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ABSTRACT 

This body of research explores the dietary application of a bioactive, solid-state 

fermentation (SSF) product in contemporary and lupin-containing diets of Nile tilapia 

(Oreochromis niltoticus) and rainbow trout (Oncorhynchus mykiss). Consequently, the 

work provides holistic assessment of the influences of SSF products on animal health and 

performance; depending upon rearing temperature, nutritional physiologies, feed 

formulations and extrusion conditions; alongside information on the performance of 

lupins in aquafeeds. 

The SSF product (at 0.1 % inclusion) improved growth performance of Nile tilapia fed 

diets containing lupins. Phosphorous retention appeared higher when the SSF product 

was included in a yellow lupin (Lupinus luteus) diet whilst Mg retention was significantly 

higher in fish fed narrow-leaf lupin (Lupinus angustifolius). The experimental ingredients 

did not appear to show any clear effects upon midgut macrostructure. At an 

ultrastructural level, the fish fed yellow lupin alone, displayed poorest brush border 

characteristics but those fed yellow lupin and the SSF product showed signs of 

amelioration since they did not differ significantly from those fed narrow-leaf lupin.  

Focus was then turned towards a yellow lupin-based diet in rainbow trout, with two 

inclusion levels of the SSF product. The SSF product significantly improved growth 

performance and feed efficiency at 0.5 %, with values closer to a fishmeal-based diet 

than the lupin control. The SSF product increased the digestibility of protein and energy 

and bioavailability of numerous elements. However, the digestibility and bioavailability of 

certain nutrients, e.g. fibre and Zn, were only increased with a 0.5 % inclusion. The SSF 

product influenced vertebral Ca:P ratio but no effect on vertebral morphology was 

identified. Fish fed yellow lupin kernel meal displayed high Mn concentrations throughout 

a number of tissues. The intestinal environment was explored in depth, revealing large 

differences dependent upon SSF product inclusion rate. Fish fed a 0.1 % inclusion 

exhibited deteriorated brush border characteristics and high diversity of microbes, 

including increased proportions of key salmonid pathogens. Those fed a 0.5 % inclusion 

displayed signs of increased surface area at an ultrastructural level, reduced goblet cell 

numbers and a low microbial diversity; with domination of one particular family, 

Enterobacteriaceae. Activities of alkaline phosphatase and leucine aminopeptidase within 

the anterior intestine also appeared to be influenced by SSF product inclusion. Variations 

in haemato-immunological parameters were also observed between the treatments.  

In the final experiment, the SSF product was applied, pre-extrusion, to a contemporary 

rainbow trout formulation, at 0, 0.5, 1.0 and 1.5 %. No significant improvements to 

performance were identified following SSF product inclusion. However, crude protein 

digestibility from SSF-supplemented diets was significantly higher than the control and 

tendencies towards elevated retention of Ca, P, and Mg were apparent. In vitro analysis 

of free-phosphate release was conducted upon pre- and post-extruded diets, at varying 

temperatures. This indicated that neither extrusion conditions (105 °C) nor an ambient 

temperature of 10 °C were sufficient to cease P-liberating capabilities by the SSF product; 

suggesting that the two conditions combined limited the product’s efficacy in practice.  

This research evidenced that SSF products can be an effective means of improving the 

available nutrient profiles of compound diets for both omnivorous, warmwater and 

carnivorous, temperate finfish. Lupins are a promising alternative protein source but 

their nutritional value can be substantially improved by SSF product application. 

Exploration of the effects of SSF products on the intestinal environment revealed that 

both negative and positive effects on intestinal health can occur, which is highly 

dependent upon product inclusion rate. The holistic approaches adopted within this 

series of studies have seldom been performed on monogastric animals and thus provide 

valuable, transferable information for advancing knowledge in the application of SSF 

products, exogenous enzymes and lupins to farm animal feeds, in general. 
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CHAPTER 1. Aquaculture, aquafeeds and exogenous enzymes 

1.1  Aquaculture and global protein security 

With an ever-increasing global population, comes an inherent, indispensable requirement 

for a greater supply of food. Since 2003, the global population has risen by 

approximately one billion people (7.3 billion in mid-2015) and is expected to exceed 9.7 

billion by 2050 (United Nations, 2015). Clearly, such a substantial rise will require an 

increase in food production, on an unprecedented scale. This is in the face of a global 

population where 800 million people already suffer from malnourishment (FAO, 2014a). 

Furthermore, the situation is not merely a question of feeding more mouths. The rise in 

population, particularly in developing countries, is forecasted to have an associated 

growth in wealth; this will inevitably lead to changes in dietary habits as more 

commodities become financial available to more people (FAO, 2014a). Already observed 

and set to continue, the most prominent dietary change is that of a greater consumption 

of animal protein per capita. Between 1960 and 2012, apparent fish consumption per 

capita is estimated to have almost doubled from 9.9 kg to 19.2 kg, respectively (FAO, 

2014a). Therefore the question is how to feed more mouths, with more high-quality 

animal protein. Sustainable production systems, which can satisfy demand, must be 

implemented in order to achieve future success in food security, population well-being 

and sustainable development.  

Aquaculture is recognised as one of the fastest growing sectors of the agri-business 

industry. Although growth has been slowing over the past two decades, aquacultural 

production nonetheless doubled from 32.4 million tonnes in 2000 to 66.6 million tonnes 

in 2012 (FAO, 2014a). With most of the world’s major capture fisheries either reaching 

maximum harvestable levels or collapsing entirely, in turn making many populations 

vulnerable to extreme poverty and malnourishment, aquaculture has been able to 

provide an important compensatory strategy to seafood availability (FAO, 2014a). Latest 

figures indicate that in 2012, aquaculture contributed 41 percent of total global fishery 
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production; its input to global food fish supply was forecasted to have surpassed 50 

percent in 2015, and reach 60 percent by 2030 (FAO, 2014a). In comparison to 

terrestrial meat, farmed fish (66 million tonnes) has long exceeded sheep and goat meat 

production (13.4 million tonnes in 2009) (FAO, 2009) and in 2011, a significant 

milestone was reached when beef production (63 million tonnes) was also eclipsed 

(Earth Policy Institute, 2013). Therefore, farmed fish are the third most produced 

livestock globally, after poultry and pig. Of great note, the expansion of aquaculture has 

consistently exceeded population growth in recent years (FAO, 2014a); therefore it is 

seen as a solution to supplying a vast proportion of the ever-increasing global demand 

for healthy, high-quality protein, in general. However, in order to raise animals for the 

supply of protein to the global market, they themselves must receive adequate provision 

of high-quality protein, among all other essential nutrients.  

 

1.2 Macronutrient provision and acquisition in finfish nutrition 

Although regularly grouped as a single unit in discussion of farm animal nutrition, 

aquaculture livestock represent a highly diverse group of animals. From a nutritional 

perspective, many of the major cultured aquaculture species are in fact no more similar 

to one another than poultry, pigs, or even ruminants; even though these terrestrial 

livestock classes are viewed as vastly different to one another by nutritionist. The 

following schematic diagram outlines the typical digestive configurations of various 

cultured finfish (Plate 1.1). The diversity in digestive morphologies of aquacultured 

species arises from the fact that these animals range from finfish to crustaceans, 

planktonivores to carnivores and agastrics to monogastrics. Consequently, these animals 

express large differences in terms of their nutrient requirements, digestive capabilities 

and nutritional sensitivities, and as such feeding strategies vary greatly.  
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Plate 1.1 Common digestive configurations of cultured finfish. (a) Euryphagous 

carnivore, with Y-shaped stomach (e.g. salmon, trout, cod, halibut). (b) Euryphagous 

omnivore emphasising animal foodstuffs, with pouched stomach/intestinal sack (e.g. 

catfish and tilapia). (c) Euryphagous omnivore emphasising plant foodstuffs, without 

stomach (e.g. carp). (d) Stenophagous planktivore, with gizzard (e.g. milkfish). From 

Smith (1989). 

In practice, the dietary crude protein level necessary for on-growing grass carp 

(Ctenopharyngodon idella), a phytophagous species, is ≤ 25 %, on a dry matter basis 

(DMB) (NRC, 2011). Crude protein levels required for optimal growth of on-growing Nile 

tilapia (Oreochromis niloticus), an omnivorous species, are 28 to 30 % on a DMB (NRC, 

2011). In the diets of the carnivorous salmonids, Atlantic salmon (Salmo salar) and 

Rainbow trout (Oncorhynchus mykiss), at grow-out stages, the required dietary crude 

protein levels are between 40 and 45 %, DMB (NRC, 2011). However, there is no true 

requirement for crude protein since this depends on a well-balanced supply of amino 

acids and as such, this is dictated by the quality and source of the feed ingredients.  
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Ten amino acids are essential in the diets of finfish: arginine, histidine, isoleucine, 

leucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine (Wilson, 

2002). However, requirements of these essential amino acids vary between species. For 

example, the methionine requirement of Atlantic salmon is 0.7 % of the diet, at 0.6 % 

cysteine; whilst in Nile tilapia, this value is 0.5 % of the diet, at 0.5 % cysteine (NRC, 

2011). The lysine requirement of trout and salmon is 1.9 to 2.0 % of the diet, whilst in 

Nile tilapia it is approximately 1.4 % of the diet (NRC, 2011). For detailed collections of 

amino acid requirements in finfish and shrimp, readers are directed towards NRC (2011) 

and Wilson (2002). 

Due to their trophic feeding levels and associated digestive configurations, utilisation 

capacity and tolerances of carbohydrates greatly differ between species. Carbohydrates 

are not the principal source of energy or carbon for most fish but they can still play an 

important role in the nutrition of certain species (Dabrowski and Guderley, 2002). Those 

which do feed at a lower trophic level, consuming plant or algal matter, generally 

possess morphological adaptations which initiate and facilitate the digestion of 

carbohydrates; such as pharyngeal mills and gizzards (see Plate 1.1). Although tilapia 

possess no morphological adaptations of these kinds, commercial diets for these species 

may contain up to 40 % carbohydrate, including 8 to 10 % crude fibre (NRC, 2011). On 

the other hand, salmonids thrive on diets devoid of carbohydrates. Modern salmonid 

diets do contain carbohydrates; however, their presence is due to functional properties 

that they bring to the feed manufacturing process (e.g. starch for pellet expansion) 

when deliberately included in formulations, or as an unavoidable consequence of the 

ingredients which are now used in commercial formulations (i.e. plant proteins) (Young 

and Forte, 2016b). These topics will be discussed further, throughout this body of work.  

The nutrient requirement and limit figures, given so far, represent those of each species 

at grow-out stages; therefore, it is also important to note that these are subject to 

change throughout the animal’s life-time. Younger life-stages, as well as broodstock, 

typically have higher requirements of macronutrients (NRC, 2011); due to heightened 
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requirements for growth and development. Many species which fulfil their nutritional 

needs via consumption of plant matter, as an adult, in fact begin their lives as predatory 

carnivores, following yolk sac absorption. At first-feeding, the digestive system of larval 

fish is rarely fully formed; existing as a simple tract (Rust, 2002), lacking the 

differentiation presented in Plate 1.1.  

Across species and stage of ontological development, the digestive capabilities of fish, 

like all animals, are coordinated by their endogenous hydrolytic secretions (Rust, 2002) 

and as such, endogenous enzyme profiles vary between species (Hidalgo et al., 1999). 

However, digestive enzymes can be futile in ensuring optimal nutrition if overall 

digestive health is not upheld. The intestine is the common premier site for diet contact 

and nutrient acquisition, under all circumstances, be it life-stage or species. This organ 

comprises of a particularly complex network of biological units, which collectively allow 

its normal health and function. Intestinal health is governed not only by its plethora of 

enzymes but also its architecture and colonising microbiota. Without health of each of 

these components, optimal functioning of the organ cannot exist, meaning that 

acquisition of optimal or required macronutrients become restricted. In turn, optimal 

health and performance cannot be achieved from the animal. For these reasons, 

intestinal health is increasingly being viewed as an underpinning factor to optimising 

nutrition.  

Optimal nutrition in finfish, like in all animals, depends also on the adequate provision of 

micronutrients. This is a topic of great complexity in fish and is relatively poorly 

understood at present.  

 

1.3 Micronutrient provision and acquisition in finfish nutrition 

Micronutrients can be defined as compounds or elements which are required in trace 

amounts for crucial roles in growth, development and metabolic function yet they cannot 

be synthesised by the organism. Namely, these comprise of vitamins and minerals. 
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These play an equally important role in supporting life as the macronutrients, yet they 

are somewhat overlooked on a regular basis. In context with the experimental work 

detailed later in this body of research, minerals will be the topic of focus herein. 

In a review by Davis and Gatlin (1996), 10 elements were proposed as generally 

essential in the diets of fish; these being calcium, phosphorous, magnesium, potassium, 

iron, zinc, copper, iodine, selenium and manganese. This number seems to be lower 

than those identified in terrestrial animals (Davis and Gatlin, 2006) although it is likely 

that physiological requirement are similar, with a trace importance of elements such as 

cobalt, chromium and molybdenum (Watanabe et al., 1997), to name but a few. 

Accurately defining dietary mineral requirements in fish is very challenging, most notably 

due to the water solubility of many elements. Indeed many of the essential elements can 

be derived, to varying extents, from surrounding water (Lall, 2002). However, much the 

same as dietary ingredients, water sources vary considerably in their nutrient profile. 

This has meant that specific requirements for elements in fish species remains poorly 

defined. Ultimately, feeds must supply adequate provision of the known element 

requirements so as to guarantee the normal health and function of the species under 

various rearing conditions. 

A number of nutritional pathologies have been witnessed in commercial finfish farming, 

with attribution to improper provision of micronutrients. Furthermore, numerous 

scientific investigations have explored the biological consequences of restricted mineral 

provision. One of the predominant roles of minerals is contribution to ossification, thus 

the animal’s structural integrity and form. Phosphorous (P) deficiency is undisputedly 

known to cause significant increases in skeletal abnormalities and reduced bone 

mineralisation (Sullivan et al., 2007a; Sullivan et al., 2007b; Fontagne et al., 2009; Fox 

and Davies, 2011; Le Luyer et al., 2014; Fjelldal et al., 2016), which may also impair 

growth (Albrektsen et al., 2009; Tang et al., 2012). In a study on Nile tilapia, adequate 

dietary P was shown to be critical since it was the only tested element, out of Mg, Na, K, 

Fe, Zn, I and Ca, which resulted in reduced animal performance when omitted from the 
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diet; despite the water being dosed with phosphate fertilizer (Dato-Cajegas and 

Yakupitiyage, 1996). Calcium (Ca) is nonetheless similarly critical in the growth and 

development of fish. However, it is now generally recognised that dietary dependence is 

somewhat lower than P considering much, if not all, of the animal’s requirement can be 

satisfied via absorption from surrounding water (Lall, 2002). In freshwater, fish achieve 

this by uptake through the gills and skin, whilst in seawater, drinking becomes the route 

of acquisition (Lall, 2002). In Atlantic salmon, reduced bone mineralisation after dietary 

Ca deprivation has been reported to be reversed following the smoltification process 

(Berge et al., 2009); possibly to be expected considering the marine environment is Ca-

rich. Perhaps more surprisingly, delayed ossification of fry due to low dietary Ca 

concentrations has similarly been observed to be compensated for, relatively rapidly, 

during freshwater stages (Fontagne et al., 2009). This suggests that the diadromous, 

euryhaline nature of salmonids is not to a major issue in terms of waterborne Ca uptake. 

Nevertheless, dietary supply of Ca may be important in times of deprived water 

availability or when developmental requirement is augmented. Wild Atlantic salmon 

reabsorb minerals from their scales during their reproductive migration back into 

freshwater, indicating that requirement is increased during sexual maturation (Kacem et 

al., 2013). This could be attributed to physiological processes, gonad maturation and/or 

morphological changes; for example, the natural development of kype in cock-fish 

(Witten and Hall, 2003). Natural periodic phenomena such as these must remain a 

consideration in domesticated finfish.  

Together, Ca and P form hydroxyapatite, the major compound found in bone. However, 

a number of other trace elements are also important in bone formation and integrity, 

such as magnesium (Mg), zinc (Zn) and manganese (Mn) (Bigi et al., 1992; Seo et al., 

2010; Strause and Saltman, 1987). Dietary concentrations of these trace elements can 

have significant effects upon bone mineralisation in fish; with deficiencies leading to 

deformity (Yamamoto et al., 1983; Satoh et al., 1983) and restriction of growth potential 

(Knox et al., 1983). It is of great importance to recognise that numerous factors may 
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cause skeletal abnormalities in fish; genetics, pathogen infections, environmental 

parameters and human handling are all well-known causes of this (Deschamps et al., 

2009). However other, more subtle, parameters may similarly influence skeletal 

characteristics. Owen et al. (2012) observed architectural variations in the vertebrae of 

juvenile rainbow trout under differing flow rates (0 and 2 body lengths per sec.). This is 

of great interest when we consider the different housing strategies used in finfish 

farming; for example ponds, recirculating tanks, cages and raceways, or likewise, 

fluctuating current speeds within these units. These different strategies are adopted or 

present within the production of individual species, as well as those which differ from 

one another.  

It has been observed that temporary but plentiful supplementation of macrominerals, 

during times where environmental stressors are heightened, may mitigate the risk of 

poor ossification. This was demonstrated during seawater transfer of salmon, resulting in 

reduced incidences of skeletal abnormalities much later when the fish are slaughtered at 

market size (Fjeldall et al., 2009). The numbers of fish suffering from skeletal deformity 

are variable between operations due to the numerous factors involved. However, 

currently, under rearing conditions which could be considered as realistically optimal, 

skeletal deformities can still be relatively high. In the production of rainbow trout, 

individuals expressing skeletal deformity, up to fingerling size, may still represent 5 to 

10 % of the original ova (personal observation). All things considered, correct 

micronutrition can be seen as a safeguard to the stressors which threaten bone 

characteristics in commercial farming. In achieving this, significant benefits may be seen 

throughout production by retaining the largest possible number of animals which display 

highly marketable morphometries.   

Deficiency of trace elements may cause other morphological effects, aside from skeletal 

architecture and composition. Copper (Cu), Mn, Mg and Zn deficiencies have all been 

observed to induce clinical signs of cataracts in salmonids (Richardson, 1985; Yamamoto 

et al., 1983; Read et al., 2014); whilst Zn deficiency has been reported to increase 
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incidences of fin erosion (Yamamoto et al., 1983). Both of these symptoms can seriously 

reduce performance and product value. In extreme cases, increased mortality has been 

attributed to trace element deficiency (Read et al., 2014).  

Due to their varied and integral function in metabolic function and immunological 

responses, macrominerals and trace elements play an indispensable role in maintaining 

countless physiological processes. These include maintenance of cellular pH, osmotic 

balances and active transport pathways as well as participation in the structure and 

function of hormones (e.g. iodine and chromium) and enzymes (Cu, Zn, Mg, Mn and Se) 

(Watanabe et al., 1997). For this reason, availability is essential for normal physiological 

functioning and health.  

Animal feed formulations are regularly altered to suit ingredient prices and availability, 

as such there is risk of mineral deficiencies or the flexibility of formulations becomes 

limited. There are in fact two considerations relating to these risks. The first is, what are 

the total concentrations of each essential element, in a given ingredient?  

Table 1.1 displays reported concentrations of elements in some commonly used and 

prospective aquafeed ingredients. Evident from the information provided, protein sources 

vary tremendously in their macro and trace element concentrations, under various 

categorising levels. For example, Ca and P concentrations in animal-derived by-products 

are far higher than those derived from autotrophs and microbes. Legumes (e.g. soya, 

lupins and fababean) contain more K than grains (e.g. barley, wheat and triticale). 

Thereafter, more specifically, we can observe examples such as very high Mn in lupins 

compared to all other ingredients presented. The values reported should not be treated 

as definitive; crops in particular are highly susceptible to variation due to genetic 

engineering and soil mineral concentrations. However they serve to demonstrate that 

substitutions between ingredients, based upon protein/amino acid supply, will seldom 

maintain a natural, constant, micronutrient provision.  
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Table 1.1 Reported concentrations and ranges of macro and trace elements found in commonly used and prospective protein sources for 

aquafeeds; with particular emphasis towards Lupins - Lupinus albus (white lupin), Lupinus angustifolius (narrow-leaf lupin) and Lupinus 

luteus (yellow lupin). 

Abbreviations and symbols: LT = low temperature; α-GAL-free = α-galactosides extracted from ingredient; n.p.= information not presented by author(s); . = not detected. 2 
Please refer to source references for details of further ingredient specifications (e.g. trade names, manufacturers, species, cultivars, processing conditions).3 

 

 Macro elements (g/kg)  Trace elements (mg/kg)  

Form Ca P K Na Mg S  Fe Zn Mn Cu Source 

Fishmeal N. Atlantic 23.8 19.0 13.0 10.0 2.0 0.6  250 100 10 5 Premier Nutrition, 2005 

Fishmeal LT herring 16.9 14.7 8.6 10.9 2.1 9.6  166 64 4 2 Leeming, 2013 

Fishmeal Capelin 26.6 21.3 13.0 9.0 1.5 4.0  250 100 15 5 Premier Nutrition, 2005 

Fishmeal Whitefish 46.1 23.0 6.3 5.7 1.3 7.6  303 130 16 12 Leeming, 2013 

Fishmeal U.K. offal 65.0 36.0 9.0 8.5 1.5 4.4  280 90 12 3 Premier Nutrition, 2005 

Poultrymeal Meat 32.6 19.6 6.1 3.0 1.1 7.4  122 76 11 7 Leeming, 2013 

Algae Various, whole  1-30 7-15 7-24 8-27 3-7 4-14  >1400 28-64 45-454 8-102 Tibbetts et al., 2014 

Yeast Brewer’s  2.5 12.5 17.0 1.0 2.0 4.0  150 50 30 35 Premier Nutrition, 2005 

Yeast Extract  1.4 6.5 18.3 0.3 1.5 4.4  276 147 22 5 Leeming, 2013 

Soyabean  Protein conc. 3.0 8.0 22.5 0.1 3.1 4.0  . 40 . 5 Premier Nutrition, 2005 

Soyabean  Meal 3.0 6.0 21.0 0.3 2.8 4.3  150 50 43 15 Premier Nutrition, 2005 

Soyabean  Meal 2.7 5.9 18.1 0.3 2.7 4.4  108 50 23 10 Leeming, 2013 

Rapeseed Meal  8.0 11.0 12.5 0.2 5.5 4.5  160 55 55 7 Premier Nutrition, 2005 

Cottonseed  Meal 1.9 10.0 12.5 0.5 5.0 4.7  150 60 20 10 Premier Nutrition, 2005 

Groundnut Meal 1.6 6.0 11.5 0.2 3.0 3.0  300 55 40 15 Premier Nutrition, 2005 

Wheat  Gluten meal 1.0 1.3 1.5 0.3 . .  54 . . . Premier Nutrition, 2005 

Maize  Gluten meal 0.4 3.0 1.0 0.5 0.4 6.5  200 41 7 10 Premier Nutrition, 2005 

Maize Gluten meal . 3.0 0.4 0.4 0.2 8.3  45 16 3 6 Leeming, 2013 

Triticale Seed 1.1 3.3 5.0 0.1 1.1 1.5  50 40 25 8 Premier Nutrition, 2005 

Fababean Seed 0.8 5.8 13.1 n.p. 1.2 2.3  62 49 8 18 Lizarazo et al., 2015 

Barley  De-hulled 0.6 3.6 4.7 0.1 1.0 1.5  85 25 16 5 Premier Nutrition, 2005 

L. albus Meal 2.5 4.0 1.1 0.2 1.5 2.4  30 35 1500 7 Premier Nutrition, 2005 

L. albus Meal  1.3-1.4 3.3-4.7 10.7-14.3 n.p. 1.5-1.9 n.p.  38-62 43-52 350-901 7-8 Porres et al., 2007 

L. albus  De-hulled 1.0 5.4 11.6 0.7 1.8 3.0  39 49 1370 8 Hung et al., 1988 

L. albus  α-GAL-free  1.5-1.8 3.0-3.2 5.7-7.8 n.p. 0.7-1.0 n.p.  35-38 42-45 780-820 7-8 Porres et al., 2007 

L. angustifolius Meal 3.4 3.6 11.1 n.p. 1.8 4.0  38 35 20 6 Lizarazo et al., 2015 

L. angustifolius Meal  1.4-1.6 5.4-6.1 12.9-13.0 n.p. 1.9-2.2 n.p.  42-43 37-38 76-84 10 Porres et al., 2007 

L. angustifolius  De-hulled 1.2 4.2 7.8 0.3 2.0 3.4  52 39 74 6 Hung et al., 1988 

L. angustifolius  α-GAL-free  1.8-1.5 5.4-5.5 7.9-9.4 n.p. 1.6-1.7 n.p.  29-33 41-42 87-88 6-9 Porres et al., 2007 

L. luteus  n.p. 3.0 5.1 12.6 0.1 3.1 n.p.  130 70 80 20 Rutkowski et al., 2015 

L. luteus Meal  1.1-1.3 7.2-7.6 12.1-14.2 n.p. 2.9-3.1 n.p.  58-71 59-64 56-68 11-13 Porres et al., 2007 

L. luteus α-GAL-free  1.5-1.6 7.8-8.2 9.0-10.4 n.p. 3.2-3.3 n.p.  72-76 77-79 76-85 11 Porres et al., 2007 
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Having determined element concentrations within an ingredient, it is then paramount to 

consider in what form they are present.  

The complexity of plant nutrient matrices, in particular, often results in elements being 

in a bound form, most notably due to the presence of phytate. This compound severely 

limits mineral bioavailability and is discussed at further length throughout this chapter, 

as a key focus of this body of research as a whole (see Sec. 1.5 and 1.7.3).  

In order to guarantee that element requirements are met, heavy supplementation of 

associated elements (notably P), in freely available forms, is implemented during 

aquafeed manufacture. Although this practice aims to uphold nutritional and metabolic 

health, nutrient loading of diets in such a manner can incur deleterious consequences in 

the wider context of fish farming. Leeming (2013, p.2-3) highlighted that excess mineral 

loading with neglect of endogenously present minerals in ingredients, equates to vast 

economic losses every year considering the financial cost of inorganic supplements. 

Moreover, this increases potential detriment to surrounding ecosystems as unabsorbed 

elements are excreted; thus environmental- and societal-implicated costs may be 

similarly vast. A number of studies have investigated downstream effects of inorganic 

pollutants from trout farming, in particular, due to the limited containment and dilution 

of effluent from these operations. These studies have largely concluded that P discharge 

in particular, correlates with reduced biodiversity and signs of eutrophication (Camargo 

et al., 2011; Mayor and Solan, 2011; Bartoli et al., 2007). We may also bring into 

question the manner in which minerals are harvested for animal feed supplements. 

Mining is a highly controversial topic, which draws upon issues such as environmental 

damage (Mudd, 2010) and human health and welfare (Viviers and Boudler, 2010). The 

long-term sustainability of accessible mineral reserves is also highly questionable, 

considering the resource is finite. Furthermore, we will require more inorganic fertiliser in 

the years to come for intensifying arable farming which will inevitably cause great 

competition for inorganic resources between agri-sectors. This is despite the fact that 

demand for crops will increasingly be for animal feeds, with aquaculture included. 
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1.4 Measuring nutrient digestibility and bioavailability in finfish 

Measuring the digestibility and bioavailability of nutrients in finfish is a challenging topic. 

The principle behind apparent digestibility coefficient (ADC) methods centres upon 

defining the loss of nutrients between the ingested feed and the excreta from the animal. 

The values are described as ‘apparent coefficients’ since endogenous digestive excretions 

cannot be accounted for (Hardy and Barrows, 2002). ‘True’ coefficients are only possible 

with the use of a control diet completely lacking in the nutrient to be tested (Hardy and 

Barrows, 2002), which is neither practical nor ethical in many cases within finfish. 

Apparent digestibility coefficients are performed by the introduction of an inert 

digestibility marker into the feed (yttrium oxide or chromic oxide), the concentration of 

which can be analysed in the feed and faeces for determining relative concentrations of 

other nutrients before and after digestion (Hardy and Barrows, 2002). Broadly, there are 

two strategies for obtaining faecal samples from fish; collection prior to excretion from 

the anus and collection after excretion (Hardy and Barrows, 2002; Blyth et al., 2015).  

Stripping faeces from the hind portion of the intestine can be achieved in species with a 

digestive configuration similar to the one displayed in Plate 1.1a (e.g. salmonids). 

Species with a convoluted intestinal configuration (e.g. tilapia) cannot be easily stripped 

of faeces as placing pressure upon the hindmost portion of the intestinal tract to extract 

faecal material cannot be performed quickly and efficiently. The stripping method is 

further limited to fish of a larger size; for example, fingerling salmonids cannot be 

ethically stripped of faeces due to a high risk of damaging internal organs. Provided 

conditions allow its use, stripping is nonetheless seen as a relatively highly reliable 

method for determination of ADCs (Blyth et al., 2015). Alternatively, fish may be 

sacrificed and faeces removed via dissection, which can theoretically achieve the same 

sample collection as stripping. However, this strategy is highly susceptible to ethical 

scrutiny due to the availability of less invasive techniques, where loss of life is not 

necessary (e.g. stripping and settlement). Common to both methods involving faecal 

collection prior to excretion, scrutiny also exists in samples potentially being collected 
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before the digestive capacity of the animal has undergone its full extent, resulting in 

conservative values (Blyth et al., 2015).  

Collection of faeces after excretion into the surrounding water can be performed by 

syphoning tanks or collecting faeces from specially designed faecal traps; referred to as 

settlement methods (Hardy and Barrows, 2002). Syphoning faeces is highly labour 

intensive and results in a high level of disturbance to the animals; as such, this method 

is not preferable. Meanwhile, traps must ensure that faeces settles quickly and remains 

chilled to prevent further degradation by bacteria. In experimental nutrition studies, 

ensuring that faeces rapidly settles may be challenging since ingredients can influence 

faecal physical characteristics (Ogunkoya et al., 2006). As previously mentioned in Sec. 

1.3, the solubility of certain nutrients in water can hinder accurate definition of those 

acquired or required by fish. This is true of both micronutrients and macronutrients on 

the topic of digestibility, as leaching of nutrients can quickly occur from excreted faeces 

(Blyth et al., 2015). Consequently, the major limitation of settlement methods is the 

possibility of over-reported digestibility values due to leaching and/or continued 

fermentation by bacteria.  

Defining nutrient availabilities from ingredients and diets is integral to research and 

development within the aquaculture nutrition sector and should be attempted with the 

highest rigour and reliability possible, under the given conditions. Conducting such 

analyses is particularly important since the digestibility of specific ingredients is not the 

same between species, given their variations in digestive configurations and further, 

aquafeeds and their constituent ingredients are continuously being altered due to a 

variety of commercial pressures.  

 

1.5 Aquafeed ingredients and sustainability 

Historically, much of the aquaculture industry has depended upon fishmeal (FM) for the 

supply of protein and essential amino acids within finfish diets; whilst lipid was similarly 
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supplied from fish oil (FO). However, in correspondence with the before mentioned 

situation of declining capture fishery productivity, under Sec. 1.1, sourcing sufficient 

quantities of pelagic marine fishes for FM and FO production has become unsustainable 

from both a socioeconomic and environmental standpoint; which is further aggravated 

by the increasing volumetric demand for aquafeed. Simply, traditional inclusion rates are 

no longer viable. As a result, changes in the diets of commercially produced finfish have 

occurred in an opposite manner to that of the human population. Farmed fish diets are 

now increasingly being dominated by protein and lipids derived from plants, as appose to 

marine-derived sources (Fig. 1.1). 

Figure 1.1 Percentage contributions of ingredient types in commercial Norwegian 

salmon (Salmo salar) diets: 1990 to 2013. Taken from Nofima (2014). 

The substitution of FM with alternative plant proteins is a well-established and heavily 

researched topic. These ingredients are indeed attractive; although prices have 

fluctuated considerably in the past decade, their cost remains highly competitive (Hardy, 

2010). Furthermore, after processing, they generally provide balanced essential amino 

acid profiles and their protein fractions are often relatively digestible by fish (Hardy, 

2010). Lapses in these aspects can be relatively easily mitigated; for example, deficient 

amino acids can be supplemented into diets (Wilson, 2002). Although this does 

represent added cost, this process remains inexpensive when performed in bulk, 
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considering the financial savings on using plant proteins (Nunes et al., 2014). Some 

crops which have become well-established in formulations include soya, wheat, maize 

and rapeseed. These are generally regarded as far superior options for promoting 

sustainability within the aquaculture industry, compared with FM.  

In developed countries, livestock producers are now regularly seeking the maximum 

sustainability credentials within their operations; this is in order to produce competitive 

products on a market where consumers are critical, food-conscious and are typically 

more prosperous. At retail, demonstration of credentials is clearly displayed by 

certifications and eco-labels, which present a visual stimulus for purchase by conscious 

consumers; subsequently, suppliers compete intensively for accreditation. Due to high 

competition, certifications are increasingly harder to obtain as standards are introduced 

and raised by awarding bodies. Therefore, there is great scope for any solution, 

throughout the production process, which can provide a producer with an edge over its 

rivals, whilst improving sustainability. Although the past and current major drive has 

been to reduce FM inclusions, attention is now also being turned towards the 

sustainability of plant-derived ingredients.  

In Europe, the political and societal climate has been highly sceptical of genetically 

modified (GM) foods since their appearance on the continent almost two decades ago, 

such is that only one GM crop is licenced within the E.U., yet it is still banned for 

cultivation in most of its member states (Lucht, 2015). However, ironically, the E.U. 

imports vast quantities of GM crops every year, for sustenance of its livestock (Espinoza 

and Giraud-Heraud, 2012). Consumers are now beginning to question whether they can 

morally accept consumption of animal products fed GM crops. Due to their perception of 

genetic manipulation, this appears non-conducive to their ethos of investing in healthy, 

‘natural’, ecologically-sound products, on a day-to-day basis (Lucht, 2015). 

Consequently, there may be a developing market for certified GM-free animal products. 

However, we must also focus, perhaps more importantly, upon the issue of importation. 

This issue is vastly more transparent than the argument of genetic modification. 
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Importation, to a level of absolute dependency, is risky from both socioeconomic and 

environmental sustainability perspectives. In terms of societal implications, large 

numbers of jobs involved in the feed supply-chain are outsourced. Economic implications 

include high costs and heavy investment in foreign economies. From an environmental 

perspective, the ‘carbon-footprint’ of transportation and little to no control over 

agronomic practices in the country of origin must be considered. Lastly, ‘protein security’ 

becomes unguaranteed, as dependence is placed on other nations for supply and 

competition for the product is on the global market.  

The vast majority of these imports into the E.U. is soya (Glycine max L.), originating 

from the Americas (Soya UK, 2015). Demand for soyabean within the E.U. is great due 

its nutritional value but there is a distinctly large deficit in this commodity compared with 

other oil and protein crops (Espinoza and Giraud-Heraud, 2012). In perspective, the E.U. 

imports on average 30 million tonnes of soya per year; however, less than 15 percent is 

certified GM-free (Lucht, 2015). France, for example, is particularly opposed to the 

cultivation of GM crops but it supplements its modest 140,000 tonne per year production 

of soya with around 4 million tonnes of imports (Espinoza and Giraud-Heraud, 2012). 

Meanwhile, In the U.K., soyabean was the second most consumed ingredient in 

terrestrial livestock diets in 2015 (UK Government, 2015), whilst it was most likely the 

most consumed in aquafeeds; U.K. soya production is negligible (Soya UK, 2015). 

Following these concerns, calls have been made for diversification in available feed 

ingredients; preferentially those which are ‘home-grown’, thus also non-GM. All in all, 

alternative proteins should no longer be viewed, or categorised, as alternatives to 

fishmeal. Alternative proteins must be seen as any ingredient with potential to better the 

sustainability credentials of any commercially used counterpart, whilst upholding 

nutritional quality. The latter consideration of maintaining nutritional value is one which 

is particularly problematic in finfish nutrition with current trends towards increasing the 

inclusion of plant-derived ingredients in commercial diets. 
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1.6 Anti-nutritional factors 

Despite large advancements, the inclusion of plant proteins in finfish diets, particularly 

with carnivorous species, has been limited due to the presence of nutritional boundaries. 

As such, the promotion of aquaculture feed and production sustainability has been 

hindered. Asides from nutrient deficiencies and imbalances, these boundaries exist as 

anti-nutritional factors (ANFs). ANFs can be defined as naturally occurring compounds 

which when ingested, can interfere with the consumer’s optimal digestive process, 

resulting in limitations to the acquisition of nutrients and/or nutritional pathology. ANFs 

occur substantially in plant-derived ingredients, typically originating from predator 

defence mechanisms and nutrient stores (Francis et al., 2001; Kumar et al., 2012). The 

classification of these compounds as ANFs depends upon whether the animal lacks 

digestive capabilities to effectively catalyse their breakdown and subsequently mitigate 

their potentially deleterious effects; stemming from the consumption of feedstuffs which 

the digestive system has not evolved to encounter. In the field of finfish nutrition, 

common ANFs include protease inhibitors, alkaloids, gossypol, saponins, tannins, phytate 

and non-starch polysaccharides (NSPs).  

Until present, a variety of methods have been implemented to dismantle the nutritional 

boundaries that ANFs pose in animal feed rations. This has been in a bid to maximise the 

nutritional profile of raw materials, by-pass the animals digestive configurations and 

natural capabilities and subsequently, optimise the nutritional function, health status and 

performance of livestock.  

Firstly, genetic improvements can be applied to crops by selectively breeding from 

desirable phenotypes, such as the identification and emergence of low-phytate mutant 

soya lines (Jervis et al., 2015; Al-Amery et al., 2015). However, selection of mutant 

lines for beneficial  traits, followed by breeding programmes of desirable cultivars, can 

be a tedious process; perhaps not favourable when we immediately require 

intensification of food and animal feed sources. Secondly, we may consider efforts in 
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producing genetically modified (GM) crops but as previously mentioned, the media, 

legislation and consumer opposition may limit the development of GM crops due to 

perception of environmental risks (Lucht, 2015). Beyond agronomic stages, ingredient 

refining is heavily practiced in the commercial sector. The first major step is that of 

dehulling (Young and Forte, 2016b). This simple process removes husks, which are 

grossly indigestible to monogastrics, mostly due to their high NSP content (Krogdahl et 

al., 2005). Because of their composition, husks contain little to no nutritional value and 

their composition restricts and/or impairs digestive accessibility to the valuable nutritious 

fractions of the ingredients (Krogdahl et al., 2005). Secondly to note, is the advent and 

extensive manufacture of glutens, protein concentrates and isolates, such as soya 

protein concentrate (SPC); these aim to increase the protein value of ingredients via 

solubilisation and removal of other compounds, particularly starch (Glencross et al., 

2004a). Lastly, heat treatment of ingredients has become a routine procedure (Young 

and Forte, 2016b). Although multifunctional in sterilising and modifying ingredient 

composition or characteristics, heat treatment can target a number of ANFs such as 

lectins, protease inhibitors and cyanogens (Francis et al., 2001). However, numerous 

other ANFs are heat stable, such as tannins, gossypol, saponins and phytate; or 

excessive treatment risks detriment to nutritious fractions of the ingredient such as 

heat-sensitive amino acids (e.g. lysine), which may cross-bridge, leading to 

complexation of protein (Francis et al., 2001; Hefnawy, 2011). Therefore many ANFs 

remain problematic, requiring a different processing approach for deactivation.  

Although undeniably successful to an extent, questions can be asked of the efficiency of 

current mechanical and chemical techniques involved in the removal of ANFs. These 

forms of processing firstly require substantial investment in the form of machinery, 

labour and financial expenditure. For example, the production of SPC incurs a 

significantly higher financial cost than that of standard defatted soya meal (FAO, 1992). 

Furthermore, the methods implemented in modern feed processing are rarely 100 

percent efficient. The complex nature of the plant nutrient matrix means that compounds 
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considered ANFs are often bound to desirable, nutritious fractions, such as complexes 

formed between saponins and amino acids (Potter et al., 1993). ANFs may also be 

present in a relatively free state, in unremoved physical components of seeds and pulses, 

for example phytate and NSPs in protein-rich kernels.  

 

1.7 Lupins  

1.7.1 Lupins as an alternative protein  

Lupins have been described as “[…] the only high protein, high energy, nitrogen-fixing, 

grain legume that can compete nutritionally with imported soya in livestock and fish 

diets [in the U.K.]” (Soya UK, 2015). Three species of lupin are available for commercial 

cultivation; these being, white lupin (Lupinus albus), yellow lupin (Lupinus luteus) and 

the narrow-leaf lupin (Lupinus angustifolius), sometimes referred to as blue lupin. White, 

yellow and narrow-leaf lupin kernel meals contain approximately, 41, 52 and 44 % crude 

protein, respectively (Sipsas, 2003); whereas de-hulled soyabean meal contains on 

average 47.5 % crude protein (NRC, 1998).  

Each of these three species allows opportunities for cultivation in different climates and 

soil types, so they can be considered an option for many arable farmers. Consequently, 

these legumes have been identified as an attractive option for farmers in both developed 

countries, such as those in the E.U. and Oceania, as well as in developing countries, for 

example Ethiopia (Yeheyis et al., 2012). Therefore, efforts to study their nutritional 

potential will be of benefit throughout the global social stratification.  

At present lupin production in the U.K. is small; approximately 80 percent of its volume 

is grown as a mixture with cereals (e.g. spring triticale) and cut as forage, with the 

remainder grown as pure stands for on-farm feeding as a high-protein diet (Soya UK, 

2015). However, until present, confusion over true nutritional value, appropriate species 

selection and crop management strategies has resulted in a lack of uptake from the 
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British feed sector. As a result of low volumes, bin space in feed mills cannot be justified, 

so lupins are seldom considered in compound feed formulations. Nonetheless, other 

nations have been successful in adopting lupins as a valuable feed-source for their 

livestock. Australia is the world’s largest producer of lupins (Fig. 1.2). The adoption of 

lupin crops was particularly productive in Western Australia, due to the vast swathes of 

sandy, acidic soil, which are unsuitable for the cultivation of many other legumes and 

grains. Production in 1999 reached a high of 1.5 million tonnes, but has since fallen to 

under 400 thousand tonnes in 2014 (Government of Western Australia, 2015). This 

decrease in productivity has been caused by dismissal from farmers due to a fall in lupin 

prices and weed control issues (Government of Western Australia, 2015) but 

encouragingly, not the crops nutritional value. 

 

Figure 1.2 World lupin production, by country: 2012 to 2013 (FAOSTAT, 2016).  

1.7.2 Lupin anti-nutritional factors 

As previously discussed, lupins are seen to be strong competitors to the protein content 

of soya, but ANFs nonetheless limit the inclusion of lupins in animal diets. Initially, 

alkaloids were a major limiting factor but breeding strategies to reduce this ANF, to 

create ‘sweet lupin’ varieties, has since all but eliminated this deterrent.  
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In a study on Nile tilapia, increasing levels of soyabean meal substitution, with whole 

and dehulled narrow-leaf lupin were both observed to depreciate growth performance 

(Chien and Chiu, 2003), suggesting that inferiority exists between lupins and soya. The 

NSP content of lupins is particularly high; even after dehulling, contents remain 

significantly higher than other plant-protein competitors (Van Barneveld, 1999). 

Furthermore, lupins tend to contain significant quantities of oligosaccharides (Van 

Barneveld, 1999), notably α-galactosyl homologues of sucrose, which can similarly 

impede upon the digestive process (Glencross et al., 2003). To promote the 

development and redevelopment of lupin inclusions in feed rations, it would be of great 

benefit to further improve their overall nutritional profile, so as to produce a more 

competitive product and reduce performance, health and welfare constraints surrounding 

these ingredients. Glencross et al. (2004a) suggested that plant breeders should be 

tasked with reducing the oligosaccharide content of high-NSP lupin cultivars, or further 

processing could be implemented with the manufacture of lupin-protein concentrates 

(LPCs) and isolates, thus allowing greater inclusion in finfish diets. The requirement for 

these approaches has more recently been brought to light by Lucas et al. (2015), in an 

exhaustive review on the development of lupins as a protein crop in Europe. 

The debate upon how to reduce ANF content has already been addressed but to briefly 

reiterate, agronomy and processing will rarely be 100 percent efficient. Especially 

without the use of GM, one of the major driving forces behind lupin promotion, it is 

highly optimistic to assume we can alter the nutritional profile of a crop to a point where 

all of its possible ANFs are removed to a level where they pose no threat to the 

multitude of commercially farmed ruminant and monogastric livestock species. Heavy 

implementation of specialist ingredient processing steps will also contribute to a spike in 

the price of the ingredient, limiting its cost-effectiveness and not providing substantial 

return to the arable farmer, thus impeding uptake. Consequently, there is a niche for 

strategies which may improve the nutritional value of lupins.  
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The aquaculture industry is facing great challenges in providing and optimising adequate 

nutritional strategies for its growing volumetric production and diversity of species. 

However, the issue of ANFs in livestock diets is certainly not unique to aquaculture. The 

poultry and pig industries have and continue to experience their fair share of animal 

health, production performance, and land management issues caused by ANFs. To target 

specific ANFs, untreatable by mechanical or chemical means, the terrestrial monogastric 

livestock sector began to research biological treatment of ingredients. This was 

attempted using one of the most specific processes in nature, enzymatic degradation. 

 

1.8 Exogenous enzymes in animal nutrition 

1.8.1 Background 

Initially, the application of exogenous enzymes in animal feeds was discounted due to 

belief that any supplementary enzymes applied to feed would be denatured in the 

digestive proteolytic activity of the stomach and anterior intestine (Bedford and Partridge, 

2010). However in the mid 1940’s, it was first reported that enzymes could improve 

growth and feed efficiency in high fibrous poultry diets, suggesting resistance to 

endogenous enzymatic action (Hastings, 1946).  An extensive series of investigations 

into the application of feed enzymes followed suit. This movement was driven by the 

theory that specific enzymes from exogenous sources could compliment the plethora of 

endogenous enzymes already found in the digestive system of the exposed animal. 

These exogenous enzymes would break down previously indigestible ANFs within the 

animal’s diet and mitigate their deleterious effects, whilst at the same time liberating 

nutrients and ultimately enhancing the nutritional value of feeds. Furthermore, 

exogenous enzymes were considered as a potential waste management tool.  

In order to be an effective nutritional strategy, exogenous enzymes must ultimately be 

cost-effective, since the major driver for their inclusion in animal feed rations is reducing 
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cost (Bedford and Partridge, 2010). This depends upon degradation of specific, targeted 

nutritional components which reduces anti-nutritional effects and/or releases available 

nutrients at levels which equate to financial gain through improved growth, feed 

efficiency or animal survival via promotion of health. Alternatively, they may improve 

profit by allowing cheaper ingredients to be utilised, thus reducing the cost of feed 

altogether (Coweison et al., 2006). Consequently, the key attributes required for an 

exogenous enzyme to be cost-effective are the initial product price, specificity to 

contemporary formulations and retention of high activity under the conditions within the 

animal digestive system (Bedford and Partridge, 2010). 

Over the past several decades, investigation into exogenous enzyme has revealed a 

wealth of positive findings which address contemporary issues faced in intensive animal 

farming. Subsequently, exogenous enzymes have been driven to a status of being key 

functional ingredients in terrestrial monogastric feeds (Campbell and Bedford, 1992). 

Exogenous enzymes have particularly revolutionised nutrition and production in the 

poultry industry (Acamovic, 2001), whilst they continue to gain momentum as a prolific 

nutritional tool in the porcine industry (Bedford and Partridge, 2010). Between 1998 and 

2008, the animal feed enzyme market grew at an average of 13 % per year and in 2010, 

was worth in excess of US$ 650 million (Bedford and Partridge, 2010). This exponential 

growth is predicted to continue in both poultry and pig nutrition as research and new 

technologies increase, broadening the commercial application of enzymes as functional 

feed additives. Increasing demand for enzyme products in developing countries is also 

predicted (Bedford and Partridge, 2010); therefore, they will most certainly contribute 

greatly to the requirement for intensifying animal production in these regions. At present 

the market is dominated by NSP–degrading enzymes (NSPases) and phytases (Bedford 

and Partridge, 2010). Although the poultry meat and egg, and to an extent pork 

industries, readily accept exogenous enzymes as a standard dietary components 

(Bedford and Schulze, 1998; Bedford, 2003; Cowieson et al., 2006; Bedford and 

Partridge, 2010), they are implemented much less extensively as digestive tools in the 
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other areas of livestock production. The effective use of enzymes in monogastric 

nutrition is undeniably least understood in finfish and shrimp. Therefore, if aquaculture is 

to supply the third greatest provision of animal protein to the global population in years 

to come, it is suggested that the industry considers following in the footsteps of its 

terrestrial counterparts by adopting approaches to mitigating ANFs and improving feed 

efficiency through the application of enzymology. To date, some research efforts have 

been made with the goal of increasing our understanding and validating applications in a 

range of aquafeeds. 

