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Abstract 

This is a thesis on outdoor monocular visual SLAM in natural environments. The 

techniques proposed herein aim at estimating camera pose and 3D geometrical structure of 

the surrounding environment. This problem statement was motivated by the GPS-denied 

scenario for a sea-surface vehicle developed at Plymouth University named Springer. The 

algorithms proposed in this thesis are mainly adapted for the Springer’s environmental 

conditions, so that the vehicle can navigate on a vision based localization system when GPS 

is not available; such environments include estuarine areas, forests and the occasional semi-

urban territories.  

 The research objectives are constrained versions of the ever-abiding problems in the 

fields of multiple view geometry and mobile robotics. The research is proposing new 

techniques or improving existing ones for problems such as scene reconstruction, relative 

camera pose recovery and filtering, always in the context of the aforementioned landscapes 

(i.e., rivers, forests, etc.). Although visual tracking is paramount for the generation of data 

point correspondences, this thesis focuses primarily on the geometric aspect of the problem 

as well as with the probabilistic framework in which the optimization of pose and structure 

estimates takes place. Besides algorithms, the deliverables of this research should include 

the respective implementations and test data for these algorithms in the form of a software 

library and a dataset containing footage of estuarine regions taken from a boat, along with 

synchronized sensor logs. 

 This thesis is not the final analysis on vision based navigation. It merely proposes 

various solutions for the localization problem of a vehicle navigating in natural 

environments either on land or on the surface of the water. Although these solutions can be 

used to provide position and orientation estimates when GPS is not available, they have 

limitations and there is still a vast new world of ideas to be explored. 
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Chapter 1 

Introduction 

This is a thesis on vision based localization and mapping using a single camera in outdoor 

natural environments. The methods discussed and proposed herein aim at estimating 

camera pose and 3D geometrical structure of the surrounding environment in order to be 

used in localization systems for vehicles navigating in natural environments.  

 The main objectives, assumptions and constraints in this study were shaped by a 

scenario in which a sea vessel named “Springer” would have to navigate exclusively on 

visual aids for a short period of time. Springer (Figure 1.1) is a GPS-guided small catamaran 

developed at Plymouth University for the exploration of coastal waters such as river estuaries. The 

current study investigates and proposes solutions that could successfully aid the vehicle in 

keeping track of its waypoints in situations wherein positioning feedback is intermittent or 

entirely absent. This scenario directly incurs numerous significant challenges for the vision 

based localization system such as unconstrained camera motion and unstructured image 

content (i.e., no repeatability in recognizable patterns). Furthermore, the Springer does not 

employ active sensors, a fact that precludes the use of ranging sensors, which would have 

been a significant advantage in terms of robustness and accuracy of the vision based 

localization system. 

 This thesis proposes frameworks of existing and new algorithms that could 

potentially be used for vehicle/camera localization problems wherein the environmental 

limitations resemble the ones that apply to the Springer’s case. It should be stressed that the 

majority of existing solutions in literature concern conditions that, in many ways, do not 

apply in the case of Springer: In particular, these solutions usually concern indoor 

environments with recognizable unique features, involve additional ranging or global 

positioning sensors, incorporate knowledge of accurate motion priors and landmark 

models; moreover, data collection becomes an easy task when performed indoors (e.g. a 
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desk or an office workspace is much more convenient than a boat cruising the river). It 

therefore becomes evident that the limitations imposed on the research problems that this 

thesis is dealing with are very challenging and the methods proposed, as well as the results 

and conclusions drawn, are of significance to the community, especially for researchers 

dealing with problems that dwell in the realm of field robotics. 

1.1 The “Springer” 

The “Springer” is an unmanned sea-surface vehicle (Figure 1.1) custom-built by Plymouth 

university technicians. It uses two battery powered DC motors in each hull providing 

differential thrust drive. It is also equipped with 3 standard GPS receivers and 3 magnetic 

compasses for global positioning and single-axis orientation feedback respectively.  

 

Figure 1.1. The unmanned surface vehicle known as “Springer”. The camera (circled in red) is 
mounted on the left hull, pointing sideways. 

The original version of Springer (Naeem, Xu et al. 2010) was able to execute simple 

navigation missions throughout a programed list of locations (waypoints) using global 

positioning satellite (GPS) feedback. Typical scenarios would involve search-and-rescue 

missions or collection of water samples. To achieve its objectives, the vehicle utilizes a 

simple planar motion model with constant speed. Thus, navigation becomes a matter of 

controlling the angle (yaw) about the vertical axes, provided high-accuracy azimuth 

readings from the magnetic sensors. Satisfactory proximity to a waypoint is decided by 

means of a distance threshold from the vehicle’s current position. Once the vehicle has 
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successfully “hit” a waypoint, it then adjusts its orientation objective as the offset from its 

current heading to the direction from its centroid (as a 2-dimensional object) to the next 

waypoint location. Sensor sampling and controller actions are executed in 1s intervals to 

synchronize with the GPS reception events. 

In the updated version of the Springer, it was decided that strictly monocular vision 

(as opposed to stereo vision) would be employed during the GPS-denied runs. This 

decision was based on the fact that scene depth varies significantly and could therefore 

easily produce degenerate disparity in standard stereo rigs. Although the Springer has 

plenty of room for a second camera that could potentially form a large baseline vector with 

the first and such an idea would be advantageous in terms of efficient scene structure 

recovery, it was however abandoned primarily due to the limited (at the time, USB3 

cameras were not available and fast high definition image capturing in real time would 

require very specialized and expensive equipment – the Springer is cost effective by 

definition) computational resources. Camera calibration is typically performed offline, 

either in the lab or onboard the Springer. Calibration “on the fly” was not a primary goal of 

this research and therefore is not addressed in this thesis. 

1.2 The necessary assumptions imposed by the Springer’s 

design objectives on the vision based localization problem 

Transferring the existing principles and techniques for vision - based localization to natural 

environments and particularly to ones that involve the seabed in the camera view requires a 

rigorous problem statement which will take into consideration the fundamental limitations 

incurred by the nature of the environment. The current section enlists these limitations in 

the form of conditions and constraints which will be assumed valid throughout this thesis, 

unless stated otherwise.  

1.2.1 Non-degenerate visibility of coastal structure  

The Springer’s “habitat” involves river estuarine areas and lakes. Evidently, if the vehicle is 

going to plan its motion relying partially or entirely on visual feedback, it follows that the 

existence of some visible structure on the coast must be present in the captured images. 

This requirement emerges from the fact that the seabed cannot be used to reliably extract 
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motion information. Thus, the useful portion of the image concerns only the region 

depicting the estuary and therefore capturing degenerate views where all coastal structures 

are depicted as a blob is not an unlikely configuration, provided that the distance to the 

shore varies significantly. Subsequently, throughout this thesis it is assumed that the video 

sequences do not contain images in which the coast vanishes over the horizon. Figures 1.2 

and 1.3 illustrate typical examples of degenerate and “useful” depictions of the estuary in 

captured images. It should be noted that degenerate coastal depictions pose a significant 

problem in data collection because they occur very often in the captured sequences. 

 

Figure 1.2. Example of a degenerate image of the coast. The structures circled in red are blurred and 
insufficient for reliable motion tracking. A few valid useful regions are indicated in green, mostly 
because they involve sharp edge corners. 
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Figure1.3. Example of useful estuarine depiction. Coastal vegetation (circled in green) covers a 
large portion of the image and the structure is relatively clear. 

1.2.2 Global positioning feedback unavailable or intermittent 

The primary assumption in this problem concerns the lack of global positioning feedback 

for sufficiently long periods of time to render navigation impossible without any other 

means of localization.  

1.2.3 Unknown motion dynamics 

The Springer navigates by controlling its yaw angle. It does not make use of a differential 

thrust model. This leaves very little margin for accurate motion prediction because of two 

reasons: a) Motion control events are extremely slow (1s) compared to the camera frame 

rate (24-30 Hz) and, b) The planar motion assumption is not representative of the changes 

in orientation of a vehicle cruising on the surface of the water; although this coarse 

approximation is acceptable for GPS based navigation in calm waters, it presents however 

large prediction errors in image space regardless of weather conditions and therefore cannot 

be employed as a motion model in the context of filtration. 

A model of motion dynamics is an essential part of standard algorithms for vehicle 

localization and in the case of Springer would have allowed for relatively accurate 

predictions of the vehicle’s position thereby improving the tracking accuracy significantly. 

The fact that no model of vehicle dynamics is available shifts the focus of the problem of 
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vision-aided navigation from the Springer and generalizes it into one of camera pose 

estimation in the very same environmental conditions defined by the Springer’s primal 

objectives.  

1.2.4 Passive sensing only 

The Springer does not use active sensors. This means that laser ranging sensors, ultrasonic 

transducers, etc. cannot be used for depth recovery. This makes the problem significantly 

more ill-posed, since nearly all motion parameters have to be extracted from the camera 

alone. Although the Springer is equipped with high accuracy magnetic sensors, their utility 

as aids to vision based motion estimation is outperformed by inertial sensors which can 

provide accurate readings in 3D as opposed to the relatively slower 2D readings of 

compasses. Typically, gyros provide high accuracy readings and can be used as reliable 

predictors of relative orientation. 

Other passive sensors include accelerometers and the Springer’s thruster encoders. 

However, these sensors were not employed due to the tradeoff between the actual gains and 

the effort required to cope with their shortcomings in practice. In particular, motor encoders 

and accelerometers would be more useful in conjunction with a model of the vehicle’s 

motion dynamics. However, without a motion model, acceleration readings not only have 

to be “cleared” of gravity and rotational velocity “contaminants”, but they also must be 

integrated twice in order to produce a displacement estimate, which in practice entails high 

uncertainty. On the other hand, motor encoder readings do not necessarily reflect actual 

motion in the water as they do on land in the case of differential drive mobile robots; 

moreover, the readings reflect thrust and therefore, in order to be converted into a velocity 

estimate, they must be considered in conjunction with water drag, which actually requires 

the knowledge of vehicle-specific motion dynamics. To recapitulate, accelerometers and 

motor encoders could be useful, but they require special modeling effort, which was not 

amongst the priorities of the current research. 

1.3 Intuition and research objectives 

Generally stated, this is a problem involving vision based localization from image 

sequences of natural scenes. An intuitive depiction of the vision-aided localization principle 

suited for a sea surface vehicle is illustrated in Figure 1.4; the camera is turned to the coast 
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so that it may capture the visible structure in order to track landmarks, and subsequently 

apply algorithms for pose estimation. 

 

Figure 1.4. The concept of vision aided navigation using visible coastal structure for landmark 
tracking. 

1.3.1 An abstract view of the problem 

Regardless of limitations, the problem of vision based navigation is still open and more 

innovative ideas should be anticipated in the near future. The goal of the research presented 

in this thesis was to examine the full spectrum of techniques in computer vision, geometry, 

optimization and machine learning and combine methodologies in order to establish one or 

more frameworks for vision based localization systems that provide reliable position and 

orientation feedback for a reasonable period of time and under reasonable assumptions.  

1.3.2 Objectives 

It is very important to stress that vision based/aided navigation of vehicles, although a 

simple notion to grasp, it however entails a very broad range of disciplines and scientific 

areas. This thesis will explain the background, before applying them to the research 

problem. It is therefore prudent at this stage to state the objectives and the types of research 

questions that will be addressed in this thesis in a more intuitive manner and in regards to 

the general objective which is the achievement of vehicle localization in natural coastal 

environments using a single camera. These objectives can be summarized in the following: 
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• Choosing appropriate method for tracking. At a primitive level, methodologies for 

recovery of motion through vision rely on the detection, tracking and recognition of 

landmarks at acceptable levels of accuracy and repeatability. This thesis does not 

aim at investigating new algorithms for feature tracking and detection but rather at 

choosing suitable techniques from the existing state-of-the-art pool that perform 

best in the context of the problem specifics (i.e., natural environments). A brief 

technical introduction to the fundamentals of tracking and landmark detection and 

how such information is used by state of the art algorithms for localization and 

mapping is given in Chapter 2. 

• Understanding and making use of the existing state-of-the-art techniques in 3D 

computer vision, geometric modelling and robotics. This thesis focuses 

predominantly on the aspects of the problem that are pertinent to geometry, machine 

learning, optimization and robotics (filtering) and the adaptation and/or 

improvement of existing algorithms for triangulation, 3D reconstruction, camera 

localization and mapping. Chapter 3 reviews popular techniques in the geometry of 

multiple views in order to pre-empt their use in integrated solutions presented in 

Chapters 6, 7 and 8. Details of these techniques are given in the appendices.  

• Design of a framework in which algorithms will be synchronized and 

interconnected. Part of the problem concerns implementation details and how 

algorithms are linked together in a framework orchestrated by a finite-state 

machine. These frameworks correspond to the conceptual pipeline of the integrated 

solution; in other words, it is the operational network by which the various 

algorithms are interconnected in order to produce the pose and map estimates. This 

thesis examines two different framework models and elaborates on the trade-off 

between efficiency and ease of implementation in the context of different conditions 

(e.g., slow/fast camera motion, weather conditions, use of gyroscopic sensors, etc.). 

• Propose new algorithms for relative pose estimation, scene reconstruction and 

optimization. A significant part of the research questions addressed in this thesis 

have to do with the proposition of novel algorithms and/or improvements of 

existing ones under a limited scope in comparison to the general problem statement 

(i.e., solutions to specific sub-problems pertinent to vision aided localization and 

mapping) where applicable in the aforementioned proposed frameworks. These 
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problems involve the following techniques: Stochastic Filtering (Chapters 2, 6, 7, 

8), 2-view reconstruction (Chapters 3, 6, 8), the perspective-n-point problem 

(Chapters 6, 8), non-linear optimization and sensor fusion (Chapters 7, 8) and the 

parametrization of camera pose (Chapters 4, 6, 7, 8). 

• Deliver the implementation of the algorithms described in this thesis in the form 

of executable code. Although not explicitly stated in the general problem statement, 

it can be however inferred from the aforementioned goals that an important 

deliverable should be a software code archive. The fulfilment of the listed 

objectives, in part or in whole, involves the implementation of the respective 

algorithms in some programming language. These algorithms should become 

publically available to the community for use and/or improvement either as a 

library, code snippets or pseudo-code. 

• Deliver video sequences of estuarine and natural landscapes synchronized with 

sensor logs. Provided the distinctiveness of the environmental conditions associated 

with the Springer, another very important deliverable concerns the image sequences 

on which the results of the proposed methods will be obtained. To the best of the 

author’s knowledge, there are very few such datasets in regards to natural 

environments and most likely, none in terms of sequences of natural coastal areas 

captured from the vantage point of a surface vehicle cruising in the water. 

1.4 Examples of modern integrated solutions for real-time or 

offline camera pose and mapping 

Although it will become clear in the following chapters, it is worth noting here that motion 

recovery through vision is equivalent to the estimation of the locations of the tracked 

landmarks in the real world. Thus, nearly all algorithms involving camera pose estimation 

typically output a map estimate containing the 3-dimensional locations of the tracked 

landmarks, a process widely known in the vision community as structure from motion 

(SFM). In pure vision applications, the reconstruction of the tracked features is more 

important, while in robotic applications, obtaining the camera pose estimate is a first 

priority, albeit the map can be also useful for obstacle avoidance or even geometric scene 

recognition and loop closure. 
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1.4.1 Offline structure recovery from multiple views 

A very popular project aspiring to recover 3D models of outdoor touristic sites around the 

world using multiple pictures of the same scene taken from different vantage points is 

photo tourism (Snavely, Seitz et al. 2006). Although this is an offline application which 

processes images solely for the sake of 3D reconstruction, the underlying principles 

involving the optimization of camera pose and scene structure over all camera poses and 

scene features apply identically. Figure 1.5 illustrates the sparse reconstruction of the 

Colosseum and the respective estimated camera poses. 

 

Figure 1.5. An illustration of a 3D reconstruction of the Colosseum with Photo tourism (Snavely, 
Seitz et al. 2006)1. 

1.4.2 Real-time pose estimation and mapping 

A very significant implementation for real-time structure from motion is parallel tracking 

and mapping (PTAM) (Klein and Murray 2007, Klein and Murray 2009). In principle, 

PTAM integrates sparse point tracking and camera motion estimates in order to acquire 

scene geometry in real time, while a separate thread uses these estimates as a starting point 

in a global refinement of the map along with all the previous camera poses. Although 

PTAM was mostly tested with indoor sequences, it is relatively efficient in outdoor scenes 

with moderate depth. 

                                                 
1 Permission to reproduce screenshots of photo tourism granted by Noah Snavely.  
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Figure 1.6. Outdoor mapping with PTAM (Klein and Murray 2007, Klein and Murray 2009)2.  

Figure 1.6 illustrates PTAM running on an outdoor sequence; preliminary 

detection and tracking of features is shown on the left. PTAM was originally intended 

for augmented reality applications, but it soon became a popular general tool for 

camera pose estimation and mapping. The image on the right in Figure 1.6 illustrates a 

plane detected in the scene (shown as a grid) on which animation enhancements can be 

added. 

1.4.3 Vision based localization in field robotics 

Numerous early methods have been proposed (primarily for motion recovery) in the context 

of robotic applications, most of which are typically environment and vehicle oriented 

(Tomasi and Kanade 1992, Irani, Rousso et al. 1997, Baumela, Agapito et al. 2000, Qian 

and Chellappa 2001, Qian, Chellappa et al. 2001). Although some of the solutions and 

techniques introduced in the late 1990s and early 2000s appeared to be promising, 

significantly fewer eventually became part of the standard implementations of today 

(Nistér, Naroditsky et al. 2004, Scaramuzza, Fraundorfer et al. 2009, Scaramuzza and 

Fraundorfer 2011). It is worth noting here that the majority of outdoor visual SLAM 

applications involve the use of a single camera and henceforth any reference to a vision 

based localization method will be assumed as such, unless explicitly stated otherwise. 

 A significant amount of work has been invested on flying autonomous unmanned 

vehicles (AUVs) utilizing ground facing cameras in outdoor environments. Amongst the 

                                                 
2 Permission to reproduce PTAM captured images granted by David Murray. 
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prominent pieces of work on flying AUVs is that of Dunkley, Sturm, Engel and Cremers 

with ground facing cameras (Dunkley, Engel et al. , Engel, Sturm et al. 2014). The group 

approaches the problem either by employing a fairly accurate model of the vehicle’s 

dynamics, or by using a depth sensor to obtain scale; at the same time, a gyro is used to 

provide reliable attitude estimates and camera tracking results are used as measurements for 

position estimation. Another accurate and efficient visual odometry algorithm for Mars 

rovers was proposed by Lentaris, Stamoulias and Lourakis (Lentaris, Stamoulias et al. 

2015). Although most of the results of Sturm’s group were obtained from indoor sequences, 

very similar approaches (Achtelik, Brunet et al. 2012, Faessler, Fontana et al. 2015) have 

been successfully tested in large-scale outdoor environments. The ground facing camera 

arrangement offers several advantages in comparison to totally unconstrained attitude. 

 There have been relatively few scenarios involving vision based localization of 

vehicles in completely natural environments without the aid of high-resolution depth 

sensors. Such is the case of two Mars exploration rovers (MER), equipped with a stereo rig 

pointing to the ground from a skewed angle (Maimone, Cheng et al. 2007). Due to its high 

computational cost, the visual odometry system was used only for short-term corrections. 

Another recent representative method for visual odometry and mapping in natural terrains 

was introduced by Konolige and Agrawal (Konolige, Agrawal et al. 2011). In this case, a 

ground vehicle uses a stereo rig in conjunction with a gyro for accurate odometry 

estimation in the desert.  

1.5 Summary and structure of the remaining thesis 

This introductory chapter aimed at transforming a very general problem statement into a list 

of coherent and sensible research objectives while paying absolute respect to the vastness 

and magnitude of the underlying principles.  

 It is important to stress the fact that the “Springer” research problem can only be 

examined and improved in terms of its sub-problems and cannot be solved in a one-off 

fashion, mainly because it actually requires solutions and innovations which lie along 

independent research directions, ranging from problems in standard control engineering all 

the way to elaborate solutions tangent to stochastic processes and geometry.  

The remaining chapters are structured as follows: 
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Chapter 2. A brief overview of the fundamental concepts in robotic localization and 

mapping. 

Chapter 3. Introduction to the geometry of multiple views with the primary focus on the 

recovery of camera relative pose and scene structure from two views. 

Chapter 4. Two prominent representations of orientation are discussed: Euler’s axis-

angle formalism and stereographic projection. 

Chapter 5. Frameworks for the implementation of SLAM: The disjoint and overlapping 

scene paradigms. 

Chapter 6. Algorithms for relative pose odometry as quick solutions to the localization 

problem. Also, subsidiary techniques are discussed, such as the “orthogonal Procrustes” 

method in the context of a planar odometry example and the use of gyroscopic data in 3D 

relative-pose odometry. 

Chapter 7. Introduction to the GraphSLAM algorithm for least squares and an 

algorithm for fusion of 3D gyroscope data with 2D global position measurements. 

Chapter 8. This chapter is about the full map-based localization problem in the context 

of natural environments. The perspective-n-point problem is discussed with details in this 

chapter because it is the most fundamental algorithm in map-based visual odometry (and 

this why the topic was not discussed in Chapter 3). Also, details on the implementation of 

bundle adjustment are provided in the form of algorithms.  In overall, two methods for 

visual odometry and mapping are presented: a) An overlapping scene localization 

framework using only camera input and, b) A disjoint scene localization framework for a 

single camera aided by gyroscopic inputs. These two frameworks combine all the methods 

and algorithms proposed in this thesis. Results are provided in sequences from natural 

environments with emphasis on coastal areas from the vantage point of a moving van in the 

woods or boat in the water. 

Chapter 9. Conclusion of this thesis. A brief synopsis of contributions in regards to the 

original objectives and suggestions for further research.  

The appendices contain detailed algorithms, proofs, properties, derivations and descriptions 

of the concepts presented in Chapters 2, 3, 4, 6, 7 and 8. 
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Chapter 2 

Fundamental concepts in vision based localization 

and mapping 

This chapter provides a brief overview of the fundamental concepts that govern the 

algorithms and techniques covered throughout this thesis. The process of robotic 

localization follows the common paradigm of pose prediction and refinement through 

measurements. In other words, a model of motion is used to predict the vehicle’s position 

and thereafter this impression is refined by receiving feedback from the environment 

through sensors. In the case of vision aided navigation, sensory feedback corresponds to 

camera input in the form of special features such as points or entire patches in images; these 

features have special characteristics that make them distinguishable across a set of images 

of the same scene.  

In most robotic applications, the locations of landmarks are known a priori, so that 

when the robot identifies them using its sensors, it can infer its location based on the 

measurement model associated with the sensor. However, where visual landmarks are 

concerned, prior knowledge may not be the case, especially in outdoor environments with 

scenes involving significant clutter; thus, landmark features are actually detected online 

while cruising and are thereafter tracked in subsequent images of the scene, thereby 

providing measurements of relative pose instead of absolute. It follows that the map is 

populated incrementally as the vehicle is cruising. Points are most commonly used as 

features and will be the only type of visual landmark employed in the algorithms described 

in this thesis; although it is possible to detect patches as well as points, these patches 

however, are not expected to have unique appearance in natural landscapes and therefore 

their repeatability in identification will be significantly diminished. Similarly, offline 

landmark acquisition is not generally plausible in such landscapes, since not only scene 
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backgrounds have striking similarities in natural backgrounds, but most importantly, it 

would be a very difficult task to manually “cherry-pick” visual landmarks on the coastline 

in sequences taken from a boat. 

2.1 Simultaneous localization and mapping 

Localization and mapping is one of the most prominent problems in field robotics and has 

attracted the attention of a great number of researchers in the recent years (Smith and 

Cheeseman 1986, Dissanayake, Newman et al. 2001, Fidaleo and Medioni 2007, Thrun and 

Leonard 2008). Modern techniques for simultaneous localization and mapping (SLAM) 

regard the position and orientation of a robot as a stochastic quantity and their aim is to 

estimate the underlying distribution. Thus, the pose (i.e., position and orientation) of the 

robot 𝑥𝑥𝑡𝑡 ∈ ℝ6 (3 parameters for orientation and 3 for position) at time 𝑡𝑡 ∈ ℤ (time is 

discrete) is a statistical estimate in terms of the maximum likelihood optimality criterion. In 

quite the same way, the map of the environment comprises a list of landmark locations 𝑀𝑀 

(also referred to as the map), that are also treated as random variables. The pose 𝑥𝑥𝑡𝑡 and 

map3 𝑀𝑀 at time t comprise the state of the SLAM algorithm.  

The goal of SLAM is to obtain the maximum likelihood (MLE) estimate of the pose 

of the robot and the state of the environment (map) at time t, given a number of 

measurements 𝑚𝑚1, . . ,𝑚𝑚𝑡𝑡 and process control inputs4 𝑢𝑢0, . . , 𝑢𝑢𝑡𝑡−1. Execution of SLAM can 

either be characterized as offline or online. Offline SLAM algorithms estimate all poses 

𝑥𝑥0, . . , 𝑥𝑥𝑡𝑡 and the map M given all past and present measurement and control vectors:  

�𝑥𝑥�0:𝑡𝑡

𝑀𝑀�
� = argmax

𝑥𝑥0:𝑡𝑡,𝑀𝑀
𝑝𝑝(𝑥𝑥0:𝑡𝑡 ,𝑀𝑀|𝑚𝑚1:𝑡𝑡 ,𝑢𝑢0:𝑡𝑡−1) (2.1) 

where the subscript notation 𝑡𝑡1: 𝑡𝑡2 in a sequence denotes all time instances from 𝑡𝑡1 to 𝑡𝑡2. In 

online (real-time) SLAM, only the most recent pose 𝑥𝑥𝑡𝑡 and the map M are estimated given 

all past and present measurement and control input vectors: 

                                                 
3 Time indices may apply to the map, but they are usually omitted. In effect, the map obeys a hard equality 
transition constraint from the previous time instance to the next. 
4 The reader should bear in mind that sometimes, for the sake of simplicity, control inputs may be omitted 
from the argument list of the transition function as they are not stochastic quantities and can be regarded as 
part of the function itself. 
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�𝑥𝑥�𝑡𝑡
𝑀𝑀�
� = argmax

𝑥𝑥𝑡𝑡,𝑀𝑀
𝑝𝑝(𝑥𝑥𝑡𝑡 ,𝑀𝑀|𝑚𝑚1:𝑡𝑡,𝑢𝑢0:𝑡𝑡−1) (2.2) 

 The SLAM posterior 𝑝𝑝(𝑥𝑥𝑡𝑡 ,𝑀𝑀|𝑚𝑚1:𝑡𝑡,𝑢𝑢0:𝑡𝑡−1) is also known as state belief at time t (Thrun, 

Burgard et al. 2005). Evidently, the state belief is the marginal of 𝑥𝑥𝑡𝑡 over 𝑥𝑥0:𝑡𝑡−1 in the joint 

conditional distribution of equation (2.1). 

 The assumptions behind the modern SLAM paradigm are depicted in the Bayes 

network of Figure 2.1. The network clearly implies that SLAM is a discrete stochastic 

process, in which the pose evolves by means of a transition law 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1,𝑢𝑢𝑡𝑡−1) while the 

process gains information from the environment according to a measurement likelihood, 

𝑝𝑝(𝑚𝑚𝑡𝑡|𝑥𝑥𝑡𝑡,𝑀𝑀). Moreover, the process has the Markovian property, which states that 𝑥𝑥𝑡𝑡 is 

conditionally dependent only on 𝑥𝑥𝑡𝑡−1; also, each measurement is conditionally dependent 

only on the current state and therefore independent of all previous (and future) 

measurements. The transition distribution typically represents the uncertainty in the motion 

of the robot, while the measurement likelihood corresponds to a “noisy” model of landmark 

perception. 

 

Figure 2.1. The SLAM paradigm depicted as a Bayes network. 

2.1.1 The Gaussianity assumption 

 Assuming that both pose transition and measurement likelihood are normal distributions, 

then the joint distribution represented by the Bayes network of Figure 2.1 will also be 

normally distributed. Thus, mean vector and covariance matrix of the state belief can be 

copied directly from the mean and covariance of the joint posterior. Provided that the pose 

prior, motion transition law and measurement likelihood are normal distributions, the joint 

estimate is obtained by minimizing a generally non-linear quadratic function, 
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𝑞𝑞(𝑥𝑥0:𝑡𝑡,𝑀𝑀) = (𝑥𝑥0 − 𝜇𝜇0)𝑇𝑇𝛴𝛴0−1(𝑥𝑥0 − 𝜇𝜇0)

+ ���𝑥𝑥𝑘𝑘 − 𝑙𝑙𝑘𝑘−1(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘−1)�𝑇𝑇𝑅𝑅𝑘𝑘−1�𝑥𝑥𝑘𝑘 − 𝑙𝑙𝑘𝑘−1(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘−1)�
𝑡𝑡

𝑘𝑘=1

+ �𝑚𝑚𝑘𝑘 − 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘 ,𝑀𝑀)�𝑇𝑇𝑄𝑄𝑘𝑘−1�𝑚𝑚𝑘𝑘 − 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘 ,𝑀𝑀)�� 

(2.3) 

where 𝑥𝑥0~𝑁𝑁(𝜇𝜇0,𝛴𝛴0) is the pose of the vehicle at 𝑡𝑡 = 0, 𝑅𝑅𝑡𝑡 and 𝑄𝑄𝑡𝑡 are the covariance 

matrices of the pose transition and measurement likelihood respectively at time t; 𝑙𝑙𝑡𝑡 is a 

function that captures the motion dynamics of the robot at time 𝑡𝑡 − 1 and 𝑓𝑓𝑡𝑡 is a function 

that models the relationship between measurement, pose and map at time 𝑡𝑡. Figure 2.2 

presents a conceptual illustration of SLAM indicating the correspondence between the 

quadratic constraints of equation (2.3) and the perception of landmarks from the various 

positions as well as the transition from one pose to another. Landmarks are appearing as 

stars and the poses of the robot as triangles. The dashed ellipses contain landmark 

groups that are visible to the vehicle’s sensor(s) at a specific time instance. Dotted 

lines associate groups of landmarks with pose vectors and correspond to quadratic 

constraints associated with landmark observations. The thick arrows indicate the 

transition from one pose to another and correspond to quadratic constraints related to 

motion transitions. 

 

Figure 2.2. Graphical illustration of SLAM.  

The Kalman filter. Most robotic applications are concerned only with the most recent 

location of the robot and therefore have no need for state estimates that belong to the past. 
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An obvious solution to obtaining the current pose and map estimates is to optimize 

𝑞𝑞(𝑥𝑥0:𝑡𝑡,𝑀𝑀) over the present and all past states, a process which entails heavy computational 

burden due to the number of variables involved. A very efficient alternative to the computation 

of the state belief is the Kalman filter (Kalman 1960, Smith and Cheeseman 1986). The Kalman 

filter (KF) is a real-time approach to recursively obtaining the state belief from the current 

measurement likelihood and the previous state belief. The advantage here is that the 

information of all past measurements and state transitions is encompassed in one single 

marginal distribution and therefore computations involve only three distributions in total. In 

other words, this is a quadratic function optimization problem with only three terms, as 

opposed to the number of terms in the cost function of equation (2.3). 

The KF computes the new state posterior in two steps: The first step involves 

prediction, which computes the marginal distribution of the state vector over all previous 

control vectors and measurements (also known as predicted state belief); the next step is the 

measurement update (sometimes called innovation), involving the computation of the state 

belief from the current measurement and the predicted state belief.  

In its standard formulation, the KF concerns linear transition and measurement 

models. To cope with this limitation, the extended Kalman filter5 (EKF) was proposed; the 

EKF employs the standard KF formulas on linearized approximations of the transition and 

measurement models respectively. A significant drawback of the EKF is that 

approximations in the measurement step will almost certainly produce sub-optimal 

estimates attributed to the fact that the filter is primarily designed to do the prediction in 

one single step; to work around this issue, the iterated extended Kalman filter (IEKF) was 

introduced; in the IEKF, the measurement update is implemented as a Gauss-Newton 

iteration (Bell and Cathey 1993) over the function, 

𝑞𝑞𝑡𝑡(𝑥𝑥𝑡𝑡 ,𝑀𝑀) = �𝑚𝑚𝑡𝑡 − 𝑓𝑓𝑡𝑡(𝑥𝑥𝑡𝑡,𝑀𝑀)�𝑇𝑇𝑄𝑄𝑡𝑡−1�𝑚𝑚𝑡𝑡 − 𝑓𝑓𝑡𝑡(𝑥𝑥𝑡𝑡 ,𝑀𝑀)� + (𝑥𝑥𝑡𝑡 − �̅�𝜇𝑡𝑡)𝑇𝑇𝛴𝛴�𝑡𝑡−1(𝑥𝑥𝑡𝑡 − �̅�𝜇𝑡𝑡) (2.4) 

where �̅�𝜇𝑡𝑡 and 𝛴𝛴�𝑡𝑡 are the mean and covariance matrix of the pose in the predicted state 

belief. 

The information filter. The information filter (IF), is an alternative implementation 

of the KF from the aspect of state belief representation. In particular, the posterior is 
                                                 
5 The reader should bear in mind that henceforth, any reference to the Kalman filter in this thesis will imply 
the extended Kalman filter. 
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represented using the so-called Fisher parameters (information matrix and vector) of a 

normal distribution as opposed to the traditional moment parametrization (covariance 

matrix and mean vector). The IF, like the KF, computes the new state belief in two steps, 

the prediction and measurement update. In contrast to the KF, the bulk of computations 

involving the inversion of the information matrix now migrate to the prediction step, while 

the measurement update involves simply a few matrix multiplications. For further reading 

on information filters the reader is deferred to probabilistic robotics (Thrun, Burgard et al. 

2005). In direct analogy to the EKF, for cases in which the motion and/or measurement 

model are non-linear, there exists the extended information filter (EIF) which uses 

linearized approximations of the transition/measurement functions in order to obtain 

solutions for the SLAM posterior. 

 One of the advantages of IFs over KFs, is the fact that the canonical parametrization 

of a Gaussian can encapsulate a quadratic constraint by means of direct entries to the 

information matrix and vector. Thus, it is possible to populate the information matrix and 

vector with an arbitrary number of constraints and obtain marginals at will. In other words, 

IFs offer a great deal of flexibility in terms of when and how a number of poses and/or 

landmarks can be marginalized-out. It is therefore possible to perform semi-offline SLAM 

filtering using an approach which became known as GraphSLAM (Thrun and Montemerlo 

2006). Another important feature of IFs in SLAM is the operation known as sparsification 

of the posterior involving the disengagement of “weak” links in the information matrix. 

Thus, sparsification essentially concerns the elimination of correlations that develop 

through time between distant landmarks (through pose variables), so that the information 

matrix becomes block-diagonal and easier to invert (Thrun, Liu et al. 2004). 

The particle filter. A very popular alternative to the KF and IF for arbitrary distributions is 

the particle filter (PF). Under this approach, the posterior is represented using a set of 

samples, called particles. The predicted state belief is obtained by sampling the transition 

conditional probability, conditioned on randomly picked particles of the posterior. In the 

measurement step, the samples are tagged with importance weights reflecting their 

measurement likelihood. Thus, the new posterior is obtained by resampling according to the 

importance weights. 
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 Of particular interest to the visual SLAM community is a hybrid PF-KF approach 

by Montemerlo and Thrun called FastSLAM (Montemerlo, Thrun et al. 2002). In 

FastSLAM, the particles in the posterior are moments of Gaussian distributions 

corresponding to updated (KF-fashion) predicted state particles for each landmark. The 

rationale behind FastSLAM relies on the observation that landmarks are conditionally 

independent of each other given the sequence of poses until the present time. Thus, it is 

possible to apply the KF measurement step independently for each landmark and predicted 

pose particle. Although the algorithm seemingly has an update complexity 𝑂𝑂(𝑁𝑁𝑁𝑁) where N 

is the number of particles and K is the number of landmarks, the authors observe that the 

possible posteriors (which are Gaussians) per pose particle are arranged in the leaves of a 

balanced binary tree and therefore accessing each of these posteriors requires time 

logarithmic in K. It turns-out that the overall complexity of an update can be reduced to 

𝑂𝑂(𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁) time. 

2.2 Visual features as landmarks 

In this thesis, visual landmarks correspond to image points classified as distinguishable 

features by means of criteria associated to their invariance to rotation, translation, scaling 

and brightness. The selection process involves the maximization of local image criteria that 

determine the invariance of the surrounding image patch. Occasionally, for each feature, a 

descriptor vector of statistical measures that characterize the surrounding patch is 

generated. Descriptors are used for feature matching across a pair of images, called 

reference image and query image. In visual SLAM, the positions of matched features in the 

reference and query image are used to triangulate the position of the landmark in the real 

world. Further matching/tracking of the reference features in subsequent camera frames 

will result in additional quadratic constraints in the SLAM filter, thereby reducing 

uncertainty of the pose of the camera/vehicle and the map. Figure 2.3 not only illustrates 

the concept of matched features from in multiple images taken from a moving camera, but 

also demonstrates the emerging geometric relationships between the image positions, the 

camera centers and their actual locations in the real world. 
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Figure 2.3. Point-features tracked across multiple images taken from a moving camera.  

2.2.1 Feature detection 

A wide variety of visual feature types have been proposed in literature during recent years 

with each case presenting certain advantages over the others with respect to the existing 

matching methods and the application context (Babbar, Bajaj et al. 2010). A few 

representative examples of popular feature types are Harris corners (Harris and Stephens 

1988, Shi and Tomasi 1994), the scale invariant feature transform (SIFT) (Lowe 1999), 

speeded-up robust features (SURF) (Bay, Tuytelaars et al. 2006) and features from 

accelerated segment test (FAST) (Rosten and Drummond 2006). In particular, Harris 

corners, as well as the SURF and FAST features became extremely popular in the visual 

SLAM research community, mainly because of the advantageous trade-off between 

detection time and quality of the features. 

 As the camera moves away from a scene, the tracked features will gradually move 

out of the frame; therefore, as time progresses, it becomes necessary to detect new sets of 

features. Since SLAM applications typically operate in real time, feature detection time is 

an important factor to consider when designing the algorithm. In fact, FAST features 

provide one of the best known detection times thus far and have been successfully used in 

PTAM (Klein and Murray 2007) an augmented reality application (AR) which quickly 
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became popular amongst visual SLAM researchers. FAST is the standard feature detection 

method in this thesis. 

2.2.2 Feature matching 

Feature matching refers to the process of finding pairs of features in the reference and the 

query image such that, for some given metric, the distance between the respective 

descriptors is the smallest possible. To enhance the efficiency of the distance-based 

matching, Lowe has proposed a rejection criterion based on the ratio of the distances of the 

first and second nearest neighbor of the matching point. Illustrations of such matchings are 

shown in Figures 2.4 and 2.5 using FAST and SURF features respectively. The query 

image is shown on the left; the red quadrilateral captures the perspective distortion 

estimated from the matched feature locations on the facade of the church. 

 

Figure 2.4. Feature matching between two pictures of a church using the FAST descriptors.  
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Figure 2.5. Feature matching between two pictures of a church using SURF descriptors. 

The detected FAST features in Figure 2.4 clearly outnumber the detected SURF 

features in Figure 2.5. This difference is attributed not only to the user-defined parameters 

of the detectors, but also to the difference in the quality of descriptors. Moreover, it would 

make sense that some detectors may outperform others with respect to a certain types of 

invariance. Figures 2.4 and 2.5 suggest that both FAST and SURF perform similarly when 

the query image differs from the reference by minor projective distortion. However, as 

shown in Figures 2.6 and 2.7, SURF clearly outperforms FAST when the query image 

differs by a significant amount of scaling and rotation from the reference. Images were 

lifted from the Emgu open source library (Emgu 2013) examples; Emgu is a C# “wrapper” 

for the OpenCV libary (Bradski 2000). The cereal box is contained in the query image at a 

much smaller scale. In Figure 2.6, although the FAST detector has generated many 

features, the matching is very poor (notice that the estimated perspective distortion 

quadrilateral is practically a line); in Figure 2.7 however, the features on the cereal box 

have matched correctly with the ones on the scaled box in the query image. 
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Figure 2.6. Feature matching between images of a cereal box using FAST. 

 

Figure 2.7. Feature matching between images of a cereal box using SURF.  

 Landmark matching is the main pillar of SLAM algorithms. It is imperative that 

features are matched as accurately as possible in order to achieve significant reduction of 

the uncertainty in the state estimate throughout the measurement step. Feature matches in 

various images of the same scene such as the ones in Figures 2.4-7, are independent of the 

measurements in intermediate images in the sequence and therefore can decrease the state 

uncertainty. A significant drawback of independent feature matching is that, even a single 

mismatch can easily mislead the entire measurement update when the erroneous match lies 

at a long distance from the true match, since the SLAM quadratic cost function tends to 

exaggerate large errors. It should also be noted that another practical disadvantage of 

independent descriptor matching is execution time. 



 
 

49 
 

 A standard strategy to avoid the egregious mismatches produced by matching 

descriptors in entire images is local patch searching in the query image. One way of doing 

this is to use the predicted pose to estimate a region in which the matching feature is 

expected to appear and thereafter search for a match in this region. Such an approach is 

employed in PTAM. Others, such as Davison (Davison, Reid et al. 2007) prefer to use 

entire patches as features, but this is a solution that typically works in man-made 

environments (mostly indoors) where these patches are distinctively detectable with high 

repeatability. 

2.2.3 Sparse optical flow and the KL tracker 

A traditional alternative to descriptor matching in local patches is optical flow field 

estimation (Horn and Schunck 1981). The goal of optical flow methods is to estimate the 

motion of image pixels through time. The underlying assumption in this approach is that 

the reference and query images are considered to be temporal versions of the very same 

visual content that changes its spatial configuration through time. In other words, it is 

assumed that pixels simply change their locations from one image to another without 

changing their intensity. This is the fundamental assumption in optical flow estimation 

known as the brightness constancy assumption. 

 Consider the smooth pixel intensity function 𝐼𝐼(𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑡𝑡) at location (𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡)) 

at time 𝑡𝑡. Provided that the intensity of this point is preserved through time, it follows that 𝐼𝐼 

is constant and therefore, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 0. Expanding the derivative of 𝐼𝐼(𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑡𝑡) using the 

chain rule yields the so-called gradient constraint equation: 

𝑑𝑑𝐼𝐼
𝑑𝑑𝑡𝑡 =

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡 +

𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡 +

𝜕𝜕𝐼𝐼
𝜕𝜕𝑡𝑡
𝑑𝑑𝑡𝑡
𝑑𝑑𝑡𝑡 = 0 ⇔

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥 𝑣𝑣𝑥𝑥 +

𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦 𝑣𝑣𝑦𝑦 = −

𝜕𝜕𝐼𝐼
𝜕𝜕𝑡𝑡 (2.5) 

The temporal derivatives of the position, �𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

, 𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡
� are just the velocity (optical flow) vector, 

�𝑣𝑣𝑥𝑥,𝑣𝑣𝑦𝑦� at (𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡)). Clearly, optical flow cannot be recovered by a single gradient 

constraint equation, since there are two unknowns involved. The usual assumption that 

further constrains the unknown optical flow is that neighboring pixels share the same 

velocity. This way, the unknown flow can be recovered by optimizing a functional that 

involves multiple gradient constraint equations. In principle, the functional used to solve 

optical flow is a quadratic of the form, 
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𝐸𝐸�𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦� = ��𝑤𝑤(𝑥𝑥,𝑦𝑦) �
𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥 𝑣𝑣𝑥𝑥 +

𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦 𝑣𝑣𝑦𝑦 +

𝜕𝜕𝐼𝐼
𝜕𝜕𝑡𝑡
�
2

𝑦𝑦𝑥𝑥

 (2.6) 

where 𝑤𝑤(𝑥𝑥, 𝑦𝑦) is a weighting function (usually Gaussian) assigning importance to each 

quadratic term inversely proportional to the distance from the center of the patch. 

 Under favorable conditions, the brightness constancy assumption is approximately 

true; however in general, it is a weak assumption and can easily lead to divergent results. 

To cope with reasonable violations of the brightness constancy assumption, one may 

consider the gradient constraint equation as the first order Taylor approximation of the 

difference between the brightness values 𝐼𝐼(𝑡𝑡) and 𝐼𝐼(𝑡𝑡 + 1). Thus, the quadratic term of 

(2.6) is a linear approximation of a smooth function and therefore, the optimization 

problem can be solved using the Gauss-Newton method for improved accuracy. In this 

context, the slightly modified cost function at step k would be, 

𝐸𝐸𝑘𝑘�𝛿𝛿𝑣𝑣𝑥𝑥, 𝛿𝛿𝑣𝑣𝑦𝑦� = ��𝑤𝑤(𝑥𝑥, 𝑦𝑦) �
𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥 �𝑣𝑣𝑥𝑥

(𝑘𝑘−1) + 𝛿𝛿𝑣𝑣𝑥𝑥� +
𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦 �𝑣𝑣𝑦𝑦

(𝑘𝑘−1) + 𝛿𝛿𝑣𝑣𝑦𝑦� +
𝜕𝜕𝐼𝐼
𝜕𝜕𝑡𝑡
�
2

𝑦𝑦𝑥𝑥

 (2.7) 

where �𝑣𝑣𝑥𝑥
(𝑘𝑘),𝑣𝑣𝑦𝑦

(𝑘𝑘)� is the optical flow estimate at step k and �𝛿𝛿𝑣𝑣𝑥𝑥, 𝛿𝛿𝑣𝑣𝑦𝑦� is the difference 

between the current estimate and the previous one. Evidently, �𝑣𝑣𝑥𝑥
(0),𝑣𝑣𝑦𝑦

(0)� is the solution of 

equation (2.6). Note here that the cost function in equations (2.6-7) can be modified to 

register local affine deformations (Lucas and Kanade 1981). 

 There have been many variations in the formulation of optical flow estimation 

proposed in literature. However, the cornerstones in optical flow theory are the seminal 

papers by Horn - Schunck (Horn and Schunck 1981), and Lucas - Kanade (Lucas and 

Kanade 1981). In fact, the iterative solution of equation (2.7) introduced by Lucas and 

Kanade is known as the LK (or KL) tracker and is employed in almost all modern optical 

flow implementations. A very reliable and popular technique that implements the LK 

tracker by estimating optical flow throughout image pyramid levels is the so-called 

pyramidal LK tracker (Bouguet 2001). A more recently proposed formulation of the optical 

flow cost function involves fitting polynomials in local image patches (Farnebäck and 

Westin 2006). 



 
 

51 
 

 Optical flow estimation offers a fast alternative to local patch descriptor matching. 

In natural scenes such as trees, bushes or forests, the flow is generally robust between 

successive frames (Figure 2.8) due to the uniqueness of the neighborhood of the feature 

inside a patch and the background clutter such as grass, foliage, etc. The remaining outliers 

can be handled by enforcing geometric constraints between the matched features. The same 

outlier rejection principles apply to local descriptor matching. 

 Mismatches in optical flow tracking are usually associated with fast camera motion 

(motion blur), abrupt variations in scene brightness and the so-called aperture problem; bad 

tracking due to the aperture problem occurs when the spatial gradient in the neighborhood 

of a point has a constant direction along an edge, thereby yielding a degenerate system of 

gradient constraints. 

 

Figure 2.8. Sparse optical flow vectors between the 1st and 6th frame of the sequence estimated 
using the pyramidal LK tracker. 

2.3 Summary 

2.3.1 Optical flow based tracking vs Feature matching in natural scenes 

The imagery produced by natural landscapes such as parks, forests, river banks, etc., has 

rich texture which practically minimizes the frequency of occurrence of the aperture 

problem in optical flow tracking. Moreover, scene illumination is generally uniform and 

constant, thereby favoring local patch methods in general. Thus, a relatively slow-moving 

camera should produce fairly robust tracking results for use in a visual SLAM algorithm. 
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On the other hand, outdoor environments do not favor long-term matching of individual 

point descriptors; although good features to track (Shi and Tomasi 1994) are abundant in 

natural scenes, these features cannot be reliably matched in long-term, due to the similarity 

of textures such as foliage, tree-trunks, distant shorelines or hills, etc. and extreme scale 

variations. In overall, one should expect reliable short-term tracking using optical flow or 

other means of local search, without however being able to match interest points in the long 

run. Most of the algorithms presented in this thesis use the pyramidal LK tracker to obtain 

image measurements; although the SLAM algorithm assumes that these measurements are 

independent of the previous ones, in practice however, trailing tracking is applied with 

short-lived features (i.e., discarded after 3-5 frames) in order to ensure minor drifts. 

Although independent feature detection and matching in query images is a viable 

option, it however poses certain practical problems, the most important of all being the 

possibility of erroneous matches that lie very far apart in image space. As described earlier 

in this chapter, such matches have a drastically detrimental impact on the state estimate. 

Furthermore, detection and matching time are sometimes restrictive even for offline 

executions of visual SLAM. The local feature matching alternative, although appealing, it 

however demonstrated in practice that, it is all too often possible, features that were distinct 

in the reference image, would get the exact same match in the query image; the frequent 

occurrence of these mismatches also affects the subsequent pose estimate significantly. 

2.3.2 Using the OpenCV KL tracker: Pros and cons 

As mentioned in Chapter 1, the work described in this thesis focuses primarily on the 

methodologies tangent to geometric vision and SLAM while it makes use of existing 

solutions for feature detection and tracking as implemented in the OpenCV library. These 

implementations impose limitations in the results of the aforementioned methodologies in 

numerous ways. Although the SLAM framework tries to compensate for these limitations, 

there are always issues that require a custom-made approach. Custom-made 

implementations for feature detection and tracking are beyond the scope of this thesis, but 

they are a significant part of the solutions proposed and therefore should be a priority in the 

context of future research. 

The results of the algorithms in the following chapters were obtained using the 

OpenCV implementation of the pyramidal LK tracker. The algorithm is fast and highly 
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reliable for moderate camera motion and can track features accurately across 2-3 frames, 

depending on the velocity magnitude. Although SLAM assumes independent 

measurements, in practice however feature measurements are obtained by means of trailing 

tracking across no more than 1-2 consecutive frames. In other words, the LK tracker instead 

of tracking the original patch to the current image, it uses the previous frame (or the one 

before the previous frame) as reference. Under this approach, drift is likely to appear in the 

measurements and, although it may not become apparent immediately, it will eventually 

incur a long-term error primarily on the pose estimate as well as on the scale and position 

of the most recent map-points. This somewhat unorthodox workaround is a result of an 

important limitation imposed by the implementation of the tracker in OpenCV. In 

particular, it is not possible to track individual patches, but rather a set of locations from 

one image to another. As will be noted in the conclusions of this research, it is imperative 

to modify the functionality of the LK tracker in order to achieve better integration with the 

SLAM framework and push the accuracy of the proposed algorithms to their full potential. 
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Chapter 3 

The geometry of two views 

Depictions of the real world on camera are typically modelled as perspective projections. In 

particular, tracked features in a video sequence can be regarded as 2D perspective 

projections of 3D points on the image plane through the camera center. Under this 

projection model, a set of geometrical properties emerges from pairs of images of the same 

scene captured from different locations, also known as the geometry of two views. The 

geometry of two views provides not only the basis for measurement models in SLAM, but 

also for the formulation of algorithms and rules for carrying-out tasks such as outlier 

rejection, estimation of relative camera pose, detection of degenerate projective 

configurations and most importantly, scene reconstruction. This chapter gives an 

appropriate introduction to the theory and the methods that will be used and examined 

throughout the rest of this thesis. 

3.1 The pinhole camera model 

The pinhole camera model is a reliable theoretical description of how the real world is 

depicted onto an image. Consider a plane 𝜋𝜋 and a point O in 3D Euclidean space. Let 

(𝑥𝑥𝜋𝜋,𝑦𝑦𝜋𝜋, ) be a basis of the plane π; also, let (𝑥𝑥𝑂𝑂, 𝑦𝑦𝑂𝑂, 𝑧𝑧𝑂𝑂 ) be the three unit vectors of a frame 

attached to O such that 𝑥𝑥𝑂𝑂 = 𝑥𝑥𝜋𝜋 and 𝑦𝑦𝑂𝑂 = 𝑦𝑦𝜋𝜋 and 𝑧𝑧𝑂𝑂 is parallel to the normal of the plane. 

The distance of O from π along 𝑧𝑧𝑂𝑂 is f. For a 3D point M, the intersection point 𝑚𝑚𝐸𝐸  of the 

ray that passes through 𝑀𝑀 and 𝑂𝑂 and the plabe 𝜋𝜋 is the projection of 𝑀𝑀 on 𝜋𝜋 with respect to 

the center of projection, 𝑂𝑂. Figure 3.1 illustrates the principles of perspective projection. 
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Figure 3.1. Euclidean projection of a 3D point on a plane with respect to the projection center. 

The coordinate vector 𝑚𝑚𝐸𝐸of the Euclidean projection of M on the plane π can be computed 

in terms of the frame (𝑥𝑥𝜋𝜋,𝑦𝑦𝜋𝜋) and the distance f as follows: 

𝑚𝑚�𝐸𝐸 ∝ �
𝑓𝑓 0 𝜅𝜅𝑥𝑥
0 𝑓𝑓 𝜅𝜅𝑦𝑦
0 0 1

�
���������

𝐿𝐿

𝑀𝑀 = 𝐿𝐿𝑀𝑀 (3.1) 

where ~ denotes the homogeneous representation of a vector, ∝ denotes equality up to 

scale, 𝜅𝜅𝑥𝑥, 𝜅𝜅𝑦𝑦 are the coordinates of C with respect to (𝑥𝑥𝜋𝜋,𝑦𝑦𝜋𝜋 ), L is dubbed the matrix of 

Euclidean projection parameters and 𝑀𝑀 = [𝑋𝑋 𝑌𝑌 𝑍𝑍]𝑇𝑇 is the world point in terms of  the 

coordinate frame (𝑥𝑥𝑂𝑂 ,𝑦𝑦𝑂𝑂, 𝑧𝑧𝑂𝑂 ) attached to O. In terms of camera projection, π is known as 

the image plane, O is the camera center (also, focus of projection), the triad (𝑥𝑥𝑂𝑂,𝑦𝑦𝑂𝑂, 𝑧𝑧𝑂𝑂 ) is 

the respective camera frame and f is the focal length. Finally, the ray defined by the camera 

center and the unit vector 𝑧𝑧𝑂𝑂 is known as the optical axis. 

 To relate the Euclidean projection on a plane with the respective location of the 

point on the image, the horizontal and vertical ratios 𝑠𝑠𝑥𝑥 and 𝑠𝑠𝑦𝑦 of pixels per length-unit 

associated with the camera are required. By plugging these ratios into equation (3.1), we 

may directly associate the image point p with its 3D location M as follows: 
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𝑝𝑝� ∝ �
𝑠𝑠𝑥𝑥 0 0
0 𝑠𝑠𝑦𝑦 0
0 0 1

�
���������

𝑆𝑆

�
𝑓𝑓 0 𝜅𝜅𝑥𝑥
0 𝑓𝑓 𝜅𝜅𝑦𝑦
0 0 1

�
���������

𝐿𝐿

𝑀𝑀 = �
𝑓𝑓𝑥𝑥 0 𝑐𝑐𝑥𝑥
0 𝑓𝑓𝑦𝑦 𝑐𝑐𝑦𝑦
0 0 1

�
���������

𝐾𝐾
𝑀𝑀𝑀𝑀𝑡𝑡𝑀𝑀𝑀𝑀𝑥𝑥 𝑜𝑜𝑜𝑜 
𝑀𝑀𝑖𝑖𝑡𝑡𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑀𝑀𝑖𝑖  

𝑀𝑀 = 𝑁𝑁𝑀𝑀 

(3.2) 

where 𝑓𝑓𝑥𝑥 = 𝑠𝑠𝑥𝑥𝑓𝑓, 𝑓𝑓𝑦𝑦 = 𝑠𝑠𝑦𝑦𝑓𝑓, 𝑐𝑐𝑥𝑥 = 𝑠𝑠𝑥𝑥𝜅𝜅𝑥𝑥, 𝑐𝑐𝑦𝑦 = 𝑠𝑠𝑦𝑦𝜅𝜅𝑦𝑦 are the camera intrinsic parameters and  

𝑁𝑁 = 𝑆𝑆𝐿𝐿 the respective matrix as the product of the scale factors (matrix S) with the 

Euclidean projection parameters (matrix L). Please note here that the intrinsic parameters 

may additionally include three distortion coefficients used to undo radial distortion present 

in the captured image. Throughout this thesis, it will be assumed that radial distortion is 

either rectified or negligible and therefore the term intrinsic parameters will refer only to 

the matrix of equation (3.2). 

3.1.1 Calibration 

Camera calibration refers to the process of estimating the camera intrinsic parameters. The 

most popular method to calibrate a camera is the checkerboard method (Zhang 1999). The 

usual implementation of this idea relies on the estimation of the planar homography that 

removes perspective distortion from the checkerboard plane and scales it up to match the 

dimensions of the image (Duane 1971). 

 

Figure 3.2. Camera calibration using multiple views of a checkerboard.  

The corners formed by the points of contact between neighboring black squares (see red 

circles in Figure 3.2) have distinguishable characteristics in the image and can be detected 

very efficiently by a corner detector. A sequence of images of the board in various poses 

with respect to the camera local frame (𝑥𝑥𝜋𝜋,𝑦𝑦𝜋𝜋, 𝑧𝑧𝜋𝜋) is captured. For a single image of a 

5 × 4 chessboard, there exist 4 × 3 such corners yielding 24 equations for the 8 unknown 

elements of the homography matrix (the 9th is set to 1). Following a series of manipulations, 
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the camera intrinsic parameters can be extracted from the elements of the homography 

(Bradski and Kaehler 2008). Other techniques for calibration using checkerboards seek to 

recover the 2D projection of an “elusive” structure of 3D projective space known as the 

absolute quadric (Faugeras, Luong et al. 2004); the projection of the absolute quadric 

characterizes the affine distortion of space in 2D, which in effect, is expressed by the 

matrix of intrinsic parameters of the camera. 

3.2 The geometry of two views 

The set of corresponding positions in two images is characterized by a set of geometric 

properties which can be useful for the estimation of the respective 3D points and the 

rejection of outliers in the context of visual SLAM. The projections of a 3D point in two 

views with camera centers that differ by a translation and rotation give rise to the so-called 

epipolar geometry stemming from a coplanarity constraint. Epipolar geometry does not 

apply in pure rotational camera motion and in cases of scenes with fully coplanar 

arrangements of points; such configurations of camera positions or observed points are 

known as degeneracies. 

3.2.1 Triangulation 

Consider two camera views of a scene with respective coordinate frames that differ by 

some rigid transformation. The process of estimating the 3D locations of features in the 

world from their respective tracked positions in two images is called triangulation. There 

have been essentially two prominent triangulation techniques proposed in literature that are 

optimal by means of a chosen criterion. In this thesis, for simplicity of illustration, the 

suboptimal midpoint triangulation technique (Trucco and Verri 1998) is briefly outlined. 

For a thorough treatment of the topic of triangulation, the reader is referred to the papers by 

Hartley (Hartley and Sturm 1997) and  Kanatani (Kanatani, Sugaya et al. 2008). 

Let 𝑝𝑝1 and 𝑝𝑝2 be the corresponding feature locations in two images of a scene and 

let M be the respective real world point. Also, let R be the rotation matrix that aligns the 

first camera frame with the second and b the vector that connects the first and second 

camera center (in the coordinate frame of the first camera), also known as the baseline. 

