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Abstract: In Wang-Landau type algorithms, Monte-Carlo updates are performed with

respect to the density of states, which is iteratively refined during simulations. The parti-

tion function and thermodynamic observables are then obtained by standard integration.

In this work, our recently introduced method in this class (the LLR approach) is analysed

and further developed. Our approach is a histogram free method particularly suited for

systems with continuous degrees of freedom giving rise to a continuum density of states,

as it is commonly found in Lattice Gauge Theories and in some Statistical Mechanics sys-

tems. We show that the method possesses an exponential error suppression that allows

us to estimate the density of states over several orders of magnitude with nearly-constant

relative precision. We explain how ergodicity issues can be avoided and how expectation

values of arbitrary observables can be obtained within this framework. We then demon-

strate the method using Compact U(1) Lattice Gauge Theory as a show case. A thorough

study of the algorithm parameter dependence of the results is performed and compared

with the analytically expected behaviour. We obtain high precision values for the critical

coupling for the phase transition and for the peak value of the specific heat for lattice sizes

ranging from 84 to 204. Our results perfectly agree with the reference values reported in

the literature, which covers lattice sizes up to 184. Robust results for the 204 volume are

obtained for the first time. This latter investigation, which, due to strong metastabilities

developed at the pseudo-critical coupling of the system, so far has been out of reach even

on supercomputers with importance sampling approaches, has been performed to high ac-

curacy with modest computational resources. This shows the potential of the method for

studies of first order phase transitions. Other situations where the method is expected to

be superior to importance sampling techniques are pointed out.
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1 Introduction and motivations

Monte-Carlo methods are widely used in Theoretical Physics, Statistical Mechanics and

Condensed Matter (for an overview, see e.g. [1]). Since the inception of the field [2],

most of the applications have relied on importance sampling, which allows us to evaluate

stochastically with a controllable error multi-dimensional integrals of localised functions.

These methods have immediate applications when one needs to compute thermodynamic

properties, since statistical averages of (most) observables can be computed efficiently with

importance sampling techniques. Similarly, in Lattice Gauge Theories, most quantities

of interest can be expressed in the path integral formalism as ensemble averages over a

positive-definite (and sharply peaked) measure, which, once again, provide an ideal scenario

for applying importance sampling methods.

However, there are noticeable cases in which Monte-Carlo importance sampling methods

are either very inefficient or produce inherently wrong results for well understood reasons.

Among those cases, some of the most relevant situations include systems with a sign prob-

lem (see [3] for a recent review), direct computations of free energies (comprising the study

of properties of interfaces), systems with strong metastabilities (for instance, a system with
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a first order phase transition in the region in which the phases coexist) and systems with

a rough free energy landscape. Alternatives to importance sampling techniques do exist,

but generally they are less efficient in standard cases and hence their use is limited to

ad-hoc situations in which more standard methods are inapplicable. Noticeable exceptions

are micro-canonical methods, which have experienced a surge in interest in the past fifteen

years. Most of the growing popularity of those methods is due to the work of Wang and

Landau [4], which provided an efficient algorithm to access the density of states in a sta-

tistical system with a discrete spectrum. Once the density of states is known, the partition

function (and from it all thermodynamic properties of the system) can be reconstructed by

performing one-dimensional numerical integrals. The generalisation of the Wang-Landau

algorithm to systems with a continuum spectrum is far from straightforward [5, 6]. To over-

come this limitation, a very promising method, here referred to as the Logarithmic Linear

Relaxation (LLR) algorithm, was introduced in [7]. The potentialities of the method were

demonstrated in subsequent studies of systems afflicted by a sign problem [8, 9], in the com-

putation of the Polyakov loop probability distribution function in two-colour QCD with

heavy quarks at finite density [10] and – rather unexpectedly – even in the determination

of thermodynamic properties of systems with a discrete energy spectrum [11].

The main purpose of this work is to discuss in detail some improvements of the original

LLR algorithm and to formally prove that expectation values of observables computed with

this method converge to the correct result, which fills a gap in the current literature. In

addition, we apply the algorithm to the study of Compact U(1) Lattice Gauge Theory, a

system with severe metastabilities at its first order phase transition point that make the

determination of observables near the transition very difficult from a numerical point of

view. We find that in the LLR approach correlation times near criticality grow at most

quadratically with the volume, as opposed to the exponential growth that one expects with

importance sampling methods. This investigation shows the efficiency of the LLR method

when dealing with systems having a first order phase transition. These results suggest that

the LLR method can be efficient at overcoming numerical metastabilities in other classes of

systems with a multi-peaked probability distribution, such as those with rough free energy

landscapes (as commonly found, for instance, in models of protein folding or spin glasses).

The rest of the paper is organised as follows. In Sect. 2 we cover the formal general aspects

of the algorithm. The investigation of Compact U(1) Lattice Gauge Theory is reported

in Sect. 3. A critical analysis of our findings, our conclusions and our future plans are

presented in Sect. 4. Finally, some technical material is discussed in the appendix. Some

preliminary results of this study have already been presented in [12].

2 Numerical determination of the density of states

2.1 The density of states

Owing to formal similarities between the two fields, the approach we are proposing can

be applied to both Statistical Mechanics and Lattice Field Theory systems. In order to

keep the discussion as general as possible, we shall introduce notations and conventions

that can describe simultaneously both cases. We shall consider a system described by the
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set of dynamical variables φ, which could represent a set of spin or field variables and are

assumed to be continuous. The action (in the field theory case) or the Hamiltonian (for

the statistical system) is indicated by S and the coupling (or inverse temperature) by β.

Since the product βS is dimensionless, without loss of generality we will take both S and

β dimensionless.

We consider a system with a finite volume V , which will be sent to infinity in the final

step of our calculations. The finiteness of V in the intermediate steps allows us to define

naturally a measure over the variables φ, which we shall call Dφ. Properties of the system

can be derived from the function

Z(β) =

∫
Dφ eβS[φ] .

which defines the canonical partition function for the statistical system or the path integral

in the field theory case. The density of state (which is a function of the value of S[φ] = E)

is formally defined by the integral

ρ(E) =

∫
Dφ δ

(
S[φ]− E

)
. (2.1)

In terms of ρ(E), Z takes the form

Z(β) =

∫
dE ρ(E) eβE .

The vacuum expectation value (or ensemble average) of an observable O which is function

of E can be written as1

〈O〉 =
1

Z(β)

∫
dE O(E) ρ(E) eβE . (2.2)

Hence, a numerical determination of ρ(E) would enable us to express Z and 〈O〉 as nu-

merical integrals of known functions in the single variable E. This approach is inherently

different from conventional Monte-Carlo calculations, which relie on the concept of im-

portance sampling, i.e. the configurations contributing to the integral are generated with

probability

Pβ(E) = ρ(E) eβE/Z(β) .

Owing to this conceptual difference, the method we are proposing can overcome notorious

drawbacks of importance sampling techniques.

2.2 The LLR method

We will now detail our approach to the evaluation of the density of states by means of a

lattice simulations. Our initial assumption is that the density of states is a regular function

of the energy that can be always approximated in a finite interval by a suitable functional

expansion. If we consider the energy interval [Ek, Ek + δE ], under the physically motivated

1The most general case in which O(φ) can not be written as a function of E is discussed in Subsect. 2.3.

– 3 –



assumption that the density of states is a smooth function in this interval, the logarithm

of the latter quantity can be written, using Taylor’s theorem, as

ln ρ(E) = ln ρ

(
Ek +

δE
2

)
+

d ln ρ

dE

∣∣∣
E=Ek+δE/2

(
E − Ek −

δE
2

)
+ Rk(E) , (2.3)

Rk(E) =
1

2

d2 ln ρ

dE2

∣∣∣
Ek+δE/2

(
E − Ek −

δE
2

)2

+ O(δ3
E) .