1.8.2 NSP-degrading enzymes 

1.8.2.1 Background 

As previously mentioned, NSPs are the major components of dietary fibre which are 

found in abundance in plant-derived ingredients destined for use in animal feeds. These 

NSPs may be in the form of cellulose or non-cellulosic polysaccharides, typically present 

as linked monomers of hexoses and pentoses (Sinha et al. 2011). Much variation exists 

in the NSP profiles between different ingredients.  Cereal grains, such as maize and 

wheat, are composed of xylans and ß-glucans, whilst soyabean and canola meals contain 

mainly galactans, galactomannans, mannans and pectic polysaccharides (Brufau et al., 

2006; Bedford and Partridge, 2010). The quantity of NSPs found within ingredients 

equally varies a considerable amount. In wheat, total NSP content is typically around 

25 %, whilst lupins typically contain around 50 %, being the primary energy store in 

these particular seeds (King et al., 2000; Sinha et al., 2011). 

With increasing dependence on the use of plant-derived ingredients in animal feeds, NSP 

presence in the diets of farmed fish is set to increase in both quantity and diversity. 

However, being non-ruminants, fish are unable to digest these complex carbohydrates 

due to scarcity or complete absence of NSPases in their gastrointestinal tract (Bedford 

and Schulze, 1998). NSPs exert a range of inhibitory or limiting effects on the digestive 

process and subsequent nutrient acquisition, categorising them as ANFs; but their 
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biochemical composition makes them potential energy sources for the consumer, if 

effectively degraded. Following successes in poultry and pig nutrition (Campbell and 

Bedford, 1992; Bedford and Schulze, 1998; Bedford and Partridge, 2010), application of 

NSPases in aquafeeds has been investigated in a bid to increase diet digestibility and 

ultimately promote fish health and performance.  

 

1.8.2.2 Cellulase 

Cellulose is the most abundant biopolymer on earth providing plants with the majority of 

their cell wall structure (Kleywegt et al., 1997). Up to 15,000 ᴅ-glucose monomers, 

linked by ß (1-4) bonds make up this water-insoluble ß-glucan polymer (Brown, 2004). 

Due to its high degree of polymerisation, cellulose exhibits a strong resistance to 

enzymatic hydrolysis (Michael and Ely, 2011). Although cellulose may appear to be 

somewhat inert as a molecule in digestion, its hydrolysis holds potential for augmenting 

the provision of nutrients (Amirkolaie et al., 2005). Firstly, because its strong structural 

function can result in protection of encapsulated substrates from digestive enzymes 

(Brufau et al., 2006). This means that although the composition of an ingredient, or diet, 

may be seen to satisfy an animal’s nutrient requirements, bioavailable nutrient content 

may be far reduced by elevated cellulosic content. Secondly, the monomers of cellulose 

could theoretically be metabolised by the consumer. In poultry nutrition, supplementary 

ß-glucanases provided some of the earliest successes in dietary enzyme technologies 

and have been particularly successful in association with commercial diets containing 

grains, such as barley (Campbell and Bedford, 1992; Bedford and Schulze, 1998) so 

aquaculture research has followed suit.  

Before discussing exogenous cellulases in feeds, it is worthy to note that there have 

been a number of reports suggesting that cellulase activity is present in the digestive 

system of numerous species of fish. These include phytophagous grass carp 

(Ctenopharyngodon idella) and omnivorous tilapia (Oreochromis mossambica); but much, 
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if not all, of this appears attributable to the animal’s gut microbiota (Das and Tripathi, 

1991; Chakrabarti et al., 1995; Stellwag et al., 1995; Saha et al., 2006) and not the 

fish’s own endogenous secretions. As gut microflora is very susceptible to modulation 

through a number of parameters, it is unrealistic to assume a guaranteed activity of 

cellulase and further unlikely that sufficient levels will be present to degrade large 

proportions of cellulose. 

As a forage type feedstuff, shredded duckweed and exogenous cellulase fed to the 

largely herbivorous grass carp improved growth performance in a 2 month feeding trial 

(Zhou et al., 2013). In this study, cellulase, amylase and protease activity were 

observed to increase in the intestine following cellulase supplementation. It was 

suggested that results potentially originated from the proliferation of certain genera 

among the gut microbiome of cellulase-supplemented fish (Zhou et al., 2013), an area 

warranting further investigation.  

With regards to performance of omnivorous tilapia, supplementation of pure cellulase 

derived from Aspergillus niger, was described as ineffective in promoting growth and 

nutrient digestibility (including crude fibre) in canola meal diets (Yigit and Olmez, 2011). 

In an investigation into soaked and un-soaked soyabean meal with 0.2% cellulase in 

carnivorous rainbow trout diets, the enzyme supplementation was similarly observed to 

not affect performance characteristics (Xavier et al., 2012). However, carcass crude 

protein was increased with cellulase inclusion in both soaked and un-soaked soya, 

correlating with an observed increase in endogenous protease activity (Xavier et al., 

2012) in correspondence with work by Zhou et al.’s (2013). Carcass ash was also 

increased in fish fed cellulase-treated, soaked soyabean (Xavier et al., 2012). Greater 

efficacy of ß-glucanase has been documented in soyabean diets fed to rainbow trout with 

increasing digestibility of crude protein, lipid, ash, phosphorous and dry matter (DM), as 

well as substantial increases in energy retention (Dalsgaard et al., 2012). However, no 

improvements to nutrient digestibilities were observed by Dalsgaard et al. (2012) in 

sunflower and rapeseed meal based diets, suggesting limited flexibility in formulation. As 
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previously mentioned, barley was the original target substrate for ß-glucanase inclusions 

in poultry. In correspondence with this, supplementation of endo ß-1, 3 (4) glucanase in 

barley-based common carp (Cyprinus carpio) diets has been demonstrated to provide 

significant benefits to a number of desirable haematological parameters 

(Mohammadbeygi et al., 2012), indicating that improvements to fish health and immune 

status may also be achieved from successful degradation of cellulose. 

Overall, research on pure cellulase supplementations in fish is sparse within the scientific 

literature. From findings to date, it appears cellulases provide varied results when 

introduced to the gastrointestinal tract of fish. The liberation of sufficient nutrients to 

promote growth is realistically a great challenge, owing to the use of complex compound 

feeds, significant cellulose removal from ingredients during dehulling and the mild 

deleterious nature of dietary cellulose; all of which will easily mask benefits to be gained 

by cellulase applications. 

It is of note that although exogenous cellulolytic supplementation aims in part to 

augment availability of energy to the fish, it is imperative that this kind of work is 

treated with care and enzymes are applied in moderation. Many fish species (particularly 

carnivores) have low tolerances to glucose; therefore, elevated dietary levels may lead 

to hyperglycaemia and diabetic-like symptoms (Stone, 2003a; Stone et al., 2003b; 

Booth et al., 2006; Booth et al., 2013), for example glycogen deposition and liver 

damage. Even species considered very similar in their nutritional requirements may vary 

in their tolerance of glucose; for example, European seabass have been shown to be less 

tolerant than gilthead seabream (Enes et al., 2011). In general, this topic is still not well 

understood thus heightening the risks involved in providing more available sugars to 

such species.  

Further development of enzyme products targeting cellulose-degradation should 

scrutinise the complexity of cell walls, considering the array of other NSPs present.  One 

should also carefully consider the sourcing species from which to harvest enzyme activity, 
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as their cellulolytic enzyme profiles can vary considerably (Knott et al., 2014). Higher 

levels of non-specific enzymes may, for instance, be a more desirable option considering 

variations in substrates encountered between feeds; therefore allowing greater flexibility 

in dietary formulations. For example, the filamentous fungi, Trichoderma reesei, secretes 

two cellobiohydrolases, at least four endoglucanases, and a ß-glucosidase (Kleman-Leyer 

et al., 1996; Kleywegt et al., 1997). Its predominant endoglucanase (Endoglucanase I) 

is considered non-specific as it hydrolyses not only cellulose and barley ß-glucan but also 

ß (1-4) linkages in xylans (Kleywegt et al., 1997; Knott et al., 2014).   

1.8.2.3 Xylanase 

Xylans are the second most abundant  plant-derived polymer on earth (Bedford and 

Partridge, 2010). These hemicellulose components, consist of ß (1-4) linked xylose units, 

which can be substituted with (2-3) linked arabinose residues (Sinha et al., 2011). Being 

such a common, naturally occurring polysaccharide, xylans are found in high quantities 

in plant-derived feed ingredients, notably grains (Adeola and Bedford, 2004; Krogdahl et 

al., 2005; Sinha et al., 2011). Xylans are particularly soluble fractions of NSPs; therefore 

they can substantially increase intestinal viscosity (Bedford and Partridge, 2010). This 

leads to numerous digestive implications in both terrestrial and aquatic livestock, such as 

restriction of digestive enzyme-substrate interaction, hindered movement of digesta 

through the intestinal tract and finally inhibition of nutrient uptake at the intestinal 

mucosa (Refstie et al., 1999; Adeola and Bedford, 2004; Leenhouwers et al., 2006; 

Leenhouwers et al., 2007a; Leenhouwers et al., 2007b; Amerah et al., 2011). Clearly, 

neglect of high dietary xylan levels can impede upon optimum nutrition and production.  

Interest in xylanases has been substantial since the dawn of the feed enzyme industry, 

with great successes in commercial applications after rapid licencing of xylanase-related 

supplements (Mathlouthi et al., 2002; Adeola and Bedford, 2004; Adeola et al., 2007; 

Jozefiak et al., 2010; Barekatain et al., 2013). Whether xylanases can be as effective as 

a dietary tool in finfish nutrition continues to be a topic of research and debate. 
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In a rainbow trout study, xylanase was observed to have no effect upon the digestibility 

of a number of tested nutrients in a sunflower meal-based diet (Dalsgaard et al., 2012). 

Conversely, in a soya-based diet, the product was observed to promote protein 

digestibility. Whilst in a rapeseed meal-based diet, the enzyme product improved lipid 

and DM digestibility. Despite indications of improved nutrient provision in soya and 

rapeseed-based diet, no detectable improvements to performance were found in this 

study (Dalsgaard et al., 2012). Based upon, Dalsgaard et al.’s (2012) report, there is 

strong indication benefits of xylanase are highly dependent on substrate and resulting 

performance enhancement may be minimal. A commercial preparation of primarily 

xylanase was shown to improve fish performance, feed efficiency and nitrogen retention 

in practical diets fed to Japanese seabass (Lateolabrax japonicas) (Ai et al., 2007). 

Carcass protein content was also influenced by xylanase supplementation (Ai et al., 

2007). Furthermore, phosphorous and nitrogen excretions were indicated to be 

suppressed (Ai et al., 2007).  Although promising overall, it must be considered that 

additional enzymes present in the product may have contributed to the observed results 

in Ai et al.’s (2007) study. Supplementation of another predominantly xylanase enzyme 

product was reported to result in depressed growth and feed conversion of common carp 

fed high wheat bran diets, suggested as potentially attributable to low fish tolerance of 

xylose  (Kazerani and Shahsavani, 2011). Similarly to concerns about cellulase, it has 

been highlighted that exogenous xylanase treatment of aquafeeds should be treated with 

an air of caution as some fish, particularly carnivores, have a low tolerance of xylose 

(Stone, 2003a; Stone et al., 2003b). 

Overall, research into the effects of xylanase in aquafeeds is severely limited, making it 

difficult to sufficiently evaluate their potential efficacy. Results to date again appear 

variable, particularly in terms of providing sufficient hydrolytic action to reliably improve 

animal performance, correlating with many findings in terrestrial monogastrics 

(Widyaratne et al., 2009). Xylanases are nevertheless relatively highly regarded in 

poultry nutrition and this is not without founding that they can benefit production. 
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Therefore, research should continue to identify and refine optimal circumstances for 

xylanase inclusions.    

1.8.2.4 Mannanase 

Mannans are a common NSP throughout many plant ingredients in animal feed 

formulations. These hemicellulose components consist of a ß (1-4) linked backbone 

either containing solely ᴅ-mannose residues (mannans) or mannose and ᴅ-glucose 

residues (glucomannans) (van Zyl et al., 2010). They are most prevalent in palm-kernel 

meal and copra meal, making up not only the majority of the NSP fraction but in fact 35 

and 30% of the total ingredient content, respectively (Krogdahl et al., 2005; Sundu et 

al., 2006). ß-mannan contents as high as these severely limit inclusion of such 

ingredients in diets; therefore they can be viewed as a major limiting factor in 

broadening our arsenal of potential alternative proteins. These NSPs also have a 

significant presence in numerous other commonly used plant ingredients including 

dehulled soyabean meal (Mehri et al., 2010), so they are nonetheless present in 

contemporary formulations. Similarly to xylans, elevated mannan content in poultry diets 

is seen as a potential risk due to their solubility (Sundu et al., 2006). There is evidence 

to suggest that this phenomenon can equally occur in finfish with subsequent 

suppression of feed utilization and animal performance (Hossain et al., 2001). Inclusions 

of ß-mannanase in broiler diets incorporating a range of plant ingredients have been 

shown to improve performance and digestibility, reduce feed intake with maintenance or 

improvement in performance, stimulate immunity and positively influence gut 

morphology and microbiota (Chartchai et al., 2006; Zou et al., 2006b; Mehri et al., 2010; 

van Zyl et al., 2010; Chegeni et al., 2011). To the author’s knowledge, research to date 

remains limited to only two focused studies in fish. 

Caspian salmon (Salmo trutta caspius) fed a commercial diet preparation with a spray 

coating of ß-mannanase displayed significant improvement of growth and condition 

factor, with tendencies towards improved feed efficiency and survival (Zamini et al. 

2014). Zamini et al. (2014) also presented white blood cell counts to be positively 
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influenced by the supplement, suggesting that ß-mannanase could be a potential 

contributor to stimulation of the innate immune system, correlating with poultry findings 

(Zou et al., 2006a; Mehri et al., 2010). On the other hand, ß-mannanase was reported 

to have no effect upon performance or nutrient digestibility in soyabean-based diets for 

rainbow trout (Yigit et al., 2014). 

It is of surprise that no more work has been conducted on mannanase supplementations 

in fish, so as it stands, this topic remains unclear with virtually all speculation of its 

potential in fish originating from investigations with poultry and pigs. Much further work 

is therefore required to determine the feasibility of ß-mannanase supplementation in 

aquafeeds and confirm its abilities of improving performance, health status and nutrient 

digestibility. In theory, due to the domination of soya products in many commercial diets, 

which to reiterate have a high mannan content, potential for mannanase in aquafeeds is 

promising. Investigation into whether ß-mannanase supplementation can benefit the 

intestinal microflora also deserves much further research when considering the 

numerous positive findings of mannan-oligosaccharide (MOS) applications as prebiotics 

in fish (Dimitroglou, 2010; Dimitroglou et al., 2010; Merrifield et al., 2010). 

1.8.2.5 Pectinase 

Pectic polysaccharides, or pectins, are large molecules mainly comprised of galacturonic 

acid residues joined by α (1-4) glycosidic linkages, who serve as a binder of plant cell 

walls and play a role in ripening of fruits (Bedford and Partridge, 2010; Sinha et al., 

2011). Although generally a less potent ANF than other NSPs, pectins may still increase 

intestinal viscosity and may contribute considerably in maintaining nutrient matrixes 

within plant ingredients, thus inhibiting hydrolysation of their individual components by 

other enzymes (Igbasan et al., 1997; Harholt et al., 2010). With only one study 

currently available which provides information on the potential activity of exogenous 

pectinase in finfish diets, this type of enzyme is the least explored in aquafeed 

applications. 
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A commercial carbohydrase complex targeted at degradation of cell walls, was shown to 

positively influence uronic acid levels in pretreated soyabean meal, rapeseed meal and 

sunflower cake (Denstadli et al., 2011a). This indicates that a pectinase fraction of the 

complex was able to act upon a number of substrates matrixes commonly used in 

aquafeeds. Surprisingly, the pretreated ingredients from this study appeared to not 

contribute to increased performance or digestibility of main nutrients when subsequently 

fed to rainbow trout (Denstadli et al., 2011a).  

Because pectins principally bind more potent ANFs (Bedford and Partridge, 2010), 

benefits of supplementing pectinases alone are likely to be fairly limited. This has been 

widely recognised and as a consequence pectinases are available in commercial enzyme 

cocktails rather than pure isolations (Bedford and Partridge, 2010). However, despite 

pectinase presence being quite common in commercial products, a lack of investigation 

into uronic acid levels in the gastrointestinal tract makes it difficult to elucidate and 

quantify the efficacy of these pectinase inclusions. With regards to forwarding research 

in this enzyme it is important to note that dicotyledon cell walls have typically a much 

greater pectin content than monocotyledons (Jarvis et al., 1988). Therefore the use and 

efficacy of pectinases may be more relevant in dicot-based diets, such as those with high 

rapeseed, sunflower, lupins and soyabean content as appose to those based on grains. 

Considering that dicotyledons comprise the vast majority of the plant-derived portion of 

modern aquafeeds, pectinase additions could be more relevant and applicable to the 

aquaculture sector than the production of pigs and poultry.  

1.8.3 Phytase 

 Phosphorous (P) is an essential nutrient for growth and function in fish, being an 

integral component of nucleic acids, numerous coenzymes, cell membranes and 

particularly skeletal tissue (Cashman and Flynn, 1999; Kumar et al., 2012). Unlike many 

other minerals, fish have a very limited capacity to absorb P from their aqueous 

surroundings; therefore dietary levels of this mineral must be provisioned in quantities 
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sufficient to fully satisfy the animal’s requirements. With high FM inclusions, P provision 

was a minor concern due to its high content and bioavailability within the ingredient. 

However, up to 80 percent of P found in plant-derived meals is bound in its storage form 

of phytic acid [inositol hexakisphosphate (IP6)] also known as phytate (myo-inositol 1, 2, 

3, 4, 5, 6-hexakis dihydrogen phosphate) when a salt (Ellestad et al., 2003; Kumar et al., 

2012). Despite shifts in dietary formulations, there is still, typically, ample levels of total 

P naturally present in the ingredient matrix of plant-based aquafeeds. However, 

inorganic forms must now be supplemented into diets to satisfy requirements because 

the bioavailability of P from plant sources is severely restricted. This is due to the fact 

that the endogenous enzyme activity of monogastric and agastric animals is devoid of 

phytate-degrading properties, thus sufficient quantities of naturally present P cannot be 

liberated (Ellestad et al., 2003; Debnath et al., 2005a). Furthermore, phytate may 

chelate with a large number of mineral cations (K, Mg, Ca, Zn, Fe and Cu) and additional 

complexes with proteins, amino acids and lipids, which can affect digestibility and 

subsequent nutrient bioavailability (Cowieson et al., 2006; Denstadli et al., 2006; 

Morales and Moyano, 2010; Kumar et al., 2012). Clearly, phytate can be seen as a 

potent, broad-scale threat to satisfying the animal’s nutritional needs. Environmental 

concerns relating to excessive P excretion from livestock are also a major driving force in 

improving P availability (Debnath et al., 2005a); with risks being potentially most severe 

in aquaculture. Whilst dietary inorganic P supplementations meet the nutrient 

requirements of fish, the remaining phytate-bound P remains untapped and can cause 

excessive nutrient loading in effluent water, which in turn can contribute to 

eutrophication of aquatic environments surrounding farming operations (Amirkolaie, 

2011; Bian et al., 2012; Hlavac et al., 2014). Additionally, the high cost of 

supplementing inorganic P into diets contributes significantly to operational feeding costs. 

Lastly, the social and environmental sustainability issues surrounding mining of this 

resource must also be considered (Mullaney et al., 2000). In summary, not only does 

phytate pose severe constraints on maximising feed efficiency, animal performance and 

health, it also negatively influences socioeconomic and environmental sustainability of 
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operations, both directly and indirectly.  

Despite its significant absence in monogastric and agastric animals, phytase (myo-

inositol hexakisphosphate phosphohydrolase) is a widely distributed digestive enzyme 

among life forms (Kumar et al., 2012). Microbial sources are particularly prolific and 

numerous commercial phytase products derived from the likes of Aspergillus niger and 

Escherichia coli are now available (Campbell and Bedford, 1992; Kumar et al., 2012). As 

an exogenous enzyme supplement, phytase is an extensively used dietary tool in swine 

and poultry nutrition, regularly featuring in modern terrestrial monogastric feeds 

(Mullaney et al., 2000; Cowieson et al., 2006; Bedford and Partridge, 2010). Over the 

past decade, the aquafeed industry has also seen some degree of inclusion in dietary 

formulations (Debnath et al., 2005a; Kumar et al., 2012), however its functionality as a 

practical and effective dietary addition remains under investigation.   

Microbial phytase supplementation in diets for Pangasius pangasius fingerlings has been 

demonstrated to have promising effects upon fish performance and feed efficiency 

(Debnath et al., 2005b). Subsequent digestibility analysis by the authors revealed dry 

matter and protein digestibility to be improved with phytase-treated diets. Debnath et al. 

(2005b) investigated phytase inclusion ranging between 150 and 2000 FTU kg-1 (phytase 

unit [FTU] is defined as the amount of enzyme activity which liberates 1 micromole of 

inorganic phosphorus per minute at pH 5.5 and 37 °C at a substrate [sodium phytate] 

concentration of 5.1 mmol L−1). Although its benefits were observed throughout enzyme 

treatments, Debnath et al. (2005b) demonstrated an optimum inclusion of 500 FTU kg-1 

under the culture conditions, which is not dissimilar to a typical pig and poultry inclusion 

rate. Similarly to the previous investigation, it was reported that faecal dry matter and 

crude protein could be significantly reduced by inclusion of phytase in soya-based 

rainbow trout diets; moreover, digestibility of all essential amino acids (bar tryptophan), 

along with alanine, aspartic acid, cysteine, glutamic acid, glycine, proline and serine 

could be improved (Cheng et al., 2004). In a later study, inclusion of microbial phytase 

in high-plant diets for rainbow trout was again shown to significantly improve dry matter 
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and crude protein digestibility, along with ash (Vandenberg et al., 2012). It has also 

been demonstrated that P excretion by fish can be significantly reduced by phytase and 

further reduced by tailoring substrate (soyabean meal) inclusion levels in rainbow trout 

diets (Castro et al., 2011). However, this investigation showed nitrogen excretion to be 

unaffected by phytase supplementation (Castro et al., 2011). Growth and feed efficiency 

were shown to be positively influenced by a 2000 FTU kg-1 supplementation in the diets 

of juvenile red sea bream (Pagrus major) (Laining et al., 2012). Carcass ash and protein 

appeared to also be influenced by phytase inclusion (Laining et al., 2012), corresponding 

with previously mentioned findings. Similar results were also observed in Nile tilapia 

although at much lower phytase activity (<300 FTU kg-1) whereby growth, feed 

conversion, protein efficiency ratio, specific growth rate and nutrient deposition were all 

promoted by the enzyme supplementation into a fishmeal-free diet (Liebert and Portz, 

2005). A subsequent study by Liebert and Portz (2007) reported increased crude protein 

digestibility coefficients following phytase supplementation in tilapia diets, supporting 

findings in previously described species. On the other hand, the supplementation of 2500 

IU g-1 phytase in Japanese seabass (Lateolabrax japonicas) diets was displayed as 

having no significant effect on soluble P excretion, protein retention, fish performance 

and feed efficiency (Ai et al., 2007).  

Work on the agastric rohu (Labeo rohita) fed sub-optimal protein level diets with phytase 

and  citric acid inclusion, reported improved growth, protein efficiency ratio and 

increased carcass ash following dietary inclusion of both ingredients (Baruah et al., 

2007a; Baruah et al., 2009). Haematological analysis of the rohu also found indications 

of  immunomodulatory effects, proposed as originating from the increased availability of 

minerals (Baruah et al., 2009).  Attempts to alter the pH of the gut by lowering it 

towards an optimum for phytase activity appeared successful in this series of 

investigations and will be discussed at length later in this review. 

Specific focus on reducing dietary inorganic mineral inclusions through enzyme 

supplementation has also been a topic of research, considering potential for phytase to 
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degrade phytate-mineral chelates. Up to 50 percent replacement of monocalcium 

phosphate with neutral phytase in plant-based diets was reported to not affect 

performance and feed efficiency of gibel carp (Carrasius auratus gibelio) (Liu et al., 

2012). However, P and protein digestibility were significantly improved in this study 

when compared with the pure monocalcium phosphate inclusion diet (Liu et al., 2012). 

These findings appeared to suggest that the use of phytase may not just be a solution to 

reducing the supplementation of inorganic P in diets, but may in fact be a means of more 

efficient provision of P to the fish.  A study which investigated inclusion of microbial 

phytase in rainbow trout diets proposed that trace mineral supplementation could be 

neglected altogether, without affecting fish performance and body composition, giving 

strong indication of effective phytate-mineral chelate degradation in this instance (Cheng 

et al., 2004). It has been suggested that ingredients with low P profiles, such as 

distiller’s dry grain with solubles (DDGS) (Cheng and Hardy, 2004), are best suited to 

phytase inclusions as due to the enzyme’s efficacy, high P diets may still lead to elevated 

dissolved and/or suspended waste output of the nutrient, much like the scenario of P 

supplemented diets (Dalsgaard et al., 2009). 

Overall, the majority of reports on fish and feed performance concurrently suggest that 

phytase could play an important role in maximising nutritional values of diets, such as 

mediating protein/amino acid acquisition, thus stimulating growth. Reports of carcass 

ash increases and abilities to reduce mineral supplements also point towards broad 

spectrum liberation of other minerals from chelates. Determination of exactly which 

minerals can be liberated has been a strong focus point of numerous studies to date.  

The liberation and deposition of P and potentially other minerals was clearly highlighted 

through an observed increase in total ash and P content of both vertebrae and scale of 

Nile tilapia fed a phytase supplement (Liebert and Portz, 2005). At a later date, Liebert 

and Portz (2007) specified both Ca and P digestibilities could be improved with a range 

of inclusion rates of phytase derived from the yeast Hansenula polymorpha and 

Ronozyme® P. Faecal and hepatic loop chyme phytate-P was observed as overall lower 
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following phytase supplementation, further confirming its hydrolysation (Liebert and 

Portz, 2007). Laining et al.’s (2012) study on red sea bream observed plasma P and Mg 

levels to be increased, indicating an increase in bioavailability of these minerals. This 

was further supported by analysis of vertebral mineral content which indicated a 

substantial increase in the presence of P, Ca and Mg, whilst P in scales was also 

augmented (Laining et al., 2012). Digestibility of Ca, Mg, phytate-P, total P, Mn and Zn 

but not Fe and Cu were reported to have been improved in three experiments on 

rainbow trout using soya protein concentrate, semi-purified soyabean meal and practical 

soyabean meal-based diets supplemented with phytase (Cheng et al., 2004). 

Vandenberg et al.’s (2012) study similarly revealed phytase inclusion to significantly 

improve P, Ca, Mg, and Zn bioavailability, but conversely to Cheng et al. (2004), also Fe. 

More evidence of mineral liberation by phytase was demonstrated in Pangasius 

pangasius; apparent absorption of Ca, P, Mg, Mn, Zn, Fe, K, Cu and cobalt (Co), carcass 

Ca, P, Zn, Fe, Cu and Co as well as of bone Ca, P, K, Cu and Co were all greater in 

phytase-provisioned fish (Debnath et al., 2005c). In further support, faecal ash was 

reduced and bone ash was increased (Debnath et al., 2005c). Increases in bone 

mineralisation (Na, Ca, K, P and Fe) were also recorded in juvenile rohu following 

phytase and citric acid additions to the diet (Baruah et al., 2005). In a later study on 

rohu, by Baruah et al. (2007b), increased absorption of Zn, Na, P, K, Mn, Mg, Fe and N 

was specified. 

 

Although an array of different phytase sources have been analysed in research to date, 

giving generally positive results, their origin and characteristics should be a strong point 

of scrutiny prior to inclusion. Investigation of bacterial phytase from Escherichia coli, 

versus a fungal counterpart from Peniophora lycii, showed the fungi-derived phytase to 

have a single, higher optimal pH; meanwhile, bacterial phytase peaked at two separate 

lower pH (Morales et al., 2011). Furthermore, simulated gastric conditions revealed 

proteolytic degradation to vary with 90% retention of activity in bacterial phytase whilst 

90% loss was observed in fungal phytase (Morales et al., 2011). A consideration of this 
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kind is imperative to aquacultural applications due to the range of digestive physiologies 

encountered between species. 

Unavoidably, pH conditions encountered within the digestive system can be considered 

grossly sub-optimal for phytase activity. Research in poultry has provided strong 

evidence that phytate hydrolysis occurs predominantly in the fore-stomach, under low 

pH, causing phytate to become more water soluble (Selle and Ravindran, 2007). The 

absence of gastric digestion in many extensively cultured finfish, notably carp, may 

mean that phytase effectiveness becomes compromised. Supplementation of acid in 

diets (notably citric acid) may well hold the key to tackling this potential issue as 

demonstrated by previously discussed studies (Baruah et al., 2005; Baruah et al., 2007a; 

Baruah et al., 2007b; Baruah et al., 2009). 

On the topic of conditions within the digestive system, we also face the issue of species 

rearing temperature. The poultry and pig industries can guarantee that doses of dietary 

phytase will become exposed to temperatures of around 40 °C, on a daily basis. This is 

simply not possible in aquacultural production; considering that fish are poikilothermic, 

they express an extensive range of optimal rearing temperatures between species and 

these ambient temperatures are often subject to strong seasonal fluctuations. 

Temperate species will undoubtedly be the greatest challenge, as their own optimum 

metabolic temperatures will most certainly not reflect that of exogenous phytases. In a 

previously mentioned rainbow trout study different inclusion rates provided dramatic 

non-linear responses to ambient temperature, observable through P and ash digestibility 

measurements (Vandenberg et al., 2012). With a dosage of 2000 FTU kg-1, a steep 

decrease in P and ash digestibility was observed between 15 and 10 °C, however they 

were comparable between these temperatures when dosage rate was doubled (Fig. 1.3). 

Whilst typically experimental inclusions of phytase have been between 500 and 2000 

FTU kg-1 in warmer aquaculture species, Vandenberg et al. (2012) gave a clear indication 

that far greater phytase inclusion levels may be required in temperate to cold water 

species. However, it is still unclear whether doses higher than previously investigated 



39 
 

have the potential to effectively degrade phytate in fish reared at temperatures sub 

10 °C. This is despite the fact that salmonids are routinely reared under these conditions 

for a large proportion of the calendar year in many regions.  

Figure 1.3 Phosphorous and ash digestibility coefficients from rainbow trout fed 2000 or 

4000 FTU kg-1 microbial phytase under incremental water temperatures. A-D within 

individual variable denotes significant differences (P < 0.05). XY within individual 

temperature denotes significant differences (P < 0.05). Taken from Vandenberg et al. 

(2012). 

Further merit in increasing phytase inclusions from traditional recommended doses can 

be taken from the current movement in the poultry and pig industry whereby a method 

termed as ‘superdosing’ is being promoted. Superdosing centres upon administering very 

high doses of phytase, which aim to liberate P not only from IP6 but sequentially IP5, 

IP4, IP3 and IP2 also (Yu et al., 2012). Thereafter, the P from IP1 can be released by 

endogenous alkaline phosphatase, to produce inositol. The benefits of this strategy are 

emerging; these include evidence that IP6 to IP2 all inhibit the efficacy of endogenous 
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protease (Yu et al., 2012) and decrease Zn solubility in the digestive tract (Price et al., 

1992). As previously mentioned, 500 FTU kg-1 has been a standard dosage rate in 

monogastrics, however, superdoses between 1000 and 2000 FTU kg-1 are now being 

proposed by a number of industry leaders (AB Vista, 2013). Such doses have been 

demonstrated to destroy IP6 almost entirely and significantly reduce the quantities of 

IP5, IP4 and IP3, to very low levels; something which does not appear possible with 

traditional inclusion rates (Pontoppidan et al., 2012; Walk et al., 2014). We may 

therefore ask the question of whether superdosing, likely in excess of 2000 FTU kg-1, 

could be worthwhile considering for achieving desirable outcomes in finfish. 

Lastly, aquafeed processing conditions are of great concern when it comes to producing 

a feed containing phytate-degrading properties. Water is quick to degrade physical 

cohesiveness and cause nutrient leaching from feed. As aquafeeds must withstand these 

pressures of being introduced to an aqueous environment, their manufacturing process 

is harsh in comparison to pig and poultry feeds. In order to reduce nutritional and thus 

economical loss, they are subjected to high temperatures and pressures during the 

extrusion process. Typically, these parameters normally exceed 100 °C and 3000 k/pa 

respectively. Phytase is notoriously sensitive to denaturing by temperature and pressure 

so its application does not lend itself easily to this area of animal nutrition. Effective 

solutions to safeguard against denaturation are therefore fundamental to progression in 

using exogenous phytase sources in modern aquaculture feeds. Post-extrusion 

applications, such as liquid spray-coating, may be considered as a means of 

incorporating phytase in diets although this process will likely incur further labour and 

financial costs, counter-intuitive to previously highlighted cost implications in ingredient 

processing. Vast differences in thermostability of phytase from different sources also 

exist, for example bacterial phytase from E. coli has been suggested to be more stable 

than fungal derived counterparts (Morales et al., 2011). Upon this topic, sparsity in 

investigations leaves numerous avenues to be explored. 
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In conclusion, phytase can undeniably produce exceptional results under the correct 

conditions. However one cannot simply ignore the other ANFs and potential nutrient 

sources previously discussed. Indeed, there may be merit in approaching the nutrient 

matrix in a holistic manner by tackling multiple problematic compounds simultaneously.  

1.8.4 Synergistic enzymes and cocktails 

Although successes have been achieved, individual enzyme inclusions in finfish diets 

have been proposed by many to be too specific (Bedford and Partridge, 2010). One could 

indeed consider them to be an overly reductionist approach to the issues faced in the 

shift towards alternative ingredients. Aquafeeds tend to be substantially more complex in 

their formulations compared to those of terrestrial livestock as they contain a wider mix 

of ingredients. Their diverse composition is driven by the before mentioned pressures to 

reduce FM, with no economically viable alternative that can be considered equal in its 

nutritional composition. As a direct result, substrate complexity is heightened, 

simultaneously introducing a plethora of ANFs, in variable proportions. Alternatively, 

from the more optimistic viewpoint, nutrient potential is heightened. Consequently, 

benefits of single enzyme inclusions become somewhat more negligible. This has been 

recognised to an extent by those investigating exogenous enzymes in aquafeeds. For 

example, an absence of improved performance in tilapia fry fed pure cellulase was 

attributed to inefficient or incomplete hydrolysis of fibre content by removal of possible 

synergistic interactions between cellulase, hemicellulase and pectinase which work 

together to degrade a larger compliment of cell wall components (Yigit and Olmez, 2011).  

When one observes enzymatic hydrolysis by organisms in nature, it is most evident that 

the process is a concerted affair, whereby multiple enzymes are secreted by the 

organism in order to effectively degrade the complexity of substrates encountered in 

their natural diet and subsequently satisfy nutrient requirements. For example, 

carnivorous fish obviously possess an arsenal of proteolytic and lipolytic enzymes due to 

nutritional composition of their diet, but they have also been found to possess 
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endogenous activities of chitinase, particularly in gastric tissue (Fines and Holt, 2010; Lu 

and Ku, 2013; Abro et al., 2014). Endogenous chitinases allow the rapid degradation of 

chitin, which encases invertebrates, providing digestive accessibility to the energy-rich 

protein and lipid fractions of prey sources.  This supports the proposal that natural 

synergistic interactions between complements of enzymes are a more efficient means of 

maximal substrate degradation in enzyme-treated feeds.  

Additionally, increased liberation of nutrients, such as minerals from phytate, may not 

necessarily equate to optimal bioavailability if ANFs which limit nutrient uptake, such as 

soluble NSPs, are not simultaneously tackled. It is also worthy to consider the specificity 

and sensitivity of enzymes. Since formulations are regularly adjusted to suit ingredient 

availability and costs, ANF profiles are likely to fluctuate, concurrently opening the 

possibility of fluctuating efficacy, if a single-component enzyme product is used.  

These considerations have sparked investigation into multi-enzyme applications and the 

development of numerous commercial products which aim towards a more efficient 

degradation of complex structures. For example the plant cell wall matrix, as a mode of 

targeting multiple substrates; namely NSPs, proteins and phytate for reduction of ANFs 

and release of energy-rich, bioavailable nutrients. 

It must also be highlighted that the digestive system of finfish is highly influenced by 

external thermal conditions, due to their poikilothermic nature. Thus, over time, 

conditions required for specific enzymes to work optimally, or at least efficiently, will 

fluctuate. Livestock producers demand efficient and predictable efficacy of any additional 

investments they make in the form of functional feed ingredient additions. Multi-

component ingredients would seem to allow a greater chance of this being guaranteed in 

the culture of aquatic organisms.  

Both growth performance and feed efficiency were observed as promoted in juvenile 

hybrid tilapia (Oreochromis niloticus x O. aureus) when fed a commercial neutral 

protease, ß-glucanase and xylanase preparation (Lin et al. 2007). Similarly, a triticale-
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based diet, supplemented with an enzymatic complex of xylanase and ß-glucanase 

(Natugrain Blend ®), was observed to have promoted dry matter and energy digestibility 

in Nile tilapia (Tachibana et al., 2010). Conversely, Natugrain Blend ® supplementation 

in silver perch (Bidyanus bidyanus) fed diets containing lupin or wheat, displayed no 

signs of affecting dry matter, energy or protein digestibility (Stone et al., 2003b). 

Variation in temperature between the two studies was negligible.  As Natugrain Blend ® 

is designed for wheat-based poultry diets (Odetallah et al., 2002); it is also interesting 

that no differences were observed in wheat diets for silver perch, thus, specificity could 

also be discounted. However, different enzyme application methods were utilized with 

aqueous mixing throughout the feed in the tilapia study and a spray-on technique being 

employed for silver perch. From this, it may be speculated that enzyme-substrate 

contact may have been comparatively reduced in the study by Stone et al. (2003b) 

causing a lack of improvement in enzyme-treated diets. 

In an 8 week trial on juvenile Japanese seabass, a xylanase-based supplement and a 

glucanase, pentosanase, cellulase compound were both demonstrated to be effective 

promoters of growth, feed efficiency and nitrogen retention along with tendencies 

towards improve phosphorous retention (Ai et al., 2007). Results of both of these 

supplements were found to not be significantly different from one another. However, an 

amalgamation of the two enzyme supplements resulted in further improvements to 

growth, feed efficiency and nutrient retention. Conversely, the inclusion of various 

enzyme complexes (Energex™, Bio-Feed™ Pro, Alpha galactosidase™) did not reveal any 

benefit to growth in rainbow trout fed dehulled lupin-based diets, nor did a mix of all 

complexes (Farhangi and Carter, 2007). However, inclusion of Energex™, a high 

hemicellulase complex, did significantly improve protein efficiency ratio, along with dry 

matter, crude protein and gross energy digestibility (Farhangi and Carter, 2007). 

Rainbow trout fed a broad spectrum enzyme cocktail (Superzyme™ CS) in soyabean-

orientated diets also showed no signs of improved growth performance and negligible 

effects on nutrient digestibility over 16 weeks (Ogunkoya et al., 2006). In this instance, 
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highly digestible diets were proposed as a limiting factor in the efficacy of the enzyme 

supplementation, supporting a paradigm that enzymes should be used as a means of 

augmenting the nutritional value of diets with sub-optimal characteristics, such as being 

NSP-rich. Although a lack of significant effects in these trials was pinned to issues 

surrounding formulations, much further work is required to confirm whether enzyme 

complexes can be effective in salmonid culture. 

Ai et al.’s (2007) previously mentioned study on Japanese seabass gave interesting 

insight into potential benefits of NSP enzymes on nutrient excretions; interestingly, the 

cocktail of xylanase, glucanase, pentosanase and cellulase was superior to phytase at 

reducing total phosphorous excretions. Furthermore, ammonia nitrogen excretion was 

reduced by the multi-enzyme supplementation. Unfortunately, this work did not include 

attempts to determine NSPase-phytase interaction, thus this area remained unclear. 

NSPase-phytase synergies have been highlighted in poultry as an area warranting more 

research (Bedford and Partridge, 2010). Phytate and NSP can chelate in feedstuff and 

digesta, thus NSPases and phytase in combination could theoretically eliminate this 

nutritionally limiting occurrence (Slominski, 2011). In a study on rohu fingerlings, a 

phytase and cellulase cocktail was observed to consistently produce better fish 

performance characteristics than the individual enzyme inclusions alone (Xavier et al., 

2012). Xavier et al. (2012) also observed the enzyme combination to show significantly 

pronounced tissue crude protein, lipid and ash, which affirmed theories of beneficial 

interactions between these two enzymes. 

An enzyme complex (Allzyme Vegpro®) containing a plethora of NSP enzymes, amylase, 

phytase and protease, was observed as highly effective in enhancing the apparent 

digestibility of dry matter, crude protein, gross energy, starch, calcium and phosphorous 

in a fishmeal-free Nile tilapia diet (de Oliveira et al., 2007). Augmentation of dry matter, 

crude protein, crude lipid and gross energy digestibility, correlating with improved 

growth and feed efficiency was also observed following Allzyme Vegpro® treatment of 

40% palm kernel meal diets, again in Nile tilapia (Ng et al., 2002). At a later date, a 
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similar diet with inclusion of Allzyme SSF®, a complex derived from Aspergillus niger, 

showed enhanced performance of tilapia over a 60 day period (Moura et al., 2012), 

which also correlates with performance enhancing successes seen in broiler chickens 

(Hooge et al., 2010). Analysis of sugar levels in intestinal digesta revealed fructose, 

sucrose and glucose to be significantly higher in enzyme-fed fish (Moura et al., 2012). 

Moura et al. (2012) attributed observed improvements to performance as being derived 

from increased bioavailable carbohydrates as energy sources, sparing protein for 

structural growth. However, as previously mentioned in this review, NSPases also appear 

to have an ability to augment protein digestibility so this explanation cannot be 

neglected.  

As with all enzyme applications, substrate specificity may still be a critical factor in 

supplementation of multi-enzyme inclusions. Pre-treatment of fibrous ingredients used in 

aquafeeds with Ronozyme VP®, a complex of NSPases revealed the NSP content of 

soyabean meal and sunflower cake to be significantly reduced but this was not observed 

in rapeseed meal or field peas (Denstadli et al., 2011b). However, inclusion of enzyme 

pre-treated soyabean meal and sunflower cake in rainbow trout diets did not promote 

nutrient digestibilities and furthermore, deterioration in feed efficiency was observed 

(Denstadli et al., 2011b). The authors proposed that enzymatic action upon the 

ingredients achieved releases of oligosaccharides as appose to monomers, thus 

carbohydrate uptake was not possible. Although oligosaccharides can be potent 

prebiotics, they have been demonstrated to have negative effects on the nutritional 

value of feeds in high concentrations, by restricting the uptake of other nutrients 

(Glencross et al., 2003). Nevertheless, copper absorption was significantly increased 

with enzyme pre-treatment in the feeding trial by Denstadli et al. (2011).  

The application of exogenous digestive enzymes has typically been directed at young fish 

whose digestive systems are still under development, or enhancing performance of 

livestock for market-sale. However, benefits may also be possible in other livestock 

categories such as broodstock. AmecoZyme 2X®, a commercial preparation of NSPases, 
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protease, lipase, phytase and alphagalactosidase has been shown to provide benefits to 

reproductive performance of Nile tilapia, explained by an increase in available energy 

from non-protein sources (Tahoun et al., 2011).  

As discussed enzyme applications may have pronounced effects on nutrient excretions 

but it must also been considered how they may affect the physical properties of faeces. 

This has been a large consideration in terrestrial animal farming, particularly with 

regards to poultry and faecal ‘stickiness’, a result of high NSP content (Bedford and 

Schulze, 1998; Acamovic, 2001; Cowieson et al., 2006). Changes to physical faecal 

characteristics with dietary exogenous enzyme inclusions were observed in rainbow trout 

by Ogunkoya et al. (2006), whereby faecal material cohesiveness and sinking speed 

were reduced with enzyme supplementation. Results of this kind may have profound 

effects in commercial aquaculture operations. The reported characteristics of the 

exogenous enzyme-associated faeces may be undesirable for land-based operations due 

to inhibition of waste recovery, whilst cage culture may benefit in increased dispersion of 

waste thus minimising localised pollution issues (Ogunkoya et al., 2006). Despite the 

huge body of research efforts and applications of enzymes as a waste-management tool 

in poultry production, parallel efforts in aquaculture appear to be inconsequential in 

comparison. This neglected area of research deserves much more attention, as one must 

consider the downstream waste management benefits or implications of enzyme-treated 

feed. 

Synergies between digestive enzymes are not limited to those artificially administered to 

the digestive system via feed. As previously mentioned, exogenous enzymes can affect 

endogenous counterparts, a phenomenon very much recognised in poultry nutrition 

(Cowieson et al., 2006). The findings by Li et al. (2009) appeared to suggest that the 

degradation of phytate by exogenous enzymes could promote natural hydrolysis of 

starch by the fish. The same trend was observed with addition of a Roche preparation of 

NSPases, further indicating that the natural digestion of starch may be facilitated by a 

variety of non-native enzymes (Li et al., 2009). This occurrence could accentuate the 
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provision of energy to the fish, in turn leading to improved production.  

To date, research into synergistic interactions between exogenous enzymes has 

generated varied results. However, the theoretical potential for these inclusions to work 

effectively cannot be ignored. It is to be scrutinised that amalgamating enzymes from a 

variety of production sources may not necessarily be the most effective approach to the 

situation of degrading a natural nutrient matrix, considering the before mentioned 

argument of natural enzymatic complements. Therefore, it is suggested that more 

natural solutions, capable of delivering a multifaceted approach to the issue of dietary 

substrate complexity, must be found. 

 

1.9 Solid-state fermentation 

1.9.1 Background 

Solid-state fermentation (SSF) can be defined as the fermentation of a substrate in the 

absence of free-flowing water. For millennia, this technology has been implemented 

around the globe, in a multitude of different ways, to great effect. By doing so, humans 

have learnt to harness its natural capabilities to benefit, and in some ways shape, 

society. The oldest known references to SSF come from the ancient civilisations of Egypt 

(Jacob, 1944). Having happened upon this phenomenon through curiosity, as early as 

2600 BC, this civilisation began extensively implementing SSF of inedible flours to create 

bread (Jacob, 1944). The power of fermentation in the baking process extended 

thereafter through civilisations across the globe, with bread regularly featuring in key 

religious and socio-political events as a fundamental preserver of human well-being 

(Jacob, 1944). Other historical developments and applications include the manufacture 

of cheese, yoghurt, cured meats and condiments, such as soy sauce, to name but a few. 

As scientific understanding and advents in technology have progressed, developments in 

the practice of SSF have followed suit. At the present day, SSF implementation has 

grown from a poorly understood phenomena, involved in the production of artisanal 



48 
 

foods, to the underpinning technology behind the industrialised manufacture of high-

value commodities and bioprocesses. All in all, this can be attributed to the discovery 

and growing scientific understanding of enzymology.  

The use of SSF in improving animal feeds is not a novel concept but its use has been 

grossly restricted to the production of silage for ruminants. Firstly, the process allows 

preservation of the fodder for times when feed becomes unavailable or nutritionally poor. 

Secondly, it enhances its nutritional properties in a variety of ways, such as production 

of folic acid and vitamin B12 by the microorganisms involved (Santos et al., 2008). 

Ultimately, the product becomes more digestible, allowing the animal greater potential 

for assimilation of nutrients.  

Applications of SSF in monogastric nutrition have been somewhat more limited. Indeed, 

the harvesting of enzymes has been prolific and contributed tremendously to pig and 

poultry production but SSF products in their crude, relatively unrefined form are yet to 

make a significant appearance in feed rations. This is despite their apparent simplicity 

and the previously discussed potential benefits of implementing natural complements of 

enzymes.  

1.9.2 Synergen™ 

Synergen™ (Alltech Inc.; KY, USA), is a novel product of SSF intended for application 

within monogastric animal feed rations. The production process utilises wheat bran as its 

substrate, which is derived as a by-product from industrial food flour milling. This wheat 

crop originates from cultivation in Canada and northern Mexico, before later being 

processed in Mexico (La Espiga, Mexico City).  

Prior to fermentation, the substrate is autoclaved at 110 °C for 15 min. to eliminate 

microbial contamination. After cooling to 37 °C the substrate is inoculated with a non-

GMO strain of the filamentous fungi Aspergillus niger, which is cultured via submerged 

liquid fermentation. Following seeding, moisture content of the wheat bran is raised to 

48 percent to begin the fermentation process. The moist, inoculated wheat bran (termed 
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koji) is incubated at 37 °C for approximately 100 hrs under a strictly controlled 

temperature, humidity and oxygen system. Following fermentation the koji is dried to 

cease the fermentation process and for preservation. This remaining product contains 

residual enzymatic activity which could theoretically reinstate its catalytic potential upon 

substrates in the gastro-intestinal tract of monogastrics. Due to the substrates 

nutritional composition, its key contributing components are those which are not present 

in the digestive enzyme arsenal of monogastrics. 

