Copyright Statement

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognize that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author’s prior consent.

Diane J. Gromala

15 July 2007
Towards a Phenomenological Theory of the Visceral in the Interactive Arts

Executive Summary
This thesis explores the ways in which certain forms of interactive art may and do elicit visceral responses. The term “visceral” refers to the cardiovascular, respiratory, uro-genital and especially excretory systems that affect mind and body on a continuum of awareness.

The “visceral” is mentioned in the field of interactive arts, but it remains systematically unexplored and undefined. Further, interactive artworks predominantly focus on the exteroceptive (stimuli from outside) rather than the interoceptive (stimuli arising within the body, especially the viscera) senses.

The existentialist phenomenology of Maurice Merleau-Ponty forms the basis for explorations of the visceral dimension of mind/body. New approaches to understanding interactive art, design and the mind/body include: attunements to the world; intertwinnings of mind/body, technology and world; and of being in the world. Each artwork within utilizes a variation of the phenomenological methods derived from Merleau-Ponty’s; these are discussed primarily in Chapters One and Three. Because subjective, first-person, experiences are a major aspect of a phenomenological approach, the academic writing is interspersed with subjective experiences of the author and others. This thesis balances facets of knowledge from diverse disciplines that account for visceral phenomena and subjective experience.

Along with the textual exegesis, one major work of design and two major works of art were created. These are documented on the compact disc (CDROM) bound within. As an essential component of each artwork, new technological systems were created or co-created by the author. User surveys comprise Appendices Two, Three and Four, and are also online at: www.sfu.ca/~dgromala/thesis. To access the URL: login as <feral>, and use the password <computing>. Numerous talks, exhibitions and publications that directly relate to the thesis work is in Appendix One.

This work begins with an introduction to Merleau-Ponty’s ideas of flesh and reversibility. Chapter Two is the review of the literature, while Chapter Three is an explication of the hypothesis, an overview of the field, and a framing of the problem. Discussions of each artwork are in Chapter Four (The Meditation Chamber), Chapter Five (BioMorphic Typography) and Chapter Six (The MeatBook). Chapter Seven forms the conclusion. References to the documentation on the CD are found throughout the thesis, and italicized paragraphs provide an artistic context for each chapter.
Towards a Phenomenological Theory of the Visceral in the Interactive Arts

Table of Contents

Executive Summary 3
Table of Contents 4
List of Tables and Figures 6
Acknowledgements 7
Author’s Declaration 8
Preface 9

1. Chapter One: Maurice Merleau-Ponty 15
 1.1 Introduction 15
 1.2 The Phenomenology of Maurice Merleau-Ponty 16
 1.3 Undoing Representationalism 16
 1.4 Merleau-Ponty and the Body 18
 1.5 Flesh 20
 1.6 Reversibility 21
 1.7 Intertwinements and Reversibility of Body and World 22
 1.8 Merleau-Ponty’s Consideration of Art 23
 1.9 The Absent Body 25
 1.10 Summary 26

2. Chapter Two: Literature Review 28
 2.1 Introduction: Phenomenology 28
 2.2 The Body 28
 2.3 Phenomenological History 29
 2.4 Maurice Merleau-Ponty 31
 2.5 Contemporary Phenomenology following Merleau-Ponty 33
 2.6 Historical Precedents: Art & Technology 38
 2.7 Walter Benjamin 39
 2.8 The Visceral 42
 2.9 Summary 43

3. Chapter Three: The Visceral 44
 3.1 Introduction 45
 3.2 Definition of Terms: The Visceral 47
 3.3 Hypothesis 52
 3.4 Problem Statement 53
 3.5 The Field: Interactive Art and Design 53
 3.6 Historical Contiguity 57
 3.7 Characteristics of Interactive Art That May Create Conditions for the Visceral 60
 3.8 Methodology and Goals 68
 3.9 My Artistic Background and Context 70
 3.10 Summary 71
 3.11 Organization of Subsequent Chapters 71

4. Chapter Four: The Meditation Chamber 72
 4.1 Introduction 72
 4.2 The Effectiveness of Meditation 73
 4.3 First-Person Description of Meditating 77
 4.4 The Mediation Chamber 80
 4.5 System Design 81
 4.6 Instrumentation 81
 4.7 Content: Interactive Animation and Sound 83
 4.8 The Installation 88
5. Chapter Five: BioMorphic Typography
 5.1 BioMorphic Typography: Introduction
 5.2 Context and Methodology
 5.3 System Design
 5.4 Morphing Letterforms
 5.5 Biometric Readings
 5.6 Findings
 5.7 BioMorphic Typography and Merleau-Ponty’s Chiasmic Reversibility
 5.8 BioMorphic Typography and Merleau-Ponty’s Concept of Language
 5.9 BioMorphic Typography and the History of Writing
 5.10 Physical Trace of the Writer
 5.11 Literacy, Presence & Sensorial Shifts
 5.12 Prior Art
 5.13 Future Work
 5.14 Summary
 5.15 Computer Code

 6.1 Introduction
 6.2 Initial, First-Person Descriptions of User Experiences: Version One
 6.3 Ethics
 6.4 Prior Art
 6.5 Meat, not Cultured Tissue
 6.6 Merleau-Ponty’s Reversibility: A Befuddlement
 6.7 Resonance or Mirror Neurons at Work?
 6.8 The MeatBook: Instrumentation: Version One
 6.9 The MeatBook: Instrumentation: Version Two
 6.10 Findings: Reactions to the MeatBook: Version Two
 6.11 Disturbing the Body Schema?
 6.12 Results
 6.13 Future Work
 6.14 Summary
 6.15 Computer Code

7. Chapter Seven: Conclusions
 7.1 Introduction
 7.2 Denigrating the Body
 7.3 Importance of the Visceral
 7.4 Towards a Theory of the Visceral

Appendix 1: Publications, Exhibitions and Lectures during Ph.D. program
Appendix 2: Meditation Chamber: User Testing
Appendix 3: BioMorphic Typography: Transcribed Questionnaires
Appendix 4: MeatBook: Phenomenological Impressions
References

List of Tables and Figures

Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Comparisons of Like, Intersubjective Experiences, from “Resonance” to Mirror Neurons.</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Functions of Afferent Visceral Signals</td>
</tr>
</tbody>
</table>

Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Touching One’s Own Hands</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Diagram: The Continuum from the Visceral Register to the Visceral Sense</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Protrude, Flow, Kodama and Takeno</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Visible Human</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Pig Wings Oron Catts, et al.</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Pig Wings Oron Catts, et al.</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Body Worlds</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>The Meditation Chamber</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Meditation Chamber: Image of Sunset</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Phases in the Meditation Chamber</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Meditation Chamber: Muscle Relaxation</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Meditation Chamber: Jellyfish during “Follow Your Breath”</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Typical Galvanic Skin Response Plots</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Illustration of Biofeedback System</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Example Bezier curve showing its 4 control points</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Numbering of each Bezier curve, placed “by hand”</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>BioMorphic Typography: “skeletal” form</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Tests for two simultaneous modalities: respiration and GSR</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>Tests for two simultaneous modalities: respiration and GSR</td>
</tr>
<tr>
<td>Figure 5.7</td>
<td>Tests for two simultaneous modalities: respiration and GSR</td>
</tr>
<tr>
<td>Figure 5.8</td>
<td>BioMorphic Typography: brainwave tests</td>
</tr>
<tr>
<td>Figure 5.9</td>
<td>BioMorphic Typography: Excretia: Excerpt from The Tale of Genji</td>
</tr>
<tr>
<td>Figure 6.1</td>
<td>Meat Joy, Carolee Schneeman</td>
</tr>
<tr>
<td>Figure 6.2</td>
<td>Meat Dress, Jana Sterbak</td>
</tr>
<tr>
<td>Figure 6.3</td>
<td>Video Stills from The MeatBook Version One</td>
</tr>
<tr>
<td>Figure 6.4</td>
<td>Video Stills from The MeatBook Version Two</td>
</tr>
<tr>
<td>Figure 6.5</td>
<td>Illustration of technical workings</td>
</tr>
<tr>
<td>Figure 6.6</td>
<td>MeatBook: Technical Components</td>
</tr>
<tr>
<td>Figure 6.7</td>
<td>MeatBook Second Iteration</td>
</tr>
<tr>
<td>Figure 6.8</td>
<td>MeatBook Second Iteration</td>
</tr>
<tr>
<td>Figure 6.9</td>
<td>MeatBook Version 2: Bookstand</td>
</tr>
<tr>
<td>Figure 6.10</td>
<td>MeatBook Version 2: Silicone Testing</td>
</tr>
<tr>
<td>Figure 6.11</td>
<td>MeatBook Version 2: Actuators</td>
</tr>
<tr>
<td>Figure 6.12</td>
<td>MeatBook Version 2: Armatures</td>
</tr>
<tr>
<td>Figure 6.13</td>
<td>MeatBook Version 2 at TEI 2006</td>
</tr>
</tbody>
</table>

Page numbers correspond to the page where each table or figure is referenced.
Acknowledgements

The author wishes to acknowledge the beneficence of Roy Ascott, without whom art scholarship in the academy would be an impoverished idea. To Michael Punt, whose extreme personal generosity and wide-ranging intellectual challenges shall long haunt me. Gratitude is also due my second supervisor, Mike Phillips, for preparing me, with a great deal of wit and in the most unlikely places, for taking that parachute-laden leap.

To those supporters who went before me, I am indebted to Jill Scott and Victoria Vesna. This thesis has been enriched by the intensity and with the support of my worldly and itinerant colleagues from CAiiA-STAR to the Planetary Collegium, especially Gretchen Schiller, Margaret Dolinsky, Thecla Schiphorst and Yacov Sharir. Thanks are also due to my collaborators at The Georgia Institute of Technology: Dr. Larry Hodges, Dr. Irfan Essa, Dr. Thad Starner; and graduate students Fleming Seay, Mirtha Ferrer, Abhishek Kumar, Sunil Parihar, and Sumier Phalake. I am also grateful for support from Prof. John Bowes, Prof. Magy al Nasir and talented graduate students at Simon Fraser University: Dr. Steven Barnes, Jayme Cochrane, Aaron Levisohn, Jack Sam, Jinsil Seo, Meehae Song and Angela Tomizu. Sheila Levrant de Bretteville, Dr. Teal Triggs, Louise Sandhaus, Liz McQuiston, Franc Nunoo-Quarcoo, Maria Phillips, Jana Wilson Esser, Theodore Esser and Lily Shirvanee have been sources of longstanding encouragement. Finally, the blue flames lit in Dr. Eugene Thacker’s and Prema Murthy’s spoons proved to be especially enlightening.

I am privileged to have inculcated a lifetime of essential knowledge of the body from Dr. Theresa Gromala and Anton Valentine Krygoski. Sebastian, Roy, Zorah and Buddy Gromala provided necessary counterpoints and posed questions that would have escaped my focused attention. Finally, none of the work of the past twelve years would have be possible at all without the unstinting support of Dr. Chris Shaw. To have an intellectual partner of such calibre and humor is one of my life’s greatest gifts.
Author’s Declaration

At no time during the registration for the degree of Doctor of Philosophy has the author been registered for any other University award without prior agreement of the Graduate Committee.

This research has been financed by the Banff Centre for the Arts, the Wesley Center for New Media at the Georgia Institute of Technology and the School of Interactive Arts and Technology at Simon Fraser University. My registration with the Planetary Collegium began in late 1999 at the École Nationale Supérieure des Beaux-Arts, which was the beginning of my theoretical research for this dissertation. The Meditation Chamber was a collaboration with Dr. Larry Hodges, Dr. Chris Shaw, and graduate student Fleming Seay. Windows and Mirrors: Interaction Design, Digital Art and the Myth of Transparency was co-authored with Jay David Bolter and published by the MIT Press. BioMorphic Typography was solely created by the author. The MeatBook was primarily created by the author with support by graduate students Jinsil Seo, Aaron Levisohn and Jack Sam.

The results of this research were exhibited, presented and performed at numerous and relevant venues. In addition, external institutions were visited for consultation purposes. In addition to the book Windows and Mirrors: Interaction Design, Digital Art and the Myth of Transparency, several papers and book chapters were published. For a complete list, refer to Appendix 1.

Word Count in Thesis Document: 66,523
Word Count in Accompanying CDROM: 4,589

Signed..

Date..
Preface

Artistic Motivations and Vectors of Interest
In artistic practice, the artist discusses the motivations and influences that led her to create the artwork. This preface functions in the same way — to explicate those forces and influences that have led to the work at hand.

How does an interactive artist come to research the viscera? The answer is an extensive, multi-faceted one. For the purposes of this thesis, however, brevity is in order. Thus, this preface — along with the italicized, artistic contextualizations that serve as introductions to each chapter — comprise the artistic interests, motivations, and influences in phenomenologically appropriate, first-person, form.

The Visceral
Most of these influences and motivations have evolved over decades. My fascination with taking pictures of road kill, for example ranged from grammar school and high school biology to university studies. The mysterious phenomenon that these photographs elicited — a physical, visceral, “gut” reaction — became an obsession that evolved into formal, artistic works during my undergraduate studies in photography, film studies and design. Creating photographs and film always paralleled readings in cultural studies and philosophy; I was looking for any knowledge that could explain these physical reactions to images. In graduate school, I explored this further through the lens of cultural studies, particularly in Walter Benjamin’s idea of mimetic “resonances,” that is, our proclivities as human primates to “copy” or mimic the actions of other humans or things in the world. This was his explanation of how we test the world to determine what is me (subjectivity) and what is not me (alterity), and the extent to which we can “become” like someone or something else, including technologies.

Chronic Pain
My interest in how inert images can incite a visceral response also collided with my health. Images of my viscera were created by physicians in order to “objectively confirm” my subjective experience of pain. Curiously, these images did not provoke a visceral response. At least, not until I saw surgery upon my viscera in real-time video, as the surgery itself progressed while I was awake (described in the italicized introduction to Chapter 3). There, I experienced the cause-and-effect of the video images during the surgery with the dull, unfamiliar sensations I felt deep within my body.
Though viscerally provocative images were not part and parcel of my work as a professional designer at Apple Computer in the mid- to late 1980s, my work on HyperCard focused not on the ability it provided for animations, text, and audio to function together (e.g., “multimedia”), but on the bodily senses that we could reach through the program. Ultimately, I wondered, what would it be like to walk into a multimedia experience? When considering the extreme of what multimedia could be, I had the good fortune, through the beneficence of the Banff Centre for the Arts, to become one of the very first artists who explored immersive virtual reality (VR). This was an artwork I created with Yacov Sharir, of indeed walking into (or being immersed in) a virtual environment.

My artistic work in immersive VR with choreographer Yacov Sharir began late in 1990. Working with a dancer whose knowledge of the body was immense (though difficult to articulate outside of firsthand experience), and with the new technologies of VR, turned my interests into an intense, lifelong commitment to exploring bodies, including my own, and their relationship to technologies of any sort — medical, chemical, or digital. Though always interested in the body and biology, I never worked with so much zeal as when I began to experience chronic pain in 1984.

My work with a dancer and choreographer added to the medical knowledge I had been accruing in pursuit of pain relief. Most unexpectedly, some characteristics of VR provoked corporeal responses that felt quite similar to my Buddhist meditation practices (along with acupuncture, these provided the only temporary relief I could find after a 20 year odyssey in centers for pain management). The methods of “pain distraction” that were practiced in pain centers in the U.S., more often than not, served to distract a patient’s attention by having him imagine some far off, “happy place” — implicitly, the body was left behind. In my opinion, this only served as a temporary disconnection between the patients’ corporeal experience and their imaginings.

Buddhist meditation practice, in contrast, focuses on an inward sense, one that could extend to an experience of inner vastness, and with practice, to a “remapping” of the experience of pain. Because our virtual environment was also an organic space (created from the data of an MRI of my body), it produced a new and sustained awareness of proprioception, or “where we feel we are in our bodies.” This new awareness of proprioception and an oddly experienced kinesis felt akin to the senses of the corporeal I had while meditating.

After the first project in VR (Dancing with the Virtual Dervish: Virtual Bodies), I tested my
own aversion to the idea of “pain distraction” by working on a VR application (at the Human Interface Technology Lab in Seattle) for patients who experienced 3rd degree burns and for ten year-olds who were suffering from acute pain during chemotherapy (at Georgia Tech). What I found was that pain distraction does work for acute pain. Our findings at the HITI lab, for instance, suggested that VR was more effective than opiates during burn abradement (Hoffman 2004, pp.58-65). But the approach of distraction did not work for long term, chronic pain. Therefore, I returned to the site of inner senses and co-created the Meditation Chamber with Larry Hodges, another long term meditator, and Chris Shaw. We worked specifically on how biofeedback technologies, combined with VR, could bring perceptions of our inner workings into conscious awareness, and hoped that VR would help those who had never mediated with some form of feedback. As I learned from my classes in meditation, beginners often have little to no idea if they are actually effecting bodily change or not. Biofeedback provides some indication of this, and the Meditation Chamber seemed to fulfill our hopes for a functional aid that could be used in therapeutic ways at Virtually Better.¹

What I gained from talking to many patients who experience chronic pain over the past 20 years is what Elaine Scarry articulated: that pain tends to be inexpressible, and tends to rob us of our language (Scarry 1985, p.5). My work in VR and with physicians on other projects were all conducted in order to give patients tools for expressing what seems inexpressible — both to help the physician with diagnoses and to enable personal expressions (Gromala & Shaw 2004, pp.253-256). The latter has been found to help with other conditions, such as depression (Segal, Williams & Teasdale 2001, pp.282-283).

My own attempts to deal with chronic pain led me to other courses of study, most of which are learned orally, in the presence of someone more knowledgeable: acupuncture, meditation (in its numerous forms), Tai Chi, Qi Gong, Yoga (in many of its forms) and “Body Talk,” to name the more significant. I also studied anatomy and the history of medicine at Yale University, and took classes in Pain Management at the University of Washington in Seattle. Individual tutorials were sometimes provided by my physicians, whose interest was garnered after I presented my VR work. After my first artwork in VR, I worked in the design of virtual environments for use in pain management, always under the purview of a psychiatrist or physician. It is common, when presenting my work to audiences who have physicians in it, to later meet with them. Some led to collaborations, others to provocative experiments, like the psychiatrists at Wayne State

¹ Virtually Better is a spin off company from Georgia Tech. It is a center that treats psychophysiological conditions, from phobias to post-traumatic stress disorder. With a psychiatrist at his or her side, the patient uses VR in a variety of ways to treat their condition. Virtually Better has 20 clinical partners across the world that share VR applications and knowledge. The Meditation Chamber is currently in use there. See www.VirtuallyBetter.com
University's School of Medicine, who wanted to expose half of the first year surgical interns to the MeatBook and compare them to the control group, measuring the responses of both groups with an fMRI. (First year surgical interns usually have issues with cutting into living human flesh, according to one of the Psychiatrists there. They thought the MeatBook could provide a form of habituation, which could in turn reduce anxiety. We did not, however, gain Human Subjects approval.)

Beyond VR
At the time (1996), VR was at an impasse — its technical configurations were at their limit, and it was still very expensive, both in terms of programming hours and the cost of high-speed computers. In addition, the discourses surrounding VR were dominated by those who focused on VR's purported "disembodying" qualities. My position was that VR instead enabled a sense of re-embodiment. For these reasons, I decided not to follow a technology, but to follow experiences of the body that were enabled by any technology. In addition, each of my VR works that were designed for pain management took several years to complete, with an overwhelming amount of work devoted to Human Subjects approval. The creative aspects were tightly constrained by this process.

Thus, the artworks described in this thesis are but a few examples of how and why I explore technologies and materials ranging from biofeedback and typography to the creation of a quasi-animated book made of meat. From pragmatic design to interactive artwork, in their own ways, hopefully, these works can elicit and make experientially available felt experiences that usually are barely recognized because they are obscured by habit, cultural proclivities or because they are generally meant to be the background of our existence. This barely conscious awareness, or "registering" of the visceral, with practice, can become consciously controlled. At that point, they can potentially become transformative and become a visceral sense (refer to figure 3.1).

Text and Embodied Knowledge
One of the major precursors to these explorations was the context of my teaching job in Georgia Tech's School of Literature, Communication and Culture. The School was comprised of critical theorists of technology, a media scholar, literary experts and several other humanists. I was deeply familiar with these practices through numerous courses I took as an undergrad at the University of Michigan and a graduate student at Yale, and in collaborations with cultural theorists at the University of Texas and the University of Washington. Nonetheless, I found the daily assumptions under which these scholars worked surprising: they articulated an aversion to the flesh of the body, whether it was an idea or whether it related to the "craft" (production) of creating art- or mediaworks. This has deep historical roots, extending as far back as the ancient
Gromala

Greeks (Shiner 2001, pp.19-27, 38-46). As Vivian Sobchack says of the tendencies of her colleagues in the Humanities, "... too often our central concern is to create an impossibly extroverted body whose investments have become completely exteriorized and performative, a body that we paradoxically have trouble seeing 'as it is' because we are no longer in touch with it" (Sobchack 1991, p.186). This experience reinstated my own values for the body, learned through art, design and feminist studies, along with a respect for the depth of our bodies that I learned from physicians, healers, and the collaboration with a choreographer in VR. Trying to articulate embodied cognition or "bodily knowledge," such as that of a skilled artisan, led me to a re-examination of Merleau-Ponty's work. In order to understand how and why this aversion was still at play, I co-authored a book with the historian Jay Bolter, entitled *Windows and Mirrors: Interaction Design, Digital Art and the Myth of Transparency* (hereafter referred to as *Windows and Mirrors*), under MIT Press' *Leonardo* imprint in 2003.

What was most valuable in this collaboration is that although Bolter and I shared a deep love of design, I spent much of my time (as a trained artist and designer), trying to articulate the idea that, from my perspective, art and design has to do with the more ancient definition of aesthetics that referred to the sensorial, and not the culturally determined notion of the beautiful. Most importantly, however, was that I was interested in Martin Heidegger's and Merleau-Ponty's work since it seemed to offer the most productive work we could employ for our argument. In *Windows and Mirrors*, we tried to disabuse computer scientists of their assumption that the interface is nothing more than a "window" onto textual or numeric "information" that one was supposed to read through. Although this book was the first of my thesis works, it inadvertently took a slightly different direction than my original intention. The reader of *Windows and Mirrors* may be able to discern this, especially in the chapters that explored the works I curated for the SIGGRAPH 2000 Art Gallery (Bolter and Gromala 2003, pp.58-141, 144-149). It was necessary to stick more to discussions of the interface and less on the phenomenological contexts I intended to explore in much more depth. Finally, the book was written for both computer scientists and designers, in a style intended for a general audience. Readers will be able to recognize Heidegger's notion of present-at-hand and ready-to-hand, and that our notion of "oscillation" nears Merleau-Ponty's idea of reversibility. Nonetheless, the most important aspect about writing that book was that our fundamental disagreements — about the ability of humans to have pre-cognitive (or prenoetic) knowledge, bodily forms of tacit knowledge and immediacy (or any experience outside of language) — enabled me to later explore these issues to a depth that I would not have otherwise. For those daily but congenial disagreements, I am most grateful indeed.
An Intertwining of a Visible Artist, Invisible Inner Bodies and Worlds

Throughout the course of my artistic career, careful and sustained observation about the potential meanings of felt experience, focusing on the body, has been a way of life, a way of being in the world that has fed my artistic practice and scholarly writing. Many methodologies provide for ways to account for meaning and sustained observation of the body. However, none but Merleau-Ponty’s approach allow for the close examination of felt, lived experience — from a first-person perspective that is verifiable, if necessary, by second-person perspectives and scientific methods — one that assumes that the body is the basis for all perception and meaning. Thus, I view the body as the ground and basis not only for experience, but also for creating and experiencing technologies, whether they are objects or procedures. For as much as they seem to be able to extend our bodies or become autonomous from us, no technology could be created without us, from the ground of our existence — our bodies. As Merleau-Ponty reminded us, technologies are in the realm of the world, and our bodies — felt or imagined (i.e., virtual bodies) — are continuously intertwining with the world, natural or simulated.

The deepest, innermost aspect of ourselves — our viscera — is usually and necessarily the silent background to our conscious experiences. This work seeks to bring that ground into awareness, to form part of the figure in a figure/ground relation, and to be potentially transformative.
Chapter One: Maurice Merleau-Ponty

1.1 Introduction
Since Maurice Merleau-Ponty’s ideas are central to the creation and explication of this thesis, it is necessary to first examine his work in detail in this chapter. Though it is not common to begin with a chapter on methodology, the centrality of Merleau-Ponty’s ideas and his phenomenological methods provide a framework for subsequent chapters. The methodology employed in this thesis is derived from the principles of existential phenomenology, particularly from the works of Merleau-Ponty (1908-1961). It includes subjective, first-person accounts of “lived experience.” But these first-person accounts are not purely private accounts, as they are often assumed to be. Rather, they must be open to intersubjective validation (Varela and Shear 1999, p.1). Thus, second-person and the empirical, “objective,” third-person accounts that are standard scientific practices in Human-Computer Interaction (HCI) are also included, especially in the examination of the Meditation Chamber. These accounts are triangulated, or cross-referenced, according to the types of accounting-for that were deemed to be most appropriate for each artwork. Triangulation involves comparing first-person, subjective accounts with observations of others, and with contextually relevant, scientific knowledge and/or methods.

A discussion of the ways in which this methodology was engaged to respond to the contexts of each artwork is included in the methodology sections of Chapters 4, 5 and 6. For demonstrations and documentation of each artwork, please refer to the CDROM bound within. Where possible, the computer code for each artwork may be found online; the URLs are listed within Chapters 4, 5 and 6.

Each artwork created for this thesis is an experiment and enactment of some of Merleau-Ponty’s major ideas. The Meditation Chamber enables users to more fully experience their own inner lifeworld, and to bring into conscious awareness some aspects of what usually operates invisibly, in the background of awareness: their autonomic system. The way in which the Meditation Chamber works is an example of Merleau-Ponty’s concept of reversibility (refer to Chapter 4 and the CDROM: Meditation Chamber). BioMorphic Typography is also an example of reversibility (refer to Chapter 5 and the CDROM: BioMorphic Typography). In addition, it explores the “brute” and expressive aspects of language that Merleau-Ponty was developing at the time of his death at the age of 53. Finally, Merleau-Ponty’s idea of reversibility and flesh are explored in the MeatBook (refer to Chapter 6 and the CDROM: the MeatBook). The second chapter is the review of pertinent literature, and the third chapter is an introduction to my work; subsequent chapters explore each artwork individually.
1.2 The Phenomenology of Maurice Merleau-Ponty

Maurice Merleau-Ponty was a French philosopher whose work focused on the body. Taylor Carman and Mark Hansen state, "... Merleau-Ponty's account of the bodily nature of perception, of the perceptual bedrock of human existence, remains his most profound and original contribution to philosophy" (Carman and Hansen 2005, p.10). His form of phenomenology is generally referred to as existential phenomenology. Although the work of his contemporaries and fellow existentialists, Jean-Paul Sartre and Simone de Beauvoir, were more popular in his time, Merleau-Ponty's work has enjoyed a significant re-emergence in numerous disciplines. Herbert Dreyfus explains that "While in the 1950s practically no one in the United States was thinking along these lines, now there is a converging interest in embodiment not only in philosophy but also in psychology, linguistics, cognitive science, anthropology, artificial intelligence, and neuroscience. In the 1950s, the one exception to the tradition of disembodied philosophy was the work of Merleau-Ponty" (Todes 2001, p.1). Scholars and artists in other disciplines who have exhibited a renewed interest in Merleau-Ponty's work are from the Humanities, the Arts, HCI and Medicine (Carman and Hansen 2005, pp. 1-3; Evans and Lawlor 2000, pp.1-3; Weiss and Haber 1999, pp. x-xvii; Gallagher 2005, p.1; Dreyfus and Dreyfus 1999, pp.103; Leder 1990, p.2-7).

1.3 Undoing Representationalism

Before we delve into Merleau-Ponty's work, a discussion of why Merleau-Ponty's phenomenology, and that of his predecessors is an important break from much of philosophical thinking is in order.

Proponents of representationalism sought to analyze and explain the "directedness of consciousness" by positing inner mental tokens. The function of these inner mental tokens was to:

"depict or describe things out in the world. Ideas, or in Kantian jargon 'representations' (Vorstellungen), thus formed a kind of bridge, both causal and experiential, between the inner and the outer and were thus made to serve both a rational and a mechanical function simultaneously: ideas were at once supposed to be effects produced in us by the external world and to contain or express our knowledge of that world" (Carman and Hansen 2005, p.6).

These inner mental tokens would enable us to "understand the relation between the mind and the world" if we could grasp the peculiar nature and operation of those representational intermediaries. But this theory of ideas was "incoherent from the outset, because that theory took the notion of our awareness of our own ideas for granted as self-evident" (ibid.). Because our own ideas were self-evident, it was believed that they were not worthy of consideration.
The very notion of an indirect, representationist theory of perception thus presupposes intentionality in the way it conceives of our epistemic relation to our own ideas, and yet disallows itself any recognition of that relation as an essential aspect of thought or perception” (Carman and Hansen, 2005, p.6).

Husserl’s phenomenology was innovative because it rejected this epistemological picture by “distinguishing between the objects and the contents of consciousness. There is a difference, that is, between the things we are aware of and the contents of our awareness of them” (ibid.). Husserl makes a distinction between the abstract or “ideal” and the concrete or “real” aspects of mental phenomena. Husserl then inspired a generation of phenomenologists, including Heidegger and Merleau-Ponty.

Heidegger, however, disagreed with Husserl’s methods. Thus, Heidegger created his own account “not of some preconceived domain of ‘pure’ consciousness, or transcendental subjectivity, but of what he called our everyday “being-in-the-world” (Carman and Hansen 2005, p.9). For Heidegger, our everyday “being-in-the-world” included a consideration of intentionality — or that which representationalists assume or ignore.

What Merleau-Ponty learned from Husserl was “the need for faithful description of phenomena, as opposed to metaphysical speculation” (Carman and Hansen 2005, p.9) and complex, abstract philosophical systems. Where Merleau-Ponty differed from both of his predecessors was that he made the body central to his philosophy. While Husserl and Heidegger mention the body, they both argued that consideration of it was beyond the scope of their ideas. Merleau-Ponty though argued that “perception and the body together constitute the phenomenon” (ibid.) that was crucial to our “being in the world” (ibid.). Merleau-Ponty described “embodied agents immersed in worldly situations in virtue of perceptual and affective attitudes whose contents are themselves often conceptually indeterminate” (Carman and Hansen 2005, p.10). His account of the bodily nature of perception and his notion of intentionality, along with the foundational ideas of Husserl and Heidegger, all served to problematize those philosophical directions of representationalism. For these phenomenologists, there were no mental tokens that functioned as if by magic, no abstract, complex philosophical structures to rely on. Rather, they developed ways of directly experiencing the world, although how this was achieved differed among Husserl, Heidegger, and Merleau-Ponty. Merleau-Ponty’s phenomenology, which posited the body and mostly prereflective perceptions of the world presented a radical contrast to representationalism.
1.4 Merleau-Ponty and the Body

Merleau-Ponty examined common, everyday phenomena because he felt that science and philosophy had become too abstract and had lost sight of the very ground of our being — our bodies. As Carman and Hansen explain,

“To understand Merleau-Ponty’s work at all, one must appreciate his abiding commitment to . . . phenomenological description as an antidote to abstract theorizing, conceptual system building, and reductive philosophical explanation” (Carman and Hansen 2005, p.12).

Further, “Merleau-Ponty thus sought to rescue our understanding of perception from the conceptual oblivion to which traditional psychology and epistemology had consigned it” (ibid.).

Merleau-Ponty’s work focused on phenomenological explorations of the body, especially its pre-reflective aspects, and its inextricability with the world. In his first major book, the *Primacy of Perception* (Merleau-Ponty 1964a), Merleau-Ponty explored what he called “inter-individual” perception, motility and habit. His later work progressed into the ontological realm, culminating in his last major and unfinished work, *The Visible and the Invisible* (Merleau-Ponty 1968).

Though this book was unfinished at the time of his death, his colleagues published the completed chapters, along with his notes for subsequent chapters. This chapter of the thesis is an overview of several of Merleau-Ponty’s ideas from both his earlier and his later works. This and subsequent chapters also include the work of Drew Leder, a physician and phenomenologist who extended Merleau-Ponty’s work. Leder’s contribution is crucial because it explores the innermost organs and viscera that Merleau-Ponty barely touched upon. Indeed, the criticism levied against Merleau-Ponty’s work is that the body to which he referred was assumed to be healthy, athletic, and youthful to middle-aged (Ihde 2001, p.15). That is, he did not explore the vast differences in bodies that result from age or gender, although he did account for medical conditions in some cases. Further, Merleau-Ponty’s work is also criticized because it primarily explored the body on its “surface level” (Leder 1990, p.62).

This criticism is somewhat unfounded, because Merleau-Ponty did explore the inner (or interoceptive) “senses” of proprioception and kinesthetics. Further, his work with neurologist Kurt Goldstein suggests that he was interested in atypical states of the body and the role of internal organs on perception. “Goldstein insisted that medicine and physiology be attentive to the essential unity of organisms and the global and subtle intermingling of seemingly discrete organs and functions” (Carman and Hansen 2005, p.12). Though this work was compelling, Merleau-Ponty did not have an opportunity to delve into these explorations because of his early death. Nonetheless, following Merleau-Ponty, Leder and Frank Buytendijk did explore the inner organs, their effects on the states of our minds/bodies, and their influences on perception. Leder
focused on how the inner workings of the body are usually the imperceptible ground of our conscious perception in a figure/ground relation (Leder 1990), while Buytendijk explored the ways in which each organ played a role in perception and affect (Buytendijk 1974).

Merleau-Ponty’s most productive ideas for the work of this thesis are the related ideas of flesh and the reversibility chiasm (Merleau-Ponty 1968, pp.127, 133, 138-149, 152-153, 248-251, 273-274).

Before I describe those terms, I will provide a simple explanation of how these ideas are utilized in practical, pedagogical ways that inform my teaching and research. To explain in the most jargon-free manner, I will discuss an assignment I give to my students, which was strongly inspired by phenomenologist Don Ihde (Ihde 2001, pp.4-5). I ask my students to close their eyes and imagine that they are parachuting from a plane. I slowly and verbally articulate each aspect, until at the end of five or six minutes, I describe landing. Afterward, I ask these students whether they saw themselves from a first-person perspective or from the third-person or omniscient point of view. Over seven years of giving this assignment in 4 different academic institutions and departments, I found what Ihde suggested: half of the students “experienced” the jump from a first-person perspective (body as subject), while the other half experienced it from a third-person perspective (body as object). In the last few years, students have reported that their “experience” is an alternation of these two points of view.

The goal of the assignment is to enact one of Merleau-Ponty’s points: that we experience the world as both a subject and an object. According to Merleau-Ponty, Simon Todes (Todes 2001) and other phenomenologists, this ability is what lies at root of Descartes’ mind and body distinction. They argue that Descartes associated the first-person view with a knowing subject, and that he confused our inherent ability to also experience ourselves as objects. Leder makes the claim: that this is what led to Descartes’ separation of mind from body (Leder 1990, p.128-134). Extending Merleau-Ponty’s work, Leder demonstrated that our bodies have inner dimensions that are usually and necessarily inaccessible to the conscious awareness; and that these dimensions are in a reversible figure/ground relation (Leder 1990, pp.24-27, 31-35). When this usually inaccessible dimension can or does become conscious, it reverses and becomes the figure in the figure/ground relation. This inner dimension and its reversibility from figure to ground (or vice versa) is what is at work in the Meditation Chamber (refer to Chapter 4 and the CDROM: Meditation Chamber). Leder’s extension of Merleau-Ponty’s work is an important concept, because much of Merleau-Ponty’s work focused on an intentionality towards an object or other human, and not within the visceral depths of one’s own body.
1.5 Flesh

In Merleau-Ponty’s earlier work, he referred to the body as the *lived body* to emphasize its always active, experiential dimensions, either potential or realized (Merleau-Ponty 1964a, pp. 2, 5, 12-43, 162). In Merleau-Ponty’s later work, *flesh* is the term he used to describe the more ontological and complex relations that arose from his claim that all arises from the perceptual, and is oriented toward-the-world. *Flesh* was also used to refer to the “corporeal consciousness” that is the basis of Merleau-Ponty’s work (Merleau-Ponty 1968, pp. 136, 151). For him, knowledge and experience are gained in and through the body, usually at the pre-reflective level of everyday interactions.

Flesh also implies, for Merleau-Ponty, that our bodies have intentionalities, an orientation toward the world, that in turn, offer possibilities for intertwining with the world in numerous ways that rely on context (Merleau-Ponty 1968, pp. 130-155); also refer to Buytendijk and Gibson in Chapter 6). And so when mind, body and world are inevitably intertwined in countless ways, the world draws on these corporeal intentionalities, just as they arise from within. “Thus, flesh belongs neither to the subject nor world exclusively. It is a primal ‘element’” (Merleau-Ponty 1968, p. 139) out of which both are born in mutual relation. It cannot be conceived as mind or material substance. Rather, flesh is a kind of “coiling over of the visible upon the invisible” (Merleau-Ponty 1968, p. 140), “which traverses me but of which I am not the origin” (Leder, 1990, p. 62). In *The Spell of the Sensuous*, David Abram defines Merleau-Ponty’s conception of *flesh* as “the mysterious tissue or matrix that underlies and gives rise to both the perceiver and the perceived as interdependent aspects of its spontaneous activity” (Abram 1996, p. 66). This is the way Merleau-Ponty discusses meaning. For him, meaning cannot be purely or solely attributed to ideas, but usually precedes them in pre-reflective, bodily experiences — a kind of corporeal know-how. Further, Merleau-Ponty also claims that meaning bears an inherent materiality, from our bodies to objects. To take a contemporary example, as Mark Hansen suggests in *Bodies in Code: Interfaces with Digital Media*, there is always a body involved in any aspect of technology, and that cyberspace is anchored in the body (Hansen 2006, pp. 3-5, 14-15).
1.6 Reversibility

Merleau-Ponty continually sought to overcome strict dualistic thinking. A prime example of this effort lies in his concept of the chiasmic (a “crossing”) reversibility (Merleau-Ponty 1968, pp. 130-155, 199, 265-266). He uses the example of our hands touching each other to explicate this idea. We can never simultaneously perceive touching our right hand while it is also touching an object of the world, according to Merleau-Ponty and his predecessors. He suggests that “either my right hand really passes over into the rank of the touched, but then its hold on the world is interrupted, or it retains its hold on the world, but then I do not really touch it” (Merleau-Ponty 1968, p. 148). As a result, there is a gap (or écart in French) between ourselves as touching and ourselves as touched, a divergence. However, this gap is important and fundamentally different from yet another dualism. (Carman and Hansen 2005, p. 196-197). This is because touching and being touched are not just separate orders of being in the world, but are a kind of fission that stops the body as subject from merging with the body as object. The two categories are not ontologically separate, but are more akin to two sides of the same process. Further, the two sides also form “bridges,” because of prior experience and because reversibility is always an imminent possibility. As Leder explains, “... the world leaps out of a chiasm between subject and object, my vision and that of others, perception and language” (Leder 1990, p. 63). Further, touching and being touched are more than the body’s capacity to be both a perceiving object and a subject of perception in a constant oscillation, though never exactly in the same ontological category. Merleau-Ponty stated:

“I can identify the hand touched in the same one which will in a moment be touching ... In this bundle of bones and muscles which my right hand presents to my left, I can anticipate for an instant the incarnation of that other right hand, alive and mobile, which I thrust towards things in order to explore them. The body tries ... to touch itself while being touched and initiates a kind of reversible reflection” (Merleau-Ponty 1964a, p. 93).

2 Oscillation is used to suggest that Merleau-Ponty’s reversibility can be an extremely fast experience.
Figure 1.1 In touching one's own hands, we perceive our subjective sense of one hand that is doing the touching, while the other hand is perceived to be an object. This can become quickly "reversible" when we reverse the perception of which hand is doing the touching. Illus: Angela Tomizu, 2007.

Given that we cannot touch (or tickle) ourselves, or anybody else, without this tacit recognition— it seems that the awareness of what it feels like to be touched encroaches, or even supervenes upon the experience of touching (Merleau-Ponty 1968 p.47). This encroachment is an example of a “bridge.” Thus, any absolute, dualistic distinction between touching and being touched, according to Merleau-Ponty, deprives the phenomena of their complexity (Merleau-Ponty 1986, p.137, 141). Our embodied experience is located in the intertwinement of the two aspects of touching and being touched, and not in one or the other. Merleau-Ponty posits here a chiasm, a crossing that has something like one crossing line “reaching” for or encroaching upon the other and vice versa. Merleau-Ponty uses the metaphor of a chiasm to describe how this overlapping and encroachment can occur between a pair (such as touching and being touched) that nonetheless retains a divergence (or, in his words, a dehiscence), as touching and being touched are never exactly the same thing.

According to Merleau-Ponty, this concept also bears an applicability that extends well beyond the relationship between touching and being touched. He contends that many dualisms, such as body and mind (Merleau-Ponty 1968, pp.247, 259), subject and object, self and world (Merleau-Ponty 1968, p.123), are all associated in this immanently reversible chiasm.

1.7 Intertwinements and Reversibility of Body and World

According to Merleau-Ponty, this chiasmic reversibility, this non-dualistic divergence between touching and being touched—which necessitates some form of crossing or encroachment between the two,—also means that the world is capable of encroaching upon and altering us, just as we are capable of altering it. This ontology then rejects or blurs any absolute distinction between self and world, along with any notion of subjectivity that valorizes a rational, autonomous individual. Merleau-Ponty explicitly asserts this when he states that what is rarely considered is the paradoxical fact that though we are of the world, we are nevertheless not the world (Merleau-Ponty 1968, p.127). In affirming the interdependence of humanity and the “things,” objects or phenomena of the world in a way that allows neither fusion nor absolute distance, he advocates an embodied inherence of a different, non-dualistic type. Merleau-Ponty asserted:

"(This) does not mean that there was a fusion or coinciding of me with it: on the contrary, this occurs because a sort of dehiscence opens my body in two, and because between my body looked at and my body looking, my body touched and my body
touching, there is overlapping or encroachment, so that we may say that the things pass into us, as well as we into the things" (Merleau-Ponty 1968, p.123).

Merleau-Ponty’s notion of a chiasmic reversibility is an important idea for interactive art generally, and the work within this thesis specifically, in that itforegrounds and stresses the importance of the world’s “affordances” (as understood in HCI). That is, our mind/body both has experiences according to its intention as well as a calling forth from the world, according to specific contexts of the world. In Gibson’s terms,

“Technically, an affordance is a property of the environment that affords action to appropriately equipped organisms . . . In other words, an affordance is a three-way relationship between the environment, the organism, and an activity” (Gibson 1983, p.118).

1.8 Merleau-Ponty’s Consideration of Art

Art, whether painting or interactive art, engenders an ability of our bodies to be able to transform perception, to imagine, to become Other and to experience, say, flying. He termed this the imaginative or virtual body. As Steeves relates, “The painter plays on habitual ways in which we perceive different situations with our bodies so that we are able to see the world in new ways” (Steeves, 2004, p.4). Steeves uses the example of painting because it was the art form that Merleau-Ponty explored in the most depth.

Discussing Merleau-Ponty’s ideas further, Steeves continues,

“The meditation of Being in the form of flesh precedes any real/virtual distinction, as well as any actuality POSSIBILITY distinction. The reversibility of the real and the virtual can be seen in the fact that the flesh, while being immersed in the real experience of the sensible, contains the possibility of the sentient as the sensible’s inner lining. Flesh, in other words, is the medium for the possible without which possibilities could never be taken up by the sensing body” (emphasis mine) (Steeves 2001, p.150).