Thereby, for a given action E, the integer k is chosen such that

Ek ≤ E ≤ Ek + δE , Ek = E0 + k δE .

Our goal will be to devise a numerical method to calculate the Taylor coefficients

ak :=
d ln ρ

dE

∣∣∣
E=Ek+δE/2

(2.4)

and to reconstruct from these an approximation for the density of states ρ(E). By in-

troducing the intrinsic thermodynamic quantities, Tk (temperature) and ck (specific heat)

by

d ln ρ

dE

∣∣∣
E=Ek+δE/2

=
1

Tk
= ak ,

d2 ln ρ

dE2

∣∣∣
E=Ek+δE/2

= − 1

T 2
k ck

1

V
. (2.5)

we expose the important feature that the target coefficients ak are independent of the

volume while the correction Rk(E) is of order δ2
E/V . In all practical applications, Rk

will be numerically much smaller than ak δE . For a certain parameter range (i.e., for the

correlation length smaller than the lattice size), we can analytically derive this particular

volume dependence of the density derivatives. Details are left to the appendix.

Using the trapezium rule for integration, we find in particular

ln
ρ(Ek+1 + δE/2)

ρ(Ek + δE/2)
=

∫ Ek+1+
δE
2

Ek+
δE
2

d ln ρ

dE
dE =

δE
2

[ak + ak+1] + O(δ3
E) . (2.6)

Using this equation recursively, we find

ln
ρ(EN + δE

2 )

ρ(E0 + δE
2 )

=
a0

2
δE +

N−1∑
k=1

ak δE +
aN
2
δE + O(δ2

E) . (2.7)

Note that N δE = O(1). Exponentiating (2.3) and using (2.7), we obtain

ρ(E) = ρ

(
EN +

δE
2

)
exp
{
aN (E − EN − δE/2) + O(δ2

E)
}

(2.8)

= ρ0

(
N−1∏
k=1

eakδE

)
exp

{
aN (E − EN ) + O(δ2

E)
}
, (2.9)

where we have defined an overall multiplicative constant by

ρ0 = ρ

(
E0 +

δE
2

)
ea0δE/2 .
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We are now in the position to introduce the piecewise-linear and continuous approximation

of the density of states by

ρ̃(E) = ρ0

(
N−1∏
k=1

eakδE

)
eaN (E−EN ) , N(E) : EN ≤ E < EN+1 . (2.10)

i.e., N is chosen in such a way that EN ≤ E < EN +δE for a given E. With this definition,

we obtain the remarkable identity

ρ(E) = ρ̃ (E) exp
{
O(δ2

E)
}

= ρ̃ (E)
[
1 + O(δ2

E)
]
. (2.11)

which we will extensively use below. We will observe that ρ(E) spans many orders of

magnitude. The key observation is that our approximation implements exponential error

suppression, meaning that ρ(E) can be approximated with nearly-constant relative error

despite it may reach over thousands of orders of magnitude:

1− ρ̃(E)

ρ(E)
= O

(
δ2
E

)
. (2.12)

We will now present our method to calculate the coefficients ak. To this aim, we intro-

duce the action restricted and re-weighted expectation values [7] with a being an external

variable:

〈〈W [φ]〉〉k (a) =
1

Nk

∫
Dφ θ[Ek,δE ](S[φ]) W [φ] e−aS[φ] , (2.13)

Nk =

∫
Dφ θ[Ek,δE ] e−aS[φ] =

∫ Ek+δE

Ek

dE ρ(E) e−aE , (2.14)

where we have used (2.1) to express Nk as an ordinary integral. We also introduced the

modified Heaviside function

θ[Ek,δE ](S) =

{
1 for Ek ≤ S ≤ Ek + δE
0 otherwise .

If the observable only depends on the action, i.e., W [φ] = O(S[φ]), (2.13) simplifies to

〈〈O〉〉k (a) =
1

Nk

∫ Ek+δE

Ek

dE ρ(E) O(E) e−aE , (2.15)

Let us now consider the specific action observable

∆E = S − Ek −
δE
2
, (2.16)

and the solution a of the non-linear equation

〈〈∆E〉〉k (a) = 0 . (2.17)
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Inserting ρ(E) from (2.8) into (2.15) and defining ∆a = ak − a, we obtain:

〈〈∆E〉〉k (a) =
ρ(Ek + δE/2)

∫ Ek+δE
Ek

dE (E − Ek − δE/2) e∆a (E−Ek) eO(δ2E)

ρ(Ek + δE/2)
∫ Ek+δE
Ek

dE e∆a (E−Ek) eO(δ2E)

=

∫ Ek+δE
Ek

dE (E − Ek − δE/2) e∆a (E−Ek)∫ Ek+δE
Ek

dE e∆a (E−Ek)
+ O

(
δ2
E

)
= 0 . (2.18)

Let us consider for the moment the function

F (∆a) :=

∫ Ek+δE
Ek

dE (E − Ek − δE/2) e∆a (E−Ek)∫ Ek+δE
Ek

dE e∆a (E−Ek)
.

It is easy to check that F is monotonic and vanishing for ∆a = 0:

F ′(∆a) > 0 , F (∆a = 0) = 0 .

We therefore conclude for any δE that if (2.18) does have a solution, this solution is unique.

For sufficiently small δE there is a solution, and, hence, the only solution is given by:

〈〈∆E〉〉k (a) = 0 ⇔ a =
d ln ρ

dE

∣∣∣
E=Ek+

δE
2

+ O
(
δ2
E

)
. (2.19)

The later equation is at the heart of the LLR algorithm: it details how we can obtain the

log-rho derivative by calculating the Monte-Carlo average 〈〈∆E〉〉k (a) (using (2.13)) and

solving a non-linear equation, i.e., (2.17).

In the following, we will discuss the practical implementation by addressing two questions:

(i) How do we solve the non-linear equation? (ii) How do we deal with the statistical uncer-

tainty since the Monte-Carlo method only provides stochastic estimates for the expectation

value 〈〈∆E〉〉k (a)?

Let us start with the standard Newton-Raphson method to answer question (i). Starting

from an initial guess a(0) for the solution, this method produces a sequence

a(0) → a(1) → a(2) → . . . → a(n) → a(n+1) . . . ,

which converges to the true solution ak. Starting from a(n) for the solution, we would like

to derive an equation that generates a value a(n+1) that is even closer to the true solution:

〈〈∆E〉〉k
(
a(n+1)

)
= 〈〈∆E〉〉k

(
a(n)

)
+

d

da
〈〈∆E〉〉k

(
a(n)

) (
a(n+1) − a(n)

)
= 0 . (2.20)

Using the definition of 〈〈∆E〉〉k
(
a(n+1)

)
in (2.18) with reference to (2.16) and (2.15), we

find:

d

da
〈〈∆E〉〉k (a) = −

[〈〈
∆E2

〉〉
k

(a) − 〈〈∆E〉〉2k (a)
]

=: − σ2(∆E; a) . (2.21)

We thus find for the improved solution:

a(n+1) = a(n) +
〈〈∆E〉〉k (a(n))

σ2(∆E; a(n))
. (2.22)
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We can convert the Newton-Raphson recursion into a simpler fixed point iteration if we

assume that the choice a(n) is sufficiently close to the true value ak such that

δE

(
a(n) − ak

)
� 1 .

