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A  new  method  for  identifying  EEG  correlates  of  continuous  independent  variables.
Our  method  outperforms  canonical  correlation  analysis  and  common  spatial  patterns.
When  applied  to real  EEG  during  music  it  finds  known  correlates  of music  tempo.
The  method  also identifies  novel  neural  correlates  of  music  induced  emotion.
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a  b  s  t  r  a  c  t

Background:  The  electroencephalogram  (EEG)  may  be  described  by  a large  number  of  different  feature
types  and  automated  feature  selection  methods  are  needed  in  order  to  reliably  identify  features  which
correlate  with continuous  independent  variables.
New method:  A method  is  presented  for the  automated  identification  of features  that  differentiate  two  or
more  groups  in neurological  datasets  based  upon  a spectral  decomposition  of the  feature  set. Furthermore,
the  method  is  able  to identify  features  that  relate  to continuous  independent  variables.
Results:  The  proposed  method  is  first  evaluated  on synthetic  EEG  datasets  and  observed  to  reliably  identify
the  correct  features.  The  method  is then  applied  to EEG  recorded  during  a  music  listening  task  and  is
observed  to  automatically  identify  neural  correlates  of music  tempo  changes  similar  to  neural  correlates
identified  in  a previous  study.  Finally,  the  method  is  applied  to  identify  neural  correlates  of  music-induced
affective  states.  The  identified  neural  correlates  reside  primarily  over  the  frontal  cortex  and  are  consistent
with  widely  reported  neural  correlates  of  emotions.
Comparison  with existing  methods:  The  proposed  method  is compared  to  the  state-of-the-art  methods  of

canonical  correlation  analysis  and  common  spatial  patterns,  in  order  to  identify  features  differentiating
synthetic  event-related  potentials  of  different  amplitudes  and  is observed  to  exhibit  greater  performance
as  the  number  of  unique  groups  in  the  dataset  increases.
Conclusions:  The  proposed  method  is  able  to identify  neural  correlates  of  continuous  variables  in  EEG
datasets  and is  shown  to outperform  canonical  correlation  analysis  and  common  spatial  patterns.

© 2015  Elsevier  B.V.  All  rights  reserved.
. Introduction

The electroencephalogram (EEG) is a method for measur-
ng changes in electro-potential in the cortex related to the
ctivation levels of cortical neuronal populations (Niedermeyer

nd Silva, 2005). It is a popular method for studying neuro-
lectrophysiological correlates of cognitive processes and
ehaviour.

∗ Corresponding author. Tel.: +44 1183788609.
E-mail address: i.daly@reading.ac.uk (I. Daly).

ttp://dx.doi.org/10.1016/j.jneumeth.2014.12.012
165-0270/© 2015 Elsevier B.V. All rights reserved.
The EEG has a high temporal resolution and a wide spectral
range and may, therefore, be described by a very large number of
features. These include, for example, the band power within specific
frequency ranges, amplitudes over specific regions of the cor-
tex, or measures of interactions between different spatial regions
(Rahman et al., 2012). However, EEG has very poor signal to noise
ratio (SNR), which often means that many repeated trials are
required before cognitively relevant information emerges from the

background noise present in the signal (Niedermeyer and Silva,
2005).

Due to practical limits on the numbers of repetitions of cogni-
tive events participants in cognitive experiments may perform, an

dx.doi.org/10.1016/j.jneumeth.2014.12.012
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jneumeth.2014.12.012&domain=pdf
mailto:i.daly@reading.ac.uk
dx.doi.org/10.1016/j.jneumeth.2014.12.012


6 scienc

i
f
o

l
p
t
f
w
b
a

r
e
t
i
m
e
r
m
h
a

a
e
c
a
m

c
fi
p
n
H
e
b

o
a
a
t
c

C
t
v
a

2

2

v
c
a
a

1

2
3

4

6 I. Daly et al. / Journal of Neuro

nvestigative researcher is often faced with a very large potential
eature space and a very small number of trials. Thus, identification
f reliable task-related features is a considerable challenge.