Now, consider the ray 𝑙𝑙1 that passes through the first camera center 𝑂𝑂1 and the normalized 
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Euclidean coordinates of 𝑝𝑝1. The parametric equation of 𝑙𝑙1 (in the coordinate frame of 𝑂𝑂1) 

is, 

𝑙𝑙1(𝜅𝜅) = 𝜅𝜅𝑁𝑁−1�̅�𝑝1 = 𝜅𝜅𝑚𝑚1  (3.3) 

where 𝜅𝜅 is a scalar, �̅�𝑝1 = [𝑝𝑝1𝑇𝑇 1]𝑇𝑇 is the normalized homogenous representation of 𝑝𝑝1, 

𝑚𝑚1 = 𝑁𝑁−1�̅�𝑝1 is called the normalized Euclidean projection of 𝑝𝑝1 and K is the matrix of 

camera intrinsic parameters. In a similar manner, the parametric equation of the ray 𝑙𝑙2 that 

passes through the second camera center 𝑂𝑂2 and the normalized Euclidean projection 𝑚𝑚2 

(also in the coordinate frame of 𝑂𝑂1) is, 

𝑙𝑙2(𝜆𝜆) = 𝜆𝜆𝑅𝑅𝑁𝑁−1�̅�𝑝2 + 𝑏𝑏 = 𝜆𝜆𝑅𝑅𝑚𝑚2 + 𝑏𝑏 (3.4) 

where 𝜆𝜆 is a scalar.  

For the sake of simplicity, from this point onwards, image coordinates will be 

dropped from expressions and the normalized Euclidean coordinates will be used instead. 

Using the cross product, a vector w, mutually perpendicular to the rays in (3.3) and (3.4) is 

obtained: 

𝑤𝑤 = 𝑚𝑚1 × (𝑅𝑅𝑚𝑚2) (3.5) 

 

Figure 3.3. The midpoint triangulation method.  

Define vectors 𝑢𝑢1 =  𝑚𝑚1 and 𝑢𝑢2 = 𝑅𝑅𝑚𝑚2 to lighten expressions in the following derivations. 

From equations (3.3-5) and introducing a third parameter 𝜌𝜌 associated with the line section 

that connects 𝑙𝑙1 and 𝑙𝑙2 through M, the triangulation of 𝑀𝑀 now becomes a matter of finding 

appropriate values 𝜅𝜅∗, 𝜆𝜆∗, 𝜌𝜌∗ for parameters 𝜅𝜅, 𝜆𝜆,𝜌𝜌 ∈ ℝ  such that,  
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𝜅𝜅∗𝑢𝑢1 = 𝜆𝜆∗𝑢𝑢2 + 𝑏𝑏 + 𝜌𝜌∗𝑤𝑤 (3.6) 

Equation (3.6) defines a 3x3 system of linear equations in terms of 𝜅𝜅, 𝜆𝜆 and 𝜌𝜌 with the 

following solution: 

�
𝜅𝜅∗
𝜆𝜆∗
𝜌𝜌∗
� = [𝑢𝑢1 −𝑢𝑢2 −𝑤𝑤]−1𝑏𝑏 (3.7) 

The 3D point estimate is therefore computed (in the first/left camera frame) as follows:  

𝑀𝑀 = 𝜅𝜅∗𝑢𝑢1 −
𝜌𝜌∗

2 𝑤𝑤 = 𝑏𝑏 + 𝜆𝜆∗𝑢𝑢2 +
𝜌𝜌∗

2 𝑤𝑤 (3.8) 

The reader is deferred to Appendix C for more details on the use of triangulation in the 

context of visual SLAM and the derivatives of the recovered parameters 𝜅𝜅∗, 𝜆𝜆∗ and 𝜌𝜌∗ with 

respect to camera pose. 

3.2.2 The epipolar constraint 

Epipolar geometry in two views concerns the geometry of the plane induced by the baseline 

and the projection rays that connect the real-world location of a feature with the two 

projection (camera) centers. Thus, for each pair of correspondences there exists a plane that 

contains the respective world point and the baseline vector. Figure 3.4 illustrates the 

epipolar plane of a pair of correspondences. The projections of the two camera centers in 

the first and second view are the epipoles 𝑒𝑒1, 𝑒𝑒2. The lines 𝜆𝜆1 and 𝜆𝜆2 defined by the 

epipoles and the normalized Euclidean projections 𝑚𝑚1, 𝑚𝑚2 are known as the epipolar 

lines; epipolar lines are in fact, the projections of the two rays that pass through the 

camera centers 𝑂𝑂1, 𝑂𝑂2 and the point M onto the opposite image planes. 

Suppose again that the baseline is b and the rotation matrix that aligns the first 

camera frame with the second is R. Again, let the normalized Euclidean projections of 𝑀𝑀 be 

𝑚𝑚1 and 𝑚𝑚2. Also, let 𝑀𝑀1 and 𝑀𝑀2 be the coordinates of M in the first and second camera 

frame respectively. Then, the relationship between  𝑀𝑀2 and 𝑀𝑀1 is, 

𝑀𝑀2 = 𝑅𝑅𝑇𝑇(𝑀𝑀1 − 𝑏𝑏) (3.9) 

Let now 𝑢𝑢1 and 𝑢𝑢2 be the direction vectors (in the first camera coordinate frame) of the 

projection rays that connect the first and second camera center with the point M. Evidently, 

𝑢𝑢1, 𝑢𝑢2 and 𝑏𝑏 span the epipolar plane that corresponds to M. 
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Figure 3.4. Epipolar plane induced by corresponding projections.  

An equivalent way of expressing this coplanarity is by considering the orthogonality 

relationship between 𝑢𝑢2 and the cross product of b and 𝑢𝑢1: 

𝑢𝑢2 ∙ (𝑢𝑢1 × 𝑏𝑏) = 0 (3.10) 

where ∙ is the inner product operator. Since 𝑢𝑢2 = 𝑢𝑢1 − 𝑏𝑏 = 𝑀𝑀1 − 𝑏𝑏 and 𝑢𝑢1 = 𝑅𝑅𝑢𝑢2 + 𝑏𝑏 =

𝑅𝑅𝑀𝑀2 + 𝑏𝑏, substituting in equation (3.10) yields, 

(𝑀𝑀1 − 𝑏𝑏)𝑇𝑇�[𝑏𝑏]×(𝑅𝑅𝑀𝑀2 + 𝑏𝑏)� = 0 (3.11) 

where [𝑏𝑏]× is the cross product skew symmetric matrix of b. By simply applying the 

distributive law and taking into consideration the fact that 𝑏𝑏𝑇𝑇[𝑏𝑏]× = [𝑏𝑏]×𝑏𝑏 = 0, the 

following constraint is obtained: 

𝑀𝑀1
𝑇𝑇[𝑏𝑏]×𝑅𝑅𝑀𝑀2 = 0   ⟺  𝑀𝑀2

𝑇𝑇𝑅𝑅𝑇𝑇[𝑏𝑏]×𝑀𝑀1 = 0 (3.12) 

By definition, the normalized Euclidean projections are projectively equal to 𝑀𝑀1 and 𝑀𝑀2 

and therefore the constraint can be re-expressed in terms of 𝑚𝑚1 and 𝑚𝑚2: 

𝑚𝑚1
𝑇𝑇([𝑏𝑏]×𝑅𝑅)𝑚𝑚2 = 0   ⟺  𝑚𝑚2

𝑇𝑇(𝑅𝑅𝑇𝑇[𝑏𝑏]×)𝑚𝑚1 = 0 (3.13) 
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  The essential matrix. The 3 × 3 matrix 𝑅𝑅𝑇𝑇[𝑏𝑏]× is known in literature as the essential 

matrix and is usually denoted with the letter E. Thus, the epipolar constraint is in its widely 

recognized form (Longuet-Higgins 1987)6 is: 

𝑚𝑚2
𝑇𝑇𝐸𝐸𝑚𝑚1 = 0 (3.14) 

The fundamental matrix. Considering that the image projections can be expressed in 

terms of their normalized Euclidean projections through 𝑝𝑝�1 ∝ 𝑁𝑁𝑚𝑚1 and 𝑝𝑝�2 ∝ 𝑁𝑁𝑚𝑚2, 

substituting into equation (3.14) a similar bilinear relationship  is obtained (this time, in 

image coordinates): 

𝑝𝑝�2𝑇𝑇 (𝑁𝑁−𝑇𝑇𝐸𝐸𝑁𝑁−1)���������
𝐹𝐹

𝑝𝑝�1 = 0 (3.15) 

where 𝑝𝑝�1 and 𝑝𝑝�2 are the 2D homogenous image coordinates of the projections in the two 

views,  𝑁𝑁−𝑇𝑇 is a shortcut notation for (𝑁𝑁−1)𝑇𝑇 and the matrix 𝐹𝐹 = 𝑁𝑁−𝑇𝑇𝐸𝐸𝑁𝑁−1 is called the 

fundamental matrix (Luong and Faugeras 1996). The fundamental matrix defines a bilinear 

relationship between the two views directly in image coordinates and therefore, it may be 

of more use than the essential matrix when the camera intrinsics are not known. 

 The concept of epipolar geometry can be straightforwardly ported from Euclidean 

space to the space of image coordinates, also known as uncalibrated space. Thus, each pair 

of correspondences 𝑝𝑝1 and 𝑝𝑝2 and the two camera centers define an epipolar plane that 

contains the two epipoles in uncalibrated space. It follows that the epipolar lines in image 

coordinates are defined as the lines that connect the epipoles with the projections 𝑝𝑝1 and 𝑝𝑝2. 

As in Euclidean space, epipolar lines in uncalibrated space are back-projections of the rays 

that pass through the opposite camera center and the point M in image coordinates. Thus, 

for image point 𝑝𝑝1, the corresponding projection in the opposite view should lie on the 

uncalibrated epipolar line 𝛾𝛾2: 

𝛾𝛾2 ∝ 𝑝𝑝�1𝑇𝑇𝐹𝐹𝑇𝑇 (3.16) 

In quite a similar manner the respective epipolar line 𝛾𝛾1 of 𝑝𝑝2 in the first view is:  

                                                 
6 Evidently, there can be many essential matrices corresponding to the same set of 2-view projections 
depending on the interpretation given to the rigid transformation that links the two camera poses. In this 
thesis, the rotation matrix R is perceived as the matrix that contains the second camera frame directions 
(expressed in the first camera frame) as its columns and b is the baseline vector (also in the first camera 
coordinate frame): Thus, the essential matrix will always be given by 𝐸𝐸 = 𝑅𝑅𝑇𝑇[𝑏𝑏]×. 
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𝛾𝛾1 ∝ 𝑝𝑝�2𝑇𝑇𝐹𝐹 (3.17) 

where 𝛾𝛾2 and 𝛾𝛾1 have arbitrary scale and the ~ symbol is omitted because they represent 

lines. It is quite evident in Figure 3.4 that the epipoles belong to all epipolar lines in their 

respective view. Thus, for every pair of correspondences 𝑚𝑚1 and 𝑚𝑚2, it follows that 

𝑚𝑚1
𝑇𝑇𝐸𝐸𝑇𝑇�̃�𝑒2 = 0 and 𝑚𝑚2

𝑇𝑇𝐸𝐸�̃�𝑒1 = 0 (obviously, the exact same relationships hold in uncalibrated 

space). The latter clearly implies that 𝑒𝑒1 and 𝑒𝑒2 are the right and left null spaces of E 

respectively. Similarly, in uncalibrated space, the epipoles are the right and left null spaces 

of the fundamental matrix. A detailed list of properties of the essential/fundamental matrix 

along with the respective derivations and proofs is given in Appendix D. 

3.2.3 Methods for the computation of the fundamental/essential matrix 

Estimation of the epipolar constraint although not a trivial task, has been the subject of 

research for decades and countless algorithms have been proposed for its computation. For 

this reason, the text will assume that the essential matrix has already been estimated from 

image correspondences by means of an efficient algorithm of choice. A few recommended 

methods are, the 8-point algorithm (Longuet-Higgins 1987), Hartley’s modification to the 

8-point algorithm (Hartley 1995) and various robust approaches using RANSAC (Fischler 

and Bolles 1981) such as Philip Torr’s PLUNDER and MLESAC (Torr, Zisserman et al. 

1998, Torr and Zisserman 2000) or O. Chum’s DEGENSAC (Chum, Werner et al. 2005). 

In this thesis, the estimation technique of preference is a RANSAC based version of 

Hartley’s modified 8-point algorithm, as implemented in OpenCV.  

 3.2.4 Extracting relative camera pose from the essential matrix 

In short, there are two prominent methods for extracting relative orientation and baseline 

from the essential matrix: The first one relies on the SVD7 and is described in detail by Ma, 

Soatto and Kosecka (Ma, Soatto et al.) as well as by Nister (in the appendix of the 5-point 

paper), whereas the second is a much earlier work, somewhat neglected in literature, by 

Horn (Horn 1990). In this thesis, Horn’s approach is the preferred method not only because 

it relies on a mathematically elegant observation, but also because it requires nothing more 

                                                 
7 Refer to section 2 of Appendix D for detailed proofs of the underlying theorems that justify the use of the 
SVD. 
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than a matrix multiplication and addition (the SVD is not necessary). Detailed derivations 

of the formulas in this section are given in Appendix D.  

 It should be noted here that the straightforward way to ensure that E is indeed an 

essential matrix, is to impose rank-2 and two equal non-vanishing singular values on its 

singular values decomposition (SVD). Assuming that E is an essential matrix, then there 

exist four possible up-to-scale (baseline is typically normalized to unit length) relative 

camera poses consistent with E which are combination pairs of two rotation matrices and 

two unit baseline vectors.  

 A necessary pre-processing step is to eliminate arbitrary scale from the essential 

matrix, which is equivalent to normalizing the baseline.  To set the baseline to unit length, 

E is divided with the square root of half of the trace of its Gramm matrix, 𝐸𝐸𝑇𝑇𝐸𝐸 (or, 𝐸𝐸𝐸𝐸𝑇𝑇): 

𝐸𝐸𝑖𝑖 =
1

�𝑇𝑇𝑇𝑇(𝐸𝐸𝑇𝑇𝐸𝐸)
2

𝐸𝐸 =
1

�𝑇𝑇𝑇𝑇(𝐸𝐸𝐸𝐸𝑇𝑇)
2

𝐸𝐸 
(3.18) 

Let 𝑏𝑏 = [𝑏𝑏1 𝑏𝑏2 𝑏𝑏3]𝑇𝑇 be the normalized baseline vector. The absolute values of the 

baseline components can then be extracted from the diagonal elements of the Gramm 

matrix as follows:  

𝑏𝑏12 = 1 − [𝐸𝐸𝑖𝑖𝑇𝑇𝐸𝐸𝑖𝑖]11 (3.19) 

𝑏𝑏22 = 1 − [𝐸𝐸𝑖𝑖𝑇𝑇𝐸𝐸𝑖𝑖]22 (3.20) 

𝑏𝑏32 = 1 − [𝐸𝐸𝑖𝑖𝑇𝑇𝐸𝐸𝑖𝑖]33 (3.21) 

where [𝐸𝐸𝑖𝑖𝑇𝑇𝐸𝐸𝑖𝑖]𝑀𝑀𝑖𝑖  denotes the element of 𝐸𝐸𝑖𝑖𝑇𝑇𝐸𝐸𝑖𝑖 in the ith row and jth column. To resolve the 

sign ambiguity, the largest squared component is assumed to be a positive square root and 

the remaining signs are inferred from the off-diagonal elements of 𝐸𝐸𝑖𝑖𝑇𝑇𝐸𝐸𝑖𝑖: 

𝐸𝐸𝑖𝑖𝑇𝑇𝐸𝐸𝑖𝑖 = �
𝑏𝑏22 + 𝑏𝑏32 −𝑏𝑏1𝑏𝑏2 −𝑏𝑏1𝑏𝑏3
−𝑏𝑏1𝑏𝑏2 𝑏𝑏12 + 𝑏𝑏32 −𝑏𝑏2𝑏𝑏3
−𝑏𝑏1𝑏𝑏3 −𝑏𝑏2𝑏𝑏3 𝑏𝑏12 + 𝑏𝑏22

� (3.22) 

It suffices to recover one baseline vector from 𝐸𝐸𝑖𝑖𝑇𝑇𝐸𝐸𝑖𝑖 as described above and the second 

baseline will simply be the same vector pointed at the opposite direction. 
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 Having recovered a baseline vector, the two possible rotation matrices are computed 

with the following simple formula (section 3 of Appendix D): 

𝑅𝑅 = 𝐶𝐶𝑖𝑖𝑇𝑇 ± [𝑏𝑏]×𝐸𝐸𝑖𝑖𝑇𝑇 (3.23) 

where [𝑏𝑏]× is the cross-product skew symmetric matrix associated with 𝑏𝑏 and 𝐶𝐶𝑖𝑖 is the 

matrix of cofactors of 𝐸𝐸𝑖𝑖. To avoid confusion caused by minor variations in the definition 

of the adjoint/adjugate in literature, the correct formula for 𝐶𝐶𝑖𝑖 is given below: 

𝐶𝐶𝑖𝑖 =

⎣
⎢
⎢
⎢
⎢
⎡ �
𝑒𝑒22 𝑒𝑒23
𝑒𝑒32 𝑒𝑒33� − �

𝑒𝑒21 𝑒𝑒23
𝑒𝑒31 𝑒𝑒33� �

𝑒𝑒21 𝑒𝑒22
𝑒𝑒31 𝑒𝑒32�

− �
𝑒𝑒12 𝑒𝑒13
𝑒𝑒32 𝑒𝑒33� �

𝑒𝑒11 𝑒𝑒13
𝑒𝑒31 𝑒𝑒33� − �

𝑒𝑒11 𝑒𝑒12
𝑒𝑒31 𝑒𝑒32�

�
𝑒𝑒12 𝑒𝑒13
𝑒𝑒22 𝑒𝑒23� − �

𝑒𝑒11 𝑒𝑒13
𝑒𝑒21 𝑒𝑒23� �

𝑒𝑒11 𝑒𝑒12
𝑒𝑒21 𝑒𝑒22� ⎦

⎥
⎥
⎥
⎥
⎤

  

⇔ 𝐶𝐶𝑖𝑖 = �
𝑒𝑒22𝑒𝑒33 − 𝑒𝑒32𝑒𝑒23 −(𝑒𝑒21𝑒𝑒33 − 𝑒𝑒31𝑒𝑒23) 𝑒𝑒21𝑒𝑒32 − 𝑒𝑒31𝑒𝑒22

−(𝑒𝑒12𝑒𝑒33 − 𝑒𝑒32𝑒𝑒13) 𝑒𝑒11𝑒𝑒33 − 𝑒𝑒31𝑒𝑒13 −(𝑒𝑒11𝑒𝑒32 − 𝑒𝑒31𝑒𝑒12)
𝑒𝑒12𝑒𝑒23 − 𝑒𝑒22𝑒𝑒13 −(𝑒𝑒11𝑒𝑒23 − 𝑒𝑒21𝑒𝑒13) 𝑒𝑒11𝑒𝑒22 − 𝑒𝑒21𝑒𝑒12

� (3.24) 

The four possible relative pose configurations recovered from the essential matrix are 

illustrated in Figures 3.6 and 3.7 in term of the location of the observed points.  

 

Figure 3.6. Camera orientation with respect to the observed points for "positive" baseline direction. 
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Figure 3.7. Camera orientation with respect to the observed points for "negative" baseline direction. 

It is clear that only one combination of the two baselines and two rotation matrices aligns 

both cameras behind the observed point. This suggests that, in order to resolve the 

ambiguity between the four solutions, a reconstruction of the scene must be obtained and 

the transformation that yields positive (or negative) signs in both depths of an observed 

point as observed from the two camera views should be the correct one. In other words, the 

point should lie in front of both cameras. With noisy data, this may not be the case for all 

points even for the correct transformation and therefore in practice this is a matter of 

voting. 

3.2.5 Scene reconstruction in two views from known correspondences and 

relative pose 

In this section, a general method for 3D scene reconstruction in two views from known 

relative pose and correspondences is presented. This method is also used to disambiguate 

the four relative pose solutions extracted from the essential matrix.  

Let 𝑀𝑀 = [𝑋𝑋 𝑌𝑌 𝑍𝑍]𝑇𝑇 be the real-world location of an observed point expressed in 

the first camera coordinate frame and let 𝑚𝑚1 and 𝑚𝑚2 be the respective normalized 

Euclidean projections in the two camera views. Also, let b denote the baseline vector in the 

coordinate frame of the first camera and R be the orthonormal matrix containing the 

directions of the second camera frame (expressed in the first camera coordinate frame) 

arranged column-wise. It follows that 𝑀𝑀 can be expressed in terms of 𝑚𝑚1 as follows: 

𝑀𝑀 = 𝑍𝑍𝑚𝑚1 (3.25) 
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The location of M in the second camera frame is then 𝑅𝑅𝑇𝑇(𝑀𝑀 − 𝑏𝑏). The normalized 

Euclidean coordinates of 𝑀𝑀 are given by the following: 

𝑚𝑚2 =
1

1𝑧𝑧𝑇𝑇𝑅𝑅𝑇𝑇(𝑀𝑀− 𝑏𝑏)𝑁𝑁𝑅𝑅
𝑇𝑇(𝑀𝑀− 𝑏𝑏) (3.26) 

where 1𝑧𝑧 = [0 0 1]𝑇𝑇. Substituting (3.25) into (3.26) yields a relationship in which the 

only unknown is the depth Z: 

�1𝑧𝑧𝑇𝑇𝑅𝑅𝑇𝑇(𝑍𝑍𝑚𝑚1 − 𝑏𝑏)�𝑚𝑚2 = 𝑅𝑅𝑇𝑇(𝑍𝑍𝑚𝑚1 − 𝑏𝑏)  

⇔ �1𝑧𝑧𝑇𝑇𝑅𝑅𝑇𝑇(𝑍𝑍𝑚𝑚1 − 𝑏𝑏)�𝑚𝑚2 − 𝑅𝑅𝑇𝑇(𝑍𝑍𝑚𝑚1 − 𝑏𝑏) = 0 (3.27) 

For any vectors 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 of arbitrary size, it is easy to prove that (𝑎𝑎𝑇𝑇𝑏𝑏)𝑐𝑐 = (𝑐𝑐𝑎𝑎𝑇𝑇)𝑏𝑏. With this 

identity at hand, the relationship in (3.27) becomes: 

(𝑚𝑚21𝑧𝑧𝑇𝑇)𝑅𝑅𝑇𝑇(𝑍𝑍𝑚𝑚1 − 𝑏𝑏) − 𝑅𝑅𝑇𝑇(𝑍𝑍𝑚𝑚1 − 𝑏𝑏) = 0  

⇔ (𝑚𝑚21𝑧𝑧𝑇𝑇 − 𝐼𝐼3)𝑅𝑅𝑇𝑇(𝑍𝑍𝑚𝑚1 − 𝑏𝑏) = 0 (3.28) 

where 𝐼𝐼3 is the 3 × 3 identity matrix. Equation (3.28) is an over-determined system in Z 

and yields two solutions, one for each projection component, provided that the 

measurements are completely noise-free. However, in most cases the two solutions do not 

agree and, furthermore, we observed that in the majority of these cases, disparity tends to 

concentrate either on the x or on the y axis, thereby making one solution more “reliable” 

than the other. The proposed workaround is to regard Z as a minimizer of the following 

optimization problem: 

𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧𝑒𝑒
𝑍𝑍

{(𝑍𝑍𝑚𝑚1 − 𝑏𝑏)𝑇𝑇𝑅𝑅𝐶𝐶𝑅𝑅𝑇𝑇(𝑍𝑍𝑚𝑚1 − 𝑏𝑏)} (3.29) 

where C is the following non-invertible positive semi-definite (PSD) matrix: 

𝐶𝐶 = (𝑚𝑚21𝑧𝑧𝑇𝑇 − 𝐼𝐼3)𝑇𝑇(𝑚𝑚21𝑧𝑧𝑇𝑇 − 𝐼𝐼3) = �
1 0 −𝑥𝑥2
0 1 −𝑦𝑦2
−𝑥𝑥2 −𝑦𝑦2 𝑥𝑥22 + 𝑦𝑦22

� (3.30) 

and 𝑥𝑥2 and 𝑦𝑦2 are the coordinates of 𝑚𝑚2 in the directions of the local x and y axis 

respectively. Taking the derivative of the quadratic expression in (3.29) in terms of Z and 

setting it to zero, yields the following minimizer: 
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𝑍𝑍 =
𝑚𝑚1
𝑇𝑇𝑅𝑅𝐶𝐶𝑅𝑅𝑇𝑇𝑏𝑏

𝑚𝑚1
𝑇𝑇𝑅𝑅𝐶𝐶𝑅𝑅𝑇𝑇𝑚𝑚1

 (3.31) 

The expression in (3.31) is a robust depth estimate which takes the direction of disparity 

into consideration thereby avoiding the “pitfall” of having to choose between two solutions 

for depth without any criteria at hand on how to make that choice. It should be however 

noted that estimation can yield very erroneous (e.g., negative depth) results if disparity is 

very noisy in both axes; in such a case, it is preferable to discard the point. 

 Examples of 2-view reconstructions using the methods described in the previous 

sections are illustrated in Figures 3.8-11. Features were detected with SIFT and the LK 

tracker was used to establish correspondences. Flow fields are shown on the images on the 

right (in green are new features detected in the second image for subsequent tracking). 

RANSAC outliers were omitted from the reconstruction and do not appear in the flow field 

illustration. Finally, since camera intrinsics were unknown in all cases, the reconstructions 

present a discrepancy up to an affine transformation with the ground truth (made-up 

intrinsics were used). Algorithm 3.1 describes the steps for relative pose and structure 

recovery from an essential matrix. 

Algorith 3.1. 3D Reconstruction and recovery of relative pose from two views 

Input: a) Set of normalized Euclidean correspondences 𝑚𝑚1
(𝑀𝑀) and 𝑚𝑚2

(𝑀𝑀) b) Essential matrix, E. 

Output: a) Camera relative pose (𝑅𝑅, 𝑏𝑏), b) 3D coordinates of all points 𝑀𝑀(𝑀𝑀). 

comment  Obtain the SVD of E:  

[U, S, V] ← svd(E) 

comment  Obtain a “normalized essential matrix” by removing scale and at the same time 
impose the necessary (and capable) condition of exactly two and equal singular values: 

En ← U �
1 0 0
0 1 0
0 0 0

�VT    

AcceptReconstruction ← False. 

comment Compute the absolute values of the baseline components 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 from 𝐸𝐸𝑖𝑖𝑇𝑇𝐸𝐸𝑖𝑖 

b1 ← �1 − [EnTEn]11 

b2 ← �1 − [EnTEn]22 
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b3 ← �1 − [EnTEn]33 

comment Choosing the greatest component (in absolute value) as positive and working-out 
the remaining signs from the off-diagonal elements of the essential matrix 

If ( max{b1, b2, b3} = b1): 

 If ([EnTEn]12 > 0)  

  𝑏𝑏2 ← −𝑏𝑏2   

 If ([EnTEn]13 > 0): 

  𝑏𝑏3 ← −𝑏𝑏3 

Else If ( max{b1, b2, b3} = b2): 

If ([EnTEn]12 > 0): 

  𝑏𝑏1 ← −𝑏𝑏1   

If ([EnTEn]23 > 0): 

  b3 ← −b3 

Else: 

If ([EnTEn]13 > 0): 

  b1 ← −b1   

If ([EnTEn]23 > 0): 

  b2 ← −b2 

comment Storing the two possible baselines 

Baselines ← {(b1, b2, b3)      ,   (−b1,−b2,−b3) } 

comment  Find the matrix of cofactors of 𝐸𝐸𝑖𝑖 

Cn ← �
e22e33 − e32e23 −(e21e33 − e31e23) e21e32 − e31e22

−(e12e33 − e32e13) e11e33 − e31e13 −(e11e32 − e31e12)
e12e23 − e22e13 −(e11e23 − e21e13) e11e22 − e21e12

� 

comment  Store the two possible rotation matrices 

Rotations ← {CnT + [Baselines(1)]×EnT   ,   CnT + [Baselines(2)]×EnT } 

comment  Find the best scene reconstruction for the 4 possible relative poses 

BestReconstruction ← {Rotations(1) , Baselines(1)} 

MinCount ← ∞ 

For each baseline b in  Baselines: 

 For each rotation matrix 𝑅𝑅 in  Rotations: 

  errorCount ← 0 
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  For each pair of correspondences (m1, m2): 

   C = (m213T − I3)T(m213T − I3) 

Z1 ←
m1
TRCRTb

m1
TRCRTm1

 

Z2 ← 1z𝑇𝑇RT(Z1m1 − b) 
    
If (Z1 ≤ 0) Or (Z2 ≤ 0): 

    errorCount ← errorCount + 1 

   Else: 

    M = Z1m1 

  If (errorCount < minCount): 

   BestReconstruction ← {R , b}  

  minCount ← errorCount 

 

 

Figure 3.8. A reconstruction of the famous Hannover dinosaur (Niem and Buschmann 1995) from 
the first two views of the sequence. 
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Figure 3.9. A reconstruction Oxford Wadham college from two views (Werner and Zisserman 
2002). 

 

Figure 3.10. A reconstruction of a model house8 from two views. 

                                                 
8 Images retrieved from http://www.robots.ox.ac.uk/~vgg/data/data-mview.html  

http://www.robots.ox.ac.uk/%7Evgg/data/data-mview.html
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Figure 3.11. Reconstruction from the first two frames of the "corridor" sequence8. The two camera 
locations are shown as green spots on the left. 

3.2.6 Scene reconstruction from the essential matrix: Where’s the hack? 

There have been many authors who presented good to high quality results in terms of 

recovering camera pose and scene structure from the essential matrix. To name a few 

renowned researchers, Pollefeys (Pollefeys, Van Gool et al. 2004), Nister (Nistér 2004), 

Zisserman and Hartley (Hartley and Zisserman 2003) have presented remarkable scene 

reconstructions with their specialized algorithms for the computation of the fundamental 

matrix (and subsequently, of the essential matrix through known camera intrinsics). To the 

best of my knowledge, with the exception of Nister’s algorithm9, what these methods have 

in common is that they do not directly address the two primary constraints associated with 

the essential matrix: a) It has exactly two singular values and, b) These singular values are 

equal. Typically, the aforementioned algorithms enforce these constraints after the 

optimization. In my opinion, the ramifications of this strategy can be unpredictable, 

depending on the level of noise in the data. Enforcing exactly two non-zero, equal singular 

values is a brutal way of imposing constraints and can potentially alter the relative pose 

estimate to an extent at which no iterative refinement can recover from (for instance, in my 

experience, a nearly 1800 “flipped” baseline is not an unlikely occurrence even in “mildly” 
                                                 
9 Of course, many variations of the 5-point algorithm have been proposed since Nister’s paper, but they do not 
essentially add something new to the concept. 
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contaminated data). As shown in Appendix D, a matrix E is an essential matrix if and only 

if it can be written as the sum of two tensor products, 

𝐸𝐸 = 𝑣𝑣1𝑢𝑢1𝑇𝑇 + 𝑣𝑣2𝑢𝑢2𝑇𝑇 (3.32) 

where 𝑣𝑣1,𝑣𝑣2,𝑢𝑢1, 𝑢𝑢2 ∈ ℝ3 are unit vectors such that, 𝑣𝑣1𝑇𝑇𝑣𝑣2 = 𝑢𝑢1𝑇𝑇𝑢𝑢2 = 0. Equation (3.32) is 

equivalent to the definition of two equal singular values. It is worth nothing here that the 

respective expression for the fundamental matrix simply involves a scaling factor applied to 

the first or the second tensor product of (3.32), hence the 6 DOF as opposed to the 5 in the 

case of the essential matrix. It is clear that any optimization that pays respect to the true 

distribution of the elements of the fundamental/essential matrix should enforce the 

associated orthogonality/orthonormality constraints. An alternative approach would be to 

use the standard formula for the essential matrix given in equation (3.13) and impose 

orthonormality constraints on the columns of the rotation matrix and a unit-norm constraint 

on the baseline (see Chapter 4, section 4.2 for a parametrization using stereographic 

coordinates). Either way, a properly constrained optimization involves a Lagrangian (or 

some parametrized expression) with the standard 8-point algorithm cost function and 5 

Lagrange multipliers (2 for orthogonality and 3 for unit norms).  The Karush-Kuhn-Tucker 

(KKT) conditions will eventually lead to a 4th degree polynomial system in the components 

of 𝑣𝑣1, 𝑣𝑣2, 𝑢𝑢1, 𝑢𝑢2. This system is relatively hard to obtain analytically and it requires a 

special category of algorithms known as Groebner basis solvers (Lazard 1983) to solve it. 

 Nister’s solution (Nistér 2004) deserves special reference in this section for being 

the only method (to the best of my knowledge) that actually solves for the essential matrix 

while strictly abiding by the orthogonality constraints. The idea is to recover the essential 

matrix from the 4-dimensional null space of the data matrix. The constraints yield a 

polynomial system containing reasonably-sized expressions (only 4 unknowns up to 

arbitrary scale) and can be solved in a relatively uncomplicated manner. Of course, the 

problem with this method is that it does not generalize to the most usual formulation of the 

problem which is an overdetermined system10, in which case the null space of the data 

                                                 
10 Nister mentions in his paper that the method generalizes to the overdetermined case if the 4 eigenvectors of 
the data matrix corresponding to the 4 smallest singular values are taken instead of the 4 null-space basis 
vectors used in the 5-point case. I believe that this is an arbitrary assertion. Clearly, one is free to employ the 
singular vectors to diagonalize the data matrix (see my PnP formulation in Chapter 8, section 1.3), but there is 
no justification about why the constrained minimum should be in the space of the smallest 4 singular values. 
It is however a sane conjecture from a greedy point of view. 
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matrix is rarely non-empty. For completeness, I would like to mention a parametrization by 

Vincent Lui and Tom Drummond for an iterative solution of the 5-point problem estimation 

(Lui and Drummond 2007). Other solutions for the 5-point problem involve Hongdong’s 

(Li and Hartley 2006) and Kukelova’s (Kukelova, Bujnak et al. 2008) methods. 

 An alternative approach to solving the overdetermined constrained essential matrix 

optimization problem would be to use iterative methods over a 6 or 5 DOF parametrization 

(such as the one discussed in Chapter 4, section 4.2). Unfortunately, the search space is not 

convex and although convergence is reached relatively fast, there are no guarantees as to 

whether the solution is a global minimum or not. A category of methods that convert 

nonconvex problems into convex and thereafter use iterative optimization to reach the 

global minimum are known as convexification methods (Bertsekas 1979) and can be 

potentially employed to reach the true minimum. It is my view that the problem can be 

further researched from the angle of primal-dual methods, without necessarily excluding a 

possible analytical solution which will however inevitably involve a 4th degree polynomial 

system.  

3.3 Degenerate configurations 

Since the early days of photogrammetry, it was a well-known fact that certain scene 

depictions or configurations of camera locations gave rise to ambiguities in the 

reconstruction. In visual SLAM the occurrences of planar scenes and purely rotational 

camera motion may give rise to ambiguities in the recovery of relative pose. In theory, 

other degenerate configurations may include situations in which the 3D locations of the 

tracked features or the camera centers are situated on a twisted cubic, but they are unlikely 

to occur in practice. For a detailed introduction to degenerate configurations, the reader is 

deferred to the chapter on degeneracies in multiple view geometry in computer vision by 

Hartley and Zisserman (Hartley and Zisserman 2003). 

There exist three distinct degenerate situations that, in practice, manifest themselves 

in exactly the same way (Figure 3.12). In particular, in any of these three aforementioned 

degeneracies, the set of correspondences between two views are linked via a projectivity 

(homography). The first two types of degeneracies involve features with 3D locations that 

lie on the same plane. In addition, the notion of coplanarity can be extended to include 
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point-clouds that are located very far away from the camera center, practically at infinity 

(i.e., they are lying in a plane infinitely far away from the camera center, called the plane at 

infinity). The third case concerns purely rotational camera motion and is likely to occur 

when the frame attached to the camera center is not translating. Regardless, all three 

degenerate types are being dealt with in the same way since the correspondences are linked 

via a projective transformation. 

 

Figure 3.12. The most common degenerate configuration in which the 3D locations of the tracked 
features lie in a plane. 

Coplanarity in SLAM almost certainly occurs because the 3D locations of the 

features are very far away, practically at infinity. A very simple method to diagnose this 

degeneracy is to fit a homography to the tracked features and obtain the mean squared error 

(MSE) of the homography based predicted feature locations (Pollefeys, Van Gool et al. 

2004). If the MSE is below some threshold, then it follows that the features are linked by 

means of a projectivity and the preferred course of action would be to skip to the next 

frame in the sequence.  

Similarly, in cases where the camera appears to be purely rotating, the solution is to 

skip frames until the baseline contributes significantly in the disparity of the feature 

locations. Testing for this degeneracy can be reliably made through prior knowledge of 

orientation which is usually provided by an inertial measurement unit (IMU) or gyro. The 

idea is to use the IMU based rotation matrix in order to rectify the feature locations in the 

second view so that the rigid transformation between the rectified camera frame and the 

first camera frame becomes a pure translation, equal to the baseline that links the two 
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camera centers. Once the features are rectified, solving for the baseline becomes a simple 

homogeneous linear least squares (LS) problem. If the baseline norm is below some 

threshold (low disparity), then the frame is not processed and the next frame in the 

sequence is sampled. 

It should be noted that a robust criterion that detects both coplanarity and pure 

rotational motion was proposed by Kanatani (Kanatani 1998). Kanatani’s geometric 

information criterion fits 3 distinct models to the data: a) A general motion model �̂�𝒮 for 

non-vanishing baseline length, b) A homography-based model �̂�𝒮𝜋𝜋 for the case of coplanar 

world points and, c) A pure camera rotation model �̂�𝒮𝑅𝑅. The dominant type of motion can 

thereafter by selected by the following two tests. 

Planarity test: Coplanarity of the observed world points is decided based on the validity 

(coplanar if true) of the following inequality: 

𝑇𝑇2� �̂�𝒮𝜋𝜋�
𝑇𝑇2� �̂�𝒮�

< 3 +
4

𝑁𝑁 − 5 (3.33) 

where 𝑇𝑇2[ . ] denotes the (average) squared residual of data fitness to the model in brackets 

and N is the number of data points. 

Rotation test: Pure rotational motion is decided if the following inequality is true: 

𝑇𝑇2� �̂�𝒮𝑅𝑅�
𝑇𝑇2� �̂�𝒮�

< 3 +
14

𝑁𝑁 − 5 (3.34) 

Although detection of degeneracies is important for robust camera motion 

estimation, the only preemptive measures against degeneracies in the algorithms presented 

in this thesis concern the very likely case of coplanarity due to distance (i.e., world points 

practically lying in the plane at infinity). One of the few research-friendly conditions of 

Springer’s missions is the assumption of constant motion when the vehicle is localizing 

itself through vision, which practically eliminates the need to deal with the problem of 

fitting multiple motions, except for the case of very distant scene backgrounds. 

3.3.1 Image rectification with known relative orientation   

Provided reliable prior information on relative orientation between two camera frames, it is 

possible to remove the effects of rotational motion from the image projections in the second 
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(right) image by creating a new virtual view (indicated with dashed quadrilateral) in which 

all projections are presumably the result of pure translational motion. This way, motion 

equations become linear in the translation components and standard least squares 

optimization can be applied. 

 

Figure 3.13. Rectification of the second view using a conjugate rotation. 

Suppose that R is the rotation matrix that aligns the first camera frame with the 

second. Figure 3.13 illustrates rectification using prior knowledge of relative orientation 

between the two views. To rectify the second view with respect to the first, one simply 

needs to apply the inverse rotation 𝑅𝑅𝑇𝑇 to the second camera frame. It follows from equation 

(3.9) that the 3D locations 𝑀𝑀2
′  of the features in the virtual camera view will transform in 

terms of their locations in the original camera frame as follows: 

𝑀𝑀2
′ = 𝑅𝑅𝑀𝑀2 (3.35) 

Thus, one is able to compute the virtual image locations 𝑝𝑝2′  of the features in the unrotated 

view in terms of their locations 𝑝𝑝2 in the original image as follows: 

𝑝𝑝�2′ ∝ 𝑁𝑁𝑅𝑅𝑁𝑁−1�����
𝐻𝐻

𝑝𝑝�2 (3.36) 

Equation (3.36) clearly points-out that the rectified features can be obtained by applying a 

homography 𝐻𝐻 = 𝑁𝑁𝑅𝑅𝑁𝑁−1 to the second/right view; this homography is also known as 

conjugate rotation (Hartley and Zisserman 2003).  
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3.4 Stereo vs Single camera in scenes of varying depth 

Consider a stereo rig with two identical cameras placed at a specific distance B apart along 

the x-axis of their local frames, both having identical orientations (Figure 3.14).  

 

Figure 3.14. Euclidean projections of a point on a standard stereo rig. 

This configuration can eliminate the scale ambiguity in the recovery of scene structure 

when processing video sequences, provided that correspondences between tracked points 

have been established in both stereo views.  

 Let 𝑀𝑀 = [𝑋𝑋 𝑌𝑌 𝑍𝑍]𝑇𝑇 be a world point with Euclidean projections11 𝑚𝑚𝑙𝑙 =

[𝑥𝑥𝑙𝑙 𝑦𝑦𝑙𝑙]𝑇𝑇 and  𝑚𝑚𝑀𝑀 = [𝑥𝑥𝑀𝑀 𝑦𝑦𝑀𝑀]𝑇𝑇 on the left and right image of the rig respectively. Since the 

baseline lies along the x-axes of the two cameras, it follows that 𝑦𝑦𝑙𝑙 = 𝑦𝑦𝑀𝑀 = 𝑦𝑦. It now 

becomes more convenient to study the geometry of the rig by adopting the top view shown 

in Figure 3.15. It is very easy to observe the triangle similarities, 𝑀𝑀𝐿𝐿𝑚𝑚𝑙𝑙~𝑂𝑂𝑙𝑙𝐶𝐶𝑙𝑙𝑚𝑚𝑙𝑙 and 

𝑀𝑀𝐿𝐿𝑚𝑚𝑀𝑀~𝑂𝑂𝑀𝑀𝐶𝐶𝑀𝑀𝑚𝑚𝑀𝑀. Also, taking into consideration that 𝐵𝐵 = 𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑀𝑀 + 𝑏𝑏𝑀𝑀 + 𝑏𝑏𝑙𝑙 (the negation 

on 𝑥𝑥𝑀𝑀 is used because 𝑚𝑚𝑀𝑀 is on the negative side of the x-axis of the local frame; it turns out 

that the negation is necessary even when 𝑚𝑚𝑀𝑀 is on the positive side) and following a few 

trivial substitutions, it turns out that, 

𝜆𝜆 = 𝑓𝑓
𝐵𝐵 − (𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑀𝑀)

𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑀𝑀
 (3.37) 

Thus, the depth Z can be obtained as follows: 

                                                 
11 Please note that in section 3.3, 𝑚𝑚𝑙𝑙 and 𝑚𝑚𝑀𝑀 are general Euclidean coordinates (not necessarily normalized). 



 
 

78 
 

𝑍𝑍 =  𝜆𝜆 + 𝑓𝑓 = 𝑓𝑓
𝐵𝐵

𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑀𝑀�����
𝑑𝑑

 (3.38) 

where 𝑑𝑑 = 𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑀𝑀 is the disparity between 𝑚𝑚𝑙𝑙 and 𝑚𝑚𝑀𝑀. 

 

Figure 3.15. Top view of the stereo rig.  

The stereo approach allows for scale recovery in terms of scene geometry and 

therefore it can be used as a SLAM observation model that accounts for the actual 

translation with respect to the previous vehicle/rig location in time. Although the recovery 

of scene depth is essential in visual SLAM, stereo based depth estimates present significant 

limitations imposed by sensor resolution. In particular, any pair of projections with a 

disparity value below a threshold c will always have the same coordinates in both stereo 

views. Equation (3.37) implies that for any point with depth 𝑍𝑍 > 𝑓𝑓𝐵𝐵/𝑐𝑐 the disparity will be 

zero; hence, the point will be effectively mapped to infinity. Considering that 𝑑𝑑 = 𝐵𝐵 −

(𝑏𝑏𝑀𝑀 + 𝑏𝑏𝑙𝑙), a very obvious solution would be to increase the baseline length; however, this is 

an impractical solution for scenes with background depth that ranges over a few hundred 

meters such as river banks, forests, fields, etc. A more intuitive depiction of the 

manifestation of degenerate disparity is illustrated in Figure 3.16. As the point moves 

further away from the center of projection, the projection rays become approximately 

parallel and the reconstruction has increasingly poor quality as a result of the fact that 

minor perturbations of the directions of the rays have a high impact in the position of the 

reconstructed point. The dashed rays designate the uncertainty cone for each projection 
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while the solid lines indicate the ground truth; the blue shaded rhombus indicates the 

uncertainty region for the reconstructed point. 

 

Figure 3.16. Uncertainty region (rhombus in shaded blue) in the estimated position of a point with a 
stereo rig. 

3.5 Summary 

The geometry of multiple views delivers the primary tools for the design and 

implementation of the measurement models used to infuse information to the visual SLAM 

posterior. Moreover, as shown in this chapter, techniques such as the rectification of views, 

as well as algorithms for scene reconstruction and relative camera pose estimation from the 

essential matrix will be useful in terms initializing visual SLAM, obtaining initial guesses 

for camera motion and rejecting outliers.  

It is worth noting here that using equations (3.35) and (3.36) and provided certain 

assumptions (e.g., planar motion and planar scenes) or information regarding relative 

orientation between two views, it is possible to obtain a single linear equation that 

associates the positions of the features in the two respective frames without having to 

invoke their 3D locations in the expression. In other words, this equation can be used in the 

context of ordinary least squares to obtain either a solution, or a very reliable starting point 

for non-linear optimization. These approaches are typically employed in algorithms 
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estimating odometry incrementally by computing the rigid transformation between 

consecutive pairs of frames (relative pose estimation). 

A significant conclusion drawn in this chapter is the very small applicability of 

stereo rigs in the type of environments that the current study is concerned with. The 

variations in scene depth in natural environments from a few meters and up to several 

hundred meters demands prohibiting baseline lengths. Therefore, it is clear that a single 

camera is the only viable option for relatively unconstrained visual SLAM applications in 

natural environments. 
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Chapter 4 

Orientation parametrization 

Representation of attitude is a major problem in fields such as computer vision, robotics 

and aerospace engineering. Unavoidably, equations of motion contain rotation matrices in 

the respective expressions. Unfortunately, rotation matrices are highly redundant 

representations and incur a number of orthonormality constraints which are very hard to 

impose in systems of equations and/or optimization algorithms. The most popular 

alternative is the use of unit quaternions (Horn 1987, Markley and Mortari 1999, Schmidt 

and Niemann 2001). However, although much more compact than rotation matrices, 

quaternions are also redundant representations in terms of orientation, since a unit-norm 

constraint must be imposed in the measurement step of a filter. It is therefore necessary to 

resort to a method of enforcing this constraint during optimization, such as Lagrange 

multipliers (Wah and Wu 1999); alternatively, it is preferable to parametrize the quaternion 

in a way such that the number of degrees of freedom (DOF) of the representation drops 

down to 3. 

4.1 Axis-angle parametrization and quaternions 

Any rotation in 3D is equivalent to a rotation about one axis by some angle θ. In this axis-

angle representation, if u is some vector on the direction of the rotation axis, then this 

vector can be regarded as a complete representation of the rotation, if ‖𝑢𝑢‖ = 𝜃𝜃. In other 

words, in order to fully specify a rotation, only an angle θ and a direction vector 𝑢𝑢 =

[𝑢𝑢1 𝑢𝑢2 𝑢𝑢3]𝑇𝑇 about which the rotation takes place are required; and since one is free to 

choose the length of this vector, it would be reasonable to make it so that this length 

encodes the angle of the rotation, θ. Simply put, the axis-angle representation is nothing but 
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a very compact encoding of a rotation with 3 DOF using the 3 components 𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3 of the 

vector that defines the rotation in a way such that, ‖𝑢𝑢‖ = 𝜃𝜃 where 𝜃𝜃 ∈ [−𝜋𝜋,𝜋𝜋). 

To obtain the rotation matrix from some given axis-angle representation, one may 

simply employ the formula of Rodrigues (Faugeras 1993): 

 𝑅𝑅 = �𝐼𝐼3 +
𝑠𝑠𝑚𝑚𝑏𝑏𝜃𝜃
𝜃𝜃

[𝑢𝑢]× +
1 − 𝑐𝑐𝑙𝑙𝑠𝑠𝜃𝜃

𝜃𝜃2
(𝑢𝑢𝑢𝑢𝑇𝑇 − 𝐼𝐼3), 𝜃𝜃 ≠ 0

𝐼𝐼3 , 𝜃𝜃 = 0
 (4.1) 

where the direction of the rotation is defined by the direction of u using the right-hand-

thumb rule, 𝐼𝐼3 is the 3 × 3 identity matrix and [𝑢𝑢]× is the cross-product skew symmetric 

matrix: 

[𝑢𝑢]× = �
0 −𝑢𝑢3 𝑢𝑢2
𝑢𝑢3 0 −𝑢𝑢1
−𝑢𝑢2 𝑢𝑢1 0

� 

For the special case where 𝜃𝜃 = 0, the rotation axis becomes ambiguous and the formula of 

Rodrigues is valid in the limit. 

 At this point, a very useful alternative expression for the rotation matrix in terms of 

a quaternion 𝑞𝑞 = (𝑞𝑞0,𝑣𝑣) is given (Markley and Mortari 1999):  

𝑅𝑅 = (2𝑞𝑞02 − 1)𝐼𝐼3 + 2𝑣𝑣𝑣𝑣𝑇𝑇 + 2𝑞𝑞0[𝑣𝑣]× (4.2) 

where 𝑞𝑞0 = cos 𝜃𝜃
2
 and 𝑣𝑣 = sin 𝜃𝜃

2 
𝑢𝑢
𝜃𝜃

 . 

The rotation in equation (4.1) is already axis-angle parameterized and one could 

argue against whether it is necessary to use quaternions in order to obtain the derivatives of 

R, since one can simply work directly on Rodrigues’ formula. As shown in Appendix A, 

the derivatives of the rotation are better computed using the chain rule on quaternion 

derivatives. This generally improves an, otherwise, very long and painful series of 

computations. 

4.2 A rational parametrization using stereographic projection 

The axis-angle parametrization uses the minimum number of 3 DOF required to specify a 

rotation and it can be computed in a straightforward manner. However, the derivatives of 

the rotation matrix (section 4.1 of Appendix A) contain expressions in which irrational 
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functions (sinusoids) are present. The latter implies that, in the course of computations, 

these functions will certainly inflict approximations to the final result thereby deteriorating 

its numerical accuracy. Hence, a rational parametrization, if possible, is always superior to 

one that makes use of irrational functions. It is possible to achieve such a parametrization 

by considering a homeomorphism from ℝ3 to the 4D unit sphere. 

4.2.1 Projecting unit quaternions on the 3D hyperplane 

Unit quaternions can be regarded as points on the hypersphere in 4D Euclidean space 

centered at the origin: 

𝑞𝑞02 + 𝑞𝑞12 + 𝑞𝑞22 + 𝑞𝑞32 = 1 (4.3) 

where 𝑞𝑞0, 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3 are the quaternion components. Let now 𝑆𝑆 ≡ (0, 0, 0,−1) be the 

“South Pole” of this 4D sphere and also let ε be the 3D equatorial hyperplane containing 

the origin of  ℝ4 as shown in Figure 4.1. Let now 𝑇𝑇(𝑡𝑡)  be the ray from S that passes 

through a point 𝜓𝜓 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) of the equatorial plane, parameterized by t (note that 

parentheses are used to denote points, while square brackets are used for vectors): 

𝑇𝑇(𝑡𝑡) = (0, 0, 0,−1) + 𝑡𝑡[𝑥𝑥 𝑦𝑦 𝑧𝑧 1]𝑇𝑇  (4.4) 

The ray intersects the surface of the sphere at q. Point q is therefore back-projected on ψ 

through the ray. 

 

Figure 4.1. The 4D spherical hypersurface of unit quaternions.  
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Since q lies on the sphere, its coordinates should verify equation (4.3). Moreover, since it 

also lies on the ray, substituting equation (4.4) in (4.5) yields, 

(𝑡𝑡𝑥𝑥)2 + (𝑡𝑡𝑦𝑦)2 + (𝑡𝑡𝑧𝑧)2 + (𝑡𝑡 − 1)2 = 1 

which provides the following non-trivial solution for t in terms of ψ: 

𝑡𝑡 =
2

𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 + 1 =
2

‖𝜓𝜓‖2 + 1 (4.5) 

Finally, substituting the value of t from equation (4.5) into (4.3), yields the coordinates of 

the corresponding unit quaternion in x-y-z parameters: 

𝑞𝑞 = �
2𝑥𝑥

‖𝜓𝜓‖2 + 1 ,
2𝑦𝑦

‖𝜓𝜓‖2 + 1 ,
2𝑧𝑧

‖𝜓𝜓‖2 + 1 ,
1 − ‖𝜓𝜓‖2

‖𝜓𝜓‖2 + 1� (4.6) 

 It is worth noting here that, in order to express the center of projection in terms of 

the stereographic parameters, one needs to include “infinite” values for the parameters x, y, 

z. This means that the quaternion (0,0,0,−1) cannot be expressed with real values of the 

stereographic projection parameters. In practice however, one may use very large values for 

x, y and z and get a very close approximation of the quaternion. Furthermore, the same 

rotation can be represented by −𝜓𝜓/‖𝜓𝜓‖2 and therefore (0,0,0,−1) corresponds to a 

stereographic triplet comprised of real numbers given by 𝜓𝜓 = (0, 0, 0). It turns-out that the 

stereographic coordinates behave well in the neighborhood of the South Pole and converge 

fast towards (0,0,0,−1) during the Gauss-Newton method, even for tolerance levels below 

10-9. The price that one pays here is the very high values for the parameter vector 

components; however, it has been shown (Terzakis, Culverhouse et al. 2014) that these 

values are well within representation range. 

4.2.2 Finding the back-projection of a quaternion on the equatorial plane 

Given a point 𝜓𝜓 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧), the coordinates 𝑞𝑞0, 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3 of the quaternion can be 

calculated directly from equation (4.6).  

The opposite conversion is equally straightforward, without many computations 

involved. Let (𝑞𝑞0, 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3) a given unit quaternion. As a first step, the squared norm 

‖𝜓𝜓‖2 is calculated as follows: 
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‖𝜓𝜓‖2 =
1 − 𝑞𝑞3
𝑞𝑞3 + 1 (4.7) 

From equations (4.7) and (4.6), the x, y, z coordinates of the quaternion’s back-projection 

on the equatorial plane can be easily calculated as follows: 

 𝜓𝜓 = �
𝑞𝑞0

1 − 𝑞𝑞3
,

𝑞𝑞1
1 − 𝑞𝑞3

,
𝑞𝑞2

1 − 𝑞𝑞3
� (4.8) 

For a detailed tutorial and extensive list of properties on quaternions and the 

parametrizations mentioned in this chapter, the reader is referred to Appendix A. 

4.3 Comparing parametrization approaches 

The most typical use of orientation parametrization in computer vision is in the context of 

non-linear optimization using the Levenberg-Marquardt (LM) method (Levenberg 1944, 

Marquardt 1963, Dennis Jr and Schnabel 1996); the LM heuristic is the preferred method 

for orientation and position refinement in computer vision, robotics and relative fields such 

as 3D graphics (Neugebauer and Klein 1999, Fitzgibbon 2003, Lourakis and Argyros 2005, 

Mirzaei and Roumeliotis 2008). It therefore seems reasonable to examine the behavior of 

the axis-angle vector against stereographic coordinates in the setting of such a non-linear 

optimization problem. 

4.3.1 Using Wahba’s problem as a benchmark to evaluate performance of 

parametrizations in iterative optimization 

To evaluate the performance of the axis-angle parametrization against stereographic 

coordinates, random data for Grace Wahba’s problem (Wahba 1965) were generated and 

iterative optimization was executed to convergence. Wahba’s problem is a quadratic 

minimization problem over the elements of a rotation matrix that aligns 𝑁𝑁 directions 

(𝑁𝑁 ≥ 3) in 3D space: 

𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧𝑒𝑒
𝑝𝑝

‖𝑅𝑅(𝑝𝑝)𝑈𝑈 − 𝑉𝑉‖𝐹𝐹2  (4.9) 

where is a 3 DOF parameter vector, 𝑅𝑅(𝑝𝑝) the rotation matrix corresponding to 𝑝𝑝, 𝑉𝑉 ∈ ℝ3×𝑁𝑁 

is the matrix that contains the direction vectors in the first coordinate frame arranged 

column-wise and 𝑈𝑈 ∈ ℝ3×𝑁𝑁 is the matrix of rotated directions in column-wise arrangement;  

‖. ‖𝐹𝐹 denotes the Frobenius norm of a matrix (i.e., the trace of its Gramm matrix). 
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Figure 4.2. Performance comparison in the context of Gauss-Newton iteration (fixed starting point). 

 

Figure 4.3. Plot of average error norm following convergence (fixed starting point). 

 Using the two parametrizations, a series of 5 LM executions were performed for 20 

different error tolerance values using randomly generated rotation matrices and common 

starting points (a rotation matrix corresponding to 𝜋𝜋
4

  about all three axes)12. For each set of 

executions, the average number of iterations to convergence and final error norm was 

                                                 
12 As will be described in section 4.5, Whaba’s problem is not convex and therefore convergence to the 
optimal solution can be affected by the choice of initial solution. It was decided that comparing performance 
from random starting points would be interesting as it may provide clues about the error surface morphology 
under the two rival parameter vectors.  
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recorded. Figures 4.2-3 illustrate the results obtained from multiple executions using the 

same starting point. 

 

Figure 4.4. Performance comparison in the context of Gauss-Newton iteration (random starting 
point). 

 

Figure 4.5. Plot of average error norm following convergence (random starting point). 

The results suggest marginal superiority of the stereographic projection over the axis-angle 

parametrization. In fact, the average number of iterations to convergence lies in the range of 

6-39 steps, while the respective numbers for the axis-angle parameters range from 11  to 

even 1887.5 in log scale. In fact, with the stereographic parameters, lowering the error 



 
 

88 
 

tolerance by 10 units in the negative log scale has practically no effect in the execution 

time.  

   The same experimentation was repeated with random starting points (Figures 4.4-5). 

The results indicate that, once again, the stereographic projection parameters demonstrate a 

very fast and stable converge in the range of 12-50 steps.  

4.3.2 Convergence to the center of projection 

The only point on the unit sphere that cannot be represented with real values of the 

stereographic projection parameters is the chosen center of projection, which is the 

quaternion (0, 0, 0,−1). One would expect the LM iteration to demonstrate instability in 

and cause the parameter vector to “explode” while in the neighborhood of the South Pole. 

Surprisingly, neither of the two happens (Figures 4.6-8). 

 

Figure 4.6. Performance comparison in the context of Gauss-Newton iteration for randomly 
generated quaternions in the neighborhood of the South Pole. 

