framework introduces the use of audit agents for collecting
digital evidence from different sources in cloud environments.
Obviously, the elicitation and storage of such evidence leads to
new privacy concerns of cloud customers, since it may reveal
sensitive information about the utilization of cloud services. We
remedy this by applying Somewhat Homomorphic Encryption
(SHE) and Public-Key Searchable Encryption (PEKS) to the
collection of digital evidence. By considering prominent audit
event use cases we show that the amount of cleartext information
provided to an evidence storing entity and subsequently to a
third-party auditor can be shaped in a good balance taking into
account both, i) the customers’ privacy and ii) the fact that stored
information may need to have probative value. We believe that
the administrative domain responsible for an evidence storing
database falls under the adversary model "honest-but-curious"
and thus should perform query responses from the auditor with
respect to a given cloud audit use case by purely performing
operations on encrypted digital evidence data.

Index Terms—Cloud Computing, Audit, Evidence, Comput-
ing on Encrypted Data, Somewhat Homomorphic Encryption,
Searchable Encryption.

I. INTRODUCTION

Recently, we face a growing need for accountability in cloud
services, such that cloud-adopted digital evidence collection
frameworks are getting momentum. Exemplary formats and
frameworks have been proposed by the Common Digital
Format Working group (CDESF) [18] or the Distributed
Management Task Force (DMTF) [7]. According to [17], a
generic evidence collection framework can be derived from
the process of digital investigation defined by the National
Institute of Standards and Technology (NIST) in [13]. This
proposed process is split into a securing phase, an analyzing
phase, and a presentation phase. In the securing phase the
sources of evidence can be manifold, ranging from information
from the network, to the host operating system (OS), the
hypervisor and respectively the Infrastructure, Platform and
Software as a Service (IaaS, PaaS, SaaS) layers. Also, the
cloud management system (CMS) itself is a valuable resource
of evidence. Additionally, more complex cloud service provi-
sion scenarios have to be considered, e.g., inter-cloud scenarios
where complex provider chains are dynamically established to
provision cloud services. Clearly, the entity which stores and

bundles such a diversity of fine granular customer informa-
tion has to be designed extremely carefully. Data leakage,
regardless of whether it was caused by insider adversaries
or by outsider adversaries of the cloud storage architecture,
immediately causes loss of reputation and revenue for the
involved cloud provider and, even more importantly, threatens
the privacy of the cloud customer.

We believe that, besides other privacy preserving concepts
like pseudonymization or pseudonym unlinkability, two pre-
dominant privacy preserving techniques have to be in place:

1) Canniness of evidence data: only such evidence data
shall be collected and stored at a central entity which
mandatorily are required to support a clearly defined
cloud auditing use case;

2) Encrypted evidence data: digital evidence mandatorily
needs to be encrypted when stored at a central entity;

With respect to the envisioned privacy preserving cloud
audit agent system for third party audits, this means that an
Audit Agent Controller (AAC) only deploys audit agents (AA)
for evidence collection at several cloud subsystems which i)
sparely collect digital evidence, and ii) encrypt digital evidence
before transmitting such potentially sensitive information to a
central entity for storing and subsequently pulling together
data from different sources. Thus, the Evidence Store (ES)
purely stores ciphered digital evidence from different subsys-
tems and sources. Moreover, it shall never be able to gain
the decryption keys. So, we feel what is essentially needed is
a mixture of organizational aspects e.g. a privacy preserving
storage policy and privacy preserving techniques like encryp-
tion. Flavors of the latter will be investigated in more depth in
the remainder of this work. Our main contribution is to demon-
strate the applicability of specific cryptographic schemes, i.e.
SHE and PEKS, as privacy enhancement mechanisms for a
software-agent audit system for clouds.

This paper is structured as follows: In Section II we summa-
rize the existing related work. In Section III we describe the
conceptual architecture and administrative domains of our ap-
proach. Later, in Section IV we give flavors of possible cloud
audit use cases. In Section V we provide a brief introduction
and definition of the required cryptographic primitives. Then,
in Section VI we develop a cloud audit use case using our
proposed framework. In Section VII we provide an estimation
of the performance and the security and, finally, in Section
VIII we conclude our work.978-1-4799-5350-9/14/$31.00 c©2014 IEEE



II. RELATED WORK

Our work requires the capability to collect digital evi-
dence in the cloud. However, deploying additional software
for "monitoring and evidence collection" inside the targeted
virtual machine (VM) can not guarantee the reliability of
the evidence collected. For example, a customer having full
administrative control over the targeted VM might tamper the
deployed monitoring tool to report fake data. A solution to
this problem is to follow an out-of-guest approach like the
one described by Carbone et al. in [8], where the authors
propose to move the monitoring tool outside the focused
VM in combination with function-call injection techniques.
By following this approach, the monitoring tools are tamper-
proof resistant against the customer resulting in more reliable
evidence.

Wang et al. [20] propose a provable secure privacy-
preserving third-party auditing protocol for verifying the in-
tegrity of data stored in the cloud. On behalf of the customer,
this protocol allows an external third party auditor (TPA) to
check storage correctness of the customer’s data in the cloud.
They consider the following requirements for asecure third-
party cloud audit1: 1) the auditing process should not introduce
new vulnerabilities towards user data privacy, 2) the auditor
should be able to efficiently audit the cloud data storage
without demanding the local copy of data.

Furthermore, we refer the interested reader to [17], [9],
[8], [19]. There the authors provide frameworks for either: i)
collecting and storing digital evidence, or ii) allowing a third-
party auditor, who on behalf of the customer, is able to audit
the cloud and verify the compliance of the contract.

III. ARCHITECTURAL OVERVIEW AND IMPACT OF TRUST
BOUNDARIES

In Figure 1 we do illustrate the architectural overview of
a cloud audit system using audit agents for the collection
of digital evidence by following [17]. However, in addition
to [17] we also highlight the involved administrative domains
to derive trust boundaries and implicit trust delegations of
the proposed architecture. Per cloud provider (CP) an audit
agent controller (AAC) is deployed. This component can
tap into several cloud subsystems and deploy audit agents
(AA) for the evidence collection. The various AAs of the
involved cloud providers continuously or periodically send the
monitored digital evidences to the AAC, which, subsequently
after aggregating input from the various AAs, sends such data
to the evidence store (ES). Different ES per customer do exist.
By using an evidence processor (EP), the (third-party) auditor
receives reports with evaluation results from an ES eventually
comparing it with pre-defined audit policies. However, as will
be detailed in sections IV and VI-A, third-party auditors must
be restricted in the amount and type of information they can
request to the EP. It should be just enough to perform the

1Cloud Audit [17]: "The independent examination of records and activities
to establish controls, policies, operational procedures and mechanisms, and
expected means of remediation and to to recommend any indicated changes
in controls, policy or procedures".

specific audit goal. Obviously, the very fact of the availability
of such an amount of customers’ meta data from the different
CPs stored at the ES is a valid reason to properly protect such
a component.

It is important to stress that the above architecture consists
in its most general case of at least d = 2n+ 2 administrative
domains where n is the number of involved CPs and, more-
over, assuming a single provider for all per-tenant ESs, the
third party auditor, and, finally, an administrative domain for
each AAC per CP including its deployed AAs.

Figure 1. Architectural overview and administrative domains on a per-tenant
view.

With the above trust boundaries in mind our extension to
the architecture are as follows: Since an AAC is typically
placed on a different server than the CP’s services with its
various AAs, we propose to securely tunnel all transmitted
digital evidence. As said, since the AAC and the AAs belong
to the same administrative domain, static security associations
are available and, thus, secure tunneling can be established
relatively easy by applying a trusted and secured VPN using
PPTP, IPSec or SSL.

The privacy extension we propose in this work mainly
addresses the honest-but-curious adversary model2, since we
can not exclude the EP to behave suchlike. In case of digital
evidence data being stored in plaintext, this party could
probably make use of such information (e.g., by selling or
otherwise providing it to another party which is forceful
enough to influence the ES). Please note that the express
warranty of the integrity of evidence data is out of scope of this
paper. However, the use of HomMACs [1] and homomorphic
signatures [4] respectively, may be appropriate candidates in
combination with SHE and PEKS to prevent malleability. This,

2A party is "honest-but-curious" if he executes the protocol correctly but
tries to learn as much as possible.



we plan to investigate in our future work.

IV. AUDIT EVENT USE CASES

As previously mentioned, we assume canniness of evidence
data to be a prerequisite and thus do only consider the
collection of digital evidence at an audit agent which has a
clear relevance for concrete cloud auditing use cases. Such
use cases have been identified by the Cloud Auditing Data
Federation (CADF) in [7].

The following cloud audit use cases will serve as a bench-
mark to evaluate whether a SHE or a PEKS scheme are
appropriate building blocks for privacy-enhanced cloud audits.
Use case 1: Auditing access to a controlled resource. In this
use case the customer would like to monitor and log all user
"login" actions against all servers within their infrastructure,
e.g. when a user attempts to login to a data base or to an
internal service.

We consider the following example: A company X has
outsourced some of its internal IT services to a cloud service
provider Y. That service provider is specialized in provid-
ing Software as a Service (SaaS). A security policy at the
company X states, that while any employee may use the
service provided by Y, this may only be done when connecting
from the company’s network, to ensure additional security
systems, e.g. transparent security proxys deployed by X are
not circumvented. An audit of the CSP’s access control logs
is supposed to verify, that this policy is being adhered to,
and, no access from an unauthorized location has occurred.
Therefore, Y records service access attempts on a per-tenant
basis including information about source of the access in the
form of IP addresses, associated user, time and date, as well as
its access control decision. Since this is information that can
be considered sensitive, with respect to the possible leakage
of the service user’s behavior, encryption mechanisms shall be
employed to protect the user’s privacy. W.l.o.g. we assume in
this example use case a specific size of X’s company network
and the use of public IP addresses. In CIDR notation, e.g.
a.b.c.d/y, the IP range of the company’s network segment
can be derived from the routing prefix size. In IPv4 this
corresponds to:

NIP = 232−y (1)

Based on the previous example we consider the following
security policy agreement between X and Y:

• IP addresses within the range 142.168.1.0/24 are classi-
fied as authorized or unauthorized otherwise.

• X’s employees can access the service provided by Y only
if they are connecting from an authorized IP address.

• X authorizes Y to log access control information as
evidence of compliance of this policy with the following
restrictions:
1) The location of the users (e.g. authorized IP ad-

dresses) is considered as sensitive.
2) The duration for every connection to the service is

considered as sensitive.

3) Sensitive information should be protected against
data leakage, insiders, outsiders as well as third-
party auditors.

We argue that an IP address can be linked to a location,
such that its revealment to third parties breaks the privacy of
the user (X’s employee). Additionally, the "connection time
duration" represents the time an employee remains connected
to the service. Such information may reveal some working
habits of the employee. A suspicion, let it be reasonable or
non-reasonable, could be that those which spend less time
connected to the given service work less than those who do
not.
Use case 2: Periodic monitoring resource status. Software
per server provides periodic informational status of each
server’s CPU utilization along with metric data.
Use case 3: Aggregation of resource status into an audit
event. The "monitoring server" summarizes these periodic
measurements from the agents, by calculating an ’average
utilization value’ and then generates a single informational
status.

Through the rest of this document we will focus on the cloud
audit use case 1 to demonstrate the viability of our framework.

V. ENCRYPTION CANDIDATES

In this section we provide a background of the chosen
encryption mechanisms, namely "Homomorphic Encryption"
and "Searchable Encryption". Additionally, we provide the
definition for the chosen cryptographic primitives which will
be referred to in Section VI.

A. Homomorphic Encryption
If someone wants to protect the confidentiality of a message,

he could just encrypt it using standard encryption schemes.
However, this produces a ciphertext in a way it is not possible
to operate on it. In 1978 Rivest, Adleman and Dertouzos [16],
proposed the idea of computing with encrypted data. They
refer to it as privacy homomorphisms. This concept was later
known as Homomorphic Encryption (HE).

By using HE, one could publicly perform computations
on ciphertexts and obtain an encrypted result which, when
decrypted, is the same as if the computations were performed
on the plaintext. Let E be an encryption scheme and ∗ denote
an operation in the ciphertext space, then:

• E is additive homomorphic if:

m1 +m2 = D (E(m1) ∗ E(m2))

• E is multiplicative homomorphic if:

m1 ·m2 = D (E(m1) ∗ E(m2))

Encryption schemes like RSA, ElGamal or Paillier cryp-
tosystem support an unlimited number of additions or multipli-
cations on the ciphertext, but not both at the same time. Thus,
they are known as partial homomorphic encryption schemes
(PHE). In [5] Boneh et al. presented an encryption scheme
which supports an unlimited number of additions and one
multiplication carried out in the ciphertext, introducing the



notion of somewhat homomorphic encryption (SHE). In [10]
Craig Gentry presented the first construction of a fully ho-
momorphic encryption (FHE) scheme, which is capable of
evaluating unlimited number of additions and multiplications
on the ciphertext. However, this scheme is far from being
practical due to the intensive computation required.
Somewhat Homomorphic Encryption (SHE): There is an
active research in the area of SHE with the aim of creating
encryption schemes for efficiently evaluating concrete func-
tions, which require the evaluation of unlimited additions and
a bounded number of multiplications. As will be described in
chapter VI-A, for this work we need to compute the mean
and standard deviation on the ciphertext space, for which
Brakerski et al.’s SHE scheme [6] is the best candidate due to
its efficiency and functionality.

At next we present Brakerski and Vaikuntanathan’s
scheme [6], an efficient somewhat homomorphic scheme se-
cure under the "ring learning with errors" (R-LWE) assumption
[12].

Definition 1. (Somewhat Homomorphic Encryption Scheme).
The scheme SHE= (SH.KeyGen, SH.Enc, SH.Sum, SH.Mult,
SH.Dec) consists of following algorithms:

1) SH.KeyGen(k): Given a security parameter k, this algo-
rithm outputs the public and secret key pair (pk, sk).

2) SH.Enc(pk,m): Given a public-key pk and a
message m, generates the ciphertext c. That is:
c ←SH.Enc(pk,m).

3) SH.Add(pk, ca, ca): Given two ciphertexts ca and cb,
output cadd as an encryption of the summation of the un-
derlying messages. That is: cadd ←SH.Add(pk, ca, cb).

4) SH.Mult(pk, ca, cb): Given two ciphertexts ca and
cb, output cmul as an encryption of the mul-
tiplication of the underlying messages. That is:
cmul ←SH.Mult(pk, ca, cb).

5) SH.Dec(sk, c): Takes as input the secret key sk and
a ciphertext c and returns the message m. That is:
m ←Dec(sk, c).

The number of multiplications carried out in the ciphertext
space is bounded to a parameter D ∈ N.

B. Public-Key Searchable Encryption
The Public Key Encryption with Keyword Search (PEKS)

scheme, proposed by Boneh et al. [3], enables the search for a
keyword on encrypted data without revealing any information
(other than the result of the search ∈ {0, 1}).

