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A Multi-agent Emotional Society whose Melodies 

Represent its Emergent Social Hierarchy and are 

Generated by Agent Communications. 

Anon 

Anon 

 

Abstract: In this article a multi-agent system is presented which generates melody 

pitch sequences with a hierarchical structure. The agents have no explicit melodic 

intelligence and generate the pitches as a result of artificial emotional influence and 

communication between agents, and the melody’s hierarchical structure is a result of 

the emerging agent social structure. The system is not a mapping from multi-agent 

interaction onto musical features, but actually utilizes music for the agents to 

communicate artificial emotions. Each agent in the society learns its own growing 

tune during the interaction process. Experiments are presented demonstrating that 

diverse and non-trivial melodies can be generated, as well as a hierarchical musical 

structure. 

 

The generation of novel music is at the heart of many computer-aided composition 

(CAC) systems. Without some way of generating new material, a CAC will churn 

out the same material time after time. To avoid this, many systems utilize random 

numbers. A more recent alternative is the generation of complex structures which 

are ordered but unpredictable. Popular types of systems that generate structures 

with such complexity are found in the field of artificial life or A-Life (Brown 2002). 

A-Life investigates systems related to life, their processes, and evolution; it does this 

most often through computer simulations and models – for example cellular 

automata. Many A-life systems have two elements in common with have made them 

attractive to composers for use in CAC: they generate complex data with order and 
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structure, and they inspire composers by the variety of patterns in the data 

(Panzarasa and Jennings 2006). So although A-Life systems can generate unexpected 

behaviour, there is an inherent order – they are not solely random. This is often 

called emergent behaviour. 

 One field which has a large intersection with artificial life is multi-agent 

systems (MAS), which  is one of the 2 key areas utilized in this article. Each agent in 

an MAS is a digital entity which can interact with other agents to solve problems as 

a group, though not necessarily in an explicitly co-ordinated way. What often 

separates agent-based approaches from normal object-oriented or modular systems 

is their emergent behaviour (Dahlstedt and McBurney 2006). The solution of the 

problem tackled by the agents is often generated in an unexpected way due to their 

complex interactional dynamics, though individual agents may not be that complex. 

As with the application of other A-Life systems in CAC, these social dynamics can 

be both artistically functional – for example each agent in an ensemble can 

contribute a motif or play an artificial instrument in a piece of music; or artistically 

motivational, inspiring an algorithmic composer to produce the music of artificial 

societies. 

 In this article a multi-agent system is presented which generates melody 

pitch sequences with a hierarchical structure. The agents have no explicit melodic 

intelligence and generate the pitches as a result of artificial emotional influence and 

communication between agents, and the music’s hierarchical structure is a result of 

the emerging agent social structure. Another key element is that the system is not a 

mapping from multi-agent interaction onto musical features, but actually utilizes 

music for the agents to communicate artificial emotions. Each agent in the society 

learns its own growing tune during the interaction process.  
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Related Work 

A number of systems with similarities to the one in this paper are now examined in 

detail. Before doing that, a brief overview of more general multi-agent music 

systems is given using Table 1. These are not examined in detail but the table is 

designed to give quick familiarity with a number of key issues found in musical 

multi-agent systems. The fields will now be explained. Complexity describes the level 

of processing in individual agents, how complex are they? Homog / Het indicates 

whether the agents in the MAS are homogeneous or heterogeneous -i.e. do agents all 

start out the same, or are some different? Comm indicates whether the agents 

communicate, and if so do they do it synchronously or asynchronously; i.e. do they 

take it in turns to communicate and process, or do they do it concurrently? Initial 

Hierarchy describes whether there is a hierarchy of planning/control for the agents; 

are some agents dependent on others? Can some agents control others? Tune 

indicates whether the system generates multiple composition alternatives when it 

completes processing, or a single composition. Real-time describes whether when the 

agents are activated, the music generated in real-time. Size gives – where available 

and relevant - the number, or average number, of agents in the system. Finally Model 

/ Func indicates whether the system is designed solely to model some element of 

music, or as a computer-aided composition system. Many of the above properties 

are also key defining features of non-musical MAS. 

 The system in this article is a non-realtime system which works with a small 

to medium number of agents - i.e. not hundreds of agents, it generates multiple 

tunes in parallel, and it is focused on computer-aided composition not on modelling 

the composition process or musical culture. 
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Table 1: Musical Multi-Agent Systems 

The systems which are closest to the one in this article (and not listed in Table 1) are 

now examined in more detail. The Dahlstedt and McBurney (2006) system uses 

agents which have different explicit goals that represent different parts of the 

process of music composition. An example is given of an agent whose goal is to 

reduce sound object density if the population of the system’s sound landscape 

System Complexity Homog / 
Het 

Comm Tune Initial 
Hierarchy 

Real 
time 

Size Model / 
Func 

Swarm Music 
(Blackwell 
and Bentley 
2002)  

Low Het No  1 Flat Y 21 F 

Ant Colony 
Music (Clair et 
al. 2008) 

Low Homog No 1 Flat Y  F 

Swarm 
Orchestra 
(Bisig and 
Neukom 
2008) 

Low Homog No 1 Flat Y  F 

Society of 
Music Agents 
(Beyls 2007) 

Low Homog Sync 1 Flat N  F 

MMAS 
(Wulfhorst et 
al. 2003a) 

Higher Het ASync 1 Flat Y 8 F 

Musical 
Agents 
(Fonseka 
2000) 

Higher Het Async 1 Flat Y  F 

Andante 
(Ueda and 
Kon 2003) 

Higher Het Async 1 Flat Y  F 

VirtuaLatin 
(Murray-Rust 
et al. 2005) 

Higher Het Sync 1 Hierarchy N 1 F 

MAMA 
(Murray-Rust 
and Smaill 
2005) 

Higher Het  ASync 1 Hierarchy Y  F 

Kinetic Engine 
(Eigenfeldt 
2009) 

Higher Het ASync 1 Hierarchy Y  F 

CinBalada 
(Sampaio et 
al. 2008) 

Higher Het ASync 1 Flat N  F 

AALIVE 
(Spicer et al. 
2003) 

Higher Het ASync 1 Hierarchy Y  F 
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becomes too cluttered; another is given of an agent who does the opposite. Both 

agents would take into account the musical context while doing this. The researchers 

explicitly intend to utilise emergence to generate interesting music. This is a 

similarity with the system in this article, though key differences are: the Dahlstedt 

and McBurney agents act on a single music composition together, whereas agents in 

this article each have their own repertoires which can develop in parallel, and do not 

have explicit and distinct goals. 