Without affecting the precision with which the solution a of (2.18) can be obtained, we

replace

σ2(∆E; a) =
1

12
δ2
E

[
1 + O

(
δE∆a

)2] [
1 +O(δE)

]
. (2.23)

Hence, the Newton-Raphson iteration is given by

a(n+1) = a(n) +
12

δ2
E

〈〈∆E〉〉k (a(n)) (2.24)

We point out that one fixed point of the above iteration, i.e., a(n+1) = a(n) = a, is attained

for

〈〈∆E〉〉k (a) = 0 ,

which, indeed, is the correct solution. We have already shown that the above equation

has only one solution. Hence, if the iteration converges at all, it necessarily converges

to the true solution. Note that convergence can always be achieved by suitable choice of

under-relaxation. We here point out that the solution to question (ii) above will involve a

particular type of under-relaxation.

Let us address the question (ii) now. We have already pointed out that we have only

a stochastic estimate for the expectation value 〈〈∆E〉〉k (a) and the convergence of the

Newton-Raphson method is necessarily hampered by the inevitable statistical error of the

estimator. This problem, however, has been already solved by Robbins and Monroe [13].

For completeness, we shall now give a brief presentation of the algorithm. The starting

point is the function M(x), and a constant α, such that the equation M(x) = α has a

unique root at x = θ. M(x) is only available by stochastic estimation using the random

variable N(x):

E[N(x)] = M(x) ,

with E[N(x)] being the ensemble average of N(x). The iterative root finding problem is of

the type

xn+1 = xn + cn (α−N(xn)) (2.25)

where cn is a sequence of positive numbers sizes satisfying the requirements

∞∑
n=0

cn =∞ and
∞∑
n=0

c2
n <∞ (2.26)

It is possible to prove that under certain assumptions [13] on the function M(x) the

limn→∞ xn converges in L2 and hence in probability to the true value θ. A major ad-

vance in understanding the asymptotic properties of this algorithm was the main result

of [13]. If we restrict ourselves to the case

cn =
c

n
(2.27)

– 7 –



one can prove that
√
n(xn − θ) is asymptotically normal with variance

σ2
x =

c2σ2
ξ

2 c M ′(x)− 1
(2.28)

where σ2
ξ is the variance of the noise. Hence, the optimal value of the constant c, which

minimises the variance is given by

c =
1

M ′(θ)
. (2.29)

Adapting the Robbins-Monro approach to our root finding iteration in (2.24), we finally

obtain an under-relaxed Newton-Raphson iteration

a(n+1) = a(n) +
12

δ2
E (n+ 1)

〈〈∆E〉〉k (a(n)) , (2.30)

which is optimal with respect to the statistical noise during iteration.

2.3 Observables and convergence with δE

We have already pointed out that expectation values of observables depending on the

action only can be obtained by a simple integral over the density of states (see (2.2)).

Here we develop a prescription for determining the values of expectations of more general

observables by folding with the numerical density of states and analyse the dependence of

the estimate on δE .

Let us denote a generic observable by B(φ). Its expectation value is defined by

〈B[φ]〉 =
1

Z(β)

∫
Dφ B[φ] eβS[φ] (2.31)

In order to relate to the LLR approach, we break up the latter integration into energy

intervals:

〈B[φ]〉 =
1

Z(β)

∑
i

∫
Dφ θ[Ei,δE ] B[φ] eβS[φ] . (2.32)

Note that 〈B[φ]〉 does not depend on δE .

We can express 〈B[φ]〉 in terms of a sum over double-bracket expectation values by choosing

W := B[φ] exp{(β + ai)S[φ]}

in (2.13). Without any approximation, we find:

〈B[φ]〉 =
1

Z(β)

∑
i

Ni eaiEi 〈〈B[φ] exp{βS[φ] + ai(S[φ]− Ei)}〉〉 (Ei), (2.33)

Z(β) =
∑
i

Ni eaiEi 〈〈 exp{βS[φ] + ai(S[φ]− Ei)}〉〉 (Ei) . (2.34)
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where Ni = Ni(ai) is defined in (2.14). The above result can be further simplified by using

(2.11):

Ni eaiEi =

∫ Ei+δE

Ei

dE ρ(E) exp{−ai(E − Ei)} = eO(δ2E)

∫ Ei+δE

Ei

dE ρ̃(E) exp{−ai(E − Ei)}

= eO(δ2E) ρ̃(Ei)

∫ Ei+δE

Ei

dE = δE ρ̃ (Ei) eO(δ2E)

= δE ρ̃ (Ei)
[
1 + O(δ2

E)
]
. (2.35)

We now define the approximation to 〈B[φ]〉 by

〈B[φ]〉app =
1

Z(β)

∑
i

δE ρ̃ (Ei) 〈〈B[φ] exp{βS[φ] + ai(S[φ]− Ei)}〉〉 (2.36)

Z(β) :=
∑
i

δE ρ̃ (Ei) 〈〈 exp{βS[φ] + ai(S[φ]− Ei)}〉〉 . (2.37)

Since the double-bracket expectation values do not produce a singularity if δE → 0, i.e.,

lim
δE→0

〈〈B[φ] exp{βS[φ] + ai(S[φ]− Ei)}〉〉 = finite ,

using (2.35), from (2.33) and (2.34) we find that

〈B[φ]〉 = 〈B[φ]〉app +
∑
i

O(δ3
E) = 〈B[φ]〉app + O(δ2

E) . (2.38)

The latter formula together with (2.36) provides access to all types of observables using the

LLR method with little more computational resources: Once the Robbins-Monro iteration

(2.30) has settled for an estimate of the coefficient ak, the Monte-Carlo simulation simply

continues to derive estimators for the double-bracket expectation values in (2.36) and (2.37).

With the further assumption that the double-bracket expectation values are (semi-)positive,

an even better error estimate is produced by our approach:

〈B[φ]〉 = 〈B[φ]〉app +
∑
i

O(δ3
E) = 〈B[φ]〉app

[
1 + O(δ2

E)
]
.

This implies that the observable 〈B[φ]〉 can be calculated with an relative error of order

δ2
E . Indeed, we find from (2.33,2.34,2.35) that

〈B[φ]〉 =
1

Z(β)

∑
i

δE ρ̃ (Ei) 〈〈B[φ] exp{βS[φ] + ai(S[φ]− Ei)}〉〉 (2.39)

× exp
{
O(δ2

E)
}
,

Z(β) :=
∑
i

δE ρ̃ (Ei) 〈〈 exp{βS[φ] + ai(S[φ]− Ei)}〉〉 . (2.40)

Thereby, we have used∣∣∣∣∣∑
i

ai exp
{
ciδ

2
E

}∣∣∣∣∣ ≤∑
i

|ai|
∣∣exp{ciδ2

E}
∣∣ ≤ ∑

i

|ai| exp{cmaxδ
2
E}

= exp{cmaxδ
2
E}

∑
i

ai = exp
{
O(δ2

E)
}
×
∑
i

ai .
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The assumption of (semi-)positive double expectation values is true for many action observ-

ables, and possibly also for Wilson loops, whose re-weighted and action restricted double

expectation values might turn out to be positive (as it is the case for their standard expec-

tation values). In this case, our method would provide an efficient determination of those

quantities. This is important in particular for large Wilson loop expectation values, since

they are notoriously difficult to measure with importance sampling methods (see e.g. [14]).

We also note that, in order to have an accurate determination of a generic observable, any

Monte-Carlo estimate of the double expectation values must be obtained to good precision

dictated by the size of δE . A detailed numerical investigation of these and related issues is

left to future work.

For the specific case that the observable B[φ] only depends on the action S[φ], we cir-

cumvent this problem and evaluate the double-expectation values exactly. To this aim, we

introduce for the general case 〈〈W [φ]〉〉k the generalised density wk(E) by

ρ(E) wk(E) =

∫
Dφ θ[Ek,δE ](S[φ]) W [φ] δ

(
E − S[φ]

)
. (2.41)

We then point out that if W [φ] is depending on the action only, i.e., W [φ] = f(S[φ]), we

obtain:

wk(E) = f(E) θ[Ek,δE ](E) .