There are three parties involved in the process: the sender,
the receiver and the operator. The sender encrypts the intended
message m using a standard public key system denoted by E .
He then appends to the resulting ciphertext a PEKS ciphertext
of each keyword. To send a message m with keywords
w1, . . . , wn he sends:

E(pkR,m), PEKS(pkR, w1), . . . , PEKS(pkR, wn)

Where pkR denotes the public key of the receiver. The
receiver, using his secret key skR, can give a trapdoor Tw′

to the operator, which will enable him to test whether the
keyword w′ is contained on the ciphertext or not, but without
revealing the keyword itself.

Definition 2. (Non-interactive Public-key Encryption with
Keyword Search (PEKS) scheme). Boneh’s PEKS scheme
consists of the following polynomial time algorithms:

1) SE.KeyGen(s): Executed by the receiver. Takes a secu-
rity parameter, s, and generates a public/private key pair
pkR, skR. That is: (pk, sk) ← SH.KeyGen(s).

2) SE.PEKS(pkR, w): Executed by the sender. For a public
key pkR and a keyword w, generates a PEKS ciphertext
of w. That is: S ← SH.PEKS(pkR, w).

3) SE.Trapdoor(skR, w): Executed by the receiver. Given
the secret key of the receiver, skR, and a key-
word w produces a trapdoor Tw. That is: Tw ←
SE.Trapdoor(skR, w).

4) SE.Test(pkR, S, Tw): Executed by the operator. Given
the public-key of the receiver, a searchable encryption
ciphertext S = SH.PEKS(pkR, w), and a trapdoor
Tw′ = SH.Trapdoor(skR, w′), outputs "true" if w = w′

or "false" otherwise. That is: t ← SH.Test(pkR, S, Tw),
with t ∈ {0, 1}.

Our framework requires the customer to share his SHE and
PEKS secret-keys with the third-party auditor. We argue that
in practice, it does not represent a vulnerability since: i) the
amount of information revealed to the auditor is restricted by
the "auditor queries" (see Section VI-A), ii) the auditor and
the cloud provider belong to different administrative domains,
and iii) the auditor is someone the customer trusts.

VI. PROTOCOL FLOW AND STORAGE STRUCTURE

This section explains the process for storing and retrieving
the evidence collected. It is organized as follows: First we
provide flavors of the type of information the auditor can
request to the ES, then we detail the process of storing the
evidence in the ES and finally give examples of responses to
queries.

A. Auditor Queries to ES Database
Auditor queries should be designed by considering both the

audit goal and the respective security policy. By doing so, the
auditor is restricted on the sensitive data he can retrieve from
the ES. Furthermore, the auditor queries should provide a good
balance between the amount of sensitive information revealed
to the auditor and the amount required to come to reliable
audit results. We provide examples for cloud audit use case 1:
Use Case 1: Auditing access to a controlled resource

• Q1.1: Separately, the total of successful and non-
successful connections from unauthorized IP addresses.

• Q1.2: For every successful connection from an unautho-
rized IP address, retrieve the user who accessed the ser-
vice, its IP address, date and duration of the connection.

• Q1.3: Probability of success when trying to connect from
valid and invalid IP address;



• Q1.4: Total time a user spent connected (by month, day,
etc.).

• Q1.5: Average time per connection and its standard devi-
ation.

The queries previously introduced are in compliance with
the respective security policy by restricting the amount of
sensitive information revealed to the auditor. However, until
now we have not yet solved the problem of a curious EP
learning such information or data leakage to third parties.
Encrypting the sensitive information seems to be the solution
for these problems, however the use of standard encryption
mechanism (e.g. RSA, AES) would prevent the EP from
responding to the auditor queries.

We propose the use of Boneh’s PEKS and Brakerski et al.’s
SHE schemes as crypto primitives to guarantee the secrecy
of sensitive information while allowing the EP to operate on
such ciphered information. The overall process for generating
an audit report is as follows:

• The auditor queries the EP for a per-tenant report.
• The EP uses the evidence stored in the ES to generate

the query response and sends it to the auditor. Recall that
the EP does not learn relevant information, neither from
the query response nor from the ES database.

• The auditor decrypts the report using his secret key.
In the following sections we detail the process of storing

the evidence (encryption) and then the process of responding
to a predefined query (computing on encrypted data).

B. Storing the Evidence

In Figure 2 we illustrate the general protocol flow for storing
digital evidence in the ES. As said, we assume the existence of
secured VPN channels between the AAs and the AAC. During
an audit, the EP will make use of stored evidence to respond
to the auditor queries (see chapter VI-A). The protocol flow
is as follows:

1) An AA continuously sends digital evidence m to the
AAC protected with VNP secured channels.

2) The AAC receives m, encrypts the attributes considered
as sensitive and sends m′ to the ES for storage.

AAi AAC ES

m

encrypt
m′

msc Evidence Storage Flow

Figure 2. Protocol flow for storing evidence.

We highlight that the evidence is collected according to an
audit goal and it should be stored in compliance with the
defined security policy. More concretely, the evidence that
shall be collected as well as the choice of the cryptographic
primitives to protect the sensitive information, depend on
the concrete cloud audit use case subject to audit which we
describe at next:
Use Case1: Auditing access to a controlled resource
AAs are instructed to collect the data defined in Table I as
evidence. Subsequently, an AA constructs m as a concatena-
tion of such attributes together with a string to identify the
use case and sends it to the AAC:

m :=< "UC1",Date,Observ, Init, IP,M,Out > 3

Attribute Description
Date The date when the evidence was col-

lected
Observer Id of the agent who collected the evi-

dence
Initiator Id of the user who tried to connect to

the controlled resource
IP address IP address from which the connection

was attempted
Measurement
(M)

The time-duration of the connection
(e.g. in seconds).

Connection out-
come

out ∈ {0, 1}, depending on whether
the connection was successful or not

Table I
DATA TO BE COLLECTED FOR USE CASE 1.

The AAC receives m and validates its format. Then, by
following the security policy, the attributes considered as
sensitive are: "IP address" and "measurement" which are
encrypted as follows:

• IP address: Encrypted using Boneh’s PEKS scheme
defined in Section V-B. First, the AAC encrypts the
IP address using a standard public-key scheme E
(e.g. RSA), then the AAC appends to the result-
ing ciphertext a PEKS ciphertext. Output IP’ ←
E(pkc, IP )||SE.PEKS(pkc, IP ), where pkc denotes the
public-key of the customer.

• Measurement (M): Encrypted using Brakerski and
Vaikuntanathan’s scheme defined in Section V-A. This
attribute represents the duration of every connection the
user makes to the controlled resource (on-line time in sec-
onds). Let val denote this measurement, where val > 0
for a successful login attempt and val = 0 otherwise.
Output: M’ ← SH.Enc(pkc, val), where pkc denotes the
public-key of the customer.

The AAC constructs m’ and sends it to the ES for persis-
tence as shown in Table II:

m’ :=< Date,Observ, Init, IP’,M’,Out, "" >

The last attribute "Type IP" is sent in blank by the AAC.
It will be computed by the EP once the auditor provides
the authorized IP addresses as trapdoors. The EP uses the

3In practice one could make use of headers to delimit each attribute.



Attribute Description
Date The date when the evidence was col-

lected
Observer Id of the agent who collected the evi-

dence
Initiator Id of the user who tried to connect to

the controlled resource
IP_address
(encrypted)

IP address from which the connec-
tion was attempted. Encrypted using
Boneh’s PEKS

Measurement M’
(encrypted)

The time-duration of the connection
(e.g. in seconds). encrypted using Brak-
erski’s SHE.

Connection out-
come

Stores out ∈ {0, 1}, depending on
whether the connection was successful
or not

Type IP Stores t ∈ {0, 1}, depending on
whether the IP is authorized or not.

Table II
TABLE USED TO STORE IN ES THE EVIDENCE FOR USE CASE 1.

trapdoors to test whether an IP address (which is in searchable
encryption format) is authorized or unauthorized according to
the respective security policy (whether a user is allowed to
connect from such IP or not). This process is explained in
Section VI-C.

As previously mentioned, we consider the EP follows the
honest-but-curious model. By using the structure defined in
Table II, we balance the amount of a customer’s information
available to the EP and the third party auditor, while still
enabling the latter to perform the audit. The EP does not hold
any decryption keys, such that sensitive attributes remain secret
to it. Furthermore, since all sensitive attributes are encrypted
using either searchable or somewhat homomorphic encryption
schemes, the EP can still make meaningful computations on
those ciphered data in order to respond to the auditor queries.
The predefined auditor queries guarantee that the auditor will
not have direct, random and unrestricted access to sensitive
customer data but only to specific tasks, which reduce the
risk of data misuse. For instance, the auditor can ask for
those records in which a connection to a resource from an
unauthorized IP address was successful and therefore violated
a security policy. The result would only be revealing the
unauthorized IP address, while still protecting recorded policy
compliant access attempts.

C. Queries to ES
In this section we show how the EP responds to the

predefined auditor queries. This requires the EP to generate
SQL queries for the ES database and perform computations
on encrypted data.
Use case 1: Auditing access to a controlled resource
In Figure 3 we illustrate the protocol flow for cloud audit use
case 1, where:

1) as the first step, the EP is required to fill out the attribute
"Type IP" in Table II, which classifies the respective IP
address as either authorized or unauthorized.

2) once the underlying IP address has been classified, the
auditor is enabled to query the EP.

ES EP Auditor

{Tip,i}
n
i=1

ask PEKSip,j

PEKSip,j

Test PEKS

tj ∈ {0, 1}

Update jth "TypeIP"

ask Q1.y

q [SQL]

rq

*Compute SHE

resp. Q1,y

msc Cloud Audit Use Case 1

Figure 3. Protocol flow for querying the EP.

1. IP address Classification Process
This makes use of trapdoors generated by the auditor with
searchable encryption (SE) algorithms described in Sec-
tion V-B as we detail in the following:
We recall that the IP addresses are stored encrypted as:

IP’ ← E(pkc, IP )||SE.PEKS(pkc, IP )

Let Table II contain k records. Then for 1 ≤ j ≤ k, the jth

IP address stored is denoted by:

IP’j ← E(pkc, IPj)||SE.PEKS(pkc, IPj) (2)

1) Trapdoor Generation: Let {IPi}
n
i=1

denote the set
of authorized IP addresses according to the prede-
fined security policy. The auditor generates a trap-
door Tip,i for every authorized IP address. That is,
Tip,i ←SE.Trapdoor(skc, IPi), where 1 ≤ i ≤ n and
skc denotes the secret key of the customer. The auditor
sends {Tip,i}

n
i=1

to the EP.
2) The EP asks the ES for the jth searchable encrypted IP

address.
3) The ES sends PEKSip,j :=SE.PEKS(pkc, IPj) to the

ES, namely the right side of Equation 2.
4) Testing PEKS: Given a searchable-encrypted IP address

S := PEKSip,j and a set of trapdoors, the EP runs the
SE.Test algorithm for every trapdoor Tip,i to determine
if any of them correspond to the searchable-encrypted
IP address or not. That is:



if ∃ Tip,i ∈ {Tip,i}
n
i=1

| SE.Test(pkc, S, Tip,i) = 1
then tj ← 1

else tj ← 0
5) The EP sends tj ∈ {0, 1} to the ES, the latter updates

the jth record with "Type IP" ← tj , i.e. whether the
underlying IP address is unauthorized or authorized
respectively.

6) Steps 2, 3, 4, 5 are repeated for every record in Table
II, i.e. 1 ≤ j ≤ k.

2. Processing Cloud Audit Queries
After the classification of the IP addresses is finished, the EP is
able to respond to the auditor queries. Next, we give a precise
construction for the cloud audit query Q1.5.
1) The auditor asks the EP for Q1.5, i.e. The average and

standard deviation of the time a user spent connected.
2) The EP constructs q as in Listing 1.
3) The ES processes q and returns rq to the EP. The re-

sponse is {cj}kj=1
, the set of encrypted "Measurements".

4) The EP computes the average and standard deviation of
the encrypted measurements as we explain below.

5) The EP sends the encrypted average μ′ and standard
deviation σ′ to the auditor.

6) The auditor decrypts the result using the secret key of
the customer.

select Measurement
from Table_II
where Type_IP = 1

and Connection_Outcome = 1
and Initiator = ’User1’
[op] and ’Date’
between ’date1’ and ’date2’

Listing 1. SQL query for auditor query Q1.5. On demand of the auditor, this
query could be restricted to a specific date.

Audit use case query Q1.5 requires the average μ and stan-
dard deviation σ to be computed. However, so far the research
community does not have an algorithm to efficiently compute
divisions or square roots of real numbers in the ciphertext
space. Thus, when computing μ and σ, the numerator and
denominator are returned as separate ciphertexts.
Computing the Average: Compute the average of the un-
derlying measurements in {cj}

k
j=1

. Output μ′ = (csum =∑k

j=1
cj , k), where csum is computed with Algorithm 1.

Algorithm 1 Sum of k ciphertexts using SHE
Input: {cj}

k
j=1, with k ≥ 2

Output: csum =
k∑

j=1

cj

ca ← c1
for i = 2 to k do

cb ← ci
csum ← SH.Add(ca, cb)
ca ← csum

end for

The auditor receives μ′, from which the mean can easily be
computed with one division after decryption.
Computing the Standard Deviation: Compute the standard
deviation of the underlying measurements in {cj}

k
j=1

. For the

plaintext space, one could use the following equation:

σ =

√√√√ 1

k

k∑
j=1

(cj − μ)2 (3)

However, in our setting the EP makes the computations on
the ciphertext space which requires special treatment as we
explain next.

1) μ is only known as the pair (csum, k), then we express
Equation 3 as:

σ =

√√√√ 1

k3

k∑
j=1

(k · cj − csum)2 (4)

Equation 4 requires to compute k·cj , namely the product
of a ciphertext with a constant. This is not defined in
Brakerski’s SHE scheme, but the EP can encrypt k as
k′ ← SH.Enc(pk,k) and then compute the multiplication
of the two ciphertexts using SH.Mult.

2) The EP outputs σ′ = (cacc, k
3) as the encrypted standard

deviation, where cacc is computed with Algorithm 2.

Algorithm 2 Standard Deviation of k ciphertexts using SHE
Input: csum, k′, {cj}

k
j=1, with k ≥ 2

Output: cacc =
∑k

j=1
(k′ · cj − csum)2

for j = 1 to k do
cmul ← SH.Mult(k′, cj)
cres ← SH.Add(cmul,−csum)
csqr ← SH.Mult(cres, cres)
if j = 1 then

cacc = csqr
else

cacc = SH.Add(cacc, csqr)
end if

end for

3) Once the auditor has received σ′, he computes the
standard deviation σ as follow:
a) macc ← SH.Dec(skc, cacc)
b) σ =

√
1

k3 ·macc

VII. PERFORMANCE AND SECURITY ANALYSIS

In this section we provide an estimation of the performance
of our framework as well as its security analysis.