 

1.10 Research rationale  

It is clear that the aquaculture industry is facing growing pressures to improve its 

socioeconomic and environmental sustainability credentials. Although an attempt to 

improve sustainability, a shift in dietary formulations towards high plant protein 

inclusions has presented an extensive range of issues regarding animal performance, 

health and welfare; issues which stem from a lack of endogenous digestive capabilities. 

Conversely to studies in swine and poultry, exogenous enzyme applications in fish have 

been highly unpredictable and moderate in their overall success. Realistically, the 

environmental and substrate parameters encountered by exogenous enzymes in finfish 

diets may be overwhelmingly unfavourable to eliciting a response capable of equating to 

significant gain, be it in terms of animal performance, health, profitability or reducing 

potential environmental impact. Specifically, the challenge of dietary substrate 

complexity in this area is great and suggests adoption of a more complex approach than 

those previously observed. One must therefore consider multi-faceted products, with the 

grand aim of simultaneously degrading a plethora of ANFs, maximising nutrient release 

and ultimately allowing flexibility in feed formulations. It is suggested that SSF may be 

an avenue which fits this paradigm, thus it should be explored in more scientific detail. 

Additionally, we have a profound lack of knowledge in how exogenous enzyme sources 

may specifically influence the health of livestock. Gaining insight into these downstream 
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effects is paramount to advancing our understanding and progress in this field. 

To date investigations into the efficacy of Synergen™ in aquatic species is limited to a 

few reports with no peer-reviewed articles. Furthermore, these reports have focused 

purely upon performance and feed efficiency so understanding downstream effects upon 

animal health status and digestive characteristics remains unexplored. Therefore, 

application in fish diets is yet to be validated.  

 

1.11 Research aims 

This body of work aims to evaluate the function and efficacy of SSF products for 

improving production and health of finfish by improving the available nutrient profiles of 

contemporary and novel feed formulations. Growth performance and nutrient 

availabilities will be assessed, in line with routine experimental designs in the 

assessment of exogenous feed enzymes. However, with increasing interest in promoting 

finfish intestinal health, this characteristic will also be a focus of exploration; using 

techniques which are routinely implemented in the evaluation of other feed ingredients, 

such as alternative protein sources and pro- and prebiotics. This is on the basis that 

changes in the nutrient profile of digesta within the intestine can have profound effects 

upon its morphology, endogenous secretions and microbiota (Merrifield et al., 2010).  

With a call for diversification in the alternative ingredients available to the industry, but 

an inherent risk of poor digestibility and ANFs, the first study (Chapter 3) investigates 

the application of Synergen™, as well as two types of lupins, in a warmwater, 

omnivorous species, Nile tilapia. A comparison is conducted between yellow and blue 

lupin species, each with and without Synergen™ inclusion, to determine not only efficacy 

of the SSF product but also the viability of the different lupin species. The study firstly 

assesses performance and feed efficiency from a production standpoint. Thereafter, 

more in depth analyses aim to identify whether the three experimental ingredients affect 

intestinal morphology at both macro and ultrastructural levels.  
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The second investigation (Chapter 4) remains on the topic of Synergen™ inclusion in a 

lupin-based diet but in this instance focusing on yellow lupin. Furthermore, attention is 

turned to the feeding of rainbow trout, a temperate, carnivorous species. This species 

can be seen as much more sensitive to a shift towards a plant-based diet and its rearing 

temperature less conducive of continued fermentation by the experimental product 

within the gastro-intestinal tract. Beyond performance and feed efficiency, the study first 

aims to give in depth quantification of both macronutrient and mineral bioavailabilities. 

Subsequently, potential downstream receptors of increased nutrient influx are analysed, 

such as tissue mineral concentrations and vertebral morphology. A wider-scale 

assessment of intestinal health is implemented than previously to give a more holistic 

insight into effects. Again, macro and ultrastructure of the intestine is studied but with 

the inclusion of three-dimensional appraisal techniques. How substrate alteration in the 

intestine of fish may modulate the gut microbiome is also examined, using high-

throughput sequencing. Further, the activities of endogenous proteolytic enzymes are 

examined to determine if an endo-exogenous interaction may be a contributing factor. 

Lastly, attention is turned to the efficacy of Synergen™ in a pilot-scale on-farm trial in 

Chapter 5. Synergen™ is exposed to commercial extrusion in a low-cost rainbow trout 

formulation. It is then subsequently fed to a younger, more sensitive life-stage of 

rainbow trout, which is reared at a lower temperature than previously. Consequently, it 

is explored whether potential for in vivo fermentation is maintained, by tracking a 

number of desirable parameters relating to fish performance, feed efficiency, 

macronutrient digestibility and mineral bioavailabilities and retention. Following this, in 

vitro analysis is implemented with an aim of quantifying and explaining the effects of 

both feed manufacturing conditions and typical salmonid rearing temperatures on the 

efficacy potential of Synergen™.   

Beyond immediate aims described, this work looks to provide a body of in-depth, 

quantitative information, which is transferable across monogastric livestock species, in 

the study of SSF product and exogenous enzyme inclusions in commercial feeds. 
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CHAPTER 2. General methods 

2.1 Experimental animals and housing 

All of the experimental animals utilised within these studies were obtained from 

dedicated commercial finfish farms. Nile tilapia (Oreochromis niloticus) and Rainbow 

trout (Oncorhynchus mykiss) were primarily selected as the experimental species due to 

their global importance on the aquaculture market. The occupied research facilities were 

all licenced to house the species in question and perform the nature of the work involved. 

These locations implemented the highest possible degree of biosecurity and consistency 

in environmental and chemical parameters throughout the duration of this work, so as to 

avoid all possible external influences upon the data provided. Due to the differences in 

experimental species and housing conditions, specific details of the animals, husbandry 

procedures and rearing conditions are detailed within their respective chapters. Images 

of the systems utilised can be found with the appendices (plate 7.1, 7.2 and 7.3). 

Summaries of the experiments are displayed in the table below.  

Table 2.1 Summaries of conducted experiments 

 Chapter 3 Chapter 4 Chapter 5 

Species Nile tilapia  Rainbow trout  Rainbow trout  

Initial fish weight  36 g 44 g 6 g 

Rearing temperature 26 °C 12.5 °C 10.5 °C 

Bulk ingredient focus  Yellow lupin vs. narrow-

leaf lupin 

Yellow lupin,  

FM reference diet 

Commercially-extruded 

pellets 

Bulk diet formulation 15 % lupin inclusions 30 % yellow lupin Least-cost,  

wheat inclusions 

Synergen™ inclusions 0 and 0.1 % 0, 0.1 and 0.5 % 0, 0.5, 1.0 and 1.5 % 

Nutrition trial duration 7 weeks 10 weeks 9 weeks 

Analyses - Performance 

- Element retention 

- Carcass composition 

- Gut histology 

- Haematology 

- Performance  

- Nutrient digestibility 

- Element bioavailability 

- Carcass composition 

- Tissue element 

concentrations 

- Haematology 

- Gut histology 

- Gut microbiome 

- Gut protease activities 

- Vertebral histology 

- Performance 

- Somatic indices 

- Nutrient digestibility 

- Element bioavailability 

- Element retention 

- Serum lysozyme 

- In vitro free phosphate     

release 
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2.2 Experimental ingredients and diets 

All ingredients utilised within these investigations have been approved for use in animal 

diets and are available on the commercial market, albeit they may not be available from 

the suppliers specified herein. The experimental dietary formulations aimed to assess 

and optimise inclusion levels for the ingredients of interests, so as to provide novel data 

regarding their influences upon animal health and performance. All dietary formulations 

were performed so as to satisfy the animal’s requirements of each nutrient, where 

information is available (NRC, 2011). Details pertaining to ingredient specifications and 

experimental diet manufacturing are presented within their respective chapters.  

 

2.3 Feeding regimes 

All animals were fed ration sizes deemed to be representative of commercial production. 

So as to partially limit nutrient provision and avoid masking the effects of the 

experimental ingredients, only fixed rations were utilised in the investigations. Details of 

the feeding methods and regimes used within the investigations are given in their 

respective chapters. 

 

2.4 Biomass sampling 

Biomass sampling was performed on a weekly or biweekly basis, by catching all 

individuals within a tank and weighing in bulk, in every instance. This was performed 

under methods which minimised the possible effect of oxygen deprivation, either by 

aeration or by constant water supply to bins prior to weighing. All weighing was 

performed to the accuracy of 1 gram, in tared bins of system water. Detailed methods 

and equipment used for weighing of the experimental animals are described within their 

respective chapters. 
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2.5 Euthanasia 

All euthanasia was undertaken by initial immersion in 300 mg/L tricaine 

methanesulfonate (MS222) (Pharmaq ltd., Hants, UK) using system water buffered to its 

original pH with sodium bicarbonate (NaHCO3). Aeration was continuously supplied via 

an air stone. Immersion was performed until deep anaesthetisation. The fish were 

subsequently removed from the anaesthetic and a sharp blow to the head, followed by 

destruction of the brain, was administered.  

 

2.6 Anaesthesia 

All methods requiring anaesthesia were performed by immersion in 200 mg/L MS222 

(Pharmaq ltd., Hants, UK) using system water buffered to its original pH with sodium 

bicarbonate (NaHCO3). Aeration was continuously supplied via an air stone.    

 

2.7 Proximate composition 

All chemical analyses were conducted according to AOAC (2016) guideline methods, as 

detailed in the following subsections. 

2.7.1 Dry matter 

Oven-drying of samples was performed by the following method (AOAC Method 934.01): 

Before drying, diets were milled and the peritoneal cavities of whole carcasses were 

opened. The samples were dried at 105 °C in a fan-assisted oven (Genlab Ltd; Ches, UK) 

until constant weight was achieved.  

Freeze-drying of samples was performed by the following method: 



55 
 

Before drying, the peritoneal cavities of whole carcasses were opened. The samples were 

subsequently dried in a Super Modulyo® freeze drier (Thermo Electron Corp; MA, USA), 

with ~09 x 10-3 mbar chamber evacuation and -50 °C operating temperature.  

For both methods and all samples, dry matter (DM) was run in triplicate and calculated 

as follows: 

Dry matter (%) = 100 – (((Ww – Wd) / (Ww)) ˣ 100) 

Whereby; Ww = wet weight (g) and Wd = dry weight (g). 

2.7.2 Crude protein 

Crude protein contents of diets, carcasses and faeces were determined via the Kjeldahl 

method (AOAC Method 2001.11), which quantifies nitrogen content and later crude 

protein, via a conversion factor. Prior to analysis, all diets and samples from Chapter 3 

and 4 were dried according to the oven method and carcass and faecal material from 

Chapter 5 was dried according to the freeze-drying method, both of which are given in 

Sec. 2.7.1. Between 100 and 250 mg of dried sample (to 0.1 mg) was weighed into 

micro Kjeldahl tubes. Sample weight was determined by expected protein content; e.g. 

100 – 150 mg was employed for carcass (high N content) and 200 – 250 mg for faecal 

matter (low N content). Into every tube, one catalyst tablet, containing 3 g K2SO4, 105 

mg CuSO4 and 105 mg TiO2 (BDH Chemicals Ltd; Dor, UK) was added. The samples were 

then immersed in 10 ml of concentrated (≥95 %), low nitrogen, sulphuric acid (H2SO4) 

(Fisher Scientific; Leics, UK). Digestion was conducted using a Gerhardt Kjeldatherm 40 

tube digestion block (Gerhardt Laboratory Instruments; DE) with the following process; 

30 min at 100 °C, 1 hrs at 225 °C and 1 hrs at 380 °C. Following digestion, the samples 

were allowed to cool overnight. Next, the samples were distilled with an automated 

Vapodest 40 unit (Gerhardt Laboratory Instruments; DE) into boric acid to form 

ammonium borate complex. Resulting distillate was neutralised through addition of 

concentrated H2SO4 and titrated. The efficiency of nitrogen recovery was quantified 

through the inclusion of triplicate acetanilide standards; as well as visual checks against 
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duplicate purified casein standards, of known N content. Further, duplicate blanks were 

analysed.  

Nitrogen content of the samples was calculated as follows: 

Nitrogen (%) = ((((TVs – TVb) ᵡ AN ᵡ MWN) / SW)) / NE) ᵡ 100 

Whereby; TVs = titration volume (ml) of the sample, TVb = titration volume (ml) of the 

blank, AN = acid normality of H2SO4 (0.20), MWN = the molecular weight of nitrogen 

(1.40067 g), SW = sample weight (g) and NE = efficiency of nitrogen recovery (%). 

Thus, crude protein content was calculated as follows: 

Crude Protein (%) = N (%) ᵡ cf 

Whereby; N = nitrogen content (%) and cf = conversion factor. A standardised 

conversion factor of 6.25 was implemented for carcass, diets and faecal matter (AOAC, 

2012); whilst a conversion factor of 5.5 was utilised for analysis of lupin meals (Mosse, 

1990). 

2.7.3 Crude lipid 

Crude lipid (CL) content of samples was determined via hot-solvent extraction (AOAC 

Method 920.39). Prior to analysis, samples were dried according to details given in Sec. 

2.7.1. Approximately 3 g (to 1 mg) of sample was added to a cellulose thimble and 

plugged with cotton wool. The thimbles were then inserted into holders and suspended 

within extraction beakers containing anti-bumping granules (Fisher Scientific; Leics, UK) 

(of known weight to 1 mg); followed by the addition of 40 ml of petroleum ether. Lipid 

extraction was performed from using a 6 place Soxtherm unit (C. Gerhardt; DE) run at 

200 °C, with an automated control system (Multistat, C. Gerhardt; DE). Following total 

petroleum ether evaporation and cooling in a fume cupboard, beakers and extracted lipid 

were weighed (to 1 mg). All samples were analysed in triplicate and lipid content was 

calculated as follows: 
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Crude lipid (%) = (LE* / SW) ᵡ 100 

* determined by: FBW – IBW 

Whereby; LE = lipid extract (g), SW = sample weight (g), FBW = final beaker weight (g), 

IBW = initial beaker weight (g). 

2.7.4 Crude fibre 

Crude fibre content of diets and faecal matter was determined via a digestion-

incineration method, which solubilises and removes starch, sugars, protein and lipid, 

followed by incineration of residual carbohydrates allowing collective quantification of 

cellulose, hemicellulose and lignin (AOAC Method 950.02). Prior to analysis, samples 

were dried according to the oven method given in Sec. 2.7.1.  

For faecal matter, residual de-fatted sample was taken from thimbles and approximately 

1 g (to 0.1 mg) was weighed directly into dried, pre-weighed (to 0.1 mg) Fibretherm 

bags (Gerhardt Laboratory Instruments; DE), taking care not to gain contact with the 

thimble surface.  

For diets, approximately 1 g (to 0.1mg) of dried sample was weighed directly into dried, 

pre-weighed (to 0.1 mg) Fibretherm bags (Gerhardt Laboratory Instruments; DE). Dried 

glass spacers were then inserted into bags. The samples were subsequently immersed in 

40/60 petroleum ether solvent and agitated to extract lipid. This process was undertaken, 

with fresh petroleum ether, until the solvent appeared clear. The bags were then left to 

dry in a fume cupboard for 1 hrs. After drying, the samples were introduced to an 

automated 12 space Fibretherm extraction unit (Gerhardt Laboratory Instruments; DE). 

The solubilisation process utilised sulphuric acid (0.13 M) (Fisher Scientific; Leics, UK), 

sodium hydroxide (0.313 M) (Fisher Scientific; Leics, UK) and distilled water washes. 

At the end of the extraction procedure, the bags, containing samples with extracted 

solubles, were removed and inserted into ashing crucibles. The samples, bags and 

crucibles were then dried at 105 °C for 14 hrs. The samples were subsequently cooled in 

a desiccator and weighed (to 0.1mg).    
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The crucibles and their contents were then incinerated for 6 hrs at 600 °C. Following 

incineration, the crucibles and contents were again moved to a desiccator to cool and 

subsequently weighed once more (to 0.1 mg). 

The samples were analysed in association with blank runs utilising the same batches of 

bags and reagents used throughout the procedure.   

CF content was calculated as follows: 

Crude fibre (%) = (((S3 – S1 – S4) – (B3 – B1 – B4)) ᵡ 100) / S2 

Whereby; S1 = initial bag weight (g), S2 = initial sample weight (g), S3 = sample after 

digestion and drying, S4 = sample after incineration, B1 = blank initial bag weight, B3 = 

blank bag after digestion and drying and B4 = blank bag after incineration.   

Samples obtained from the end of the lipid determination method were corrected against 

corresponding lipid content.  

2.7.5 Ash 

Ash content of diets and carcasses was determined by incineration (AOAC Method 

942.05). Prior to analysis, samples were dried according to the oven method given in 

Sec. 2.7.1. Into ceramic crucibles of known weights (to 0.1 mg), 400 to 600 mg (to 0.1 

mg) of dry sample was added. The samples were subsequently incinerated in a muffle 

furnace (Carbolite ELF; Derbs, UK) at 550 °C for 12 hrs. Samples were cooled in a 

desiccator before weighing. All samples were analysed in triplicate. Percentage ash 

content was calculated as follows: 

Ash (%) = FW / IW ˣ 100 

Whereby; FW = incinerated sample weight (g) and IW = initial sample weight (g). 

2.7.6 Gross energy 

Quantification of gross energy in diets and faecal matter was performed via oxygen 

bomb calorimetry, which measures heat of combustion as a means of obtaining calorific 
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values. Prior to analysis, the samples were dried according to the oven method given in 

Sec. 2.7.1. The analysis was conducted using a Parr 1356 Bomb Calorimeter (Parr 

Instrument Company; IL, USA). Approximately 1 g (to 0.1 mg) of sample was weighed 

into nickel crucibles and a fuse wire was shaped so as to become submerged, at its bend, 

within the sample. The crucible and fuse wire were then inserted into the bomb chamber. 

The chamber was filled with pure oxygen and lowered into the bucket containing 2 kg of 

municipal water. Following entry of the sample weight (to 1mg) into the computer 

system, the automated system combusted the sample, and recorded the internal 

temperature change within the jacket to generate a MJ gross energy per kg value. All 

analyses were performed in duplicate. 

 

2.8 Mineral and trace element analysis 

2.8.1 Digestion 

Before digestion, samples were dried according to details given in Sec. 2.7.1. All dietary 

samples and tilapia carcasses were dried by the oven method. Individual tissues, faecal 

matter and trout carcasses were dried by the freeze-drying method. Diets and carcasses 

were homogenised using a household blender whilst faecal material and individual 

tissues were homogenised using a synthetic-coated pestle and mortar. Between 100 and 

250 mg of sample (to 0.1 mg) was weighed into boiling tubes. The samples were then 

immersed in 10 ml of 70 % nitric acid (Fisher Scientific; Leics, UK). Digestion was 

conducted using a Gerhardt Kjeldatherm 40 tube digestion block (Gerhardt Laboratory 

Instruments; DE) with the following process; 1 hrs at 60 °C, 1 hrs at 90 °C, 30 min at 

110 °C and 3.5 – 4 hrs at 135 °C. Digests were subsequently left to cool for a minimum 

of 2 hrs whilst covered. Once cooled, the samples were transferred to propylene vials 

and diluted to 50 ml with distilled water. Duplicate blanks of diluted nitric acid in distilled 

water were analysed in all instances. Tilapia diet samples were analysed in triplicate and 

carcasses were analysed in quadruplicate. Diets, faecal material and individual tissue 
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from rainbow trout study 1 were analysed in triplicate. Diets, faeces and carcasses from 

rainbow trout study 2 were analysed in quadruplicate. Replication was determined by 

sample availability in the case of faecal matter. Carcasses were analysed in 

quadruplicate so as to allow negation of erroneous reads (± 2σ) caused by the presence 

of un-homogenised, mineralised tissues (e.g. scales, fin rays, bone); whilst still 

maintaining n = 3 replication. 

2.8.2 ICP OES 

All mineral determination analyses were performed by Inductively Coupled Plasma 

Optical Emissions Spectroscopy (ICP OES). A Thermo Scientific iCAP 7400 series 

(Thermo Scientific Inc; MA, USA) with a cyclone spray chamber and a Burgener Peek 

Mira Mist® nebulizer (Burgener Research inc; ON, CAN) was utilised throughout.  

Operating conditions were as follows: 

Rf1 power (kw)    1.15 

Coolant gas flow (L/min)  12.0 

Nebulizer gas flow (L/min)   0.50 

Auxillary gas flow (L/min)   0.50 

Additional flow (L/min)   0.00 

Viewing height (mm ALC2)   12.0 

1 Rf = radio frequency 

2 ALC = above load coil 

 

For each element, the following wavelengths (nm) were implemented; Ca 317.93 and 

315.89, Co 238.89, Cr 283.56, Cu 324.75, Fe 259.94, K 766.49, Mg 285.21, Mn 257.61, 

Mo 202.03, Na 589.59,  P 177.50 and 178.28, S 180.73, Y 371.01, Zn 213.86. 

Trace element concentrations, in parts per million (ppm), were calibrated against 4 

external standard concentration curves, containing each element. Drift (± 1.0 %) was 

routinely checked after every 5 samples by reanalysing standards and correcting values 

where necessary.   
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Element concentrations of the samples were determined by the following calculation: 

Element concentration (ppm) = Vd / IW  ˣ  Cd  

Whereby ; Vd = digest volume (ml), IW = initial sample weight (g) and Cd = element 

concentration (ppm). 

 

2.9 Performance calculations 

Growth performance of fish and feed utilisation was assessed through calculation of 

weight gain (WG), specific growth rate (SGR) and feed conversion ratio (FCR). All 

mortalities were accounted for in performance calculations.   

WG was calculated as follows: 

Weight gain (g) = FWf – FWi 

Whereby; FWf = final fish weight (g) and FWi = initial fish weight (g). 

SGR was calculated as follows: 

Specific growth rate (AU) = 100 ᵡ ((Ln Wf  – Ln Wi) / DF) 

Whereby; Ln = natural log, Wf = final tank biomass (g), Wi = initial tank biomass (g) and 

DF = days fed. 

Days where fish were fed a ration of ≤ 0.75 % BW (e.g. before sampling) were not 

counted in SGR calculations, due to classification as a maintenance ration.  

FCR was calculated as follows: 

Feed conversion ratio (AU) = (Wf – Wi) / FI 

Whereby; Wf = final tank biomass (g), Wi = initial tank biomass (g) and FI = feed intake 

(g). 
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2.10 Somatic index calculations 

Somatic indices were calculated as indicators of fish condition and health, in accordance 

with methods described by Rawling et al. (2012). Fulton’s K-factor (K-F) was used as an 

indicator of fish condition. To summarise, euthanised fish were measured from the tip of 

the snout to the fork of the tail, and weighed (to 1 mg).  

K-F was calculated as follows: 

K-factor (AU) = 100 ᵡ (FW / FL3) 

Whereby; FW = fish weight (g) and FL = fork length (cm). 

Hepatosomatic index (HSI) was used as an indicator of health status. To summarise, 

euthanised fish were weighed (to 1 mg) and were subsequently dissected, the 

corresponding whole livers were thus weighed (to 0.1 mg). 

HSI was calculated as follows: 

Hepatosomatic index (AU) = 100 ᵡ (LW / FW) 

Whereby; LW = whole liver weight (g) and FW = fish weight (inc. liver) (g). 

 

2.11 Nutrient digestibility and mineral bioavailability calculations 

Apparent digestibility coefficients (ADC) and apparent bioavailability coefficients (ABAC) 

were conducted where experimental housing and species allowed the ethical collection of 

faecal matter, namely in rainbow trout. The methods utilised were stripping and 

settlement in juvenile and fingerling fish, respectively; in accordance with discussion on 

ethics and limitations given in Sec. 1.4. Full details of the collection materials and 

methods are given in their respective chapters.  
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ADC of nutrients were determined via proximate composition results of nutrients and ICP 

OES quantification of the inert marker, yttrium oxide (YO) in the diets and collected 

faeces.  

ADC of nutrients was calculated as follows, according to methods described by Lupatsch 

et al. (1997): 

Apparent digestibility coefficient (%) = 100 – (100 ᵡ (Yd  / Nf) / (Yf  / Nd)) 

 Whereby; Yd = YO concentration in the diet, Yf = YO concentration in the faeces, Nd = 

nutrient concentration in the diet, Nf = nutrient concentration in the faeces. 

 ABAC of dietary elements were determined via ICP OES quantification of element 

concentrations in the diets and collected faeces.  

ABAC of elements was calculated as follows: 

Apparent bioavailability coefficient (%) = 100 – (100 ᵡ (Yd  / Ef) / (Yf  / Ed)) 

Whereby; Yd = YO concentration in the diet, Yf = YO concentration in the faeces, Ed = 

element concentration in the diet, Ef = element concentration in the faeces. 

 

2.12 Nutrient retention  

Apparent nutrient retention (NR) of dietary elements was determined using ICP OES 

quantification of their concentrations in the diets, initial fish carcasses and final fish 

carcasses, alongside biomass and feed intake data. Element concentrations were 

corrected back to a wet basis and all mortality weights were added to final tank weight 

before calculations were performed.  

NR was calculated as follows: 

Apparent nutrient retention (%) = 100 ᵡ (((Wf ᵡ Ef) – (Wi ᵡ Ei)) / (FI ᵡ Ed)) 
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Whereby; Wf = final tank biomass (kg), Wi = initial tank biomass (kg), Ef = final element 

concentration of whole body (g/kg), Ei = initial element concentration of whole body 

(g/kg), Ed = element concentration in the diet (g/kg), FI = feed intake (kg).  

 

2.13 Protein efficiency and utilisation 

Quantification of dietary protein utilisation was achieved through calculation of protein 

efficiency ratio (PER) and apparent net protein utilization (ANPU). 

Protein efficiency ratio was calculated as follows: 

Protein efficiency ratio (AU) = (Wf – Wi) / PI 

Whereby; Wf = final biomass (g), Wi = initial biomass (g) and PI = total protein intake 

(g). 

ANPU was calculated as follows: 

Apparent net protein utilisation (%) = 100 ᵡ (CPf  – CPi) / ((PF / 100) ᵡ ADCCP) 

Whereby; CPf = final crude protein content of carcass (g), CPi = initial crude protein 

content of carcass (g), PF = total crude protein fed (g), ADCCP = apparent digestibility 

coefficient of crude protein (%). 

 

2.14 Haematological and serological analysis 

Blood was sampled from the fish in order to obtain indicators of health and immune 

status, as well as a potential indication of nutrient uptake. The fish were deeply 

anaesthetised (200 mg/L MS222) and blood was extracted from the caudal vein, in line 

between the anal fin and caudal fin, with a 25 gauge needle and 1 ml syringe. The blood 

was subsequently transferred to microcentrifuge tubes (Protein LoBind, Eppendorf®; DE). 

For collection of serum, whole blood was left to clot on ice (~ 4 hrs) and then stored at 
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4 °C for 12 hrs; these samples were subsequently centrifuged at 2,500 x g for 5 min and 

serum was removed. The serum samples were stored at -80 °C until analysed.  

2.14.1 Haematocrit 

Haematocrit was quantified as a measure of the erythrocyte fractions in the blood, as 

described by Brown (1988). Fresh blood was drawn into heparinised capillary tubes (75 

µl) and sealed with plasticine (Cristaseal, Hawksley; West Sussex, UK). The capillary 

tubes were subsequently centrifuged at 10,500 x g for 5 min. A Microhaematocrit Tube 

Reader (Hawksley; W Sussex, UK) was used to measure packed cell volume proportion 

(%) of the samples.   

2.14.2 Haemoglobin 

Haemoglobin was quantified, as an indicator of health and immune status, via a 

turbidimetric method as described by Rawling et al. (2012). From freshly drawn blood, 4 

µl of sample was added to 1 ml of Drabkin’s alkaline ferricyanide-cyanide solution 

(D5941, Sigma-Aldrich Co.; Dorset, UK) and incubated at room temperature (~20 °C) 

for ~4 hrs. Following incubation, absorbance was measured at 540 nm in a 

spectrophotometer (Helios Epsilon, Thermo Scientific; MA, USA). Haemoglobin was 

calculated as follows: 

Haemoglobin (g/dl) = (Abssa / Absst) ᵡ DF 

Whereby; Abssa = absorbance of the sample, Absst = absorbance of the standard and DF 

= dilution facor (200). 

2.14.3 Serum glucose 

Glucose was measured in the blood as an indicator of health, immune and energy status 

as well as being a potential indicator of sugar uptake derived from fermentation of 

carbohydrates in the GIT. The method implemented was the Trinder glucose activity test, 

which is a turbidimetric coupled-enzyme assay. A glucose standard was prepared by 
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dissolving 0.1 % (w/v) of ᴅ-Glucose (G8270, Sigma-Aldrich; Dorset, UK) in distilled 

water saturated with benzoic acid (C7H6O2). Phosphate buffer (100 mM, pH 7.0) 

containing 0.016 % (w/v) 4-Aminoantipyrine (G-7016, Sigma-Aldrich Co.; Dorset, UK), 

~0.0002 % (w/v) peroxidase (P-8250, Sigma-Aldrich; Dorset, UK), 0.105 % (w/v) 

phenol (P-8250, Sigma-Aldrich Co.; Dorset, UK) and 0.1 % (v/v) Tween-20 was created 

as a colour reagent. Into microcentrifuge tubes, 3 ml of colour reagent and 50 µl of 

serum were dispensed. The blank consisted of 3 ml colour reagent and 50 µl of pure 

phosphate buffer and the standard consisted of 3 ml of colour reagent and 50 µl of ᴅ-

Glucose standard solution. The solutions were mixed with a vortex and incubated in a 

water bath for 15 min at 28 °C. Following incubation, the sealed tubes were rapidly 

cooled in ice water (~2 °C) to cease glycolytic activity. Immediately after cooling, 

samples were transferred to vials and absorbance was measured at 550 nm. Each 

sample was run in duplicate. Glucose concentration within the serum was calculated as 

follows: 

Glucose (mg/dl) = 100 ᵡ (Abssa / Absst) 

Whereby; Abssa = absorbance of the sample and Absst = absorbance of the standard. 

2.14.4 Serum lysozyme 

Serum lysozyme activity was quantified, as an indicator of innate immune status, via a 

kinetic turbidimetric assay using methods adapted from Demers and Bayne (1997). 

Micrococus lysodeikticus (4698, Sigma-Aldrich Co.; Dorset, UK) was suspended in 0.05 

M Na2HPO4 (pH 6.2) at a concentration of 200 mg/ml, as a substrate. Into microplate 

wells, 25 µl of serum was added, 175 µl of substrate solution was subsequently added 

using a multichannel pipette. The plate was immediately mechanically agitated and 

absorbance at 530 nm was read every 30 sec then on for 5 min (OPTImax microplate 

reader, Molecular Devices LLC; CA, USA). Each sample was run in quadruplicate. One 

unit (U) of lysozyme was defined as follows: 

1 U of Lysozyme = Δ 0.001 Abs/min 
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2.15 Light microscopy (intestine) 

Histology of the intestine, via light microscopy, was undertaken as a means of 

quantifying intestinal health and potential surface area for digestion and absorption of 

nutrients at a macrostructural level. Specimen processing was conducted using standard 

histological methods. The analytical methods utilised thereafter were in accordance with 

those described by Standen et al. (2015), in tilapia and Dimitroglou et al. (2009, 2010) 

in rainbow trout and are described at length in their respective chapters.  

Selected tissue samples were fixed in 10 % formalin and kept at 4 °C for 48 hrs in the 

case of tilapia mid gut and 72 hrs for rainbow trout gut. Following fixation, samples were 

transferred to 70 % ethanol at 4 °C for storage. The samples were removed from the 

alcohol and where possible, digesta was rinsed away with PBS and/or removed via 

forceps, taking care to avoid contact with tissue structure. The specimens were further 

dehydrated in graded ethanol concentrations in an automated tissue processor (Leica 

TP1020; Bucks, UK). Embedding was performed in paraffin wax (Leica EG1150 H; Bucks, 

UK).  

All sectioning of specimens was conducted at 5 µm thickness using a Leica RM2235 

microtome (Leica; Bucks, UK), with blocks being chilled on a cooling plate (Leica EG1150 

H; Bucks, UK) prior to sectioning. Sections were mounted on glass slides and dried at 

30 °C for 48 hrs. 

 All intestinal specimens were stained using a Leica Autostainer XL (Leica; Bucks, UK). 

This process was initiated by rehydration in graded ethanol concentrations; twice at 100 % 

followed by 90, 70, 50 % ethanol and a rinse with distilled water. Stains implemented 

were haematoxylin and eosin (H&E), and periodic acid-Schiff with Alcian blue (PAS) 

(Tables 7.1 and 7.2). Cover slips were mounted with DPX and left to dry at 30 °C.  

Micrographs were captured with a Leica DMIRB microscope and Olympus E410 digital 

SLR camera, at varying magnifications.  
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Methodological approaches employed for the quantification of intestinal macrostructure 

are provided in their respective chapters.  

 

2.16 Transmission electron microscopy 

The intestine was further appraised with the use of electron microscopy techniques for 

quantification of intestinal health and functional topographical surface area, at an 

ultrastructural level. The ultrastructure of finfish is particularly sensitive to nutritional 

pathologies (Merrifield et al., 2010) but little is known on the effects of exogenous 

enzymes upon this parameter, thus the area was explored.  

Transmission electron microscopy (TEM) dissection and tissue selection methods are 

detailed within their respective chapters. The processing methods utilised for TEM were 

in accordance with methods described by Dimitroglou et al. (2009, 2010) and are 

described below. Thereafter, analytical methods utilised were derived from a variety of 

sources and are described at length in respective chapters.    

Intestinal samples were directly immersed in in 2.5 % glutaraldehyde fixative agent 

containing 1 part 0.1 M sodium cacodylate buffer (pH 7.2). Storage of samples was 

conducted at 4 °C. Samples were rinsed twice, for 20 min, in 0.1 M sodium cacodylate 

buffer to remove fixative. Approximately 2 mm of fixed tissue was selected from the 

middle portion of samples, discarding ends to omit possibilities of tissue damaged by 

handling. Postfixation was then conducted by immersion of the samples in 1 % osmium 

tetroxide (OsO4) solution in 0.1 M sodium cacodylate buffer (pH 7.2), for 2 hrs. This 

fixation step was consecutively performed a total of 3 times, at 2 hrs intervals, using 

fresh fixative and buffer on each occasion. Following final fixation, residual fixative was 

cleared with a brief rinse in pure 0.1 M sodium cacodylate buffer. Samples were then 

dehydrated by immersion in graded levels of ethanol (30, 50, 70, 90 and 100 %), at 20 

min intervals. Next, samples entered a fresh 100 % ethanol solution for 20 min and were 

then drained. Low viscosity resin premix (Agar Scientific; Essex,UK; no. AGR1078) and 
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absolute ethanol were used throughout resin infiltration stages. Samples were immersed 

in 30:70 (resin:ethanol) mix for  ~14 hrs. Following this, samples entered a 50:50 mix 

for ~9 hrs. This was then replaced with a 70:30 mix for ~14 hrs. Finally, samples were 

immersed in 100 % resin for 24 hrs. Following resin infiltration, samples were inserted 

into polyethylene embedding capsules (BEEM®; PA, USA) and immersed in resin for 

curing. Polymerisation was conducted at 70 °C for 14 hrs.  

All sectioning was conducted on a Reichert-Jung Ultracut E ultratome (Leica group; 

Bucks, UK). Blocks were trimmed and semi-thin (~0.5 µm) sections were cut using a 

glass knife. These sections were stained with methylene blue for pre-examination under 

LM. Once appropriate sample locations were indentified, ultra-thin (~80 nm) sectioning 

was performed with a diamond knife (Microstar Tech.; TX, USA). Sections were 

subsequently collected onto copper grids. 

Saturated uranyl acetate – ethanol (90 %) solution was created, mixed by hand and 

subsequently centrifuged at 5,000 x g for 10 min, as a stain. Copper grids were placed, 

section side down, upon drops of the uranyl acetate supernatant and left to stain for 15 

min, under dark conditions. The grids were subsequently rinsed in distilled water. 

Secondary contrasting was performed with lead citrate solution, again for 15 min; this 

was performed under CO2 limiting conditions, in covered vessels containing sodium 

hydroxide (NaOH) granules.  

Samples were screened with a 120 kV JEOL JEM-1400 transmission electron microscope 

(Tokyo, Japan) with a Gatan Orius 830 imaging system (CA, USA).  

Methodological approaches employed for the quantification of intestinal ultrastructure 

are provided in their respective chapters but all centre upon either quantifying microvilli 

dimensions or organisation.  

2.17 Statistical analysis 
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Details of statistical methods, models and software utilised are described in their 

respective chapters.   
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CHAPTER 3. Application of Synergen™ in Nile tilapia diets 

containing yellow and narrow-leaf lupin varieties  

3.1 Introduction 

The Nile tilapia (Oreochromis niloticus) is historically one of the oldest domesticated 

livestock species, with evidence of its culture dating back to the ancient Egyptian 

civilisation, some 4000 years ago (Chimits, 1957). Today, the species remains a staple, 

subsistence animal in many Asian and African populations; meanwhile, it continues to 

gain momentum in its commercial production, across the continents (FAO, 2014b). 

According to FAO (2014b), between 1990 and 2013, global production of Nile tilapia 

increased from approximately 1.5 million tonnes to 3.4 million tonnes. However figures 

relating to total global production are likely to be underestimations as much of the 

farming operations occur in rural areas of developing nations, thus non-reported 

productions are inevitable. A number of other tilapia species are also produced around 

the world, such as Mozambique tilapia (O. mossambicus) and blue tilapia (O. aureus), as 

well as hybrids (e.g. O. mossambicus X O. niloticus); each with regional importance. As 

it stands, tilapias are the second most farmed fishes in the world (FAO, 2014a) and this 

seems set to remain.  

It is the tilapia’s exceptional farming characteristics which have led this ease of culture 

and intensification. One of the most crucial factors in this success has been that of its 

dietary acceptance and nutritional requirements. Nile tilapia is an omnivorous species 

which has been observed to display plasticity of its feeding habits, but overall its natural 

diet consists of phytoplankton, macrophytes, periphyton, and invertebrates (Nijiru et al., 

2004). Considering tilapia naturally feed at a low trophic-level, compound feeds 

theoretically do not require fishmeal or fish oil inclusion, from an animal health 

perspective (FAO, 2014a). Although tilapia feeds have included fishmeal in the past, the 

global push towards reducing fishmeal inclusions has been met with relative ease within 

the tilapia industry. Typically, commercial tilapia diets now contain negligible, if any, 

quantities of fishmeal. However, it is not to be assumed that tilapia diets can be vastly 
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flexible or of poor quality if we aim for sustainable production systems. First and 

foremost, its importance in the agrimarkets and diets of certain communities means 

production cannot be compromised. Secondly, tilapia production is often a highly 

intensive process; with routine stocking densities reported in excess of 100 Kg / M3 in 

cage culture (Garcia et al., 2013). Under such conditions we heighten risks of stress, 

disease and crowding-related injuries, all of which are aggravated through inadequate 

nutrition. In closed systems (e.g. ponds and RAS), we must also consider nutrient 

loading, which is concomitant with poor feed efficiency. However, feed formulations must 

still be undertaken at a highly cost-effective level considering that tilapia are a relatively 

low-value species (FAO, 2014b), thus the consumer expects an affordable end product. 

There is currently a wealth of plant-proteins available on the market which could 

theoretically be utilised in tilapia feeds. In fact, we can consider the arsenal of potential 

ingredients to be far greater than those suitable for many other commercially produced 

fish as tilapia feed manufacturing and culture is so widespread, meaning locally available 

ingredients are at the industry’s disposal. Formulations heavily based upon local or 

regional agronomic assets could undoubtedly contribute significantly to the sustainable 

development of the tilapia industry. The species is highly popular in North America and is 

gaining popularity within Europe. Therefore, lupins present an alternative protein option 

for tilapia producers in the western world.  

This study aims to determine whether application of the SSF product (Synergen™) can 

improve the nutritional value of diets containing yellow or narrow-leaf lupins for Nile 

tilapia. Furthermore, considering these lupins will not be of absolute identical nutritional 

value, the study aims to identify which lupin species is more favourable for application 

within tilapia diets, both with and without supplementary addition of the SSF product. If 

the SSF product does effectively improve the nutritional value of the diets, then 

improved growth performance and feed efficiency are to be expected, along with 

increased deposition of liberated nutrients. Further, if exogenous degradation of ANFs 

which impinge upon intestinal health occurs, it is expected that amelioration of gut 
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macro or ultrastructure will be identifiable. The lupin with the most favourable nutritional 

profile, whether it is via greater nutrient quality or reduced ANFs, is expected to result in 

better animal performance and potentially a healthier gut surface. 

 

3.2 Materials and methods 

3.2.1 Experimental design 

The feeding trial was designed to determine production performance of the tilapia fed 

the experimental diets, over a 7 week time period. To provide supportive information to 

the growth performance and feed efficiency data, midgut samples were temporally 

collected as the major indicator of nutritional health. A number of supplementary health 

indices, outside of the intestine, were also evaluated.  

3.2.2 Experimental animals and housing 

The nutritional trial was conducted at Plymouth University’s West Aquarium research 

facility. Fingerling black Nile tilapia (Oreochromis niloticus) (~25 g) were obtained from 

North Moore Tilapia (Lincolnshire, UK). The animals utilised were derived from YY super-

male stock. Upon entering the research facility, the fish were acclimatised for one hour. 

After acclimatisation, the fish were stocked into rectangular 80 L tanks on a ~2200 L 

recirculating system (RAS) (99 % water recycle). The system was powered by a 1.00 hp 

pump (Certikin, HPS100M; Oxfordshire, UK), supplying a flow rate of ~600 L/hr. 

Throughout conditioning and the experimental trial, adequate water quality was 

maintained by biological and mechanical filtration. Water chemistry (nitrate, nitrite, and 

ammonium) was tested bi-weekly. Temperature was maintained at 26.0 °C ± 1 via an 

inline heater (Elecro Titanium; Hertfordshire, UK).  Dissolved oxygen was maintained 

above 76.0 % with air supplied via a low pressure side channel blower (Rietschle Ltd.; 

Hampshire, UK) to perforated piping below biological media and air stones within tanks. 

A 12 hr light: 12 hr dark photoperiod was implemented with fluorescent lights and timers. 

During the conditioning period, fish were exposed to a 7 day protozoa and fungicide 

treatment (Protozin, Waterlife; Middx, UK) along with a 7 day oral administration of 
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florfenicol (Florocol, MSD Animal Health; Bucks, UK), at 10 mg/kg BW per day; these 

were conducted as routine prophylactic measures. Following the conditioning period, the 

fish were graded by size and visual condition. Selected individuals were restocked into 

groups of 50 individuals in four sets of duplicate tanks (n = 2), with resulting average 

initial fish weight of 36.22 g ± 0.16; corresponding to a stocking density of 20.12 kg/m3 

± 0.13. At day 26, biomass control was undertaken on the basis of system carrying 

capacity for maintenance of adequate water quality. During this procedure, six fish were 

randomly selected and removed from each tank, three of these were utilised for 

histological analysis, as described later in Sec. 3.2.7.  

3.2.2 Experimental ingredients and diets  

During the conditioning period, the fish were fed BioMar Efico Enviro (BioMar; DK) at 

approximately 2 % BW per day. This high-grade, commercial, salmonid feed was fed so 

as to not compromise digestive health prior to trial commencement, as it is deemed to 

have a low ANF content in the diets of tilapia.  

Dehulled kernel meal from narrow-leaf lupin (Lupinus angustifolius cv. Sanabor) and 

yellow lupin (Lupinus luteus cv. Pootalong) were supplied by Soya UK (Hampshire, UK), 

after dehulling and milling by Alvan Blanch (Wiltshire, UK). These crops were cultivated 

in the U.K. as part of the Lupins in UK Agriculture and Aquaculture (LUKAA) initiative 

(Innovate UK). A 15 % inclusion of lupins was implemented in a manner deemed to 

partially replace a niche which would usually be held by soya products. A low ANF 

soyabean protein concentrate (Hamlet HP100, DK), specifically developed to contain a 

low content of oligosaccharides, was utilised as the marginally predominant protein 

source. 

Synergen™ was supplied by Alltech Inc. (KY, USA) from industrial batches manufactured 

under the conditions detailed in Sec. 1.4.2.  

Four experimental diets were formulated, using FeedSoft Pro™ (TX, USA), so as to 

satisfy all known nutrient requirements of Nile tilapia (NRC, 2011) and be isonitrogenous, 
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isolipidic and isocaloric (Table 3.1). These were two basal diets, with 15 % yellow or 

narrow-leaf lupin inclusion. Synergen™-supplemented diets were manufactured by 

including the SSF product at 0.1 % at the expense of corn starch.  

The dietary bulk ingredients (bar corn starch) were mixed thoroughly in a Hobart Legacy 

mixer (Hobart Food Equipment, AU; model: HL1400-10STDA). Meanwhile, corn starch, 

vitamin/mineral premix, antioxidants and SYN (where included) were thoroughly 

combined. The starch carrier and additives were slowly added to the bulk ingredients 

and mixed for a further 30 min. Oil was subsequently added to the ingredient mix and 

left to combine homogenously for 30 min, followed by the addition of tepid water to 

achieve an appropriate consistency for pellet manufacture. Once an appropriate 

consistency was achieved, the dietary mix was immediately cold-press extruded (PTM 

Extruder System, Devon, UK; model: P6) and manually cut, using a knife, to form 2 mm 

diameter pellets. The moist pellets were oven-dried at 35 °C for 48 hrs (Genlab, 

Cheshire, UK; model: MINO 200 F). The diets were packaged in sterilised containers and 

kept at room temperature (~15 °C) until used.   
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Table 3.1  

Feed formulations, proximate compositions and mineral concentrations of the 

experimental Nile tilapia diets. 

  Diets 

 YLC YLS BLC BLS 

Ingredient (g / kg)     

Soyabean protein concentrate1 303.87 303.87 334.13 334.13 

Corn Starch 2 301.24 300.24 275.93 274.93 

Yellow Lupin 3 150.00 150.00 _ _ 

Narrow-leaf Lupin 4 _ _  150.00 150.00 

Fishmeal 5 120.00 120.00 120.00 120.00 

Maize Gluten Meal 6 50.00 50.00 50.00 50.00 

Fish Oil 7 30.00 30.00 30.00 30.00 

Corn Oil 8 23.89 23.89 18.94 18.94 

Vitamin/Mineral Premix 9 20.00 20.00 20.00 20.00 

Antioxidant 10 1.00 1.00 1.00 1.00 

Synergen™ 11 _ 1.00 _ 1.00 

Proximate composition     

Moisture (%) 2.39 2.47 2.22 2.08 

Crude protein (%) 37.24 36.91 37.72 37.96 

Crude lipid (%) 7.63 7.61 7.71 7.64 

Ash (%) 6.15 6.19 5.35 5.84 

NFE 12 46.59 46.82 47.00 46.48 

Mineral concentration     

Ca (g/kg) 5.22 4.63 6.40 5.92 

P (g/kg) 6.85 6.64 6.97 6.93 

Mg (g/kg) 1.97 1.99 1.81 1.86 

Zn (mg/kg) 105.91 100.95 91.75 93.87 

1 HP100 (Hamlet, DK), 2 (Sigma Aldrich, UK), 3 dehulled (kernel meal) Lupinus luteus cv. Pootalong (Soya UK), 4 

dehulled (kernel meal) Lupinus angustifolius cv. Sanabor (Soya UK), 5 LT94 herring meal (CC Moore, UK), 6 

Glutalys (Roquette, FR), 7 Epanoil (Seven Seas, UK), 8 (Sainsburys ltd., UK), 9 PNP Fish: Ash 78.7 %, Ca 12.1 %, 
Mg 1.56 %, P 0.52 %, Cu 0.25 g/kg, Vit. A 1.0 µg/kg, Vit D3 0.1 µg/kg, Vit. E 7 g/kg (Premier Nutrition, UK), 
10 Tocopherol, ethoxyquin, butylated hydroxytoluene (BHT) (Premier Nutrition, UK), 11  (Alltech Inc., KY, USA), 
12  nitrogen free extract = dry matter – (crude protein + crude lipid + ash). 
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3.2.3 Feeding and biomass sampling 

Throughout the trial, the animals were fed fixed rations between 2.0 and 3.5 % BW per 

day, which were incrementally reduced as the fish grew. Rations were immediately 

adjusted following mortalities. The fish were starved for a 24 hrs period prior to biomass 

sampling. The fish were weighed in bulk, by tank, on a weekly basis. This was performed 

to an accuracy of 1 gram. Feeding rations were subsequently calculated for the following 

6 days.  