With the definition of the double expectation value (2.13), we find:

〈〈W [φ]〉〉k (ak) =

∫ Ek+δE
Ek

dE ρ(E) e−akE wk(E)∫ Ek+δE
Ek

dE ρ(E) e−akE
(2.42)

Rather than calculating 〈〈W [φ]〉〉k by Monte-Carlo methods, we can analytically evaluate

this quantity (up to order O(δ2
E) ). Using the observation that for any smooth (C2) function

g ∫ Ek+δE

Ek

dE g(E) = δE g

(
Ek +

δE
2

)
+ O

(
δ3
E

)
,

and using this equation for both, numerator and denominator of (2.42), we conclude that

〈〈W [φ]〉〉k (ak) = wk

(
Ek +

δE
2

)
+ O

(
δ2
E

)
. (2.43)

Let us now specialise to the case that is relevant for (2.39) with B depending on the action

only:

W [φ] = b
(
S[φ]

)
exp{βS[φ] + ai(S[φ]− Ei)},

wi(E) = b(E) exp{βE + ai(E − Ei)}. (2.44)

This leaves us with

〈〈W [φ]〉〉i (ai) = b
(
Ei +

δE
2

)
eβ(Ei+

δE
2

) eai
δE
2 + O

(
δ2
E

)
. (2.45)
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Inserting (2.43) together with (2.44) into (2.36), we find:

〈B[φ]〉 =
1

Z(β)

∑
i

δE ρ̃

(
Ei +

δE
2

)
bi

(
Ei +

δE
2

)
eβ(Ei+

δE
2

) + O
(
δ2
E

)
, (2.46)

Z(β) =
∑
i

δE ρ̃

(
Ei +

δE
2

)
eβ(Ei+

δE
2

) . (2.47)

Below, we will numerically test the quality of expectation values obtained by the LLR

approach using action observables only, i.e., B[φ] = O(S[φ]). We will find that we indeed

achieve the predicted precision in δ2
E for this type of observables (see below Fig. 6).

2.4 The numerical algorithm

So far, we have shown that a piecewise continuous approximation of the density of states

that is linear in intervals of sufficiently small amplitude δE allows us to obtain a controlled

estimate of averages of observables and that the angular coefficients ai of the linear ap-

proximations can be computed in each interval i using the Robbins-Monro recursion (2.30).

Imposing the continuity of log ρ(E), one can then determine the latter quantity up to an

additive constant, which does not play any role in cases in which observables are standard

ensemble averages.

The Robbins-Monro recursion can be easily implemented in a numerical algorithm. Ideally,

the recurrence would be stopped when a tolerance ε for ai is reached, i.e. when

∣∣∣a(n+1)
i − a(n)

i

∣∣∣ =
12
∣∣∣∆Ei(a(n)

i )
∣∣∣

(n+ 1) δ2
E

≤ ε , (2.48)

with (for instance) ε set to the precision of the computation. When this condition is

fulfilled, we can set ai = a
(n+1)
i . However, one has to keep into account the fact that the

computation of ∆Ei requires an averaging over Monte-Carlo configurations. This brings

into play considerations about thermalisation (which has to be taken into account each

time we send a
(n)
i → a

(n+1)
i ), the number of measurements used for determining ∆Ei at

fixed a
(n)
i and – last but not least – fluctuations of the a

(n)
i themselves.

Following those considerations, an algorithm based on the Robbins-Monro recursion rela-

tion should depend on the following input (tunable) parameters:

• NTH, the number of Monte-Carlo updates in the restricted energy interval before

starting to measure expectation values;

• NSW, the number of iterations used for computing expectation values;

• NRM, the number of Robbins-Monro iterations for determining ai;

• NB, number of final values from the Robbins-Monro iteration subjected to a subse-

quent bootstrap analysis.
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The version of the LLR method proposed and implemented in this paper is reported in an

algorithmic fashion in the box Algorithm 1. This implementation differs from that provided

in [7, 8] by the replacement of the originally proposed root-finding procedure based on a

deterministic Newton-Raphson like recursion with the Robbins-Monro recursion, which is

better suited to the problem of finding zeros of stochastic equations. Since the ai are

Algorithm 1: The LLR method as implemented in this work.

Input: NSW, NTH, NRM, NA

Output: ai ∀i
1 for 0 ≤ i < (Emax − Emin) /δE do

2 Initialise Ei = Emin + iδE , a0
i = āi;

3 for 0 ≤ n < NRM do

4 for k ≤ NSW do

5 Evolve the whole system with an importance sampling algorithm for one

sweep according to the probability distribution

P (E) ∝ e−ani E

accepting only configuration such that Ei ≤ E ≤ Ei + δE
6 if j ≥ NTH then

7 Compute E(j), the value of the energy in the current configuration j;

8 Compute

∆Ei(a
(n)
i ) =

1

NSW −NTH

 ∑
j>NTH

E(j)

− Ei − δE
2

9 Compute

a
(n+1)
i = a

(n)
i −

12∆Ei(a
(n)
i )

(n+ 1) δ2
E

10 Repeat NB times to produce NB candidates ai for a subsequent bootstrap

analysis

determined stochastically, a different reiteration of the algorithm with different starting

conditions and different random seeds would produce a different value for the same ai. The

stochastic nature of the process implies that the distribution of the ai found in different

runs is Gaussian. The generated ensemble of the ai can then be used to determine the error

of the estimate of observables using analysis techniques such as jackknife and bootstrap.

The parameters Emin and Emax depend on the system and on the phenomenon under in-

vestigation. In particular, standard thermodynamic considerations on the infinite volume

limit imply that if one is interested in a specific range of temperatures and the studied

observables can be written as statistical averages with Gaussian fluctuations, it is possible
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Figure 1: Left: For contiguous energy intervals if a transition between configurations

with energy in the same interval requires going through configurations with energy that

are outside that interval, the simulation might get trapped in one of the allowed regions

(in green). Right: For overlapping energy intervals with replica exchange, the simulation

can travel from one allowed region to the other through excursions to the upper interval.

to restrict the range of energies between the energy that is typical of the smallest con-

sidered temperature and the energy that is typical of the highest considered temperature.

Determining a reasonable value for the amplitude of the energy interval δE and the other

tunable parameters NSW, NTH, NRM and NA requires a modest amount of experimenting

with trial values. In our applications we found that the results were very stable for wide

ranges of values of those parameters. Likewise, āi, the initial value for the Robbins-Monro

recursion in interval i, does not play a crucial role; when required and possible, an initial

value close to the expected result can be inferred inverting 〈E(β)〉, which can be obtained

with a quick study using conventional techniques.

The average 〈〈. . .〉〉 imposes an update that restricts configurations to those with energies

in a specific range. In most of our studies, we have imposed the constraint analytically at

the level of the generation of the newly proposed variables, which results in a performance

that is comparable with that of the unconstrained system. Using a simple-minded more

direct approach, in which one imposes the constraint after the generation of the proposed

new variable, we found that in most cases the efficiency of Monte-Carlo algorithms did not

drop drastically as a consequence of the restriction, and even for systems like SU(3) (see

Ref. [7]) we were able to keep an efficiency of at least 30% and in most cases no less than

50% with respect to the unconstrained system.