A. Performance
At its current stage our work is purely conceptual, such

that we are only able to provide an analytical performance
evaluation of the cost of the computations required for a cloud
auditing use case.
Use case 1: Auditing access to a controlled resource
To construct our scenario we consider the following parame-
ters for a company X and a cloud provider Y:

• The audit is done once a year.
• X’s IP address range: 142.168.1.0/24. Then, there are g =

232−24 = 256 IP addresses.
• X has 100 employees. Each one connects to the service

deployed in Y on average 3 times per day and there are



Algorithm Run by # Pairings # Parings UC-1
SE.KeyGen Customer 0 0
SE.PEKS AAC 1 k

SE.Trapdoor Auditor 1 r

SE.Test EP 1 k · r
Table III

NUMBER OR PAIRING OPERATIONS REQUIRED.

260 working days per year. Thus, Table II contains aprox.
k = 3 ·100 ·260 = 78 ·103 records at the end of the year.

At next we present the performance of the cryptographic
schemes in the context of cloud audit use case 1.
Performance for PEKS: The construction of this scheme is
based on a bilinear map e : G1 × G1 → G2 (also known
as pairing), which is the operation that requires most of the
computational effort in the scheme. Thus, our analysis will be
based on the number of pairing operations required.

We consider the Lynn’s [2] benchmarking with the follow-
ing parameters:

• PBC library [2].
• Super Singular Elliptic Curve y2 = x3 + x of 512 bits.
• CPU: Intel Pentium III at 1 GHz.
• Evaluation of e: 11 ms.
In Table III we show the number of pairing operations

required for one evaluation of the algorithm. The column
"Parings UC-1" represents the number of pairings for the cloud
audit use case 1.

The bottleneck is on the SH.Test algorithm which is exe-
cuted by the EP when responding to an auditor query. In our
setting, the complexity is O(k ·r). If we consider k = 78 ·103,
g= 256 and only one CPU, then the processing time is 61 hrs.
Performance for SHE: The performance of Brakerski’s SHE
scheme depends on the allowed number of multiplications
to be carried out in the ciphertext. According to the cloud
audit cases defined, we require to compute at most two
multiplications (for calculating the standard deviation). We
consider the results presented in [11] for our analysis, where:

• Implementation in the algebra system MAGMA.
• CPU: Intel Core 2 Duo at 2.1 GHz.
• Degree of the ring of polynomials: n = 1024.
Lauter et al. provide in [11] the running time of Brakerski

SHE scheme for different configurations. We consider the
setting which allows to compute up to two multiplications on
the ciphertext space to construct Table IV. There we show
the number of executions of each algorithm and the time
estimation (in seconds) needed to compute the average and
standard deviation for cloud audit query Q1.5.

Algorithm Run by Q1.5 -μ Q1.5 -σ
# Exe. Time s # Exe. Time s

SH.KeyGen Customer 1 0.26 1 2.6 · 10−1

SH.Enc AAC k 2.7 · 104 k 2.7 · 104

SH.Add EP k 78 2k 156

SH.Mult EP 0 0 2k 8.7 · 103

SH.Dec Auditor 1 1.8 · 10−2 1 1.8 · 10−2

Table IV
PERFORMANCE FOR CLOUD AUDIT QUERY Q1.5

From Table IV we can conclude that computing the average
μ is quite efficient using Brakersky SHE scheme, since it only
takes 78 s to compute the summation of 78 · 103 ciphertexts.
It takes 148.2 min to compute its standard deviation.

According to the aforementioned numbers in Table III, IV,
the major computational effort is done at the EP. Since it is part
of the cloud, we argue there is a large number of CPUs which
can process the cloud audit query in parallel. For example,
testing if an encrypted IP is authorized or not (i.e., running
the SE.Test algorithm) is a process which easily can be run
in parallel. If we consider 100 CPUs, then this process is
executed in 0.61 hrs. Additionally, we argue that responding
an auditor query is not subject to real time constraints and that
it is executed relatively rarely, e.g. only once a year.

B. Security Analysis
The proposed privacy framework makes use of SHE and

PEKS as cryptographic primitives. These primitives coexist
mutually exclusive in our framework due to the fact that
there is no interaction between them neither explicitly nor
implicitly since we do not apply the same key or encrypt the
same plaintext with different crypto schemes. Consequently,
we argue that the security of each scheme can be analyzed
strictly separated. Both schemes are provable secure, i.e. the
security can be proven using a reduction to a hard problem. At
next we describe the complexity assumption for each scheme:

The security of Brakerski and Vaikuntanathan’s SHE
scheme relies on the RLWE problem which we define at next:
Ring Learning with Errors (R-LWE) Problem. It is a cryp-
tographic complexity assumption similar to LWE problem [14]
[15], however, it reduces the size of the keys to roughly
linear, making the encryption schemes more efficient than
those based on the LWE problem. This efficiency is possible
by working over the ring Rq := Zq[x]/〈x

n + 1〉 (i.e. the ring
of polynomials mod 〈xn + 1〉 with coefficients in Zq), with
the following restrictions:

• q ≡ 1 mod 2n.
• xn + 1 is irreducible over the rationals (achieved with n

a power of two).

Definition 3. (Search R-LWE). Let Rq , q and n be as above.
For fixed secret s ∈ Rq and some error distribution ψ over Rq,
the search ring-LWE problem consists on recovering s given
many Ring-LWE samples, i.e. samples of the form:

(a,a · s+ e) ∈ Rq ×Rq

where:
• a

U
←− Rq, e ← ψ.

• a, e are freshly generated for every sample.

Definition 4. (Decisional R-LWE Problem). Let a, s, e be as
above. Given polynomially many samples of the form (a, b) ∈
Rq×Rq, decide whether b = a ·s+e or b U

←− Rq. In resume,
distinguish if the samples are Ring-LWE vector or random.

Lyubashevsky et al. proved in [12] the equivalence between
the search and decisional variant of the R-LWE problem, by



giving a reduction from the search to the decisional case.
Solving the R-LWE problem is known to give us a quantum
algorithm for solving "short vector problems" on ideal lattices,
which is believed to be exponentially hard.

Boneh’s PEKS scheme is provable secure against chosen
keyword attacks. Its security relies on the difficulty of solving
the Bilinear Diffie-Hellman Problem (BDH).

Definition 5. (Bilinear Map). Let G1 and G2 be two groups
of prime order p. A bilinear map from G1 × G1 to G2 is a
function e : G1 × G1 → G2 such that for all u, v ∈ G1,
a, b ∈ Z, e(ua, vb) = e(u, v)ab.

Definition 6. (Bilinear Diffie-Hellamn Problem). Let G be a
cyclic group of order q and let g be a generator of G. Given
{g,A = ga, B = gb, C = gc} where a, b, c ∈ Zq , compute
e(g, g)abc.
The success probability of any probabilistic, polynomial-

time algorithm A in solving BDH in G is defined as:

SuccBDH
A,G = Prob[A(g, ga, gb, gc) = e(g, g)abc]

BDH assumption: For any probabilistic, polynomial-time
algorithm A, SuccBDH

A,G is negligible.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed to apply crypto building blocks
for a privacy enhanced cloud audit and showed that the use of
Somehow Homomorphic Encryption (SHE) as well as Public-
Key Searchable Encryption (PEKS) for evidence concealment
support are relevant for cloud auditing use cases. We assumed
the evidence store to act honest-but-curious and showed that
with multiple addition operations and two multiplicative opera-
tions as provided by our chosen SHE, the evidence processor’s
computation on encrypted digital evidence data to a large
extend can generate audit reports for relevant audit use cases.
Moreover, with PEKS the auditor is enabled to perform queries
on valid IP address ranges according to a given security policy.
In our future work we will validate the integrity of the stored
evidence. We believe HomMACs and homomorphic signatures
can be applied to our framework to prevent malleability.

IX. ACKNOWLEDGEMENT

The work presented in this paper was supported by the
Federal Ministry of Education and Research (BMBF) within
the project "Promotionsvorhaben zur Erarbeitung von Sicher-
heitserweiterungen für das Cloud Computing" (ProSeCCo).
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or
implied, of the ProSeCCo project or the BMBF.

REFERENCES

[1] Shweta Agrawal and Dan Boneh. Homomorphic macs: Mac-based
integrity for network coding. In Proceedings of the 7th International
Conference on Applied Cryptography and Network Security, ACNS ’09,
pages 292–305, Berlin, Heidelberg, 2009. Springer-Verlag.

[2] Lynn Ben. On the implementation of pairing-based cryptosystems. PhD
thesis, Stanford University, 2007. https://crypto.stanford.edu/pbc/thesis.
pdf.

[3] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe
Persiano. Public key encryption with keyword search, 2004.

[4] Dan Boneh and DavidMandell Freeman. Homomorphic signatures
for polynomial functions. In KennethG. Paterson, editor, Advances
in Cryptology, EUROCRYPT 2011, volume 6632 of Lecture Notes in
Computer Science, pages 149–168. Springer Berlin Heidelberg, 2011.

[5] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas
on ciphertexts. In Proceedings of the Second International Conference
on Theory of Cryptography, TCC’05, pages 325–341, Berlin, Heidel-
berg, 2005. Springer-Verlag.

[6] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) lwe. Cryptology ePrint Archive, Report
2011/344, 2011. http://eprint.iacr.org/.

[7] Cloud Audit Data Federation (CADF). Data format and interface
definitions specification. Distributed Management Task Force, 2012.
http://www.dmtf.org/standards/cadf.

[8] Martim Carbone, Matthew Conover, Bruce Montague, and Wenke Lee.
Secure and robust monitoring of virtual machines through guest-assisted
introspection. In Davide Balzarotti, SalvatoreJ. Stolfo, and Marco Cova,
editors, Research in Attacks, Intrusions, and Defenses, volume 7462
of Lecture Notes in Computer Science, pages 22–41. Springer Berlin
Heidelberg, 2012.

[9] Frank Doelitzscher, Thomas Ruebsamen, Tina Karbe, Martin Knahl,
Christoph Reich, and Nathan Clarke. Sun behind Clouds - On Automatic
Cloud Security Audits and a Cloud Audit Policy Language. In Tibor
Gyires, editor, International Journal on Advances in Networks and
Services, volume 6, 2013.

[10] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis,
Stanford University, 2009. crypto.stanford.edu/craig.

[11] Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can
homomorphic encryption be practical? Cryptology ePrint Archive,
Report 2011/405, 2011. http://eprint.iacr.org/.

[12] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, Advances
in Cryptology, EUROCRYPT 2010, volume 6110 of Lecture Notes in
Computer Science, pages 1–23. Springer Berlin Heidelberg, 2010.

[13] National Institute of Justice (U.S.). Electronic crime scene investigation:
An on-the-scene reference for first responders. U.S. Dept. of Justice,
Office of Justice Programs, National Institute of Justice, 2009.

[14] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. J. ACM, 56(6):34:1–34:40, September 2009.

[15] Oded Regev. The learning with errors problem (invited survey). In IEEE
Conference on Computational Complexity, pages 191–204, 2010.

[16] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy
homomorphisms. In Leonid Hurwicz, David Schmeidler, and Hugo
Sonnenschein, editors, In Foundations of Secure Computations, pages
169–177. Academic Press, 1978.

[17] T. Ruebsamen and C. Reich. Supporting cloud accountability by
collecting evidence using audit agents. In Cloud Computing Technology
and Science (CloudCom), 2013 IEEE 5th International Conference on,
volume 1, pages 185–190, Dec 2013.

[18] Bradley Schatz and Andrew J Clark. An open architecture for digital
evidence integration. 2006.

[19] Bradley Schatz and Andrew J. Clark. An open architecture for
digital evidence integration. In Andrew J. Clark, Mark McPherson,
and George M. Mohay, editors, AusCERT Asia Pacific Information
Technology Security Conference : Refereed R&D Stream, pages 15–29,
Gold Coast, Queensland, May 2006. University of Queensland.

[20] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-preserving
public auditing for data storage security in cloud computing. In
Proceedings of the 29th Conference on Information Communications,
INFOCOM’10, pages 525–533, Piscataway, NJ, USA, 2010. IEEE Press.





Agent-Based Evidence Collection
in Cloud Computing
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Abstract. Nowadays there are many offerings of cloud services all over
the world which have various security requirements depending on their
business use. The compliance of these cloud services with the predefined
security policies should be proven. In a cloud infrastructure this is not
an easy job, because of its immense complexity. This paper proposes
an architecture which uses software agents as its core components to
collect evidence across the different layers of cloud infrastructures (Cloud
Managment System, Hypervisor, VM, etc.) and builds a chain of evidence
to prove compliance with predefined security policies.
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1 Introduction

This work addresses the problem of collecting, processing and persisting evidence
from different sources inside a highly dynamic environment and its automation
dependent on a policy describing the contract between a costumer entity and
its Cloud Service Provider (CSP). The automation aspect is addressed by an
Software Agent (in following agent) and is based on the previous work “Sup-
porting Cloud Accountability by Collecting Evidence Using Audit Agents” [1] by
Prof. Dr. Christoph Reich and M. Sc. Thomas Rübsamen. For example, a CSP is
collecting information about policy violations and storing them using the service
of a second CSP. The potentially confidential captured evidence need to be per-
sisted in a integrity-verifiable way and protected from unauthorized access. This
project’s expected contributions are additional control mechanisms highlighting
the transparency desired by the cloud service costumers and accentuating the
trust in CSPs and their contractual awareness.

The proposed agent-based architecture, which we describe in the following,
collects evidence to allow the detection of policy violations and generates policy
violation reports while protecting sensitive information and respecting costumer
privacy at the same time. Thereby using an agent framework supporting strong
and weak agent migration [2] was necessary for distributing and delegating tasks
on demand adjusted to their different destination environments. The data to
c© Springer International Publishing Switzerland 2015
M. Felici and C. Fernández-Gago (Eds.): A4Cloud 2014, LNCS 8937, pp. 185–198, 2015.
DOI: 10.1007/978-3-319-17199-9 8
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collect is depending on the assured policy contract between a cloud costumer
and a cloud provider which, can be statutorily regulated, defined by the service
provider or created out of user specific criteria. Through periodically audits,
the implemented agents are able to provide the requested claims of evidence by
persisting recognized policy violations.

While a Cloud Service itself potentially contains service interdependencies
with external Service Providers, the sources of evidence to be covered by a trusted
service are increasing, too. A Chain of Accountability can be formed imple-
menting these centrally coordinated trusted (accounting) services along the sup-
ply chain. Pointing out the exact location of a occurred policy violation depicts
how trust in a CSP is strengthened using services implementing evidence reveal-
and notify mechanisms and therefore supporting accountability (e.g. members of
the architecture to propose). In a multi-CSP scenario with service coherences inter-
CSP collaboration is still a fundamental requirement. Currently, there is no stan-
dardized way for a cloud service costumer to check on his own whether or not he is
affected by a policy violation occurred along the supply chain. The meanwhile
established usage of Web Objects (like for example the Amazon Simple Storage
Service AS3) extends the Chain of Accountability with dynamic interaction,
which (usually) is transparent to the costumer. Potential evidence sources like
these connections on demand and their potentially scalable content must be obser-
ved as of the time a active interaction with the service occurs. Therefore, the possi-
bility of interacting with a CSP’s trusted service provides the transparency needed
in a complex environment like the cloud.