A number of approaches may  be taken to tackle this prob-
em. Where particular cognitive processes within the EEG are
hase-locked to the trial commencement time and stationary, a
ime-averaging approach may  be adopted to attempt to identify
eatures related to specific neural correlates. However, in cases
here physiological responses are not phase-locked (for example

and-power measures Pfurtscheller and Lopes da Silva, 1999) an
pproach from machine learning may  be adopted (Alpaydin, 2004).

One such approach which has gained considerable traction in
ecent years is common spatial patterns (CSP), which is based upon
igen-decomposition of the covariance matrices of each group in
he dataset (Koles et al., 1990). This method was used originally
n the brain-computer interface (BCI) (Wolpaw et al., 2002) com-

unity to identify optimal features for separating two  groups of
vents in the EEG and has since gained growing popularity for a
ange of uses, for example, identifying neural activity related to
otor imagery (Friedrich et al., 2012). Extensions of the method

ave also been proposed for multiple group cases (Grosse-Wentrup
nd Buss, 2008).

However, while CSP is able to identify features which may  be
pplied to optimally separate discrete groups of tasks, it is less
ffective in the case of continuous variables. Thus, in the case of
orrelation studies, where neural correlates are sought relating to

 continuous independent variable, it may  not be the most suitable
ethod.
An alternative approach, which may  be applied in this case is

anonical correlation analysis (CCA) (Knapp, 1978). CCA attempts to
nd relationships between sets of independent variables, for exam-
le between two  or more time series, and may  be used to identify
eural correlates of continuous variables (Hardoon et al., 2004).
owever, CCA is only able to identify sets of variables which lin-
arly correlate with the independent variables and, therefore, may
e limited in its applications (Hardoon et al., 2004).

To tackle these problems with CSP and CCA we have devel-
ped an alternative automated feature selection method that is
ble to identify neural correlates of continuous independent vari-
bles. The proposed method is based upon eigen-decomposition of
he coarse-grained (rescaled) combined matrix of features and the
ontinuous independent variable.

We  first describe the method. We  then compare the method to
SP and CCA on a synthetic test dataset before using it to attempt
o find feature sets which correspond to a continuous independent
ariable in a study of neural correlates of music-induced emotions
nd neural correlates of music perception.

. Methods

.1. Proposed method

The proposed method aims to identify features which co-
ary with an independent variable by first redistributing, then
oarse-graining, performing principal component analysis (PCA),
nd clustering the set of available features. This can be summarized
s follows.

. Prepare the data set by first uniformly redistributing the values
each feature takes.

. Then coarse-grain the values each feature takes across all trials.
. Calculate a covariance matrix from the coarse-grained feature
matrix to measure relationships within the dataset.

. Perform principal component analysis (PCA) to identify direc-
tions of maximum variance.
e Methods 242 (2015) 65–71

5. Calculate the participation index, sort and extract the top q index
values. These index the features of interest.

For a data set D ∈ R
M×N of N trials, each trial may  be represented

by M features. Features may  describe the data in a number of dif-
ferent ways, for example, representing them in the time and/or
frequency domains. A feature vector comprises the values of that
feature for all trials in the dataset D. A feature vector is defined as

F i = [Di,1, . . .,  Di,N], i ∈ [1,  . . .,  M], (1)

where i denotes the i’th feature in the data set. An additional vector
is concatenated to the set of feature vectors, resulting in a total of
M + 1 feature vectors. This additional vector will contain the val-
ues taken by the continuous independent variable across the N
trials. We  will refer to this additional variable as the independent
covariate vector.

In order to improve the robustness of the selection of features
related to the independent covariate vector, the range of values
in the set of all feature vectors is uniformly redistributed over the
range 1, . . .,  u, where u denotes the number of unique values in the
independent covariate vector, and coarse-grained into u partitions.
This is done by first z-scoring the coordinates of each feature vector
to a mean of zero and a standard deviation of 1.