 Miranda’s (2002) system generates musical motifs in a way designed to study 

the evolution of culture. In this case the agents use a two-way imitation procedure to 

bond socially. Agents can store a repertoire of tunes and have a basic biological 

model of an adaptive voice box and auditory system. Agents pick other agents to 

interact with randomly.  

 When two agents A and B interact the following process occurs: if agent A 

has tunes in its repertoire it picks one randomly and sings it, if not then it sings a 

random tune. These tunes are three notes long and do not grow in length. Agent B 

compares the tune from A to its own repertoire and if it finds one similar enough, 

plays it back to agent B as an attempted imitation. Then agent B makes a judgement 

about how good the imitation is. If it is satisfied with the imitation it makes a “re-

assuring” noise back to agent A, otherwise it does not. Based on the success of the 

imitation Agents A and B update their repertoires and their voice box settings to try 

to improve their chances of socially bonding in later interactions – e.g. by deleting or 

re-enforcing tunes, or making random deviations to their voice box parameters. The 

aim of the system is to see how the repertoire is generated and affected under such 

social pressures. As a result of the social bonding interactions a community 

repertoire was found to emerge.  

 Gong et al. (2005) produced a simple music generating system with a similar 

purpose to Miranda (2002) - investigating the emergence of musical culture. The 
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agents start with a set of random motifs, together with different agents being 

equipped with distinct but very simple aesthetic evaluation functions (for rhythm, 

pitch, etc.). An agent plays its tune to another agent and if the second agent finds the 

tune unpleasant, it modifies it (based on its musical evaluation), and plays it back to 

the first agent. If the first agent thinks the modified tune is better than its original, it 

deletes its original and stores the modified version. As agents interact this leads to 

“more pleasant” motifs emerging. Also, using an interaction-history measure, the 

social link between first and second agent is strengthened so that they are more 

likely to interact in the future. However if the first agent does not prefer the 

modified tune to its own version, it discards it and the link between the two agents 

is not strengthened. It was found that in the emergent social network the agents 

tended to cluster according to their aesthetic preference function. This system has a 

couple of similarities to the one in this article: it utilizes MAS social network/trust 

techniques (Ramchurn et al. 2004) to decide who interacts with whom, and in each 

interaction agents vary their repertoire based on their opinion of the other agent’s 

repertoire. The key differences between this system and the one in this article is that 

agents in this article have no explicit evaluative melodic intelligence, and they can 

extend the number of notes in their repertoire; and finally the social network in this 

article is used to generate hierarchical music structure within an agent’s repertoire 

not to experiment with the clustering of agents according to their repertoires. 

 The A-Rhythm (Martins and Miranda 2007) system sets out to examine the 

application of multi-agent systems to algorithmic composition. Current reports focus 

on, like Miranda and Gong et al., investigating the emergence of social clusters, and 

are solely based on rhythmic repertoire. A-Rhythm has some similarities to the 

system in this article: the agents communicate and process one at a time serially, 

rather than in parallel, and their musical content grows longer. However A-Rhythm 

focuses on rhythm, i.e. is non-pitched. Also the similarity measures are more directly 
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based on the music, rather than affective content of the music. Finally A-Rhythm 

uses measures for the popularity of rhythms in an agent’s repertoire, but not for the 

popularity/trust of agents. Agents in this system can transform their repertoires 

based on interaction – using certain rhythmic transformation rules, rather than the 

affective-based transformations used in this article. A number of experiments are 

done based on different interaction approaches, and the resulting population and 

repertoire dynamics are examined, showing the potential for the emergence of 

structured rhythmic repertoires. 

 

Multi-agent Affective Social Composition System: MASC  

Overview 

The system in this article - the multi-agent affective social composition system (MASC) - 

is now presented in overview. Agents in MASC are initialized with a tune 

containing a single note, and over the interaction period each agent builds longer 

tunes through interaction. Figure 1 shows an overview representation of a collection 

of agents.  

  

 

 

 

 

 

 

 

 

Figure 1: Six MASC agents in a variety of affective states with one agent performing. 
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The following are some of the key features of the system. MASC usually consists of a 

small-medium size - 2 to 16 - collection of agents, but can be more. Each agent can 

perform monophonic MIDI tunes and learn monophonic tunes from other agents. 

An agent has an affective state, an artificial emotional state which affects how it 

performs the music to other agents; e.g. a “happy” agent will perform their music 

more “happily”. An agent’s affective state is in turn affected by the affective content 

of the music performed to it; e.g. if “sad” music is performed to a happy agent, the 

agent will become a little “more sad”. Agents can be made to only learn tunes 

performed to them if the affective content of the tune is similar enough to their 

current affective state; learned tunes are added to the end of their current tune. 

Agents develop opinions/trust of other agents that perform to them, depending on 

how much the other agents can help their tunes grow. These opinions affect who 

they interact with in the future. 

 

Affective Models 

Before going in to the data structures within each agent in detail, the issue of 

affective models will be covered. There is a variety of approaches for affective 

represenation which can be broadly divided in the Dimensional type and the 

Category type (Zentner et al. 2008). Category approaches range from basic emotion 

definitions – which assumes that some emotions are more fundamental than others 

and attempts to list these; to the more everyday emotion label systems – which do 

not attempt to categorize based on an emotion hierarchy. A recent category-based 

approach for emotion is the Geneva Emotion Music Scales (GEMS) approach 

(Zentner et al. 2008) which attempts to provide categories optimal for musical 

emotion. This is done by first investigating through psychological tests which sorts 

of emotion are most commonly expressed to people by music. Although GEMS does 

get users to score the category with an integer from 1 to 5, the fact it has up to 45 
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categories puts it more in the realm of categorical than the dimensional systems now 

discussed.  

