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Infra-red divergences in plane wave backgrounds
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We show that the emission of soft photons via nonlinear Compton scattering in a pulsed plane
wave (laser field) is in general infra-red divergent. We give examples of both soft and soft-collinear
divergences, and we pay particular attention to the case of crossed fields in both classical and
quantum theories.

I. INTRODUCTION

There is growing interest in the use of strong laser fields
to probe both physics beyond the standard model [1, 2],
and the high-intensity, low-energy regime of QED [3–5].
Much of this interest is focussed on quantum effects such
as non-perturbative pair creation from the vacuum [6]
and vacuum birefringence [7]. As the centre-of-mass en-
ergies in laser-particle scattering are typically low com-
pared to accelerator experiments (laser frequencies are
in the range 1-104 eV [8, 9]) quantum effects are hard to
detect. However, the high intensity, or flux, of the laser
can compensate to some extent for the low energy [10].

The high field strengths of modern lasers require a non-
perturbative approach, with most progress having been
made when the laser fields are described by a plane
wave (this model holds for beams which are not too
tightly focussed [11, 12]). In this case, scattering am-
plitudes can be calculated for arbitrary field strengths
using Volkov propagators and wavefunctions [13–17]. Us-
ing this model, increasingly complex semi-classical (tree
level) processes are being studied; examples include
Compton scattering within the background field [18],
Møller scattering [19], trident pair production [20] and
the multi-photon emission processes

e−(p)
in laser−−−−→ e−(p′) + γ(k1) + γ(k2) + . . . γ(kn) . (1)

The n = 1 process is well-studied [21–25]. It goes by
the name ‘nonlinear Compton scattering’ since, for low
background field strengths, the scattering amplitude be-
comes a sum over ordinary Compton amplitudes for each
frequency in the background, see below. The case n = 2
has been considered in [26, 27]. The low field strength
amplitude for this process is proportional to that of two-
photon Compton scattering in ordinary QED,

e−(p) + γ(klaser)→ e−(p′) + γ(k1) + γ(k2) , (2)

which is infra-red (IR) divergent [28]. The divergence is
inherited by the full n = 2 process.
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In [29], an incoherent-sum approximation was used to
study large n, and it was observed that the (tree level)
probabilities P(n) for the processes (1) can exceed unity.
Investigating this statement is not entirely straightfor-
ward since, while it is conceptually trivial to calculate
S-matrix elements for arbitrary n, it is computationally
exhausting and multiple numerical integrations are re-
quired to obtain integrated probabilities1. Some intu-
ition can however be obtained by studying the classical
limit, in which the probabilities P(n) can be calculated
exactly; one finds [22, 31],

lim
~→0

P(n) =
1

n!
(Nγ)n , (3)

where Nγ is the classically obtained ‘number of photons’
emitted by a particle passing through a plane wave (see
below). There is no a priori reason why Nγ should be
smaller than one. For the n = 0 process, ‘scattering
without emission’, the total (tree level) probability is

P(0) ≡ 1 , (4)

without approximation and for arbitrary initial electron
momentum and an arbitrary plane wave. (This can only
be correct in the absence of the background field.) Hence,
the total probability of photon emission via (1) exceeds
unity. Something is clearly wrong, but it is not hard to
identify the origin of the problem and the higher order
corrections which will resolve it; (3) is the archetypal re-
lation associated to the infra-red problem. Let us there-
fore recall how IR divergences arise, and are dealt with,
in QED. (For a particularly lucid introduction to the IR
see [32, §6].)

One first encounters the IR problem in the process of
bremsstrahlung, which is the emission of a photon from
an electron as it passes a nucleus. The emitted photon
can be arbitrarily soft and this leads to an IR divergence,
already at tree level, when the emitted photon frequency
goes to zero. However, any detector has a finite resolu-
tion and therefore cannot distinguish between sufficiently
soft bremsstrahlung and scattering without emission; the
Bloch-Nordsieck result is that, when one considers the

1 See [30] for recent progress in stimulated pair production, ob-
tained from nonlinear Compton by crossing symmetry
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physically measurable sum of the probabilities of these
two IR divergent processes, the IR divergence cancels
between them [33]. IR divergences are not solely the
domain of bremsstrahlung, though. Ordinary Compton
scattering is infrared divergent at one-loop level. To can-
cel this divergence one must account for both ordinary
Compton scattering and double-Compton scattering of
one hard and one soft photon [34]. In general, then,
physically measurable quantities which account for de-
tector resolutions and experimentally indistinguishable
processes are IR finite [33, 35, 36].

The IR divergences in the n = 2 case of (1) have been
dealt with to date by inserting a cutoff or damping fac-
tor. Nor does it seem to have been noticed that nonlinear
Compton scattering, n = 1, can be IR divergent depend-
ing on the properties of the chosen background field: as
we will show, a divergence arises when the plane wave’s
physical fields (not its potential) contain a Fourier zero
mode. Such pulses are called ‘unipolar’ [37] and, physi-
cally, the presence of the zero mode means the pulse can
transfer a net acceleration to a particle. At this point
we should recall the ‘Lawson-Woodard theorem’ which
states (loosely) that vacuum solutions of Maxwell’s equa-
tions cannot transfer net energy to a particle, provided
the v ×B force vanishes, the interaction time is infinite,
there is no radiation reaction, and that the particle is al-
ways ultra-relativistic [38–40]. We deal here with pulsed
plane waves, which do exhibit the v × B force, have a
finite interaction time, and can be arbitrarily shaped,
giving particle arbitrary and time dependent velocities.
Thus, Lawson-Woodard does not apply [41].

Vacuum acceleration in a real laser field is not only
possible (see [42] for high-order Gaussian beam calcu-
lations and [43] for acceleration methods using multiple
beams) but has been observed [44]. Since plane waves
provide the most accessible and best understood models
of laser fields, we should clearly allow for plane waves
which model accelerating structure. The IR divergences
we discuss will also appear in more realistic geometries:
it is a good idea to understand the simplest model first.
Furthermore, we note that the problematic result (4)
holds even for ‘ordinary’ (non unipolar) plane waves.

The purpose of this paper is therefore to carefully ex-
amine the origin and severity of IR divergences in plane
wave backgrounds, starting with the classical theory and
then considering tree level quantum calculations. The
presentation is intended to be pedagogical. In a sequel
paper, the divergences will be removed by calculating the
appropriate higher order corrections.

The paper is organised as follows. We begin in Sect. II
with a general discussion of classical radiation and the ‘IR
catastrophe’. In Sect. III we apply this to the particular
case of a plane wave background and show how the IR
sector of the emission spectrum is related to the net en-
ergy transferred by the plane wave. In Sect. IV, we turn
to QED. LSZ reduction formulae are derived for unipo-
lar plane waves, and this produces Volkov solutions with
the correct boundary conditions. Using these, nonlinear

Compton scattering is addressed in Sect. V and shown to
be IR divergent. We investigate the soft and perturba-
tive limits, and compare with both bremsstrahlung and
ordinary Compton scattering. We also discuss the seem-
ingly contradictory example of crossed fields (constant
plane waves), which can accelerate but do not lead to an
IR divergence. We will see that existing literature results
are indeed IR finite, but that they describe an unphysical
scattering process which has little to do with experiment.
We conclude in Sect. VI.