So, for example, although we may never fly without technological prostheses, we can feel a sense of what that may feel like by “flying” in immersive VR, or in our dreams. But the body is the bedrock from which these sensations arise.

Steeves further interprets Merleau-Ponty’s consideration of art as he argues that, “The artist, like the mime, is aware of the creative role that the body plays in perception and attempts to return to the viewer’s attention to the creative power of the body” (Steeves 2004, pp.7-8). An artwork may present a quality to the imagining body “an entire perceptual structure that the body understands as a world of virtual and possible modes of embodiment” (Steeves 2001, p.7).
For artists, according to Merleau-Ponty, art is a battle “more than a struggle to represent objects, it is a fight to reinvent the very way we perceive the world” (Steeves 2004, p.51). What distinguishes Merleau-Ponty from others who write about art and literature is that he demonstrates an “appreciation that he shows for the expressive body and the role it plays in every form of art . . . what is common in every artwork is the way it uses the imagining body to extend the experience of perception to a heightened sense” (Steeves 2001, p.53). Further, as Merleau-Ponty stated, “I would be at great pains to say where is the painting I am looking at. For I do not look at it as I do a thing; I do not fix it in its place. My gaze wanders in it as in the halos of Being. It is more accurate to say that I see according to it, or with it, than I see it” (Merleau-Ponty 1964a, p.164). The work of art offers not another visible object but a visible presentation of the “genesis of things” (Merleau-Ponty 1964a, p.183). Like Merleau-Ponty’s pre-reflective perception, “art . . . is in contact with the world which precedes thought about the world” (Merleau-Ponty, 1964b, p.28).

Style

For Merleau-Ponty, the body of the artist “forms a background for the artistic vision. . . These styles, unique to each artist, are essentially ways of being embodied in the world that are universalized in the visible work of art, available for all to see and to virtually explore with their own imagining bodies. The artwork is an expression of the artist’s style of embodiment” (Merleau-Ponty, 1964b, p.52).

“The work of art,” Merleau-Ponty continues, “provides us with ‘new organs’ (ibid.) with which to see the world.

The philosophical significance and effects of art, for Merleau-Ponty, extends to “its mode of production in the work of the artists” (Carman and Hansen 2005, p.15). For “paintings are not just finished products, but echoes of human effort, human perceptions of the world, human lives” (ibid.). He continues:

“. . . works of art are living extensions of flesh-and-blood persons, and they manifest the human condition in much the same way our bodies do: by realizing in gesture a particular coherent style, an understanding, a sensitivity, a way of being in the world. Style characterizes great art, but it is also an essential aspect of ordinary perception and action. Over and above the objective movements of a person’s body, what we see when we see the person – in particular, when we really see him, by recognizing him – is his character, the style of his comportment. What is enigmatic about style, apart from its sheer conceptual elusiveness, is its ubiquity; it is not an isolated property, but manifests itself globally in handwriting, in typical behaviors, in voice and speech. Only by drawing direct connections between what we learn from the exemplary expressive power of artists and what we already know of ourselves and each other by knowing our characters. Merleau-Ponty believed, will we come to appreciate the philosophical significance of perception and the body.” (Carman and Hansen 2005, p.15).
1.9 The Absent Body

Leder seeks to account for our innermost selves — including the visceral systems I have outlined — in The Absent Body. According to Leder, Merleau-Ponty focused more on the exteroceptive and surface aspects of our bodies, on perception and motility, and less on the interoceptive and depth of our physical interiority (Leder 1990, pp.36-37). Examining our interoception is important since, according to Heinz von Forester, “we are 100 thousand times more receptive to changes in our internal than in our external environment” (von Foerster 2002, p.221). That is, we have significantly more ways of registering or sensing our internal states — even though they usually operate in the background of our conscious awareness — than our exteroception. Most of the time, the information or sensation associated with our internal states must necessarily remain quiescent or they would overwhelm our conscious states. However, in ways similar to F.J.J. Buytendijk’s Prolegomena to an Anthropology and Physiology (Buytendijk 1974) and Gibson’s The Senses Considered as Perce tual System (Gibson 1983), Leder explicates some of the ways in which interoception is usually the background of our mind/body experiences, as well as how it can be brought into our conscious foreground. He terms this the “ecstatic/recessive structure of embodiment” (Leder 1990, pp.47, 53-54). This can change according to certain events, as each system can be both passive and not passive (or “seeking,” according to Gibson), depending on the state of the individual. Hunger provides an example: when sated, we usually are unaware of our visceral goings-on (unless we have gas), but after a while, small twinges of hunger tweak our awareness until, when extremely hungry, we direct most or all of our conscious efforts to finding food.

What we do know about the enteric system (which is from mouth to anus), 3 for example, is that it can enormously impact our mood and disposition, partly because many of our mood-changing neurotransmitters and like-substances are created and work there (Gershon 1999, p.18) and partly because of the workings of our “protopathic sensibility” (Ádam 1998, pp.141-142). Ádam uses Henry Head’s term of the protopathic sensibility to describe “the function of the more ancient, less differentiated system of carrying thermal and pain messages from the periphery” (ibid.) to the brain. Ádam found that parts of the system which accounts for protopathic sensibility are visceral and function there, while other parts reach the brain. By not taking these constant affective shifts into account, Leder reminds us, our understanding of being-in-the-world is simply inadequate. Further, he suggests that viscerality “adds further dimension to Merleau-Ponty’s chiasmic analysis” (Leder 1990, p.65). Accordingly, our body is not just an

3 Note that North American physicians do not generally consider that what we ingest through the enteric system is “in” our bodies until or unless it is absorbed. Rather, they consider the enteric system to be something like a tunnel (of the external world) through our bodies. (Gershon 1990, p.18).
Gromala

intertwining of perceptual possibilities. Rather, Leder adds what he terms a "vertical synergy:" that our bodily surface powers are dependent upon deeper processes, a chiasm of conscious and nonconscious levels, "a viscero-estheiological" being. The artwork created in this aspect of the investigation, the MeatBook (refer to Chapter 6 and the CDROM: MeatBook), is an exemplar of how these processes can be brought into conscious awareness and experienced.

1.10 Summary

Merleau-Ponty’s phenomenological work on the bodily nature of perception, and of the body as the perceptual basis of being has been an important set of ideas that has recently been re-emerging in numerous disciplines as enumerated in section 1.2. The body intermingles in numerous ways, usually at a pre-reflective level. To illustrate this, Merleau-Ponty offers an example of the everyday: “To be sure, if a woman of good faith who closes her coat (or the contrary), were questioned, she would not know what she has just done” (Merleau-Ponty 2004, p.190). The intermingling of body and world is a dual process: the body is generally focused outward, toward the world, through its own intentions; the world also calls the body forth, according to its affordances. These intertwinings are transformative. In Merleau-Ponty’s words, “The body unites us directly with the things through its own ontogenesis” (Merleau-Ponty 2004, p.253).

The characteristic most pertinent to this thesis is Merleau-Ponty’s related ideas of flesh and a chiasmic reversibility. According to Evans and Lawlor, “flesh is two-sided; and its two sides — the sensitive and the sensed—are not thought entirely apart from each other. The sides of perceptibility are reversible—as a jacket or the windings of a Mobius strip” (Evans and Lawlor 2000, p. 190). Merleau-Ponty uses the example of one of our hands touching the other: one hand does the touching, while the other hand is sensed as being touched. While one can reverse this sensation, it is not possible to equally sense both hands as touching each other, simultaneously.

Merleau-Ponty developed an understanding of art that includes both the body of the artist, available through her style or particular way of being in the world, one that enables the viewer to experience something of it as well. Merleau-Ponty explains in provocative terms that “... the artist appeals to others only because ‘there is a little of him in every man’” (Merleau-Ponty p.64). What works as a common bond between the observer and the artist “is the creative potential of the imagining body,” (Steeves 2004, p.66) along with the “gaps and fissures that the viewer is left to imagine” (Steeves 2004, p.7-8).

Estheiology refers to study of the skin’s surface layers.

26
Drew Leder, a contemporary physician, extended Merleau-Ponty’s phenomenology into the realm of the visceral, as did, to lesser degrees, Buytendijk and Gibson. Merleau-Ponty’s ideas of reversibility, along with Leder’s extension of Merleau-Ponty’s ideas into our innermost realms of the viscera are explored in more detail in the subsequent chapters. Chapter 2 is the review of the literature; Chapter 3, the hypothesis and examination of the field of interactive art; and Chapters 4-6 illustrate these ideas through the explications of the artworks.
Chapter Two: Literature Review

2.1 Introduction: Phenomenology
Few methodologies account for the subjective, first-person experience of the lived body. Phenomenology is one of a few that focus on subjective experience. However, phenomenology is not a hegemonic philosophical tradition, but is rather comprised of differing and often conflicting ideas. Merleau-Ponty's particular form of existential phenomenology is best suited for the questions about the visceral because it focuses on the body and its intertwinement with mind and world, from subjective, first-person accounts, accounts which can be compared to second- and third-person accounts. The resurgence and extension of Merleau-Ponty's work over the last two decades has been observed across numerous disciplines: Medicine, Physiology, Neuroscience, Psychology, Cognitive Science, Artificial Intelligence, Mathematical Modeling, Philosophy, Ecology, the Humanities and the Arts (refer to Chapter 1, section 1.1). This is not an exhaustive list, but it does make evident the usefulness of Merleau-Ponty's work.

Merleau-Ponty's phenomenology will primarily guide this analysis. The major precepts of Merleau-Ponty work are first, that not everything is amenable to critical reflection (especially that which involves intense corporeal involvement, from craft to intense visceral sensations). Second, he rejected the abstract structures of representationalism (or intellectualism), because he believed they privileged mind over body and kept us at a length from lived experience (refer to section 2.2). Thus, he strived to create a theoretical wholism that would enable a return to the phenomena of everyday life; in doing so, to some degree, he rejected detachment and many forms of objectivity. Finally, he believed that an active social context is the ultimate foundation of intelligibility.

2.2 The Body
Because the visceral sense is a subset of the larger question of the body and experience, the literature review begins with a review of publications that most closely examine foundational issues of the "felt" body in two primary areas: first, traditions of Art History, Philosophy and Cultural Studies in the Humanities, and second, aspects of cognitive science most closely aligned with HCI. Both present limitations. While intellectual traditions in the Humanities, particularly Cultural Studies, deal with the social, political and economic meanings of the body in broader cultural contexts, it most ignores the material, scientific facts of the body. Many of these theorists do not include first-person, subjective experience unless they come from a feminist (Grosz 1994; Carmen and Hansen 2004, p.193) or a phenomenological tradition. This
remains despite the veritable explosion of publications in humanistic studies on the body (For an overview, refer to Frank 1990, pp.131-62.). Cultural theory is limited in that critique, analysis and critical awareness are its primary end goals; less often, productive enactment or embodiment outside of textual forms are examined unless performativity (Butler 1993) is a focus. Likewise, Neuro- and Cognitive Science can tell us how the body works — for example, what proprioception is and the contesting accounts of how scientists currently believe it works — but rarely does it offer tools to examine the meaning that proprioception can assume in subjective terms or in broader cultural contexts. In addition, scientists tend to view the body as ahistorical (Clark 1998, pp.1-2; Romanyszyn 1989, pp.110,174). Nevertheless, such traditions provide useful concepts and observations that can inform an artistic practice.

Important exceptions in both the Humanities (Min-ha 1991; Arendt 1998; Vattimo 1992; Hayles 1999; Massumi 2002; and Shaviro 1993) and Cognitive Science, Computer Science, and Neuroscience (Clark 1998; Dourish 2001; Dreyfus 1992; Evans 2000; Varela, Thompson and Rosch 1993) remain. Most notably, the intellectual tradition of Merleau-Ponty’s existential phenomenology is employed by or has significantly influenced these scholars, because it directly grapples with the body as object AND subject; because it insists on everyday, pragmatic analysis over disconnected, abstract reasoning; and because it pervades areas of Art, HCI and the Humanities. Its recent and growing reemergence signals its usefulness (refer to Chapter 1, section 1.2). The following summary briefly outlines differing traditions of phenomenology. These major directions of continuing phenomenological study are useful to distinguish between, since Merleau-Ponty’s existential phenomenology does differ in significant ways from other phenomenological traditions.

2.3 Phenomenological History
Phenomenology is defined as the study of structures of experience from a subjective or first-person point of view (CARP 1997, p.1). As such, it has been practiced for centuries in differing forms; for example, when Hindu and Buddhist philosophers examined numerous states of consciousness achieved in practices of meditation. As a field or movement in the Western history of philosophy, however, contemporary phenomenology is just over a hundred years old. As Merleau-Ponty realized, “phenomenology can be practiced and identified as a manner or style of thinking, that it existed as a movement before arriving at complete awareness of itself as a philosophy” (Merleau-Ponty 2004, p.64). Preceded by the work of Immanuel Kant (Cerbone 2006, p.36), G.W.F. Hegel (Woodruff-Smith 1997, p.3), and Franz Bretano (Cerbone 2006, pp.11-12). Edmund Husserl (Cerbone 2006, pp.5, 11-37), is generally acknowledged as the
progenitor of the Western, historical movement of phenomenology, which he termed the “science of consciousness” (Woodruff-Smith, D 1997, p.3).

Since Husserl’s work, differing traditions of phenomenology have been developed. The *Center for Advanced Research in Phenomenology* (CARP 1997, p.4) offers a useful if condensed schema, using the metaphor of the trunk of a tree (represented by Husserl) and four branches. The first branch, *realistic phenomenology*, is the search for universal essences; Adolph Reinarch, Max Scheler, Edith Stein and Roman Ingarden are a few of its major contributors. The second, *constitutive phenomenology*, is deemed the philosophy of natural sciences, including Husserl’s method of epoché. Husserl’s epoché can be understood as a kind of “bracketing” off of the object one is studying from one’s prior knowledge or preconceptions of it, in order that the object can be allowed to reveal its essential features. In the some academic arenas, this has been rejected as an “essentialist” attitude, that is, an attitude that ignores or significantly limits the role of culture (Collins 2003, pp.69-73). Oskar Becker, Aron Gurwitsch and Elisabeth Stroker are its major proponents. The third branch, *existential phenomenology*, includes Hannah Arendt, Miki Kyoshi and Kuki Shuzou, Emmanuel Levinas, Simone de Beauvior, Maurice Merleau-Ponty, Jean-Paul Sartre and Alfred Schütz. “These phenomenologists, rejected Husserl’s position of a detached observer and insisted instead that the observer cannot separate himself from the world,” (Stewart and Mickunas 1990, pp.64-65), they termed this being-in-the-world. In addition, “the modalities of conscious experience are also the ways one is in the world,” (ibid.). While Sartre and Merleau-Ponty were concerned with the individual, Levinas and Schütz were interested in the intersubjective, collective or the social body. Finally, the practitioners of *hermeneutical phenomenology* strive to understand human existence as interpretive; Hans Gadamer, Paul Ricoeur, Don Ihde, Gianni Vattimo and Carlo Sini are among its major proponents.

In most cases, phenomenologists study structures of conscious experience from a subjective, first-person position, along with conditions of that experience. Intentionality is usually understood to be the central structure of experience — that is, the way experience is directed is through its meaning or content toward a certain object in the world (Cerbone 1999, pp.4-5, 11, 14-17, 124). Despite the differences among the four major branches, phenomenologists tend to share certain features. First, for the most part, they reject grand and abstract theorizing, preferring to focus on the “lived world.” Second, they generally oppose objectivism, positivism and intellectualism, terms for a dualistic worldview that privileges mind over body, dominant since the Renaissance. Third, phenomenologists tend to believe that objects in the natural and cultural worlds. and ideal objects, such as numbers, can be known. Fourth, they “tend to
recognize the role of description in universal, a priori, or ‘eidetic’ terms” to precede “explanation by means of causes, purposes, or grounds.” And finally, phenomenologists debate whether or not Husserl’s “epoché” (or bracketing) “is useful or even possible” (CARP 1997, p.2).

Although conscious experience is an experience we live through or perform with awareness, phenomenologists also study experiences that we are also less overtly aware of. Martin Heidegger, for example, examined actions such as hammering a nail, walking, and speaking in our native language. These are actions we are not generally or explicitly conscious of, unless we are made conscious of these habitual actions, such as when we break a hammer, leg or suffer from aphasia (Dourish 2001, p.139). Michael Polanyi, in a related vein, examined the “tacit” aspects of knowing and being (Polanyi 1975, 1983). Similarly, in *Windows and Mirrors*, Bolter and I suggest that the context of the work should determine the varying levels of transparency (windows) and reflexivity (mirrors), and that many works of art and design oscillate between the two (Bolter and Gromala 2003). Our argument of oscillation comes very close to Merleau-Ponty’s notion of reversibility, where “conscious experience” may continually range and “reverse” from full awareness to semi-conscious states, to habits or nonconscious experiences.

2.4 Maurice Merleau-Ponty

Existential phenomenology, as defined by Don Ihde, “is a philosophical style that emphasizes a certain interpretation of human *experience* and that, in particular, concerns *perception* and *bodily activity*” (Ihde 1990, p.21). One of Merleau-Ponty’s main contributions was his analysis of the primacy of the body and perception, as explored in *Naturalizing Phenomenology*. The authors state:

> “Merleau-Ponty’s interest in perception is not about the act of perception but about the way the perceived world appears . . . It emphasizes the importance of grounding phenomenological analysis in the dimension of embodiment that entails an openness to the world, where perception is not understood just as a mediator between world and consciousness” (Petitot, Varela, Pachoud and Roy 1999, p.53).

That is, Merleau-Ponty considered the body as the locus or the very ground of existence. The tradition of existential phenomenology, particularly as developed by Maurice Merleau-Ponty and those who have extended his ideas, is directly relevant to the investigation of the visceral sense. This is because Merleau-Ponty’s main concern was the *lived body*, especially its pre-reflective perception. At least since the time of Descartes, the Western intellectual tradition has assumed a separation between mind and body, and has privileged mind over body. Maintaining the privileged position of the mind versus the body does not disrupt the Humanist
tradition of considering humans as rational, as "higher forms of life" and central to most concerns. Privileging the mind also retains the agency humans are assumed to have in the nature versus nurture debate. Thus, few philosophers have given serious consideration to the primary role of the material body. In Merleau-Ponty's phenomenology, however, one needs to be in order to think, and the basis of being for Merleau-Ponty is the body.

To put it more clearly, according to Merleau-Ponty, the body is the ground and condition for the mind. This is an inversion of traditional philosophy, where one proceeds from perception to meaning to action. Merleau-Ponty and other phenomenologists thus reorient the question from, "How can we know about the world?" to "How does the world reveal itself to us through our (embodied) encounters with it?" From this perspective, meaning lies not in the mind as distinct from the body, but in everyday, embodied interactions with the world.

The work of Merleau-Ponty in particular is directly concerned with embodiment. He drew together the work of his predecessors — Husserl's concern with perception and Heidegger's orientation of being situated in the world — by focusing on the role of the body in perception (Carman and Hansen, p.340), a body situated in and inextricable from the contexts of the world. For Merleau-Ponty, the body is neither object nor subject, but continually circulates between them, and is a lived, experiential structure and the context or milieu of cognitive mechanisms. Attributing all consciousness to pre-reflective awareness of the corporeal, Merleau-Ponty tried to overcome the traditional dichotomy between subject and object through his concept of an interworld (ibid.) — an inextricable intertwining among mind, body and world. He emphasizes the critical role of the body in mediating between internal and external experience.

Merleau-Ponty also argued that that the innate structure of the human body limits experience, materially and culturally. For him, culture and language impose limits on perception. For instance, language is enacted rather than any kind of pre-given crucible out of which meaning and interpretation flow. Wary about fully attributing intentionality to consciousness, Merleau-Ponty focused on "intentionality within being." This is an intentionality that precedes consciousness. Accordingly, for Merleau-Ponty, the body is not separate from the world but is always situated within it, and attunes itself with it, intermingles with it. The way in which the world occurs, prior to our focused attention, as an unconscious but accessible background to our activity, is essential to our mode of being. Merleau-Ponty states that, if left to itself, perception "forgets itself and is ignorant of its own accomplishments" (Merleau-Ponty, 1964a, p.89). According to Merleau-Ponty, the very intertwining of the perceiving organism with its
surroundings is what lies at the basis of perception. This means that there is no separate mind, as Descartes argued, and no abstract universal; there is only perception as it is lived in the world. For Merleau-Ponty, consciousness is perceptual, an ontological intertwinenment of mind, body and the world.

Merleau-Ponty availed himself of scientific work, especially with the neurologist Kurt Goldstein. Goldstein collaborated with Gestalt theorists, as had Merleau-Ponty, and studied patients who had aphasia. “Goldstein insisted that medicine and physiology be attentive to the essential unity of organisms and the global and subtle intermingling of seemingly discrete organs and functions” (Carman and Hansen 2005, p.12). Further, Merleau-Ponty believed that every organism continually worked toward a normative equilibrium (ibid.). He sought to “rescue our understanding of perception from the conceptual oblivion to which traditional psychology and epistemology and consigned it” (ibid.). Finally, Sean Kelly, drawing on Merleau-Ponty, argued that the nonconceptual content of perception is due to two interrelated aspects: one the one hand, it is due to the context dependence of the sensory appearance of objects, while on the other hand, it is due to the object-dependence of the sensory appearance of qualities. To put it a different way, the same thing looks different according to different contexts or situations. Both Sartre and Merleau-Ponty pointed toward the context-dependence of color to illustrate this point. By referring to paintings of Matisse, they contend that color is not an abstract property, but is a concrete feature of the genuinely tactile object: in Sartre’s case, he spoke of the “woolly red” of a Matisse’s painting of a carpet, while Merleau-Ponty spoke of a “woolly blue.” Finally, Merleau-Ponty concerned himself with art throughout his career.

2.5 Contemporary Phenomenology following Merleau-Ponty

Phenomenology has enjoyed a resurgence in the past decade in the Humanities, — from Philosophy (Ihde 2001; Weiss 1999a; Welton 1999) to Film Studies (Sobchack 1991; Marks 2000) — as well as in the Sciences, from Cognitive Science and AI (Dreyfus, 2005) to HCI (Dourish 2001). An articulation of its relevance in disciplines that directly bear on the visceral sense follows.

Phenomenology

Merleau-Ponty, as stated earlier, has had an effect on numerous disciplines. It is beyond the scope of this thesis to go into his contributions in detail for each discipline, so this discussion is limited only to the way Merleau-Ponty has affected contemporary phenomenology according to the issues at hand. It should be noted first that the work of Todes (Todes 2001) builds both on that of Merleau-Ponty’s and Gestalt Psychology. According to Hubert Dreyfus, author of the
introduction to Todes’ book (Todes 2001, p.xviii), Todes’ work extends Merleau-Ponty’s in
tways that account for the orientation of the body and motility, and offers a strategy to
overcoming what was found to be problematic in Merleau-Ponty’s work. That problem is that
Merleau-Ponty’s work tends toward idealism. Todes’ preserves the authority of experience
while avoiding this tendency toward idealism (ibid.) in his description of how independent
physical nature and experience are united in our bodily action. Merleau-Ponty was aware of his
tendency, and tried to overcome it with his notion of intertwinemnt of body and world, so it is
more a matter of degree — Todes takes on the issue of idealism directly, and to a greater degree.
In addition, according to Dreyfus, “In offering an original account of the role of the body in
making knowledge possible, Todes opens new ways of thinking about such problems as the
relationship to thought and the possibility of knowing an independent reality” (Todes 2001,
pp.xiii-xiv). Further, Todes extends Merleau-Ponty’s work by emphasizing the complex
structure of the human body: “its front to back asymmetry, its need to balance in the earth’s
gravitational field, the role that bodily structures play in creating the spatiotemporal field of
experience, and in making possible objective knowledge of the objects in it (Todes 2001, p.xiii).
He shows that perception involves nonconceptual, but nonetheless objective forms of judgment.
In this last argument, the work of Todes closely relates to Michael Polyani’s idea of “tacit
knowing” (Polyani 1993). According to Jerry Gill,

“The pivot point of Polyani’s reconstruction of the concept of objectivity is, of
course, his notion of tacit knowing. By extending the cognitivity (sic) dimension
of human experience to include the tacit pole as well as the explicit pole, he has
made it possible to understand the matrix out of which knowledge is actually
generated, namely, the interaction between subsidiary awareness and somatic
and/or imaginative participation. This not only allows us to see the crucial role
played by personal commitment and aspiration in all knowing, but it
acknowledges the cognitive significance of bodily activity as well” (Gill 2000,
p.178).

Taylor Carman and Mark Wrathall make clear in their essays that Merleau-Ponty’s perception is
“neither brute sensation nor rational thought, but an aspect of the body’s intentional grip on its
world,” physical or social (Carman and Hansen 2005, p.12). Gail Weiss and Don Welton discuss
diverse meanings of body images, returning to Merleau-Ponty’s original description as the
authoritative definition and description of how it works (Weiss 1999), while Don Welton
explores further Merleau-Ponty’s notion of flesh (Welton, 1998, 1999).

Film Studies and Art
Although Film Studies has been dominated in recent decades by analyses derived from
psychoanalysis and ideology, phenomenologist Vivian Sobchack (Sobchack 1991, 2004). and
theorists Laura Marks (Marks 2000). and Steven Shaviro (Shaviro 1993) account for the
somatic, felt experience of film. In Art History, James Elkins (Elkins 1996, 1999) focuses on the corporeal reception of art, emphasizing bodies as both primary objects of seeing and as the principle conditions for seeing. Although Rosalind Krauss is not predominantly considered to be a phenomenologist, she conducts a corporeal reading of important moments in modernity and art (Krauss 1993). Though none of these theorists but Shaviro have take interactive art into consideration in their books, Sobchack and Marks have dealt with interactive arts in conferences and class lectures. Whatever their commitment to examining interactive arts, these theorists provide useful examples of contemporary phenomenological methods of analyses that deal with the corporeal in relation to art.

Cognitive Science

In cognitive science, Varela, Thompson and Rosch directly extend Merleau-Ponty’s work by arguing that in order to obtain a more complete understanding of cognition, a sense of common ground between mind in science and mind in experience must be developed (Varela, Thompson and Evans 1993, p.39). Consequently, they developed a “dialogue” between cognitive science and Buddhist meditative psychology. This provided a basis for my research in the development of the Meditation Chamber (refer to Chapter 4). Their approach combined a first-person methodology with scientific methods. In subsequent work, Varela also illustrated the way the body is the condition for being as well as an object, through his examination of his felt experience of his own transplanted liver (Varela 2001, pp.259-271). This strongly resonates with this author’s work with VR and pain (Gromala 1996, pp.222-237).

Andy Clark (Clark 1998) interweaves ideas and techniques from artificial intelligence (AI), robotics, psychology and neuroscience to argue that mind/brain, body and world are intertwined in a complex “dance” of computation and causation. Clark states:

“This simple shift in perspective has spawned some of the most exciting and groundbreaking work in the contemporary study of mind. Research in “neural network” styles of computational modeling has begun to develop a radically different vision of the computational structure of mind. Research in cognitive neuroscience has begun to unearth the often-surprising ways in which real brain use their resources of neurons and synapses to solve problems. And a growing wave of work on simple, real-world robotics is teaching us how biological creatures might achieve the kinds of fast, fluent real-world action that are necessary to survival. Where these researches converge we glimpse a new vision of the nature of biological cognition: a vision that puts explicit data storage and logical manipulation in its place as, at most, a secondary adjunct to
the kind of dynamics and complex response loops that couple real brains, bodies, and environment" (Clark 1998, p.1).

Although cognitive science is not the primary knowledge base for this investigation, it does inform HCI, which is a community that regularly informs the technical depth of my work; it regularly includes my publications and adjudications.

HCI

The perceptual psychologist Gibson (Gibson 1983) provides a foundational reference for HCI. Rather than understanding the senses as simple channels of stimulus, Gibson makes a distinction between that passive view, and the active, “ecological” view he articulated. He does not treat different senses as mere producers of visual, auditory, tactual, or other sensation. Rather, he also regards them as active seeking mechanisms. Gibson’s position in this regard, along with his ideas of “affordance” and “disposition” strongly parallel Merleau-Ponty’s “intentionality within being.” This is clear in the way Gibson defines the term affordance as “a three-way relationship” (Gibson 1983, p.118) among the environment (or world, in Merleau-Ponty’s terminology), the organism (human) and an activity. In other words, Gibson’s idea of affordance in many ways parallels Merleau-Ponty’s intertwinement of mind, body and world, or flesh, the primal ‘element’ from which all are born in mutual relations.

In HCI, phenomenology is a contentious theoretical position, particularly in the analyses of computational theories of cognition and artificial intelligence (Dreyfus, 1992; Winograd and Flores, 1986). The works of Hubert Dreyfus in particular were initially strongly rejected by the AI community. More recently, his work has led to the quickly growing field of “embodied AI research.” More closely related to the research at hand, Paul Dourish has outlined both a phenomenological method for analysis as well as a foundation for design that refocuses the assumptions upon which design is based in computer science, from procedural to interactional. This brings HCI design much closer to artistic practices. He argues that:

"... phenomenology turns our attention to how we encounter the world as meaningful through our active and engaged participation in it. ... The design concern is not simply what kinds of physical skills, say, we might be able to capitalize upon in a tangible interface, or what sorts of contextual factors we can detect and encode into a ubiquitous computing model. Instead, we need to be able to consider how those skills or factors contribute to the meaningfulness of actions” (Dourish 2001, p.12).

6 Dreyfus’ basic position is a rejection of representationalism. That proposition is that the fundamental relation of a person to the world consists in the relation of the content of an individual mind to the world of objects, events, and states of affairs as represented by that content. Instead, he argued that the most fundamental variety of human action consists of the apparently unthinking, skilled action that makes up much of our everyday activities—ones that do not require mental guidance for its successful accomplishment (Dreyfus 1991, p.52). According to Dreyfus, our experience of action is of a “steady flow of skillful activity” in which we are “simply solicited by the situation to get into equilibrium with it” (Dreyfus and Dreyfus 2005, p.111).
Meaning is a primary concern of artists, as Dourish asserts. Further, Dourish stresses that the work of artists is an important way to refocus design, and thereby opens a methodological door for the legitimate inclusion of their work in HCI research. In addition to Dourish, Toni Robertson uses Merleau-Ponty's work as the basis for a taxonomy of embodied actions for the analysis of group activity (Robertson 1997, pp.207-208). Lars Hallnas and Johan Redstrom employ phenomenological methods to account for expressiveness in the design of presence. aesthetics and a "logics of expressions" (Hallnas and Redstrom 2002, p.115). Finally, two related practices in computer science have a deep resonance with phenomenology: theories of Situated Action (Suchman, 1987) and Activity Theory (Nardi, 1997). In situated action, for example, an object is partially determinative of activity, and every activity is, by definition, uniquely constituted by the confluence of the particular factors that come together to form one "situation." In Activity Theory, research is generally conducted in the field, in order to get a better sense of what users really do — this includes their minds and bodies, and stresses the importance of the context. Activity Theory is a framework and perspective for describing activity. Although it assumes a deep respect for action and the body, it is a psychological theory, rather than a phenomenological one. The HCI research described above closely relates to interactive art and in some cases references it, but none directly addresses interactive art in any depth, and none addresses the visceral sense.

The Visceral

It should be noted that while the term "visceral" or "gut reaction" is in common usage, Donald Norman uses the term "visceral" as one of the precepts of his recent book Emotional Design: Why We Love (or Hate) Everyday Things (Norman 2005). According to Norman, any successful design is an interplay among behavioral, reflective and the visceral, each of which he associates with a major but "simplest" and the most "primitive" part of the brain. However, Norman poorly defines the visceral as that which is "primitive," "genetic," "hard wired" (Norman 2005, p.65) and the "simplest" part of the brain (Norman 2005, p.29). Norman contends,

"Although the visceral level is the simplest and most primitive part of the brain, it is sensitive to a very wide range of conditions. These are genetically determined, with the conditions evolving slowly over the time course of evolution . . . The visceral level is incapable of reasoning, of comparing a situation with past history" (ibid.).

Further, "The advantage human beings have over other animals is our powerful reflective level that enables us to overcome the dictates of the visceral, pure biological level. We can overcome our biological heritage" (Norman 2005, p.30). Obviously, Norman does not believe we can learn to control the visceral, even through. say. operant conditioning. As we shall see in other
chapters, the visceral is open, for the most part, to both learning (certainly in the form of operant conditioning) and in many cases, conscious control.

The Ahistorical and Historical Body

In the sciences, the body is usually treated as being ahistorical — that is, that we all have the same general and unchangeable features of a species. The assumption at work here is that we are discussing the body within a relatively short period of time, because longitudinally, the discourse of human evolution and physical change is also assumed. What is unanswered is to what degree of time and when do environmental influences precipitate significant changes? And how does one experience one’s body during historically different times and culturally distinct contexts? For the most part, the scientific assumption is that the human body remains the same (Clark 1998, pp.1-2).

However, from a Humanities perspective, there are historical differences in the way we understand and experience our bodies (Foucault 1990, 1995). Further, in the Humanities, the body is often considered to be “text” that is to be read, the changing product of differing cultures. For example, the Hellenist views that became the European views of the body are compared with the Chinese view in Shigehisa Kuriyama’s work (Kuriyama 1999). Kuriyama argues that since the body in the European view was influenced by autopsies of cadavers, physicians understood it to be relatively inert and mechanistic. Meanwhile, the Chinese developed the notion of Chi or Qi, defined as active energy force that pervades the body and the world. These distinct world views are not simply ideas, but are enacted on the level of the everyday and influence how one experiences one’s body. Kuriyama states,

“We can read Confucius’s warnings anachronistically as a sort of crude psychophysiology, as primitive insights into the terrifying influence of hormones — if we bear in mind that blood and qi were known otherwise than by chemical analysis, that the heart of their reality lay in personal experience...It was the intimate everyday familiarity of such sensations that made the traditional discourse of vital flux so compelling. The deepest certainties about qi were rooted in knowledge that people had of the body because they were, themselves, bodies” (Kuriyama 1999, p.103).

2.6 Historical Precedents: Art & Technology

Artists at the turn of the 20th century, most notably Tristan Tzara, Dziga Vertov, Sergei Eisenstein, Jean Epstein, the Russian Constructivists and the Futurists were concerned with the then relatively new technologies of photography and film and its effect on the body, and argued that these technologies enabled us to perceive the world in ways that were not previously possible. For Eisenstein, cinema “could reactivate the sensuous, primitive chains of meaning.
now lost” (Moore 1999, p.8). However, it was German scholar Walter Benjamin who more than others systematically concerned himself with the ways in which technologies affected the corporeal. Benjamin was not a phenomenologist per se. However, he was educated by the main predecessor of phenomenological tradition (Franz Bretano), and shared this university class with Edmund Husserl. Moreover, Benjamin’s work strongly parallels phenomenology in its concern for the role of sensation in perception, in studying concrete and everyday phenomena, and in situating that study in larger cultural contexts. He contributed three ideas that are important to visceral sense: the optical unconscious, habit and the mimetic faculty.

2.7 Walter Benjamin

In the essay *A Small History of Photography*, Walter Benjamin (Benjamin 1979, p.243) proposed what he termed the “optical unconscious,” that is, that the then relatively new technologies of film and photography, operating in the context of Modernity, enabled us to perceive the world in ways that were not previously possible. An example is that which is revealed in the filmic effect of slow motion. In Benjamin’s words,

“Whereas it is commonplace that, for example, we have some idea what is involved in the act of walking, if only in general terms, we have no idea at all what happens during the fraction of a second when a person steps out. Photography, with its devices of slow motion and enlargement, reveals the secret” (Benjamin, 1931, p.243).

Benjamin’s optical unconscious can be understood as a phenomenon capable of evoking and holding (with regard to film at least) the disparate, inarticulable associations around a meaning while “reshaping, in a bodily mode, the habits of perception” (Taussig 1993, p.25). Benjamin later developed this idea of “reshaping, in a bodily mode” an attunement to the “shocks” of film as “habit” in *The Work of Art in the Age of Mechanical Reproduction* (Benjamin 1985, p.250). According to Benjamin, the habits of perception that are transformed in response to new forms of technology may remain below our conscious awareness, but they are transformative, not only perceptually, but culturally as well. In photography, for instance, he examined the ways in which in which it changed our notions of death and memory (Benjamin 1979, pp.160-163), while he also examined the potential democratization of art that would otherwise remain in a museum (Benjamin 1985, p.273). In addition, Benjamin does insist that it is possible to carefully formulate and articulate this phenomenon. Benjamin’s consideration of habit and shock is important to this exploration of the visceral because it accounts for a continuum of conscious/not-conscious awareness, and for levels of intensity and *kind* of interactive art experience. Benjamin’s oeuvre reveals a lifelong concern for the corporeal, from explorations of “physiognomic aspects.” and the “haptic qualities,” in connection to the optical unconscious and
a concern for kinesthetics and the physiology of color perception (Caygill 1997, p.3) in other work.

Finally, Benjamin’s notion of the human “mimetic faculty” in many ways parallels the phenomenological position of the inextricable intertwining of mind/body with environment. His definition of the mimetic faculty does NOT follow the Aristotelian notion of mimesis as the ability of art to imitate, albeit not as well, nature or reality. Rather, Benjamin employs a more anthropological meaning that concerns corporeal proclivities. He writes:

“Nature creates similarities. One need only think of mimicry. The highest capacity for producing similarities, however, is man’s. His gift of seeing resemblances is nothing other than a rudiment of the powerful compulsion in former times to become and behave like something else. Perhaps there is none of his higher functions in which is mimetic faculty does not play a decisive role” (Benjamin, 1979, p.160).

To simplify, Benjamin’s mimetic faculty is more akin to mimicry. The way human primates come to know their worlds, to learn, in part, is through mimicry, with an emphasis on the body (Gebauer and Wulf 1992, pp.107). Benjamin’s definition of the mimetic faculty is this: we establish a sense of the difference between the individual and the world, as well as the similarities to the world through sensuous correspondence. The mimetic faculty is the “faculty to copy, imitate, make models, explore difference, yield into and become Other” (Taussig 1993, p.3). Contemporary anthropologists like Michael Taussig have adopted Benjamin’s notion and refer to a kind of economy of mimesis and alterity, or a continual human testing of what is me and not me. As Gunter Gebauer and Cristoph Wulf write in regard to Benjamin’s particular take on mimesis:

“External and internal worlds are continually approximating each other and are comprehensible only in terms of this reciprocal movement, in which similarities and correspondences between inner and outer are formed. And here we arrive again at a mimetic relation: individuals make themselves similar to the outer world, changing themselves in the process; in this transformation, their perception of both outer world and self change. The result is a mimetic developmental spiral” (Gebauer and Wulf, 1992, p.275).

The relevance of Benjamin’s idea is important for the research at hand, in its focus on corporeal transformation precipitated by new forms of technology, as they evolve in specific cultural contexts. Specifically, Benjamin’s idea of mimesis as described by Gebauer and Wulf — the “reciprocal movement” of external and internal worlds — is in effect a parallel and an approximation of Merleau-Ponty’s reversibility. In certain forms of martial arts, for example, one strives to “become” a tiger or snake in order to think, act, move, and “be” in a similar way. There are limits, however. One can find sensuous correspondences, or “be like” a tiger to the extent that one lacks four legs, fur and an acute sense of smell.
It was Benjamin's contention that Modernity, and especially the technologies aligned with it, inaugurated a resurgence of the mimetic faculty. An imitation in terms of a palpable, sensuous, connection between the very body of the perceiver and the perceived would explain how, for example, it is possible to "feel" a sense of proprioception when watching *Crouching Tiger, Hidden Dragon* (Lee 2000), or the tentative testing that occurs when users first encounter animistic robots. It is a similar observation made by others in diverse disciplines. In the realm of Dance, for instance, John Martin (Martin 1933) describes a kind of corporeal empathy, or what he refers to as "kinesthetic sympathy." Charles Sherrington (Sherrington 1947) referred to "moments of resonance," while Gilbert Simondon (Simondon 1995) and Varela (Varela 2001, pp.262-263) referred to as "internal resonance." Recent, scientific findings refer to mirror neurons (Gallagher 2005, p.220), which seem to be another way to understand this phenomenon.

Comparisons of Like, Intersubjective Experiences, from "Resonance" to Mirror Neurons

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Term</th>
<th>Disciplines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles Sherrington</td>
<td>1906</td>
<td>moments of resonance</td>
<td>Physiology</td>
</tr>
<tr>
<td>Water Benjamin</td>
<td>1933</td>
<td>mimetic faculty</td>
<td>Cultural Studies</td>
</tr>
<tr>
<td>Maurice Merleau-Ponty</td>
<td>1964</td>
<td>attunement</td>
<td>Philosophy</td>
</tr>
<tr>
<td>John Martin</td>
<td>1988</td>
<td>kinesthetic sympathy</td>
<td>Dance</td>
</tr>
<tr>
<td>Gilbert Simondon</td>
<td>1995</td>
<td>internal resonance</td>
<td>Philosophy</td>
</tr>
<tr>
<td>Francisco Varela</td>
<td>2001</td>
<td>internal resonance</td>
<td>Philosophy, Cognitive Science</td>
</tr>
<tr>
<td>Nathalie Depraz</td>
<td>2003</td>
<td>empathy, bodily</td>
<td>Philosophy, Cognitive Science</td>
</tr>
<tr>
<td>V. Ramachandran</td>
<td>2003</td>
<td>mirror neurons</td>
<td>Neuroscience</td>
</tr>
</tbody>
</table>

Notable researchers who have made significant strides in understanding mirror neurons are G. Di Pellegrino, L. Fogassi, V. Gallese, M. Iacoboni, G. Rizzolatti, and B. Wicker.

Table 2.1 Comparisons of Like, Intersubjective Experiences, from "Resonance" to Mirror Neurons.

Finally, pursuing the question of subjectivity (the permeable and continually tested boundaries of what is me and not me), the literature review includes investigations in the most problematic, "boundary areas" of a sense of self in relation to the visceral sense: Julia Kristeva's notion of the *abject* (Kristeva 1982), which is sometimes at play, but which is a limiting idea for a visceral sense; Avital Ronell's notion of *narcotics* (Ronell 1993, pp.50-73), an important reminder of the effect of external substances taken internally; and the ultimate limit of self in relation to dissolving the mind/body split: pain. Scholars in the field of Pain Studies deal with the most problematic area of the mind/body question, as well as with levels of perceptual intensity, the mutability of the corporeal and the remapping of sensation (Delvecchio-Good, Brodwin. Good and Kleinman 1994; Scarry 1985; Vertosick 2000).
2.8 The Visceral

Merleau-Ponty himself availed himself of scientific work, especially with the neurologist Kurt Goldstein. Goldstein collaborated with Gestalt theorists, as had Merleau-Ponty, and studied patients who had aphasia. "Goldstein insisted that medicine and physiology be attentive to the essential unity of organisms and the global and subtle intermingling of seemingly discrete organs and functions" (Carman and Hansen 2005, p.12). After an extensive search in numerous libraries in English-speaking countries, and in online bibliographic services, little was found on recent work concerning the visceral. The primary work hails from the fields of Medicine, The Philosophy of Medicine and Neuroscience. Physician and philosopher Drew Leder extends Merleau-Ponty's work by examining the innermost realms of our being — our viscera (Leder 1990). Leder argues that by examining of our usually absent visceral goings on, it "will serve to reveal the essential structures of embodiment" (Leder 199, p.2).