To improve the robustness of the feature selection in subsequent
steps, the complementary error function (1 – the error function) is
then applied to the normalised feature vectors (Hunter and Regan,
1972). Consequently, this allows us to use PCA to identify features
in the data. Finally, the coarse graining is completed by affine-
mapping the entries in each feature vector so that they fall into
the range 1, . . .,  u and rounding the values in the feature vector
in order to ensure that the number of discrete values taken by the
members of each feature vector is equal to u. This is done by divid-
ing the values within each feature vector by the maximum value in
the feature vector, multiplying them by u, and adding 1.

This results in a set of coarse-grained feature vectors
F i = [Di,1, . . .,  Di,N], where Di,n, n ∈ 1, . . .,  N, i ∈ 1, . . .,  (M + 1)
denotes the coarse-grained value of feature i, trial n.

It is now possible to identify informative features by employing
techniques related to finding clusters in multivariate datasets. One
of the clusters obtained as a result will contain the independent
covariate vector. The elements of this grouping therefore define
the features that are most closely related to it. Thus, these features
are taken to be the features that optimally relate to the independent
covariate vector.

To this end we adapted a form of spectral clustering introduced
in (Allefeld et al., 2007). The (M + 1) × (M + 1) covariance matrix ˙
is calculated from the coarse-grained collection of feature vectors.
Eigen decomposition is applied to the covariance matrix  ̇ to find
a set of eigenvalues and eigenvectors defined as

˙Vk = �kVk (2)

where �k denotes the eigenvalues and Vk the eigenvectors.
Eigenvalues are then sorted in descending order and the q eigen-

values in the top 5th percentile are identified. The corresponding
eigenvectors explain the majority of the variance in the set of fea-
ture vector projections onto the linear subspace spanned by these
eigenvectors V = [vi,k], k ∈ [1,  . . .,  q], ∀i ∈ [1,  . . .,  (M + 1)].

The Participation Index ( PI) (defined in (Allefeld et al., 2007))
provides a measure of the involvement of each feature vector in
each cluster

PIi,k = �k ∗ v2
i,k, ∀i = [1,  . . .,  (M + 1)], ∀k = [1,  . . .,  q], (3)
where the eigenvalues �k and their corresponding eigenvectors
have been pre-sorted in descending order of eigenvalue.

We first inspect the column of PI corresponding to the inde-
pendent covariate vector (PI(M+1),:). The largest PI in this column
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real EEG recorded via the International 10/20 system for elec-
trode placement). Datasets were generated with numbers of
groups of trials ranging between 2-20 and the performance of
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Fig. 1. Classification accuracy over time for artificial ERPs (2 groups) with features
selected via our method, common spatial patterns (CSP), and canonical correla-
tion analysis (CCA). The dashed line indicates the level of statistically significant
classification accuracy (p < 0.05).
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ndexes an eigenvector indicating the cluster of feature vectors
ost involved with the independent covariate vector. Thus, the

orresponding feature vectors in this cluster represent a good set
f features that relate to the independent covariate vector.

Therefore, the final set of selected features are identified by
electing the top q PIs from the row PI:,˛, where  ̨ denotes the
ndex of the largest PI in the column PI(M+1),:. These indexes iden-
ify the optimal set of features relating to the independent covariate
ector and, hence, the set of identified features.

.2. Common spatial patterns

Common spatial patterns attempt to identify a spatial filter that
aximally separates data between two or more groups (Koles et al.,

990). They have been used for many applications, primarily in
rain–computer interfacing (BCI) research (Hwang et al., 2013).

For sets of features X1 ∈ R
t2×n and X2 ∈ R

t2×n corresponding to
ifferent conditions, where n is the number of samples and t1 and

2 denote the number of trials in each group, CSP attempts to find
 filter (w ∈ R

n×n)T such that the variance ratio between the two
roups is maximised. This is defined as

 = argmax
w

||X1w||2
||X2w||2 . (4)

The solution is found by solving the generalised eigenvalue
roblem on w. The eigen-decomposition is used to identify the
igenvectors and eigenvalues of the covariance matrices. The
argest eigenvector may  then be used as a filter, denoting elements
f the dataset that separate the groups.