II. CLASSICAL RADIATION: IR BEHAVIOUR

Consider a particle moving in an arbitrary background
field. All that is required for a covariant evaluation of
the particle radiation is its trajectory xµ as a function
of proper time τ . From this trajectory, one forms the
Fourier transformed current,

jµ(k′) = e

∫
dτ uµ(τ) eik

′·x(τ) , (5)

where uµ(τ) ≡ ẋµ(τ) is the four-velocity of the parti-
cle. Next, one uses Poynting’s theorem and the Lienard-
Wiechert potential [45], or the advanced/retarded
Green’s functions [46], to obtain the following expression
for the four-momentum Pµ of the radiation field:

Pµ = −1

2

∫
d4k′

(2π)3
sign(k′0) δ(k′2) k′µ j(k′)·j∗(k′) . (6)

Integrating over k′0 and employing the on-shell delta
function, the energy P 0 may be written

P 0 =

∫
dω′dΩ ω′ρ(k′) , (7)

where we have introduced the frequency ω′ and the spec-
tral density ρmeasuring the ‘number of photons’ radiated
per unit frequency per unit solid angle,

ρ(k′) = − ω′

2(2π)3
j(k′) · j∗(k′) . (8)

We now take a closer look at the physics of these expres-
sions. This will also be good preparation for the quantum
calculation.

A. Current conservation

A little care must be taken in defining the Fourier
transformed current jµ(k′). The náıve definition (5) does
not obey current conservation,

k′ ·j(k′) = −ie
∫

dτ
d

dτ
eik
′·x(τ) 6= 0 . (9)

since the boundary terms do not in general cancel each
other. To understand why, go back to (5) and assume
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that the background field turns on and off at finite times.
We parameterise the path such that the particle enters
the field at proper time τ = 0 and position xµ = 0,
with momentum pµ. (We can shift these initial condi-
tions arbitrarily, and the pulse can turn on/off arbitrar-
ily smoothly: our final result will be completely general.)
The particle then exits the pulse at some proper time
τ = τf , at some position xµf and with some momentum

p′µ, all determined by the classical equations of motion.
With this, the current becomes

jµ(k′) =
e

m
pµ

0∫
−∞

dτ eik
′.pτ/m + e

τf∫
0

dτ uµ(τ) eik
′·x(τ)

+
e

m
p′µ

∞∫
τf

dτ eik
′.[xf+p′(τ−τf )/m] . (10)

The first and third terms do not behave well in the IR,
i.e. at large distances, where the phases diverge2 The
integrals can be regulated using an iε prescription in the
exponents, giving

jµ(k′) = ie
eik
′.xf p′µ

k′.p′ + iε
− ie pµ

k′.p− iε

+ e

τf∫
0

dτ uµ(τ) eik
′·x(τ) .

(11)

The first and second terms now give the (boosted)
Coulomb fields of the particle before and after interac-
tion with the background, as follows from inserting (11)
into (7) and carrying out the k′0 integral, see [32, §6].
Letting ε → 0, the current (11) is easily checked to be
conserved, k′.j(k′) = 0. Integrating (11) by parts, the
boundary terms cancel the Coulomb terms and we ob-
tain our final, compact result

jµ(k′) = −e
∫

dτ eik
′·x(τ) d

dτ

(
uµ(τ)

ik′.u

)
, (12)

where the integral is automatically restricted to the pulse
duration since the integrand goes like the acceleration u̇,
as is seen by expanding the derivative,

jµ(k′) = −e
∫

dτ eik
′·x(τ) u̇

µuν − u̇νuµ
i(k′ · u)2

k′ν . (13)

This shows manifestly that only accelerated charges radi-
ate, see [47, §14]. In other words, calculating the spectral
density (8) using (13) corresponds to measuring only the
radiation caused by the action of the external field, and
not the intrinsic (boosted) Coulomb fields of the particle

2 The divergent phases we will encounter in this paper are, as we
will see, related to soft divergences and not the similarly named
‘phase divergences’ which occur in, say, pair creation [48, 49].

from before and after scattering. This relates the spectral
density to the quantity of interest in the quantum theory,
which is the spectrum of photons emitted in the interac-
tion of an electron with the background. Note that since
uµ(τ) is timelike and k′µ is lightlike, the denominators in
(11)–(13) are nonzero unless ω′ = 0; we address this now.

B. The classical IR problem

Curing the large distance problems in the expression
(5) has lead us to (12), or (13), which makes physical
sense and makes the ‘classical IR catastrophe’ manifest.
This problem is often stated in terms of the ‘total number
of emitted photons’, defined by

Nγ :=

∫
dω′dΩ ρ(k′) . (14)

The IR problem is that Nγ diverges at low frequencies:

Nγ ∼
∫
0

dω′
const.

ω′
. (15)

Since the ‘number of photons’ is not a classical concept,
we rephrase (15) in terms of energy. An equivalent state-
ment is that the energy (7) emitted at low frequency is
independent of frequency, i.e.

P 0 ∼
∫
0

dω′ const. (16)

There is therefore no divergence in any measurable clas-
sical object, but it is the behaviour (16) which signals a
corresponding IR divergence in the quantum theory. Let
us now make (14) to (16) concrete. Consider the emis-
sion of low frequency radiation. We write k′µ = ω′n′µ,
and expand (12) for small ω′. We find

jµ(k′) =
ie

ω′

τf∫
0

dτ
d

dτ

(
uµ(τ)

n′.u

)
+O(ω′0)

=
ie

ω′

(
p′
µ

n′.p′
− pµ

n′.p

)
+O(ω′0) .

(17)

(The same result follows immediately from (11), since
the integral term is bounded and can be dropped in the
soft limit.) Again, p′µ (pµ) is the particle’s momentum
when it leaves (enters) the pulse. The spectral density
therefore has the low-frequency expansion

ρ(k′) = − 1

2(2π)3ω′

(
p′

n′.p′
− p

n′.p

)2

+O(ω′0) , (18)

from which the behaviour in (15) and (16) follows,

Nγ = − α

(2π)2

[ ∫
dΩ

(
p′

n′.p′
− p

n′.p

)2] ∫
0

dω′
1

ω′
,

P 0 = − α

(2π)2

[ ∫
dΩ

(
p′

n′.p′
− p

n′.p

)2] ∫
0

dω′ 1 ,

(19)
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to lowest order and where α = e2/4π. The denomina-
tors here are strictly positive. The angular integral can
be performed exactly and is non-zero. In the limit that
the background field provides a ‘sudden kick’, instanta-
neously changing the particle’s momentum, the expres-
sions (19) become exact. There is no sudden kick here,
in general, as we have said nothing about the proper-
ties of the background field, which is the statement that
“the precise form of the trajectory . . . does not affect the
low-frequency radiation” [32, §6]. We now apply these
general results to the case of plane waves.