2.5 Ergodicity

Our implementation of the energy restricted average 〈〈· · ·〉〉 assumes that the update al-

gorithm is able to generate all configurations with energy in the relevant interval starting

from configurations that have energy in the same interval. This assumption might be too

strong when the update is local2 in the energy (i.e. each elementary update step changes

the energy by a quantity of order one for a system with total energy of order V ) and there

2This is for instance the case for the popular heath-bath and Metropolis update schemes.
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are topological excitations that can create regions with the same energy that are separated

by high energy barriers. In these cases, which are rather common in gauge theories and

statistical mechanics3, generally in order to go from one acceptable region to the other one

has to travel through a region of energies that is forbidden by an energy-restricted update

method such as the LLR. Hence, by construction, in such a scenario our algorithm will get

trapped in one of the allowed regions. Therefore, the update will not be ergodic.

In order to solve this problem, one can use an adaptation of the replica exchange method [15],

as first proposed in [16]. The idea is that instead of dividing the whole energy interval in

contiguous sub-intervals overlapping only in one point (in the following simply referred to

as contiguous intervals), one can divide it in sub-intervals overlapping in a finite energy

region (this case will be referred to as overlapping intervals). With the latter prescription,

after a fixed number of iterations of the Robbins-Monro procedure, we can check whether

in any pairs of overlapping intervals (I1, I2) the energy of both the corresponding config-

urations is in the common region. For pairs fulfilling this condition, we can propose an

exchange of the configurations with a Metropolis probability

Pswap = min

(
1, e

(
a
(n)
I1
−a(n)I2

)
(EC1

−EC2)
)
, (2.49)

where a
(n)
I1

and a
(n)
I2

are the values of the parameter a at the current n-th iterations of the

Robbins-Monro procedure respectively in intervals I1 and I2 and EC1 (EC2) is the value

of the energy of the current configuration C1 (C2) of the replica in the interval I1 (I2). If

the proposed exchange is accepted, C1 → C2 and C2 → C1. With repeated exchanges of

configurations from neighbour intervals, the system can now travel through all configuration

space. A schematic illustration of how this mechanism works is provided in Fig. 1.

As already noticed in [16], the replica exchange step is amenable to parallelisation and

hence can be conveniently deployed in calculations on massively parallel computers. Note

that the replica exchange step adds another tunable parameter to the algorithm, which is

the number NSWAP of configurations swaps during the Monte-Carlo simulation at a given

Monte-Carlo step. A modification of the LLR algorithm that incorporates this step can be

easily implemented.

2.6 Reweighting with the numerical density of states

In order to screen our approach outlined in subsections 2.2 and 2.3 for ergodicity violations

and to propose an efficient procedure to calculate any observable once an estimate for

the density of states has been obtained, as an alternative to the replica exchange method

discussed in the previous section, we here introduce an importance sampling algorithm

with reweighting with respect to the estimate ρ̃. This algorithm features short correlation

times even near critical points. Consider for instance a system described by the canonical

3For instance, in a d-dimensional Ising system of size Ld, to go from one groundstate to the other one

needs to create a kink, which has energy growing as Ld−1.
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ensemble. We define a modified Boltzmann weight WB(E) as follows:

WB(E) =


e−β1E+c1 for E < Emin ;

1/ρ̃(E) for Emin ≤ E ≤ Emax ;

e−β2E+c2 for E > Emax .

(2.50)

Here Emin and Emax are two values of the energy that are far from the typical energy of

interest E:

Emin � E � Emax . (2.51)

If conventional Monte-Carlo simulations can be used for numerical studies of the given

system, we can chose β1 and β2 from the conditions

〈E(βi)〉 = Ei , i = 1, 2 . (2.52)

If importance sampling methods are inefficient or unreliable, β1 and β2 can be chosen to be

the micro-canonical βµ corresponding respectively to the density of states centred in Emin

and Emax. These βµ are outputs of our numerical determination ρ̃(E). The two constants

c1 and c2 are determined by requiring continuity of WB(E) at Emin and at Emax:

lim
E→E−

min

WB(E) = lim
E→E+

min

WB(E) and lim
E→E−

max

WB(E) = lim
E→E+

max

WB(E) . (2.53)

Let ρ(E) be the correct density of state of the system. If ρ̃(E) = ρ(E), then for Emin ≤
E ≤ Emax

ρ(E)WB(E) = 1 , (2.54)

and a Monte-Carlo update with weights WB(E) drives the system in configuration space

following a random walk in the energy. In practice, since ρ̃(E) is determined numerically,

upon normalisation

ρ(E)WB(E) ' 1 , (2.55)

and the random walk is only approximate. However, if ρ̃(E) is a good approximation

of ρ(E), possible free energy barriers and metastabilities of the canonical system can be

successfully overcome with the weights (2.50). Values of observables for the canonical

ensemble at temperature T = 1/β can be obtained using reweighting:

〈O(β)〉 =
〈Oe−βE(WB(E))−1〉W
〈e−βE(WB(E))−1〉W

, (2.56)

where 〈 〉 denotes average over the canonical ensemble and 〈 〉W average over the modified

ensemble defined in (2.50). The weights WB(E) guarantees ergodic sampling with small

auto-correlation time for the configurations with energies E such that Emin ≤ E ≤ Emax,

while suppressing to energy E � Emin and E � Emax. Hence, as long as for a given β of

the canonical system E = 〈E〉 and the energy fluctuation 〈∆E =
√
〈(E − 〈E〉)2〉 are such

that

Emin � 〈E〉 −∆E and 〈E〉+ ∆E � Emax , (2.57)
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the reweighting (2.56) does not present any overlap problem. The role of Emin and Emax

is to restrict the approximate random walk only to energies that are physically interesting,

in order to save computer time. Hence, the choice of Emin, Emax and of the corresponding

β1, β2 do not need to be fine-tuned, the only requirement being that Eqs. (2.57) hold.

These conditions can be verified a posteriori. Obviously, choosing the smallest interval

Emax − Emin where the conditions (2.57) hold optimises the computational time required

by the algorithm. The weights (2.56) can be easily imposed using a metropolis or a biased

metropolis [17]. Again, due to the absence of free energy barriers, no ergodicity prob-

lems are expected to arise. This can be checked by verifying that in the simulation there

are various tunnellings (i.e. round trips) between Emin and Emax and that the frequency

histogram of the energy is approximately flat between Emin and Emax. Reasonable require-

ments are to have O(100− 1000) tunnellings and an histogram that is flat within 15-20%.

These criteria can be used to confirm that the numerically determined ρ(E) is a good ap-

proximation of ρ(E). The flatness of the histogram is not influenced by the β of interest

in the original multi-canonical simulation. This is particularly important for first order

phase transitions, where traditional Monte-Carlo algorithms have a tunnelling time that

is exponentially suppressed with the volume of the system. Since the modified ensemble

relies on a random walk in energy, the tunnelling time between two fixed energy densities

is expected to grow only as the square root of the volume.

This procedure of using a modified ensemble followed by reweighting is inspired by the

multi-canonical method [18], the only substantial difference being the recursion relation

for determining the weights. Indeed for U(1) lattice gauge theory a multi-canonical update

for which the weights are determined starting from a Wang-Landau recursion is discussed

in [19]. We also note that the procedure used here to restrict ergodically the energy interval

between Emin and Emax can be easily implemented also in the replica exchange method

analysed in the previous subsection.

3 Application to Compact U(1) Lattice Gauge Theory

3.1 The model

Compact U(1) Lattice Gauge Theory is the simplest gauge theory based on a Lie group.

Its action is given by

S = β
∑
x,µ<ν

cos(θµν(x)) , (3.1)

where β = 1/g2, with g2 the gauge coupling, x is a point of a d-dimensional lattice of size

Ld and µ and ν indicate two lattice directions, indicised from 1 to d (for simplicity, in

this work we shall consider only the case d = 4), θµν plays the role of the electromagnetic

field tensor: if we associate the compact angular variable θµ(x) ∈ [−π;π[ with the link

stemming from i in direction µ̂,

θµν(x) = θµ(x) + θν(x+ µ̂)− θµ(x+ ν̂)− θν(x) . (3.2)
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The path integral of the theory is given by

Z =

∫
Dθµ eS , Dθµ =

∏
x,µ

dθµ(x)

2π
, (3.3)

the latter identity defining the Haar measure of the U(1) group.