 The Dimensional approach to specifying emotion utilizes an n-dimensional 

space made up of emotion “factors”. Any emotion can be plotted as some 

combination of these factors. For example, in this paper, two dimensions are used: 

Valence and Arousal (Lang 1995). In this model, emotions are plotted on a graph 

with the first dimension being how positive or negative the emotion is (Valence), 

and the second dimension being how intense the physical arousal of the emotion is 

(Arousal). This is shown in Figure 2. Just as category approaches would not claim to 

list all possible emotions, so dimensional approaches do not claim to be complete. It 

is not known if emotions can be pinpointed based on unique independent 

dimensions. Other dimensional approaches include the three dimensional 

valence/arousal/dominance system (Oehme at al. 2007). In this case Valence and 

Arousal have the same meaning as in the 2D version. However in the 2D approach 

Fear and Anger are both low valence, high arousal. In the 3D version, Dominance 

differentiates emotions such as anger (high dominance) and fear (low dominance); 

anger can be seen as more of an active emotion, fear as more of a re-active one. 

There are also examples such as (Canazza et al. 2004) where a task-specific mood-

space is constructed for expressive performance using experiments and principle 

component analysis. In that particular case the dimensions are not explicit. 
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Figure 2: The Valence/Arousal Model of Emotion 

 

Agent Data Structures 

Each agent contains three data structures. The first is an agent tune, a monophonic 

tune in MIDI format. The second is an agent affective state – a number pair [valence, 

arousal] representing the artificial affective state of the agent based on the 

valence/arousal model of affectivity. This is the most common dimensional affective 

representation in computer music. As has been mentioned Valence refers to the 

positivity or negativity of an emotion – e.g. a high valence emotion is joy or 

contentment, a low valence one is sadness or anger. Arousal refers to the arousal 

level of the emotion – for example joy has a higher arousal than happiness, though 

both have high valence, and anger a higher arousal than sadness, though both have 

low valence. A linguistic element needs to be clarified. The use of affective labels 

such as happy and sad are used to assist clarity in introducing the reader to the 

concepts of MASC; they are not meant to be taken literally. For example happy 

refers to a region of high valence and arousal values, and sad refers to a region of 

low valence and arousal values. The same goes for any words which may seem to 
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imply that agents have any kind of personification, or deeper intentional or 

biological model. Such language is merely a shorthand for clarifying functionality. 

 The third and final agent data structure is an interaction coefficient list, which is 

a list of interaction coefficients of all the other agents in the collection. These are non-

negative floating point numbers which measure how popular the agent finds each of 

the other agents. The concept of interaction coefficient is used here to attempt to 

create emergent compositional hierarchies, as will be demonstrated. Another way of 

thinking of interaction coefficient at this point is to consider an imagined motivation 

for an agent. The aim of MASC is – starting with each agent having a single note - to 

build actual melodies. So an agent should want notes. An agent A’s interaction 

coefficient measure of another, say Agent B, is based on the note count and number 

of performances it has added from B to its own tune. 

 An agent also has a number of internal processing functions. The performance 

output choice function involves an agent choosing who to perform to, based on the 

agent’s interaction coefficient list of other agents. It will only perform to agents it 

finds useful enough. The performance output transform function involves the agent 

playing its single stored tune as a performance to another agent, with musical 

features based on its own current affective state. The performance input estimate 

function allows the agent to estimate the affective content of a tune performed to it 

by another agent, and adjust its own internal affective state based on the affective 

content. An agent’s performance input choice function involves it deciding whether to 

store a performance from another agent, and is based on: (a) the affective content of 

that performance, and (b) how many notes are in the listening agent’s current tune - 

an agent has a finite tune length memory which can fill up. The performance input 

interaction coefficient function lets the agent update its interaction coefficient measure 

of another agent based on that agent’s performance. Finally the performance input add 

function lets the agent store a performance by concatenating it to the end of its 
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current tune. An example interaction cycle is shown in Figure 2. This cycle is 

repeated until the desired compositional result is reached.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Example Interaction Cycle 

 

Performance Output Transform Function  

The function for performance output transform will now be examined in more 

detail. Before performing its tune to another agent, an agent will transform its tune 

in a compositional way.  

Compositional Transforms 

Two types of compositional transformations are applied - linear feature transforms 

and a key mode transform into C major or C minor. The aim of this work was it to 

1. If Agent A’s Interaction Coefficient measure for Agent B is below to 

Agent A’s average Interaction Coefficient for other agents, then ignore 

Agent B and select the next listener agent, repeating this test. 

 

2. Agent A performs its tune TA, adjusting the tune based on its own 

current affective state to give performance PA. 

 

3. Agent B estimates the affective content of Agent A’s performance PA. 

 

4. If B’s estimated affective content of PA is close to its own current 

affective state, Agent B concatenates PA to the end of its own tune TB. 

Or to put it another way: TB  = TB  + PA. 

 

5. Agent B adjusts its own affective state towards its estimate of the 

affective content of performance PA. 

 

6. Agent B updates its Interaction Coefficient measure of Agent A 

proportional to the number of notes provided by Agent A in 

performance PA. 

 

7. Agent A turns its attention iteratively to the next agent, and returns to 

Step 1. Note: once all agents have been considered as candidates for 

performance by Agent A, a new performer agent is iteratively selected 

to perform , say agent B, and to listen, say agent C. 
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investigate the effects of multi-agent emergent effects, rather than the 

transformations themselves – hence the transformations were kept as simple as 

possible, forgoing non-linearity and psychophysical accuracy. They can be 

compared to the simplistic linear rules used in swarm or flocking systems (Reynolds 

1987). Clearly such linear rules are an over-simplification of bird/insect biology and 

psychology. However, what is of interest is that such simple rules can create such 

complex dynamics. The underlying elements being simplified here are the 

relationships between music and emotion. This area has been meta-surveyed in 

(Livingstone et al. 2010), which then established a series of rules for transforming 

music to express emotions. These rules are shown in table 2. 