III. PLANE WAVES

A plane wave travelling in the negative z-direction is
characterised by the lightlike vector nµ = (1, 0, 0, 1) and
some scale ω which is usually (but not necessarily) the
dominant frequency of the wave. We write kµ := ωnµ.
The transverse electric fields Ej (j = 1, 2) depend arbi-
trarily on the dimensionless, Lorentz invariant variable
φ := k.x, which can be identified with lightfront time.
Lightfront variables are defined via φ = k.x = k+x

+

where x± = t ± z, x± = (x0 ± x3)/2 and x⊥ = {x1, x2}.
The field strength may be written

Fµν(k.x) = f ′j(k.x)(kµa
j
ν − ajµkν) , (20)

where the f ′j are profile functions describing the shape
of the electromagnetic fields and, for our choice of kµ,
the polarisation vectors become a1

µ = (a0m/e)(0, 1, 0, 0)

and a2
µ = (a0m/e)(0, 0, 1, 0): we normalise the profile

functions f ′j such that (f ′jf
′
j)rms = 1, sum over j, rms

taken over the whole pulse, so that the parameter a0 is
always equal to a0 ≡ eErms/mω [50]. The energy in a
pulse of duration T is then proportional to a2

0T .
A particle in a plane wave, neglecting radiation re-

action, has kinetic momentum πµ ≡ muµ obeying the
Lorentz force equation

π̇µ =
e

m
Fµν(k.x)πν . (21)

It follows that k.π is conserved and one can trade proper
time for lightfront time φ. In complete generality, we
assume that the particle is free, with momentum pµ, until
some lightfront time φi when it first encounters the field.
The corresponding solution of the Lorentz equation is

πµ(p;φ) := pµ−eCµ(φ)+
2eC(φ)·p− e2C2(φ)

2k ·p kµ . (22)

Here, Cµ is the integral of the field strength,

Cµ(φ) := ajµ

φ∫
φi

f ′j(ϕ) =: ajµfj(φ) . (23)

It is easy to check both that (22) obeys the correct ini-
tial condition, πµ(p;φi) = pµ, and that π2 ≡ m2. When

the pulse turns off at, say, φ = φf the particle again be-
comes free. By definition, the function Cµ then becomes
constant, i.e.,

Cµ(φf ) = Cµ(∞), (24)

which we write as C∞µ from here on. Note that C∞µ is a
vector of Fourier zero modes of the electromagnetic field
strengths, i.e.

C∞µ ≡ ajµf̃ ′j(0) . (25)

Fields for which the Fourier zero mode is non-vanishing
are called unipolar, one example of which is a subcycle
pulse. Unipolar pulses can be produced from ‘ordinary’
fields with a vanishing zero mode by interaction with a
nonlinear optical medium, see [37].

A. Plane waves and the infra-red

For our purposes, all plane wave fields fall into one of
two categories, defined by whether the electromagnetic
field’s Fourier zero mode is zero or not:

φf∫
φi

dφFµν(φ)

{
= 0 ⇐⇒ C∞µ = 0 , ‘whole-cycle’,

6= 0 ⇐⇒ C∞µ 6= 0 , ‘unipolar’.
(26)

A particle entering a ‘whole-cycle’ field with momentum
pµ leaves with the same momentum, i.e. experiences no
net acceleration, since C∞µ = 0 in (22) and therefore

πµ(p;φ) = pµ when φ ≥ φf . (27)

These are pulses which, in a loose sense, contain a ‘whole’
number of cycles. The same particle entering a unipolar
field is accelerated, leaving with a different momentum
πµ(p;∞),

πµ(p;∞) = pµ − eC∞µ +
2eC∞.p− e2C∞ ·C∞

2k.p
kµ , (28)

which differs from pµ in both the transverse (⊥) and light-
front energy (lower +) components. This is the precise
form of the ‘Lawson-Woodward theorem’ for plane waves.
These results hold independently of both the pulse du-
ration and details of its field structure; we are not dis-
cussing unphysical edge effects.
C∞µ will play a crucial role in what follows. It neatly

encodes a property of the field strength: mathematically,
the Fourier zero mode of the electromagnetic fields and,
physically, the ability of the electromagnetic fields to do
net work on a particle3.

3 We note that the zero mode can also be obtained from the gauge
invariant phase of a lightlike Wilson loop [51]. We note fur-
ther that acceleration, through ‘sudden kicks’, relates IR diver-
gences to cusp singularities in Wilson loops, see [49] and refer-
ences therein
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An electron passing through a ‘whole-cycle’ pulse ac-
quires no net acceleration, so incoming and outgoing mo-
menta are equal, p′ = π(p;∞) = p. In particular,

p′µ

n′.p′
− pµ

n′.p
≡ 0 , (29)

and so the leading order terms in (19) vanish: the clas-
sical number of photons Nγ becomes IR finite and the
low energy spectrum is frequency dependent. The impli-
cation is that the corresponding quantum processes are
IR finite, and this is born out: nonlinear Compton scat-
tering contains no IR divergence provided the pulse con-
tains a whole number of cycles, see [22–24] for examples.
The typical situation for whole-cycle pulses is sketched
in Fig. 1, top panel.

Consider now an electron passing through a unipolar
pulse. The electron leaves this pulse with a net accel-
eration, p′ = π(p;∞) 6= p, because of the non-vanishing
Fourier zero mode C∞µ . The typical situation is sketched
in Fig. 1, lower panel; the electric field will clearly push
the particle more in one direction than the other, giving
a net acceleration. A simple way to model such pulse
shapes shape is to employ a carrier phase, see the ap-
pendix for details. Since C∞ 6= 0, the boundary term
of (17) is non-zero, and this gives a divergent photon
number in (19). We therefore expect nonlinear Comp-
ton scattering to exhibit the usual IR divergence of QED
when the background field has unipolar structure. We
confirm this below. We note that even an infinitesimal
deviation from whole-cycle structure in the field strength
is enough to cause an IR divergence, so it is really unipo-
lar rather than whole-cycle pulses which are the general
case. There is also a special case, which we consider be-
fore turning to the quantum theory.

B. Soft and collinear divergences

‘Crossed fields’ are constant and homogeneous electric
and magnetic fields of equal magnitude and orthogonal
polarisation, in other words, constant plane waves. They
provide one of the most common models of laser fields
outside of monochromatic beams; the probabilities of
nonlinear Compton scattering and stimulated pair pro-
duction in crossed fields form the basis of cascade codes,
for example [52, 53].

The infinite extent of crossed fields is somewhat un-
physical. To study their infrared properties in a con-
trolled manner we therefore consider a plane wave which
is constant for −T2 < φ < T

2 and otherwise zero. The
definition (23) then gives

Cµ = a1
µ


0 φ < −T2
φ+ T/2 −T2 ≤ φ < T

2

T φ ≥ T
2 .