3.2.4 Performance calculations 

All calculations were performed as detailed in Sec. 2.9. Final fish weight was calculated 

at day 56 after adhering to the routine feeding methods; this was conducted by weighing 

all the remaining fish individually to 0.5 gram accuracy. All mortalities were accounted 

for in performance calculations. 

3.2.5 Whole carcass sampling 

Sampling for whole carcass was performed by pooling ≥200 g of wet fish per replicate 

tank; this was performed at day 0 for an initial composition of the stock fish and again at 

day 49 (n = 2). The whole fish were oven-dried according to procedures detailed in Sec. 

2.7.1 and ground using a household blender.  

3.2.6 Feed and carcass compositional analysis 

Proximate composition was undertaken following methods described in Sec. 2.7. Mineral 

concentration was conducted in correspondence with methods described in Sec. 2.8. 

Nutrient retention (NR) calculations were performed in accordance with Sec. 2.12.   

3.2.7 Haematological and serological parameters 

At day 49, 3 fish per tank (n = 6) were heavily sedated and blood was collected from the 

caudal vein as described in Sec. 2.14. Haemoglobin (Hb), haematocrit (Hct), serum 
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glucose and serum lysozyme were analysed according to procedures detailed in Sec 

2.14.1, 2.14.2, 2.14.3 and 2.14.4, respectively.   

3.2.8 Intestinal histology 

3.2.8.1 Sampling 

Sampling of intestinal tissue was scheduled at days 0 (light microscopy only), 26 (light 

microscopy only) and 49 of the feeding trial. Six fish were sampled from the initial stock 

population, and 3 fish per tank were sampled at days 26 and 49 of the trial (n = 6). 

Following euthanasia procedures described in Sec. 2.5; the IP cavity of fish was opened 

and the entire GIT was removed from the animal at the oesophagus and anus. 

Intraperitoneal fat deposits were carefully separated from the gut tissue, whilst the GIT 

was simultaneously disentangled. The intestinal tract was detached below the stomach 

sack and at the anus. The midmost portion of the intestinal tract was identified and ~7.5 

mm of tissue was removed from the location. The first ~5 mm of this tissue (from the 

anterior end) was separated for LM, whilst the last ~2.5 mm was taken for transmission 

electron microscopy (day 49 only). 

3.2.8.2 Light microscopy  

Midgut samples were processed and sectioned in accordance with the methods detailed 

in Sec. 2.15, followed by staining with H&E as described in Sec. 2.15 (Table 7.1). 

Micrographs were collected using methods and equipment detailed in Sec. 2.15. All 

appraisals were conducted using ImageJ 1.45 (National Institutes of Health, USA). 

The micrographs were appraised for enterocyte height through measurement of the cells 

at 100 intermittent locations per fish (Plate 3.1A). 

For calculation of surface area potential (perimeter ratio), micrographs were converted 

to binary tone form and the outer mucosal perimeter (OP) and inner functional border 

(IP) were measured (Plate 3.1B). Perimeter ratio (PR) was calculated as follows, in 

accordance with methods described by Standen et al. (2015): 
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PR = OP / IP 

 

Plate 3.1 Methodological demonstrations of Nile tilapia midgut macrostructural appraisal. 

A = Tilapia midgut folds stained with H&E, displaying the height of enterocytes (EH), 

lamina propria (LP) and goblet cells (GC). B = Tilapia midgut silhouette, displaying outer 

mucosal perimeter (OP) and intestinal functional border (IP). 

 

3.2.8.3 Transmission electron microscopy 

The collected midgut samples were processed, sectioned and screened as described in 

Sec. 2.16. Microvilli height (MVH) and microvilli diameter (MVD) measurements were 

performed in accordance with methods described in Sec. 2.16. Microvilli counts (MVCT) 

(no. / 1 µm2) were performed using locations displaying an aerial view of the brush 

border, with 10 quadrant counts per fish (Plate 3.2A); measured over 5 micrographs 

from differing locations. Two sets of coordinates were pre-determined as standardised 

locations for quadrant placement on each micrograph. The top-left corner of quadrants 

was placed upon said coordinates. The methods utilised followed quadrant methods 

largely adopted in ecological surveys for random samples to be collected.  

A B 
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Plate 3.2 Methodological demonstrations of Nile tilapia midgut ultrastructural appraisal, 

using TEM micrographs.  

A = Aerial view of brush border, displaying 1 µm2 quadrant; microvilli which lay upon 

green edges are counted, whilst those on red edges are discounted.  

B = lateral view of brush border, displaying microvilli height (MVH) and microvilli 

diameter (MVD). 

 

Estimated total absorption surface area (TAS) (µm2 per 1 µm2 of epithelial base plan 

[µm2 / 1 µm2]) was calculated to provide a three-dimensional estimate of functional 

topography, utilising two-dimensional measurements (MVD, MVL and MVCT) obtained 

from the specimens and Pi. This method was adapted from Vizcaino et al. (2014) and 

was performed for each fish as follows: 

TAS (µm2 / 1µm2) = ((2π ᵡ ½MVD ᵡ MVL) + (2π ᵡ ½MVD2)) ᵡ MVCT 

Whereby; π = Pi, MVD = mean microvilli diameter (µm), MVL = mean microvilli length 

(µm) and MVCT = mean microvilli counts (no. / 1 µm2). 

 

3.2.9 Statistical analysis 

All statistical analyses were performed using SigmaPlot 13.0. All values expressed herein 

as percentages were arcsine-transformed prior to statistical analysis. Fish and feed 

performance, carcass compositional parameters and nutrient retention results were 

A B 
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analysed via Two Way Analysis of Variance (ANOVA) in partnership with Fisher’s LSD 

Method for pairwise multiple comparisons. Variables tested were lupin type (yellow and 

narrow-leaf) and SYN presence (control and 0.1 % SYN), with a test of interaction 

between these two variables. Enterocyte height (EH) and absorptive surface area (PR) 

among treatments were analysed via Three Way ANOVA in partnership with Fisher’s LSD 

Method for pairwise multiple comparisons. Variables tested were lupin type, SYN 

presence and time point (day 0, 26 and 49), with interactions assessed between the 

three variables. Two Way ANOVA was utilised for statistical analysis of midgut 

ultrastructural measurements (TEM) in partnership with Fisher’s LSD Method for pairwise 

multiple comparisons. Analyses were performed upon ranks, where data expressed non-

normal distribution and are referred to as such within.   

  

3.3 Results 

3.3.1 Growth performance and feed efficiency 

The final average fish and feed performance results are displayed in Table 3.2. By day 

49, the YLC, YLS, BLC and BLS fed fish had increased in biomass by approximately 177, 

213, 170 and 207 %, respectively. The mean final weights (FW) of the experimental 

animals did not significantly differ as a consequence of lupin type (P > 0.05) but a 

significant increase was observed in Synergen™ (SYN) treatments compared with the 

controls (P = 0.02); this was independent of lupin type. Likewise, overall weight gain 

(WG) was unaffected by lupin type (P > 0.05) but SYN-fed fish gained significantly more 

weight than those fed the control diets (P = 0.02), although again this was independent 

of lupin type. No significant differences were observed in FCR based on lupin type (P > 

0.05), SYN presence (P > 0.05) or as a consequence of interaction between the two 

variables (P > 0.05). However, numerical tendencies appear to display a decrease in FCR 

following SYN inclusion. Lupin type was not observed to display a significant effect on 

specific growth rate (SGR) (P > 0.05). However, SYN inclusion was observed to 
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significantly increase SGR (P = 0.03), with no dependence on lupin type (P > 0.05). No 

significant effect of lupin type was observed upon protein efficiency ratio (PER) (P > 

0.05). SYN inclusion was observed to impart a near significant increase upon PER (F = 

5.87, P = 0.07), with no observed dependence upon lupin type (P > 0.05). No significant 

effects on K-factor (K-F) were observed as a consequence of lupin type, SYN presence or 

interaction between the experimental ingredients (P > 0.05). Following prolonged 

observation of animal behaviour, mortalities were deemed to stem from hierarchal, 

territorial aggression, confirmed thorough post-mortems revealing no signs of pathology. 

Mortality rate was accelerated following the loss of individuals causing a reduction in 

stocking density and consequently this increased aggressive behavioural interaction 

between individuals. The trial was preemptively terminated at day 49 on these grounds, 

given environmental enrichment increases aggression in this species (Barreto et al., 

2011) and supplementing stocking density is non-conducive of experimental growth 

trials. Thus, survival is discounted as a statistically meaningful analysis of nutritional 

status within the experimental animals. The survival rates serve to explain discrepancies 

between growth indices (FCR and SGR) and weights (FW and WG). Including fish 

euthanised at day 26, a total of 1553, 2094, 2112 and 1638 g of fish were removed from 

the YLC, YLS, BLC and BLS treatments respectively, between days 0 and 49.  

3.3.2 Carcass composition and nutrient retention 

No significant effect of lupin type, SYN inclusion or interaction between the two dietary 

variables was identified in any of the analysed carcass nutrient and mineral 

concentrations (all P > 0.05), the results of which are displayed in Table 3.3.  
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Table 3.2 

Fish and feed performance values of the dietary treatments 

 

Diet   

YLC YLS BLC BLS Sig. Interaction 

IW (g) 36.24 ± 0.28 36.40 ± 0.11 36.20 ± 0.45 36.02 ± 0.03 NS - 

FW (g) 100.67 ± 5.03  114.12 ± 1.09  98.01 ± 3.10  110.61 ± 2.11  P = 0.02 C vs S 

WG (g) 64.43 ± 5.32  77.72 ± 1.20  61.66 ± 2.43  74.59 ± 2.09  P = 0.02 C vs S 

SGR 2.13 ± 0.13  2.36 ± 0.01  2.22 ± 0.01  2.37 ± 0.11  P = 0.03 C vs S 

FCR 1.39 ± 0.13 1.23 ± 0.04 1.28 ± 0.00 1.21 ± 0.10 NS - 

PER 1.98 ± 0.14 2.32 ± 0.00 2.18 ± 0.13 2.24 ± 0.13 NS - 

K-F 2.04 ± 0.13 2.06 ± 0.03 2.01 ± 0.07 1.96 ± 0.02 NS - 

Survival (%) 88.64 ± 0.00 81.82 ± 0.03 81.82 ± 0.03 89.77 ± 0.02 -  

Abbreviations: YLC = yellow lupin basal diet; YLS = yellow lupin basal + Synergen™ (0.1%); BLC = narrow-leaf lupin basal diet; BLS = narrow-leaf lupin basal + 

Synergen™ (0.1%); IW = initial fish weight; FW = final fish weight; WG = weight gain (g); FCR = feed conversion ratio; SGR = specific growth rate; K-F = k-factor 

condition index; Sig. = statistical significance; NS = not significant; C = grouped control diets; S = grouped SYN 0.1% diets. 

Values expressed as mean ± S.D (n=2). Statistical test: Two-Way ANOVA + Fisher’s LSD (lupin type x SYN presence).  

a, b Diets possessing the same superscript in the same row are not significantly different (P≤0.05), no superscripts indicate no significant difference between any diets 

Table 3.3 

Concentration of macronutrients and minerals in the whole carcasses of the experimental Nile tilapia 

 

Diet   

YLC YLS BLC BLS Sig. Interaction 

Macro composition (%)       
Moisture  71.68 ± 0.00 71.37 ± 0.00 71.67 ± 0.00 71.63 ± 0.00 NS - 
Crude protein  14.50 ± 1.78 14.83 ± 0.06 14.72 ± 0.34 14.75 ± 0.78 NS - 
Crude lipid 10.08 ± 0.57 8.79 ± 0.17 8.56 ± 1.05 8.70 ± 0.95   
Ash 2.88 ± 0.19 3.51 ± 0.38 3.15 ± 0.03 3.01 ± 0.48 NS - 
Nitrogen-free extract 1.29 ± 0.34 1.63 ± 0.42 1.84 ± 0.87 1.63 ± 0.42 NS - 

Mineral conc.       
Ca (g/kg) 7.37 ± 0.33 8.88 ± 1.19 9.01 ± 2.04 8.25 ± 1.25 NS - 
P (g/kg) 4.59 ± 0.27 5.43 ± 0.69 5.47 ± 0.99 5.09 ± 0.62 NS - 
Mg (g/kg) 0.23 ± 0.02 0.27 ± 0.02 0.29 ± 0.04 0.26 ± 0.02 NS  - 
Zn (mg/kg) 14.03 ± 0.70 15.54 ± 0.95 16.33 ±3.90 16.19 ± 0.51 NS - 

Abbreviations: YLC = yellow lupin basal diet; YLS = yellow lupin basal + Synergen™ (0.1%); BLC = narrow-leaf lupin basal diet; BLS = narrow-leaf lupin basal + 

Synergen™ (0.1%); Sig. = statistical significance; NS = not significant.  

All values expressed as mean concentration of whole carcass (on wet basis) ± S.D. (n=2). Statistical test: Two-Way ANOVA (lupin type x SYN presence). 
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As displayed in Fig. 3.1, no significant effect of lupin type, SYN inclusion or interaction 

between the two dietary variables was identified in P retention (P > 0.05). A significant 

effect of lupin type was observed upon Mg retention (P = 0.01) with the yellow lupin 

treatments displaying lower retention of this mineral; no significant effect of SYN or SYN-

lupin interaction was identified (P > 0.05). No significant effect of lupin type, SYN 

inclusion or interaction between the two dietary variables was identified in Zn retention 

(P > 0.05). 

 
Figure 3.1 

Phosphorous, magnesium and zinc retention within the carcass of the experimental Nile 

tilapia (mean + S.E. n=2). Solid black bar = BLC, dashed black bar = BLS, solid grey bar 

= YLC, dashed grey bar = YLS. Bars with the same suffix are not significantly different 

(based upon the lupin type variable), no suffix denotes no significant difference.  

 

3.3.3 Haematology and serology 

At day 49 of the trial, no significant differences were observed in haematocrit (% PCV) 

(P > 0.05), haemoglobin (g/dl) (P > 0.05), blood glucose (mg/dl) (P > 0.05) or serum 

lysozyme (U/ml) (P > 0.05). Results of haematological and serological analyses are 

displayed in Fig 3.2.
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Figure 3.3. Haematological and serological parameters of the experimental Nile tilapia at day 49 (mean + S.E. n = 6).
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3.3.4 Intestinal morphology 

Graphical representation of average enterocyte heights (EH) over the trial period are 

displayed in Fig 3.3A. No significant effect of lupin type or SYN inclusion alone was 

identified upon ranked EH over all of the time points. However, time was observed to 

significantly affect ranked EH (P = 0.02), with the overall ranks at day 26 significantly 

differing from day 0 (P = 0.01) and likewise, ranks at day 49 differing from day 0 (P = 

0.01) (not graphically presented). Within the controls, EH ranks were observed to not be 

significantly different between days 0 and 26 (P > 0.05), however, the values were 

significantly different between days 26 and 49 (P = 0.03) and days 0 and 49 (P = 0.01). 

With the SYN diets, a significant difference in EH ranks were observed between days 0 

and 26 (P < 0.01) and days 26 and 49 (P = 0.02), however, no difference was observed 

between days 0 and 49 (P > 0.05). Furthermore, a significant interaction between SYN 

inclusion and time was observed upon EH ranks (P = 0.01). The controls displayed 

significantly lower EH ranks than the SYN treatments at day 26 (P = 0.02), whilst the 

trend was significantly the inverse at day 49 (P = 0.04).  

Graphical representation of intestinal perimeter ratios (PR), over the trial period, is 

displayed in Fig 3.3B. No significant effects of dietary ingredients alone, or as 

interactions, were observed upon PR (P > 0.05). Time was observed to significantly 

affect this grouped parameter alone (P < 0.01), between days 0 and 26 (P < 0.01) and 

consequently days 0 and 49 (P < 0.01). No difference was detected between the overall 

values recorded between days 26 and 49. Significant effects of time upon PR appeared 

independent of lupin type and SYN presence. However of note, a near significant 

interaction between lupin type and SYN presence was detected (F = 2.63, P = 0.08), as 

a consequence of values observed within the yellow lupin diets. 
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Figure 3.3  

Midgut macrostructural parameters of Nile tilapia fed diets containing lupins, with and 

without inclusion of Synergen™; displaying independent dietary treatments (n = 6) and 

grouped variables (n = 12).  

(A) Enterocyte height (µm). (B) Perimeter ratio (PR). Values are displayed as mean ± 

S.E. Dashed line = day 0 (n = 6). 

YLC, YLS, BLC, BLS = independent dietary treatments; YL = grouped yellow lupin diets, 

BL = grouped narrow-leaf lupin diets; Con = grouped control diets, SSF = grouped SSF-

containing diets. Same letter superscripts (a, b, c, d) in the same group are not 

significantly different (P > 0.05). Bars of the same time point displaying * or ¥ are 

significantly different from one another (P ≤ 0.05).  
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Table 3.4 

Ultrastructural measurements of Nile tilapia midgut after 49 days of feeding diets containing lupins, with and without Synergen™.  

 

Diet   

YLC YLS BLC BLS Sig. Interaction 

MVCT (/µm2) 50.13 ± 5.00 49.78 ± 10.56 52.28 ± 9.74 54.75 ± 7.66 NS - 

MVD (µm) 0.12 ± 0.00 0.12 ± 0.01 0.11 ± 0.01  0.11 ± 0.00  P = 0.03 Y vs NL 

MVH (µm) 1.12 ± 0.12  1.25 ± 0.08  1.30 ± 0.11  1.21 ± 0.12 P = 0.03 C vs C 

TAS (µm2 / 1µm2) 21.60 ± 1.78 24.77 ± 3.80 24.91 ± 3.82 24.56 ± 2.19  NS - 
Abbrevations: Y = grouped yellow lupin treatments; NL = grouped narrow-leaf treatments; C = control diet. All values expressed as mean ± S.D. (n=6). Statistical test: 

Two-Way ANOVA (lupin type x SYN presence). 

 
Plate 3.3 

TEM micrographs of Nile tilapia midgut brush border after 49 days of feeding diets containing lupins, with and without Synergen™. 

A & B = YLC; C & D = YLS; E & F = BLC; G & H = BLS; I = YLC; J = YLS. Scale bars all display 1 µm.  
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Results of the ultrastructural appraisal of midguts taken from the experimental animals 

are displayed in Table 3.4, with micrographs exhibited in Plate 3.3. No significant effects 

of lupin type, SYN presence or an interaction between the two variables were observed 

upon microvilli counts (MVCT) (P > 0.05). Microvilli diameter (MVD) was observed to be 

significantly affected by lupin type alone (P = 0.03), with significantly highest MVD in the 

yellow lupin diets (P = 0.03). No effect of SYN inclusion alone or through an interaction 

between the ingredients was detected (P > 0.05). No significant effect of grouped lupin 

type or SYN presence alone was observed upon Microvilli height (MVH) (P > 0.05). 

However, a significant interaction between lupin type and presence of SYN was detected 

(P = 0.03), the difference was detected to lie within the control diets, in the absence of 

SYN, with significantly lower MVH in YLC than BLC (P = 0.01). There was no significant 

difference between the diets containing SYN (P = 0.53). To note, a near significant 

difference was detected between the YLC and YLS treatments (P = 0.06). No significant 

effect of lupin type, SYN presence or an interaction between the two dietary variables 

was observed upon estimated total absorption surface area (TAS), at the ultrastructural 

level (P > 0.05).   

 

3.4 Discussion and conclusion 

In the present study, comparison between the lupin basal diets seems to suggest that 

there was no significant effect of lupin kernel meal (LKM) type on performance. This 

appears to be in correspondence with findings by Glencross et al. (2006), whom did not 

observe any difference in performance between rainbow trout fed a yellow (cv. Wodjil) 

lupin protein concentrate (LPC) or a narrow-leaf (cv. Gungarru) LPC. A later study by 

Glencross et al. (2011), again in rainbow trout, similarly did not detect any significant 

difference between yellow (cv. Wodjil) and narrow-leaf (cv. Myallie) LKM. However, it 

must be noted that effective cross-cultivar comparisons can be particularly problematic 

as agronomic activities can alter nutritional traits either at the breeding or cultivation 
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stage. Demonstrating this, inclusions of different narrow-leaf lupin cultivars in the diets 

of tiger prawn (Penaeus monodon) resulted in differences of FCR between prawns fed 

the different cultivars (Smith et al., 2007). Salini and Adams (2014) similarly reported 

significant differences in FCR between white lupin (L. albus) cultivars and tendencies 

towards differences in narrow-leaf cultivars in Atlantic salmon. In an Ethiopian cultivation 

study, Yeheyis et al. (2012) identified a significant interaction between growing location 

and cultivar in a number of nutritional parameters. The present study utilised lupins 

grown in the U.K., conversely to the vast body of information which exists upon the 

utilisation of lupins grown in Oceania and to a fair extent central Europe. Nonetheless, in 

the study by Salini and Adams (2014) which investigated a number of white, narrow-leaf 

and yellow lupin cultivars, in the diets of Atlantic salmon, it was reported that the FCR of 

fish fed the only yellow LKM cultivar, Pootalong, was higher than all other dietary 

treatments and significantly greater than the narrow-leaf LKM cultivar, Jindalee. This 

appeared to show that Pootalong was of the most inferior nutritional quality. The YLC 

diet in the present study, also of the cultivar Pootalong, expressed numerically inferior 

SGR, FCR and PER compared to the BLC diet, therefore there may be a tendency 

towards correspondence with the findings of Salini and Adams (2014).  

Following inclusion of Synergen™ (SYN), the fish displayed significant improvements to 

their overall weight gain, final weight and SGR, in both lupin varieties. These findings 

were supported by strong tendencies towards reduced FCRs which were reflected in a 

near significant difference. The lack of corresponding significance in FCR parameters is 

suggested as attributable to low replication of the study paired with the dampening of 

numerical differentiation in this parameter. The greatest improvements to performance 

were observed in the SYN-supplemented yellow lupin diet. Contrary to these findings, a 

previous study investigating the supplementation of a similar product (Allzyme®-SSF) in 

narrow-leaf lupin diets for swine, revealed no effects on growth performance and was 

attributed to a lack of enzyme-NSP specificity by the authors (Kim et al., 2011). 

However, multi-enzyme supplementations in yellow lupin meal diets for poultry 
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(Olkowski et al., 2010; Olkowski, 2011) and swine (Kim et al., 2008) have been 

observed to promote performance in a manner which corresponds with results in the 

present trial. No statistically significant differences in PER were found among the dietary 

parameters. However, the effect of SYN on this parameter was observed to be close to 

significance. Observation of the numerical trends seems to display a marked increase in 

PER of SYN fed fish, again particularly with regards to the yellow lupin diet. In 

correspondence with these results, Allzyme®-SSF was observed to improve protein 

efficiency in a practical broiler formulation (Yadava et al., 2009), indicating that the 

solid-state fermentation process can impart residual bioactivity capable of improving the 

animal’s efficacy in converting dietary protein to body mass. From the results of this 

investigation, there is strong indication that SYN altered the nutritional characteristics of 

the diets in some way, once ingested. Due to differences in the overall nutritional profiles 

of yellow and narrow-leaf lupins and the multi-functional potential of SYN, a number of 

nutrient categories can be explored in an attempt to identify probable causes of the 

observed results.     

In nutritional studies, focus is typically turned to crude protein content and amino acid 

profile but it is of worth to assess protein families when they are particularly distinct 

from those encountered in the norm or when diets are formulated to be isonitrogenous 

and amino acid profiles are unavailable, as is the case in this study.  

The composition of lupin protein is characterised by its main seed storage proteins; 

these are classified as α, β, γ, and δ-conglutins. A recent study by Foley et al. (2015) 

determined that the vast majority of conglutins in yellow lupin (cv. Pootalong) belong to 

the δ family; whilst the dominant conglutins in narrow-leaf lupins appear to be those 

belonging to the β family, followed by δ-conglutin. Expression of δ-conglutin in cv. 

Pootalong appears to be over double that of narrow-leaf cultivars (Foley et al., 2015). A 

recent in vitro assessment of yellow lupin (cv. Wodjil) seed meal identified the presence 

of a δ-conglutin with particularly low-digestibility when faced with a digestive enzyme 

extract from Atlantic salmon (Ogura et al., 2013). Specifics of why this protein is of low-
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digestibility remain a question at this time as optimal conditions required for effective 

degradation of δ-conglutin, as a whole, are yet to be rigorously investigated. However, it 

is possible that a greater concentration of δ-conglutin could impair protein availability in 

diets containing yellow lupin. Therefore, this could be a contributing factor to the poorer 

performance and PER of fish fed the YLC diet.  

The most studied lupin conglutins are those belonging to the γ family, this is due to 

potential anti-hyperglycaemic properties for humans (Schiarea et al., 2013). 

Glycosylated γ-conglutin possesses a saccharide chain which promotes return to a folded, 

trypsin-resistant conformation following encounter of acidic surroundings (Duranti et al., 

1995). In addition to this, it was later proposed that γ-conglutin is not liable to any 

proteolytic action above pH 4.0 and exhibits “all or none” degradation (Capraro et al., 

2009). Further evidence now suggests that γ-conglutin is resistant to both trypsin and 

pepsin; whilst proteolytic degradations of conglutins are collectively dominated by 

chymotrypsin (Czubinski et al., 2014). Nile tilapia have a limited stomachal capacity and 

residence time, predominantly relying upon protein digestion at the proximal intestine, 

under alkaline pH conditions (Uscanga et al., 2010; Hlophe et al., 2014). As such, 

capacity to effectively degrade lupin conglutins may be slightly limited. Deglycosylation, 

to cleave the problematic saccharide side-chain, of γ-conglutin can be achieved through 

the action of N-glycosidase (Duranti et al., 1995) but at this time, it is not possible to 

determine whether this enzyme was present at the critical stage when catalysis could 

occur. Concentrations of γ-conglutin appear to be slightly higher in yellow lupin but it 

must also be noted that the γ family appears to be the smallest conglutin fraction in both 

species investigated (Foley et al., 2015).  

Explanation of the results observed on the basis of protein degradation is possible; 

indeed, similar SSF processes have reported proteases as present in the final functional 

additive (Passos et al., 2015). However, the wheat bran substrate is low in protein so 

the operational fungus species, Aspergillus niger, is likely to produce a limited capacity 

for continued fermentation of this nutrient class. Due to the predominantly fibrous 
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nature of wheat bran, a large proportion of residual bioactivity is likely to be specific to 

carbohydrate fractions. Therefore the influence of residual carbohydrases can be 

considered as an explanation of the observed results. Observations have indeed 

indicated that all lupin conglutins are glycosylated, containing mannose, galactose and 

glucosamine residues (Eaton-Mordas and Moore, 1978; Ferreira et al., 1995). Thus, even 

though lupin-derived protein is generally considered to be of relatively high digestibility 

to fish (Glencross et al., 2003, 2005, 2006, 2008) there is theoretical potential for a 

significant facilitation of degradation via carbohydrase action within the digestive system. 

This could be considered for both glycoprotein and carbohydrate fractions alike. 

Generally, carbohydrate utilisation by fish is poor and this is also true of tilapia, in a 

commercial context, despite its omnivorous nature (Shiau, 1997; Lin et al., 1997). 

Instead, carbohydrates may impart undesirable characteristics upon the GIT and its 

contents, classifying them as ANFs. These regularly arise from increased viscosity of the 

digesta as discussed throughout Sec. 1.3.2. Extensive reviews of carbohydrate utilisation 

have been published by a number of authors (Krogdahl et al., 2005; Hemre et al., 2002; 

Stone, 2003a), the general consensus affirming that complex carbohydrates are grossly 

unavailable outside of strictly herbivorous fish but lower molecular weight carbohydrates 

(i.e. mono- and disaccharides) tend to be readily available. If low molecular weight 

carbohydrates become available to the animal then they may be utilised as 

metabolisable energy, reducing the cost of gluconeogenesis (Cowey et al., 1977). 

Ultimately, the non-carbohydrate carbon substrates previously utilised for glucose 

synthesis, notably proteins, are spared for growth. Carbohydrate induced protein-sparing 

has been widely acknowledged as effective in a vast number of finfish species, 

throughout the trophic feeding levels; these include turbot (Scopthalmus maximus) 

(Zeng et al., 2015), Solea senegalensis (Guerreiro et al., 2014), Brook trout (Salvelinus 

fontinalis) (Amin et al., 2014), Dentex dentex (Perez-Jimenez et al., 2015) and Nile 

tilapia (Azaza et al., 2015), to name but a few. Furthermore, glucose absorption can be 

impaired by dietary fibre (Shiau et al., 1989), so vigorous degradation of fibre could 
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accentuate the absorption of monosaccharides by the fish. Blood glucose levels were 

examined as a possible indicator of carbohydrate degradation and monosaccharide 

uptake; however, no significant differences were detected between lupin types, nor were 

any effects observed following SYN application. However, the methods implemented 

must be scrutinised and questioned whether definitive. Blood samples were collected 

from fish following a fasting period of approximately 24 hours, in accordance with facility 

husbandry and welfare guidelines. Although glucose turnover in fish is low in comparison 

with mammals and birds (Polakof et al., 2012), the post-feeding delay may have 

presented sufficient time for restoring baseline blood glucose levels. It has been reported 

that omnivorous fish achieve this much more rapidly than obligate carnivores (Legate et 

al., 2001). It may also be of consideration that the blood glucose lowering peptide, γ-

conglutin, could play a role in maintaining blood glucose levels in lupin-fed fish. 

Nonetheless, previous work on yellow lupin applications in turkey feeds similarly did not 

detect any alteration to serological parameters (Krawczyk et al., 2015)  

It is also important to consider that a degradation of fibre fractions could promote the 

digestive availability of protein, as has been observed following supplementations of β-

glucanase and xylanase in rainbow trout (Dalsgaard et al., 2012), as well as β-

mannanase in swine (Lv et al., 2013; Ao et al., 2010a; Wang et al., 2009) and broilers 

(Li et al., 2010). Glencross et al. (2003) examined the influence of lupin oligosaccharides 

on nutrient digestibility in rainbow trout, concluding that removal of these components 

by α-galactosidase, or ethanol extraction, significantly improves N digestibility and that 

monosaccharide derivatives of this process are readily absorbed by the animal. 

Galactosidase has been reported as present following SSF of wheat bran by A. niger 

(Passos et al., 2015), thus there is a strong possibility of such an occurrence during this 

study. Overall, improved growth and tendencies towards improved PER would be 

strongly supported by the theories of protein-sparing and increased digestibility of 

protein through carbohydrate degradation.  



92 
 

In the context of discussed results, it is of importance to consider and assess why 

improvements to performance appeared to be greatest following SYN supplementation in 

the yellow LKM diet. Yellow LKM typically contains a greater carbohydrate concentration 

than other narrow-leaf LKM. Bahr et al. (2014) reported that the dehulled seeds of the 

narrow-leaf lupin cultivars Probor, Borlu, Boregine and Vitabor contain 80, 61, 88 and 87 

g/kg of carbohydrate, respectively, whilst the yellow lupin cultivar, Bornal, contains 104 

g/kg of carbohyrdate. Additionally, yellow lupin contains around double the total 

concentration of oligosaccharides than other commercially cultivated lupins (Kasprowicz-

Potocka et al., 2013; Glencross et al., 2004a); in particular, raffinose family 

oligosaccharides, including α-galactosides, are more predominant in yellow than narrow-

leaf lupin (Pisarikova and Zraly, 2009; Gdala, 1997). Potential for carbohydrase activity 

is therefore greater in yellow LKM, which would correspond with why improvements were 

greatest following SYN partnership with this ingredient.   

Lastly, it is worth considering that a supplementary influx of available minerals and trace 

elements could promote growth and development. Carcass mineral concentrations firstly 

indicate that concentrations of Ca, P, Mg and Zn were higher in fish fed narrow-leaf lupin, 

which cannot be explained by the nutrient concentrations within the diet. Supporting 

these observations, magnesium retention was significantly lowest in fish fed the yellow 

lupin diets, whilst Zn was numerically lower. Such was also the case with P in the YLC 

treatments compared to the Narrow-leaf diets. This would seem to suggest that 

availability of macro minerals and trace elements is greater from the narrow-leaf diets, 

regardless of SYN presence. Phytate concentration tends to be far higher in yellow lupin 

than narrow-leaf lupin (Rutkowski et al., 2015) and likewise overall ash content is 

greater (Salini and Adams, 2014; Bahr et al., 2014). The presence of this anti-nutrient 

causes P and other minerals to be bound in an unavailable state, which could explain the 

trends observed. The supplementation of SYN in the narrow-leaf LKM diet appeared to 

display negligible effects. However, following SYN supplementation in the yellow lupin 

diet, observational trends appear to show an increase in carcass Ca, P, Mg and Zn. A 
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SYN presence within the yellow lupin diet appeared to particularly influence the 

availability of P as retention of this mineral was noticeably augmented, to a level similar 

to that of the narrow-leaf lupin diets. An action of exogenous phytase, derived from SYN, 

could explain the discrepancies between the YLC and YLS diets; although it is perhaps 

surprising that the same trend was not observed in Mg and Zn, which is a commonly 

associated effect (Debnath et al., 2005c; Laining et al., 2012; Vandenberg et al., 2012). 

Assuming that differences in phytate concentration correspond with the scientific 

literature, there is likely to be a more restricted capacity for improvement with phytase 

action upon the narrow-leaf lupin nutrient complex. One may also consider that elevated 

NSP content could impair absorption of minerals so there may be a more restricted 

capacity in the yellow LKM diet. Interestingly, phytase has also been demonstrated to 

improve the degradation of lupin conglutin, which could inter-tie with previously 

described results (Moura et al., 2013). Overall, despite indications of mineral liberation 

and absorption, this area remains unclear. In order to counteract difficulties in working 

with whole carcasses of teleost fish, this topic should be revisited using new approaches 

which can determine the bioavailability of minerals within the gut and deposition within 

individual tissues.  

The intestine plays a critical role in digestion, nutrient assimilation and to some extent 

pathogen defence. Anti-nutritional factors may negatively impact its integrity, thus 

hindering the before mentioned processes; whilst increased nutrient profile may 

substantially aid in its morphology and function. For these reasons, integrity of the GIT is 

a good indicator of nutritional status and overall health. To date, a limited number of 

investigations have been conducted upon the influence of lupin meals on gut morphology 

and so their effects on this vital organ are yet to be clarified. Smulikowska et al., (2014) 

reported that increasing levels of both yellow and narrow-leaf lupin caused detrimental 

effects to the potential absorptive area of the intestine in broilers. On the contrary, the 

inclusion of LKM in finfish diets has seemingly revealed little to no effect upon 

gastrointestinal histology, in a number of species (Omnes et al., 2015; Borquez et al., 
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2011; Refstie et al., 2006; Glencross et al., 2006; Glencross et al., 2004b). This appears 

to also be the case when diets are experimentally dosed with lupin alkaloids (Serrano et 

al., 2012; Serrano et al., 2011). Although lupins appear to show no pathological 

deterioration of gut integrity in fish, to the author’s knowledge, no known studies have 

examined tissue at an ultrastructural level. Furthermore, whether gut morphology can be 

modulated through exogenous fermentation sources in lupin-containing aquafeeds 

seems unexplored.  

Time was identified to induce a significant change to EH. It appears that the dietary 

transition of the animals collectively from a commercial high protein/energy and low ANF 

diet to high-lupin diets increased EH after initial feeding. It is perhaps to be expected 

that such a dramatic dietary shift would display some form of alteration to gut structure, 

however numerous previous studies reported no marked differences between lupin and 

fishmeal-based diets (Omnes et al., 2015; Refstie et al., 2006). However distinct trends 

in EH, relating to the presence or absence of SYN, were identified; demonstrating that 

ubiquitous increases in EH were not common of all the dietary treatments throughout the 

time points and that SYN may have an influence on gut morphology. Whilst the control 

diets displayed no marked alteration to EH until day 26, significant enlargement of 

enterocytes was indicated thereafter. Most notably, the YLC treatment appeared to 

retain a near identical EH to fish sampled at the initial time point. This is perhaps 

surprising when we consider that until present, the YLC appears to perform at a lower 

standard than the other dietary treatments, yet EH was similar to that of fish fed a diet 

with very low ANF content and a nutrient profile which exceeds requirements. Meanwhile, 

the SYN-fed fish collectively displayed significant increases in EH, by approximately 5 µm, 

between day 0 and 26. However, this measurement was identified to return to a level 

which was not significantly distinguishable from those observed at day 0 by day 49. 

Histomorphometric appraisal of enterocytes within the scientific literature appears to 

show that enterocyte-related characteristics are highly susceptible to change, in 

response to nutritional status. Salmonids have been reported to display reductions in 
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enterocyte size following starvation (Shaibani et al., 2013). This can similarly occur 

following more minor restrictions in nutrient profile, such as augmentation of soyabean 

meal inclusions (Peng et al., 2013). Godlewski et al. (2006) demonstrated that soaking 

and boiling of soyabean meal, to reduce ANF content, increased the proliferation of 

enterocytes within the gut of rats. Further, this process was observed to mitigate the 

rate of programmed cell death under the presence of raw soya inclusions (Godlewski et 

al., 2006). Functional feed additives have also been observed to modulate enterocyte 

size and proliferation, although they tend to become somewhat contradictory. For 

example, dietary nucleotides, which are recognised as highly beneficial to gut 

development and tissue repair in mammals, have been demonstrated to increase EH in 

red drum and turbot (Cheng et al., 2011; Peng et al., 2013). Conversely, supplementary 

mannan-oligosaccharides (MOS), a widely acknowledged prebiotic, have been 

demonstrated to result in lower enterocyte heights in sharpsnout seabream (Diplodus 

puntazzo) (Ferrara et al., 2015). The production of oligosaccharides by SYN within the 

gut has already been discussed as a probability, thus results presented by Ferrara et al. 

(2014) seem to correspond with those recorded under the current investigation.  

The present study provides a more in-depth quantitative appraisal than previous studies 

in the manner in which information on enterocyte height was collected prior to and 

during the feeding trial, which revealed developmental progressions, rather than a final 

suggested change. These fluctuations are proposed as a crude indication of dietary 

adaption; this could be due to nutrient provision and possibly establishment of equilibria 

within the gut microbiome. In terrestrial monogastrics, some studies have indicated that 

exogenous enzymes can liberate sufficient bioavailable nutrients to trigger enhanced 

performance without effect upon epithelial parameters (Amerah et al., 2008; Owens et 

al., 2008). Conversely, the results of this study indicate that exogenous facilitators of 

fermentation within the gut do elicit an effect upon epithelial cells and they demonstrate 

effectively that time is a critical factor in confidently identifying whether additives of this 

kind modulate morphology. Unfortunately, due to a lack of consistency over two time 
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points, it is not possible to confidently conclude at which level EH would be maintained in 

each treatment over time.  

Perimeter ratios of the midgut (PR) were observed to change dramatically from the initial 

measurements in the first half of the investigation. This information indicates that the 

functional border of the midgut, in all treatments, increased in surface area after the 

feeding of the commercial diet was ceased and the animals were fed the plant protein 

based diets. This is of interest in itself as greater surface area is routinely considered to 

be a beneficial characteristic but it appears it may not be indicative of an optimal dietary 

formulation. By day 26, all treatments were almost indistinguishable in their relative gut 

surface area. This was maintained, by and large, until day 49 in the YLC, BLC and BLS 

treatments. However the continuation to day 49 saw YLS-fed fish display numerically 

greater surface area than the other treatments and a significant increase from the 

recorded surface area at day 26, suggesting an increasing occupation of functional brush 

border within the lumen. This seems to correspond with findings by Olkowski et al. 

(2010), who detected significant elongation of villi in the intestine of broilers fed NSPase-

supplemented diets, based upon yellow lupin. Increases in absorptive area have similarly 

been observed through dietary inclusion of low molecular weight oligosaccharides 

intended as prebiotics (Dimitroglou et al., 2009; Anguiano et al., 2013), which would 

correspond with speculation of the hydrolysis of NSPs in this study. The results are 

further supported by reports of increased intestinal surface area via multi-enzyme 

supplementations in poultry (Wu et al., 2004; Zhu et al., 2014). Within this study, the 

greater functional surface area following feeding of SYN supplemented yellow LKM is 

considered a positive improvement as it indicates a greater potential for the digestion 

and absorption of nutrients, corresponding with performance. Coupled with a reduction 

in enterocyte height, it is suggested that the observations of the YLS group could 

indicate accelerated proliferation and migration of epithelial cells. However, this trend is 

somewhat contradictory in the BLS group for reasons which remain unclear.  
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Lupin type appeared to have a significant influence upon microvilli diameter under the 

present conditions, whereby microvilli were observed to be thicker in the yellow lupin 

treatments. This suggests that the microvilli would be less densely packed within the fish 

fed yellow LKM diet, which to an extent is supported by the observed trends in microvilli 

counts (MVCT). Therefore, it appears that in this instance, SYN supplementation in the 

yellow LKM diet was not capable of eliciting a positive response in the density of 

microvilli. Microvilli height (MVH) was similarly affected by lupin type however this 

occurrence was only present when the control diets were isolated from their respective 

SYN diets. The yellow LKM resulted in a depreciation of positive ultrastructural 

morphology compared with the narrow-leaf LKM. Once again, considering that MVH 

within the YLS treatment had a tendency towards being similar to that of those 

expressed in the narrow-leaf treatments, there is strong indication that SYN within the 

yellow LKM diet exerted a beneficial effect upon ultrastructure whilst these effects were 

somewhat negligible in the narrow-leaf LKM diet. These results seemed to be expressed 

in trends towards improved absorption surface area (TAS) in the yellow LKM diet with 

SYN, with no noticeable difference with the narrow-leaf LKM. Promotion of this 

characteristic is once again highly associated with prebiotic oligosaccharides, such as 

MOS and β-glucans in aquatic species (Daniels et al., 2010; Dimitroglou et al., 2010; 

Kuhlwein et al., 2013). Overall, results of the present study appear to suggest that 

alterations to the gut content did occur, particularly with regards to the supplementation 

of SYN in the yellow LKM diet. Such changes are highly attributable to alterations in the 

environment within the lumen, specifically modulation of the bioavailable nutritional 

profile of digesta.  

It is widely apparent that many of the histological observations noted in this study are 

common with effects observed following direct prebiotic supplementation or as a result 

of dietary additives which may hydrolyse polysaccharides into lower molecular weight 

carbohydrates. This being the case, modulation of the gut microbiome is highly 
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anticipated and should be visited for both confirmation and identification of possible 

health benefits.         

From observed improvements particularly to animal performance and gut morphology, it 

can be concluded that SYN seems to be an effective promoter of nutritional profiles in 

finfish diets. However, much further work is required to determine exactly how SYN 

promotes performance. Although it is speculated that hydrolysis of carbohydrates is the 

most probable explanation, a lack of quantified nutrient digestibility and mineral 

bioavailabilities makes it difficult to unravel explanations regarding specifically which 

nutrient hydrolyses promoted the growth of SYN-fed fish. Furthermore, interactions 

between the additive and the animals digestive function remain unclear considering this 

comprises largely of three key components; morphology, enzymes and microbiome. To 

understand the processes occurring within the gastro-intestinal tract following the 

presence of SYN, a more in-depth appraisal of each of these factors is required. It is 

suggested that the use of yellow lupin is pursued, as this partnership appeared to 

produce an accentuated effect in the present study. Relating to commercial application, 

the higher anti-nutrient content of yellow LKM lends itself as particularly appropriate for 

bioremediation by functional feed additives, all whilst the higher protein content makes it 

more desirable to the feed industry. It is also proposed that the use of more dietetically-

sensitive species, i.e. a carnivore, could facilitate the identification of contributing factors, 

as dietary intolerances become more pronounced and reversed. A species of this kind is 

also likely to be a more cost-effective candidate if application of the experimental 

ingredient is successful, as a higher market value allows added expenditure on feed 

additives. Continuation of this work will aim to explore these key considerations and 

hypotheses in Chapter 4. 
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CHAPTER 4. Application of Synergen™ in the diets of rainbow trout 

containing high yellow lupin inclusion  

4.1 Introduction 

4.1.1 Salmonid culture 

Salmon, trout, char, grayling and freshwater whitefish (subfamily - Coregoninae), 

comprise the Salmonidae; a family of teleost fishes possessing a characteristic adipose 

fin and all breed in freshwater but extensively express anadromous life-cycles. There is 

uncertainty as to the true origins of salmonid culture but the crude widespread practice 

began to form at the turn of the 20th century (FAO, 2016; British Trout Association, 2015; 

Hardy et al., 2000). Being highly prized game animals, breeding programmes were 

initially developed for restocking or introduction to rivers for the purpose of sport fishing. 

These earliest reports of salmonid farming involved collection of wild seed and began to 

pave the way in understanding the general husbandry requirements of trout, salmon and 

char. Proceeding the 1950s, the first commercial trout farms, employing full life-cycle 

cultivation, became established and the popularity of these livestock as an accessible 

table fish soared (British Trout Association, 2015). Naturally, developments in genetic 

strains, feeding practices and production technologies quickly followed suit; this led to 

the complex nature of operating procedures and equipment which we see today. 

Atlantic salmon (Salmo salar) production is undoubtedly the greatest development to 

date; global production was approximately 1 tonne in 1964, whilst by the end of 2013 

this figure stood at over 2 million tonnes (FAO, 2016). Norway is the world’s biggest 

producer of Atlantic salmon, followed by Chile and Scotland, all of which now depend 

greatly upon salmon farming for the overall stability and prosperity of their economies 

(FAO, 2016). Production of Atlantic salmon is also practiced in a number of other nations 

including Ireland, Iceland, Canada, the United States, the Faroe Islands and Tasmania. 

Research and development has been so rigorous in Atlantic salmon farming that a 

transgenic strain has recently been approved for human consumption by the U.S. Food 

and Drug Administration (FDA) (FDA, 2015); being the first GM animal to be granted 



100 
 

consent of this kind. This represents not only scientific achievement in salmonid farming 

but a significant milestone in commercial livestock production as a whole.  

Rainbow trout (Oncorhynchus mykiss) farming began well before that of Atlantic salmon, 

with the species being exported over the globe for introduction as a sport fish. 

Nevertheless, commercial production continues to grow exponentially. Between the same 

years of 1964 and 2013, production of this species increased from approximately 31 

thousand tonnes to approximately 814 thousand tonnes (FAO, 2016). Introduction and 

farming of rainbow trout has been so widespread that the species is now present on 

every continent except Antarctica (FAO, 2016). The importance of rainbow trout extends 

beyond that of the table market as it is still a highly-prized sport fish. In certain regions, 

for example within the U.K. and U.S.A., numerous rainbow trout hatcheries and grow-

out farms are supported more so by restocking of natural river systems or dedicated 

angling waters than the table market itself. Farming of sport fish demands an equally 

healthy and robust animal. Moreover the pressure of producing aesthetically attractive 

animals is arguably more so than that of the table market; this is because blemishes and 

deformity, e.g. fin abrasions, shortened opercula and skeletal malformations, may not be 

disguised by processing techniques (e.g. filleting). Lastly, the species serves extensively 

within research as it is viewed as a general salmonid model; therefore the species is a 

centre pin to advancing knowledge in the culture of salmonids. Clearly, despite its more 

minor contribution as a food fish, compared to Atlantic salmon, rainbow trout represent a 

formidable pillar in salmonid aquaculture.  

Other salmonid species, for example brown trout (Salmo trutta), brook trout (Salvelinus 

fontinalis), Arctic char (Salvelinus alpinus) and Chinook salmon (Oncorhynchus 

tshawytscha) are also cultured in various global locations. Albeit minor in terms of 

comparative current production volume, they still remain financially bountiful within 

niche markets and may continue to show promise for future development.  
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From the very true founding of the industry some 50 years ago, to one of the most 

lucrative forms of finfish farming today, salmonid production is one of the greatest 

success stories in modern farming. Nevertheless, despite huge scientific and 

technologically advances over the past decades, many issues threaten to mar the 

reputation and productivity of salmonid farming; not the least of which, nutrition.  

4.1.2 Trends in salmonid diet formulation 

Salmonids require energy dense diets consisting of high-grade protein and lipid; this 

means feeding costs are exceptionally high. Of course, each operation will vary according 

to its average performance, physical conditions and feed source but feed typically 

contributes well in excess of 60 % of the total operating expenses; perhaps unsurprising 

considering 1 tonne of salmonid grow-out diet currently retails between 1000 and 1250 

GBP (personal observation).  

The fishmeal (FM) and oil (FO) crisis has, and continues, to place tremendous pressure 

upon the salmonid industry but seen as the animals are naturally carnivorous, reducing 

dependency upon these ingredients has been a challenge, to say the least. These species 

require diets containing an amino acid profile similar to that of FM, as well as a correct 

balance of essential fatty acids (EFA), again similar to that of FO. Utilisation of 

carbohydrates is highly restricted in salmonids and their over inclusion may result in the 

increased utilisation of fat as an energy source (Skiba-Cassy et al., 2013).    