The connection with the framework of SU(N) lattice gauge theories is better elucidated if

we introduce the link variable

Uµ(x) = eiθµ(x) . (3.4)

With this definition, S can be rewritten as

S = β
∑
x,µ<ν

Re Pµν(x) , (3.5)

with

Pµν(x) = Uµ(x)Uν(x+ µ̂)U∗µ(x+ ν̂)U∗ν (x)

the plaquette variable and U?µ(x) is the complex conjugate of Uµ(x). Working with the

variables Uµ(x) allows us to show immediately that S is invariant under U(1) gauge trans-

formations, which act as

Uµ(x) 7→ Λ∗(x) Uµ(x) Λ(x+ µ̂) , Λ(x) = eiλ(x) , (3.6)

with λ(x) ∈ [−π; π[ a function defined on lattice points.

The connection with U(1) gauge theory in the continuum can be shown by introducing the

lattice spacing a and the non-compact gauge field aAµ(x) = θµ(x)/g, so that

Uµ(x) = eigaAµ(x) . (3.7)

Taking a small and expanding the cosine leads us to

S = −1

4
a4
∑
x,µ,ν

(∆µAν(x)−∆νAµ(x))2 +O(a6) + constant , (3.8)

with ∆µ the forward difference operator. In the limit a→ 0, we finally find

S ' −1

4

∫
d4xFµν(x)2 , (3.9)

with Fµν being the usual field strength tensor. This shows that in the classical a→ 0 limit

S becomes the Euclidean action of a free gas of photons, with interactions being related

to the neglected lattice corrections. It is worth to remark that this classical continuum

limit is not the continuum limit of the full theory. In fact, this classical continuum limit is

spoiled by quantum fluctuations. These prevent the system from developing a second order

transition point in the a→ 0 limit, which is a necessary condition to be able to remove the

ultraviolet cutoff introduced with the lattice discretisation. The lack of a continuum limit

is related to the fact that the theory is strongly coupled in the ultraviolet. Despite the

non-existence of a continuum limit for Compact U(1) Lattice Gauge Theory, this lattice
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Figure 2: Comparison between the plaquette computed with the LLR algorithm (see

subsection 2.2) and via re-weighting with respect to the estimate ρ̃ (see subsection 2.6) for

a L = 12 lattice.

model is still interesting, since it provides a simple realisation of a weakly first order

phase transition. This bulk phase transition separates a confining phase at low β (whose

existence was pointed out by Wilson [20] in his seminal work on Lattice Gauge Theory)

from a deconfined phase at high β, with the transition itself occurring at a critical value

of the coupling βc ' 1. Rather unexpectedly at first side, importance-sampling Monte-

Carlo studies of this phase transitions turned out to be demanding and not immediate to

interpret, with the order of the transition having been debated for a long time (see e.g. [21–

30]). The issue was cleared only relatively recently, with investigations that made a crucial

use of supercomputers [31, 32]. What makes the transition difficult to observe numerically

is the role played in the deconfinement phase transition by magnetic monopoles [33], which

condense in the confined phase [33, 34].

The existence of topological sectors and the presence of a transition with exponentially

suppressed tunnelling times can provide robust tests for the efficiency and the ergodicity of

our algorithm. This motivates our choice of Compact U(1) for the numerical investigation

presented in this paper.

3.2 Simulation details

The study of the critical properties of U(1) lattice gauge theory is presented in this section.

In order to test our algorithm, we investigated the behaviour of specific heath as function

of the volume. This quantity has been carefully investigated in previous studies, and as

such provides a stringent test of our procedure. In order to compare data across different

sizes, our results will be often provided normalised to the number of plaquette 6L4 = 6V .

We studied lattices sizes ranging from 84 to 204 and for each lattice size we computed the

density of states ρ(E) in the entire interval Emin ≤ E ≤ Emax (see Tab. 1). The rational

behind the choice of the energy region is that it must be centred around the critical energy
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L Emin/(6V ) Emax/(6V ) NSW NRM (Emax − Emin)/δE
8 0.5722222 0.67 250 600 512

10,12,14,16,18,20 0.59 0.687777 200 400 512

Table 1: Values of the tunable parameters of the LLR algorithm used in our numerical

investigation.

and it has to be large enough to study all the critical properties of the theory, i.e. every

observable evaluated has to have support in this region and have virtually no correction

coming from the choice of the energy boundaries. We divided the energy interval in steps of

δE and for each of the sub-interval we have repeated the entire generation of the log-linear

density of states function and evaluation of the observables NB = 20 times to create the

bootstrap samples for the estimate of the errors. The values of the other tunable parameters

of the algorithm used in our study are reported in Tab. 1. An example determination of

one of the ai is reported in Fig. 3. The plot shows the rapid convergence to the asymptotic

value and the negligible amplitude of residual fluctuations. Concerning the cost of the

simulations, we found that accurate determinations of observables can be obtained with

modest computational resources compared to those needed in investigations of the system

with importance sampling methods. For instance, the most costly simulation presented

here, the investigation of the 204 lattice, was performed on 512 cores of Intel Westmere

processors in about five days. This needs to be contrasted with the fact that in the early

2000’s only lattices up to 184 could be reliably investigated with importance sampling

methods, with the largest sizes requiring supercomputers [31, 32].

One of our first analyses was a screening for potential ergodicity violations with the LLR

approach. As detailed in subsection 2.5, these can emerge for LLR simulations using

contiguous intervals as it is the case for the U(1) study reported in this paper. To this aim,

we calculated the action expectation value 〈E〉 for a 124 lattice for several values using the

LLR method and using the re-weighting with respect to the estimate ρ̃. Since the latter

approach is conceptually free of ergodicity issues, any violations by the LLR method would

be flagged by discrepancy. Our findings are summarised in Fig. 2 and the corresponding

table. We find good agreement for the results from both methods. This suggests that

topological objects do not generate energy barriers that trap our algorithm in a restricted

section of configuration space. Said in other words, for this system the LLR method using

contiguous interval seems to be ergodic.

3.3 Volume dependence of log ρ̃ and computational cost of the algorithm

As first investigation we have performed a study of the scaling properties of the ai as

function of the volume. In Fig. 4 we show the behaviour of the ai with the lattice volume.

The estimates are done for a fixed δE/V , where the chosen value for the ratio fulfils the

request that within the errors all our observables are not varying for δE → 0 (we report

on the study of δE → 0 in section 3.5). As it is clearly visible from the plot the data are

scaling toward a infinite volume estimate of the ai for fixed energy density.
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Figure 3: Estimated ai as a function of the Robbins-Monro iteration, on a 204 lattice and

for action E/(6V ) = 0.59009548 at the centre of the interval with δE/V = 1.91× 10−4.
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Figure 4: Estimate of ai as function of the energy density for various volume, the right

panel is a zoom of the interesting region.

As mentioned before, the issue facing importance sampling studies at first order phase

transitions are connected with tunnelling times that grow exponentially with the volume.

With the LLR method, the algorithmic cost is expected to grow with the size of the system
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as V 2, where one factor of V comes from the increase of the size and the other factor of V

comes from the fact that one needs to keep the energy interval per unit of volume δE/V

fixed, as in the large-volume limit only intensive quantities are expected to determine the

physics. One might wonder whether this apparently simplistic argument fails at the first

order phase transition point. This might happen if the dynamics is such that a slowing

down takes place at criticality. In the case of Compact U(1), for the range of lattice sizes

studied here, we have found that the computational cost of the algorithm is compatible

with a quadratic increase with the volume.