(30)

Clearly this field accelerates, since C∞µ = Ta1
µ, which

implies a log-divergent photon number. If we focus on

Π
2

Π 3 Π
2 2 Π

k × x

9FΜΝ, CΜ, Γ=

Π

2
Π 3 Π

2 2 Π
k × x

FIG. 1. Not to scale. The γ-factor [filled] of an electron in
a plane wave with field strength Fµν [red/solid] and potential
Cµ [blue/dashed]. Upper panel: In a whole-cycle pulse, the
γ-factor returns to its initial value when the electron leaves
the field. Lower panel: In a unipolar pulse, the electron gains
a net acceleration, signalled by a non-zero potential at the
end of the pulse. This potential term yields the non-zero
boundary term of (17) which signals the soft IR divergence.

the soft sector, evaluating (17) in the limit that T →∞
yields

jµ(k′) = −ie
(
kµ

k′.k
− pµ

k′.p

)
+O(ω′0) , (31)

which is independent of the chosen field strength E. As
well as the soft divergence, we also have here a ‘soft
and collinear’ divergence when k′µ ∝ kµ. Collinear di-
vergences are known to appear only in association with
massless particles (for their removal see [35, 36, 54]). The
reason they can appear here is that any constant electric
field, when allowed to persist for an infinite time, accel-
erates all incoming particles to the speed of light. In
this sense, the final state particles are effectively ‘mass-
less’ (as in high energy approximations, for example, in
which one neglects mass terms compared to momentum
terms). Indeed, the dominant term in the particle’s final
momentum for large T is,

πµ(p;∞) ∼ T 2kµ +O(T ) , (32)

which is lightlike, and the replacement of πµ(p;∞) with
kµ is manifest in (31). These results are summarised in
Fig. 2, where we plot the energy density ω′ρ(ω′). At
fixed emission angles, the value at ω′ = 0 is non-zero,
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0.2 0.4 0.6 0.8 1.0
Ω’!eV"

0.00014

0.00016

0.00018

0.00020
Ω’Ρ#k’$

0 20 40 60 80 100
Ω’!eV"0.00

0.01

0.02

0.03

0.04
# Ω’Ρ$k’%d#

FIG. 2. The energy spectrum for a crossed field (with
E/ES = 2.10−6). Upper panel: Fixed emission angles,
θ = ϕ = π/2, for duration T = 2, 5, 10, 20 (dot-dashed, solid,
dotted, dashed). At ω′ = 0, the spectrum converges to the
result implied by (31) as T increases. Lower panel: duration
T = 5, 10, 15, 20. When integrated over emission angles, the
soft limit includes the developing soft-collinear divergence in
(31) and increases like log T as T →∞.

illustrating the soft divergence, and converges to (31) as
the duration increases. When the emission angle is inte-
grated out, the low frequency value grows with T because
of the developing collinear divergence. The growth rate
can be found analytically for ω′ = 0, where the angular
integrals can be performed exactly. One finds,

∫
dΩ ω′ρ(ω′)

∣∣
ω′=0

=
e2

π2
log T + . . . , (33)

which is logarithmic. So, crossed fields lead to both
soft and soft-collinear divergences in the photon num-
ber: their IR structure is worse than the generic case.
Surprisingly, the literature results for the quantum case,
ie. for nonlinear Compton scattering in crossed fields, are
IR finite. This rather stark contradiction will be resolved
in Sect. V.

IV. ASYMPTOTIC STATES AND VOLKOV
SOLUTIONS

Consider QED coupled to an additional, external
gauge field Cµ. (The doubling of notation is deliber-
ate, but for now Cµ is arbitrary.) We briefly outline how
one can calculate in the theory when the background is
treated nonperturbatively. The action is

S =

∫
d4x − 1

4
FµνFµν + ψ̄

[
iγµ(∂µ + ieCµ)−m

]
ψ + gauge fixing + sources

∣∣∣∣
← →

− eψ̄ /Aψ , (34)

where Aµ is the dynamical (quantised) photon field and
Fµν is its field strength. Everything to the left of the bar
is considered to be ‘free’, and everything to the right is
‘interacting’. With regards to the quantum fields, this is
the same split as is made in perturbation theory, except
that the ‘free theory’ now contains a background field.
Hence, the position space Feynman rules are unchanged
from QED except that the fermion propagator is the in-
verse of i/∂ − e/C −m rather than i/∂ −m. If this propa-
gator can be calculated exactly, the background field will
be accounted for nonperturbatively. In order to convert
Feynman diagrams into S-matrix elements one appeals
to the usual LSZ reduction formulae: amputation con-
verts external leg propagators into wavefunctions which
are, for the fermion fields, solutions of the Dirac equation
in the background field Cµ.

It is only advantageous to use the split (34) if the ‘free
theory’ can be solved exactly (i.e. if the propagator can
be calculated exactly), for otherwise one must in any case
resort to perturbative methods. Plane wave backgrounds
provide an example of such a theory: the propagator is
known exactly for arbitrary plane waves [55], and am-
putation produces the well-known Volkov wavefunctions
which are indeed solutions of the Dirac equation in a
plane wave background, see below. These statements
hold in (at least) the gauge for which we choose the gauge
potential Cµ to be equal to the classical Cµ(k.x) we en-
countered in (23). This has the benefit of making the
physics manifest. It is also what is, often implicitly, done
in the literature, and is what we will do here. (Other
gauges are available. The reader is invited to find one
which can reproduce all known results in a simpler, faster
way.)
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We now point out a peculiarity. The Volkov solutions
depend, aside from the usual exponential p.x factors, only
on the lightfront variable φ = k.x. S-matrix elements
therefore exhibit overall momentum conservation in the
x⊥ and x− directions. This implies that the total p⊥ and
p− of the incoming particles is conserved. In particular,
there is no dependence anywhere on, say, C.x, and hence
it seems impossible for any S-matrix element to recover
the transverse push proportional to eC∞ exhibited in the
classical theory, see (22). To illustrate, the S-matrix ele-
ment for scattering in a plane-wave without emission will
have support on the conservation law

p′µ = pµ + skµ , (35)

where s arises as the Fourier transform of the φ depen-
dence introduced by the background. For all momenta
being on-shell, this equation has only one solution, s = 0.
This is not the correct result for unipolar pulses, where
we expect pµ to become πµ(p;∞) (classically). We will
show below that the resolution of this problem requires
a careful, but straightforward, analysis of the large dis-
tance behaviour of our theory: it is therefore not surpris-
ing that this should be taken up before discussing the IR
problem.

A. LSZ reduction and Kibble’s basis

The usual LSZ assumption about the large distance
behaviour of QED is that the interaction between the
quantised fields switches off. It is well known that this
assumption is responsible for IR divergences, so we ex-

pect them to persist here [56, 57]. We do not assume
that the coupling to the background field switches off,
though. Indeed, there is a sense in which it does not: a
particle can be accelerated by a unipolar field and, in the
absence of other interactions, retains this ‘information’,
even though the pulse itself has switched off.