Evidently recreating adequate salmonid diets with plant-derived products has been 

somewhat problematic. Nevertheless, successes have been achieved to date in reducing 

inclusion of marine-derived energy sources. Through ingredient manipulation, careful 

formulation and extensive nutrient supplementation, FM and FO inclusions are steadily 

reducing. In 1990 feeds used in Norwegian salmon production contained, on average, in 

excess of 65 % FM, by 2013 this figure stood at just over 18 % (Nofima, 2014). With 

regards to rainbow trout, this figure has been reduced to around 15 % in many diets.  
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Following a wealth of scientific research over the past few decades, soyabean products 

have predominantly filled the space previously occupied by FM, with more minor 

contributions from the likes of wheat, fababean, rapeseed, sunflower and guar. Bulk 

ingredient research has now begun to slow down. Attention is now increasingly being 

turned to solutions such as nutritional programming and genetic selection for carnivorous 

fish tolerance to plant proteins (Quinton et al., 2007a; Quinton et al., 2007b; Le Boucher 

et al., 2013; Guerden et al., 2013; Overturf et al., 2013; Yamamoto et al., 2015). This 

demonstrates that we are reaching a limit in what can naturally be achieved in 

ingredient selection but we still have not reached desired goals. Quite simply, we have 

attained much of what can be done with regards traditional feed manufacture and 

process technologies, now manipulation of the animal is required in order to optimise 

feed and cost efficiency. Although, a strain of GM Atlantic salmon has been approved, it 

is unrealistic to assume that advances in genetic manipulation and selection of salmonids 

will be made at a rate capable of keeping pace with the necessity for immediate dietary 

shifts. These are lengthy processes involving rigorous research, licencing, extension 

work and uptake from the sector. It is crucial to understand limitations and their species-

specific potency when formulating future solutions.  

4.1.3 Sustainability in salmonid nutrition 

Thus far in this thesis, the ‘three pillars of sustainability’ (economics, environment and 

society) have featured in context of salmonid nutrition and are revised as follows so as 

to clarify the real necessity for innovative solutions. 

To summarise and expand upon economic aspects: 

1. Salmonid farming is a lucrative industry driven by a high-quality product, which 

equally requires high expenditure. 

2. Fishmeal continues to decrease in its economic viability and more cost-effective 

approaches are required to support the increasing volume of feed required.  
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3. Supplements and additives aimed at combating nutritional risks (e.g. minerals 

and prebiotics) are costly yet endogenous counterparts are wasted through a lack 

of bioavailability. 

4. Detriment to health and integrity of physiological, morphological and symbiotic 

characteristics may lead to a significant depreciation in ‘economic FCR’. 

The author proposes economic FCR to be defined as – ‘the biological FCR of a stock (in 

monetary equivalent), minus the financial loss from individuals with depreciated value 

before market; due to disease, morphological defects, premature dispatch and death’.  

Summarising environmental aspects: 

1. The drive for changes in dietary formulations is in part fuelled by the necessity for 

reducing dependence upon wild-capture fisheries for FM supply. 

2. Excess nutrient loading of the environment has been shown to cause negative 

impacts upon surrounding ecosystems. 

3. Sourcing micronutrients may cause severe detriment to the environment. 

Lastly, summarising and expanding upon societal aspects includes: 

1. Clients and consumers heavily scrutinise products thus they must be of highest 

quality.  

2. Many welfare issues surround the risk of malnutrition. 

3. Damage to recreational resources (e.g. rivers) surrounding salmonid operations 

mars consumer perception of the industry. 

4. We must consider indirect social implications within the supply chain of mineral 

supplements. 

Synergen™ has so far provided indications that many of these factors can be directly or 

indirectly improved. This investigation aims to test and quantifiable identify whether this 

SSF product may improve the availability of specific nutrients in rainbow trout feeds 

containing high dietary inclusion of yellow lupin. If effective, promotion of performance 
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and feed efficiency is to be expected and increased concentrations of specific nutrients 

will be present throughout the carcass if levels of these nutrients exceed maintenance 

requirements. The salmonid intestine is highly sensitive to numerous ANFs (Merrifield et 

al., 2009; Iwashita et al., 2009; Gu et al., 2014); therefore, degradation  of such 

components will likely result in identifiable morphological differences in gut macro and/or 

ultrastructure. Furthermore, if the SSF product increases digestive capacity and thus 

changes the profile of nutrients in the posterior intestine, this will likely be reflected in a 

modulation of the associated microbial community within. Responses in the fish’s own 

endogenous hydrolytic secretions may also occur. Supplementary availability of nutrients 

may also influence health and immunological parameters, outside of the intestine and 

thus these will also be explored. The relevance of such findings will be discussed in the 

context of the contemporary issues relating to salmonid culture which have been 

discussed in this introductory section.  

 

4.2 Materials and methods 

4.2.1 Experimental design 

The feeding trial was designed to contain two phases; these were the initial 10 week 

nutritional phase (N-phase) leading on to a digestibility phase (D-phase). The N-phase 

was aimed at determination of performance, whilst the focus of the D-phase was 

quantification of nutrient availability. Sampling of tissues and digesta was conducted at 

the end of the N-phase as well as the D-phase. The time-points are specified herein but 

results will not be presented in chronological order of sampling; rather, in a format which 

is more lending to ease of data interpretation.  

 

4.2.2 Experimental animals and housing 

Both trial phases were conducted at Plymouth University’s West Aquarium research 

facility, within the same system and utilising the same batch of fish throughout. Juvenile 
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XXX triploid rainbow trout (Oncorhynchus mykiss) (~ 20 g), of wild phenotype, were 

obtained from Exmoor Fisheries (Somerset, UK).  

Upon entering the research facility, the fish were acclimatised for 2 hrs. Following this, 

the fish were stocked into circular 120 L tanks on a ~ 6200 L RAS, powered by a 1.50 hp 

pump (Certikin HPS150M; Oxfordshire, UK). Throughout conditioning, fish were fed 

BioMar Efico Enviro (BioMar; DK) at 1-2 % BW per day. Throughout conditioning and the 

trial, adequate water quality was maintained by biological, drum screen (Aquasonic 

DF100; AUS) and cartridge (HidroClean 105 µm; UK) filtration, supplied by a 0.75 hp 

pump (Certikin HPS575M; Oxfordshire, UK) at 20 m3/hr. Temperature was maintained at 

12.5 °C ± 1 via Optipac pool chillers (PSA; FR). Dissolved oxygen was maintained above 

90 % with air supplied via low pressure side channel blower (Rietschle Ltd.; Hampshire, 

UK) to perforated piping below biological media and air stones within tanks. A 12 hrs 

light : 12 hrs dark photoperiod was implemented with AquaRay LED lights and timers 

(Tropical Marine Center; Hertfordshire, UK).  

A 2 week elevation in salinity (max. 5 ppt), coupled with 2 weekly salt baths (35 ppt, 10 

min) and 2 formalin baths (25 mg/l, 30 min), was performed following identification of 

Gyrodactylus sp.. Furthermore, a 7 day course of orally-administered florfenicol (Florocol, 

MSD Animal Health; Buckinghamshire, UK), at 10 mg/kg BW per day, was implemented 

as a routine precautionary measure. Clinical examination detected no ectoparasites, or 

clinical symptoms of any other pathogenic threats, for 10 days prior to N-phase 

commencement.  

Following the conditioning period, the fish were graded by size and visual condition. For 

the N-phase, selected fish were stocked into quadruplicate tanks of 37 individuals (n = 

4). Average initial fish weight was 43.58 g ± 0.41, corresponding to a stocking density of 

13.44 kg/m3 ± 0.13. Following the N-phase, the fish were restocked into triplicate tanks 

(remaining in their respective treatments) in groups of 28 individuals, for 
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commencement of the D-phase (n = 3). Average individual fish weight at this stage was 

159.57 g ± 12.27, corresponding to 35.90 kg/m3 ± 2.76.  

 

4.2.3 Experimental ingredients and diets 

Four experimental diets were formulated, using FeedSoft Pro™ (TX, USA), so as to 

satisfy all known nutrient requirements of rainbow trout (NRC, 2011) and be 

isonitrogenous, isolipidic and isocaloric (Table 4.1). The lupin control diet (LC) was 

formulated to contain 30 % yellow lupin (L. luteus cv. Pootalong), obtained from the 

same batch described in Chapter 3. Two inclusions of Synergen™ (SYN) were 

incorporated into the basal mix at the expense of corn starch. The SYN used was from 

the same batch as previously utilised and presented no notable difference in storage 

time prior to feed manufacture and feeding, compared with the previous tilapia diets. 

The experimental inclusion levels of SYN were 0.1 and 0.5 % (LS0.1 and LS0.5, 

respectively). A FM-based reference diet was also utilised.  

 

 

4.2.4 Compositional analyses 

Analyses were undertaken following methods described in Sec. 2.7 and 2.8.  
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Table 4.1. Feed formulations, proximate compositions and element concentrations of 

the experimental rainbow trout diets. 

 Diets 

 LC  LS0.1  LS0.5  FMC  

Ingredient (g / kg)     

Yellow Lupin  300.00 300.00 300.00 - 

Herring Meal 1 250.00 250.00 250.00 638.622 

Soyabean meal 2 180.71 180.71 180.71 - 

Fish Oil 3 137.15 137.15 137.15 119.97 

Corn Starch 4 70.14 69.14 65.14 229.40 

Soya Protein Concentrate 5 50.00 50.00 50.00 - 

Carboxyl-methyl-cellulose 6 5.00 5.00 5.00 5.00 

Vitamin/Mineral Premix 7 5.00 5.00 5.00 5.00 

Ascorbyl-Phosphate 8 1.00 1.00 1.00 1.00 

Yttrium Oxide 9 1.00 1.00 1.00 1.00 

Synergen™ - 1.00 5.00 - 

Proximate composition (%)     

Dry matter 99.30 99.41 99.41 99.23 

Crude protein 43.07 43.23 43.49 44.01 

Crude lipid 20.47 20.81 20.69 19.80 

Crude fibre  2.70 2.72 2.77 - 

Ash 6.60 6.68 7.05 6.70 

Gross energy (MJ/kg) 21.66 21.68 21.63 23.21 

Element concentrations      

Ca (g/kg) 78.01 78.31 77.99 157.61 

P (g/kg) 80.26 83.79 81.37 136.17 

K (g/kg) 104.30 103.98 106.32 64.42 

Na (g/kg) 44.55 43.97 43.99 86.67 

Mg (g/kg) 17.78 17.78 18.15 13.40 

S (g/kg) 38.05 38.22 38.40 54.11 

Fe (g/kg) 1.58 1.64 1.67 1.36 
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Zn (mg/kg) 644.74 639.60 641.12 777.46 

Mn (mg/kg) 801.62 812.27 808.34 67.86 

Cu (mg/kg) 133.56 122.65 114.89 73.42 

1 LT94 herring meal (CC Moore, UK); 2 HP100 (Hamlet, DK); 3 Epanoil (Seven Seas, UK); 4 (Sigma Aldrich, UK); 
5 SPC 60 (BioMar, DK); 6 (Sigma Aldrich, UK); 7 PNP Fish: Ash 78.7 %, Ca 12.1 %, Mg 1.56 %, P 0.52 %, Cu 
0.25 g/kg, Vit. A 1.0 µg/kg, Vit D3 0.1 µg/kg, Vit. E 7 g/kg (Premier Nutrition, UK); 8 Rovimix (DSM, UK); 9 

(Sigma Aldrich, UK). 

 

4.2.5 Feeding regimes 

The experimental diets were fed in quadruplicate during the N-phase (a total of 10 

weeks) and triplicate during the D-phase (12 days). Daily rations were determined via a 

predicted daily growth (PG), based on a standardised FCR of 1.00. Growth predictions 

were reset with actual weights following biomass sampling.  

Predicted growth was estimated as follows: 

Predicted Growth (g) = W + (((W / 100) ᵡ FR) / FCR) 

Whereby; W = tank weight (actual or predicted) of previous day (g), FR = feeding rate (% 

BW (g)) of previous day and FCR = standardised FCR of 1.0. 

Feeding was performed by hand, 4 times per day, with fixed rations between 1.0 and 

2.5 % BW. The fish were fed a reduced ration (0.0 - 1.0 % BW) on days prior to biomass 

sampling. The rationale behind fixed rations was to semi-restrict nutrient intake, due to 

the potential functional properties of SYN.  

A specific feeding regime was implemented prior to sampling for endogenous protease 

activity; the details of this will be presented under Sec. 4.2.14.1.  

A feeding rate of 1.5 % BW per day was employed throughout the D-phase. The day 

before D-phase sampling, fish were fed to satiation throughout the day in order to 

maximise extractable faecal quantity. Although it is recognised that this may affect feed 

efficiency, the rationale behind this regimen was eliminating the necessity for multiple 

sample collections which can cause substantial stress to the animals and damage 

intestinal morphology, subsequently impacting results.  
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4.2.6 Biomass sampling and control (N-phase) 

The tanks were weighed in bulk on a bi-weekly basis (to 1 g). During week 6, stocking 

density was reduced from 37 to 25 fish per tank (ave. 28.80 kg/m3 ± 1.18 to 22.87 

kg/m3 ± 1.04, respectively). This was undertaken on the basis of system carrying 

capacity constraints, so as to maintain optimum environmental conditions; performance 

calculations were adjusted accordingly. 

 

4.2.7 Performance calculations 

All performance calculations were undertaken as detailed in Sec. 2.9.  

 

4.2.8 Faecal sampling (D-phase)  

At the end of day 12 of the D-phase, the fish were anaesthetised in buffered MS222 (200 

mg/L), until loss of equilibria and response to human contact was observed. Manual 

stripping of faeces was performed by hand, by lightly applying pressure to the hind 

portion of the abdomen. Faecal material was collected in aluminium trays over ice and 

pooled by tank. All of the fish were sampled and reintroduced to their respective tanks. 

The faecal samples collected were freeze-dried, in accordance with Sec. 2.7.1. Following 

this, they were manually homogenised with a synthetic pestle and mortar.  

Dry matter, crude protein, crude lipid, crude fibre, gross energy and mineral 

concentrations of feed and faeces were determined in accordance with methods 

described in Sec. 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.7.6 and 2.8.2, respectively.  

Apparent digestibility/bioavailability coefficient (ADC/ABAC) calculations were performed 

as detailed in Sec. 2.11. 

The FM- and lupin-based diets were not formulated on a digestible protein, lipid and 

energy basis, nor were they formulated to hold similar mineral profiles. Therefore, the 
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FMC-fed fish were not stripped of faeces, on ethical grounds, for analysis of 

macronutrient ADC and element ABAC, due to the foreseeable bias and limited scientific 

worth. 

 

4.2.9 Whole carcass sampling 

Sampling for whole carcass was performed at the end of the D-phase with approximately 

400 g of pooled wet fish per replicate (n = 3). The whole fish were oven-dried according 

to procedures detailed in Sec. 2.7.1 and ground using a household blender.  

 

4.2.10 Tissue mineral concentrations 

After faecal collection at the end of the D-phase, 5 fish per tank were randomly selected 

and euthanised according to Sec. 2.5. Whole carcasses were frozen at -20 °C until 

subsequent processing and analyses. The carcasses were thawed prior to dissection. 

Entire fillets were lifted, skinned and excised below the last rib, of which the hind portion 

was retained; followed by rinsing in ultrapure water to wash away any blood and scales. 

Whole livers were separated from other visceral organs, residual connective tissue was 

removed and the specimens were briefly rinsed in ultrapure water to remove excess 

blood. The caudal fins were excised from the peduncle and again rinsed in ultrapure 

water. For samples of bone, vertebrae 31 to 40 (v31, v40) were selected. Flesh was 

cleared from the bone material with the use of a scalpel after blanching in boiling water.  

All tissue samples were freeze-dried according to Sec. 2.7.1; after which, they were 

pooled by tank (n = 3) and manually ground using a synthetic coated pestle and mortar. 

The homogenising equipment was thoroughly rinsed in distilled water and dried between 

each use. ICP OES was implemented to determine element concentrations (Sec. 2.8).  

Calcium : phosphorous ratio (Ca:P) was calculated for the vertebrae via the following: 

Ca:P (AU) = Ca / P 
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Whereby; Ca = vertebral calcium concentration (mg/g) and P = vertebral phosphorous 

concentration (mg/g). 

4.2.11 Vertebral histomorphometry 

Following faecal collection at the end of the D-phase, 3 fish per tank were randomly 

selected and euthanised according to Sec. 2.5 (n = 3). The carcasses were dissected by 

removing fillets. The range in numbers of vertebrae, recorded within the population, was 

60 to 61. The 47th (v47) and 48th (v48) vertebrae were located. These vertebrae lay 

within the caudal vertebral portion (i.e. the portion possessing neural and haemal 

spines), approximately two thirds of the way down, between the first haemal vertebrae 

and the adipose fin. The selected specimens were separated from the v46 and v49 at the 

intervertebral junctions with a scalpel.  

The vertebral specimens were cleared of any remaining muscular tissues and neural and 

haemal 

 spines were excised. The specimens immediately underwent decalcification with 10% 

Ethylenediaminetetraacetic acid (EDTA), in phosphate-buffered saline (PBS), for 12 days 

at 4 °C, with continuous agitation (60 rpm). Fresh EDTA solution was replaced every 4 

days. 

Thereafter, the samples were processed in an identical manner to the methods described 

in Sec. 2.15. Sectioning was performed at 7 µm thicknesses using the same equipment 

detailed in Sec 2.15. Rehydration of bone specimens was performed in an automated 

manner, as previously described in Sec. 2.15; followed by manual staining with Mallory’s 

trichrome (acid fuchsin, aniline blue/orange G) and haematoxylin (Table 7.3). 

Screening was undertaken in accordance with methods detailed in Sec. 2.15. From the 

micrographs obtained, the vertebral bone area was measured in accordance with Nordvik 

et al. (2005) and Fox and Davies (2011). This area comprised of the lamellar compact 

bone of the amphicoel along with collagen fibres which sheath the notochord; ossified 
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areas outside of these layers were not included (as per Fox and Davies, 2011). 

Trabeculae (ossified protrusions from the autocentrum) were omitted from the study by 

deleting their presence during image analysis. This was performed to the level of their 

crypts. Consequently, all transverse measurements were taken from areas positioned at 

the crypt of two trabeculae. Gross anatomical descriptions and analytical measurements 

are displayed in Plate 4.1 (note: pink hue has been enhanced for the aid of centrum 

definition).  

Centrum thickness index (CTI) was calculated as follows: 

CTI (AU) = (CT / CD) ᵡ 100 

Whereby; CT = centrum thickness (µm) and CD = centrum diameter (µm) 

Perimeter : area ratio (VPA) was calculated as follows: 

VPA (AU) = (CP / CA) ᵡ 1000 

Whereby; CP = centrum perimeter (µm) and CD = centrum area (µm2) 
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Plate 4.1 Transverse section of a 47/48th vertebrae of rainbow trout, stained with 

Mallory’s trichrome with haematoxylin, displaying gross anatomical structure and 

appraised features. 

Abbreviated features denote those quantified within this study. CA = centrum area. CP = 

centrum perimeter. CD = centrum diameter. CT = centrum thickness. 

 

4.2.12 Haematological and serological parameters 

At the end of the 10 week N-phase, following 12 hrs starvation, 2 fish per tank (n = 8) 

were heavily sedated (Sec. 2.6) and blood was collected from the caudal vein. 

Haemoglobin (Hb), haematocrit (Hct), serum glucose and serum lysozyme were 

analysed according to procedures detailed in Sec 2.14. Each fish was treated as an 

individual replicate throughout these parameters. 
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4.2.13 Intestinal histology 

4.2.13.1 Sampling 

Sampling of the posterior intestine (PI), for tissue, was scheduled immediately at the 

end of the 10 week N-phase. The fish from whom blood was obtained were sacrificed 

and utilised for these purposes (n = 8). Following euthanasia procedures described in 

Sec. 2.5; the IP cavity of fish was opened and the GIT was detached from the anus and 

intraperitoneal fat deposits were carefully separated from the gut tissue. The intestinal 

tract was excised below the stomach sack and at the anus. The PI was separated from 

the anterior intestine (AI) and flushed in PBS. Working from the anus, ~3 mm was 

discarded; the following ~3 mm was removed for scanning electron microscopy (SEM), 

followed by ~3 mm for transmission electron microscopy (TEM) and lastly ~7.5 mm for 

light microscopy (LM). These methods are exhibited in Plate 4.2. Each individual fish was 

treated as a replicate throughout histological appraisal (n = 8). 

 

Plate 4.2. Rainbow trout dissection displaying intestinal morphological portions and 

sample site selections (not proportionally to scale).  
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4.2.13.2 Light Microscopy  

Posterior intestinal samples were processed, sectioned and stained in accordance with 

the methods detailed in Sec. 2.15. The stains implemented were haematoxylin and eosin 

(H&E) and Periodic acid Schiff’s (PAS), as detailed in Tables 7.1 and 7.2, respectively. 

Micrographs were collected using methods and equipment detailed in Sec. 2.15.  

H&E-stained micrographs, at 20 X magnification, were appraised for enterocyte height 

(µm) (EH) through measurement of the cells at 50 intermittent locations around the 

intestinal folds of each fish (Plate 4.3A).  

Lamina propria width (µm) (LPW) was measured in at least 30 locations per fish using 

H&E-stained micrographs at 20 X magnification (Plate 4.3A).  

Goblet cell counts (no./mm) (GC) were performed Using PAS-stained micrographs at 20 

X magnification. This was conducted in at least 20 intermittent locations, of varying 

distances (50 – 250 µm), around the epithelial layer of each fish (Plate 4.3B).  

Calculation of surface area potential (perimeter ratio) could not be confidently performed 

due to depreciated specimen quality in a number of replicates. 

Using PAS-stained micrographs at 10 X magnification, the thickness (µm) of the total 

muscularis, stratum longitudinale (SLG), stratum circulae (SCR) and stratum compactum 

(SCM) was measured at 12 locations around the intestinal cross-sections (Plate 4.3C). 

SLG, SCR and SCM are expressed as percentage of total muscularis thickness (%MT). 

Muscularis thickness index (MTI) was calculated as follows: 

MTI (AU) = MT / GP 

Whereby; MT = total muscularis thickness (µm) and GP = total intestinal perimeter (µm). 

All appraisals were conducted using ImageJ 1.45 (National Institutes of Health, USA). 
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4.2.13.3 Transmission electron microscopy 

Specimens collected for TEM were processed, sectioned and screened in accordance with 

the materials and methods detailed in Sec. 2.16.  

The micrographs were appraised for microvilli height (MVH) and diameter (MVD) as 

previously described in Sec. 3.2.8.1 (Plate 4.3D). All appraisals were conducted using 

ImageJ 1.45 (National Institutes of Health, USA). 

4.2.13.4 Scanning electron microscopy 

Intestinal specimens were suspended in a continuously stirring 1 % L-cysteine (Sigma, 

no. 168149) solution, for 30 sec, so as to clear epithelial mucus. They were subsequently 

fixed in 2.5 % glutaraldehyde containing 1 part 0.1 M sodium cacodylate buffer (pH 7.2). 

Storage of samples was conducted at 4 °C. Samples were rinsed twice, for 20 min, in 

0.1 M sodium cacodylate buffer to remove fixative. Approximately 2 mm of fixed tissue 

was cut away from either end of the samples to remove areas likely to be damaged by 

dissection tools during previous steps and thus negate spurious observations of intestinal 

damage. Dehydration was conducted by exposing samples to graded ethanol solutions of 

30, 50, 70, 90 and 100 % for 20 min at each stage. Samples were drained from their 

final ethanol solution and fresh 100 % ethanol was added. Following dehydration 

procedures, critical point drying of samples was performed (Quorum Tech. K850; Kent, 

UK). Samples were mounted on aluminium stubs using fine silver (Ag) paint (Ag in 

methyl isobutylkelone). Mounted samples were subsequently sputter-coated in gold, with 

an argon gas supply (Quorum Tech. K550X; Kent, UK). Samples were screened with 

JEOL JSM-6610 LV and JEOL JSM-7001 F scanning electron microscopes (Tokyo, Japan). 

Reference to microscope models used herein will be given as JSM-6610 or JSM-7001.   

Micrographs obtained from 20,000 X magnification screening on the JSM—6610 were 

appraised for microvilli counts per µm2 (MVCT), using an identical procedure to that used 

for TEM micrographs in Sec. 3.2.8.1. A total of 10 quadrants were analysed per fish and 

each individual was treated as a replicate (n = 8). 
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Microvilli surface area coverage (%) (MVCV) was estimated using micrographs obtained 

at 20,000 X magnification on the JSM-6610. This was performed by converting 

micrographs into binary form and adjusting threshold to a level determined as clearly 

depicting ultrastructural definition; resulting in microvilli displayed as black and space 

between in bright white (Plates 4.3F and 4.3G). This was performed using the original 

micrograph as a reference. MVCV was subsequently measured using an automated 

function and the known total surface area of the micrographs. Five micrographs were 

analysed per fish. Each individual was treated as a replicate (n = 8). 

Using 2,500 X magnification micrographs obtained on the JSM-7001, enterocyte apical 

area (EAA) (µm2) was measured (Plate 4.3E). At least 30 enterocytes were measured 

per animal and each individual was treated as a replicate (n = 8). 

All quantitative appraisals were conducted using ImageJ 1.45 (National Institutes of 

Health, USA). 

Total absorption surface area per enterocyte (ETAS) was estimated, using ultrastructural 

measurements obtained throughout electron microscopy. Each measurement was kept 

specific to the originating fish and each individual was treated as a replicate (n=8).  

ETAS was calculated as follows: 

ETAS (µm2) = ((2 ᵡ π ᵡ 1/2 MVD ᵡ MVL) + (π ᵡ 1/2 MVD²)) ᵡ (MVCT) ᵡ EAA 

Whereby; π = Pi, MVD = mean microvilli diameter (µm), MVL = mean microvilli length 

(µm), MVCT = mean microvilli counts (no. / 1 µm2) and EAA = enterocyte apical area 

(µm2).  

Extensive qualitative examinations were also performed on each fish, using 

magnifications between 100 and 20,000 X magnification. These examinations appraised 

the specimens for signs of necrosis, inflammation and overall structure.  
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Plate 4.3 Light and electron micrographs of rainbow trout posterior intestine displaying appraisal methods 
A = H&E-stained fold (20 X mag.): EH = enterocyte height, LPW = lamina propria width, scale bar = 100 µm; B = PAS-stained fold (20 X mag.): GC = goblet cell; C = 
PAS-stained muscularis (10 X mag.), MT = muscularis thickness, SLG = stratum longitudinale, SCR = stratum circulae, SCM = stratum compactum, scale bar = 100 µm: D 
= Brush border Epithelial (20,000 X mag. TEM), MVH = microvilli height, scale bar = 2 µm: E = Epithelial surface (2,500 X mag. SEM), numbers indicate individual 
enterocytes, scale bar = 10 µm. F = Epithelial surface (20, 000 X mag. SEM), scale bar = 1 µm. G = threshold-reversed epithelial layer displaying microvilli in black 
(20,000 X mag. SEM).  
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4.2.14 Endogenous protease activity 

4.2.14.1 Sample collection 

Sampling for intestinal proteolytic enzyme activities was performed at the end point of 

the N-phase. Following an overnight starvation period, tanks were fed four times to 

satiation, at 80 min intervals, over a period of 4 hrs. Exactly 80 min after their final feed, 

2 fish per tank were manually euthanised and immediately immersed in ice. Following 

despatch, sampling was promptly undertaken on glass trays, over ice and under aseptic 

conditions. Aseptic conditions were implemented due to the selected animals also being 

used for microbiology; this process will be described in detail within Sec. 4.2.16.1.  

The intraperitoneal cavity was opened and the hindmost portion of the intestine was 

clamped and detached at the anus. Fat was then cleared from the outer mucosal surface 

of the intestine. The anterior intestine (AI) was clamped at both ends and carefully 

removed away from the pyloric caeca and posterior intestine (PI). The clamps were 

removed and the AI was gently squeezed to remove digesta; remaining mucosa was 

rinsed with cold distilled water. Collected digesta and mucosa samples were immediately 

sealed in cryogenic tubes and immersed in liquid nitrogen. Samples were then stored at 

-80 °C until enzyme extraction. Each individual was treated as replicate (n=8). 

4.2.14.2 Enzyme extraction 

All crude enzyme extraction procedures were performed over ice, following direct 

removal from storage without a thaw period. Between 150.0 and 500.0 mg of sample 

was weighed into microcentrifuge tubes and homogenised in 2 volumes of ultra-pure 

water. The homogenate was sonicated in five, 3 sec bursts, taking care not to raise its 

temperature. Following sonication, homogenate was centrifuged at 20,000 X g for 20 

min at 4 °C. The supernatant, containing enzymes, was then separated from lipid and 

solid residues via pipette and transferred to aliquots for storage at -80 °C.  
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4.2.14.3 Total alkaline protease 

Total alkaline protease (TAP) activity was measured in the digesta of fish as an indicator 

of digestive capacity, following procedures described by Alarcón et al. (1998). Azocasein 

(Sigma-Aldrich, no. A2765) was dissolved, as a substrate, in ultrapure water at 1 % 

(w/v), to pH 9.00. Tris(hydroxymethyl)aminomethane (Tris) (100 mM) (Sigma-Aldrich, 

no. 252859) and CaCl2 (10 mM) were dissolved at 1.2 % and 0.1 % (w/v), respectively, 

in ultra-pure water; followed by adjustment to pH 9.00 with 1 M HCl, as a buffer. Tris-

CaCl2-HCl buffer was then filtered through 11 µm filter paper. 500 µl of Azocasein 

substrate solution and 500 µl of Tris-CaCl2-HCl buffer were added to 10 µl of enzyme 

extract, thoroughly mixed, and incubated for 30 min at 37 °C. The reaction was halted 

by addition of 500 µl 20 % (w/v) Trichloroacetic acid (TCA) (Sigma-Aldrich, no. T6399) 

in ultra-pure water. Blanks were prepared by addition of TCA-H2O before addition of 

substrate. Mixtures were cooled by sealed immersion in ice and transferred to -20 °C 

conditions for a 15 min period. Mixtures were centrifuged at 10,500 X g for 15 min at 

4 °C and supernatant was removed. Absorbance of supernatant was recorded at 366 nm 

in a spectrophotometer (Jenway 7315, Bibby Scientific; Staffs, UK). One unit of TAP 

activity (U) was defined as the amount of enzyme that released 1 µg of tyrosine per min, 

considering an extinction coefficient of 0.008 µg/ml/cm. Each sample was analysed in 

quadruplicate. Where data distribution was heavily skewed, denoising was performed by 

removal of samples with a value 2σ. Commonly occurring skews in enzyme activity 

between individuals are attributed to variable gut transit time dependent upon fish size 

(Pandian, 1967) and difficulties in ensuring consistent feed consumption between 

individuals, despite strict feeding regimes. All data sets were n = ≥6. Values were 

expressed as U/g digesta.     

4.2.14.4 Trypsin 

Trypsin activity was measured in the digesta of fish as an indicator of digestive capacity 

following procedures described by Erlanger et al. (1961) and modified by Alarcón et al. 



121 
 

(1998). N-Benzoyl-L-arginine 4-nitroanilide hydrochloride (BAPNA) (Sigma-Aldrich, no. 

B3133) was dissolved in dimethyl sulfoxide (DMSO) (Sigma, no. 472301) to 0.5mM as a 

substrate. This substrate solution was dissolved at 1 % (v/v) in Tris-HCl 50 mM buffer, 

containing 20 mM Cl2Ca (pH 8.5). Ten µl of enzyme extract and 190 µl of substrate-

buffer solution were added to microplate wells, agitated for 20 sec and absorbance was 

measured at 20 sec intervals, for 10 min, at 405 nm (OPTImax microplate reader, 

Molecular Devices LLC; CA, USA). Each sample was analysed in quadruplicate. One unit 

of trypsin activity (U) was defined as the amount of enzyme that released 1 µmol of p-

nitroanilide (pNA) per minute, considering an extinction coefficient of 8800 M/cm. 

Denoising was performed as previously described in Sec. 4.2.13.3. All data sets were n 

= ≥6. Values were expressed as U/g digesta.       

4.2.14.5 Chymotrypsin 

Chymotrypsin activity was measured in the digesta of fish as an indicator of digestive 

capacity following procedures described by DelMar et al. (1979) and modified by Alarcón 

et al. (1998). N-Succinyl-Ala-Ala-Pro-Phe p-nitroanilide (SAPNA) (Sigma-Aldrich, no. 

S7388) was dissolved in DMSO (Sigma, no. 472301) to 0.2 mM, as a substrate. This 

substrate solution was dissolved at 1 % (v/v) in Tris-HCl 50 mM buffer, containing 20 

mM Cl2Ca (pH 8.5). Ten µl of enzyme extract and 190 µl of substrate-buffer solution 

were added to microplate wells, agitated for 20 sec and absorbance was measured at 20 

sec intervals for 10 min at 405 nm (OPTImax microplate reader, Molecular Devices LLC; 

CA, USA). Each sample was analysed in quadruplicate. One unit of chymotrypsin activity 

(U) was defined as the amount of enzyme that released 1 µmol of pNA per minute, 

considering an extinction coefficient of 8800 M/cm. Denoising was performed as 

previously described in sec. 4.2.13.3. All data sets were n = ≥6. Values were expressed 

as U/g digesta.       
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4.2.14.6 Leucine aminopeptidase 

L-leucine aminopeptidase (LAP) activity was measured in the digesta and mucosa of fish 

as an indicator of absorptive capacity following procedures described by Pfeiderer (1970). 

L-Leucine-p-nitroanilide (Sigma, no. L9125) was dissolved in DMSO (Sigma, no. 472301) 

to 2 Mm, as a substrate. This substrate solution was dissolved at 1% (v/v) in Tris-HCl 

100 mM buffer (pH 8.8). Ten µl of enzyme extract and 190 µl of substrate-buffer 

solution were added to microplate wells, agitated for 20 sec and absorbance was 

measured at 20 second intervals for 10 min at 405 nm (OPTImax microplate reader, 

Molecular Devices LLC; CA, USA). Each sample was analysed in quadruplicate. One unit 

of LAP activity (U) was defined as the amount of enzyme that released 1 µmol of pNA 

per minute, considering an extinction coefficient of 8800 M/cm. Denoising was 

performed as previously described in sec. 4.2.13.3.  All data sets were n = ≥6. Values 

were expressed as U/g digesta or U/g tissue.        

4.2.14.7 Alkaline phosphatase 

Alkaline phosphatase (ALP) activity was measured in the digesta and mucosa of fish as 

an indicator of absorptive capacity following procedures described by Bergmeyer (1974). 

As a substrate, p-nitrophenyl phosphate (405 mM) (Sigma, no. p4744) was dissolved in 

ultrapure water at a concentration of 0.17 % (w/v). Diethanolamine (4.8 ml) was 

dissolved in ultrapure water (40 ml) to 1 M. Following this, MgCl2 · 6H2O was dissolved in 

ultrapure water to 0.5 M and slowly added to the diethanolamine solution in drops. The 

diethanolamine-MgCl2 was then adjusted to pH 9.8 using 1 M HCl and subsequently 

further diluted with 1 part of ultrapure water to create a 1 M diethanolamine buffer 

containing 1 mM MgCl2. The p-nitrophenyl phosphate substrate solution was dissolved at 

3.33 ̇ % (v/v) in diethanolamine-MgCl2 buffer. All substrate preparation steps were 

performed under dark conditions where possible and substrate-buffer solution was 

utilised within 5 min of creation. Ten µl of enzyme extract and 290 µl of substrate-buffer 

solution were added to microplate wells, agitated for 20 sec and absorbance was 
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measured at 20 sec intervals for 10 min at 405 nm (OPTImax microplate reader, 

Molecular Devices LLC; CA, USA). Each sample was analysed in quadruplicate. One unit 

of ALP activity (U) was defined as the amount of enzyme that released 1 µg of 

nitrophenyl per minute, considering an extinction coefficient of 17,800 M/cm. Denoising 

was performed as previously described in sec. 4.2.13.3.  All data sets were n = ≥ 6. 

Values were expressed as U/g digesta or U/g tissue.          

 

4.2.15 Statistical analysis 

Statistical analyses of results obtained from methods described between Sec. 4.2.7 and 

4.2.14 were undertaken using IBM SPSS Statistics 21. Data expressed as percentages 

were arcsine transformed prior to statistical analysis. All tests on normally-distributed 

data were conducted via ANOVA with post-hoc Fisher’s LSD with significance accepted at 

P ≤ 0.05. Non-parametric data were analysed via Kruskal-Wallis and Mann Whitney U 

tests with significance accepted at P ≤ 0.05.  

 

4.2.16 Intestinal microbiology 

4.2.16.1 Sampling 

As previously mentioned, the same fish selected for endogenous protease sampling were 

used for microbiological sampling. The aseptic conditions implemented involved constant 

work in front of a blue flame, gloves and work surface sterilisation with 70 % industrial 

methylated spirit (IMS) between each dissection and soaking of tools in 70 % IMS 

followed by lighting over a blue flame before each use. Prior to dissection, the fish were 

rinsed and wiped thoroughly with 70 % IMS, paying particular attention to the exterior of 

the peritoneal cavity where incisions were to made. Having cleared fat deposits from the 

outer mucosal surface and being separated from the anterior portion, the digesta found 

within the posterior intestine was collected into sterile microcentrifuge tubes (RNA/DNA 

Lobind; Eppendorf®, DE) by carefully applying pressure down the tissue, towards the 
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anus with the use of forceps. The samples were stored at -20 °C until use. Each 

individual was treated as replicate (n = 8). 

4.2.16.2 DNA isolation and PCR 

DNA isolations were conducted using a QIamp® Fast DNA Stool Mini Kit (Qiagen; NL), 

with minor modifications to the manufacturers protocol. In brief, the samples were 

homogenised and diluted into buffer supplied by the manufacturer in order to remove 

PCR inhibitors. The suspension was then incubated with lysozyme at 70 °C for 5 min and 

centrifuged at 20,000 X g for 1 min at room temperature. Forward of these stages, 

manufacturer guideline incubation steps were increased 3 fold. Lysate supernatant was 

subsequently introduced to a silica membrane to trap DNA and successive washes with 

provided reagents were performed to further remove inhibitors and contaminants. Again 

to note is that the final buffer addition was decreased 4 fold in order to concentrate the 

isolated DNA. DNA for further steps was thus eluted.  

Further steps were performed according to Standen et al. (2015). DNA concentrations 

were firstly analysed using a Nanodrop™ 1000 (Thermo Scientific Ltd, DE, USA). Six fish 

per treatment were selected for further analysis (n = 6), based upon observations of 

those with the highest yield of DNA. PCR amplification of the 16S rRNA V1-V2 

hypervariable regions was conducted according to Roeselers et al. (2011). Briefly, a 30 

μL PCR reaction was performed with 4 μL of DNA template (diluted 1/10 in molecular-

grade water), 1 μL (50 pmol) of primer 338R (GCW GCC WCC CGT AGG WGT), 1 μL (50 

pmol) of primer 27F (5’ - AGA GTT TGA TCM TGG CTC AG – 3’), 15 μL of MyTaq™ 

(Bioline, London, UK) and 9 μL of molecular-grade water. Thermal cycling was conducted 

using a Techne TC-512 (Thermal Cycler; Staffordshire, UK) under the following 

conditions: initial denaturation at 94 °C for 7 min, followed by 10 touchdown cycles of 

94 °C for 30 sec, 62 °C for 30 sec and 72°C for 30 sec. A further 25 cycles were 

performed at 94 °C for 30 sec, 53 °C for 30 sec and 72 °C for 30 sec before a final 

extension for 7 min at 72 °C.  



125 
 

4.2.16.3 High-throughput sequence analyses 

High-throughput sequence analysis was undertaken in accordance with Standen et al. 

(2015). In brief, PCR products were purified using the QIAquick PCR Purification Kit 

(Qiagen; Crawley, UK) and DNA was quantified using a Qubit® 2.0 Fluorometer 

(Invitrogen; UK). Prior to sequencing, the concentration of the amplicons were adjusted 

to 26 pM after quantification with Ion Library Quantitation Kit. Amplicons were attached 

to Ion Sphere Particles (ISPs) using an Ion PGMTM Template OT2 400 kit according to 

the manufacturer’s instructions. Multiplexed sequencing was conducted using Ion 

XpressTM barcode adapters and a 318TM chip, on an Ion Torrent® Personal Genome 

Machine (PGM) at the Systems Biology Centre at Plymouth University (UK). All the kits 

used were purchased from Life Technologies™ (USA). Sequences were binned by sample 

and filtered within the PGM software to remove low quality reads. Data were then 

exported as FastQ files. 

Taxonomic analyses of sequence reads were performed after the removal of low quality 

scores (Q score <20) with FASTX-Toolkit (Hannon Lab, USA). Sequences were de-noised 

and analysed with QIIME (Caporaso et al., 2010a). Briefly, OTU mapping was performed 

using default pipeline of QIIME with USEARH (Edgar, 2010), removing putatively 

erroneous reads (chimeras). Assignment of taxonomic classification for operational 

taxonomic units (OTUs) was based on the Greengenes database (DeSantis et al., 2006) 

using the RDP classifier (Wang et al., 2007), which clustered the sequences at 97% 

similarity with a 0.80 confidence threshold. PyNAST was employed to create a multiple 

alignment of the representative sequences for each OTU (Caporaso et al., 2010b), with a 

minimum sequence length threshold of 150 base pairs (bp) and 95 % identification. 

Subsequently, the sequences were filtered to remove outliers and filter positions with 

gaps (0.95) and singletons. Highest homologous species, or genera (where possible) 

were identified considering >98 % similarity at 150 bp. This was performed using the 

16S microbial Nucleotide BLAST-NCBI database. 
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Chao1, Shannon’s diversity index and alpha diversity metrics were calculated through 

QIIME and Good’s coverage was calculated from rarefied OTU tables, to assess sampling 

depth coverage through observed genera. Beta diversity metrics among samples were 

calculated using weighted, unique fraction metric (UniFrac) distances (Lozupone et al., 

2007) and Bray-Curtis similarity (Bray and Curtis, 1957). The distance matrices were 

represented by two-dimensional principal coordinates analysis (PCoA) plots. 

Statistical analyses were conducted on sequences which represented >0.1 % of total 

sequences in one or more treatments. Statistical tests utilised were Kruskal-Wallis 

followed by Tukey-Kramer, these were performed using STAMP v2 0.8. Significance was 

accepted at P ≤ 0.05. 

 

4.3 Results 

4.3.1 Fish and feed performance  

At the end of the 10 week N-phase, the experimental animals had exceeded a 3-fold 

average increase in body weight. Significant differences in FW (F = 24.39, P < 0.001), 

WG (F = 39.63, P < 0.001), FCR (F = 16.755, P < 0.001), SGR (F = 18.38, P < 0.001) 

and PER (F = 20.47, P < 0.001) was observed between the dietary treatments (Table 

4.2). Consistently, LC- and LS0.1-fed fish did not differ from one another, whilst 

significant improvement was observed in LS0.5 fed fish (P < 0.05). FMC fed fish 

performed significantly better than the lupin-based treatments in all instances (P < 

0.05).  
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Table 4.3 Fish and feed performance values of the dietary treatments. 

 

Diet 

LC LS0.1 LS0.5 FMC 

IW (g) 44.04 ± 0.44 43.26 ± 0.18 43.65 ± 0.34 43.38 ± 0.17 

FW (g) 140.42 ± 5.71 a 135.44 ± 3.56 a 146.54 ± 2.33 b 159.56 ± 4.76 c 

WG (g) 97.07 ± 4.63 a 93.33 ± 1.67 a 104.29 ± 1.14 b 117.02 ± 4.39 c 

FCR 1.25 ± 0.47 a 1.22 ± 0.34 a 1.08 ± 0.20 b 0.99 ± 0.16 c 

SGR 1.64 ± 0.76 a 1.65 ± 0.70 a 1.76 ± 0.58 b 1.87 ± 0.56 c 

PER 1.73 ± 0.07 a 1.70 ± 0.03 a 1.86 ± 0.03 b 1.97± 0.06 c 

Survival (%) 100 100 100 100 

Somatic indices     

K-F 1.79 ± 0.11 1.75 ± 0.09 1.75 ± 0.04 1.85 ± 0.04 

HIS 1.05 ± 0.06 0.99 ± 0.09 1.02 ± 0.05 0.94 ± 0.03 

Abbreviations: LC = yellow lupin control diet; LS0.1 = yellow lupin basal + Synergen™ (0.1%); LS0.5 = yellow 
lupin basal + Synergen™ (0.5%); FMC = fishmeal reference/control diet; IW = initial fish weight; FW = final 
fish weight; WG = weight gain (g); FCR = feed conversion ratio; SGR = specific growth rate; PER = protein 
efficiency ratio; K-F = k-factor condition index; HIS = hepatosomatic index 

a, b, c Diets possessing the same superscript in the same row are not significantly different (P≤0.05), no 
superscripts indicate no significant difference between any diets. 
Values expressed as mean ± S.D. (n = 4). Statistical test: ANOVA + Fisher’s LSD. 

 

4.3.2 Nutrient digestibility and mineral bioavailability  

Apparent digestibility and bioavailabity coefficients are displayed in Table 4.3. The 

apparent digestibility of total dry matter and crude lipid was unaffected by dietary 

treatment of SYN. Apparent digestibility of crude protein was significantly different 

between the lupin-based diets (F = 128.63, P < 0.001); significant incremental increases 

were observed between LC, LS0.1 and LS0.5. Crude fibre apparent digestibility was 

significantly different between treatments (F = 35.32, P < 0.001), being significantly 

higher in LS0.5 than LC and LS0.1. No significant difference was observed between LC 

and LS0.1. Gross enery apparent digestibility was significantly higher in LS0.1 than LC (P 

< 0.05), LS0.5 than LC (P < 0.05) and LS0.5 than LS0.1 (P < 0.05). 

Calcium, phosphorous, potassium, magnesium and manganese Apparent Mineral 

Bioavailability Coefficients (ABAC) were significantly different between treatments (F = 

155.95, P < 0.001; F = 447.19, P < 0.001; F = 630.82, P < 0.001; F = 1166.57, P < 

0.001; F = 810.60, P <0.001, respectively). In all instances, ABAC was higher in LS0.1 

than LC, LS0.5 than LC and LS0.5 than LS0.1. Sulfur ABAC was significantly different 
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between treatments (F = 196.52, P < 0.001). Apparent bioavailability was higher in 

LS0.1 than LC, LS0.5 than LC and LS0.5 than LS0.1.  

Zinc ABAC was significantly different between treatments (F = 17.31, P < 0.005). 

Apparent bioavailability was higher in LS0.5 than LC and LS0.1.  

Iron apparent bioavailaility was significantly different between treatments (F = 19.76, P 

< 0.005). Apparent bioavailability was higher in LS0.1 than LC and LS0.5. 

Sodium apparent bioavailability coefficients yielded negative values in all treatments 

except FMC (37.93 % ± 0.48). A significant difference was observed between the lupin-

based treatments (F = 325.54, P < 0.001). Significantly less Na was observed in LS0.1 

than LC, LS0.5 than LC and LS0.5 than LS0.1.  

Table 4.3 Apparent macronutrient digestibility coefficients (ADC) (%) and apparent 

mineral bioavailability coefficients (ABAC) (%) of the experimental lupin-based and 

fishmeal-based rainbow trout diets. 