Buylendijk's Prolegomena to an Anthropological Physiology offers insight into the ways in which each of the organs associated with the viscera have their own "intentionalities," needs, and ways of being. Although a highly respectable beginning, describing the nature of function, ways of revealing itself, and cultural understandings of each, if continued, would be more than a lifetime's work. Contemporary scientists who have resuscitated research about the visceral have found that such research has lagged significantly since the 1930s, include Cameron (Cameron 2002), Michael Gershon (Gershon 1998) and the following neuroscientists: Paintal; Procacci, Zoppi and Maresca; Iggo; Malliani, Lombardi and Pagani; Andrews; Janig and Morrison; Dockray and Sharkey; Higashi; De Groat; Cervero and Tattersall; Willis; and Lumb (Cervero and Morrison 1986, pp.3-279). Though this list may appear to be long, these are the primary researchers from around the world. Compared to say, neuroscience, this is a short list indeed. Reviews of their articles clearly reveal that almost all of them understand the brain to be the primary aspect of their research, which is another example of the brain-centric focus of that and related fields, especially the Consciousness Studies conference that began several years ago in Tucson. The list of scientists working in the visceral area listed above do not hold Cameron's and Gershon's position that the visceral can be understood to be independent of the brain, and thus termed "the second brain."

Nevertheless, this research is difficult because of the diffuse nature of the visceral systems themselves. Because of how we develop in embryonic stages, a twinge or felt pressure in one organ may commonly originate from a neighboring organ. Further, referred pain can make...

7 A review of all of their publications confirm the brain-centric views of most of its authors.
diagnoses by physicians difficult — a cardiac infarction, to take a more common example, can present as pressure in the chest, a diffuse or sharp pain in the chest, the arms, or the neck. Or it may not present itself to the physician at all, except for blue fingernails and clubbed fingers (Leder 1990, p.51). No singular CT scan or combination of imaging devices exist primarily for the purposes of investigating the visceral. Rather, a complex combination of imaging devices, and tools that measure motility, real-time blood chemistry and numerous other substances, among other aspects, are necessary (Cameron 2002, pp202, 311). Further, thought the visceral systems are diffuse in nature, they usually remain in the background of our experience, and so we have few words to describe this experience. Visceral goings-on, not easily apprehended or discussed, are also difficult to bring into conscious awareness, to exert some kind of volitional control over them even though they color our world and are not outward-going. This usually absent field is “an organized field in which certain organs and abilities come into prominence while others recede” (Leder 1990, p.24).

2.9 Summary
Although Merleau-Ponty’s effect on contemporary phenomenology has been widespread, he did not explore the visceral or inner workings of our body to any significant degree. In addition, no one discipline explores the visceral from the position of the existentialist phenomenologist, Merleau-Ponty, with two exceptions, Francisco Varela and Drew Leder. Nonetheless, a diversity of disciplines have been examined and used in order to provide a more global picture of how the visceral works in medical terms, and in first-person, subjective terms. A thread of what numerous theorists have called, variously, physical “resonances,” “empathy,” “a mimetic faculty” and internal simulations arising from mirror neurons has been developed to account for intersubjective sharing of perception.

The methodologies of existential phenomenology vary to some degree according to its primary theorist. However, many share an approach that combines first-person accounts with third-person or scientific accounts (Varela and Shear 1999, p.1-3). Merleau-Ponty was not anti-science as is commonly understood, but was careful to carve out a space where scientific findings had limited, and not overriding, purchase. Carman and Hansen affirm this: “Merleau-Ponty availed himself of empirical data and theoretical insights drawn from the biological and social sciences, although he was not a psychologist, a linguist or an anthropologist” (Carman and Hansen 2005, p.1). Because the following thesis work is an exploration of facets of the visceral sense implementing Merleau-Ponty’s approach, the methods similarly vary slightly according to the requirements of the contextual variables and intent of each piece.
Chapter Three: The Visceral

In the early 70s, I was lying in a surgical suite in a teaching hospital, more or less aware but ignored — except, from time to time, when a gloved hand touched my arm, and a disembodied voice asked if I was all right. I was more and less than all right. The opiates, I recognized, were a very good thing, and I attributed to them the lack of irritation I felt when my body was jiggled, pushed and manipulated. Keenly, I was aware of some feeling, some deep feeling — a pressure I was told “shouldn’t hurt.” But it was a bizarre pressure, not so much painful as unrecognizable. I did recognize with all certainty that this pressure was deeply primal, primordial, a pressure that was assuredly connected with death.

Someone else’s death.

Death didn’t bother me then; I was after all in my teens. Death was inconceivable for me, although I was well acquainted with the hard, waxy, translucent stiffness of several dead relatives. What bothered me was that the wheels of a table I saw beyond the drape were not as clean as they should have been. What were they thinking? Did no one check? I desperately wanted to gag.

But that is when I caught sight, between the tent of blue drapery that cut me off from all but my world, of IT. Me. My viscera. It was me up there, projected, I surmised, for interns to watch. And it was . . . gorgeous. Red and white viscera, loops here, taut stringiness there, long expanses of smoothness. A thousand, million reds.

I was draped so I could not see my internal world. It belonged to someone else, medical science I supposed, the same anonymous someone who ordained that it would upset me. As I connected the internal pressure I felt to the shiny metal instruments poking around, making that pressure, I felt relieved. It was me. I was inside out, simultaneously lying on the table and contained up there, like some flesh-bound mobius strip.

Thus began my consciousness of immediacy. Glorious, pre-reflective, immediacy of perception. Beyond language, miles past what anyone else seemed to know.

— Diane Gromala: Artist’s Contextualization from a First-Person Perspective
3.1 Introduction

This chapter defines and examines the visceral, especially in relation to interactive art, phenomenology, and physiology. It includes my hypothesis, problem statement, methodology and goals, interactive art and its history in relation to the visceral, and what we know about the field in relation to the visceral.

This work is a phenomenological study of the visceral in relation to contemporary interactive art and design. Interactive artists sometimes collaborate with scientists and theorists from the Humanities. In addition, some theorists focus on interactive art. This forms a loose kind of cross-pollination. Among these groups, I have found that although there exists interest in the body, two aspects are found to be rare: an accounting for the body in first-person, highly subjective terms, and an accounting for the visceral. Exceptions are from phenomenologists who practice in many of these disciplines. Nonetheless, while they account for the subjective, lived body, very few examine the visceral as a central concern, with the exception of Leder and György Ádám (refer to chapter 2, section 2.5 and chapter 3, section 3.2).

A subset of interactive artists and designers are interested in “the body,” as new, interactive forms of technology are created, from wearables and ubiquitous computing to biotechnologies and nanotechnology, to name a few (see Wilson [Wilson 2001] for an extensive survey). Subjective experience is part of artistic practice; however, a systematic exploration of the visceral has been found to be rare in interactive arts. Theorists in the Humanities over at least the last two decades have also explored the body, as evinced by the amount of publications on “the body.” However, these publications have been found to rarely account for the first-person, subjective aspects of the body, or what Merleau-Ponty calls the lived body. As phenomenologist and sociologist Jack Katz states:

“Anyone who briefly glances at the last decade’s literature of social theory and interactionist sociology will see volumes of works on ‘the body.’ But like the writings of both depth and academic psychology, this sociological work is overwhelmingly two-dimensional and rationalistic. The focus is either on the body as represented and read in culture (in ads, in movies and novels, in the content of talk about the body, or more generally in ‘discourse’), or the body as manipulated to give off indications about the self or one’s place in an emerging sequence of collaborative action. The body so regarded is either a mannequin, a billboard, a neon sign, a puppet, or some kind of symbolic text. The person is not seen as embodying a moving comprehension of various depths and regions of self” (Katz 1999, p.334).

Further, Humanist Vivian Sobchack argues that,

“. . . it seems imperative that we move from merely thinking about ‘the’ body (that is, about bodies always posited in their objective mode, always seen from the position of another) to also feeling what it is to be ‘my’ body (lived by me uniquely from my side of
it, even as it is always also simultaneously available to and lived by others on their side of it” (Sobchack 1991, p.187).

Exceptions accounted for in the literature review include Steven Shaviro and Brian Massumi. While their work does deal with subjective experience and new technologies, the visceral assumes only a very small aspect of their work (Shaviro 1993, p.130; Massumi 2002 pp.112-113).

Finally, scientific fields who do concern themselves with subjective aspects use methods of case studies, questionnaires, surveys, structured interviews, and other methods (Creswell 2003, p.153-175). While these methods do account for subjective impressions, the scientific framework through which these are abstracted are in effect, “objective” interpretations.

HCI is something of an exception, in that some of its practitioners went from concern with the technology (creating technologies and then finding applications) to concern for the user as a primary starting point for inventing technologies (Dourish 2001, pp.7-18). Thus, these practitioners account for the subjective accounts of users, going so far as to include them in long, iterative processes of technology design, called participatory design (for a survey on this method, refer to Bodker, Kensig and Simonsen 2004), activity theory (for its originary source, refer to Nardi 1997), situated actions (see Suchman 1987, for its initial incarnation) or one of several action research methods (Denzin and Lincoln 2005, pp.560-600). Nonetheless, the way scientists deal with subjective aspects of the lived body, like the visceral, is by asking people what they think. As Dourish would have it, what remains unaccounted for in such approaches is felt experience — especially of the pre-reflective kind that Merleau-Ponty focused on — and meaning (Dourish 2001, pp.22, 87). Thus, Dourish argues for phenomenological approaches in HCI, and demonstrates that some of the concerns of phenomenologists are already (and perhaps unwittingly) at work in the assumptions that underlie Tangible Computing and Computer-Supported Collaborative Work (CSCW) (Dourish 2001, p.155). Nevertheless, accounting for the visceral is still a difficult proposition. Ádam makes it clear that there are hardly any technological methods for measuring real-time, internal visceral sensations and relating these to subjective experience. (Ádam 1998, p.94; also refer to section 3.2).

Through this thesis – phenomenological, textual and artistic explorations of what is arguably our most innermost, subjective, felt sense, our visceral sense – I hope to offer artistic examples of what Merleau-Ponty termed flesh. That is, I hope to extend his work — a phenomenological perspective that is concerned with the body not as a textual metaphor, but as a continuous intertwinement of mind, body and world — by examining the visceral and technological aspects
of interactive art, and by offering the artworks that accomplish this work as well. In doing so, more far-reaching implications of the inextricability of our minds and bodies may be more carefully studied and considered to be as legitimate as our minds and worlds. “Only then can we hope to develop technologies that are made for humans” (Dourish 2001, p.190), for our volatile, imperfect bodies to be appreciated for what they are and what they can tell us, and for artists to continue to gain footholds in trying to influence the very creation of technologies themselves.

3.2 Definition of Terms: The Visceral

This phenomenological study of the visceral in relation to interactive art and design focuses on the taken-for-granted aspects of our usually unnoticed viscera. Although the term is commonly used to refer to deep, primordial, intuitive, and/or “hard-wired” aspects of the mind and body, it is used in this thesis more precisely. In keeping with the scientific definition, the visceral will refer throughout this thesis to our respiratory, cardiovascular, uro-genital and especially enteric (or excretory) systems. Also in keeping with observations from a diverse but relatively small group of scientists who study the visceral, its physiological functioning will also be addressed, because it is an exemplary nexus of the inextricability of mind and body. For instance, the viscera produces the majority of the hormones that profoundly influence or make possible emotions (Gershon 1999, p.18). More importantly, however, is that the viscera generally and the enteric system specifically, is like the brain, a control center for what we ingest and excrete, and for many aspects of the functioning of mind/body states (Cameron 2002, p.41). Because of these and other major roles, and because it can be completely disconnected from the brain and still function, it is often referred to as “the second brain” (Gershon 1999, p.16). Existentialist phenomenologists are concerned with the common, everyday aspects of experience. Those who focus on physiology, such as Leder, have much to offer about the role of the viscera in felt experience. Finally, Humanists who study the visceral, namely Massumi and Shaviro, also offer what the sciences do not: theories of the role the viscera has in experience and meaning in cultural contexts.

It is currently a bit of a quixotic quest to account for the visceral in vivo. This is evident in the ways that scholars who study the visceral articulate it, because there are no concrete ways to

8 This includes a feminist approach that takes into account, in the words of Elizabeth Grosz, our “volatile” bodies. That is, a consideration of bodies that unlike Merleau-Ponty’s normative, “athletic” bodies, assumes that our bodies change: they age, menstruate, become pregnant, excrete, and so on. Refer to Grosz, E 1994, Volatile Bodies: Toward a Corporeal Feminism, Indiana University Press, Bloomington. For an example of how gender differences are embodied, see Young I. 2005, On Female Body Experience: “Throwing like a Girl” and Other Essays. Oxford University Press, Oxford.
measure peristaltic contractions, blood chemistry, and finer, more detailed movements and chemical interactions, especially not in real-time. Nonetheless, while some of these methods are being developed (Cameron 2002, pp. 306-311). Ádám admits that "In vivo neurophysiology had and still has no reliable and precise methods" (Ádám 1998, p. 97). Difficulties abound, mostly because of the structure of the visceral and especially its component enteric system, and because of the complex ways in which they work. Different kinds of visceroreceptors, for instance, "are mostly diffuse structures" that are "not easily distinguished by histological examination," because their differences are "obviously submicroscopic or chemical" (Ádám 1998, p. 94). In asking "what renders peculiar features and specificity to visceral sensation and perception" (Ádám 1998, p. 6), Ádám has developed five basic methods of analysis that include objective and subjective aspects (Table 3.1):

Table 3.1: Functions of Afferent Visceral Signals According to G. Ádám, 1998

<table>
<thead>
<tr>
<th>Levels of representation & analysis</th>
<th>Biological & psychological functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiological</td>
<td>1. Homeostatic</td>
</tr>
<tr>
<td></td>
<td>2. Reflex</td>
</tr>
<tr>
<td>Psychophysiological</td>
<td>3. Modulation of general central activation</td>
</tr>
<tr>
<td></td>
<td>4. Modulation of sensory input</td>
</tr>
<tr>
<td></td>
<td>5. Orienting/ alarming</td>
</tr>
<tr>
<td>Behavioral: nonverbal</td>
<td>6. Motivating (energizing)</td>
</tr>
<tr>
<td></td>
<td>7. Directing/discriminative*</td>
</tr>
<tr>
<td>Subjective: nonverbal & verbal</td>
<td>8. Regulation of mood, affect, & emotion</td>
</tr>
<tr>
<td>Social: verbal</td>
<td>9. Informative/perceptive</td>
</tr>
<tr>
<td></td>
<td>10. Instrumental/appellative</td>
</tr>
</tbody>
</table>

sensation versus discrimination (detection)

While a treatise on neurophysiology is beyond the scope of this thesis, examining Ádám’s five basic methods of analysis makes it evident that these methods take into account physical, objective, affective and subjective aspects of the visceral. Further, examples in Ádám’s text are of how the visceral can be brought into conscious awareness, and how differing aspects of the visceral affect conscious awareness. What Ádám has found is that the visceral appears to be independent of and different from the traditional five senses, although the visceral can affect the traditional five senses. The visceral is also different from the five senses in the structure of the receptors, in their function and their sometime independence from the brain. Variously called viscerosensory perception, internal perception or internal cognition, Ádám and others cited in this thesis believe that it largely operates outside of conscious awareness, but that internal
signals from the visceral system influence our emotional states. Though still debated, what Ádám calls “the ubiquitous unconscious” is considered to be a kind of sensory system.

The term “unconscious” will be avoided for its Freudian overtones; Freud’s unconscious is not the same as Merleau-Ponty’s unconscious. In Merleau-Ponty’s ontology, lived experience is prior to abstract reflection; its is pre-thematic” (Robbins 1997). We don’t explicitly think about it and what we are living. When one is engaged in a typical task, for example, one does not reflect on the task. Rather, this mode of engagement is “the primordial, experiential ground which makes reflection possible” (Robbins 1997). When one reflects intellectually on experience, one returns to the lived world of our experience prior to reflection. “This is a way to think about the unconscious without necessarily buying into a Freudian meta-psychology” (Robbins 1997). From Melreau-Ponty’s perspective, the unconscious is not a repression of aspects of our world that we choose not to deal with. Rather, his unconscious is the “pre-thematic, pre-objective, lived, concrete latent experience of our engagement with the world before we reflect on it. “It is what we live out but do not speak or think. When we bring it into reflection, we make it ‘conscious’” (Robbins 1997).

Our visceral goings-on are usually quiescent, non-conscious, mind/bodily experiences, like the frothy little gurgle of incipient hunger, or the flutter that seems to be at once in our throat or stomach or heart when we see one with whom we are infatuated. We can fruitfully understand the visceral as being on a continuum, from sensations we are not fully conscious of or that we barely register. This end of the continuum is thus what I term the Visceral Register. These visceral sensations are fleeting but perceived, if ever so briefly.

9 Freud’s unconscious refers to that part of the mind (or mental functioning) of which people make themselves unaware. It does not include all that is not conscious, only what is actively repressed from conscious thought or what the person is “averse to knowing consciously. It is a force that can only be recognized by its effects, expressed in a symptom” (Geraskov 1994, p.17). This “struggle” between Freud’s biological instincts and a self relies on a mind/body duality that is antithetical to Merleau-Ponty’s view of a unity of mind, body and world, in Being. According to Merleau-Ponty, “The whole architecture of the notions of the psychology (. . . pleasure, desire, love, Eros) all that, all this bric-a-brac, is suddenly clarified when one” considers it “as differentiations of one sole and massive adhesion to Being which is the flesh . . .” (Merleau-Ponty 1968, p.270). Finally, Freud reinforces the distinction between mind and body, especially by privileging the mind and by positing mind and body in conflict, at least where repression and many psychological disorders are concerned. For further discussion of the limits of Freudian psychology, refer to Merleau-Ponty’s Introduction and Chapter 1 of The Structure of Behavior (Merleau-Ponty 1963).
On the other end of the continuum are those visceral sensations that we learn to alter, for instance, through biofeedback or from years of meditating. I term this end of the continuum the *Visceral Sense*. This increased intimacy and ability to consciously manipulate the visceral through meditation is a sense that is ongoing and can be transformative, for example, in evolving states of "mindful awareness." As explained by Francisco Varela, Evan Thompson and Eleanor Rosch, "Mindfulness means that the mind is present in embodied everyday experience; mindfulness techniques are designed to lead the mind back from its theories and preoccupations, back from the abstract attitude, to the situation of one’s experience itself" (Varela, Thompson and Rosch 1993, p.22). Further,

"...mindfulness/awareness is considered part of the basic nature of the mind; it is the natural state of mind that has been temporarily obscured by habitual patterns of grasping and delusion. The untamed mind constantly tries to grasp some stable point in its unending movement, and to clink to thoughts, feelings, and concepts as if they were a solid ground" (Varela, Thompson and Rosch 1993, p.26).

In other words, if users practice techniques of mindful awareness through meditative practices, they may be able to transform their experience of the present into one that they can become aware of — experience that was otherwise hidden by habit. In addition, this enhanced awareness, attained through rigorous practice, involves very little effort, less effort than it takes to remain in a state of concentrated focus, for instance.

Other visceral sensations are sometimes intense enough to bring us to our knees. Think of the dreaded stabbing sense that results from food poisoning and its explosive aftermath. Or the incessant, aching burn of esophagitis reflux. This other end of the continuum, the *Visceral Sense*, includes those aspects of the viscera that enter into one’s consciousness in deeper, more insistent ways. They include those we learn to exert some control over as a form of bodily knowledge, from sports, dance and performance art training to meditation, surgery or

10 In theatre, for example, Jerzy Grotowski offered visceral training; by tightly closing one’s mouth and sphincter for as long as one can, and then letting them go, the body produces uncontrollable but aesthetically interesting movements. From an interview with Kjell Petersen, Montreal, 20 April 2007. According to Petersen, most of the knowledge of “Physical Theatre” is not in textual form, but is passed down from practitioner to practitioner. An investigation of 19 books on theatrical training that included Grotowski’s work did not mention this particular
marksmanship. The very extreme terminus of this part of the continuum includes acute visceral pain, the kind that robs us of our ability to communicate to others, threatens our sense of self and threatens our very being (Scarry 1985, pp.3-11). Covered in sweat, the acute, chest-grabbing reflex solicited by a cardiac infarction in progress is an example.

The systems that comprise the visceral most often work together, holistically. The enteric system, which works like a “second brain,” is a notable exception. “The enteric nervous system differs from the sympathetic and parasympathetic in its anatomical and functional independence from the brain and spinal cord. It is this separate-but-equal classification of the enteric nervous system that still surprises audiences of doctors and even neuroscientists” (Gershon 1999, p.16).

Not all of the experiences of the workings of these systems are negative, or in the words of Kristeva (Kristeva 1982), abject. According to her, the abject is an experience that threatens our sense of self or body image, such as slowly driving past a bloody car accident. While we are compelled to look, we are also compelled to look away, then to look back, and eventually to shut down this short-lived moment because of the threat it implies to the fragility of our body image, and because it is a vivid reminder of our mortality. According to Kristeva, a state of abjection is one that lies between an object and subject, as something that is or was alive but simultaneously is not. Our bodily fluids, for example, are substances that once outside of our body, we recognize as having once been part of ourselves, but no longer so. Although Kristeva did not express abjection on a continuum of responses per se, she did offer examples that elicit varying intensity of responses, such as seeing the dismemberment of a limb, a corpse, or rotting flesh. These experiences, according to her, disrupt or threaten our body image as whole, with a clearly demarcated exterior and interior. Further, the abject lies outside of the symbolic order and is inherently a traumatic, repulsive experience.

The visceral is clearly implicated in the abject, say, when one vomits because one has seen blood, mutilated bodies, or rotting flesh, or when one faints when viewing a video of Orlan’s practice. Discussion with performance scholar Phil Auslander, editor of Routledge’s multi-volume encyclopedia of performance, was also familiar with Grotowski’s “enteric” practice, as well as professors of Theatre and Dance at the University of Georgia, Yale University, UCLA and the University of Texas. Accordingly, it was found that Butoh dancers also practice the mouth-to-anus technique, but are hesitant to discuss it. A tangential but interesting finding of this research is that the visceral, especially the enteric system, is also implicated in death and mummification. When all matter is removed from the enteric system, the body decays at a much slower rate. Further, when the stomach and intestines themselves are removed, mummification is significantly more successful. The ancient Egyptians and Peruvians observed this phenomenon. Ancient Tibetan monks (based on mummies c. 1200-1400 AD) also seemed to have observed this, as some had “self-mummified” by slowly starving themselves (or emptying their enteric system) over the course of a month or so as they continuously meditate until death. (Mair 2004).
face being peeled away from her skull. The only other aspect that some forms of the visceral sense share with the sense of abjection is that some of the more intense visceral sensations also lie outside of the symbolic realm (Massumi 2002, pp.112-113). However, the abject is but a small component of the visceral. An ambient, background register of the visceral can also be a joyous or euphoric affair, as when one feels infatuation, for instance, or when opiates quiet visceral goings-on in the enteric system and enhance the release of those hormones which induce euphoria. As previously stated, the majority of mood-altering, internal chemistry is produced in the visceral system (Gershon pp.37-80). These range from serotonin and hormones that serve a more depressive function to those that influence affect in diverse ways. Further, one can learn how to affect or control some of these functions, as is made clear through meditation. the practices of certain monks (Austin 1999, pp.74-104) and performance artists (refer to footnote 9), to name a few. In conclusion, it must be clear that a wide range of potential experiences can be elicited by the visceral system, not merely one of a threatening sense of abjection.

3.3 Hypothesis
As interactive artists pursue issues of corporeality (refer to [Wilson 2001] for 95 pages of this work), they more closely question and examine interrelationships of its differing aspects of the body. The hypothesis of this thesis is that what was once considered beyond our conscious control, the visceral, is a nexus of the mind/body problem, and can indeed be elicited by specific forms of interactive art. Further, a continuum of conscious awareness must be accounted for, from what I term the Visceral Register to the Visceral Sense. The Visceral Sense, whereby one is conscious of one’s viscera and where one can learn to control it consciously, may offer possibilities for transformative experiences. For example, the “Mindful Awareness” that results from sustained meditative practices, can easily be seen to be transformative, as could the study of a botanist when looking at a forest after training. Further, qualities of interactive art, characteristics of the technologies used by interactive artists, and the cultural contexts enable or a return back to interest in and a revaluation of mind/body experiences. Finally, although experience is comprised holistically, of enormous and constantly changing variables of mind/body and world, a specific sense, like the visceral, can be brought into awareness and studied. This enhanced awareness, or ontological “lens” can be brought to bear on the experience of interactive art, possibly enabling a user to experience or “attune” themselves to the particular artworks with a greater sense of being.

12 As observed at the Virtual Futures conference at the University of Warwick, May 24-26, 1995.
13 Narcotics and other drugs that are not produced in the body can and do affect the viscera in a diversity of ways.
3.4 Problem Statement
I propose that some forms of interactive art can provoke, elicit or enable a register or awareness of the visceral, and taken over time and in multiple contexts, a sensibility. The continuum from visceral register to the visceral sense can be transformative in creating new possibilities for mind/body/world modes of being in that they may create barely or fully conscious awareness, attunements to various contemporary contexts that may require a new way of being, or at least a greater awareness of our inner selves and of being itself. The continuum (Figure 3.1) is used to take into account mind and body as well as varying levels of awareness and intensity. This is neither a Romantic turn to some fabled, feral past, nor is it a study of Kristeva’s theory of the abject.

Rather, this work is intended to point toward and hold open the doors to possibilities and multiple transformations of the mind/body and technologically-suffused worlds we find ourselves in. By provoking or eliciting the visceral through interactive art, an ability to more fully experience inner and outer realms may be enhanced; and might make possible experiences that are unmediated. Merleau-Ponty’s phenomenological approach allows for a more expansive way of investigating subjective, bodily ways of being in the world. Further, his embodied concept of reversibility is a robust idea that is directly explored in the three artworks produced for this thesis (refer to Chapters 4, 5 and 6, as well as the CDROM: Meditation Chamber, BioMorphic Typography and the MeatBook).

3.5 The Field: Interactive Art and Design
Perhaps more than prior forms of fine art, many forms of interactive art, as the term “interactive” implies, engage a user’s body. According to telematic artist, theorist, and pioneer Roy Ascott (2003), interactive art is defined as:

“...that art in which the behaviour of the viewer effects transformations of image, structure or environment, and in turn may cause transformations of the viewer's perception, consciousness or physical state.”

This is a clear definition that distinguishes itself from others in its brevity. Interactive art and the new, numerous forms of technology that are constantly being adopted seem to make defining it a moving target. The terms themselves have changed, for instance, from “Electronic Art” to “New Media Art” and “Digital Art,” to name a few of the more influential terms. Popper uses the term “technological art” instead and asserts that

“The nature of technological art can... be illustrated through the examination of attempts made by artists to implicate the spectator in the creative process and, in particular, through analysis of the transformation that was effected when they
passed from a simple invitation to participate to an appeal for a more elaborate interactive involvement" (Popper 1993, p.8).

Popper tries to come to terms with how to categorize differing forms of technological art by describing their characteristics:

“It seems clear, however, that on a creative level there are many characteristics which allow the grouping together of a number of diverse art works. Notable among these are interaction and interactivity, multisensoriality (sic), the creative process itself; and in addition a concern with the temporal and spatial dimensions as well as emotional and mental states . . . The principle aim is an interactivity instigated by the artist that allows creative communication, one which employs constructive, critical and innovative attitudes. In enabling new types of social interactions, technological art can also claim to represent most effectively the changes that are occurring in our social fabric with all their contradictions” (Popper 1993, pp.179-180).

Five years later after Popper wrote this, the term “interactive art,” seemed to hold sway. As Leopoldseder and Schöpf write in also trying to come to terms with the evolving forms of digital art, “Artworks have become complex ‘machines’ where the user does not so much individually control the work, but cooperates, obstructs and directs. This results in dynamic patterns of interaction within which the work evolves.” They continue by stating that numerous forms of technologies:

“are applied to create works of art, in which the actions of users and machines become almost indistinguishable . . . Interaction here means to participate in a process . . . the artwork manifests itself as a dynamic process, as an experience instead of as an aesthetic object” (Leopoldseder and Schöpf 1997, p.107).

Although they successfully blur the distinction between users and machines, their effort seems to function more as a description than a definition.

These definitions are notable for also focusing on an artifact, rather than the give-and-take or cause-and-effect interchanges that typify interactivity. Rush focuses on interactivity in his definition, but limits it to narrative. He says that “Interactive artists aim to positively encourage viewers to create their own narratives or associations with their interactive works (Rush 1999, p.201).

Similarly, historian Oliver Grau, whose work was concerned with “virtual art” describes its characteristics, but misses its short term and longer term effects and reinscribes a mind/body split, despite his few references to the body (Grau 2003). Grau’s teleological imposition also calls into question the relationships he proffers. Further, Grau offers an overarching definition of an artwork, any artwork: “An artwork symbolizes and focuses a particular artistic view of the world. Aside from all genre-specific differences, it fixes (italics mine) concept, ideology and
hypothesis, aesthetic preferences and norms, and consciously or unconsciously, follows social constellations" (Grau 2003, p.204). Grau’s attempt of inclusion, however, invites pause. For how can an artwork “fix” a concept, ideology, hypothesis, aesthetic preference, or norms, if one takes a long, historical view of an artwork, one in which the original historical context is for the most part lost, and one in which the actual artists or their intentions may never be known? After the publication of his book on virtual art, however, he tends to offer a more positive definition, though again he does not draw clear distinctions among its different forms, mixing characteristics with distinctive forms of interactive art:

“Digital art is open, transient, interdisciplinary, multimedia, processual, discursive, concept- and context-dependent, and, in addition, is increasingly oriented toward interaction with the recipient. Within the evolving art genres, virtual art has begun to further dismantle the traditional tableau; this time, in favor of a processual model of art. Interaction, telematics and genetic image processes not only encourage the crossing of boundaries; they also drive the trend toward fusing the perception of the users with interfaces that increasingly assail the entire suite of human senses” (Grau 2007).

The artists who represent the “historical tableau” which he refers to would probably take issue with this definition, as many of these concerns were explored by artists before the advent of interactive art. One need only consider the performance artists following Artonini Artaud, “process-oriented” art, and conceptual art, to name a few. Also of interest is the “drive” to “fuse” the perception of the users with interfaces that increasing assail the entire suite of human senses. This seems not to be a give-and-take implied by term interactivity. Again, while his definition might seem to relate to a phenomenological intertwining of perception and interface, the teleological drive that underlies his work seems to undermine what may have been a less conflictual, more open-ended prognostication.

Likewise, although Stephen Wilson perceptively lists the numerous characteristics of what he terms “Information Arts” — arts that may not be electronic or digital, but that occurs in collaboration with scientists of many types. He does not offer a concise definition, but states that “This experimentation has left the philosophy of art in turmoil. It has become difficult to achieve consensus of art, that nature of aesthetic experience, the relative place of communication and expression, or criteria of evaluation. However, there is some agreement on these features: art is intentionally made or assembled by humans, and usually consists of intellectual, symbolic, and sensuous components” (Wilson 2005, p.17). Further, Wilson also references the Getty Museum Program in Art Education (ibid.). Together, these definitions give us a good sense of information arts that seem to require open-ended considerations, and not set one definition in stone. Further, Wilson offer first a list of characteristics of information art that are incisive: he is obviously a practitioner who has attended decades of electronic, digital information, or interactive art. The
range of artists he includes is vast and inclusive, while Grau's are questionable. Where, for instance, art the Banff Centre's VR Art Environments — the first in the world to focus on the art and not collaborations among artists, industry and scientists. Second, he continues the practice of attributing one VR artwork with singular people, while such work requires months of work among many artists and computer scientists? Comparing his with Grau's underscores the difference between a practitioner's attempts at defining and characterizing information art and a critic's attempts at defining VR art. What's more, Wilson leaves open the multiple meanings that each artwork can engender, and isn't weighed down in his assessments by the teleological imperative.

These and other definitions are not concise, and do not reflect the position of a phenomenologist. Ascott's definition makes clear that the "viewer" and the artwork are engaged in a mutually effecting relationship. Further, Ascott does not simply refer to the viewer, but to aspects of the viewer's mind and body. Thus, his definition is very close to one that would serve the purposes of a phenomenologist. However, I would alter it to reflect my position more precisely:

"Interactive art works in a mutual relation. The behavior of the enactor effects transformations of elements that appeal to exteroceptive senses, such as image, sound, or tactility, as well as structure or environment. This in turn may cause transformations of the enactor's conscious or pre-reflective perception, from which all arise."

It is precisely the "transformations" of the user's "perception, consciousness" and "physical state" that are the focus of this research. The specific aspect under examination concerns the visceral — our innermost, most difficult to reach aspects that are usually and necessarily quiescent, but that are always moving into and out of varying states of mind/body. Most often, one experiences or registers the visceral; it touches our consciousness reflection, and vanishes. In the most extreme cases, such as acute visceral pain, it can render us beyond language (Scarry 1985, p.5) or the ability to act in the world. Although termed the "autonomic" (or occurring involuntarily), one can learn to exert some control over some of the systems that comprise the visceral, such as breath, heart rate, and some aspects of the enteric system.

14 This was discussed at the meeting of the College Art Association held in Atlanta Georgia, February 17, 2005. Hosted by Leonardo chief editor Roger Malina and numerous interactive artists, the outcome of the meeting strongly suggested that like a film, the numerous workers involved in an immersive VR work should be always attributed. This was deemed one way to overcome the notion of the singular genius model of art, as it should be because contemporary art practices are often conducted in collaborative groups. Further, the lack of attribution of collaborating scientists serve only to reinforce their felt exclusion from artworks. It should be recognized that while artists who collaborate with computer scientists are valued by the art community, the reverse is not true in the sciences: rather, it is usually considered to be "dabbling" unless an important scientific outcome results. Thus, scientists have little professional rewards for collaborating with artists, and instead collaborate for personal reasons which usually end when the majority of these graduate students find professorial jobs. Prominent, tenured professors seem to not be as affected.
The corporeal, experiential aspects of interactive art are issues that are explored by some artists in the field. For example, their work is represented on 95 pages in Wilson’s book *Information Arts* (Wilson 2001). However, I have found that few theorists or artists have explored this subcomponent of the corporeal — the visceral dimension — specifically or systematically. The visceral is the focus of this research because unlike the five senses, and the proprioceptive sense and kinesthetic sense, the visceral system, and especially the enteric system, is partially autonomous from brain function (Cameron 2002, p.106) and continuously enters into and out of many levels of conscious awareness. Thus, it is an exemplary nexus of the mind/body problem.

Further, the senses that are being explored by interactive artists, such as the haptic, visual, or smell are all exteroceptive senses. Artists such as Orlan (Orlan 1990), Stelarc (Stelarc 1998), Mona Hatoum (Hatoum 1997), and Eduardo Kac (Kac 2003) are notable exceptions, as they explore interoception through swallowing cameras, or inserting them into their bodily orifices, and implanting chips into their own bodies. With the exceptions of Hatoum and Stelarc, while these artists do experience pain, they do not intentionally explore their interoception or a visceral sense per se. I would suggest that the effects of their artwork and performances may elicit a visceral sense, however, through the “empathy” or “resonance” of the viewers of their work.

Finally, the visceral serves as a more specific and focused extension of how the visual arts in the last century were understood to provoke or influence other senses, which were at that time primarily lumped into what was termed the optical tacility, haptic visuality, or the haptic sense (Taussig 1993, pp.25-26, 35: Marks 2000, pp.xi-xii,127-162). Film theorists Sobchack (Sobchack 1991), Marks (Marks 2000, 2002), Rachel O. Moore (Moore, 1999) and Hansen (Hansen 2006) have continued this exploration of the “haptic” sense, along with anthropologist Michael Taussig (Taussig 1993, p.270n9). Marks in particular has explored the haptic and has begun to explore other senses, such as smell, by focusing primarily on video art in her book *Touch: Sensuous Theory and Multisensory Media* (Marks 2002). However, these phenomenologically-influenced theorists focus on film and video, and only tangentially on interactive art. Margaret Morse (Morse 1998), Hansen and Shaviro are a few theorists whose work primarily focuses on interactive art and the body.

3.6 Historical Contiguity

Artists who work with interactive technologies are the direct descendents of artists whose work in the four prior decades focused on then-new technologies and scientific ideas, from Nam June Paik’s work with video cameras to kinetic, light, laser, holographic, telematics, satellite and
early electronic art, to name the most evident (Popper 1993, p.6). These artists were ignored by the mainstream art world until very recently. To quote Jon Ippollito:

“A number of pioneering artists began experimenting with the computer as a visual arts medium in the late 60s and early 70s when most fine-arts circles refused to recognize art made by computers as a viable product of human creativity. This was the era of computer punch cards, when the visual results of algorithmic input were nothing more than line drawings. Many of the forward-looking artists who were experimenting with this technology were not taken seriously by the established art venues, and were, in fact, often ostracized by their peers. More recently, the work of computer artists has begun to appear in general textbooks on the history of art, but each book features one or two completely different artists. The books are inconsistent in their documentation of this fairly new medium. There are a number of journals that have had special issues devoted to this topic, including the *Art Journal*, and there are also whole journals dedicated to the field, such as *Leonardo*. There are, however, very few books that do justice to the movement, and few that include artists of Japan. In other words, there is a great deal of activity in the field, but the documentation is neither thorough nor consistent" (Ippollito 2005, pp.177-180).

Interactive artists have formed their own loosely knit community of publications and exhibition venues. Aware of not leaving the interpretation of their work to art critics, art historians and cultural theorists — many of whom have little understanding of or experience with the technologies they discuss, or do not examine the art of living artists — some interactive artists have actively tried to take on some of those interpretive or framing roles. Artists of course have written about their own work for centuries (Smith 2004, p.94), but less in academic terms than in documentary terms. In contemporary times, interactive artists do produce scholarly papers within their own realm. In addition, some interactive artists are engaged in interdisciplinary, collaborative work with scientists. This has resulted in the inclusion of artistic work in conferences such as CHI, SIGGRAPH, Tangible and Embedded Interfaces (TEI), and Ubiquitous Computing Conference (UbiComp) and the Conference on Wearable Computing, to name a few.

There are two noteworthy but unexplored paradoxes at work. First, the critics of interactive art often write about it without having experienced it, and thus rely on the artist’s writings. Most of the time, pragmatic reasons are cited for the lack of experiencing the interactive artworks that critics write about. Similarly, it would be difficult for each reader of this thesis to experience each artwork firsthand. Nonetheless, if interactive art demands anything, it surely must demand firsthand experience, as the term interactivity suggests. Second, over the last thirty years or so, a core intellectual idea in the Humanities has been “the death of the author,” or by extension, of

15 Numerous discussions with Jay Bolter, Richard Grusin, Laura Marks, Edward Shanken, Steven Shaviro, Eugene Thacker and others from 2000 to the present have verified this practice.
the artist. This refers to the ways in which the meaning of a piece of literature – and by extension, art – are no longer solely determined by the author’s intention, but by both the author and the reader, or the interactive artist and the user. Interactivity and forms of interactive art such as art that proffers emergence or AI, by their very nature, reposition the role of the creator to one who does not solely determine the meaning (or in this case too, experience all of the possibilities) of a work of art. The same issues are at work in other forms of art that require presence: Music, Dance, Theatre, and Performance Art. Thus, I believe it is important to experience the works of art, as much as possible, in order to write about them more knowingly. Therefore, the artworks I discuss in more detail are those artworks that I have personally experienced. Finally, although it is beyond the purview of the thesis to enable every reader to experience my artworks, I have provided documentation on the enclosed CDROM. While it cannot replace first-hand experience, it is an important aspect of the thesis, since it provides aspects of the artworks in media forms that extend beyond purely textual accounts.

Many interactive artists are and were concerned with issues of the body, notably feminist artists at work in the 1970s: Carolee Schneeman (Schneeman 1964), Kiki Smith (Smith 1994), Lynn Hershman (-Leeson) (Hershman 1993), Annie Sprinkle (Sprinkle 1993), Linda Montano (Montano 1983), and Bob Flanagan (Dick 1997), among many others. The field has also been open to inter- and trans-disciplinary collaborations, so the fields of Dance, Electronic Music, Performance Art, and Architecture have enriched the core of interactive artists whose training was primarily in the Fine Arts. A survey of the most inclusive databases of electronic and interactive art list categories that range from issues of DIY (do-it-yourself) biotechnology, nanotechnology, and eco-systems to consciousness, immersion, presence and synesthesia, to name a few. Those works that enable the most motor, physical involvement range from artworks that are explorations of touch, haptic and gestural interfaces; movement and gesture (from Dance and Performance Art), to responsive environments. As Popper makes clear, the invention of new forms of technology often give rise to new forms of art (Popper 1993, pp.180-181).

While contemporary artists explore the corporeal, experiential aspects of interactive art, I have discovered that very few theorists or artists have explored a component of the corporeal — the visceral dimension — specifically. The visceral is the focus of this research because unlike

the five senses, kinesthetics, proprioception or other senses, the visceral (or enteric) system is partially autonomous from brain function. As described by the gastroenterologist Gershon, "The enteric nervous system is . . . an independent site of neural integration and processing. This is what makes it the second brain." (Gershon 1999, p.17). In addition, the enteric system continually shifts into and out of many levels of conscious awareness, but usually functions as an insensible background. (Leder 1990, pp.36-69). It also produces the majority of mood-altering substances that are responsible for emotional states, the ability to focus, and so forth. Thus, the visceral is an exemplary nexus of the mind/body problem. Further, it serves as a more specific and focused extension of how the visual arts in the last century were understood to provoke senses other than or through the visual. Oddly, the “haptic” sense (or optical tactility) was most often explored and referred to during the last century, whether the sense might actually be haptic or tactile or not (Benjamin 1985, p.174; Taussig 1993, pp.35-36). More recently, film theorists Sobchack (Sobchack 1991), Marks (Marks 2000, 2002), Rachel O. Moore (Moore 1999) and Hansen (Hansen 2006) have continued this exploration of the “haptic” sense, along with anthropologist Michael Taussig (Taussig 1993, p.270n9). Marks in particular has explored the haptic and has begun to explore other senses, such as smell, by focusing primarily on video art in her book Touch: Sensuous Theory and Multisensory Media (Marks 2002). However, these theorists focus on film and video, and only tangentially on interactive art. Margaret Morse (Morse 1998) is one of the few theorists who extends her research emphases from video and television to interactive art.

As interactive artists pursue issues of corporeality, they more closely question and examine the interrelationships of its differing aspects. Experience is comprised holistically, and is not split off entirely into the realm of, say, the haptic sense. Nonetheless, it is important to know the workings of the human body and how some senses achieve temporary emphasis in experience. Thus, aspects of the visceral, from the subsystems that comprise it to its barely conscious register or fully conscious sense, are explored throughout the thesis in relation, primarily, to interactive art.

3.7 Characteristics of Interactive Art that May Create Conditions for the Visceral

The viscera are always at work, even though we are usually and necessarily not conscious of their existence (Leder 1990). At certain times, however, we do become conscious of our own viscera, whether it be from a disorder with the viscera, such as irritable bowel syndrome (IBS), from something the mind/body does, or from some "stimulus" in the world. Interactive art is implicated in the latter two. What is it about interactive art in particular that can give rise to a barely conscious register of the visceral or a heightened or transformative visceral sense? It is
my contention that at least four characteristics that create conditions which may enable or
provoke a visceral response are at play.

The first characteristic is *interactivity*, but the kind of interactivity that focuses on forms beyond
mere mouse clicking: from installations that demand a user’s gestural, bodily movement, to
those that explore the so-called five senses. Interactivity in immersive virtual reality (VR) works
that create a sensory feedback loop engages a user’s sensorium in direct, volitional, motor and
grossly physical ways (Gromala 1996, pp.224-225).