The experiments described in the previous section were repeated using quaternions 

in a very close vicinity of the projection center. In particular, random quaternions of the 

following form were generated: 

𝑞𝑞(𝑇𝑇) ∝ (𝛿𝛿𝑇𝑇1, 𝛿𝛿𝑇𝑇2, 𝛿𝛿𝑇𝑇3,−1 + 𝛿𝛿𝑇𝑇4) 

where ∝ denotes projective equality, 𝛿𝛿 can be loosely regarded as a rate of divergence from 

the pole (typically, 𝛿𝛿 = 0.001) and r is a random number in [0,1]. This time, in order to 
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push things further to the extremes, the desired tolerance levels were shifted to very low 

numbers in the range of 2 to 8 in the negative log scale. 

 

Figure 4.7. Plot of average error norm following convergence. 

 

Figure 4.8. Average norm of the stereographic projection parameter vector in terms of preset 
tolerance. 

  Convergence remains extremely fast as shown in Figure 4.6, while both 

parametrization reached convergence at all times (Figure 4.7); the most important news 

however, is that the growth of the stereographic parameters follows the tolerance in a linear 

fashion as shown in Figure 4.8. This means that the South Pole can be well represented in 

practice with accuracy equal to the one of any other point on the sphere with the very 

“cheap” tradeoff of using relatively large numbers, yet clearly, well within floating point 

representation range. 
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4.4 Rational representation of directions in spaces of arbitrary 

dimensionality 

Fundamentally, stereographic projection is a rational encoding scheme for directions in any 

number of dimensions. Thus, the mapping can be employed to parametrize vectors of fixed 

or bounded length. Of particular interest are the cases of norm/ball/box constraints in non-

linear optimization and the parametrization of the essential matrix and will be described 

here. 

4.4.1 Ball constraints 

Ball constraints are very important in bundle adjustment, especially when optimizing the 

bundle of rays in only two camera views. In such a case, due to scale ambiguity, the 

baseline vector should be constrained by means of hard bounds as follows: 

𝛼𝛼 ≤ ‖𝑏𝑏‖2 ≤ 𝛽𝛽 (4.10) 

where 𝑏𝑏 ∈ ℝ3 is the baseline vector and 𝛽𝛽 > 𝛼𝛼 > 0 are the two bounds. 

 There have been quite a few methods proposed in literature for enforcing this 

constraint (Kanzow, Yamashita et al. 2004, Nocedal and Wright 2006, Jia and Zhu 2011) 

and in the majority of cases, these methods modify the LM step or the method itself, in 

order to force the new estimate within the feasible set.  

 What is proposed here is an uncomplicated, simple parametrization scheme based 

on stereographic projection for the encoding of ball constraints so that the aforementioned 

optimization problems can be cast and subsequently solved without constraints. The 

encoding uses 3 parameters to control the length and direction of the baseline vector as 

follows: 

𝑏𝑏(𝜅𝜅, 𝜆𝜆, 𝑡𝑡) = �𝛼𝛼 +
(𝛽𝛽 − 𝛼𝛼)

1 + exp (−𝑡𝑡)�
�

1
1 + 𝜅𝜅2 + 𝜆𝜆2

�
2𝜅𝜅
2𝜆𝜆

1 − 𝜅𝜅2 − 𝜆𝜆2
�� (4.11) 

where 𝜅𝜅, 𝜆𝜆 ∈ ℝ are the stereographic coordinates encoding the direction of b and 𝑡𝑡 ∈ ℝ is 

the length parameter. It is clear that the length of the vector is expressed using the logistic 

function. As a result, the Jacobian of the baseline will be the following: 
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∇𝑏𝑏 =

⎣
⎢
⎢
⎢
⎡
−

1
‖𝑏𝑏‖

�
𝑏𝑏02 − 𝑏𝑏2‖𝑏𝑏‖ − ‖𝑏𝑏‖2 𝑏𝑏1𝑏𝑏0

𝑏𝑏1𝑏𝑏0 𝑏𝑏12 − ‖𝑏𝑏‖𝑏𝑏2 − ‖𝑏𝑏‖2
𝑏𝑏0(‖𝑏𝑏‖ + 𝑏𝑏2) 𝑏𝑏1(‖𝑏𝑏‖ + 𝑏𝑏2)

�
���������������������������������

𝜕𝜕𝜕𝜕
𝜕𝜕(𝜅𝜅,𝜆𝜆)

(‖𝑏𝑏‖ − 𝛽𝛽)(‖𝑏𝑏‖ − 𝛼𝛼)
‖𝑏𝑏‖(𝛽𝛽 − 𝛼𝛼) 𝑏𝑏

���������������
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡 ⎦

⎥
⎥
⎥
⎤
 (4.12) 

where 𝑏𝑏0, 𝑏𝑏1, 𝑏𝑏2 are the components of the baseline vector. It is worth noting that the 

Jacobian contains rational expressions of the baseline components exclusively (i.e., the 

parameters do not appear anywhere). 

4.4.2 Parametrization of rotation and baseline in the essential matrix 

 Consider the primary definition of the essential matrix: 

𝐸𝐸 = 𝑅𝑅𝑇𝑇[𝑏𝑏]× (4.13) 

where 𝑅𝑅 contains the relative orientation frame arranged column-wise and [𝑏𝑏]× is the cross 

product matrix of the baseline vector. The derivatives of the essential matrix in terms of the 

stereographic parameter vector 𝜓𝜓 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) are the following: 

𝜕𝜕𝐸𝐸
𝜕𝜕𝜓𝜓𝑀𝑀

=
𝜕𝜕𝑅𝑅
𝜕𝜕𝜓𝜓𝑀𝑀

𝑇𝑇
[𝑏𝑏]× (4.14) 

where 𝜓𝜓𝑀𝑀 , 𝑚𝑚 = 1,2,3 are the components of 𝜓𝜓. The derivatives of the rotation matrix can be 

obtained analytically as simple polynomial expressions of the quaternion components 

according to equations (A.31-25) and (A.44-46) in section 4.3 of Appendix A.  

 The unit-norm baseline is parametrized by (𝜅𝜅, 𝜆𝜆) ∈ ℝ2 as described in the previous 

section. The derivative of 𝐸𝐸 in terms of 𝜅𝜅, 𝜆𝜆 can be obtained according to equations (A.44-

46) as follows: 

∇
𝜅𝜅,𝜆𝜆
𝐸𝐸 = 𝑅𝑅𝑇𝑇 ��𝐺𝐺𝑀𝑀

𝜕𝜕𝑏𝑏𝑀𝑀
𝜕𝜕𝜅𝜅

3

𝑀𝑀=1

�𝐺𝐺𝑀𝑀
𝜕𝜕𝑏𝑏𝑀𝑀
𝜕𝜕𝜆𝜆

3

𝑀𝑀=1

� (4.15) 

where 𝑏𝑏𝑀𝑀 are the components of 𝑏𝑏 and 𝐺𝐺𝑀𝑀 are the so-called Lie infinitesimal generators of 

the 3D special orthogonal group 𝑆𝑆𝑂𝑂(3): 

{𝐺𝐺1,𝐺𝐺2,𝐺𝐺3} = ��
0 0 0
0 0 −1
0 1 0

� , �
0 0 1
0 0 0
−1 0 0

� , �
0 −1 0
1 0 0
0 0 0

�� (4.16) 
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And the Jacobian of 𝑏𝑏 in terms of the stereographic coordinates (𝜅𝜅, 𝜆𝜆) can be obtained 

according to equations (A.44-46) in the 2D case: 

∇𝑏𝑏 = �
𝑏𝑏02 − 𝑏𝑏2 − 1 𝑏𝑏1𝑏𝑏0

𝑏𝑏1𝑏𝑏0 𝑏𝑏12 − 𝑏𝑏2 − 1
𝑏𝑏2(1 + 𝑏𝑏0) 𝑏𝑏2(1 + 𝑏𝑏1)

� (4.17) 

 What is of particular interest in the above is that the derivatives are all simple 

polynomial expressions which can be easily hard-coded in a computer program. 

Furthermore, according to Lui and Drummond13 (Lui and Drummond 2007), in the 5-point 

case, the iteration should generally converge to a minimum in the context of RANSAC. 

4.5 The solution to Wahba’s problem: Absolute orientation in a 

nutshell 

Obtaining the rotation matrix that maximizes the alignment of multiple directions in space 

is a major requirement in many computer vision applications. Although this problem was 

first introduced to the aerospace engineering research community by Grace Wahba in 1965 

(Wahba 1965), it however became known to computer vision researchers as the problem of 

absolute orientation by Berthold Horn 22 years later (Horn 1987). Suppose that for a set of 

known direction (unit) vectors 𝑓𝑓1 ,𝑓𝑓2, … , 𝑓𝑓𝑖𝑖 ∈ ℝ3,𝑏𝑏 ≥ 3, the corresponding unit vectors 

𝑑𝑑1 ,𝑑𝑑2, … , 𝑑𝑑𝑖𝑖 ∈ ℝ3 in an unknown coordinate frame are given. Provided that at least one 

triplet of linear independent vectors exists in the data, then the problem of absolute 

orientation is defined as follows: 

𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧𝑒𝑒
𝑅𝑅

�𝐽𝐽 = �‖𝑅𝑅𝑓𝑓𝑀𝑀 − 𝑑𝑑𝑀𝑀‖2
𝑖𝑖

𝑀𝑀=1

�

𝑠𝑠𝑢𝑢𝑏𝑏𝑠𝑠𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑙𝑙:𝑅𝑅𝑇𝑇𝑅𝑅 = 𝐼𝐼  𝑎𝑎𝑏𝑏𝑑𝑑  𝑑𝑑𝑒𝑒𝑡𝑡(𝑅𝑅) = 1

 (4.18) 

Equivalently, the problem can be alternatively cast as a maximization:  

                                                 
13 In their paper, Lui and Drummond propose a parametrization of the essential matrix and run the Gauss-
Newton method in the 5-point case without however clarifying why the solution is constrained to 5 points 
only. The most plausible explanation is that their parametrization produces a cost function expressions that 
requires linear time to evaluate at each step of the non-linear optimization.  
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𝑚𝑚𝑎𝑎𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧𝑒𝑒
𝑅𝑅

�𝐽𝐽 = �𝑑𝑑𝑀𝑀𝑇𝑇𝑅𝑅𝑓𝑓𝑀𝑀

𝑖𝑖

𝑀𝑀=1

�

𝑠𝑠𝑢𝑢𝑏𝑏𝑠𝑠𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑙𝑙:𝑅𝑅𝑇𝑇𝑅𝑅 = 𝐼𝐼  𝑎𝑎𝑏𝑏𝑑𝑑  𝑑𝑑𝑒𝑒𝑡𝑡(𝑅𝑅) = 1

 (4.19) 

 The cost function of (4.19) is the most suitable starting point for obtaining an 

analytical solution for 𝑅𝑅. Let 𝑞𝑞 = (𝑞𝑞0,𝑣𝑣), 𝑞𝑞0 ∈ ℝ,𝑣𝑣 ∈ ℝ3 be a unit quaternion that 

corresponds to 𝑅𝑅. Then, substituting 𝑅𝑅 from equation (4.2) yields the following expression 

for the cost function: 

𝐽𝐽 = �𝑑𝑑𝑀𝑀𝑇𝑇�(2𝑞𝑞02 − 1)𝐼𝐼3 + 2𝑣𝑣𝑣𝑣𝑇𝑇 + 2𝑞𝑞0[𝑣𝑣]×�𝑓𝑓𝑀𝑀

𝑖𝑖

𝑀𝑀=1

  

⇔ 𝐽𝐽 = ��(2𝑞𝑞02 − 1)𝑑𝑑𝑀𝑀𝑇𝑇𝑓𝑓𝑀𝑀���������
𝑞𝑞𝑇𝑇𝐴𝐴1

(𝑖𝑖)𝑞𝑞

+ 𝑣𝑣𝑇𝑇(2𝑑𝑑𝑀𝑀𝑓𝑓𝑀𝑀𝑇𝑇)𝑣𝑣���������
𝑞𝑞𝑇𝑇𝐴𝐴2

(𝑖𝑖)𝑞𝑞

+ 2𝑞𝑞0𝑑𝑑𝑀𝑀𝑇𝑇[𝑣𝑣]×𝑓𝑓𝑀𝑀���������
𝑞𝑞𝑇𝑇𝐴𝐴3

(𝑖𝑖)𝑞𝑞

�
𝑖𝑖

𝑀𝑀=1

 (4.20) 

It is relatively easy to discern that each term of the sum is in turn, a sum of three quadratic 

terms 𝑞𝑞𝑇𝑇𝐴𝐴1
(𝑀𝑀)𝑞𝑞, 𝑞𝑞𝑇𝑇𝐴𝐴2

(𝑀𝑀)𝑞𝑞 and 𝑞𝑞𝑇𝑇𝐴𝐴3
(𝑀𝑀)𝑞𝑞. The three matrices 𝐴𝐴1

(𝑀𝑀), 𝐴𝐴2
(𝑀𝑀), 𝐴𝐴3

(𝑀𝑀) are computed as 

follows: 

𝐴𝐴1
(𝑀𝑀) = 𝑑𝑑𝑀𝑀𝑇𝑇𝑓𝑓𝑀𝑀 �

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

� (4.21) 

𝐴𝐴2
(𝑀𝑀) = � 0 01×3

2𝑓𝑓𝑀𝑀 × 𝑑𝑑𝑀𝑀 03×3
� (4.22) 

𝐴𝐴3
(𝑀𝑀) = �

0 01×3
03×1 2𝑑𝑑𝑀𝑀𝑓𝑓𝑀𝑀𝑇𝑇

� (4.23) 

The cost function in (4.20) now becomes quadratic in 𝑞𝑞: 

𝐽𝐽 = 𝑞𝑞𝑇𝑇 ���𝐴𝐴1
(𝑀𝑀) + 𝐴𝐴2

(𝑀𝑀) + 𝐴𝐴3
(𝑀𝑀)�

𝑖𝑖

𝑀𝑀=1

�
�����������������

𝐶𝐶

𝑞𝑞 = 𝑞𝑞𝑇𝑇𝐶𝐶𝑞𝑞 (4.24) 

Since 𝐽𝐽 is a quadratic, 𝐶𝐶 can be replaced by the respective symmetric matrix 𝐷𝐷 = �𝐶𝐶+𝐶𝐶𝑇𝑇�
2

 in 

the cost function. Thus, the maximization problem of  (4.19) now becomes: 
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𝑚𝑚𝑎𝑎𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧𝑒𝑒
𝑞𝑞

{𝐽𝐽 = 𝑞𝑞𝑇𝑇𝐷𝐷𝑞𝑞}

𝑠𝑠𝑢𝑢𝑏𝑏𝑠𝑠𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑙𝑙: 𝑞𝑞𝑇𝑇𝑞𝑞 = 1
 (4.25) 

 The solution that follows, to the best of my knowledge, was first publicly 

introduced to the aerospace engineering community by Davenport in 1968 (Davenport 

1968, Davenport 1971)14. The exact same solution was introduced to the compute vision 

community by Berthold Horn 19 years later in his famous paper on the solution of absolute 

orientation using quaternions (Horn 1987). With this necessary brief historical review in 

place, consider now the Lagrangian of the problem in (4.25): 

ℒ = 𝑞𝑞𝑇𝑇𝐷𝐷𝑞𝑞 + 𝜆𝜆(1 − 𝑞𝑞𝑇𝑇𝑞𝑞) (4.26) 

where 𝜆𝜆 ∈ ℝ is a Lagrange multiplier associated with the unit-norm constraint. Taking the 

derivative of ℒ in terms of 𝑞𝑞 and setting it to zero yields: 

𝐷𝐷𝑞𝑞 = 𝜆𝜆𝑞𝑞 (4.27) 

Evidently, the solution is an eigenvector of 𝐷𝐷. Since 𝐷𝐷 is symmetric, it follows that its 

eigenvectors will form an orthonormal basis of ℝ4. Thus, with a simple substitution in 

(4.26), it becomes clear that the solution should be the eigenvector that corresponds to the 

largest eigenvalue. 

4.6 Summary 

Two minimal orientation parametrization schemes were introduced and compared in this 

chapter: The traditional and somewhat popular axis-angle approach and the parametrization 

using stereographic projection of a plane onto the quaternion sphere. Both schemes present 

degeneracies in one point of the respective parameter domains. The axis-angle parameters 

are ambiguous for near-zero angles and therefore the derivatives in this region are either 

very large or non-existent. On the other hand, the stereographic projection parameters 

cannot represent the center of projection. Strictly in terms of rotations, this is not an issue, 

since all rotations are well represented in one hemisphere and therefore the rotation that 

corresponds to the center of projection is also the point (0, 0, 0, 1) on the surface of the 

sphere. Both degeneracies appear in practice not very often and when they do, the efficient 

                                                 
14 Although Davenport in his 1968 book does not explicitly mentions quaternions, his solution to the problem 
of absolute orientation, in all practical respects makes use of the axis-angle parametrization which eventually 
yields the solution as a 4D vector with a unit-norm constraint. 
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work-around is to either perturb the respective quaternion to a very close neighboring point 

or simply choose to represent the so-called ”shadow” which is the negated quaternion. 

 A significant advantage of the stereographic projection approach is that it yields a 

rational parametrization of the quaternion sphere, while the axis-angle parameters involve 

trigonometric functions in the respective expressions. Furthermore, the quaternion Jacobian 

contains polynomial expressions of its components. This is a much more compact and 

succinct expression which not only promotes numerical accuracy, but it also reduces the 

complexity of the expressions in the derivatives. Moreover, Gauss-Newton iteration results 

indicate that under stereographic projection parametrization, convergence is relatively 

faster for the majority of random optimization runs. 

 Stereographic projection is also an elegant way of imposing norm constraints in the 

context of optimization problems. Typically, norm constraints pose a problem in iterative 

optimization because they make it hard for the process to “wander” in feasible space. 

Stereographic projection eliminates norm constraints and yields an unconstrained 

optimization problem which is guaranteed to converge to a feasible solution. 
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Chapter 5 

Overview of implementation strategies for SLAM 

Although rarely directly addressed in literature, implementation requires the greatest of 

effort in the development pipeline of visual SLAM applications, not only because of the 

complexity of the underlying mathematical models, but also because of the multiplicity of 

ways that these algorithms can be placed together in a functioning framework. It is only 

during implementation that issues that are generally regarded as trivial and are almost never 

addressed in literature, become very important for the overall performance of the 

framework and the choice of the pertinent data structures as well as the respective “book-

keeping” algorithms makes a huge difference in the outcome. It is worth noting here that, 

interfacing with a public software library for matrix algebra and vision primitives is 

absolutely necessary in large scale SLAM applications and therefore the interface of the 

library can impose constraints on the development process. An example of such a constraint 

is the case of the LK tracker implementation in OpenCV: Although the tracker uses local 

image patches as reference for searching, it nevertheless requires an entire reference image 

as input instead of a list of patches. Under the overlapping scene implementation model for 

SLAM, this limitation imposed the need to address feature tracking with multiple calls to 

the LK tracker in order to accommodate features that were detected in different frames. The 

disjoint scene SLAM model implements trailing tracking (i.e., tracking on a frame-to-

frame basis) and therefore does not require multiple calls to the LK tracker. The trade-off 

however is that certain camera views have weak correlations with others due to the lack of 

sufficient numbers of mutually visible features. 

One of the issues that mathematics do not address, yet it is of outmost importance in 

practice, is feature management during execution either as lists of measurements, or as 3D 

points in the map. Visual features have a relatively short life-span in regards to the overall 

video sequence. As the camera moves throughout the environment, features sooner or later 



 
 

97 
 

will travel out of the field of view or get rejected as outliers. It is therefore imperative to 

retain a sufficient number of visible inliers at all times in order for SLAM to be able to 

perform posterior updates robustly. Considering that patch matching in the context of 

natural environments is likely to produce spurious results, it is assumed that the new 

features obtained by means of some detector do not match any previous ones. In other 

words, points are not treated as landmarks in the global sense but rather as short-lived 

distinctive features over a small sequence of consecutive frames. 

 One of the most important goals in terms of functionality of the SLAM framework 

is to create, manage and update the data structures associated with the map and the 

respective feature measurements in the sequence; furthermore, to synchronize the 

invocation of functions associated with motion prediction, measurement handling and map 

updates. There are two dominant approaches to the implementation of the SLAM 

framework in this thesis: a) The disjoint scene SLAM pipeline in which feature detection 

occurs only in specific frames and only after the number of visible features has dropped 

below a threshold and, b) the overlapping scene SLAM pipeline in which new features are 

added to the map on a frame-to-frame basis.  

5.1 Scene objects 

For the needs of the analysis in the following sections, the notion of scene is briefly 

introduced. A scene is a subset of frames of the sequence in all of which, a (user-defined) 

minimum number of inliers are visible. This definition suggests that features can be visible 

across different scenes. Figure 5.1 illustrates the concept of a general scene. As new 

features can be arbitrarily added to the map, the dashed ellipses indicate the one that are 

visible in each of the 3 camera views. The features shown inside the circle with the 

bold outline define the scene, since they are visible in all 3 views. 
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Figure 5.1. Graphical illustration of a scene composed of 3 views.  

5.2 Disjoint scene SLAM  

The disjoint SLAM pipeline is a relatively simplistic approach to feature management with 

certain advantages, especially from an implementation point of view: A number of points is 

obtained from a frame and thereafter these points are tracked in the subsequent frames until 

the number of inliers falls below a certain threshold. Once this happens, a completely new 

set of features is detected in the current frame and a new scene object is created. The 

greatest advantage of the disjoint scene approach is the ease of implementation, since the 

map is updated upon the first frame of the scene and only these new features are tracked 

until the end of the scene without any intermediate additions. The apparent downside here 

is that drift is likely to appear in scene joints, since there is no measurement overlap 

between the last frame of the previous scene and the first frame of the new scene. On the 

other hand, the disjoint scene model is ideal for cases where relative pose odometry is 

employed since the algorithm itself examines the features only in the context of two 

consecutive views. Figure 5.2 uses an undirected graph illustration in which edges denote 

the disjoint visibility of features in groups of consecutive frames comprising adjacent 

scenes. Notice how all features of the first scene are visible in the first node, but they 

“dissipate” in subsequent views (2 and 3); eventually, the last node in the scene (3) 

observes only one landmark and therefore a new scene is created with “freshly” detected 

features (red stars). 
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Figure 5.2. The disjoint scene SLAM conceptual model loosely depicted as an undirected graph; 
edges between camera pose nodes (circles) and landmarks (stars) denote observability. 

Amongst other tasks involving map updates and measurement book-keeping, the 

scene object marks the features that the tracker has most recently failed to track. Only the 

“surviving” valid features are thereafter tracked in the next captured frame. Tracking 

continues until the number of features drops below a minimum threshold and thereafter, a 

new scene is created (which implies a brand new set of features). The process is illustrated 

in the flowchart of Figure 5.3.  

The initial frame of a scene remains stored until the scene is destroyed. Feature 

tracking can be done using feature locations either in the initial or the previous frame. This 

approach accommodates the requirement of the OpenCV LK tracker for a reference image 

as input instead of a set of patches per feature. Alternatively, the scene object may use 

feature location estimates provided externally (e.g., the back-projected estimates of the map 

by the SLAM algorithm). 
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Figure 5.3. Flowchart illustrating the general operation concept of disjoint scene SLAM. 

5.3 Overlapping scene SLAM 

The overlapping scene approach corresponds to the standard visual SLAM execution 

paradigm. Initialization is similar to the case of disjoint scenes: A set of features are 

detected in the first frame and tracked to the second in order to obtain a reconstruction that 

will serve as the initial map. The features are thereafter tracked to subsequent frames until 

they are discarded as outliers. As new measurements are obtained from incoming frames, 

new features are also detected. Using the existing map and the respective tracked features 

locations, the camera pose is estimated and based on this new pose, the features detected in 

the previously captured frame are triangulated and added to the map. Figure 5.4 illustrates 

how new features are detected and tracked through the sequence, thereby yielding a 

“tighter” network of measurements. 
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Figure 5.4. The overlapping scene SLAM conceptual model loosely depicted as an undirected 
graph. 

5.3.1 Interfacing with the LK tracker in OpenCV 

As mentioned earlier, the LK tracker in OpenCV requires the entire reference image as 

input, while the respective features are specified by their coordinates in the image. 

Although this is not a problem in the case of disjoint scenes, it however poses a serious 

functionality problem when one needs to track features detected in multiple frames as it 

happens in the case of overlapping scenes. The natural workaround is to generate separate 

lists with features detected in the same frame and invoke the LK tracker multiple times. 

Although this is a reasonable strategy at first glance, it however incurs a significant 

memory burden to the application, since the “home-frames” of all currently active (inliers) 

features will have to be stored in memory; depending on the currently active features, the 

number of stored images can be prohibitively high. The final solution is essentially a 

compromise in which only the features detected in two previous frames are tracked directly 

from their frames of origin; all other active features are tracked from their previously 

measured locations in the two most recent frames. This solution is practical and deals with 

the problem of having to store large numbers of images, but on the other hand, it opens the 

back-door for drift contamination in the measurements. To minimize the presence of drift, a 
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maximum feature “life-span” is specified (typically, 3-5 frames). The process is described 

in the flowchart of Figure 5.5. 

 

Figure 5.5. Flowchart illustrating the general operation concept of overlapping scene SLAM. 

5.4 Sparse optical flow vs Local descriptor matching 

The level of accuracy in feature matching has a tremendous impact on motion and map 

estimation. The OpenCV LK tracker is admittedly a very good choice for such an 

algorithm; however, the downside of this approach in regards to visual SLAM is that the 

OpenCV implementation does not address each feature as a separate patch, but rather as a 

location in an input image, thereby making it difficult to track multiple features based on 

their original appearance. An alternative approach which addresses this problem directly at 

its root is descriptor matching.  
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Figure5.6. Descriptor matching with the Hannover dinosaur (left) and the Devon island Mars rover 
dataset (Furgale, Carle et al. 2012) on the right. 

 Descriptor matching refers to the process of independently detecting features in a 

query image and thereafter attempting to match an existing list of descriptors with the 

descriptors of the new features. This approach has the two significant advantages: a) It 

simply requires the storage of a descriptor instead of the entire reference image and, b) 

Successful matching is usually accurate with respect to the quality of the descriptor. The 

great weakness of such an approach is that the matching process does not take any image 

topological criteria into consideration, which means that erroneous matches can produce 

arbitrarily large errors. Figure 5.6 illustrates numerous mismatches presenting significant 

error with descriptor matching over features located in regions with similar appearance 

such as soil or the dinosaur’s skin. It should be noted however that this behavior was 

observed in OpenCV implementations of several types of detectors. 

It becomes evident that, although most of the largely mismatched pairs in Figure 5.6 

can be generally spotted and subsequently discarded for being inconsistent with epipolar 

geometry, it will only take a few such misclassified outliers to significantly divert the new 

camera pose estimate and there is no guarantee that the outlier rejection scheme will 

eliminate all of them. The obvious solution to this problem is local descriptor matching. As 

the term implies, local descriptor matching refers to the same process of feature detection 
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and matching in the much narrower scope of an image region. Typically, these regions are 

chosen in the neighborhood of the feature, or in the neighborhood of its predicted location 

(by means of a motion model). This way, the possibility of large errors is minimized. We 

observed that the process very frequently tends to match neighboring features with the very 

same newly detected feature, especially when the texture is cluttered (e.g., leaves, grass, 

etc.). In practice, this is highly detrimental for SLAM, even more than the casual shift 

observed with the LK tracker. In particular, several “fused” matches can lead to a large 

deviation in the pose estimate which manifests with large scale discrepancies in the new 

map points as opposed to the existing ones; one the other hand, slow shift is relatively 

acceptable because its effects can be partially mitigated by local reprojection error 

adjustment. 

5.5 Handling measurements and map “maintenance” 

Acceptance of new measurements is done on the basis of their consistency with epipolar 

geometry and their classification as valid optical flow by the LK tracker. Since no motion 

model is provided, the only information as to the validity of the correspondences originates 

in the tracking error and their individual fitness with respect to the estimated fundamental 

matrix. 

 The LK tracker returns a success flag for each tracked feature which typically 

becomes false when the point “slides” off the image or certain other computation-related 

criteria are violated. Based on the success flag, a flow vector maximum length constraint is 

imposed to enforce the relatively slow and constant velocity assumption. For the remaining 

features, the fundamental matrix is computed using random sampling consensus 

(RANSAC) (Fischler and Bolles 1981) or an inference based Markov chain Monte Carlo 

(MCMC) method (Terzakis, Culverhouse et al. 2015). The set of outliers obtained by the 

estimation algorithm are removed from the “surviving” features. Figures 5.7 and 5.8 

illustrate tracking results before and after outlier rejection. 
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Figure 5.7. The optical flow vectors after the removal of unsuccessfully tracked features according 
to the LK tracker. 

 

Figure 5.8. The remaining optical flow following removal of outliers inconsistent with the 
RANSAC/MCMC based computation of the fundamental matrix. 

5.6 Summary 

Management of tracking throughout frame sequences is a matter of significant practical 

importance in the implementation of visual SLAM. Organizing and book-keeping of the 

feature locations in the scene directly affects not only the quality of the results, but also the 

execution time of SLAM posterior computation. There can be many variations as to how 

feature management is performed, but there are certain invariant aspects to it, including the 

periodic detection of new features as well as the need to reject outliers as more frames are 
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added to the scene. In the overlapping scene paradigm, scenes are overlapping in the sense 

that new features are being detected before the active pool of interest points has been 

depleted. In this thesis, in SLAM applications where gyroscopic sensors are used, the 

disjoint scene paradigm is adopted, since orientation is known with relatively high accuracy 

and it is not necessary to detect new features very often; the overlapping scene paradigm is 

employed in applications where the SLAM is relying only on a camera and therefore 

feature tracking is effectively the only input to the process.  

 Feature management also involves outlier rejection. It is worth re-iterating the 

outlier rejection pipeline here: The first round of measurement handling involves the 

removal of outlier features that were flagged by the LK tracker. Subsequently, the 

fundamental matrix is calculated with a RANSAC approach on the remaining inliers and 

the flagged outliers are removed from the list. With the measurements at hand, the new 

pose and the depth of the previously detected features is estimated and a weighted iterative 

refinement of the reprojection error is performed using a robust estimator. Features with 

depth that deviates significantly from the median depth in a specific view are discarded on 

the grounds that, as illustrated in Figure 3.16, they entail higher uncertainty which could 

affect subsequent pose estimation.  
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Chapter 6 

Relative pose odometry 

A quick way of obtaining camera trajectory estimates along some executed route, from a 

design and implementation point of view, is to simply obtain relative pose estimates 

between consecutive frames and thereby compute the position of the camera in the world as 

the integral of those estimates. This process is usually referred to as relative pose odometry 

and provides a quick solution to the localization problem.    

 Relative pose odometry estimates can be easily afflicted by drift, since the global 

pose is obtained as an integral of noisy pairwise rigid transformations. It follows that in 

order to apply this method, certain standards in terms of tracking accuracy must be met, 

and/or additional quality measurements in regards to camera motion should be provided. In 

the context of the general problem statement of this thesis, relative pose odometry can be a 

reasonable solution for short-term vehicle localization in the presence of a reliable 

gyroscopic sensor that would eliminate orientation from the vector of unknowns. Although 

angular velocity readings are stochastic and therefore orientation will eventually present 

drift, the amount of noise with which they are contaminated is significantly small and 

therefore the orientation integral can be very reliable for the greatest part of the sequence.  

6.1 Relative pose odometry: A probabilistic approach 

Consider an application in which 3D mapping is not required and only camera pose is of 

significance; furthermore, suppose that efficient relative pose tracking estimates are 

available for each pair of consecutive frames. Then, absolute pose can be incrementally 

estimated from the previous pose, using a pose transition and a measurement model that 

depends on the feature locations in the previous and current frame. Figure 6.1 illustrates the 

relative pose tracking approach with a Markov random field (MRF). It is clear that the 4-

cliques formed between the normalized Euclidean projections 𝑚𝑚𝑡𝑡
+, 𝑚𝑚𝑡𝑡+1

− , 𝑥𝑥𝑡𝑡 and 𝑥𝑥𝑡𝑡+1 
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correspond to the measurement constraint, while the 3-cliques between 𝑢𝑢𝑡𝑡, 𝑥𝑥𝑡𝑡 and 𝑥𝑥𝑡𝑡+1 

correspond to the state transition constraint. 

 

Figure 6.1. A Markov network illustrating the concept of visual odometry as SLAM without 
mapping.  

 The main assumption in relative pose based odometry is that for every pair of 

consecutive poses there exist a set of point correspondences in the respective frames which 

is independent of correspondences in the previous pair of frames. In particular, for a frame 

captured at time t, there exist two sets of features with normalized Euclidean projections 

𝑚𝑚𝑡𝑡
− and 𝑚𝑚𝑡𝑡

+; the former set gets matched with interest points in the previous frame, while 

the latter set will be tracked to the next frame. In other words, one may think of the tracking 

scheme in terms of independent, new feature detections at each time step. In practice, it is 

simply assumed that the tracked feature locations in a frame can also be treated as a new set 

of interest points in the next time instance and therefore can be tracked to the next frame 

independently of what happened in the past.  

The obvious consequence of this pairwise independence assumption is that the 

measurement likelihood does not, in practice, account for the accumulated uncertainty in 

feature locations. This is an implementation issue that can be dealt with by incorporating 

the variance of 𝑚𝑚𝑡𝑡
− into the measurement constraint corresponding to the next pair of 

frames at times 𝑡𝑡 and 𝑡𝑡 + 1. Alternatively, one may choose to ignore the accumulated 

variance in the feature locations and that could be a reasonable strategy in natural sceneries, 

since the drifted location of a feature can be regarded as a new interest point altogether, if 

the respective patch can be reliably tracked in the next frame.  
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Let 𝑥𝑥𝑡𝑡 = [𝜂𝜂𝑡𝑡𝑇𝑇 𝑠𝑠𝑡𝑡𝑇𝑇]𝑇𝑇 where 𝜂𝜂𝑡𝑡 , 𝑠𝑠𝑡𝑡 ∈ ℝ3 are the orientation and position (in world 

coordinates) vectors respectively. Using the projections of a world point onto 𝑚𝑚𝑡𝑡+1
−  and 

𝑚𝑚𝑡𝑡
+, the following relationship is obtained: 

𝑚𝑚𝑡𝑡+1
− =

1
1𝑧𝑧𝑇𝑇𝑅𝑅𝑡𝑡𝑇𝑇(𝑑𝑑𝑡𝑡𝑚𝑚𝑡𝑡

+ − 𝑏𝑏𝑡𝑡)
𝑅𝑅𝑡𝑡𝑇𝑇(𝑑𝑑𝑡𝑡𝑚𝑚𝑡𝑡

+ − 𝑏𝑏𝑡𝑡) (6.1) 

where 𝑅𝑅𝑡𝑡 is the rotation matrix that represents the change in camera orientation from time 𝑡𝑡 

to time 𝑡𝑡 + 1,  𝑑𝑑𝑡𝑡 is the depth of the feature in the tth camera frame, 𝑏𝑏𝑡𝑡 = 𝑅𝑅𝑡𝑡(𝑠𝑠𝑡𝑡+1 − 𝑠𝑠𝑡𝑡)  is 

the baseline vector between the camera poses at times 𝑡𝑡  and 𝑡𝑡 + 1, expressed  in the tth 

camera frame and  1𝑧𝑧 = [0 0 1]𝑇𝑇. Considering that 𝑚𝑚𝑡𝑡+1
−  and 𝑚𝑚𝑡𝑡

+ are measured 

quantities, it follows that equation (6.1) contributes a non-linear quadratic constraint to the 

posterior in which the only stochastic unknowns are the baseline 𝑏𝑏𝑡𝑡, the depth 𝑑𝑑𝑡𝑡 and the 

relative orientation rotation matrix 𝑅𝑅𝑡𝑡.  

6.1.1 Integrating the pose posterior 

Suppose that the marginal distribution 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑚𝑚1:𝑡𝑡
− ,𝑚𝑚𝑜𝑜:𝑡𝑡−1

+ ) is known. Then, it becomes 

evident from Figure 6.1 that the marginal distribution of 𝑥𝑥𝑡𝑡+1 given all past and present 

measurements is given by, 

𝑝𝑝(𝑥𝑥𝑡𝑡+1|𝑚𝑚1:𝑡𝑡+1
− ,𝑚𝑚𝑜𝑜:𝑡𝑡

+ )

∝ � 𝜑𝜑(𝑚𝑚𝑡𝑡+1
− ,𝑚𝑚𝑡𝑡

+, 𝑥𝑥𝑡𝑡+1, 𝑥𝑥𝑡𝑡)𝑝𝑝(𝑥𝑥𝑡𝑡+1|𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡)
+∞

−∞
𝑝𝑝(𝑥𝑥𝑡𝑡|𝑚𝑚1:𝑡𝑡

− ,𝑚𝑚𝑜𝑜:𝑡𝑡−1
+ )𝑑𝑑𝑥𝑥𝑡𝑡 

(6.2) 

where 𝜑𝜑(𝑚𝑚𝑡𝑡+1
− ,𝑚𝑚𝑡𝑡

+, 𝑥𝑥𝑡𝑡+1, 𝑥𝑥𝑡𝑡) is a factor associated with the observation model of equation 

(6.1), 𝑝𝑝(𝑥𝑥𝑡𝑡+1|𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡) is the pose transition Gaussian conditional distribution and 

𝑝𝑝(𝑥𝑥𝑡𝑡|𝑚𝑚1:𝑡𝑡
− ,𝑚𝑚𝑜𝑜:𝑡𝑡−1

+ , 𝑢𝑢1:𝑡𝑡) is the pose belief (also normal) at time 𝑡𝑡. To compute the marginal 

one simply needs to obtain an estimate for the joint of 𝑥𝑥𝑡𝑡 ,𝑥𝑥𝑡𝑡+1. Then, it follows that the 

estimate of 𝑥𝑥𝑡𝑡+1 will be described by the respective mean and covariance in the joint. The 

computation of the joint entails the optimization of a quadratic function: 

𝑞𝑞𝑡𝑡(𝑥𝑥𝑡𝑡+1, 𝑥𝑥𝑡𝑡) = 𝑙𝑙𝑙𝑙𝑙𝑙𝜑𝜑(𝑚𝑚𝑡𝑡+1
− ,𝑚𝑚𝑡𝑡

+𝑥𝑥𝑡𝑡+1, 𝑥𝑥𝑡𝑡)

+ �𝑥𝑥𝑡𝑡+1 − 𝑙𝑙𝑡𝑡(𝑥𝑥𝑡𝑡, 𝑢𝑢𝑡𝑡−1)�𝑇𝑇𝑅𝑅𝑡𝑡−1�𝑥𝑥𝑡𝑡+1 − 𝑙𝑙𝑡𝑡(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡−1)�

+ (𝑥𝑥𝑡𝑡 − 𝜇𝜇𝑡𝑡)𝑇𝑇𝛴𝛴𝑡𝑡−1(𝑥𝑥𝑡𝑡 − 𝜇𝜇𝑡𝑡) 

(6.3) 
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Thus, provided that 𝑙𝑙𝑙𝑙𝑙𝑙𝜑𝜑 is a non-linear function, the solution for 𝑥𝑥𝑡𝑡+1 can be obtained 

only by means of some method for non-linear optimization of 𝑞𝑞𝑡𝑡(𝑥𝑥𝑡𝑡+1, 𝑥𝑥𝑡𝑡). 

6.2 Planar odometry for ground facing camera: The orthogonal 

Procrustes method 

Equation (6.1) associates the relative pose transformation with the projections of observed 

points in two views. The standard way of resolving relative camera pose is through 

essential matrix as described in Chapter 3, section 2.4. The projections are typically 

regarded as normally distributed; however the same does not hold for the camera pose. The 

cause of this lies with the orthonormality constraints that accompany the rotation matrix 

which must be imposed either by means of a parametrization scheme, or with the use of 

Lagrange multipliers in the context of least squares. Under extremely favorable conditions 

which involve minor or no noise in the data, these constraints can be relaxed and the 

problem can be resolved linearly. In such cases, orthogonality is imposed a posteriori by 

obtaining the relative orientation matrix as the closest (in the Frobenius norm) orthonormal 

matrix to the recovered solution with ordinary LS. This technique is called the orthogonal 

Procrustes method (Wahba 1965, Schönemann 1966) and has been well understood 

amongst aerospace engineers since the mid-1960s. In the particular case of visual 

odometry, if the problem of relative pose can be conditioned in such a way as to limit the 

number of unknowns and at the same time guarantee reasonable percentages of inliers in 

the projections, then it can be cast as ordinary least squares and thereafter solve for 

orientation using the orthogonal Procrustes. 

Although planar odometry is not directly applicable to the broad category of vision 

based localization problems related to the objectives of this thesis, it however poses a fine 

example of a relative pose problem which can be linearized due to only 2 unknown non-

zero elements in the rotation matrix and the assumption that all observed points have the 

same depth (Figure 6.1). Suppose that the camera is approximately moving in a plane 

parallel to the ground. Also, consider that the height of the motion plane is reasonably close 

to the ground (up to 2 m), such that all feature points are considered coplanar. It is therefore 

possible to construct an overdetermined linear system in terms of the baseline and the 

components of a 2D rotation matrix which can ultimately lead to the recovery of a 
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reasonable estimate of relative camera pose. Figure 6.1 illustrates the concept of the ground 

facing camera motion. 

 

Figure 6.1. Approximate planar motion by a ground facing camera.  

In Figure 6.1, the multiple dashed camera outlines and optical axes imply that the 

camera pose may slightly deviate in orientation (i.e., about the two axes orthogonal to 

the optical axis) and position (i.e., along the optical axis). The height of the motion 

plane over the ground is d. The canonical ellipses represent the uncertainty in the 

feature locations due to tracking and projective distortion caused by camera tilts or 

shifts from the parallel plane. 

6.2.1 Estimating unconstrained relative pose with ordinary least squares 

Assuming that the actual 3D locations of the features in the real word lie in a plane and that 

the camera motion is roughly parallel to it, then, accounting for uncertainty due to tracking 

error and projective distortion, one may consider the space of possible image locations as 

the interiors of ellipses (Figure 6.1). Moreover, if the image coordinates of the features are 

Gaussian and independent of each other, then these are canonical ellipses and the respective 

covariance matrices are diagonal. This is a fairly reasonable assumption which is also 

convenient for the formulation of a weighted linear LS optimization problem. 

 Since the camera is moving parallel to the ground and the actual world locations of 

the visible features are coplanar, they all have the same depth d. Moreover, the sought 

rotation matrix will represent a rotation about the optical axis and therefore will have four 

unknown components as follows: 
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𝛢𝛢 = �
𝛼𝛼1 𝛼𝛼3 0
𝛼𝛼2 𝛼𝛼4 0
0 0 1

� (6.4) 

Given the above assumptions, equation (6.1) reduces to the following: 

𝑚𝑚𝑡𝑡+1
− = 𝐴𝐴𝑇𝑇(𝑚𝑚𝑡𝑡

+ − 𝑏𝑏𝑡𝑡) (6.5) 

where d  is the common depth for all features. Dropping the + and – superscripts such that 

𝑚𝑚0 = 𝑚𝑚𝑡𝑡
+ and 𝑚𝑚1 = 𝑚𝑚𝑡𝑡+1

−   equation (6.5) becomes, 

𝑚𝑚1 = 𝐴𝐴𝑇𝑇𝑚𝑚0 + 𝑐𝑐𝑡𝑡 (6.6) 

where 𝑐𝑐𝑡𝑡 = [𝑐𝑐𝑥𝑥 𝑐𝑐𝑦𝑦] − 𝐴𝐴𝑇𝑇𝑏𝑏𝑡𝑡 . Now, multiplying by 1𝑥𝑥𝑇𝑇 = [1 0 0] and 1𝑦𝑦𝑇𝑇 = [0 1 0] 

two equations with distinct unknowns are obtained: 

1𝑥𝑥𝑇𝑇𝑚𝑚1
𝑁𝑁 = [𝛼𝛼1 𝛼𝛼2 0]𝑚𝑚0

𝑁𝑁 + 𝑐𝑐𝑥𝑥 (6.7) 

and, 

1𝑦𝑦𝑇𝑇𝑚𝑚1
𝑁𝑁 = [𝛼𝛼3 𝛼𝛼4 0]𝑚𝑚0

𝑁𝑁 + 𝑐𝑐𝑦𝑦 (6.8) 

Equations (6.7) and (6.8) correspond to two independent LS problems for 𝛼𝛼1, 𝛼𝛼2, 𝑐𝑐𝑥𝑥 and 

𝛼𝛼3, 𝛼𝛼4, 𝑐𝑐𝑦𝑦 respectively. Please note here that this separation into two problems is possible 

only because of the independence assumption on the coordinates of the tracked feature 

points. In any other case in which the image coordinates of the features are correlated, the 

two equations should belong to the same LS problem. 

6.2.2 Orthogonal Procrustes  

Clearly, the optimization is not constrained in terms of the sought rotation matrix and 

therefore the estimated values for 𝛼𝛼1, 𝛼𝛼2, 𝛼𝛼3 and 𝛼𝛼4 will not generally abide 

orthonormality. It is therefore necessary to obtain the closest rotation matrix R to the 

recovered estimate A by means of some metric. This is known as the orthogonal Procrustes 

method, very well known to aerospace engineers since the 1960s (Schönemann 1966, 

Kristof and Wingersky 1971, Ten Berge 1977). It was not until nearly 30 years later that 

Horn (Horn, Hilden et al. 1988) (re)introduced the technique to the vision community in his 

solution for the so-called problem of absolute orientation which is essentially a slightly 

more sophisticated version of Wahba’s problem. According to the Procrustean approach, 
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the closest rotation matrix to the solution A of the LS problem defined in equations (6.7) 

and (6.8) R is given by, 

𝑅𝑅 = 𝛬𝛬(𝛬𝛬𝑇𝑇𝛬𝛬)−
1
2  (6.9) 

And the matrix (𝛬𝛬𝑇𝑇𝛬𝛬)−
1
2  is defined as follows: 

(𝛬𝛬𝑇𝑇𝛬𝛬)−
1
2 =

1
𝑠𝑠1
𝑣𝑣1𝑣𝑣1𝑇𝑇 +

1
𝑠𝑠2
𝑣𝑣2𝑣𝑣2𝑇𝑇 +

1
𝑠𝑠3
𝑣𝑣3𝑣𝑣3𝑇𝑇 (6.10) 

where 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 are the singular values of Λ and 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3 are the eigenvectors of 𝛬𝛬𝑇𝑇𝛬𝛬. 

Assuming that Λ will have 3 non-zero singular values, it follows from equations (6.9) and 

(6.10) that R can be obtained as follows: 

𝑅𝑅 = 𝑈𝑈𝑉𝑉𝑇𝑇 (6.11) 

where 𝛬𝛬 = 𝑈𝑈𝑆𝑆𝑉𝑉𝑇𝑇 is the singular value decomposition (SVD) of Λ. 

 By assumption, the camera rotates only about the optical axis (𝑧𝑧𝑂𝑂); therefore, the 

rotation angle 𝜃𝜃 can be unambiguously retrieved from the matrix R. Thus, 𝜃𝜃 and b can be 

used as the initial estimates in further optimization of the cost function in equation (6.3). 

6.2.3 Assigning variance to the measurements 

The variance of optical flow estimates is usually obtained from the LS optimization 

problem of equations (1.6) and (1.7) (Paragios, Chen et al. 2006). Suppose that optical flow 

is provided by the LS solution of the form, 𝑣𝑣 = (𝑊𝑊𝑇𝑇𝑊𝑊)−1𝑊𝑊𝑇𝑇𝑦𝑦 where 𝑦𝑦~𝑁𝑁(𝑦𝑦�,𝛴𝛴) is 

normally distributed with mean 𝑦𝑦� and covariance matrix Σ. Then, it follows that 𝑣𝑣 is also 

normally distributed and by applying variance propagation properties for linear 

relationships, the covariance matrix 𝐶𝐶(𝑣𝑣) of 𝑣𝑣 will be given by, 

𝐶𝐶(𝑣𝑣) = (𝑊𝑊𝑇𝑇𝑊𝑊)−1𝑊𝑊𝑇𝑇𝛴𝛴𝑊𝑊(𝑊𝑊𝑇𝑇𝑊𝑊)−1 (6.12) 

The covariance matrix of the tracked location is therefore, 𝑄𝑄 = 𝐶𝐶(𝑣𝑣). 

  There are cases in which the implementation of the optical flow tracker does not 

reveal the matrix 𝑊𝑊, but rather provides optical flow error statistics such as the average 

absolute difference in pixel intensity between the patches surrounding the interest point. In 

such cases, a model that describes the relationship between the distance 𝜀𝜀 from ground truth 

and absolute intensity error e is fitted by means of regression: 
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𝜀𝜀 = ℎ(𝑒𝑒) (6.13) 

 Typically h is linear or quadratic. Training data are obtained by tracking various feature 

points in a scene and thereafter mapping the observed distances from the ground truth to 

specific absolute intensity errors. Thus, each absolute intensity error value is mapped to an 

average squared error. The parameters of the model are then obtained by applying LS 

regression to the aforementioned mapped pairs. Finally, the variance 𝜎𝜎𝜀𝜀2 of 𝜀𝜀 is estimated 

from the fitted values ℎ(𝑒𝑒𝑀𝑀) as follows: 

𝜎𝜎�𝜀𝜀2 =
1

𝑁𝑁 − 1
�ℎ2(𝑒𝑒𝑀𝑀)
𝑁𝑁

𝑀𝑀=1

 (6.14) 

where 𝜎𝜎�𝜀𝜀2 is the unbiased variance estimator and N is the number of data pairs. Assuming 

that the covariance matrix of the optical flow error vector is diagonal and isotropic, then 

using a linear approximation of ε in terms of its components, it can be easily proven that the 

variance in both axes is approximately equal to 𝜎𝜎𝜀𝜀2. 

𝑄𝑄 ≈ 𝜎𝜎𝜀𝜀2𝐼𝐼2 (6.15) 

where 𝐼𝐼2 is the 2 × 2 identity matrix. 

6.2.4 Optimal solution and outlier screening 

The coplanarity of the observed points on the ground plane is a degenerate configuration in 

epipolar geometry (Torr, Zisserman et al. 1995). Thus, the RANSAC based computation of 

the fundamental matrix cannot be employed. However, an alternative solution exists, based 

on the same principle. In particular, the image locations of the features in two views are 

now related through the ground plane by a projective transformation (homography). The 

estimation of the homography can also be posed as a quadratic problem and various 

methods have been proposed for the formulation and optimization of the respective cost 

function (Ma, Soatto et al. , Hartley and Zisserman 2003); most of these methods can be 

applied in the context of RANSAC. 

6.2.5 Odometry estimates 

Various video sequences were taken with a ground facing camera being held at constant 

height with the optical axis being perpendicular to the ground plane. Since the footage was 
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taken by a person walking while holding the camera, it follows that the trajectory was not 

precisely planar, nor was the optical axis orthogonal to the ground plane at all times. The 

method was evaluated for camera only sensory input and unknown motion dynamics. 

Figures 6.2-5 illustrate odometry estimates for known trajectories and comparisons with 

ground truth; on the left, the recovered odometry is shown in blue; on the right, the red 

line indicates GPS based ground truth, scaled to match the estimated trajectory 

(superimposed) proportions. 

The presence of drift in the camera pose estimate becomes obvious in all of Figures 

6.2-5, especially in terms of orientation. It was actually observed that the aforementioned 

error typically peaks when the camera is rotating rapidly around corners in particular. 

Furthermore, applying RANSAC did not improve the odometry significantly, which leads 

to the conclusion that orientation is the most “sensitive” estimate in visual planar odometry 

and, most likely, in all SLAM applications in which the camera is the only available sensor. 

It is clear that without any other means of knowing orientation, the camera-only estimate 

drifts quickly in relative pose odometry. Conversely, position estimates tend to be more 

agile when the camera orientation is approximately fixed and motion involves translation 

only. This is a general rule which is indirectly ratified by the results of section 6.3 in which 

the effects of orientation are removed from feature correspondences by means of fairly 

accurate relative orientation estimates. 

 

Figure 6.2. Estimated odometry from a walk along the contour of the university parking.  
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Figure 6.3. Estimated odometry from a walk along the contour of a grass strip.  

 

Figure 6.4. Estimated odometry from along the perimeter of a courtyard. 
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Figure 6.5. Estimated odometry from a walk along a path in the university park (satellite photo not 
available). 

6.3 Inertial measurement units 

Inertial measurement units (IMUs) are sensors designed to provide acceleration and angular 

velocity readings along and about the axes of the associated coordinate frame. Typical 

commercial IMUs provide 6 DOF input, corresponding to 3 angular velocities and 3 

accelerations. Other types of IMU sensors may include 3 additional readings corresponding 

to the direction of gravity (9 DOF in total). For the experiments reported in this thesis, the 

Goodrich SiIMU 0215  was used (Figure 6.7). Nominal sampling rates for SiIMU 02 range 

from 100 to 300 Hz. The IMU coordinate frame does not represent a right handed 

coordinate system. Regardless, a transformation M must be applied to the samples in 

order to obtain the respective angular velocity and acceleration vectors in the camera 

right-handed frame shown on the right. The transformation depends on the orientation 

of the IMU with respect to the camera. 

                                                 
15 Courtesy of UTC Aerospace Systems. 
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Figure 6.7. The SiIMU02 coordinate frame is shown with the 3 axes labeled 1 +, 2 + and 3 + and 
a picture of the IMU mounted on the camera.  

 Suppose that 𝜔𝜔𝑘𝑘 and 𝑎𝑎𝑘𝑘 are the angular velocity and acceleration vectors16 reported 

by the IMU in the camera frame at time k and 𝑇𝑇 is the sampling period. Then, the 

quaternion 𝛥𝛥𝑞𝑞𝑘𝑘 representing the change in IMU orientation at time k is, 

𝛥𝛥𝑞𝑞𝑘𝑘 = �𝑐𝑐𝑙𝑙𝑠𝑠 �
‖𝜔𝜔𝑘𝑘‖𝑇𝑇

2 � , 𝑠𝑠𝑚𝑚𝑏𝑏 �
‖𝜔𝜔𝑘𝑘‖𝑇𝑇

2 �
𝜔𝜔𝑘𝑘
‖𝜔𝜔𝑘𝑘‖

� (6.16) 

The new orientation quaternion 𝑞𝑞𝑘𝑘+1 can be computed from 𝑞𝑞𝑘𝑘 using 𝛥𝛥𝑞𝑞𝑘𝑘 as follows: 

𝑞𝑞𝑘𝑘+1 = 𝛥𝛥𝑞𝑞𝑘𝑘 ⊗ 𝑞𝑞𝑘𝑘 (6.17) 

where ⊗ denotes quaternion multiplication. 

 In theory, it is possible to recover the translation of the camera using the 

acceleration readings. Suppose that the gravity vector 𝑙𝑙 and the initial linear velocity 𝑣𝑣0 of 

the camera are known in terms of some world coordinate frame. Then, the linear velocity 

vector 𝑣𝑣𝑘𝑘+1 at time 𝑏𝑏 + 1 can be estimated from 𝑣𝑣𝑘𝑘 and 𝑞𝑞𝑘𝑘  using 𝑎𝑎𝑘𝑘 and 𝜔𝜔𝑘𝑘 as follows: 

𝑣𝑣𝑘𝑘+1 = 𝑣𝑣𝑘𝑘 + �(𝛥𝛥𝑅𝑅𝑘𝑘𝑅𝑅𝑘𝑘)𝑇𝑇 �𝑎𝑎𝑘𝑘 − 𝜔𝜔𝑘𝑘 × (𝑅𝑅𝑘𝑘𝑣𝑣𝑘𝑘)���������
𝐶𝐶𝑝𝑝𝑖𝑖𝑡𝑡𝑀𝑀𝑀𝑀𝑜𝑜𝑢𝑢𝐶𝐶𝑀𝑀𝑙𝑙 
𝑀𝑀𝑖𝑖𝑖𝑖𝑝𝑝𝑙𝑙𝑝𝑝𝑀𝑀𝑀𝑀𝑡𝑡𝑀𝑀𝑜𝑜𝑖𝑖

� − 𝑙𝑙�𝑇𝑇 (6.18) 

where 𝛥𝛥𝑅𝑅𝑘𝑘 and 𝑅𝑅𝑘𝑘 are the rotation matrices corresponding to 𝛥𝛥𝑞𝑞𝑘𝑘 and 𝑞𝑞𝑘𝑘. The cross 

product 𝜔𝜔𝑘𝑘 × (𝑅𝑅𝑘𝑘𝑣𝑣𝑘𝑘) is the centrifugal acceleration caused by the rotational motion of the 

                                                 
16 Indexing symbol k is used to distinguish IMU sampling time instances from frame capture time instances. 
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IMU and therefore must be subtracted from the readings in order to obtain pure linear 

acceleration.  

Assuming that also the initial position 𝑠𝑠0 of the camera is known, then the position 

vector 𝑠𝑠𝑘𝑘+1 can be computed recursively from 𝑠𝑠𝑘𝑘 and 𝑣𝑣𝑘𝑘: 

𝑠𝑠𝑘𝑘+1 = 𝑠𝑠𝑘𝑘 + 𝑣𝑣𝑘𝑘𝑇𝑇 (6.19) 

6.3.1 IMU-camera calibration 

Even if the IMU is manually aligned to the camera frame, there is always the need for 

recovering the misalignment in the form of a rigid transformation. It can be inferred from 

equations (6.16-18) that the error in pose estimates from inertial input is additive and 

therefore even the slightest alignment error may affect the estimates in the long run. The 

most widely used method for IMU-camera calibration was proposed by Mizraei and 

Roumeliotis (Mirzaei and Roumeliotis 2008) and it essentially involves a non-linear 

optimization process over the IMU estimates against known camera pose using the famous 

chessboard pattern. Although Mizraei and Roumeliotis proposed an iterative KF, the 

optimization problem can also be cast as an offline non-linear least squares problem. 

 In this thesis, only angular rates are utilized in the applications involving inertial 

input and therefore only relative orientation between camera and IMU is of interest. 

Suppose M is the unknown rotation that contains the IMU frame column-wise in terms of 

the camera frame and 𝜔𝜔𝑑𝑑 is the angular velocity vector in the IMU frame. It follows that the 

angular velocity vector in the camera frame will be: 

𝜔𝜔𝐶𝐶 = 𝑀𝑀𝜔𝜔𝑑𝑑 (6.21) 

Let now 𝜃𝜃𝐶𝐶 = 𝜔𝜔𝐶𝐶𝛥𝛥𝑡𝑡 and 𝜃𝜃𝑑𝑑 = 𝜔𝜔𝑑𝑑𝛥𝛥𝑡𝑡 be the axis-angle vectors corresponding to 𝜔𝜔𝐶𝐶 and 𝜔𝜔𝑑𝑑. 