This paper is structured as follows: in the first chapter of this paper we dis-
cuss related work (see Sect. 2). In Sect. 3, the evidence collection and persistence
architecture including used technologies and agent coherences is described. Fol-
lowing that, the actual collection of evidence and the different collection agent
types are explained in Sect. 4 followed by the persistence mechanism in Sect. 5.
Following that, Sect. 6 describes the migration of agents in a scenario, where mul-
tiple cloud providers are involved. After that, an example of how service coher-
ences are affecting policy violation evaluation, will be discussed in Sect. 7. We
conclude this paper in Sect. 8 where our perception of further work is noted, too.

2 Related Work

Reich and Rübsamen empathized the need of policy violation audits and pro-
posed how evidence collection has to be mapped to accountability in their previous
work [1]. They are proposing an Audit Agent System which was the groundwork
for the construction of the architecture presented in this paper. This work will not
focus on the mentioned audit aspects but on the storing, presenting and processing
of evidence.

The idea of using Digital Evidence Bags (DEB) [3] plays a key role as a
solid evidence persistence structure in this paper. Based on the work by Turner,
Schatz and Clark propose an extension for connecting evidence composing and
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referencing DEBs using a Sealed Digital Evidence Bag [4]. This mechanism is
a possible extension to this architectures persistence mechanism.

The usage of software agents also were proposed in the context of Security
Audit as a Service (SAaaS) [5]. A related presentation layer and distributed
sources of evidence are discussed in this paper but specializing on security policies
and the guardedness of a source located at the input layer. Also, a ‘security
business flow’ modeler generating the policies to observe is differencing SAaaS
from approach proposed in this paper.

Of course there are many tools offering a agent-based solution for monitor-
ing network devices by collecting and analyzing a wide range of current system
properties. Industry standards like Nagios [6] also providing an agentless moni-
toring solution which is a less capable but goes easy on resources. Also there are
Software as a Service (SaaS) monitoring solutions like New Relic [7] which pro-
viding agents collecting data dependent on different scopes and devices. Besides
the traditional monitoring of (network - e.g. cloud) resources it supports real-
time analytics and a performance monitoring, which can be integrated into the
application development process. Therefore, it is not surprising to be confronted
with this system using a Platform as a Service (PaaS) like Cloud Control [8] or
AppFog [9] simplifying the monitoring of scalable applications. Transmitting the
current values to the cloud brings different advantages like rapid data analyzing
using resources on demand. The architecture proposed in this paper also supports
monitoring functions but differs by extending this aspect in focusing on active
intervention like interacting with third party tools and their provided APIs.

3 Architecture Overview

The focus of this section is the brief introduction of this works architecture
design including its components and used technologies. To understand the flow
and properties of the proposed architecture, we have to take a closer look at the
Java Agent DEvelopement framework (JADE) [10] which is the technological
foundation of our work (Fig. 1).

JADE complies with the Foundation for Intelligent Physical Agents
(FIPA) specifications [11,12], which define the internal behavior on action selec-
tion and execution as well as external agent interaction. The external agent inter-
action refers to the interaction context and the message creation, which draws
on the FIPA ACL (Agent Communication Language). Other specified parts of
JADE are system and platform services, which can be used for agent service
registration or agent migration [13].

Using this powerful framework makes creating different agent infrastruc-
tures quite simple. Every JADE instance is denoted as a Container while
multiple Containers are denoted as a Platform. Inside a Platform exactly
one Main Container exists beside the different agent implementations, which
itself contain agents for infrastructural provisioning. New agents, for example,
can be added transparently as needed and contacted after their registration
with a platform’s Main Container. Using the recommended design guide [14],
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Fig. 1. JADE platforms and containers

the distributed agents are geared to each other and can be modularly extended.
Also, the possibility of using JADE in Public Key Infrastructure mode is given
by creating a configuration file containing the path to a Key-Store, key access
password(s) and starting an agent with the configuration file as a parameter. Not
only exchanged messages but also code transmission (used for agent migration -
see Sect. 6) is encrypted if both participants are using the JADE Public Key
Infrastructure (PKI) module/Add-On.

Being acquainted with the used agent framework lightens the contact with
and comprehension of this architecture. A high level overview of the architecture
is depicted in Fig. 2, revealing how distributed agents are communicating within
it and in which way the different architectural components are interacting. All
parts of this architecture are positioned inside one JADE Platform containing
an evidence interpretation as well as a persistence agent which both interact
with the distributed collection agents. Note, that additional services, which are
provided out-of-the box by JADE (such as the centralized service registry and
multi-platform interaction), are not pictured in Fig. 2.

To provide a chain of evidence, every trusted service of the supply chain con-
tains a controlled agent which is responsible for evidence collection. To determine
a policy violation, a variety of sources like the cloud management system, net-
work packet data flows and storage units are browsed for conspicuous patterns.
Also, external programs can be triggered to analyze their output.
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Fig. 2. High level architecture

To ensure data and therefore evidence integrity, every evidence collection run
is persisted using a Digital Evidence Bag [3] which has been adopted for this
approach (see Sect. 5). The DEB can contain raw data and diverse meta-data
depending on the costumer contract or the kind of occurred policy violation,
respectively. This architecture provides an interface delegating and coordinating
tasks by interacting with the distributed Evidence Collection Agents.

The Input Layer contains different agents responsible for collection of evi-
dence in their different scopes and locations. Currently covered evidence sources
and their techniques are specified in Sect. 4. Each detected violation is noticed
and the whole evidence including its meta- and additional control data is sent
to the processing side. To guarantee information integrity, evidence is provided
with a signature, which must be consistent during the evidence report process.
This means, evidence integrity is ensured from the violation detection until the
conversion from raw data to the output message has happened. At this point, a
participating actor or an external system could be notified automatically. This
automatic, transparency-strengthening process could therefore strengthen the
trust in a CSP providing composite services [15].

The Processing Layer is responsible for the integrity observance and the
evidence request access tracking which is expressed inside the DEBs Tag
Continuity Blocks (TCB), implemented as a H2 Database [16]. The Evidence
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Interpret And Persist Agent is listening for successfully finalized or failed
evidence collection records created by the Input Layer which triggers the persist-
ing of new insights. Also, the Evidence DB is communicating with the Evidence
Presentation Agent, which interacts directly with the Delegation/Control
Agent. Its only purpose is the expressive presentation of requested evidence in
due consideration of the requesting actor. It is also conceivable to provide a cos-
tumers exclusive evidence collection system. In this scenario, the compliance of
policies (from CSP side) is possible using a separate Cloud Service Provider
Agent with the required access rights, respectively the interaction with the cos-
tumers exclusive Delegation Control Agent.

The Presentation Layer is the only point of direct contact with a human
actor (e.g., a customer or a trusted third-party auditor) inside this architecture.
The user interaction handling and request transformation is handed over to
the Delegation/Control Agent. Besides requesting meta data about currently
active Evidence Collection Agents, a costumer entity is able to check the
current status of the contractual compliance with its CSP. Also the explicit
delegation of a evidence collection run is possible due communicating with this
agent. Conveniently, the opportunity of adapting the JADE library to JSP based
systems is given. Therefore, the orchestration of agent actions (which of course
must follow agreed-upon policies) could be added for instance to a costumers
private web interface.

Protective goals inside this forensic mechanism are integrity and confidential-
ity of collected data which have to be guaranteed until the evidence collection
has finished and was persisted. On the other hand, collected data should only
be requested by authorized auditors or other authorized entities such as cloud
regulators.

4 Evidence Collection

This section is an introduction to the different evidence collecting agents, their
evidence sources and the detection of policy violations. As shown in Fig. 2 the
Input Layer potentially contains several distributed evidence sources located at
Infrastructure as a Service (IaaS) -level. Besides the examination of log files [1]
inside different systems, APIs and external applications are sources of evidence,
which can be used to determine policy violations by different patterns. The
evidence collection is performed either by using a so called OneShotBehaviour
for a particular evidence collection initiation or by collecting evidence periodi-
cally/continuously. Currently the evidence sources are covered by the following
Evidence Collection Agents:

– CMS Agent:
This agent is able to interact directly with the central component of any
cloud infrastructure. To detect policy violations, APIs provided by the Cloud
Management System are used to gather needed information. In case of Open-
Nebula [17] the process of evidence collection could be the request for current
storage, network or virtualization orchestration and of course the analysis of
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log files, where events originating from cloud operations are recorded. For
example, there is this internal project working on business secrets, which is
placed on a separate hypervisor. Because of its critical data, this system would
claim besides other transparency increasing measures the delegation of a CMS
Agent. This agent would be responsible for gathering lifecycle information,
tracking of occurred snapshots (which are relevant considering the aspect of
needed confidentiality) and workload information of every (reachable) node.

– Application Specific Agent:
These agent types collect a specific kind of evidence defined by the policy. For
example, a policy could look like “It is not allowed to store email addresses
inside a VM”. To detect evidence of non-compliance, patterns matching email
addresses need to be searched and recorded. Therefore, the agent is triggering
an external program searching the VMs hard disk for the given pattern. This
can be done using the Cornell Spider tool [18], which generates a log file
containing all file paths that possibly compromise the given pattern including
additional meta data. Of course the occurrence of false positives cannot be
excluded automatically from the output.

– Storage System Agent:
This agent is communicating directly with various Storage Management APIs.
Besides performance monitoring this agent is also able to determine the exact
location (e.g. datacenter) of a service. This feature can be used to verify the
awareness of policies requiring a geographically aspect.

– Net-Flow Agent:
This agent’s task is the investigation of different network-enabled devices
inside a CSPs network. Some policies will prohibit the network communi-
cation with certain addresses and/or address-ranges for a specific network
device. By analyzing NetFlow logs, the policy violating communication can
be tracked and used as evidence (e.g., communication endpoints, time and
duration).
In Sect. 6 there is a description of how to use this agent type along different
CSPs in case of using their XaaS as supply chain.

After the evidence collection run has finished, the executing Evidence
Collection Agent generating a evidence record as basis for the correspond-
ing DEB. In some cases the evidence is a complete file which must be sent to the
Processing Layer for purposes of conservation of evidence. Working large log
files containing evidence can become a performance problem because each file
containing a violation must be transmitted to the processing layer. In that case
the evidence file must be transmitted inside a signed Blob and persisted at the
processing layer (best encrypted, too) guaranteeing tamper evident properties.

5 Evidence Persistence

This section illustrates the different data structures (Tables) of the Evidence
Database and how the different attributes are mapped to and reflect a Digital
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Fig. 3. Evidence database

Evidence Bag (DEB). Like mentioned before, the persistence of evidence is trig-
gered at the processing side as soon as the Evidence Interpret and Persist
Agent is receiving a record from an Evidence Collection Agent registered
with its platform. After verifying the dataset’s integrity and adding the cur-
rent Request record, every evidence request is processed by automatically form-
ing the responding Tag row and its underlying layers. Therefore, the Evidence
Interpret and Persist Agent is connected to a H2 Evidence Database
(Fig. 3) using JDBC.

A DEB contains a Tag which has a 1:N relation to an Index, which in turn is
related 1:1 to a Bag.

– The Tag Table containing information about each evidence collection run
in all because of its relation to the particular Bag and their overlying Index
Tables. At this layer, meta data about the evidence record, information about
the delegating agent and a reference to the last accessing subject of this evi-
dence collection run are stored.
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– To be aware of actions performed on a specific Tag or Tag-underlying layer the
TCB entry references a row inside the Request Table to detect every single
corresponding evidence access.

– The 1:N relation between the Tag and the Index is established using an inter-
mediate table.

– Also, containing a signature of every underlying relation altogether, the Tag
table is a robust core element of this evidence persistence mechanism. Inside
the evidence database the signatures are stored as Base64 varchar(String)
and being restored as byte array for data integrity verification using the
Java.security API.

– Besides the Progress start (at the Evidence Collection Agents side) and
the Policy scheme, the Index table contains a bagFormat attribute to cat-
egorize the occurred evidence. As mentioned before every evidence collection
run that scored no policy violation must be persisted, too. This can be done
at this point. The bagFormat is a first indicator of the significance of persisted
evidence. It can be ‘structured text’, ‘raw binary data’, ‘archive’, ‘no policy
violation’ or any other suitable categorization.

– By referencing the Bag table by its corresponding evidenceUnitID, a request-
ing subject is able to reach a stored policy violation. If the evidence is associ-
ated with a file, the file is persisted including its signature at the processing
layers storage but is not stored inside the database because of performance
loss inside the signing and verifying mechanism. However the path to this evi-
dence file is stored inside this Bag table besides the evidenceDetectionTime,
original evidence meta data and an additional Hash. Therefore, using the
JAVA Security API every Tag is signed with the Evidence Interpret and
Persist Agent’s DSA key, while the actual bag holds the Evidence Collec-
tion Agent’s signature, which was created during the collection process.

6 Agent Migration

This section focuses on a distributed evidence collection scenario by illustrat-
ing the possibilities of agent migration. Wasting system resources on not cur-
rently needed services (e.g. agents) can be avoided using the JADE API and/or
the JADE GUI for manual agent orchestration [2]. Figure 4 depicts the sce-
nario of a multi/inter CSP agent distribution on demand: According to a given
policy, the A-PPL Engine (Accountable Privacy Policy Language) enforces
accountability policies, like planned in the A4Cloud Project [19].

Also, the reaction on an occurred event is described (e.g., the notification
of a subject about the analyzed evidence scoring a specific result). The A-PPL
is currently work in progress. It extends PPL which extends the eXtensible
Access Control Markup Language (XACML) [20] which is why this part is cur-
rently emulated inside this architecture using a XACML Parser deciding whether
a function will be executed or not (e.g. the migration function).

Because of the A-PPL Engine’s SaaS aspects [21] the service probably will
run inside a different ISP’s virtual machine, which also possibly will be stored
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Fig. 4. Agent distribution on demand

inside a different ISP’s Infrastructure. To provide a high availability the data is
probably replicated to another data center, which possibly is located in another
country and because of that following another juristic system [22]. Therefore, the
actual avail of transparent data location in the cloud is to interpret as additional
risk for a costumer.

Depending on the imported rules the Delegation/Control Agent distributes/
migrates the requested Evidence Collection Agents to their JADE destination
platform. The different scarcely spawned Evidence Collection Agents initially
performing a service registration after noticing their corresponding Processing
Layer to communicate with. To avoid unnecessary overloading data traffic the
evidence is always persisted inside their corresponding Evidence Store (weak
migration).

The possibilities of network analytics are given anyway if the Net-Flow
Agent is positioned ISP-local. To implement the Net-Flow Agent in a CSP-
comprehensive way, every CSP must offer either a standardized API to check
out the necessary connection stats or executing a (continuous) Net-Flow Agent
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by their own to communicate with. Potentially this API will implement the
Cloud Trust Protocol (CTP) [23]. To collect every available net-flow evidence
the different CSPs must report their supporting services to the requesting system
(e.g. this architecture) or respectively provide a way to check them out. While
there is no standardized API the opportunity of using a Net-Flow Agent on
every service providing CSP is given (see Sect. 7).

Also the possibility of temporary migration is given, where an agent will be
transferred to another platform and migrated back to the ordering agents plat-
form (strong migration). In this case, not only the agents executable is transmit-
ted between the platforms but its currently objects containing new insights, too.
Of course, distributed agents remove themselves from their corresponding plat-
forms in case of a non-continuous evidence collection run. To collect evidence,
the corresponding agent platform must be started with the required rights to
access the resource (in most cases this is root).