 

Emotion 
Label 

Valence Arousal Features 

Tempo Loudness Pitch Key mode 
Happy Higher Higher Increase 10 BPM Increase 5 db +4  Major 

Angry Lower Higher Increase 10 BPM Increase 7 db 0 Minor 

Sad Lower Lower Decrease 15 BPM Decrease 5 db -4 Minor 

Tender Higher Lower Decrease 20 BPM Decrease 7 db +4 Major 

 

Table 2: Transformation Rules proposed in (Livingstone et al. 2010) 

 

 Equations (1) to (4) show the result of transforming these into simplified 

linear rules for multi-agent system interaction. The process of this simplification is 

explained below, after their presentation. When an agent A is about to perform and 

has a particular level of valence, written valenceA, and arousal, written arousalA, it will 

first compositionally transform its stored tune based on the effects of equations (1) to 

(4). The primed values on the left hand side of the equations are the defining 

features of the compositionally transformed music, and are used to unambiguously 

generate a transformed MIDI file. The pre-transformation values IOIi(A), duri(A), 

loudi(A), and pitchi(A) are: the inter-onset interval between note i and the next note 
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i+1, the note duration in seconds, the MIDI loudness, and MIDI pitch of the i-th 

musical note of Agent A’s stored tune. The theta values – θonset, θloud, and θpitch – define 

the affective sensitivity of the transformation – i.e. how much effect a change in 

Agent A’s valence or arousal will have on the transformation. They are the 

maximum variation percentage bars around the current feature value. 

 
 

𝐼𝑂𝐼𝑖(𝐴)′ =  𝐼𝑂𝐼𝑖(𝐴)(1 − 𝜃𝐼𝑂𝐼𝑎𝑟𝑜𝑢𝑠𝑎𝑙𝐴) 
     

(1) 

𝑑𝑢𝑟𝑖(𝐴)′ =  𝑑𝑢𝑟𝑖(𝐴)(1 − 𝜃𝐼𝑂𝐼𝑎𝑟𝑜𝑢𝑠𝑎𝑙𝐴)     (2) 

𝑙𝑜𝑢𝑑𝑖(𝐴)′ =  𝑙𝑜𝑢𝑑𝑖(𝐴) (1 +
𝜃𝑙𝑜𝑢𝑑

2
(𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝐴 + 𝑎𝑟𝑜𝑢𝑠𝑎𝑙𝐴))   (3) 

𝑝𝑖𝑡𝑐ℎ𝑖(𝐴)′ =  𝑝𝑖𝑡𝑐ℎ𝑖(𝐴) (1 +
𝜃𝑝𝑖𝑡𝑐ℎ

3
(2𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝐴 + 𝑎𝑟𝑜𝑢𝑠𝑎𝑙𝐴))   (4) 

 

For example if θIOI is 0.25, then by Equation (1) the onset will vary from 25% 

below its current value to 25% above its current value when arousal varies from -1 

to 1. If a transformation goes above the maximum MIDI value (127) then it is set to 

127. Similarly if it goes below 1 it is set to 1. Note that θIOI is used both for onsets 

and duration so that as gaps between notes are increased or decreased, the duration 

of the same notes is increased and decreased by the same amount. 

The mapping between Table 2 and Equations (1) to (4) is explained as follows. A 

smaller average inter-onset interval in a piece of music leads to a higher tempo 

(Dixon 2010), and equation (1) means that a higher arousal will create a smaller 

inter-onset interval, and thus a higher tempo.  This approximately captures the 

linear dynamics of the tempo column in Table 2 where tempo changes in the same 

direction as arousal, but is not affected by valence. Duration in (2) is changed 

proportional to inter-onset interval – so that when notes are closer together (due to a 

higher tempo) they will be proportionally shorter, as would be expected. 
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Equation (3) is a linear simplification of the fact that Table 2 shows how 

changing valence tends to cause loudness to increase in the same direction, and 

changing arousal also tends to cause loudness to increase in the same direction.  

Equation (4) is based on the fact that Table 2 shows pitch to be changed by changes 

in valence and arousal, but slightly more so by changes in valence. 

Table 2 was not originally a prescription for a linear model, in the sense it says 

nothing about what happens in between the four states. Even if the valence / arousal 

model of emotion was complete (which clearly it is not) there would certainly be 

non-linear behavior between the origin and the four points referenced in this table. 

This is one reason why no attempt was made in the equations to calculate precise 

linear correlation coefficients.  

So the equations are not meant to be an accurate linear model of the behavior in 

Table 2, but the simplest possible linear model of music features and emotion 

informed by Table 2. The model does not claim that all high pitched music is higher 

valence, or that all low tempo music is low arousal. Contra-examples can be found 

for both of these in music: for example high pitched melancholy violins, or slow but 

grand and inspiring orchestral pieces. There are however no complete models for 

music and emotion, just as there are no complete models for bird and insect 

flocking. For example, you can keep adding or removing birds from a flocking 

model, and the flock will increase or decrease in size in an unlimited way – 

obviously a contra-example of the flocking model. Hence it is argued that the 

incompleteness of the above linear model is acceptable for the purposes of the work 

here presented. 

One music feature which cannot be changed linearly is key mode, so a different - 

but still simple - approach is used. It is largely based on Table 2 but with one 

adjustment. For positive emotion a major key is utilized and for negative valence 
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with negative arousal (e.g. sadness), a minor key is utilized. For negative valence 

and positive arousal - e.g. anger or fear - each note in the tune is transformed to C 

minor then moved alternately up or down a semitone; this is designed to inject an 

atonal element to the music. For example the sequence “C Eb D F Eb G C” would 

become “Db D Eb E E Gb Db”. This is based on the idea that fear and anger can be 

represented by atonality (Chong et al 2013). This will impact the effect of Equation 

(4) which also raises and lowers pitch due to valence. However the changes in pitch 

due to valence in (4) – in the experiments detailed later – are of a significantly 

greater order than one semi-tone. Thus the impact of the atonal transformation is 

minimal on (4). Also equation (4) is a linear simplification, so there is no claim to it 

being accurate to within a semi-tone in terms of its valence representation.  