 

Diet 

LC LS0.1 LS0.5 

ADC (%)    

DM 96.97 ± 0.43  96.71 ± 0.21  97.08 ± 0.69  

CP 83.65 ± 0.02 a 85.26 ± 0.03 b 85.55 ± 0.03 c 

CL 89.11 ± 0.77  88.93 ± 0.10  90.43 ± 0.79  

CF 33.99 ± 1.05 a 35.52 ± 1.60 a 44.69 ± 2.62 b 

GE 66.29 ± 0.62 a 68.41 ± 0.83 b 71.76 ± 0.15 c 

ABAC (%)    

Ca 0.67 ± 1.57 a 13.80 ± 1.62 b 20.20 ± 0.77 c 

P 55.02 ± 0.72 a 63.86 ± 0.69 b 73.53 ± 0.47 c 

Mg 33.43 ± 0.03 a 42.91 ± 0.64 b 51.27 ± 0.45 c 

K 92.14 ± 0.05 a 93.30 ± 0.06 b 94.04 ± 0.11 c 

S 53.82 ± 0.35 a 58.97 ± 0.37 b 62.00 ± 0.72 c 

Fe 41.77 ± 2.19 a 48.34 ± 1.99 b 39.59 ± 0.83 a 

Zn 29.39 ± 0.96 a 30.41 ± 2.68 a 41.59 ± 3.96 b 

Mn -0.93 ± 0.10 a 3.93 ± 0.98 b 17.16 ± 0.30 c 

Na -155.44 ± 1.42 c -131.40 ± 2.59 b -107.28 ± 2.70 a 

Abbreviations: DM = dry matter; CP = crude protein; CL = crude lipid; CF = crude fibre; GE = gross energy; 
Ca = total calcium; P = total phosphorous; Mg = total magnesium; K = total potassium; S = total sulphur; Fe 
= total iron; Zn = total zinc; Mn = total manganese; Na = total sodium. 
Values expressed as mean ± S.D. (n=3). Statistical tests: ANOVA + Fisher’s LSD (DM, CP, CL, CF, Ca, P, Mg, K, 
S, Fe, Zn, Mn, Na). 
a, b, c Diets possessing the same superscript in the same row are not significantly different (P≤0.05), no 
superscripts indicate no significant difference between any diets 
Limits of Detection (LOD): Ca = 0.39 mg/kg; P = 0.07 mg/kg; Mg = 0.03 mg/kg; K = 0.18 mg/kg; S = 0.09 
mg/kg; Fe = 0.07 mg/kg; Zn = 0.08 mg/kg; Mn = 0.02 mg/kg; Na = 1.11 mg/kg 
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4.3.3 Carcass composition and tissue mineral concentrations  

Carcass composition results are displayed in Table 4.4. Carcass moisture, crude lipid (CL) 

and ash content were unaffected by dietary treatment. However, crude protein (CP) 

content of whole carcasses was significantly different between fish fed the respective 

diets (F = 36.24, P < 0.001). Carcass CP was significantly higher in fish fed LS0.5 and 

FMC than LC and LS0.1; values for fish fed LS0.5 and FMC did not differ from one 

another. Increased availability of dietary protein in SYN diets (Table 4) is proposed as an 

explanation for observed results. Gross energy (GE) of whole carcass was found to be 

significantly affected by diet (F = 14.92, P = 0.001), being significantly higher in SYN-

treated and FMC diets than LC. 

 

Table 4.4 Whole carcass composition of fish fed the experimental diets. 

 

Diet 

LC LS0.1 LS0.5 FMC 

Moisture (%) 70.22 ± 0.01 69.73 ± 0.01 69.79 ± 0.00 70.24± 0.01 

CP (%) 15.24 ± 0.18 a 15.47 ± 0.24 a 16.34 ± 0.02 b 16.29 ± 0.11 b 

CL (%) 11.06 ± 0.27  11.28 ± 0.48  11.41 ± 0.42  10.91 ± 0.53 

Ash (%) 2.00 ± 0.01  2.10 ± 0.17  2.08 ± 0.17  - 

GE (MJ/kg) 7.87 ± 0.04 a 8.01 ± 0.00 b 7.98 ± 0.03 b 7.99 ± 0.03 b 

Abbreviations: CP = crude protein; CL = crude lipid; GE = gross energy. Values expressed as mean ± S.D. 
(n=3) of whole carcass (on wet basis). Statistical tests: ANOVA + Fisher’s LSD. 
a, b, c Diets possessing the same superscript in the same row are not significantly different (P≤0.05), no 
superscripts indicate no significant difference between any diets 

 

Liver, muscle, vertebral and caudal fin mineral concentrations are presented in Table 4.5. 

Liver Zn concentration was significantly higher in the FMC group compared to the lupin-

fed fish (F = 9.129, P < 0.01), no effect was observed through SYN treatment. A 

significant difference in Mn liver concentration was observed (F = 4.654, P < 0.001). Mn 

concentration was significantly higher in LS0.5 than LC but not LS0.1, whilst LC and 

LS0.1 did not differ statistically. Mn concentration in fish fed the fishmeal-based diet was 

significantly lower than all lupin-fed fish.  
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Muscle of the fish fed the different diets contained significantly different Mn 

concentrations (F = 4.654, P < 0.05). Mn was significantly lower in FMC compared to 

LS0.1 and LS0.5 but not LC; the lupin-based diets did not significantly differ from one 

another. However, numerical trends towards increasing Mn concentration with SYN may 

be apparent, supported by statistical results close to significance between LC and LS0.5 

(P = 0.06).  

Vertebral Mn concentration again differed significantly between dietary treatments (F = 

8.67, P < 0.01). The concentration was significantly lower in FMC fed fish compared to 

the fish fed the lupin-based diets. Similarly to muscle concentration, trends towards 

increased concentration with SYN are apparent. Although no significant differences in Ca 

and P concentrations were observed, the ratio of these elements (Ca:P) was significantly 

different among the treatments (F = 8.14, P <0.001). The LC group was found to differ 

from LS0.1 (P = 0.03), LS0.5 (P < 0.001) and FMC (P < 0.01). Likewise, the LS0.1 

group differed from LS0.5 (P = 0.01) but not FMC (P > 0.05). The LS0.5 group did not 

differ from FMC although a close to significant result was observed (P = 0.058).  

Caudal fin Na concentration was observed to differ significantly between treatments (F = 

11.45, P < 0.005). Na was significantly higher in FMC than LS0.1 and LS0.5, and higher 

in LC than LS0.1. K caudal fin concentration was significantly different between 

treatments (F = 14.06, P = 0.001), being significantly higher in SYN treatments than LC 

and FMC. Caudal fin S concentration differed significantly between treatments (F = 8.64, 

P < 0.01), being significantly higher in FMC fed fish than in the fish fed the lupin-based 

diets. Mg concentration was significantly different between treatments (F = 4.64, P < 

0.05). Concentration of Mg in the caudal fin of FMC-fed fish was significantly lower than 

those of SYN-fed fish. Lupin-fed fish did not differ significantly from one another, nor did 

LC and FMC. Mn concentration differed significantly between treatments (F = 14.33, P = 

0.001). The concentration of this element was significantly lowest in FMC fed fish. The 

concentration of Mn in fins of LS0.5-fed fish was significantly higher than that of LC, 

whilst LC and LS0.1 did not differ from one another.  
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Table 4.5 Tissue mineral concentrations of liver, muscle, vertebrae and caudal fin in 

experimental fish 

 

Diet  

LC LS0.1 LS0.5 FMC LOD 

Liver      

P (mg/g) 11.72 ± 0.27  11.68 ± 0.45  11.40 ± 0.54  11.64 ± 0.20 0.007 

K (mg/g) 11.54 ± 1.13  11.56 ± 0.46  11.70 ± 0.31  11.85 ± 0.59 0.005 

S (mg/g) 8.43 ± 0.56  8.59 ± 0.23  8.58 ± 0.57  8.84 ± 0.34 0.028 

Na (mg/g) 4.23 ± 0.51  4.29 ± 0.09 4.32 ± 0.31 4.69 ± 0.16 0.053 

Mg (mg/g) 0.74 ± 0.05 0.77 ± 0.02 0.75 ± 0.04 0.76 ± 0.04 0.018 

Ca (mg/g) 0.38 ± 0.10 0.46 ± 0.12 0.44 ± 0.29 0.45 ± 0.08 0.144 

Cu (mg/g) 0.30 ± 0.02 0.28 ± 0.02  0.27 ± 0.02 0.26 ± 0.07 0.001 

Fe (mg/g) 0.19 ± 0.05 0.17 ± 0.03 0.18 ± 0.02 0.15 ± 0.03 0.003 

Zn (mg/g) 0.15 ± 0.01 a 0.16 ± 0.02 a 0.16 ± 0.01 a 0.20 ± 0.01 b 0.003 

Mn (µg/g) 4.12 ± 0.12 a 4.39 ± 0.49 ab 4.90 ± 0.34 b 2.70 ± 0.27 c 0.309 

Muscle      

K (mg/g) 14.73 ± 0.80 14.59 ± 0.30 14.13 ± 0.65 14.97 ± 0.09 0.005 

P (mg/g) 8.59 ± 0.27 8.59 ± 0.29 8.43 ± 0.17 8.77 ± 0.15 0.002 

S (mg/g) 7.64 ± 0.05 7.71 ± 0.11 7.64 ± 0.25 8.00 ± 0.27 0.037 

Na (mg/g) 2.42 ± 0.06 2.38 ± 0.06 2.38 ± 0.09 2.19 ± 0.14 0.022 

Mg (mg/g) 0.99 ± 0.04 0.98 ± 0.03 0.94 ± 0.02 0.96 ± 0.01 0.002 

Ca (mg/g) 0.81 ± 0.11 0.98 ± 0.09 1.05 ± 0.24 0.83 ± 0.12 0.005 

Zn (µg/g) 16.27 ± 0.18 17.41 ± 1.00 17.33 ± 0.68 17.51 ± 0.77 0.001 

Fe (µg/g) 12.03 ± 1.78 11.98 ± 1.39  11.89 ± 1.82 11.94 ± 1.63 1.485 

Mn (µg/g) 0.61 ± 0.20 ab 0.77 ± 0.23 a 0.93 ± 0.07 a 0.40 ± 0.18 b 0.140 

Vertebrae      

Ca (mg/g) 93.81 ± 9.01 91.29  ± 6.02 87.50 ± 3.99 90.68 ± 7.73 0.010 

P (mg/g) 56.69 ± 4.44 55.99 ± 3.00 54.66 ± 2.09 55.88 ± 4.06 0.015 

Ca:P 1.65 ± 0.03 a 1.63 ± 0.02 b 1.60 ± 0.02 c 1.62 ± 0.02 bc N/A 

Na (mg/g) 15.99 ± 0.75 16.11 ± 0.47 16.91 ± 0.13 15.74 ± 0.62 0.011 

K (mg/g) 7.38 ± 0.85 7.38 ± 0.47 8.06 ± 0.25 7.96 ± 0.69 0.003 

S (mg/g) 3.30 ± 0.06 3.32 ± 0.08 3.43 ± 0.15 3.44 ± 0.09 0.003 

Mg (mg/g) 2.11 ± 0.18 2.09 ± 0.07 2.08 ± 0.05 2.02 ± 0.12 <0.001 

Zn (µg/g) 76.68 ± 7.82 85.33 ± 0.72 85.79 ± 12.72 93.95 ± 8.80 0.580 

Mn (µg/g) 12.30 ± 3.32 a 13.14 ± 0.70 a 14.21 ± 2.25 a 6.23 ± 1.06 b 1.509 

Caudal fin      

Ca (mg/g) 106.90 ± 5.08 103.90 ± 4.67 107.32 ± 2.58 98.90 ± 2.63 0.006 

P (mg/g) 62.07 ± 4.36 59.73 ± 7.46 58.97 ± 3.73 51.91 ± 4.13 0.003 

Na (mg/g) 44.62 ± 1.14 ab 33.16 ± 5.51 c 39.14 ± 2.54 bc 48.82 ± 3.21 a 0.012 

K (mg/g) 5.30 ± 0.28 a 7.41 ± 0.38 b 6.81 ± 0.81 b 5.39 ± 0.24 a 0.003 

S (mg/g) 5.40 ± 0.06 a 5.32 ± 0.22 a 5.42 ± 0.10 a 5.80 ± 0.05 b 0.001 

Mg (mg/g) 2.25 ± 0.10 ab 2.36 ± 0.18 a 2.36 ± 0.08 a 2.05 ± 0.05 b <0.001 

Zn (µg/g) 95.78 ± 7.11 95.15 ± 12.54 104.29 ± 3.86 102.57 ± 6.40 1.320 

Mn (µg/g) 15.37 ± 3.21 a 16.38 ± 1.21 ab 19.71 ± 2.40 b 8.30 ± 1.33 c 0.001 

Co (µg/g) 5.64 ± 2.15 6.83 ± 1.59 4.93 ± 1.59 7.40 ± 1.93 2.708 

Cr (µg/g) 2.61 ± 0.17 2.02 ± 0.36 1.63 ± 0.50 2.52 ± 0.68 1.046 

Abbreviations: Ca = total calcium; P = total phosphorous; Mg = total magnesium; K = total potassium; S = 

total sulphur; Fe = total iron; Zn = total zinc; Mn = total manganese; Na = total sodium; Cu = total copper; 

Co = total cobalt; Cr = total chromium; LOD = limit of detection (3*S.D. of Blank + Blank) 

Values expressed as mean ± S.D. (n=3) on DM basis. Statistical test: ANOVA + Fisher’s LSD. – (continued on 

next page) 
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a, b, c Diets possessing the same superscript in the same row are not significantly different (P≤0.05), no 

superscripts indicate no significant difference between any diets 

 

4.3.4 Vertebral histomorphometry 

No significant difference in centrum thickness index (CTI) was observed between 

treatments (F = 2.49, P > 0.05) (Table 4.7). Similarly, no significant difference in 

vertebrae perimeter:centrum area ratio (VPA) was observed (F = 0.834, P > 0.05) 

(Table 4.7). Representative micrographs are exhibited in Plate 4.4. 

 

Table 4.6 Bone histomorphometric indices of the 47th-48th vertebrae of rainbow trout 

fed the experimental diets. 

 

Diet 

LC LS0.1 LS0.5 FMC 

CTI 7.04 ± 1.31 7.32 ± 0.43 6.76 ± 0.83 7.88 ± 0.79 

VPA 6.72 ± 1.44 6.23 ± 0.87 6.57 ± 0.74 5.99 ± 1.14 

Abbreviations: CTI = centrum thickness index; VPA = vertebrae perimeter : centrum area ratio. 

Values expressed as mean ± S.D. Statistical tests: ANOVA (n = 9). 

 

 
Plate 4.4 Histological sections of 47-48th vertebrae of fish fed the experimental diets. 
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500 µm 

500 µm 500 µm 
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4.3.5 Haematology and serology 

Haematological and serological indices of health and immune status are displayed in 

Table 4.7. 

No significant differences in hemaglobin (Hb) concentrations were observed among 

dietary treatments. Hematocrit (Hct) concentration appeared significantly different 

between treatments (F = 7.81, P = 0.001). Fish fed the 0.1 % SYN inclusion exhibited 

significantly higher Hct concentration than all other treatments. Significantly higher Hct 

was observed in the blood of LC fish compared to that of FMC fed fish, whilst values for 

fish fed LS0.5 did not differ significantly from those fed LC or FMC.  

Serum glucose levels were significantly affected by dietary treatment (F = 6.71, P < 

0.005). Significantly higher serum glucose levels were observed in FMC fed fish 

compared to fish fed LC and LS0.1, whilst elevation was also observed in LS0.5 over LC 

and LS0.1. No significant difference between LC and LS0.1 fed fish was observed, whilst 

LS0.5 and FMC fed fish did not differ significantly from one another.  

Serum lysozyme activity was significantly different between treatments (F = 3.65, P < 

0.05). Activity was significantly higher in SYN treatments than control diets; no 

difference in activity was observed between LS0.1 and LS0.5 or LC and FMC.  

Table 4.7 Haematological and serological parameters of rainbow trout fed the 

experimental diets. 

 

Diet 

LC LS0.1 LS0.5 FMC 

Hb (g/dl) 0.18 ± 0.03 0.19 ± 0.02 0.18 ± 0.02 0.17 ± 0.01 

Hct (%PCV) 36.50 ± 4.75 a 40.50 ± 2.78 b 36.00 ± 3.02 ac 33.14 ± 1.68 c 

Glc (mg/dl) 44.19 ± 8.47 a 47.26 ± 7.25 a 65.65 ± 7.38 b 72.90 ± 12.45 b 

Lyz (U/ml) 1156.46 ± 116.03 a  1427.98 ± 279.75 b 1450.71 ± 235.75 b 1167.31 ± 109.42 a 

Abbreviations: Hb = haemoglobin; Hct = haematocrit; Glc = serum glucose; LYZ = serum lysozyme; PCV = 

packed cell volume 

Values expressed as mean ± S.D. Statistical test: ANOVA + Fisher’s LSD. Hb n=8; Hct n=8; Glc n=8 (LC, FMC) 

and n=7 (LS0.1, LS0.5); LYZ n=8. 

a, b Diets possessing the same superscript in the same row are not significantly different (P≤0.05), no 

superscripts indicate no significant difference between any diets 
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4.3.6 Intestinal morphology 

Results of the quantitative appraisal of posterior intestinal morphology, by light and 

electron microscopy techniques, are displayed in Table 4.9. 

Enterocyte height (EH) was observed to differ significantly between treatments (P < 

0.05). Median EH of LS0.1 and LS0.5 fed fish did not differ from one another but were 

both significantly greater than LC fed fish.  

Globlet cell counts (GC) were significantly different between dietary treatments (F = 

10.15, P = 0.001). Fish fed 0.5 % SYN were observed to have a significant reduction in 

GC compared to those fed LC and LS0.1. No significant difference was observed in GC 

between LC and LS0.1 fed fish. Lamina propria width was unaffected by dietary 

treatment (P > 0.05).  

Muscularis thickness, corrected to total intestinal diameter (MTI), did not differ among 

dietary treatments, nor did proportional contributions of muscle layers (P > 0.05).  

Mean microvilli length (MVL), diameter (MVD) and enterocyte apical area (EAA) did not 

differ significantly between dietary treatments (P > 0.05). Microvilli counts (MVC) were 

significantly different between treatments (F = 9.481, P = 0.001), due to significantly 

lower counts in LS0.1 than other treatments. Estimated total absorption surface areas 

per enterocyte were significantly different between treatments (F = 5.69, P < 0.05). 

Reflective of numerically lower MVL, and significantly reduced MVCT, LS0.1-fed fish 

displayed significantly reduced ETAS compared to LC and LS0.5 fed fish. Mean 

microvillar percentage coverage (MVCV) at the brush border was significantly affected by 

dietary treatment (F = 4.97, P < 0.05). Fish fed 0.5 % SYN displayed a higher coverage 

of microvilli compared to fish fed LC and LS0.1. Qualitative appraisal observed a 

reduction in areas of conformational irregularity or where denuding of microvilli had 

occurred in LS0.5 (Plate 4.6B). Further, qualitative assessment appeared to show tighter 

assembly of enterocytes and a higher degree of regularity in the structure of the brush 

border within the LS0.5 group, compared with both the LC and LS0.1 groups (see Plates 
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4.5 to 4.7). Qualitative appraisal did appear to show greater spaces between enterocytes 

and a generally more irregular ultrastructure within the LS0.1 group (see plates 4.5 to 

4.7). 

 

Table 4.8 Morphological parameters of the posterior intestine of the lupin-fed fish, with 

and without Synergen™ inclusion. 

 

Diet 

LC LS0.1 LS0.5 

Macrostructure    

EH (µm) 38.55 ± 2.24 a 41.24 ± 1.04 b 41.36 ± 0.31 b 

GC (no./mm) 224.06 ± 26.95 a 226.57 ± 18.45 a 182.63 ± 19.33 b 

LPW (µm) 16.57 ± 3.53 16.44 ± 2.08 16.02 ± 2.31 

Muscularis     

MTI 1.65 ± 0.13 1.49 ± 0.37 1.79 ± 0.29 

SLON (%MT) 34.83 ± 5.63 34.84 ± 7.07 34.97 ± 3.80 

SCR (%MT) 25.28 ± 2.55 26.09 ± 2.81 25.98 ± 5.36 

SCM (%MT) 16.07 ± 1.56 17.84 ± 3.63 17.49 ± 3.10 

Ultrastructure    

MVL (µm) 1.40 ± 0.34 1.22 ± 0.20 1.48 ± 0.19 

MVD (µm) 0.13 ± 0.02 0.12 ± 0.00 0.12 ± 0.01 

MVCT (/µm2) 82.51 ± 9.40 a 69.90 ± 6.19 b 85.74 ± 7.32 a 

EAA (µm2) 41.22 ± 2.11 41.39 ± 2.35 41.29 ± 2.31 

ETAS (µm2) 1833.75 ± 400.06 a 1365.51 ± 216.40 b 1877.63 ± 396.65 a 

MVCV (%) 89.92 ± 2.18 a 88.07 ± 1.65 a 92.04 ± 1.58 b 

Abbreviations: EH = enterocyte height; GC = globlet cell counts; LPW = lamina propria width; MT = total 

muscularis thickness; MTI = muscularis thickness index; SLON = % stratum longitudinale of MT; SCR = % 

stratum circulae of MT; SCM = % stratum compactum of MT; MVL = microvilli length; MVD = microvilli 

diameter; MVCT = microvilli counts; EAA = enterocyte apical area; ETAS = estimated total absorptive surface 

area per enterocyte; MVCV = microvilli coverage.  

Values expressed as mean ± S.D. Statistical tests: ANOVA + Fisher’s LSD (LPW, MTI, SLON, SCR, SCM, MVL, 

MVD, MVCT, EAA, ETAS, MVCV); Kruskal-Wallis + Mann-Whitney U (EH). n = 8. 
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Plate 4.5 Intestinal 

ultrastructure of fish 

fed the basal lupin 

diet (LC) after 10 

weeks.  

A = 2,500 X mag. 

SEM, B = 5,000 X 

mag. SEM, C = 

20,000 X mag. SEM, 

D & E = 20,000 X 

mag. TEM, F = 5,000 

X mag. SEM 
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Plate 4.6 Intestinal 

ultrastructure of fish 

fed a 0.1 % SYN 

inclusion (LS0.1) 

after 10 weeks.  

A = 2,500 X mag. 

SEM, B = 5,000 X 

mag. SEM, C = 

20,000 X mag. SEM, 

D & E = 20,000 X 

mag. TEM, F = 5,000 

X mag. SEM 
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Plate 4.7 Intestinal 

ultrastructure of fish 

fed a 0.5 % SYN 

inclusion (LS0.5) 

after 10 weeks.  

A = 2,500 X mag. 

SEM, B = 5,000 X 

mag. SEM, C = 

20,000 X mag. SEM, 

D & E = 20,000 X 

mag. TEM, F = 5,000 

X mag. SEM 
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4.3.7 Intestinal proteolytic enzyme activity 

Anterior intestinal protease activity results are displayed in Table 4.9. 

Total alkaline protease (TAP), trypsin and chymotrypsin activities in the digesta of fish 

were unaffected by dietary treatment (P > 0.05).  

Alkaline phosphatase (ALP) activity in digesta was significantly different between 

treatments (F = 3.76, P < 0.05). Activity of ALP in digesta was significantly higher in 

SYN treatments than LC. No significant difference in ALP activity was present between 

SYN treatments. L-leucine aminopeptidase (LAP) activity in digesta was indicated to be 

significantly affected by dietary treatment (F = 6.04, P = 0.01). Activity of LAP was 

slightly significantly (P = 0.045) higher in LS0.1 fed fish than LC fed fish. Activity of LAP 

was also significantly higher in LS0.5 fed fish than LC fed fish. No significant difference 

was observed between SYN treatments.  

No significant effects of dietary treatment were observed in ALP and LAP activities in 

anterior intestinal mucosa samples, although numerical tendencies towards decreased 

activity with SYN supplementation may be present.  

Table 4.9 Proteolytic enzyme activities in digesta and mucosa of fish fed the lupin based 

diet, with and without SYN inclusion. 

 

Diet 

LC LS0.1 LS0.5 

Digesta    

TAP* (U/g) 17.50 ± 3.75 16.03 ± 1.26 17.71 ± 1.32 

Trypsin (U/g) 68.18 ± 21.31 66.97 ± 14.02 65.03 ± 13.89 

Chymotrypsin (U/g) 325.50 ± 129.00 290.29 ± 27.89 368.57 ± 98.38 

ALP (U/g) 51.64 ± 8.94 a 78.92 ± 17.14 b 79.37 ± 20.56 b 

LAP (U/g) 5.91 ± 1.27 a 7.61 ± 2.85 b 8.50 ± 1.06 b 

Mucosa    

ALP (U/g) 216.73 ± 56.31 203.24 ± 57.98 169.73 ± 68.43 

LAP (U/mg) 837.87 ± 225.36 737.07 ± 113.59 692.20 ± 102.33 

Abbreviations: TAP = total alkaline protease; ALP = alkaline phosphatase; LAP = L-leucine aminopeptidase. 

*10-3 .  

Values expressed as mean ± S.D. Statistical tests: ANOVA + Fisher’s LSD.
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4.3.8 Intestinal microbiota 

A total of 1,734,497 raw reads were obtained from the intestinal samples. After low-

quality reads (Q score <20) were excluded, 68,494 ± 11,487, 63,726 ± 8,718 and 

55,838 ± 7,477 sequences were obtained for the LC, LS0.1 and LS0.5 treatments, 

respectively. Good’s coverage estimates plateaued at ≥0.99 within all treatments (Table 

4.11), showing adequate sequence coverage was present in order to assume identified 

OTUs were representative of the population. Species richness and diversity were 

observed to be highest in the LS0.1 group, followed by the LC and the LS0.5 groups, as 

demonstrated by Chao1, observed species and Shannon’s diversity (Table 4.10).  

Table 4.10 Alpha diversity metrics of allochthonous microbial populations within the 

dietary treatments 

  Treatment  

 LC LS0.1 LS0.5 

Good’s coverage 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 

Chao1 108.28 ± 29.88 130.85 ± 13.15 108.49 ± 12.63 

Shannon1 3.99 ± 1.11 4.84 ± 0.56 3.85 ± 0.40 

Observed species 80.96 ± 24.36 101.15 ± 11.11 86.17 ± 9.28 

PD2 4.40 ± 0.79 4.60 ± 0.32 4.09 ± 0.37 
1 Shannon’s diversity index, 2 phylogenetic distances. (n  =  6) 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Allochthonous microbiome relatedness of fish fed a lupin-based diet, with 

and without inclusions of SYN.  

Left = Principle coordinates analysis (PCoA) of phyla within the lupin-based diets. Right 

= Bray Curtis jackknife UPGMA showing hierarchical clustering of microbiota from lupin-

based dietary treatments; bootstrap values are indicated by red branches (75-100%).  
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PCoA plots appear to show some degree of separation between the dietary treatments, 

with the highest clustering observed within the LS0.5 group (Fig. 4.1). This was strongly 

supported by the UPGMA which clearly demonstrates clustering of the LS0.5, distinctly 

separated from the LC and LS0.1 groups, which express some overlapping similarities 

between sampled individuals (Fig 4.1).    

A total of six OTUs, at a phylum level, were found to each account for over 0.1 % of the 

total microbiome reads; these being, Firmicutes, Fusobacteria, Actinobacteria, 

Bacteroidetes, Spirochaetes and Proteobacteria (Fig. 4.2). Other identified phyla 

(<0.1 %) were Acidobacteria, Planctomycetes, Nitrospirae and the candidate phyla GN02 

and OP3 (Fig 4.2). The proportional abundance of reads assigned to Fusobacteria were 

found to be close to significance between treatments (P = 0.09), qualitative assessment 

indicated proportions to decrease with SYN inclusion (Fig. 4.3A). The proportional 

abundance of reads assigned to Firmicutes was found to differ significantly between 

treatments (P < 0.05). Proportions were significantly higher in LS0.1 (40.20 % of total 

sequences) than LC (1.60 % total) and LS0.5 (3.80 % total) (Fig. 4.3B). A significant 

difference in the abundance of reads assigned to Proteobacteria was indicated between 

treatments (P < 0.05) (Fig. 4.4A). Proportional contribution of Proteobacteria was 

significantly higher in LS0.5 fish (87.80 % total) than LC (56.10 % total) and LS0.1 

(36.60 % total). The abundance of reads assigned to Spirochaetes was significantly 

different between treatments (P < 0.05) (Fig. 4.4B); it was observed that OTUs within 

this phyla contributed 22.10, 0.30 and 0.1 % of sequences in LC, LS0.1 and LS0.5, 

respectively. 
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Figure 4.2 Abundance and proportional contributions of phyla within the allochthonous 

microbiomes of the dietary groups. 

Top = Heatmap displaying the abundance of phyla (>0.1 % contribution) within 

individual fish (columns) and their respective dietary group (colours). Intensity of red 

squares denotes abundance (%). Bottom = proportional contributions of all phyla 

identified within the dietary groups. 
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Figure 4.3 Proportional contribution of selected bacterial phyla within the digesta of the dietary groups. 

A = Fusobacteria. B = Firmicutes. 
Boxes sharing the same superscript are not significantly different (P≤0.05). 

P = 0.021 

b 

b 

a 

P = 0.090 
B A 
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Figure 4.4 Proportional contribution of selected bacterial phyla within the digesta of the dietary groups. 

A = Proteobacteria. B = Spirochaetes. 
Boxes sharing the same superscript are not significantly different (P≤0.05) (A). (B) LS0.5 expressed 0.00% proportion of sequences, thus post-hoc analysis could not be 

performed.  

P = 0.043 

a 

b 

b 

P = 0.030 

B A 
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The core microbiome of the experimental fish was found to comprise of 17 genera, whilst 

2, 21 and 4 unique genera were identified within the LC, LS0.1 and LS0.5 treatments, 

respectively (Fig. 4.5). A total of 7 genera were shared only between LC and LS0.1, 

whilst LS0.1 and LS0.5 exclusively shared 4 genera. No genera exclusively shared 

between the LC and LS0.5 treatments were identified, reaffirming previously discussed 

observations of divergence between these groups.  

 

 

 

 

 

 

 

 

Figure 4.5 Venn diagram displaying the numbers of shared and exclusive genera within 

the allochthonous microbial population of the dietary groups. 

 

Graphical presentation of all genera accounting for over 0.1 % of sequences in each fish 

is displayed in Fig 4.6. 

The proportions of sequences assigned to three genera within the family 

Enterobacteriaceae were found to differ significantly between treatments. Firstly, an 

unidentified genus was found to differ significantly (P < 0.5), being greater in LS0.5 than 

LC and LS0.1 (Fig. 4.7A). This unidentified genus contributed 67.70 % of sequences in 

LS0.5 compared to 7.50 % in LS0.1 and 0.30 % in LC. Further attempts to identify 

genus and species returned similarity in sequence to both Enterobacter spp. and 

Klebsiella spp. both of which frequently expressing >98 % similarity. It is of note that 
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similarity to Enterobacter cloaceae and E. aerogenes was repeatedly observed, with 

these species being most probable for presence within the salmonid microbiota. Secondly, 

sequences assigned to Erwinia were found to differ significantly (P < 0.05) between 

treatments, due to higher abundance in LS0.5 compared to LC and LS0.1 (Fig. 4.7B). 

Species identification results were inconclusive. Lastly, Cronobacter was found to follow 

the previous trend as the previously discussed Enterobacteriaceae genera (P < 0.05) 

(Fig. 4.7C). Mean contribution in the LS0.5 group was 3.90 % of reads, compared to 

0.00 and 0.10 % in the LC and LS0.1 groups, respectively. Again, species identification 

results were inconclusive. Overall, Enterobacteriaceae dominated sequence reads 

assigned to the Proteobacteria fraction of the LS0.5 treatment, with 72.40 % 

contribution compared with 0.70 and 8.40 % in the LC and LS0.1 groups, respectively. 

The overall Proteobacteria proportions observed in the LC group were comprised of a 

range of classes, orders and families with relatively low proportional contribution, once 

one individual which expressed very high proportions of Deefgea was omitted. The LS0.1 

group similarly exhibited no clear dominating genera within the phyla of Proteobacteria, 

with Pseudomonas, Moritella, an identified genus belonging to Comamonadaceae and the 

believed Enterobacter contributing 4.10, 7.40, 3.10 and 7.50 % of reads, respectively, 

alongside 30 other genera contributing between 0.10 and 3.00 % of sequences. 

Bacillus proportions differed significantly between treatments (P < 0.05); the 

contribution to total microbiome was significantly greater in LS0.1 (33.30 %) than LC 

(0.50 %) and LS0.5 (1.00 %) (Fig. 4.8A). No significant difference was observed 

between LC and LS0.5. Species identification revealed a high degree of relatedness 

(>99 %) to Bacillus cereus, Bacillus mycoides, Bacillus subtillis and Bacillus thuringiensis. 

This result explains previously observed results of increased Firmicutes in LS0.1.  

Janthinobacterium proportions differed significantly between treatments (P < 0.05) (Fig. 

4.8B). No treatment exhibited on average over 1 % contribution of this genera; but a 

complete absence in the LS0.5 group rendered a significant different between this 

treatment and LC and LS0.1, whilst presence appeared to decrease with SYN inclusion.  
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A significant difference in the contribution of an unidentified genus, belonging to the 

order Aeromonadales, was detected between treatments (P < 0.05), being significantly 

greater in LC than LS0.5 (Fig. 4.8C). The contribution was approximately 0.1 % of 

sequences observed in LC, <0.1 % in LS0.1 and negligible in LS0.5. This sequence 

showed >99 % similarity to Aeromonas salmonicida. 

A significant difference in an unidentified genus belonging to the family Brevinemataceae 

was observed between treatments (P < 0.05) (Fig. 4.8D); the proportional contribution 

was numerically greater in LC (22.10 %) than LS0.1 (0.30 %) and LS0.5 (0.10 %). 

Species identification revealed 98 % similarity to Photobacterium piscicola; however, 

identification of sequences frequently returned no conclusive results leaving a degree of 

uncertainty to the species identity.  

Although no significant differences were observed, a number of OTUs appeared higher in 

the LS0.1 group and must be noted (Fig 4.6). Moritella contribution was 7.40 % of reads 

in the LS0.1 group compared with 2.10 % in both other analysed treatments. 

Identification returned 100 % similarity to Moritella viscosa. Flavobacterium presence 

was doubled in the LS0.1 group’s collective microbiome compared with the other two 

treatments (0.2 and 0.1 %, respectively); identification to species level was inconclusive. 

Pseudomonas represented 4.10 % of the sequences within the LS0.1 group, compared 

with 0.40 and 0.90 % in the LC and LS0.5 treatments, respectively. Species 

identification was inconclusive. Other genera which increased within the LS0.1 group 

include 0.7 % Clostridium (0.2 and 0 % in LC and LS0.5), 0.4 % Rudanella (0 % in LC 

and LS0.5), 0.8 % Shewanella (0.3 and 0 % in LC and LS0.5), 0.7 % Pleisomonas (0.4 

and 0.2 % in LC and LS0.5), 0.6 % Staphylococcus (0.3 and 0 % in LC and LS0.5), 0.8 % 

Sphingomonas (0 % in LC and LS0.5), 0.6 % Collimonas (0% in LC and LS0.5), 0.3 % 

Microbacterium (0 % in LC and LS0.5) and 0.7 % of an unidentified genus belonging to 

Streptococcaceae (0 % in LC and LS0.5).  
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Figure 4.6 Proportional contributions of identified genera within the microbiomes of 

sampled individuals. OTUs presented are those which express >0.1 % contribution 

towards the total number of sequences identified. 
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Figure 4.7 Allochthonous 

genera belonging to the family 

Enterobacteriaceae, of which 

were found to differ significantly 

between dietary treatments. 

A = Unidentified genus 

with >98 % similarity to 

Enterobacter and Klebsiella. B = 

Erwinia. C = Cronobacter. 

Boxes sharing the same superscript are 

not significantly different (P≤0.05). 
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A B 

C D 

Figure 4.8 Miscellaneous 

allochthonous genera found to differ 

significantly between dietary 

treatments. A = Bacillus. B = 

Janthinobacterium C = Aeromonas. D 

= Unidentified genus belonging to the 

family Brevinemataceae. 

Boxes sharing the same superscript are not 
significantly different (P≤0.05). 
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4.4 Discussion 

4.4.1 Fish performance and feed efficiency 

The performance enhancing benefits of bioactive feed components are well regarded in 

terrestrial monogastrics and to some extent in warm-water aquatic species. However, 

their application in farm livestock generally becomes less successful as the core 

temperature of the animal drops. Clearly, the temperate salmonid species are likely to 

be a great challenge. In comparison with most other aquacultured species, salmonids 

require low water temperatures throughout their production. Eggs require particularly 

cool water, with death of eyed eggs and deformity of hatching alevins becoming 

economically crippling and unethical above 12 °C; thereafter, optimum rearing 

temperatures for growth are dependent upon species but can generally be considered to 

be between 12 and 16 °C. Moreover, temperatures throughout the year will seldom 

remain optimal for grow-out sites, with seasonal fluctuations regularly reducing water 

temperatures to well below 12 °C whilst still maintaining good performance. That being 

said, bioactive components (be it enzymes or microbes) are not ubiquitous in their 

optimal or effective range of temperatures so the application of multi-component 

ingredients such as Synergen™ (SYN) are highly attractive and theoretically hold more 

potential for retaining some form of beneficial activity. The inclusion of SYN in yellow 

lupin-based diets for rainbow trout returned solid evidence of performance enhancement 

at 12.5 °C within this investigation; however, this was only apparent following an 

inclusion rate of 0.5 %, with the 0.1 % inclusion returning negligible effects. Previously, 

the 0.1 % inclusion was deemed effective in lupin-based diets for Nile tilapia but it is 

evident that functionality of SYN was reduced following transition to a salmonid species, 

in this case rainbow trout. Lower rearing temperature will inevitably lead to a reduction 

in the activation energy available for bioactive components to work effectively under in 

vivo conditions. Although perhaps crude in appearance, simply increasing inclusion rate 

has been demonstrated as an effective means of maintaining the functionality of phytase 

applications in salmonid diets (Vandenberg et al., 2012). Indeed in this case, a five-fold 
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increase was highly effective in promoting growth performance and general feed 

utilisation. Most promisingly, the LS0.5-fed fish were closer in performance to those fed 

a high-grade fishmeal (FM) diet, which could be considered cost-ineffective due its 

ingredient matrix. However, in this study the FM-diet served as a reference, semi-

purified diet for achieving maximum allowable performance under the experimental 

conditions. Rainbow trout fed phytase supplemented diets have previously been reported 

to express performance characteristics closer to a FM-based diet than the original basal 

diet (Vandenberg et al., 2011).  

 

4.4.2 Macronutrient availability and status 

Quantification of nutrient availabilities revealed many improvements in both SYN 

inclusion levels for rainbow trout fed the lupin-based diets. The increase in apparent 

digestibility of crude protein, by 2.27 % between the LC and LS0.5 groups, serves a 

likely contributor to enhanced growth, protein efficiency and also an increase in carcass 

crude protein content. In support of these findings, augmented protein efficiency, 

leading to increased performance has been observed in broilers fed commercial diets 

supplemented with a similar product, Allzyme®SSF (Yadava et al., 2009). Improved 

availability of protein is also extensively regarded as one of the main benefits of phytase 

additions, with observations across many species (Kumar et al., 2012). Gross energy 

digestibility was similarly improved following SYN supplementation, increasing by 8.25 % 

between the LC and LS0.5 groups. Once again, increased gross energy was expressed 

within the carcasses of sampled fish. Improved gross energy availability has been 

extensively observed following supplementation of a range of purified exogenous enzyme 

preparations in monogastrics; including endo-β-glucanase and endo-β-xylanase in pigs 

(O’Connell et al., 2006), multi-enzymes and xylanase in poultry (Danicke et al., 2000; 

Zhang et al., 2012) and multi-enzymes in tilapia (de Oliveira et al., 2007; Guimaraes et 

al., 2009). Increased gross energy provision has also been reported as possible following 

phytase supplementation in rainbow trout diets (Cheng and Hardy, 2002). The mode of 
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action in this instance is widely regarded to consist of degradation of chelates and 

reduction of intestinal viscosity which augments enzyme-substrate interactions. With the 

latter of the explanations, one would expect to see some form of improved carbohydrate 

degradation. 

Although the LS0.1 diet also induced significant improvements in digestible protein and 

energy, this was not observed in the digestibility of crude fibre. Only the LS0.5 dietary 

treatment induced an effect on this carbohydrate parameter, with an increase of 

approximately 31.5 %. It is recognised that limitations exist in determination of crude 

fibre, considering it is not comprehensive of all non-starch polysaccharides. Its analytical 

quantification does lose substantial quantities of soluble hemicelluloses during the 

procedure. However, it is fair to suggest that some exogenous carbohydrase enzymes, 

derived from SYN, particularly cellulase, expressed efficacy within the luminal 

environment of the GIT. Hemicellulase action is also likely since industrial fermentation 

processes with A. niger are regarded to produce potent activities of xylanases, 

mannanases and galactosidases (Laerke et al., 2015; Inoue et al., 2015; Manzanares et 

al., 1998; Magalhaes et al., 2014). Consequently, polysaccharide chain length would 

have been reduced to a level which caused monosaccharides to be more available to the 

animals, or to a level capable of significantly increasing short-chain oligosaccharides 

which could be fermented by the intestinal microbiota. Either way, a protein sparing 

effect is highly likely to have occurred, considering the significant decrease of 

carbohydrate fractions from the diet.  

Serum glucose levels were significantly elevated in the LS0.5 and FMC compared with LC 

and LS0.1. Elevated blood glucose in salmonids is often regarded as a stress response 

(Benfey and Biron, 2000) or volatile glucose homeostasis but clearly in this case there 

are no grounds on which to attribute stress or poor regulation as factors since the 

elevation was observed in the two highest performing treatments, including one which 

was fed a relatively optimal dietary formulation. Therefore, attribution to dietary factors 

is most likely. The first, and simplest, explanation is that of increased provision of 
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dietary glucose. It may perhaps be surprising that the FMC fed fish expressed the 

highest levels but it is important to remember that although FM-based, this semi-purified 

diet contained appreciable quantities of starch, which can be considered a relatively non-

complex carbohydrate matrix. The anterior intestine of salmonids is known to contain 

activity of α-amylase as well as mucosal maltase, sucrase and lactase (Korgdahl et al., 

2004; Furne et al., 2005; Furne et al., 2008; Geurden et al., 2007; Santigosa et al., 

2008) so glucose can be obtained from the hydrolysis of dietary starch (Krogdahl et al., 

2004). Furthermore, oligosaccharides have been shown to impair the intestinal uptake of 

glucose in rats (Sone et al., 1992) whilst fibre in general was observed to do so in fish 

(Shiau et al., 1989); thus possible degradation of long- and short-chain polysaccharides 

in LS0.5 may have facilitated sugar absorption. All things considered, the higher serum 

glucose levels observed may be a result of improved availability due to reduced 

substrate complexity in the FMC group and exogenous carbohydrase activity in LS0.5.  

Indeed, in the case of LS0.5, increased crude fibre digestibility indicates that a 

significant absorption of cellulose-derived glucose was achieved. Conversely to these 

suggestions, chickens and quails supplemented with exogenous enzymes have been 

reported to display no effect on blood glucose levels (Moharrery, 2006; Jozefiak et al., 

2011; Sahin et al., 2007). However one must consider the slow glucose turnover time 

and metabolic assimilation of glucose in carnivorous fish, compared to birds and 

mammals (Polakof et al., 2012); as well as the fact that digesta was still present in the 

intestine of sampled fish showing that digestion and assimilation of nutrients was on 

going at the time of measurement.  

It is also worth considering that proteinaceous dietary factors may have influenced the 

observed results. In a recent study on blunt snout bream (Megalobrama amblycephala), 

dietary leucine levels were observed to increase plasma glucose (Ren et al., 2015), 

indicating an important role of this amino acid in glucose homeostasis. The variations in 

crude protein digestibility which are likely to alter leucine provision may have played a 

role in glucose homeostasis but further work is required considering the novelty of Ren 
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et al.’s (2015) findings. Lastly, the presence of hypoglycaemic-stimulating lupin γ-

conglutin must be considered, as discussed in Chapter 3; although it is largely unclear 

whether SYN has any capability of degrading this protein. It would be of great benefit for 

future work on the dietary application of lupins to explore the effect of γ-conglutin on 

glycaemia in fish.  

 

4.4.3 Micronutrient availability, status and osteology 

Vast improvements to mineral and trace element availabilities were observed throughout 

the SYN-supplemented diets. Perhaps of most significance was a 55 to 74 % increase in 

phosphorous uptake between the LC and LS0.5 diets. Phytase supplementation of plant 

protein diets for rainbow trout have previously reported results that are very much in 

line with those observed under the current study. Riche and Brown (1996) reported 

increases in P availability from 48 to 75 %, whilst Carter and Sajjadi (2011) observed 

increases from 45 to 80 % and Verlhac-Trichet et al. (2014) reported an increase from 

49 to 71 % with 2000 FTU.  The slightly higher baseline ABAC of P in this study could be 

largely attributed to the non-conservative mineral premix addition during dietary 

formulation, allowing good initial P availability. Overall, in terms of the vital criteria of P 

availability, SYN appears to produce comparable efficacy to dedicated phytate-degrading 

products. Furthermore, in correspondence with other research, all element 

bioavailabilities which increased throughout the SYN inclusions in the present study have 

been previously reported as improved following phytase inclusions in finfish diets 

(Liebert and Portz, 2005; Liebert and Portz, 2007; Laining et al., 2012; Cheng et al., 

2004; Vandenberg et al., 2012; Debnath et al., 2005c; Baruah et al., 2005; Hussain et 

al., 2015a; Hussain et al., 2015b; Hung et al., 2015; Liu et al., 2014). It is highly likely 

that the increased mineral bioavailabilities observed in this study have some, or all, of 

their origin in a degradation of phytate-mineral chelates. Since the basal diet contained 

both soyabean products and lupin kernel meal, it is probable that the phytate degraded 

in this process was from both ingredient types. Phytate is known to complex with the 
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proteins of both of the plants utilised in the diets (Hartman, 1979; Hidvegi and Lasztity, 

2002). Theoretically, considerable reductions in inorganic excretions could be achieved 

with dietary SYN inclusions and may wish to be explored in future studies. Furthermore, 

there exists possibility for allowing savings in mineral supplementations by compensating 

the available levels with liberation from bulk ingredient sources. The use of more 

marginal diet formulations is encouraged in future, so as to increase the likelihood of 

identifying the extent to which ABAC and excretion of minerals may be improved.  

Despite following the same trends in increased bioavailability of elements highly 

associated with phytate chelation, S is set aside in that it is not typically involved in such 

complexes. The increased availability, thus disappearance of S from the lumen is more 

likely to be attributed to increased digestibility of protein since it forms an integral part 

of abundant sulfur-bridge amino acids (i.e. methionine and cysteine).  

The limited availability of Zn has regularly been associated with phytate chelation (Satoh 

et al., 1993) and targeted degradation of the compound has regularly been observed as 

successful in increasing the provision of this essential trace element (Cheng et al., 2004; 

Debnath et al., 2005c; Baruah et al., 2007b; Kumar et al., 2012; Vandenberg et al., 

2012). This study did reveal a significant increase in Zn availability following SYN 

inclusions however the trends were not as strong as was observed in many other 

elements since no significant difference was found between LC and LS0.1. Elements will 

most certainly not be ubiquitous in their distribution throughout the gross seed structure, 

nor will they be in their distribution amongst binding agents within. Porres et al. (2007) 

identified this occurrence in all three major lupin species, indicating that the proportions 

of the total content of elements varies between the embryo, cotyledon and hull and that 

association with α-galactosides similarly differs. Considering that Porres et al. (2007) 

reported that partitioning of Zn throughout lupin seed layers is not in line with that of P, 

as well as Zn concentration increasing and P concentration decreasing following removal 

of α-galactosides, it is fair to say that a different enzymatic action may have contributed 
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significantly to the release of Zn. Being somewhat in line with the trends in CF ADC, this 

may have partially occurred through liberation from polysaccharides.  

Fe did not appear to follow an increase in availability throughout the SYN inclusions, 

since LS0.1 displayed the greatest bioavailability coefficient. The conditions for intestinal 

Fe uptake in fish are not well understood, making it difficult to elucidate why this may 

have been the case. Furthermore, endogenous Fe losses can be high (Bury and Grosell, 

2003; Bury et al., 2003), thus possibly masking true effects of dietary availability.  

Interestingly, haematocrit was also increased in the LS0.1 treatment but not the LS0.5, 

indicating a higher Fe status in the former; despite, haemoglobin not expressing such 

strong trends. Ultimately, it is unclear whether there was indeed a relationship between 

Fe uptake/loss and erythrocyte-related characteristics. The supplementation of tilapia 

diets, with a mixture of pepsin, papain and α-amylase, has also been observed to 

increase red blood cell counts, haematocrit and haemoglobin (Goda et al., 2012), 

although a scientific explanation as to why this occurred was similarly not identified. The 

possibility of the LC and the LS0.5 actually expressing a drop in haematocrit levels would 

be typical of pathogenic infection in salmonids (Snow et al., 2001) but it is highly 

unlikely considering the performance and the apparent health of the animals.   

Overall, the increase in digestibility of multiple macronutrients as well as bioavailability 

of minerals demonstrated a multi-faceted efficacy in improving nutrient profile; with 

much similarity to results observed in both phytase (see Kumar et al., 2012) and 

carbohydrase (see Castillo and Gatlin, 2015) inclusions in finfish diets.  