7 Complex Service Provision Scenarios

A service provision chain scenario demands a correlation of evidence collected
by all involved services and their platform’s Evidence Collection Agents. The
complexity of this service provision refers to the inclusion of multiple Service
Providers and different companies, respectively.

Figure 5 depicts a scenario where CSP A is offering a (potentially public)
Service A but using Service B provided by CSP B (transparent to costumers).
In this example, a network communication with a country outside the EU takes
place at the service provided by CSP B.

The agreed upon policy predicates that every processed data must been held
inside the European Union but because of the supply chain CSP interoperability
is needed, more precisely a trusted service is needed.

Both CSP A and CSP B are hosting services inside their own datacenters
located inside the EU. All necessary evidence connections are provided using
this evidence collection architecture trusting a central Locality Compliance
Agent which is aware of all service relationships used by a potential costumer.

If CSP A respects the policy by hosting a service inside the EU but is in turn
using a service provided by CSP B, CSP A alone is not able to guarantee the
compliance to this policy.

Requesting evidence reports from the affected (distributed) platforms Dele-
gation/Control Agent is how compounded evidence is come about. Depend-
ing on the data transmitted from Service A to Service B, potentially valuable
information could be transmitted to a ‘forbidden’ location, which is why the
Evidence Collection Agent placed at CSP B diagnoses for network commu-
nication policy violations and creates an evidence record inside its platform’s
Evidence DB. Once the Locality Compliance Agent receives all necessary evi-
dence reports from the participating CSP’s Presentation Layers, the occur-
rence of interdependent policy violations are checked depending on the given
EU data policy. Every new insight about interdependent policy violations will be
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Fig. 5. Service coherences

forwarded to the A-PPL Engine which possibly will consider further steps (i.e.,
notifying stakeholders). Passing the new insights along the chain of accountabil-
ity is relevant for a full conclusion but must go easy on network resources at the
same time if this evidence architecture is applied in large datacenters. Therefore,
for example a simple ‘OK=EU’ or ‘NOK=USA’ message on demand is sufficient
for a pooled decision filling the dashboard of a customer’s private web interface
using the boolean product of all replies, group of replies respectively.

8 Conclusion and Future Work

This paper underlines the importance of structured evidence collection on de-
mand running on nearly every device supporting transparency and therefore
trust. The presented architecture enables distributed collecting and persisting
of evidence following imported rules. Because of the possible distributed JADE
platforms this construct will work in large CSP data centers without overloading
the average performance.
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To provide a quick evidence processing there must be a mechanism that
excludes already known policy violations at Evidence Collection Agent side.
The mentioned Sealed Evidence Bag [4] is a potentially evidence persistence
extension. Also, the collected evidence must be presented in a convincing and
distinct way at the user interface. Still existing challenges among other things are
the performance evaluating of the defined architecture and scaling tests enabling
the deployment of this architecture for highly dynamic services.
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Abstract—Today’s cloud services process data and let it often
unclear to customers, how and by whom data is collected, stored
and processed. This hinders the adoption of cloud computing
by businesses. One way to address this problem is to make
clouds more accountable, which has to be provable by third
parties through audits. In this paper we present a cloud-adopted
evidence collection process, possible evidence sources and discuss
privacy issues in the context of audits. We introduce an agent
based architecture, which is able to perform audit processing
and reporting continuously. Agents can be specialized to perform
specific audit tasks (e.g., log data analysis) whenever necessary,
to reduce complexity and the amount of collected evidence
information. Finally, a multi-provider scenario is discussed, which
shows the usefulness of this approach.

Keywords—Cloud Computing, Accountability, Audit, Evidence

I. INTRODUCTION

Issues of transparency and control arise, when data moves
from being stored locally to being stored remotely in the cloud.
It becomes important to provide evidence for handling of
confidential data in the cloud by remote parties throughout
the whole lifecycle, also including deletion. However, this
evidence is often not provided.

Currently, there is a lack of transparency and account-
ability from the provider side as for service provisioning/de-
provisioning, tenant isolation, data processing and movement,
privacy protection as well as many other aspects, which used
to be fully under the control and monitoring of the consumer.
Even if key terms are being added into cloud contracts (Service
Level Agreement), processes and techniques must be devel-
oped to continuously and automatically monitor and audit these
terms and ensure adequate transparency. Also, cloud providers
must be prepared to provide adequate evidence about security
and privacy in cloud scenarios.

A system for evidence collection that gathers, integrates
and processes information, including logs, policies and context,
in a way that preserves privacy and confidentiality and supports
audit is needed. However, such an evidence framework for
cloud computing does not exist yet.

The main contribution of this paper is establishing the
conceptual basis of a system, which uses evidence generated
from various sources in cloud service provision to conduct
audits. These audits shall strengthen accountability by provid-
ing transparency regarding how, by whom and where data is
collected, stored and processed in the cloud.

This paper is organized as follows: In Section II we
summarize existing related work. After that, we describe the

relations between cloud audits, accountability and evidence
in Section III. Following that, in Section IV we propose an
adopted evidence collection process based on digital forensics
and discuss several evidence collection sources specific to
cloud environments, as well as the most important data privacy
issues in this context. In Section V we propose an audit agent
system for cloud audits and evaluate this concept in Section VI.
We conclude this paper in Section VII.

II. RELATED WORK

Schatz and Clark [1] from the Common Digital Evidence
Storage Format Working Group (CDESF) propose an evidence
framework. Their architecture focuses on digital evidence
bags (DEB), a generalized method for collecting information
about evidence and evidence metadata, while keeping evidence
integrity.

Flaglien et al. [2] evaluated currently used storage and
exchange formats for handling digital evidence against criteria
identified in recent research literature. Formats intended for
storing evidence from highly dynamic and complex systems
are characterized by incorporating additional information,
which can be processed by data mining tools.

Our work focuses on collecting evidence in the cloud.
Using digital evidence bags may addresss interoperability and
evidence integrity, while additional metadata can be used to
facilitate evidence processing.

An advanced approach for using the hypervisor for provid-
ing evidence in digital forensics is Virtual Machine Introspec-
tion (VMI) [3]. VMI leverages the capabilities of the hypervisor
to look “inside” the virtual machine during runtime and using
information collected this way for intrusion detection (e.g.,
detecting malware on the introspected VM). Garfinkel et al.
conclude that this method is suitable for investigating cloud
infrastructures, as long as there is access to the hypervisor.

Deploying additional software for evidence collection and
monitoring inside virtual machines can be a problem in public
cloud scenarios, where the customer has full administrative
control inside the virtual machine. To overcome this issue,
an out-of-guest-approach can be followed, like Carbone et.
al present in their work [4]. By moving the monitoring tool
outside the focused VM and leveraging function-call injection
techniques as well as virtual machine introspection (VMI), the
monitoring tool can be protected from the customer, resulting
in more reliable information for evidence collection.

Dunlap et al. propose ReVirt [5], a logging and replay
system for analyzing intrusions, that runs integrated with a



VM and performs the logging in the host OS. After an attack,
it can replay the whole VM process for analysis.

The approaches proposed by Garfinkel, Carbone and Dun-
lap provide deep insight into what happens in a virtual ma-
chine. However, depending on the service model (i.e., how
much administrative privileges a customer has) additional data
collection points need to be considered to provide a detailed
view on what happens in the cloud.

Poisel et al. [6] discuss digital forensics investigations at
the hypervisor level of virtualized environments and introduce
the topic of evidence correlation within cloud computing
infrastructures.

Lu et al. [7] propose to adopt the concept of provenance
in cloud computing by enabling a data object to report who
created it and modified its contents. Therefore, data provenance
could provide digital evidence for post investigations.

CloudAudit [8] provides a common interface and names-
pace with the goal to automate audits. However, how this
can be achieved, what tools can be used, and how cloud
infrastructures can implement these interfaces, is out of the
scope of CloudAudit. These open questions are addressed by
our proposed system.

Wang et. al [9] state requirements for secure third party
auditors: 1) the auditor should be able to efficiently audit the
cloud data storage without demanding the local copy of data
2) the auditing process should bring in no new vulnerabilities
towards user data privacy. Regarding audits, this addresses
the problem of an untrustworthy auditor, which needs to be
considered by our proposed system as well.

III. ACCOUNTABILITY AUDITS AND EVIDENCE

In this section, we describe accountability as it is under-
stood in the A4Cloud project, how this concept relates to
cloud audits and the relevance of digital evidence. In general,
the A4Cloud project focuses on the handling of personal and
confidential data in the cloud. All tools, operational procedures
and mechanisms involving such data have to be audited to
ensure accountability and give evidence in case of remediation.

Accountability for an organization, as described in the
A4Cloud FP7 research project [10], consists of accepting
responsibility for the stewardship of personal and confidential
data with which it is entrusted in a cloud environment, for
processing, sharing, storing and otherwise using data.

Derived from this, Accountability Cloud Audit can be
defined as: “The independent examination of records and
activities to establish controls, policies, operational procedures
and mechanisms, and expected means of remediation and
to recommend any indicated changes in controls, policy, or
procedures.”

For evidence, we use the definition by the Scientific
Working Groups on Digital Evidence and Imaging Technol-
ogy (SWGDE/SWGIT), which states digital evidence to be
“Information of probative value that is stored or transmitted
in binary form” [11].

Figure 1 depicts the relationship between cloud audit, ev-
idence collection, contractual requirements and accountability

attributes. Evidence is collected from multiple sources across
a cloud system (a discussion of potential sources of evidence
can be found in Section IV-A). These data are processed in
accordance to the audit goal and presented as audit reports.
Therefore, collected evidence supports cloud audits. Evidence
should also be mapped directly to goals stated in service level
agreements (SLA) and accountability contracts as well as other
policy requirements. The compliance with or violation of such
requirements can then be verified by performing audits and
evaluating the available evidence.

For example, to make data processing (especially the
compliance with or violation of data policies by the cloud
provider) in the cloud more transparent, captured data-lifecycle
events can be matched against policies in audits and thereby
show the customer, that his data are handled appropriately.
By providing evidence for the appropriate handling of data,
the cloud provider demonstrates good stewardship of personal
and confidential data.

Fig. 1: Collecting Evidence and Mapping to Accountability

Accountability can be described by different attributes
identified in the A4Cloud project. Several of these attributes
are important in the context of evidence. Assurance for exam-
ple, can be achieved by providing evidence for the compliance
or violation of policies. Attributability is important to be able
to attribute responsibility to actors. Observability describes
how transparent a system is in terms of its operation and
Verifiability captures the ability of an external actor to verify
system operation against contractual agreements.

IV. EVIDENCE COLLECTION FOR PROVING
ACCOUNTABILITY BY AUDITS

Cloud forensics refers to digital forensics investigations
performed in cloud computing environments. The process of a
digital investigation can be separated into different phases as
defined by the National Institute of Standards and Technology
(NIST) in [12]. Each of these 3 phases has its own specific
purpose in the chain of proving, that a cloud environment is
accountable:

1) Securing Phase: The major intention is the preser-
vation of evidence for analysis. The data have to be
collected in a manner that maximizes its integrity.
This is normally done by a bitwise copy of the origi-
nal media. As can be imagined, this represents a huge
problem in cloud computing where you never know
exactly where your data are located and additionally
do not have access to any physical hardware, which is
solely under the control of the cloud service provider.



2) Analyzing Phase: In this phase, data from multiple
systems or sources is pulled together to create an as
complete picture and event reconstruction as possible.
Especially in distributed system infrastructures, like
clouds, this means that bits and pieces of data are
pulled together for deciphering the real story of what
happened and for providing a deeper look into the
data. Because of the multi-tenancy of cloud infras-
tructures, the collected information at the cloud man-
agement system has to be filtered and then correlated
with information collected at the customer’s cloud
resources.

3) Presentation Phase: The report, created in this phase,
is a compilation of all the documentation and evi-
dence from the analysis stage. The main intention of
such a report is that it contains all results, it is com-
plete and clear to understand. The timeline presented
in the reports is also of high significance, because of
the dynamic character of cloud environments.

With respect to accountability, requirements and other
issues have to be stated in policies. According to these policies
it can be decided which evidence data are important. One way
to prove the compliance with these policies are cloud audits.
Third-party cloud audits support the assurance of liability in
case of data misuse, data breaches or data loss.

A. Sources of Evidence

The sources for evidence can be manifold, reaching from
business process logging to operational logging. Operational
logging could cover errors that concern a single cloud cus-
tomer, critical conditions that impact all users, system related
problems (e.g. failed resource access) and all activity that is
executed by privileged accounts.

Data collected by logging systems is perhaps the most
important type of data, from which evidence may be derived.
In cloud environments, logging is performed on several ar-
chitectural layers (see Fig. 2). For example, regarding the
processing of data in the cloud, provenance information is
of high importance. Logging where data originates, how,
where and by whom it is processed, as well as where (in
terms of geographical location) it is transferred is invaluable
information when auditing against data processing policies.

As seen in Fig. 2 data can be collected at the network,
hardware, host operating system, hypervisor, virtual machines
and cloud management system (CMS). In the following we
describe possible sources for evidence data collected across
the different architectural layers:

Network: In a complex computing model, such as cloud,
several stakeholders are involved. It should be possible to
monitor networking resources which are utilized by a particular
tenant. Networking resources can be either physical or virtual
and can be shared among tenants. For instance in IaaS, a single
network card in the host machine is utilized by several VMs
and they may belong to different customers, which is typical
in a multi-tenant cloud environment. For cloud audits, traffic
flow information is important to reveal violations of security
policies (e.g., compromised hosts, traffic flows to disallowed
locations). Logging of traffic and communication endpoints is

Fig. 2: Sources of Evidence

therefore an important source of evidence, especially in IaaS
cloud deployments.

Host OS: Evidence collected on the host operating system
level (i.e., servers hosting virtual machines) comprises load
information, performance counters (e.g., network traffic coun-
ters) and various information collected by monitoring tools.

Hypervisor: The hypervisor is used to operate virtual
machines. It has full control over virtual machines and assigns
resources to them. It can provide runtime statistics, but also
information derived using advanced techniques like Virtual
Machine Introspection (VMI). Evidence collected from the
hypervisor can be invaluable, since a VM can be observed
from the outside.

IaaS: At this level, the most interesting evidence acquisi-
tion technique is VM snapshots. At any time, a copy of a VM
can be created to preserve the actual state of a VM. Beside
the VM, all cloud resources (e.g., storage, network, etc.) are
important sources of evidence. It is noteworthy that there are
still administrative domain problems. A cloud customer admin
might alter information collected on this level and therefore
make this evidence unreliable and useless.

PaaS: In a web service PaaS scenario evidence collection
can be performed by the cloud provider as well as the cloud
customer (i.e., platform developer). On the provider side,
runtime environment logging (e.g., webserver, java runtime,
database service, access control service) is of utmost impor-
tance. The major concern regarding information collection on
this layer evolves around the segregation of multi-tenant log
information at the provider-side. Additionally, the customer
is free to implement its own evidence collection mechanisms
(e.g., application logging). However, to what extent this infor-
mation can be trusted is beyond the scope of this paper.