The rotation matrix 𝑅𝑅𝐶𝐶 corresponding to the change in camera orientation due to 𝜔𝜔𝐶𝐶 is 

given by Rodrigues’ formula in equation (4.1): 

𝑅𝑅𝐶𝐶 = 𝐼𝐼3 +
𝑠𝑠𝑚𝑚𝑏𝑏‖𝑀𝑀𝜃𝜃𝑑𝑑‖
‖𝑀𝑀𝜃𝜃𝑑𝑑‖

[𝑀𝑀𝜃𝜃𝑑𝑑]× +
1 − 𝑐𝑐𝑙𝑙𝑠𝑠‖𝑀𝑀𝜃𝜃𝑑𝑑‖

‖𝑀𝑀𝜃𝜃𝑑𝑑‖2
�(𝑀𝑀𝜃𝜃𝑑𝑑)(𝑀𝑀𝜃𝜃𝑑𝑑)𝑇𝑇 − 𝐼𝐼3� (6.22) 

Making use of the identity [𝑀𝑀𝜃𝜃𝑑𝑑]× = 𝑀𝑀[𝜃𝜃𝑑𝑑]×𝑀𝑀𝑇𝑇  (proved in Lemma D.3 of Appendix D) 

and by observing that ‖𝑀𝑀𝜃𝜃𝑑𝑑‖ = ‖𝜃𝜃𝑑𝑑‖ owed to the fact that M is orthonormal, equation 

(6.22) becomes: 
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𝑅𝑅𝐶𝐶 = 𝐼𝐼3 +
𝑠𝑠𝑚𝑚𝑏𝑏‖𝑀𝑀𝜃𝜃𝑑𝑑‖
‖𝑀𝑀𝜃𝜃𝑑𝑑‖

𝑀𝑀[𝜃𝜃𝑑𝑑]×𝑀𝑀𝑇𝑇 +
1 − 𝑐𝑐𝑙𝑙𝑠𝑠‖𝑀𝑀𝜃𝜃𝑑𝑑‖

‖𝑀𝑀𝜃𝜃𝑑𝑑‖2
�𝑀𝑀𝜃𝜃𝑑𝑑𝜃𝜃𝑑𝑑𝑇𝑇𝑀𝑀𝑇𝑇 − 𝐼𝐼3�  

⇔ 𝑅𝑅𝐶𝐶 = 𝑀𝑀𝑀𝑀𝑇𝑇 +
𝑠𝑠𝑚𝑚𝑏𝑏‖𝜃𝜃𝑑𝑑‖
‖𝜃𝜃𝑑𝑑‖

𝑀𝑀[𝜃𝜃𝑑𝑑]×𝑀𝑀𝑇𝑇 +
1 − 𝑐𝑐𝑙𝑙𝑠𝑠‖𝜃𝜃𝑑𝑑‖

‖𝜃𝜃𝑑𝑑‖2
�𝑀𝑀𝜃𝜃𝑑𝑑𝜃𝜃𝑑𝑑𝑇𝑇𝑀𝑀𝑇𝑇 −𝑀𝑀𝑀𝑀𝑇𝑇�  

⇔ 𝑅𝑅𝐶𝐶 = 𝑀𝑀�𝐼𝐼3 +
𝑠𝑠𝑚𝑚𝑏𝑏‖𝜃𝜃𝑑𝑑‖
‖𝜃𝜃𝑑𝑑‖

[𝜃𝜃𝑑𝑑]× +
1 − 𝑐𝑐𝑙𝑙𝑠𝑠‖𝜃𝜃𝑑𝑑‖

‖𝜃𝜃𝑑𝑑‖2
�𝜃𝜃𝑑𝑑𝜃𝜃𝑑𝑑𝑇𝑇 − 𝐼𝐼3��

���������������������������������
𝑅𝑅𝐼𝐼

𝑀𝑀𝑇𝑇 = 𝑀𝑀𝑅𝑅𝑑𝑑𝑀𝑀𝑇𝑇  (6.23) 

where 𝑅𝑅𝑑𝑑 is the rotation matrix corresponding to the orientation change of the IMU frame. 

It follows, that relationship in (6.23) holds for a sequence of successive IMU rotations 

𝑅𝑅𝑑𝑑 = 𝑅𝑅𝑑𝑑,1,𝑅𝑅𝑑𝑑,2, … ,𝑅𝑅𝑑𝑑,𝑖𝑖: 

𝑅𝑅𝐶𝐶 = �𝑀𝑀𝑅𝑅𝑑𝑑,1𝑀𝑀𝑇𝑇��𝑀𝑀𝑅𝑅𝑑𝑑,2𝑀𝑀𝑇𝑇�… = 𝑀𝑀𝑅𝑅𝑑𝑑,1(𝑀𝑀𝑇𝑇𝑀𝑀)𝑅𝑅𝑑𝑑,2 … = 𝑀𝑀 �𝑅𝑅𝑑𝑑,1𝑅𝑅𝑑𝑑,2 …𝑅𝑅𝑑𝑑,𝑖𝑖������������
𝑅𝑅𝐼𝐼

𝑀𝑀𝑇𝑇 (6.24) 

The relationship in (6.23) and (6.24) is a quadratic equation in the matrix M and can be 

solved, given measurements for 𝑅𝑅𝐶𝐶; what is very interesting, is that these measurements 

cannot only be obtained using a chessboard pattern but also with an algorithm for relative 

pose. Thus, in theory, it is possible to calibrate relative orientation without any aids to 

provide ground-truth. It should be noted that for minor misalignments, the uncalibrated 

product 𝑀𝑀𝑅𝑅𝑑𝑑𝑀𝑀𝑇𝑇  can be an acceptable estimate of the camera orientation. 

6.4 Relative pose odometry in 3D using inertial measurements 

Resolving two-view geometry in 3D is strictly a non-linear problem and no relaxations 

such as the one explained in section 2.1 are possible without at least first involving prior 

knowledge on the pose vector or making assumptions about camera motion (for example, 

purely translational motion). Unfortunately, the measurement model involves not only 

projection, which is a non-linear operation by definition, but also a rotation matrix in both 

the numerator and denominator. If the effects of the camera rotation can somehow be 

undone as explained in Chapter 3, section 3.6, then it can be shown (section 4.1) that the 

baseline can be estimated up to arbitrary scale from an overdetermined linear homogenous 

system. An alternative approach to recovering relative pose between two camera views 

involves the extraction of the rigid transformation from the essential matrix as explained in 
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Chapter 3. This approach however, except for the 5-point case (Nister’s algorithm), entails 

a certain risk associated with the relaxation of the required orthogonality constraints (see 

Chapter 3, section 2.6 for details) in the 8-point algorithm. 

6.4.1 Recovering baseline with known relative orientation  

Angular velocity readings from IMUs are typically robust and generally accumulate very 

little drift for periods of several minutes or even more. Thus, inertial measurements can 

provide very reliable short-term orientation estimates which can be used to rectify the 

feature locations in two views (as discussed in Chapter 3, section 3.6). This approach has 

been employed in several cases of visual SLAM applications involving vehicles equipped 

with IMUs (Kneip, Chli et al. 2011, Achtelik, Lynen et al. 2012, Weiss, Achtelik et al. 

2012). 

 Consider the case in which relative orientation is known a priori by means of an 

inertial measurement unit. For brevity of notation, the rectified projection of the ith 3D point 

in the latest camera view is denoted with 𝑚𝑚𝑡𝑡+1
(𝑀𝑀)  and the projection on the reference view 

with 𝑚𝑚𝑡𝑡
(𝑀𝑀). Then according to equation (6.1), 𝑚𝑚𝑡𝑡+1 and 𝑚𝑚𝑡𝑡 are related through the following 

equation: 

𝑚𝑚𝑡𝑡+1
(𝑀𝑀) =

1

1𝑧𝑧𝑇𝑇�𝑑𝑑𝑡𝑡
(𝑀𝑀)𝑚𝑚𝑡𝑡

(𝑀𝑀) − 𝑏𝑏𝑡𝑡�
�𝑑𝑑𝑡𝑡

(𝑀𝑀)𝑚𝑚𝑡𝑡
(𝑀𝑀) − 𝑏𝑏𝑡𝑡� (6.25) 

where 1𝑧𝑧𝑇𝑇 = [0 0 1] , 𝑑𝑑𝑡𝑡
(𝑀𝑀) is the feature depth in terms of the camera frame at time t and 

𝑏𝑏𝑡𝑡 is the baseline vector linking camera position at times t and t+1 expressed also in the 

camera frame at time t. The relationship of equation (6.25) can be rearranged in to the 

following: 

1𝑧𝑧𝑇𝑇�𝑑𝑑𝑡𝑡
(𝑀𝑀)𝑚𝑚𝑡𝑡

(𝑀𝑀) − 𝑏𝑏𝑡𝑡�𝑚𝑚𝑡𝑡+1
(𝑀𝑀) = 𝑑𝑑𝑡𝑡

(𝑀𝑀)𝑚𝑚𝑡𝑡
(𝑀𝑀) − 𝑏𝑏𝑡𝑡 (6.26) 

And, provided that the inner-to-outer-product property (𝑎𝑎𝑇𝑇𝑏𝑏)𝑐𝑐 = (𝑎𝑎𝑎𝑎𝑇𝑇)𝑏𝑏 holds for any 

three vectors 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ ℝ3, equation (6.26) can be re-written as follows: 

𝑚𝑚𝑡𝑡+1
(𝑀𝑀) 1𝑧𝑧𝑇𝑇�𝑑𝑑𝑡𝑡

(𝑀𝑀)𝑚𝑚𝑡𝑡
(𝑀𝑀) − 𝑏𝑏𝑡𝑡� = 𝑑𝑑𝑡𝑡

(𝑀𝑀)𝑚𝑚𝑡𝑡+1
(𝑀𝑀) − 𝑏𝑏𝑡𝑡  

⇔ (𝑚𝑚𝑡𝑡+11𝑧𝑧𝑇𝑇 − 𝐼𝐼3)�𝑑𝑑𝑡𝑡
(𝑀𝑀)𝑚𝑚𝑡𝑡 − 𝑏𝑏𝑡𝑡� = 03 (6.27) 
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where 𝐼𝐼3 is the 3 × 3 identity matrix and 03 is the 3 × 1 zero vector. 

 Using the relationship in (6.27) we can construct a quadratic cost function over the 

depth and the baseline as follows: 

𝐽𝐽 = ��𝑑𝑑𝑡𝑡
(𝑀𝑀)𝑚𝑚𝑡𝑡

(𝑀𝑀) − 𝑏𝑏𝑡𝑡�
𝑇𝑇
𝐶𝐶𝑀𝑀�𝑑𝑑𝑡𝑡

(𝑀𝑀)𝑚𝑚𝑡𝑡
(𝑀𝑀) − 𝑏𝑏𝑡𝑡�

𝑀𝑀

 (6.28) 

where 𝐶𝐶𝑀𝑀 is an ith datum-dependent matrix: 

𝐶𝐶𝑀𝑀 = �𝑚𝑚𝑡𝑡+1
(𝑀𝑀) 1𝑧𝑧𝑇𝑇 − 𝐼𝐼3�

𝑇𝑇
�𝑚𝑚𝑡𝑡+1

(𝑀𝑀) 1𝑧𝑧𝑇𝑇 − 𝐼𝐼3� (6.29) 

Taking the derivative of 𝐽𝐽 in terms of 𝑑𝑑𝑡𝑡
(𝑀𝑀) yields the following expression for 𝑑𝑑𝑡𝑡

(𝑀𝑀): 

𝑑𝑑𝑡𝑡
(𝑀𝑀) =

�𝑚𝑚𝑡𝑡
(𝑀𝑀)�

𝑇𝑇
𝐶𝐶𝑀𝑀𝑏𝑏

�𝑚𝑚𝑡𝑡
(𝑀𝑀)�

𝑇𝑇
𝐶𝐶𝑀𝑀𝑚𝑚𝑡𝑡

(𝑀𝑀)
 (6.30) 

This is exactly the solution given in equation (3.31) for 𝑅𝑅 = 𝐼𝐼3. Plugging back into (6.28), 

eliminates feature depth from the cost function leaving us with an ordinary least squares 

problem on the components of 𝑏𝑏𝑡𝑡: 

𝐽𝐽 = 𝑏𝑏𝑡𝑡𝑇𝑇 ���
𝑚𝑚𝑡𝑡

(𝑀𝑀)�𝑚𝑚𝑡𝑡
(𝑀𝑀)�

𝑇𝑇
𝐶𝐶𝑀𝑀

�𝑚𝑚𝑡𝑡
(𝑀𝑀)�

𝑇𝑇
𝐶𝐶𝑀𝑀𝑚𝑚𝑡𝑡

(𝑀𝑀)
− 𝐼𝐼3�

𝑇𝑇

𝐶𝐶𝑀𝑀 �
𝑚𝑚𝑡𝑡

(𝑀𝑀)�𝑚𝑚𝑡𝑡
(𝑀𝑀)�

𝑇𝑇
𝐶𝐶𝑀𝑀

�𝑚𝑚𝑡𝑡
(𝑀𝑀)�

𝑇𝑇
𝐶𝐶𝑀𝑀𝑚𝑚𝑡𝑡

(𝑀𝑀)
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𝑄𝑄

𝑏𝑏𝑡𝑡 = 𝑏𝑏𝑡𝑡𝑇𝑇𝑄𝑄𝑏𝑏𝑡𝑡 (6.31) 

Ideally (i.e., no noise in the data), the solution for 𝑏𝑏𝑡𝑡 should be the one-dimensional null 

space of 𝑄𝑄. However, in the majority of cases, 𝑄𝑄 will be a full rank positive semidefinite 

matrix and the solution is obtained by optimizing equation (6.26) with a hard unit-norm 

constraint on 𝑏𝑏𝑡𝑡 in order to avoid the trivial solution. In this case, the minimizer is the 

eigenvector corresponding to the smallest eigenvalue of 𝑄𝑄. In the unlikely case in which the 

null space of 𝑄𝑄 has dimension greater than 1, then for all intents and purposes, the null 

vector which yields the smallest value of  𝐽𝐽 is chosen. Please note here that the form of data 

matrix Q in equation (6.31) is not numerically stable (the term in the denominator vanishes 

for small disparity values) and should be reformulated to avoid divisions by small numbers. 
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6.4.2 3D relative pose odometry estimates with inertial input 

The majority of test sequences were taken from a moving car or a boat in natural 

environments such as parks and rivers. Vehicle velocity did not exceed 7 knots per hour 

(3.601 m/s) either on land or sea. Scene background depth ranges from 2 to 500 meters. 

Although vehicle velocity was generally constant, yet slight variations in speed where 

unavoidable; subsequently, scale awareness drifts in the global pose estimate, mainly 

towards the end of the trajectories. For comparison, the odometry estimate was squashed 

on the x-z plane and thereafter rotated and the ground truth was scaled by dividing all 

baseline vectors by the GPS speed at the origin (Figures 6.8-10). The relative pose 

model has no memory and therefore velocity must be assumed constant. Thus, the 

baseline error in relative pose estimates essentially corresponds to the actual variations in 

the speed of the vehicle and was estimated on average at 2.43%. This error was calculated 

from the standardized ground truth pairwise baseline lengths in terms of the GPS based 

speed of the vehicle at the origin. 

 

Figure 6.8. Relative pose odometry from a park ride (approximately 0.5 km) on a car. Plot scale on 
the left is arbitrary and therefore axes do not represent actual length units).  
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Figure 6.9. Relative pose odometry from a ride in countryside residential areas (0.6 km). Plot scale 
on the left is arbitrary and therefore axes do not represent actual length units. 

 

Figure 6.10. Relative pose odometry from a ride in countryside residential areas (1.1 km). Plot 
scale on the left is arbitrary and therefore axes do not represent actual length units. 

6.5 Summary 

This chapter introduced some preliminary work and techniques that could be useful either 

as parts of more elaborate algorithms, or as quick solutions for short-term odometry 
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estimates. The orthogonal Procrustes method was discussed and employed in the context of 

planar odometry. Although not an obvious fact, the Procrustean method is ubiquitous in 

computer vision algorithms, as many of the problems concerning projections of the 3D 

world onto the camera are inherently not linear because of the division by depth and the 

direct/indirect orthogonality constraints; hence, linear relaxations often require the 

enforcement of the constraints after the optimization. Furthermore, methodologies for 3D 

odometry with gyroscope input were examined with results that appear encouraging in 

relatively short distances. 

The concept of relative pose odometry relies on the independent tracking of features 

in pairs of consecutive frames, thereby recovering the relative camera pose.  Thus, current 

pose is obtained from the previous one by applying the estimated transformation. The 

features are treated as if they were actually detected in the first frame of the current pair and 

therefore tracking uncertainty does not account for the past. This is a very reasonable 

assumption in natural scenes with grass, dense foliage, etc., because the rich texture of the 

background is likely to yield corner-like neighborhoods, even if they are not high-quality 

(in terms of the Harris criterion). One important aspect of relative pose odometry is that the 

map does not appear in the filtration and therefore, theoretically, an arbitrary number of 

features can be used in the measurement step without having a cubic-scaling impact on 

execution time and state vector. 

 For a ground facing camera performing planar motion it is possible to obtain a 

linear equation in the elements of the rotation matrix and the baseline; the solutions of this 

ordinary LS optimization can be refined further throughout Gauss-Newton iteration. In the 

case of general camera motion, prior relative orientation estimates are necessary in order to 

obtain a linear homogenous equation on the baseline for each correspondence by means of 

rectification. The scaled baseline estimate obtained can thereafter be used in subsequent 

iterative optimization. In either case, planar or general, the relative pose solution does not 

reflect the true scale of the scene and if there exists no input regarding velocity or a motion 

model, then the recovered odometry is likely to present local scale discrepancies in 

comparison to ground truth. Results indicate that purely vision based odometry has 

significant issues with orientation as drift becomes apparent after 10-15 meters in the case 

of the ground facing camera. On the other hand, provided gyroscope angular rates, the 
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baseline is fairly accurate and the recovered odometry presents an error that almost 

exclusively depends on the inaccuracies of the motion model and almost not at all on 

inherent drift even for distances up to 1.5 km. For instance, in the simple case of constant 

speed, such motion model discrepancies become apparent, in Figures 6.8-10 when the 

vehicle has clearly reduced speed in order to go around a sharp turn.         
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Chapter 7 

The GraphSLAM approach to least squares and 

sensor fusion 

At a fundamental level, SLAM is always cast as a (potentially nonlinear) least squares 

optimization problem. What varies depending on the specifics of the application, is the 

algorithm that carries-out this optimization. The Kalman filter is a prominent representative 

of these algorithms; it improves the posterior in a step-by-step fashion by gradually 

integrating new measurement information. This approach usually reflects a discrete-time 

sequence of events in which new measurements concern only the current state and therefore 

there is no need to access past variables. In practice however, there are cases in which the 

measurement model may depend on past states/variables. Such measurement models 

include global positioning sensors, or generally any type of sensor model that involves 

sampling at much slower rates than the ones that the process itself progresses through time. 

An example of such am application is visual SLAM with gyroscopic input. Typically, 

angular rates are sampled in the range of 100-300 Hz, whereas a standard camera frame rate 

is 24-30 Hz; this implies that more than one angular samples are obtained between two 

frame captures. Although a KF can still deal with the different sampling rates, it however 

requires the design of a special transition model and an unnecessarily large state vector. A 

much more elegant solution would be to use an alternative representation of the posterior 

which would allow for a variable number of poses in the joint. The representation of 

Gaussian distributions employed by information filters can provide this flexibility. 

Information filters utilize an alternative representation of the SLAM posterior using 

the information matrix and information vector, as opposed to the traditional moment 

parametrization of normal distributions. The information matrix and information vector are 

known as the canonical parameters, or Fisher parameters; there exists a duality between 
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the canonical and moment parameters and so is between information filters and Kalman 

filters. Modern SLAM researchers find significant advantages in IFs, associated with the 

ability to block-diagonalize the information matrix (Wang 2011). Furthermore, the 

canonical parameters correspond directly to the normal equations obtained from the sum of 

quadratic constraints associated with motion and observations. In other words, the 

canonical parametrization not only is the formulation of the Gauss-Newton method for the 

variables in the posterior, but also allows for the addition or removal of such variables by 

expanding the information matrix and vector or marginalizing-out existing ones (thereby 

reducing the size of the canonical parameters). Figure 7.1 illustrates this concept of 

information matrix expansion and reduction in the context of SLAM. 

7.1 Filtering with a state vector of variable size 

By definition, the normal equations of a least squares system can be regarded as the Fisher 

parametrization of the solution variable. Based on this fact, Thrun and Montemerlo 

proposed GraphSLAM (Thrun and Montemerlo 2006), a technique that incorporates new 

information or marginalizes existing directly into the Fisher parameters. In other words, 

GraphSLAM is a general technique for expanding or downsizing and solving a least 

squares system in parts or in whole. From a filtering perspective, one may regard 

GraphSLAM as an information filter with a state vector of variable size. Thus, the filter 

keeps track of a matrix 𝛺𝛺 and a vector 𝜉𝜉, the dimensions of which may grow with the 

addition of new variables or be reduced by the marginalization of existing ones. In other 

words, the state vector does not have a fixed size. Moreover, the quadratic constraints 

corresponding to factors related to state transitions (motion model) and landmark 

observations (measurements) are being incorporated directly into 𝛺𝛺 and 𝜉𝜉 as shown in 

Figure 7.1.  

7.1.1 GraphSLAM rules 

Consider a joint Gaussian variable 𝑆𝑆 ∈ ℝ𝑖𝑖, such that 𝑆𝑆 = {𝑋𝑋,𝑌𝑌} where 𝑌𝑌 ∈ ℝ𝑑𝑑 and 

𝑋𝑋 ∈ ℝ𝑖𝑖−𝑑𝑑 with a distribution represented by the information matrix 𝛺𝛺 and information 

vector 𝜉𝜉. A quadratic constraint of the form, �𝑚𝑚 − 𝑓𝑓(𝑌𝑌)�𝑇𝑇𝛹𝛹−1�𝑚𝑚 − 𝑓𝑓(𝑌𝑌)�, where f  is a 

differentiable function at a given point 𝑦𝑦�,  𝛹𝛹 is a positive semi-definite matrix and m is a 

constant, can be incorporated into the joint distribution with the following operations: 
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𝛺𝛺 ← 𝛺𝛺 + �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑌𝑌
�
𝑦𝑦�
𝐴𝐴𝑌𝑌�

𝑇𝑇

𝛹𝛹−1 �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑌𝑌
�
𝑦𝑦�
𝐴𝐴𝑌𝑌� (7.1) 

where 𝜕𝜕𝑜𝑜
𝜕𝜕𝑌𝑌
�
𝑦𝑦�
 is the Jacobian of 𝑓𝑓 evaluated at 𝑦𝑦� and 𝐴𝐴𝑌𝑌 is a matrix such that, 𝑌𝑌 = 𝐴𝐴𝑌𝑌𝑆𝑆. The 

respective update to the information vector will be,   

𝜉𝜉 ← 𝜉𝜉 + �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑌𝑌
�
𝑦𝑦�
𝐴𝐴𝑌𝑌�

𝑇𝑇

𝛹𝛹−1 �𝑚𝑚 − �𝑓𝑓(𝑦𝑦�)−
𝜕𝜕𝑓𝑓
𝜕𝜕𝑌𝑌
�
𝑦𝑦�
𝑦𝑦��� (7.2) 

7.1.2 Making motion predictions and incorporating measurements 

Figure 7.1 illustrates the updates to the information matrix and vector imposed by the 

transition and measurement constraints. In particular, pose 𝑥𝑥𝑡𝑡−1 advances to 𝑥𝑥𝑡𝑡 and 

observation 𝑚𝑚𝑡𝑡
(𝑘𝑘) of the kth landmark is obtained. The dashed arrows point to the 

regions in 𝛺𝛺 and 𝜉𝜉 updated by the quadratic constraints that correspond to the state 

transition and landmark observation. 

 

Figure 7.1. Populating the information matrix and information vector during SLAM.  

One may consider GraphSLAM as a semi-offline filter, because it allows for the 

marginalization of arbitrary subsets of the joint. Thus, it is possible to keep a relatively 

limited number of variables in the joint just enough to accommodate real-time execution, 

while allowing for “local" iterative optimization. Frequent marginalization of past pose 

variables and landmarks that are not visible anymore should keep the dimensionality of the 
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information matrix below a certain boundary, thereby accommodating the use of iterative 

optimization in real time. For convenience, the marginals of the multivariate Gaussian 

using the Fisher parameters are given in Table 7.1; the information matrix and vector of the 

remaining variables (𝑋𝑋) appear with a bar (𝛺𝛺�𝑋𝑋𝑋𝑋 and 𝜉𝜉�̅�𝑋). 

 Information matrix Information vector 

Joint distribution 𝛺𝛺 = �𝛺𝛺𝑋𝑋𝑋𝑋 𝛺𝛺𝑋𝑋𝑌𝑌
𝛺𝛺𝑌𝑌𝑋𝑋 𝛺𝛺𝑌𝑌𝑌𝑌

� 𝜉𝜉 = �𝜉𝜉𝑋𝑋𝜉𝜉𝑌𝑌
� 

Marginal distribution of X  𝛺𝛺�𝑋𝑋𝑋𝑋 = 𝛺𝛺𝑋𝑋𝑋𝑋 − 𝛺𝛺𝑋𝑋𝑌𝑌𝛺𝛺𝑌𝑌𝑌𝑌−1𝛺𝛺𝑌𝑌𝑋𝑋 𝜉𝜉�̅�𝑋 = 𝜉𝜉𝑋𝑋 − 𝛺𝛺𝑋𝑋𝑌𝑌𝛺𝛺𝑌𝑌𝑌𝑌−1𝜉𝜉𝑌𝑌 

Table 7.1. Marginals of the multivariate Gaussian using the canonical parametrization.  

7.2 Fusing 3D gyroscopic data with 2D global positioning 

measurements  

The trajectory of vehicles on the ground or the surface of the sea, although theoretically 3D, 

essentially takes place on an approximately planar surface. When localizing a boat or a car 

using a “slow” (i.e., sampling rates of 5 Hz or lower) position sensor, the feedback is 

sufficient to accurately position the vehicle on the map when the trajectory has grown 

significantly in scale. However, localized information about the vehicle’s pose entails a 

great deal of uncertainty, not only because of the very slow sampling rate of the position 

sensor, but also because the respective measurements are 2D, while the vehicle’s trajectory 

occasionally deviates from a strictly planar motion pattern (for instance, due to rough sea or 

wave patterns generated by other vessels). It is therefore difficult to draw conclusions about 

the vehicle’s short-term behavior based only on position feedback; such behavior may be 

indicative of critical situations such as a boat being overturned. In this regard, IMUs offer 

accurate high frequency angular velocity samples about all three axes of motion and 

therefore can provide efficient attitude estimates with little drift over time. 

7.2.1 Scenario of a surface vehicle with disrupted 2D position feedback 

Consider the scenario of a surface vehicle equipped with an IMU and a 2D global position 

sensor with intermittent signal reception. The IMU z-axis is pointed outwards from the side 

and the x-axis is pointing to the front of the vessel as shown in Figure 7.2 (subsequently, 

acceleration in the x-axis is always positive). Suppose that position measurements arrive 
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intermittently in time intervals which may be several seconds long. During this time, the 

vehicle is predicting its pose based on IMU angular rates and possibly, on some motion 

model. If the distance covered by the vehicle during this “dead reckoning” interval is 

relatively large, then the next position measurement can bring a significant improvement in 

the odometry estimate throughout this period (i.e., the sequence of poses since the last 

position measurement). Figure 7.2 illustrates a sequence of 𝑏𝑏 + 1 poses of a vehicle that 

travels approximately in a plane between two successive position feedback reception events 

(measurements denoted as 𝜃𝜃𝑡𝑡 and 𝜃𝜃𝑡𝑡+𝑖𝑖).  

 

Figure 7.2. Illustration of a vehicle navigating approximately on a planar surface. Position feedback 
is presumably obtained from a satellite.  

7.2.2 Using GraphSLAM for position updates over multiple vehicle poses 

Since positioning feedback occurs sparsely while angular readings arrive at very high rates, 

marginalization of past states would only make sense when a new measurement arrives. In 

the meanwhile however, the vehicle has traveled only on gyroscopic input and therefore 

uncertainty in the estimated odometry increases through time. The GraphSLAM approach 

to filtering can ideally accommodate this progression by expanding the Fisher parameters 

and adding more pose variables, until the next position measurement is obtained.  

 Once the position information becomes available, then using the measurement 

models described in the next sections, the entries of the information matrix (and vector) 

associated with the vessel’s odometry since the last measurement interception are update 

and a Gauss-Newton iterative method is employed to further refine the odometry estimate. 
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7.2.3 Fusion of high frequency 3D attitude input with low frequency 2D 

position measurements: Motivation 

It is very reasonable for a vehicle such as a boat to deviate from a strictly planar trajectory 

for a variety of reasons which may be associated with tidal waves, water drag, wind, etc. 

Although these deviations have varying magnitude, nevertheless they are transient in nature 

and therefore, on average, one can assume that the vehicle is moving on a planar surface. In 

most cases, global positioning feedback is provided in terms of 2D coordinates on this 

plane. 

 There have been many algorithms proposed in literature for the fusion of IMU and 

2D position feedback, almost exclusively based on KF formulations (Zhang, Gu et al. 2005, 

Caron, Duflos et al. 2006, Wendel, Meister et al. 2006). To the best of my knowledge, none 

of these applications particularly addresses the problem of different sampling rates and 

dimensionality of the measurements. The gyroscope on one hand provides a high frequency 

3D input signal which carries significant information regarding short-term vehicle motion; 

on the other hand, global position sensors are typically 2D, slow and cannot capture 

transient motion.  

The idea in the approach introduced here is to use the gyroscope and the vehicle’s 

motion model (if available) to integrate odometry estimates until a position measurement 

is obtained. The estimates are used for short-term vehicle navigation, but with 

GraphSLAM, they are not marginalized out of the filter’s posterior as in the case of the KF. 

Eventually, when a new position measurement arrives, new information does not only 

impact the most recent pose, but all poses that are currently active (i.e., not marginalized 

out) in the information matrix-vector. In other words, the new position measurement 

updates the entire odometry, without however losing the high frequency information 

contained in it. This is a “retrospective” rectification approach which can be very useful for 

planners that require a detailed view of the vehicle’s past states in order to produce a short-

term plan. 

7.2.4 A linear measurement model 

Let 𝑥𝑥𝑡𝑡 = [𝜂𝜂𝑡𝑡𝑇𝑇 𝑠𝑠𝑡𝑡𝑇𝑇]𝑇𝑇 be the pose of the vehicle, where 𝜂𝜂𝑡𝑡 , 𝑠𝑠𝑡𝑡 ∈ ℝ3 are the orientation 

parameter and position vectors. One way of incorporating the information from the position 
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measurement into the posterior is to simply update the Fisher parameters with a linear 

constraint between the last pose and the position reported by the measurement: 

(𝜃𝜃𝑡𝑡 − 𝐼𝐼2×3𝑠𝑠𝑡𝑡)𝑇𝑇𝑄𝑄−1(𝜃𝜃𝑡𝑡 − 𝐼𝐼2×3𝑠𝑠𝑡𝑡) (7.3) 

where 𝜃𝜃𝑡𝑡 ∈ ℝ2 is the position measurement,  𝑄𝑄 ∈ ℝ2×2 is the measurement covariance and 

𝐼𝐼2×3 is the 2 × 3 identity matrix. 

 The measurement model of equation (7.3) is simple and, although seemingly 

concerns only the x-y coordinates of the last position vector, the existing correlations 

between poses in the information matrix will distribute measurement information to 

multiple past pose variables. What is important about the measurement model of (7.3) is 

that it is linear and therefore solving for the mean of the posterior as 𝜇𝜇 = 𝛺𝛺−1𝜉𝜉 should yield 

updated estimates for all active poses without the need to run iterative optimization. 

7.2.5 A measurement model based on a fitted motion plane  

Consider the sequence of consecutive poses 𝑥𝑥𝑡𝑡:𝑡𝑡+𝑖𝑖 between two successive position 

measurements at times 𝑡𝑡 and 𝑡𝑡 + 𝑏𝑏. Define vectors 𝑏𝑏𝑀𝑀 such that, 

𝑏𝑏𝑀𝑀 = 𝑠𝑠𝑡𝑡+𝑀𝑀 − �̂�𝑠, 𝑚𝑚 ∈ {0, … , 𝑏𝑏} (7.4) 

where 𝑠𝑠𝑡𝑡 ∈ ℝ3 is the position of the vehicle at time t and  �̂�𝑠 = 1
𝑖𝑖+1

∑ 𝑠𝑠𝑡𝑡+𝑀𝑀𝑖𝑖
𝑀𝑀=0  is the mean of 

𝑠𝑠𝑡𝑡+𝑀𝑀. Snce, excluding transients, the vehicle is approximately moving on a planar surface, 

then, the vectors 𝑏𝑏𝑀𝑀 define a 3D ellipsoid which can be approximated by a 2D plane. This 

plane is dubbed motion plane (Figure 7.4). Since the motion plane estimate is a best-fit 

plane (in the least squares sense) to a sequence of vehicle positions, it follows that any basis 

pair of vectors 𝑣𝑣1 and 𝑣𝑣2 (shown in red in Figure 7.4) can be obtained as the first two 

principle directions of the ellipsoid defined by 𝑏𝑏𝑀𝑀; the third principle direction should 

account for transient movements off the plane (for instance, briefly heading up while 

riding a wave). To obtain the closest plane to the aforementioned ellipsoid, one simply 

needs to consider the SVD of the following matrix: 

𝐵𝐵 = �
𝑏𝑏0𝑇𝑇
⋮
𝑏𝑏𝑖𝑖𝑇𝑇
� (7.5) 
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A basis of the motion plane can be obtained from the first two columns 𝑣𝑣1 and 𝑣𝑣2 of matrix 

V in the SVD, 𝐵𝐵 = 𝑈𝑈𝐷𝐷𝑉𝑉𝑇𝑇  (corresponding to the two largest singular values of B). 

 

Figure 7.4. Illustration of the motion plane as an approximation of the ellipsoidal 3D subspace 
defined by 𝑏𝑏0, 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑏𝑏−1, 𝑏𝑏𝑏𝑏, … , 𝑏𝑏𝑏𝑏−1, 𝑏𝑏𝑏𝑏. 
Consider the matrix A such that, 

𝐴𝐴 = [𝑣𝑣1 𝑣𝑣2] = 𝑉𝑉𝐼𝐼3×2 (7.6) 

where 𝐼𝐼3×2 is the 3 × 2 identity matrix. As a direct consequence of orthonormality, 

𝐴𝐴𝑇𝑇𝐴𝐴 = 𝐼𝐼2 and therefore the projection operator P onto the motion plane is, 

𝑃𝑃 = (𝐴𝐴𝑇𝑇𝐴𝐴)−1𝐴𝐴𝑇𝑇 = 𝐼𝐼2×3𝑉𝑉𝑇𝑇 (7.7) 

Using P, it is now possible to derive a relationship between 𝜃𝜃𝑡𝑡+𝑖𝑖 and the vehicle position 

estimate 𝑠𝑠𝑡𝑡+𝑖𝑖 on the motion plane: 

𝑃𝑃𝜃𝜃𝑡𝑡+𝑖𝑖 = 𝑃𝑃𝑠𝑠𝑡𝑡+𝑖𝑖 ⇔ 𝑃𝑃(𝜃𝜃𝑡𝑡+𝑖𝑖 − 𝑠𝑠𝑡𝑡+𝑖𝑖)�����������
𝑜𝑜𝑡𝑡,𝑛𝑛(𝑖𝑖𝑡𝑡:𝑡𝑡+𝑛𝑛)

= 0 (7.8) 

Since P is a projector obtained from the SVD of B, it follows that it is a function of all the 

position vectors from time 𝑡𝑡 to time 𝑡𝑡 + 𝑏𝑏. Thus, function 𝑓𝑓𝑡𝑡,𝑖𝑖(𝑠𝑠𝑡𝑡:𝑡𝑡+𝑖𝑖) = 𝑃𝑃(𝜃𝜃𝑡𝑡+𝑖𝑖 − 𝑠𝑠𝑡𝑡+𝑖𝑖) is 

a nonlinear regularization quadratic constraint. 

7.2.6 Derivatives of the motion plane projector 

Let �̂�𝑠𝑡𝑡,…, �̂�𝑠𝑡𝑡+𝑖𝑖 be the current estimates of the means of position vectors 𝑠𝑠𝑡𝑡,…, 𝑠𝑠𝑡𝑡+𝑖𝑖. In 

order to apply the Gauss-Newton method and update the information matrix and vector 

according to equations (7.1) and (7.2) in each step, 𝑓𝑓𝑡𝑡,𝑖𝑖 should be linearized in the 

neighborhood of �̂�𝑠𝑡𝑡:𝑡𝑡+𝑖𝑖. Since 𝑃𝑃 = 𝐼𝐼2×3𝑉𝑉𝑇𝑇 and V is generated by the SVD, the derivatives 

of U and V in terms of the elements of B must be obtained. A very helpful method to 
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compute the Jacobian of the SVD has been introduced by Papadopoulos and Lourakis 

(Papadopoulo and Lourakis 2000) and will be summarized briefly here (see Appendix B for 

more details on the results that follow). 

 The derivatives of 𝑈𝑈 = �𝑢𝑢𝑀𝑀𝑖𝑖� and 𝑉𝑉 = �𝑣𝑣𝑀𝑀𝑖𝑖� with respect to B=�𝑏𝑏𝑀𝑀𝑖𝑖� are, 

𝜕𝜕𝑈𝑈
𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖

= 𝑈𝑈𝛺𝛺𝑈𝑈
𝑀𝑀𝑖𝑖  ,   

𝜕𝜕𝑉𝑉
𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖

= −𝑉𝑉𝛺𝛺𝑉𝑉
𝑀𝑀𝑖𝑖 (7.9) 

The matrices 𝛺𝛺𝑈𝑈
𝑀𝑀𝑖𝑖 = ��𝜔𝜔𝑈𝑈

𝑀𝑀𝑖𝑖�𝑘𝑘𝑙𝑙� and 𝛺𝛺𝑉𝑉
𝑀𝑀𝑖𝑖 = ��𝜔𝜔𝑉𝑉

𝑀𝑀𝑖𝑖�𝑘𝑘𝑙𝑙� are antisymmetric and therefore have 

zeros in the diagonal, while their non-diagonal elements verify the following linear system: 

�
𝑑𝑑𝑙𝑙�𝜔𝜔𝑈𝑈

𝑀𝑀𝑖𝑖�
𝑘𝑘𝑙𝑙 + 𝑑𝑑𝑘𝑘�𝜔𝜔𝑉𝑉

𝑀𝑀𝑖𝑖�
𝑘𝑘𝑙𝑙 = 𝑢𝑢𝑀𝑀𝑘𝑘𝑣𝑣𝑖𝑖𝑙𝑙

𝑑𝑑𝑘𝑘�𝜔𝜔𝑈𝑈
𝑀𝑀𝑖𝑖�

𝑘𝑘𝑙𝑙 + 𝑑𝑑𝑙𝑙�𝜔𝜔𝑉𝑉
𝑀𝑀𝑖𝑖�

𝑘𝑘𝑙𝑙 = −𝑢𝑢𝑀𝑀𝑙𝑙𝑣𝑣𝑖𝑖𝑘𝑘
 (7.10) 

where 𝑑𝑑𝑘𝑘 are the singular values of B. Thus, it is possible to compute the derivatives of U 

and V per element of B by simply solving the system of equation (7.10) and thereafter 

substituting in equation (7.9).  

Unfortunately, the complexity of the method is 𝑂𝑂((𝑀𝑀𝑁𝑁)4) where M, N are the 

numbers of rows and columns of B. Although in this case the dimension of the row space of 

B is 3 (i.e., 𝑁𝑁 = 3), the complexity of derivation is still 𝑂𝑂(𝑀𝑀4) constituting the 

computation of the derivatives of V practically impossible at runtime for 𝑀𝑀 > 3. However, 

one may follow a significantly less cumbersome path by considering the SVD of the 3 × 3 

Gram matrix 𝐶𝐶 = 𝐵𝐵𝑇𝑇𝐵𝐵, such that 𝐶𝐶 = 𝑉𝑉𝐷𝐷2𝑉𝑉𝑇𝑇. The derivatives of V with respect to the 

elements of C can be calculated in 9 × 9 steps in which only the elements of an 

antisymmetric matrix 𝑊𝑊𝑀𝑀𝑖𝑖 = ��𝑤𝑤𝑀𝑀𝑖𝑖�𝑘𝑘𝑙𝑙� are required17 and can be obtained by collapsing the 

system of equation (7.10) into a single equation for �𝑤𝑤𝑀𝑀𝑖𝑖�𝑘𝑘𝑙𝑙 that yields the following 

solution: 

�𝑤𝑤𝑀𝑀𝑖𝑖�𝑘𝑘𝑙𝑙 = �
𝑣𝑣𝑀𝑀𝑘𝑘𝑣𝑣𝑖𝑖𝑙𝑙
𝑑𝑑𝑙𝑙2 − 𝑑𝑑𝑘𝑘2

  ,       𝑏𝑏 ≠ 𝑙𝑙

      0          ,       𝑏𝑏 = 𝑙𝑙
 (7.11) 

                                                 
17 In the case of the SVD of the Gram matrix, it is easy to see that 𝑈𝑈 = 𝑉𝑉 and therefore, if 𝑊𝑊𝑀𝑀𝑖𝑖 = 𝛺𝛺𝑈𝑈

𝑀𝑀𝑖𝑖, then the 
fact that (𝑊𝑊𝑀𝑀𝑖𝑖)𝑇𝑇 = 𝛺𝛺𝑉𝑉

𝑀𝑀𝑖𝑖 follows from the definition of 𝛺𝛺𝑈𝑈
𝑀𝑀𝑖𝑖 and 𝛺𝛺𝑉𝑉

𝑀𝑀𝑖𝑖by Papadopoulos and Lourakis. Thus, the 
antisymmetric matrix 𝑊𝑊𝑀𝑀𝑖𝑖  suffices for the computation of the Jacobian of V. 
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And the derivatives 𝜕𝜕𝑉𝑉
𝜕𝜕𝑖𝑖𝑖𝑖𝑖𝑖

 of V with respect to the elements of C can now be computed from 

equation (7.9) as follows: 

𝜕𝜕𝑉𝑉
𝜕𝜕𝑐𝑐𝑀𝑀𝑖𝑖

= 𝑉𝑉𝑊𝑊𝑀𝑀𝑖𝑖   (7.12) 

Having 𝜕𝜕𝑉𝑉
𝜕𝜕𝑖𝑖𝑖𝑖𝑖𝑖

, the sought derivatives 𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

 of V with respect to the elements of B can be 

obtained using the chain rule: 

𝜕𝜕𝑉𝑉
𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖

= ��
𝜕𝜕𝑉𝑉
𝜕𝜕𝑐𝑐𝑘𝑘𝑙𝑙

𝜕𝜕𝑐𝑐𝑘𝑘𝑙𝑙
𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖

3

𝑙𝑙=1

3

𝑘𝑘=1

 (7.13) 

Where the derivative 𝜕𝜕𝑖𝑖𝑘𝑘𝑘𝑘
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

 of the elements of C with respect to the elements of B is obtained 

as follows: 

𝜕𝜕𝑐𝑐𝑘𝑘𝑙𝑙
𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖

=

⎩
⎨

⎧
 0     ,                   𝑏𝑏 ≠ 𝑠𝑠 𝑎𝑎𝑏𝑏𝑑𝑑 𝑙𝑙 ≠ 𝑠𝑠

  𝑏𝑏𝑀𝑀𝑙𝑙   ,                   𝑙𝑙 ≠ 𝑚𝑚 𝑎𝑎𝑏𝑏𝑑𝑑 𝑏𝑏 = 𝑠𝑠 
𝑏𝑏𝑀𝑀𝑘𝑘    ,                    𝑏𝑏 ≠ 𝑚𝑚 𝑎𝑎𝑏𝑏𝑑𝑑 𝑙𝑙 = 𝑠𝑠
2𝑏𝑏𝑀𝑀𝑖𝑖  ,                         (𝑏𝑏, 𝑙𝑙) = (𝑚𝑚, 𝑠𝑠)

 (7.14) 

From equations (7.11-14), it follows that the Jacobian of V with respect to B can be 

computed in time 𝑇𝑇(9 × 9 + 9 × 𝑀𝑀) = 𝑂𝑂(𝑀𝑀), which is linear in M. The computation of the 

Gramm matrix does not affect the linearity of the overall complexity, since it is also linear 

in M, given that B has 3 columns. 

7.2.7 Learning GPS priors on relative position 

Position estimates from GPS sensors encapsulate uncertainty originating in numerous 

sources such as the number of visible satellites and their positions, signal strength, 

interference, etc. Although modelling each and every stochastic parameter is impractical, it 

is possible however to use maximum likelihood in order to learn the covariance matrix and 

the bias of a distribution on relative position measurements. 

 Suppose that for a sufficiently localized application18, a GPS reading is mapped to a 

coordinate vector 𝜃𝜃 ∈ ℝ2 using the Haversine formula (Goodwin 1910). Let 𝑠𝑠|𝜃𝜃~𝑁𝑁(𝜃𝜃 +

𝑐𝑐,𝛴𝛴) where c is a bias constant associated with the sensor. Also, let 𝑝𝑝(𝛥𝛥𝑠𝑠|𝑠𝑠1, 𝑠𝑠2) =

                                                 
18 The scale of the entire trajectory is small enough to regard GPS based relative positions as coplanar vectors. 
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𝛿𝛿�𝛥𝛥𝑠𝑠 − (𝑠𝑠2 − 𝑠𝑠1)�, where δ is the Dirac delta function; this is an elegant way of casting a 

hard constraint between 𝛥𝛥𝑠𝑠 and 𝑠𝑠1, 𝑠𝑠2 as a probability distribution. Figure 7.5 illustrates the 

stochastic model of the relative position estimate using conditional distributions 𝑠𝑠1|𝜃𝜃1 and 

𝑠𝑠2|𝜃𝜃2. The GPS based position prior 𝑝𝑝(𝜃𝜃) is assumed to be a zero-mean Gaussian with a 

diagonal covariance matrix with arbitrarily large non-zero elements; this is also an elegant 

way of stating that the prior is practically uninformative. 

 

Figure 7.5. A Bayes network illustrating conditional dependencies between relative position Δs and 
the two conditional variables 𝑠𝑠1|𝜃𝜃1 and 𝑠𝑠2|𝜃𝜃2. 

Learning the parameters c and Σ on absolute locations is very impractical since ground 

truth cannot generally be recovered from maps in resolutions of a few meters. On the other 

hand however, it is very easy to accurately measure relative distances. In this context, the 

posterior probability of the relative position estimate 𝛥𝛥𝑠𝑠 given the relative position 

measurement 𝛥𝛥𝜃𝜃, is given by the following marginal: 

𝑝𝑝(𝛥𝛥𝑠𝑠|𝛥𝛥𝜃𝜃 = 𝜃𝜃2 − 𝜃𝜃1) ∝ ��𝑝𝑝(𝑠𝑠1|𝜃𝜃1)𝑝𝑝(𝑠𝑠1 + 𝛥𝛥𝑠𝑠|𝜃𝜃1 + 𝛥𝛥𝜃𝜃)𝑝𝑝(𝜃𝜃1)𝑑𝑑𝜃𝜃1𝑑𝑑𝑠𝑠1 (7.15) 

where 𝑝𝑝(𝜃𝜃1) can be omitted in practice. Considering that 𝑝𝑝(𝑠𝑠1|𝜃𝜃1), 𝑝𝑝(𝑠𝑠2|𝜃𝜃2) are Gaussians 

with the same parameters, it is easy to verify that the marginal of equation (7.15) is a normal 

distribution with mean 𝛥𝛥𝜃𝜃 and covariance matrix 2𝛴𝛴. Moreover, it turns out that the data 

likelihood function does not depend on individual values 𝑠𝑠1, 𝑠𝑠2 and 𝜃𝜃1, 𝜃𝜃2 but rather on their 

differences, 𝛥𝛥𝜃𝜃 and 𝛥𝛥𝑠𝑠. Thus, for a sequence of data observations (𝛥𝛥𝑠𝑠𝑀𝑀,𝛥𝛥𝜃𝜃𝑀𝑀), 𝑚𝑚 = 1, … ,𝑁𝑁 

maximization of the data likelihood can be stated as follows: 
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argmax
𝛴𝛴

{ℒ(𝛴𝛴;𝛥𝛥𝑠𝑠1:𝑁𝑁,𝛥𝛥𝜃𝜃1:𝑁𝑁)} ~ argmin
𝛴𝛴

�𝑁𝑁 ln(|𝛴𝛴|)

+ ��
𝛥𝛥𝑠𝑠𝑀𝑀 − 𝛥𝛥𝜃𝜃𝑀𝑀

√2
�
𝑇𝑇

𝛴𝛴−1
𝑁𝑁

𝑀𝑀=1

�
𝛥𝛥𝑠𝑠𝑀𝑀 − 𝛥𝛥𝜃𝜃𝑀𝑀

√2
�� 

(7.16) 

where ~ denotes equivalence of optimization problems. Evidently, the bias cancels-out in the 

posterior and for the same reason, it also does not appear in the data likelihood function. On the 

other hand, the covariance matrix Σ can now be easily recovered using the standard MLE 

formula for Gaussian distributions (Koller and Friedman 2009): 

𝛴𝛴� =
1

2𝑁𝑁
�(𝛥𝛥𝑠𝑠𝑀𝑀 − 𝛥𝛥𝜃𝜃𝑀𝑀)
𝑁𝑁

𝑀𝑀=1

(𝛥𝛥𝑠𝑠𝑀𝑀 − 𝛥𝛥𝜃𝜃𝑀𝑀)𝑇𝑇 (7.17) 

7.2.8 Results 

Depending on the number of IMU samples between valid GPS readings, the filter is able to 

update the trajectory up to a number of poses in the past. Each measurement imposes the 

following update to the information matrix: 

𝛺𝛺 ← 𝛺𝛺 + �
𝜕𝜕𝑓𝑓𝑡𝑡,𝑖𝑖

𝜕𝜕𝑠𝑠𝑡𝑡:𝑡𝑡+𝑖𝑖
�
�̂�𝑖𝑡𝑡:𝑡𝑡+𝑛𝑛

�
𝑇𝑇

𝐴𝐴𝑇𝑇𝑄𝑄𝑡𝑡−1𝐴𝐴�
𝜕𝜕𝑓𝑓𝑡𝑡,𝑖𝑖

𝜕𝜕𝑠𝑠𝑡𝑡:𝑡𝑡+𝑖𝑖
�
�̂�𝑖𝑡𝑡:𝑡𝑡+𝑛𝑛

� (7.18) 

where �̂�𝑠𝑡𝑡:𝑡𝑡+𝑖𝑖 is the current mean of 𝑠𝑠𝑡𝑡:𝑡𝑡+𝑖𝑖,  𝜕𝜕𝑜𝑜𝑡𝑡,𝑛𝑛
𝜕𝜕𝑖𝑖𝑡𝑡:𝑡𝑡+𝑛𝑛

�
�̂�𝑖𝑡𝑡:𝑡𝑡+𝑛𝑛

 is the Jacobian of 𝑓𝑓𝑡𝑡,𝑖𝑖 evaluated at 

�̂�𝑠𝑡𝑡:𝑡𝑡+𝑖𝑖, 𝑄𝑄𝑡𝑡 is a covariance matrix obtained according to equation (7.17) and A is a variable 

“cropping” matrix such that, 𝑠𝑠𝑡𝑡:𝑡𝑡+𝑖𝑖 = 𝐴𝐴𝑥𝑥𝑡𝑡:𝑡𝑡+𝑖𝑖. The respective update to the information 

vector is, 

𝜉𝜉 ← 𝜉𝜉 + �
𝜕𝜕𝑓𝑓𝑡𝑡,𝑖𝑖

𝜕𝜕𝑠𝑠𝑡𝑡:𝑡𝑡+𝑖𝑖
�
𝑇𝑇

𝐴𝐴𝑇𝑇𝑄𝑄𝑡𝑡−1 �
𝜕𝜕𝑓𝑓𝑡𝑡,𝑖𝑖

𝜕𝜕𝑠𝑠𝑡𝑡:𝑡𝑡+𝑖𝑖
�̂�𝑠𝑡𝑡:𝑡𝑡+𝑖𝑖 − 𝑓𝑓𝑡𝑡,𝑖𝑖(�̂�𝑠𝑡𝑡:𝑡𝑡+𝑖𝑖)� (7.19) 

Figures 7.6-8 illustrate the recovered trajectories for 3 routes of length 0.8, 1.2 and 0.6 

km. Orientation is estimated purely on the gyro readings and intermittent position 

measurements (blue diamond markers) are used to correct the entire set of past vehicle 

poses all the way to the previous measurement. The red crosses indicate a dense GPS 

based trajectory used as ground truth. Axis unit length is 1 m in all dimensions. 
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The filter uses a simple smoothing constraint in lieu of a motion model between 3 

consecutive positions (a Gaussian regularization factor on the second derivative of the 

position); for the first transition, the vehicle is assumed to be travelling along the x-axis at a 

speed equal to the speed over ground provided by the GPS. Motion updates occur roughly 

every 6-7 IMU samples (i.e., approximately 30 Hz). Clearly, the measurement model of 

equation (7.8) casts a non-linear quadratic constraint into the cost function corresponding to 

the joint posterior and for this reason, a Levenberg-Marquardt algorithm is employed in 

order to execute the Gauss-Newton method over the batch of active position variables. Note 

here that IMU based orientation estimates are highly accurate with very little drift and the 

GPS can hardly compete in that aspect. 

 

Figure 7.6. Recovered odometry for an approximately 0.8 km long route for a GPS reception period 
of 3 and 6 s respectively. 

 

Figure 7.7. Recovered odometry for an approximately 1.2 km long route for a GPS reception period 
of 3 and 6 s respectively. 
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Figure 7.8. Recovered odometry for an approximately 0.6 km long route for a GPS reception period 
of 3 and 6 s respectively.  

 A measurement update has a drastic impact on the pose variables that are currently 

active in the information matrix due to the fact that the derivatives of the projector cast 

strong correlations between the position vectors and the GPS measurement. Thus, upon 

exiting the optimization loop, discontinuities may become apparent in the transition from 

the last vector in the previous batch of positions to the first vector of the most recent batch. 

To mitigate these discontinuities when “crossing the border” from one batch to another, a 

regularizing constraint is applied to the difference of the first position vector in the new 

batch and the last position vector in the previous batch. Figures 7.6-8 indicate that there 

exists a small amount of variance accompanied by minor “wobbling” (lack of smoothness) 

in the y-axis which can be attributed to the fact that GPS is essentially uninformative in this 

direction, unless the recovered motion plane is significantly skewed from the GPS plane. 

Table 7.2 illustrates the average distance from the original dense GPS samples  in each one 

of the 3 routes (0.6, 0.8 and 1.2 km) for batch sizes of 30, 70, 120 and 150, roughly 

corresponding to intermittent GPS operation in respective intervals of 2 s, 3 s, 4 s and 6 s. 

The distance between the dense GPS point sequence and a position vector in the recovered 

odometry is simply the closest GPS point to that particular position. 

 Average distance from dense GPS points per route 

GPS sampling time 1 (0.6 km) 2 (0.8 km) 3 (1.2 km) 

2 s 0.0294 𝑚𝑚 0.2154 𝑚𝑚 0.1432 𝑚𝑚 



 
 

141 
 

3 s 0.5355 𝑚𝑚 0.7692 𝑚𝑚 0.6771 𝑚𝑚 

4 s 1.1230 𝑚𝑚 1.7064 𝑚𝑚 1.3806 𝑚𝑚 

6 s 1.2998 𝑚𝑚 2.6534 m 2.3207 𝑚𝑚 

Table 7.2. Average distance of the recovered odometry from the original dense GPS point sequence 
(used as ground truth) for 3 different routes and 4 GPS sampling rates. 

7.3 Summary 

An alternative filtering approach was introduced in this chapter. Using the Fisher 

parametrization of Gaussian distributions, it becomes possible to manage an arbitrary 

number of variables in the posterior at run-time by incorporating the respective quadratic 

constraints directly into the distribution parameters without necessarily having to resolve 

the estimates instantaneously, in contrast to purely online algorithms such as the EKF. 

Thus, the information of a measurement can be disseminated into an arbitrary number of 

pose vectors comprising the state joint variable at some given step of the stochastic process. 

 The flexibility of information filters in terms of using arbitrary number of active 

variables in the state vector provides an ideal solution for cases in which measurement 

information is provided at a much slower pace compared to the rate of progression of the 

process in time. The GPS measurement is a classic example of such a “slow” measurement 

model. Using GPS information in the context of the EKF, although reduces uncertainty in 

the state belief, it is however a cause of an abrupt discontinuity with respect to the previous 

belief state.  

 An alternative method for introducing 2D position information in a discrete 

stochastic process over the pose of a vehicle through time was also presented in this 

chapter. In particular, a two measurement models are proposed: a) A linear model which 

guarantees linear-time solution for pose estimates since the last measurement update and, b) 

a nonlinear model relying on the concept of approximately planar motion and the 

comparison of the position measurement with the predicted pose on this plane. This 

approach not only models the correlations between past states (poses) and the position 

reading provided by the GPS, but also provides a “conduit” (the motion plane itself) for 

information to flow from the 2D observation into the 6 dimensions of all active pose 

vectors. It should be however stressed that the aforementioned measurement approaches 
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can be easily adopted in the context of GraphSLAM, whereas in the case of a KF, it would 

require a very complicated transition model. 
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Chapter 8 

Monocular visual SLAM in natural environments: 

Algorithms and frameworks 

In this chapter, the full visual SLAM problem in the context of natural environments is 

addressed. Two different approaches are examined: a) The standard monocular visual 

SLAM approach in which an initial reconstruction is obtained and thereafter, camera pose 

is estimated based on the existing map (which is refined by means of bundle adjustment 

and populated by new triangulated features) and, b) A more “relaxed” approach to visual 

SLAM, in which the map is not actively used to obtain camera pose, but merely for scale 

propagation and outlier rejection; in particular, camera pose is estimated directly from 

image correspondences with the linear solution for baseline described in Chapter 6 (section 

4.1) using gyroscopic input to eliminate the effects of rotation from the correspondences.  

 The perspective-n-point (PnP) problem is discussed in detail in this chapter. The 

PnP algorithm is the “main engine” of the SLAM framework and it is therefore examined 

in relation to epipolar geometry and in regards to the various ways in which it can be used 

to recover camera pose in scenes involving unlimited depth variation and noisy tracking. It 

follows that potential improvements to the existing solutions are discussed/proposed, 

especially to accommodate the needs of problems associated with the aforementioned 

limitations present in natural scenes. 

 Bundle adjustment is another important aspect of the full visual SLAM problem and 

therefore it deserves a section here, more than anywhere else in this thesis. It is a process 

extremely useful in mitigating accumulated errors caused either by 3D point back-

projections through the map when using the PnP, or by mismatches in tracking. A feature 

oriented version of bundle adjustment is discussed, wherein the reconstructed points are 

parametrized only in terms of their depth in the frame in which they were originally 
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detected; moreover, the use of stereographic projection to constrain the baseline norm is 

proposed when a 2-view scene reconstruction is optimized. 

Finally, results from the two approaches for SLAM are reported, mostly pictorially, 

in terms of the recovered odometries against outlines of ground truth in satellite photos. 

Most importantly, this chapter pinpoints the actual weaknesses of traditional visual SLAM 

techniques in natural landscapes and it elaborates on why certain less complicated and not-

so-traditional techniques demonstrate remarkable robustness in odometry estimates for 

reasonably long sequences. 

8.1 The perspective-n-point problem 

The perspective-n-point (PnP) problem deals with the recovery of camera pose from a 

known set of world points and their on-camera projections. The PnP problem is 

overdetermined for any number of points above 6, while the minimum-size configuration 

involves 3 correspondences. Similarly to the problem of Euclidean epipolar geometry (i.e., 

the recovery of structure and relative pose from the essential matrix), the special cases of 

the PnP have also been solved analytically and these solutions are typically employed in the 

context of RANSAC with good results. The overdetermined case was fully solved by 

Hesch and Roumeliotis (Hesch and Roumeliotis 2011) using Groebner basis solvers for the 

resulting quartic polynomials. Other less complicated and easier to reproduce (from an 

implementation standpoint) least squares based solutions exist, but they actually employ the 

Procrustean logic (Chapter 6, section 2.2) either directly or indirectly, thereby enforcing 

orthogonality in a retrospective manner. 