The artistic aspects of complex or novel interactivity in contemporary times often enable users
to become self-aware of their engagement with the art and/or the interface, such as
the physical movements required by Camille Utterbach’s *Text Rain* (Bolter and Gromala 2003,
p.12; Utterbach and Achituv 2000). Other artworks that enable or demand users to become
aware of their sensorium range from Orlan’s video of her face being peeled back (Orlan 1990)
and Wim Delvoye’s *Cloaca* (Delvoye 2004) to Thecla Schiphorst’s wearable *Whisper[s]*
(Schiphorst, Baker, Burgoyne et al. 2005), Sissel Tolaas’ work with smell (Tolaas 2005), and
Janet Cardiff’s work with sound (Cardiff 2005), to name a few. These forms of interactivity,
either intentionally or not, elicit a conscious sense of one’s mind/body, and further address one’s
mind/body in ways that evoke a visceral response: seeing excrement being made, wearing and
“sharing” another’s heartbeat, smelling perspiration from men who experienced fear, and
hearing binaural “voices in your head” that invite paranoia or uncertainty.

Figure 3.2 *Protrude, Flow* by Kodama and Takeno, 2001.
Art Installation, Medium: Magnetic fluid, microphone, digital camera, video projector, computer. Dimensions:
4m x 4m x 7m. Exhibited, SIGGRAPH 2001: n-space art gallery, Los Angeles, CA, August 14 – August 16.
The second characteristic of interactive art at play is the responsiveness or purported agency of the artwork itself. The artwork *Protrude, Flow* (Kodama and Takeno 2001), for example, because of its morphological, computer graphic spikes-cum-porcupine movements, seemed to incite a novel form of animism — being neither creature or inorganic form. In trying to provoke this blob to turn into responsive spikes, human users themselves barked, hissed, growled, vocalized piercing sounds, shrank back when the responses were unexpected, and generally behaved more like feral animals. Other interactive work, such as an interactive guillotine (Knipp 2001) and a thousand pound cube that users lay under at SIGGRAPH 2001, seemed to both provoke a very strong “fight or flight” reflex, a reflex known to strongly involve the visceral (Cameron 2002, pp. 10, 36, 84).

AI and robotic work, such as Simon Penny’s robot bicycle wheel — which follows users around and appears to bow and “sniff” at crotch level — unarguably elicited visceral trepidation. Not all of these forms of art and technology elicit a visceral response of course. Sony’s AIBO dog, for instance, seems a docile toy, even in the hands of Natalie Jeremijenko (Jeremijenko 2002-2006). The agency of some interactive works of art is compelling enough so that even critics and writers cannot stop themselves from writing about such artwork as if it really did have agency that was autonomous from human creation. It is difficult to say if the novelty of such work will become an everyday event or expectation, and what role novelty bears in users’ responses.

The third characteristic is the very nature of some forms of the technologies, ranging from VR and telematics to Tissue Culture or biotechnologies. Some VR Art, such as *Dancing with the Virtual Dervish: Virtual Bodies* (Gromala and Sharir 1991-2004), my collaboration with Yacov Sharir, falls squarely in the visceral domain. Since ours was among the first group of 6 artworks in VR, the hardware and software was still in its early or beta stages. The obvious simsickness felt by some users in immersive VR definitely elicited a visceral response, one resulting from the well-known lag of the visual/vestibular and geometric distortions of the 3D graphics, which affects proprioception (Kennedy et al. 1992, pp. 295-301). Neither the visual or vestibular responses to VR are directly visceral, but they certainly provoke, in some users, an indirect but strong sense of being nauseated, which is visceral. Further, in immersive VR, one can feel as though one is flying. At the same time, however, the tug of real gravity asserts itself (Gromala 1996, pp. 224-230). Merleau-Ponty’s idea of a “body image” seemed to be quite disrupted as these conflicting stimuli were worked out by the mind/body (Merleau-Ponty 2004, p. 104). This

17 As observed over the course of four days at the SIGGRAPH 2001 Art Gallery and in Kodama and Takeno’s online videos of its exhibition at other venues. For a video, refer to youtube: www.youtube.com/watch?v=WYO2wNN0y4 [accessed 1 July 2007].

18 As observed at the University of Connecticut’s Art Gallery in 1994.
short period of time (about 5-7 minutes or so) felt odd, as if one's bodily limits were fluctuating. In addition, it was also felt, as one dancer put it “in the body’s center,” that is, inside, near the navel. Other users said they felt this in the “gut.”

Later VR artwork, such as Char Davies’ *Osmose* demanded, in the first case, a sustained control of a user’s breath. Since the respiratory system is part of the visceral, Davies’ piece is in the visceral domain, although a visceral response is not her expressed intention (Davies and Harrison 1996, pp.25-28). Most of Margaret Dolinsky’s networked VR art (Pape, Anstey and Dolinsky et al. 2003, pp.1041-1049) is concerned with perceptual shifts. While initially confusing, her work enables users to understand some aspects of the kinds of spatial perception they take for granted. I would argue that in her work, the physical involvement had to do more with the aspects of the visual, sonic, and to a very small degree, the proprioceptive. These aspects are not in the realm of the visceral. Further, the systems Dolinsky employs — the CAVE — had been improved and stabilized, so that the feeling of simsickness was for the most part nonexistent.

However, the form and characteristics of the specific technology extends beyond artistic uses of them. The author’s own collaborative work in VR as a therapeutic modality, for instance, suggested that immersive VR is more effective than opiates during the acutely painful wound abradement of burn patients (Hoffman 2004, pp.58-65), though the number of patients was very small. Similarly suggestive findings were discovered about the *Meditation Chamber*, discussed in Chapter 4.19

Figure 3.4 and 3.5: Ionat Zurr and Oron Catts, 2002, *Pig Wings*.

Art Installation, Medium: Pig mesenchymal cells (bone marrow and stem cells), biodegradable/bioabsorbable polymers (PGA, P4HB), hybridization oven, stuffed animal. Dimensions: 4cm x 2cm x 0.5cm each set of wings. Exhibited, *Con Verge, 2002 Adelaide Biennial of Australian Art*, Art Gallery of South Australia, Adelaide, March 1 – April 25, 2002.

Direct, physical engagement is not the only means by which artwork can elicit a visceral response. For example, “Tissue Culture” created by Oron Catts et al. (Catts, Zurr and Ben-Ary 2002-2007) elicits the abject or visceral reactions in a surprising way. Most of the artworks are small, at a scale that seemed to call for a much nearer look. A few users at several of their exhibits did get very close, as the Petri dishes are difficult to see within its environment. The Petri dishes and substructures for the growth of “tissue” were very strongly suggestive of a scientific laboratory, and cultures for bacteria. Next, the growth of the tissue was on a time scale that didn’t solicit an immediate response; it was more like watching corn grow. Finally, the cells did not cohere in a way we normally recognize as coming from an animal; they were uniform, without anything that resembled veins, tendons, or other textures. Thus, the visceral response I had hoped for curiously did not coalesce for me, or apparently for many others. It did, I would argue, solicit the a modest sense of the abject, as expressed by those who attended the exhibit. But this sense of abjection later seemed to “flow” into a visceral sense, which came afterwards, after thinking about the exhibit, mulling it over and over in reflection or in discussion. That in itself is noteworthy, because the visceral response is one that should be pre-reflective and immediacy itself. The same holds true for Eduardo Kac’s *GFP Bunny* (Kac 2003, pp.97-102). It is the apocalyptic scenarios we imagine that elicit horror or abjection, not of course the “Bunny” itself, whether it is confined to the lab (and destroyed, as planned) or not. So different might the responses be if the animals were the GFP Sea Slug or the GFP Giant Roach.

In sum, this third characteristic, which springs from specific technologies, ranges across many forms of interactive art and technology. What is at play is, first, novelty, which elicits the well-
known “friend or foe” response, though this is usually tacit. Other factors are the undeveloped technological sophistication of the system, like the early virtual environments. This area is the one that will continue to change as the technological forms evolve, and so less can be predicted here than in the realms of interactivity and agency. Forms of AI, BioArt and biotechnologies appear to be the ones that will continue to more regularly elicit an abject or visceral sense, as the Frankenstein-like, out-of-control aspects of human creations gone awry is one of the common narratives and metaphors that concern the public (Thacker 2004, pp.1-12), as evinced by a plethora of articles in the press, movies, and Internet content. Beyond the fear these technologies may provoke, however, is the partial, human-like aspects they can engender. Finally, some of these works, like that by Symbiotica or Bioteknica, curiously do not seem to provoke an internal resonance, though users regularly expect the work to do so. It must be reiterated that my position is not one of technological determinism — human first and foremost create and put technologies to use. Nonetheless, each technological form has certain characteristics that delimit what can and cannot be done with them. To reiterate Merleau-Ponty and Gibson, these affordances provide the ways in which the mind/body intertwines, in specific ways, with the world, whether that world is a technological simulation or nature.

Finally, the fourth aspect of interactive art is that it works in a context of globalization. The provocation of senses such as the proprioceptive sense, once limited to VR and entertainment rides, are now strongly solicited through non-conscious mimicry. Recall the human “flying” scenes in Crouching Tiger, Hidden Dragon (Lee 2000) or House of Flying Daggers (Zhang 2005). What was once passed as passive forms of representation, such as film, are now understood to be more internally provocative than they were once considered (Sobchack 2004, p.6). Though less intense than the directly interactive forms of mimicry, these so-called internal “resonances” or “simulations” have been scientifically investigated (Gallagher 2005, pp.220). They seem to be contemporary versions of the ideas Sherrington presented in the early 1900s and Benjamin articulated in the 1930s, and others have articulated in more recent times (refer to table 2.1).

New technologies and common representational forms, such as film and the Internet, that elicit these resonances are globally available. As Manuel Castells argues (Castells 2000, 2003), the context of globalization is disrupting many areas of life, from the nation-state to individual identities. Many of the effects of globalization may be understood to be negative; however, like most change, there may be arguably positive aspects at play as well. While some may long for a

20 As observed at five of their exhibitions (2003-2006), and in discussions with the artists.
connected oneness of humanity and collective intelligence, one may also desire to experience the vast differences among humans as well. As an essential component to the life of the human, the visceral may likely be experienced in both similar and dissimilar ways in different cultures.21 Gunther von Hagen, the creator of "plastination" methods mentions this on the explanatory texts that accompany his exhibits. Death and the way corpses are treated and displayed are considered in numerous ways across cultures, and, I would add, across different individuals. A physician, for example, might well experience the plastinated corpses with no visceral response, while a person who has never experienced death, or who has been brought up to revere dead bodies may not. An example of this was an experience I had when exhibiting \textit{Dancing with the Virtual Dervish: Virtual Bodies}. Some members of Canada's indigenous people (First Nations) considered being immersed in an environment that was from an MRI of my body, considered it "profane." Thus, they chose not to participate in the VR artwork.

Gunther von Hagen's "plastinated" corpses (fig. 3.6) should be an example of Kristeva's abjection. That is, a feeling of disgust would seem to be one response. However, going through the exhibition in the 60 to 90 minutes that are recommended, the experience of these exhibits begin, I suggest, immediately as a visceral register. It is striking to see a large space filled with plastinated corpses in various poses. The exhibits are relatively dark, with spotlights on the corpses. However, over the course of the 60-90 minutes, I believe the users develop a visceral

21 Thus, the author is extending the \textit{Meditation Chamber} to other cultural practices of meditation outside of North America: India, China, and Turkey through a Presidential Research Grant from Simon Fraser University.
Gromala

sense. Moreover, I would argue that part of the reason the exhibits of these corpses work in this way is that they are contextualized primarily in "scientific" and "educational" terms. The scientific framework seemed to provide a suggestion that one could and should look at the plastinated corpses and body parts from an objective distance. It also seemed to effectively dissuade people from feeling a sense that this exhibit was profane. Nonetheless, one could still smell and see bits of obviously organic tissue and hair that remained. It was made evident that the later corpses were once living humans who willingly signed consent forms that said that they were agreeing to have their bodies plastinated after death. They were thus making a contribution "for science." In the text of the exhibition, the question of whether or not these plastinated corpses may or do count as art is always raised by von Hagens himself in each "mega show," but only as a provocative, unanswered question. However, von Hagens literally and very visibly signs his "most impressive" works.²²

Figure 3.7. An image from the Visible Human Project. Spitzer, VM and Whitlock, DG 1991, Visible Human Project. Website (CD-ROM, database), Medium: Transverse CT, MRI and cryosection images. Dimensions: 1056 x 1528 pixels at 0.174mm intervals.

The Visible Human Project is an example of how and why Merleau-Ponty’s conception of "world" (i.e., contexts) matter. The "meat" in the image above might appear to provoke a sense of abjection. However, the blue green background ameliorates some of that response. If we would not know it is a slice of a human, this might appear to just be a slice of meat. However, any sense of the abject at all appears to fall away when the Visible Human is animated and its 3D instances are offered for "anatomical study" (anyone can buy these "medical" applications).

²² Observed at the Minneapolis Science Center, 12 June 2006.
Gromala

Being able to “drive” through the Visible Humans and interact with the images appears to completely do away with any lingering senses of repulsive abjection. The mass cultural fascination with the Visible Human Project and Body Worlds is of course not new in the course of human history. What is new, however, is the ability to get intimately close without apparent regard for contracting infectious diseases and to “play” or interact with the images of the Visible Human. Cultural critics and other humanists might discuss this fascination in terms of psychological “mirroring,” while Charles Sherrington would have called it a “physical resonance,” as would dancers; Benjamin would term it a physical mimesis. In the last five years, scientists have found “mirror neurons.” When watching a member of one’s own species, or like species, (i.e., primates and humans), these neurons are thought to “light up” in exactly the same part of the brain that is activated when the observer actually does the activity that he or she is observing (Gallagher 2005, p.220). Essentially, this is considered an internal simulation of another’s behavior. It takes place at what Shaun Gallagher (Gallagher 2005, p.237-238) calls the prenoetic or pre-reflective level. This resonance or internal simulation can remain in the pre-reflective realm, or we may bring this sense into our conscious awareness.

3.8 Methodology and Goals
The mind/body systems that comprise the visceral, common to all humans, involve highly subjective experiences. The methodology employed is therefore one that takes experience, including mind/body experiences, seriously: the existential phenomenology following Maurice Merleau-Ponty. The most important aspect of it is a “faithful description” of a perceptual experience from a first-person point of view, staying with an experience until numerous aspects of it are revealed. Further, the arguments about a perceptual experience need to be backed up by examples within that experience. Objective, scientific forms of knowledge can be incorporated, but only if appropriate to furthering the argument, without falling into the complex, abstractions that scientific inquiry can engender.

While this methodology is built upon Merleau-Ponty’s work, some aspects of it are necessarily the result of contemporary, scholarly extensions of his work. The inclusion of Leder’s work on the visceral, for example, is necessary as Merleau-Ponty did not deal with this aspect. Methodologies of existentialist phenomenology combine first-, second- and/or third-person points of view. Following this phenomenological method, the methodology itself is altered in response to the goals and creative intentions of contemporary existentialist phenomenologists. Thus, highly subjective, first-person explications that are the hallmark of existentialist phenomenology are interspersed with traditional scholarly writing and with scientific results that issued from the specific works that demanded them. such as the Meditation Chamber. Other
works, such as *BioMorphic Typography* and the *MeatBook* are squarely artworks to “perform” or exemplify phenomenological ideas; thus, the inclusion of scientific, quantitative data lies outside of the artistic intention, and partially outside of textual description. That is, the artwork *itself* is an important aspect, some of which cannot be reduced to textual form.

Early forms of phenomenology set out to provide a counter balance to scientific methods, which were considered abstractions that employed a method that did not account for context or subjective experience. While Merleau-Ponty was concerned with the assumptions that scientific practice is built upon (Carman and Hansen 2005), he nonetheless did indeed keep abreast of scientific understandings, particularly regarding perception and neuroscience, and was not opposed to phenomenologists who used but questioned scientific methods, especially those who combined them with subjective, experiential components. Thus, when the intention of my work is to produce design, and when I closely collaborate with computer scientists or physicians, I include scientific methods and data. However, while I find this information usefully suggestive, I understand it to be but one component of my phenomenological practice. It is always combined with my subjective, experience and artistic aspects.

As an artist and designer who is interested in bridging scholarly and artistic practices, this thesis also necessarily includes the creation of artwork and the technological systems upon which they operate. It should be noted that while I collaborated on some of the technological systems that were built and recognized as innovative (refer to Appendix 1), such as the Meditation Chamber, I primarily developed the initial system for *BioMorphic Typography* (90%), solely developed the first technological system for the *MeatBook*, and most of its second system (80%). However, the technology is subsumed to the goals of the artworks and should not be considered in terms of Computer Science. The aim of this research is to work toward developing a theory of the viscera, from what I term the visceral register to the visceral sense, as well as a new kind of artistic practice, each of which continually informs the other in recursive loops and iterations. Some artworks were created as experiments, while others stand as exemplars of points to be made that arguably must exceed textual inscription. The new media theorists Shaviro (Shaviro 2005) and Thacker (Thacker 2004a) have made this point about the limits of textually describing sensation, including the MeatBook (Thacker 2004a).

Thus, theory and practice necessarily must function side-by-side because this is an ontological investigation (an investigation of being). As such, to repeat, it takes subjective, embodied experience seriously. A material, experiential instantiation, — that is, the creation and exhibition
of artwork — is a crucial aspect of the research, one that brings the research outside of a purely textual account (refer to the enclosed CDROM).

The functions of the artistic practice in this research are threefold: an artistic method of testing theory beyond textual practices, an embodied tool-to-think-with (conceptually and technically, as technological systems are developed specifically for each artwork) and an embodiment and performance of theoretical precepts in their own right. The groundwork outlined in this document serves as the foundation for developing a coherent, systematic theory of the visceral register and sense, and for testing and embodying it in the praxis of art making. Likewise, the creation of artwork is as often a starting point for the development of a theory as are the textual claims. The resulting intertwining, co-development of artwork and textual research may in turn contribute to a more rigorous and systematic kind of theoretically-entwined artistic practice that may help create the sustainable bridges to related research discourses. This has been the core of my intention and practice for the past two decades, and includes the publication of a co-authored book, numerous publications in art, design, and computer science journals and books, along with some publications in Humanities books and journals (refer to Appendix 1, which is a list of publications, lectures and exhibits that were produced during my enrolment). For work which precedes this time, refer to www.siat.sfu.ca/~gromala.

3.9 My Artistic Background and Context

My interests in the visceral realm and in perception generally have very deep roots in my lifelong experiences. Those are described in a first-person point of view, in the Preface and in italics, at the beginning of most chapters. More recently, while working as a designer at Apple Computer, Inc. in the mid- to late 1980s, I co-designed the interface for HyperCard and its marketing. Since no other multimedia application existed, part of my job was to imagine what people would use it for. Our creative discussions focused not wholly on combining animation with text, sound, and video, but, more to the point, on a user’s perception, senses, and physical experience (though we never realized smell as a component). In the late 1990s, I extended these ideas at the Banff Centre for the Arts. As one of the very first artists to explore immersive virtual reality, I was obsessed with the physical effects it could elicit, so I chose to work with choreographer Yacov Sharir. As he taught me the mostly orally transmitted knowledge that dancers have of their bodies, I shared the difficulties I had with chronic pain and my method to live with it: meditation. Despite our intentions, VR exhibited effects that were surprising. As is the practice of an artist with his tools, we realigned our artistic intention to include some of the aspects that the tool of VR provided: namely, the ability of VR to create a feeling of being “immersed” yet simultaneously physically registering gravity, and its ability to bring to
awareness a sense of proprioception. In Merleau-Ponty's terms, the effect VR has in this kind of context is that of transforming or affecting at least one’s “body image” (Merleau-Ponty 2004, p.104).

What interactive art offers is an alternative to the textual accounts Sobchack refers to: material and virtual instantiations of differing aspects of the corporeal, and first-person experiences. Among these artworks, the visceral offers that which occurs before reflection — in the split second before experience becomes consciously beheld — and enables users to bring into conscious awareness what otherwise remains obscured: a register or sense of the visceral.

3.10 Summary
Interactive art may provide for or provoke the visceral in new ways that extend beyond the abject. In doing so, it may extend Merleau-Ponty’s work because it delves below the primarily surface aspects of what Merleau-Ponty termed flesh, and the active, adult, healthy humans who concerned him (Ihde 2001, p.15). The visceral includes our innermost workings that are necessary for life, and thus may enable various forms of awareness and transformative experiences that prior forms of the fine arts did not, or that achieved them in fundamentally different ways.

3.11 Organization of Subsequent Chapters
This research is informed by Art, Design, Medicine, Physiology, Philosophy, and the Humanities, no one of which offered the specific forms of bodily knowledge and processes that were required. The subsequent Chapters 4 through 6 explore the artworks that were created for this thesis: the Meditation Chamber, BioMorphic Typography, and the MeatBook. Chapter 7 offers a conclusion.

Appendix 1 is a list of publications, exhibitions and lectures produced during the time of study. Appendix 2 is the user studies of 411 participants in the Meditation Chamber. These may be accessed at www.sfu.ca/~dgromala/thesis. Human Subjects Review and Permission require a user login in order to prevent the results from reaching the general (not academic) public. Thus, in order to access the user studies, the reader should first access this website: at www.sfu.ca/~dgromala/thesis; second, click on the <Appendix> link; third, type in the login as <feral>; and finally, type in the password <computing> in the window that appears. Appendix 3 is a collection of transcribed questionnaires from users of BioMorphic Typography. Appendix 4 includes user feedback from the MeatBook. The book Windows and Mirrors is included as a separate volume.
Chapter Four: The *Meditation Chamber*

4.1 Introduction

The *Meditation Chamber* is one of a suite of projects that comprise this thesis and deals with various facets of the visceral, including developing an awareness of and potential control over the visceral sense; the focus of this project is the autonomic aspect of the visceral, including heart rate, breath rate and galvanic skin response (GSR). Although GSR is not included as a measure of the visceral, I argue that it has an indirect place, as GSR is suggestive of state change, especially that of mood. “The galvanic skin response (GSR) signal is an indicator of skin conductivity, and is measured via two small silver-chloride electrodes. An imperceptibly small voltage is applied and then skin conductance is measured between the two electrodes” (Picard 1997 p.162). While we cannot perceive our own skin conductance, it is affected by the hormones that are produced by the gut, many of which are responsible for mood, and thus, they belong in the visceral realm, though indirectly.

This chapter describes the design, implementation and analysis of the *Meditation Chamber*, a bio-interactive, therapeutic, virtual environment. It was initially exhibited at SIGGRAPH 2001 and after minor refinements, is now in use at Virtually Better,\(^23\) along with its 20 partners. The goal was to design and build an immersive virtual environment that used visual, audio and tactile cues to create, guide and maintain a user’s guided relaxation and meditation experience. Real-time biometric data was used to partially control most of the environment, thus shaping the user’s experience. The methodology for this project combined objective and subjective data collected from the participation of over 400 attendees at SIGGRAPH 2001.

Because the *Meditation Chamber* was designed for a clinical context, objective measures were appropriate and necessary. For the purposes of this thesis, subjective measures were simultaneously gathered with objective measures. In the spirit of Merleau-Ponty’s methodology, both objective but primarily subjective measures are used. The objective measures should be understood as suggestive of the ability of users to use biofeedback and guided meditation techniques to relax in a greater state of calm than sitting quietly. A lengthy discussion of the technical aspects begin this chapter, while a discussion of Merleau-Ponty’s ideas are interspersed within the chapter and concludes it.

\(^{23}\) Virtually Better is a treatment facility in Atlanta, Georgia. Patients who suffer from phobias, traumatic-stress disorders, addiction, anxiety and other disorders are guided through their experiences in immersive virtual environments by their psychiatrist or psychologist. www.virtuallybetter.com
4.2 The Effectiveness of Meditation

It is estimated that meditation has been systematically practiced at least for a millennia with scientific certainty (Gethin 1998, p.1). In the last decade, meditation has assumed legitimacy in Complementary and Alternative Medicine and Integrated Medicine in North America and some European countries. Scientific studies have largely affirmed its benefits, including its psychological and physical efficacy and claims (Zamarra et al. 1996; Schneider, et al. 1995; Walton et al. 1995; Barnes et al. 1997; Wenneberg et al. 1997). Moreover, significant inroads to the acceptance of meditation in normative Western medical practices have been made by physicians such as Dr. Kabat-Zinn (Massion et al. 1995) at the University of Massachusetts’ Center for Mindfulness, researchers who belong to the Mind and Life Institute (predominantly neuroscientists and psychologists) and the regular inclusion of meditation practices at numerous Centers for Pain Management24 in the U.S. More than any other practice, meditation enables users to become intimately familiar with their autonomic and interoceptive (stimuli arising from within the body) phenomena, from breathing, heart rate and blood pressure to visceral sensations, depending on the specific meditative practice.

It can be argued that bio-feedback achieves similar abilities. Dr. Neal E. Miller, a pioneer of biofeedback at Yale University states, “Most people are poor at correctly perceiving their visceral responses, such as blood pressure . . . They are like a blindfolded novice trying to learn to shoot baskets. Feedback provided by a device that provides prompt measurement of a biological function has been called biofeedback” (Miller 1978, p.137). Miller continues to say that biofeedback “. . . can be used to help animals and people to learn to improve the perception of certain visceral events” (Miller 1978, p.1). The employment of the biofeedback device chosen (Thought Technologies ProComp+) is utilized for its feedback for users and ease of putting on the sensors. The author and her collaborators follow Rosalind Picard’s sense that biofeedback devices are only suggestive of changes in states (Picard 1997), and are not able to tell us, for example, when a user is in a meditative state with any absolute certainty.

We chose to integrate a biofeedback device with an immersive virtual environment in order to enable users to get real-time feedback and to gain a sense of control over their autonomic functions. However, it must be made clear that a biofeedback device does not of course offer any strictly parallel scientific or objective measures of being in a meditative state. It gives us a good indication of the relative change in physiognomic states. and after decades of testing, is

24 Personal communication from Dr. Sullivan from the University of Washington, Seattle; Dr. Hord and Dr. McKenzie-Brown from Emory University Hospital, Pain Management; Dr. A. Herrera, Yale University School of Medicine; Dr. S. Mackey, Stanford University Pain Management Center and Dr. P. Palmer, Director, UCSF Pain Management Center.
indicative of the relative states of those who are in a meditative state. The most reliable and sensitive measure is by EEG (electroencephalography); however, this device requires 24 carefully measured points of contact on the scalp, and thus was not viable for an exhibition. Further, as measured by an EEG, the lines that indicate a meditative state are very close to those of an incipient epileptic seizure. For our purposes, an adequate indication of changes in real-time states was sufficient by our use of respiration, heart rate and galvanic skin response.

According to Varela, Thompson and Rosch, (Varela, Thompson and Rosch 1993, p.23) the word *meditation* in contemporary America has four most generally used folk meanings:

"(1) a state of concentration in which consciousness is focused on only one object;
(2) a state of relaxation that is psychologically and medicinally beneficial;
(3) a dissociated state in which trance phenomena can occur; and
(4) a mystical state in which higher realities or religious objects are experienced."

These are all altered states of consciousness; the meditator is doing something to get away from his usual mundane, unconcentrated, unrelaxed, nondissociated, lower state of reality."^{25}

While these definitions suggest a primarily secular adoption of ancient religious practices, they are the opposite of the Buddhist practices of mindful/awareness that Varela, Thompson and Rosch were interested in. The purpose of Buddhist practices of mindful/awareness "is to become mindful, to experience what one’s mind is doing as it does it, to be present with one’s mind" (Varela Thompson and Rosch 1993, p.23). Since this takes a great deal of regular practice, the most we could hope for in the short time of testing the *Meditation Chamber* was to introduce users – particularly novices – to their abilities to perceive some of their autonomic senses. Once perceived, the user can then learn to exert control over this sense. While difficult to achieve at a one time session at SIGGRAPH, more sustained use at Virtually Better enables more practice and thus greater control over autonomic processes. Meditation is a process whereby a user continually shifts attention to their autonomic senses and back to their conscious states, just as Merleau-Ponty explained using the example of hands touching hands. In Merleau-Ponty’s example, however, the exteroceptive senses were involved. while in the *Meditation Chamber*, more interoceptive senses are engaged. The difference is that in Merleau-Ponty’s example, attention was shifted between outlying, visible hands whereas in the *Meditation Chamber*, attention shifts between that which usually remains in the background of our awareness — the autonomic senses — and the foreground of the mind. This is not as simple a

^{25} The authors’ "linguistic intuitions" about these categories were reinforced by a content analysis of 189 students at U.C. Berkeley.
process as described, however, because with each breath, one tries to “quiet” or “put aside” conscious thoughts in order to focus. The user can then more easily “tease” out sensations within, pay attention to them, decrease their goings on, and bring them to the foreground of attention. This is reversibility of a different sort, one which Leder terms the “vertical” aspect of Merleau-Ponty’s otherwise “horizontal” explorations. Merleau-Ponty might take issue with the way in which Leder abstracts this difference, however. I would instead use a topological metaphor, or return to Merleau-Ponty’s example of a sock that can be turned inside out. Leder’s perspective will be examined in more detail later in this chapter.

Meditation can be understood to be an inversion, because it inverts Merleau-Ponty’s method of examining pre-reflective perceptions — an inversion because mind is understood to be what initially registers and then controls the autonomic senses in a feedback loop, not pre-reflective perception. One strives for “detachment” from worldly concerns in order to gain a sense of autonomic senses. In meditative practices, it is mind that affects the world, but Merleau-Ponty would instead point to the inextricability of mind from body and both from world. Mind, after all, is directly affected by the hormones and other mood-altering substances created in the viscera. Similarly, one’s state of mind can also influence one’s body. So while I assert that meditation is a form of what Merleau-Ponty termed reversibility, it is surrounded by both Eastern and Western articulations of the process that perhaps inadvertently privilege the mind. In Eastern meditative practices, for example, I found that only by studying them in depth will one find it clear that they consider mind and body to be two inextricable aspects of the same thing. I have not discovered yet that this is also true in Western practices, except as they reference Eastern forms.

An often-unquestioned issue is why would one want to develop an awareness of the visceral. Awareness of interoceptive sensation usually makes itself known when serious phenomena, like food poisoning or cardiac arrest are imminent. By bringing into consciousness some of our visceral aspects, I argue, can one learn to exert some control over them. In doing so, we can become more aware of our visceral selves, which may be transformative. It is transformative in a superficial way, in that we can develop an awareness that we did not already have. However, the effects of this new knowledge may be transformative at deeper levels, if it is practiced and accessed daily. For example, if it can reduce our stress levels, it would have long term transformative effects on both our minds and bodies.

Our initial concern was with stress, which affects almost every part of the visceral systems. The seriousness of stress is often dismissed, underrated or misunderstood. Stress has extremely
negative consequences: it negatively affects immunity and endocrine production and is "linked to the six leading causes of death: heart disease, cancer, lung ailments, accidents, cirrhosis of the liver, and suicide" (CMHA 2007). Similarly, in 2004, the World Health Organization (WHO 2004) stated that stress was indicated as a major factor in 60% of all non-infectious diseases. But a keenly developed visceral sense, honed, say, through meditation, can be a powerful form of prevention. Thus, alternative therapeutic techniques related to relaxation and the management of stress are increasingly employed to augment traditional treatment by drug-based medical therapies. This would seem to be a transformative aspect of meditation.

A growing body of results presented in the literature demonstrate that these alternative treatments show great promise and warrant continued use and study. Drug-resistant epilepsy, hyper-tension, asthma, anxiety disorders, depression, chronic pain, ulcers, colitis, migraine and AIDS/HIV make up only a handful of the medical problems that have been successfully addressed through relaxation/meditation techniques. A 1995 study showed that a group of HIV infected men with sub 400 T-cell counts who were exposed to a collection of relaxation techniques improved significantly when compared to a control group on dependent measures including T-cell count, mood, anxiety and self-esteem (Taylor 1995). Countless studies support the use of relaxation techniques, particularly Transcendental Meditation™, in the treatment of hypertension and other substrates of coronary heart disease (Zamarra et al. 1996; Schneider, et al. 1995; Walton et al. 1995; Barnes et al. 1997; Wenneberg et al. 1997).

In addition, it has been found that as a complementary therapy, meditation may improve function in Parkinson’s disease, multiple sclerosis and other neurological disorders (Chrisman 2007).

Stress is where the external world is perceived in such a way as to present the mind and body with difficulties, rather than as an endless realm of affordances. In the extreme, stress is produced most visibly when the “fight-or-flight” reflex is provoked (Cameron 2002, pp.10, 36, 84). The release and further creation of hormones that have a negative effects on the body is what scientists consider to be a result. These hormones have negative consequences for every visceral system if they are systematically at high levels over time, from raising blood pressure and heart rate to affecting sugar levels in the bloodstream. In addition, focusing on the anxiety produced also amplifies the excretion of the hormones responsible for emotional affect.

In Buddhist meditation, the everyday things one gets caught up in that are less important than they should be is called samsara. The point of Buddhist Meditation is to realize that samsara is considered to be illusory, and so one should detach oneself from it. "The circle of conditioned
human existence is called samsara, which is visualized as a perpetually spinning wheel of existence driven by a relentless causation and pervaded by unsatisfactoriness” (Varela, Thomspson and Rosch 1999, pp.115). By realizing the illusory nature of samsara, the embodied mind, trained in Meditation, can be mindful of these distractions, and by perceiving them, then disregard them. Now freed from the fight-or-flight response, one can affect the world positively, but not responding and therefore adding to the illusory importance of samsara. Meditation reverses the fight-or-flight reflex. Thus, the visceral conditioning, learned through meditation, affects samsara (or the conventional or external world) by not reacting. Meditation is therefore an inversion of the fight-or-flight process because being mindful stops the visceral sense from affecting the mind, and vice versa. (Varela, Thompson and Rosch 1993). Stress can be seen as the external world affecting the body and by extension the visceral response of fight-or-flight, which then amplified and sustained by the mind that can’t rid itself of attachment to the unimportant aspects external world.

Though not fully known, the root of the effect of these relaxation techniques on physical and psychological health is thought to lie in their ability to stimulate the production of certain important hormones, the majority of which are produced in the enteric system, a subsystem of the visceral. It has been shown, for example, that experienced practitioners of Transcendental Meditation™ create in themselves the same endorphin release reaction created by physical exertion in experienced runners, often referred to as the “runners’ high” (Harte, Eifert and Smith 1995, pp. 251-265). It has also been shown that melatonin, thought to be important in health maintenance and prevention of diseases such as breast and prostate cancer, is found at significantly higher levels in regular meditators when compared to non-meditators (Massion et al. 1995). These are only a handful of the most notable and highly regarded studies. Many more are currently underway.

4.3 First-Person Description of Meditating

Meditation practices are varied across the globe, in conceptual or spiritual framing and in technique. In trying to come to terms with living with chronic pain for over 20 years, I have studied many forms of meditation. Despite the differences in technique, many of them share a focus on the breath, and initially seem to reinforce the mind/body split. In traditional forms of meditation, however, I have found that this is more the result of skimming the surface of understanding traditional forms of meditation, rather than understanding it in more depth. In the in-depth understanding, terms are introduced that make clear that mind and body are understood to be two facets of the same, or that there is little distinction at all.
This is a first-person description of my perceptions of meditating. Rather than describe the technique, which begins with focusing on my breath, I will describe the perception of it.

Closing my eyes, I spend some time trying to stay focused, while trying simultaneously to ignore the plethora of thoughts that seem to spring from nowhere. Oddly, these thoughts seem to have a spatial orientation near my head: “right,” “left,” “in front” or “in back” of me. Rarely do they seem to hover atop or below me. I try to turn my attention inward, which is sustained by the rhythm of breathing. Thoughts and sometime images still surround me, appearing and disappearing, but after awhile, they fade in intensity. When I strive to push away or ignore these thoughts and images, I am conscious of doing so. However, my attention oscillates between being aware of what I am doing, seemingly from a detached, or objective third-point of view, with feeling a sense of an inner self, from a first-person perspective. I do not notice when the thoughts and images are gone, but I seem deeper in myself, proprioceptively. It is as if all of me settles around my center (or what dancers and martial artists have taught me to term my center, somewhere inside and a bit below my navel).

Over time, all of my attention is focused inward. Time seems indeterminate and seems to lose all semblance of consistency. The black that surrounds me becomes a deeper black, suddenly, and I feel a sense of being less heavy. More time must pass, but I am ignorant of it. At certain times, the black seems to become blacker and I feel as though I am zooming backwards — not falling per se — but moving backwards as the surrounding black seems to expand around and in front of me, infinitely. My sense of backward movement seems almost to be initiated or pulled from my “center.” Whatever body image I had becomes unsustainable, as my sense of self seems to blur at the edges that now oddly move now and then, and fade into the black. Almost indistinguishable moments of something like euphoria seem to slowing and gently wash over me, like small but gentle amounts of long-lasting opiates. I stay this way for an indeterminate amount of time, sometimes moving backwards, sometimes apparently lighter, but not quite floating. If I meditate for a long time, more levels of deepening black occur, plateau after lower plateau. I “register” any external stimuli, but it seems miles away; that itch disappears, the annoying sounds of a faraway dog, muffled. Nonetheless, I know what is going on in my surroundings to some faraway degree; they seem far away, but I know them to be instantly available. Yet internal goings-on make themselves known, some common, some novel. Some appear and dissipate, others persist and seem to merit attention. In traditional forms of meditation, I am supposed to pay attention to these, as they are indicators of something my body is trying to tell me.
My specific reason for meditating is to gain experience in resituating or “remapping” my visceral pain. This is perhaps the most inarticulable aspect, for the pain does not recede; rather, I “put it” in a different place. The affective states I associate with the chronic pain are definitely changed, as its physical location is “remapped” as I call it. But this remapping and spatial displacement is difficult to sustain — it lasts for a few hours when I am no longer meditating, but a few hours are an immense relief. The experience can be related to the TENS unit pain physicians give their patients — a variable electrical current, placed on either side of the pain is meant to disrupt the pain signal from using its usual pathways, which are likened to deep ruts in a road. The goal, like mine, is to create new pathways; physicians don’t call this remapping, except for neuroscientists, like Ramachandran. I don’t feel anything like electrical current, of course, but more of a “feathering” apart of sensation. Like the TENS unit, it is initially useful, but the mind/body’s adaptability usually renders the effectiveness, after time, less than it was initially.

Emerging from a deep meditative state can be very quick; however, when I do this I often feel a vertiginous state, and am discombobulated. Rather, level by level, I intentionally emerge. I experience a few seconds of sleepiness, but after an hour or so, I feel reinvigorated, and clearer-headed. When clearer-headed, I can be fully present in a room of say, faculty disagreements, but they are not bothersome. This is usually termed “detachment,” but I am fully present, in mind and body. The disagreements though, seem unrelated to me and I wonder why they appear so important to others. I don’t emotionally or viscerally respond to the volatile situation; and this has an effect on the escalating tenor to stop in confusion. For if I don’t respond to a volatile situation (As the Associate Director), how could it be so volatile to begin with?

Merleau-Ponty offers an insight: “My organism as a prepersonal clearing to the general form of the world, as an anonymous and general existence, plays, beneath my personal life, the part of an inborn complex” (Merleau-Ponty 1964a, p.84). The body schema is not a conscious image of the body, but a tacit sense of its abilities and of its relation to the world. Long term practice of meditation can transform our body schema, our comportment in the world, just as sports or dance can. Like learning how to play the piano or learning how to type, “The capacity of going beyond created structures in order to create others” (Merleau-Ponty 1963, p.175) is transformative by developing capacities that range from developing abstract of complex moments, by creating or employing tools and machines to facilitate our goals, in learning to care for others and the change in physical comportment that is required, and in learning to create and appreciate art.
4.4 The Mediation Chamber

However, for people who are new to the practice of any form of meditation, one of the difficulties is in knowing if or when their efforts are indeed achieving anything. Thus, Dr. Larry Hodges from the Georgia Institute for Technology and I, both longtime meditators and creators of virtual environments, hypothesized that using immersive Virtual Reality (VR) might provide users with real-time feedback, enhance their ability to know when they are changing physiological states and potentially decrease the time it took for users to learn how to meditate. The resultant Meditation Chamber is comprised of an immersive virtual environment, a biofeedback device, and customized programming, co-created and overseen by Dr. Chris Shaw, who was the first of two computer scientists who wrote the earliest VR application, MRToolkit.

Figure 4.1: The Meditation Chamber

One roadblock discovered to impede the effectiveness of relaxation therapies is the consistency and quality of the user's experience. Most formally trained medical doctors (or rather, their assistants) are not knowledgeable enough to administer alternative treatments. Also, some people have difficulty with visual imagery and are not good candidates for meditation exercises. The goal of the research project presented here was to design and build an immersive virtual...
Gromala

environment that generated visual and audio cues to create, guide, and maintain a user's guided relaxation and meditation experience.

There are several possible advantages to using a virtual environment to support meditation and guided relaxation beyond providing new meditators with real-time feedback. Patients without good mental imaging skills would still be able to benefit from the use of meditation. Clinicians with minimal training in meditation and guided imagery would be able to provide a consistent, high quality relaxation/meditation experience to their patients with the system we created. Also, by providing specific meditation environments, we can guarantee that participants in future studies all receive identical training and treatment. The use of meditation and guided imagery is well established for its utility in the treatment and prevention of a number of several diseases associated with high cost in terms of both human suffering and financial cost. The possibility of increasing the effectiveness and repeatability of this type of therapy may receive a great deal of interest from the medical community, as has been the case (along with venture capitalists).

4.5 System Design
The system was designed over a period of several months by an interdisciplinary team of computer scientists (Larry Hodges, Chris Shaw), an artist (Diane Gromala) and a psychologist (graduate student Fleming Seay). Hodges and Gromala conceptualized the project. Hodges, Seay and Gromala researched multiple kinds of meditation in order to decide on which would be most feasible and accessible. Shaw and Gromala conceptualized the technical system, while Shaw oversaw its design and implementation. Seay and Gromala conducted research into the current use, successes and failures of meditation in the U.S. and its scientifically proven benefits. Seay also designed one of the quantitative user tests. Gromala was also responsible for the system's media — imagery, sound and interaction — along with the design of several different iterations of the environment, integration of the media with user behavior, as well as the user testing of the control group. Gromala recruited 12 grad students in iterative, participatory design workshops. Decisions about the kind of sound, voice-over, imagery, and sequencing were developed and tested in these workshops. Each had five to seven versions which users tested, ranked and commented on. The end product was a three phase experience that offered a carefully choreographed sampling of basic meditation and muscle tension relaxation techniques.

4.6 Instrumentation
Galvanic skin response, respiration, and blood volume pulse were chosen as the biometrics of interest for this project. These biometrics were collected using the ProComp+, a commercially available device produced by Thought Technologies. The sensors described
below are all standard biometric sensors produced by Thought Technologies for use with the device.

Galvanic skin response (GSR), commonly used in lie-detector tests, is a measure of the change in the electrical conductivity of the skin that results from the body's reaction to emotional stimuli. It is fairly useful in measuring user's general level of arousal as well as tracking changes in arousal as they relate to events in the user's environment. GSR is measured by attaching two electrodes to the user's fingertips and measuring conductivity changes in a reference charge passed through the user's skin. The reference charge is weak enough so that no sensation is created.