The transform is algorithmic and deterministic – it searches either side of the 

current notes for a note in the new mode which does not violate a MIDI boundary - 

i.e. not out of the MIDI 128 parameter range. So suppose an agent A has stored a 

tune from a happy agent which is a major key. If agent A then performs its tune 

while sad it will convert all of its tune, including the major part it received from 

another agent, into the minor mode. The current version in this article has no ability 

for actual key composition functionality, hence the reason for using only C major 

and C minor. 

 

Tune Affective Estimation Function 

A linear equation is used to model the listening agent’s, say agent B, affective 

estimate of a performance by agent A – this is shown in equations (5) and (6).  

 

        valenceEstB = xpmean(pitchA) + xlmean(loudA) +  

                        xkkeyModeA +  xIOImean(IOIA) + x0                                                            (5) 

        arousalEstB = ypmean(pitchA) + ylmean(loudA) + yIOImean(IOIA) + y0          (6) 
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In these equations pitchA and loudA refer to the average MIDI pitch and MIDI 

loudness of an agent A’s performance heard by B. keyModeA represents the key mode 

of A’s tune estimated using a key profile-based algorithm (Krumhansl and Kessler 

1982) defined as having value 2 for a minor key, and 1 for a major key. A key profile 

is a vector of 12 elements, one for each note in the scale. Each key has its own profile. 

Pitches which fit well into a scale have a higher weighting in its key profile vector, 

and those which fit less well have a lower weighting. These weightings were 

calculated for each key from perceptual experiments in (Krumhansl and Kessler 

1982). Thus they can be used to find whether a particular set of notes fits best into a 

major or a minor key. 

The x and y coefficients in the Equations are constants estimated by linear 

regression. These are estimated in a one-off process as follows. A set of 1920 random 

MIDI files was generated, of random lengths between 1 and 128 notes. Each MIDI 

file was transformed for 10 given and equally spaced valence and arousal values 

between -1 and 1 using transformation equations (1) to (4), and key mode 

transformations.  

Then a linear regression was run on the resulting transformed MIDI files 

against the known arousal and valence values – based on equations (5) and (6). The 

resulting coefficients were tested on a separate set of 1920 transformed random files, 

and the average percentage errors were 10% for valence and 9% for arousal. These 

are considered to be sufficiently accurate given that actual human musical emotion 

recognition error rates can be as high as 23% and other far more complex artificial 

musical emotion detection systems have rates such as 81% (Legaspi et al. 2007). The 

actual coefficients for pitch, loudness, keymode and IOI were respectively in 

equations 5 and 6 for x = [-0.00214, 0.012954, 1.1874, -0.6201] and y = [0.003025, 



18 

 

18 

 

0.052129, -1.4301, 0.59736]; with the additive constants for x and y respectively of 

0.61425 and -4.5185.  

The linear estimator is used in two aspects of the agents – firstly for an agent 

to decide whether or not to add a performance to its own tune, and secondly for an 

agent to be influenced by the approximated emotional content of a performance it 

has heard. Equations (7) and (8) below are used to update the valence and arousal of 

agent B after a performance from agent A. The γ (gamma) constant - between 0 and 

1 - defines how sensitive an agent is to affective state change – i.e. the amount of 

change to valence and arousal. If it is set to 1 then the new valence and arousal 

values will be totally changed to the estimated values of the performance the agent 

has just heard. A value of 0 will lead to no change. Values between 0 and 1 will 

cause the estimate to have a proportionally greater effect.  

 

𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝐵
′ = (1 − 𝛾𝑣)𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝐵 + 𝛾𝑣𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝐸𝑠𝑡𝐴                                                     (7) 

𝑎𝑟𝑜𝑢𝑠𝑎𝑙𝐵
′ = (1 − 𝛾𝑎)𝑎𝑟𝑜𝑢𝑠𝑎𝑙𝐵 + 𝛾𝑎𝑎𝑟𝑜𝑢𝑠𝑎𝑙𝐸𝑠𝑡𝐴                                                    (8) 

 

Once the agent B has decided whether or not to append the performance 

from A - and if so, has done so - it will update its valence and arousal based on 

Equations (7) and (8). In future, when it next performs a tune, it will transform it 

based on its new valence and arousal state. It is designed so that through this series 

of updating affective states and the agent tune communication and system, new 

musical structures will emerge. 

It is worth taking a moment to discuss the above process, in particular the 

affective communication and estimation elements. An alternative would have been 

for the system to directly transmit the valence and arousal of agent A to agent B, 

rather than computing coefficients for Equations (5) and (6) and going through the 

process of estimating valence and arousal from the music features. The estimating 



19 

 

19 

 

the coefficients for (5) and (6) could be seen as quite a recursive process: first an 

approximation was made of how valence and arousal can be communicated through 

music features, and then an approximation was made of how music features 

communicate valence and arousal. Wouldn’t it have been simpler to just 

communicate the valence and arousal directly; or - if we wanted to observe the 

musical effects - still perform the compositional transforms, which communicating 

the valence and arousal of the performing agent directly? 

These simplifications would have removed the artificial life foundation from 

the formulation. The music would have not been part of the process, but merely 

influenced by the process. What makes the formalism of interest is that the music is 

part of the process, and thus any creative results are emergent from the process. 

Furthermore, had the agents communicated their valence and arousal directly, with 

say a random communication error, then it would become a less novel multi-agent 

system. It would have been an MAS in which each agent had two numeric 

parameters and agents whose numeric parameters were close would then influence 

each other’s parameters more strongly. This is a type of artificial life system that has 

been studied many times before, and leads to agents tending to cluster into groups 

of similar parameter values – i.e. similar valence and arousal values. By putting the 

music at the centre of the parameter communication not only does it create a novel 

artificial life process but also makes the music emergent to the process. Thus 

something is learned about the dynamics of a new AL system, and also about how 

applicable that system might be to algorithmic composition. 