8.1.1 The P3P problem 

The P3P problem can be solved fast and relatively easy, despite the fact that it 

involves quartic polynomials. In the full visual SLAM approach using only a camera in this 

thesis, the P3P algorithm is used in the context of RANSAC in order to estimate new 

camera pose as new frames from the sequence are processed. Figure 8.1 illustrates the setup 

of the P3P problem. 
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Figure 8.1. The P3P problem setup. World points 𝑀𝑀1, 𝑀𝑀2 𝑀𝑀3 correspond to the normalized 
Euclidean projections 𝑚𝑚1, , 𝑚𝑚2, 𝑚𝑚3 on a camera centered at C. 

For 3 known map points 𝑀𝑀1, 𝑀𝑀2 , 𝑀𝑀3 and their normalized Euclidean projections 𝑚𝑚1, 𝑚𝑚2, 

𝑚𝑚3 onto a camera plane of unknown orientation and location, the 3 cosine laws apply for 

triangles 𝑀𝑀1𝐶𝐶𝑀𝑀2, 𝑀𝑀1𝐶𝐶𝑀𝑀3 and 𝑀𝑀2𝐶𝐶𝑀𝑀3: 

𝑙𝑙12 + 𝑙𝑙22 − 2𝑙𝑙1𝑙𝑙2
𝑚𝑚1

𝑇𝑇𝑚𝑚2

‖𝑚𝑚1‖‖𝑚𝑚2‖
= �𝑀𝑀1𝑀𝑀2�����������⃑ �

2
 (8.1) 

𝑙𝑙12 + 𝑙𝑙32 − 2𝑙𝑙1𝑙𝑙3
𝑚𝑚1

𝑇𝑇𝑚𝑚3

‖𝑚𝑚1‖‖𝑚𝑚3‖
= �𝑀𝑀1𝑀𝑀3�����������⃑ �

2
 (8.2) 

𝑙𝑙22 + 𝑙𝑙32 − 2𝑙𝑙2𝑙𝑙3
𝑚𝑚2

𝑇𝑇𝑚𝑚3

‖𝑚𝑚2‖‖𝑚𝑚3‖
= �𝑀𝑀2𝑀𝑀3�����������⃑ �

2
 (8.3) 

where 𝑙𝑙1 = �𝐶𝐶𝑀𝑀1��������⃑ �, 𝑙𝑙2 = �𝐶𝐶𝑀𝑀2��������⃑ �, 𝑙𝑙3 = �𝐶𝐶𝑀𝑀3��������⃑ � are the lengths of the segments 𝐶𝐶𝑀𝑀1, 𝐶𝐶𝑀𝑀2 and 

𝐶𝐶𝑀𝑀3. The P3P problem can be thought of as the ultimate high-school exercise on the law of 

cosines. Interestingly, the system of equations (8.1-3) is an exact description of the P3P 

problem from every possible aspect and always leads to a 4th degree polynomial system. 

There have been many solutions proposed in literature, the most prominent of which are 

described in a great paper by Haralick (Haralick, Lee et al. 1994). Recently, Kneip 

proposed a different parametrization (Kneip, Scaramuzza et al. 2011) which, although 

brilliant as a conception, it nevertheless does not improve the final solution, as it still 

requires the computation of quartic polynomial roots.  For the RANSAC based P3P solver 

used in this research, the parametrization of Grunert (Grunert 1841) is used in conjunction 
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with a simple 4th order polynomial solver (Lourakis and Zabulis 2013)19. Grunert’s 

algorithm yields a solution only for the lengths 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3. Solving for the camera pose requires 

just a few more simple steps. 

The orientation matrix 𝑅𝑅 containing the camera frame in a column-wise fashion can be 

obtained by matching a known orthogonal triad (i.e., three orthogonal directions) in the world 

frame with the same triad in the camera frame (Black 1964). With 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3 in estimated, this 

triad can be chosen to be the directions of vectors  𝑀𝑀1𝑀𝑀2�����������⃑ , 𝑀𝑀1𝑀𝑀2�����������⃑ ×𝑀𝑀1𝑀𝑀3�����������⃑  and 𝑀𝑀1𝑀𝑀2�����������⃑ ×

�𝑀𝑀1𝑀𝑀2�����������⃑ ×𝑀𝑀1𝑀𝑀3�����������⃑ �. Thus, in the world frame, the triad (𝑤𝑤1,𝑤𝑤2,𝑤𝑤3) is:  

𝑤𝑤1 =
𝑀𝑀1𝑀𝑀2�����������⃑

�𝑀𝑀1𝑀𝑀2�����������⃑ �
  (8.4) 

𝑤𝑤2 =
𝑀𝑀1𝑀𝑀2�����������⃑ × 𝑀𝑀1𝑀𝑀3�����������⃑

�𝑀𝑀1𝑀𝑀2�����������⃑ × 𝑀𝑀1𝑀𝑀3�����������⃑ �
   (8.5) 

𝑤𝑤3 = 𝑤𝑤1 × 𝑤𝑤2 (8.6) 

In the camera frame, the corresponding directions (𝑢𝑢1, 𝑢𝑢2,𝑢𝑢3) are: 

𝑢𝑢1 =
𝑙𝑙2𝑓𝑓2 − 𝑙𝑙1𝑓𝑓1
‖l2𝑓𝑓2 − 𝑙𝑙1𝑓𝑓1‖

  (8.7) 

𝑢𝑢2 =
(𝑙𝑙2𝑓𝑓2 − 𝑙𝑙1𝑓𝑓1) × (𝑙𝑙3𝑓𝑓3 − 𝑙𝑙1𝑓𝑓1)
‖(𝑙𝑙2𝑓𝑓2 − 𝑙𝑙1𝑓𝑓1) × (𝑙𝑙3𝑓𝑓3 − 𝑙𝑙1𝑓𝑓1)‖   (8.8) 

𝑢𝑢3 = 𝑢𝑢1 × 𝑢𝑢2 (8.9) 

where 𝑓𝑓1 = 𝑚𝑚1/‖m1‖, 𝑓𝑓2 = 𝑚𝑚2/‖m2‖, 𝑓𝑓3 = 𝑚𝑚3/‖m3‖ are the unit vectors along the 

projection rays in the directions of 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 in the camera frame. Obtaining the rotation 

matrix 𝑅𝑅 is a matter of a simple multiplication: 

𝑅𝑅 = [𝑤𝑤1 𝑤𝑤2 𝑤𝑤3][𝑢𝑢1 𝑢𝑢2 𝑢𝑢]𝑇𝑇  (8.10) 

Finally, the baseline vector 𝑏𝑏 from the world origin to the camera center in the world frame (in 

other words, the position of the camera) is given by the following difference of barycenters: 

𝑏𝑏 =
1
3
�𝑀𝑀1 + 𝑀𝑀2 + 𝑀𝑀3 − 𝑅𝑅(𝑙𝑙1𝑓𝑓1 + 𝑙𝑙2𝑓𝑓2 + 𝑙𝑙3𝑓𝑓3)� (8.11) 

                                                 
19 Code can be downloaded from: http://users.ics.forth.gr/~lourakis/posest/ 
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It should be noted here that the quartic polynomial can yield up to four solutions for 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3 

and each one will correspond to a camera pose. It follows that the only way to choose the 

correct solution is by testing it on a fourth correspondence. 

8.1.2 The overdetermined PnP problem and the cases of concealed 

Procrustes 

The special cases for 𝑏𝑏 = 3,4,5,6 are of particular interest because the respective solution 

spaces are more confined than the general case. Furthermore, these algorithms can be used in 

the context of RANSAC to produce robust pose estimates. However, the overdetermined case is 

the most natural configuration in practice and it is often desirable (instead of resorting to Monte 

Carlo methods) to solve directly from the entire available data. 

 The most common formulation of the PnP problem is based on the reprojection error. 

Consider 𝑏𝑏 world points 𝑀𝑀1,𝑀𝑀2, … ,𝑀𝑀𝑖𝑖, 𝑏𝑏 > 2 and their respective normalized Euclidean 

projections 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑖𝑖 in the camera frame. Let 𝑅𝑅 be the rotation matrix containing the 

directions of the camera frame (in world coordinates) arranged column-wise and 𝑏𝑏 be the 

baseline vector from the world origin to the camera center in world coordinates. Then, the PnP 

problem can be stated as follows: 

𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧𝑒𝑒
𝑅𝑅,𝜕𝜕

��𝑚𝑚𝑀𝑀 −
1

𝑇𝑇3𝑇𝑇(𝑀𝑀𝑀𝑀 − 𝑏𝑏)𝑅𝑅
𝑇𝑇(𝑀𝑀𝑀𝑀 − 𝑏𝑏)�

𝑖𝑖

𝑀𝑀=1

2

 

𝑠𝑠𝑢𝑢𝑏𝑏𝑠𝑠𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑙𝑙:𝑅𝑅𝑇𝑇𝑅𝑅 = 1 ,   det(𝑅𝑅) = 1 

(8.12) 

where 𝑇𝑇3 is the 3d column of 𝑅𝑅. For 𝑏𝑏 = 3, substituting 𝑚𝑚𝑀𝑀 = ‖𝑚𝑚𝑀𝑀‖𝑓𝑓𝑀𝑀 and 𝑇𝑇3𝑇𝑇(𝑀𝑀𝑀𝑀 − 𝑏𝑏) =

𝑙𝑙𝑀𝑀/‖𝑚𝑚𝑀𝑀‖ in equation (8.12) and with a few manipulations, one is able to derive the camera pose 

solutions given in equations (8.10-11). 

There have been several algorithms proposed for the solution of the overdetermined 

PnP problem. They can be roughly divided into two categories: a) Solutions which pay respect 

to the orthogonality constraint and always lead to a system of quartic polynomials (or multiple 

quadratics) and, b) Solutions that solve a linear system (least squares) and enforce the 

orthogonality constraint directly or indirectly in the process. In the first category one finds the 

method by Hesch and Roumeliotis (Hesch and Roumeliotis 2011) or the most recent by Zheng 

and Wu (Zheng and Wu 2015); amongst linear solvers, it is worth mentioning EPnP by Lepetit 

(Lepetit, Moreno-Noguer et al. 2009) for having employed a very clever data transformation. 
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I would like to stress here that any method that employs a linear solver (and that 

includes SVD) at any stage is a Procrustean method either in a straightforward or a concealed 

manner. This claim can be justified with the consideration that data are assumed to be normally, 

independently and (usually) identically distributed and therefore a least squares solution is 

nothing but a marginal over a very large joint variable that includes both data and camera pose. 

By solving for the pose without taking the constraints into consideration at some particular 

stage of the solution, one is treating the camera pose as a normally distributed variable, 

something that is egregiously false. Orthonormality constraints imply that the camera pose 

follows a multimodal distribution (hence the more-than-one solutions which may or may not 

have multiplicity above 1) and therefore using least squares is a brutal way of ignoring the true 

distribution of the pose variables. This does not mean that EPnP or other linear solutions are 

not effective. It merely implies that this category of methods can often fail in situations that 

polynomial solvers may be much more robust, especially when the data are contaminated with 

high levels of noise. It should be noted here that natural environments presenting significant 

variations in scene depth are actually such cases. Typically, tracking noise is augmented 

through triangulation, especially in the cases of distant world points, and unfortunately, this 

noise is propagated into the new pose estimate through the PnP.   

8.1.3 A formulation for the overdetermined PnP problem 

To the best of the author’s knowledge, the following PnP formulation and parametrization 

is novel. Consider the following slightly-altered version of the optimization problem in 

equation (8.12): 

𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧𝑒𝑒
𝑅𝑅,𝑡𝑡

 �𝐽𝐽 = �‖(𝑇𝑇3𝑀𝑀𝑀𝑀 + 𝑡𝑡)𝑚𝑚𝑀𝑀 − (𝑅𝑅𝑀𝑀𝑀𝑀 + 𝑡𝑡)‖2
𝑖𝑖

𝑀𝑀=1

� 

𝑠𝑠𝑢𝑢𝑏𝑏𝑠𝑠𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑙𝑙:𝑅𝑅𝑇𝑇𝑅𝑅 = 1 ,   det(𝑅𝑅) = 1 

(8.13) 

where 𝑅𝑅 contains the camera frame directions arranged row-wise (as opposed to the column-

wise convention adopted in this thesis),  𝑡𝑡 = −𝑅𝑅𝑏𝑏 is the world origin in the camera frame and 

𝑇𝑇3 is the 3d row of 𝑅𝑅 as a 1 × 3 vector. Using vector 1𝑧𝑧 = [0 0 1]𝑇𝑇 and the identity 

(𝑎𝑎𝑇𝑇𝑏𝑏)𝑐𝑐 = (𝑐𝑐𝑎𝑎𝑇𝑇)𝑏𝑏 for any 3 vectors, the expression of the cost function J  becomes: 

𝐽𝐽 = �‖1𝑧𝑧𝑇𝑇(𝑅𝑅𝑀𝑀𝑀𝑀 + 𝑡𝑡)𝑚𝑚𝑀𝑀 − (𝑅𝑅𝑀𝑀𝑀𝑀 + 𝑡𝑡)‖2
𝑖𝑖

𝑀𝑀=1
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where 𝐶𝐶𝑀𝑀
1/2 = 1𝑧𝑧𝑇𝑇𝑚𝑚𝑀𝑀 − 𝐼𝐼3. Define 𝐶𝐶𝑀𝑀 = �𝐶𝐶𝑀𝑀

1/2�
𝑇𝑇
𝐶𝐶𝑀𝑀
1/2. With further manipulations in (8.14) the 

following expression for 𝐽𝐽 is obtained: 

𝐽𝐽 = �(𝑅𝑅𝑀𝑀𝑀𝑀 + 𝑡𝑡)𝑇𝑇𝐶𝐶𝑀𝑀(𝑅𝑅𝑀𝑀𝑀𝑀 + 𝑡𝑡)
𝑖𝑖

𝑀𝑀=1

 (8.15) 

Now, define a matrix 𝐷𝐷𝑀𝑀 such that, 𝐷𝐷𝑀𝑀𝑇𝑇 = 𝑅𝑅𝑀𝑀𝑀𝑀 where 𝑇𝑇 = [𝑇𝑇1 𝑇𝑇2 𝑇𝑇3]𝑇𝑇 is the 9 × 1 vector of 

the stacked rows of 𝑅𝑅: 

𝐷𝐷𝑀𝑀 = �
𝑀𝑀𝑀𝑀
𝑇𝑇 01×3 01×3

01×3 𝑀𝑀𝑀𝑀
𝑇𝑇 01×3

01×3 01×3 𝑀𝑀𝑀𝑀
𝑇𝑇
� (8.16) 

where 01×3 is the 1 × 3 zero vector. The cost function of (8.15) can now be written in terms of 

𝑇𝑇 and 𝑡𝑡 as follows: 

𝐽𝐽 = �(𝐷𝐷𝑀𝑀𝑇𝑇 + 𝑡𝑡)𝑇𝑇𝐶𝐶𝑀𝑀(𝐷𝐷𝑀𝑀𝑇𝑇 + 𝑡𝑡)
𝑖𝑖

𝑀𝑀=1

 (8.17) 

Taking the derivative of 𝐽𝐽 in terms of 𝑡𝑡 and setting it zero yields the following relationship 

between 𝑡𝑡 and 𝑇𝑇: 

��𝐶𝐶𝑀𝑀

𝑖𝑖

𝑀𝑀

� 𝑡𝑡 = −��𝐶𝐶𝑀𝑀𝐷𝐷𝑀𝑀

𝑖𝑖

𝑀𝑀

� 𝑇𝑇 (8.18) 

What is of particular interest in equation (8.18) is the apparent role of matrix 𝐶𝐶𝑀𝑀 loosely as a 

spatial “weight”; this view also allows us to see 𝑡𝑡 as a “weighted” average of the three 

directions 𝑇𝑇1, 𝑇𝑇2 and 𝑇𝑇3. Provided that ∑ 𝐶𝐶𝑀𝑀𝑖𝑖
𝑀𝑀  is invertible (which most likely should be the 

case in the overdetermined problem), substituting back in (8.17) yields an expression for  𝐽𝐽 

only in terms of 𝑇𝑇: 

𝐽𝐽 = 𝑇𝑇𝑇𝑇��𝐷𝐷𝑚𝑚 − ��𝐶𝐶𝑚𝑚
𝑏𝑏

𝑚𝑚

�
−1

��𝐶𝐶𝑚𝑚𝐷𝐷𝑚𝑚

𝑏𝑏

𝑚𝑚

��

𝑇𝑇

𝐶𝐶𝑚𝑚 �𝐷𝐷𝑚𝑚 − ��𝐶𝐶𝑚𝑚
𝑏𝑏

𝑚𝑚

�
−1

��𝐶𝐶𝑚𝑚𝐷𝐷𝑚𝑚

𝑏𝑏

𝑚𝑚

��
𝑏𝑏

𝑚𝑚=1�����������������������������������������������
𝛺𝛺

𝑇𝑇 (8.19) 

where 𝛺𝛺 is a data-dependent positive semidefinite matrix. The problem now becomes a 

quadratically constrained quadratic program in 𝑇𝑇. In the very unlikely case that 𝛺𝛺 has 1-

dimensional null space, then the unique element of the basis would be the solution; in any 
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other case in which the dimension of the null space is greater than 1, the solution should be 

the linear combination of the basis elements that fulfil the orthonormality constraints.  

 In practice, the matrix 𝛺𝛺 will almost always have empty null space. In this case, 𝛺𝛺 

will have 9 distinct eigenvectors 𝜔𝜔1,𝜔𝜔2, … ,𝜔𝜔9 ∈ ℝ9 corresponding to 9 strictly positive 

eigenvalues 𝜎𝜎1,𝜎𝜎2, … ,𝜎𝜎9. Evidently, 𝜔𝜔1,𝜔𝜔2, … ,𝜔𝜔9 constitute a basis for ℝ9 and therefore 𝑇𝑇 

can be written as a linear combination of the eigenvectors of 𝛺𝛺: 

𝑇𝑇 = �𝛼𝛼𝑀𝑀𝜔𝜔𝑀𝑀

9

𝑀𝑀=1

= �𝛼𝛼𝑀𝑀 �
𝑢𝑢𝑀𝑀
𝑣𝑣𝑀𝑀
𝑤𝑤𝑀𝑀
�

�
𝜔𝜔𝑖𝑖

9

𝑀𝑀=1

 (8.20) 

where the parametrization 𝜔𝜔𝑀𝑀 = [𝑢𝑢𝑀𝑀𝑇𝑇 𝑣𝑣𝑀𝑀𝑇𝑇 𝑤𝑤𝑀𝑀𝑇𝑇]𝑇𝑇 in terms of vectors  𝑢𝑢𝑀𝑀 ,𝑣𝑣𝑀𝑀 ,𝑤𝑤𝑀𝑀 ∈ ℝ3 is 

introduced for convenience of notation in subsequent definitions and derivations. 

Substituting from (8.20) into the cost function in (8.19) yields: 

𝐽𝐽 = (𝛼𝛼1𝜔𝜔1 + 𝛼𝛼2𝜔𝜔2 + ⋯+ 𝛼𝛼9𝜔𝜔9)𝑇𝑇𝛺𝛺(𝛼𝛼1𝜔𝜔1 + 𝛼𝛼2𝜔𝜔2 + ⋯+ 𝛼𝛼9𝜔𝜔9)  

⇔ 𝐽𝐽 = (𝛼𝛼1𝜔𝜔1 + ⋯+ 𝛼𝛼9𝜔𝜔9)𝑇𝑇 �𝛼𝛼1 (𝛺𝛺𝜔𝜔1)���
𝜎𝜎1𝜔𝜔1

+ ⋯+ 𝛼𝛼9 (𝛺𝛺𝜔𝜔9)���
𝜎𝜎9𝜔𝜔9

�  

⇔ 𝐽𝐽 = (𝛼𝛼1𝜔𝜔1 + 𝛼𝛼2𝜔𝜔2 + ⋯+ 𝛼𝛼9𝜔𝜔9)𝑇𝑇(𝜎𝜎1𝛼𝛼1𝜔𝜔1 + ⋯+ 𝜎𝜎9𝛼𝛼9𝜔𝜔9)  

⇔ 𝐽𝐽 = �𝜎𝜎𝑀𝑀𝛼𝛼𝑀𝑀2
9

𝑀𝑀=1

= 𝛼𝛼𝑇𝑇𝛴𝛴𝑎𝑎 (8.21) 

where 𝛼𝛼𝑇𝑇 = [𝛼𝛼1   …   𝛼𝛼9] and 𝛴𝛴 = 𝑑𝑑𝑚𝑚𝑎𝑎𝑙𝑙{𝜎𝜎𝑀𝑀}. Thus, the optimization problem can now be 

re-written as follows: 

𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧𝑒𝑒
𝑀𝑀

 {𝐽𝐽 = 𝛼𝛼𝑇𝑇𝛴𝛴𝑎𝑎}

𝑠𝑠𝑢𝑢𝑏𝑏𝑠𝑠𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑙𝑙:
𝛼𝛼𝑇𝑇(𝑈𝑈𝑇𝑇𝑉𝑉)𝛼𝛼 = 𝛼𝛼𝑇𝑇(𝑈𝑈𝑇𝑇𝑊𝑊)𝛼𝛼 = 𝛼𝛼𝑇𝑇(𝑉𝑉𝑇𝑇𝑊𝑊)𝛼𝛼 = 0  
𝛼𝛼𝑇𝑇(𝑈𝑈𝑇𝑇𝑈𝑈)𝛼𝛼 = 𝛼𝛼𝑇𝑇(𝑉𝑉𝑇𝑇𝑉𝑉)𝛼𝛼 = 𝛼𝛼𝑇𝑇(𝑊𝑊𝑇𝑇𝑊𝑊)𝛼𝛼 = 1

 (8.22) 

where 𝑈𝑈,𝑉𝑉,𝑊𝑊 ∈ ℝ3×9 are the matrices formed column-wise by vectors 𝑢𝑢𝑀𝑀, 𝑣𝑣𝑀𝑀, 𝑤𝑤𝑀𝑀 

respectively.  The cost function of (8.21) is a simpler expression compared to the one in 

(8.19); yet on the other hand, the constraints have now become more complicated. What is 

important however about the formulation of (8.22) is that it is relatively easy to discern 

from the unit-norm constraints that the cost function is a (scaled by 3) convex combination 
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of 𝜎𝜎𝑀𝑀. This means, that one is able to choose 𝛼𝛼1 = 𝛼𝛼2 = 𝛼𝛼3 = 0 in order to eliminate the 3 

largest singular values (typically given in descending order). With this choice, we are left 

with the problem of satisfying the constraints. Therefore, the optimization problem yields a 

system of 6 quadratic equations over exactly 6 unknowns (i.e., 𝛼𝛼4,𝛼𝛼5,𝛼𝛼6,𝛼𝛼7,𝛼𝛼8,𝛼𝛼9): 

𝛼𝛼′𝑇𝑇(𝑈𝑈𝑇𝑇𝑉𝑉)𝛼𝛼′ = 𝛼𝛼′𝑇𝑇(𝑈𝑈𝑇𝑇𝑊𝑊)𝛼𝛼′ = 𝛼𝛼′𝑇𝑇(𝑉𝑉𝑇𝑇𝑊𝑊)𝛼𝛼′ = 0
𝛼𝛼′𝑇𝑇(𝑈𝑈𝑇𝑇𝑈𝑈)𝛼𝛼′ = 𝛼𝛼′𝑇𝑇(𝑉𝑉𝑇𝑇𝑉𝑉)𝛼𝛼′ = 𝛼𝛼′𝑇𝑇(𝑊𝑊𝑇𝑇𝑊𝑊)𝛼𝛼′ = 1

 (8.23) 

where 𝛼𝛼′ = [𝛼𝛼4 𝛼𝛼5 𝛼𝛼6 𝛼𝛼7 𝛼𝛼8 𝛼𝛼9]𝑇𝑇. To the best of the author’s knowledge, this 

system is novel and it appears tractable in terms of finding a solution that can be hard-

coded in a program without the use of a Groebner bases solver. Please note that eliminating 

the 3 largest singular values does not necessarily guarantee (although likely) that the 

solution of the quadratic system in (8.23) will give the global minimum. However, if the 

system is solvable in near-constant time, then it would be just a matter of finding a correct 

combination of zeros20. Further work and experimentation is deferred for a postdoctoral 

stage of the research. 

8.2 Bundle adjustment 

Iterative adjustment of the reprojection error (commonly known as bundle adjustment) 

between 2 or more views is very important for the stability of online SLAM. Bundle 

adjustment generally improves the current estimate of the map and camera pose through 

iterative optimization of the reprojection error. Klein and Murray (Klein and Murray 2007) 

use “local bundle adjustment” (Mouragnon, Lhuillier et al. 2009) to refine their SLAM 

posterior to the extent that the estimate is reliable enough to keep the process stable. In the 

SLAM frameworks described in this chapter, bundle adjustment is typically executed over 

2 or 3 views, in order to primarily minimize the error in the new pose estimate prior to the 

triangulation of recently detected features. 

8.2.1 Depth based parametrization of world points in bundle adjustment 

In the context of the visual SLAM applications described in this thesis, landmarks are not 

known a priori. In fact they are points detected in image space and thereafter back-

projected onto the normalized Euclidean plane. Thus, it is fair to regard their normalized 
                                                 
20 This needs to be shown. It would make sense (from a greedy point of view) that when the global minimum 
is attained, three (at least) of the components of α are zero. 
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Euclidean projections as non-stochastic quantities, for being the only known “ground truth” 

about them. Thus, the map location of the feature in the world can be parametrized by 

means of its depth and the camera pose in its home frame (i.e., frame of original detection): 

𝑀𝑀 = exp(𝑑𝑑)𝑅𝑅ℎℎ + 𝑏𝑏ℎ (8.25) 

where 𝑑𝑑 is the logarithm of depth in the home frame, ℎ is the normalized Euclidean projection 

of the feature in the home frame and (𝑅𝑅ℎ,𝑏𝑏ℎ) is the respective camera frame (using the default 

convention in this thesis which states that 𝑅𝑅ℎ contains the camera frame in a column-wise 

arrangement and 𝑏𝑏ℎ is the position of the camera in world coordinates). The exponential 

parametrization is used to impose depth positivity. The bundle adjustment cost function is 

therefore formulated as follows: 

𝐽𝐽 = � � �𝑚𝑚𝑀𝑀 −
1

1𝑧𝑧𝑇𝑇𝑅𝑅𝑣𝑣𝑇𝑇(𝑀𝑀𝑀𝑀 − 𝑏𝑏𝑣𝑣)𝑅𝑅𝑣𝑣
𝑇𝑇(𝑀𝑀𝑀𝑀 − 𝑏𝑏𝑣𝑣)�

2

𝑀𝑀∈ℱ(𝑣𝑣)𝑣𝑣∈𝒱𝒱

 (8.26) 

where 1𝑍𝑍 =  [0 0 1]𝑇𝑇,  𝒱𝒱 is an indexing set for camera views and ℱ(𝑣𝑣) is an indexing set 

for the features in the view 𝑣𝑣 ∈ 𝒱𝒱. It is worth mentioning that since 𝑀𝑀 is parametrized by the 

feature’s depth parameter d and home camera pose (𝑅𝑅ℎ,𝑏𝑏ℎ), it follows that the dimensionality 

of the respective variables in bundle adjustment has an 𝑂𝑂(𝑏𝑏) scaling as opposed to the 𝑂𝑂(3𝑏𝑏) 

of standard bundle adjustment. Although it still is linear scaling, it however makes a significant 

difference for relatively large number of features, especially when inverting, for instance, 300-

dimensional instead of 900-dimensional dense matrices. 

8.2.2 Constraining scale with stereographic projection 

Bundle adjustment is generally restricted to a region of the search space that roughly 

corresponds to the scale of the map. Thus, there is generally no need to constrain scale at 

this stage. However, the initial scene reconstruction obtained with Algorithm 3.1 enforces a 

unit-norm baseline in order to cope with the scale ambiguity for the first time. Thus, to 

refine the reprojection error in the initialization stage between the first two views, the 

optimization problem must be cast with a unit-norm baseline constraint: 

𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧𝑒𝑒
𝜕𝜕,𝑅𝑅,𝑑𝑑𝑖𝑖

�𝐽𝐽 = � �𝑚𝑚𝑀𝑀 −
1

1𝑧𝑧𝑇𝑇𝑅𝑅𝑇𝑇(𝑒𝑒𝑥𝑥𝑝𝑝(𝑑𝑑𝑀𝑀)ℎ𝑀𝑀 − 𝑏𝑏)𝑅𝑅
𝑇𝑇(𝑒𝑒𝑥𝑥𝑝𝑝(𝑑𝑑𝑀𝑀)ℎ𝑀𝑀 − 𝑏𝑏)�

2

𝑀𝑀∈ℱ0 

�

𝑠𝑠𝑢𝑢𝑏𝑏𝑠𝑠𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑙𝑙: ‖𝑏𝑏‖ = 1 𝑎𝑎𝑏𝑏𝑑𝑑  𝑅𝑅𝑇𝑇𝑅𝑅 = 𝐼𝐼3

 (8.27) 
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where 𝑑𝑑𝑀𝑀 and ℎ𝑀𝑀 are the depth logarithm and normalized Euclidean projection of the ith 

feature in the first view and ℱ0 is an indexing set for the initial set of correspondences. For 

simplicity, the first camera frame is taken as the world frame. The optimization problem of 

(8.26) is a non-linear, quadratically constrained, quadratic program. The existing iterative 

solutions are based on the Levenberg-Marquardt heuristic (Levenberg 1944, Marquardt 

1963, Dennis Jr and Schnabel 1996) which can be regarded as an adaptive version of the 

Gauss-Newton method. The constraint in (8.27) can be a significant problem during the LM 

execution because a step can very easily lead out of the feasible set of solutions (i.e., yield a 

baseline that does not have unit length). The most usual way of coping with the constraints 

is to manipulate the step of the process so that it remains in feasible space (Kanzow, 

Fukushima et al. 2002, Gong, Meng et al. 2015). However, a very elegant and 

uncomplicated way of achieving this is with the use of stereographic projection (see 

Chapter 4, section 4.1 and Appendix A for details on the parametrization). In this case, b 

can be parametrized by two parameters 𝜅𝜅, 𝜆𝜆 ∈ ℝ and the optimization problem of (8.27) 

becomes unconstrained: 

𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧𝑒𝑒
𝜅𝜅,𝜆𝜆,𝑅𝑅,𝑑𝑑𝑖𝑖

�𝐽𝐽 = � �𝑚𝑚𝑀𝑀 −
𝑅𝑅𝑇𝑇�𝑒𝑒𝑥𝑥𝑝𝑝(𝑑𝑑𝑀𝑀)ℎ𝑀𝑀 − 𝑏𝑏(𝜅𝜅, 𝜆𝜆)�

1𝑧𝑧𝑇𝑇𝑅𝑅𝑇𝑇�𝑒𝑒𝑥𝑥𝑝𝑝(𝑑𝑑𝑀𝑀)ℎ𝑀𝑀 − 𝑏𝑏(𝜅𝜅, 𝜆𝜆)�
�
2

𝑀𝑀∈ℱ0 

� (8.28) 

where the parametrized baseline 𝑏𝑏(𝜅𝜅, 𝜆𝜆) is now given by: 

𝑏𝑏(𝜅𝜅, 𝜆𝜆) =
1

1 + 𝜅𝜅2 + 𝜆𝜆2
�

2𝜅𝜅
2𝜆𝜆

1 − 𝜅𝜅2 − 𝜆𝜆2
� (8.29) 

The Jacobian of the baseline is the 3D version of the 4D Jacobian in equations (A.44-46) of 

Appendix A:  

∇
𝜅𝜅,𝜆𝜆
𝑏𝑏 = −�

𝑏𝑏12 − 𝑏𝑏3 − 1 𝑏𝑏1𝑏𝑏2
𝑏𝑏1𝑏𝑏2 𝑏𝑏22 − 𝑏𝑏1 − 1

𝑏𝑏1(1 + 𝑏𝑏3) 𝑏𝑏2(1 + 𝑏𝑏3)
� (8.30) 

where 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 are the 3 components of 𝑏𝑏. 

 Please note here that bundle adjustment is implemented using the GraphSLAM 

method to build the least squares normal equations and the Fisher parameters to represent 

them as the information matrix and vector of a multivariate Gaussian joint distribution. In 

other words, the optimization problem is formulated by updating the information matrix 



 
 

154 
 

and vector of the SLAM posterior in the fashion described in Chapter 7, section 1. The very 

same approach is employed by the least squares solver of Edward Rosten’s TooN library 

(Rosten 2013).  

8.2.3 Robust estimation 

Robust statistics (Maronna, Martin et al. 2006, Huber 2011) offer significant solutions in 

estimation problems that can cope with percentages of outliers that reach up to 30% of the 

data. A prominent category of techniques in robust statistics are M-estimators (M-stands for 

maximum likelihood) which interface gracefully with least squares methods, including 

algorithms for nonlinear optimization such as the Levenberg – Marquardt algorithm.  

 

Figure 8.2. The Cauchy cost function, 𝑖𝑖
2

2
𝑙𝑙𝑙𝑙𝑙𝑙 �1 + �𝑥𝑥

𝑖𝑖
�
2
� and the least squares cost function �𝑥𝑥

𝑖𝑖
�
2
 for 

𝑐𝑐 = 1. 

 The core idea behind M-estimators is το choose a monotonically increasing, 

bounded function 𝜌𝜌(𝑥𝑥) which will a give a convex, strictly positive, even objective function 

𝜌𝜌(‖𝑒𝑒𝑀𝑀‖2) that upper-bounds penalization of errors in order to mitigate the effect of extreme 

outliers on the estimate and formulate the following minimization problem: 

𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧𝑒𝑒
𝑝𝑝

�𝐽𝐽 = �𝜌𝜌(‖𝑒𝑒𝑀𝑀‖2)
𝑀𝑀∈𝑑𝑑

� (8.31) 

where 𝑝𝑝 is the sought parameter vector and 𝑒𝑒𝑀𝑀 is the error/residual for the ith datum. There 

have been quite a few objective functions proposed for M-estimation. They exhibit a “V”-
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shaped pattern in a neighborhood of 0, while they approach a finite upper-bound 

asymptotically as the error grows larger. The Cauchy function shown in Figure 8.2 is a 

typical representative of these objective functions.  

 Taking the derivative of J and setting it to zero should give the following: 

��
𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥
�
𝑥𝑥=‖𝑝𝑝𝑖𝑖‖2

� 𝑒𝑒𝑀𝑀𝑇𝑇
𝜕𝜕𝑒𝑒𝑀𝑀
𝜕𝜕𝑝𝑝

𝑀𝑀∈𝑑𝑑

= 0 (8.32) 

Provided that the error is a linear (or linearized in the case of Gauss-Newton method) term 

of the form 𝑒𝑒𝑀𝑀 = 𝑦𝑦𝑀𝑀 − 𝐴𝐴𝑀𝑀𝑝𝑝 then equation (8.32) leads to the following relationship for 𝑝𝑝: 

��
𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥
�
𝑥𝑥=‖𝑝𝑝𝑖𝑖‖2

�𝐴𝐴𝑀𝑀𝑇𝑇(𝑦𝑦𝑀𝑀 − 𝐴𝐴𝑀𝑀𝑝𝑝)
𝑀𝑀∈𝑑𝑑

= 0 (8.33) 

Setting 𝑤𝑤𝑀𝑀 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�
𝑥𝑥=‖𝑝𝑝𝑖𝑖‖2

>0 in (8.49) gives: 

�𝑤𝑤𝑀𝑀𝐴𝐴𝑀𝑀𝑇𝑇(𝑦𝑦𝑀𝑀 − 𝐴𝐴𝑀𝑀𝑝𝑝)
𝑀𝑀∈𝑑𝑑

= 0 (8.34) 

which, for all intents and purposes yields an ordinary weighted least squares solution: 

𝑝𝑝 = (𝐴𝐴𝑇𝑇𝑊𝑊𝐴𝐴)−1𝐴𝐴𝑇𝑇𝑊𝑊𝑦𝑦 (8.35) 

where 𝑊𝑊 is the diagonal matrix of weights (repeated a number of times equal to the 

dimensionality of 𝑦𝑦𝑀𝑀 per error term), 𝐴𝐴 contains the matrices 𝐴𝐴𝑀𝑀 stacked row-wise and 𝑦𝑦 is 

the observation vector as a large column. 

 The only “loose end” in the solution of equation (8.34) is the scale of the error. The 

errors scale differently with the parameters. For instance, reprojection errors should scale 

according to scene depth and camera speed; hence, different scenes are likely to exhibit 

different error ranges. It is therefore necessary to first standardize the errors before using 

them to obtain the weights. The most common method to scale the errors is to use the so-

called Median Absolute Deviation (MAD), which is the median of the absolute deviation 

from the median (in the case of residuals, it is simply the median): 

𝑀𝑀𝐴𝐴𝐷𝐷 = 𝑚𝑚𝑒𝑒𝑑𝑑𝑚𝑚𝑎𝑎𝑏𝑏
𝑀𝑀

{|𝑒𝑒𝑀𝑀|} (8.36) 
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The MAD is regarded to be more robust to outliers than standard deviation estimators. 

Provided that errors are normally distributed, it turns-out that the error scale estimate 

(standard deviation) is given by: 

𝑠𝑠 = 1.4826�����
𝐾𝐾

× 𝑀𝑀𝐴𝐴𝐷𝐷 (8.37) 

where 𝑁𝑁 = 1.4826 is a constant which is the result of the following requirement: 

𝑃𝑃 �−
𝑀𝑀𝐴𝐴𝐷𝐷
𝑠𝑠 ≤

𝑒𝑒𝑀𝑀
𝑠𝑠 ≤

𝑀𝑀𝐴𝐴𝐷𝐷
𝑠𝑠

� =
1
2 (8.38) 

And since we typically assume that 𝑝𝑝𝑖𝑖
𝑖𝑖
 is a standard Gaussian variable, it follows that s can 

be computed from its cumulative function. More on the subject can be found in the books 

by Huber, Maronna, Hoaglin (Hoaglin, Mosteller et al. 1983, Maronna, Martin et al. 2006, 

Huber 2011).  

Algorithm 8.1 describes the Levenberg-Marquardt method combined with robust 

estimation for bundle adjustment. To keep it simple, the algorithm describes adjustment of 

reprojection error in the case of the initializing two views in SLAM (hence, pose is 5D 

because it is parametrized with stereographic coordinates); however, roughly the same 

procedure applies (with minor differences primarily in the measurement formulas) to an 

arbitrary set of consecutive frames in the sequence. 

Algorithm 8.1. Robust bundle adjustment (for the initial 2-view reconstruction) 

Input: a) Indexing sets of visible features in the two views, ℱ1 and ℱ2. 

 b) Measurements ℎ𝑀𝑀 , 𝑚𝑚 ∈ ℱ1 and 𝑙𝑙𝑖𝑖, 𝑠𝑠 ∈ ℱ2. 

 c) Feature depth logarithms 𝑑𝑑𝑀𝑀, 𝑚𝑚 ∈ ℱ1. 

 d) Relative camera pose (𝜓𝜓, 𝜅𝜅, 𝜆𝜆) where ψ are orientation parameters and 𝜅𝜅, 𝜆𝜆 ∈ ℝ are the 
stereographic coordinates of the unit-norm baseline.   

e) An M-estimator objective function ρ. 

Output: a) Updated feature depth estimates �̂�𝑑𝑀𝑀, 𝑚𝑚 ∈ ℱ1. 

b)  Updated relative camera pose estimate �𝜓𝜓�, �̂�𝜅, �̂�𝜆�.  
 
comment Number of measurements. 

n ←  | ℱ1 ∩  ℱ2| 

comment Create the information matrix as the (𝑏𝑏 + 5) × (𝑏𝑏 + 5) identity matrix. 
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Ω ← I(n+5)             

comment Assign current depth and pose estimates to a (𝑏𝑏 + 5) × 1 vector. 

µ ← �d�f1  …  d�fn   ψ�   κ�    λ��   s. t.  f1, … , fn ∈  ℱ1 ∩  ℱ2  

comment Initial information vector is equal to the mean. 

ξ ← µ 

comment The LM constants associated with termination conditions. 

ε1 ← 10−5;  ε2 ← 10−12; Timeout ← 40 

comment Working-out the squared errors and the M-estimator weights. 

SqErrors ← ∅ 

SqError ← 0 

ψ� = [µ(n + 1)    µ(n + 2)    µ(n + 3)]; κ� = µ(n + 4); λ� = µ(n + 5) 

R� = rotation matrix�ψ��; b� = baseline vector�κ� ,λ�� 

For each i ∈ ℱ1 ∩  ℱ2: 

 d�i = µ(i) 

M� i ← exp�d�i�hi 

ei2 ← �gi −
R�T�M� i − b��

1zTR�T�M� i − b��
�
2

 

SqErrors ← SqErrors ∪ �ei2� 

SqError ← SqError + wiei2 

MAD = �median{SqErrors}  

s = 1.4826 × MAD 

NormSqErrors ←
SqErrors

s2  

W ← �wi = ρ′�ei2��i ∈ ℱ1 ∩  ℱ2� 

comment Entering the LM main loop. 

minError ← SqError; Found ← (SqError ≤ ε1) 

τ ← 10−3; k ← 0 

While (Not Found And k ≤ Timeout): 

 PreviousSqError ← SqError 

 k ← k + 1 

 Ωtemp ← Ω; ξtemp ← ξ  
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 For each i ∈ ℱ1 ∩  ℱ2: 

comment Create a “cropping” matrix for 𝑑𝑑𝑀𝑀 and 𝜓𝜓,𝜅𝜅, 𝜆𝜆. 

  A ← �A is a  5 × (n + 5) matrix such that: �ψ�   κ�   λ�  d�i� = Aµ� . 

�ψ�   κ�   λ�  d�i� ← Aµ; M� ← exp�d�i�hi; 

 R� = rotation matrix�ψ��; b� = baseline vector�κ� ,λ�� 

comment Update the Fisher parameters. G is the measurement Jacobian. 

  Gi =  �
∂� RT�Mi−b�

1zTRT�Mi−b�
�

∂ψ �

ψ�

∂� RT�Mi−b�
1zTRT�Mi−b�

�

∂κ �

κ�

∂� RT�Mi−b�
1zTRT�Mi−b�

�

∂λ �

λ�

∂� RT�Mi−b�
1zTRT�Mi−b�

�

∂di
�

d�i

� 

wi = W(i) 

Ωtemp ← Ωtemp + wiATGiTGiA 

ξtemp ← ξtemp + wiATGiT

⎝

⎛gi + Gi

⎣
⎢
⎢
⎡ψ
�
κ�
λ�
d�i⎦
⎥
⎥
⎤
− R�T�M� i−b��

1zTR�T�M� i−b��

⎠

⎞  

comment Obtaining a new estimate. 

  Ωtemp ← Ωtemp + τI  

ξtemp ←  ξtemp + τµ 

µtemp ← Ωtemp−1 ξtemp 

comment Working-out the squared errors and the M-estimator weights. 

SqErrors ← ∅  
SqError ← 0 

 For each i ∈ ℱ1 ∩ ℱ2: 

comment Create a “cropping” matrix for 𝑑𝑑𝑀𝑀 and (𝜓𝜓, 𝑏𝑏). 

  A ← �A is a  5 × (n + 5) matrix s. t. : �ψ�   κ�   λ�  d�i� = Aµtemp�  

�ψ�   κ�   λ�  d�i� ← Aµtemp 

R� = rotation matrix�ψ��; b� = baseline vector�κ� ,λ�� 

comment Compute the 3D point in the first camera frame. 

M� i ← exp�d�i�hi 

wi = W(𝑚𝑚) 

ei2 ← �gi −
R�T�M� i − b��

1zTR�T�M� i − b��
�
2

 



 
 

159 
 

SqErrors ← SqErrors ∪ �𝑒𝑒𝑀𝑀2� 

𝑆𝑆𝑞𝑞𝐸𝐸𝑇𝑇𝑇𝑇𝑙𝑙𝑇𝑇 ← SqError + 𝑤𝑤𝑀𝑀𝑒𝑒𝑀𝑀2 

MAD = �median{𝑆𝑆𝑞𝑞𝐸𝐸𝑇𝑇𝑇𝑇𝑙𝑙𝑇𝑇𝑠𝑠} 

 s = 1.4826 × MAD 

NormSqErrors ←
SqErrors

s2  

Wtemp ← �wi = ρ′�SqErrors(i)��i ∈ ℱ1 ∩  ℱ2� 

 If  (|PreviousSqError − SqSerror| < ε2): 

  Found ← True 

 Else: 

  If  (minError > SqError): 

   minError ← SqError 

    µ ← µtemp 

   ξ ← Ωtempµtemp  

   τ ← τ/10 

W ← Wtemp 

   Found ← (minError < ε1)   

  Else: 

   τ ← 10τ 

8.3 Visual SLAM using only a camera 

As reported in Chapter 1, a largely successful solution for monocular SLAM is Georg Klein 

and David Murray’s PTAM (Klein and Murray 2007, Klein and Murray 2009). PTAM has 

proved that it is possible to obtain reliable real-time scene reconstruction and camera pose 

at the same time. In general terms, PTAM follows the standard monocular SLAM pipeline 

(see Chapter 5, section 3), which is synopsized in the following steps: 

i) 2-View scene reconstruction and reprojection error refinement. 

ii) Tracking and recovery of camera pose using a PnP algorithm. 

iii) Bundle adjustment. 

iv) New feature detection and triangulation. 

v) Repeat from step (ii). 
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Evidently, the estimates obtained in steps (i), (ii) and (iii) in the above pipeline will be 

decisive for the progress of the SLAM algorithm. It is therefore important to obtain a 

reliable scene reconstruction from the first two views of the sequence, in order to build a 

map that will subsequently yield reliable pose estimates in the following frames through the 

PnP algorithm. Two-view scene reconstruction was discussed in Chapter 3, sections 2.5-6. 

Nister’s algorithm (used in PTAM) is so far the only method that delivers a “true” essential 

matrix, but it only works on 5 points; however, it could be used in the context of RANSAC 

in the overdetermined case. Note here that the RANSAC version of the 8-point algorithm 

(OpenCV) has provided satisfactory results in the current research. 

8.3.1 Map management and pose estimation 

Maintaining a map is vital for camera-only SLAM, because it acts as the “conduit” that 

couples point projections in previous views with their correspondences in the current view 

in order to estimate the new camera pose through the PnP algorithm. The first 

reconstruction is obtained from the essential matrix (Algorithm 3.1) and it is refined with 

two-view robust bundle adjustment (Algorithm 8.1). New points are detected in every 

frame after initialization, depending on a threshold on the number of visible map points. 

For each detected point, a new map point is created but marked as uninitialized to prevent 

the PnP algorithm from implicating it in subsequent computations for pose estimation. 

Once the new pose estimate is obtained, it is thereafter refined through bundle adjustment 

over the past 2 or 3 views. Finally, following pose refinement, the uninitialized features are 

triangulated and marked as initialized in the map (so that they can be used for pose 

estimation in the next execution of the PnP algorithm).  

 Further to the rejection of measurements that are not consistent with epipolar 

geometry (RANSAC outliers), there are two more outlier screening rules: The first rule 

simply disables map points that were assigned a weight less than 0.3 by the M-estimator 

during the last iteration of bundle adjustment. In the author’s experience, if this rule is 

triggered more than 10 times, then the map has most likely reached critical levels of 

corruption. The second rule disables map points that have a depth above 60% of the depth’s 

MAD. As will be discussed in the following sections, this rule can help in scenes that have 

bounded depth and minimal variation; however, in natural sequences with very large depth 
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variance, this rule is doing more harm than good, because it is not adaptive to the 

distribution of depth. 

8.3.2 Sequences from estuarine and forestall areas: Results 

 If the map contains distant points, then this will result in very noisy pose estimates and the 

SLAM process will have to reset or abort at a very early stage. Usually, distant points tend 

to act as “inductors of uncertainty” because their large depth will augment small tracking 

errors and the uncertainty region in 3D space becomes arbitrarily large (see Figure 3.16 in 

Chapter 3, section 4 for an intuitive illustration). In natural environments, this can be a huge 

problem as scene depth varies significantly from a few meters to several hundred meters. 

Such a case is demonstrated in the scene reconstructions of Figures 8.3 and 8.5 from a park 

sequence in Yelverton, Devon, in which, although certain points lie in relatively short 

distances away from the camera, the majority of the features is found on trees situated at 

the far end of the park. These distant features will back-project to very unstable world 

points which, in turn, will affect the subsequent pose estimates. 

 

Figure 8.3. Scene reconstruction (right) from the initial flow field (left) of a sequence in a park at 
Yelverton, Devon, UK. 
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Figure 8.4. A close-up into camera poses in the first 27 frames of the park sequence. The red line 
indicates a GPS based ground truth trend (spline interpolation of GPS locations). The SLAM 
algorithm begins to become unstable roughly on the 21st frame in the sequence. 

Figure 8.4 shows a close-up of the camera odometry for the first 27 frames against a GPS 

based spline segment. Evidently, the pose estimates after the 21st frame begin to 

approximate a single point instead of roughly following the trend indicated by the red 

spline, suggesting that the input to the PnP algorithm is very noisy. This input is comprised 

of the map and the measurements (tracked features); and although tracking “picks-up” a 

certain amount of drift (recall from section 3.1 in Chapter 5 in that OpenCV’s LK tracker is 

used to track from the previous frame or the frame before last due to a limitation in its 

implementation), it becomes evident that the map is the main source of the problem with 

apparent detrimental effects in the pose estimate. 

Figure 8.5 illustrates single camera SLAM during the first frames of a sequence 

from the vantage point of a moving boat in the river Tamar near Morwellham, Devon. This 

is a most difficult case as the majority of valid features lie in the distant background and the 

surface of the water cannot be used for tracking. Nevertheless, the reconstruction appears to 

be reasonably realistic. However, the subsequent camera pose estimates become very 

unstable after just 5 frames from the beginning of the sequence. This clearly indicates that 

not only the tracking is noisy, but also that the map is not very reliable. This becomes 

evident in the magnified view of Figure 8.6 in the reconstruction plot. Odometry becomes 

unstable very soon after SLAM initialization and, although bundle adjustment reduces the 
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error, the pose estimate does not improve, which suggests that the optimization was 

initialized from a very bad estimate. 

 

Figure 8.5. Scene reconstruction (right) from the initial flow field (left) of a sequence in the Tamar 
river near MorwellHam, Devon. 

 

Figure 8.6. A close-up into camera poses in the first 21 frames of the Morwellham sequence in the 
Tamar river. The red line indicates a GPS based ground truth trend (spline interpolation of GPS 
locations). The estimated pose becomes unstable very early (just after the 6th frame). 

 Interestingly, a slightly more “agile” behavior of the classic, map-based monocular 

SLAM approach was observed in an estuarine sequence where scene depth presents very 

little variance compared to the Morwellham sequence (Figures 8.7-8). In this case (a 
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sequence from the Tamar river near Calstock), the features have approximately same depth, 

lying at about 1-3 meters away from the camera; on the other hand however, from this 

distance, the attitude (rolling and pitching) and speed of the boat (roughly 3-4 knots) cause 

significant impact in the stability of flow estimation. Thus, in this sequence, noise 

originates primarily in tracking, but it accumulates in both map and pose in exactly the 

same way it does in the cases of the Yelverton park and Morwellham sequences. The 

results are slightly better than the ones observed in scenes with greater depth variation; 

however, the tradeoff here is that the tracker cannot fully compensate for the abrupt 

changes in attitude and therefore certain measurements are noisy, thereby affecting the 

results of the PnP pose estimates. Figure 8.7 illustrates initial reconstruction and flow, 

while Figure 8.8 shows a close-up on camera odometry with respect to the GPS based 

ground truth trend (a spline segment fitted on GPS readings). 

 

Figure 8.7. Scene reconstruction (right) from the initial flow field (left) of a sequence in the Tamar 
river near Calstock, Devon. 
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Figure 8.8. A close-up into camera poses in the first 21 frames of the Calstock sequence in the 
Tamar river. The red line indicates a GPS based ground truth trend (spline interpolation of GPS 
locations). The estimated pose begins to become unstable after 30 frames. 

8.3.3 Noise induction through the map in visual SLAM: A “chicken and 

egg” problem 

The problem of monocular SLAM in the context of the restrictions in this research is very 

ill-posed. In loose terms, one can say that the degrees of freedom marginally outnumber the 

inputs. Specifically, the environment is very unconstrained in terms of depth, brightness 

and texture, there are no prior models for camera motion and no special sensors can be 

used, except gyroscopes. Particularly in the no-gyroscope case examined in the current 

section, the only process input was the tracked feature locations. 

 The map is the result of an initial reconstruction between the first two camera views 

and it is thereafter populated with new triangulated features as the sequence progresses. 

Since epipolar geometry is the result of matched features, it follows that the map is 

estimated exclusively on the tracked features. Even if these measurements bear very little 

noise, it is clear that, in scenes with large variation in depth, these small amounts of noise 

can occasionally produce largely erroneous 3D points, some of which will eventually be 

used in subsequent pose estimation, which, in turn, will encapsulate the exaggerated error 

of previous measurements. This is a process very reminiscent of electrical induction 

wherein tiny amounts of noise are circulated in a loop through the map and the latest 

camera pose and eventually result in very uncertain estimates. Of course, this loop can be 
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broken with more sensory data and a motion prior, none of which are available (with the 

exception of gyroscope) in the case of this research.  

 Partial remedies to the noise induction problem described above would involve the 

selection of less uncertain points that produce small reprojection errors; this classification 

can be based, for instance, on the M-estimator weights. Of course, when measurements are 

not reliable, the PnP based camera pose estimate will be inaccurate, thereby leading again 

to large reprojection errors, even for map points that performed well so far; this is a 

dilemma of the type, “whom to believe”, the camera pose, or the map? Again, solutions 

exist, which would of course involve resetting the map and initiating a new set of features, 

but the overall approach begins to grow unnecessarily complicated. 

 It is the author’s belief that a more drastic remedy to the problem of noise induction 

through the map would be to eliminate the map from the pose estimation process without 

necessarily eliminating mapping itself. Circumventing the map from relative pose 

estimation clearly suggests that the solution must be obtained directly from the 

correspondences. In the case of general motion, this can only be done through the essential 

matrix. The problem with this approach is that, as discussed in Chapter 3, section 2.6, to 

this day, there is no reproducible (in the sense of ease of implementation and fast execution 

times) algorithm to solve for the essential matrix in an overdetermined setup, except of 

course for the usual unreliable, Procrustean approaches. Nister’s 5-point algorithm can be 

extremely useful in a RANSAC framework and further research in that direction should be 

a priority.  

8.4 Visual SLAM without the map 

Suppose that, in addition to the conditions of the monocular SLAM scenario of the previous 

section, gyroscope readings from an IMU are available throughout the entire duration of 

motion. Angular rate inputs are generally robust and suffer from minor drift and therefore 

the respective relative orientation estimates are very accurate and can be used to rectify the 

projections as discussed in Chapter 3, section 3.1. Following rectification, the sequence can 

be treated as the result of purely translational camera motion. In the purely translational 

motion case, relative pose can be recovered directly from the correspondences as described 

in Chapter 6, section 4.1 using the following cost function: 
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𝑏𝑏𝑇𝑇 = 𝑏𝑏𝑇𝑇𝑄𝑄𝑏𝑏 (8.39) 

where �𝑚𝑚0
(𝑀𝑀),𝑚𝑚1

(𝑀𝑀)� is the ith pair of normalized Euclidean projections (subscripts 0 and 1 

denote previous and current pose), 𝑏𝑏 is the baseline and 𝐶𝐶𝑀𝑀 is a positive semidefinite matrix 

depending exclusively on the projections in the second (most recent) view: 

𝐶𝐶𝑀𝑀 = �𝑚𝑚1
(𝑀𝑀)1𝑧𝑧𝑇𝑇 − 𝐼𝐼3�

𝑇𝑇
�𝑚𝑚1

(𝑀𝑀)1𝑧𝑧𝑇𝑇 − 𝐼𝐼3� (8.40) 

where 1𝑧𝑧 = [0 0 1]𝑇𝑇. Please note that equation (8.39) is just a formal way of 

introducing the problem, but it is not numerically stable in its current form; when 

implementing the least squares solver, it is advised to (at least) avoid having the term 

�𝑚𝑚0
(𝑀𝑀)�

𝑇𝑇
𝐶𝐶𝑀𝑀𝑚𝑚0

(𝑀𝑀) in the denominator, as it is likely to vanish in cases of low disparity. In the 

numerically stable formulation, features with very low disparity will simply be ignored by 

the relative pose solver because they contribute a trivial equation (0𝑏𝑏 = 0) in the 

overdetermined system. 

 What is worth noting about the formulation of equation (8.39), besides the obvious 

absence of rotation matrix, is that now there is no need to solve for relative pose through 

the map, as it can be done directly from correspondences. This way, tracking noise does not 

become augmented in distant map points and therefore the impact on the new pose is 

minimal to none at all. Also, the features that correspond to very uncertain 3D points can be 

isolated during bundle adjustment and can either be removed or simply be assigned a small 

weight by the M-estimator.  

8.4.1 Map-less SLAM: Probabilistic approach and intuition 

If relative orientation is known, then the computation of the essential matrix reduces to a 

simple least squares problem and a very reliable scene reconstruction can be obtained, 

provided some good quality tracking in the second view. Recall that in section 2.3 of this 

chapter, depth based parametrization of 3D points was introduced as follows: 

𝑀𝑀 = 𝑍𝑍ℎ𝑅𝑅ℎℎ + 𝑏𝑏ℎ (8.41) 
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where Zh > 0 is the depth of the point in its “home” view (i.e., the frame in which it was 

originally detected), 𝑅𝑅ℎ is the rotation matrix containing the camera frame (expressed in the 

in world frame) arranged column-wise and 𝑏𝑏ℎ is the position of the home camera center in 

the world. Suppose that 𝑙𝑙 is the rectified projection (using the relative orientation matrix 

estimated from gyroscope input) of the feature in the frame that followed the home frame. 