The bioavailability of Na is most distinctly isolated from those discussed previously due 

to the behaviours and roles of this element in the digestive process. These largely 

comprise of participation in various active transport systems; e.g. Na+/K+ pump and Na 

glucose transporter. Absorption of Na occurs largely in the oesophagus and gastric 

portions of salmonids, with significant excretions beginning in the anterior intestine 

(Bucking et al., 2011). Its absorption depends less so upon the digestive mechanisms 
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critical for assimilation of other dietary elements. All three lupin-based diets expressed 

negative coefficients, showing loss of Na was greater than dietary intake. However the 

quantity of Na found within the stripped faecal samples was indicated to decrease with 

SYN inclusion. The faecal excretion of Na in Atlantic salmon has previously been reported 

as elevated following high plant protein diets, this has been inclusive of soyabean, maize, 

sunflower, rapeseed and pea inclusions but interestingly, it has been reported as less 

pronounced in lupin (Storebakken et al., 1998). Storebakken et al. (1998) suggested 

that NSPs could be the root-cause since they have a high affinity for cationic elements. 

However, Aslaksen et al. (2007) provided evidence that this may not be the case as 

dehulled beans yielded the same result as those which were fully hulled. The same 

authors also demonstrated that the level of Na excretion was not correlated with phytic 

acid. Instead, attribution was given to the disruption of the epithelial layer by other ANFs 

causing excessive endogenous loss.  

Quantification of element concentrations within specific tissues suggested little variation 

in most instances between dietary treatments but it is important to consider that a 

greater size of fish could result in the more uniform concentrations observed, due to 

greater tissue mass accretion. After all, this is a factor which could well be a contributor 

to the promotion of growth, in the first instance. Homeostasis of minerals is also very 

tightly regulated (Lall, 2002) and without deficiency, the chance of observing significant 

effects is greatly reduced. Nonetheless, some significant differences were identified, 

indicating greater, or indeed lesser, mineral status between the dietary treatments. 

Zn was identified as being present in a significantly higher concentration in the liver of 

FMC-fed fish, whilst numerical trends of this sort were carried throughout all identified 

tissues. This could largely be explained by the discrepancies of original dietary Zn levels, 

with approximately 640 to 645 mg/kg within the lupin-based diets and approximately 

780 mg/kg in the FMC. Furthermore, following SYN inclusion numerical trends in 

increasing Zn concentrations, which somewhat followed ABAC trends, also appeared to 

be present. These results are somewhat surprising since the liver of finfish has 



159 
 

previously been reported to not respond noticeably to dietary zinc levels or sources, 

since zinc metallothioneins do not appear to be stored in this organ, as is the case in 

mammals (Leeming, 2013 p. 13). Nonetheless, other tissues, including the caudal fin of 

rainbow trout, have been identified as good indicators of Zn status (Leeming, 2013). 

Mn appeared to be the most prominent trace element which was subject to change in its 

concentration within the analysed tissues. This is perhaps unsurprising considering the 

great differences in dietary Mn concentration between the lupin- and FM-based diets. 

However, this does serve to demonstrate the points made in Sec. 4.1.4, regarding 

ingredient-specific micronutrient provision. This may be surprising considering the ABAC 

of Mn in the LC group was negative; however, one must consider the very high 

concentration and endogenous losses through the intestinal tract which could equate to 

an equal turnover, i.e. an ABAC value close to zero. Nevertheless, SYN inclusion 

appeared to increase the concentration of Mn in all analysed tissues, either significantly 

or quantitatively. The role of Mn and its essentiality is well established in animal nutrition. 

Its participation includes acting as an enzyme cofactor, comprising integral parts of 

metalloenzymes involved in carbohydrate and lipid metabolism and it is also known to 

interchangeably activate numerous enzymes with Mg (Lall, 2002). The application of 

yellow lupin alone appears to be capable of providing ample Mn, which could have 

profound effects upon metabolic functions and structural formations (Knox et al., 1981). 

With such high concentrations, concern may arise due to potential toxicity; however 

most animals exhibit good resistance to dietary toxicosis of Mn due to their excretory 

pathways (Keen et al., 1999), which would support the previous suggestion of Mn 

turnover. It has been noted that elevated dietary Mn levels may be especially attractive 

in broodstock nutrition (Lall, 2002). Increasing Mn supplementation in laying hens has 

indeed been observed to improve a number of egg quality parameters as well as overall 

productivity (Hossain and Rezendle, 1996; Hossain and Bertechini, 1998; Venglovska et 

al., 2014; Zhu et al., 2015). These results are a strong incentive for considering lupin 
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inclusions in salmonid diets, more so considering the Mn requirement of salmonids 

appears to be higher than many other fish (Lall, 2002). 

Despite no significant modulation of vertebral Ca and P concentrations between 

treatments, the ratios of these elements was found to differ as a consequence of diet, 

although all treatments expressed typical salmonid ratios,  judging by the work Helland 

et al., 2005. The significant incremental reduction in Ca:P ratio following SYN inclusion 

indicates that proportional contribution of P increased slightly in these dietary treatments. 

This seems to contradict the findings of (Helland et al., 2005), whom reported whole 

body Ca:P ratio of Atlantic salmon to increase between a low and high P diets; probably 

with similar trends in vertebral Ca:P, judging by reported Ca and P concentrations. On 

the other hand, inclusion of graded levels of phytic acid in Atlantic salmon diets was 

suggested to also raise Ca:P within the body, alongside coupled numerical trends  within 

vertebrae, which was ultimately caused by P deprivation (Helland et al., 2006). 

Interestingly, Helland et al. (2006) also identified an increase in the occurrence of hyper-

dense vertebrae within fish fed a higher phytic acid diet, suggesting a greater 

mineralisation. This could perhaps intertie with the observation of overall reductions in 

vertebral Ca and P concentrations following SYN inclusion, which is believed to have 

exerted phytic acid-degrading properties upon the diets. Overall, deficiency of P has 

been implicated in structural deformities, reduced bone hardness and a reduction in bone 

size (Baeverfjord et al., 1998; Vielma and Lall, 1998; Roberts et al., 2001), so a greater 

contribution could display amelioration of these pathologies. This study did not identify 

any alteration to the centrum size, thus potential for improved for structural integrity 

could not be suggested on a morphological level. Supplementing broiler diets with 

Allzyme®SSF was observed to show no effect upon bone strength (Gentilini et al., 2009); 

however the authors did not quantify mineral bioavailability, leading to uncertainty as to 

whether these findings were in correspondence with one another. It must be noted that 

the size of fish utilised in the present study was one which had already undergone a vast 

proportion of its ontogenetic developments and was long-past life-stages where 
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ossification is most critical. Nevertheless, seen as the mineral release by SYN appeared 

to modulate bone mineralisation even in advanced juveniles, future work should consider 

younger developmental stages in order to reassess whether mineral release by SYN may 

improve structural integrity.  

 

4.4.4 Intestinal morphology, microbiota and proteolytic activity 

The high degree of modulation observed between the gut microbiomes of the fish 

displayed the extent to which SYN altered substrate profile within the intestine. The 

shared similarities between the LC and LS0.1 groups, leading to high differentiation with 

the LS0.5 treatment reflected trends previously observed with regards to nutrient 

availabilities. Overall, supplementation of 0.1 % SYN appeared to drastically reduce the 

proportion of Spirochaete reads in the microbial community with a dramatic increase of 

Firmicute reads and to some extent those assigned to Bacteroidetes. Increasing this 

inclusion 5-fold, reduced Spirochaetes to undetectable levels and the vast majority of the 

environment became dominated by Proteobacteria; in turn, the proportional abundance 

of reads assigned to Fusobacteria, Firmicutes and Bacteroidetes appeared to decrease. It 

appears that at a phylum level, the microbial composition of rainbow trout fed typical 

contemporary commercial diets lays somewhere in between the expressed populations of 

the LS0.1 and LS0.5 groups; considering demonstration of the dominance of 

Proteobacteria, with considerable contribution of both Fusobacteria and Firmicutes in 

roughly equal proportions (Lyons et al., 2015). 

Exploring further into the taxonomic levels of the identified microbiota, revealed even 

more drastic changes to the microbiome. For example, the Proteobacteria contributions 

were vastly different in their comprising OTUs at a lower level, with dominance of 

Deefgea (40 %) in the LC group, a diverse number of genera in the LS0.1 group and a 

striking dominance of Enterobacteriaceae in the LS0.5 group. Enterobacteriaceae are 

highly regarded microbes within industrial biofuel production; they exhibit an attractive 

and characteristic efficiency in their proliferation within environments which are rich in 
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glucose, and to some extent xylose, (Li et al., 2015; Ji et al., 2011). This is a very good 

indication of substantial lignocellulolytic activity following a 0.5 % SYN inclusion; 

supporting a theory of substrate degradation to a monosaccharide or short-chain 

oligosaccharide level, prior to digesta arriving within the posterior intestine where 

microbial fermentation is most prominent. It would also correlate with the CF ADC 

results which are a good indicator of cellulose to glucose hydrolysis. This occurrence 

would appear to contradict the findings of Olkowski et al. (2010), where broilers fed 

yellow-lupin based diets treated with a commercial multi-enzyme product (Ronozyme® 

VP) had significantly reduced numbers of Enterobacteriaceae within their caeca and 

excreta; although, as highlighted, this seems highly dependent on inclusion rate of the 

bioactive product.  

The strong indication of E. cloacae (or very closely related species) contributing almost 

70 % of microbiota reads within the LS0.5 could be particularly promising considering 

reports that it may be potential probiotic against Yersinia ruckeri in rainbow trout 

(Capkin and Altinok, 2009). Y. ruckeri can be a devastating pathogen to salmonid 

operations, particularly rainbow trout, as the cause of enteric redmouth disease (ERM). 

This pathogen regularly results in high mortality if inadequately managed and costly, 

pre-emptive vaccinations and therefore routinely implemented.  

A number of OTUs were observed to increase more so in the LS0.1 group than others, of 

which some are of particular concern and should be highlighted. The identification of 

Moritella viscosa is of concern due to the fact that this species of bacteria is a potent 

pathogen to salmonids, causing ‘winter ulcer disease’ (WUD) which may induce heavy 

losses, particularly at lower temperatures. Higher presence of Flavobacterium should 

also be discussed as species from this genus are the cause of ‘bacterial coldwater 

disease’ (BCWD), which is of similar great concern to the salmonid industry. Somewhat 

conversely to these findings, channel catfish (Ictalurus punctatus), supplemented with 

Allzyme®SSF at 0.05 % have been demonstrated to display longer resistance time to 

Flavobacterium collumnare; although after 8 days, the study did not indicate any 
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significant improvement to survival (Zhao et al., 2015). Lastly, Pseudomonas reads were 

approximately 4-fold higher in the LS0.1 group and similarly of concern due to the 

pathogenicity of some species within this genus to fish. This is all somewhat surprising 

considering increases in a number of other OTUs found within this treatment. Firstly, 

Bacillus spp. proliferated much more in this treatment. Bacillus spp. are heavily 

documented as probiotics, including within the salmonid GIT; for a detailed review of 

these, readers are referred to the comprehensive review by Merrifield et al. (2010). 

Furthermore, lactic acid bacteria (LAB), which are generally considered to be of benefit 

to aquatic hosts, appeared to display a greater presence in the LS0.1 group, with genera 

such as Enterococcus, Streptococcus, Leuconstoc and Weisella. Contrariwise to the LS0.1 

group but in accordance with the LS0.5 fish, broilers fed xylanase have been observed to 

display reduced counts of LAB (Owens et al., 2008; Yang et al., 2008). This has also 

been demonstrated in pigs fed β-glucanase and β-xylanase (Smith et al., 2010). 

However, it must be considered that certain species within the genera Enterococcus, 

Streptococcus and Weisella are pathogenic threats to salmonids in practice.      

It is also of note that the LS0.5 group generally displayed the least amount of variation 

between sampled individuals. This suggests a SYN-induced effect of greater population 

consistency and predictability within the intestinal microflora of fish receiving a 0.5 % 

dietary dose; all whilst a 0.1 % inclusion tended to suggest quite the opposite effect.  

The vastly different microbial profile characteristics in the LS0.1 is proposed as possibly 

attributable to a more partial hydrolysis of indigestible dietary fractions by an inclusion 

rate which was slightly limited in activity under the current conditions. If correct, a flood 

of various types and molecular weights of oligosaccharides may have occurred; causing 

bacterial fermentation in the hindgut to thrive and high competition for substrates and 

niches to occur, resulting in microbial imbalance. Simply, a large and diverse quantity of 

nutrient sources available to microbes but not their host may stimulate a diverse 

microbial population; which from taxonomic identification in this study may not be 

necessarily favourable. This theory, which is highly dependent on functional additive 
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inclusion rate, should be investigated further. If correct, this could serve to further 

validate the strategy of superdosing bioactive feed supplements which is frequently 

becoming practiced in terrestrial monogastric animal production.  

Goblet cell numbers appeared greatly reduced in the LS0.5 treatment, suggesting a 

decreased level of mucus secretion. Elevated fibre content, including soyabean hulls, has 

been demonstrated to augment goblet cell abundances in the duodenum of piglets 

(Pascoal et al., 2015). Similarly, high fibre dietary components have been observed to 

stimulate goblet cell proliferation and activity in rodents (Lundin et al., 1993; 

Schmidtwittig et al., 1996; Ito et al., 2009; Hino et al., 2012, Hino et al., 2013). Such 

occurrences have also been associated with the increase in digesta viscosity by soluble 

NSPs (Piel et al., 2005). Furthermore, fibre-induced goblet cell proliferation has been 

demonstrated to occur independently of microflora, in germ-free rats, but effects may be 

attenuated by colonising bacteria (McCullough et al., 1998). Lectins are another 

causative agent behind goblet cell proliferation due to the manner in which they bind to 

oligosaccharides and the mucosal surface (Menghi et al., 1989); therefore a reduction in 

carbohydrates could reduce their potency. It is of interest that goblet cell numbers 

appear to follow the same trend as those observed in the digestibility of fibre. 

Considering existing evidence that cellulosic and hemicellulosic polymers increase goblet 

cell proliferation, be it directly or indirectly, it is suggested that increased hydrolysis of 

such compounds in LS0.5, as indicated by crude fibre digestibility and perhaps also the 

microbiota, could contribute to the morphological results observed. Alternatively, it is 

also worthy to note that goblet cell proliferation and thus mucus production has been 

suggested as a response to sloughing off pathogenic bacteria within the gut of fish 

species, such as Arctic charr (Lodemel et al., 2001). So the reduced abundance of goblet 

cells in LS0.5 may also be linked to its microbiome characteristics. In any case, the 

reduced presence of goblet cells in the LS0.5 group appears to indicate a reduced 

investment in mitigating the effects of stressors within the lumen.  
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Mucosal duodenal layers have been observed to become thicker following probiotic 

application in fish (Batista et al., 2015) and there is theoretical potential for these 

muscular tissues to exhibit morphological responses if digesta viscosity, thus ease of 

passage, is drastically altered. However no such observations were noted under the 

current study.  

The LC group generally exhibited healthy gut ultrastructure, in correspondence with 

previous findings regarding the application of lupins in salmonid diets (Borquez et al., 

2011; Serrano et al., 2011; Serrano et al., 2012). However, microvilli lengths were 

numerically lower, whilst counts were significantly lower in the LS0.1 group, which 

resulted in a significantly reduced estimated total absorption area per enterocyte. It is 

therefore apparent that some form of intermediary product or process of nutrient 

digestion by SYN prompted the depression of beneficial morphology, as the LS0.5-fed 

fish showed similar, even perhaps improved morphology compared with those fed the 

basal diet. Out of the macronutrients which were altered, no intermediary products of 

protein hydrolysis are likely to cause such effects, again leaving carbohydrate fractions 

to be scrutinised. Oligosaccharides are generally reputed to achieve the opposite effect 

to the one in question, by fuelling probiotic species in a controlled manner but in this 

instance an unfavourable community appeared to proliferate containing numerous 

pathogenic species. In an in vitro study of the Atlantic salmon foregut, the pathogenic 

bacteria Aeromonas salmonicida and Vibrio anguillarum were observed to result in 

damage to epithelial cells, including disorganisation of microvilli (Ringo et al., 2007). 

Vibrio vulnificus was similarly observed to negatively impact upon the brush border in 

gilthead seabream (Sparus aurata) (Khemiss et al., 2009). When the substantially higher 

diversity of microbial species within the LS0.1 group is considered, the theory of a 

microbial influence upon the observed microvilli-related results cannot be discounted. 

This could only be aggravated with the apparent increase in spatial area between both 

microvilli and enterocytes, allowing greater potential for infiltration and adhesion of 

pathogenic microbes.  
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Exogenous-endogenous enzyme interactions in animal nutrition are poorly understood 

and sparsely investigated. Although the introduction of exogenous sources usually aims 

to supplement the digestive system with previously absent components, it has been 

highlighted that interactions are a possibility, reducing the cost of hydrolytic investment 

by the animal (Bedford and Partridge, 2010). The activity of trypsin and chymotrypsin 

(the indicators of digestive capacity) appeared not to be altered by the SYN inclusions, 

suggesting no endo-exogenous interactions or any noticeable reduction in inhibitors. This 

is somewhat supported by Vandenberg et al.’s (2011) findings, where phytase-

supplemented rainbow trout were effective in reducing protein-limiting phytate yet they 

did not affect trypsin activity within the intestine of exposed fish. However, ALP and LAP 

activity were indicated to be elevated following SYN inclusion within the digesta; whilst 

activity within their predominant site, the mucosa, appeared slightly reduced. Few 

reports exist but xylanase and phospholipase have been demonstrated to have no effect 

upon ileal LAP activity in pigs (Sileikiene et al., 2006). Considering significant increases 

of ALP and LAP activity within the digesta may be coupled with numerical decreases in 

expression within the mucosa, it cannot be discounted that the results observed are 

simply a consequence of secretion into the lumen; despite highly rigorous efforts to 

standardise feeding, intestinal transit and sampling times. However, a number of 

causative agents must still be considered for explaining the elevated LAP and ALP 

activity within the lumen.  

Firstly, nutrient profiles within the lumen may influence expression levels of ALP. Of 

particular note, high luminal Ca concentrations have been demonstrated to increase the 

expression of ALP in the intestine of rats (Brun et al., 2012). Meanwhile, intestinal Na 

has been reported to decrease mucosal aminopeptidase in broilers (Zdunczyk et al., 

2012). Mineral interactions of this kind would appear to follow trends in the recorded 

mineral bioavailabilities within the gut. Specific ingredients, such as algae derived 

proteins, have also increased LAP and ALP activities in finfish although the mechanisms 

for such occurrences remain largely unclear (Vizcaino et al., 2014). There is also 
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indication that mannan-oligosaccharides (with antibiotics) can similarly stimulate ALP 

secretion in poultry intestines (Yang et al., 2007). 

Alternatively, the activity of ALP could be viewed from a standpoint of a response to the 

microbial community, taking into account its role in pathogen defence. ALP serves to 

detoxify lipopolysaccharides (LPS) derived from the cell wall components of Gram-

negative bacteria (Chen et al., 2010), ultimately acting as a vital anti-inflammatory 

enzyme (Kaliannan et al., 2013). Supplementing rainbow trout diets with LPS has indeed 

shown stimulation of intestinal ALP secretion (Nya and Austin, 2011). A number of the 

common genera observed within this study are theoretically capable of eliciting a greater 

expression of ALP, due to their Gram-negative cell wall and thus LPS coating. These 

include Proteobacteria, Fusobacteria and Bacteroidetes. However, there appears to be no 

grounds on which to suggest bacterial cell wall type triggered a release of ALP, since the 

proportional contributions of sequences from Gram-negative bacteria did not follow ALP 

trends and total cell levels were not investigated. Besides, this would similarly provide no 

explanation to the elevated LAP activities.  

Although these assays were aimed at identifying the activity of endogenous proteases, 

the significant results observed in LAP and ALP activity within the lumen may be 

scrutinised as to whether they were in fact endogenous. Certainly, the intestinal tracts of 

the experimental fish possessed sources of exogenous bioactivity, from the colonising 

microbiota as well as A. niger (Gomez-Guinan, 2004). A number of bacteria which 

extracellularly produce protease have been isolated from the GIT of fish. Those 

previously reported that were also present in the microbiome of the presently studied 

fish are Enterobacter spp. Pseudomonas spp. Aeromonas spp. and Bacillus spp. (Hoshino 

et al., 1997; Morita et al., 1998; Esakkiraj et al., 2009; Ray et al., 2010; Askarian et al., 

2012; Das et al., 2014). Although it is recognised that many other genera and species 

are likely to secrete LAP and ALP, collective contribution of these four genera was 

recorded as 2.10, 45.30 and 69.70 % within the LC, LS0.1 and LS0.5 groups, 

respectively; which may be a contributing factor to the activity of LAP and ALP being 
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higher in the fish receiving a higher dose of SYN. These considerations, along with the 

fact that LAP and ALP activity differences were in small quantities within the lumen, 

leads to strong questioning whether the results may have been influenced by isozymes 

of microbial origin, rather than those expressed endogenously. All things considered, 

whether SYN elicits responses in the secretion of endogenous proteases remains unclear. 

However, judging by the results of this study any influences are realistically unlikely to 

provoke limiting or promoting effects upon the animal’s absorptive capacity of amino 

acids.  

4.4.5 Modulation of serum lysozyme 

The LS0.1 and LS0.5 exhibited lysozyme activity modulation within the blood. Lysozyme 

is an integral part of the innate immune system, being involved in the hydrolysis of 

predominantly Gram-positive bacterial cell walls. Studies have examined the stimulation 

of lysozyme activity in fish following dietary supplementation of Gram-positive probiotics 

such as Lactobacillus acidophilus (Talpur et al., 2014) and Enterococcus faecium (Kim et 

al., 2012), confirming substantial elevation in activity when doing so. Similarly, 

prebiotics may stimulate lysozyme activity through associated microbial proliferation, as 

has been observed with galacto-oligosaccharides, mannan-oligosaccharides and most 

extensively, β-glucans (Kim et al., 2012; Aramli et al., 2015; Dawood et al., 2015; 

Ghaedi et al., 2015). There is possibility that the increased lysozyme activity within the 

SYN groups could be attributed to a greater proliferation or activity of Gram-positive 

bacteria. However, with the methods employed, it is unfortunately not possible to 

quantifiably evaluate this possibility with confidence. If this is the case, then it is fair to 

say that the effect observed was a response to two highly distinct microbiomes.  

Although lysozyme is typically associated with defence against bacteria, it can also 

catalyse the breakdown of 1,4-β-N-acetylglucosaminyl oligosaccharides (Dixon and Webb, 

1979), which are found within chitodextrin of fungal cell walls. Residual A. niger from the 

SSF procedure will inevitably be present within the diet, so theoretically lysozyme 
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activity could respond to the presence of these fungal polysaccharides, regardless of 

their non-pathogenic threat. Indeed, lysozyme derived from insects and plants alike is 

believed to play a pivotal role in defence against common fungal infections (Javar et al., 

2015; Manikandan et al., 2015) and its use in fungicidal drugs is of interest in human 

pharmacology (Woods et al., 2012). Furthermore, a recent study which supplemented 

polysaccharides from the mycelia of caterpillar fungus (Cordyceps sinensis), into the 

diets of white shrimp (Litopenaeus vannamei), stimulated a prolific increase in haemato-

lysozyme activity (Deng et al., 2015). This theoretical potential is of worthy of 

consideration. Future studies should consider whether lysozyme activity can be 

modulated by fungal residues from fermentation procedures, to determine whether this 

possibility is indeed correct. A functionality of this kind could be highly beneficial in 

priming the immune system for possible pathological threats. Efforts have already been 

made to investigate the benefits of bacterial cell wall derivatives in salmonid diets, with 

pronounced immunomodulation observed in doing so (Skalli et al., 2013). However, 

efficacy through a product such as SYN would present a more multi-faceted and cost 

effective approach.    

4.5 Conclusion 

Yellow lupin-based diets provided adequate performance and nutrient availability to 

juvenile rainbow trout and may hold certain benefits over other plant proteins, notably a 

high Mn content which could contribute to reducing inorganic supplementation. However, 

it appears that to resourcefully acquire this mineral, as well as others, supplementary 

abilities in the digestion of the feed would be highly beneficial. Synergen™ inclusion, at 

0.5 %, was highly effective in augmenting the macro and micronutrient profile of the 

diet containing 30 % yellow lupin, attributable to its likely residual bioactive components. 

This evidently led to substantial improvements in production and feed efficiency 

parameters, equating to performance which was more comparable with a high-grade FM 

diet than the original lupin-based counterpart. It is also recognised that the observed 

results are highly attractive for improving environmental impact, due to the likely 
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reduction of both organic and inorganic waste. Although technically effective at 

increasing nutrient provision, the recommended Synergen™ dose, of 0.1 %, only 

presented marginal increases in performance leading to questions as to why growth was 

not higher. In depth quantification of intestinal morphology revealed signs of detriment 

to the epithelial ultrastructure of the fish fed a 0.1 % Synergen™, along with a 

concerning microbial community due to the proportional presence of known microbes of 

high pathogenicity to salmonids. The relatively poorer gut health of fish fed 0.1 % 

Synergen™ is a probable explanation to the minimal improvements to performance 

which were observed. Meanwhile the fish fed a 0.5 % inclusion displayed some marked 

evidence of improved morphological health, as well as reduced proportional presence of 

salmonid pathogens and little variation between individuals. It was also noted that 

Synergen™ may hold potential for immunomodulation, perhaps from its non-active 

residual fungal mass. Overall, an inclusion of 0.1 % Synergen™ appears to produce 

volatility in health criterion, whilst a 0.5% inclusion of the product resulted in highly 

promising results from production, animal health and environmental standpoints alike. 

From these conceptual results, the application of high Synergen™ inclusions in 

contemporary salmonid diets therefore appears a promising avenue for investigation.     
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CHAPTER 5. Pilot-scale investigation of Synergen™ efficacy in 

salmonid culture under commercial conditions: from feed 

manufacture to fish rearing 

5.1 Introduction  

5.1.1 Formulations and physical criteria for aquafeeds  

The introduction of a compound feed to an aquatic environment strongly distinguishes 

the manufacturing strategies and physical properties required for a finfish diet, 

compared with those utilised for ruminant, pig or poultry production, so as to ensure 

that maximal nutrient levels are delivered effectively to the livestock. In producing a 

terrestrial animal diet, constituent ingredients must adhere physically to a point where 

intensive grazing does not cause significant loss in ‘fines’ (particles or pieces of a 

physical size which cannot be efficiently consumed by the animal under natural feeding 

habits). Minimising fines is also somewhat consistent with regards to fish feeds, whereby 

disintegration must be curtailed after ingestion to prevent losses back through the 

mouth and the opercula; particularly in species possessing pharyngeal mills. However, 

most importantly, water causes rapid physical disintegration and leaching of nutrients 

from a feed lacking a suitable structure, prior to contact with the animal (Watson et al., 

2015). As previously explored, the cost of feeding many finfish is exceptionally high, 

requiring costly and nutritionally valuable ingredients. Therefore, any loss of constituent 

nutrients to the surrounding water can be seen as a greatly limiting factor to animal 

performance, minimising pollution and maximising economic efficiency. This is of 

particular importance in younger life-stages, when pellets are smaller and relative 

leaching rate becomes augmented (Asuncion et al., 2009). 

In order to achieve a feed which meets physical specifications, formulations are integral 

and as such, are carefully composed, since each raw ingredient may bring desirable or 

unfavourable traits to the production of a compound diet. Although, experimental work 

in the application of bulk ingredients lay the foundations for the inclusion of products in 
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commercial formulations, they may well be met with restrictions at the manufacturing 

stage due to negative properties they impart upon either the processing stages (e.g. 

exerting stress upon machinery, poor hydrophilia) or the end pellet (e.g. inadequate 

hardness, water stability etc.). In the case of the previous two chapters, high-lupin diets 

were manufactured under cold-press conditions, which allow great flexibility in feed 

formulation not only because of the mechanics of the manufacturing technique but also 

in the hand feeding methods utilised thereafter, which can be monitored and 

instantaneously adjusted to a level where potential loss of nutritional value is minimised. 

Such flexibilities are not possible in commercial practice. Lupins have been demonstrated 

to exert alterations to the properties of feed mixes and pellets when included in salmonid 

rations. Up to 30 % inclusion of lupin kernel meal was reported to increase bulk density, 

sink rate, shear and crush strength of pellets, whilst reducing oil uptake during vacuum 

coating and limiting pellet expansion, compared with soyabean meal (Glencross et al., 

2010). Therefore, it is of importance to identify the potential of SYN in a contemporary 

formulation, known to provide a basal mixture which can be processed with ease into a 

stable pellet formation; inevitably, this will also alter available substrates.   

5.1.2 Aquafeed manufacture  

Although very much integral to producing a physically robust compound diet, careful 

formulation is futile in achieving the desired physical characteristics of aquafeeds without 

the implementation of the modern pellet manufacturing techniques and conditions which 

the industry employs; namely, extrusion.  

Following homogenisation of the ingredients, mixes immediately begin to be subjected to 

harsh treatment. Preconditioning begins to heat the feed mixture, which serves to create 

uniform hydration and initiate cooking which decreases potential mechanical stress in the 

following steps as well as improving the subsequent digestibility of ingredients in vivo; 

this process can be expected to exert temperatures of around 85 to 95 °C (Young and 

Forte, 2016a). 
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Following conditioning, the dietary mixture enters the extruder barrel where steam is 

injected to further raise the moisture content (Young and Forte, 2016b). During its 

transit, the extrudate is greatly exposed to increasing thermal energy which can be 

expected to reach temperatures between 100 and 140 °C; this causes a further, greater, 

degree of cooking to occur (Young and Forte, 2016b). The final products are capable of 

withstanding the physical stressors of being introduced to an aqueous environment, 

contain little bacterial contamination and can be manufactured to a density which is 

species or purpose appropriate (i.e. sinking, slow-sinking, floating pellet). This 

technology has been instrumental in increasing feed efficiency and reducing 

environmental impact; however, with growing interest in functional, bioactive feed 

additives, such as Synergen™, difficulties in application are faced.  

5.1.3 Retention of bioactive functionality under feed processing conditions 

Over the past couple of decades, the common consensus has very much been that 

bioactive feed components will be rendered ineffective if fully subjected to the harsh 

processing conditions which are practiced within the aquafeed manufacturing industry. 

This has undoubtedly been one of the greatest limiting factors in the pre-extrusion 

application of exogenous enzymes, which indeed tend to be very much thermolabile.  

Instead of including additives within dietary mixtures prior to extrusion, pre-treatments 

of ingredients and post-extrusion approaches have mostly been researched and applied 

to date but we are yet to see a widespread uptake into commercial finfish diets, as has 

been observed with pre-manufacture application in poultry and pigs. Pre-treatment and 

post-extrusion additions of bioactive components have undeniably yielded successes in 

improving nutrient provision in salmonids under experimental conditions (Verlhac-Trichet 

et al., 2014; Denstadli et al., 2011; Wang et al., 2009; Denstadli et al., 2007). However, 

applications of this sort would require additional investment in labour and hardware so 

practicalities and cost-effectiveness become complicated. Some have suggested that 

application methods such as liquid spray-coating and vacuum-coating with lipid, do not 
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present an overly costly investment of time, finances and resources (Verlhac-Trichet et 

al., 2014; Kumar et al., 2012); as much as this may be true of large-scale feed mills, 

accessibility and operation in small-scale facilities is debateable. Furthermore, 

functionality of the additives may still be limited when these methods are employed. For 

example, external coating of bioactive components may restrict contact with substrates. 

Such occurrences may be visible in the scientific literature whereby discrepancies in the 

success of the same additive have been observed with application method seemingly 

being the only true variable; for example the studies conducted by Stone et al. (2003) 

and Tachibana et al. (2010) upon the commercial multi-enzyme (Natugrain Blend®). 

Top-dressing of products may also increase contact with external factors which could 

reduce their efficacy either during storage or use. This could include a loss of the 

additive to aqueous surroundings upon feeding, familiar to the previously discussed 

issues of nutrient leaching. Therefore, one returns to investigating whether pre-pelleting 

introductions may be successful, as a cost-effective approach which is accessible to 

small-scale feed producers and the world’s aquafeed giants alike.    

Despite the numerous statements in the scientific literature regarding the denaturation 

of bioactive feed additives during extrusion cooking, considerably few reports exist which 

have truly quantified the extent of such occurrences, let alone subsequently fed such 

diets to animals. The optimum temperature for microbe-derived bioactivity varies 

tremendously between sources; for example, the activity of phytase from common 

bacterial and fungal species utilised in biotechnological processes appears to range 

between 40 to 80 °C (Greiner and Konietzny, 2006). Similarly, one must also consider 

that exposure beyond the upper limits of optimum conditions, will not return consistent 

rates or levels of denaturation between enzymatic sources. Even within the kingdom of 

fungi, industrially cultured species and strains express highly variable thermostabilities 

between their digestive enzymes (Wyss et al., 1998).   

It is the chemical structures expressed by the enzymes which strongly dictate their 

thermostability, influencing complete resistance to denaturation or refolding to an active 
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conformation following exposure to extreme temperatures (i.e. > 80 °C) (Wyss et al., 

1998; Danson et al., 1996; Xiang et al., 2004). Homologues of enzymes which are 

routinely used in animal feed preparations, for example phytases and xylanases, are well 

known to exhibit such characteristics (Yin et al., 2014; Ullah et al., 2008; Xiang et al., 

2004). Targeted pressures such as directed evolution, or mutagenesis, have been very 

successful in improving the thermotolerance of fungal extra-cellular enzymes, even with 

A. niger (Wang et al., 2006; McDaniel et al., 2008; Zhang et al., 2007; Liao et al., 2013; 

Sriprang et al., 2006; Xie et al., 2011), which is considered to secrete particularly 

thermolabile enzymes.  

An investigation by Slominski et al. (2007) into the effect of extrusion at 60 and 70 °C 

upon microbial phytase activity reported FTU losses between 50 and 60 %, which very 

much seemed dependent upon the source of the product. Eeckhout (2000) observed that 

40 and 60 % phytase (Natuphos® G) activity could be recovered following ingredient 

conditioning at 82 °C and recovery was over 32 % following pelleting at temperatures in 

excess of 92 °C. More surprisingly, it has been reported that ‘heat-stable’ phytases can 

retain considerable activity (> 60 %) following pelleting in excess of 93 °C, which 

subsequently improved bird performance during an in vivo trial (Timmons et al., 2008). 

One of the phytase products investigated by Timmons et al. (2008) (Phyzyme® XP-TPT) 

retained activity in the magnitude of approximately 64, 70 and 80 % when inclusion was 

incrementally doubled from 0.5 to 2.0 times the manufacturer’s recommended dosage, 

respectively. The work of Eeckhout (2000) and Timmons et al. (2008) strongly support 

opposition against the paradigm of phytase products losing all beneficial bioactive 

potential post-pelleting; serving to show that such claims are often broad and have a 

tendency to border upon unsubstantiated.  

The Synergen™ strain of A. niger has not been directly subjected to targeted pressures 

to improve thermostability but it is continually, naturally selected for overexpression of 

phytate-degrading properties, which could be advantageous under aquafeed processing 

conditions. Moreover, considering the results of Timmons et al.’s (2008) study, 
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counteraction of activity loss could be partially mitigated by amplifying traditional 

inclusion rates. Prior to investigation, it is also important to consider that Synergen™ is 

not a refined product, thus it contains a multitude of different bioactive components 

which are likely to express a range of thermo-tolerances. Subsequently, even if loss of 

the more sensitive constituents (e.g. phytase) occurs, other enzymes may remain more 

architecturally intact leaving potential for hydrolytic functionality elsewhere. Furthermore, 

beyond bioactivity potential, the product could provide the animals with nutrients 

capable of promoting health and performance, in the form of metabolites and semi-

fermented hemicellulosic compounds remaining from the fermentation process.  

This investigation therefore aims to determine whether Synergen™ can continue to 

promote nutrient availability and production performance following exposure to a 

simulation of industrial feed manufacture and under a commercial rearing setting. If the 

SSF product retains efficacy, under the experimental conditions, it is to be expected that 

fish performance, feed efficiency and nutrient availability will be improved.  

 

5.2 Materials and methods 

5.2.1 Experimental design 

The study was designed to assess production performance over an 8 week period, during 

which performance was tracked. Faecal collection, via a non-invasive method, was 

integrated into the latter stages of the feeding period, for determination of macro-

nutrient and trace element availabilities. In order to support and expand in vivo results, 

the pre- and post-extruded experimental diets were tested for phosphate-liberating 

potential, via an in vitro method, at various temperatures. 

 

 



177 
 

5.2.2 Experimental system and animals 

The trial was conducted at Exmoor Fisheries (Brompton Regis, UK), in an indoor 

hatchery. All animals were XXX triploid genotype and wild phenotype. Fish were graded 

by size and visual condition from concrete production raceways into square 100 L tanks, 

in groups of 240 fish. Average initial fish weight was 6.07 g ± 0.03; corresponding to an 

initial stocking density of 14.57 kg/m3 ± 0.06. Water supply was flow-through, virgin 

spring water which was filtered through synthetic wool before introduction to tanks. Flow 

rate in the tanks was ~6 L/min. Throughout the trial, the water temperature was 

10.5 °C ± 0.5 and dissolved oxygen was in excess of 85.00 %. An 18 hrs light: 6 hrs 

dark photoperiod was implemented with fluorescent lights and timers. The fish were 

exposed to N-chloro tosylamide (Chloramine T) (Halamid® Aqua, Axcentive, FR) at 8 

mg/L on day 0 as a precautionary method, followed by treatment at days 13 and 15 

following early detection of Icthyobodo necatrix. No clinical signs of infection were 

apparent post treatment.  

5.2.3 Diet formulation 

The experimental diets utilised in this study were formulated and manufactured in 

partnership with Life Bioencapsulation (Almeria, ES). Formulations were conducted to a 

specification of satisfying nutrient requirements (NRC, 2011) but in a conservative 

manner to simulate a least cost formulation. Emphasis was placed upon the use of 

wheat-derived products, where possible, to maximise potential substrate specificity. 

Plant protein ingredients accounted for approximately 61 % of the dietary dry weight, 

providing 75 % of dietary protein. The inclusion rates of Synergen™ were 0 % (Con), 

0.5 % (S0.5), 1.0 % (S1.0) and 1.5 % (S1.5). Inclusions of the additive were performed 

at the expense of unfermented wheat bran, to negate bias in the eventuality of complete 

inefficacy. Yttrium oxide (YO) (Sigma-Aldrich, ES) was added as a straight dilution into 

the entire dry mix, at a rate of 0.1 %. Dietary formulations and nutrient compositions of 

the feeds fed during the nutritional phase of the study are displayed in Table 5.1.  
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Table 5.1 Formulations, proximate compositions and element concentrations of the 

experimental, extruded rainbow trout diets. 

 Diets 

 Con  S0.5  S1.0  S1.5  

Ingredient (g / kg)     

Soyabean protein concentrate 1  170.0 170.0 170.0 170.0 

Wheat gluten 2 170.0 170.0 170.0 170.0 

Fish/rapeseed oil (40/60) 3 163.0 163.0 163.0 163.0 

Fishmeal LT 95 4 161.0 161.0 161.0 161.0 

Soyabean meal 5 90.0 90.0 90.0 90.0 

Rapeseed meal 6 90.0 90.0 90.0 90.0 

Sunflower meal 7 90.0 90.0 90.0 90.0 

Wheat meal 8 20.0 20.0 20.0 20.0 

Sodium alginate 9 20.0 20.0 20.0 20.0 

Wheat bran 10 15.0 10.0 5.0 0.0 

Synergen™ 0.0 5.0 10.0 15.00 

Vitamin/mineral premix ¥ 11.0 11.0 11.0 11.0 

Proximate composition (%)     

Dry matter 99.50 99.46 99.49 99.48 

Crude protein  49.46 49.47 49.53 49.50 

Crude lipid  22.10 22.20 22.25 22.19 

Crude fibre  5.29 5.30 5.30 5.28 

Ash 6.51 6.55 6.53 6.56 

NFE 16.14 15.94 15.88 15.95 

Element concentrations *     

Ca (g/kg) 8.18 8.12 8.15 7.98 

P (g/kg) 7.68 7.61 7.58 7.30 

K (g/kg) 96.30 93.85 94.09 88.90 

Na (g/kg) 4.74 4.72 4.59 4.21 

Mg (g/kg) 2.29 2.27 2.26 2.14 

S (g/kg) 5.22 5.18 5.09 4.76 

Fe (mg/kg) 218.43 225.33 218.21 241.54 

Zn (mg/kg) 237.45 233.02 230.50 221.83 

Mn (mg/kg) 64.60 64.13 63.62 63.54 

Cu (mg/kg) 20.79 20.40 20.27 20.11 

1 Soycomil (Andres Pintaluba, ES); 2 (Marti SA, ES); 3 (Piensos Cartagena, ES); 4  LT steam dried (Suysegala, 
ES); 5 (Rafael Ruiz, ES); 6 (Piensos Cartagena, ES); 7 (Piensos Cartagena, ES); 8 (Piensos Cartagena, ES); 9 

(Sigma, ES); 10 (Piensos Cartagena, ES); ¥ Skretting España (ES) (values are g kg-1 except to those in 

parenthesis): 25; Choline. 10; DL--tocoferol. 5; ascorbic acid. 5; (PO4)2Ca3. 5. Premix composition: retinol 

acetate. 1000000 IU kg-1; calciferol. 500 IU kg-1; DL--tocoferol. 10; menadione sodium bisulphite. 0.8; 

thiamin hydrochloride. 2.3; riboflavin. 2.3; pyridoxine hydrochloride. 15; cianocobalamin. 25; nicotinamide. 15; 
pantothenic acid. 6; folic acid. 0.65; biotin. 0.07; ascorbic acid. 75; inositol. 15; betaine. 100; polypeptides. 12; 
Zn. 5; Se. 0.02; I. 0.5; Fe. 0.2; CuO. 15; Mg. 5.75; Co. 0.02; Met. 1.2; Cys. 0.8; Lys. 1.3; Arg. 0.6; Phe. 0.4; 
Tryp. 0.7. * Limits of Detection (LOD): Ca = 0.39 mg/kg; P = 0.07 mg/kg; Mg = 0.03 mg/kg; K = 0.18 mg/kg; 
S = 0.09 mg/kg; Fe = 0.07 mg/kg; Zn = 0.08 mg/kg; Mn = 0.02 mg/kg; Na = 1.11 mg/kg; Cu = 0.01 mg/kg.  
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5.2.4 Diet manufacture 

The feed ingredients were finely ground in a Grinders & Graters HP II (CHP, ES) and 

mixed in a vertical helix ribbon mixer (Sammic BE-40, 40 L capacity, Sammic S.A., ES) 

for 20 min prior to the addition of SYN. Upon addition of SYN to the basal mix, all of the 

ingredients were further combined for a 15 min period; following which water (up to 300 

mL/kg) was added to the mixture to form homogeneous dough. The dough was 

subsequently introduced to a single screw laboratory extruder (Miltenz 51SP, JSConwell 

Ltd, NZ). 

The temperature reached during conditioning was 75 °C with a total residence time of 5 

min. At this stage, a further 300 mL of water was added per kg of dry mix, along with 

the steam introduced by the generator which operated at a producing rate of 15 kg dry 

steam per hour. Following conditioning, the dietary mix entered the extrusion barrel.  

The main motor of the extruder worked at 20 Hz, which allowed a feed production rate 

of 25 kg per hour. Meanwhile, the cutter operated at 30 Hz. The extruder was composed 

of four barrel sections with temperature probes situated within each. The following 

temperatures were reached in each barrel section: 80, 95, 100, and 105 °C (from 

feeding chamber to exit, respectively). The extruder was not fitted with a pressure probe, 

however this is assumed to have been high due to the low diameter of the die plate 

holes which produced an average pellet size of 1.5 mm. Temperature of pellets at the 

exit of the die plate was near to 100 ºC. Upon exit, the pellets were vacuum-coated with 

oil to reach the desired lipid level. The extruded pellets were subsequently dried using a 

laboratory drying and cooling system (Airs 1070i, Air-frío, ES) at 18 °C for 12 hrs. 

The diets were stored at -20 °C for a maximum of 2 weeks prior to shipping. During 

shipping, which took approximately 5 days, exposure temperatures were unknown but 

are estimated to have not exceeded 30 °C. Upon arrival at the trial facility, the diets 

were kept in sealed containers throughout the experimental period with temperature 

exposure ranging between -3 °C and 18 °C, during a 10 week period.  
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5.2.5 Feeding regimes 

Daily rations were determined via a predicted daily growth (PG), based on a 

standardised FCR of 1.20 during hand feeding and 1.00 during automatic feeding. The 

prediction utilised was identical to the one described in Sec. 4.2.5. Growth predictions 

were reset with actual weights following biomass sampling.  

The fish were conditioned to the diets for a period of 7 days after being stocked into the 

experimental tanks, being fed rations between 0.5-1.5 % BW per day. This period was 

not included within the performance data herein. During weeks 1 and 2, after stocking, 

the fish were fed a 2 % BW per day ration, four times per day. From weeks 4 to 8, the 

fish were fed for approximately 10 hours per day via clockwork belt feeders (FIAP GmbH; 

DE). Feeders were rigorously cleaned and dried on a daily basis, before feed was loaded 

and tanks were monitored for excess feeding multiple times per day. Rations during 

weeks 4 to 8 were between 3 and 2 % BW per day, respectively. The fish were fed 

reduced rations (0.5-1.2 % BW) on days prior to biomass sampling. The rationale behind 

fixed rations was to semi-restrict nutrient intake, due to the potential functional 

properties of Synergen™. Digestibility diets containing YO (0.1 %) were fed for a total of 

9 days, commencing 2 days before the start of week 7.  

5.2.6 Sampling 

Before commencement of the trial, approximately 60 representative fish were taken 

from the source stock and sacrificed. Whole carcasses were frozen (-20 °C) prior to 

preparation for carcass nutrient and trace element composition.   

Faecal material was collected from traps for a total of 7 days, during week 7; this was 

conducted at 06:00, 12:00, 18:00 and 00:00 each day. Throughout collection, vessels 

were completely surrounded by ice-salt slurry (approx. 35 ppt), to minimise continued 

fermentation, and housed in polystyrene insulating jackets. The slurry was replaced 

when deemed appropriate (every 6-12 hrs). Collection was performed by draining the 

vessels and manually removing faecal matter into bags submerged within ice-salt slurry. 
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The samples were frozen at -20 °C until use. Each vessel was examined for signs of 

uneaten pellets prior to collection; any uncertainty was dealt with by complete sample 

discard.  

At the end of week 8, 30 fish per tank were sacrificed and frozen at -20 °C for later 

determination of nutrient and trace element composition.  

Blood was obtained from the caudal vein of 5 fish per tank at the end of week 8, after 

which the specimens were prepared and analysed for serum lysozyme activity in 

accordance with Sec. 2.14.4.  

5.2.7 Proximate composition and element concentrations 

Chemical composition of diets, fish and faeces was performed in accordance with 

methods detailed under Sec 2.7; whilst element concentrations were determined 

following the protocols described under Sec 2.8.  

5.2.8 Calculations 

All calculations utilised within this investigation followed methods described in Sec. 2.9, 

2.10, 2.11, 2.12 and 2.13, bar apparent net protein utilisation (ANPU). ANPU was 

calculated as follows: 

Apparent net protein utilisation (AU) = 100 ᵡ [(CPF – CPI) / (FP / 100) ᵡ ADC] 

Whereby; CPF = final total carcass protein (g/kg) per tank, CPI = initial total carcass 

protein (g/kg) per tank, FP = protein fed (g) per tank [week 0 – 8] and ADC = crude 

protein apparent digestibility coefficient (%) of diet fed.   

5.2.9 In vitro free phosphate release 

In vitro free phosphate release was determined in accordance with the digestion step 

methods described by Ao et al. (2010b), which were slightly modified, in terms of 

dilution factors to accommodate the physical characteristics of the salmonid feed 

samples. All samples were run in duplicate. Both pre and post-extruded feed samples 
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were analysed at 40 °C. The values obtained from post-extruded (pelleted) feed samples 

were corrected for their higher lipid content, since oil vacuum-coating was performed 

after extrusion. Additionally, the pre-extruded feed material was analysed at 15 and 

10 °C to determine the effect of rearing temperature upon free phosphate release. 

Multiple attempts to analyse post-extruded samples at 15 and 10 °C were aborted due 

to a lack of confidence in results, attributed to observations of discrepancies in lipid 

viscosity within the samples between 40 °C and ≤15 °C. 

Prior to digestion, pelleted feed samples were finely ground using a pestle and mortar. 

Following this, 2.5 g of feed sample and 14 mL of de-ionised water were added to 

centrifuge tubes and conditioned at 40, 15 or 10 °C in a water bath for 30 min. After 

conditioning, 0.5 mL of pepsin (Sigma no. P7125) solution (15,000 IU/mL, pH 3.00) was 

added to the tubes, to simulate gastric digestion. The samples were incubated for a 

further 45 min at their respective temperate, with intermittent mixing via a vortex every 

10 min. Next, the samples entered an anterior intestinal phase whereby 2 ml of porcine 

pancreatin (Sigma no. P3292) solution (4.63 mg per 2 mL) was added to each tube, 

along with approximately 1 mL of 1M sodium bicarbonate to achieve a digesta pH of 6.50. 