At the heart of the experiments are the questions: can musical communication 

in multi-agent systems be used as a form of algorithmic composition? Music, in 

communication terms, is most commonly considered a form of emotional 

communication (Juslin and Laukka 2004). Past research has most commonly linked 

musical features to communicated emotion. However this communication is 
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imperfect: people detect emotion in music ambiguously, and communicate in 

emotion ambiguously. So the system as designed captures many elements of 

musical communication in a more realistic way that simply communicating valence 

and arousal with an error. It generates musical features based on the emotion being 

communicated. The listening agent is then affected by the musical features. This 

effect is the simplest non-direct method possible based on musical features: a linear 

model based on the non-invertible equations (1) to (4).  This – although significantly 

less simple – it is the equivalent in the flocking example of agent’s movement and 

their perception of each other’s movement. However, unlike movement, the process 

here is not an immediately visible one; it concerns the agents’ emotions which are 

not so simply observable or communicable. In fact even when human beings 

attempt to communicate emotions directly, there are limitations; which is one of the 

reasons that the arts are often considered to be forms of emotional expression, able 

to communicate in ways that language is not (Juslin and Laukka 2004).  

 

 

Performance Input Interaction Coefficient Function 

Before an Agent A performs to an Agent B it compares its interaction coefficient 

measure of Agent B to the average of its interaction coefficient (IC) for other agents: 

 

IC(A,B) > mean[IC(A, all agents)]                                                                    (9) 

 

where IC(A,B) is A’s interaction coefficient measure of B. If it is not, then it does not 

perform to Agent B and moves on to the next agent. The increase in Interaction 

Coefficient is proportional to the length of tune it has added. So the more notes in 

Agent B’s past performances, the greater its interaction coefficient will be viewed by 

Agent A. If agent A adds a tune from agent B of length N notes then: 
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IC(A,B) = IC(A,B) + d.N                                                                                  (10) 

 

The parameter d is a constant called the interaction coefficient update rate. This 

can be visualised as an agent’s basic resources being tunes - so the more notes in an 

agent’s tune, the greater its potential interaction coefficient to other agents. However 

the actual reason for including interaction coefficient functionality, and making 

interaction coefficient proportional to the number of notes in a performing agent’s 

tune is primarily to generate an interaction/social hierarchy amongst the agents 

which influences the hierarchical structure of the composed music. Bearing in mind 

that an agent will only perform to other agents with a high enough interaction 

coefficient, it can be seen that agents which perform more than listen will tend to 

have lower interaction coefficients. Furthermore agents which mostly listen and 

store will have longer tunes and higher interaction coefficients; and agents with 

higher interaction coefficients will tend to be selected as listeners more often 

So the system is designed to turn the agent population into a set of agents 

who tend to perform and have shorter tunes, and a set of agents who tend to listen 

and store. The aim is for lower interaction coefficient agents to be focused on 

providing lower elements - i.e. shorter elements - of the musical hierarchy. 

 

An Example Cycle 

An example cycle will now be shown. In this example a three agent system is 

examined. Agent 1 is the performer and starts by considering performing to Agent 

2; Agent 1’s measure of Agent 2’s interaction coefficient is very low in this example; 

Agent 1’s measure of Agent 3’s interaction coefficient is very high; Agent 1’s 
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affective state is high valence and high arousal – i.e. happy; and Agent 3’s affective 

state is low valence and low arousal – i.e. sad. 

         As the cycling starts, because Agent 1’s interaction coefficient of Agent 2 is 

very low, Agent 1 does not even perform to Agent 2. It selects the next Agent 

iteratively.  Agent 3 is selected because agents are ordered by numerical label. 

Agent 1’s view of Agent 3’s interaction coefficient is very high – so Agent 1 

performs its tune T1 adjusting it to make it happier because of its high valence and 

arousal state, giving a performance P1. 

Agent 3 estimates the affective content of Agent 1’s performance P1 and gets 

a result of high valence and arousal – i.e. it estimates it is a happy performance. 

Because Agent 3’s affective estimate of Agent 1’s tune is high valence and arousal 

but Agent 3’s state is low valence and arousal – i.e. very different to happy - Agent 3 

discards Agent 1’s tune.  However Agent 3 still adjusts it owns affective state 

towards its estimate of the affective content of performance P1 i.e. it becomes a little 

more happy. Neither Agent makes any adjustment to their interaction coefficient 

measures since no performances were stored. Next Agent 2 becomes the performer, 

and the first agent is iteratively chosen to listen – i.e. Agent 1. 

 

Experiments 

The issue of how to evaluate an algorithmic composition is by no means agreed in 

the research community. Parametric/Example-based investigations are common in 

investigating algorithmic composition systems, e.g. (Beyls 2007; Fonseka 2000; 

Anders 2007). Such experiments were done analysing how MASC output responded 

to various parameter changes, giving objective information on MASC’s behaviour 

for a potential user. Such experiments are important because they provide insight 

into the dynamics of the system. It should be noted that in this system there are a 
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number of parameters which need to be set; it is beyond the scope of this article to 

describe all of them. Those not mentioned explicitly here were set to default values. 

 

Melody Generation 

A helpful way to indicate that this system can produce non-trivial melodies, in spite 

of its lack of melodic intelligence, is to explore the output space for some different 

initial affective states. Usually in a MAS one would want to perform a statistical 

analysis of behaviour, but it is an unsolved problem in algorithmic composition as 

to what statistics are musically relevant (Freitas et al. 2012). So instead specific 

musical results are presented. Figures 3 to 7 show agent 6’s final tune, from an 8 

agent system run for 10 cycles. The similarity threshold was 1, the interaction 

coefficient system was switched off, and valence and arousal update rates - gamma 

in equations (7) and (8) - were 0.001. Agents were initialised each with the single 

note of middle C, of duration 0.5 seconds. Four initializing states were used with 

different levels for [Valence, Arousal] pairs. These were: Happy = [0.5, 0.5]; Sad = [-

0.5, -0.5]; Angry = [-0.5, 0.5]; Tender = [0.5; -0.5]. The first letters of each state were 

used to indicate the agent initial states. For example TTTTTTHH is 6 Tender and 2 

Happy. 