SaaS: On the SaaS level evidence may come from audit and
logging APIs provided by the SaaS service provider. Such APIs
may also include authentication and access records. However,
the actual content of such data is highly dependent on the cloud
provider and application type. Another source of evidence is



transient data stored on the client side. Evidence collection
in such a scenario might need information from client side
logging (e.g., javascript logging of operations) and other data
stored in the browser’s cache.

CMS: The Cloud Management System (CMS) is a huge
source for evidence information. It is the central controlling
component of a cloud infrastructure and provides information
about user logins, cloud service usage, access rights, configu-
ration, resource provisioning, policies, location etc.

Inter-Cloud: A service provision scenario with multiple
cloud service providers demands a correlation of collected
evidence from all involved providers. In such a scenario, inter-
cloud collection of evidence is important.

B. Privacy Concerns

When collecting data on such a broad spectrum of different
layers and components, privacy quickly becomes an important
issue to consider. In the following, we want to raise awareness
to the most important issues:

• Protection of Evidence Source: On every architectural
layer of the cloud, data is generated, which may poten-
tially serve as evidence during audits. The credibility
and usefulness of audit results is tightly coupled with
the quality of evidence sources. Therefore, the in-
tegrity of evidence data must be guaranteed. Data has
to be protected from manipulation and data collected
from evidence sources must be tamper-proof or at least
tamper-evident. Without protection from tampering,
the evidence collection system is not reliable and
audits cannot be performed based on that data. Opera-
tional security mechanisms (such as tamper-proof log-
ging) and organizational measures (restricting access
to potential data sources and collected evidence to a
minimal set of employees with authority over evidence
collection) need to be put in place.

• Data Retention: Evidential data generated at the dif-
ferent layers may contain sensitive information (e.g.,
communication logs depicting communication part-
ners, length and date). Such data must be handled
carefully and deleted as soon as it is not needed
anymore to ensure protection from misuse. However,
continuous audits continuously evaluate a system.
Therefore, a continuous stream of evidence may be
needed, depending on the audit task.

• Public Audit Interfaces for Third-Party Audits: Public
audit interfaces, which serve the purpose to strengthen
transparency of cloud systems and ensuring proper
usage of data in the cloud, come with several privacy
issues. Cloud independent third-party auditors must be
restricted in the amount of information, they can re-
quest from such interfaces. The amount of information
should be just enough to perform the specific audits.

V. ACCOUNTABILITY AUDIT AGENT SYSTEM

IT audit in general is defined as the process of collecting
and assessing evidence to show that safeguards to protect
against abuse and safeguards to maintain data integrity are in
place, which will allow organizations to continue conducting

business successfully. In this section, we will show how audits
can support accountability. In particular, we will propose
an automatic audit system based on software agents, which
can be deployed across different architectural layers in cloud
environments to collect and process evidence.

In previous work performed at the HFU Cloud Research
Lab [13] we already presented our work on a cloud audit
system, which enables customers of cloud services to perform
audits of their cloud infrastructures (i.e., virtual machines
in IaaS) using custom defined policies to check against. By
describing policies in CAPL [14], providers and customers
are enabled to define specific security policies and audit
goals. These policies are checked using suitable tools (e.g.,
AV software, configuration parsers and analyzers). By rolling
out software agents to the virtual machines, these tools are
executed and relevant output and results is collected. By
checking against thresholds and constraints defined in audit
policies, audit results are generated and presented to the issuer
of the audit process.

In the following, we conceptually extend this idea, to
specifically support accountability. To support accountability,
a more data-centric approach needs to be considered. While
the assurance of compliance with security policies put in place
by customers and providers is a very important issue, it does
not cover problems relating to the correctness and policy
compliance of data collection, transfer and processing in the
cloud. To address these issues and providing transparency in
these cases of data handling, using cloud audits, which focus
on the virtual machine level, is not sufficient.

Fig. 3: Conceptual Overview of the Audit Agent System

Figure 3 depicts the conceptual overview of our proposed
extension to the audit agent system to support accountability.
Before the Audit Agent System is sketched the involved stake-
holders are described:

• Cloud Provider: The cloud provider provides its cus-
tomers with cloud services (e.g., IaaS, PaaS, SaaS. . . )
with the need to consider multiple architectural lay-
ers (see IV-A for further discussion). Additionally,
multiple cloud providers (depicted in the Figure as
Cloud Provider 1, 2 and 3) from different regions
(e.g., Germany, Great Britain and United States) can



be involved in the provision of a single service for the
customer.

• Auditor: The auditor has technical know-how and
sufficient resources to conduct audits on behalf of
either the customer (external view) or provider (inter-
nal view). The goals and nature of policies which are
audited, may differ, depending on the view. The view
may also differ in case a trusted third-party auditor
(TPA), who is independent from the customer and
provider, but acting on behalf of any of those.

The Audit Agent System consists of the following components:

• Audit Agent Controller (AAC): The AAC is a com-
ponent, which can tap into several cloud subsystems
(see IV-A) and deploy agents for evidence collection.
A possible interface for auditors to this component
could be CloudAudit [8] by the Cloud Security Al-
liance.

• Evidence Store (ES): The ES is an isolated data store
for each tenant, which stores evidence collected by the
agents. Mechanisms to secure and protect the evidence
are employed.

• Audit Policy Module (APM)): The audit policy module
is used by the auditor to define audit policies. On
the basis of these policies (describing the goal of
what needs to be checked), a suitable audit tool is
selected by the Auditor and configured properly. These
preparation steps result in an Audit Task, which is
processed by the AAC.

• Evidence Processor & Presenter (EPP): The EPP is
also a per-tenant component. By fetching evidence,
verifying its integrity (e.g., verifying signatures and
checksums) an evaluating against audit policies pro-
vided by the APM, a report with the evaluation result
is generated.

Audits in general can be performed periodically or on-
demand/continuously, when it is needed (e.g., change in the
infrastructure). Our approach focuses on continuous auditing.
The main problem of periodical audits in cloud computing is
the dynamic change of the infrastructure and therefore, the risk
of missing critical accountability issues if the interval is too
big or if the interval is too short. Hence, a vast number of
data from which evidence has to be derived may need to be
analyzed. Simply storing data continuously without a specific
audit goal in mind, just to have a large enough data-basis to
perform an audit at a later point in time, does not necessarily
improve chances of success nor is it a good idea in terms of
data protection and privacy.

In our approach, audit policies are defined and evidence
collection is optimized to only collect and store data relevant
to the policy. By following this approach, we expect to reduce
the amount of data stored in the ES.

Additionally, by providing the EPP and ES on a per-tenant
basis, we try to reduce privacy risks compared to storing
information related to all tenants in one single datastore. This
form of isolation also enables a simplified deletion of the ES
in case of service termination as well as backing up the ES
for archival purposes.

VI. EVALUATION

In this section we evaluate our proposed concept for an
accountability audit agent system using a multi cloud provider
scenario.

Fig. 4: Multi Cloud Provider Scenario

A. Scenario

An end-user (employee of company E) is using a Customer
Relationship Management (CRM) software (see Figure 4). The
CRM software is provided by Cloud Provider 1 (CP1) as
a SaaS service. E interacts with the CRM application using
a web-interface. CP1 does not possess computing resources
itself, but uses third-party providers. Cloud Provider 2 (CP2)
is specialized in IaaS services and hosts the CRM software of
CP1. Cloud Provider 3 (CP3) provides database as a service
(DBaaS), which is connected to the CRM software. Both, CP2
and CP3 are constantly being evaluated by CP1 regarding
performance and cost.

B. Accountability

The end-user handles important business-related informa-
tion in the CRM software on a regular basis (e.g., customer
informations like names, addresses and history of business
transactions). The company of E is therefore concerned about
the security of this data, because they have no direct control
over the infrastructure the CRM is hosted on. Therefore, they
have negotiated the following accountability related contractual
clauses with CP1:

1) All service providers involved in the service provision
chain need to be ISO27001 certified to guarantee a
baseline of security controls.

2) The data must only be stored inside the European
Union (EU) regardless of CP1’s performance and cost
evaluations of sub-providers.

C. Audit

CP1, CP2 and CP3 implement our proposed accountability
audit agent system. E therefore wants to put an audit policy, for
checking data location and communication end-points involved
in the service provision, in place, which shall be continuously
checked against. E can delegate this task to an external (e.g.,
information security professional, TPA) or internal (informa-
tion technology department) auditor. The auditor describes the
data locality task (i.e., which data collection tools to use, tool
configuration and which sources of evidence are relevant) in



a machine-readable policy document. This policy maps the
accountability related contractual clauses above and could look
like this:
Policies based on contractual clause 1):

• If availability incident occurs, then check incident
process and collect evidence.

• If Denial of Service (DoS) occurs, then check report-
ing and collect evidence.

Policies based on contractual clause 2):

• If log data of CRM (SaaS) indicates communication
with entity outside the European Union, then collect
evidence.

• If VM is migrated to another location, then collect
evidence.

• If VM provisioning is located outside EU infrastruc-
ture, then collect evidence.

• If database write operations are outside EU IP domain,
then collect evidence.

The policy document is sent to the AACs at CP1-3. The
audit agent starts a tool for log parsing on the CRM instance.
It specifically looks for communication events that happened
over a specified period of time (in the audit task). By matching
communication end-points and records these events (using a
tamper-proof mechanism) and puts the so created evidence in
the ES. At CP2 the audit agent installs a network probe, which
taps into network traffic of the virtual machines and records
communication end-points. This information is also collected
in the ES. At CP3 the audit agent (similarly to CP1) parses
database access and transaction logs and stores events in the
ES. The EPP continuously analyzes the evidence put into the
ES in defined intervals and creates reports stating whether or
not a violation of communication and storage restrictions has
been detected.

The report is presented to the auditor, who then notifies
E about the accordance of CP1 to policies put in place.
Depending on whether or not the auditor is internal or external
to E, the level of detail of the report is adjusted to be more
or less. E1 may as well request reports directly from the EPP,
which results in a detailed report about the performed actions,
registered events and detected incidents.

VII. CONCLUSION

In this paper we emphasized the need of accountability
audits and showed the importance of giving evidence to
improve the trust into cloud computing environments. After
adapting the general evidence process to cloud computing,
possible evidence sources were presented and privacy concerns
have been discussed. An agent based architecture has been in-
troduced, which is able to do the audit processing and reporting
continuously and selectively. Specialized agents can perform
specialized audit tasks whenever they are needed. This reduces
the amount of collected evidence information and make the
audit architecture adaptable to dynamically changeable cloud
environments. Finally, a multi-provider scenario shows the
usefulness of this concept.

In our future work, we will refine the proposed system
while considering the integrity of our approach. Important
issues, which need to be addressed are the privacy issues
outlined in this paper as well as protecting our system against
agent manipulation and injection of malicious agents, while
minimizing performance impact imposed by continuous au-
dits.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no: 317550
(A4Cloud).

REFERENCES

[1] B. Schatz and A. J. Clark, “An open architecture for digital evidence
integration,” in AusCERT Asia Pacific Information Technology Security
Conference : Refereed R&D Stream, A. J. Clark, M. McPherson, and
G. M. Mohay, Eds. Gold Coast, Queensland: University of Queensland,
May 2006, pp. 15–29.

[2] A. Flaglien, A. Mallasvik, M. Mustorp, and A. Årnes, “Storage and
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Abstract. In cloud computing users are giving up control over resources
such as storage. Lacking transparency of cloud services (e.g. data access
and data lifecycle reports) is an important trust issue, that hinders a
more wide-spread adoption of cloud computing. Giving the customer of
cloud services more information about data usage, compliance test re-
ports and accordance to best-practices make the cloud more transparent.
Reporting about such verifications is the main objective of cloud audits
and is performed by third party auditors (TPAs). However, public au-
diting by TPAs can introduce new privacy problems. In this paper, a
survey of current cloud audit privacy problems is given and techniques
are shown how they can be addressed. Also, requirements for a privacy-
aware public audit system are discussed.
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1 Introduction

Cloud computing as a paradigm is becoming more important for today’s informa-
tion technology. The shift from using traditional in-house datacenters towards
on-demand provision of resources for delivering services has provided signifi-
cantly more flexibility. However, a major aspect of adopting the cloud is giving
up control of resources such as servers and network infrastructure. This also im-
plies giving up control of data, which is stored in the cloud as well as services
running in the cloud. The benefits provided are: increased flexibility, on-demand
scalability and sometimes cost advantages.

Large companies like Amazon, Google and Microsoft have recognized the po-
tential business opportunities and are providing well-established cloud services.
Depending on the cloud service model, Infrastructure as a Service (IaaS), Plat-
form as a Service (PaaS), or Software as a Service (SaaS) [1] cloud customers
have different levels of control over their resource stack for providing and using
their services. For instance, a customer does have more control of their resources
in a IaaS compared to a SaaS resource. Nevertheless some parts of the cloud
infrastructure always remain hidden from the customer. This leads to a lack of
transparency of cloud services, which is in turn the most important reason for a
lack of trust in cloud computing. Highly visible security and privacy incidents of



major cloud providers also make this problem worse, e.g., as reported by CNN:
”Google fires engineer for privacy breach” [2].

The Cloud Security Alliance (CSA) launched a new initiative to encourage
transparency of security practices within cloud providers, called Security, Trust
& Assurance Registry (STAR) [3]. Providers are encouraged to provide self as-
sessment reports using STAR.

Some cloud providers address the transparency problem by providing tools
such as Amazon’s dashboard [4], but to increase trust cloud providers need
to be able to prove compliance with external and internal regulations. Cloud
audits are one instrument to provide cloud customers with more insight on cloud
service delivery. They increase trust in cloud providers by proving the provider’s
compliance to regulatory requirements (SAS70, HIPAA, PCI) and industry best-
practices (ISO27001, BSI Grundschutz, ITIL) regarding the implementation of
privacy controls. Cloud audits may be characterized from different perspectives.
They can be performed internally by the cloud provider or externally by a trusted
third-party auditor. Additionally, audits may also be performed by the customer
(e.g., public audit), by providing him with the necessary interface to conduct
them.

However, cloud audit capabilities themselves can be problematic in multi-
tenant environments such as the cloud. By providing an auditor access to cloud
infrastructures, the customer’s data might be at risk. In case of an untrustworthy
auditor (third-party or internal) sensitive information is potentially at risk. The
Privacy Rights Clearinghouse published such an incident, where an untrustwor-
thy auditor used his access privileges to sell customer’s credit card information
obtained from the Amsterdam Hospitality Group [5]. Such an incident may also
happen in cloud environments. Information about other tenants might also be
leaked, when a customer is given the capability to audit the provider’s services
himself. Additional protection mechanisms beyond contractual terms are needed
in cloud audit scenarios. Another problem arises from making the cloud more
transparent in terms of data locality and audits of policies, which require certain
types of data to be stored at distinct locations. However, tracking of data in the
cloud is not the focus of this paper.

In this paper, we focus on the privacy implications of providing publicly avail-
able audit capabilities to cloud customers. In Section 2 we define transparency,
privacy and cloud audit concepts, followed by Section 3 where we provide a
survey on privacy issues, which stem from public cloud audits as well as some
ways to address these issues. After that, requirements for a privacy-aware public
audit system are discussed in Section 4. We end this paper with a conclusion in
Section 6.