Respiration rate was measured using a flexible chest strap that was stretched around the user's upper chest and fitted just below the armpits. The strap was equipped with a length of rubber tubing that flexed and relaxed as the user's chest expanded and contracted during respiration. The change in the length and tension of the rubber tubing was measured and integrated to derive a breathing profile of each user that showed both frequency and amplitude of respiration. As an addition/alternative it is also possible to measure diaphragmatic breathing with an abdominal placement of the respiration sensor.

Heart Rate was measured using a blood volume pulse sensor that monitored cardiac pulse at the tip of the index finger. The data generated was rendered as a line graph showing change in heart rate over time.

The audio-visual content of the environment was delivered to the user via head mounted display. The head mounted display used for this installation was the VFX-3D, produced by Interactive Imaging Systems. This bi-ocular HMD does not have a stereo-visual display, but gives the user an approximately 60-degree field of view, which is larger than most. The unit's large, high quality headphones also figured in to its selection for their ability to deliver robust sound and cut down on the intrusion of external noise. A library written by Thought Technologies allowed us real-time access to the stream of data produced by the sensors. We were then able to write code that allowed us to use this data stream to manipulate aspects of the environment. This feedback loop — or Merleau-Ponty’s reversibility — let the user's bio-rhythmic state alter the environment in subtle ways just as the environment worked to relax the user. Again, in Merleau-Ponty's terms, this is an intertwinement of mind/body and world. At the beginning of the meditation process, users subjectively look to the visuals to see if they can make a connection between what they see in the virtual world and what they feel internally. At this point, users are
primarily engaging their exteroceptive senses in order to reach inward, to their interoception. They reverse between seeing as subjects and in a sense, being seen as objects, as others might see them, and as oscillating between subjects/objects that have some effect on other objects, namely, the visuals and audio.

Figure 4.2: Image of the sunset taken from initial phase.

4.7 Content: Interactive Animation and Sound

Artwork for the Meditation Chamber: Imagery

Larry Hodges, one of my collaborators in developing the Meditation Chamber, is one of the few computer scientists I’ve met who recognize that realistically recreating a scene is of limited value — there is no room for the user to imaginatively “fill in” between the visual or audio indications. In his Virtual Vietnam, for example, he only provided a few tropical trees and sounds of a jungle and helicopter. This was created for the treatment of Vietnam veterans who suffer from post-traumatic stress disorder. A veteran, accompanied by a psychiatrist, relives a traumatic experience while in the virtual environment. Hodges’ approach is very successful, according to the veterans themselves. Similarly, in the Meditation Chamber, we wanted to provide as few indicators as possible, especially because the goal of the users was to focus inward, and progressively ignore outside stimuli.

We brainstormed in order to develop directions for the sound and visuals. We started with the most literal and expected images: the sun setting and the moon rising. While these provided clear indicators that a user was changing states, the images seem cliché. In addition, they didn’t
enhance or parallel the experience of meditating, from my point of view. The more effective visuals were that of jellyfish, which were abstracted. We feared that some users would quickly identify the jellyfish and thus be off put because of painful experiences they may have has with the jellyfishes’ stingers. None of the users reported this, however. The reason for using the jellyfish is that I was searching for non-realistic images that moved fluidly, and that could parallel the rhythm of the user’s breathing. The final contender for ideas of imagery was to capitalize on “medical visualizations,” such as those used by cancer patients. In visualization practices, for example, the patient visualizes the tumor shrinking, being eaten, or destroyed by whatever metaphor was most appropriate to the user’s imagination. Since we were dealing with stress, we thought that providing visualizations of the effects of stress would both aid in the meditation and provide suitable images. Thus, we developed a 3D visualization that depicted blood vessels constricting, tearing and cholesterol forming in the tears, with a voiceover explaining the effects of stress on the body. While this was certainly educational, it required constant attention, and did not provide a way for users to associate any of their perceptions with the visualization. Other images, like the fluid, abstract, moving lines like those found in the iTunes visualizer were explored, but again, these images seemed to pull the user’s attention forward. In addition, they did not provide a cause-and-effect relationship. In testing the images among the faculty, graduate and undergraduate members of our labs, the more ethereal images were preferred, with the jellyfish as the clear front runner. Although we did not have time to overcome the technical difficulties of integrating the jellyfish movements precisely with the breathing patterns of the users through the biofeedback device, we did provide an indication that their was a cause-and-effect. The abstracted jellyfish also were successful because they were “hypnotic,” which seemed to be in sync with breathing, and seemed to prime users for meditating by focusing inward. When users felt they were indeed relaxing or lowering their physiological measures, they generally closed their eyes. The abstracted jellyfish augmented this turning inward of attention by slowly dissipating and fading to black. At SIGGRAPH, we used both the sunset and the jellyfish. Because the abstracted jellyfish were more complex, they took longer to display. In the final, debugged version, however, this was attended to and now playback in real-time (refer to the CDROM: Meditation Chamber).

Artwork for the Meditation Chamber: Audio

Sound, on the other hand, worked in a different way than the visuals. There were two forms of sound: the voiceover that instructed users, and the ambient audio, which ended up sounding something like abstracted, flowing water.

The first aspect, the voice-over, was used to guide meditators, and was used as infrequently as
possible, so as to not interfere with the process, or to bring people back to the "exterior world."

A number of voices were tested — the initial test subjects objected to all of them. These initial test subjects in our labs at Georgia Tech almost always rejected voices because of apparent aspects of character and personality they attributed to each voice. For instance, users would say that one female’s voice “sounded like she was a bitch,” or that “she was annoying and probably clingy.” Male voices fared slightly better, but again, comments ranged from “he sounds like he’s trying to be on the cover of GQ (magazine)” to “he sounds like a wuss.”

We then found more trained, expert voices from members of the Theatre department. They fared little better, with comments that ranged from “he sounds like a robot — is he an Electrical Engineer?” to “he sounds like a salesman — he’s trying too hard.” In the end, to our surprise, the voice of our collaborator, Fleming Seay, troubled very few test subjects, so we chose his voice.

Many sounds from nature were tested, with the idea that they would serve as ambient sound. Our exploration began with voice-less, and the least sugary “New Age” and First Nation’s wind instruments, along with very quiet but deep bass drums. Users found all of these cliché. Electronic, ambient music was tested, as well as slower versions of “jungle” and ethnic music. These seemed to demand more attention and had rhythms that seemed to work against meditating. The original recordings of a stream did not test well among our test subjects at Georgia Tech, though some test subjects said it had promise. Some users found it distracting, (especially if any birds were heard), some said it was monotonous, while a few said it elicited in them the “urge to pee.” The abstracted version of a running stream, particularly without birds, did not seem to bother users. This background, more abstracted ambient sounds that we found most pleasant also tested well.

In the final version of testing, we decreased the volume of the ambient sounds when the voice-over was playing, and slowly decreased it during the time users were to lower their physiological states, though this was not interactive. At SIGGRAPH, the audio and the headphones also served to muffle the noise of the conference, from people talking as they walked by to the blings, buzzes and clicks of nearby electronic work. Though we asked for a quiet space and were supplied velvet curtains to muffle sound, the top of each station could not be covered, according to the fire marshal, so finding a dark and very quiet space was impossible.

Phases of Meditation in the Meditation Chamber

This initial phase served to relax users and introduce them to the experience. After being asked to breathe deeply and relax, the user was presented with a visual depiction of the sun just before sunset. A narrator's voice told users that the sun would drift lower and lower in the sky as they
Gromala

relaxed, breathed deeply, and flushed their mind of worldly concerns. The sun would then start to move downward very slowly, toward the horizon (see Figure 4.2). As the user began to relax and their GSR declined, the rate at which the sun moved would increase until the sun went beneath the horizon, giving way to a peaceful though highly abstracted night scene (i.e., a horizon), replete with chirping crickets. If the user was unable to become relaxed or if their GSR increased, the sunset would slow down. After the sunset, the second part of this relaxation phase operated in the same way as the first, but depicted a moonrise instead of a sunset. As the user relaxed and lowered their GSR, the moon would rise higher and higher into the sky. The user’s GSR measure determined the frame-rate at which the sunset / moonrise animation would play.

At each measurement interval, the current GSR reading was compared to the previous GSR reading, and if the GSR value had increased over the time period, the current frame of the sunset/moonrise animation would be paused. If there was a decrease in GSR, the sunset/moonrise animation would step forward one frame. The measurement period for this GSR comparison was one second, although the system was continually reading data from the ProComp unit at its update rate of 120 samples per second. This simple scheme of stepping forward a frame at every decrease in GSR reading helped solve the problem of users’ GSR readings being different from person to person. It also helped ensure that users progressed through the animation, and successfully dealt with the arrival of extreme GSR values, since only second-to-second decreases resulted in a shift in sunset/moonrise imagery.

Depending on the frame-rate the user achieved, this combined sequence took 2-4 minutes to complete. Users were not told explicitly of the relationship between their GSR and the frame rate of the animation so that they would make no effort to “play” the environment and would instead concentrate on the experience of relaxation.

The second phase of the experience was a guided, progressive muscle relaxation exercise. The user was coached to flex, hold, and release a set of eight different muscle groups including the legs, arms, abdominals and shoulders (see Figure 4.3 and 4.4). Each muscle group sequence was accompanied by gender-appropriate visuals depicting the described motion, usually from a first person perspective. Visualization of mouth and eye flexion necessitated the adoption of a third person perspective. Male users viewed a male body performing the exercises while female users

26 Many SIGGRAPH-goers are technically expert in a variety of technologies. The more youthful participants sometimes exhibit a “hacker” mentality and are known to often try to “break” or “play” SIGGRAPH work.
viewed a female body, by unanimous preference. This phase was not initially interactive, but instead asked users to listen to the narrator’s instructions while mimicking the movement examples visually presented to them on the screen. The progressive muscle relaxation phase lasted roughly 6-7 minutes. The nature of flexing and relaxing the major muscle groups provided a tangible experience of the creation and, more importantly, the release of tension. The changing of first-person to third-person points of view did not seem to have an adverse effect. Further, as in keeping with Merleau-Ponty’s reversibility, we designed the phases so that they would progressively flow from oscillating between first-person points of view to third-person points of view to more and more focus on first-person, interior-focused points of view.

<table>
<thead>
<tr>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relax, Breathe deeply</td>
<td>guided, progressive muscle relaxation</td>
<td>“follow your breath”</td>
</tr>
<tr>
<td>2–4 minutes</td>
<td>6-7 minutes</td>
<td>7 minutes</td>
</tr>
</tbody>
</table>

Figure 4.3 Phases in the Meditation Chamber

Figure 4.4: Muscle relaxation. Phase two, the muscle relaxation phase, was guided by visuals and audio narration.

In anecdotal testing, users preferred an avatar of their own gender, and reported that the opposite gender were “disruptive.”
The third phase was designed to teach users a basic meditation called “following your breath.” During this phase of meditation, users are asked to focus all their awareness on the sensation of their breath coming and going from their nostrils. If other thoughts entered their awareness during this time, they were told to push them aside calmly and firmly and to remain focused only on their breath. This phase lasted approximately seven minutes and was accompanied by an abstract visual display created by putting several image filters on top of video of a swimming jellyfish. The image seems to pulse in time with users’ respiration. The audio during this segment sounded like calmly moving water and was sampled from sounds taken from a waterfall. It was the intent of the design that users would eventually close their eyes in an effort to more fully focus on their respiratory sensation, shutting off visual stimulus. The jellyfish images faded and disintegrated as users’ biofeedback measures were reduced, and eventually faded to black. Most users reported shutting their eyes before the image faded to black.

![Figure 4.5](image_url)

Figure 4.5: In Phase 3, as users’ reduced their physiological states, the jellyfish became increasingly abstract, eventually dissolving into black. Most users reported shutting their eyes before that time so they could better concentrate. Interestingly, they did not similarly find the audio to be distracting.

4.8 The Installation

The system was installed at the Emerging Technologies Exhibition at SIGGRAPH 2001. A four-station installation was created to accommodate as many conference attendees as possible while still keeping the installation manageable in terms of cost and staff. We used four VFX-30 head mounted displays, four ProComp+ biofeedback units and four PCs to run the installation. The PCs were networked to allow access to a common printer that was used to generate takeaway feedback forms for the participants. Due to high demand and the fact that the experience took roughly twenty minutes from beginning to end, we instituted a reservation system in order to avoid long lines.

When users arrived at their reservation time, they signed an informed consent sheet and were able to ask any questions they might have had about the experience. Users also
completed a brief pre-experience inventory, an instrument that asked them how relaxed they currently were and to what degree they believed they could become relaxed given a calming, fifteen-minute experience. Users were told that their biorhythms would control the environment in subtle ways, but they were not told specifically how this would occur. Again, this design decision was made to minimize the degree to which users would attempt to “play” the environment, attempting to alter their respiration or other bio-rhythms in order to test the effect they might have on the environment. Having signed the form, users were seated in one of the private booths and fitted with the sensors and the HMD. Once users signaled that they were ready, the application was started and the user was left alone in the booth. The experience proceeded as described in the Content section above. The version of the environment exhibited at SIGGRAPH 2001 did not contain an implementation of heart rate and respiration based interaction due to technical difficulties. However, these data were still collected from each participant. GSR-based interaction was fully implemented as described above.

At the end of the experience, an attendant returned to the booth to help the user remove the sensors and HMD and then escort them to the debriefing area. In the debriefing area, each user completed a post-experience inventory asking how relaxed s/he felt following the experience, and soliciting any comments he or she might have about the installation. They also received a feedback sheet and a brief consultation from one of the project’s principal researchers. (Refer to Appendix 2 for samples of the questionnaire.)

Each user’s biometrics (GSR and respiration) were printed out as a line graph on the feedback sheet, which contained an explanation of how to analyze the graphical representations of his or her experience. The consultation included a visual analysis and explanation of the user’s data as well as an interpretation of whether or not he had a relaxing experience based solely on what the data suggested. Following the consultation, the feedback form was returned to the user. Users were free to leave or remain in the area to discuss their experience further with another member of the research team. We observed that almost every user took their print-out and approximately 85 percent of users remained to get more information. This area was always in high demand.

4.9 Results
Four hundred and eleven SIGGRAPH 2001 attendees experienced the installation during the five-day exhibition. Analysis of the biometric data generated by each participant could still be examined for purposes of Computer Science, but we are prepared to report preliminary observations about the data. Also, we can report on the completed analysis of the subjective
measures of relaxation collected in order to assess how effective the installation was in providing each individual with a relaxing experience.

4.10 Objective Measures

We have analyzed the extensive amount of biometric data collected from the SIGGRAPH attendees, concentrating mostly on the GSR data. Preliminary analyses show that two general patterns of GSR profile can account for nearly 75% of the generated data and are each generally accompanied by two distinct respiration profiles. Just over half of the participants exhibit what can be called a "novice" GSR profile. This means that their GSR level starts relatively high, descends through the first phase of the experience, kicks back up and shows peaks in the muscle relaxation phase, and then begins to decline again in the final phase, ending up at or usually beneath the low established in the first phase. The top two GSR graphs shown in Figure 4.6 are typical of this profile. These two graphs are of two individual subjects.

Breathing patterns in individuals exhibiting the novice profile tend to be steadier and deeper in the final phase than in the first phase. The second profile, which accounts for nearly a quarter of the GSR data, is termed the "expert profile." Individuals exhibiting this profile show precipitous drops in GSR during the first phase, entering a very low and often flat GSR state before the muscle relaxation phase begins. This flat-line state is typically maintained throughout the remaining two phases, and is accompanied by a very steady but not necessarily deep breathing pattern. Individuals exhibiting the expert GSR profile also show very consistent respiration rate and amplitude throughout the experience. The GSR graph at the bottom of Figure 4.6 is typical of the expert profile as measured from data of an individual subject.
Figure 4.6: Sample GSR graphs typical of the novice (top two) and expert (bottom) profiles. Vertical lines are shown to estimate the transition points from one phase to the next.
To compare the response of all of the participants before and after the Meditation Chamber session, we compared the values of the post-session relaxation to the pre-session ratings per participant.

The average pre-session relaxation rating was 5.63, with a Standard Deviation (SD) of 1.75. Thus, before the session, participants were midway between relaxed and anxious. The Standard Deviation indicates where most participants rated their relaxation, with most participants falling in the range (3.88 .. 7.38) (Average − SD .. Average + SD).

The average post-session relaxation rating was 8.00, with a Standard Deviation of 1.69. Thus, participants were somewhat relaxed (8 out of 10) after the session, and about 68 percent of the participants rated their relaxation between (6.31 to 9.69).

To statistically test if these different averages were due to chance, we performed a statistical test called the t-test, which compares a pair of collections of measurements like the relaxation ratings, and computes a probability that the averages are the same. A high probability indicates that the two measurements are the same.

A repeated measures t-test showed that post-session relaxation ratings (M=8.00, SD=1.69) were significantly higher than pre-session ratings (M=5.63, SD=1.75), \(t(410) = -24.45, p=.0001 \). That is, the probability is 0.0001 that the difference in before and after relaxation ratings is due to chance, which is highly unlikely, equivalent to one chance in 10,000.

Forty-nine of the 411 participants reported equal or lower levels of relaxation following the experience, with 18 of these reporting the same level, and 30 reporting decreases in relaxation of 1-3 scale points. The other 362 participants reported levels of relaxation 1-8 points higher following the experience, with a mean difference of 2.88 scale points between pre- and post-session ratings. There were no gender differences on either relaxation rating.

Twenty participants reported that they did not believe that they could become relaxed by the experience. Of these, 2 reported equal and 2 reported lower relaxation ratings following the experience. The rest reported higher levels of relaxation. As this suggests, there was no significant relationship between response to item two of the pre-session inventory and the difference between pre- and post-session relaxation ratings.
4.11 Discussion of Experiment
We decided to refer to the novice profile as such because people who reported little or no experience with meditation or other relaxation techniques displayed it most often. Similarly, the expert profile gets its name from its association with individuals who reported high levels of experience with relaxation techniques, meditation, yoga, and even distance running. The novice profile is characterized by relatively mild GSR drop in the first phase and an extreme GSR reaction during the muscle flexing activities of the second phase. In contrast, expert profilers show little if any GSR reaction during the muscle relaxation phase, maintaining a nearly flat level throughout the latter two phases, following an initial, precipitous drop. In terms of respiration, novice profilers are more influenced by the coaching they received in the third phase of the experience, causing them to show a deeper, slower breathing pattern in this phase compared with the first. Expert profilers seem to have a very consistent breathing pattern with which they are comfortable, as it is maintained without much change in frequency or amplitude throughout the experience. Breathing patterns for all participants are somewhat similar in the second phase due to the frequent held breaths associated with various muscle flexions.

The subjective data clearly suggests that most people who experienced the environment emerged significantly more relaxed than they were when they went in. Of course it can be pessimistically argued that this effect might be due to the fact that participants were able to sit quietly for fifteen minutes. Though we initially discounted the strength of this argument, a baseline condition in which participants are seated and monitored for the same length of time without exposure to the environment's audio or visuals was conducted.

4.12 Baseline Condition: Sitting Quietly
In the Baseline condition, each participant sat quietly in a room for 20 minutes with the Galvanic Skin Response (Skin Conductance) sensor, the breathing sensor and the heart rate sensor attached to the participant's body. To maintain conditions as similar as possible to the experimental condition above, participants sat in the same chair wearing the same type of sensors on the same Thought Technology measurement unit. Each participant sat in a quiet room with approximately the same light levels. The sound level heard by the participant was probably the same, but in the baseline condition, participants did not wear headphones. Unlike at SIGGRAPH, where subjects wore a Head-Mounted Display with sound insulating headphones.
Participants were each asked to sit quietly and relax for 20 minutes in the chair while wearing the biofeedback equipment. During this time period, we collected GSR, Heart Rate and Breathing measurements. We collected data from 16 participants, all adults in the range of ages from 22 to 35 years.

The main findings are as follows: We took each sequence of GSR readings and transformed them. Because each participant had a different starting GSR value, we transformed each participant’s readings to a percentage scale. This allows us to more reasonably compare readings between participants. The average value of a participant’s GSR over the first minute of the experience is equivalent to 100%. In the graphs shown in the figures, all GSR readings are converted by dividing each GSR value by the participant’s first-minute-average and multiplying the result by 100. Thus, in the graphs, readings of 100 mean that the participant’s GSR is the same as when they first started.

Regarding GSR measurements, we found that each subject at least briefly experienced a relaxation curve similar to the ones we found at SIGGRAPH. That is to say, GSR readings dropped over the course of a few minutes and tended to level out. Upon analyzing the GSR graphs, we noticed 3 categories of response.

Category 1

Relaxers are people who exhibit lower and lower GSR readings during the 20 minute time period. Five of our 16 participants were Relaxers. The graph of participant 10 is typical of a Relaxer. After an initial period of higher GSR readings, GSR values dropped continually during the experiment period to less than 80%, and stayed below this level.

Category 2

Semi-Relaxers are people who briefly relax, exhibiting a drop in GSR over 2 or 3 minutes, followed by a briefer period of GSR readings above 100%. This contrasts with Relaxers, whose GSR readings may briefly increase, but never above 80%.

Category 3

Non-relaxers are people who do not experience a drop in GSR, but who instead experience readings that spike higher than 100%, often for more than half the time period. There are 8 participants in this category, of whom 7 of the 8 have average readings above 95% over the whole time period.
In summary, half of our subjects are not able to experience significant drops in GSR over the 20 minute time period of just sitting quietly.

4.13 Subjective Measures
The first question on the pre-session inventory asked users to rate their current level of relaxation from 1 (very anxious) to 10 (very relaxed). The second item was a YES/NO question asking whether or not the user felt that he or she would be able to become relaxed given a calming fifteen-minute experience. The post session inventory also contained two items. The first asked users to re-assess their level of relaxation using the same 1-10 scale, with 10 being very relaxed. Following this was a free response item that asked the user for any comments, criticisms of, or insights about the experience. (Refer to Appendix 2.) This questionnaire was filled out during the hubbub of SIGGRAPH, in about 3 minutes, so users did not have a chance to think very deeply about their experience.

Most of the subjective comments were nonetheless positive. Negative comments had to do with the heaviness of the HMD, and the noise from the other exhibits. One user complained that “the HMD cut off two” of her “chakras.” The positive comments were that users felt relaxed, though many initially wrote that they did not expect to. Other users expressed enthusiasm about areas of possible application. At exit, when we gave users a copy of their changes in states, many users became even more positive and expressed surprise that they could “learn” how to lower their measures and “feel” them. Many other users, however, did not seem to trust their own sense of when their states were becoming lower. Therefore, the printouts seemed to confirm what they felt. Some, for instance, would point to the time markers on the print out and say, “yes! I knew I was doing it there,” or “this is when I first felt something.”

In terms of visuals and audio, 72 users had positive things to say about the audio. The visuals were more problematic. While some users said that the sunset/moonrise helped them “figure out” when they were “dropping” their physiological states, they did not seem to know when they were having an effect on the system. More users preferred the jellyfish, which, according to several users, “seemed hypnotic” and seemed to “mimic what I saw when I close my eyes.” Twelve users wanted more abstract visuals. Nonetheless, the majority of users did not know they could close their eyes, and thus felt distracted by both versions of the visuals. Many users, for example, seemed to fight the urge to close their eyes or they just found the visuals distracting, especially in the latter parts of the meditation. This may imply that in general humans are better at sensing interoception when they can block out much or all of the exteroceptive stimuli. Additionally, users often complained that they could not figure out what effect they were having
on the biofeedback system, and many said that the system needed to be more "sensitive" and "responsive." Taken these two factors together, they seem to imply that there needs to be a closer tie between the system's visuals and the user's body – that the visual representations need to be directly mapped to the biofeedback processes. (This was the intent, but technical issues prevented it from being realized as completely as it was for the debugged, Virtually Better version.) This would offer users something to focus on (like the traditional method of concentrating on breathing). Two users suggested that it would be helpful to hear their heartbeats. Taken together, the responses seem to indicate that users wanted a different balance: less of a guided experience and more of a self-directed biofeedback loop, though they did not want all of the guided experience to be dispensed with completely.

There were also a problem with users who felt like they had to decipher or beat the machine — one that we anticipated from a SIGGRAPH user group — which produced anxiety rather than alleviated it. This group also felt that the Meditation Chamber was too game-like. While we want users to understand that they are receiving biofeedback indicators, (thus having an effect on the system), care must be taken to keep it from becoming a game-like goal. Users indicated that it felt most game-like when the sun set and the moon rose. One of these respondents suggested that a pattern that pulses to the user's heartbeat would work better and would be less game-like. It is important to note, however, that none of the users at Virtually Better, who are as a group a generation older that the users who mentioned that the Meditation Chamber was game-like. Thus, of course, context seemed to matter.

As was my initial design goals, I wanted at least two different versions that users could choose from, but time prevented the realization of this. Current work is addressing this issue.

4.14 User Comments

Most users at SIGGRAPH 2001 wrote in the area provided for "other comments." On the whole, comments were overwhelmingly positive. Many users spent time to suggest specific improvements for the next iteration, which we found to be an unexpectedly positive form of brainstorming. A few comments were too subjective to be useful for anything other than another version created specifically for that individual. Most suggested options and ideas for sound, audio and voice. Several users recommended that we try using the Meditation Chamber for the alleviation of pain for cancer patients. It was clear during the design, exhibition, and testing that sound far outweighed visuals in importance. It seems that visuals tend to focus attention outward, whereas sound can function in a more ambient way. A few users wanted immediate
feedback from the biofeedback device so they knew “it worked.” Many users wanted the experience to last longer, at least 40 to 50 minutes altogether.

Negative comments were grouped into two areas: the exhibition space and the equipment. It was not possible to build anything approaching soundproof booths at SIGGRAPH; many users found the sounds from other exhibitions to be distracting. Further, although we had fabric on all sides of each booth, light leaking into the booths was also found to be distracting, though not as much as sound. The single most distracting element was the head-mounted display, which was both comparatively heavy and forced the head slightly forward in an uncomfortable position. A few users mentioned the chairs were uncomfortable, and some wanted to sit on the floor. The voice-over, which was the most difficult part of the design, was also cited as being annoying, though none of the ambient music and sounds were. Some users fell asleep.

Thirteen users compared their experience to the specific kind of mediation they regularly practice and were generous in suggesting specific in-depth ideas to consider. We intentionally made this first prototype a general combination of the most common forms of meditation and muscle relaxation. Finally, six of the regular computer science SIGGRAPH-goers denigrated our exhibit but we encouraged them to try it as often as they taunted us. Surprisingly, all six tried the Meditation Chamber at different points in time; all came out unusually positive and markedly relaxed (measurably and in subjective terms). These last comments from regular meditators and those suspicious of meditation convinced Gromala that she should carry on with creating more culturally specific forms of meditation.

4.15 Discussion

Plans to fully implement the heart rate and respiration based interactivity originally designed to be included in the system have been completed. This version of the software is being used by Virtually Better and has thus become propriety software. Heart rate used to control the audio in the environment was less successful than we hoped, so we dropped that idea. In addition, so-called 3-D or spatialized sound was tried but was unsuccessful because in order to perceive spatialized sound, users must move their heads, which is distracting for those who are trying to meditate. Ambient sound, however, was not found to be distracting. Respiration is used to control the pulsation of the visuals. More time for meditation, in addition to “following your breath,” are also included in later versions of the system.

A beta version of this later version of the Meditation Chamber has been distributed to twenty clinical partners across the U.S. for evaluation and feedback. With respect to the more general
topic of bio-interactivity, members of the research team have explored the use of GSR and other
biometrics in interactive art, kinetic typography, and augmentation of the sensing abilities of
remote intelligent agents.

4.16 Merleau-Ponty, Leder and Mind/Body Unity

Meditation is a complex practice, and I can compare it to Merleau-Ponty’s notion of reversibility
only so far. In the Meditation Chamber, for example, users’ experience from a subjective aspect
in terms of looking at the visuals, hearing the sounds, trying to focus and reduce their
physiological states. But users also reverse this to an objective state when they “see” themselves
from the outside, as others might. The constant struggle between the two, though two sides of
the same “coin,” is the beginning phases of meditation.

But Merleau-Ponty examined, primarily, our exteroceptive senses — senses which are outward-
focused, expansive. Leder calls this the “ecstatic” aspect of ourselves, though he means
expansive, and not “out of body.” This is easily understood when we look into the horizon. We
feel, in some sense, this extension of ourselves, of our ability to see farther than where our
bodies are located in the here and now. Conversely, Leder calls our usually quiescent and
invisible inner aspects, such as our visceral sense, “recessive.” We have little control over our
visceral sense, especially if we have no practice to sense it. When we are hungry, as Leder uses
as an example, we feel twinges of hunger, but also, our arms feel heavy, we perceive an overall
sense of fatigue. If we delay eating, this sense seems overwhelming, and propels us to find food.
When we eat an apple, we taste it, chew it, feel it slide down our throat — but then it is gone,
disappearing inside of ourself. We can sense later a bit of reflux, perhaps a sound of gas within,
and later, an urge to defecate. These are just moments of being conscious of what is otherwise
unavailable to us, our viscera. This is an example of what Leder means by the recessive nature
of our viscera, our absent body.

Further, Leder suggests that Merleau-Ponty’s analysis requires a deeper concern for the “deeper
blood relation with the world” in the form of the visceral body. In Leder’s words, “I am not just
gazing upon the world but one who breathes, feeds, and drinks of it, such that inner and outer
corporeity intertwine” (Leder 1990, p.38). Leder continues to argue that a proper description of
flesh “must also include a consideration of how Being conceals itself in our visceral relations
with the world: how Being, for instance, can be found in the background provided by the
functioning of vital organs which make vision possible” (ibid.). The visceral, he claims,
introduces “another sort of depth, another sort of invisibility. a ‘vertical synergy’ to complement
the horizontal nature of fleshly transcendence” (Steeves 2001, p.148).
So deeper in meditation, when we are almost completely focuses inward, it would be difficult to continue with Merleau-Ponty’s sense of reversibility, because we are struggling not to be concerned with anything but our inner sense. We are not looking at or touching something outside of us, some object. We are rather looking inward, into ourselves, into our viscera, which generally functions to be invisible, to not make itself known except in cases of disease or dysfunction.

To repeat, *Flesh* was the term Merleau-Ponty used to refer to the “corporeal consciousness” (Merleau-Ponty 1968, pp.151), which the body is productive of. “The flesh, then, is neither subject nor object, and forms a medium between the two for the appearing of Being. (Merleau-Ponty 1968, p.149). Yet,

“flesh is not a chaotic structure based solely on chance, but is rather grounded in a series of divergences and levels that already partially determine what the world can mean for consciousness. Flesh involves an open and dynamic medium for the appearing of Being, that is neither subjective or objective, organic or chaotic, but a system of levels and dimensions in which Being can become meaningful” (Steeves 2004, p.150).

If we continue to explore Merleau-Ponty’s concept during the deeper phases of meditation, we need to understand our flesh as “a series of divergences and levels that already partially determine what the world can mean for consciousness” (ibid.). The divergence in this case is our ecstatic and recessive aspects of our own body. Further, according to Merleau-Ponty, “flesh involves an open and dynamic medium for the appearing of Being” (ibid.), an openness to explore our innermost viscera. Our body, to reiterate, “is neither subjective or objective, organic or chaotic, but a system of levels and dimensions in which Being can become meaningful.”

At this point, reversibility is less important, less useful for our understanding than flesh, than “its systems of levels and dimensions” (ibid.) that we explore when we meditate. In meditation, a unity of mind and body is what one strives for, not unlike Merleau-Ponty’s striving to undo dualistic thinking. Except for the cultural times in which he lived, it is odd then that Merleau-Ponty did not explore meditation.

In *The Absent Body*, Leder compares the way different spiritual practices strive for a unity of mind/body and world in different ways. “Unlike the Christian ritual,” he says, “which infuses something pure into the body. Zen purified the body/mind by a stripping away” (Leder 1990, p.170). This involves ridding ourselves of ways of thinking and acting that reinforce dualities such as good versus bad or self versus Other. Slightly akin to samsara, according to Zen, we
Gromala

cling to an illusion that is a personal "I" but this "I" is always a source of fear, threatened by pain and death. Even Leder seems to avoid the issue of meditation for phenomenology, saving it for his last chapter, and leaving the best to footnotes of that chapter. Accordingly, in Zen meditation, one,

"begins to suspend, examine and overcome this" (ibid.) separation of mind and body.

"The lived experience of the inner body may be better expressed by certain non-Western medicines and cosmologies than by anatomical descriptions of the West. Chinese Taoists picture the viscera as centers along greater and lesser pathways for the circulation of \(ch'i \), a blood/breath energy. Similarly, Buddhist envision a "subtle body" as well as a physical, with chakras, nodes through which \(prana \), a subtle breath, flows. Such schemas are meant to have not only explanatory but phenomenological power, charting experiences open to the ordinary person or to those who engage in spiritual practices. These energetic portrayals may capture the subtle and shifting quality of inner experience better than an image of fixed, massy organs" (Leder 1990, pp.182-183n10).

Many if not most forms of meditation focus on the breath. According to Leder, "physiologically, respiration stands at the very threshold of the ecstatic and visceral, the voluntary and involuntary. While we can modulate our breathing at will, it is primarily an autonomic function" (Leder 1990, p.171). "Inside and outside, self and Other, are revitalized, porous. each time one takes a breath" (ibid.). Striving for a unity between mind and body is not limited to breathing, however. Other traditions focus on chanting, moving, or ingesting hallucinogens, to cite a few. For Leder, "In eating, breathing, perceiving, moving, the body transcends itself through its commerce with the world" (ibid.). By transcendence, again, he means not overcoming the limitations of the body, but of an ever fluid and elastic body whose perceptions can go far beyond the body, but be suited in it simultaneously, as the basis of those perceptions.

4.17 Summary

The Meditation Chamber was created to enable users to reduce their stress levels by relaxing through meditation. Technology, of course, is not necessary for meditation, but our virtual environment, combined with a biofeedback device, provided users with indications of when they were lowering their physiological states, particularly their GSR, but also heart rate and breath rate. While these indicators are not sure signs that the user is in a meditative state, they are known in biofeedback circles to be strongly indicative of those states.

We tested the initial version at SIGGRAPH 2001, a large conference comprised of computer scientists and artists. We found that the Meditation Chamber works better than just sitting quietly. We also found from user reports that the feedback, as was originally designed, needs to be in a tighter feedback loop. After the initial testing, we debugged and refined the Meditation.
Gromala

Chamber, which is now used for therapeutic purposes at Virtually Better and its partners. Through the design of the *Meditation Chamber*, we learned that audio is far more effective at guiding and providing the user with feedback than visuals. Visuals seemed to rather interfere with meditating, probably because it keeps the user’s focus outward.

In terms of Merleau-Ponty’s reversibility — the ability of users to feel that they are both object and subject — occurred initially, when users employed their exteroceptive senses to look at and hear the feedback from their bodies. But because users were focusing inward, trying to experience their interoception, the notion of reversibility needed to be understood, as argued by Leder, in terms of the ecstatic/recessive body. Thus, the *Meditation Chamber* necessitated a more complex understanding of Merleau-Ponty’s notion of reversibility. Nevertheless, the way Merleau-Ponty ultimately articulated it in terms of flesh does not cease to function because one is inward looking. Rather, it is an example of how fluid and complex the body can be.

The *Meditation Chamber* can be understood to be transformative because people largely experience relaxation, subjectively and “objectively.” With longer term practice, the possibility of transformation increases from a more intimate awareness of our inner viscera, but through the control of it, it may potentially transform the practitioner’s relative health, sense of unity between mind and body, and, by the way they don’t respond to stressful situations, may transform their local environment as well.

According to Merleau-Ponty, “The body and its distances or differences” (such as that holding between the visceral and the exteroceptive), “participates in one same corporeity or visibility in general, which reigns between them and it, and even beyond the horizon, beneath its skin, unto the depths of being” (Merleau-Ponty 1968, p.149). But this can be transformative too. In Merleau-Ponty’s words, “Gesticulations and simple skills of balance and posture are developed through practice into personal styles of living, and these shape the way the person feels about herself and interacts with others” (Steeves 2004, p.2). These practices may include a deep development of a craft, of working as an artist, or by meditation or practicing yoga. These transformations, almost imperceptibly, transform our comportment, and our ways of relating to the world and to others.

4.18 Computer code:
For the pre-proprietary computer code, refer to: www.sfu.ca/~dgromala/code/medchamber
Chapter Five: *BioMorphic Typography*

My long history of type design began with a chalkboard in my grandmother's house. The top of the chalkboard depicted the alphabet in upper and lowercase, in a bright, neon orange. At four years old, I was still maddeningly illiterate but obsessed with drawing these English letterforms. Mastery of doing things with these letterforms was to ensure my escape from the Eastern European chatter of my relatives, tons and tons of relatives, up there, pounding on the table in a way Americans didn't dare — and didn't like. Somehow, I thought, if I could crack this secret code, I would be freed from this borscht-smelling house, be freed from the derision of the neighborhood kids, and be an American, unquestionably.

Later, the death of my father provoked a trail of subsequent traumas. His death necessitated a physical relocation, back to the myopic, xenophobic conservatism of an excessively small town in middle America. Ripped from the cocoon of my West Coast Montessori school, from my liberal friends and teachers, from mountains and hippies, I landed with a thud, face-down in a strict Catholic school. Unable to adapt, I clung to the one small comfort the nuns could offer me: designing and cutting letters from felt for the weekly banners in church. It was the one — the only one — remnant of a Montessori-like independence.

The entire first year of graduate school at Yale necessitated drawing letterforms without the aid of measuring devices of any kind. "You need to depend on your eyes," was the instructor's admonition. She spoke in a harsh German accent that kept her spine—and mine—straight. "You should feel this in your bones." Eyes, bones, hands. Where was this expertise really supposed to reside in my body anyway? A theory was not conveyed — it was an apprenticeship in a very old European tradition, a transference of physical skill by keenly observing the "master." If lucky, one could subvert this into a bit of self-discovery, perhaps — one wrapped loosely in a cloud of impotent fear and denigration of the sort that powered boarding schools.
The tradition of graphic design, at least from the perspective of the European immigrants that comprised most of the Yale faculty, was grounded in typography. I had just returned to grad school after years of working at Apple Computer. We had our typography class on Saturday and Sunday mornings, since our instructor commuted from Boston. The first assignment: trace a letter from Caslon in Illustrator. The second was to trace the entire typeface and apply it to a poster. They were kidding right? I politely asked if I could pursue the assignment further, since I was well acquainted with the use of a computer. My question was summarily dismissed.

Nonetheless, I felt I had some responsibility to learn something, anything. So I quietly used Fontographer, reinterpreted a version of ancient Phoenician, programmed it to have left and right axes, and multiple thicknesses. At the time, these were new uses of technology and typography. My poster wrapped around the front of our building, which was, deliciously, a former fraternity house. The poster was comprised simply of my typography, marking out the words: A GARDEN OF PURE IDEOLOGY.

— Diane Gromala: Artist’s Contextualization from a First-Person Perspective
5.1 BioMorphic Typography: Introduction

Through *BioMorphic Typography*, I primarily seek to explore and provide an example of Merleau-Ponty’s conceptions of a chiasmic reversibility. Further, because typography is involved, it seems necessary that Merleau-Ponty’s conception of language is also examined. Finally, I briefly contextualize and relate *BioMorphic Typography* to some of the processes that were initiated by the invention of the printing press, namely, the changed relation between a writer and his or her body, and the change in modes of thinking — transformations that occurred over a long historical period.

The intent of *BioMorphic Typography* is more than a Romantic return to the involvement of the hand. After all, our hands are involved in using keyboards, but this of course does not quite enable as direct a connection to one’s body as using a pen, pencil, or calligraphic tool. Rather, through *BioMorphic Typography*, I intend to return writing to the very primal, or, in the terms of Merleau-Ponty, “wild” (Merleau-Ponty 1968, p.201) processes of the body that are necessary for life: breathing, heart rate, and galvanic skin response. By engaging with *BioMorphic Typography*, users become aware of their visceral, autonomic senses; learning to control or manipulate these senses takes users surprisingly little time.

Using some of the biofeedback-related elements of the technical system developed in the *Meditation Chamber* as a starting point for a later and massive reconfiguration, *BioMorphic Typography* was initiated as a long-term project. The typeface entitled *BioMorphic Typography* morphs, in real-time, according to a user’s continually changing physiognomic responses, as he or she types. Each user is hooked up to the ProComp+ biofeedback device. So, for instance, as a user types and breathes, the typeface displayed, in real-time, expands and contracts along with the user’s breathing (fig. 5.1; for a real-time depiction via a videotaped documentation, refer to the accompanying CD: *BioMorphic Typography: Exhibition Projections*). As this entails more complexity than a primarily print-based typeface, and because the number of colleagues who share in the necessary skills is relatively rare,28 it is anticipated that the design of this

28 Thus, forming a collaborative team seems a distant hope. The drawing of a new typeface itself usually is a long-term process, taking a year or longer. This is different from “typographic design,” which involves the examination and use of existing typefaces, aspects of visual rhetoric and “formal” aspects such as placement, color, spacing, and so on. The time-consuming skills required to create an entire typeface is not regularly taught in universities. The design of an entire typeface includes the creation of letterforms, numerals, punctuation marks, matrices of spacing between the differing shapes created by the combinations of letterforms, and scaling modifications for differing sizes. These are but a few of its major aspects. In the United States, the skills required to design an entire typeface is rarely taught except in introductory terms at the graduate level at Yale University, Cranbrook Institute of the Arts, California Institute of the Arts and North Carolina State University. This instruction has become intermittent, and depends on the availability of highly specialized designers of fonts, who come as visiting lecturers. These and other American universities, such as Carnegie Mellon University, offer time to create a typeface if the graduate student pursues this direction specifically. To reiterate, few designers have created an entire typeface. Of these, fewer still have the
Gromala
typeface will take more time for full realization. Further, as discussed in *Windows and Mirrors* (Bolter and Gromala, 2003 p.168), *BioMorphic Typography* is not one typeface, but is intended to be a postmodern pastiche of various fonts, including those I developed over the last decade. Since the concept for this typeface is to ultimately be comprised of a pastiche of fonts, and since the technological aspects have so many individual variables, the design of the typeface could easily take two or more years, depending on funding. However, the existing font depicted here and on the accompanying CDROM (CD: BioMorphic Typography), based on Adobe Garamond, demonstrates most of the conceptual ideas. The remaining conceptual possibilities are discussed later in this chapter, 5.13: Future Work.

What was developed during the time of my study, however, consisted of two basic technical approaches. The first is a record of what states the writer’s body assumed during his or her writing. Thus, the changes in each letterform, as it is typed and displayed, instantly reflects the user’s physiological state, and is then “frozen” and functions as the form of a record. As the writer continues to type the next letter, she can view the expression of her now-altered bodily state in real-time on the screen (or projection). To restate, each letterform morphs as it is typed. As the next letterform is typed, the prior letter “freezes.” The second approach was a constantly moving font, where all letterforms continue to respond to the writer’s bodily state in real-time. The first trial of this version seemed less interesting than what was eventually developed, since the entire paragraph or writing block moved at the same time, with the same effect. A later revision and the approach settled on retained and repeated each movement of each letterform, and is thus closest to the first approach. They are real-time representations that are impermanent yet expressive.

5.2 Context and Methodology
The Meditation Chamber was a work of design; that is, its intention was for pragmatic, if potentially enlightening, purposes. Thus, factors such as user studies make a great deal of sense for the Meditation Chamber. However, *BioMorphic Typography* and the MeatBook are works of art. The intentions are very different. Therefore, such controlled user testing does not make a great deal of sense and is inappropriate for an artistic context. One, for example, would probably not glean much from user studies of reading a novel by Franz Kafka, or of users experiencing a contemporary painting, sculpture, ceramic piece, interactive music, or theatre, to name a few art forms. Artwork is generally assumed to be the work of a skilled individual (or groups of them).

programming skills necessary to work on BioMorphic Typography. From a survey of North American design programs’ online curricula and an interview with Prof. Louise Sandhaus, Cal Arts, July 27, 2005.