Incubating at respective temperatures was undertaken for a total of 60 min; again, with 

intermittent mixing via a vortex every 10 min. Hydrolytic activity within the digesta was 

halted via submersion in an ice bath for 5 min. The digesta samples were subsequently 

centrifuged at 14,000 X g for 20 min after which the supernatant was filtered through a 

0.2 µm pore syringe filter.  

Free phosphate was determined in accordance with methods presented by Kim and Lei 

(2005). In brief, into fresh centrifuge tubes, 1 mL of filtrate plus 1 mL of 15 % TCA 

solution was added. The filtrates were subsequently centrifuged at 2,000 X g for 10 min, 

following which the supernatant was diluted (1:10) in nanopure water (18 MΩ·cm). 

Phosphate standards were prepared in an identical, 1:10 dilution manner. Into each tube, 

2 mL of colour reagent (3 volumes of 1 M sulfuric acid; 1 volume 2.5 % [w/v] 

ammonium molybdate tetrahydrate; 1 volume 10 % [w/v] ascorbic acid) was added and 
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mixed thoroughly. The samples were subsequently incubated in a water bath at 50 °C 

for 15 min for colouration development. Following incubation, the samples were cooled 

for 5 min in a water bath at room temperature (approx. 18 °C). Absorbance was read at 

820 nm (Beckman Coulter Du730®, USA). Free phosphate release (mg/kg) was 

calculated against a standardised curve. 

5.2.10 Statistical analysis 

All statistical analyses were performed using SigmaPlot 13.0 (Systat Software Inc., USA). 

Arcsine transformation was performed upon all parameters expressed as percentages 

herein. In the case of normally-distributed data, ANOVA was implemented upon means. 

Data exhibiting skewed distribution was analysed based upon medians via Kruskal-Wallis, 

followed by multiple pairwise comparison via Dunn’s Method, where significant 

differences were identified (P ≤ 0.05).  

 

5.3 Results 

5.3.1 Fish and feed performance 

In each tank, of every treatment, the fish attained more than a three-fold average 

growth, over the 8 week period. Animal and general feed performance results are 

presented in Table 5.2. No significant differences were observed in any of the analysed 

parameters at the end of 8 weeks feeding (P > 0.05). However, marginal tendencies 

towards improved performance with SYN inclusion may be apparent. Overall, 

performance values appeared to reflect a sub-optimal dietary formulation. To note, 

survival includes fish which were euthanised according to criterion which would be 

expected in a commercial production scenario, e.g. extreme growth retardation or 

animals deemed to represent a biological health hazard to others. Incidences of this sort 

ranged between 2 and 6 fish per tank but showed no apparent trends between 

treatments and as such, are not presented within this study as a meaningful result.  
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Table 5.2 Fish and feed performance fingerling rainbow trout fed experimental extruded 

diets, with and without Synergen inclusion, over a 8 week period. 

 

Diet 

Con S0.5 S1.0 S1.5 

IW (g) 6.06 ± 0.05 6.07 ± 0.03  6.06 ± 0.01  6.08 ± 0.03  

FW (g) 21.45 ± 1.06  21.50 ± 1.10  21.59 ± 0.49  22.25 ± 0.90 

WG (g) 15.38 ±1.11  15.43 ± 1.07  15.53 ± 0.48 16.17 ± 0.92  

FCR 1.04 ± 0.05 1.03 ± 0.05  1.01 ± 0.03  1.00 ± 0.03  

SGR 2.41 ± 0.01  2.43 ± 0.12  2.45 ± 0.04  2.51 ± 0.08  

PER 1.94 ± 0.07  1.96 ± 0.13  1.98 ± 0.09  1.98 ± 0.12 

ANPU 24.49 ± 1.92 24.44 ± 3.03 24.05 ± 4.17 27.12 ± 4.29  

Survival (%) 97.92 ± 0.42 96.11 ± 1.73 95.97 ± 1.73 97.78 ± 0.96 

Values expressed as mean ± S.D. (n = 3). 

5.3.2 Somatic indices 

No significant differences in k-factor (K-F) or hepatosomatic index (HIS) were observed 

between the fish fed the dietary treatments (P > 0.05) (Fig. 5.1). 

 

Figure 5.1 Somatic indices (AU) of fingerling rainbow trout after 8 weeks feeding with 

experimental extruded diets, with and without Synergen™ inclusions.  

K-F = k factor; HIS = hepatosomatic index. Values expressed as mean + S.E. (n = 12) 

5.3.3 Nutrient and trace element availability and retention 

Apparent digestibility coefficient (ADC) and apparent element bioavailability coefficients 

(ABAC) are displayed in Table 5.3. Total diet ADC was lower than what would be 

expected of a commercial diet aimed at maximising performance, which was in line with 
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specifications of the formulation. However, no significant influence of SYN upon this 

parameter was observed (P > 0.05). Crude protein apparent digestibility (CP ADC) was 

significantly different between treatments (F = 8.91, P < 0.01); this was identified to be 

a consequence of significant higher values in all SYN-treated diets compared with the 

control group. No significant difference was observed between the different SYN inclusion 

rates.  

No significant differences were observed between the dietary treatments in terms of 

ABAC of calcium (Ca), phosphorous (P), magnesium (Mg), potassium (K), sulphur (S), 

zinc (Zn), manganese (Mn) or sodium (Na).  

Table 5.3 Apparent digestibility and bioavailability coefficients of nutrients obtained via 

faecal collection of fingerling rainbow trout fed extruded diets with and without 

Synergen™ inclusions. 

 

Diet  

Con S0.5 S1.0 S1.5 

ADC (%)     

Diet 69.55 ± 1.88  73.18 ± 2.14  71.81 ± 2.61  72.29 ± 3.37 

CP 91.89 ± 0.33 a 93.26 ± 0.40 b 93.50 ± 0.76 b 93.75 ± 0.29 b 

ABAC (%)     

Ca -3.04 ± 2.88 -2.49 ± 8.80 -8.60 ± 2.34 -9.84 ± 18.66 

P 44.39 ± 1.86 44.72 ± 4.58 41.20 ± 1.43  43.29 ± 3.14 

Mg 58.57 ± 1.05  57.36 ± 3.43 56.01 ± 1.45 54.52 ± 1.68 

K 99.66 ± 0.03  99.62 ± 0.08 99.73 ± 0.01 99.68 ± 0.04 

S 88.52 ± 0.24 90.22 ± 1.10 90.20 ± 0.37 88.78 ± 1.66 

Zn 19.03 ± 2.78 22.26 ± 2.57 14.42 ± 9.51 19.51 ± 1.45 

Mn 3.15 ± 4.96 6.35 ± 3.15 0.34 ± 2.33 -1.75 ± 7.53 

Na 77.87 ± 11.05 79.01 ± 4.88 82.14 ± 0.31 74.18 ± 3.00 

Values expressed as mean ± S.D. (n = 3). Values containing the same superscript in the 

same row are not significantly different (P > 0.05). Absence of superscripts denotes no 
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significant difference between treatments.  

At the end of the 8 week feeding period, there were no significant difference between the 

dietary groups in terms of calcium, phosphorous, magnesium or zinc retention within the 

whole carcass of the animals (P > 0.05) (Fig. 5.2). However, marginal tendencies 

towards increasing retention of phosphorous and magnesium may be present.  

 

Figure 5.2 Element retentions (%) of fingerling rainbow trout fed experimental extruded 

diets, with and without Synergen™ inclusions, after 9 weeks.  

Values expressed as mean + S.E. (n = 3). 

5.3.4 Serum lysozyme 

Serum lysozyme activity results are displayed in Fig 5.3. Serum lysozyme activity was 

found to differ significantly between the dietary treatments (H = 11.285, P = 0.01). 

Significantly higher activity was identified in the fish fed a 0.5 % SYN inclusion than 

those fed 1.0 and 1.5 % inclusions.   
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Figure 5.3 Serum lysozyme activity (U/ml) of fingerling rainbow trout fed experimental 

extruded diets, after 8 weeks.  

Values expressed as mean + S.E. (n = 11, 13, 15, 12 in Con, S0.5, S1.0 and S1.5, 

respectively). 

 

5.3.5 In vitro free phosphate release  

As determined by the in vitro assay, SYN appears to be capable of releasing over 43 % 

more free phosphate than the feed samples intrinsic capabilities before extrusion and at 

a 40 °C ambient temperature. This was dampened by approximately 50 % following 

exposure to the extrusion conditions detailed in Sec. 5.2.3. The capabilities of releasing 

free phosphate by both the tested SYN inclusion rates and the intrinsic activity were 

comparable between an extruded feed at 40 °C and an un-extruded feed at 15 °C. The 

greatest total reduction across all treatments, as well as reduction on the basis of SYN 

inclusion was observed under an ambient temperature of 10 °C (un-extruded).  
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Figure 5.4 In vitro free phosphate release of pre- and post-extruded feed samples used 

within the feeding study, at varying ambient temperatures.  

Values in brackets denote percentage increase in free phosphate liberation between the 

feeds containing 0.0 and 1.5 % inclusion of Synergen™.  

 

5.4 Discussion and conclusion 

After 8 weeks of feeding the experimental diets to fingerling rainbow trout, which were 

reared at 10.5 °C, Synergen™ (SYN) was observed to not provide any substantial benefit 

to production performance. However, marginal tendencies towards increase performance 

may have been apparent. Furthermore, the availability of protein, in terms of its 

apparent digestibility was recorded as significantly heightened, by approximately 2 %, 

following SYN inclusion. This would seem to suggest that a very low level of functionality 

was preserved, despite the extrusion process and low water temperature.  

Upon interpretation of the bioavailability of elements, neither significant effects nor 

trends were decipherable from the data obtained, which would typically provide good 

indication of the mode of action of the previously described results. It is recognised that 
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the method utilised in the collection of faeces within this study possesses a major 

drawback, this being the potential for nutrient leaching from the faeces between 

sampling points. Upon scrutiny of the results, out of all of the elements analysed, those 

which have a higher solubility in water (notably, Ca) did appear to generally express 

higher variation. The ABAC of Na, a particularly soluble element in its salt forms, 

appeared unusually high considering the diet type where one would expect to see a 

negative coefficient (Storebakken et al., 1998; see Chapter 4), suggesting a high 

disappearance of this element. It is questioned whether a high degree of leaching 

disguised the true ABAC value of Na. When working with fish of the size utilised within 

the present study, direct collection from the animals would be seen to be highly open to 

criticism on moral and ethical grounds, so stripping and dissection methods were 

avoided. A more regular collection of faecal matter could indeed be implemented to 

minimise leaching. However, under the current conditions, where the animals were only 

accustomed to one brief visual contact with humans each day (cleaning and loading 

feeders), this could have induced a heightened risk of stress and unacceptance of feed, 

with work undertaken at regular intervals in close proximity to the tanks; this would only 

impeded further upon the rigidity of the sampling method. Future studies may wish to 

revisit this analysis by using an improved collection trap design, or preferentially a 

manual collection from larger fish since stripping is recognised to be more reliable than 

settlement methods (Blyth et al., 2015). Instead, readers are encouraged to consider 

the nutrient retention values presented as more confident identification of the true 

biological findings. These values, under the current experimental conditions, appeared to 

show tendencies towards higher retention of particularly P and Mg within fish receiving a 

dietary dose of SYN.  

Using an in vitro method, targeted at modelling the potential for phytase sources to 

release free phosphate in diets, insight was gained towards explaining why SYN 

appeared greatly ineffective under the current conditions. The first, arguably most major, 

point of note are that, neither SYN’s bioactive capabilities of releasing free phosphate, 
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nor those intrinsic to the diet, appeared completely eliminated following exposure to 

extrusion conditions in excess of 100 °C. The retention of bioactivity from SYN is 

evidenced by the SYN-treated diets releasing more free phosphate than the control diet 

even after extrusion. With regards to intrinsic bioactivity, the free phosphate value 

obtained from the post-extruded control feed at 40 °C was higher than that of the 

unextruded control feed at 10 and 15 °C. These findings strongly contradict statements 

in the latest review of phytase application in finfish diets, which include “[…] the thermal 

process during feed manufacture would completely destroy indigenous phytase 

enzymatic activity.” (Kumar et al., 2012). The results are particularly intriguing 

considering A. niger phytase is considered to be particularly thermolabile and the strain 

used in the manufacturing of SYN has not be subjected to any deliberate genetic or 

directed evolutionary pressures to improve this somewhat negative trait. These findings 

could be of strong consideration to those who wish to apply SYN to warmwater finfish 

diets, in an uncomplicated inclusion manner. Most interestingly, the greatest loss of 

activity was observed upon lowering the ambient temperature from 40 to 10 °C, not by 

extrusion. Nevertheless, there still appears to be some potential for beneficial quantities 

of P to be released at this lower temperature, if the diet is not extruded, which correlates 

with previous demonstrations of phytase efficacy at temperatures of 10 to 11 °C 

(Vandenberg et al., 2011; Dalsgaard et al., 2009; Forster et al., 1999). The in vitro 

results appear to correlate closely with in vivo findings of a study which identified 

positive improvement to growth and P availability in rainbow trout fed A. niger-derived 

phytase at 15 °C but at 10 °C effects became substantially subdued (Rodehutscord et al., 

1995). A temperature of 15 °C seemed to confirm that potential for P-liberating activity 

was still relatively high, which is supported by the majority of other studies which have 

investigated phytase supplementations in rainbow trout culture at this temperature (e.g. 

Verlhac-Trichet et al., 2014; Vandenberg et al., 2011; Cheng and Hardy, 2002; Sugiura 

et al., 2001). Overall, none of the tested variables are believed to restrict SYN-derived 

phytase to a level whereby functionality of the additive would be negligible, be it by 

denaturation or reduction of activation energy. It seems that it is more a combination of 
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the two extremes (i.e. extrusion and low rearing temperature) which limit the 

ingredients capabilities to work at a level which would produce attractive performance 

whilst being cost-effective, in a commercial setting. 

In the previous investigation (Chapter 4), serum lysozyme activity was observed to 

increase within fish receiving a dose of SYN; speculation surrounding this occurrence 

suggested a possible involvement of chitodextrin derived from the cell wall of A. niger. In 

order to further investigate this possibility, serum lysozyme was analysed under the 

present experimental conditions, which were deemed to have had limited effects upon 

the modification of nutritional substrates within the digestive tract of the animals and 

undoubtedly increased the quantity of fungal-derived polysaccharides within the feed 

rations. The effect extrusion may have upon the structure of chitin has been investigated 

to a minor extent and is briefly discussed in a review of extrusion technology upon 

polysaccharides by Wolf (2010). Most relevantly, the deformation of chitin under 

pressure and shear energies was investigated by Mogilevskaya et al. (2006), concluding 

that chrystalinity could be modified but the presence of water restores the original 

conformation of the polymer. Besides, extrusion processing of chitin, to form chitosan, 

appears to simply deacetylate the polysaccharide (Wolf, 2010). This is not the site of 

hydrolysis for lysozyme (Dixon and Webb, 1979). Indeed, should deacetylation of chitin 

occur, the hydrolytic functionality of lysozyme is not inhibited (Pangburn et al., 1982; 

Sashiwa et al., 1990). This understanding would further support speculation that, should 

the previous hypothesis be correct, a modulation was to be anticipated even within an 

extruded diet. Compared to the control, SYN treatments did not affect the serum 

lysozyme activity in this study. Due to clear differences in variables between the 

previous study, such as animal size, age, rearing temperature and dietary formulation, it 

is difficult to speculate reasons as to why the results were as observed. This is 

considering these factors may all have an influence upon lysozyme activity, as reviewed 

by Saurabh and Sahoo (2008). Furthermore, there are variables which remain 

technically unknown but are most likely to differ, such as the gut microbiomes and 
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degree of stress under which the animals were reared (Saurabh and Sahoo, 2008). 

Reasons as to why lysozyme activity appeared higher in S0.5 group compared with the 

two higher inclusion levels remains unclear. Further work is still required to investigate 

whether SYN may modulate lysozyme activity and if so, identify the mechanisms behind 

these occurrences.  

In conclusion, strong insight was gained into the retention of phosphorous-liberating 

activity by Synergen™ under simulated commercial feed extrusion and rearing conditions. 

In vitro analysis indicated that neither temperatures of 105 °C or 10 °C were capable of 

reducing the additive’s capacity to release theoretically bioavailable P at a level which 

could be of some benefit to finfish production, using a contemporary formulation. 

However, a combination of the two extreme temperatures was deemed to have subdued 

activity to a level where minimal significant differences were apparent when the diets 

were fed to fingerling rainbow trout. Nevertheless, the results demonstrate strong 

opposition to the common belief that phytase containing products are completely 

incapacitated under modern aquafeed processing techniques, showing great promise for 

future work.   
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CHAPTER 6. Solid-state fermentation product application in aquafeeds: present 

knowledge and future direction 

6.1 Overview of programme of research 

This programme of research, comprising of a sequence of investigations, explored the 

potential of incorporating selected cultivars of lupins and other plant-protein sources with 

the addition of a solid-state fermentation (SSF) product (Synergen™, Alltech Inc.), in 

formulated diets of two species of finfish. These were rainbow trout (Oncorhynchus 

mykiss) and Nile tilapia (Oreochromis niloticus), representing species with well-

established but continuously growing value in the farmed seafood sector. Prior to 

commencement of this work, many questions relating to the area of research needed to 

be addressed. These can be summarised as follows:  

1. Can SSF products improve the availability of nutrients within plant by-products 

destined for finfish diets? 

2. If effective, how may macronutrients and trace elements be released and 

mobilised? Further, do these impart any notable beneficial characteristics upon 

fish health, welfare and production efficiency, in terms of growth and feed 

performance? 

3. How may SSF products influence the intestinal environment with regards to its 

structural topography and cellular organisation, microbiota and endogenous 

bioactivity? 

4. To what extent may SSF products retain bioactivity under low rearing 

temperatures and the harsh environment of commercial feed extrusion? 

These questions will be succinctly re-addressed under the following chapter, identifying 

and discussing what has been learnt, what remains unclear and where future research 

efforts should be directed. 

 



194 
 

6.1.1 Improving nutrient profiles 

It is grossly evident that if global livestock production is to continue its production in a 

sustainable, prosperous manner, feed protein-security must be addressed.  An uptake of 

lupins (Lupinus spp.) into feed rations has been proposed as, possibly, the only solution 

to reducing dependency upon the considerable quantities of imported soya (Glycine max) 

which is fed to livestock throughout Europe (Soya UK, 2015; Mercedes et al., 2015). 

With numerous species of lupin available for commercial cultivation, thereafter providing 

potential choices for feed manufacturers, selecting a species which is fit for purpose is of 

great consideration. However, one cannot simply ignore that a number of nutritional 

limitations, notably non-starch polysaccharide profile, may not truly place any lupins on 

par with soya to begin with.  

The poultry and pig industries have a diverse arsenal of licenced and scientifically-proven 

digestive aids at their disposal (Bedford and Partridge, 2010). Therefore, uptake of novel 

bulk ingredients, including cereals and plant by-products, could be easily facilitated by 

exogenous enzymatic mitigation of their anti-nutrients. Meanwhile, with regards to the 

aquaculture industry, the situation is vastly more challenging. This is due to a distinct 

absence of routinely implemented functional feed additives which are capable of 

degrading anti-nutritional factors and enhancing nutrient availability. Therefore, a 

licenced, multi-faceted source of exogenous bioactive components presents an attractive 

solution for the aquaculture industry. 

In this thesis, Chapters 3 and 4 explored the application of the SSF product in 

association with high lupin (Lupinus spp.) inclusions in diets for Nile tilapia and rainbow 

trout, respectively. These two species of fish have a profound economic importance 

across the globe and their production is set to continue expanding, which will in turn 

greatly contribute towards the increasing demand for high-quality aquafeed and global 

feed security. The choice of both tilapia and rainbow trout extended the ability to 

evaluate the application of the experimental ingredients ingredients at a wider 



195 
 

temperature spectrum, for optimum assessment of a feed product likely sensitive to the 

varying ambient rearing temperatures found in the aquaculture sector. Additionally, 

these species represent differences in trophic feeding levels and nutritional sensitivities, 

with tilapia being omnivorous and rainbow trout carnivorous. Therefore biological 

responses to exogenous degradation of dietary components could be examined in 

greater depth.  

Part of the objective of Chapter 3 was to determine which species of lupin, narrow-leaf 

lupin (Lupinus angustifolius) or yellow lupin (Lupinus luteus), is more suitable to 

application in Nile tilapia diets. Overall, considering growth performance, mineral 

retention and gut morphology, it appeared that the narrow-leaf lupin may have been 

marginally superior to yellow lupin. However, one cannot ignore that yellow lupin has a 

higher, thus more attractive, overall crude protein content (Sipsas, 2003). This also 

meant that soyabean was included at a higher percentage in the narrow-leaf diet which 

could have masked some of the true effects. Furthermore when the observed responses 

of including the SSF product were considered, definitively deciding which species of lupin 

was more favourable became complicated; examples of which are discussed further in 

this chapter.   

Through the application of SYN in diets containing yellow or narrow-leaf lupin for Nile 

tilapia (Chapter 3), and a yellow lupin-based diet for rainbow trout (Chapter 4), 

significant improvements to fish performance and feed efficiency were observed 

throughout. This provided strong indication of the benefits of the SSF product in 

optimising nutrient availability to the fish. Within Chapter 4, it was even observed that a 

SYN-supplemented diet could achieve performance closer to a purely fish-derived protein 

diet, compared to the original 30 % lupin diet which was nonetheless formulated to 

satisfy all known nutrient requirements for rainbow trout (NRC, 2011). Attempts were 

made during the tilapia trial to give indication of specifically which modes of action were 

the causes of improvement, following application of the SSF product. However, nutrient 

retention, blood glucose and carcass composition results returned marginal differences 
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between the experimental treatments, making it difficult to confidently draw conclusions. 

Nevertheless, an in-depth evaluation of nutrient availability, within rainbow trout, 

appeared to display augmented degradation of protein and carbohydrate, as well as the 

liberation of a suite of minerals following SSF product inclusion in the high lupin diet. 

There was also evidence of elevated glucose levels within the blood of fish fed a diet 

dosed with the SSF product, which was believed to have been derived from dietary 

monosaccharide uptake from the facilitated digestion of carbohydrates. Overall it 

appeared that supplementation of an SSF product provided a multi-faceted action upon 

degrading dietary components, with liberation of nutrients commonly facilitated through 

inclusions of carbohydrases, phytase and to some extent proteases (Castillo and Gatlin 

2014; Kumar, 2012; Moura et al., 2012). However, it was not possible to quantify the 

contribution of each of these possible enzymes to the results observed. 

Nevertheless, these observations could be of profound importance by presenting a 

number of possible formulation strategies for future applications in the aquafeed sector. 

Firstly, SSF products could be applied as has been investigated until now, as a means of 

extending beyond satisfying basic nutritional requirements. This is an emerging 

paradigm in finfish nutrition, which does have great merit considering the necessity to 

improve animal health and welfare as well as ensuring optimum growth is achieved (Li 

and Gatlin, 2004). Alternatively, SSF products could potentially be included in order to 

achieve bioavailable nutrient requirements within sub-optimal formulations. This 

approach will require a great deal more work to be conducted as inherent risks are 

greater when considering the complexity and interactions of substrates encountered in 

modern diets. Simply, liberation of essential nutrients from the feed matrix must be 

guaranteed to a level which meets at least minimal requirements for whichever species 

in question. Lastly, the application of SSF products could be utilised as a tool for allowing 

flexibility in feed formulation, be it based upon ingredient cost, temporal availability or 

sustainability credentials. The case of lupins within this body of research very much 
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supports this option, with evidence of both increasing nutrient availability and potential 

mitigation of associated anti-nutritional factors, e.g. phytate and NSPs.  

No matter which strategy is adopted, movement towards improved sustainability could 

be attained using these approaches. This could include optimising health and welfare, 

maximising economic efficiency and implementing a wider-range of protein sources 

considered to be more environmentally sound than traditional ingredients. With greater 

feed efficiency, a further advantage could be that of reducing nutrient discharge from 

intensive fish production systems, resulting in obvious benefits to environmental impact. 

This could be particularly notable with regards to inorganic pollutants, notably 

phosphorous, which is routinely over supplied in aquatic feed formulations; contributing 

to eutrophication of water bodies located downstream of aquacultural operations. 

However, this is yet to be quantified confidently. 

In the final experiment (Chapter 5), increased nutrient availability became somewhat 

supressed when the SSF product was supplemented into a practical, extruded diet for 

fingerling rainbow trout, under typical farm conditions. Nonetheless, protein digestibility 

was increased and tendencies towards elevated mineral retention and growth 

performance were still apparent but again, which potential component of the SSF 

product caused this is unclear. This trial did utilise a more contemporary formulation, 

without inclusion of lupins, but the dampened intensity of differences present between 

dietary treatments appeared largely attributable to environmental and feed 

manufacturing constraints, rather than the efficacy of SYN upon the substrates contained 

within the feed nutrient matrix. These will be discussed later in this chapter. 

Nevertheless, in vitro assessment confirmed that SYN’s bioactivity, which can release 

phosphorous, is retained over a wide range of conditions, applicable to most commercial 

finfish which are reared under different water temperatures.  

Assessing the mobilisation and deposition of the increased influx of available nutrients 

produced results which were perhaps to be expected. An increase in protein digestibility 
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did equate to an increase in carcass protein in rainbow trout in Chapter 4, whilst a 

tendency towards the same may have been apparent in tilapia. These results are highly 

attractive for maximising the end, consumable product quality in farming practice. 

Evaluations of element retentions and concentrations were not as distinct; however, the 

pathways behind deposition of these micronutrients are much more tightly regulated 

(Orriss et al., 2012). Due to uncertainty of the SSF product’s efficacy under the 

experimental conditions, vitamin and mineral supplementation was not performed in a 

conservative manner, thus potential to observe differences was most probably lessened. 

This would seem to support a formulation strategy of improving sub-optimal diets with 

regards to micronutrients.  

Manganese was an element of high interest when assessing mobilisation and deposition 

of nutrients in diets containing lupins. The manganese content of lupins is typically high 

but judging by the bioavailability of this element in Chapters 4, this is not to say it is 

particularly available to finfish. Indeed, this seems to be the case with plant-derived 

manganese as a whole (Chapter 5; Antony Jesu Prabhu et al., 2016). However, inclusion 

of the SSF product released significant quantities of this element which was 

subsequently absorbed by the intestine and higher concentrations were then expressed 

throughout the liver, muscle, fin and vertebrae. Based upon this, it is suggested that SSF 

products could be useful tools for harnessing the individual nutritional traits of bulk 

ingredients. This could open further potential for bulk ingredients to feature in 

formulations not only based upon their availability, cost, overall protein content or 

amino-acid profile but in a manner where they are purposely included for their 

micronutrient profile.  

6.1.2 SSF products and the intestinal environment 

Within farm animal nutrition as a whole, the application of exogenous enzyme sources is 

well researched, particularly in poultry and swine. However, changes which may occur 

within the intestinal tract following application of such ingredients have seldom been 
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investigated and are therefore poorly understood (Bedford and Partridge, 2010). Without 

critical evaluations of the effects that exogenous enzymes may have upon physiological 

functioning and digestive characteristics, at the sites where these additives express their 

mode of action, it is questionable whether scientific advancements can be made at the 

optimal rate. The intestine has a profound importance as an integral site for efficient 

nutrient acquisition and pathogen defence but it is of a very sensitive nature. This organ 

may respond in a multitude of ways dependent upon the compounds which transit 

through its lumen; from its physical topography and cellular organisation to its exocrine 

secretions and lastly, its characteristics as a microbial ecosystem (Merrifield et al., 2010). 

Experimental trials utilising exogenous enzyme sources should therefore begin to 

encompass assessments of gut morphology, integrity, endogenous digestive enzyme 

secretions and activity, as well as associated microbiota. This was undertaken in this 

series of investigations, not only for the benefit of research upon the specific ingredient 

or finfish species but for monogastric research as a whole.  

Within the individual trials of this body of work, it was perhaps to be anticipated that the 

characteristics of the intestine would be modulated, considering the extensive indications 

of substrate modifications within the digesta. This was indeed shown to be the case. 

Tilapia exposed to the SSF product in the yellow lupin diet, in particular, firstly gave 

indication of an amelioration of morphological characteristics which are desirable to 

optimising nutritional efficiency and also pose as a good indicator of digestive health; 

this was particularly visible at an ultrastructural level. There was also indication that, 

over time, the epithelial surface begins to respond distinctively to the degradation and 

liberation of nutrients found within the lumen. Within rainbow trout (Chapter 4), 

differences in intestinal morphology were also observed, with observations considered to 

be positive improvements, particularly when a 0.5 % dose of SYN was administered. The 

most distinctive difference at this point was perhaps the abundance of goblet cells, which 

were dramatically reduced following this higher inclusion of SYN. However, questions 

arose after the lower inclusion rate (0.1 %) returned observations of reduced functional 
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surface area within the posterior intestine, at an ultrastructural level. Assessment of the 

intestinal environment progressed to explore the associated allochthonous microbial 

communities, which revealed differences between the high and low inclusion rates of 

SYN. Whilst the 0.1 % group displayed a high level of taxonomic diversity with relatively 

great variation between individuals, the 0.5 % group displayed a consistent domination 

of a select few microbial genera which were most probably beneficial since performance 

of these animals was substantially improved. In the group receiving a 0.1 % dose of the 

SSF product, it was also observed that numerous potent salmonid pathogens were 

present in higher proportional contributions to the microbiome, which was undoubtedly 

concerning. Ultimately, it was concluded that the 0.1 % group exhibited a degree of 

imbalance and unpredictability which could be associated with the morphological 

depreciation of the epithelial surface, whilst the polar opposite appeared the case with 

the higher inclusion. Evidently, had an extensive evaluation of the intestine not been 

performed, it would have been grossly unclear why the lower inclusion of SYN did not 

elicit a higher degree of performance promotion considering nutrient availabilities were, 

by and large, improved. A number of finfish studies investigating the application of 

exogenous carbohydrases have reported improved nutrient availability but no truly 

correlating promotion of performance. For example, xylanase in rainbow trout 

(Dalsgaard et al., 2012) and a mixture of cellulase, hemicellulase and pectinase in lupin-

based rainbow trout diets (Farhangi and Carter, 2007). Other studies investigating 

dietary carbohydrase additions have observed depreciation of animal performance and 

feed efficiency. Kazerani and Shahsavani (2011) attributed such observations to 

intolerance of monomeric residues in a study on common carp; despite the fact that this 

species naturally consumes significant quantities of plant material and commercial 

formulations include relatively high concentrations of carbohydrate. Meanwhile, with 

multi-enzyme pre-treated soyabean and sunflower cake fed to rainbow trout, Denstadli 

et al. (2011b) recognised the possibility that the implemented process may have 

produced an abundance of anti-nutritional oligosaccharides. Judging by the results of this 

investigation, questions arise as to whether microbial and gut morphological modulations 



201 
 

may have influenced previous studies, including the tilapia trial in Chapter 3, going 

undetected and extensively unconsidered as a contributing factor in said studies.  

With regards to exogenous carbohydrase sources, it is essential to consider that 

degradation of polysaccharides will typically pass a stage whereby nutrient sources are 

more available to microbes than the animal itself. Through such considerations, the 

possibility of manufacturing prebiotics in vivo could be a particularly attractive objective 

for carbohydrase applications. This could be more resourceful than current efforts to 

reduce carbohydrate levels in feeds, whilst they are partially reinstated as low molecular 

weight oligosaccharides as potential prebiotics. Evidently, substrates and enzyme 

sources will need to be extensively studied and inclusion rates thoroughly calculated but 

theoretical potential for such approaches is feasible. Alternatively, this work may suggest 

that ‘superdosing’ is a more preferable option, so as to degrade the maximum quantity 

of substrates during intestinal transit; favouring elimination over amelioration of ANFs, 

including oligosaccharides. So far, superdosing has only been implemented with phytase 

and it is encouraged that work examines this approach with other exogenous enzyme 

classes. What can be concluded is that an appropriate inclusion of SSF products can 

improve intestinal morphology and allow a predictable balance of microbes within the 

lumen but it is imperative that adequate bioactivity is provided to ensure deleterious 

effects do not occur.  

 

6.2 Future work 

Our knowledge of SSF product applications in finfish diets does still remain in its infancy, 

with many questions yet to be answered. From the information gathered in this series of 

investigations, there are a number of identifiable areas which warrant specific attention 

in future investigations, so that progress and viable applications are maximised.  
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6.2.1 The gastrointestinal environment 

Chapters 3 and 4 of this investigation aimed to gain insight into the interactions of SSF 

products on the animal’s own digestive characteristics, with success in doing so. 

However for a more comprehensive insight, a number of future analyses may wish to be 

considered since the gastrointestinal tract and its associated functions comprises such a 

complex network of cells, physical structures and physiological processes.  

Although, histological appraisals of the intestine can provide invaluable information on 

the nutritional health of animals, genomic, transcriptomic and proteomic methods may 

be considered in future for supplementary information.  

With regards to the intestinal microbiota, Chapter 4 comprehensively analysed the 

allochthonous microbial community but determination of the autochthonous community 

is yet to be undertaken. Lyons et al. (2015) identified that the autochthonous 

community of farmed rainbow trout tends to display a more even representation of 

different bacterial classes than the allochthonous microbiota. It was also identified that a 

number of dominating taxa within the allochthonous community, e.g. Enterobacteriaceae, 

which dominated by approximately 90 % in the high SYN diet in Chapter 4, become 

much less prevalent at the mucosal surface (Lyons et al., 2015). It is predicted that a 

high degree of modulation would occur within the autochthonous community following 

effective inclusion of SSF products, which would be of interest to study in detail. It is 

also important to note that bulk ingredient formulations will influence the microbial taxa 

which populate and proliferate within the gut; therefore it would be of interest to assess 

the microbiome of fish fed diets supplemented with SSF products which are based upon 

commonly implemented ingredients, e.g. soyabean, wheat and rapeseed. Additionally, 

assessment of abundances and activities of communities may wish to be assessed; 

further to relative abundance of 16S rRNA. Overall, it is suggested that future studies on 

exogenous enzymes and SSF products scrutinise the microbiome more regularly. This 

will allow conclusions to be drawn with more confidence, since, as discussed in Sec. 
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6.1.2, many studies to date have explained their results on the basis of nutrient 

availabilities and/or tolerances alone. 

Future work should also begin to consider quantifying the extent of substrate 

degradation within the intestinal lumen, so as to allow a better understanding of the 

responses observed within the organ. Moura et al. (2012) provided excellent information 

in this regard, where monomeric and dimeric residues of polysaccharide degradation 

were analysed in the chyme of Nile tilapia receiving a dietary dose of a solid-state 

fermentation product; unfortunately no assessment of the intestinal structure, 

endogenous enzyme activities or microflora were conducted in parallel. On the other 

hand, the investigations conducted in this body of work did not analyse potential 

residues of carbohydrate degradation in the intestine. It is therefore proposed that a 

highly attractive experimental design for future studies would be an even more advanced 

holistic perspective, encompassing the analyses conducted in Chapter 4 and those of 

Moura et al. (2012). Analysis of intestinal viscosity would also be highly beneficial, as a 

somewhat routine procedure in poultry studies but under-regarded in finfish; despite 

predictable importance within this sector, in coming years, as sustainable and efficient 

production is optimised.  

All things considered, it is suggested that future studies should attempt to pursue 

appraisals of the finfish intestine, in the most holistic manner feasible, given the 

apparent complexity of interactive effects when products containing multiple bioactive 

components are added to finfish diets.   

6.2.2 Ingredients and diets 

This series of investigations dedicated much focus to the evaluation of SSF product 

inclusions in diets containing lupins, as a means of improving their nutritional value. 

Although lupins have seen periodic success in animal feed rations, much information is 

still lacking, in terms of their nutritional profile. Extensively quantifying the nutritional 

profile of each available species and cultivar is imperative if work is to continue 
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promoting their use. It was highlighted previously that lupins are competitive with soya 

in terms of protein content; however, existing information on amino acid profiles of 

lupins is somewhat sparse, in the scientific literature. Similarly, NSP profiles of the 

various commercially available cultivars is distinctly difficult to access, which will make it 

challenging for enzymologists and feed formulators to carefully conduct inclusions of 

exogenous enzymes in animal feed rations. Revisiting chemical compositions of modern 

lupin varieties is therefore warranted. 

Chapter 5 aimed in part to identify whether the SSF product could improve the 

nutritional value of a salmonid diet which did not focus upon lupin. However, due to 

processing constraints, it remained unclear how effective this could be. Future studies 

using SSF products should consider to begin systematically evaluating the efficacy of 

their inclusion in diets containing contemporary bulk ingredients in aquafeeds; e.g. soya, 

maize, rapeseed and wheat. 

Advancing our understanding of the effects of including SSF products in finfish diets 

would benefit greatly from the scientific assessment of more nutritionally marginal diets 

than have been observed in the present studies. Although it was observed that the SSF 

product was capable of releasing nutrients and promoting performance in experimental 

diets which satisfied known nutrient requirements, within this series of investigations, it 

would be of great worth to explore whether the product’s inclusion may maintain health 

and performance in sub-optimal diets, or even those which are deficient on a digestible 

nutrient basis. Care must be taken in these approaches to ensure ethical justification but 

positive results are foreseeable which could contribute to advancing feed sustainability 

criterion.  

The ingredients utilised in the actual SSF process may also be a topic of consideration. 

The studies presented in this body of research utilised a product of the SSF of a wheat 

substrate which did achieve success in promoting nutrient availability and subsequently, 

animal performance and health when included in diets with low, if any, inclusion of 
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wheat-based bulk ingredients. Nevertheless, substrate specificity cannot be ignored. 

Different plant proteins vary considerably in their nutrient profiles and associated ANFs 

(Francis, 2001). Therefore, those involved in the production of SSF products destined for 

use in animal feeds may wish to offer products where the fermentation substrates reflect 

contemporary bulk diet formulations, e.g. soya, maize and rapeseed, as well as wheat, 

so that exogenous hydrolytic action can be optimised. It is suggested that this could take 

the form of single ingredient SSF products, e.g. the SSF of soya by-products, or 

alternatively, the SSF of ingredient cocktails which mirror formulations, e.g. soya, maize, 

rapeseed and wheat mixes.   

6.2.3 Life-stages 

The mode of action of SYN appears to be almost entirely based upon the liberation of 

bound, unavailable, nutrients. Such releases of additional nutrients would undoubtedly 

present a benefit to livestock during grow-out stages by promoting growth, health and 

reducing effluent nutrient loads. However, their sensitivity to nutritional pathology 

typically becomes reduced with age and attention often begins to focus upon minimising 

feed cost. For this reason, supplementing diets with functional feed products must be 

highly cost-effective in advanced life-stages. Following the studies detailed within this 

work, it is suggested that the application of SSF products be investigated in more 

sensitive life-stages, where scope for incorporating additional functional products, thus 

expense, becomes greater.  

Juvenile life-stages (e.g. fry and fingerlings) require very careful nutritional approaches 

to their culture whilst gastrointestinal and structural conformation of the animals 

undergoes crucial development and maturation (Rust, 2002). In achieving optimal 

development in this way, the precedent is set for healthy, valuable stock at the grow-out 

phase. The application of SSF products to juvenile life-stages is therefore one which is 

particularly attractive. Having observed improved availability of macronutrients and 

minerals, as well as signs of reduced nutritional stressors, even in larger fish, it is 
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encouraged that work continues in younger fish to reassess performance and 

development. It is encouraged that evaluations of this kind continue to pursue the 

evaluation of contemporary nutritional pathologies, such as monitoring incidences of 

skeletal malformations and depreciated gut health; since it is believed that the 

probability of achieving improvements in these characteristics will be heightened under 

such circumstances. 

The application of SSF products to broodstock diets may also wish to be considered. 

Taking salmonids as an example, the commercial value of hen and cock-fish is their 

harvestable production of viable gametes, not the animals per se. In order to ensure a 

sustainable and equitable practice, those producing eggs must ensure that quality is 

upheld to the highest degree, since many fish producers purchase fertilised seed for their 

operations. Protein, essential amino acid, lipid, fatty acid and vitamin provision at the 

gonadal development stage of female fish is well recognised to affect fecundity and 

subsequent hatchability and survival of offspring (Izquierdo et al., 2001). However, 

broodstock nutrition is rather sparsely investigated in aquaculture. This is surprising 

since producing healthy future livestock generations depends upon this investment. On 

the other hand, the sparse efforts in this field may be unsurprising considering the costs 

involved with such work (Migaud et al., 2013). It remains uncertain whether the drive to 

reduce marine-derived ingredients will fall as heavily upon specialist broodstock diets, as 

it has upon the other life-stages where feed manufacture is highly dictated by mass 

volumetric requirements. Indeed, broodstock diets are a minor volume in the aquafeed 

industry and they already command an established premium price (Migaud et al., 2013). 

However, should the drive for higher plant inclusions occur, there would be great scope 

for investigating the application of SSF products, having witnessed the results observed 

in these studies. It is possible that a facilitation of nutrient acquisition and sparing, by 

SSF product inclusion, could impart a promotion of egg and ovarian fluid quality in 

heavily plant-based broodstock diets. Furthermore, improving nutrient availability could 

potentially promote the health and survival of the broodstock themselves; especially 
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salmonids, which can be susceptible to severe weakening prior to and post spawning. 

This is equally important for tilapia where much emphasis is placed upon broodstock 

management, particularly considering this species expresses high fecundity and 

broodstock are sequentially spawned in practice. 

6.2.3 Overcoming thermal constraints 

In chapter 5, the effect of feed extrusion was investigated upon the potential for free 

phosphate release by the focus SSF product. This study identified that extrusion did not 

reduce potential as much as might have been expected, if one is to regard the common 

consensus upon the topic (Kumar, 2012). In fact, a lowering of rearing temperature, to 

approximately 10 °C, was identified to dampen activity most greatly. This came as a 

great surprise considering applications of phytase in temperate species, notably 

salmonids, have generally been successful (Vandenberg et al., 2011; Dalsgaard et al., 

2009; Forster et al., 1999). This also includes the work detailed within Chapter 4, where 

the SSF product was highly effective at 12.5 °C, with the lowest inclusion rate tested in 

the subsequent trial (0.5 %). It was concluded that neither low rearing temperature nor 

high extrusion temperature (105 °C) were capable of singularly reducing potential, to a 

level which could not be of some benefit to the animal. However, with both conditions 

present, constraints emerge and they must be overcome.  

The simplest approach to overcoming processing constraints would be for future work to 

investigate, in vivo, whether SSF products can remain effective in extruded diets for 

warmwater species, e.g. tilapia, carp and catfish. However, to allow a versatile product 

which can still remain efficient in temperate species, biotechnological efforts should 

attempt to implement methods which can improve stability or safeguard the functional 

bioactive components from heat-related stress. The two most feasible options are that of 

bulk ingredient pre-treatment and extraction of functional components for post-pelleting 

application, which would both avoid the extrusion process entirely. On the other hand, 
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more novel technologies may emerge in the future as potential means of protecting 

bioactivity during feed processing such as encapsulation.  

Microencapsulation continues to gather attention as a means of protecting the viability of 

probiotics from various stressors, including temperature (Liu et al., 2015; Wang et al., 

2015). This technology has been highlighted as an attractive tool for the animal feed 

processing industry (Shahrulzaman et al., 2015) and it may present an avenue for 

retaining functionality within SSF products. These efforts will indeed require significant 

cross-disciplinary work but objectives should be very much achievable.  

 

6.3 Overall conclusions 

When applied to the diets of both warmwater and temperate fish species, SSF products 

appear capable of releasing previously unavailable nutrients from feed. The sources of 

nutrients which are degraded appear to include those which can be categorised as anti-

nutritional factors, such as phytate and a variety of non-starch polysaccharides. The 

degradation of previously indigestible dietary fractions and increased nutrient provision 

can subsequently enhance animal and feed performance which would be of great benefit 

to production operations. Furthermore, through modulation of the nutrient profile, SSF 

products can be capable of causing downstream effects upon intestinal health which are 

likely to be a contributing factor to improved performance and could be of significant 

benefit to health in general. However, it was brought to light that inclusions of low 

bioactivity may eliminate or reverse the benefits to be gained by such applications, by 

negatively affecting intestinal health. Nevertheless, if intestinal health is upheld, the 

release of bioavailable macro and trace elements by SSF product inclusions is 

particularly attractive considering how this could theoretically increase the nutrient 

budget for physiological processes and morphological development alike, as well as 

reducing nutrient effluent loads. Through application in diets containing lupins, it became 

apparent that SSF products hold potential as very useful tools in increasing the 

acceptability of novel alternative ingredients by allowing more flexibility in feed 

formulations.  
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The uptake of bioactive feed ingredients in the aquafeed sectors has been restricted by 

their thermosensitivity; however, even without selected pressures to increase 

thermostability, the potential of SSF products to release nutrients after commercial feed 

extrusion conditions can remain surprisingly high. Similarly, low rearing temperatures 

can still produce increased nutrient liberation. However, a combination of the two 

temperature extremes can seriously subdue the benefits to be gained from SSF product 

inclusions when fed to salmonids, in particular, under commercial conditions. Therefore, 

these conditions are likely to be the major limiting factor in uptake by the commercial 

sector. Nevertheless, overcoming restraints is anticipated to be highly manageable with 

a number of established and novel technologies available. In doing so, the multi-faceted 

benefits of SSF products could be a key to unlocking the nutritional potential of modern, 

plant-based aquafeeds.  
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7 APPENDICES 

7.1 Experimental systems 

 

 
Plate 7.1 Warmwater RAS utilised for experimental work under Chapter 3, using Nile 

tilapia.  

 

 

 

 

 

 

 

 

Plate 7.2 Temperate RAS utilised for experimental work with rainbow trout under 

Chapter 4. 

A = tanks, B = pumps, C = sump/bio-filter, D = drum filter 

Design courtesy of Ben Eynon.  
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Plate 7.3 Temperate flow-through system utilised for experimental work conducted with 

rainbow trout under Chapter 5. 

A = tank, B = automatic feeder, C = faecal trap 

 

7.2 Histological staining procedures 

 

Table 7.1 Haematoxylin and eosin staining procedure 

Reagent Time (min : sec) 

Histolene 02:00 

Histolene 02:00 

Absolute Alcohol 02:00 

Absolute Alcohol 02:00 

90 % Alcohol  02:00 

70 % Alcohol 02:00 

50 % Alcohol 02:00 

Mayer’s Haematoxylin 60:00 

Tap Water 05:00 

Saturated Lithium Carbonate 00:04 

Tap Water 02:00 

Acid Alcohol 00:02 

Lithium Carbonate 00:04 

Tap Water 01:00 

Eosin 05:00 

Tap Water 00:30 

90 % Alcohol  00:05 

Absolute Alcohol 02:00 

Absolute Alcohol 02:00 

Histolene 02:00 

Histolene 02:00 

Histolene 02:00 
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Table 7.2 Periodic acid Schiff’s staining procedure 

Reagent Time (min : sec) 

Histolene 02:00 

Histolene 02:00 

Absolute Alcohol 02:00 

Absolute Alcohol 02:00 

90 % Alcohol  02:00 

70 % Alcohol 02:00 

50 % Alcohol 02:00 

Periodic Acid 05:00 

Tap Water 03:00 

Schiff’s  15:00 

Tap Water 05:00 

Mayer’s Haematoxylin 01:00 

Tap Water 05:00 

90 % Alcohol  00:30 

Absolute Alcohol 01:00 

Absolute Alcohol 02:00 

Histolene 02:00 

Histolene 02:00 

Histolene 02:00 

 

Table 7.3 Mallory’s Trichrome with haematoxylin staining procedure 

Reagent Time (min : sec) 

Histolene 02:00 

Histolene 02:00 

Absolute Alcohol 02:00 

Absolute Alcohol 02:00 

90 % Alcohol  02:00 

Distilled Water 02:00 

Mayer’s Haematoxylin 30:00 

Tap Water 05:00 

Saturated Lithium Carbonate 00:01 

Tap Water 02:00 

Acid Alcohol  02:00 

Saturated Lithium Carbonate 00:01 

Tap Water 02:00 

Acid Fuchsin (1 %) 00:08 

Tap Water 05:00 

Acid Phosphomolybdic Acid (1 %) 01:30 

Distilled Water 02:00 

Mallory’s 00:10 

Distilled Water 05:00 

90 % Alcohol 00:05 

Absolute Alcohol 00:10 

Absolute Alcohol 02:00 

Histolene 02:00 

Histolene 02:00 

Histolene 02:00 
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