.3. Canonical correlation analysis

Canonical correlation analysis (CCA) attempts to find linear
ombinations of two vectors of random variables such that they
aximally correlate with one another. For example, in the case
here one of the vectors contains just one random variable and

he other several random variables, the single random variable may
enote an independent covariate and CCA could be used to identify
he set of random variables which maximally correlate with this
ndependent covariate (Hardle and Simar, 2007).

Given two column vectors of random variables X = (x1, . . .,  xn)′

nd Y = (y1, . . .,  yn)′, a covariance matrix is defined as �XY = cov(X,
). CCA then seeks two vectors a and b for which the correlation
unction is p = corr(a′X, b′Y). These vectors then give weightings to
he relative correlation of each random variable in X and Y. Hence,
hey may  be used to select optimal sub-sets of random variables in
ither X and/or Y (Hardoon et al., 2004).

.4. Comparison

Artificial event-related potentials (ERPs) were used to compare
ur proposed method to CSP and CCA. An ERP is a phase-locked
hange in amplitude of the EEG that occurs in response to a stimulus
r event. ERPs may  be used to study a wide variety of cognitive
rocesses and are amongst the most studied phenomena in the
EG (Handy, 2005).

For the synthetic dataset, we simulated an EEG component
hose amplitude correlated with an independent covariate, where

he number of values that the independent covariate could take
as varied. Thus, we sought to evaluate the performance of the
ethods for datasets containing trials with n different amplitudes

n the ERPs. The amplitude of the ERPs correlated with the value of

he independent covariate vector.

EEG data was generated via a neural mass model (David and
riston, 2003) simulating 100 trials recorded from 19 EEG electrode
ecording channels of length 1 s each at a sample rate of 125 Hz.
e Methods 242 (2015) 65–71 67

The dataset of 100 trials was  split into groups of trials with equal
numbers of trials per group, and the number of groups was  varied
between 2 and 20 (e.g. in the case of 2 groups, each group con-
tained 50 trials). In the case that of 100 trials not evenly splitting
into the desired number of groups, uniformly drawn trials were
removed from the dataset until an even split of trials across groups
was possible.

ERPs were simulated by increasing the amplitude of the syn-
thetic EEG between 0.2 s and 0.8 s by a gain-adjusted Gaussian
function. The gain increased the amplitude of the ERPs as a function
of the value of the independent covariate vector. Thus, synthetic
ERPs added to group 10 were larger in amplitude than synthetic
ERPs added to group 9. Thus, the added ERP component was a func-
tion of the independent covariate and amenable to identification via
the proposed method, CSP, and CCA.

ERPs were added to channels 14, 15, and 16 (channels
corresponding to positions P3, Pz, and P4 in the case of a
Classes

Fig. 2. Correlation between the features selected by each of the methods and the val-
ues of the independent covariate vector as a function of the number of unique values
in  the independent covariate. The shaded lines represent ±2 standard deviations.
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(a) Ground truth, 2 class (b) Ground truth, 10 class (c) Ground truth, 20 class

(d) CS P, 2 class (e ) CS P, 10 class (f ) CS P, 20 class

(g) CCA, 2 class (h ) CCA, 10 class (i ) CCA, 20 class

(j) Prposed method, 2 class (k) Proposed method, 10 class (l) Proposed method, 20 class

Fig. 3. Topographic scalp maps of channels selected via the CSP and CCA feature selection methods and our proposed method for 2, 10, and 20 groups (classes) of ERPs
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ndicated by unique values in the independent covariate vector. Ground truth maps

ach of the feature selection methods was evaluated for each
ataset.