29 It is possible to record the writing and typographic forms that are created, but few users seem to value this aspect and prefer the real-time experience.
Thus, the artwork cannot be generalizable, falsifiable, or reproducible, according to the standards of, say, Computer Science. In comparing art with science, Jerry Gill states,

"The fact that aesthetic significance, by definition, must remain at the tacit level, never being given a single focus of meaning, endows it with an open-ended character that is not present in more direct dimensions of experience, as for example in science. While creative imagination is clearly required in both artistic and scientific endeavor, once the latter has achieved explicit articulation, those seeking its comprehension need not enter into it through imaginative interaction and integration; they simply need to follow the empirical and logical factors so specified" (Gill 2000, p. 139).

Similarly, in comparing science to art, Polyani states,

"The capacity of a creative artist's imaginative vision may be enormous, but it is only the vision that he imparts to his public that enables his art to live for others. Thus the requirement that they provide is a basis for their re-creation by the imaginations of their viewers or readers. The use of a work of art by others is not, therefore, like the use of an invention... we do have to achieve an imaginative vision in order to 'use' a work of art that is, to understand and enjoy it aesthetically" (Polyani 1975, p.85).

According to John Carey in *What Good Are the Arts,*

"... to know even one picture or book or piece of music, you would have to know all these responses. A work of art is not confined to the way one person responds to it. It is the sum of all the subtle, private, individual, idiosyncratic feelings it has evoked in its whole history. And we cannot know these, because they are shut away in other people's consciousnesses" (Carey 2006, p.31).

For Merleau-Ponty, art is especially important. Though he focused on primarily on painting, his observations can easily be extended to other art forms, which he mentioned in numerous works.

"Only by drawing direct connections between what we learn from the exemplary expressive power of artists and what we already know of ourselves and each other by knowing our characters, Merleau-Ponty believed, will we come to appreciate the philosophical significance of perception and the body" (Carman and Hansen 2005, p.15).

Because the nature of art is different from the academic norms of the sciences, because it bears an "expansive" nature as described above, and because the avant garde view of art is to enable viewers or users to see the world in new ways, methods of determining its significance are not generally well-understood in academia. As Graeme Sullivan argues, "... existing misconceptions about the intellectual status of learning in visual arts means that the scholarly, cultural, and social significance of art is grossly undervalued" (Sullivan 2005, p.xi).

The relative "success" or merits of such works do, however, have well-established methods of adjudication. Evidence of these can be found in Appendix I. Meritorious artwork of a living
artist, for example, should be refereed or judged by experts, and the stature of the exhibition should be considered. The artwork should also be critically examined or referenced by expert “critics” and referenced in leading art journals and books. These are some of the methods that are used to determine the significance and worth of artworks and to determine tenure and promotion at North American universities, for example, and parallel some of the methods in the Humanities. Unfortunately, the rigor of these methods is usually not readily apparent or familiar to non-artists.

There are some signs of change, however. The National Science Foundation in the U.S., for example, recognizes the value of the Arts and Humanities. According to them, the Arts and Humanities ask research questions that are not within the tradition of the sciences, but that are nonetheless useful. Further, as Paul Dourish makes clear, including interactive art and employing a phenomenological viewpoint can refocus some emerging areas of Computer Science, such as Tangible Computing and Computer-Supported Collaborative Work (CSCW), especially because both art and phenomenology insist on exploring the meaning of the interactions (Dourish 2004, p.12). Thus, familiarity with the methods of determining the value of artistic work may grow with initiatives and publications like these, and with scholarly collaborations with artists.

Because BioMorphic Typography lies in the interstices between art and design, one would expect to find it exhibited and written about by both artists and designers. Indeed, this has been the case. It has been referenced by those who concern themselves with new forms of graphic design, typography, and writing (refer to Appendix 1). BioMorphic Typography is distinguished from other technological experiments with typography because it is the first form of typography is driven by the physiological states of its users.

Although formal, user testing is not appropriate for an artwork like BioMorphic Typography, observations can nonetheless be useful during the creation of the piece. Thus, I informally kept track of what I and others observed during the development of BioMorphic Typography and during its exhibitions. For a discussion of these observations, refer to 5.6: Findings in this chapter.

30 Since 2003, the NSF has supported interdisciplinary graduate programs that combine scientific fields with the Arts and Humanities through their IGERT program (Interdisciplinary Graduate Education in Research and Technology). Its meeting at MIT in 2004 enabled first-hand observations about the genuine desire for including the Arts and Humanities in interdisciplinary and predominately scientifically-oriented graduate programs. The hoped-for outcome is to “crack” the trend of graduate programs in the sciences becoming more myopic and rigid. More importantly, the stated desire is to foster innovation so that graduate students in the U.S. remain globally competitive. (Refer to Appendix 1.)
5.3 System Design

The basic setup of *BioMorphic Typography* consists of a Procomp+ Biofeedback Device connected to a computer that is continuously drawing and redrawing the letterforms entered by the system’s user (refer to figure 5.1). As the user types, the current reading of the Procomp+ is measured and associated with the letterform just typed. The entire page of text is then quickly and almost imperceptibly redrawn (appearing like an animation), with each letter morphed according to the user’s biological readings. The program bioFontMorph.exe was developed to read ProComp+ data and draw the letterforms. The Procomp+ enabled differing modalities to change the visual character of the *BioMorphic Typography*: respiration, galvanic skin response, and heart rate. By observing tests with students and the public in the later exhibitions (refer to Appendix I and the CD: *BioMorphic Typography*), it was clear that users could not make sense of more than two simultaneous modalities; most users preferred a singular mode.

The graphical aspect of the typography was implemented using Open GL. Each letterform (upper and lower case), punctuation and other typographic elements, were first taken into Fontographer, where they were reduced to their Bezier curves. A Bezier curve is a type of smooth curve specified by a sequence of 4 geometric points (figure 5.2). The first and last points specify the end-points of the curve; the middle two points specify the intervening curvature.

Figure 5.1 Data of a user’s breath rate is gathered by the ProComp+ chest band. Data of a user’s galvanic skin response and heart rate are gathered from sensors attached to the user’s fingers by Velcro. This data is input to the ProComp+ box, and transferred to the computer. The incoming data changes the appearance of each letterform, as the user types. The effects on users of seeing a visualization of their changing physiological states via the morphing of typographic forms is an open-ended question. However, many users said that they get “caught” in “feedback loops,” especially regarding heart rate.

Figure 5.2 Example Bezier curve showing the 4 control points.
Fontographer automatically marks the Bezier curves, delineating the boundary of the letterform, which, when manipulated, changes the shape of that part of the letterform. These marks were also automatically numbered. The automatic placements of the Bezier marks were rarely in a position that would enable aesthetically pleasing “expansion” (as in the example using respiration) and other forms of manipulation. Thus, the Bezier marks had to be individually moved to be in line with drawings I created to anticipate the movement of each letterform andrenumbered — a tedious process indeed. Where letterforms “morphed” from thin to thick, for example, the numbered Bezier markers had to be individually moved to be in exactly the same place on both letterforms (figure 5.3).

![Figure 5.3](image)

Figure 5.3. The numbers of each Bezier curve needed to be placed in exactly the same points “by hand,” the results of which are shown above. This is because Fontographer assigns numbers to the Bezier curves automatically and apparently randomly.

Care was also taken to ensure that each letterform rested on a common baseline. This had to be done because of the aesthetic, Gestalt or visual illusions created by straight letterforms versus round letterforms. The round letterforms, for example, need to hang slightly below the common baseline so that they do not appear to “float.”

After testing, these marked-up letterforms were imported into bioFontMorph, which was written using OpenGL. Though none of the typeface movements created for each biofeedback modality were intended to be “skeletal,” some of them worked much better as such in terms of aesthetics. In other modalities, each letterform was “filled in” in real-time.
5.4 Morphing Letterforms

To morph letterforms in real time, I created a font based on Adobe Garamond that was intended to represent "neutral" biometric readings. Then, for each biometric value, (breathing, GSR, and heart rate), a new font based on the "neutral" font was created that was intended to represent the extreme readings of the biometric value. Thus, for inhalation, or large chest expansions, a very "fat" variation of all of the letterforms was created. This mimics the expansion of the chest when one inhales by a parallel expansion of the font. For large GSR readings, a very spiky set of letterforms was created, initially with certain letterforms such as i, u, o, k and g. These were chosen because they represent a range of spatial issues: thin, thick, round, straight, with an ascender and with a descender. For large heart rate readings, modifications to the p and d letterforms were initially developed. For the extreme font of each biometric reading, a complete font file of Bezier curves was then created. Each letter in the “extreme” font has a set of Bezier curves that correspond directly to the Bezier curves of the same letter in the “neutral” font.

Therefore, to morph from the neutral font to the extreme font for one reading (say, GSR), the corresponding Bezier curves for each letterform of the “neutral” font needed to morph to the Bezier curves of the “extreme” font. In fact, each Bezier curve in the neutral font can morph to its corresponding Bezier curve in the extreme font. Since all letterforms in the extreme fonts have the same number of curves per letterform as their corresponding neutral letterforms, this process will not create broken letterforms.

Thus to morph a letterform simply means that each Bezier curve must morph. To do this, a parameter value was established that lies in the range between 0 and 1, inclusive. This parameter p controls the blend between neutral and extreme. Where p=0, the neutral curve is the result. Where p=1, the extreme curve results. When the program reads in the font curves, it pre-processes each of the extreme curves by subtracting away the corresponding geometric...
value of the neutral curve. Thus, for each extreme curve, the difference between the extreme and the neutral curve is stored. For each curve, this means storing the 4 \((x,y)\) difference values of the control points. That is, we store \(x_{\text{diff}}\) and \(y_{\text{diff}}\) for each control point. When the letterform is to be drawn, for each of its Bezier curves, this is computed:

\[
x_{\text{morph}} = x_{\text{neutral}} + p \cdot x_{\text{diff}}.
\]

When \(p = 0\), \(x_{\text{morph}} = x_{\text{neutral}}\)

When \(p = 1\), \(x_{\text{morph}} = x_{\text{neutral}} + x_{\text{diff}}\), which we previously computed as \(x_{\text{diff}} = x_{\text{extreme}} - x_{\text{neutral}}\), so

\[
x_{\text{morph}} = x_{\text{neutral}} + x_{\text{extreme}} - x_{\text{neutral}} = x_{\text{extreme}}.
\]

To morph between two extreme fonts using two readings, the same operation is done with a parameter that corresponds to each font.

\[
x_{\text{morph}} = x_{\text{neutral}} + p_1 \cdot x_{\text{diff}_1} + p_2 \cdot x_{\text{diff}_2}
\]

At startup time, each extreme font has its difference computed so that it can be added to the neutral font according to its corresponding biometric reading.

5.5 Biometric Readings

When bioFontMorph starts, it takes a number of baseline readings of the various biometric values, such as breathing, GSR, or heart rate for the first 10 seconds of the runtime of the program. This rapid start-up was required to quickly enable the user to see the effects of the biofeedback measures. These raw values were then used to derive “resting” values from which future values would deviate.

For breathing, the maximum and minimum values of the first 10 seconds was taken. These values were used to compute the parameter \(P_{\text{breathing}}\). As new readings arrive, \(P_{\text{breathing}} = (\text{newBreathReading} - \text{min})/(\text{max}-\text{min})\) is computed. This approach was used because users were expected to take at least one breath during the first 10 seconds. As the program runs, it is ensured that \(P_{\text{breathing}}\) does not fall below 0 or exceed 1. This results in a font that is a little fatter than the original neutral font, but it allows for the user to see the range between fattest and thinnest.
Gromala

For GSR, the average of the incoming readings was computed; this value was used to correspond to $p_{GSR} = 0.5$. $p_{GSR} = 0.5 \times \frac{\text{newGSRReading}}{\text{GSRaverage}}$ was computed. Similar to the Meditation Chamber, the GSR readings varied somewhat from person to person, so this approach of dividing by the initial average was adopted. As the program runs, it is ensured that p_{GSR} does not fall below 0 or exceed 1.
Figure 5.5 These are tests for two simultaneous modalities: respiration and GSR. Respiration creates thinner or “fatter” letterforms, while GSR creates deformations of the serifs. They represent values, left to right <respiration 0, GSR 0> <respiration 0, GSR .5> <respiration 0, GSR 1>.

Figure 5.6 These are tests for two simultaneous modalities: respiration and GSR. These two represent values, left to right <respiration .5 GSR 0> <respiration .5, GSR .5>.

Figure 5.7 These are tests for two simultaneous modalities: respiration and GSR. These two represent values, left to right <respiration 1, GSR 0> <respiration 1, GSR .5>.
For heart rate, raw Blood Volume Pressure (BVP) readings were collected from the ProComp+ sensor, and the number of peaks over the initialization period was counted. The number of peaks in 10 seconds was multiplied by 6 to get the approximate value of beats per minute. Since normal resting heart rates are in the range from 40 beats per minute to 110 beats per minute, we were able to set $p_{HR} = \frac{\text{newHeartRate} - 40}{110 - 40}$. Any heart rates above 110 yielded $p_{HR} = 1$.

To count peaks, we continued to collect BVP readings into an array representing the most recent 10 seconds of readings. As a new reading arrived, it overwrote the oldest value in the array as it cycled over the array. The maximum and minimum values of BVP were then computed. We then passed over the array a second time and added to the peak counter when the BVP value first rose above 90 percent of the range. To prevent counting this high value again, we stopped looking for high values until the current BVP value fell below 80 percent of the range. This allowed for small variation in readings to not cause false peaks, since readings would have to jump rapidly from 80% to 90% to be counted. Counting over the 10 past seconds allowed the maximum and minimum BVP values to slowly shift as the user continued to use bioFontMorph.

5.6 Findings

In the first two years of development, approximately 39 undergraduate and graduate students at the Georgia Institute of Technology students informally tested and provided feedback. Of these, nearly half were Computer Scientists, a quarter were Industrial Designers, and a quarter were in the Humanities (from the School of Literature, Communication and Culture). In addition, 3 faculty members (Prof. Eugene Thacker, Prof. Chris Shaw, Prof. Jay Bolter) consistently tested BioMorphic Typography throughout its development. During this time, it was discovered that most (all but three) students and all faculty members could not discern more than two simultaneous modalities. Most preferred mastering one modality, which took no longer than 15 minutes. None reported having any problems with “oscillating” their attention among typing, reading, and consciously trying to change their biofeedback output.

Of the modalities, it was assumed that respiration would be easiest to control. This was the case. However, almost all users preferred the “more challenging” modalities of galvanic skin response and heart rate. GSR seemed to many students to “be mysterious” and “cool.” When other students were nearby, they would try to provoke the student who was experimenting with GSR. This was a bit reminiscent of the Milgram experiments, especially because the provocations tended to escalate. Heart rate was the modality that was
most surprising to users. It was assumed that since heart rate is relatively more difficult to control, users would not be interested in experimenting or “playing” with it. This was not the case. The faculty members did have difficulty with this modality. The students, however, initially expressed frustration, but kept at it until they sensed that they could “control” their heart rate. This was even more “mysterious” to them than GSR. A phenomenon quickly evolved: when students first learned to control their heart rate, they became excited and reported getting into “weird feedback loops.” That is, when they first sensed that they could manipulate their heart rates, they became excited, which increased their heart rate. They noticed this increase and tried to reduce their heart rate, but found this more difficult than they anticipated. This frustration increased their heart rate even more. A few students tried to keep this going; most simply stopped looking at the screen (in order to no longer see what their heart rate “readings” were) and focused on typing until they felt more relaxed. They then resumed experimenting with their heart rates, as expressed in the morphing font. “News” of this weird feedback loop quickly spread among other students, and many more wanted to try BioMorphic Typography. However, at that point, work had to be refocused to debugging the program and preparing it for upcoming exhibitions.

Figure 5.8 BioMorphic Typography. By using a biofeedback device, a user changes the visual character of the typography (letterforms), in real-time, according to his or her continually changing physiognomic states. In the example above, the typography is altered according to the user’s brainwaves. This modality was the least popular among users, probably because altering brainwaves proved to be more difficult than altering other modalities. In addition, the sensor was cumbersome and difficult to keep on (the hand in the photo was necessary to keep the device on). The device (BrainMaster) is relatively easy to manage in technical terms, but is also not the most accurate of devices of its kind. The most accurate device requires keeping 24 sensors in direct contact with a user’s scalp. This would render it too cumbersome to use in art exhibitions. In addition, the method of manipulation distorted the letterforms in such a way as to render them illegible. For all of these reasons, using brainwaves was dropped from further experimentation early in the process.
Exhibitions

The proximity of the monitor to the user was also tested during this time, as were monitors versus projections, both large and small. Across the board, a “close” (12”-18” away) computer monitor was preferred for its “intimacy” and “privacy.” Only two students preferred the projections. For them, the larger and closer the projection, the better. Thus, for exhibitions, one or two computer monitors were placed in a dark and quiet area. With approval from the user, one projection was mounted outside of his or her view. This projection enabled others in the exhibition to see what was happening. The real-time projections of users’ typing were interspersed with a video that briefly explained the concept of BioMorphic Typography (refer to the CD: BioMorphic Typography: Videos).

In the exhibitions, the most important issues were finding quiet and dark areas that provided privacy for the user. Either one or two computers attached to the biofeedback device(s) were used. Each required that an “attendant” be there at all times in order to help users attach the biofeedback sensors and start the program. During openings (usually the well-attended first evening or “launch” of the exhibition), users rarely engaged with the piece for more than ten minutes. However, during the day, when fewer people were around, users were observed to stay engaged with BioMorphic Typography for longer time intervals. According to the security guards and attendants, this ranged from 15 minutes to 45 minutes, with the average time being 20-30 minutes. The work at the exhibitions included singular modalities of heart rate, GSR, and respiration. Users chose which modality they wanted to use.

As with the earlier student testing, the modality of the heart rate was surprisingly popular. However, GSR was the most interesting modality for users in the exhibitions. This may be because there were no other users or bystanders who would act to “provoke” the user. When GSR readings were in plateau stages, a few users asked the attendant to “provoke” them by asking about their taxes, co-workers, or other self-specified issues.

In the exhibitions, users cared more about their privacy than did earlier testing with students and faculty. Several users went to the extent of asking the attendant to either look away from the computer screen or the leave the area for a short time. The “content” or the words that were typed ranged from “nonsense” or randomly typed letters and numbers to “messages,” aphorisms, quotations they remembered, very short stories and poetry. Users told the attendants that they most enjoyed the expressive forms of the typography and offered ideas for other ways to depict it. While some users (roughly, 1 in 20) found
it difficult to attend to typing and paying attention to their physiological states (expressed
as “trying to walk and pat ones head at the same time”), most users did not appear to
be frustrated. Some users said the experience “was like meditation.” Across the board,
however, users expressed a “sense of wonder” that they could quickly learn to control their
physiological states of respiration, GSR and heart rate, according to the attendants.

5.7 BioMorphic Typography and Merleau-Ponty’s Chiasmic Reversibility
By becoming aware of one’s physiognomic state as one types, BioMorphic Typography
demonstrates Merleau-Ponty’s notion of reversibility. This is because as the writers type, they
bring their ideas outward, to the world, “for others” (for the most case); alternatively, the writers
also became aware of their own physiological states and quickly learn how they can manipulate
these physiological states by focusing inward. Thus, most writers constantly alternate between
an outward intention and an inward attention. Akin to Merleau-Ponty’s example of one hand
touching the other, most users said that they could not simultaneously attend to their inner
physiological states, typing, watching how the letterforms morphed, and writing.

Through taking notes from the attendants and security guards at the exhibitions in the mornings
and early evenings, and through my daily observations during each exhibition, we found that
users took little time in “figuring out” how to reduce or heighten their physiological states of
heart rate, GSR, and breath rate. As with all other work with biofeedback, I was again intrigued
that heart rate was the one aspect that users, for the most part, found most “mysterious” and the
one they spent the most amount of time with. Users who were tested while I was creating
BioMorphic Typography, along with users at the exhibitions were eager to try to explain to us
the “feedback loop” that led to escalating heart rates. When asked if they experienced feedback
loops in the GSR or breathing modes, they typically replied, “yes, of course, but I knew how I
was doing that.” This was surprising because “knowing how to affect” GSR would seem to be as
mysterious. Second, a relatively dark and quiet area at the exhibitions was necessary in order for
users to concentrate. Yet, even in those areas, users seemed extraordinarily concerned about
their privacy. This appears to indicate that the experience was indeed an example of Merleau-
Ponty’s reversibility. This is because one the one hand, users were typing, reading and looking
at the visual aspects of the typography from a first-person perspective. On the other hand, they
were also able to “reverse” this and “see” themselves as others would. Some of this was due to
the nature of what they wrote; much more often, however, was that, as one user said, “I just
don’t want other people to see what is going on with me, with my biofeedback ... you know. it
is kinda like they can look into me, inside of me. I know they can’t, but still ...” Clearly, this
user was considering herself to be an object and a subject who was writing and who was trying.
through the representation of the typeface, to control her inner states. A few users tried to write and to “be” so that their physiological states reflected what they wanted to communicate through the differing forms of the typeface. One user, for example, was writing a poem, inhaled very deeply and tried to simultaneously “tweak” his GSR so that it would cause the serifs to “spike.” “This is where I wanted ‘the words to shout’” he said.

Finally, the attendants and I found that there were basically two kinds of users. The first group either read about it or questioned the attendant and left, or, if they stayed, it was only to “figure out” how the system worked. The second group were those users who stayed, usually between 15 minutes and half an hour, or, in one case, half the day. At the exhibition at Georgia Tech’s *TechnoPoetry* symposium, attendants noticed that 4 users returned at least once, and that two other users brought their friends on a different day than their first visit. The exhibition at Georgia Tech appeared to garner the most interest, even though the system was not yet debugged. While users at the exhibitions in England and Sweden were more enthusiastic, they were less apt to actually hook up to the biofeedback device, and instead wanted the attendant to show them how it worked. The European exhibits, both focusing on typography, were for the most part a homogeneous group of designers, while the exhibit at Georgia Tech included designers, computer scientists, writers, poets, and members of the university and city of Atlanta, representing a diversity of age groups. This may or may not have been a factor. The exhibit in Sweden, however, may have had something to do with *BioMorphic Typography* being in English, as three users said that they were embarrassed to try it, since they might misspell words. Finally, the attendants had much to offer about factors we could take into account in a redesign, such as using smaller words, providing examples in our descriptive video that depicted each state, trying voice, and designing a case and ways to attach the sensors that were more user-friendly.

Observing users at the exhibitions was much more useful than using questionnaires. With the questionnaires, although these users also engaged in *BioMorphic Typography*, at least two factors were at work. First, the initial group were students. Even though they filled out the questionnaire after I turned in my grades, their comments seemed to suggest that they were writing down what they wanted me to hear, even though the directions made clear that they should avoid this. Second, although they were given an hour to think about it and write about it, none put in an hour’s worth of effort. Thus, what they wrote seemed extremely superficial. Third, this was a homogenous group in terms of age, and that was obvious. The next set of questionnaires was given as *BioMorphic Typography* was being prepared for an exhibit. Users “played with it,” but were eager to go and not interested in filling out questionnaires. Finally, the
questionnaires that were developed for the first exhibit, the *TechnoPoetry* symposium resulted in
total non-compliance. Students and local artist said that it was “improper” or “Downright
stupid” to have a questionnaire for an artwork. A few users just laughed at the idea and walked
away. However, more in-depth answers or feedback may have been garnered from my
colleagues, however, many of them knew me (and thus may probably have not been objective).
and others had to catch their flights right after the exhibit closed. For all of these reasons, and
the ones given in section 5.2, the questionnaires were abandoned. Nevertheless, the initial
responses can be found in Appendix 3.

Excretia

Excretia, a font or subunit of the *BioMorphic* family, was the first test of the ideas of
BioMorphic Typography. It is discussed at some length in *Windows and Mirrors: Interaction
Design, Digital Art and the Myth of Transparency* (hereafter referred to as *Windows and
embody the oscillation between transparency (reading “through” the font to the ideas) and
reflexivity (reading and paying attention to the interface as an interface). This oscillation
between the two seems to typify not only Merleau-Ponty’s idea of reversibility, but also
contemporary understandings of new media experience, and of new media as a “media form”
rather than a form of computing. In reading “through” the interface (and font) to the ideas, one is
in a subjective position, while paying attention to the biomorphic aspects of the interface itself,
one can be in an objective position. I say “can be” because one could also “be in tune with” or
feel the cause-and-effect of the biofeedback on the shapes of the typeface. Nevertheless, I would
argue, we more often than not constantly “reverse” our positions, as Merleau-Ponty suggested.
This is explored in more depth in the subsequent paragraphs.

In Western culture, writing has generally been supposed to be a window onto the world
described or mediated by the language. Especially in the age that followed the invention of the
printing press, with the exception of some specialty books produced by artists, poets and
theorists, letters and layout of the text were supposed to disappear. Obviously, *Excretia*, a
subunit of *BioMorphic Typography*, is different.

“Demanding to be seen and appreciated by the reader, *Excretia* belongs to
the tradition represented by Japanese and some Islamic calligraphy and by the
illumination of manuscripts in medieval Europe, in which words and images are
Further, "writing can also function as an interface between the writer and himself" (Bolter and Gromala 2003, p.168).

Like earlier forms of writing such as calligraphy, *Excretia* is a reflective interface that reveals the author to himself – again, not a perfect or single reflection, but a myriad of refracting planes in the transpositions and changing angles of the letterforms" (Bolter and Gromala 2003, p.168).

In the Western tradition, writing seemed to lose any physical connection to the writer. Rather, writing is:

> "usually thought of as an exercise in abstraction. When a writer writes, she leaves her body behind and creates a version of herself that is abstract and reasonable – a Cartesian or even Platonic ego (though Plato supposedly disdained writing). This notion of writing has survived into the computer age” (Bolter and Gromala 2003, p.169).

In the early days of “cyberspace” (beginning around 1990), cyber-enthusiasts such as John Perry Barlow and others wanted to claim that cyberspace was the realm of Mind, a place where one could ideally download one’s consciousness and “leave one’s problematic, physical ‘meat,’” disabilities and prejudices behind (Gromala 1996, p.224). “They were thinking of verbal e-mail, chat rooms, and MOOs” (Bolter and Gromala 2003, p.168), during a time that preceded the widespread explorations of more directly physical forms of technology, such as tangible and ubiquitous computing, CSCW, responsive spaces, wearables and so on. The trick of leaving our bodies behind, as we have seen since,

> “. . . never works. *Excretia* insists that we cannot leave our embodied selves entirely behind . . . (it) seeks to remind us of our bodies, and the self that *Excretia* reflects is a combination of symbolic writing and imagery – of abstraction and embodiment” (Bolter and Gromala 2003, p.169).

The oscillation and combination referred to in *Windows and Mirrors* was an initial exploration of Merleau-Ponty’s reversibility. It led to more pragmatic, technologically workable experiments like *BioMorphic Typography*, and a more in-depth exploration of Merleau-Ponty’s chiasmic reversibility, since it seems that reversibility takes place on numerous levels.

5.8 BioMorphic Typography and Merleau-Ponty’s Concept of Language

Merleau-Ponty encountered the linguistics of Ferdinand de Saussure as he began to write his earlier book (Carman and Hansen 2005, p.2), the *Visible and the Invisible* (Merleau-Ponty 1968). With Merleau-Ponty’s main emphasis on the body, it seems inevitable that he should have had to provide some account for language beyond gesture, or argue for gesture as the groundwork for language. Indeed, in his later book, *Phenomenology of Perception* (Merleau-Ponty 1992), Merleau-Ponty expressed a hope that it was possible to derive a language directly
from an expressive experience. Saussure seems to have wanted to disabuse Merleau-Ponty of this notion, but was mostly unsuccessful. Nonetheless, Merleau-Ponty was respectful of Saussure's work, and entertained "The theory of signs, as developed in linguistics, perhaps implies a conception of historical meaning which gets beyond the opposition of things versus consciousness" (Merleau-Ponty 1988, p.16). Accordingly,

"the phenomenology of perception brings about a displacement of the cogito, from the personal "I" to the prepersonal "one" (l'on), it likewise opens up a space of collective social existence between the first- and the third-person points of view. . ." (Carman and Hansen 2005, p.16).

Merleau-Ponty considered "this shared social space . . . and its ground" as lying in the "impersonal symbolic domain that places meaning outside individual consciousness" (Carman and Hansen 2005, pp.16-17), but not outside of the body. Language as a collective, inter- or transsubjective sharing did not lead us away from the body, but to its other aspects. Merleau-Ponty reminds us that the body is an expressive medium, and is more than just a kind of special language of its own. For Merleau-Ponty, language is rooted in the "development of gestures into a general symbolic structure of signs and symbols" (Steeves 2004, p.29). The body is 'innately equipped with natural abilities to express its needs and fears and to communicate those feelings others' (ibid.). Merleau-Ponty argued, for example, in Prose of the World that "the primordial level of language must be approached by defining [emphasis mine] signs" (Merleau-Ponty, 1973, p.28). What Merleau-Ponty means by this "primordial level" refers, of course, to the body, to its ability to use language, in a way similar to the propensity of birds to sing, or ants to communicate via their chemical excretions. In Merleau-Ponty's terms, the question at hand was: what is it about the biology of humans, their imbrications in the world, and to other humans (and animals), that "solicits" language?

It appeared that Merleau-Ponty entertained Saussure's fundamental notion, his "diacritical structure of language." That is, according to Saussure, the relationship between the signifier (sound image) and the signified (concept), according to Saussure, was arbitrary. Language, in Saussure's terms, was a system of differences, references within the same language (or media) to other arbitrary signifiers and signifieds. But Merleau-Ponty agreed with Saussure only to a point; he did not fully accept the idea that language is completely arbitrary in the Saussurian sense. Further, Merleau-Ponty's conception of language was fundamentally different from Saussure's in that Saussure was not concerned with posing the question of the ontological value of language, but rather in transforming the "object domain" of linguistics. This difference or appeared early in the Visible and the Invisible (Merleau-Ponty 1968, p.31).
As Merleau-Ponty wrote, "Yet, there is a world of silence, the perceived world. There is an order where there are non-linguistic significations" (Merleau-Ponty 1968, p.171). Further, Merleau-Ponty claimed that there is an ontological dimension of language (Merleau-Ponty 1994c, p.19). In *The Phenomenology of Perception*, his final work, Merleau-Ponty argued that "the body-organism is linked to the world through a network of primal significations which arise from the perception of things" (Carman and Hansen 2005, p.19). As we have seen in earlier chapters, it is the flesh that gives rise to perception in its very becoming.

The aspect of language for Merleau-Ponty seems the least developed, perhaps because he died before finishing his book on it. Further, although Merleau-Ponty respected Saussure (Carman and Hansen 2005, p.18), he had an aversion to the highly abstract forms linguists were using to explore this common, everyday aspect: language. Phenomenologists, to repeat, are most concerned with the everyday, and do not attempt to create overarching, abstract theories, generally.

If we follow Merleau-Ponty’s philosophy, *BioMorphic Typography* works at several levels. In his words, Merleau-Ponty states, “What there is is a whole architecture, a whole complex of phenomena ‘in tiers,’ a whole series of ‘levels of being’” (Merleau-Ponty 1968, p.114). The user sees the changing typeface as a subject, from a first-person point of view, but can also “reverse” this by assuming more of a position of an object, to “be seen” as others might see her. This reversibility isn’t just a possible, one time occurrence, but arises from the very structure of our flesh itself. The user thus *sees* the visual aspect of the continuously changing typeface, but also sees *it as others would*, from a third-person perspective. On another level, this works with writing and reading as well. The user writes words, but engages in the reversibility in order to read the words as others might. This is both an individual and a social act, since words are learned and written not only for the self, but to communicate, to commingle with others.

At another level still, the biofeedback manipulations of the typeface one uses as one writes/types partially expresses “the primordial level of language,” in this case, literally via the biofeedback effects on the typeface. What can be more primordial than the autonomic senses of heart rate, breathing, and galvanic skin response? When caught in the feedback loops described by users, it seems clear that these are felt, ontological dimensions of language, dimensions that are usually, as Merleau-Ponty said, the “background” of our being. But the biofeedback device, affecting the visual character of the typeface, is brought into the conscious realm.
Writing is most generally assumed to be “of the mind,” with its physical traces but vestiges of another time. *BioMorphic Typography* insists that users become aware of how their physiological states and how they affect the shape of their writing. In observation of users at the *TechnoPoetry* conference, those who considered themselves Humanists more so than being an artist (many practice both), had the most trouble with “doing both,” that is, with writing/typing and with being aware of the physiognomic states. In their words, it was “like walking and tapping the top of one’s head,” simultaneously. They were not hesitant to say so. Those who defined themselves primarily as artists, on the other hand, had little difficulty. Neither did undergraduates and most of the public. The poets, in particular, were extremely interested in the project, though it was still in its beta version. This might seem an interest obvious to poets, but not many contemporary poets are as concerned with *how* the written (typographical) aspect of their work functions, despite many historical examples to the contrary. However, poetry disseminated by oral and multimedia means (so-called “poetry slams”) have enjoyed a resurgence in popularity in North America (Bruce and Davis 2000, p.122). These were the poets who were most enthusiastic about *BioMorphic Typography*, and wanted to perform it, along with their voices.

5.9 *BioMorphic Typography* and the History of Writing

The printing press, over the centuries since its creation, led to widespread effects: social, political and economic. According to Elizabeth Eisenstein (Eisenstein 1980, p.683), “Within the space of a century and a half a revolution had occurred in the way in which men regarded the universe.” In terms of writing, it also led to a division of labor, separating the writer from direct production of his or her work. Further, a reliance on moveable type rather than hand held and operated tools such as pens, quills, and pencils, led to a distancing of bodily knowledge and awareness and/or a reconfiguration of which senses were necessarily dominant. As Marshall McLuhan also claimed, “Any culture is an order of sensory preferences, and in the tribal world, the senses of touch, taste, hearing and smell were developed, for practical reasons, to a much higher level than the strictly visual” (McLuhan 1962, p.240). Further, McLuhan idealized this “tribal society.” He claimed, “Into this world, the phonetic alphabet fell like a bombshell, installing sight at the head of the hierarchy of senses. Literacy propelled man from the tribe,”

31 As evinced by examining the poetry section, book by book, in Chapters, Borders, and specialty bookstores in Atlanta, Georgia, Manhattan, Paris, and Vancouver, Canada. Very few books were observed to have any layout different from one size of text, broken into phrases. This is considerably different from the so-called Poetry slams that are on the BBC, PBS, the CBC, and websites devoted to more multimedia forms of poetry.

32 For two of the most accessed websites, refer to: IWPS (Individual World Poetry Slam) and http://individualpoetryslam.com/ National Poetry Slam http://nps2007.com/

33 Theorists such as Walter Ong, Marshall McLuhan and Eric Havelock have suggested that the increase in literacy over the centuries has shifted or at least emphasized the cognitive or “mind” over physical or crafts-forms of knowledge. Although Elizabeth Eisenstein does not articulate this, her work does point to similar directions.
Gromala gave him an eye for an ear and replaced his integral in-depth communal interplay with visual linear values and fragmented consciousness. As an intensification and amplification of the visual function, the phonetic alphabet diminished the role of the senses of hearing and touch and taste and smell, permeating the discontinuous culture of tribal man and translating its organic harmony and complex synaesthesia into the uniform, connected and visual mode that we still consider the norm of ‘rational’ existence” (McLuhan 1969, p.240). Thus, according to McLuhan, the change in the “ratio of the senses” in turn resulted in a changing in the mode of thinking, to a detached, rational, linear one.

Though these are just a few of the results of the invention of the printing press, *BioMorphic Typography* enables users to bring back into conscious awareness more than their so-called five senses — the innermost, illusory, autonomic senses of respiration, heart rate, galvanic skin response, and brain activity. *BioMorphic Typography* “reflects the writer in a way that printed or static type does not. It offers a new interface between the text and its writer (and later readers as well). It reunites the act of writing with a physical awareness, a unity that the printing press denied” (Bolter and Gromala 2003, p.167). *BioMorphic Typography* is intended to produce a mode of thought entirely different from abstract, linguistic modes of reasoning that purportedly have resulted from the invention of the printing press. Further, it problematizes the dualisms of mind/body and reading/corporeally-sensing, among others. However, *BioMorphic Typography* is not widespread, and so its results cannot be compared to the effects of the printing press. It is an example, however, of how technologies of our age can possible have modest, transformative effects.

5.10 Physical Trace of the Writer

“...much of the nomenclature of both writing and typographics – hand, face, character – are metonymies of the absent human body and of the subjectivity which we presume is responsible for them.”

— Margaret Morse, (1986 p.72).

Throughout the history of writing is a concern with its relation to the body (Meggs 2006, p.5). During the incunabula – or the first fifty years of moveable type – this concern was taken quite seriously. For during that period, the script of a human hand was replaced by metal type that bore little resemblance to the calligraphy of monks and copyists. Early typographers therefore drew their fonts according to matrices that were of the proportions of the human form. A few of the more decorative fonts actually included pictorial drawings of the human body bent into positions that created each specific letterform. Less literal aspects were the adoption of the slant
of the counterforms (or negative spaces) of each letterform. This slant underpinned the slant of
the calligraphic hand. Other desires for traces of the human body led to the development of
italics. In the words of linguist and semiologist Georges Jean, the Venetian printer Aldus
Manutius (1449-1515) created beautiful letterforms that were used throughout the 16th century.
“Seeking to reproduce handwriting, Aldus was also inspired by the writing of Petrarch to create
Aldine, or italic, an elegant, slanting cursive script. Luca Paccioli’s *De Divina Proporzione*
(1509) attempted to create a script by reducing the proportions of the human body to geometric
shapes, in the style of drawings by Leonardo da Vinci” (Jean 1992, p.98).

So strong was this desire for a relationship to the human (or its trace) that the nomenclature
developed referred to parts of metal-based fonts; for example, the mass of each form of the fonts
are until today still referred to as the “body” of the font, comprised of the spine, ears, feet, arms,
and so on. The dispute between whether a typeface should resemble writing with the hand or
take on aspects more “natural” to the new technology continue to this day (Blackwell 2004,
p.187-188). *BioMorphic Typography* seeks to re-engage writers with some of aspects of their
own bodies, in a most literal way.

The Japanese story of how personality is visible in handwriting from the novel *The Tale of
Genji*, referred to in *Windows and Mirrors* (Bolter and Gromala 2003, p.165) is still relevant
since its creation shortly after 1000 A.D. (refer to Figure 5.10). It is still believed that certain
characteristics of a writer’s personality and psychological propensities are visible in their
handwriting. Handwriting is still relied upon as a legitimate forensic form, for example, in
profiling, and was further legitimized after handwriting experts started to accrue scientific
methods. According to the FBI, “Handwriting comparisons are based on the principles that no
two people write exactly alike and that characteristics reoccur throughout every person’s writing.
although no one writes exactly the same way twice. This combination of characteristics is
unique to every individual and is used by document examiners for comparison” (Held 2001).
In the eleventh-century *Tale of Genji*, Genji is with his lover, Lady Murasaki, when he receives a letter from his prospective wife, the Third Princess. Murasaki doesn’t need to read the contents of the letter. Once she glimpses the handwriting, she concludes that the girl will not be a threat to her. Genji is embarrassed by the childish writing. “You see” he says to Murasaki, “you have nothing to worry about.” (2001, 558)

Figure 5.9 BioMorphic Typography: Excretia. By using a biofeedback device, a user changes the visual character of typography (letterforms), according to his or her continually changing brainwaves and breath rate (indicated by the bold aspects of the fonts used here). The version above appeared in *Windows and Mirrors*. Based on a story within the classic Japanese novel The Tale of Genji (c. 1000 AD), Gromala “performed” both characters while wearing the biofeedback device. The performance included some improvised, non-programmed alterations, such as the change in typeface.

5.11 Literacy, Presence & Sensorial Shifts

What textual writing omits is an important aspect of human history: presence. As scholars such as Marshall McLuhan (McLuhan 1962 p.17), Walter Ong (Ong 1982 p.42) and Eric Havelock (Havelock 1988) suggest, it is the lack of human presence made possible by writing and its reproducibility that led to a loss or attenuation of bodily forms of knowledge. In the words of Ong, “...chirographic cultures regard speech as more specifically informational than do oral cultures. Where speech is more performance-oriented, more a way of doing something to someone. Second, the written text appears prima facie to be a one-way informational street, for no real recipient (reader, hearer) is present when the texts come into being” (Ong 1999, p.177). These include the ability to read the subtleties of gestures, of ways of physical comportment, of variations in voice that would render a reading or oration according to one versus another rhetorical meaning, attendant smells, and kinesthetic ways of resonating with the reader or orator. Some argue that we lost bodily forms of knowledge as described above, while others more cautiously argue that an emphasis of sensorial modalities shifted, privileging vision over all others. Although Elizabeth Eisenstein did not make this same claim, some of her suggestions come very near to articulating what the other theorists do: that our sensory or perceptual knowledges are less than they were centuries ago, as our fixation on textual forms reduce or compress our sensory knowledge primarily to the visual. This is not just a change in the ratio of our senses as McLuhan would have it. Since the mind is shaped by the body and vice versa, and
since the mind and body function together, as one, a difference in sensorial emphases results in
different ways of thinking and being. According to Havelock, "As the change toward literacy
occurred, it has produced changes in the configuration of human society." And further, "The
adjustment that it caused was in part social, but the major effect was felt in the mind and the way
the mind thinks as it speaks" (Havelock 1986, p.100).

5.12 Prior Art
Numerous graphic designers and interactive artists have created animations of fonts and fonts
themselves that bear characteristics of movement for semantic, performative, or other purposes.
One of the most prominent pioneers in this area, Muriel Cooper, formed the Visible Language
Workshop at the MIT Media Lab in 1975. There, many students developed numerous
"computationally expressive tools" whose basic underlying principles were of "transparency,"
"adaptability" and "blur" (Abrams 2007). John Maeda’s students at the MIT Media Lab are
carrying on Prof. Cooper’s experimental work in typography. As the personal computer became
ubiquitous, fonts such as Beowulf changed its character when it was printed out. Currently, many
designers and artists are exploring this realm. Among the more notable are Jason Lewis’
TextOrgan, which responds to voice and has numerous forms capable of manipulation. Over the
last year, my graduate students and I have scoured the web and contacted numerous professors
around the world (primarily Europe, India, China, Korea, and Brazil) to see if any such
experiments relate to biofeedback forms. To date, none have been identified.

5.13 Future Work
The original intent for BioMorphic Typography was in part to enable users to become aware of,
and to be able to assert some control over the part of their visceral system (breathe rate, heart
rate and GSR) that generally is termed “autonomic.” In its exhibitions in the U.S., England and
Sweden, it can be observed and said that this was accomplished. (Refer to Appendix 1.)

Pragmatic (i.e., more design-like) future applications have been explored with Dr. Thad
Starner, for possible use in Georgia Tech’s Aware Home. The goal of the Aware Home is
to develop ubiquitous technology that will enable the elderly to remain in their own homes
for a few years longer (Abowd et al. 2000. p.2) Starner developed a “gesture pendant” that can
be worn31 by the Aware Home’s inhabitants (Starner et. al 2000. pp.87-92). This pendant can

31 Issues of privacy are among the most important aspects of the Aware Home.
http://www.awarehome.gatech.edu/projects/index.html#technology/ However, the gesture pendant can be worn or
be re-engineered to measure the user's heart rate and/or mobility. Its data is wirelessly beamed to the data structure of the house and that data can be accessed by whomever the inhabitants desire. So, say the son or daughter wants to keep track of how well his or her parents are doing without being a daily pest. A small window could be available on his or hers computer screen that would display a general sense of how the parent is doing. Ambient movement of the typography could portray information, such as a general state or the amount of movement. When certain parameters are exceeded, the font could become more insistent, such as becoming faster, brighter, blinking, or augmented by sound.