This camera view is dubbed as “base”. From equation (3.31) the depth 𝑍𝑍ℎ in the home view 

is given by: 

𝑍𝑍ℎ =
ℎ𝑇𝑇𝐶𝐶(𝑏𝑏𝑖𝑖 − 𝑏𝑏ℎ)

ℎ𝑇𝑇𝐶𝐶ℎ =
ℎ𝑇𝑇𝐶𝐶𝑏𝑏ℎ𝑖𝑖
ℎ𝑇𝑇𝐶𝐶ℎ  (8.42) 

where 𝑏𝑏ℎ𝑖𝑖 = 𝑏𝑏𝑖𝑖 − 𝑏𝑏ℎ is the baseline (in world coordinates) between the camera centers in 

the base and the home view and 𝐶𝐶 is the following non-invertible positive semidefinite 

matrix: 

𝐶𝐶 = (𝑙𝑙1𝑧𝑧𝑇𝑇 − 𝐼𝐼3)𝑇𝑇(𝑙𝑙1𝑧𝑧𝑇𝑇 − 𝐼𝐼3) (8.43) 

 From (8.42) and (8.41) the world point 𝑀𝑀 can now be expressed in terms of the 12 

parameters corresponding to the pose of the camera in the home and base view: 

𝑀𝑀 =
ℎ𝑇𝑇𝐶𝐶𝑏𝑏ℎ𝑖𝑖
ℎ𝑇𝑇𝐶𝐶ℎ 𝑅𝑅ℎℎ + 𝑏𝑏ℎ (8.44) 

It is important to stress that equation (8.44) implies that the only stochastic quantities in 𝑀𝑀 

are the home and base view pose variables. This means that, regardless of number of points, 

the map formally becomes dependent only on pose variables and therefore the respective 

degrees of freedom become practically constant, as opposed to the usual formulations in 

visual SLAM (for instance, the one introduced in section 2 of this chapter) in which the 

state vector has polynomial scaling in the number of map points. An alternative way of 

parametrizing 𝑀𝑀 in terms of the camera pose in the home and base views is to use a 

triangulation method (see section 2.1 in Chapter 3), which would most likely be slightly 

more accurate, but would also incur additional computational burden in terms of the 

derivatives. In contrast, the Jacobian of the expression in equation (8.44) can be computed 

in constant time. 

  In probabilistic terms, one may regard the parametrization of equation (8.44) as a 

marginal of the SLAM posterior over 𝑀𝑀. Consider the Bayes network of Figure 8.9 
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illustrating the parametrization of 𝑀𝑀 as a conditional distribution in the circled region. 

Since ℎ and 𝑙𝑙 are always instantiated variables, it follows that the distribution of 𝑀𝑀 is a 

conditional distribution on the home and base poses 𝑥𝑥ℎ and 𝑥𝑥𝐶𝐶. Note that for the sake of 

simplicity, the network contains only one measurement variable; the general case is a 

straightforward generalization. 

 

Figure 8.9. Map parametrization in visual SLAM. In the circled region, the map point M is 
conditionally dependent on camera pose (𝑥𝑥ℎ, 𝑥𝑥𝐶𝐶) and measurements (ℎ, 𝑙𝑙) in the home and base 
views. 

Marginalizing 𝑀𝑀 out of the SLAM posterior practically entails the (soft) 

substitution of each map point variable in the measurement likelihood with an expression 

that contains 𝑥𝑥ℎ and 𝑥𝑥𝐶𝐶. Thus, in practice, one obtains a new least squares formulation in 

which the only unknowns are the camera poses in the various views throughout the 

sequence. In SLAM terms, this means that a new state belief 𝐵𝐵𝑒𝑒𝑙𝑙∗�𝑥𝑥1:𝑡𝑡, 𝑥𝑥ℎ , 𝑥𝑥𝐶𝐶� =

𝑝𝑝�𝑥𝑥1:𝑡𝑡, 𝑥𝑥ℎ, 𝑥𝑥𝐶𝐶�ℎ,𝑙𝑙,𝑚𝑚1:𝑡𝑡� is now obtained from the original belief, 𝐵𝐵𝑒𝑒𝑙𝑙�𝑥𝑥1:𝑡𝑡, 𝑥𝑥ℎ, 𝑥𝑥𝐶𝐶,𝑀𝑀� =

𝑝𝑝�𝑥𝑥1:𝑡𝑡, 𝑥𝑥ℎ, 𝑥𝑥𝐶𝐶,𝑀𝑀�ℎ,𝑙𝑙,𝑚𝑚1:𝑡𝑡� as follows: 

𝐵𝐵𝑒𝑒𝑙𝑙∗�𝑥𝑥1:𝑡𝑡, 𝑥𝑥ℎ , 𝑥𝑥𝐶𝐶� = �𝐵𝐵𝑒𝑒𝑙𝑙�𝑥𝑥1:𝑡𝑡 , 𝑥𝑥ℎ, 𝑥𝑥𝐶𝐶,𝑀𝑀�𝑑𝑑𝑀𝑀 (8.45) 

where 𝑥𝑥1:𝑡𝑡 = {𝑥𝑥1, … , 𝑥𝑥𝑡𝑡}. 

Let 𝑥𝑥𝑡𝑡 = [𝜓𝜓𝑡𝑡𝑇𝑇 𝑏𝑏𝑡𝑡𝑇𝑇]𝑇𝑇 where 𝜓𝜓𝑡𝑡 in the orientation parameter vector and 𝑏𝑏𝑡𝑡 is the 

camera position in the world. Also, let 𝑝𝑝(𝑚𝑚𝑡𝑡|𝑀𝑀, 𝑥𝑥𝑡𝑡) = 𝑁𝑁(𝑓𝑓(𝑀𝑀, 𝑥𝑥𝑡𝑡),𝑄𝑄𝑡𝑡) be the measurement 

likelihood associated with the ith feature at time 𝑡𝑡 ≥ 1 where function f is the projective 

mapping between the tracked feature position 𝑚𝑚𝑡𝑡 and the respective map point: 
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𝑚𝑚𝑡𝑡 =
1

1𝑧𝑧𝑇𝑇𝑅𝑅𝑇𝑇(𝑀𝑀 − 𝑏𝑏𝑡𝑡)
𝑅𝑅𝑇𝑇(𝑀𝑀− 𝑏𝑏𝑡𝑡)�����������������

𝑜𝑜(𝑀𝑀,𝑥𝑥𝑡𝑡)

 (8.46) 

where 1𝑧𝑧 =  [0 0 1]𝑇𝑇 and 𝑅𝑅𝑡𝑡 = 𝑅𝑅(𝜓𝜓𝑡𝑡) is the rotation matrix corresponding to the 

camera orientation parameters at time t.  

As discussed in Appendix C, when 𝑀𝑀 is marginalized out of the posterior, a new 

measurement likelihood 𝑞𝑞�𝑚𝑚𝑡𝑡|𝑥𝑥𝑡𝑡 , 𝑥𝑥𝐶𝐶, 𝑥𝑥ℎ� = 𝑁𝑁�𝑓𝑓∗�ℎ,𝑙𝑙, 𝑥𝑥𝑡𝑡 , 𝑥𝑥𝐶𝐶 , 𝑥𝑥ℎ�,𝑄𝑄∗
𝑡𝑡� can be constructed 

from equation (8.46), in which the projection mapping is obtained by substituting 𝑀𝑀 in 

(8.46) with the expression of equation (8.44):  

𝑚𝑚𝑡𝑡 =
1

1𝑧𝑧𝑇𝑇𝑅𝑅𝑡𝑡𝑇𝑇 �
ℎ𝑇𝑇𝐶𝐶𝑏𝑏ℎ𝑖𝑖
ℎ𝑇𝑇𝐶𝐶ℎ 𝑅𝑅ℎℎ + 𝑏𝑏ℎ − 𝑏𝑏𝑡𝑡�

𝑅𝑅𝑡𝑡𝑇𝑇 �
ℎ𝑇𝑇𝐶𝐶𝑏𝑏ℎ𝑖𝑖
ℎ𝑇𝑇𝐶𝐶ℎ 𝑅𝑅ℎℎ + 𝑏𝑏ℎ − 𝑏𝑏𝑡𝑡�

�������������������������������������
𝑜𝑜∗�ℎ,𝐶𝐶,𝑥𝑥𝑡𝑡,𝑥𝑥𝑔𝑔,𝑥𝑥ℎ�

 
(8.47) 

For all intents and purposes, equation (8.47) describes a simple substitution in the least 

squares formulation of the SLAM problem. However, it should be stressed that, although h 

is non-stochastic (since it is the location of the feature’s original detection), its 

corresponding location 𝑙𝑙 in the base view is stochastic due to tracking uncertainty. This 

uncertainty should now be taken into consideration in this “map-less” measurement term. 

The covariance matrix of the new measurement likelihood can be obtained (approximately) 

by applying linear propagation of covariance in a linearized version of 𝑓𝑓∗ in the 

neighborhood of the measured value of g: 

𝑄𝑄𝑡𝑡
∗ = 𝑄𝑄𝑡𝑡 +

𝜕𝜕𝑓𝑓∗

𝜕𝜕𝑙𝑙 𝑄𝑄𝑙𝑙 �
𝜕𝜕𝑓𝑓∗

𝜕𝜕𝑙𝑙 �
𝑇𝑇

 (8.8) 

where  𝜕𝜕𝑜𝑜
∗

𝜕𝜕𝐶𝐶
 is the Jacobian of 𝑓𝑓∗ with respect to the measurement in the base view and 𝑄𝑄ℎ is 

the covariance matrix of the prior distribution 𝑝𝑝(𝑙𝑙). 

 Please note here that it was observed during experimentation that the strict use of 

covariance matrices during filtering can quickly lead to over-confident state estimates 

which have almost “no regard” for the gradient (the product of the inverse of very large 

information matrices with the Jacobian yields very small changes in the Gauss-Newton 

method). This is most likely a consequence of the fact that the chosen variance of the 

measurement likelihood is typically not a realistic estimate of the true uncertainty entailed 
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by the tracker. In practice, for the needs of bundle adjustment, the measurement constraints 

are weighted by some measure of patch discrepancy; however, the posterior is always 

assumed to have an identity covariance matrix upon initialization of the Levenberg-

Marquardt iteration. In other words, variance is not carried over to the latest SLAM 

posterior in order to avoid over-confident estimates. 

8.4.2 Adjusting the reprojection error without the map 

Having marginalized-out the map, the measurement model of equation (8.47) will introduce 

constraints only over the current camera pose and the feature’s home and base-view poses. 

This means that the information matrix will only contain pose variables and therefore is 

expected to be very compact in size. This means that information matrix inversions will 

take place in practically constant time. Furthermore, provided that the parametrization of 

equation (8.41) is employed, information matrix updates in a single step of the Gauss-

Newton method will complete in linear time. This allows for the use of large numbers of 

features without a significant impact in optimization times. 

 The major downside of the map-less approach has to do with the fact that, for the 

sake of marginalizing the map out of the posterior, a great deal of “faith” is invested in the 

base-view measurements. In other words, it is expected that the base-view measurements 

are very accurate. Of course, this cannot be generally true and some of these measurements 

may introduce large errors which can easily skew the results of bundle adjustment. The 

natural workaround, which is employed in this research, is to discard these correspondences 

on the basis of M-estimator weights by means of simple thresholding (provided the 

previous rejection of outliers in the RANSAC based computation of the essential matrix). 

This is an effective approach and very easy to apply, since the removal of a map point is 

equivalent to removing a quadratic constraint without changing the joint distribution. Thus, 

one is actually able to remove a measurement during the execution of bundle adjustment 

(which is the case in Algorithm 8.2). Another strategy would be to rectify some of these 

correspondences by adopting the classic measurement model and optimizing the respective 

3D locations. However, such a solution would require careful selection of erroneous 

correspondences by means of some robust statistical criterion that would add more design 

complexity to the overall solution. 
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 Algorithm 8.2 describes iterative adjustment of the base pose after the initial scene 

reconstruction without using a map (first camera frame is world reference). The algorithm 

rejects measurements that correspond to an M-estimator weight below a user-defined 

threshold. Notice that now, the Fisher parameters are only 5-dimensional, regardless of 

number of correspondences. 

Algorithm 8.2. Robust “map-less” bundle adjustment (for the initial 2-view reconstruction) 

Input: a) Indexing sets of visible features in the two views, ℱ1 and ℱ2. 

 b) Measurements ℎ𝑀𝑀 , 𝑚𝑚 ∈ ℱ1 and   𝑙𝑙𝑖𝑖, 𝑠𝑠 ∈ ℱ2. 

c) Measurement covariance matrices 𝑄𝑄𝑖𝑖 , 𝑠𝑠 ∈ ℱ2. 

d) Relative camera pose (𝜓𝜓,𝜅𝜅, 𝜆𝜆) where ψ are orientation parameters and 𝜅𝜅, 𝜆𝜆 ∈ ℝ are the 
stereographic coordinates of the unit-norm baseline.   

e) An M-estimator objective function ρ. 

f) A weight threshold  𝑡𝑡 < 1  for constraint rejection (map-points). 

Output:  Updated relative camera pose estimate �𝜓𝜓�, �̂�𝜅, �̂�𝜆�.  

 
comment Number of measurements. 

n ←  | ℱ1 ∩  ℱ2| 

comment Create the information matrix as the 5× 5 identity matrix. 

Ω ← I5             

comment Assign current depth and pose estimates to a (𝑏𝑏 + 6𝑚𝑚) × 1 vector. 

µ ← �ψ�   κ�    λ�� 

comment Initial information vector is equal to the mean. 

ξ ← µ 

comment The LM constants associated with termination conditions. 

ε1 ← 10−5;  ε2 ← 10−12; Timeout ← 40 

comment Working-out the squared errors and the M-estimator weights.  

SqErrors ← ∅ 

SqError ← 0 

ψ� = [µ(1)    µ(2)    µ(3)]; κ� = µ(4); λ� = µ(5) 

R� = rotation matrix�ψ��; b� = baseline vector�κ� ,λ�� 

For each i ∈ ℱ1 ∩  ℱ2: 
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Ci = (gi1zT − I3)T(gi1zT − I3) 

M� i ←
hi

TCib�

hi
TCihi

R�hi 

ei2 ← �gi −
R�T�M� i − b��

1zTR�T�M� i − b��
�
𝑇𝑇

𝑄𝑄𝐶𝐶𝑖𝑖
−1 �gi −

R�T�M� i − b��
1zTR�T�M� i − b��

� 

SqErrors ← SqErrors ∪ �𝑒𝑒𝑀𝑀2� 

SqError ← SqError + wiei2 

MAD = �median{SqErrors} 

s = 1.4826 × MAD. 

NormSqErrors ←
SqErrors

s2  

W ← �wi = ρ′�ei2��i ∈ ℱ1 ∩  ℱ2� 

comment Entering the LM main loop 

minError ← SqError; Found ← (SqError ≤ ε1) 

τ ← 10−3; k ← 0 

𝐵𝐵𝑎𝑎𝑑𝑑𝐶𝐶𝑙𝑙𝑏𝑏𝑠𝑠𝑡𝑡𝑇𝑇𝑎𝑎𝑚𝑚𝑏𝑏𝑡𝑡𝑠𝑠 ← ∅ 

While (Not Found And k ≤ Timeout): 

 PreviousSqError ← SqError 

k ← k + 1 

Ωtemp ← Ω; ξtemp ← ξ ;  �ψ�   κ�   λ� � ← µ 

R� = rotation matrix�ψ��; b� = baseline vector�κ� ,λ�� 

 For each i ∈ (ℱ1 ∩  ℱ2) − BadConstraints: 

  comment Use the constraint only if the previous weight is above threshold. 

If (W(i) ≤ t): 

comment Update the Fisher parameters with linearized constraints  

   Gi =  �
∂� RT�Mi−b�

1zTRT�Mi−b�
�

∂ψ �

ψ�

∂� RT�Mi−b�
1zTRT�Mi−b�

�

∂κ �

κ�

∂� RT�Mi−b�
1zTRT�Mi−b�

�

∂λ �

λ�

� 

wi = W(i) 

Ωtemp ← Ωtemp + wiGiT𝑄𝑄𝐶𝐶𝑖𝑖
−1Gi 
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ξtemp ← ξtemp + wiGiT𝑄𝑄𝐶𝐶𝑖𝑖
−1 �gi + Gi �

ψ�
κ�
λ�
� − R�T�M� i−b��

1zTR�T�M� i−b��
�  

  comment Mark the constraint as “bad”. It will not be used next time. 

Else: 

   BadConstraints ← BadConstraints ∪ {i} 

comment Obtaining a new joint estimate 

 Ωtemp ← Ωtemp + τI 

ξtemp ←  ξtemp + τµ 

µtemp ← Ωtemp−1 ξtemp 

comment Working-out the squared errors and the M-estimator weights. 

SqErrors ← ∅  
SqError ← 0 

 For each i ∈ ℱ1 ∩ ℱ2:  

�ψ�   κ�   λ� � ← µtemp 

R� = rotation matrix�ψ��; b� = baseline vector�κ� ,λ�� 

comment Compute the 3D point in the first camera frame. 

Ci = (gi1zT − I3)T(gi1zT − I3) 

M� i ←
hi

TCib�

hi
TCihi

R�hi 

wi = W(i) 

ei2 ← �gi −
R�T�M� i − b��

1zTR�T�M� i − b��
�
𝑇𝑇

𝑄𝑄𝐶𝐶𝑖𝑖
−1 �gi −

R�T�M� i − b��
1zTR�T�M� i − b��

� 

SqErrors ← SqErrors ∪ �ei2� 

SqError ← SqError + wiei2 

MAD = �median{SqErrors} 

 s = 1.4826 × MAD 

 NormSqErrors ← SqErrors
s2  

Wtemp ← �wi = ρ′�SqErrors(i)��i ∈ ℱ1 ∩  ℱ2� 

 If  (|PreviousSqError − SqSerror| < ε2): 

  Found ← True 

 Else: 
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  If  (minError > SqError): 

   minError ← SqError 

    µ ← µtemp 

   ξ ← Ωtempµtemp  

   τ ← τ/10 

W ← Wtemp 

   Found ← (minError < ε1)   

  Else: 

   τ ← 10τ 

8.4.3 The disjoint scene approach for visual SLAM with input from a 

gyroscope 

In the camera-only SLAM framework (see introduction of section 3), it is absolutely 

necessary to detect new features as densely as possible in order to enhance the stability of 

the pose estimate. Although the same approach could be used in the case of map-less visual 

SLAM, the implementations of map-less algorithms in this thesis adopt the disjoint SLAM 

paradigm (Chapter 5, section 2). In disjoint scene SLAM, the detection of new features is 

triggered only when the existing active pool of features has dropped below a threshold; 

furthermore, once the new set is detected, the remaining active features in the previous 

batch become inactive. In other words, a new scene is initiated which has no features in 

common with the previous. One can argue that this approach is not so robust compared to 

the classic, overlapping scene SLAM. On the other hand however, the average scene 

typically spans 4-5 frames on average, suggesting tight sampling of new features. The pros 

of this method have to do with execution time (feature detections typically require several 

milliseconds in the best case) and ease of implementation because the map data structure 

becomes less complex. The disjoint scene SLAM approach can be synopsized in the 

following steps: 

i) Feature detection in the home (previous) view and tracking in the base (current) 

view. 

ii) Recovery of relative pose in the home and base view using Algorithm 3.1. 

iii) Tracking and recovery of camera pose directly from the correspondences (as 

described in the introduction of section 4 in this chapter). 
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iv) Bundle adjustment without a map (Algorithm 8.2). 

v) If number of visible inliers remains above a threshold, go to step (iii).  

vi) Repeat from step (i). 

Although a simplification, as will be shown in results, the disjoint SLAM approach 

worked well in practice for the gyroscope-aided visual SLAM implementations discussed 

in this section. On the other hand however, adoption of the classic overlapping scene 

paradigm is very likely to improve performance not only in terms of minimizing drift in the 

pose estimate, but also in terms of the quality of reconstruction and therefore should be 

included in future revisions. 

8.4.4 Map-less visual SLAM in natural landscapes: Results 

The gyroscope-aided, map-less visual SLAM framework was tested not only on the 

sequences in section 3.2 of this chapter, but on several other estuarine sequences obtained 

from the Tamar river in Devon. The distances covered range from 40m to 1.5 km. Figures 

8.10-18 illustrate the recovered odometries and 3D respective reconstructions; also, 

comparisons against GPS based approximate ground truth are overlaid on satellite imagery.  

Comparisons against approximate ground truth were created by scaling the GPS by 

the speed over ground at the origin of motion and aligning it with the recovered odometry. 

The units of the 3D plots in Figures 8.10-18 are meters; however, a scale discrepancy of 

approximately 0.36 (the actual trajectory generally has larger scale) should be taken into 

account. It should be noted that the recovered odometries in satellite images appear as 

orthographic projections on the x-z (ground) plane. Also, distant points (beyond 300 m) 

from the camera upon original detection are discarded for display purposes. Usually, the 

IMU x-z plane is not aligned with the ground and this misalignment. This suggests that a 

displacement of several hundreds of meters in the x-z plane entails a similar shift in the y 

axis for an angle of just 10-20o between the original IMU x-z plane and the ground. 

Figures 8.10-8.13 illustrate the recovered odometry from four sequences recorded in 

forestall areas of Devon from a moving van. It is worth noting that the depth varies 

significantly from a few meters all the way to 1000 meters; however, due to the fact that 

these sequences were shot on land, the SLAM algorithm can reliably track ground features 

which have non-degenerate disparity that is representative of camera motion, while very 
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distant features are simply ignored by the pose estimation algorithm. It follows that many 

of these features actually make it to the map (as very distant points), but do not really 

contribute in the pose estimate.  

 

Figure 8.10. Recovered odometry and map (left) for the 1.2 km park sequence in Axtown, Devon21. 
Approximate ground truth (GPS based spline) shown in red on the right. 

 

Figure 8.11. Recovered odometry and map (left) for a 0.9 km long forest route near Axtown, 
Devon22. Approximate ground truth (GPS based spline) shown in red on the right. 
                                                 
21 Demo video available at: https://youtu.be/A1UCqTG_RqQ 

https://youtu.be/A1UCqTG_RqQ
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Figure 8.12. Recovered odometry and map (left) for a 0.8 km long route in a forestall area between 
Crapstone and Axtown, Devon23. Approximate ground truth (GPS based spline) shown in red on the 
right. 

 

Figure 8.13. Recovered odometry and map (left) for a 0.6 km long route in fields between 
Crapstone and Yelverton in Devon24. Approximate ground truth (GPS based spline) shown in red 
on the right. 

                                                                                                                                                     
22 Demo video available at: https://youtu.be/uXdVmgukWTc 
23 Demo video available at: https://youtu.be/mFeIY4vULbg 
24 Demo video available at: https://www.youtube.com/watch?v=_5pg1Bp1Z8E 

https://youtu.be/uXdVmgukWTc
https://youtu.be/mFeIY4vULbg
https://www.youtube.com/watch?v=_5pg1Bp1Z8E
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 Sequences in parks and forests shot from a moving van differ significantly from 

sequences taken from a cruising boat. Main reason being, the sea bed typically occupies a 

large portion of the image thereby rendering tracking in this region useless; although a 

number of features are detected on the surface of the water, they generally get rejected soon 

afterwards by the RANSAC based algorithm for essential matrix computation. Thus, in 

practice, the features with non-degenerate disparity are significantly fewer than the ones in 

in the cases of Figures 8.10-13.  This problem can be dealt with by increasing the numbers 

of features, as they do not significantly affect execution time owed to the circumvention of 

the map from the pose estimation algorithm. Another significant difference between land 

and water surface sequences is that the motion of the boat very often includes significant 

pitching and rolling, as opposed to the approximately single-axis translational motion of the 

van. Figures 8.14-18 illustrate recovered odometries and scene reconstructions in maps 

from sequences of estuarine natural sceneries taken from boat cruising the Tamar river in 

Devon. 

 It should again be stressed that, although the distance units in the plots are meters, 

an approximate scale discrepancy of 0.36 (actual trajectory is larger) should be taken into 

consideration when viewing the odometry-map plots, since the initializing baseline length 

is always taken to be 1 by the SLAM algorithm, as opposed to the true length which usually 

ranges from 2m to 2.5m (according to values for speed over ground reported by the GPS). 

Also, it is worth commenting on the fact that every odometry plot exhibits motion that in 

the long-term appears planar, yet the motion plane itself has an inclination in terms of the 

world x-z plane; this inclination is caused by the misalignment of the IMU frame with the 

motion plane at the origin and as a result, the plots give the impression that the vehicle is 

gradually “gaining altitude”. For the same reason, distant map points appear to be very 

distant along the y-axis. 
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Figure 8.14. Recovered odometry and map (left) for a boat cruise near Cargreen, Devon25. 
Approximate ground truth (GPS based spline) shown in red on the right. 

 

Figure 8.15. Recovered odometry and map (left) for a boat cruise approximately 50 m long near 
Halton Quay26. Approximate ground truth (GPS based spline) shown in red on the right. 

                                                 
25 Demo video available at: https://youtu.be/LlRobDi-LME 
26 Demo video available at: https://youtu.be/7bmKTLHa-TE 

https://youtu.be/LlRobDi-LME
https://youtu.be/7bmKTLHa-TE
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Figure 8.16. Recovered odometry and map (left) for a boat cruise near Bohetherick27. Approximate 
ground truth (GPS based spline) shown in red on the right. 

 

Figure 8.17. Recovered odometry and map (left) for a boat cruise in Halton Quay28. Approximate 
ground truth (GPS based spline) shown in red on the right. 

                                                 
27 Demo video available at: https://youtu.be/QnhJ9HsKNKU 
28 Demo video available at: https://youtu.be/uMthIsPmrS0 

https://youtu.be/QnhJ9HsKNKU
https://youtu.be/uMthIsPmrS0


 
 

182 
 

8.4.5 Looking ahead: Camera-only visual SLAM without a map 

It is the author’s conviction that the successful odometry results illustrated in this section 

are primarily the result of the fact that camera pose is estimated directly from the 

correspondences and that the gyroscope inputs, albeit a significant aid, simply add stability 

to the SLAM posterior when tracking quality becomes low due to abrupt changes in vehicle 

attitude. Whether true or not, this conjecture must be put to the test with algorithms that 

recover camera pose directly from correspondences without the need of a map. 

 The only known “substitute” of the PnP algorithm for the recovery of camera pose 

directly from correspondences is essential matrix estimation. As discussed in Chapter 3, 

section 2.6, Nister’s 5-point algorithm is the only known method for the computation of the 

essential matrix that abides by the two equal singular values constraint and it has shown 

remarkable results in practice. It is therefore a priority to use the 5-point algorithm (or the 

alternative iterative implementation proposed in Chapter 4, section 4.2) in order to establish 

whether the map-less approach is viable in the context of natural environments without the 

aid of a gyroscope. 

 It should be stressed however that, even if results with the 5-point algorithm turn-

out in favor of the map-less approach, these results cannot be regarded as the outcome of a 

full test, but rather as a strong indication that the concept (i.e., map circumvention) is a 

valid strategy. The main argument here is that Nister’s algorithm does not solve the 

overdetermined system, which is the case in the type of problems examined in this thesis. 

To formally dismiss or prove the conjecture of the success of map circumvention in visual 

SLAM in natural environments, one would have to employ a non-Procrustean solver for the 

essential matrix in the overdetermined setup. Chapter 3, section 2.6 elaborates on the 

formulation of the optimization problem for such a solver and it should also be a priority 

working towards this direction. 

8.5 Summary 

The opening sections of this chapter give details on standard algorithms for pose estimation 

(PnP) and filtering (bundle adjustment) in order to preempt two distinct 

approaches/frameworks for monocular SLAM in natural environments described in later 

sections. The first framework involves the use of a map structure containing the 3D 
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locations of the observed features in order to estimate the new camera pose from the latest 

measurements, while the second, uses gyroscope measurements to formulate the pose 

estimation problem without using the map (i.e., directly from correspondences). 

 Results suggest that when employing the classic framework for visual SLAM 

wherein a map is gradually populated with new triangulated points and thereafter it is being 

used for new camera pose estimation, the SLAM posterior becomes very unstable in a 

matter of 20-30 frames in the sequence. One reason for this could be the fact that the 

problem is very ill-posed in the sense that the only information available comes from the 

camera in the form of feature image locations; however, it has been shown that this 

framework works well in practice in indoor environments and limited workspaces (PTAM). 

The most striking difference between the PTAM workspaces and the natural environments 

in this thesis is the fact that natural scenes present great depth variation and therefore 

reconstructing distant points can occasionally “blow” errors out of proportion (see Figure 

3.16 in Chapter 3, section 3.4); in turn, this error is carried over into the new pose estimate 

and this loop corrupts the SLAM posterior rapidly. Removing “bad” points from the map is 

a solution, but the selection algorithm would have to be sophisticated enough in order to 

retain the points that have low tracking error and at the same time, reasonable disparity for 

motion estimation. The more the depth varies, the more difficult this task becomes.  

The second and most successful visual SLAM framework introduced in this chapter 

is a “map-less” approach with the use of gyroscope input (angular rates) from an IMU. 

With information on relative orientation in place, it is possible to formulate the pose 

estimation problem purely in terms of image correspondences. Thus, the map is completely 

circumvented in terms of pose recovery. Furthermore, the SLAM measurement likelihood 

corresponding to a feature can also be parametrized in terms of the “home” and “base” 

views corresponding to the original detection and first-time tracking camera views for this 

particular feature. Although this parameterization heavily depends on cherry-picking the 

correspondences, it however is a more straightforward problem than the one of rejecting 

reconstructed 3D points and it generally works in practice as shown in Figures 8.10-17. The 

results suggest that the recovered odometry is robust within reasonable tolerance from GPS 

based approximations of ground truth. The distortion to the overall shape of the estimated 

camera positions is practically undetected to the naked eye and the differences from ground 
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truth are most likely to originate in local scale discrepancies. Relatively accurate odometry 

does not necessarily suggest that the quality of all the recovered 3D locations is high, again 

primarily due to the wide range of depth. Distant points with small disparity will most 

likely produce very uncertain 3D locations (recall that these points are practically 

uninformative to the pose estimation algorithm). To ensure a better reconstruction, robust 

bundle adjustment should be executed over the map and the map points with low M-

estimator weights should be omitted from the map. 
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Chapter 9 

Conclusion  

This thesis presented research on a two-fold problem in the context of natural landscapes: 

The estimation of camera odometry and the recovery of the sparse geometrical structure of 

the surrounding environment without prior knowledge of motion dynamics. Two 

fundamental approaches where investigated: Standard monocular visual SLAM with a map-

centric approach to pose estimation and the so-called “map-less” Visual SLAM approach in 

which camera pose is estimated directly from the correspondences, with results clearly 

favoring the second approach (which may marginally include the algorithms for pairwise 

odometry discussed in Chapter 6). In either framework, classic algorithms for camera 

relative pose and scene reconstruction were considered and novel formulations were 

proposed, while paying respect to the prime objective of the research (i.e., visual odometry 

and mapping in natural environments without motion models and active sensors). These 

algorithms include the computation of the essential matrix, scene reconstruction from 

epipolar geometry, the Perspective-n-point (PnP) problem and bundle adjustment. 

One of the most important conclusions to be highlighted is that the map-less approach 

appears to be working well in the context of environments with high depth variation, yet 

there are many facets of this solution yet to be investigated. In particular, it has not yet been 

established what would be the effectiveness of the method without accurate orientation 

priors (gyroscope). Furthermore, the methods for tracking and feature matching where 

more-less fixed in this research (OpenCV implementation of the LK tracker and 

FAST/SIFT features) and the SLAM algorithm would have to compensate for their 

limitations, especially for the inability of the tracker to track distinct image patches. This 

thesis has not yet quantified meticulously the effectiveness of the map-less approach for a 

number of reasons associated with existing state of the art in algorithms, limitation of 

available datasets and time restrictions. 
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9.1 Contributions to knowledge with respect to initial objectives 

To the best of the author’s knowledge, the problem setting of the current research is unique 

and is not generally met in its entirety in literature. On one hand, visual SLAM from the 

vantage point of a cruising boat has not been particularly explored, while the ill-conditioned 

configuration of the problem (no motion model and gyroscopic aids only) on the other is 

hardly met in literature, even in the cases of visual SLAM applications in land. Thus, 

working methods under the current problem setting would potentially be of interest to the 

research community in field robotics and computer vision. 

9.1.1 The “map-less” approach to visual SLAM 

Although the standard formulation of visual SLAM is map-centric and there have been 

many successful implementations to support this approach, it is the author’s conclusion that 

when these approaches are taken “outside” in natural landscapes, then the map becomes the 

weakest link in the posterior updates. 

 In this research, an alternative approach to the visual SLAM framework is proposed, 

wherein the map is marginalized out of the posterior and odometry is estimated directly 

from the correspondences, without however regressing to a simple scheme for relative pose 

odometry (Chapter 8, section 4). The map-less approach is still a filter in which map points 

are parametrized in terms of their home (detection image) and base (first tracking 

measurement) view and the measurement likelihood is conditioned on the home and base 

view pose instead of the map point. This is an approach that works well in practice and 

circumvents the need to clean the map from noisy points which can be a very complicated 

issue when depth varies significantly. Another important aspect of the map-less approach is 

that the SLAM posterior does not scale with the number of features; this means that there 

are no limitations in practice as to how many points will be used for camera pose estimation 

and bundle adjustment. Finally, although the map does not directly participate in 

computations, it can still be recovered from camera pose and feature measurements in the 

respective home and base views. 
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9.1.2 Parametrization of 3D orientation and directions in spaces of 

arbitrary dimensionality with stereographic coordinates 

Orientation constitutes a major topic in robotics, vision, space engineering and other 

disciplines dealing with problems that involve moving rigid objects. In a more general 

statement, the notion of orthonormality is ubiquitous in problems associated with the 

aforementioned disciplines. In this research, parametrizing orientation has been decisive for 

the proposition of novel algorithms, as well as for the modification and implementation of 

existing ones. 

 In Chapter 4, stereographic projection is discussed from the vantage point of 3D 

vision applications as an elegant parametrization, not only for 3D orientation, but more 

generally, for directions in spaces of arbitrary dimensionality. It turns-out that under this 

parametrization, rotation matrices not only become rational, but also have polynomial 

derivatives in the quaternion components (Appendix A, section 4.1), which, to the best of 

the author’s knowledge is a novel observation. Furthermore, a 3 DOF parametric encoding 

of ball constraints based on 3D stereographic coordinates was proposed for use in iterative 

optimization (Chapter 4, section 4.1); this encoding eliminates the ball constraints from the 

optimization problem, in contrast to far more complicated standard techniques which 

typically have to manipulate the step of the iterative process in order to keep the new 

estimate in the feasible domain. 

9.1.3 Pose estimation directly from correspondences: Formulations and 

potential solutions for the constrained essential matrix problem 

Although not entirely a new technique, this thesis re-introduces the use of gyroscope input 

in camera pose estimation from correspondences in order to motivate the concept of a map-

less SLAM algorithm. The method is originally described in Chapter 6, section 4. 

 In the camera-only case, the only way to estimate camera pose is through the 

essential matrix. In Chapter 3, section 2.6, a new formulation for the constrained essential 

matrix problem is given. In particular, the essential matrix is expressed as the sum of the 

tensor products of two pairs of orthogonal 3D vectors. The same section provides 

arguments that, although Nister’s method is the best solution so far and gives very good 
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results in the context of a RANSAC based solution, a more efficient solution to the relative 

pose problem would come from the essential matrix in the overdetermined setup. 

 A novel parametrization method for iterative optimization is proposed in Chapter 4, 

section 4.2 for the solution of the constrained essential matrix problem, based on 

stereographic projection. The method uses 3 stereographic coordinates to parametrize the 

rotation matrix and 2 more stereographic coordinates to parametrize the unit-norm baseline. 

The method should work in the 5-point setting as, for example, the Lui and Drummond 

iterative method (Lui and Drummond 2007). 

9.1.4 Bundle adjustment without a map 

Algorithm 8.2 describes a novel method for iterative optimization of the reprojection error 

without using the map. In this approach, the baseline is constrained to unit-length using 

stereographic coordinates and the map points are parametrized by the feature’s home and 

base view measurements and the respective camera poses. This approach excludes the map 

from the optimization and circumvents the scaling problem of SLAM in the number of 

points. 

9.1.5 A new formulation for the overdetermined PnP problem 

In Chapter 8, section 1.3 a new formulation of the overdetermined PnP optimization 

problem is given. The cost function is a scaled convex combination of the eigenvalues of a 

known positive semidefinite matrix derived from the data. Based on this observation, one is 

able to adopt a greedy approach in which the 3 unknowns (out of a total of 9) 

corresponding to the largest singular values are chosen to be equal to zero and therefore the 

remaining 6 DOF are determined directly from the constraints, which is a system of 

quadratic 6 quadratic polynomials and is likely to admit a relatively simple solution. 

9.1.6 Implementations of the algorithms described in the thesis 

With the exception of Chapter 7, all algorithms described in this thesis where implemented 

in C# using the OpenCV “wrapper” library known as Emgu (Emgu 2013). The algorithms 

of Chapter 7 were implemented in Matlab (Guide 1998). 
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9.1.7 Dataset of estuarine and forest sequences from a moving vehicle 

Many sequences have been recorded from a cruising boat in the Tamar river, Devon. These 

recordings include IMU and GPS logs synchronized with video in terms of frame indexes. 

Similar sequences were recorded from a moving van in forestall areas of Devon. 

9.2 Looking ahead 

This research has established the notion of map-less visual SLAM towards achieving robust 

localization in natural landscapes where scene depth varies significantly. Although 

encouraging results have been achieved with the aid of gyroscopic input, further research 

into the map-less approach is required in order to establish beyond any doubt that the 

successful recovery of odometry is primarily attributed to the circumvention of the map and 

not to the prior knowledge of relative orientation. 

9.2.1 Camera-only map-less visual SLAM using constrained essential 

matrix computation 

The only way to circumvent the map in visual SLAM without gyroscope input would be to 

extract camera pose from the essential matrix. To do this however, the essential matrix 

must not be obtained by a Procrustean least squares approach, but rather with the fully 

constrained optimization problem that ultimately leads to a 3rd or 4th degree polynomial 

system. Thus, it is a first priority to use Nister’s algorithm in the context of RANSAC to 

examine the effectiveness of the map-less approach in comparison to the results presented 

in Chapter 8. 

 Although using Nister’s algorithm should give a strong indication as to whether the 

map-less approach is effective without an IMU, it leaves however margin for doubt, due to 

the fact that the essential matrix estimate relies only on 5 correspondences. The 

overdetermined case is the actual setting of the problems in this thesis and therefore the 

constrained essential matrix computation in this context should be investigated. The 

iterative formulation based on stereographic projection converges extremely fast, but 

unfortunately, a heuristic rule that could safely “guide” the algorithm to the global 

minimum has yet to be found. This is a very interesting problem tangent to modern 

optimization approaches known as convexification methods (Bertsekas 1979). 
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Alternatively, a clever parametrization of the essential matrix may ultimately lead to a 

system of polynomials that can be solved without the need of Groebner solvers.  

9.2.2 Incorporating motion priors 

The research problem in its current form is very ill-posed. However, a motion model can 

make a huge difference in terms of efficiency and robustness. Thus, it is crucial to repeat 

the experimentation described in Chapters 6, 7, 8 with a vehicle for which motion dynamics 

have been well studied and modelled. Particularly the case of differential thrust dynamics 

(incidentally, Springer’s design) is a very challenging model albeit ubiquitous in marine 

robotics. It would be therefore extremely interesting and useful for the community to adopt 

the methods proposed in this thesis to the types of surface vehicles that have this 

characteristic (i.e., differential thrust actuation). I would like to defer the reader here to an 

excellent piece of work on differential thrust dynamics by Wei Wang (Wang and Clark 

2007). 

9.2.3 Implementation of a new tracker for features detected in different 

images 

The OpenCV LK tracker was employed in all implementations of the algorithms described 

in this thesis. It was mentioned in Chapter 5 that the most important limitation of the 

function is that it does not work on image patches, but rather on entire images by matching 

a given list of reference locations. This has been a problem in the case of overlapping 

SLAM, since the visible map-points where originating in various different home views. To 

rectify this problem, the SLAM framework invokes the LK tracker twice in order to track 

from the previous frame and the one before last.  

A new implementation of the tracker (possibly the LK method again) is an 

important task that could improve performance significantly. Furthermore, it will reduce 

complexity of the SLAM finite state machine implementation. 

9.2.4 Loop closure 

Loop closure has not been amongst the objectives of this research. However, obtaining a 

map of 3D points would imply that this information can be potentially used in the 

near/distant future in order to enhance the SLAM posterior with a measurement. Since the 
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map is essentially a point-cloud, it would be a very interesting problem to investigate the 

plausibility of generating and matching geometrical features of these point-clouds. There 

has been a great deal of work in the fields of geometric modeling and graphics (Bookstein 

1989, Watt and Watt 1992, Golovanov 2014, Zollhöfer, Nießner et al. 2014) and could be 

potentially ported to provide solutions for loop closure in camera-only SLAM.  
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Appendix A 

Quaternions and parametrization of attitude 

A.1 Quaternions: A quick walkthrough 

The numeral system of quaternions is an extension of complex numbers and was first 

introduced by Rowan Hamilton in 1843. The algebra of quaternions is equipped with 

addition and multiplication which is generally non-commutative. The set of quaternions is 

equal to ℝ4 and usually is denoted with ℍ. In fact, quaternions can be represented as 4D 

vectors. The set of quaternions includes the imaginary elements i, j and k, which, together 

with the real number 1, form the set of basis elements, such that: 

𝑚𝑚2 = 𝑠𝑠2 = 𝑏𝑏2 = 𝑚𝑚𝑠𝑠𝑏𝑏 = −1 

From the above, it can be seen that multiplication of the basis elements is not generally 

commutative. Specifically:  

𝑚𝑚𝑠𝑠 = 𝑏𝑏   𝑎𝑎𝑏𝑏𝑑𝑑 𝑠𝑠𝑚𝑚 =  −𝑏𝑏   , 𝑠𝑠𝑏𝑏 = 𝑚𝑚  𝑎𝑎𝑏𝑏𝑑𝑑  𝑏𝑏𝑠𝑠 = −𝑚𝑚 ,    𝑏𝑏𝑚𝑚 = 𝑠𝑠  𝑎𝑎𝑏𝑏𝑑𝑑 𝑚𝑚𝑏𝑏 =  −𝑠𝑠 

Using the basis elements and for any 𝑞𝑞0, 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3 ∈ ℝ, one may obtain the general form of 

a quaternion q as: 

𝑞𝑞 = 𝑞𝑞0 + 𝑚𝑚𝑞𝑞1 + 𝑠𝑠𝑞𝑞2 + 𝑏𝑏𝑞𝑞3 

It follows that q can also be denoted as a 4D vector, or a 4-tuple: 

𝑞𝑞 = �

𝑞𝑞0
𝑞𝑞1
𝑞𝑞2
𝑞𝑞3

� = �𝑞𝑞0𝑣𝑣 �                𝑙𝑙𝑇𝑇, 𝑞𝑞 = �𝑞𝑞0, (𝑞𝑞1,𝑞𝑞2, 𝑞𝑞3)� = (𝑞𝑞0,𝑣𝑣) 

where 𝑣𝑣 = [𝑞𝑞1 𝑞𝑞2 𝑞𝑞3]𝑇𝑇  is the vector containing the imaginary parts and 𝑞𝑞0 the scalar 

part of the quaternion.   
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A.1.1 Addition and multiplication 

Quaternion addition and multiplication is a straightforward generalization of the 

multiplication of complex numbers using all four basis elements (1, 𝑚𝑚, 𝑠𝑠, 𝑏𝑏). Hence, for any 

two quaternions 𝑞𝑞 = (𝑞𝑞0 𝑣𝑣) and 𝑇𝑇 = (𝑇𝑇0 𝑢𝑢), the corresponding sum and product are 

given as follows: 

𝑞𝑞 + 𝑇𝑇 = (𝑞𝑞0 + 𝑇𝑇0,𝑣𝑣 + 𝑢𝑢) (A.1) 

𝑞𝑞𝑇𝑇 = (𝑞𝑞0𝑇𝑇0 −  𝑣𝑣 ∙ 𝑢𝑢, 𝑣𝑣 × 𝑢𝑢 + 𝑞𝑞0𝑢𝑢 + 𝑇𝑇0𝑣𝑣) (A.2) 

The quaternion product 𝑞𝑞𝑇𝑇 can also be conveniently written in matrix form: 

𝑞𝑞𝑇𝑇 = �

𝑞𝑞0 −𝑞𝑞1 −𝑞𝑞2 −𝑞𝑞3
𝑞𝑞1 𝑞𝑞0 −𝑞𝑞3 𝑞𝑞2
𝑞𝑞2 𝑞𝑞3 𝑞𝑞0 −𝑞𝑞1
𝑞𝑞3 −𝑞𝑞2 𝑞𝑞1 𝑞𝑞0

� 𝑇𝑇 = 𝑄𝑄𝑇𝑇  (A.3) 

The permuted 𝑇𝑇𝑞𝑞 product can also be written in matrix form using an expansion of 𝑞𝑞: 

𝑇𝑇𝑞𝑞 = �

𝑞𝑞0 −𝑞𝑞1 −𝑞𝑞2 −𝑞𝑞3
𝑞𝑞1 𝑞𝑞0 𝑞𝑞3 −𝑞𝑞2
𝑞𝑞2 −𝑞𝑞3 𝑞𝑞0 𝑞𝑞1
𝑞𝑞3 𝑞𝑞2 −𝑞𝑞1 𝑞𝑞0

� 𝑇𝑇 = 𝑄𝑄∗𝑇𝑇 (A.4) 

The 4x4 matrices 𝑄𝑄 and 𝑄𝑄∗ differ only in that the lower-right-hand 3 × 3  (skew-

symmetric) sub-matrix is transposed. 

A.1.2 Norm and conjugate 

Again, the concept of a conjugate quaternion comes as a natural extension of the conjugacy 

in complex numbers. Hence, the conjugate of q is, 

𝑞𝑞� = (𝑞𝑞0,−𝑞𝑞1,−𝑞𝑞2,−𝑞𝑞3) = (𝑞𝑞0,−𝑣𝑣) 

Accordingly, the norm |𝑞𝑞| of 𝑞𝑞, is given by, 

|𝑞𝑞| = �𝑞𝑞𝑞𝑞� = �𝑞𝑞02 + 𝑞𝑞12 + 𝑞𝑞22 + 𝑞𝑞32 

From the above, the definition of the inverse quaternion 𝑞𝑞−1 follows naturally: 

𝑞𝑞−1 =
𝑞𝑞�

|𝑞𝑞|2 
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A very useful relationship between the product matrix 𝑄𝑄 of q and the product matrix 

𝑄𝑄� of the conjugate quaternion 𝑞𝑞� can be easily observed: 

𝑄𝑄� = �

𝑞𝑞0 𝑞𝑞1 𝑞𝑞2 𝑞𝑞3
−𝑞𝑞1 𝑞𝑞0 −𝑞𝑞3 𝑞𝑞2
−𝑞𝑞2 𝑞𝑞3 𝑞𝑞0 −𝑞𝑞1
−𝑞𝑞3 −𝑞𝑞2 𝑞𝑞1 𝑞𝑞0

� = 𝑄𝑄𝑇𝑇 (A.5) 

In quite the same way, 𝑄𝑄�∗ = 𝑄𝑄∗𝑇𝑇. Moreover, it turns out with a little algebra that the 4 × 4 

product matrices 𝑄𝑄 and 𝑄𝑄∗ are orthogonal if 𝑞𝑞 is a unit quaternion (i.e., has a unit norm). 

This observation will come handy in the following sections. 

A.1.3 The composite product between arbitrary quaternions and 3D 

vectors 

A quaternion can also be thought of as a scalar and a vector organized as a tuple. It follows 

that quaternions with a zero scalar part are representations of 3D vectors. We now define 

the composite product operator 𝐿𝐿𝑞𝑞(𝑇𝑇):ℍ × ℝ3 → ℝ3 (acting on quaternions and 3D 

vectors) between the quaternion 𝑞𝑞 and the vector 𝑇𝑇 as follows:  

𝐿𝐿𝑞𝑞(𝑇𝑇) = 𝑞𝑞𝑇𝑇𝑞𝑞� = (𝑄𝑄𝑇𝑇)𝑞𝑞�  (A.6) 

where 𝑞𝑞 = (𝑞𝑞0 , 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3) is a quaternion and 𝑇𝑇 = (0 , 𝑇𝑇1, 𝑇𝑇2, 𝑇𝑇3) a 3D vector represented as 

a purely imaginary quaternion.  

It can be shown that the composite product maps purely imaginary quaternions onto 

the same set and that their norm remains unchanged. Moreover, using the matrices 𝑄𝑄 and 𝑄𝑄� 

in equations (A.3-4) regarding quaternion products, the composite product of equation 

(A.6) can be written as the following matrix product: 

𝐿𝐿𝑞𝑞(𝑇𝑇) = 𝑞𝑞𝑇𝑇𝑞𝑞−1 = (𝑄𝑄𝑇𝑇)𝑞𝑞� = 𝑄𝑄�∗(𝑄𝑄𝑇𝑇) = (𝑄𝑄∗𝑇𝑇𝑄𝑄)𝑇𝑇 (A.7) 

The matrix product 𝑄𝑄∗𝑇𝑇𝑄𝑄 of equation (A.8) yields the following matrix: 

𝑄𝑄∗𝑇𝑇𝑄𝑄 =

⎣
⎢
⎢
⎢
⎡|𝑞𝑞|2 0 0 0

0 𝑞𝑞02 + 𝑞𝑞12 − 𝑞𝑞22 − 𝑞𝑞32 2(𝑞𝑞1𝑞𝑞2 − 𝑞𝑞0𝑞𝑞3) 2(𝑞𝑞1𝑞𝑞3 + 𝑞𝑞0𝑞𝑞2)
0 2(𝑞𝑞1𝑞𝑞2 + 𝑞𝑞0𝑞𝑞3) 𝑞𝑞02 − 𝑞𝑞12 + 𝑞𝑞22 − 𝑞𝑞32 2(𝑞𝑞2𝑞𝑞3 − 𝑞𝑞0𝑞𝑞1)
0 2(𝑞𝑞1𝑞𝑞3 − 𝑞𝑞0𝑞𝑞2) 2(𝑞𝑞2𝑞𝑞3 + 𝑞𝑞0𝑞𝑞1) 𝑞𝑞02 − 𝑞𝑞12 − 𝑞𝑞22 + 𝑞𝑞32⎦

⎥
⎥
⎥
⎤
 (A.8) 
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A.1.4 Unit quaternions as representations of rotations 

The attention is now focused exclusively on unit quaternions. As observed earlier, the 

4 × 4 product matrices 𝑄𝑄 and 𝑄𝑄∗ are orthogonal if 𝑞𝑞 is a unit quaternion. It follows from 

equation (A.7) that 𝑄𝑄∗𝑇𝑇𝑄𝑄 should also be orthogonal. Most importantly, the 3 × 3 lower-

right sub-matrix 𝑅𝑅(𝑞𝑞) of 𝑄𝑄∗𝑇𝑇𝑄𝑄, 

𝑅𝑅(𝑞𝑞)

= �
𝑞𝑞02 + 𝑞𝑞12 − 𝑞𝑞22 − 𝑞𝑞32 2(𝑞𝑞1𝑞𝑞2 − 𝑞𝑞0𝑞𝑞3) 2(𝑞𝑞1𝑞𝑞3 + 𝑞𝑞0𝑞𝑞2)

2(𝑞𝑞1𝑞𝑞2 + 𝑞𝑞0𝑞𝑞3) 𝑞𝑞02 − 𝑞𝑞12 + 𝑞𝑞22 − 𝑞𝑞32 2(𝑞𝑞2𝑞𝑞3 − 𝑞𝑞0𝑞𝑞1)
2(𝑞𝑞1𝑞𝑞3 − 𝑞𝑞0𝑞𝑞2) 2(𝑞𝑞2𝑞𝑞3 + 𝑞𝑞0𝑞𝑞1) 𝑞𝑞02 − 𝑞𝑞12 − 𝑞𝑞22 + 𝑞𝑞32

� 
(A.9) 

is also an orthogonal matrix. In fact, to motivate the following parametrization, 𝑅𝑅(𝑞𝑞) is a 

rotation matrix. 

 If a quaternion 𝑞𝑞 has |𝑞𝑞| = 1 (i.e., unity norm), then this intuitively implies (as in 

the case of complex numbers) that there exists an angle 𝜃𝜃 such as: 

|𝑞𝑞| = 𝑞𝑞02 + ‖𝑣𝑣‖2   𝑠𝑠. 𝑡𝑡. :   𝑐𝑐𝑙𝑙𝑠𝑠2𝜃𝜃 = 𝑞𝑞02  𝑎𝑎𝑏𝑏𝑑𝑑  𝑠𝑠𝑚𝑚𝑏𝑏2𝜃𝜃 = ‖𝑣𝑣‖2            

From the above, the rotation matrix 𝑅𝑅(𝑞𝑞) can be parameterized in terms of 𝜃𝜃 and 𝑣𝑣. This 

practically means that vector 𝑣𝑣 effectively defines an axis about which the 3D vector 𝑇𝑇 is 

rotated (the direction of the rotation is determined by the direction of the axis vector using 

the right-hand thumb rule). The latter can be formalized with the following theorem 

(Kuipers 1999): 

Theorem 2.1: For any unit quaternion 𝑞𝑞 = �𝑐𝑐𝑙𝑙𝑠𝑠 𝜃𝜃
2

, 𝑠𝑠𝑚𝑚𝑏𝑏 𝜃𝜃
2
𝑣𝑣�  , 𝑣𝑣 ∈ ℝ3 and for any vector 

𝑇𝑇 ∈ ℝ3 the action of the operator, 𝐿𝐿𝑞𝑞(𝑇𝑇) = 𝑞𝑞𝑇𝑇𝑞𝑞� is equivalent to a rotation about the axis 

and direction of 𝑞𝑞 (following the right-hand-thumb rule) by an angle θ. 

A.2 Obtaining a unit quaternion from a rotation matrix 

The matrix in equation (A.9) provides a straightforward formula for the conversion 

between the quaternion form and the corresponding rotation matrix. The reverse process is 

somewhat more complicated due to the inherent ambiguity in the squared terms contained 

in the diagonal of 𝑅𝑅(𝑞𝑞). This ambiguity however is eliminated in the course of the 

computations described in the following paragraphs.  



 
 

196 
 

 Let 𝑅𝑅(𝑞𝑞) = [𝑇𝑇𝑀𝑀𝑖𝑖] be the given rotation matrix and 𝑞𝑞 = (𝑞𝑞0, 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3) the sought 

equivalent unit quaternion. By appropriately multiplying by +1 or -1 the diagonal elements 

of 𝑅𝑅(𝑞𝑞) and then adding them together, the following relationships for 𝑞𝑞02, 𝑞𝑞12, 𝑞𝑞22, 𝑞𝑞32 

are obtained in terms of 𝑇𝑇11, 𝑇𝑇22and 𝑇𝑇33 (Horn 1987): 

4𝑞𝑞02 = 1 + 𝑇𝑇11 + 𝑇𝑇22 + 𝑇𝑇33 (A.10) 

4𝑞𝑞12 = 1 + 𝑇𝑇11 − 𝑇𝑇22 − 𝑇𝑇33 (A.11) 

4𝑞𝑞22 = 1 − 𝑇𝑇11 + 𝑇𝑇22 − 𝑇𝑇33 (A.12) 

4𝑞𝑞32 = 1 − 𝑇𝑇11 − 𝑇𝑇22 + 𝑇𝑇33 (A.13) 

Also, from the off-diagonal elements of 𝑅𝑅(𝑞𝑞) the following relationships are obtained with 

similar processing of the element pairs (𝑇𝑇21, 𝑇𝑇12) , (𝑇𝑇31, 𝑇𝑇13) , (𝑇𝑇32, 𝑇𝑇23) : 

4𝑞𝑞0𝑞𝑞1 = 𝑇𝑇32 − 𝑇𝑇23 (A.14) 

4𝑞𝑞0𝑞𝑞2 = 𝑇𝑇13 − 𝑇𝑇31 (A.15) 

4𝑞𝑞0𝑞𝑞3 = 𝑇𝑇21 − 𝑇𝑇12 (A.16) 

4𝑞𝑞1𝑞𝑞2 = 𝑇𝑇21 + 𝑇𝑇12 (A.17) 

4𝑞𝑞2𝑞𝑞3 = 𝑇𝑇32 + 𝑇𝑇23 (A.18) 

4𝑞𝑞3𝑞𝑞1 = 𝑇𝑇31 + 𝑇𝑇13 (A.19) 

Equations (A.10-13) are the starting point of the conversion, since one of them will provide 

the solution for any one of the components of the quaternion. Each of these equations will 

have a real solution, which, zero excluded, corresponds to a negative and a positive number 

that share the same absolute value. However, the negative solution can be discarded due to 

the fact that the angle of rotation in quaternions cannot exceed π (since any angle greater 

than that will be subsumed into the rotation axis vector as a change of direction and not in 

the angle itself). In other words, if all the components of a unit quaternion are negated, then 

the resulting quaternion will represent the original rotation matrix. This means that we are 

free to choose the sign (typically positive) of the quaternion component obtained by one of 

equations (A.10-13). 
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From the above, one may solve for the rest of the components using equations 

(A.14-19). Selecting one of equations (A.10-13) to solve for one of the quaternion 

components and thereafter solving for the other components using the remaining equations 

yields the following four possible solutions: 

𝑞𝑞𝑅𝑅(0)(𝑅𝑅) =
1
2

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ �1 + 𝑇𝑇11 + 𝑇𝑇22 + 𝑇𝑇33
(𝑇𝑇32 − 𝑇𝑇23)

�1 + 𝑇𝑇11 + 𝑇𝑇22 + 𝑇𝑇33
�

(𝑇𝑇13 − 𝑇𝑇31)
�1 + 𝑇𝑇11 + 𝑇𝑇22 + 𝑇𝑇33
�

(𝑇𝑇21 − 𝑇𝑇12)
�1 + 𝑇𝑇11 + 𝑇𝑇22 + 𝑇𝑇33
�

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (A.20) 

𝑞𝑞𝑅𝑅(1)(𝑅𝑅) =
1
2

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
(𝑇𝑇32 − 𝑇𝑇23)

�1 + 𝑇𝑇11 − 𝑇𝑇22 − 𝑇𝑇33
�

�1 + 𝑇𝑇11 − 𝑇𝑇22 − 𝑇𝑇33
(𝑇𝑇21 + 𝑇𝑇12)

�1 + 𝑇𝑇11 − 𝑇𝑇22 − 𝑇𝑇33
�

(𝑇𝑇31 + 𝑇𝑇13)
�1 + 𝑇𝑇11 − 𝑇𝑇22 − 𝑇𝑇33
�

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (A.21) 

𝑞𝑞𝑅𝑅(2)(𝑅𝑅) =
1
2

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
(𝑇𝑇13 − 𝑇𝑇31)

�1 − 𝑇𝑇11 + 𝑇𝑇22 − 𝑇𝑇33
�

(𝑇𝑇21 + 𝑇𝑇12)
�1 − 𝑇𝑇11 + 𝑇𝑇22 − 𝑇𝑇33
�

�1 − 𝑇𝑇11 + 𝑇𝑇22 − 𝑇𝑇33
(𝑇𝑇32 + 𝑇𝑇23)

�1 − 𝑇𝑇11 + 𝑇𝑇22 − 𝑇𝑇33
�

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (A.22) 
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𝑞𝑞𝑅𝑅(3)(𝑅𝑅) =
1
2

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
(𝑇𝑇21 − 𝑇𝑇12)

�1 − 𝑇𝑇11 − 𝑇𝑇22 + 𝑇𝑇33
�

(𝑇𝑇31 + 𝑇𝑇13)
�1 − 𝑇𝑇11 − 𝑇𝑇22 + 𝑇𝑇33
�

(𝑇𝑇32 + 𝑇𝑇23)
�1 − 𝑇𝑇11 − 𝑇𝑇22 + 𝑇𝑇33
�

�1 − 𝑇𝑇11 − 𝑇𝑇22 + 𝑇𝑇33 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (A.23) 

To choose which solution is the most suitable (with respect to using the greatest 

component solution as starting point) we consider 𝑞𝑞𝑅𝑅 to be a function 𝑞𝑞𝑅𝑅(𝑅𝑅): 𝑆𝑆𝑂𝑂(3) → ℍ 

that maps a rotation matrix to one of the quaternions given by equations (A.20-23) 

depending on certain conditions involving the elements of the diagonal of R. We may use 

𝑞𝑞𝑅𝑅 to implement a simple routine that converts a rotation matrix to a quaternion (Diebel 

2006):  

𝑞𝑞𝑅𝑅(𝑅𝑅) =

⎩
⎪
⎨

⎪
⎧𝑞𝑞𝑅𝑅

(0)(𝑅𝑅)  , 𝑚𝑚𝑓𝑓  𝑇𝑇22 ≥ −𝑇𝑇33  ,   𝑇𝑇11 ≥ −𝑇𝑇22    ,  𝑇𝑇11 ≥ −𝑇𝑇33 
𝑞𝑞𝑅𝑅(1)(𝑅𝑅)  , 𝑚𝑚𝑓𝑓  𝑇𝑇22 ≤ −𝑇𝑇33  ,   𝑇𝑇11 ≥ 𝑇𝑇22         ,  𝑇𝑇11 ≥  𝑇𝑇33
𝑞𝑞𝑅𝑅(2)(𝑅𝑅)  , 𝑚𝑚𝑓𝑓  𝑇𝑇22 ≥ 𝑇𝑇33     ,    𝑇𝑇11 ≤ 𝑇𝑇22       , 𝑇𝑇11 ≤ −𝑇𝑇33
𝑞𝑞𝑅𝑅(3)(𝑅𝑅)  , 𝑚𝑚𝑓𝑓  𝑇𝑇22 ≤ 𝑇𝑇33     ,    𝑇𝑇11 ≤ −𝑇𝑇22      , 𝑇𝑇11 ≤  𝑇𝑇33

 (A.24) 

For the sake of completeness, the derivation for the set of inequalities that must hold in 

order for 𝑞𝑞𝑅𝑅(1)(𝑅𝑅) to be the preferred solution is provided below: 

 Assume that for some rotation matrix, we solve equations (A.10-13) and find that 

𝑞𝑞1 = 1
2�1 + 𝑇𝑇11 − 𝑇𝑇22 − 𝑇𝑇33 is the largest component. The following inequalities will 

therefore be true: 

𝑞𝑞1 ≥ 𝑞𝑞0 ⇒ �1 + 𝑇𝑇11 − 𝑇𝑇22 − 𝑇𝑇33 ≥ �1 + 𝑇𝑇11 + 𝑇𝑇22 + 𝑇𝑇33  

⇔  𝑇𝑇22 ≤ −𝑇𝑇33 (A.25) 

𝑞𝑞1 ≥ 𝑞𝑞2 ⇒ �1 + 𝑇𝑇11 − 𝑇𝑇22 − 𝑇𝑇33 ≥ �1 − 𝑇𝑇11 + 𝑇𝑇22 − 𝑇𝑇33  

⇔ 𝑇𝑇11 ≥ 𝑇𝑇22 (A.26) 

𝑞𝑞1 ≥ 𝑞𝑞2 ⇒ �1 + 𝑇𝑇11 − 𝑇𝑇22 − 𝑇𝑇33 ≥ �1 − 𝑇𝑇11 − 𝑇𝑇22 + 𝑇𝑇33  
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⇔ 𝑇𝑇11 ≥ 𝑇𝑇33 (A.27) 

The inequalities found in equations (A.25-27) are indeed the ones that should hold if 

𝑞𝑞𝑅𝑅(1)(𝑅𝑅) is chosen. The derivation of the other 3 conditions is similar. 