To account for this, we will consider what happens
when the gauge potential becomes a constant in the far
future, as is the case for unipolar fields, Cµ → C∞µ . Our
asymptotic theory (in the future) therefore consists of
fermions minimally coupled to a constant gauge field C∞.
This theory is free, since constant gauge fields are pure
gauge. We write D∞µ ≡ ∂µ + ieC∞µ . The electron solu-
tions of the Dirac equation in such a background are

e−i(p
′+eC∞).xup′ , (36)

where p′µ obeys p′2 = m2 and is the eigenvalue of iD∞µ :
it is the kinematic momentum. It is now straightfor-
ward to go through the usual steps leading to the LSZ
reduction formulae. Amputation for incoming particles is
unchanged, since both the classical and quantum gauge
fields switch off in the past. For outgoing electrons,
though, LSZ reduction gives the following amputation
instruction:

− i
∫

d4x ei(p
′+eC∞).x ūp′

(
i /D
∞ −m

)
x
〈 0 |Tψ(x) . . . ,

(37)
which differs from the usual result only in the presence
of C∞µ . Applying (37) to the Volkov propagator, one
obtains the following expressions for the appropriate in-
coming and outgoing wavefunctions:

e− in: Ψin
p,σ(x) :=

[
1 +

e

2k.p
/k /C(k.x)

]
uσp exp

[
− ip.x− i

2k.p

k.x∫
−∞

2eC.p− e2C2

]
,

e− out: Ψ̄out
p′,σ(x) := ūσp′

[
1 +

e

2k.p′
δ /C(k.x)/k

]
exp

[
i(p′ + eC∞).x− i

2k.p′

∞∫
k.x

2e δC.p′ − e2δC2

]
,

(38)

where δCµ(k.x) := Cµ(k.x) − Cµ(∞). The limits on the integrals are not assumed, but follow as part of LSZ. So,
incoming electrons are described by ordinary Volkov solutions while outgoing electrons are described by the second
wavefunction in (38); it is straightforward to check that both satisfy the Dirac equation in the background Cµ(k.x).
Positrons solutions are obtained by sending u→ v and e→ −e. Complemented with the usual propagator, the use of
(38) completes the Feynman rules for the theory.

The corresponding wavefunctions for scalar particles have appeared in [58]. They were suggested as an alternative
basis for outgoing states which would remove infinite phase factors from S-matrix elements. This does not quite work,
though: while Ψ̄out (Ψin) behaves well in the far future (past), it does not behave well in the far past (future), and
the S-matrix element contains an integral over all times. Rather, the use of (38) makes the correct physics manifest,
and the divergent phases are only removed by regulating the S-matrix elements themselves, as we will see.

Let us briefly check that these ‘new’ LSZ rules describe the correct large distance behaviour of the theory. We
return to the process of scattering without emission. Using (38), and going again to Fourier space by trading k.x
for dimensionless s, the S-matrix element for this process now takes the form (for some F which we do not need
explicitly)

Sno emission =

∫
ds δ4(p′ + eC∞ − p− sk)F . (39)
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There is again only one point of support for the delta function, as one finds by squaring the conservation law:

p′2 = (p− eC∞ + sk)2 =⇒ s =
2eC∞.p− e2C2

∞
2k.p

. (40)

Inserting this into (39) we see that the S-matrix element for scattering without emission has support when p′
µ

=
πµ(p;∞), where we recognise the asymptotic kinematic momentum πµ from (28). In other words, the scattering
amplitude now tells us that an electron experiences both the longitudinal and transverse pushes implied by the
Lorentz force as it passes through a plane wave, as it should. This resolves the puzzle introduced in Sect. IV regarding
the transverse terms in the momenta. Our LSZ analysis therefore yields the correct physics. We can now construct
the S-matrix element for nonlinear Compton scattering, regulate it, and examine its IR structure.

V. NONLINEAR COMPTON SCATTERING: IR DIVERGENCE

A. S-matrix element: regularisation

Nonlinear Compton scattering, e−(p)
in laser−−−−−→ e−(p′) + γ(k′), has the following S-matrix element to lowest order

in the interaction between quantised fields (i.e. to tree level, with the background accounted for to all orders),

Sfi = −ie
∫

d4x Ψ̄out
p′,σ′(x)/εeik

′.xΨin
p,σ(x)

= − ie

2k+

(2π)3δ3
⊥,−(p′ + eC∞ + k′ − p)

∫
dφ eiΦ(s+,φ) Spin(φ) .

k′
µ

pµ

p′
µ

(41)

The Ψ’s are as in (38). To reach the second line, the integrals over x⊥ and x− are performed to yield delta-functions.
The remaining integral over x+ is written as an integral over φ. ‘Spin’ contains the photon polarisation and all the
spin structure coming from the Volkov solutions (38), while Φ contains all the φ-dependent phases coming from the
same. These, together with s+, are given explicitly below. The φ-integral in (41) needs to be regulated. Proceeding
just as in the classical theory, we split the integral into three parts corresponding to before, during and after the
pulse. Regulating with a damping factor essentially ‘cuts out’ (in a gauge invariant way, as we confirm shortly) the
before-and-after pieces of the S-matrix element in which no scattering can occur. The resulting expression is

Sfi =
ie

2k+

(2π)3δ3
⊥,−(p′ + eC∞ + k′ − p)

∫
dφ eiΦ(s+,φ) d

dφ

[
Spin(φ)

iΦ′(s+, φ)

]
. (42)

The dash on Φ is a derivative w.r.t. φ. It is conceptually clearer to again Fourier transform, trading φ for a dimen-
sionless variable s which represents the lightfront energy taken from the background. The derivative of the term in
square brackets is proportional to the background field strength, and hence the integrand vanishes outside the pulse.
This means firstly that the Fourier transform is well defined and secondly that there are no infinite phase factors to
worry about, as promised. The S-matrix element becomes

Sfi = ie

∫
ds

2π
(2π)4δ4(p′ + eC∞ + k′ − p− sk)Γ(s) , with Γ(s) :=

∫
dφ eiΦ(s,φ) d

dφ

[
Spin(φ)

iΦ′(s, φ)

]
. (43)

Explicitly, the spin and phase parts are

Φ(s, φ) = sφ−
φf∫
φ

2eδC.p′ − e2δC2

2k.p′
−

φ∫
φi

2eC.p− e2C2

2k.p
, Spin(φ) = ūσ

′

p′

(
1 +

eδ /C/k

2k.p′

)
/ε

(
1 +

e/k /C

2k.p

)
uσp . (44)

(Undoing the Fourier transform sets s to a particular value s+, but working in Fourier space allows us to maintain
covariance, and the resulting expressions are clearer.) Before proceeding to the emission probability itself we should
check that our regularisation is gauge invariant with respect to transformations of the quantum fields. This can be
confirmed by showing that (43) vanishes when ε→ ε+ ξk′: one finds that the resulting change in Γ(s) is

δΓ(s) = ξ ūp′/kup

∫
dφ eiΦ(s,φ) d

dφ

[
iΦ′(s, φ)

iΦ′(s, φ)

]
= 0 , (45)
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as required. We can now wrap the incoming state into a wavepacket, normalised per unit lightfront volume (so the
incoming particle carries a normalisation of 1/

√
2p− rather than 1/

√
2p0), square up the S-matrix element and obtain

the total probability of emitting a photon, averaged over initial spins, summed over final spins and polarisations, as

P =
e2

2k.p

∫
df

∫
ds

2π
(2π)4δ4(p′ + eC∞ + k′ − p− sk)

1

2

∑
σ,σ′,ε

|Γ(s)|2 . (46)

As usual, the wavepacket drops out of the final expression, and the integral over final states is

df =
d3p′

(2π)32p′0

d3k′

(2π)32k′0
. (47)

Of the seven integrals in P, four can be performed using the delta functions. Methods for evaluating the remaining
three integrals are discussed in [59], see also [30].