An application that is more literally "visceral" is under consideration. It would utilize one of several Japanese toilets that were designed to measure and displays the relative health of an individual through weight, mass and chemical analysis of the urine or feces. Some come equipped with a blood pressure measurement cuff. According to one research team, "For the purpose of health care monitoring during daily life, we attempted to devise a non-conscious monitoring system, set up in a lavatory, for the automatic acquisition of body weight, weight of urine and feces, together with ballistocardiogram as an index of cardiac function during relieving nature" (Yamakoshi et al. 1996, p.67). Another toilet is designed to automatically measure other data, such as body fat, and to analyze the urine for glucose levels, iron deficiencies, and other indicators of ill health. However, the chemical analysis is relatively difficult for a non-expert to understand.

While this concept would retain the chemical readings, an application of BioMorphic Typography could provide a more abstract but perhaps easier to understand visualization. For example, acidity could be displayed as a color or "fraying," other chemical properties could be depicted by a change in shape. A "fatter" font, would, for instance, indicate that too much fat was consumed. A major obstruction to the pursuit of this idea is that currently, the toilet cannot be exported to Canada or the U.S.

Currently, BioMorphic Typography is designed for singular users. It would be fairly easy to construct BioMorphic Typography so that it shared among two or more people, as with Thecla Schiphorst's Whisper[s] (Schiphorst, Baker, Burgoyne et al. 2005), where at least two users can become aware of each other's heartbeats. Because Schiphorst's training was in Theatre and Dance, she is aware of and works upon the notion that when in a room, dancers who are focused upon a common goal will often unknowingly synchronize their heart rates with each other. This aspect has not yet been developed, but initial plans have been.
To expand the work further, beyond a singular user or a pair of users to an entire city, another application that is under review is to enable users, through the typography, to become aware of the general state of a city’s output. That is, instead of directly hooking up users to biofeedback devices, *BioMorphic Typography* would be instead parameterized with a city’s sewage processing plant. Many larger American cities have real-time (and sometimes hourly) digital data regarding the city’s sewage in order to add the proper amounts of chemical treatment. Its morphing state, the data from the city’s treatment plant would be displayed on an electronic billboard of that city. Factors that affect the city’s “output” would be discerned, where possible, and also displayed in order for its citizens to become ecologically aware of how their output is influenced by, and influences the important part of the city’s ecological state. These include climate, human effluents, soil, and plant groundwater quality, to name a few (Mahmood 2003, pp.55-65). Similar to Tissue Culture, what would probably elicit a visceral response here might be less indirect; that is, instead of “resonating” with an object or artwork directly, the visceral response would be the result of thinking about sewage. Initial research was begun with the City of Atlanta; however, my relocation to Canada has made this opportunity more difficult. Thus, I have begun to make inquiries with the City of Vancouver, Surrey and New Westminster in British Columbia. The workers at the city’s sewage plants are more accessible to, and appear to support the project more than the workers who represent the city. In this application, the intertwinement of mind, body and world would be the most literal and direct example of Merleau-Ponty’s phenomenology, since the “world” of the city’s sewage and its inter-connectedness to people, the weather and so on would be obvious.

Through *Biomorphic Typography*, I set out to explore, in real-time, the relationship between drawn typefaces and the physiological responses of a user’s body. In using *BioMorphic Typography*, users oscillate their attention between typing and trying to control or change their physiological states of respiration, GSR or heart rate. In other words, *BioMorphic Typography* is an example of Merleau-Ponty’s idea of reversibility. For example, when users are reading what they are typing, they are, in effect, in Merleau-Ponty’s term, in a state of “objective existence” (Baldwin 2004, p.247). That is, they are oriented “for others” in seeing how their writing can be understood by others. Similarly, users can attend to the visible representation of their physiological states — the changing shapes of the typography that objectify their inner states. This is a slightly different form of perception, because what is usually in the background of our sensibility are the autonomic senses that the biofeedback device allows to be brought into conscious awareness. They are, ironically, our pre-linguistic, primordial, “brute” or “wild” sense
(Merleau-Ponty 1968, p.13). However, when users reverse their attention by focusing on their interoceptive and visceral senses, by feeling and manipulating them, they “reverse” to “subjective experience” (Baldwin 2004, p.247).

Bringing to the forefront the connections between technologies of writing and a user’s conscious sense of their physiological states, I am continuing to address the contemporary concern of bodily estrangement that results from the ever-increasing degree of complexity and sophistication of some communication technologies. Other technologies, such as ubiquitous computing, wearables, and sensing technologies, meanwhile, promise similar self-awareness.

5.14 Summary

I intended, through Biomorphic Typography, explore the relationships between drawn typefaces and the physiological responses of a user’s body, in real-time. Bringing to the forefront the connections between technologies of writing and a user’s physiology, I am continuing to address the contemporary concern of bodily estrangement that results from the ever-increasing degree of complexity and sophistication of some new and emerging communication technologies. Other technologies, such as ubiquitous computing, wearables and sensing technologies, meanwhile, promise similar, self-aware bodily engagement.

Biomorphic Typography represents a very intimate and expressive technology that allows closer scrutiny of a user’s own state of mind and body in interaction with technology, thus allowing for a new avenue of aesthetic expression. With attention to the creative nuances of mind embodied in dynamic flesh, Biomorphic Typography places the body squarely in the agenda of the implementation and consumption of technologies of expression. They are real-time, and sometimes “felt” representations that are impermanent yet expressive.

By experiencing Biomorphic Typography, Merleau-Ponty’s idea of reversibility seems to work at several levels. As they type, users become aware of their continually changing physiological states, as measured by a biofeedback device. As users type, they are bringing their ideas outward, to the world, “for others.” seeing it at others might. Reversing this, writers also become aware of their physiological states by turning their attention inward; here, they are first-person subjects who are trying to manipulate a change in their inner states. This isn’t a one-time phenomenon, but oscillates and arises, according to Merleau-Ponty, from the very way that flesh itself comes into being. As with Merleau-Ponty’s oft-repeated example of one hand touching the other, users reported that they could not simultaneously focus inward and outward. Nonetheless, users seem to oscillate between a subjective, or first-person point of view and an objective.
third-person point of view, when they can “see” themselves as others might, or when they “read” the changes in typography without feeling a cause-and-effect. This seems to be exemplified when the majority of users demanded more privacy because they did not want others influence them as subjects, or to “see their states” as objects.

On another level, reversibility works with reading and writing too. The subject-user writes words, but then “reverses” to read their words as others will. This is both an individual and a social act, since words are learned and written not only for the self, but to communicate, to intersubjectively “be” with others.

At the lowest level, the morphing of the typeface, made possible via the mediation of the biofeedback device, as one writes/types, is an expression of Merleau-Ponty’s “the primordial level of language.” This primordial aspect, occurring before language refers to, in this case, the autonomic senses of breathing, heart rate and GSR. Users describe being “caught” in “feedback loops.” This seems to indicate that these are felt, ontological dimensions of language, dimensions that are usually, as Merleau-Ponty said, the “background” of our being. But these ontological aspects of language, even though language works on a prepersonal, collective level, is brought back into the conscious realm, via the biofeedback device and the ways in which it affects the typeface visually.

Merleau-Ponty argues that language is prepersonal, yet that it issues from our bodies nonetheless. As he puts it, language is a coiling over or an enfolding over of flesh that doubles it. Language, for Merleau-Ponty is of another order than prereflective perception. Nevertheless, BioMorphic Typography can bring at least some of its primordial aspects into the conscious realm.

5.15 Computer Code
For an example of the computer code for BioMorphic Typography, refer to:
www.sfu.ca/~dgromala/code/biomorphic
The MeatBook is one result of a youth spent in an extremely isolated part of the United States and a thirty-seven year fascination with meat, from decades of photographing roadkill, medical procedures and medical waste, to gutting deer and dissecting whatever the DNR (Department of Natural Resources) could offer. This was not a “rural” place rife with farmland, but simple forested wilderness. Its population is less than one twentieth of what it was in the late 1800s, when workers of the booming the iron and copper mines were as active as the French Canadian priests in attracting Enrico Caruso. Surrounded by a large national forest, two Great Lakes, a decaying Native American reservation and an Air Force base never seen by the public, it is still only a place were one goes to forget or to be forgotten. In the case of the U.S. military, since it is one of the three least populated places in the contiguous states, ultra-low-frequency grid testing and other experiments that no other American population would permit, frequently take place there. In my case, my Eastern Europeans relatives went there to “not be found,” ever distrustful after 800 years of foreign rule.

Though I did not live on a farm, it was common practice to befriend those who owned farm animals, though their environs could hardly be described as anything as structurally coherent as a farm. Thus, I often “knew” my future dinners by name and — in the case of beef or pork — watched them grow up. Similarly, shooting and gutting deer was an annual chore, as was making sausages of every description. Duck blood soup and the pickled male sperm sacs of herring, it might be pointed out, are Eastern European delicacies, and so were also amid the more viscerally provocative of chores. There was no distinction between the ongoing intellectual education my father insisted upon, and what we learned from earth-bound phenomena. In addition, watching out for the wildlife and forests was as keenly attended to as was watching out for one’s own, perhaps a form of ecology brought over from the “Old Country,” or a sense of belonging that preceded the time before factories blackened the south of my relatives’ homeland. Thus, criticisms rendered by globally, ecologically and ethically certain scholars, such as Carol Adams’ The Pornography of Meat (Adams 2003) or Michael Pollan’s The Omnivore’s Dilemma (Pollan 2006) seem to suggest that I was either raised in a different country, or in a different century altogether.

— Diane Gromala: Artist’s Contextualization from a First-Person Perspective
6.1 Introduction

The previous works created for this thesis — the Meditation Chamber and BioMorphic Typography — enabled users to bring into their conscious realm a register or sense of their viscera, almost directly, primarily through the aid of a biofeedback device. The MeatBook differs in two ways. First, it focuses on the enteric component of the visceral system and second, it is intended to elicit or provoke a visceral sense, through means unlike the others.

This chapter is an investigation of an artwork I produced — the MeatBook — in order to address one of the dimensions of the visceral: the enteric system, or what others commonly refer to as "the gut." Made of meat, this artwork interacts and moves in differing ways—from vibrating to gross motor movements—as a user turns the page. The interactive book appears to breathe, beats as a heart would, and/or quivers when users approach it (refer to the enclosed CD: MeatBook). As the MeatBook rots over the course of a day — infusing the space in distinct and spatially specific ways — it both progressively loses some functionality and becomes more insistent in its programmed movements. What is "read" is not text, but, as an example of Merleau-Ponty's reversibility, an intertwinement of a user's own viscera as subjective experience and objective existence — in interaction with the MeatBook.

The chiasmic reversibility that characterizes flesh is operative in the MeatBook, in a kind of continual dance between a user's experience of being a subject and, by resonating with the book, an object. This resonance is similar to Walter Benjamin's mimetic sense of becoming and behaving like something else, to determine what is me and not me, though, in Merleau-Ponty's terms, what is and is not me "encroach" upon each other. This phenomena is also related to Sherrington's and Simondon's sense of "resonating" with something or someone else, DePraz's sense of empathy, or in more recent scientific terms, activating one's mirror neurons (refer to Table 2.1 and section 6.6).

The MeatBook has been in three exhibits thus far and is scheduled for several more; each provides an opportunity for refinement, further experimentation and observation (refer to Appendix 4).

35 After a myriad of tests at the Banff Centre for the Arts residency, beef flank steak from the North American butchery practices was found to be the best choice for its grain and relative longevity. Note that countries butcher cattle in differing ways; these cultural differences are thus reflected in each MeatBook created for exhibition outside of North America. Pork, lamb and fish were also tested.
6.2 Initial, First-Person Descriptions of User Experiences: Version One

Most users laugh unexpectedly when they first see the *MeatBook*. As Walter Benjamin reminds us, laughter "opens up the body," in a way that enables us to change our habitual comportment toward something unexpected, like an interactive book made of meat. In discussing Benjamin's essay on Surrealism, Michael Taussig states, "Here he finds revolutionary potential in the way that laughter can open up the body, both individual and collective . . ." (Taussig 1993, p.23). Taussig posits another dimension of laughter: "But there is also the possibility that this sudden laugh from nowhere registers a tremor in cultural identity, and not only in identity but in the security of Being itself. This is like Bataille's laugh; a sensuous explosion of smooth muscle composing Being in the same instant as it extinguishes it" (ibid.). A tremor is an apt metaphor, for when most users first see the *MeatBook* and laugh, their physical and affective responses are obvious: they throw their heads back, turn their bodies sideways, cup their hands to their mouths, and/or shudder with laughter in big or small ways; but intermittently, they also walk closer and crane their necks to see the artwork in closer proximity, even as they turn away for a moment—not unlike a cat with a novel prey or a child with an unfamiliar toy.

Once the meat of the *MeatBook* is recognized, the fact that it is undeniably shaped into the form of a book seems to elicit both amusement and befuddlement. Users, for instance, had no hesitation in asking why it was a book, and why it didn't have words. From an artistic intention, what the reader could and hopefully should read is their visceral responses to the odd combination of meat and book. Some users articulated an awareness of what the books of yore were made of: animal skins, cat gut bindings, ink from squid and glue from boiled animal (especially horse) parts, to name a few. Most users, however, did not seem to be aware of this history, and joked that if we had a barbecue, we could literally "eat none of the words."

A few users did hang around, shyly asking if it was my intent to comment on the knowledge contained in and transmitted by books. I responded, yes, to an extent, but that this exhibit wasn't meant to be "a comment," like something one would trade over a cup of coffee. Rather, it was meant to *elicit* a visceral response, to *embody* rather than comment on knowledge passed down through books rather than through orally, or through bodily practices.

In addition, many users who first touched the *MeatBook* did so with obvious physical trepidation, interspersed sometimes with glee. These "tremors" seemed to be physical enactions of "opening up the body" to a novel experience, and in some ways paralleled the initial

quivering movements that the *MeatBook* made. As users settled in to interact with the *MeatBook*, their comportment did seem to change into one of focused and concentrated testing — as if they were putting their toes into water to check its temperature for the first time — and gently prodded the meat to see how it responded. This was interspersed with something of a gentle familiarity, as users’ comportments were steadier in one place as they recalibrated their movements to more carefully caress or turn the pages of the book. Far fewer users displayed disgust as had been initially expected. Most users chose to wear the rubber gloves provided, while a small percentage just touched the raw meat, at least before it became rank. These were the most common reactions and interactions with the *MeatBook*. In the extreme, a small proportion of users just shrugged, unaffected by meat, while another small number passed it by in disgust. The possible and discernable reasons for these reactions are discussed in section 6.10: Findings.

The objection to the *MeatBook* by those who follow Adams’ writings (section 3.3) is a curious one indeed. My use of meat is minimal — so minimal that it wouldn’t even register in grocery store sales. Of course, that is not the point. The point is about the processes of objectification of meat and of women. To reconfigure meat into a book that people caress, to make it interactive, to imbue it with movement, is a reminder, I argue, of death and of being alive. Further, by problematizing the distinction between it being both animatedly alive but certainly dead, throws a productive wrench into a complex argument that turns too easy in the hands of those who do not delve into its depths. An irony is at work here — a book, a long lasting repository of knowledge, has no words, and is as short-lived as one can stand from its smell (it has not yet been exhibited long enough to attract blowflies and maggots). Made of meat, pork uteri and tripe — viscera itself — it reminds those who are aware of the history of bookmaking that knowledge was once inscribed using dead animals, at least in some parts of the world. In addition, like communications that preceded books — tablets, papyri and other systems of leaving marks — this book, unlike others, requires a presence of “readers” that is as short lived as orally exchanging stories over a fire. The “knowledge” is not contained within the book in traditional terms; rather, the book only provokes, for some, a reader’s sense of their own viscera, itself surrounded by other forms of viscera: the beautiful texture of honeycombed tripe. This is not a book that belongs to a library, but to a group of people who will likely never see it again, whose bodily sense or knowledge is carried within them, in a form of knowledge that exceeds textualization. Further, this *MeatBook* could hardly be easily commodified. Its point, following Merleau-Ponty’s, is that through the symbolic marker of language (a book), we can return to the “Brute” and primordial aspects of ourselves. As Merleau-Ponty remarked.
"[M]y body is not only an object among all objects, ... but an object which is sensitive to all the rest, which reverberates to all sounds, vibrates to all colors, and provides words with their primordial significance through the way in which it receives them" (Merleau-Ponty 1989, p.236-237).

The way in which we “receive” the MeatBook is explored in greater detail later in this chapter, in section 6.6.

6.3 Ethics

Two of the most frequent questions that arose during the testing and exhibitions of the MeatBook were that of ethics and a “waste of food.” Since the ethical question was so common in all of the exhibits, it merits exploration. Though Merleau-Ponty never developed a comprehensive discussion of ethics, “his body-centered epistemology points to an approach to ethics,” according to Maurice Hamington (Hamington 2004, p.46). As Merleau-Ponty suggests, if our bodies are the “general medium for having a world . . . then the body must be our medium for having morality as well” (ibid.). In Merleau-Ponty’s words, “The things — here, there, now, then — are no longer in themselves in their own place, in their own time; they exist only at the end of those rays of spatiality and temporality emitted in the secrecy of my flesh” (Merleau-Ponty 1968, p.114). Hamington makes a strong case for the way our “embodied habits of being” and our imagination, according to Merleau-Ponty, are the ground for embodied ethical considerations.

While I can relate to and respect Carol Adams’ The Pornography of Meat (Adams 2003) now that I am fully urbanized, my experiences in childhood and young adulthood seem terribly distant from or are on the unclaimed margins of her argument. This is not just the exclusion of one person, but an issue that merits the cultural, gendered, economic and geopolitical considerations that are at the basis of her position as a cultural critic. To some degree, her work transcends some important boundaries, especially in the way global capitalism works, though she comes from a very North American and European point of view. She excludes, for instance, people who do not live in urban centers and communities that are termed by unrelated entities as living at a “subsistence level.” either inside or outside of cities. These communities, I would guess from experience, would render some of her claims beside the point. She compares the ways in which the invisible processes that led to the objectification of and violence to women (beginning in the 1800s), are closely intertwined with those that led to objectifying meat in ways that make its everyday consumption palatable. What is forgotten are, as she defines them, the patriarchal, inhumane ways in which the animals are brutally raised, butchered and processed as any other commodity. The power of her argument lies in the fact that these commodities — animals and women — are alive, and the processes are still at work.
While Upton Sinclair's *The Jungle* (Sinclair 2004) did affect some of the ways in which American factories processed food a century ago, his critique and revelation was very focused. Adams' work, however, is extensive, referring back to practices that are over one hundred years old. While she has enjoyed a following for the past 20 years, one wonders if she and her followers can have any effect on the forms of global capital that rely on meat. One also wonders about some of her followers, such as the ones who attend interactive art exhibits and vehemently decry the "casual" use of meat, not knowing the slightest about my background or intention. This is not uncommon for a group of any considerable size. For it is here that Merleau-Ponty's observations speak perhaps louder than a knee-jerk reaction to displaying meat at all. Most of the users touch and caress the *MeatBook, as if it were an animal, or as if it bore sentience. For some users who returned later in the day "to see how it was doing," their touch was gentler still, as if the book was dying. Thus, the kind of attunement to the *MeatBook*, users' physical comportment of care (Hamilton 2004) shown to the meat object of an art exhibit would seem to be in line with Adams' desired results, as was expected. Nonetheless, a few strident voices decried the use of meat on any terms.

An ecological work, *The Omnivore's Dilemma* (Pollan 2006), is a related polemic about raising food — in this instance, corn — on a global, industrial level, along with all the attendant processes (economic, geographical, chemical, biological). Pollan makes an even stronger argument in my opinion, because its far-reaching and current horrors seem unstoppable, and the empathy toward corn results in unexpectedly strong reactions despite the lack of horrifying images.

But these are writers. Artists working a bit before Carol Adams wrote her book — usually feminist artists — at times made similar statements; others, like Carolee Schneemann’s *Meat Joy* (Schneeman 1964), made the issue arguably more dense and paradoxical as the "joy" of her title implies.
On the other hand, Canadian artist Jana Sterbak’s *Flesh Dress* enacts Adam’s point in a more immediate and definitely visceral way, though I cannot keep thinking that her point would be stronger if others (and not just Sterbak) were able to wear the dress. Because Sterbak’s *Flesh Dress* is a material instantiation of Adams’ work, the use of meat, in this context, seems appropriate for Adams’ followers. This is because by wearing the *Flesh Dress*, Sterbak exemplifies Adams’ point about how the same processes that make meat a palatable commodity are the same by which women are commodified. If anything, Sterbak’s *Flesh Dress* is a non-textual instantiation of Adams’ point. For this borders on a commodification of a young, attractive woman, however abject are her clothes or her artistic intention. Would the *Flesh Dress* work if it was worn by a 60 year-old, overweight woman? A surgeon? A butcher? The readings, in those cases, of the *Flesh Dress* would render altogether different meanings. As Merleau-Ponty was quick to cite over and over again, perception, meaning and experience change from context to context. A context “forms a constellation...” of differences between things (Merleau-Ponty 2004, p.250).
6.4 Prior Art

Prior art which relates to and which preceded the MeatBook includes primarily non-interactive art. Survival Research Labs’ “re-animation” of a dead rabbit (Rabot) on metal armatures (Survival Research Labs 1982), for example, appeared to elicit a visceral sense among the audience, perhaps because like the MeatBook, it was animated: seemingly both dead and insistently alive. Stelarc’s Extra Ear (Stelarc 1998) is “cultured tissue” that he is trying to implant onto his arm. This work seems rather to elicit a sense of the abject, especially because it quite literally disturbs our body schema. Merleau-Ponty defined the body schema as,

“This basic experience of the body developed into habits of perception and action, exposing a person to new ways of relating to his environment. Even within this very basic structure of existence, a virtual dimension of possibility is found in the form of a virtual body, a body that a person can imagine assuming and from which he can view the world from a different perspective” (Steeves 2004, pp.6-7).

For viewers to feel a disturbance of their body schemas would mean that they are seeing Stelarc’s work as subjects, but are also identifying with the Third Ear and/or Stelarc’s arm as objects, or as others might see them. That is, the elicited a sense of the abject or of the visceral is another example of Merleau-Ponty’s reversibility thesis.
There is a difference, however, in how viewers see Stelarc’s third ear, one that may involve all of the works cited in this chapter. That is, it is one thing to witness Stelarc in person, at a conference or gallery with his ear, and quite another to see it on videotape. The videotaped version is safe: one cannot smell the ear, wafting of its bio-helping agents, and one cannot infect it or be infected by it, if that were possible. Thus, seeing it in video forms appears to render Stelarc and his extra ear more viscerally provocative than horrifying. Meanwhile, Wim Delvoye’s Cloaca (Delvoye 2004) is a machine of sorts that parallels our enteric system. Food goes in, gets processed, and is expelled out as excrement. It seems to fascinate rather than to repel most viewers, and its mechanic basis, comprised mostly of motors, transparent tubes and glass where possible, appears to make it more "safe" than if it were created out of a real cow's enteric system that one could buy in specialty grocery stores. It is unclear, however, if this “recognition” of our own bodily processes evokes a visceral sense in its viewers, who seem to rather be caught up in the "magic" of a natural but otherwise invisible process.

John Slepian’s Little One (Slepian 2005) is a computer graphic of something that resembles a tumor or a fetus who has developed in ways that have distinctly gone wrong. The computer graphic appears in a crib, the monitor wrapped as if in swaddling clothes. It, at first glance, seems viscerally repulsive, but simultaneously cute and humorous nonetheless. The sound — of recorded baby gurgles — seem only to render it more funny, for how can this monstrous humanoid elicit any sense of a physical ethics of care, except for its infant-like sounds and its movements? Nevertheless, some users do stand around the crib with nurturing postures.

Damien Hirst’s shark (The Physical Impossibility of Death in the Mind of Someone Living) (Hirst 1992) and David Falconer’s Vermin Death Star (Falconer 2000) apparently created quite a stir when they were first exhibited. By the time I saw them, however, they were artworks like any others. Arguably, these works were in the realm of the abject: the rats seemed horrifying enough, but at the same time, they were safely encased in a thick, transparent, hard plastic-like substance. What seemed horrifying was that one could stop to really look at the rats, instead of catching a view of them scuttling away. Some viewers clearly claimed that Hirst’s shark elicited more of a visceral sense; “it can’t hurt you in any way” said a viewer standing next to me. “but it is really . . . dunno . . . big. I can’t help from feeling a threat even though I know it is dead . . . hell, it was even in a movie, yeah? But still, it is big. And I know it would eat me if given a chance.” The most interesting artworks in this realm, in my opinion, were those that problematized the distinctions between being a representation and those that were the things-themselves. Hirst’s and Falconer’s work fall somewhere in-between: embedded in a plastic-like substance, no concern for bodily harm, escape, disease, or offensive odor was left. Yet what is
notable about Hirst’s shark is that the insides and outsides are simultaneously visible, as if it were a different instantiation of the Visible Human — a different species, thicker slices, but inescapably reminiscent all the same. The difference from the Visible Human was important, as the larger-than-human scale of Hirst’s shark would make a perceptual difference. At the time I saw the exhibit, users could not walk through or near the slices of shark, but if or when would have, it could well have elicited a full-body, visceral sense.

Other artists employ meat in a variety of ways, from Chantal’s Embroidered Ham (Fresh Cream 2000, pp.220-222); a parquet flooring made of cold cuts (Marble Floor No. 30, 1998) (ibid.); and Mosaic 90-324-BLO (ibid.), which are printed ceramic tiles that appear to have feces one them. The meat and pictured excrement are used here in a decorative fashion that overtakes any possibilities of a visceral response, in my opinion.

6.5 Meat, not Cultured Tissue

The MeatBook is often compared to the works of Tissue Culture (Oron Catts, et al. 2002, pp. 365-370). The differences though are extensive, from concept and intent to process and consumption. “Tissue Culture” refers to a group of artists who grow “tissue” or groups of cells, seemingly made as if from scratch. The tissue though has an origin, visible or not; if animal cells are grown, the originary (and usually stem) cells came from an animal. However, the same issues are and are not at play with the MeatBook. It is possible, but not a standard practice, to get these originary “meat” cells without killing the animal. But first-hand knowledge of how the process was created (by frequenting the NeuroEngineering Lab37 during my time at Georgia Tech) certainly does involve killing animals, primarily cats. Such images, let alone the technological wires that hang out of the living cats, certainly produce a strong sense of the abject. If this process was known, the artistic works resulting from using this new technology, tissue-grown “BioArt,” would then seem to elicit either a visceral or abject sense. Most often, however, strangely it does not. It seems to raise a visceral response of a different sort — one that is not immediate, but which comes after reflecting about the piece, not by directly observing it.

In addition, these works and the pseudo-biological exhibits and performances of Bioteknica display a sense of a scientific, biological laboratory that also colors users experiences. In the words of Eugene Thacker in BioMedia, “Indeed our very cultural associations with biology evoke its material, even visceral basis: dissections, lab rats, microscopes, digestion, disease, reproduction, and decay ... for biology has arguably always been enamored of the ‘stuff’ of biological life” (Thacker 2006, p.9).

37 Dr. Steve Potter, who worked with Catts in the early days, is the Director of this lab.
Again, the experience of some of these works are examples of Merleau-Ponty’s reversibility. First, the cells are grown on mesh substrates and are difficult to keep alive. Thus, as clumps of cells, they do not get very large. Second, undifferentiated from other types of cells, colors or textures, they are difficult to perceive as anything different from gelatinous food. Probably since the scale is also and necessarily small, it lacks a definite smell or any sense of an animistic threat. And finally, the time it takes the cells to grow is beyond direct human visual perception. The Frankenstein-like aspect is emphasized by the kind of tissue involved in the artworks and their titles. For example, Pig Wings (refer to Figs. 3.4 and 3.5), pork cells grow on a substrate mesh that looks like bat wings. Though a humorous take on a well-known adage, there was still something creepy about it. In addition, Stelarc’s cultured Third Ear evokes a sense of the abject when one considers that he plans to implant it on his arm; thus disturbing one’s sense of bodily boundaries. This can be viewed as reversibility of a user because in order for bodily boundaries (or schemas, in Merleau-Ponty’s terms) to be disturbed, one must necessarily be aware of one’s body as a subject, and be aware of the disturbance by (inadvertently) resonating with the artwork as an object — a constant reversing of experiencing me-as-subject and me-as-object.

6.6 Merleau-Ponty’s Reversibility: A Befuddlement
The “thingness” of the MeatBook seems to befuddle animate/inanimate, organic/inorganic, and live/dead distinctions. If the user actually turns the pages (with or without the available rubber gloves), the book “behaves” (mechanically and sonically). The deterioration or rotting of the meat is a component of the book; as the meat rots (variability in how it rots depends on temperature, humidity, and how fresh the meat was when it was obtained), the armatures become more mechanically insistent, as does the sound. How the technical components eventually breakdown is still under scrutiny, and has always been part of the piece. This is because it adds a dimension of indeterminacy — though we try to control the electronic components with how the meat rots, there is no telling when the changing chemical (de)composition from the meat will dissolve our electronics encasement and cause the components to behave erratically, or to stop moving altogether, though they lasted to the end of every exhibit so far. Thus, with each MeatBook that is created daily, few electronic components can be retrieved and used again. This is also affected by the fact that with each MeatBook made for that day, it had to remain frozen until set up time. Some of the electronic components, therefore, were frozen in the meat. So far, this has not resulted in any damage.

I intended the MeatBook, of all of the artworks, it to be the most literal, though poetic, incorporation and material instantiation of a user’s experience of the continuum of the visceral...
register to a visceral sense. To reiterate, unlike the other two artworks, no biofeedback device was involved to help users understand their changing physiological states.

How then did users have or take note of a visceral reaction at all? My hypothesis is that the aspects of “resonance, empathy and mirror neurons” (refer to Table 2.1) were at work, along with the fact that we recognized that meat — that which is usually internal and invisible, in terms of our bodies — as decontextualized. This incites a basic reflex or instinct of “is it friend or foe?” Further, its quality of being technically animated partially sustains the friend-or-foe reaction, until the reflective understanding of it as meat and as a book was understood. The scale and placement on a podium or exhibition plinth made it clear that the meat served no threat, unless the threat was one of some infectious disease. The recontextualization of meat outside of a grocery store or restaurant seemed to attract users first; other aspects, such as its quality of interactivity, served to maintain interest among at least among most users.

Upon first seeing the MeatBook, users have no doubt that the meat is both real and “dead.” This becomes more obvious over time, as the meat turns gray, and paradoxically becomes more insistent in its movement over time. As the MeatBook rots, it physically — through movement — becomes mechanically more “alive,” or more insistent in its movement and responses, as if it were struggling to survive. The intentions for the interactivity, from the MeatBook’s initial recoiling from users, movement toward the user (accompanied by sniffing sounds), the aggressive movements provoked by aggressive users, to its death throes appeared to be interpreted by users very closely. Very few users interpreted the movements in distinctly other ways, though my presence at the exhibit could have skewed what the users were willing to say. Nonetheless, when I left the MeatBook in the hands of attendants, the comments did not appear to change significantly. In addition, when I was there, I made a point of not explaining my intentions in order to be open to their interpretations.

In first engaging with the MeatBook, many users saw, understood, and touched it from a first-person, subjective perspective. They were subjective users, and the MeatBook was an object that they are touched. Many users, as they tried to figure out how their movements affected those of the MeatBook’s, appeared to try to mimic it. Like Benjamin’s mimetic faculty, users moved and behaved as if they were trying to figure out what the MeatBook was and how it moved: in other words, they were trying to determine the limits of what was me and not me, intertwined as they were with the book. Though Benjamin’s notion of a mimetic faculty and Merleau-Ponty’s concept of reversibility may seem related, they assumptions under which both theorists worked, in philosophical terms, were very different. Merleau-Ponty argued that the body is the basis and “ontogenesis” for all pre-reflective and reflective understanding. Benjamin, more so than his
Neo-Marxist colleagues, privileged the body in many ways, but did not understand it to be the very basis of perception and meaning in every way. Further, Benjamin attributed some deterministic qualities to the then-new technologies he was examining, while Merleau-Ponty understood technology to be part of the world and part of the human. To put it contemporary terms, for Merleau-Ponty, the mind, body and world intertwine in differing ways, ways in part determined by the “affordances” of the technology, the state of mind, and the characteristics and needs of the body. Context, in other words, made all the difference.

To return to Merleau-Ponty, these users were enacting reversibility — at times becoming (or at least moving like) the MeatBook, and at other times, being their “subjective” selves. As the book rots and its movements become more insistent, users crossed over again to perceive the book as dead, roting meat. Over the course of the day in all of the exhibits, a few users returned often, and said, at the end of the day, that they were “sad” that it was “alone and dying” in such a “horrible way.” A few users made mention of the slaughterhouse from which the meat came, and spoke of it as if we were “doubling” “its” suffering. When asked if they thought that meat “suffers” when we eat it, they just said, “no, of course not.” One of this group of users, a vegetarian, said “of course — it isn’t just the animal that suffers all caged up like that, and then frightened and killed, but the cells that are in the meat don’t ‘just die’ immediately. Some cells,” the user said, “live on for quite some time.” I happened, at that exhibit in Vancouver, to have with me a book made of a viscous silicone — it was the book we practiced sewing on and implanting electronic components in. When I showed her our “vegetarian version,” she replied, “nice, but it misses the point completely. I guess you do have to use meat.”

Affect

Users at the MeatBook exhibit, more than at the Meditation Chamber or the BioMorphic Typography exhibits clearly demonstrated emotions. Some were gleeful, purportedly at the paradoxical novelty; a few were indifferent; some seemed confused in a way that was affective and some grew “sad.” Merleau-Ponty accounts for this in his reversibility thesis because he applied it even to “perceptions of inanimate objects” (Merleau-Ponty 1993, pp.121). In addition, “An advantage of Merleau-Ponty’s philosophical approach to perception is that perceptions and emotions can be thought as together, as co-presently implicated” (Evans and Lawlor 2000, p.189). Further, “... We may regard our emotional apprehensions as ways of being touched, of being affected, by some perceptible object or other” (Evans and Lawlor 2000, p.191).

Merleau-Ponty’s reversibility thesis, in the case of the MeatBook, I argue is somewhat (lopsided) when the object we are touching or seeing is dead. Hamington explains this as well, when she
Gromala

touches a dead relative. “Apart from this strange sensation, another sort of crossover takes place when we encounter dead flesh ‘in the flesh.’ Although we may momentarily identify with it, we do not remain for long” (Hamington 2004, p.193). Grasping the hand of her relative to say goodbye, Hamington continues, “My touching reverses to a sense of being touched. of being ‘cut off’ — by the Hand of Death, which momentarily has me in its grasp. The sidedness of the perception is confused, crossed over, so that, absorbed in the horror of this ‘gripping’ experience, one no longer knows who is perceiving and who is being perceived” (ibid.). An experience with a dead human, of course, is different from one with an animated book made of meat. One way the MeatBook differs is that it moves as if it were somewhat alive. And its movements are not just movements, but were responsive to the users’ movements. Thus, while users know it is dead, they nevertheless act, to some degree, as if it is living. This was observed by the users’ physical reactions and what they told their friends, for few users touched the MeatBook unaccompanied. The vast majority of users, much to my surprise, touched the MeatBook gently, prodding it gently and carefully, sometimes laying their hand over the whole of it to feel it all at once. I rather expected at least some of the users to poke at it and perhaps break it in order to see what its limits were. This only occurred once. The gentleness of touch was especially keen when the MeatBook appeared to be breathing. Pages were turned with a hesitation, not because users expected a “surprise” as they told us, but “because . . .” of something they could not articulate. One young teenage girl said to her mother that “it feels like when (name withheld) was pregnant and I could feel the baby’s elbow — I think it was an elbow. But this is just weird.” The reversibility and commingling of user with MeatBook was usually short-lived. Users stayed for a few minutes until they thought they had experienced all that the MeatBook had to offer. Though the younger users seemed more “creeped out” by the MeatBook, this may have been telling of Hamington’s observation of an “incompleteness in our ‘interstitial commingling (or breach of boundary) a categorical distinction between the living and the dead” (Hamington 2004, p.193). Or, the interactions were simply limited.

The aspect of rotting was neither as slow as I had imagined, nor as complete, for the meat did not turn gray or smell in any neat way that I could anticipate with any accuracy. Nevertheless, when the meat started to turn grey and smell (the odor came much quicker when the exhibit is inside rather than outside), the users’ relationship to it was “obviously and definitively altered” (Hamington 2004, p.196). Apart from the few users who came by from time to time, other users who visited earlier in the day seemed not to care to observe what happened, but did want to know “if it smelled yet.”
6.7 Resonance or Mirror Neurons at Work?

As Bruno Wicker et al. makes clear in their research with fMRIs, seeing someone who displays disgust incites the same areas of the brain (the so-called mirror neurons) as feeling disgust itself (Wicker et al. 2003, p. 1). Their results indicate “that, for disgust, there is a common substrate for feeling an emotion and perceiving the same emotion in others” (ibid.). Though mirror neurons seem to indicate that observed actions create a sort of simulation in observers, some scientists offer a counter-hypothesis. One of these is that the role of mirror neurons “are involved in the prediction or anticipation of subsequent — rather than in the simulation of concurrent — actions of the observed individual” (Csibra 2005, p.6).

While the art and (especially) science of this type of work may incite PETA members, it is interesting that similar cultured tissue work at MIT does not. Biologist Susan Lindquist heads a project that uses yeast cells as “living test tubes” in the study of Parkinson’s disease (Cooper, Gitler, Cashikar et al. 2006, pp.324-328). Unlike neuroengineer Steve Potter from Georgia Tech who originally helped the artists who developed “Tissue Culture” projects, Lindquist does not have any art projects associated with her work. Neither plant nor animal, yeast blurs the question of exactly what ethical questions one can or should be raised. After all, as Lindquist points out at the beginning of each of her talks, yeast surrounds us, is in the air, and has been put to human use for thousands of years. For Lindquist, there are no ethical concerns whatsoever, even though she is genetically modifying such a ubiquitous form — yeast. Further, no mention of enslavement arises, especially because the scientist refers to bread and beer, as if they were longstanding human rights. However, if the size of yeast were on a human scale, would this purported lack of ethical problems hold? It would be difficult to discuss Merleau-Ponty’s ethical bodily attunements and comportments to a living entity that is on a microscopic scale. Finally, in the West, the conditions of raising and killing animals for food consumption is well understood — yet it is ok to raise plants in barbarous conditions, and to kill and eat them. While this appears obvious, it is not so in certain cultures that are still alive and well in India.

While Carol Adams reminds us or reveals to us that certain qualities of processes have long historical roots, and capitalizes on the abject images of tortured animals and objectified women, hers is not a phenomenological study, important as it may be. The job of a critical theorist is to identify what some of our silent assumptions are and where they may come from: fewer warn us about the future.

For example, the Jains.

While DNA splicing or “playing” around with growing meat in Tissue...
Culture may provoke concerns about an uncontrollable future, the MeatBook does not. The MeatBook’s only criticism has been as a waste of “good food” and for using meat at all.

Yet the smell and rot and Frankensteinian threads were left by the MeatBook to remind us just how fast it – and by extension, we – decay. As the meat rots, the interactions become more insistent, while a couple of interactions “die” out altogether. As the meat progressively turns gray over the course of a day, users stop laughing, and are more reticent to touch the once-bloody piece of meat. The reminder of sickness (the insistent smell of meat gone bad) and incipient death seems to get a little too close for comfort. Our visceral register, or more developed visceral sense is one that we would probably want to disengage with at the end of a day.
6.8 The *MeatBook*: Instrumentation: Version One

The first iteration of the *MeatBook* was made of four, two-sided “pages” of flank steak, sewn together with clear surgical thread. This version was embedded with a piezo-electric sensor and small, robotic-like armatures. It was positioned on a bookstand that had a hole cut out of its center, which the *MeatBook* covered. Servo and stepper motors slowly and gently pushed up through the hole from under the *MeatBook*, making the *MeatBook* appear as if it was breathing. As users approach the bookstand, 12”-18” proximity sensors embedded in the bookstand’s outer rim triggered intermittent “quivering” of the armature, as if the *MeatBook* was aware of the user and registered fear. As users moved closer, they “broke” the light hitting the photo-electric sensors, also embedded in the bookstand. This triggered more “aggressive” movements toward the user.
Gromala

As the user, who generally puts on the provided surgical gloves, turned a page, the robotic armatures wriggled more insistently, as if the book was deriving pleasure. However, a Theremin and recorded but indistinct feral sounds emitted from the bookstand. The sounds changed according to proximity of the user, the pace of his or her movements, and the number of other users. At this point, depending on the time of day, indistinct odors emitted from the meat, which grew more intense over the course of the day. As its pages were turned, the book recoiled and emanated feral sounds.

At the dawn of each new day of exhibition, a new, frozen, pre-sewn MeatBook was connected to the technological components. The earlier in the day, the more fresh is the meat and its blood.

Instrumentation: MeatBook Version One

Software: C

Hardware: robotic armatures, actuators, micropositioners (servo & stepper motors)

Hall effect & piezo sensors (the Hall effect sensors were difficult to work with, especially considering the nearby Theremin, so they were eventually abandoned)

Theremin, speakers, electronics encasement material (home brew)

Materials: MeatBook Version One

Beef flank steak

Surgical thread

Podium/exhibit stand

Plastic

Sponges

Figure 6.6. A photograph of interim testing of the MeatBook.
6.9 The *MeatBook*: Instrumentation: Version Two

The robotic armatures of the first iteration were proprietary and thus had to be abandoned when I moved to Canada. Thus, muscle wire and vibro-tactile motors replaced the movements of the meat after much experimentation. This evolution was desirable because the movements are now both more animal-like and robotic-like, depending on a user's interaction.

![Figure 6.7. The second iteration of the *MeatBook*.](image)

Instrumentation: Version Two

Software: Processing

Hardware: muscle wire, actuators, micropositioners (servo & stepper motors)

Piezo and Photo cell sensors

Materials

Beef (flank steak)

Pork Uteri (binding)

Honeycomb Tripe (that the *MeatBook* lies upon)

Theremin, speakers

Electronics encasement substance (home brew)
Figure 6.8 Diagram of the technological components of the second iteration of the MeatBook.
Illus: Jayme Cochrane.