 

 

Figure 3: 8 Agents AAAAAAAA, 10 Cycles, and 8 Agents AAAAAASS, 10 Cycles 
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Figure 4: 8 Agents SSSSSSSS, 10 Cycles, and 8 Agents SSSSSSAA, 10 Cycles 

 

Figure 5: 8 Agents SSSSSSHH, 10 Cycles, and 8 Agents SSSSSSTT, 10 Cycles 

 

  

Figure 6: 8 Agents HHHHHHSS, 10 Cycles, and 8 Agents HHHHHHTT, 10 Cycles 
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Figure 7: 8 Agents TTTTTTSS, 10 Cycles, and 8 Agents TTTTTTHH, 10 Cycles 

 

 

Each vertical tick is a semi-tone. Precise pitch values have been removed from the 

graphs to aid readability, and because absolute pitch values are not the key element 

here, but the relative interplay of structures which it will now be argued indicate 

non-triviality.  To clarify why this broad range of tunes is considered non-trivial as 

melodies, a number of elements are now highlighted. Music has been generated up 

to and over 50 seconds long. If the tunes were only 3 to 6 notes or a few seconds 

long, these would be trivial. The melodies are not just simple directional pitch 

patterns, like single repeated notes, uniformly rising or falling patterns, or repeated 

“zig-zags”. The melodies are not just groups of repeated notes, e.g. 5 notes at one 

pitch, then 4 notes at another, etc. The pitches vary much more than that. However 

they do not vary all the time – there are times when notes are repeated 2 or 3 times, 
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jumps. However it would also seem odd if all the pitch changes were large. It has 

been shown that tunes can be generated which avoid these two extremes. Finally, 

the melodies contain recognizable note groupings which are repeated and 

transformed to different pitches and timings. This is expected by western listeners 

who usually look to identify a motif structure.  

Ideally it would be desired to have some more scientific measure of non-triviality for 

the melodies, however there is no such agreed measure. There have been some 

attempts to use measures like entropy but no conclusive results have been obtained 

(Kirke and Miranda 2007). Another approach might be to use measures of 

complexity, as it was stated at the start of this paper that such complexity was a 

major motivation in using artificial life systems for creativity. However there is no 

conclusive work on artistically informed measures of complexity. So although the 

above approach is non-scientific, it is fairly detailed and does capture many 

elements which a composer would consider to be key to non-triviality of music.  

In summary the following example of a full composition can be heard 

http://cmr.soc.plymouth.ac.uk/alexiskirke/mapc.html 

This composition has been put through a computer system for expressive 

performance to make it more listenable through a sequencer (Kirke and Miranda 

2009).   

It was stated at the beginning of this paper that an aim was that the non-trivial 

melody pitch structures would be developed by agents without explicit melodic 

knowledge. Given we have now claimed the production of non-trivial melody 

structures, we will examine the claim of no explicit melodic knowledge. This does 

not mean he agents have no musical knowledge. In fact the agents have a significant 

amount of hand-crafted musical knowledge in the musical transformation and 

affective estimation formulae. However, this knowledge does not include how to 

sequentially construct melodies. It includes how to change key modes, timings and 

http://cmr.soc.plymouth.ac.uk/alexiskirke/mapc.htmlf
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pitches, but no musical rules about which musical features should follow which. The 

basis of melodic structure is which pitches follow and which note timings follow 

which. This is a significant gap in the agents’ explicit knowledge about music which 

can be reduced by careful hand-crafting of the rules, but not removed without 

including ordering constraints in the musical equations. Thus the ordering of notes 

in this system emerges as a result of the social interactions between the agents. 

It would be informative to see how simple the musical rules could have been made 

before the tunes failed to be non-trivial (with non-triviality formulated based on the 

process described earlier in this section). This might bring the whole system closer in 

philosophy to the flocking simulations discussed. However this is beyond the scope 

of this current work. 

 

Agent Affective Tune and State Adaptation 

It helps to understand the MASC dynamics more clearly by looking in a more 

general way at how music features are effected by agent initial affective states, as 

well as how agent affective states are changed as is done in Figures 8 and 9. Note 

that these experiments involved switching off the similarity threshold as well, so as 

to focus purely on affective interaction dynamics. These figures examine the result 

music features after 10 cycles of interation of MASC, for the system of 8 agents 

above, as well as for a smaller system of 2 agents.  The pitch spread is the distance 

between the highest and lowest MIDI pitch in the final tune averaged across all 

agents, similarly with the median pitch. The average key is found using a key 

profiling algorithm (Krumhansl and Kessler 1982). Figures 8 and 9 also have arrows 

to highlight the progression of features as initial affective states are changed. They 

furthermore have dashed ellipses to highlight how close together the resulting 

features of the 2 agent system are to their “equivalent” 8 agent system.  
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A key element of MASC which would be new for many composers utilizing it, 

would be the assigning of initial affective states to the indiviual agents. Thus the 

more intutitve the results of such assignments the more useful MASC could be. This 

may at first seem contradictory to what was said initially cautioning the reader 

earlier on their interpretation of the our uses of the words “Happy” and “Sad” in 

relation to agents. However this caution was to prevent intepretation that the agents 

themselves were somehow “Happy” or “Sad”. The use of labels such as these as a 

shorthand for arousal  and valence configurations is still valid, and helpful to the 

composer using this system.  Figures 8 and 9 provide insight into the effects of this 

process. It can be seen that broadly there are understandable patterns/trajectories, in 

terms of music feature results, when the initial affective states are changed. For 

example increasing the number of happy agents increases median pitch and reduces 

pitch spread.  

 

Figure 8: Effects of Initial Affective States in 8 Agent System on average IOI and Key, 8 

Cycles Run 
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The tunes in Figures 8 and 9 generated by the 8 agent system, together with six 

more involving further combinations of H, S, A and T, were played to 10 listeners. It 

was found that when at least 6 of the 8 agents had the same initial valence and 

arousal, then the listeners had a 71% chance of detecting that same valence in the 

final tune, and an 82% chance of detecting that same arousal in the tune. Although 

the small number of participants means that the results are not very significant, they 

are certainly indicative that – given the support of the remainder of the parametric 

evaluation – it is worth doing a substantial set of listening tests to evaluate this 

potential affective pattern. This would further highlight the ability of MASC to be 

used in a relatively intutive way as a computer-aided composition tool. 