2 Transparency, Privacy and Cloud Audit

The dilemma is to provide the highest levels of transparency while maintaining
strong privacy and being auditable by a third party. In this section, we describe
the concepts of transparency, privacy and cloud audit.



2.1 Transparency

Transparency in the sense of visibility is an important issue in cloud computing.
According to the NIST definition of cloud computing one essential characteris-
tic of cloud computing is measured service [1]. Resources are monitored, con-
trolled and reported on continuously. This provides some degree of transparency
for the user and provider. However, this information might not be enough for
showing what happens in the cloud. Additionally, technical (e.g. cloud architec-
ture, configurations etc.) and operational information (information about secu-
rity processes, incidence management, etc.) needs to be provided to make cloud
services transparent. Also, the different cloud service delivery scenarios (IaaS,
PaaS, SaaS) need to be considered. In IaaS the cloud user usually needs less
information from the cloud provider, due to having full control about virtual
machines at the operating system level. In PaaS and SaaS however, additional
information needs to be provided by the provider because of the administration
shift away from the customer.

2.2 Privacy

Privacy can be looked at from different angles. From a consumer’s perspective
it comprises the protection and appropriate use (according to the customer’s
expectations) of the customer’s personal data. From an organization’s point of
view, privacy includes the application of laws, policies, standards and processes
by which personally identifiable information (PII) is managed [6]. These aspects
have to be considered carefully in cloud computing scenarios, where PII is pro-
cessed and transferred.

Confidentiality is a concept, which focuses on the protection of data from
unauthorized access. Usually, cryptographic mechanisms are used to achieve con-
fidentiality. Confidentiality can be linked to privacy in the sense of protecting PII
by using encryption techniques. However, in current cloud computing services,
data is usually not encrypted to enable processing of data by the cloud provider.
Therefore, other ways have to be found to protect customer’s privacy.

2.3 Cloud Audit

Common cloud computing scenarios usually include at least one cloud service
provider and a customer in the service provision chain. The introduction of a
third party auditor (TPA) offloads time-consuming and cost-intensive tasks, as
well as required knowledge to conduct audits from the customer. The entity,
which performs audits is called cloud auditor. Generally, audits are used to
“verify conformance to standards through a review of objective evidence” [7]. In
cloud computing this means cloud services are examined regarding their perfor-
mance, privacy, and security controls, which shall assure the cloud customer, that
appropriate measures are in place. To enable the TPA to fulfill his role, public
auditability becomes a requirement. The cloud provider has to provide auditors



with interfaces, techniques and necessary documentation as well as any addi-
tionally needed information to conduct audits. The auditor can than leverage
his expertise and conduct audits on behalf of the provider (for external audits)
or the customer.

Fig. 1. Cloud Audit Process

Figure 1 depicts an automatic, tool-driven cloud audit process. Starting from
a specific audit task, which describes a distinct objective, a tool is provisioned
to perform the task (e.g., checking specific configuration files or parsing logs for
certain events). The configuration of the tool specifies what has to be checked
during execution. On the basis of the evidence collected by the tool, a report is
generated and the tool is deprovisioned.

Auditors can be internal or external. External auditors are members of in-
dependent organizations specialized on performing audits. Internal auditors are
usually contracted to the organization, whose entities are to be audited. They
generally adhere to the same standards as external auditors with respect to
performing an independent analysis.

3 Audit and Privacy

Cloud auditing needs to consider privacy of cloud customers. There can be several
views on public cloud auditing scenarios, which will be shown in the following:

– Disclosure of customer’s data
Cloud customers store information in the cloud. Examples for this are cloud



storage services, which are used to store files, database as a service, which
stores more structured data and data stored in SaaS services (e.g., customer
relationship information).

– Disclosure of metadata about customer’s data
This kind of metadata includes data access and data usage logs, location
data and data tracking information.

– Disclosure of metadata about customer
This kind of metadata includes information about customer’s usage profiles
of cloud services.

– Disclosure of security relevant information
Cloud customers may build virtual infrastructures. Auditing capabilities for
such infrastructures may be provided by the cloud service provider as well
as a third party. It is important to design them in a way, that no potentially
harmful information is disclosed.

In this section, we provide an overview about recent research conducted in
the area of privacy with respect to audits. We also give a short overview of how
audits increase trust in cloud computing infrastructures.

3.1 Operational and Reliability Audit

By moving to the cloud, customer’s (also owners of data) are placing control of
their data into the hands of the cloud service provider. Two big arising issues
are reliability and availability. Threats to these goals are for instance (silent)
data corruption and (unintentional) deletion. Data corruption can have multiple
causes like hardware faults in the networking or storage subsystems, or soft-
ware bugs during processing of data. Deletion of data can be caused by careless
provider personnel as well as software bugs. Risks evolving around these prob-
lems are for instance high costs caused by downtimes. On the provider side there
is a risk of potential reputation loss. To mitigate these risks and provide the cus-
tomer with an adequate level of assurance, that his data are safe with the cloud
provider and stored correctly, audits can be used.

However, actually checking the correctness and retrievability of data is not
a trivial task. Simply downloading data from the cloud and checking whether
or not its integrity was harmed or parts are missing is not a feasible solution
in cloud environments. Having to download terabytes of data and calculating
checksums on that data would place a heavy burden on the customer or auditor,
financially as well as in terms of resources needed.

Therefore, new ways of reliability auditing have to be found for cloud envi-
ronments. There already exist several approaches, which aim at assuring data
integrity and retrievability in the cloud while removing the need to download
and check huge chunks of data. Most of the approaches focus on a third-party
auditor (TPA) performing audits on cloud infrastructures.

Proof of data possession (PDP) [8] is a concept that uses homomorphic ver-
ifiability tags (HVTs) to prove that a remote party is in possession of a file.



This is done by generating metadata about the file prior to upload and verifying
possession using a challenge-response protocol later on.

Proofs of retrievability (POR) [9] is a concept to enable an entity to verify
the intactness of remotely stored data without requiring to retrieve large files.
Thereby the server proves with a high probability to a data owner, that a file
can be retrieved even in the case of some parts being corrupted. Most of the
presented approaches leverage some kind of POR to enable reliability audits of
cloud storage services [10].

In [11] Wang et al. propose a network architecture for secure data storage in
the cloud. They acknowledge the previously described availability and privacy
problems in current cloud storage systems. In their solution, a trusted TPA
conducts audits on behalf of the data owner. They assume, that there is no
incentive for the TPA to violate the privacy of the data owner. However, by
proposing a solution, where the TPA is denied access to content, data leakage
to the TPA shall be prohibited. Therefore, they propose the requirement, that
a TPA must not know the contents of data, which is audited. Further goals
of their approach are the support of dynamic data updating, batch auditing,
and minimization of auditing overhead (e.g., network bandwidth). They propose
cryptographic techniques like using homomorphic authenticators, and Merkle
hash trees [12] to fulfil those requirements.

Boyang et al. take the concept of public auditability one step further and
propose a system, where shared data stored in the cloud can be verified while
preserving the identity privacy of each signer of a data block [13]. By using ring
signatures to construct homomorphic authenticators the TPA is able to verify
data, while not leaking identity information.

Furthermore there exist projects, that include TPAs and public auditability
principles to enable secure and trustworthy cloud storage systems [14–17].

Performance auditing and the privacy issues introduced by it have been inves-
tigated to a much lesser degree. Large cloud provider such as Amazon, Google
or Microsoft usually provide their customers with specialized interfaces (e.g.,
Amazon CloudWatch) for extracting performance monitoring information. Such
information includes, but is not limited to, CPU utilization, network I/O statis-
tics. The degree to which such information is published (e.g., on a per VM basis
or details about the actual cloud infrastructure performance) is chosen by the
cloud provider. Privacy problems may be linked strongly to the number of de-
tails published and the multi-tenant nature of cloud environments. Performance
counters published to one customer might be used to deduce information about
tenants using the same shared resources.

TPAs auditing cloud performance might need elevated privileges on the ex-
amined services (e.g., for measuring loading and saving times in a SaaS scenario).
A TPA also has to assess the accounting system of cloud providers. This is usu-
ally tied very closely to the collection of usage logs and performance counters.
To make a statement about the correctness of a provider’s accounting processes,
the TPA needs access to such information. However, without proper measures
to protect the customer’s privacy (e.g., proper level anonymization) a TPA can



easily extract cloud usage profiles (e.g., service interaction and communication)
from this information. One thing to consider is the reversal of anonymization by
combining multiple sources of anonymized data.

Operational and reliability audits are used to assess a providers procedures,
systems, records and activities in order to test the adequacy of controls in place.

3.2 Regulatory Compliance Audit

Another form of audits is for regulatory compliance. Some businesses require
cloud service providers to be compliant to or certified against certain regula-
tions. Prime examples of such industries are healthcare, where sensitive med-
ical information is processed, or finance, where sensitive financial data about
individual subjects are processed. Typical examples are SAS70 [18] reports or
HIPAA [19], which define how such data may be processed. Furthermore, there
exist ISO27001 [20] which addresses information security management and CSA
CloudAudit [21], which combines several of the previously mentioned audit
frameworks to address cloud specific issues. However, these kinds of audits usu-
ally contain a lot of non-automatable audit tasks such as questionnaires or in-
terviewing experts at the provider.

Reports generated by these frameworks are often not made available to the
public. Amazon for example only releases their SAS70 report, when a customer
contacts the Amazon support and requests it specifically. Regarding the privacy
of other customers, these reports might reveal security flaws in the provider’s
processes, which could be exploited.

Regulatory compliance audits are used to assess a providers compliance in
order to:

– Test the adequacy of controls in place
– Verify that a provider complies with established policy
– Verify that a provider complies with operational procedures (e.g., COBIT)

3.3 Security and Information Privacy Audit

Cloud security audits are supposed to uncover flaws and vulnerabilities in cloud
infrastructures and service delivery chains, for instance: reveal unauthorized ac-
cess to services and data, destruction of data and denial of service (DoS). The
goal of this kind of auditing is to assure an appropriate level of protection espe-
cially by following industry best-practices.

However, information that is used during a security audit usually contains
highly sensitive data, such as access logs and performed actions by customers.
Special care has to be taken when providing such information in a public audit
system.

Security audits are used to asses a provider’s security issues in order to:

– Detect breaches or potential breaches of compliance
– Detect badly configured services



Information privacy audits are used to assess a providers compliance espe-
cially with respect to customer data managing in order to:

– Verify that a provider complies with established data policy
– Verify that a provider complies with privacy acts

4 Proposed System Requirements for a Public Cloud
Audit System

In this section, we propose a privacy-respecting system for public cloud audits
and address the most important requirements.

Fig. 2. Privacy-respecting Views on Cloud Audit Reports

Figure 2 depicts a high-level scenario for such a system. The foundation com-
prises of an evidence base. Evidence is any information needed to provide proof
for specific audit tasks. This may include logs, configurations, data provenance
information, timestamps, checksums and any other kind of data and metadata,
which might be useful in constructing audit trails. Audit trails provide reliable
proof about a certain audit task. However, as previously described audit trails
might leak PII. Therefore, different views on audit reports must be provided to
different stakeholders. This is done using the access management layer, which,
depending on the actor requesting the audit report, provides reports with dif-
ferent levels of detail.

Sample Scenario: For example, consider the following scenario:

A task for auditing the data life-cycle events of a customer’s data in
the cloud is requested. The sources of the relevant information are the
cloud management system (CMS), which tracks high-level events such as
provision/deprovision of cloud storage and the storage backend, which
provides detailed information about data access, location and usage. A
report is generated as a result depicting the audit result.



Mapped to the approach described, three different views on this report are pro-
vided by the audit system:

– Customer view:
The customer view is the most detailed. It provides information about the
CMS events, actions performed on the storage, such as who accessed what
including timestamps, retrievability checks results.

– Auditor view:
The auditor’s view is less detailed. According to the checks defined in the
audit request, the auditor is provided with more high-level results. Evidence
accompanying the report is anonymized as needed.

– Provider view:
The provider’s view on the audit report contains mostly information stem-
ming from the CMS.

Cloud Audit System Requirments: From this we derive requirements for the cloud
audit system:

– Interfaces: public audit interfaces may differ among providers which com-
plicates interoperability. In complex service provision chains, this hinders
efficient auditing (see Section 5).

– Formats: differing data formats for the same information among providers
also hinders interoperability. Also, tools used to extract information for spe-
cific parts of the audit trail usually use proprietary formats.

– Data collection: auditing requires the collection of data across all architec-
tural levels. However, no more information than actually needed to provide
proof for the audit task at hand shall be collected.

– Specific audit tasks: audit tasks shall focus on specific tasks. This shall enable
reducing the amount of data needed to provide proof for the task.

– Dynamics: cloud environments are very dynamic. Therefore, a dynamic mech-
anism for collecting relevant evidence is needed. The audit system must sup-
port a mechanism to react address dynamic infrastructures.

5 Audit Challenges in Cloud Service Delivery Chains

Complex cloud service provision scenarios, where multiple service providers are
chained for service composition, introduce new audit challenges. Typically, these
chains are hidden from the customer. However, the customer’s data are trans-
ferred along the service provision chain. For example a SaaS service provider
may use an IaaS service provider’s infrastructure to deliver its service. The IaaS
service may be chosen depending on pricing and performance parameters and
can also be exchanged without the customer’s notice. This is a rather simple ex-
ample for a cloud service delivery chain. More complex scenarios are thinkable,
when multiple SaaS, PaaS and IaaS providers are involved.

Auditing a service and the subsequent services it depends on, introduces the
following challenges:



– Audit of each involved service: each service involved in the service provision
chain needs to audited.

– Audit of data transfer between services: the communication between services
along the provision chain needs to be audited.

– Regulatory compliance: some parts of the provision chain may be located
abroad, placing them under different jurisdictions.

6 Conclusion

In this paper we presented public cloud audit as a possible solution to increase
trust in cloud computing by providing a proof and higher cloud transparency. We
thereby focused on privacy concerns which arise in public cloud audit scenarios
and addressed them in our proposed solution. By providing cloud stakeholders
with different access views on cloud audit reports and therefore privacy of cloud
customers can be protected.

In our future work, we will refine the high-level requirements of this sys-
tem. Additionally, more complex service delivery chains, which involve multiple
cloud service providers will be analyzed in detail to make public cloud audits
practicable and service delivery chains auditable.
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Abstract. Evidence that allows assurance of accountability services,
verification of compliance with the principles of accountability by service-
providers and attribution of responsibility for breaches within the chain
of accountability is essential. This paper defines how evidence may be
required and proposes suitable ways of treating key accountability con-
cepts. It shows the importance of verification and assurance, monitoring
and auditing, and challanges of evidence in cloud computing. A discus-
sion of logging and evicence gathering points complete the paper.