The electro-mechanical system that drove the interactive components of the MeatBook is enclosed within the podium upon which the MeatBook sits. The fully assembled MeatBook is placed on this podium within a rectangular area designated by wooden slats. The surface between the slats has been removed and the hole covered with a thin plastic sheet that protects the electronics from contamination while it simultaneously provided a flexible surface that permits manipulation of the meat from below. This sheet allows rods attached to motors to push through and impact the surface of the meat, generating a variety of visceral gestures.
There are 3 servomotors inside the podium structure which generate the responsive movements. Each motor runs on 5 volts which are provided by a 3 Amp power supply. A Wiring Board™ microcontroller is used to control the sequencing of the motors. The motors function as part of a larger mechanical system; each is designed to generate a unique kind of movement. The first two motors are coupled with wooden dowels that push up on the meat from below. The first motor has a rod that is pushed forward and backwards, creating a pulsating bulge on the meat’s surface, reminiscent of a diaphragm expanding and contracting with breath. The second motor’s rod is bent on the end at a 90-degree angle, allowing it to quickly rotate in a semi-circular pattern on the meat. This configuration produces a gesture that is commonly perceived as quivering. The third motor is connected to a rotating arm. In addition, a wire runs from the end of the arm through the plastic sheet and attaches to a hook in the underside of the meat. As the motor turns, it pulls down on the meat, producing both a pulsation and a creasing effect that permeates the entirety of the Meatbook.
The *MeatBook* interaction is controlled using 5 photo resistors and an IR motion detector. The motion detector has a range of approximately 10 feet and is used to detect and lure passers-by. When this sensor is triggered the first motor is activated. The pulsating motion, set to the rhythm of a heartbeat, acts an invitation for people to come and interact with the book. During direct physical interaction with the *Meatbook*, the motion detector is disabled, and the photo resistors act as tracking mechanisms. Each photo resistor is calibrated to trigger the system only if a sufficient amount of light is blocked by the activity of the interactor. A simple, automatic calibration occurs when the system is powered on to adjust to a variety of ambient light levels. This ensures the appropriate level of sensitivity. Using these 5 sensors, the system can determine the approximate location of the interactor’s hands. At the early stages of interaction, the system will activate the motor that is closest to the triggered sensors. However, as the duration of the interaction grows longer, the triggering of the individual motors becomes increasingly random. Each motor is also set to run for a preset amount of time before switching off as another motor is activated. Additionally, if multiple sensors are triggered at one time, indicating the likelihood of double-handed interaction, then 2 motors are triggered simultaneously. These rules were designed to prevent a viewer from having a repeat experience on subsequent interactions, to ensure that the interaction is dynamic, and perhaps to indicate that the *MeatBook* itself is simulated with life.
6.10 Findings: Reactions to the MeatBook: Version Two

The interactions with the Meatbook at the Tangible and Embedded Interactions Conference (TEI '07) were extremely varied, as were the disciplines represented at the conference. The MeatBook affords both distant and direct interaction, each which produced different reactions from individual users. The distant interaction, which involved observation of the meat slowly and rhythmically pulsing, tended to invoke visceral responses in viewers, at least as observed by the attendants and graduate students. I call this distant because the exhibitions were set apart by quite a bit of space, and so users were at an approximate distance of 12 feet when they triggered the MeatBook's first movements. The level of this response, however, varied considerably. Of those viewers who reacted strongly, some refused to approach the Meatbook altogether; most viewers approached tentatively after a brief period of adjustment. Another set of viewers, however, was not at all affected viscerally by the Meatbook. Their comments indicated that the Meatbook simply resembled uncooked meat which, while out of place at a conference, was not particularly unsettling — despite the movement of the meat. Most viewers, however, fell in-between these two extremes. This middle group seemed viscerally affected by the Meatbook — according to their physical movements and judging by what they said — but was intrigued enough by the movements and the prospect of interaction to move in for a closer look.

The direct interaction was supposed to involve people touching the meat. Unfortunately, because photo resistors were used as the sensing technology, it was possible to activate the system without actually touching the book. This phenomenon was further exacerbated because of the natural lighting an the atrium, which served as the exhibit space. This made it difficult to calibrate the system for optimal performance. Thus, users often discovered that they could elicit reactions from the meat without actually touching it.

In order to encourage users to interact with the MeatBook tactilely and directly, we provided surgical gloves for them to wear. Most users took advantage of the availability of these gloves; however, there were three who chose to touch the meat directly with their hands. The users who wore gloves tended to use a single hand and were generally more cautious with their actions. They would lightly stroke the meat, or gently push on the surface. The users who went bare-handed were much more interested in testing the limits of the system. These few users were much more aggressive, using both hands and the weight of their bodies to press on the surface of the book, and had to be intercepted before they damaged the installation. A few users actually laid their hand flat on the book to feel the movement of the motors pushing from beneath. This aspect of the interaction seemed particularly interesting to them, as they "got in sync with its breathing" and thereby created a connection between their own materiality and the materiality of
the meat. From their reported subjective standpoint, they “felt” for the rhythm of the “breathing diaphragm,” and doubled this perception by “feeling connected to” the MeatBook. Reversing their perception, said they felt what the MeatBook must have been feeling, with a knowing irony. Obviously, they knew this was a dead piece of flesh, but “went with” its “inescapable” liveness. Although they didn’t want to feel that the MeatBook was anything but meat and machine, it seemed to coalesce for them into something not quite living and not quite dead, simultaneously. Their reactions seemed to move from a distant to an embodied form of viscerality. According to the two of them, “we weren’t just experiencing the meat, we were the meat.” To re-invoke Merleau-Ponty, these users were experiencing themselves as subjects, and as objects by so strongly identifying with the meat, which was, for the most part, under their control. Further, in this exhibition, some users commented very strongly that they couldn’t figure out where the meat began and where or how their interactions made the MeatBook work. Thus, perhaps the programming strategy of cause-and-effect interspersed with a few instances of what was perceived as autonomy by the MeatBook was successful.

6.11 Disturbing the Body Schema?

For Merleau-Ponty, the body schema, immediate and affective, acts on two levels: that of the “body at this moment” and of the “customary body” (Merleau-Ponty 1989, p.82). The “body at this moment” is volitional, while the “customary body” is a general mode of being that refers to the “level of tacit abilities which constitute the majority of one’s actions, including reaching, grasping, sitting, standing, and walking” (Steeves 2004, p.20) or batting a fly away from our face. This is experienced, for example, when “we spontaneously adjust our posture in a new situation in order to maintain our balance and a sense of control. These experiences seem to occur on a deeper level of experience, beneath the level of consciousness and voluntary action” (ibid.). Merleau-Ponty writes,

“My organism is a pre-personal clearing to the general form of the world, as an anonymous and general existence, play, beneath my personal life, the part of an inborn complex (Merleau-Ponty 1989, p.84).

The body schema for Merleau-Ponty, unlike some contemporary versions, “is not a conscious image of my body, but a tacit sense of its abilities and of its relation to the world” (Steeves 2004, p.20). Typing, for example, is “the capacity of going beyond created structures in order to create others” (Merleau-Ponty 1963, p.175) not only by developing abstract or complex movements, but also by creating or employing tools and machines to facilitate our goals” (Steeves 2004, p.24).
Gromala

The body schema is usually experienced, akin to the viscera, as a kind of “absence in the form of a background for a person’s activities” (Steeves 2004, p.24). As Merleau-Ponty described it:

“If I stand in front of my desk and lean on it with both hands, only my hands are stressed and the whole of my body trails behind them like the tail of a comet. It is not that I am unaware of the whereabouts of my shoulders or back, but these are simply swallowed up on the position of my hands, and my whole posture can be read so to speak in the pressure they exert on the table” (Merleau-Ponty, pp.100).

I would argue that at least for the users who were most engaged in the MeatBook, their body schema may have been temporarily skewed until they understood how the MeatBook worked, and what its limits are. This may be true of any novelty that requires a testing of what is me and what is not me.

6.12 Results

The Meatbook is a work of art. Of the suite of projects examined in this thesis, it is the most provocative in terms of the enteric aspect of the visceral. The meat functions not only according to artistic intent, but is also a play on Merleau-Ponty’s idea of flesh. To reiterate, according to Merleau-Ponty, flesh is neither subject nor world, but a primal ‘element’ in which both are born in mutual relation. For him, meaning cannot be purely or solely attributed to ideas, but usually precedes them in pre-reflective, bodily experiences. The sense of novelty (or shock, according to some users) of seeing a book made of meat may engender a pre-reflective response that seems to move users to touch the literal flesh of the MeatBook. Some of the more squeamish users seem to experience this more intensely, in the spasmodic, alinguistic sense that Massumi suggested (Massumi 2002, pp.112-113). More than a few users said that “I don’t have words” or “I can’t explain it” when asked to describe their reaction by those who tended to the exhibition. In addition, the laughter engendered by the MeatBook could well be an example of Massumi’s “alinguistic rupture.” What Massumi was getting at though was that the quick shock or spasmodic laughter that resulted from seeing an animated book made of meat was an indication of feeling something — something outside of language, something that occurs in the split second before reflection is possible — immediacy. For Merleau-Ponty, the pre-reflective experience of immediacy, perception, for example, was not a radical idea. For many of the contemporary cultural theorists of our time, however, immediacy is considered to not be possible, as everything is purported to be mediated by language, with the few exceptions of abjection, jouissance, and others.
The *MeatBook* elicits, in its fresh phase, early in the day, laughter and an enteric/visceral response, as articulated by many users themselves. Late in the day, however, graying and emitting a distinct odor under the warm daylight of the atrium, it also elicits the abject, or a kind of disgust or repulsion. In an exhibition at the Tangible and Embedded Interaction Conference (TEI 2007), at least a third of its users who interacted with it earlier in the day returned to see “how it was doing.” Three users returned often. It is only over more time than the usual 1-3 minutes users stop at exhibits can a visceral register give way to a visceral sense. These three users indeed seemed to experience a visceral sense, at least according to their accounts. Some users went so far as to caress and talk to it, as to give comfort to the dying object. This seems to indicate that its animal-like movements, and its organic, fleshy composition spoke to both notions of mortality and empathy, as if the *MeatBook* bore some sort of subjectivity or sentience.

A decade after similar reactions to “dying” or “dead” digipets, there is still an apparent desire for some forms of technology to be anthropomorphized, or to fill some sort of need for deeper connections. Just as earlier discourses about the disemboding aspects of technology have mostly given way to discourses of its embodying potential, through creating and exhibiting the

40 Attendants who staying near the *MeatBook* during the duration of the exhibit and who kept track of their observations were graduate student Aaron Levisohn and Prof. Chris Shaw.
MeatBook as a piece of art, I intend to continue to advance the embodying potential of technology. For, as Merleau-Ponty argued, it is from such experiences that the world springs forth.

6.13 Future Work

Observations, reactions and comments from viewers at TEI '07 provided useful information for improving aspects of the MeatBook's construction and interaction. From user feedback it was clear that the MeatBook too closely resembled meat products commonly found in grocery stores and butcher shops. In order to create a stronger visceral reaction, more intricate and detailed construction and bookbinding techniques needed to be utilized. The MeatBook must resemble a book – with pages and perhaps a cover – in order to achieve the desired effect. (Version Two of the MeatBook has already taken this into account by incorporating honeycombed tripe and pig uteri as bookbinding on a multi-page, flank-steak book.)

The direct interaction with the MeatBook will also require a complete technical redesign to better encourage contact with the MeatBook, and to create more poetic interactions with it, interactions that will afford more interesting interactions. The current technical design was created to be as simple as possible in order to avoid as many technical difficulties as possible onsite at exhibitions. The Photo Resistor sensing system was too difficult to calibrate in changing light situations, and even under ideal circumstances could not reliably disambiguate instances of contact. The behavior of users also indicated that detection of hand location on its own was not sufficiently robust. The new sensor scheme must enable multiple dimensions of interaction, detecting not only location of contact, but the level of pressure being exerted on the book as well. The sensors must be able to detect and withstand pressures varying for soft to extremely forceful. The sensors must also be small enough to fit inside the individual pages of the book so that they can be turned and react both as discrete elements and as a part of a whole.

The generation of movement for the current MeatBook was created using servo motors, which was ideal for an instantiation in which the electro-mechanical infrastructure could be hidden inside a podium. Future versions will require completely new designs that enable mechanisms to fit within the pages themselves. Muscle wire, a type of shape memory alloy, has been experimented with and used to a nominal degree in version 2. It is now being considered for more complex use since it can literally be threaded within the pages of the book. By running a current through muscle wire, it can be made to return to a "programmed" shape. Other possibilities such as using an embedded armature or similar articulated framework will be considered as well. This second method may provide a higher degree of force feedback which
may be beneficial for certain types of interaction. Likely, multiple methods will be used to generate motion in order create the appearance of organic movement.

Along with improving and upgrading the current implementation, new elements will be added to enhance the overall interactive experience. One important aspect of this will be sound design. The next iteration of the Meatbook will use synchronized sound events to enhance the visceral response to the installation.

6.14 Summary
Unlike the Meditation Chamber and BioMorphic Typography, the MeatBook did not rely on biofeedback to better enable a user's awareness of their visceral sense and changes in physiological state. To cite James Steeves, “Each of these aesthetic forms rely on the imagining body to communicate and express new ways of experiencing the sensible world” (Steeves 2004, p.8). Each artwork, in its own way, was created to attend to the issues at hand. With the MeatBook, I wanted to develop ways to elicit, provoke or incite a visceral response that was not entirely just another form of the abject. The recognition of seeing what is usually inside outside was my initial consideration. However, I wasn't just concerned with eliciting a visceral response as creating an artwork that necessarily concerned the visceral in terms of content, and in creating the artwork in such a way that it could potentially keep the doors to our visceral register open, instead of immediately slamming them shut by creating a piece that elicits disgust and/or horror. In other words, I wanted to see if it was possible to create an artwork that could offer a sense of immediacy over some duration of time. In my opinion, not many artists accomplish this, except in the paintings of Francis Bacon. If users are and critics are to be believed, the MeatBook was successful to some degree in this regard.

I took several of Merleau-Ponty's ideas into account in the creation of the MeatBook, which I believe accounts for the manner in which it works. Not all of them needed to be experienced, but are examined here in an order that was most common at the exhibitions.

First, one of the ways that users experienced a visceral register of the MeatBook was that it was novel. This novelty disrupted what Merleau-Ponty terms our body schema. Such disruptions may be ones we have on a daily basis as we experience novel situations in a myriad of ways. The novelty of the MeatBook works on several levels: what we normally consider to be on the inside (meat) is now on the outside — outside of the cow, outside of the grocery store or restaurant. It is an interactive artwork, an object to engage with, but in a way that is different from eating it or preparing it as food. Further, the novelty of the interaction may have disrupted
some body schemas, in that it was clearly dead meat that was animated in unexpected ways. When a user first sees the MeatBook, for example, she laughs as a way to open her body to a new perception, a new experience. If she considers the MeatBook to be abject — that is, disgusting — her body schema will be disrupted, something Kristeva sees as a negative threat. Certainly, this may have been at work for the users who walked away, saying that it was “gross” and “disgusting.” However, disrupting our body schemas do not have to be all negative experiences that we avoid. Carnival rides, illusions, sex, being weightless, experiencing medicinal narcotics or learning a new sport or dance would be examples that are positive new perceptions we incorporate into our milieu of what our bodies are capable of doing. We also have experiences of sorts that we aren’t even aware of but depend on as part of our body schema, such as driving a car that is speeding inches away from ours. These are the ways that our bodies are fluid, if we incorporate them or not. Thus, in the time it takes to figure out what is me and not me is a time when our body schemas can be reconfigured, reincorporated. Since, according to Merleau-Ponty, this is usually at the tacit level, it makes sense that users did not comment on this aspect.

Next, the MeatBook is a book, a repository of knowledge that lives on long after the author. In this case, however, it contains no words, and is as short-lived as a day. Further, books are supposed to be inert, and not act as an animal might. We know that the meat is dead, but that technology animates this book made of meat. Most users were willing to suspend disbelief that the MeatBook was not alive, evinced by the way they caressed it and handled it with a gentleness not usually reserved for inert objects.

Though it may seem incongruent that the MeatBook could both disrupt a user’s body schema and resonate with it is not so problematic if we consider it as experiences. What was background — a register or sense of our viscera — is now foreground. Some users resonated either with the meat or with the way they interacted with it. As stated earlier, this phenomenon has been observed by many theorists and scientists (refer to Tale 2.1). Taken together, the MeatBook clearly elicited a sense of some of the users’ viscera, and this experience is not necessarily one we leave behind if we consider how very plastic and fluid our bodies can be. Phenomenologist, feminist and film theorist Sobchack states, “...the lived body subjectively incorporates and excorporates objective technologies and, in what Scarry calls a ‘consensual materialism,’ brings into material being both the variety of herself and multiple worlds” (Sobchack 2004, p.132). It is precisely the work of art to make available for others these multiple worlds, some of which are the felt world opened by the MeatBook.
6.15 Computer Code

For the computer code for version 2 of the *MeatBook*, please refer to:

www.sfu.ca/~dgromala/code/meatbook
Chapter Seven: Conclusions

7.1 Introduction

To restate my hypothesis, what was once considered beyond our conscious control, the visceral, is a nexus of the mind/body problem. The visceral can be elicited by specific forms of interactive art. Further, a continuum of conscious awareness must be accounted for, from what I term the Visceral Register to the Visceral Sense. Where the Visceral Register is on the very fringe of barely conscious awareness, the Visceral Sense refers to a consciousness of one's viscera. At this end of the continuum, one can learn to control one's viscera consciously. By doing so, the Visceral Sense may offer possibilities for transformative experiences, parallel to the so-called "Mindful Awareness" that results from sustained meditative practices. Further, qualities of interactive art, characteristics of the technologies used by interactive artists, and the cultural contexts of the interactive art enable a return back to interest in and a revaluation of mind/body experiences. Finally, although experience is comprised holistically, of enormous and constantly changing variables of mind/body and world, a specific sense, like the visceral, can be brought into awareness and studied. This enhanced awareness, or ontological "lens" can then be brought to bear on the experience of interactive art, possibly enabling users to experience or "attune" themselves to the particular artworks with a greater sense of being.

"Insofar as, when I reflect on the essence of subjectivity, I find it bound up with that of the body and that of the world, this is because my existence as subjectivity [= consciousness] is merely one with my existence as a body and with the existence of the world, and because the subject that I am, when taken concretely, is inseparable from this body and this world" (Merleau-Ponty 1989, p. 408).

Not only are the subject, body and world inseparable in Merleau-Ponty's terms, they are "not predicated on the prior existence of the subject, but rather productive of its very phenomenal appearance" [emphasis mine] (Carman and Hansen 2005, p.20). Carmen and Hansen here refer to Merleau-Ponty's latter drift from subjectivity to ontology. Merleau-Ponty refers to possible worlds: "I call it flesh, nonetheless . . . in order to say that it is a pregnancy of possibilities." (Steeves, 2004, p.150) possibilities that result from the calling forth of body, world and mind in ever-changing contexts.

Why return to Merleau-Ponty now? Why not other, more contemporary theorists who explore the body or perception, of whom are many?

"What might be gained by a return to Merleau-Ponty now, at least in the context of recent French intellectual history and its American reception, is a
turn away from the antihumanistic radicalization of ontology and the cultivation of new exploring the ontological correlation of human beings and the world that has been of renewed interest to scholars, for instance the late neuroscientist Francisco Varela, whose work sought to bridge the humanities and the sciences, and feminist scholars like Luce Irigaray and Elizabeth Grosz, who have attempted in different ways to reconceive the connection between woman and body” (Carman and Hansen 2005, p. 22).

Though comparatively overlooked in his time, with his ideas and those of his former colleagues conflated in contemporary times,

“What Merleau-Ponty introduced to philosophy and the human sciences was in effect a new concept of perception and its embodied relation to the world. At the very least, he managed to realign our understanding of perception and the body with the phenomena we are always already familiar with before we fit them into conceptual categories, pose questions about them, and formulate theories” (Carman and Hansen 2005, p. 22).

For the purposes of this thesis, Merleau-Ponty, rather than the ancient Greeks, Western philosophers or contemporary theorists seemed the only choice, for his ideas of exploring the visceral, particularly in his insistence that mind, body, are continually intertwining according to all of their distinctive attributes. His work offers a strong contrast to methods of examining the human body safely tucked away in a bell jar, its complexities and movements, aging and metamorphoses mummified in time and in textual metaphor, according to Western intellectual proclivities. Although Merleau-Ponty himself never quite examined the viscera per se, his work with physicians and neuroscientists indicate that he may have, given a longer lifespan.

7.2 Denigrating the Body

The body has been long denigrated, just as the mind was legitimized as a “higher,” more important aspect of being human. In the words of Henri Lefebvre,

“Western philosophy has betrayed the body; it has actively participated in the great process of metaphorization that has abandoned the body; and it has denied the body . . . consequently philosophical concepts fall into the category of the “signs of non-body” (Lefebvre 1991, pp.407).

Nevertheless, the sheer number of books and publications devoted to “the body” indicates that something is afoot. The textual considerations of “the body” are primarily still held in the cage of our most trusted form of knowledge, textual legitimacy. But the publications on “the body” that explore it from a first-person or subjective, felt experience, have some chance of turning the intellectual foci towards meaningful explorations that can and perhaps must exceed textual inscription as “perception” and “experience” suggest. It is here that the work of interactive artists holds promise.
Interactive artists, by taking hold of some of the work that once belonged to critics, by collaborating with the scientists who develop new technologies, in clearing a way for their inclusion in otherwise primarily scientific conferences and publications, and by disseminating their ideas in the vehicles of contemporary culture (if only as newsworthy commodities in television and journals like Wired), have an opportunity, however modest, to alter the discourse of what it means to be human in a new technologically-sufficed era. As their forebears did a century or more ago, some of these interactive artists are exploring the subjective experiences of the body through a myriad of technological forms, and are asking questions about meaning and culture (Dourish 2001).

At the same time, scientific “discoveries” of how the body works have helped to open up what was once considered the five senses to others: the proprioceptive, the kinesthetic, the interoceptive and the visceral. By exploring the relatively understudied ideas offered by scientists in relation to the visceral, by examining this bodily mode from multiple fields and by creating artworks that intend to demonstrate what can reside outside of linguistic inscription, I am hopeful that this thesis offers a unique contribution to the field of interactive art.

The visceral, examined throughout this thesis from the existential phenomenological perspective of Merleau-Ponty, is concerned with the common, everyday phenomena of usually pre-reflective perception, building on the bedrock of the body from which all springs forth. This ranges from what is considered the “autonomic” aspects of the visceral system, such as breath, heart rate (and indirectly, GSR), to meat, taken outside of the everyday context of grocery stores, cooking and restaurants and recontextualized as an artistic reminder of that which resonates with our own usually hidden viscera or enteric system. The MeatBook, for example, is an organic form that interacts, bleeds and decays. The interaction seems to possibly dispel its aspect of horror-inspiring abjection. In Merleau-Ponty’s tradition of existential phenomenology, aspects of the body are observed and described directly — that which comprises the visceral: the respiratory, cardiovascular, and excretory systems — primarily from a first-person perspective, and foregrounded with the notion and experience that mind, body and world are inextricable. That is, this perspective attempts to overcome the dualism of mind and body. Such an ambitious project exceeds the scope of this thesis, and must overcome centuries of thinking and being in specific ways that appear “natural.”

In addition, because much of current research in the studies of consciousness is focused primarily if not exclusively on the brain, I have found few scientists or medical methods that were developed to tell us more about the visceral, especially in real-time. Although a
subcomponent, the enteric or excretory system is termed the "second brain" because it is the only system that can operate without connections to the brain, and because it colors our affective world by manufacturing an estimated eighty percent of our serotonin and other mood-altering hormones, among many other substances and workings that were once in the exclusive domain of the brain. In addition, the common and unwavering usage of the term "visceral" and "gut response" perhaps provides evidence that we sense its importance and connection to affecting our continuously changing conscious states. Nonetheless, it was discovered that there is far less research devoted to the visceral in any field than one would expect, much of it halting around Pavlov's time. This is surprising considering its importance, and considering the diseases associated with it, from GIRD (gastro-intestinal "reflux" disease), Crohn's disease, irritable bowel syndrome (IBS) and the recent connections to depression. Several communities (so-called "tribes") in existence, particularly in West Africa, put the gut at the center of their world, just as we revere the brain. Nonetheless, little is known about these communities, and there is little indication that studying them is important.41 Thus, until more is known in scientific and medical terms, studying the visceral appears to be an emerging quest.

Drew Leder, a physician and philosopher extends Merleau-Ponty's work by focusing on the inner, usually invisible and quiescent aspects of our innermost aspect, our viscera. According to Leder, in the dualistic Cartesian split of mind and body, the body "has tended to play the role of secondary or inessential element" (Leder 1990, p.126). Further, the body is understood, still, to be mistrusted, as source of shame, and a harbor for pain, disease or dysfunction that threatens the mind. Above all, the body ultimately threatens us with mortality (Leder 1990, p.138). This experience is reified by cultural practices that serve to continue a divergence of mind and body. In Leder's words,

"Thus the vectors established by the lived body, and the cultural context in which they unfold, are mutually engendering structures. The human body shapes social practices, and social practices shape our use and understanding of the body. This can lead to what in engineering circles is termed a positive feedback loop" (Leder 1990, p.152).

But the "positive" feedback loop can of course be negative. For when a feedback loop is established, say in the case of a mind/body split,

"our cultural belief in the disassociation of mind from body leads to an increase in disassociative practices: we are encouraged to abandon sensorimotor awareness for abstracted mathematical or linguistic forms. This in turn intensifies the day-to-day experience of mind as disembodied, confirming the initial cultural practice" (Leder 1990, pp.152-153).

41 Based in observing anthropological, medical history and comparative medicine studies of the last four decades and by examining what international grants, such as the Fulbright, are awarded to study.
This continues even further, when, for example, “we have no choice but to remember the body when it screams out in pain, disrupts our projects with fatigue or lust, is wracked by disease, or threatened by death. If positive practices” of multiple awarenesses of our bodies are shunned, “such dysfunctional episodes can become the primary mode of bodily awareness, serving to define corporeality as a whole” (Leder 1990, p.153). This is another result of the feedback loop, one that leads to a mistrust of the body and an awareness of it, in turn skewing “our awareness further toward the negative” (ibid.). Leder continues for pages with examples of how this feedback loop generates more of the same, including our propensity to view other cultures that value bodily forms of knowledge as suspicious and primitive, with an “arrogance” that even “infects... our relation to other species” (Leder 1990, p.154). Thus breaking free of this dualist perspective is no small matter, and one that can reasonably only be touched upon within the confines of a thesis and attendant artistic practices (refer to the CD: Meditation Chamber, BioMorphic Typography, and the MeatBook).

Leder attests to the relative ineffectiveness of criticism of dualistic practices and cultural proclivities. His approach is to instead explain how dualistic thinking arose from the body, and why it has had such strong and lasting effects; thus he seeks to deconstruct it from within. His book, therefore, is devoted to showing how the way the body works can indeed itself seem to give rise to tenets such as “disembodiment” by the way it seems to disappear from conscious awareness. More importantly, however, he claims that phenomenology can become “not just a tool for the refutation of previous philosophical positions but for their reinterpretation and reclamation” as well (Leder 1990, p. 155).

6.3 The Importance of the Visceral

What we do know is that the visceral seems an important and compelling area to study, from recent results in fields ranging from medicine, neuroscience and artificial intelligence to philosophy and cultural studies. What has been explored in this thesis is the question: can interactive art elicit or provoke a visceral response? If so, how can we characterize that response? And finally, if or how it may be transformative? I argue that interactive art can indeed elicit a visceral response by referring to academic work, historical and interactive artwork, and through the creation and interaction with my own artworks (refer to the CDROM within).

The Meditation Chamber, for example, enables users to become aware of their own visceral workings, primarily in the respiratory and cardiovascular subsystems that comprise the visceral, and primarily in direct ways via a biofeedback device. In homage to Francisco Varela, this work was the first step in a phenomenological quest to understand how Merleau-Ponty’s reversibility
thesis works, especially since we are using our inward-oriented interoceptive, rather than our more generally utilized exteroceptive senses. The intertwinement of body/mind and world in an inseparable way in the Meditation Chamber thus merits several levels or dimensions of exploration. In a longer-term practice of mindful meditation, the transformative aspects of this intertwinement may be easier to understand, as it is a change in worldview, experience and being. Because the Meditation Chamber is in use by Virtually Better and twenty of its partners, it is hoped that in some small way, its use can lead at least some of these sufferers of phobias, post-traumatic stress disorder, and other medical conditions to some degree of relief or sense of more control over their minds and bodies. In the Meditation Chamber, some users "register" their viscera, transform tacit awareness into recognition and thereby attain some control over their visceral sense.

Mediation is no longer considered to be unacceptable in Western Medicine. In the U.S., for example, "the National Institutes of Health reviewed 30 years of research on the effectiveness of meditation. They concluded that 'meditation and related methods for the enhancement of relaxation are cost-effective ways to improve health and the quality of life'" (Chrisman 2003).

BioMorphic Typography relies on a similar idea and subsystems of the visceral, but in a slightly different phenomenological view promulgated by Merleau-Ponty: by exploring reversibility, the use of language and accessing the so-called "primordial" body. While McLuhan and others spoke of the way that the alphabet led to some senses being dominant, others argued that our bodily knowledges are atrophying. This continues even after two decades or more of the dwindling claim that digital technologies are "disembodying." Evans and Lawlor, for example, claim that "With the information revolution, something extraordinary has happened. something that has reduced the visible world to codes with the genetic code as the prototype of coding generally and, in that sense, as a drying up of sensation" (Evans and Lawlor, 2000, pp.171-172). The embodying aspects of new technologies (since 1984) have likewise paralleled the claims of disembodiment.

The MeatBook, in contrast to the Meditation Chamber and BioMorphic Typography, does not rely on biofeedback directly, but elicits a visceral and especially enteric response by use of meat, decontextualized from its familiar venues. From observing users in its exhibitions, it seems to strongly engender an enteric "resonance" in most users, indirectly and directly. Indirectly, it seems to be animated, mostly in non-threatening, interactive ways. Directly, as it rots and emits distinct odors, it incites, inescapably, a visceral response.
Finally, it is related to BioMorphic Typography not by questioning how we consider the relations of our bodies to writing, but how we consider books. On the one hand, MeatBook is a representation of a book, though created from meat. Those familiar with the history of books will recognize its allusions to sheepskins, ink squeezed out of dead squid, cat gut, “bone folders” and a plethora of other uses of animals in the production of books in Europe and the New World. On the other hand, it can be argued that the MeatBook is not so much a representation, but is the thing-in-itself—a befuddlement of what is and is not a representation. As the kind of visceral sense, what the MeatBook elicits initially is outside of linguistic or representational realms, for the ways the visceral responses seem to intervene between subject and object. A unity-in-being, a form of immediacy, ironically, the disintegrating MeatBook interrogates the common meaning of a book as a form of preservation for future generations, outside of presence and beyond the mortality of the author.

According to Brian Massumi, although the visceral42 “directly, autonomously processes unconscious [sic] perceptual stimuli (that is, not controlled by the brain)” (Massumi 2002, p.112), it can produce or result in conscious effects. “Indirectly it communicates with the brain through peristaltic contractions of the bowel, which are felt proprioceptively, and through hormonal releases, which alter mood.” (ibid.) According to Massumi, what he terms viscerality “is a rupture of the stimulus-response paths, a leap in place into a space outside action-reaction circuits until one is jolted back into action-reaction by recognition” (Massumi 2002, p.113). Massumi is a scholar writing in the tradition of the Humanities, and he reads scientific works to ground his work. Few scientists concern themselves with subjectivity or whether or not any human is able to “be” outside of language, but I also draw on their work, particularly on V. Ramachandran, Adam, Gershon and Cameron, to name a few. In order to understand how the visceral systems work. They come to conclusions and provocations that similarly echo Massumi’s, but that are ultimately more provocative because of their greater and more intimate knowledge of the viscera.

7.4 Towards a Theory of the Visceral

The artworks developed and explored within this thesis are but a few examples, as a visceral response can be elicited by other interactive artworks, directly or indirectly. Whether or not it is the intention of the artists to do so. Some works, as suggested, just touch the realm of our consciousness and are then gone — this is what I term one end of a continuum, the visceral register. Other works more strongly elicit a visceral response. enable us to become aware of or

42 Massumi uses the term visceral to primarily mean the enteric component of the visceral.
to control aspects of our viscera, in ways that linger in our thoughts and actions. This opposite end of the continuum is what I have termed the visceral sense. It is a potentially transformative sensibility that one can learn to control, through meditation or other practices. Either the visceral register or the visceral sense can be affected directly, say, by touching rank meat that acts something like an animal and a robot, and indirectly, by watching a video of Orlan's surgeries, by hearing particular kinds of sounds, or by thinking about the animal tissue that is "home grown." In some cases, this is accomplished by a certain factor of short-term disgust, termed the abject by Julia Kristeva. In other cases that are not threatening or disgusting, particularly those we identify or empathize with, we may resonate with the artwork with both mind and body (refer to fig. 2.1).

Our time seems to be one of world-altering technological development, the effects of which may alter subjective, individual experience, and that touch, at least in ecological terms, our entire planet. It thus appears that the work of artists, whose contributions cover at least over thirty millennia, is as important as ever. Thankfully, the earlier discourses that portray a bodiless world, where one could download one's consciousness, have taken a backseat to the thousands of books and artworks that argue quite the opposite position. Hansen, for instance, argues that media convergence under digitality actually increases the centrality of the body as framer of information: as media lose their specificity, the body takes on a more prominent function as selective processor..." (Hansen 2006, p.27). Some of the interactive artists who arguably have intimate knowledge of these emerging technologies, promise to help overcome at least some of our fears of mortality and refusal to acknowledge that we are animals and part of the world. For without more fully experiencing, understanding and valuing our bodies as inextricable with mind and world, we remain an impoverished species indeed.

Merleau-Ponty refers to "that primordial being which is not yet the subject-being nor the object-being and which in every respect baffles reflection. From this primordial being to us, there is no derivation, nor any break; it has neither the tight construction of the mechanism nor the transparency of a whole which precedes its parts" (Merleau-Ponty 1970, pp.65-66). If phenomenology can indeed provide us with new, workable ways of looking at the world and how our minds and bodies are inextricable from that world, it can also help us "to be more attentive to experience," to "uncover phenomena that were concealed" and to "explain what the Cartesian framework renders inexplicable" (ibid.). One of phenomenon that phenomenology and my artworks have underscored is that of attunement with the interactive artwork and world. This attunement is an example of transformations of consciousness, some of which, according to users, can be carried away from the interactive art experience itself as a kind of ontological lens.
My creation of the virtual environments that directly enable burn and cancer patients to become attentive to their bodies, in order to deal with pain. This is possibly one phenomenological vector that in some small way, works to overcome a Cartesian mistrust and devaluing of our bodies in a literal way. The Meditation Chamber, in a different way, perhaps serves a similar purpose, but is meant to be used at least several times. (for practice). Like meditation itself, longer term use can perhaps have transformative effects in the way we can carry the experience of meditation into our everyday lives. This transformation can be an awareness or control of our viscera for purposes of health. However, on another front, my creation of artwork such as BioMorphic Typography and the MeatBook is meant to gently engender an awareness in the former, with more humor and provocation in the latter. Such artistic provocations can, of course, enable the user to just reinforce the ruts that maintain the split of mind and body. However, these experiences may also offer potentials to be transformative, in creating an awareness of our viscera. All of the projects created for this thesis aim to bring our otherwise obscured and "invisible" autonomic/visceral systems into conscious awareness. Further, to learn how to control them is something we rarely do everyday. Nonetheless, these works may be able to evoke some level of transformation, from a more superficial awareness to engagement with those deep, inner visceral systems — the very systems that are responsible for sustaining our exteroceptive senses and life itself. These need not necessarily be vast transformations experienced once, but an accretion of bodily changes that can result from a consciousness of them. Merleau-Ponty was concerned with, for example, “How the body changes natural gestures into elaborate and personal modes of expression. Gesticulations and the simple skills of balance and posture are developed through practice into personal styles of living, and these shape the way that a person feels about herself and interacts with others” (Steeves 2004, p2). Experiences in the virtual environments described in this thesis, as well as experiences that blatantly address the visceral have been shown here to bring into conscious awareness the otherwise quiescent viscera. Becoming conscious of this fluid and ever changing relation with the world, this sometimes volatile background aspect of our bodies, may transform some users’ "personal style of living," as demonstrated.

“The theory of the body image is, implicitly, a theory of perception. We have relearned to feel our body; we have found underneath the objective and detached knowledge of the body that other knowledge which we have of it in virtue of its always being with us and of the fact that we are our body. In the same way we shall need to reawaken our experience of the world as it appears to us in so far as we are in the world through our body, and insofar as we perceive the world with our body. But by thus remaking contact with the body and with the world, we shall also rediscover ourself, since, perceiving as we do with our body, the body is a natural self and, as it were, the subject of perception” (Merleau-Ponty 2004, p.126).
Appendix 1: Publications, Exhibits & Lectures

Note: this is not a cv, but only the publications, exhibitions, lectures, and other activities that were the direct result of work on this thesis.

Presentations, Publications and Conferences Attended

Published Books

Published Monographs
Gromala, D 2000, Ikons on Design: Excretia. An eight page monograph on Excretia. the first interactive font in the BioMorphic Typography family. It responds, in real-time, to a user’s continually changing physiological states. Published in 7 languages and distributed throughout Europe and the U.K. Published by Zanders ghmb, a patron of design arts. Part of a group of monographs including Tomato, Zaha Hadid, Ron Arad, Kevin Clarke and Gitte Kath.

Published Books and Parts of Books: Selected Book Chapters & Essays

Published Journal Papers: Refereed

Published Journal Papers: Refereed Book Reviews

171
Publications: Invited

Publications: Interviews Given
Vigodsky, T 2002, Interviewed regarding about the Meditation Chamber by the public radio program called Science in Your Life. Aired several times on PBS affiliate radio stations. September – October.

Publications: Reviews by Art & Design Critics and Cultural Theorists

Invited Conference Presentations: Keynote addresses

Invited Conference Presentations: Distinguished Lecture
Invited Conference Presentations
Gromala, D 2006, ‘Pain, from VR to Ubicomp’, Royal University, College of Fine Art, Kungl Konsthogskolan, Stockholm, April.

Conference Presentations with Proceedings (refereed)

Conference Presentations without Proceedings (refereed)
NSF (National Science Foundation)-sponsored ADVANCE Conference, (NSF initiative to increase the participation of women in the scientific and engineering workforce through the increased representation and advancement of women in academic science and engineering careers.) Invited Conference participant 2002. Design consultant and strategic planner, 2003. (refereed)

Invited Conference Session Chairmanships

Exhibitions & Performances: Invited

Gromala, D 2000, ‘Eating Eye.’, University of Bremen, Messe Centrum, Germany.

Exhibitions & Performances: Refereed

Gromala, D, Hodges, L, Shaw, C and Seay, F 2001. Interactive exhibit, 'The Meditation Chamber', SIGGRAPH, Los Angeles. Selected after rigorous adjudication for technological innovation in SIGGRAPH's Emerging Technologies venue. This work combines an immersive virtual environment with a biofeedback device. It blurs the boundaries among an artwork, an innovative use of technology, and an experimental, therapeutic modality for users with stress-related illnesses. August 12-17.

Selected Exhibitions & Performances: Refereed Posters with Publications

(Gromala’s) Works Reviewed and Discussed by Art Historians, Critics and Theorists

Gromala

Research Work included in Permanent Collections
San Francisco Museum of Modern Art, Trinity College (Dublin), University of Arizona, University of Bremen (Germany), University of California, Los Angeles, University of Texas, Vassar College, Walker Art Center, Wexner Center.

Program Reviewer
Consultant, advisor, and external evaluator for curriculum development involving new technologies. This enabled me to obtain greater insight into some of the views expressed in this thesis.

National Science Foundation, IGERT (interdisciplinary graduate program grants), 2004
Interdisciplinary Graduate Programs at the Massachusetts Institute of Technology, 2004
The University of Arizona, 2000
The University of Maryland, Graduate Program Review, 2000, 2003
Wanganui Polytechnic, New Zealand, 1999

Honors and Awards: Nominations for Technological Innovation
Frank Annunzio Award, nominated, 2000
Nominated for the $50,000. Frank Annunzio Award, designed to honor a living American who is improving the world through ingenuity and innovation, and to provide incentive for continuing research. Nomination was based on my work, which concerns the therapeutic aspects of immersive virtual reality, including the Meditation Chamber. Past winners were: Maya Lin (artist, Vietnam War memorial), Michael Graves (architect), John W. Wild (pioneer of ultrasound), Charles Towne (invention of laser), Robert Gallo (medicine), Ray Wu (first method of sequencing DNA), and Millard Fuller (founder, Habitat for Humanity). 4 artists were nominated.

Discover Award semi-finalist, 2002
"A Living Book of Senses," (later reworked as the *MeatBook*) was selected as a semifinalist for Discover Magazine’s Award for Technological Innovation. The $100,000. award is sponsored by the Christopher Columbus Foundation, an independent federal agency established by the U.S. Congress in 1992. The foundation’s mission is to encourage and support research that produces new discoveries that have the potential to influence everyday life. Fifteen (15) semi-finalists were selected from among four hundred (400) candidates.
Appendix 2: *Meditation Chamber* User Studies

User studies involving the participation of 411 users were conducted during SIGGRAPH 2001, in Los Angeles, 12-17 August. Because of strict Human Subjects Approval, the user studies must be accessed within the URL www.sfu.ca/~dgromala/thesis. The login is <feral> and the password <computing>.

Since the *Meditation Chamber* was designed to be used for therapeutic uses at the Virtually Better clinic in Atlanta, user studies were a necessity. The *Meditation Chamber* is currently in use at Virtually Better, and 20 of its clinical partners.
Appendix 3: BioMorphic Typography: Questionnaires

This appendix includes transcriptions of questionnaires handed out at the first exhibition of BioMorphic Typography, at the TechnoPoetry Conference at the Georgia Institute of Technology. Thirty participants filled in the questionnaire. Observations of approximately 87 other users were observed by graduate students and the author, who attended to hooking users up to the biofeedback device and starting the program. While this is a work of art, questionnaires and user studies provide only limited usefulness.
Appendix 4: The *MeatBook*: Phenomenological Impressions

These were phenomenological impressions gathered from 19 graduate students during testing of the second iteration of the MeatBook. Observations of its first, second, and third exhibitions proved far more useful, especially because they were comparative and because they were attended by many more people.
References

Gromala

Gromala

Gromala, D and Sharir, Y 1991-2004, *Dancing with the Virtual Dervish: Virtual Bodies*. Immersive VR performance and exhibition, Medium: Head-mounted display, DataGlove, Polhemus FASTRAK, 4-pipe SGI computer, converted MRI data, video camera, video projector, participants. First exhibited: 1993, Fourth International Cyberspace Conference and Art and Virtual Environments Symposium, Banff Centre for the Arts, Banff, Canada.

Gromala

Ihde, D 1990, Technology and the Lifeworld: From Garden to Earth, Indiana University Press, Bloomington IN.

Ippolitto, J 2005. ‘Dare to be digital: Japan’s pioneering contributions to today’s international art and technology movement’. Proceedings of the Electronic Art and Animation Catalog. pp.177-180.

Lee, A 2000, Crouching Tiger, Hidden Dragon, Film (In Mandarin), Sony Pictures.

Gromala

Gromala

Gromala

Sherrington, C 1947 (1906), *The Integrative Action of the Nervous System*, Yale University Press, New Haven, CT.

Sprinkle, A 1993, *Tit Prints*. Performance and prints, Medium: Annie Sprinkle’s body, speculum, ink, embossing powder, stencils and vellum paper. Dimensions: 11in x 1-4in and 3in x 3in, Performed, University of Texas at Austin School of Art, April 26 – April 30.

Zurr, I and Catts, O 2002, *Pig Wings*, Art Installation. Medium: Pig mesenchymal cells (bone marrow and stem cells), biodegradable/bioabsorbable polymers (PGA, P4HB), hybridization oven, stuffed animal. Dimensions: 4cm x 2cm x 0.5cm each set of wings. Exhibited, (ConVerge, 2002 Adelaide Biennial of Australian Art.) Art Gallery of South Australia, Adelaide, Australia, March 1 – April 25.