B. Probability of emission: IR divergence

We can now investigate the IR contribution to the
probability (46). Using the kinematics implied by the
delta function in (43) or (46) one finds that the phase Φ
has a single stationary point, corresponding to the point
of soft emission, ω′ = 0. The function Γ(s) therefore di-
verges at this point. The classical analogue of this state-
ment was that k′.u 6= 0 unless ω′ = 0; see (12) and the
discussion following. At the point of soft emission, the
argument of the delta function in (46) becomes

p′ + eC∞ − p− sk → 0 , (48)

which is just the inelastic scattering condition we found in
(39). In order to study the IR limit we therefore expand
around (40), writing

s = t+
2eC∞.p− e2C2

∞
2k.p

, (49)

and look at the limit of small t. We eliminate the p′

integrals in (46) using the delta-functions. The remain-
ing calculation is straightforward; the denominator Φ′

becomes, for example,

Φ′(φ) = t+
1

k.p
[k′.πµ(p;φ)− k′.π(p;∞)

]
+ . . . (50)

and in the the soft limit one has ω′t = tk.p/n′.π(p;∞)+. . .
and so ω′ ∝ t. Hence, the remaining delta-function in
(46) may be used to perform either the ω′ integral or,
equivalently, the t integral. After performing the spin
sums, the soft-photon contribution to the probability be-
comes

P = − α

(2π)2

∫
dΩ′
(

π(p;∞)

n′.π(p;∞)
− p

n′.p

)2 ∫
0

dt
1

t
+ . . .

(51)
This diverges when t → 0, i.e. at the point of soft emis-
sion. The probability is therefore IR divergent when-
ever the term in large brackets is non-zero, i.e. when-
ever the field is able to accelerate the particle, such

that π(p;∞) 6= p, which requires a unipolar field with
nonvanishing C∞µ . The singularity is logarithmic, as in
bremsstrahlung, and depends only on whether C∞µ = 0
or not. The ‘probability’ (51) matches the classically ex-
pected ‘number of photons’ (19) with p′ = π(p;∞), also
as for bremsstrahlung. The removal of this divergence is
discussed in the conclusions. To understand the physical
differences and similarities between Compton scattering,
nonlinear Compton and bremsstrahlung, it is helpful to
consider the perturbative limit of our results.

C. Perturbative expansion

We assume the incoming electron is at rest in order
to give the clearest results. To lowest order in the back-
ground, the probability (46) then becomes

Ppert = a2
0

∞∫
0

ds

2π

|f̃ ′j(s)|2
s
×

× α

2

1∫
−1

d(cos θ)

(
ω′s
sω

)2[
ω′s
sω

+
sω

ω′s
− sin2 θ

]
.

(52)

This is a sum over ordinary Klein-Nishima probabilities
for Compton scattering of incoming photons of all fre-
quencies sω (second line), modulated by the strength
of the background field (first line). The corresponding
Feynman diagrams are shown in Fig. 3. The photon fre-
quencies which can be produced by each s are

1

ω′s
:=

1

sω
+

1

m
(1− cos θ)

⇐⇒ ω′s =
sω

1 + sω
m (1− cos θ)

.
(53)

The essential difference between Compton and nonlinear
Compton is the range of produced photon frequencies,

sω

1 + 2 sωm
< ω′ < sω . (54)
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k′
µ

Cµ(k.x)pµ

p′
µk′

µ

Cµ(k.x)pµ

p′
µ

FIG. 3. Nonlinear Compton scattering at tree level, to lowest
order in the background field.

In Compton scattering one obtains only the second line of
(52) with s = 1. The fixed and nonzero incoming photon
frequency ω then acts as an ‘IR cutoff’, since it forbids,
via momentum conservation, the outgoing photon from
having zero frequency: one obtains (54) with s = 1. In
nonlinear Compton, though, the background field con-
tains a range of frequencies, and each can lead to photon
production in the range (54). Even though the range for
each s is bounded, s is continuous with s ≥ 0 and so
the emitted photons can in principle be arbitrarily soft;
this is just as in bremsstrahlung, but not as in Compton
scattering.

Whether or not the point s = 0 can contribute de-
pends, of course, on the low-frequency composition of the
beam. For any compactly supported field, i.e. a pulse, we

can expand f̃ ′(s) = f̃ ′(0) +O(s) for small s. From (53)
we have ω′s/sω = 1 + O(s), and we find that the soft
contribution to the probability (52) is

Ppert =
8αa2

0

6

∫
0

ds

2π

|f̃ ′j(0)|2
s

+O(s) . (55)

We again obtain the result that the probability is log
divergent at s = 0, corresponding to the emission of

a zero-frequency photon, when f̃ ′(0) 6= 0. Hence, we
confirm that the IR divergence can be attributed to the
Fourier zero mode (the zero frequency mode) of the back-
ground field strength, this mode permits the production
of a zero-frequency photon in a kind of ‘forward scatter-
ing’. This coincides exactly with the ability of the field
to accelerate the particle following (26).

We now turn again to crossed fields.

D. Example: crossed fields

Homogeneous fields are often rather special cases when
it comes to radiation, see [46] and [60, §37], and crossed
fields are no exception, as we now show.

Clearly, crossed fields can accelerate particles and one
therefore expects a soft IR divergence, recall also (31).
Despite this, the literature results state that the non-
linear Compton probability in crossed fields is IR finite
[15, 16, 52]. This probability is given in the appendix.

The conclusion from there is that the literature results
are indeed IR finite but cannot be obtained from the
limiting case of a homogeneous field of large duration,
which does contain an IR divergence. We do not need
the details: we can show using only classical arguments
that the reason for the difference between the literature
results and our own is a different choice of boundary con-
ditions. The literature results describe the crossed field,
from the outset, as persisting for all time, and with a
gauge potential Cµ(φ) = a1

µφ ≡ aµφ [16]. The Volkov
solutions for this potential, used in the quantum calcula-
tion of [16], carry the kinematic momentum

πcµ(φ) = pµ − eaµφ+
2ea.p φ− e2a.a φ2

2k.p
kµ , (56)

and the path xc is the indefinite integral of πcµ, where ‘c’
stands for crossed. The (‘unregulated’) classical current
corresponding to the S-matrix element of [15, 16] is

jcµ =
e

k.p

∞∫
−∞

dϕ πcµ(ϕ) eik
′.xc(ϕ) . (57)

It follows that pµ is the kinematic momentum at φ = 0;
for a particle to have finite momentum after spending an
infinite time in the crossed field means that the particle
must have started with infinite momentum. This is clear
from (56). There are two possible interpretations.