1 Introduction

Issues of transparency and control arise, when data moves from being stored
locally to being stored remotely on the cloud. It becomes important to provision
evidence for handling of confidential data in the Cloud by remote parties through
whole lifecycle, also including deletion. However, this evidence is often not pro-
vided; transparency and verifiability are missing in the cloud context (especially
at PaaS and IaaS levels). Moreover, there are additional related issues including
cloud computing and globalization, increasing foreign government surveillance,
the potential for light-touch self-regulation by the back door, weak certification
for accountability, and weak links in terms of data protection along the service
provision chain.

Currently, there is a lack of transparency and accountability from the provider
side as for service provisioning/de-provisioning, tenant isolation, data processing
and movement, privacy protection as well as many other aspects which used to
be fully under the control and monitoring of the consumer. Even if key terms
are being added into cloud contracts (Service Level Agreement), processes and
techniques must be developed to continuously and automatically monitor and
audit these terms and ensure adequate transparency. Cloud providers must be
also prepared to provide adequate evidence about security and privacy provision.



2 Evidence for Accountable Cloud Computing Services

A system for Evidence Collection that captures, integrates and processes the
information including logs, policies and context in a way that preserves privacy
and confidentiality and, supports audit and attribution is needed. An evidence
framework for Cloud Computing does not exist yet. The main contribution of
this paper is establishing necessary requirements for provisioning of evidence in a
Cloud environment and how these requirements influence the tasks of monitoring
and audit.

This paper is organized in the following way. In Section II we summarize
existing related work. In this context, in Section III, we discuss general require-
ments necessary to provision evidence handling in a Cloud environment. In Sec-
tion IV we discuss how these requirements influence the tasks of monitoring and
audit. In Section V we summarize challenges of evidence provisioning in Cloud
Computing. We conclude the paper in Section VI.

2 Related Work

One initiative towards evidence framework for Cloud Computing is an open
architecture for digital evidence integration [1] by Schatz, B., and Clark, A. J.
from the Common Digital Evidence Storage Format Working Group (CDESF).
The architecture focused on digital evidence bags (DEB), a generalized method
for collecting information about evidence and evidence metadata while keeping
evidence integrity.

In Dykstra’s paper [2] investigates how to obtain forensic evidence from cloud
computing using the legal process by surveying the existing statues and recent
cases applicable to cloud forensics. A sample search warrant is presented that
could provide a sample language for agents and prosecutors who wish to obtain
a warrant authorizing the search and seizure of data from cloud computing
environments.

The paper from Haeberlen et al. [3], an accountable virtual machines (AVMs)
has been introduced, which can execute binary software images in a virtualized
copy of a computer system and can record non-repudiable information that al-
lows auditors to subsequently check whether the software behaved as intended.
Since this approach is basically VM logging and replaying, it is effectively the
same as our full integrity checking, potentially with a lot of overhead.

In the paper of Poisel et al. [4] discuss digital forensics investigations at the
hypervisor level of virtualized environments and introduce the topic of evidence
correlation within cloud computing infrastructures.

The acquisition and analysis of digital evidence in cloud deployments is more
complex, because data could be encrypted before being transferred to the cloud
or it could be stored in different jurisdictions resulting in data being deleted
before investigators have access to it [5].

Flaglien et al. [6] evaluated currently used storage and exchange formats for
handling digital evidence against criteria identified in recent research literature.
Formats intended for storing evidence from highly dynamic and complex sys-
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tems are characterized by incorporating additional information, which can be
processed by data mining tools.

Lu et al. [7] proposed to adopt the concept of provenance to the field of
cloud computing by enabling a data object to report who created it and modi-
fied its contents, provenance could provide digital evidences for post investiga-
tions. Provenance information would have to be secured in cloud environments
as leaking this information could breach information confidentiality and user
privacy.

Marty’s [8] approach utilize logging facilities to generate and collect relevant
data to support the digital forensics investigation process.

The chain of custody documents how evidence was handled in the context of
the digital investigations process [9]. The documentation describes how evidence
was collected, analyzed, and preserved to be approved in court.

3 Accountability and Evidence

The A4Cloud FP7 research project [10] approach encompasses legal and regu-
latory mechanisms and a range of technological enhancements that can provide
the necessary basis for trust. Customers, providers and regulators should be sup-
ported by preventive, detective, and corrective task (see [11]) and, for example,
give cloud customers more control over their cloud services, ensure providers to
meet their obligations, and enable cloud audits.

Technology can provide assistance in ensuring proper implementation of ac-
countability. In particular, technology can be used to strengthen the enforcement
and monitoring of policies and to help provide evidence, assurance and trans-
parency. Hence, in accordance with Recommendation 5 from (Castelluccia et al,
2011 [12]), our approach is that privacy assessment, assurance, verification or en-
forcement should be evidence-based, and that these evidences might be derived
from a number of sources, events and traces at different architectural layers.

The A4Cloud project identified a number of accountability attributes, like
obligation, responsability, remediation, attributability, liability, sanctions, as-
surance, transparency, remediation, observability and responsiveness. These at-
tributes have different importance from the perspective of a framework of evi-
dence and identification of evidence types. We can divide these attributes into
two general groups, those that reflect on accountability as a concept and those
that reflect on how such concept should or could be implemented. Evidence of
the following accountability attributes are of primary interest:

1. Attributability: Attributability describes a property of an observation that
discloses or can be assigned to actions of a particular actor (or system ele-
ment).

2. Observability: Observability is a property of an object, process or system
that describes how well the internal actions of the system can be described
by observing the external outputs of the system.

3. Assurance can take the form of evidence. An accountability system can pro-
duce evidence that can be used to convince a third party that a fault has
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or has not occurred. In the context of accountability, assurance could re-
fer to provision of ex ante evidence for compliance to governing rules, and
possibly also to evidence that the governing rules and other factors provide
appropriate grounds for trustworthiness .

4. Verifiability can be defined as the ability of an external party to observe
a given aspect of a contractual relationship through the collected evidence.
The quality or level of verifiability depends directly on the available evidence.

Remaining difficulties addressed by A4cloud is the development of mappings
between the accountability contracts/SLAs and evidence available through log-
ging. The framework should build an evidence base from which mappings of low
level distributed remote IT logs can be mapped to high level policy requirements
and service level agreements (SLAs). Evidence of accountability can therefore
be provided and input to certification schemes or trustmarks. Figure 1 shows
an overview of these relationships with log data being collected as evidence and
evidence supporting auditing as well as assuring the previously mentioned ac-
countability attributes addressed by the A4Cloud project.

Fig. 1. Collecting Evidence and Mapping to Accountability

Environments in
which there are di-
verse and heteroge-
neous service providers,
make provision of pro-
tocols and models for
trust verification and
assurance difficult. The
CloudTrust Protocol [13]
defines some evidence
categories, but has not covered other categories such as legal liability of the
involved parties.

There are no efficient mechanisms available to gather convincing evidence
from verified log data in distributed multi-tenancy environments, even if cloud
providers would be willing to provide this. Although there are a number of exist-
ing logging approaches, they do not fit cloud computing very well. For example,
EGEE LB log solution in grid computing is mostly used for debugging purposes
only, as it keeps track of jobs. Even if verified log data is available, there are
still challenges to make them compatible and interoperable. As different cloud
providers implement and operate their systems differently, there is no guaran-
tee that they all provide the same kinds of log information, which may expose
weaknesses in their systems. There is currently no standard on log information
to be delivered and there is no financial or regulatory incentive for the providers
to provide such information. Furthermore, there is no accountability model for
cloud, and therefore it is impossible to assign responsibilities even if the ev-
idence exists. Neither are there any mechanisms for assigning responsibilities
when the incident involves more than one provider based on gathered evidence
in distributed systems.
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4 Monitoring and Audit

Accountability mechanisms must be justified and Bennett [14] points out that
a important process is independent testing of practices, provision of evidence
that is taken into account, including auditing against the ISO 27001 series and
associated cloud security standards. Evidence is provided by tools into trusted
third party auditing processes against such standards.

ISO standards cover audit requirements at a high levelwhich is to maximize
the effectiveness of and minimize interference to/from the information systems
audit process. These solutions are not currently linked to formally defined ac-
countability models, as accountability models only currently exist in terms of
regulatory frameworks or point technical solutions. Accountability (for comply-
ing with measures that give effect to practices articulated in given guidelines) has
been present in many core frameworks for privacy protection, like the Organiza-
tion for Economic Cooperation and Development (OECD)’s privacy guidelines.

A4Cloud provide an approach based around a model of accountability that
is interdisciplinary in approach, in which we build an evidence repository that
provides evidence for preventive, detective and corrective accountability mecha-
nisms by means of associated mechanisms for obtaining and negotiating obtain-
ing these events from remote monitoring parties, and mechanisms for mapping
the low level IT logs to what is in our repositories to policies and service level
agreements (SLAs). In this way we bridge from distributed remote logs to high
level policy requirements, and can detect policy violations. Audit capabilities
in conjunction with external audit frameworks should be enhanced in order to
strengthen the obligation for compliance and improve detection of violations.

5 Challenges of Evidence in Cloud Computing

Cloud forensics refers to digital forensics investigations performed in cloud com-
puting environments. The process of a digital investigation can be separated into
different phases as defined in the National Institute of Standards and Technol-
ogy, “Electronic Crime Scene Investigation: An On-the-Scene Reference for First
Responders” [15] each having its own specific purpose:

1. Securing Phase: The major intention is the preservation of evidence for anal-
ysis. The data has to be collected in a manner that maximizes its integrity.
As can be imagined, this represents a huge problem in the field of cloud com-
puting where you never know exactly where your data is and additionally
do not have access to any physical hardware.

2. Analyzing Phase: Data from multiple systems or sources is pulled together
to create as complete a picture and event reconstruction as possible.

3. Presentation Phase: Reporting all results in a clear and understandable way.

Current techniques in computer forensics can only analyze the evidence left
behind by a careless intruder. We will use a combination of legal, technical and
regulatory approaches to provide traceability, logging mechanisms and tools for
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determining information provenance in distributed systems. This will underpin
liability assignment and validation of insurance claims made in case of data
breach or data loss. Evidence provided by our tools will enhance existing and
developing certification schemes within the cloud.

With respect to the notion of evidence, it is important to differentiate be-
tween accountability and forensics. Digital forensics looks for unintended evi-
dence, i.e. evidence that some party was not planning to leave and which collec-
tion was not planned ahead.

5.1 Sources of Evidence by Logging

The sources for logging can be manifold reaching from business relevant logging
and operational logging. Operational logging could cover errors that concern a
single cloud customer, critical conditions that impact all users, system related
problems (e.g., failed resource access) and all activity that is executed by privi-
leged accounts.

Sources of evidence to log, based on requirements and attributes, should
be strengthened through the use of formal methods (e.g., formal logic). This
is necessary to ensure the evidence quality in a situation where the amount of
evidence-related data exceeds human reasoning capabilities.

Logging will need to be carried out at various stages of abstraction, i.e. at
the system level, at the data level, at the service level, at the business level to
determine when data is accessed, shared, moved, etc. The type of things that
need to be logged at the data level are:

– data creation: the creation of a new data item, and the policies associated
with this new item. The new item may be created by a user, or may arise
from the automated copying or processing of data already in the system.

– data access: who accessed which data, for what purpose, the role of a person
accessing the data, whether consent was obtained for usage from the data
subject

– data flow: where the data is sent (including the jurisdiction), who shared
data with whom

– data type: the type of data (e.g., is it personal, sensitive, etc.)
– data deletion: when was the data deleted, which erase method was used

(unlink, delete data, delete backup, etc.)
– data handling: how data is handled to check conformance with some policies

(e.g., data is stored password-protected or encrypted), data policy changes
by the service provider, timing information (for example, for conformance to
data retention policies)

– data notification: triggering and satisfaction of obligations

Subsequently, this information can be used in order to analyse whether or-
ganizational, regulatory and legal policies have been followed (this is a detective
control, as opposed to checks made within the system associated with access
control, etc. which are preventive). More specifically, we may want to focus on
the following:
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– segregation of duties; trans-border data flow; assurance that access control
policies have been met

– assurance that obligations have been met
– records about how information was shared, with the context and associated

obligations/sticky policies

5.2 Evidence Gathering Points

There are various locations to gather evidential data. As seen in Fig. 2 data (log
data, memory, databases, etc.) can be collected at the network, hardware, host
OS, hypervisor, the VMs, the CMS, the network and evidence data across other
cloud platforms.

Fig. 2. Evidence Gathering Points

Network: In a complex computing model,
such as Cloud, several stakeholders are in-
volved. It should be possible to monitor net-
working resources which are utilized by a
particular stakeholder. Networking resources
can be either physical or virtual. Moreover,
these resources can be shared among stake-
holders. For instance in IaaS, a single network
card in the host machine is utilized by sev-
eral VMs and they may belong to different
customers. Distinguishing between customer’s
traffic, which are hosted in a common set of
substrates, is a key issue for accountability.
This can also be applied to other service models of cloud, when traces of stake-
holders’ network activities must be available as an evidence type. However, exist-
ing networking devices and monitoring solutions are not compatible and efficient
for such a multi-tenant environment.

Hypervisor: The usage of data from hypervisors to prove various actual situations
has been referred to as “virtual machine introspection” (VMI) and data gathered
from this level of access supported the operation of Intrusion Detection Systems
(IDS). It is suitable for investigating cloud infrastructures as long as there is
access to the hypervisors.

VM: In order to obtain information from within VMs it could be helpful to install
additional software inside the VMs. Carbone et al. [16] follow this approach by
developing a secure and robust infrastructure called SYRINGE. The monitoring
application is protected because it is put into a separate virtual machine as
known from the out-of-guest approach. Nevertheless, it is possible to invoke guest
functions by utilizing the function-call injection technique. The VM introspection
make use of the guest OS knowledge of the deployed software architecture and
can only be accessed with the customer’s permission. A disadvantage arises from
this component being susceptible to compromise from malicous entities.
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CMS: The Cloud Management System (CMS) is a huge source for informa-
tion gathering. It is the central controlling component of a cloud infrastructure
and provides information about user logins, cloud service usage, access rights,
configuration, resource provisioning, policies, etc.

IaaS: Except for traditional forensic acquisition at the virtual resources most
interesting are VM snapshots which can accommodate preservation letters or
serve as the acquisition image. Public clouds do not allow live forensics and
access to volatile data. The storage is logical and focused on allocated space.
Images can include data remnants or unallocated disk space. The logging may
be co-located or spread across multiple and changing resources.

PaaS: In a web service PaaS the log data analysis can be carried out with the
aforementioned methods, but relies on the cloud service provider. Multi-tanent
log data must be separated or merged together from multiple resources.

SaaS: Access to application / authentication logs are possible to get and the SaaS
application features may assist with network forensics. The logging information
is located on the provider side and highly dependent of the application. The
information may be inconsistent across API.

InterCloud: Cloud sources may be distributed over many providers and therefore
collecting evidence over multiple sides is even more complex and difficult. There
is a need of standardization of an evidence protocol, similar to the TrustCloud
protocol.

6 Conclusion

The accountability approach taken in the EU FP7 A4Cloud project should help
organisations meet their obligations and give cloud customers more control in
cloud services. An evidence framework will be developed to assure accountability
by building an evidence base gathering information. This information is collected
at different level of the cloud stack and distributed in the infrastructure.
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