 

Figure 9: Effects of Initial Affective States in 8 Agent System on Pitch Median / Spread, 

8 Cycles Run 
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Interaction Coefficient and Musical Hierarchy 

As has been mentioned, the interaction coefficient process is designed as an attempt 

to regulate tune growth in such a way that certain agents will become tune provider 

agents and some will become tune receiver agents, thus creating a hierarchy in the 

agent’s interaction structure which is hopefully reflected in the hierarchal structure 

of the melodies.  In this experiment, an 8 agent system was used with equally spread 

agent initial affective states, 300 note memory size, 32 cycles, affective similarity 

threshold of 1, pitch update rate of 0.1, and IOI and loudness update rates of 0.5; 

valence and arousal update rates were set to 0.1. The interaction coefficient update 

rate was set to 0.2; and the interaction coefficient threshold was set to 0.9. Figure 10 

shows the evolution of an agent’s interaction coefficient averaged across all other 

agents. So the top graph shows the average view/trust that agents 2 to 8 have of 

agent 1 by averaging their coefficient values for agent 1.  

 After 32 cycles the number of notes that agents 1 to 8 have is respectively: 

291, 102, 102, 102, 102, 102, 18, and 5. These tunes can be seen in Figure 11. Looking 

at Figure 10, it can be seen that this relates to the interaction coefficient – the higher 

an agent’s final interaction coefficient the higher its note count. Table 3 shows in 

each cycle which agents an agent receives tunes from. So for example in cycle 1, 

agents 2 to 6 receive tunes from agent 1. In cycle 2 agent 1 receives a tune from agent 

2, but no other agents receive tunes.  

 In Table 3 it can be seen that the lower interaction coefficient agents tend to 

give out tunes, while the higher interaction coefficient agents tend to receive tunes. 

The lower numbered agents have higher interaction coefficient because of the 

ordering of agent interaction in each cycle. The lower numbered agents will be 

receivers first, and have a chance to build up the size of their tunes. Then when they 
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become performers – givers - the lower agents will receive large tunes from them 

and their interaction coefficient will increase as a result. 

To see how this creates the hierarchical structure, consider that by Table 3 Agent 

1’s final tune could be written as a concatenation of sub-tunes 

1021324354657629310411512613217318 where each number indicates the agent who 

performed, and the subscripts are the cycle numbers; an agent’s tune varies over 

different cycles – e.g. 318 is not the same 32. Because the MAS is a closed system, all 

tunes in this structure are the result of a transformation on another agent’s tune.  

So for example 21 = 2010’ and 32 = 3010’’ and 76 = 7010’’’. Here the primes represent 

transformations on Agent 1’s tune due to Agent 1’s affective state at the time. In the 

next round of tunes being given to Agent 1 this gives 29 = 2177’188’ =  (2010’) 77’188’ 

This expansion can be continued until there is a full description of Agent 1’s 

tunes based on the way in which the tune grows. This description will show the 

building structure of the tune. It will not necessarily show the perceptual structure 

of the tune – this is not claimed, but it will show how the tune was built from the 

motifs and phrases and so forth of other agents. This structure is clearly a function of 

the agent interaction hierarchy, and as has been seen this hierarchy is strongly 

influenced by the Interaction Coefficient functionality. 

 These diagrams highlight a characteristic of the system – its sequential 

update rule. Because agents are always updated in the same order, the agents with a 

lower index number tend to develop much larger tunes and have a high interaction 

coefficient. An asynchronous system simulation could have been utilized to avoid 

this – where the next agent to interact is randomly selected. However this would 

have moved away from the process of algorithmic – i.e. non-random – composition 

processes which this work was designed to build upon. 
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Figure 10: Change in mean Interaction Coefficient (x-axis = number of interactions) 
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Figure 11: Tunes after 32 cycles 
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Table 3: Pattern of Interaction 

 

 

Conclusions and Future Work 

A multi-agent system MASC has been presented which is a proof of concept that a 

multi-agent system can develop non-trivial melody pitch structures through 

affective interaction of agents without explicit melodic knowledge. Agents have no 

explicit knowledge of which notes should follow which, how they should repeat, 

and so forth. An agent’s only compositional knowledge of music is its ability to 

extract affective data from the whole and impose affective features on the whole. 

MASC also demonstrates that multi-agent social structures can generate musical 

structure on thematic and sectional levels as well as on a note or phrase level. There 

were two demonstrations. It was demonstrated diagrammatically how the 

 Cycles 

Agent 1    5     10     15     20     

1  2 3 4 5 6    2 3 4 5 6    2 3      
2 1      7 8         1        
3 1      7 8         1        
4 1      7 8         1        
5 1      7 8         1        
6 1      7 8         1        
7        8         8       8 
8       7        7          

 Cycles 

Agent 25     30   

1         
2         
3         
4         
5         
6         
7        8 
8         



35 

 

35 

 

interaction structure would relate to the musical structure. Then an example was 

given showing the musical structure building up and how it related to the agents’ 

social structure. A final contribution of MASC is the linear music-emotion analyzing 

model which takes as input a monophonic MIDI file and estimates its affective 

content. 

   In terms of future work, the listening tests performed were fairly basic, using a 

small number of subjects and thus only indicative. More extensive tests are needed 

to support the ability of MASC to be used in a relatively intutive way as an affective 

computer-aided composition tool. Such tests could also be used to examine the 

difference between the generative structure in MASC tunes, and the perceived 

structure for human listeners. This would help to clarify the effectiveness of the 

interaction coefficient approach to hierarchical structure generation. 

    On the subject of Interaction Coefficient, there are other contexts that could be 

investigated to influence future agent interactions, besides their past interactions 

lists. For example an agent could have time varying trajectories set by the composer, 

which could bias elements like their arousal and valence, or the extent to which 

their affective state transforms the music they perform. This would provide 

additional contexts for the composer to use in controlling the MAS output. 

    Another element of future work is the addition of indeterminacy. It was desired 

to examine the multi-agent system as a form of algorithmic composition – hence 

keeping the whole system deterministic. For example in previous work the authors 

have utilized semi-random communication errors between agents, contributing to 

changes in their tunes and transformations (Kirke and Miranda 2011b). As has 

already been mentioned, the use of indeterminacy would also allow for the 

simulation of asynchronous communication – so that it is not always the same 

agents who begin the singing cycle.  
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