First, one can protest that the field should be con-
sidered to turn on at finite time, say φ = 0 so that pµ
is the incoming momentum. In this case, (57) and the
corresponding quantum results in the literature contain
unphysical contributions from before the particle entered
the pulse. Removing them reveals the soft divergence.

Second, one can take (56) and (57) at face value. In
principle there is no need to regulate the current since
the particle never enters or leaves the crossed field. If
we did regulate as above, the difference between the two
expressions would be a boundary term which would yield
a divergence as ω′ → 0. We have seen that understanding
the boundary terms (17) is key to understanding the IR,
so let us calculate them. The particle described by (56)
has infinite kinetic momentum in both the asymptotic
past and future, with the leading term being

πcµ(φ) = −e2 a.a φ
2

2k.p
kµ + . . . (58)

For low frequencies, the boundary term which would
cause a soft divergence is therefore

lim
φ→∞

(
πcµ(φ)

k′.πc(φ)
− πcµ(−φ)

k′.πc(−φ)

)
=

kµ
k′.k
− kµ
k′.k

= 0 . (59)

This means that, from the point of the view of the radi-
ation formulae, the momenta in the asymptotic past and
future are not only lightlike but equal: since the parti-
cle is decelerated from and reaccelerated to the speed of
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light, there is effectively no net acceleration, and hence
no IR divergence4.

In summary, the literature results for nonlinear Comp-
ton scattering in crossed fields are indeed IR finite, but
only on the assumptions that 1) the electron begins with
an infinite momentum in the past, and 2) it is decelerated
from and then reaccelerated to the speed of light over an
infinite time. Dropping these assumptions amounts to
allowing the particle to enter and exit the pulse at finite
times, and the IR divergence reappears. We leave it to
the reader to decide which scenario is more physical.

VI. DISCUSSION AND CONCLUSIONS

The IR problem in QED is first encountered in pertur-
bation theory, at tree level, in the bremsstrahlung ampli-
tude for a particle decelerated by an external Coulomb
potential. Replacing this potential with a plane wave, we
have seen that the same IR divergence is found in non-
linear Compton scattering when the plane wave can give
a net acceleration to a particle passing through it (recall
that bremsstrahlung is ‘breaking radiation’).

Our results hold independently of the strength of the
background field, and for arbitrary pulse shapes. The
only case for which we have allowed a nonvanishing
asymptotic field strength is crossed fields. The literature
results for nonlinear Compton scattering in crossed fields
are, surprisingly, IR finite. We have shown that this re-
sults from assuming somewhat unconvincing, unphysical
boundary conditions for the scattered particles.

In order to obtain finite and and measurable results for
nonlinear Compton scattering, soft emission and higher
loop effects must be accounted for. Tree-level results for
the production of one hard photon and an arbitrary num-
ber of soft photons have been calculated and follow the
expected IR structure of QED [31]: thus, the cancellation
of IR divergences to all orders is expected to go through
as normal. (See [63] for an example of how such struc-
tures arise naturally in exactly solvable systems, and also

pµ p′
µ

FIG. 4. One-loop contribution to scattering in a background
field without emission. One sees by expanding in powers of the
background field that the diagram combines both self-energy
and vertex corrections.

4 S-matrix elements in crossed fields can be obtained from the low-
frequency limit of those in monochromatic waves [15]. Hence,
crossed fields might be considered as ‘locally constant’ approx-
imations for low frequency lasers. Monochromatic waves can
themselves be obtained as the limit of N -whole-cycle wavetrains
when N → ∞ [61, 62]: these do not accelerate, which gives a
rather more convoluted explanation for why crossed fields yield
IR finite results.

[29].) To lowest order in perturbation theory, this cancel-
lation requires adding the calculated probability (46) of
nonlinear Compton scattering to that of scattering with-
out emission, to one loop. The required diagram is shown
in Fig. 4. The loop has never been calculated for general
plane waves (for crossed fields, see [64] and references in
[65], for monochromatic fields see [18]), and it will be
interesting to investigate both its UV and IR structures
when the background is treated nonperturbatively. This
will be discussed in a sequel paper.

Let us finally address the impact of our results on
nonlinear Compton scattering in whole-cycle pulses. We
saw in the introduction, recall (3) and (4), that the to-
tal probability of photon production exceeds unity (since
the probability of scattering without emission is already
unity.) In Sect. V C we saw that even whole-cycle pulses,
which give IR finite results, can produce photons with
arbitrarily low frequencies when the Fourier spectrum of
the pulse extends down to zero frequency. It follows that
no detector of finite resolution can distinguish between
sufficiently soft emission via nonlinear Compton and scat-
tering without emission (just as soft bremsstrahlung can-
not be distinguished from scattering without emission).
Experimentally indistinguishable processes must there-
fore still be accounted for in order to yield measurable
probabilities and cross sections for nonlinear Compton
experiments, even when the IR divergence is absent.
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Appendix A: Carrier phase

The following simple example provides the quantitative
results behind Fig. 1. Consider a short pulse with field
strength profile

f ′(φ) = −n(c) sin(φ2 )2 sin(φ+ c) , (A1)

for 0 ≤ φ ≤ 2π and zero otherwise. The parameter c can
be thought of as a ‘carrier phase’ [68] (see also [69]), and
n(c) is a normalisation which ensures the pulse energy is
independent of the carrier phase. The field strength and
potential Cµ are plotted in Fig. 5. For c = 0 the field
describes a compressed sinusoidal cycle. As c→ π/2 the
pulse acquires a typical ‘half cycle’ shape, see [70] for
experimental applications of such pulses. For non-zero c,
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Π
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Π
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FIG. 5. The profiles for field strength, f ′(φ) (upper panel),
and potential, f(φ) (lower panel), of a single-cycle pulse with
carrier phase c ∈ {0, π/2} [red to blue/bottom to top], see
equation (A1). For all c 6= 0, the potential is non-vanishing
when the pulse turns off, implying a net acceleration.

5 10 15 Ω' @10-4eVD

3

2

1

Ω'Ρ @10^4 eV2D

FIG. 6. The IR behaviour of the energy density ω′ρ(ω′) in
the pulse (A1), at fixed emission angles. Electron initially at
rest, a0 = 1, backscattered radiation. The carrier phase c is in
the range 6× 10−3 [top/blue] to 0 [bottom/red]. The energy
density is zero at ω′ = 0 only for zero carrier phase.

Cµ becomes constant and non-zero when the fields turn
off, as is also shown. In Fig. 6 we display the classical
energy density in these pulses as a function of ω′ for small
ω′. The former goes to a nonzero constant for all c 6= 0,
and to zero when c = 0. From (19), it is therefore only
when c = 0 (no net acceleration) that the number of
photons Nγ is finite.

pµ

πµ(p; ∞)

p̄µ

p′
µ

FIG. 7. In the absence of QED interactions, a particle
entering the wave with momentum pµ leaves with momentum
πµ(p;∞). A particle which therefore passes through the wave
and leaves with momentum p′µ had a momentum p̄ when it
entered, where p′µ = πµ(p̄,∞).