A.3 Unit quaternions using the axis-angle parametrization 

To achieve the minimum number of DOF (i.e., 3), it is necessary to revert back to the axis-

angle encoding, this time using the following quaternion parametrization: 

𝑞𝑞 = �𝑐𝑐𝑙𝑙𝑠𝑠
𝜐𝜐
2 , 𝑠𝑠𝑚𝑚𝑏𝑏

𝜐𝜐
2 �
𝑢𝑢1
𝜐𝜐 ,

𝑢𝑢2
𝜐𝜐 ,

𝑢𝑢3 
𝜐𝜐 �� (A.28) 

where 𝑢𝑢 = [𝑢𝑢1 𝑢𝑢2 𝑢𝑢3]𝑇𝑇 is the rotation axis vector and 𝜐𝜐 = �𝑢𝑢12 + 𝑢𝑢22 + 𝑢𝑢32 is the 

norm of u. The DOF of q have now dropped to 3. 

A.3.1 Obtaining the derivatives of the rotation matrix with respect to the 

axis-angle vector 

Perhaps the most important entity in iterative non-linear optimization is the matrix of 

partial derivatives of the objective function, otherwise known as the Jacobian. It is 

therefore necessary to obtain analytical expressions of the derivatives of the rotation matrix 

with respect to the axis vector u. The general idea behind the derivation is to obtain the 

partial derivatives of the rotation matrix with respect to 𝑞𝑞0, 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3 and their partial 

derivatives with respect to u in order apply the chain rule. Specifically, the derivatives of 

𝑅𝑅(𝑞𝑞) with respect to u are given by, 

𝜕𝜕𝑅𝑅(𝑞𝑞(𝑢𝑢))
𝜕𝜕𝑢𝑢𝑀𝑀

= �
𝜕𝜕𝑅𝑅(𝑞𝑞)
𝜕𝜕𝑞𝑞𝑖𝑖

3

𝑖𝑖=0

𝜕𝜕𝑞𝑞𝑖𝑖(𝑢𝑢)
𝜕𝜕𝑢𝑢𝑀𝑀

 (A.29) 

The series of steps that leads to the calculation of the partial derivatives of a rotation 

matrix with respect to the axis-angle vector u will now be described. In the first step, the 

corresponding quaternion is calculated as follows: 

𝑞𝑞 = �𝑐𝑐𝑙𝑙𝑠𝑠
𝜐𝜐
2 𝑠𝑠𝑚𝑚𝑏𝑏 �

𝜐𝜐
2�
𝑢𝑢1
𝜐𝜐 𝑠𝑠𝑚𝑚𝑏𝑏 �

𝜐𝜐
2�
𝑢𝑢2
𝜐𝜐 𝑠𝑠𝑚𝑚𝑏𝑏 �

𝜐𝜐
2�
𝑢𝑢2
𝜐𝜐 � (A.30) 
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where 𝜐𝜐 is the norm of the vector 𝑢𝑢 = [𝑢𝑢1 𝑢𝑢2 𝑢𝑢3]𝑇𝑇 that encodes angle and axis, such that, 

𝜐𝜐 = �𝑢𝑢12 + 𝑢𝑢22 + 𝑢𝑢32. 

Obtaining 𝑢𝑢 from 𝑞𝑞 is fairly straightforward, given that 𝜐𝜐 ∈ [0,𝜋𝜋]; we obtain  𝜐𝜐 = 2𝑎𝑎𝑐𝑐𝑙𝑙𝑠𝑠𝑞𝑞0 

and thereafter, 𝑢𝑢 = 2𝑀𝑀𝑖𝑖𝑜𝑜𝑖𝑖𝑞𝑞0
𝑖𝑖𝑀𝑀𝑖𝑖(𝑀𝑀𝑖𝑖𝑜𝑜𝑖𝑖𝑞𝑞0)

[𝑞𝑞1 𝑞𝑞2 𝑞𝑞3]𝑇𝑇. 

Let now 𝐹𝐹𝑖𝑖 = 𝜕𝜕𝑅𝑅(𝑞𝑞)
𝜕𝜕𝑞𝑞𝑖𝑖

  be the matrix of partial derivatives of the rotation with respect to the 

quaternion components 𝑞𝑞𝑖𝑖, 𝑠𝑠 = 0, 1, 2, 3. The derivatives can be easily calculated as follows: 

𝐹𝐹0 =
𝜕𝜕𝑅𝑅(𝑞𝑞)
𝜕𝜕𝑞𝑞0

= 2 �
𝑞𝑞0 −𝑞𝑞3 𝑞𝑞2
𝑞𝑞3 𝑞𝑞0 −𝑞𝑞1
−𝑞𝑞2 𝑞𝑞1 𝑞𝑞0

� (A.31) 

𝐹𝐹1 =
𝜕𝜕𝑅𝑅(𝑞𝑞)
𝜕𝜕𝑞𝑞1

= 2 �
𝑞𝑞1 𝑞𝑞2 𝑞𝑞3
𝑞𝑞2 −𝑞𝑞1 −𝑞𝑞0
𝑞𝑞3 𝑞𝑞0 −𝑞𝑞1

� (A.32) 

𝐹𝐹2 =
𝜕𝜕𝑅𝑅(𝑞𝑞)
𝜕𝜕𝑞𝑞2

= 2 �
−𝑞𝑞2 𝑞𝑞1 𝑞𝑞0
𝑞𝑞1 𝑞𝑞2 𝑞𝑞3
−𝑞𝑞0 𝑞𝑞3 −𝑞𝑞2

� (A.33) 

𝐹𝐹3 =
𝜕𝜕𝑅𝑅(𝑞𝑞)
𝜕𝜕𝑞𝑞3

= 2 �
−𝑞𝑞3 −𝑞𝑞0 𝑞𝑞1
𝑞𝑞0 −𝑞𝑞3 𝑞𝑞2
𝑞𝑞1 𝑞𝑞2 𝑞𝑞3

� (A.34) 

In the next step, the partial derivatives of the components of the quaternion with 

respect to the axis-angle vector u are computed: 

𝐺𝐺(𝑢𝑢) =
𝜕𝜕𝑞𝑞(𝑢𝑢)
𝜕𝜕𝑢𝑢 = �

𝜕𝜕𝑞𝑞(𝑢𝑢)
𝜕𝜕𝑢𝑢1

𝜕𝜕𝑞𝑞(𝑢𝑢)
𝜕𝜕𝑢𝑢2

𝜕𝜕𝑞𝑞(𝑢𝑢)
𝜕𝜕𝑢𝑢3

� (A.35) 

The columns of 𝐺𝐺(𝑢𝑢) are given below in terms of 𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3 and 𝜐𝜐: 
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𝜕𝜕𝑞𝑞(𝑢𝑢)
𝜕𝜕𝑢𝑢1

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −

𝑢𝑢1𝑠𝑠𝑚𝑚𝑏𝑏
𝜐𝜐
2

2𝜐𝜐
𝑠𝑠𝑚𝑚𝑏𝑏 𝜐𝜐2
𝜐𝜐

+
𝑢𝑢12𝑐𝑐𝑙𝑙𝑠𝑠

𝜐𝜐
2

2𝜐𝜐2
−
𝑢𝑢12𝑠𝑠𝑚𝑚𝑏𝑏

𝜐𝜐
2

𝜐𝜐3

𝑢𝑢1𝑢𝑢2 �
𝑐𝑐𝑙𝑙𝑠𝑠 𝜐𝜐2
2𝜐𝜐2

−
𝑠𝑠𝑚𝑚𝑏𝑏 𝜐𝜐2
𝜐𝜐3

�

𝑢𝑢1𝑢𝑢3 �
𝑐𝑐𝑙𝑙𝑠𝑠 𝜐𝜐2
2𝜐𝜐2

−
𝑠𝑠𝑚𝑚𝑏𝑏 𝜐𝜐2
𝜐𝜐3

�
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=
1

2𝜐𝜐3

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −𝜐𝜐2𝑢𝑢1𝑠𝑠𝑚𝑚𝑏𝑏

𝜐𝜐
2

2(𝑢𝑢22 + 𝑢𝑢32)𝑠𝑠𝑚𝑚𝑏𝑏
𝜐𝜐
2

+ 𝑢𝑢12𝜐𝜐𝑐𝑐𝑙𝑙𝑠𝑠
𝜐𝜐
2

𝑢𝑢1𝑢𝑢2 �𝜐𝜐𝑐𝑐𝑙𝑙𝑠𝑠
𝜐𝜐
2
− 2𝑠𝑠𝑚𝑚𝑏𝑏

𝜐𝜐
2
�

𝑢𝑢1𝑢𝑢3 �𝜐𝜐𝑐𝑐𝑙𝑙𝑠𝑠
𝜐𝜐
2
− 2𝑠𝑠𝑚𝑚𝑏𝑏

𝜐𝜐
2
� ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (A.36) 

𝜕𝜕𝑞𝑞(𝑢𝑢)
𝜕𝜕𝑢𝑢2

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −

𝑢𝑢2𝑠𝑠𝑚𝑚𝑏𝑏
𝜐𝜐
2

2𝜐𝜐

𝑢𝑢1𝑢𝑢2 �
𝑐𝑐𝑙𝑙𝑠𝑠 𝜐𝜐2
2𝜐𝜐2

−
𝑠𝑠𝑚𝑚𝑏𝑏 𝜐𝜐2
𝜐𝜐3

�

𝑠𝑠𝑚𝑚𝑏𝑏 𝜐𝜐2
𝜐𝜐

+
𝑢𝑢22𝑐𝑐𝑙𝑙𝑠𝑠

𝜐𝜐
2

2𝜐𝜐2
−
𝑢𝑢22𝑠𝑠𝑚𝑚𝑏𝑏

𝜐𝜐
2

𝜐𝜐3

𝑢𝑢2𝑢𝑢3 �
𝑐𝑐𝑙𝑙𝑠𝑠 𝜐𝜐2
2𝜐𝜐2

−
𝑠𝑠𝑚𝑚𝑏𝑏 𝜐𝜐2
𝜐𝜐3

�
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=
1

2𝜐𝜐3

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −𝜐𝜐2𝑢𝑢2𝑠𝑠𝑚𝑚𝑏𝑏

𝜐𝜐
2

𝑢𝑢1𝑢𝑢2 �𝜐𝜐𝑐𝑐𝑙𝑙𝑠𝑠
𝜐𝜐
2
− 2𝑠𝑠𝑚𝑚𝑏𝑏

𝜐𝜐
2
�

2(𝑢𝑢12 + 𝑢𝑢32)𝑠𝑠𝑚𝑚𝑏𝑏
𝜐𝜐
2

+ 𝑢𝑢22𝜐𝜐𝑐𝑐𝑙𝑙𝑠𝑠
𝜐𝜐
2

𝑢𝑢2𝑢𝑢3 �𝜐𝜐𝑐𝑐𝑙𝑙𝑠𝑠
𝜐𝜐
2
− 2𝑠𝑠𝑚𝑚𝑏𝑏

𝜐𝜐
2
� ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (A.37) 

𝜕𝜕𝑞𝑞(𝑢𝑢)
𝜕𝜕𝑢𝑢3

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −

𝑢𝑢3𝑠𝑠𝑚𝑚𝑏𝑏
𝜐𝜐
2

2𝜐𝜐

𝑢𝑢1𝑢𝑢3 �
𝑐𝑐𝑙𝑙𝑠𝑠 𝜐𝜐2
2𝜐𝜐2

−
𝑠𝑠𝑚𝑚𝑏𝑏 𝜐𝜐2
𝜐𝜐3

�

𝑢𝑢2𝑢𝑢3 �
𝑐𝑐𝑙𝑙𝑠𝑠 𝜐𝜐2
2𝜐𝜐2

−
𝑠𝑠𝑚𝑚𝑏𝑏 𝜐𝜐2
𝜐𝜐3

�

𝑠𝑠𝑚𝑚𝑏𝑏 𝜐𝜐2
𝜐𝜐

+
𝑢𝑢32𝑐𝑐𝑙𝑙𝑠𝑠

𝜐𝜐
2

2𝜐𝜐2
−
𝑢𝑢32𝑠𝑠𝑚𝑚𝑏𝑏

𝜐𝜐
2

𝜐𝜐3 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=
1

2𝜐𝜐3

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −𝜐𝜐2𝑢𝑢3𝑠𝑠𝑚𝑚𝑏𝑏

𝜐𝜐
2

𝑢𝑢1𝑢𝑢3 �𝜐𝜐𝑐𝑐𝑙𝑙𝑠𝑠
𝜐𝜐
2
− 2𝑠𝑠𝑚𝑚𝑏𝑏

𝜐𝜐
2
�

𝑢𝑢2𝑢𝑢3 �𝜐𝜐𝑐𝑐𝑙𝑙𝑠𝑠
𝜐𝜐
2
− 2𝑠𝑠𝑚𝑚𝑏𝑏

𝜐𝜐
2
�

2(𝑢𝑢12 + 𝑢𝑢22)𝑠𝑠𝑚𝑚𝑏𝑏
𝜐𝜐
2

+ 𝑢𝑢32𝜐𝜐𝑐𝑐𝑙𝑙𝑠𝑠
𝜐𝜐
2⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (A.38) 

The last step trivially involves the substitution of the derivatives of equations (A.31-

38) in equation (A.29). Specifically, by adopting the convention 𝐺𝐺(𝑢𝑢) = [𝑙𝑙𝑀𝑀𝑖𝑖], the partial 

derivatives of the rotation matrix with respect to 𝑢𝑢 can be computed as follows: 

𝜕𝜕𝑅𝑅(𝑞𝑞(𝑢𝑢))
𝜕𝜕𝑢𝑢𝑀𝑀

= �
𝜕𝜕𝑅𝑅(𝑞𝑞)
𝜕𝜕𝑞𝑞𝑖𝑖

3

𝑖𝑖=0

𝜕𝜕𝑞𝑞𝑖𝑖(𝑢𝑢)
𝜕𝜕𝑢𝑢𝑀𝑀

= �𝐹𝐹𝑖𝑖𝑙𝑙𝑖𝑖𝑀𝑀

3

𝑖𝑖=0

 (A.39) 
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A.4 Unit quaternions using stereographic projection parameters 

For a parameter vector 𝜓𝜓 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ ℝ3 the corresponding unit quaternion is, 

𝑞𝑞 = �
2𝑥𝑥

‖𝜓𝜓‖2 + 1 ,
2𝑦𝑦

‖𝜓𝜓‖2 + 1 ,
2𝑧𝑧

‖𝜓𝜓‖2 + 1 ,
1 − 𝛼𝛼2

‖𝜓𝜓‖2 + 1� (A.40) 

where ‖𝜓𝜓‖2 = 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2. Conversely, given the coordinates 𝑞𝑞0, 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3 of a unit 

quaternion the conversion is equally straightforward. Initially, 𝛼𝛼2 is obtained: 

‖𝜓𝜓‖2 =
1 − 𝑞𝑞3
𝑞𝑞3 + 1 (A.41) 

Then, the parameter vector is, 

𝜓𝜓 = (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = �
𝑞𝑞0(‖𝜓𝜓‖2 + 1)

2 ,
𝑞𝑞1(‖𝜓𝜓‖2 + 1)

2 ,
𝑞𝑞2(‖𝜓𝜓‖2 + 1)

2 �          

⇔    𝜓𝜓 = �
𝑞𝑞0

1 + 𝑞𝑞3
,

𝑞𝑞1
1 + 𝑞𝑞3

,
𝑞𝑞2

1 + 𝑞𝑞3
� (A.42) 

A.4.1 Quaternion derivatives with respect to stereographic coordinates 

The process of finding the derivatives of the rotation matrix 𝑅𝑅(𝑞𝑞) is directly analogous to 

the one described in section A.3.1. The only difference has to do with the matrix of partial 

derivatives of the quaternion with respect to 𝜓𝜓: 

𝐻𝐻(𝜓𝜓) =
𝜕𝜕𝑞𝑞(𝜓𝜓)
𝜕𝜕𝜓𝜓 = �

𝜕𝜕𝑞𝑞(𝜓𝜓)
𝜕𝜕𝑥𝑥

𝜕𝜕𝑞𝑞(𝜓𝜓)
𝜕𝜕𝑦𝑦

𝜕𝜕𝑞𝑞(𝜓𝜓)
𝜕𝜕𝑧𝑧

� (A.43) 

where, 

𝜕𝜕𝑞𝑞(𝜓𝜓)
𝜕𝜕𝑥𝑥 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 2
‖𝜓𝜓‖2 + 1 −

4𝑥𝑥2

(‖𝜓𝜓‖2 + 1)2

−
4𝑥𝑥𝑦𝑦

(‖𝜓𝜓‖2 + 1)2

−
4𝑥𝑥𝑧𝑧

(‖𝜓𝜓‖2 + 1)2
−4𝑥𝑥

(‖𝜓𝜓‖2 + 1)2 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 = −�

𝑞𝑞02 − 𝑞𝑞3 − 1
𝑞𝑞0𝑞𝑞1
𝑞𝑞0𝑞𝑞2

𝑞𝑞0(1 + 𝑞𝑞3)

� (A.44) 



 
 

203 
 

𝜕𝜕𝑞𝑞(𝜓𝜓)
𝜕𝜕𝑦𝑦

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −

4𝑥𝑥𝑦𝑦
(‖𝜓𝜓‖2 + 1)2

2
‖𝜓𝜓‖2 + 1 −

4𝑦𝑦2

(‖𝜓𝜓‖2 + 1)2

−
4𝑦𝑦𝑧𝑧

(‖𝜓𝜓‖2 + 1)2
−4𝑦𝑦

(‖𝜓𝜓‖2 + 1)2 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= −�

𝑞𝑞1𝑞𝑞0
𝑞𝑞12 − 𝑞𝑞3 − 1

𝑞𝑞1𝑞𝑞2
𝑞𝑞1(1 + 𝑞𝑞3)

� (A.45) 

𝜕𝜕𝑞𝑞(𝜓𝜓)
𝜕𝜕𝑧𝑧

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −

4𝑥𝑥𝑧𝑧
(‖𝜓𝜓‖2 + 1)2

−
4𝑦𝑦𝑧𝑧

(‖𝜓𝜓‖2 + 1)2
2

‖𝜓𝜓‖2 + 1 −
4𝑧𝑧2

(‖𝜓𝜓‖2 + 1)2
−4𝑧𝑧

(‖𝜓𝜓‖2 + 1)2 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= −�

𝑞𝑞2𝑞𝑞0
𝑞𝑞2𝑞𝑞1

𝑞𝑞22 − 𝑞𝑞3 − 1
𝑞𝑞2(1 + 𝑞𝑞3)

� (A.46) 

A.4.3 Rotation matrix derivatives with respect to stereographic 

coordinates 

The derivatives of the rotation matrix can be calculated using the matrices 𝐹𝐹0,𝐹𝐹1,𝐹𝐹2,𝐹𝐹3 in 

equations (A31-34): 

𝜕𝜕𝑅𝑅(𝑞𝑞(𝜓𝜓))
𝜕𝜕𝑥𝑥 = �

𝜕𝜕𝑅𝑅(𝑞𝑞)
𝜕𝜕𝑞𝑞𝑖𝑖

3

𝑖𝑖=0

𝜕𝜕𝑞𝑞𝑖𝑖(𝜓𝜓)
𝜕𝜕𝑥𝑥 = �𝐹𝐹𝑖𝑖

3

𝑖𝑖=0

𝜕𝜕𝑞𝑞𝑖𝑖(𝜓𝜓)
𝜕𝜕𝑥𝑥  (A.47) 

𝜕𝜕𝑅𝑅(𝑞𝑞(𝜓𝜓))
𝜕𝜕𝑦𝑦 = �

𝜕𝜕𝑅𝑅(𝑞𝑞)
𝜕𝜕𝑞𝑞𝑖𝑖

3

𝑖𝑖=0

𝜕𝜕𝑞𝑞𝑖𝑖(𝜓𝜓)
𝜕𝜕𝑦𝑦 = �𝐹𝐹𝑖𝑖

3

𝑖𝑖=0

𝜕𝜕𝑞𝑞𝑖𝑖(𝜓𝜓)
𝜕𝜕𝑦𝑦  (A.48) 

𝜕𝜕𝑅𝑅(𝑞𝑞(𝜓𝜓))
𝜕𝜕𝑧𝑧 = �

𝜕𝜕𝑅𝑅(𝑞𝑞)
𝜕𝜕𝑞𝑞𝑖𝑖

3

𝑖𝑖=0

𝜕𝜕𝑞𝑞𝑖𝑖(𝜓𝜓)
𝜕𝜕𝑧𝑧 = �𝐹𝐹𝑖𝑖

3

𝑖𝑖=0

𝜕𝜕𝑞𝑞𝑖𝑖(𝜓𝜓)
𝜕𝜕𝑧𝑧  (A.49) 

Thus, the derivatives of 𝑅𝑅(𝜓𝜓) with respect to the elements of 𝜓𝜓 are obtained as follows: 

𝜕𝜕𝑅𝑅(𝑞𝑞(𝜓𝜓))
𝜕𝜕𝜓𝜓𝑀𝑀

= �
𝜕𝜕𝑅𝑅(𝑞𝑞)
𝜕𝜕𝑞𝑞𝑖𝑖

3

𝑖𝑖=0

𝜕𝜕𝑞𝑞𝑖𝑖(𝜓𝜓)
𝜕𝜕𝜓𝜓𝑀𝑀

= �𝐹𝐹𝑖𝑖
𝜕𝜕𝑞𝑞𝑖𝑖(𝜓𝜓)
𝜕𝜕𝜓𝜓𝑀𝑀

3

𝑖𝑖=0

 (A.50) 
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where (𝜓𝜓1,𝜓𝜓2,𝜓𝜓3) = (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) and 
𝜕𝜕𝑞𝑞𝑖𝑖(𝜓𝜓)
𝜕𝜕𝜓𝜓𝑖𝑖

 is the derivative of the jth component of the 

quaternion with respect to the ith component of the parameter vector. 

 Further to formulas (A.47-50), the derivatives of the 3 rotation rows 𝑇𝑇1, 𝑇𝑇2, 𝑇𝑇3 as 

3 × 1 vectors are given by the following expressions that contain the elements of the 

rotation matrix and the components of the quaternion: 

𝜕𝜕𝑇𝑇1

𝜕𝜕𝜓𝜓 = −2

⎣
⎢
⎢
⎢
⎡ 𝑞𝑞0

(𝑇𝑇11 − 2𝑞𝑞3 − 1 ) 𝑞𝑞1(𝑇𝑇11 − 2𝑞𝑞3 − 1 ) 𝑞𝑞2(𝑇𝑇11 + 1)

𝑞𝑞0𝑇𝑇12 + 𝑞𝑞32 − 𝑞𝑞02 + 𝑞𝑞3 𝑞𝑞1𝑇𝑇12 −
1
2 𝑇𝑇32 − 𝑞𝑞2 𝑞𝑞2𝑇𝑇12 −

1
2 𝑇𝑇13 − 𝑞𝑞1

𝑞𝑞0𝑇𝑇13 −
1
2 𝑇𝑇23 − 𝑞𝑞2 𝑞𝑞1𝑇𝑇13 − 𝑞𝑞32 + 𝑞𝑞12 − 𝑞𝑞3 𝑞𝑞2𝑇𝑇13 +

1
2 𝑇𝑇12 − 𝑞𝑞0⎦

⎥
⎥
⎥
⎤

 (A.51) 

Similarly, the Jacobian of 𝑇𝑇2 with respect to 𝜓𝜓 is: 

𝜕𝜕𝑇𝑇2

𝜕𝜕𝜓𝜓 = −2

⎣
⎢
⎢
⎢
⎡𝑞𝑞0𝑇𝑇21 − 𝑞𝑞32 + 𝑞𝑞02 − 𝑞𝑞3 𝑞𝑞1𝑇𝑇21 −

1
2 𝑇𝑇23 − 𝑞𝑞2 𝑞𝑞2𝑇𝑇21 −

1
2 𝑇𝑇31 − 𝑞𝑞1

𝑞𝑞0(𝑇𝑇22 − 2𝑞𝑞3 − 1) 𝑞𝑞1(𝑇𝑇22 + 1) 𝑞𝑞2(𝑇𝑇22 − 2𝑞𝑞3 − 1)

𝑞𝑞0𝑇𝑇23 +
1
2 𝑇𝑇13 + 𝑞𝑞1 𝑞𝑞1𝑇𝑇23 +

1
2 𝑇𝑇21 + 𝑞𝑞0 𝑞𝑞2𝑇𝑇23 − 𝑞𝑞32 + 𝑞𝑞22 − 𝑞𝑞3⎦

⎥
⎥
⎥
⎤

 (A.52) 

Finally, the derivative of 𝑇𝑇3is: 

𝜕𝜕𝑇𝑇3

𝜕𝜕𝜓𝜓 = −2

⎣
⎢
⎢
⎢
⎡𝑞𝑞0𝑇𝑇31 +

1
2 𝑇𝑇32 + 𝑞𝑞2 𝑞𝑞1𝑇𝑇31 − 𝑞𝑞32 + 𝑞𝑞12 − 𝑞𝑞3 𝑞𝑞2𝑇𝑇31 +

1
2 𝑇𝑇21 + 𝑞𝑞0

𝑞𝑞0𝑇𝑇32 −
1
2 𝑇𝑇31 − 𝑞𝑞1 𝑞𝑞1𝑇𝑇32 +

1
2 𝑇𝑇12 − 𝑞𝑞0 𝑞𝑞2𝑇𝑇32 − 𝑞𝑞32 + 𝑞𝑞22 − 𝑞𝑞3

𝑞𝑞0(𝑇𝑇33 − 1) 𝑞𝑞1(𝑇𝑇33 + 2𝑞𝑞3 + 1) 𝑞𝑞2(𝑇𝑇33 + 2𝑞𝑞3 + 1) ⎦
⎥
⎥
⎥
⎤

 (A.53) 

 where 𝑇𝑇𝑀𝑀𝑖𝑖 = [𝑅𝑅]𝑀𝑀𝑖𝑖  is the element of the rotation matrix in the ith row and jth column. 

A.5 Parameter differentiation for variance propagation 

It is very often necessary to propagate variance from one set of parameters to another in the 

context of Gauss-Newton iteration. The conversion between axis-angle and stereographic 

projection parameters will always have to go through the quaternion. Thus, the Jacobian of 

both 3D parameters with respect to the quaternion is required. 

 The derivatives of the equatorial plane coordinates 𝜓𝜓 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) with respect to the 

quaternion 𝑞𝑞 follow from equation (A.42): 
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𝜕𝜕𝜓𝜓
𝜕𝜕𝑞𝑞 =

1
(𝑞𝑞3 + 1)2 �

𝑞𝑞3 + 1 0 0 −𝑞𝑞0
0 𝑞𝑞3 + 1 0 −𝑞𝑞1
0 0 𝑞𝑞3 + 1 −𝑞𝑞2

� (A.54) 

The derivatives of the stereographic projection parameters 𝜓𝜓 = (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) with respect to the 

axis-angle parameters 𝑢𝑢 = (𝑢𝑢1,𝑢𝑢2,𝑢𝑢3) can be computed as follows: 

𝜕𝜕𝜓𝜓
𝜕𝜕𝑢𝑢 =

𝜕𝜕𝜓𝜓
𝜕𝜕𝑞𝑞

�
𝜕𝜕𝑞𝑞
𝜕𝜕𝑢𝑢1

𝜕𝜕𝑞𝑞
𝜕𝜕𝑢𝑢2

𝜕𝜕𝑞𝑞
𝜕𝜕𝑢𝑢3

� =
𝜕𝜕𝜓𝜓
𝜕𝜕𝑞𝑞

𝜕𝜕𝑞𝑞
𝜕𝜕𝑢𝑢 (A.55) 

 In order to obtain the derivative of axis-angle parameters with respect to 

stereographic projection parameters, it is first necessary to compute 𝜕𝜕𝑢𝑢
𝜕𝜕𝑞𝑞

: 

𝜕𝜕𝑢𝑢
𝜕𝜕𝑞𝑞 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 2𝑞𝑞1
1 − 𝑞𝑞02

+
2𝑞𝑞0𝑞𝑞1 cos−1 𝑞𝑞0

(1 − 𝑞𝑞02)3/2
2 cos−1 𝑞𝑞0

(1 − 𝑞𝑞02)1/2 0 0

2𝑞𝑞2
1 − 𝑞𝑞02

+
2𝑞𝑞0𝑞𝑞2 cos−1 𝑞𝑞0

(1 − 𝑞𝑞02)3/2 0
2 cos−1 𝑞𝑞0

(1 − 𝑞𝑞02)1/2 0

2𝑞𝑞3
1 − 𝑞𝑞02

+
2𝑞𝑞0𝑞𝑞3 cos−1 𝑞𝑞0

(1 − 𝑞𝑞02)3/2 0 0
2 cos−1 𝑞𝑞0

(1 − 𝑞𝑞02)1/2⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (A.56) 

Applying the chain rule yields the derivative of u with respect to ψ: 

𝜕𝜕𝑢𝑢
𝜕𝜕𝜓𝜓 =

𝜕𝜕𝑢𝑢
𝜕𝜕𝑞𝑞

�
𝜕𝜕𝑞𝑞
𝜕𝜕𝑥𝑥

𝜕𝜕𝑞𝑞
𝜕𝜕𝑦𝑦

𝜕𝜕𝑞𝑞
𝜕𝜕𝑧𝑧
� =

𝜕𝜕𝑢𝑢
𝜕𝜕𝑞𝑞

𝜕𝜕𝑞𝑞
𝜕𝜕𝜓𝜓 (A.57) 

A.6 Derivatives of the sum of weighted squared rotation matrix 

elements 

Suppose that the sum of squared rotation matrix components is weighted by 𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠9 > 0. 

A.6.1 Sum of weighted squared diagonal elements 

It is more convenient to separate the sum of the weighted squared diagonal elements D and 

take the derivative: 

𝜕𝜕𝐷𝐷
𝜕𝜕𝑞𝑞0

= 4𝑞𝑞0[(𝑠𝑠1 + 𝑠𝑠5 + 𝑠𝑠9)𝑞𝑞02 + (𝑠𝑠1 − 𝑠𝑠5 − 𝑠𝑠9)𝑞𝑞12 + (−𝑠𝑠1 + 𝑠𝑠5 − 𝑠𝑠9)𝑞𝑞22

+ (−𝑠𝑠1 − 𝑠𝑠5 + 𝑠𝑠9)𝑞𝑞32] 
(A.58) 
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𝜕𝜕𝐷𝐷
𝜕𝜕𝑞𝑞1

= 4𝑞𝑞1[(𝑠𝑠1 − 𝑠𝑠5 − 𝑠𝑠9)𝑞𝑞02 + (𝑠𝑠1 + 𝑠𝑠5 + 𝑠𝑠9)𝑞𝑞12 + (−𝑠𝑠1 − 𝑠𝑠5 + 𝑠𝑠9)𝑞𝑞22

+ (−𝑠𝑠1 + 𝑠𝑠5 − 𝑠𝑠9)𝑞𝑞32] 
(A.59) 

𝜕𝜕𝐷𝐷
𝜕𝜕𝑞𝑞2

= 4𝑞𝑞2[(−𝑠𝑠1 + 𝑠𝑠5 − 𝑠𝑠9)𝑞𝑞02 + (−𝑠𝑠1 − 𝑠𝑠5 + 𝑠𝑠9)𝑞𝑞12 + (𝑠𝑠1 + 𝑠𝑠5 + 𝑠𝑠9)𝑞𝑞22

+ (𝑠𝑠1 − 𝑠𝑠5 − 𝑠𝑠9)𝑞𝑞32] 
(A.60) 

𝜕𝜕𝐷𝐷
𝜕𝜕𝑞𝑞3

= 4𝑞𝑞3[(−𝑠𝑠1 − 𝑠𝑠5 + 𝑠𝑠9)𝑞𝑞02 + (−𝑠𝑠1 + 𝑠𝑠5 − 𝑠𝑠9)𝑞𝑞12 + (𝑠𝑠1 − 𝑠𝑠5 − 𝑠𝑠9)𝑞𝑞22

+ (𝑠𝑠1 + 𝑠𝑠5 + 𝑠𝑠9)𝑞𝑞32] 
(A.61) 

A.6.2 Sum of weighted squared off-diagonal elements 

Taking now the weighted sum of squared off-diagonal elements F of the rotation matrix: 

𝜕𝜕𝐹𝐹
𝜕𝜕𝑞𝑞0

= 8�(−𝑠𝑠2 + 𝑠𝑠3 + 𝑠𝑠4 − 𝑠𝑠6 − 𝑠𝑠7 + 𝑠𝑠8)𝑞𝑞1𝑞𝑞2𝑞𝑞3

+ 𝑞𝑞0�(𝑠𝑠6 + 𝑠𝑠8)𝑞𝑞12 + (𝑠𝑠3 + 𝑠𝑠7)𝑞𝑞22 + (𝑠𝑠2 + 𝑠𝑠4)𝑞𝑞32�� 
(A.62) 

𝜕𝜕𝐹𝐹
𝜕𝜕𝑞𝑞1

= 8�(−𝑠𝑠2 + 𝑠𝑠3 + 𝑠𝑠4 − 𝑠𝑠6 − 𝑠𝑠7 + 𝑠𝑠8)𝑞𝑞0𝑞𝑞2𝑞𝑞3

+ 𝑞𝑞1�(𝑠𝑠6 + 𝑠𝑠8)𝑞𝑞02 + (𝑠𝑠2 + 𝑠𝑠4)𝑞𝑞22 + (𝑠𝑠3 + 𝑠𝑠7)𝑞𝑞32�� 
(A.63) 

𝜕𝜕𝐹𝐹
𝜕𝜕𝑞𝑞2

= 8�(−𝑠𝑠2 + 𝑠𝑠3 + 𝑠𝑠4 − 𝑠𝑠6 − 𝑠𝑠7 + 𝑠𝑠8)𝑞𝑞0𝑞𝑞1𝑞𝑞3

+ 𝑞𝑞2�(𝑠𝑠3 + 𝑠𝑠7)𝑞𝑞02 + (𝑠𝑠2 + 𝑠𝑠4)𝑞𝑞12 + (𝑠𝑠6 + 𝑠𝑠8)𝑞𝑞32�� 
(A.64) 

𝜕𝜕𝐹𝐹
𝜕𝜕𝑞𝑞3

= 8�(−𝑠𝑠2 + 𝑠𝑠3 + 𝑠𝑠4 − 𝑠𝑠6 − 𝑠𝑠7 + 𝑠𝑠8)𝑞𝑞0𝑞𝑞1𝑞𝑞2

+ 𝑞𝑞3�(𝑠𝑠2 + 𝑠𝑠4)𝑞𝑞02 + (𝑠𝑠3 + 𝑠𝑠7)𝑞𝑞12 + (𝑠𝑠6 + 𝑠𝑠8)𝑞𝑞22�� 
(A.65) 

A.6.2 Full derivatives 

Taking the sum of (A58-61) and (A.62-65) yields the derivative with respect to the 

components of the quaternion: 
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𝜕𝜕(𝐷𝐷 + 𝐹𝐹)
𝜕𝜕𝑞𝑞0

= 4𝑞𝑞0 �(𝑠𝑠1 + 𝑠𝑠5 + 𝑠𝑠9)���������
𝛼𝛼

𝑞𝑞02 + (𝑠𝑠1 − 𝑠𝑠5 − 𝑠𝑠9 + 2𝑠𝑠6 + 2𝑠𝑠8)�����������������
𝛽𝛽

𝑞𝑞12

+ (−𝑠𝑠1 + 𝑠𝑠5 − 𝑠𝑠9 + 2𝑠𝑠3 + 2𝑠𝑠7)�������������������
𝛾𝛾

𝑞𝑞22

+ (−𝑠𝑠1 − 𝑠𝑠5 + 𝑠𝑠9 + 2𝑠𝑠2 + 2𝑠𝑠4)�������������������
𝛿𝛿

𝑞𝑞32�

+ 8 (−𝑠𝑠2 + 𝑠𝑠3 + 𝑠𝑠4 − 𝑠𝑠6 − 𝑠𝑠7 + 𝑠𝑠8)���������������������
𝜀𝜀

𝑞𝑞1𝑞𝑞2𝑞𝑞3 

(A.66) 

𝜕𝜕(𝐷𝐷 + 𝐹𝐹)
𝜕𝜕𝑞𝑞1

= 4𝑞𝑞1 �(𝑠𝑠1 − 𝑠𝑠5 − 𝑠𝑠9 + 2𝑠𝑠6 + 2𝑠𝑠8)�����������������
𝛽𝛽

𝑞𝑞02 + (𝑠𝑠1 + 𝑠𝑠5 + 𝑠𝑠9)���������
𝛼𝛼

𝑞𝑞12

+ (−𝑠𝑠1 − 𝑠𝑠5 + 𝑠𝑠9 + 2𝑠𝑠2 + 2𝑠𝑠4)�������������������
𝛿𝛿

𝑞𝑞22

+ (−𝑠𝑠1 + 𝑠𝑠5 − 𝑠𝑠9 + 2𝑠𝑠3 + 2𝑠𝑠7)�������������������
𝛾𝛾

𝑞𝑞32�

+ 8 (−𝑠𝑠2 + 𝑠𝑠3 + 𝑠𝑠4 − 𝑠𝑠6 − 𝑠𝑠7 + 𝑠𝑠8)���������������������
𝜀𝜀

𝑞𝑞0𝑞𝑞2𝑞𝑞3 

(A.67) 

𝜕𝜕(𝐷𝐷 + 𝐹𝐹)
𝜕𝜕𝑞𝑞2

= 4𝑞𝑞2 �(−𝑠𝑠1 + 𝑠𝑠5 − 𝑠𝑠9 + 2𝑠𝑠3 + 2𝑠𝑠7)�������������������
𝛾𝛾

𝑞𝑞02

+ (−𝑠𝑠1 − 𝑠𝑠5 + 𝑠𝑠9 + 2𝑠𝑠2 + 2𝑠𝑠4)�������������������
𝛿𝛿

𝑞𝑞12 + (𝑠𝑠1 + 𝑠𝑠5 + 𝑠𝑠9)���������
𝛼𝛼

𝑞𝑞22

+ (𝑠𝑠1 − 𝑠𝑠5 − 𝑠𝑠9 + 2𝑠𝑠6 + 2𝑠𝑠8)�����������������
𝛽𝛽

𝑞𝑞32�

+ 8 (−𝑠𝑠2 + 𝑠𝑠3 + 𝑠𝑠4 − 𝑠𝑠6 − 𝑠𝑠7 + 𝑠𝑠8)���������������������
𝜀𝜀

𝑞𝑞0𝑞𝑞1𝑞𝑞3 

(A.68) 

𝜕𝜕(𝐷𝐷 + 𝐹𝐹)
𝜕𝜕𝑞𝑞3

= 4𝑞𝑞3 �(−𝑠𝑠1 − 𝑠𝑠5 + 𝑠𝑠9 + 2𝑠𝑠2 + 2𝑠𝑠4)�������������������
𝛿𝛿

𝑞𝑞02

+ (−𝑠𝑠1 + 𝑠𝑠5 − 𝑠𝑠9 + 2𝑠𝑠3 + 2𝑠𝑠7)�������������������
𝛾𝛾

𝑞𝑞12

+ (𝑠𝑠1 − 𝑠𝑠5 − 𝑠𝑠9 + 2𝑠𝑠6 + 2𝑠𝑠8)�����������������
𝛽𝛽

𝑞𝑞22 + (𝑠𝑠1 + 𝑠𝑠5 + 𝑠𝑠9)���������
𝛼𝛼

𝑞𝑞32�

+ 8 (−𝑠𝑠2 + 𝑠𝑠3 + 𝑠𝑠4 − 𝑠𝑠6 − 𝑠𝑠7 + 𝑠𝑠8)���������������������
𝜀𝜀

𝑞𝑞0𝑞𝑞1𝑞𝑞2 

(A.69) 
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What is of great interest in the derivative expressions of (A.66-69) is that there are only 5 

distinct coefficients, 𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝛿𝛿, 𝜀𝜀. Using these “shortcut”, the derivatives can be written as 

follows: 

𝜕𝜕(𝐷𝐷 + 𝐹𝐹)
𝜕𝜕𝑞𝑞0

= 4𝑞𝑞0(𝛼𝛼𝑞𝑞02 + 𝛽𝛽𝑞𝑞12 + 𝛾𝛾𝑞𝑞22 + 𝛿𝛿𝑞𝑞32) + 8𝜀𝜀𝑞𝑞1𝑞𝑞2𝑞𝑞3 (A.70) 

𝜕𝜕(𝐷𝐷 + 𝐹𝐹)
𝜕𝜕𝑞𝑞1

= 4𝑞𝑞1(𝛽𝛽𝑞𝑞02 + 𝛼𝛼𝑞𝑞12 + 𝛿𝛿𝑞𝑞22 + 𝛾𝛾𝑞𝑞32) + 8𝜀𝜀𝑞𝑞0𝑞𝑞2𝑞𝑞3 (A.71) 

𝜕𝜕(𝐷𝐷 + 𝐹𝐹)
𝜕𝜕𝑞𝑞2

= 4𝑞𝑞2(𝛾𝛾𝑞𝑞02 + 𝛿𝛿𝑞𝑞12 + 𝛼𝛼𝑞𝑞22 + 𝛽𝛽𝑞𝑞32) + 8𝜀𝜀𝑞𝑞0𝑞𝑞1𝑞𝑞3 (A.72) 

𝜕𝜕(𝐷𝐷 + 𝐹𝐹)
𝜕𝜕𝑞𝑞3

= 4𝑞𝑞3(𝛿𝛿𝑞𝑞02 + 𝛾𝛾𝑞𝑞12 + 𝛽𝛽𝑞𝑞22 + 𝛼𝛼𝑞𝑞32) + 8𝜀𝜀𝑞𝑞0𝑞𝑞1𝑞𝑞2 (A.73) 

where, 

𝛼𝛼 = 𝑠𝑠1 + 𝑠𝑠5 + 𝑠𝑠9 (A.74) 

𝛽𝛽 = 𝑠𝑠1 − 𝑠𝑠5 − 𝑠𝑠9 + 2𝑠𝑠6 + 2𝑠𝑠8 (A.75) 

𝛾𝛾 = −𝑠𝑠1 + 𝑠𝑠5 − 𝑠𝑠9 + 2𝑠𝑠3 + 2𝑠𝑠7 (A.76) 

𝛿𝛿 = −𝑠𝑠1 − 𝑠𝑠5 + 𝑠𝑠9 + 2𝑠𝑠2 + 2𝑠𝑠4 (Α.77) 

𝜀𝜀 = −𝑠𝑠2 + 𝑠𝑠3 + 𝑠𝑠4 − 𝑠𝑠6 − 𝑠𝑠7 + 𝑠𝑠8 (A.78) 
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Appendix B 

Derivatives of the SVD  

A somewhat more detailed derivation of the brilliant method for the estimation of the 

derivatives of the SVD by Papadopoulo and Lourakis is provided here. Consider the SVD 

𝐵𝐵 = 𝑈𝑈𝐷𝐷𝑉𝑉𝑇𝑇 where 𝐵𝐵 = �𝑏𝑏𝑀𝑀𝑖𝑖�. Taking the derivatives of the matrices in both sides of the 

SVD, the following relationship is obtained (right side is expanded using the product 

derivation rule): 

𝜕𝜕𝐵𝐵
𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖

=
𝜕𝜕𝑈𝑈
𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖

𝐷𝐷𝑉𝑉𝑇𝑇 + 𝑈𝑈
𝜕𝜕𝐷𝐷
𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖

𝑉𝑉𝑇𝑇 + 𝑈𝑈𝐷𝐷
𝜕𝜕𝑉𝑉𝑇𝑇

𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖
 (B.1) 

Evidently, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

 is a matrix with elements � 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

�
𝑘𝑘𝑙𝑙

such that, 

�
𝜕𝜕𝐵𝐵
𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖

�
𝑘𝑘𝑙𝑙

= 𝛿𝛿[𝑏𝑏 − 𝑚𝑚 , 𝑙𝑙 − 𝑠𝑠] (B.2) 

where 𝛿𝛿[𝑚𝑚 ,𝑏𝑏] is the 2D Kronecker delta function. Moreover, orthogonality for U and V 

yields the following: 

𝑈𝑈𝑇𝑇𝑈𝑈 = 𝐼𝐼 ⇒
𝜕𝜕𝑈𝑈𝑇𝑇

𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖
𝑈𝑈 + 𝑈𝑈𝑇𝑇 𝜕𝜕𝑈𝑈

𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖�����
𝛺𝛺𝑈𝑈
𝑖𝑖𝑖𝑖

= 0 
(B.3) 

and, 

𝑉𝑉𝑇𝑇𝑉𝑉 = 𝐼𝐼 ⇒
𝜕𝜕𝑉𝑉𝑇𝑇

𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖
𝑉𝑉

���
𝛺𝛺𝑉𝑉
𝑖𝑖𝑖𝑖

+ 𝑉𝑉𝑇𝑇
𝜕𝜕𝑉𝑉
𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖

= 0 
(B.4) 
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where 𝛺𝛺𝑈𝑈
𝑀𝑀𝑖𝑖 and 𝛺𝛺𝑉𝑉

𝑀𝑀𝑖𝑖 are antisymmetric matrices and used as shortcuts for the following 

expressions: 

𝛺𝛺𝑈𝑈
𝑀𝑀𝑖𝑖 = 𝑈𝑈𝑇𝑇 𝜕𝜕𝑈𝑈

𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖
 (B.5) 

and, 

𝛺𝛺𝑉𝑉
𝑀𝑀𝑖𝑖 =

𝜕𝜕𝑉𝑉𝑇𝑇

𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖
𝑉𝑉 (B.6) 

Now, multiplying equation (B.1) with 𝑈𝑈𝑇𝑇 from the left and 𝑉𝑉 from the right yields 

the following: 

𝑈𝑈𝑇𝑇 𝜕𝜕𝐵𝐵
𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖

𝑉𝑉 = 𝑈𝑈𝑇𝑇 𝜕𝜕𝑈𝑈
𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖

𝐷𝐷 +
𝜕𝜕𝐷𝐷
𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖

+ 𝐷𝐷
𝜕𝜕𝑉𝑉𝑇𝑇

𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖
𝑉𝑉𝑇𝑇 (B.7) 

Substituting the expressions for 𝛺𝛺𝑈𝑈
𝑀𝑀𝑖𝑖 and 𝛺𝛺𝑉𝑉

𝑀𝑀𝑖𝑖 from equations (B.5-6) into (B.7) the following 

is obtained: 

𝑈𝑈𝑇𝑇 𝜕𝜕𝐵𝐵
𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖

𝑉𝑉 = 𝛺𝛺𝑈𝑈
𝑀𝑀𝑖𝑖𝐷𝐷 +

𝜕𝜕𝐷𝐷
𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖

+ 𝐷𝐷𝛺𝛺𝑉𝑉
𝑀𝑀𝑖𝑖 (B.8) 

Since 𝛺𝛺𝑈𝑈
𝑀𝑀𝑖𝑖 and 𝛺𝛺𝑉𝑉

𝑀𝑀𝑖𝑖 are antisymmetric, it follows that they have zero elements in the diagonal 

and therefore, the diagonal of the sum on the right side of equation (B.8) is equal to the 

diagonal of 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

. Moreover, considering that the derivative of B with respect to 𝑏𝑏𝑀𝑀𝑖𝑖 is a 

matrix with a 1-entry in the ith row, jth column and all other entries are zero as shown in 

equation (B.2), it follows that the kth diagonal element of 𝑈𝑈𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

𝑉𝑉 is the product, 𝑢𝑢𝑀𝑀𝑘𝑘𝑣𝑣𝑖𝑖𝑘𝑘 

where 𝑈𝑈 = �𝑢𝑢𝑀𝑀𝑖𝑖� and 𝑉𝑉 = �𝑣𝑣𝑀𝑀𝑖𝑖�. Thus, the derivatives of the singular values are, 

𝜕𝜕𝑑𝑑𝑘𝑘
𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖

= 𝑢𝑢𝑀𝑀𝑘𝑘𝑣𝑣𝑖𝑖𝑘𝑘 (B.9) 

Considering now equation (B.8) in terms of the off-diagonal elements on both sides, 

the following 2 × 2 system is obtained for the elements of 𝛺𝛺𝑈𝑈
𝑀𝑀𝑖𝑖 and 𝛺𝛺𝑉𝑉

𝑀𝑀𝑖𝑖 in the kth row and lth 

column: 
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�
𝑑𝑑𝑙𝑙�𝜔𝜔𝑈𝑈

𝑀𝑀𝑖𝑖�
𝑘𝑘𝑙𝑙 + 𝑑𝑑𝑘𝑘�𝜔𝜔𝑉𝑉

𝑀𝑀𝑖𝑖�
𝑘𝑘𝑙𝑙 = 𝑢𝑢𝑀𝑀𝑘𝑘𝑣𝑣𝑖𝑖𝑙𝑙

𝑑𝑑𝑘𝑘�𝜔𝜔𝑈𝑈
𝑀𝑀𝑖𝑖�

𝑘𝑘𝑙𝑙 + 𝑑𝑑𝑙𝑙�𝜔𝜔𝑉𝑉
𝑀𝑀𝑖𝑖�

𝑘𝑘𝑙𝑙 = −𝑢𝑢𝑀𝑀𝑙𝑙𝑣𝑣𝑖𝑖𝑘𝑘
 (B.10) 

where 𝛺𝛺𝑈𝑈
𝑀𝑀𝑖𝑖 = ��𝜔𝜔𝑈𝑈

𝑀𝑀𝑖𝑖�𝑘𝑘𝑙𝑙� and 𝛺𝛺𝑉𝑉
𝑀𝑀𝑖𝑖 = ��𝜔𝜔𝑉𝑉

𝑀𝑀𝑖𝑖�𝑘𝑘𝑙𝑙�. The derivatives of U and V can then be easily 

computed from equations (B.5-6) as follows: 

𝜕𝜕𝑈𝑈
𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖

= 𝑈𝑈𝛺𝛺𝑈𝑈
𝑀𝑀𝑖𝑖  ,   

𝜕𝜕𝑉𝑉
𝜕𝜕𝑏𝑏𝑀𝑀𝑖𝑖

= −𝑉𝑉𝛺𝛺𝑉𝑉
𝑀𝑀𝑖𝑖 (B.11) 
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Appendix C 

Map marginalization in a single scene 

Consider the isolated case of a single scene comprised of 𝑡𝑡-views in which the sequence of 

commonly observed feature vectors is, 𝑚𝑚𝑘𝑘 ∈ ℝ2𝑁𝑁  where N is the number of features and 

𝑏𝑏 ∈ {1, … , 𝑡𝑡}. Moreover, let 𝑥𝑥𝑘𝑘 = [𝜂𝜂𝑘𝑘𝑇𝑇 𝑠𝑠𝑘𝑘𝑇𝑇]𝑇𝑇 where 𝜂𝜂𝑘𝑘 , 𝑠𝑠𝑘𝑘 ∈ ℝ3 are the camera orientation 

parameters and position (expressed in global coordinates) respectively and 𝑀𝑀 ∈ ℝ3𝑁𝑁 the 

locations of the features in the world in terms of the first camera frame.  

 Suppose now that there exists some function ℎ such that, 𝑝𝑝(𝑀𝑀|𝑥𝑥0:1,𝑚𝑚0,𝑚𝑚1) =

𝛿𝛿�𝛭𝛭 − ℎ(𝑥𝑥0, 𝑥𝑥1,𝑚𝑚0,𝑚𝑚1)� where δ denotes the Dirac delta function. Then, incorporating 

this constraint into the standard SLAM Bayes network yields the slightly modified filtration 

process depicted in Figure C.1 (control inputs are omitted for simplicity). 

 

Figure C.1. The slightly modified SLAM paradigm that incorporates the initialization of the map 
from the first two views in the scene.   
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C.1 Marginalizing-out the map 

Clearly, the first two views are used for initialization and the tracked feature locations 𝑚𝑚0 

and 𝑚𝑚1 do not appear as likelihoods in the posterior, but rather as prior distributions 

𝑝𝑝(𝑚𝑚0) = 𝛿𝛿(𝑚𝑚�0) and 𝑝𝑝(𝑚𝑚1) = 𝑁𝑁(𝑚𝑚�1,𝑄𝑄1) where 𝑚𝑚�0 and 𝑚𝑚�1 are the respective means. The 

original feature locations bear no uncertainty, but the tracked locations in the second view 

are stochastic due to the uncertainty entailed by the “noisy” optical flow estimation 

algorithm. Thus, the computation of SLAM posteriors with measurement information 

commences after the third frame has been sampled. To marginalize the map out of the 

posterior 𝐵𝐵𝑒𝑒𝑙𝑙(𝑥𝑥0:2,𝑀𝑀) = 𝑝𝑝(𝑥𝑥0:2,𝑀𝑀|𝑚𝑚2) in order to obtain the joint pose marginal 

𝐵𝐵𝑒𝑒𝑙𝑙∗(𝑥𝑥0:2) = 𝑝𝑝(𝑥𝑥0:2|𝑚𝑚2), one simply needs to integrate: 

𝐵𝐵𝑒𝑒𝑙𝑙∗(𝑥𝑥2, 𝑥𝑥0:1)

∝ ��𝑝𝑝(𝑚𝑚2|𝑥𝑥2,𝑀𝑀)𝑝𝑝(𝑥𝑥2|𝑥𝑥1)𝑝𝑝(𝑀𝑀|𝑥𝑥0:1,𝑚𝑚0:1)𝑝𝑝(𝑥𝑥1|𝑥𝑥0)𝑝𝑝(𝑥𝑥0)𝑝𝑝(𝑚𝑚1)𝑑𝑑𝑀𝑀𝑑𝑑𝑚𝑚1 
(C.1) 

But since 𝑝𝑝(𝑀𝑀|𝑥𝑥0:1,𝑚𝑚0,𝑚𝑚1) = 𝛿𝛿�𝛭𝛭 − ℎ(𝑥𝑥0, 𝑥𝑥1,𝑚𝑚0,𝑚𝑚1)�, the integral of equation (C.1) 

yields, 

𝐵𝐵𝑒𝑒𝑙𝑙∗(𝑥𝑥2, 𝑥𝑥0:1) ∝ �𝑝𝑝�𝑚𝑚2|𝑥𝑥2,ℎ(𝑥𝑥0:1,𝑚𝑚0:1)�𝑝𝑝(𝑚𝑚1)𝑑𝑑𝑚𝑚1�������������������������
𝑞𝑞(𝑝𝑝2|𝑥𝑥2,𝑥𝑥0:1)

𝑝𝑝(𝑥𝑥2|𝑥𝑥1)𝑝𝑝(𝑥𝑥1|𝑥𝑥0)𝑝𝑝(𝑥𝑥0)���������������
𝑞𝑞(𝑥𝑥2,𝑥𝑥0:1)

 (C.2) 

where the product 𝑝𝑝(𝑥𝑥2|𝑥𝑥1)𝑝𝑝(𝑥𝑥1|𝑥𝑥0)𝑝𝑝(𝑥𝑥0) can be regarded as a prior 𝑞𝑞(𝑥𝑥2, 𝑥𝑥0:1) for 𝑥𝑥0:2  

and the marginal distribution ∫𝑝𝑝�𝑚𝑚2|𝑥𝑥2,ℎ(𝑥𝑥0:1,𝑚𝑚0:1)�𝑝𝑝(𝑚𝑚1)𝑑𝑑𝑚𝑚1 as the respective 

measurement likelihood, 𝑞𝑞(𝑚𝑚2|𝑥𝑥2, 𝑥𝑥0:1). Note here that since the prior of 𝑚𝑚0 is a Dirac 

delta function, the variable is instantiated in the expression that yields the posterior. 