In the case of two groups of EEG trials, performance was  mea-
ured via a linear discriminant analysis (LDA) classifier, which was
sed to attempt to differentiate trials via the amplitude of the

dentified features. In the case of more than 2 unique values in
he independent covariate the correlation between the filtered
selected) EEG features and the independent covariate was  used
o evaluate the performance of the methods. The higher the corre-
ation the better the match between the selected features and the

ndependent covariate.

The method (our proposed method, CSP, or CCA) and the
DA classifier is trained and tested in a 10 × 10 cross fold
rain and validation scheme. This allows us to measure the
rate which channels have had simulated ERPs added.

variance of performance of each of the methods against one
another.

2.5. Application

A number of neural correlates of the participant-reported
induced emotions and neural correlates of properties of musical
stimuli, such as tempo, have been reported elsewhere (Daly et al.,
2014, 2014). Here we use our proposed method to first automati-
cally identify some of these neural correlates and second, to search

for further, previously unidentified, neural correlates of music-
induced affective states.

EEG was first cleaned of artefacts by visual inspection followed
by supervised independent component analysis. Further details can
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(a) Neural correlates identified by the proposed method

(b) Manually identified correlates
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e found in Daly et al. (2014). Band-power features were then
xtracted from the EEG from a frequency window of width 2 Hz
entred at 10 Hz. Time series of the band-power values of length

 s were extracted from all 19 channels (recorded as per the inter-
ational 10/20 system) and down-sampled to 100 Hz. Our method
as then applied to search for band-power features across all avail-

ble channels and time points that maximally correlate with each
f the following properties:

. Each of the participant-reported ratings of induced affective
states (pleasantness, energy, tension, anger, fear, happiness, sad-
ness, and tenderness).

. The tempo of the music (measured in beats per minute), esti-
mated via the approach described in Ellis (2007).

. Results

.1. Comparison

When considering the two class case, features corresponding to
ime intervals during which class-dependent EEG has distinct activ-
ty are identified by each method, which allows the artificial ERPs
o be classified with statistically significant accuracies (p < 0.01).
ur method achieved a peak accuracy of 0.869 (± 0.004), while CSP
chieved a peak accuracy of 0.765 (± 0.021), and CCA achieved a
eak accuracy of 0.826 (± 0.001). A 1x3 ANOVA with factor ‘Method’
nd levels ‘Proposed’, ‘CSP’, and ‘CCA’ was used to determine if there
s a significant effect on peak accuracy of the method used. A sig-
ificant effect is found F(2, 27) = 183.91, p < 0.001. Post-hoc t-tests
eveal significant differences between the proposed method and
SP (p < 0.01) and the proposed method and CCA(p < 0.01). The pro-
osed method has the highest peak accuracy (mean = 0.872, STD.

 0.005), while CCA (mean = 0.827, STD. = 0.001) and CSP (mean =
.756, STD. = 0.028) have lower peak accuracies.

Additionally, our proposed method achieved a longer period of
ignificant classification accuracy and was detected earlier in the
rial. This is illustrated in Fig. 1, in which our proposed method
chieves significant classification from 0.2 s to 0.7 s, while CSP
nly achieves significant accuracy from 0.3 s to 0.7 s, and CCA also
chieves significant accuracies from 0.2 s to 0.7 s.

In the case of additional numbers of unique values being added
o the independent covariate vector, the ability of each of the fea-
ure selection methods to identify good feature sets is measured by
he correlation between the selected features and the independent
ovariate vector. Fig. 2 illustrates how this correlation changes as
he number of unique values increases from 2 through to 15.

In the case of between 2 and 5 unique values in the independent
ovariate vector the performance of the methods is broadly equiv-
lent. However, as the number of unique values increases above 6
he performances of CSP and CCA both exhibit some decline, while
ur method marginally increases in performance. It is also inter-
sting to note that our proposed method has considerably lower
ariance than either CCA or CSP, with CSP exhibiting the largest
ariance in performance.