Appendix B: Choice of basis

Our LSZ reduction formulae allow gauge potentials
to be non-zero, but constant, at infinity, and this gives
us Volkov solutions labelled by physical momentum and
spin. We will show in this section that the same proba-
bilities are obtained if one uses incoming wavefunctions
in (38) for both incoming and outgoing electrons, pro-
vided the final electron is integrated out. In other words,
we show that the choice of wavefunction is just a choice
of basis. Expressing S-matrix elements in terms of only
incoming variables typically yields more compact expres-
sions, even though it obscures the physics.

We will establish the equivalence at the level of the
probability (46), rather than the amplitude level. This
means that phase factors generated by our transforma-
tions can be neglected (since such phases are always finite
in our approach). We begin by introducing a new vari-
able p̄ which obeys

πµ(p̄;∞) = p′µ . (B1)

In other words, p̄ is, in the absence of emission, the mo-
mentum a particle had before it entered the wave, if it
leaves with momentum p′. Explicitly, p̄ is

p̄µ = p′µ + eC∞µ +
−2eC∞ ·p′ − e2C∞.C∞

2k ·p′ kµ , (B2)

which is obtained from (22) by sending p → p′ and
e → −e; this is reminiscent of crossing symmetry and
amounts to evolving the particle with p′ ‘back in time’,
through the field, to identify the momentum p̄ it began
with: see Fig. 7. The expression (B2) can be derived from
the momentum conservation law for scattering without
emission (39), by squaring up with C∞ on the left hand
side, so that the support depends on outgoing p′ rather
than incoming p. Momentum conservation then becomes
the requirement that p̄ = p. We now turn to nonlinear
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Compton. Starting with (46), three transformations are
needed, as follows. i) Momentum: Change variables,

s→ s+
2eC∞.p′ − e2C∞.C∞

2k.p′
k+. (B3)

This trades p′ for p̄ in Φ and the delta-function, and
removes the explicit dependence on C∞ therein. ii)Spin:
We consider only probabilities summed over final spins.
This spin sum gives(

1 +
e/k /δC

2k.p′

)
(/p′ +m)

(
1 +

e /δC/k

2k.p′

)
=

=

(
1 +

e/k /C

2k.p̄

)
(/̄p+m)

(
1 +

e/C/k

2k.p̄

)
,

(B4)

which is the sum one obtains from incoming Volkov wave-
functions with momentum p̄. iii) Final states: p̄µ and p′µ
are two on-shell momenta related by the Lorentz trans-
formation

Λµν = exp

[
e

k.p′
(C∞k − kC∞)µν

]
, (B5)

and, despite the momentum dependence of this transfor-
mation, the measure over final states is invariant under
Λµν [71], so that ∫

d3p̄

2p̄0
=

∫
d3p′

2p′0
. (B6)

Performing these manipulations, (46) reduces to the re-
sult one would obtain obtain by using the same Volkov
solutions to describe both incoming and outgoing parti-
cles, as has appeared in the literature to date. In sum-
mary, the ‘LSZ approach’ tells us to use different bases
for incoming and outgoing states. These bases are la-
belled by physical momenta, etc. There is nothing to
stop us, though, from expanding out-states in a basis
of in-states: this is implicitly done when one uses the
same Volkov wavefunctions for both incoming and out-
going particles. (There is no distinction for whole-cycle
pulses.) Both approaches yield the same results when
the outgoing electron degrees of freedom are integrated
out. However, if one is interested in differential rates or
probabilities with respect to the electron momentum, one
should change variables from p̄ back to the physical p′µ.

Appendix C: Probabilities and crossed fields

Using the above results, the nonlinear Compton prob-
ability is most compactly written

P =
e2m2

k.p

∫
d3p̄

(2π)32p̄0

∫
d3k′

(2π)32ω′∫
ds

2π
(2π)4δ4(p̄+ k′ − p− sk)J .

(C1)

Let x ≡ k.k′/k.p′. All dependence on the pulse profile is
contained in

J =− 2|B0|2 + a2

(
1 +

x2

2(1 + x)

)
×

×
(
2|B1|2 + 2|B2|2 −B0B

∗
3 −B∗0B3

)
,

(C2)

through four functions Bµ,

Bµ =

∫
dφ eiΦ

d

dφ

(
fµ(φ)

iΦ′

)
, (C3)

where we define f0 ≡ 1, f3 ≡ f2
1 + f2

2 and the phase Φ is
now

Φ(x) := sx− αj
x∫

−∞

dy fj(y) , (C4)

with j summed over {1, 2, 3}. The α parameters are con-
structed from the incoming Volkov solutions,

αj = eaµj ·
(
pµ
k.p
− p̄µ
k.p̄

)
, j = 1, 2 ,

α3 = −m
2a2

0

2

k.k′

k.p k.p̄
,

(C5)

and the Bµ obey sB0 = αjBj as a consequence of (45).
Our assumption on the behaviour of the electromag-

netic fields (that they vanish asymptotically) does not
allow us to apply the above results to crossed fields di-
rectly. Instead we take the limit of the more physical
situation in which a particle enters and leaves a patch
of constant field strength. We will compare these results
with those in the literature which assume a crossed field
from the outset. The potential for a field which is con-
stant for a lightfront time T is given in (30). Applying
the results of the previous subsection, one finds that the
functions (C3) become (changing variables ϕ = φ+T/2)

Bµ = −
T∫

0

dϕ eiΦc
d

dϕ

(
bµ(ϕ)

iΦ′(ϕ)

)
, (C6)

with bµ(ϕ) = (1, ϕ, 0, ϕ2) and the crossed-field phase

Φc(ϕ) =
(
s+

α2
1

4α3

)
ϕ− α3

3

(
ϕ+ α1

2α3

)3

. (C7)

In order to compare this result with that in the literature,
we integrate by parts - without dropping the boundary
term! - to find

Bµ = −eiΦc
bµ(ϕ)

iΦ′(ϕ)

∣∣∣∣T
0

+

T∫
0

dϕ eiΦcbµ(ϕ) , (C8)

As ω′ → 0, and using momentum conservation, the
boundary term survives, reproducing the IR divergence
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of (31), while the second, ‘bulk’ term vanishes. Now con-
sider the limit as T →∞. The only T -dependence in the
bulk term is in the integral limit, so we replace T → ∞
there: this should be compared with the corresponding
literature expression for Bµ, which is [15, 16]

Bµ
!
=

∞∫
−∞

dϕ eiΦcbµ(ϕ) . (C9)

(To convert from the conventions of [15, 16] to ours, use
p′N.R. → p̄, αN.R. → −α1, sN.R. → −s and βN.R. → 4α3.)

The results (C8) and (C9) are not equivalent, even as
T → ∞. The former contains a boundary term giving
an IR divergence and has ‘semi-infinite’ integration lim-
its, both of which are a consequence of the particle being
allowed to enter and leave the background. The litera-
ture result (C9) assumes a constant field from the outset,
which the particles never enter or leave. This is consis-
tent, but it shows that (C9) cannot be obtained as the
large-duration limit of (C8). Further discussion may be
found in Sect. V D.
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