 It follows that for any posterior, the prior of 𝑚𝑚1 is subsumed into all likelihood 

terms via marginalization, thereby yielding 𝑞𝑞(𝑚𝑚𝑘𝑘|𝑥𝑥2, 𝑥𝑥0:1) for 𝑏𝑏 = 2, … , 𝑡𝑡. Thus, similarly 

to equation (C.2), the marginal of 𝑥𝑥3, 𝑥𝑥0:1 over 𝑥𝑥2,𝑀𝑀 is computed as follows (after the 

substitution of M with ℎ(𝑥𝑥0:1,𝑚𝑚0:1)): 

𝐵𝐵𝑒𝑒𝑙𝑙∗(𝑥𝑥3,𝑥𝑥0:1)

∝ ���𝑝𝑝�𝑚𝑚3|𝑥𝑥3,ℎ(𝑥𝑥0:1,𝑚𝑚0:1)�𝑝𝑝�𝑚𝑚2|𝑥𝑥2,ℎ(𝑥𝑥0:1,𝑚𝑚0:1)�𝑝𝑝(𝑚𝑚1)𝑑𝑑𝑚𝑚1������������������������������������������
𝑞𝑞(𝑝𝑝3|𝑥𝑥3,𝑥𝑥0:1)𝑞𝑞(𝑝𝑝2|𝑥𝑥2,𝑥𝑥0:1)

𝑞𝑞(𝑥𝑥2, 𝑥𝑥0:1)𝑝𝑝(𝑥𝑥3|𝑥𝑥2)�������������
𝜕𝜕𝑝𝑝𝑙𝑙∗(𝑥𝑥2,𝑥𝑥0:1)

𝑑𝑑𝑥𝑥2 (C.3) 



 
 

214 
 

It is therefore clear that the joint 𝑥𝑥𝑘𝑘 , 𝑥𝑥0:1, 𝑏𝑏 = 2, … , 𝑡𝑡 has the dynamics of a typical hidden 

Markov model (HMM) in which the measurement likelihood and the state transition are 

Gaussian distributions. 

C.1.1 The new filter 

The parametrization in terms of 𝑥𝑥0:1 and consequently, the marginalization of M out of the 

posterior, effectively gives rise to a new filter for time instances 𝑏𝑏 = 2, … , 𝑡𝑡. The new state 

vector 𝑦𝑦𝑘𝑘 is comprised of the pose at time k and the initial poses 𝑥𝑥0 and 𝑥𝑥1: 

𝑦𝑦𝑘𝑘 = �
𝑥𝑥𝑘𝑘
𝑥𝑥1
𝑥𝑥0
� (C.4) 

The state transition 𝑞𝑞(𝑦𝑦𝑘𝑘|𝑦𝑦𝑘𝑘−1) is essentially the motion model 𝑝𝑝(𝑥𝑥𝑘𝑘|𝑥𝑥𝑘𝑘−1) for 𝑏𝑏 > 2 and 

the state prior at time 𝑏𝑏 = 2  is given by equation (C.2). 

𝑞𝑞(𝑦𝑦𝑘𝑘|𝑦𝑦𝑘𝑘−1) = 𝑝𝑝(𝑥𝑥𝑘𝑘|𝑥𝑥𝑘𝑘−1) (C.5) 

 What is of particular interest, is the new measurement likelihood, provided that now 

the map is replaced by ℎ(𝑥𝑥0:1,𝑚𝑚0:1) in the observation model. Let  𝑝𝑝(𝑚𝑚𝑘𝑘|𝑥𝑥𝑘𝑘 ,𝑀𝑀) =

𝑁𝑁(𝑓𝑓(𝑥𝑥𝑘𝑘 ,𝑀𝑀),𝑄𝑄𝑘𝑘) be the original measurement likelihood. It follows, that the new 

measurement likelihood 𝑞𝑞(𝑚𝑚𝑘𝑘|𝑦𝑦𝑘𝑘) will be the following distribution: 

𝑞𝑞(𝑚𝑚𝑘𝑘|𝑦𝑦𝑘𝑘) = 𝑁𝑁(𝑓𝑓∗(𝑦𝑦𝑘𝑘),𝑄𝑄𝑘𝑘∗) (C.6) 

where 𝑓𝑓∗(𝑦𝑦𝑘𝑘) = 𝑓𝑓�𝑥𝑥𝑘𝑘 ,ℎ(𝑥𝑥0:1,𝑚𝑚0:1)� and 𝑄𝑄𝑘𝑘∗ is a covariance matrix that not only 

incorporates the uncertainty of the original likelihood, but also the additional uncertainty 

entailed by the optical flow estimates. Considering that 𝑚𝑚0 is a non-stochastic quantity, 

using the Jacobian of 𝑓𝑓 with respect to 𝑚𝑚1,  𝑄𝑄𝑘𝑘∗ is estimated as follows: 

𝑄𝑄𝑘𝑘∗ = 𝑄𝑄𝑘𝑘 +
𝜕𝜕𝑓𝑓∗

𝜕𝜕𝑚𝑚1
𝑄𝑄1 �

𝜕𝜕𝑓𝑓∗

𝜕𝜕𝑚𝑚1
�
𝑇𝑇

 (C.7) 

where 𝑄𝑄1 is the covariance of optical flow estimates in the second view in the scene.  

C.1.2 Obtaining the map 

The marginalization of 𝑚𝑚1 works very well in terms of obtaining a new filter over 𝑦𝑦𝑘𝑘, yet 

for the same reason, it is impossible to recover the map from this filter. A look at the 
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marginal that yields the map over the poses suggests that marginalizing 𝑚𝑚1 out this time 

does not eliminate the map from the problem; instead, it leads to a full-fledged SLAM 

problem with all the pathologies associated with the size of M.  

The practical alternative is to obtain an approximation of M from the belief of 𝑦𝑦𝑘𝑘 by 

simply substituting 𝑥𝑥0:1 and 𝑚𝑚1 in h. Although this is not the true SLAM estimate, 

however, provided that tracking uncertainty in the second frame is relatively low, then the 

recovered map can be fairly reliable. In quite the same way, an approximate covariance 

matrix of M is obtained by propagating variance through h. Thus, 

𝛴𝛴𝑀𝑀 =
𝜕𝜕ℎ
𝜕𝜕𝑥𝑥0:1

𝛴𝛴𝑥𝑥0:1 �
𝜕𝜕ℎ
𝜕𝜕𝑥𝑥0:1

�
𝑇𝑇

 (C.8) 

where 𝛴𝛴𝑥𝑥0:1 is the covariance matrix of 𝑥𝑥0:1 in the posterior of 𝑦𝑦𝑘𝑘. 

C.2 Triangulation of 3D points 

Clearly, one way of parametrizing the map in terms of 𝑚𝑚0:1 and 𝑥𝑥0:1 is triangulation. For 

the needs of this thesis, the suboptimal midpoint method suffices to demonstrate the merits 

of map marginalization. The steps in the derivation of the triangulated coordinates of a 3D 

feature location using the midpoint method are re-introduced briefly here, in order to 

compute the derivative of the recovered parameters.  

 

Figure C.1. An illustration of the midpoint triangulation method.  

Let 𝑚𝑚1
(𝑀𝑀) and 𝑚𝑚2

(𝑀𝑀) be the corresponding locations of the ith feature in views of a 

scene. Also, let R be the relative orientation rotation matrix and b the baseline. Finally, let 
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𝑙𝑙1
(𝑀𝑀) be the ray that passes through the first camera center 𝑂𝑂1 and the projection 𝑚𝑚1

(𝑀𝑀). The 

parametric equation of 𝑙𝑙1
(𝑀𝑀) in the coordinate frame of 𝑂𝑂1 is, 

𝑙𝑙1
(𝑀𝑀)(𝜅𝜅) = 𝜅𝜅𝑁𝑁−1𝑚𝑚�1

(𝑀𝑀) (C.9) 

where 𝑚𝑚�1
(𝑀𝑀)  = ��𝑚𝑚1

(𝑀𝑀)�
𝑇𝑇

1�
𝑇𝑇
 is the normalized homogenous representation of 𝑚𝑚1

(𝑀𝑀) and K 

is the matrix of camera intrinsic parameters. Similarly, the ray 𝑙𝑙2
(𝑀𝑀) that passes through the 

second camera center 𝑂𝑂2 and the projection 𝑚𝑚2
(𝑀𝑀)  is, 

𝑙𝑙2
(𝑀𝑀)(𝜆𝜆) = 𝜆𝜆𝑅𝑅𝑁𝑁−1𝑚𝑚�2

(𝑀𝑀) + 𝑅𝑅0(𝑠𝑠1 − 𝑠𝑠0)  (C.10) 

where κ, λ are free real parameters, 𝑅𝑅0 is the rotation matrix corresponding to the initial 

camera orientation and 𝑅𝑅0(𝑠𝑠1 − 𝑠𝑠0) is the baseline vector in the coordinate frame of the 

first view. Finally, a vector 𝑤𝑤(𝑀𝑀), perpendicular to both rays is obtained using the cross 

product operator: 

𝑤𝑤(𝑀𝑀) = �𝑁𝑁−1𝑚𝑚�1
(𝑀𝑀)�× �𝑅𝑅𝑁𝑁−1𝑚𝑚�2

(𝑀𝑀)� (C.11) 

Define vectors 𝑢𝑢(𝑀𝑀) =  𝑁𝑁−1𝑚𝑚�1
(𝑀𝑀) and 𝑣𝑣(𝑀𝑀) = 𝑅𝑅0𝑇𝑇𝑅𝑅1𝑁𝑁−1𝑚𝑚�2

(𝑀𝑀) where 𝑅𝑅1 is the rotation matrix 

that corresponds to the orientation of the second camera frame.  Then, there exist values 

𝜅𝜅∗, 𝜆𝜆∗,𝜌𝜌∗ ∈ ℝ  that verify the following:  

𝜅𝜅∗𝑢𝑢 = 𝜆𝜆∗𝑣𝑣 + 𝑅𝑅0(𝑠𝑠1 − 𝑠𝑠0) + 𝜌𝜌∗𝑤𝑤 (C.12) 

Equation (C.12) defines a 3x3 system of linear equations in terms of k, λ and ρ with the 

following solution: 

𝜏𝜏(𝑀𝑀) = �
𝜅𝜅∗
𝜆𝜆∗
𝜌𝜌∗
� = [𝑢𝑢(𝑀𝑀) −𝑣𝑣(𝑀𝑀) −𝑤𝑤(𝑀𝑀)]−1𝑅𝑅0(𝑠𝑠1 − 𝑠𝑠0) (C.13) 

Thus, the triangulated point is,  

𝑀𝑀(𝑀𝑀) = �𝑢𝑢(𝑀𝑀) 03 −
1
2
𝑤𝑤(𝑀𝑀)� 𝜏𝜏(𝑀𝑀) = 𝑅𝑅0(𝑠𝑠1 − 𝑠𝑠0) + �03 𝑣𝑣(𝑀𝑀) 1

2
𝑤𝑤(𝑀𝑀)� 𝜏𝜏(𝑀𝑀) (C.14) 

where 03 is the 3D zero-vector. 
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C.3 Jacobian of the triangulated point 

C.3.1 Shortcut notation for derivatives of products of matrices with 

vectors 

Although the derivatives of rotation matrices in terms of the respective orientation 

parameters are tensors, the derivatives of the products rotation matrices with vectors are 

matrices and a shortcut expression is derived in this subsection. 

 Consider the product 𝛢𝛢(𝛾𝛾)𝛽𝛽 where Α is a matrix and 𝛽𝛽 ∈ ℝ3 and 

𝛾𝛾 = (𝛾𝛾1, 𝛾𝛾2, … , 𝛾𝛾𝑁𝑁) ∈ ℝ𝑁𝑁 is a vector of parameters. Define the following shortcut notation 

for the product derivative, 

𝛥𝛥𝛾𝛾𝑅𝑅〈𝛽𝛽〉 =
𝜕𝜕(𝛢𝛢(𝛾𝛾)𝛽𝛽)

𝜕𝜕𝛾𝛾 = �
𝜕𝜕𝐴𝐴(𝛾𝛾)
𝜕𝜕𝛾𝛾1

𝛽𝛽
𝜕𝜕𝐴𝐴(𝛾𝛾)
𝜕𝜕𝛾𝛾2

𝛽𝛽 …
𝜕𝜕𝐴𝐴(𝛾𝛾)
𝜕𝜕𝛾𝛾𝑁𝑁

𝛽𝛽� (C.15) 

The notation 𝛥𝛥𝛾𝛾𝑅𝑅〈𝛽𝛽〉 will henceforth denote the derivative of the product 𝛢𝛢(𝜂𝜂)𝛽𝛽 in terms of γ 

and will be called the delta matrix of A,β in terms of γ.   

C.3.2 Derivatives with respect to orientation 

Let 𝑅𝑅0 and 𝑅𝑅1 are the rotation matrices that correspond to the orientation parameter vectors 

𝜂𝜂0 and 𝜂𝜂1. It follows that the relative pose rotation matrix will be, 𝑅𝑅 = 𝑅𝑅1𝑅𝑅0𝑇𝑇. The Jacobian 

of 𝑢𝑢(𝑀𝑀), 𝑣𝑣(𝑀𝑀) and 𝑤𝑤(𝑀𝑀) with respect to 𝜂𝜂0and 𝜂𝜂1 are: 

𝜕𝜕𝑢𝑢(𝑀𝑀)

𝜕𝜕𝜂𝜂0
=
𝜕𝜕𝑢𝑢(𝑀𝑀)

𝜕𝜕𝜂𝜂1
= 03×3 (C.16) 

where 03×3 is the 3 × 3 zero-matrix.  

𝜕𝜕𝑣𝑣(𝑀𝑀)

𝜕𝜕𝜂𝜂0
= 𝑅𝑅1𝛥𝛥𝜂𝜂0

𝑅𝑅0𝑇𝑇〈𝑁𝑁−1𝑚𝑚�1
(𝑀𝑀)〉 

 

(C.17) 

𝜕𝜕𝑣𝑣(𝑀𝑀)

𝜕𝜕𝜂𝜂1
= 𝛥𝛥𝜂𝜂1

𝑅𝑅1〈𝑅𝑅0𝑇𝑇𝑁𝑁−1𝑚𝑚�1
(𝑀𝑀)〉 

 

(C.18) 

𝜕𝜕𝑤𝑤(𝑀𝑀)

𝜕𝜕𝜂𝜂0
= [𝑢𝑢]×

𝜕𝜕𝑣𝑣(𝑀𝑀)

𝜕𝜕𝜂𝜂0
 (C.19) 
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𝜕𝜕𝑤𝑤(𝑀𝑀)

𝜕𝜕𝜂𝜂1
= [𝑢𝑢]×

𝜕𝜕𝑣𝑣(𝑀𝑀)

𝜕𝜕𝜂𝜂1
 (C.20) 

 Let 𝐴𝐴 = [𝑢𝑢(𝑀𝑀) −𝑣𝑣(𝑀𝑀) −𝑤𝑤(𝑀𝑀)] be the matrix of coefficients in the 3 × 3 linear 

system of equation (C.13) that yields the triangulation parameters. The derivatives of A 

with respect to 𝜂𝜂0 and 𝜂𝜂1 are tensors and therefore obtained from the columns of the 

Jacobians of 𝑢𝑢(𝑀𝑀), 𝑣𝑣(𝑀𝑀) and 𝑤𝑤(𝑀𝑀): 

𝜕𝜕𝐴𝐴
𝜕𝜕(𝜂𝜂0)𝑘𝑘

= �03×3 −�
𝜕𝜕𝑣𝑣(𝑀𝑀)

𝜕𝜕𝜂𝜂0
�
𝑘𝑘

−�
𝜕𝜕𝑤𝑤(𝑀𝑀)

𝜕𝜕𝜂𝜂0
�
𝑘𝑘
� (C.21) 

and, 

𝜕𝜕𝐴𝐴
𝜕𝜕(𝜂𝜂1)𝑘𝑘

= �03×3 −�
𝜕𝜕𝑣𝑣(𝑀𝑀)

𝜕𝜕𝜂𝜂1
�
𝑘𝑘

−�
𝜕𝜕𝑤𝑤(𝑀𝑀)

𝜕𝜕𝜂𝜂1
�
𝑘𝑘
� (C.22) 

It is now straightforward to obtain the Jacobian of 𝐴𝐴−1 as follows: 

𝜕𝜕𝐴𝐴−1

𝜕𝜕(𝜂𝜂0)𝑘𝑘
= 𝐴𝐴−1

𝜕𝜕𝐴𝐴
𝜕𝜕(𝜂𝜂0)𝑘𝑘

𝐴𝐴−1 (C.23) 

and, 

𝜕𝜕𝐴𝐴−1

𝜕𝜕(𝜂𝜂1)𝑘𝑘
= 𝐴𝐴−1

𝜕𝜕𝐴𝐴
𝜕𝜕(𝜂𝜂1)𝑘𝑘

𝐴𝐴−1 (C.24) 

The solution of equation (C.13) is now expressed in terms of the pose vectors: 

𝜏𝜏(𝑀𝑀) = [𝑢𝑢(𝑀𝑀) −𝑣𝑣(𝑀𝑀) −𝑤𝑤(𝑀𝑀)]−1𝑅𝑅0(𝑠𝑠1 − 𝑠𝑠0) (C.25) 

Thus, the derivatives of 𝜏𝜏(𝑀𝑀) with respect to 𝜂𝜂1 and 𝜂𝜂0 are the following: 

𝜕𝜕𝜏𝜏(𝑀𝑀)

𝜕𝜕𝜂𝜂0
= 𝛥𝛥𝜂𝜂0

𝐴𝐴−1〈𝑅𝑅0(𝑠𝑠1 − 𝑠𝑠0)〉+ 𝐴𝐴−1𝛥𝛥𝜂𝜂0
𝑅𝑅0〈𝑠𝑠1 − 𝑠𝑠0〉 (C.26) 

and, 

𝜕𝜕𝜏𝜏(𝑀𝑀)

𝜕𝜕𝜂𝜂1
= 𝛥𝛥𝜂𝜂1

𝐴𝐴−1〈𝑅𝑅0(𝑠𝑠1 − 𝑠𝑠0)〉 (C.27) 
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C.3.3 Derivatives with respect to the position vectors 

Since 𝑢𝑢(𝑀𝑀), 𝑣𝑣(𝑀𝑀) and 𝑤𝑤(𝑀𝑀) do not depend on the baseline, it follows that their derivatives with 

respect to the position vectors will be zero. It is therefore straightforward to obtain the 

Jacobian of 𝜏𝜏(𝑀𝑀) with respect to 𝑠𝑠0 and 𝑠𝑠1: 

𝜕𝜕𝜏𝜏(𝑀𝑀)

𝜕𝜕𝑠𝑠0
= −𝐴𝐴−1𝑅𝑅0 

(C.28) 

and, 

𝜕𝜕𝜏𝜏(𝑀𝑀)

𝜕𝜕𝑠𝑠1
= 𝐴𝐴−1𝑅𝑅0 

(C.29) 

C.3.4 Derivatives of the triangulated point 

The Jacobian of 𝑀𝑀(𝑀𝑀) can now be recovered from equation (C.14) using the derivatives of 

𝜏𝜏(𝑀𝑀). The vector 𝑢𝑢(𝑀𝑀) is a constant and therefore does not depend on 𝜂𝜂0, 𝜂𝜂1, 𝑠𝑠0 and 𝑠𝑠1, while 

𝑤𝑤(𝑀𝑀) depends only on relative orientation. 

 The derivative of 𝑀𝑀(𝑀𝑀) with respect to camera orientation in the first frame is, 

𝜕𝜕𝑀𝑀(𝑀𝑀)

𝜕𝜕𝜂𝜂0
= �𝑢𝑢(𝑀𝑀)[1 0 0] −

1
2𝑤𝑤

(𝑀𝑀)[0 0 1]�
𝜕𝜕𝜏𝜏(𝑀𝑀)

𝜕𝜕𝜂𝜂0
−

1
2

[0 0 1]𝜏𝜏(𝑀𝑀) 𝜕𝜕𝑤𝑤
(𝑀𝑀)

𝜕𝜕𝜂𝜂0
 (C.30) 

Similarly, the derivative with respect to 𝜂𝜂1 is, 

𝜕𝜕𝑀𝑀(𝑀𝑀)

𝜕𝜕𝜂𝜂1
= �𝑢𝑢(𝑀𝑀)[1 0 0] −

1
2𝑤𝑤

(𝑀𝑀)[0 0 1]�
𝜕𝜕𝜏𝜏(𝑀𝑀)

𝜕𝜕𝜂𝜂1
−

1
2

[0 0 1]𝜏𝜏(𝑀𝑀) 𝜕𝜕𝑤𝑤
(𝑀𝑀)

𝜕𝜕𝜂𝜂1
 (C.31) 

 In terms of the position vectors 𝑠𝑠0 and 𝑠𝑠1, the derivatives will be slightly different, 

provided that 𝑢𝑢(𝑀𝑀) and 𝑤𝑤(𝑀𝑀) do not depend on the baseline: 

𝜕𝜕𝑀𝑀(𝑀𝑀)

𝜕𝜕𝑠𝑠0
= �𝑢𝑢(𝑀𝑀)[1 0 0] −

1
2𝑤𝑤

(𝑀𝑀)[0 0 1]�
𝜕𝜕𝜏𝜏(𝑀𝑀)

𝜕𝜕𝑠𝑠0
 (C.32) 

and, 

𝜕𝜕𝑀𝑀(𝑀𝑀)

𝜕𝜕𝑠𝑠1
= �𝑢𝑢(𝑀𝑀)[1 0 0] −

1
2𝑤𝑤

(𝑀𝑀)[0 0 1]�
𝜕𝜕𝜏𝜏(𝑀𝑀)

𝜕𝜕𝑠𝑠1
 (C.33) 
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Appendix D 

Properties of the Euclidean epipolar constraint and 

scene reconstruction from two views 

D.1 Disambiguation 

The essential matrix can be written as the product of an orthonormal matrix and a cross-

product skew symmetric matrix. This product has several different manifestations in 

literature, depending on how one interprets geometrically the orthonormal matrix and the 

cross product vector. In this analysis, to avoid ambiguities and in order to be consistent 

with the contents of this thesis as well as the given formulas on the properties of the 

essential matrix and scene reconstruction, the following formalism is used: 

𝐸𝐸 = 𝑅𝑅𝑇𝑇[𝑏𝑏]× (D.1) 

where 𝑅𝑅 contains the three unit vectors comprising the second camera coordinate frame 

arranged column-wise and 𝑏𝑏 is the baseline vector expressed in the first camera frame. To 

motivate the above formalism, a quick overview on how local coordinates transform from 

one camera frame to another in regards to the orthonormal matrix 𝑅𝑅. 

D.1.2 Moving between coordinate frames 

The goal of this section is to derive a formula for the coordinates of a 3D point M in a given 

camera frame located at a location b, given the orientation of the frame as three unit vectors 

(𝑢𝑢1,𝑢𝑢2,𝑢𝑢3), where b and 𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3 are expressed in terms of the first camera frame 

(𝑤𝑤1,𝑤𝑤2,𝑤𝑤3) which is chosen for global reference. Figure D.1 illustrates the two frames, the 

baseline and the vectors that connect the two camera centers with the point M. 
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Figure D.1. The two camera frames; the baseline and the vectors that connect the two camera 
centers 𝑂𝑂1 and 𝑂𝑂2 with M are indicated with dashed lines. 

Let now 𝑀𝑀1 = 𝑀𝑀 be the coordinates of 𝑀𝑀 in the first camera frame and 𝑀𝑀2 the respective 

coordinates in the second camera frame. Also, let (𝑂𝑂2𝑀𝑀)1 be the vector 𝑂𝑂2𝑀𝑀 expressed in 

the coordinate frame of the first camera. Then, the coordinates of 𝑀𝑀2 will be the projections 

of  (𝑂𝑂2𝑀𝑀)1 on the direction vectors 𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3: 

𝑀𝑀2 = �
𝑢𝑢1𝑇𝑇(𝑂𝑂2𝑀𝑀)1
𝑢𝑢2𝑇𝑇(𝑂𝑂2𝑀𝑀)1
𝑢𝑢3𝑇𝑇(𝑂𝑂2𝑀𝑀)1

� = �
𝑢𝑢1𝑇𝑇

𝑢𝑢2𝑇𝑇

𝑢𝑢3𝑇𝑇
� (𝑂𝑂2𝑀𝑀)1 = [𝑢𝑢1 𝑢𝑢2 𝑢𝑢3]𝑇𝑇(𝑂𝑂2𝑀𝑀)1 = 𝑅𝑅𝑇𝑇(𝑂𝑂2𝑀𝑀)1 (D.2) 

But (𝑂𝑂2𝑀𝑀)1 can be written as the difference of vectors (𝑂𝑂1𝑀𝑀)1 = 𝑀𝑀1 and b: 

(𝑂𝑂2𝑀𝑀)1 = 𝑀𝑀 − 𝑏𝑏 (D.3) 

Substituting from (D.3) into (D.2) yields: 

𝑀𝑀2 = 𝑅𝑅𝑇𝑇(𝑀𝑀1 − 𝑏𝑏) (D.4) 

D.2 Properties of the essential matrix 

The most important properties of the essential matrix are listed in this section. These 

properties are very useful either as constraints or as supplementary formulas in the course 

of scene structure and relative camera pose estimation. 

Lemma D.1. Suppose E is an essential matrix. Then, the epipoles 𝑒𝑒1 and 𝑒𝑒2 are the 

left and right null spaces of E respectively. 
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Proof. Since the epipoles are the scaled images of the camera centers, then there 

exist 𝜆𝜆1 and 𝜆𝜆2 such that 𝑒𝑒2 = −𝜆𝜆2𝑅𝑅𝑇𝑇𝑏𝑏 and 𝑒𝑒1 = 𝜆𝜆1𝑏𝑏. By the expression of the essential 

matrix in equation (D.1), 𝛦𝛦 = 𝑅𝑅𝑇𝑇[𝑏𝑏]×. Therefore: 

𝑒𝑒2𝑇𝑇𝐸𝐸 = −𝜆𝜆2(𝑅𝑅𝑇𝑇𝑏𝑏)𝑇𝑇𝑅𝑅𝑇𝑇[𝑏𝑏]× = −𝜆𝜆2𝑏𝑏𝑇𝑇 𝑅𝑅𝑅𝑅𝑇𝑇�
𝑑𝑑3

[𝑏𝑏]× = −𝜆𝜆2 𝑏𝑏𝑇𝑇[𝑏𝑏]×���
−𝜕𝜕×𝜕𝜕=0

= 0 (D.5) 

Also, 

𝐸𝐸𝑒𝑒1 = 𝜆𝜆2𝑅𝑅𝑇𝑇 [𝑏𝑏]×𝑏𝑏���
𝜕𝜕×𝜕𝜕=0

= 0 (D.6) 

Lemma D.2. Any point 𝑚𝑚1, 𝑚𝑚2 has an associated epipolar line 𝑙𝑙1, 𝑙𝑙2 in the opposite view 

given by: 

𝑙𝑙2 = 𝐸𝐸𝑚𝑚1 = 𝑒𝑒2 × 𝑚𝑚2        𝑙𝑙1 = 𝐸𝐸𝑚𝑚2 = 𝑒𝑒1 × 𝑚𝑚1 

Proof. The proof is a direct consequence of the epipolar constraint for 𝑚𝑚1 and 𝑚𝑚2. 

Lemma D.3 For any orthonormal matrix 𝑅𝑅 ∈ ℝ3×3 and for any vector 𝑎𝑎 ∈ ℝ3 the 

following holds: 

[𝑅𝑅𝑎𝑎]× = 𝑅𝑅[𝑎𝑎]×𝑅𝑅𝑇𝑇 (D.7) 

Proof. Let R be an orthonormal matrix. Then by the definition of cross-product,  

(𝑅𝑅𝑎𝑎) × 𝑏𝑏 = [𝑅𝑅𝑎𝑎]×𝑏𝑏   (D.8) 

Multiplying (D.8) with 𝑅𝑅𝑇𝑇 from the left yields, 

𝑅𝑅𝑇𝑇�(𝑅𝑅𝑎𝑎) × 𝑏𝑏� = 𝑅𝑅𝑇𝑇[𝑅𝑅𝑎𝑎]×𝑏𝑏 (D.9) 

We now resort to the following property of the cross product that holds for any linear 

transformation M and any pair of vectors a, b: 

(𝑀𝑀𝑎𝑎) × (𝑀𝑀𝑏𝑏) = 𝑀𝑀(𝑎𝑎 × 𝑏𝑏) (D.10) 

Making use of the cross product property in (D.10), equation (D.9) becomes: 

(𝑅𝑅𝑇𝑇𝑅𝑅)𝑎𝑎 × (𝑅𝑅𝑇𝑇𝑏𝑏) = 𝑅𝑅𝑇𝑇[𝑅𝑅𝑎𝑎]×𝑏𝑏  

⇔ 𝑎𝑎 × (𝑅𝑅𝑇𝑇𝑏𝑏) = 𝑅𝑅𝑇𝑇[𝑅𝑅𝑎𝑎]×𝑏𝑏  

⇔ [𝑎𝑎]×𝑅𝑅𝑇𝑇𝑏𝑏 = 𝑅𝑅𝑇𝑇[𝑅𝑅𝑎𝑎]×𝑏𝑏 ⇔ ([𝑎𝑎]×𝑅𝑅𝑇𝑇 − 𝑅𝑅𝑇𝑇[𝑅𝑅𝑎𝑎]×)𝑏𝑏 = 0  
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⇔ [𝑎𝑎]× = 𝑅𝑅𝑇𝑇[𝑅𝑅𝑎𝑎]×𝑅𝑅 (D.11) 

A very significant theorem that provides a simple but hard criterion for the 

existence of an essential matrix is the following (Faugeras, Luong et al. 2004). 

Theorem D.1. A 3𝑥𝑥3 matrix E is an essential matrix if and only if it has a singular value 

decomposition 𝐸𝐸 = 𝑈𝑈𝑆𝑆𝑉𝑉𝑇𝑇 such that: 

𝑆𝑆 = 𝑑𝑑𝑚𝑚𝑎𝑎𝑙𝑙{𝜎𝜎,𝜎𝜎, 0}, 𝜎𝜎 > 0 

where U, V are orthonormal matrices. 

Proof. Let E be an essential matrix. Then, E is given by, 𝛦𝛦 = 𝑅𝑅𝑇𝑇[𝑏𝑏]×. Taking 𝐸𝐸𝑇𝑇𝐸𝐸 yields,  

𝐸𝐸𝑇𝑇𝐸𝐸 = (𝑅𝑅𝑇𝑇[𝑏𝑏]×)𝑇𝑇𝑅𝑅𝑇𝑇[𝑏𝑏]× = [𝑏𝑏]×
𝑇𝑇𝑅𝑅𝑅𝑅𝑇𝑇𝑅𝑅𝑇𝑇[𝑏𝑏]× = [𝑏𝑏]×

𝑇𝑇[𝑏𝑏]× (D.12) 

Let now R0 be the rotation that aligns the baseline vector with the z-axis, that is, 𝑅𝑅0𝑏𝑏 =

[0 0 ‖𝑏𝑏‖]𝑇𝑇. Then, using lemma D.3, it follows that [𝑎𝑎]× = 𝑅𝑅0𝑇𝑇[𝑅𝑅0𝑏𝑏]×𝑅𝑅0. Substituting in 

(D.7) yields, 

𝐸𝐸𝑇𝑇𝐸𝐸 = �𝑅𝑅0
𝑇𝑇[𝑅𝑅0𝑎𝑎]×𝑅𝑅0�

𝑇𝑇
𝑅𝑅0

𝑇𝑇[𝑅𝑅0𝑎𝑎]×𝑅𝑅0 = 𝑅𝑅0
𝑇𝑇[𝑅𝑅0𝑎𝑎]×

𝑇𝑇[𝑅𝑅0𝑎𝑎]×[𝑅𝑅0𝑎𝑎]×𝑅𝑅0  

⇔ 𝐸𝐸𝑇𝑇𝐸𝐸 = 𝑅𝑅0𝑇𝑇 �
0 ‖𝑏𝑏‖ 0

−‖𝑏𝑏‖ 0 0
0 0 0

� �
0 −‖𝑏𝑏‖ 0
‖𝑏𝑏‖ 0 0

0 0 0
� 𝑅𝑅0 

 

 

⇔ 𝐸𝐸𝑇𝑇𝐸𝐸 = 𝑅𝑅0𝑇𝑇 �
‖𝑏𝑏‖2 0 0

0 ‖𝑏𝑏‖2 0
0 0 0

� 𝑅𝑅0 (D.13) 

The decomposition of equation (D.13) is a SVD (one out many) of 𝐸𝐸𝑇𝑇𝐸𝐸. Hence, E will also 

decompose as follows: 

𝐸𝐸 = 𝑈𝑈 �
‖𝑏𝑏‖ 0 0

0 ‖𝑏𝑏‖ 0
0 0 0

� 𝑅𝑅0 (D.14) 

for some orthonormal matrix U. 

 Let now E be a 3𝑥𝑥3 matrix with two exactly non-zero singular values which are equal. In 

this case, it is easier to proceed by gradually constructing the sought result. The decomposition of 

the matrix E is, 
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𝐸𝐸 = 𝑈𝑈 �
𝑠𝑠 0 0
0 𝑠𝑠 0
0 0 0

� 𝑉𝑉𝑇𝑇 = 𝑈𝑈𝑆𝑆𝑉𝑉𝑇𝑇 (D.15) 

where U and V are orthonormal matrices. The construction that follows is relying on the observation 

that S can be written in the following way: 

𝑆𝑆 = �
0 1 0
−1 0 0
0 0 1

� �
𝜎𝜎 0 0
0 𝜎𝜎 0
0 0 0

� �
0 −1 0
1 0 0
0 0 1

� = 𝑅𝑅𝑧𝑧 �−
𝜋𝜋
2� 𝑆𝑆𝑅𝑅𝑧𝑧 �−

𝜋𝜋
2�

𝑇𝑇
 (D.16) 

or, 

𝑆𝑆 = �
0 −1 0
1 0 0
0 0 1

� �
𝜎𝜎 0 0
0 𝜎𝜎 0
0 0 0

� �−
0 1 0
1 0 0
0 0 1

� = 𝑅𝑅𝑧𝑧 �
𝜋𝜋
2� 𝑆𝑆𝑅𝑅𝑧𝑧 �

𝜋𝜋
2�

𝑇𝑇
 (D.17) 

 

where 𝑅𝑅𝑧𝑧 �−
𝜋𝜋
2
� and 𝑅𝑅𝑧𝑧 �

𝜋𝜋
2
� are rotations by ±𝜋𝜋/2 about the z axis. We observed that the 

product of S with the preceding or following rotation yields a skew symmetric matrix: 

𝑆𝑆 = �𝑅𝑅𝑧𝑧 �
𝜋𝜋
2� 𝑆𝑆��������

𝑖𝑖𝑘𝑘𝑝𝑝𝑠𝑠 𝑖𝑖𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑀𝑀𝑀𝑀𝑖𝑖

𝑅𝑅𝑧𝑧 �
𝜋𝜋
2�

𝑇𝑇
= �

0 −𝜎𝜎 0
𝜎𝜎 0 0
0 0 0

� 𝑅𝑅𝑧𝑧 �
𝜋𝜋
2�

𝑇𝑇
 (D.18) 

or, 

𝑆𝑆 = 𝑅𝑅𝑧𝑧 �−
𝜋𝜋
2�
�𝑆𝑆𝑅𝑅𝑧𝑧 �−

𝜋𝜋
2�

𝑇𝑇
����������

𝑖𝑖𝑘𝑘𝑝𝑝𝑠𝑠 𝑖𝑖𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑀𝑀𝑀𝑀𝑖𝑖

= �
0 𝜎𝜎 0
−𝜎𝜎 0 0
0 0 0

� 𝑅𝑅𝑧𝑧 �−
𝜋𝜋
2�

𝑇𝑇
 (D.19) 

Now, the property of skew symmetric matrices in lemma D.3 can be of great use in a 

heuristic sense. In particular, it guarantees that for any rotation matrix U and for any skew 

symmetric matrix 𝑆𝑆×, the matrix 𝑈𝑈𝑆𝑆×𝑈𝑈𝑇𝑇  is also a skew symmetric matrix. In the light of 

this consequence and choosing (D.18), the SVD of E can be expressed as follows: 

𝐸𝐸 = 𝑈𝑈𝑅𝑅𝑧𝑧 �−
𝜋𝜋
2�
�
0 −𝜎𝜎 0
𝜎𝜎 0 0
0 0 0

�𝑉𝑉𝑇𝑇

= 𝑈𝑈𝑅𝑅𝑧𝑧 �−
𝜋𝜋
2�

𝑇𝑇
𝑉𝑉𝑇𝑇𝑉𝑉𝑅𝑅𝑧𝑧 �−

𝜋𝜋
2����������������

𝑝𝑝𝑞𝑞𝑢𝑢𝑀𝑀𝑙𝑙 𝑡𝑡𝑜𝑜 𝑀𝑀𝑑𝑑𝑝𝑝𝑖𝑖𝑡𝑡𝑀𝑀𝑡𝑡𝑦𝑦

�
0 −𝜎𝜎 0
𝜎𝜎 0 0
0 0 0

� 𝑅𝑅𝑧𝑧 �−
𝜋𝜋
2�

𝑇𝑇
𝑉𝑉𝑇𝑇 
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⇔ 𝐸𝐸 = �𝑈𝑈𝑅𝑅𝑧𝑧 �−
𝜋𝜋
2�

𝑇𝑇
𝑉𝑉𝑇𝑇������������

𝑀𝑀 𝑀𝑀𝑜𝑜𝑡𝑡𝑀𝑀𝑡𝑡𝑀𝑀𝑜𝑜𝑖𝑖 𝑝𝑝𝑀𝑀𝑡𝑡𝑀𝑀𝑀𝑀𝑥𝑥

�𝑉𝑉𝑅𝑅𝑧𝑧 �−
𝜋𝜋
2��

�
0 −𝜎𝜎 0
𝜎𝜎 0 0
0 0 0

� �𝑉𝑉𝑅𝑅𝑧𝑧 �−
𝜋𝜋
2��

𝑇𝑇

���������������������������
𝑀𝑀 𝑖𝑖𝑘𝑘𝑝𝑝𝑠𝑠 𝑖𝑖𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑀𝑀𝑀𝑀𝑖𝑖 𝑝𝑝𝑀𝑀𝑡𝑡𝑀𝑀𝑀𝑀𝑥𝑥 𝜕𝜕𝑦𝑦 𝑣𝑣𝑀𝑀𝑀𝑀𝑡𝑡𝑢𝑢𝑝𝑝 𝑜𝑜𝑜𝑜 𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑀𝑀 𝜕𝜕.3

 (D.20) 

In the very same way, one arrives at a similar result starting from (D.19): 

𝐸𝐸 = �𝑈𝑈𝑅𝑅𝑧𝑧 �
𝜋𝜋
2�

𝑇𝑇
𝑉𝑉𝑇𝑇������������

𝑀𝑀 𝑀𝑀𝑜𝑜𝑡𝑡𝑀𝑀𝑡𝑡𝑀𝑀𝑜𝑜𝑖𝑖 𝑝𝑝𝑀𝑀𝑡𝑡𝑀𝑀𝑀𝑀𝑥𝑥

�𝑉𝑉𝑅𝑅𝑧𝑧 �
𝜋𝜋
2��

�
0 𝜎𝜎 0
−𝜎𝜎 0 0
0 0 0

� �𝑉𝑉𝑅𝑅𝑧𝑧 �
𝜋𝜋
2��

𝑇𝑇

�������������������������
𝑀𝑀 𝑖𝑖𝑘𝑘𝑝𝑝𝑠𝑠 𝑖𝑖𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑀𝑀𝑀𝑀𝑖𝑖 𝑝𝑝𝑀𝑀𝑡𝑡𝑀𝑀𝑀𝑀𝑥𝑥 𝜕𝜕𝑦𝑦 𝑣𝑣𝑀𝑀𝑀𝑀𝑡𝑡𝑢𝑢𝑝𝑝 𝑜𝑜𝑜𝑜 𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑀𝑀 𝜕𝜕.3

 (D.21) 

The only remaining “loose end” now is to show that matrices 𝑈𝑈𝑅𝑅𝑧𝑧 �−
𝜋𝜋
2
�
𝑇𝑇
𝑉𝑉𝑇𝑇 and 

𝑈𝑈𝑅𝑅𝑧𝑧 �
𝜋𝜋
2
�
𝑇𝑇
𝑉𝑉𝑇𝑇 are indeed rotation matrices. Since the product involves both U and V, then 

the sign of the product of their determinants should be positive due to the fact that these 

matrices participate in the SVD of 𝐸𝐸𝑇𝑇𝐸𝐸 which always has a positive determinant. And since 

the determinant of 𝑅𝑅𝑧𝑧 is also positive, it follows that the two aforementioned products are 

orthonormal matrices with positive determinants, hence rotations. And that concludes the 

proof. 

Lemma D.4. If E is an essential matrix such that 𝐸𝐸 = 𝑅𝑅𝑇𝑇[𝑏𝑏]×, then: 

𝑇𝑇𝑇𝑇(𝐸𝐸𝐸𝐸𝑇𝑇) = 𝑇𝑇𝑇𝑇(𝐸𝐸𝑇𝑇𝐸𝐸) = 2‖𝑏𝑏‖2 

Proof. Taking 𝐸𝐸𝑇𝑇𝐸𝐸 yields: 

𝐸𝐸𝑇𝑇𝐸𝐸 = (𝑅𝑅𝑇𝑇[𝑏𝑏]×)𝑇𝑇𝑅𝑅𝑇𝑇[𝑏𝑏]× = −[𝑏𝑏]×
2 (D.22) 

If now 𝑏𝑏 = [𝑏𝑏1 𝑏𝑏2 𝑏𝑏3]𝑇𝑇, then, 

𝐸𝐸𝑇𝑇𝐸𝐸 = −�
0 −𝑏𝑏3 𝑏𝑏2
𝑏𝑏3 0 −𝑏𝑏1
−𝑏𝑏2 𝑏𝑏1 0

�

2

= �
𝑏𝑏2

2 + 𝑏𝑏3
2 −𝑏𝑏1𝑏𝑏2 −𝑏𝑏1𝑏𝑏3

−𝑏𝑏1𝑏𝑏2 𝑏𝑏1
2 + 𝑏𝑏3

2 −𝑏𝑏2𝑏𝑏3
−𝑏𝑏1𝑏𝑏3 −𝑏𝑏2𝑏𝑏3 𝑏𝑏1

2 + 𝑏𝑏2
2
� (D.23) 

From (D.23) it is clear that 𝑇𝑇𝑇𝑇(𝐸𝐸𝑇𝑇𝐸𝐸) = 2(𝑏𝑏12 + 𝑏𝑏22 + 𝑏𝑏32) = 2‖𝑏𝑏‖2. 

 In the case of 𝐸𝐸𝐸𝐸𝑇𝑇 , the following is obtained: 

𝐸𝐸𝐸𝐸𝑇𝑇 = 𝑅𝑅𝑇𝑇[𝑏𝑏]×(𝑅𝑅𝑇𝑇[𝑏𝑏]×)𝑇𝑇 = −𝑅𝑅𝑇𝑇[𝑏𝑏]×
2𝑅𝑅  

⇔ 𝐸𝐸𝐸𝐸𝑇𝑇 = (𝑅𝑅𝑇𝑇[𝑏𝑏]×𝑅𝑅)(𝑅𝑅𝑇𝑇[𝑏𝑏]×𝑅𝑅) (D.24) 
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Once again, lemma D.3 states that [𝑏𝑏]× = 𝑅𝑅𝑇𝑇[𝑅𝑅𝑏𝑏]×𝑅𝑅 for any orthogonal matrix R. Hence, 

(D.24) becomes: 

𝐸𝐸𝐸𝐸𝑇𝑇 = �𝑅𝑅𝑇𝑇 (𝑅𝑅[𝑏𝑏]×𝑅𝑅𝑇𝑇)�������
[𝜕𝜕]×

𝑅𝑅��𝑅𝑅𝑇𝑇 (𝑅𝑅[𝑏𝑏]×𝑅𝑅𝑇𝑇)�������
[𝜕𝜕]×

𝑅𝑅� = −[𝑏𝑏]×
2 (D.25) 

And since ‖𝑅𝑅𝑇𝑇𝑏𝑏‖ = ‖𝑏𝑏‖, it follows from (D.18) that 𝑇𝑇𝑇𝑇(𝐸𝐸𝐸𝐸𝑇𝑇) = 2‖𝑏𝑏‖2. 

Theorem D.5. A 3 × 3 non-zero matrix E is an essential matrix if and only if the following 

relationship holds: 

𝐸𝐸𝐸𝐸𝑇𝑇𝐸𝐸 =
𝑇𝑇𝑇𝑇(𝐸𝐸𝑇𝑇𝐸𝐸)

2
𝐸𝐸 

Proof. Proving that the validity of the relationship implies that E is an essential matrix 

could be done through its SVD. Let 𝐸𝐸 = 𝑈𝑈𝑆𝑆𝑉𝑉𝑇𝑇 where 𝑈𝑈, 𝑉𝑉𝑇𝑇 are orthonormal matrices and 

𝑆𝑆 is a diagonal matrix with positive entries. Substituting in the given relationship, yields: 

𝐸𝐸𝐸𝐸𝑇𝑇𝐸𝐸 −
𝑇𝑇𝑇𝑇(𝐸𝐸𝐸𝐸𝑇𝑇)

2 𝐸𝐸 = 𝑈𝑈𝑆𝑆2𝑈𝑈𝑇𝑇𝑈𝑈𝑆𝑆𝑉𝑉𝑇𝑇 −
𝑇𝑇𝑇𝑇(𝐸𝐸𝐸𝐸𝑇𝑇)

2 𝑈𝑈𝑆𝑆𝑉𝑉𝑇𝑇 = 0  

⇔ 𝑆𝑆2 =  
𝑇𝑇𝑇𝑇(𝐸𝐸𝐸𝐸𝑇𝑇)

2 𝑆𝑆 (D.26) 

Let 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠2 be the singular values of 𝑆𝑆. Then, the trace of 𝐸𝐸𝐸𝐸𝑇𝑇  should be equal to the sum 

of the squared singular values: 

𝑇𝑇𝑇𝑇(𝐸𝐸𝐸𝐸𝑇𝑇) = 𝑠𝑠12 + 𝑠𝑠22 + 𝑠𝑠32 (D.27) 

 It follows from (D.26) and (D.27) that, 

2𝑠𝑠13 =  (𝑠𝑠12 + 𝑠𝑠22 + 𝑠𝑠32)𝑠𝑠1 

2𝑠𝑠23 =  (𝑠𝑠12 + 𝑠𝑠22 + 𝑠𝑠32)𝑠𝑠2 

2𝑠𝑠33 =  (𝑠𝑠12 + 𝑠𝑠22 + 𝑠𝑠32)𝑠𝑠1 

(D.28) 

Since E is non-zero, one singular value must be strictly positive. Without constraining 

generality, let 𝑠𝑠1 be strictly positive. It follows that, 

𝑠𝑠12 =
(𝑠𝑠12 + 𝑠𝑠22 + 𝑠𝑠32)

2 ⇔ 𝑠𝑠12 = 𝑠𝑠12 + 𝑠𝑠22 (D.29) 

Substituting in the expression for the second singular value in (D.23) yields: 
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𝑠𝑠23 = (𝑠𝑠22 + 𝑠𝑠32)𝑠𝑠2 ⇔ 𝑠𝑠2𝑠𝑠32 = 0 (D.30) 

It follows that either 𝑠𝑠2 or 𝑠𝑠3 is zero. If they are both zero, then so is 𝑠𝑠1 which is a 

contradiction. Exactly 2 of the 3 singular values are non-zero and have the same value, 

𝑠𝑠1 = 𝑠𝑠2 = 𝑇𝑇𝑀𝑀�𝐸𝐸𝐸𝐸𝑇𝑇�
2

. 

 Consider now the opposite direction case in which we know that E is an essential 

matrix. Taking the given relationship and substituting from (D.22) and using the fact that 

[𝑏𝑏]×
2 = 𝑏𝑏𝑏𝑏𝑇𝑇 − ‖𝑏𝑏‖2𝐼𝐼, we have: 

𝐸𝐸 𝐸𝐸𝑇𝑇𝐸𝐸�
−[𝜕𝜕]×

2
= −𝐸𝐸 [𝑏𝑏]×

2�
𝜕𝜕𝜕𝜕𝑇𝑇−‖𝜕𝜕‖2𝑑𝑑

= ‖𝑏𝑏‖2𝐸𝐸 − 𝐸𝐸⏟
𝑅𝑅𝑇𝑇[𝜕𝜕]×

𝑏𝑏𝑏𝑏𝑇𝑇 = ‖𝑏𝑏‖2𝐸𝐸 − 𝑅𝑅𝑇𝑇 [𝑏𝑏]×𝑏𝑏���
03×1

𝑏𝑏𝑇𝑇

= ‖𝑏𝑏‖2�
𝑇𝑇𝑀𝑀(𝐸𝐸𝑇𝑇𝐸𝐸)

2

𝐸𝐸 =
𝑇𝑇𝑇𝑇(𝐸𝐸𝑇𝑇𝐸𝐸)

2 𝐸𝐸 
(D.31) 

where 03×1 is the zero 3 × 1 vector. And that concludes the proof in the opposite direction. 

D.3 Extracting relative pose from the essential matrix 

The method for relative pose extraction detailed in this section is loosely based on the 

brilliant observation by Berthold Horn (Horn 1990) that the matrix of cofactors of an 

essential matrix can be expressed in terms of the rotation matrix, the skew symmetric 

matrix of the baseline and the essential matrix itself. 

 

Figure D.1. The geometry induced by the projections of a 3D point M in two camera views. 

 Consider a 3D point M and its normalized Euclidean projections 𝑚𝑚1 and 𝑚𝑚2 in two 

views as show in Figure D.1. With the essential matrix in place, the next step is to obtain 
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the rotation matrix R and the unit-length baseline vector b. As a first step, from theorem 

D.1, scale can be removed from the essential matrix by dividing it with ‖𝑏𝑏‖. Also, lemma 

D.4 states that 𝑇𝑇𝑇𝑇(𝐸𝐸𝑇𝑇𝐸𝐸) = 2‖𝑏𝑏‖2; thus, a “normalized” essential matrix 𝐸𝐸𝑖𝑖 is obtained as 

follows: 

𝐸𝐸𝑖𝑖 =
𝐸𝐸

�𝑇𝑇𝑇𝑇(𝐸𝐸𝑇𝑇𝐸𝐸)
2

 
(D.32) 

D.3.1 Baseline 

From lemma D.4 it is easy to extract the absolute values of the baseline components as 

follows: 

|𝑏𝑏1| = �1 − [𝐸𝐸𝑖𝑖𝑇𝑇𝐸𝐸𝑖𝑖]11 (D.33) 

|𝑏𝑏2| = �1 − [𝐸𝐸𝑖𝑖𝑇𝑇𝐸𝐸𝑖𝑖]22 (D.34) 

|𝑏𝑏3| = �1 − [𝐸𝐸𝑖𝑖𝑇𝑇𝐸𝐸𝑖𝑖]33 (D.35) 

where [𝐸𝐸𝑖𝑖𝑇𝑇𝐸𝐸𝑖𝑖]𝑀𝑀𝑖𝑖  denotes the element of 𝐸𝐸𝑖𝑖𝑇𝑇𝐸𝐸𝑖𝑖 in the ith row and jth column. To resolve the 

sign ambiguity, the largest squared component is assumed to be a positive square root and 

the remaining signs are inferred from the off-diagonal elements of 𝐸𝐸𝑖𝑖𝑇𝑇𝐸𝐸𝑖𝑖: 

𝐸𝐸𝑖𝑖𝑇𝑇𝐸𝐸𝑖𝑖 = �
𝑏𝑏22 + 𝑏𝑏32 −𝑏𝑏1𝑏𝑏2 −𝑏𝑏1𝑏𝑏3
−𝑏𝑏1𝑏𝑏2 𝑏𝑏12 + 𝑏𝑏32 −𝑏𝑏2𝑏𝑏3
−𝑏𝑏1𝑏𝑏3 −𝑏𝑏2𝑏𝑏3 𝑏𝑏12 + 𝑏𝑏22

� (D.36) 

It suffices to recover one baseline vector from 𝐸𝐸𝑖𝑖𝑇𝑇𝐸𝐸𝑖𝑖 as described above, as the second 

baseline will simply be a vector of opposite direction. 

D.3.2 Orientation 

Recovering the rotation matrix requires slightly more elaborate pre-processing. Consider 

the matrix of cofactors of  𝐸𝐸𝑖𝑖: 
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𝐶𝐶𝑖𝑖 =

⎣
⎢
⎢
⎢
⎢
⎡ �
𝑒𝑒22 𝑒𝑒23
𝑒𝑒32 𝑒𝑒33� − �

𝑒𝑒21 𝑒𝑒23
𝑒𝑒31 𝑒𝑒33� �

𝑒𝑒21 𝑒𝑒22
𝑒𝑒31 𝑒𝑒32�

− �
𝑒𝑒12 𝑒𝑒13
𝑒𝑒32 𝑒𝑒33� �

𝑒𝑒11 𝑒𝑒13
𝑒𝑒31 𝑒𝑒33� − �

𝑒𝑒11 𝑒𝑒12
𝑒𝑒31 𝑒𝑒32�

�
𝑒𝑒12 𝑒𝑒13
𝑒𝑒22 𝑒𝑒23� − �

𝑒𝑒11 𝑒𝑒13
𝑒𝑒21 𝑒𝑒23� �

𝑒𝑒11 𝑒𝑒12
𝑒𝑒21 𝑒𝑒22� ⎦

⎥
⎥
⎥
⎥
⎤

 (D.37) 

Standard tensor notation is adopted to denote matrix rows and columns as well as elements 

for the following derivations. Thus, for instance, 𝑒𝑒𝑖𝑖𝑀𝑀 is the element of 𝐸𝐸𝑖𝑖 in the ith row and 

the jth column. Also, 𝑒𝑒𝑀𝑀 is the ith row of 𝐸𝐸𝑖𝑖 as a 1 × 3 vector, while 𝑒𝑒𝑖𝑖 is the jth column as a 

3 × 1 vector. With notation in place, we observe that  𝐶𝐶𝑖𝑖 can be written as follows: 

𝐶𝐶𝑖𝑖 = �
((𝑒𝑒2)𝑇𝑇 × (𝑒𝑒3)𝑇𝑇)𝑇𝑇
((𝑒𝑒3)𝑇𝑇 × (𝑒𝑒1)𝑇𝑇)𝑇𝑇
((𝑒𝑒1)𝑇𝑇 × (𝑒𝑒2)𝑇𝑇)𝑇𝑇

� (D.38) 

Also, 𝐸𝐸𝑖𝑖 can be expressed in terms of cross-products as follows: 

𝐸𝐸𝑖𝑖 = 𝑅𝑅𝑇𝑇[𝑏𝑏]× = �
𝑇𝑇1𝑇𝑇

𝑇𝑇2𝑇𝑇

𝑇𝑇3𝑇𝑇
� [𝑏𝑏]× = �

𝑇𝑇1𝑇𝑇[𝑏𝑏]×
𝑇𝑇2𝑇𝑇[𝑏𝑏]×
𝑇𝑇3𝑇𝑇[𝑏𝑏]×

� = �
−([𝑏𝑏]×𝑇𝑇1)𝑇𝑇

−([𝑏𝑏]×𝑇𝑇2)𝑇𝑇

−([𝑏𝑏]×𝑇𝑇3)𝑇𝑇
� = �

−(𝑏𝑏 × 𝑇𝑇1)𝑇𝑇

−(𝑏𝑏 × 𝑇𝑇2)𝑇𝑇

−(𝑏𝑏 × 𝑇𝑇3)𝑇𝑇
� (D.39) 

Substituting from (D.39) in (D.38) yields triple products in the rows of 𝐶𝐶𝑖𝑖; applying the 

well-known triple product expansion formula leaves cross product expression only between 

the columns of R (intermediate result) which can also be eliminated from the expression 

due to orthonormality (final expression on the right): 

𝐶𝐶𝑖𝑖 =

⎣
⎢
⎢
⎡�(𝑏𝑏 × 𝑇𝑇2) × (𝑏𝑏 × 𝑇𝑇3)�

𝑇𝑇

�(𝑏𝑏 × 𝑇𝑇3) × (𝑏𝑏 × 𝑇𝑇1)�
𝑇𝑇

�(𝑏𝑏 × 𝑇𝑇1) × (𝑏𝑏 × 𝑇𝑇2)�
𝑇𝑇
⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡�𝑏𝑏 ∙ (𝑇𝑇2 × 𝑇𝑇3)�����

𝑀𝑀1

� 𝑏𝑏𝑇𝑇

�𝑏𝑏 ∙ (𝑇𝑇3 × 𝑇𝑇1)�����
𝑀𝑀2

� 𝑏𝑏𝑇𝑇

�𝑏𝑏 ∙ (𝑇𝑇1 × 𝑇𝑇2)�����
𝑀𝑀3

� 𝑏𝑏𝑇𝑇
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= �
(𝑏𝑏 ∙ 𝑇𝑇1)𝑏𝑏𝑇𝑇

(𝑏𝑏 ∙ 𝑇𝑇2)𝑏𝑏𝑇𝑇

(𝑏𝑏 ∙ 𝑇𝑇3)𝑏𝑏𝑇𝑇
� (D.40) 

It is now easy to re-arrange the inner products in (D.35) in order to factor-out the columns 

of R: 

𝐶𝐶𝑖𝑖 = �
(𝑇𝑇1𝑇𝑇𝑏𝑏)𝑏𝑏𝑇𝑇

(𝑇𝑇2𝑇𝑇𝑏𝑏)𝑏𝑏𝑇𝑇

(𝑇𝑇3𝑇𝑇𝑏𝑏)𝑏𝑏𝑇𝑇
� = �

𝑇𝑇1𝑇𝑇(𝑏𝑏𝑏𝑏𝑇𝑇)
𝑇𝑇2𝑇𝑇(𝑏𝑏𝑏𝑏𝑇𝑇)
𝑇𝑇3𝑇𝑇(𝑏𝑏𝑏𝑏𝑇𝑇)

� = 𝑅𝑅𝑇𝑇(𝑏𝑏𝑏𝑏𝑇𝑇) (D.41) 

And a well-known skew symmetric matrix property is,  
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𝑏𝑏𝑏𝑏𝑇𝑇 = 𝐼𝐼3 + [𝑏𝑏]×
2  (D.42) 

Substituting (D.42) into (D.41) yields: 

𝐶𝐶𝑖𝑖 = 𝑅𝑅𝑇𝑇�𝐼𝐼3 + [𝑏𝑏]×
2 � = 𝑅𝑅𝑇𝑇 + (𝑅𝑅𝑇𝑇[𝑏𝑏]×)�������

𝐸𝐸𝑛𝑛

[𝑏𝑏]× = 𝑅𝑅𝑇𝑇 + 𝐸𝐸𝑏𝑏[𝑏𝑏]× ⇔ 𝑅𝑅 = 𝐶𝐶𝑏𝑏𝑇𝑇 + [𝑏𝑏]×𝐸𝐸𝑏𝑏𝑇𝑇 (D.43) 

And since b is sign-ambiguous, it follows that there exist two possible rotation matrices and 

can be obtaining by flipping the sign of [𝑏𝑏]× in (D.43): 

𝑅𝑅 = 𝐶𝐶𝑖𝑖𝑇𝑇 ± [𝑏𝑏]×𝐸𝐸𝑖𝑖𝑇𝑇 (D.44) 
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