3.4 Numerical investigation of the phase transition

Using the density of states it is straightforward to evaluate, by direct integration (see

subsection 2.3), the expectation values of any power of the energy and evaluate thermody-

namical quantities like the specific heat

CV (β) = 〈E2(β)〉 − 〈E(β)〉2 (3.10)

As usual we define the pseudo-critical coupling βc(L) such as the coupling at which the

peak of the specific heat occurs for a fixed volume. The peak of the specific heat has been

located using our numerical procedure and the error bars are computed using the bootstrap

method. Our results are summarised in Tab. 2 with a comparison with the values in [31].

Once again, the agreement testify the good ergodic properties of the algorithm. Using our

L βc(L) present method βc(L) reference values

8 1.00744(2) 1.00741(1)

10 1.00939(2) 1.00938(2)

12 1.010245(1) 1.01023(1)

14 1.010635(5) 1.01063(1)

16 1.010833(4) 1.01084(1)

18 1.010948(2) 1.010943(8)

20 1.011006(2)

Table 2: βc(L) evaluated with the LLR algorithm and reference data from [31].

data it is possible to make a precise estimate of the infinite volume critical beta by means

of a finite size scaling analysis. The finite size scaling of the pseudo-critical coupling is

given by

βc(L) = βc +

kmax∑
k=1

BkL
−4k, (3.11)

where βc is the critical coupling. We fit our data with the function in Eq. (3.11), the results

are reported in Tab. 3.
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Lmin kmax βc χ2
red

14 1 1.011125(3) 0.91

12 1 1.011121(3) 2.42

12 2 1.011129(4) 0.67

10 1 1.011116(5) 7.44

10 2 1.011127(3) 0.60

8 1 1.011093(5) 90.26

8 2 1.011126(2) 0.62

Table 3: Estimates of βc for various choices of the fit parameters. In bold the best fits.

L CV /(6V ) peak present work CV /(6V ) peak from [31]

8 0.000551(2) 0.000554(1)

10 0.000384(2) 0.000385(1)

12 0.0002971(11) 0.000298(1)

14 0.0002537(8) 0.000254(1)

16 0.0002272(7) 0.000226(2)

18 0.0002097(5) 0.000211(2)

20 0.0002007(4)

Table 4: CV (βc(L)) evaluated with the LLR algorithm and reference data from [31].

Results for a 204 lattice have never been reported before in the literature.

Another quantity easily accessible is the latent heat, this quantity can be related to the

height of the peak of the specific heat at the critical temperature through:

CL(βc(L))

6L4
=
G2

4
+

kmax∑
k=1

CkL
−4k, (3.12)

where G is the latent heat. The results for this observable are reported in Tab. 4. We fit

the result with Eq. (3.12), see Tab. 5.

The latent heat can be obtained also from the knowledge of the location of the peaks of the

probability density at βc (of infinite volume), indeed in this case the latent heat is equal

to energy gap between the peaks. This direct measure can be used as crosscheck of the

previous analysis. In the language of the density of states the probability density is simply

given by

Pβ(E) =
1

Z
ρ(E)eβE . (3.13)

We have performed the study of the location in energy of the two peaks of Pβc(E) and we

have reported them in Tab. 6. Also in this case we have performed a finite size scaling

analysis to extract the infinite volume behaviour:

Ei(L)/(6V ) = εi + aie
−bi L. (3.14)
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Lmin kmax G χ2
red

14 1 0.02712(9) 4.6

12 1 0.0273(2) 31

12 2 0.02688(7) 1.4

10 1 0.0276(2) 74

10 2 0.02710(12) 9.7

10 3 0.02681(9) 1.4

8 1 0.0281(4) 335

8 2 0.02731(15) 26

8 3 0.02703(11) 6.7

Table 5: Estimates of G for various choices of the fit parameters. In bold the best fits.

0.61 0.62 0.63 0.64 0.65 0.66 0.67
E/(6V)

0
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120

P β(E
)

Figure 5: Probability density for L = 20 at βc. The probability is plotted at βc of infinite

volume hence the peaks are not of equal height.

A fit of the values in Tab. 6 yields χ2
red,1 = 0.67, ε1 = 0.6279(9) and χ2

red,2 = 0.2, ε2 =

0.65485(4). The latent heat can be evaluated as G = ε2−ε1 = 0.0270(9) which is in perfect

agreement with the estimates obtained by studying the scaling of the specific heath.
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L E1/(6V ) E2/(6V )

12 0.6263(5) 0.65580(14)

14 0.6264(2) 0.65532(5)

16 0.6272(2) 0.65512(4)

18 0.6274(4) 0.65495(6)

20 0.6275(2) 0.65491(7)

Table 6: Location of the peak of the probability density in the two meta-stable phases.

3.5 Discretisation effects

In this section we want to address the dependence of our observables from the size of energy

interval δE . In order to quantify this quantity we studies the dependence of the peak of

the specific heat Cv,peak with δE for various lattice sizes, namely 8, 10, 12, 14, 16. In table

7 we report the lattice sizes and the corresponding δE used to perform such investigation.

For each pair of δE and volume reported we have repeated all our simulations and analysis

with the same simulation parameters reported in Tab. 1. The choice of the specific heat as

L (Emax − Emin)/δE

10 8, 16, 32, 64, 128, 512

12 8, 16, 20, 32, 64, 128, 512

14 16, 32, 64, 512

16 16, 32, 64, 128, 512

Table 7: Values of δE used to perform the study of the discretisation effects. The other

simulation parameters are kept identical to the one reported in Tab. 1

an observable for such investigation can be easily justified: we found that specific heath is

much more sensible to the discretisation effects with respect to other simpler observables

such as the plaquette expectation value. In Fig. 6 we report an example of such study

relative to L = 8. We can confirm that all our data are scaling with quadratic law in δE
consistent with our findings in subsection 2.3. Indeed by fitting our data with a form

CV (βc(L), δE) = CV (βc(L)) + 6V bdisδ
2
E , (3.15)

we found χ2
red ∼ 1 for all lattice sizes we investigated. We report in in Tab.(8) the values

of bdis. Note that the numerical values used in our finite size scaling analysis of the peak

of CV presented in the previous section are compatible with the results extrapolated to

δE = 0 obtained here.

4 Discussion, conclusions and future plans

The density of states ρ(E) is a measure of the number of configurations on the hyper-

surface of a given action E. Knowing the density of states relays the calculation of the
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Figure 6: The peak of the CV (βC(L)) as function δE .

L bdis
8 -3.1(2) 10−10

10 -5.9(4) 10−11

12 -1.8(1)10−11

14 -4(1)10−12

16 -9(3) 10−13

Table 8: The coefficient bdis for different lattice sizes.

partition function to performing an ordinary integral. Wang-Landau type algorithms per-

form Markov chain Monte-Carlo updates with respect to ρ while improving the estimate

for ρ during simulations. The LLR approach, firstly introduced in [7], uses a non-linear

stochastic equation (see (2.17)) for this task and is particularly suited for systems with

continuous degrees of freedom. To date, the LLR method has been applied to gauge theo-

ries in several publications, e.g. [8–10, 12], and has turned out in practice to be a reliable

and robust method. In the present paper, we have thoroughly investigated the founda-

tions of the method and have presented high-precision results for the U(1) gauge theory to

illustrate the excellent performance of the approach.

Two key features of the LLR approach are:

(i) It solves an overlap problem in the sense that the method can specifically target the

action range that is of particular importance for an observable. This range might
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easily be outside the regime for which standard MC methods would not be able to

produce statistics.

(ii) It features exponential error suppression: although the density of states ρ spans

many orders of magnitude, its linear approximation ρ̃ has a nearly-constant relative

error (see subsection 2.2) and the numerical determination of ρ̃ preserves this level

of accuracy.

We point out that feature (i) is not exclusive of the LLR method, but is quite generic for

multi-canonical techniques [18], Wang-Landau type updates [4] or hybrids thereof [19].

Key ingredient for the LLR approach is the double-bracket expectation value [7] (see (2.13)).

It appears as a standard Monte-Carlo expectation value over a finite action interval of size

δE and with the density of states as a re-weighting factor. The derivative of the density

of states a(E) emerges from an iteration involving these Monte-Carlo expectation values.

This implies that their statistical error interferes with the convergence of the iteration. This

might introduce a bias preventing the iteration to converge to the true derivative a(E). We

resolved this issue by using the Robbins-Monro formalism [13]: we showed that a particular

type of under-relaxation produces a normal distribution of potential values a(E) with the

mean of this distribution coinciding with the correct answer (see subsection 2.2).

In this paper, we also addressed two concerns, which were raised in the wake of the publi-

cation [7]:

(1) The LLR simulations restrict the Monte-Carlo updates to a finite action interval and

might therefore be prone to ergodicity violations.

(2) The LLR approach seems to be limited to the calculation of action dependent observ-

ables only.

To address the first issue, we have proposed in subsections 2.5 and 2.6 two procedures that

are conceptually free of ergodicity violations. The first method is based upon the replica

exchange method [15, 16]: using overlapping action ranges during the calculation of the

double-bracket expectation values offers the possibility to exchange the configurations of

neighbouring action intervals with appropriate probability (see subsection 2.5 for details).

The second method is a standard Monte-Carlo simulation but with the inverse of the

estimated density of states, i.e., ρ̃−1(E), as re-weighting factor. The latter approach falls

into the class of ergodic Monte-Carlo update techniques and is not limited by a potential

overlap problem: if the estimate ρ̃ is close to the true density ρ, the Monte-Carlo simulation

is essentially a random walk in configuration space sweeping the action range of interest.

To address issue (2), we firstly point out that the latter re-weighting approach produces

a sequence of gauge field configurations that can be used to calculate any observable by

averaging with the correct weight. Secondly, we have developed in subsection 2.2 the

formalism to calculate any observable by a suitable sum over a combination of the density

of states and double-bracket expectation values involving the observable of interest. We

were able to show that the order of convergence (with the size δE of the action interval)

for these observables is the same as for ρ itself (i.e., O(δ2
E)).
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In view of the features of the density of states approach, our future plans naturally involve

investigations that either are enhanced by the direct access to the partition function (such

as the calculation of thermodynamical quantities) or that are otherwise hampered by the

overlap problem. These, most notably, include complex action systems such as cold and

dense quantum matter. The LLR method is very well equipped for this task since it is

based upon Monte-Carlo updates with respect to the positive (and real) estimate of the

density of states and features exponential error suppression which might beat the resulting

overlap problem. Indeed, a strong sign problem was solved by LLR techniques using

the original degrees of freedom of the Z3 spin model [8, 9]. We are currently extending

these investigations to other finite density gauge theories. QCD at finite densities for heavy

quarks (HDQCD) is work in progress. We have plans to extend the studies to finite density

QCD with moderate quark masses.

Acknowledgments

We thank Ph. de Forcrand for discussions on the algorithm that lead to the material re-

ported in Subsect. 2.6. The numerical computations have been carried out using resources

from HPC Wales (supported by the ERDF through the WEFO, which is part of the Welsh

Government) and resources from the HPCC Plymouth. KL and AR are supported by the

Leverhulme Trust (grant RPG-2014-118) and STFC (grant ST/L000350/1). BL is sup-

ported by STFC (grant ST/L000369/1). RP is supported by STFC (grant ST/L000458/1).

A Reference scale and volume scaling

Here, we will present further details on the scaling of the density of states ρ(E) with the

volume V of our system. To this aim, we will work in the regime of a finite correlation

length ξ such that the volume V � ξ4. In the case of particle physics, ξ is a multiple

of the inverse mass of the lightest excitation of the theory. In this subsection, we do not

address the case of a correlation length comparable or larger than the size of the system,

as it might occur near a second order phase transition.

Under these assumptions, the total action appears as a sum over uncorrelated contributions:

E =
v∑
i=1

ei , v = V/ξ4 , (A.1)

where the dimensionless variable v is the volume in units of the (physical) correlation

length. To ease the notation, we will assume that the densities ρ and ρ̃ are normalised

to one. Taking advantage of the above observation, we can introduce the probability

distribution ρ̃(ei) for the uncorrelated domains:

ρ(E) =

∫ v∏
i=1

dei δ

(
E −

v∑
k=1

ek

)
ρ̃(e1) . . . ρ̃(ev) . (A.2)
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Representing the δ-function as Fourier integral, we find

ρ(E) =

∫
dα

2π

∫ v∏
i=1

dei e
−i αE ei αe1 . . . ei αev ρ̃(e1) . . . ρ̃(ev)

=

∫
dα

2π
e−i αE

〈
ei αe

〉v
. (A.3)

The latter equation is the starting point for a study of moments and cumulants of the

action expectation values and their scaling with the volume.

Cumulants of the action E are defined by:

(En)c = (−i)n dn

dβn
ln

∫
dE eiβE ρ(E)

∣∣∣
β=0

. (A.4)

Inserting (A.3) into (A.4), performing the E and the α integration leaves us with

(En)c = (−i)n dn

dβn
ln
〈

exp{iβe}
〉v∣∣∣

β=0
= v (en)c , (A.5)

where the volume independent cumulants are defined by

(en)c = (−i)n dn

dβn
ln
〈

exp{iβe}
〉∣∣∣
β=0

. (A.6)

We here make the important observation that all cumulants are proportional to the “vol-

ume” v rather than powers of it. Re-summing (A.6), i.e. using the identity∑
n

inαn

n!
(en)c = ln

〈
exp{iα e}

〉
,

we find for ρ(E) in (A.3)

ρ(E) =

∫
dα

2π
e−iαE exp

{
v
∑
n

(i α)n

n!
(en)c

}
. (A.7)

We perform the α-integral by using the expansion

ρ(E) = exp

{
v
∞∑
n=3

(en)c
n!

(
− d

dE

)n}
ρ0(E) , (A.8)

ρ0(E) =

∫
dα

2π
e−iαE exp

{
i v(e)c α − v

(e2)c
2

α2
}

=
1√

2πv (e2)c
exp

{
− v

2 (e2)c
[E/v − (e)c]

2

}
. (A.9)

In next-to-leading order, we obtain (up to an additive constant):

1

v
ln ρ(E) ≈ − [(e)c − E/v]2

2 (e2)c
− (e3)c

6 (e2)3
c

[(e)c − E/v]3 + O(1/v) . (A.10)
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Hence, we find for the inverse temperature ak

ak =
d ln ρ

dE

∣∣∣
E=Ek

≈ (e)c − Ek/v
(e2)c

+
(e3)c
2(e2)3

c

[
(e)c − Ek/v

]2
. (A.11)

We therefore confirm that ak is an intrinsic quantity, i.e., volume independent. The cur-

vature of ln ρ at E = EK is given by

d2 ln ρ

dE2

∣∣∣
E=Ek

≈ − 1

v

[
1

(e2)c
+

(e3)c
(e2)3

c

[
(e)c − Ek/v

]]
. (A.12)

We therefore confirm the key thermodynamic assumptions in (2.5) by explicit calculation:

d ln ρ(E)

dE

∣∣∣
E=Ek

= ak = O(1) ,
d2 ln ρ(E)

dE2

∣∣∣
E=Ek

= O(1/v) . (A.13)
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