The EEG channels which are selected as optimally separating
he groups of trials are illustrated in Fig. 3. Note that as the num-
er of groups increases the precision of the CSP method decreases
arkedly, while the channels selected by CCA and our proposed
ethod both remain unchanged.

.2. Application
Our proposed method was also used to identify neural corre-
ates of musical tempo and participant-reported induced affective
esponses to music. First, neural correlates of tempo were sought
Fig. 4. Neural correlates of musical tempo changes in the 10 Hz frequency band
identified by our proposed method (A) and previously manually identified (B) (as
described elsewhere in Daly et al., 2014).

by our method and compared to results previously reported else-
where (Daly et al., 2014). Fig. 4 illustrates the mean scalp maps
identified as neural correlates of tempo identified by our method
within the cross-fold validation method alongside the neural corre-
lates of tempo previously manually identified and reported in Daly
et al. (2014).

It is noteworthy that similar patterns of spatial activation are
found by our method to those previously reported in Daly et al.
(2014). Specifically, left hemisphere motor cortex regions are iden-
tified as most strongly relating to the tempo of the music.

Additionally, neural correlates are sought for the participant-
reported induced affective states. These are illustrated in Fig. 5,
which illustrates the scalp maps identified as corresponding to each
of the music-induced emotions.

4. Discussion

The proposed method is able to automatically identify feature
sets that relate to continuous independent variables. Therefore,
it may  be used to identify correlates of continuous variables (for
example, neural correlates of music tempo during music listening
tasks). Consequently, the proposed method has a wide number of
potential applications in correlation studies.

The method is observed to outperform common spatial patterns
(CSP) as the number of unique values in the data is increased. There-
fore, we  suggest that our method may  be a suitable alternative for
experimenters looking to identify correlates of discrete indepen-

dent variables with a large number of classes, as well as those of
continuous independent variables.

Importantly, our method is also able to outperform canonical
correlation analysis (CCA). CCA is very commonly used to identify
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(a) Pleasantness (b) Energy (c) Tension (d) Anger (e) Fear

(f) Happiness (g) Sadness (h) Tenderness
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Fig. 5. Neural correlates of music induced affective states in 

orrelates of continuous variables and the superior performance of
ur method is, therefore, encouraging.

The classification accuracy achieved by our proposed method
nd CCA both exhibit higher variance in Fig. 1 than the CSP method.
his could be due to the selection of a variable number of features
y our proposed method. Specifically, CSP identifies a fixed number
f filters, while the other methods select a number of features as a
unction of the training data.

There are a few potential reasons for the observed better per-
ormance of our proposed method to either CSP or CCA. First, CCA
ttempts to identify features which correlate with the independent
ovariate, whereas our method attempts to identify features which
xhibit maximum variance with respect to the independent covari-
te. As a high correlation does not always equal high inter-group
ifferences simply seeking features which correlate may  not iden-
ify the best feature set. The variables our method identifies are

ore likely to exhibit larger inter-group differences.
Additionally, CSP is able to separate two groups in a dataset.

owever, for larger number of groups the performance declines.
his is due to the decreasing numbers of items in each group leading
o decreasing accuracy of the estimated covariance matrix.

Our method has been applied to identify neural correlates of
usic perception and music-induced affective states. The identi-

ed neural correlates of musical tempo were observed to lie over
he left motor cortex. This is very similar to the manually identi-
ed neural correlates of musical tempo previously reported in Daly
t al. (2014). The small difference in spatial location may  be due to
he small difference in frequency window size used between the
tudies.

The automatically identified neural correlates of music-induced
ffective states reveal relationships between EEG band-powers
n the alpha band and each of the induced affective states. The
refrontal cortex is observed to be involved most frequently in
usic-induced affective state responses, and this is consistent with

ther findings (for example, Schmidt and Trainor, 2001; Schmidt
nd Hanslmayr, 2009; Dennis and Solomon, 2010). Additionally,
ffective states which are likely to be highly correlated with one
nother (for example, happiness and sadness) were observed to
orrelate with very similar spatial distributions of neural activ-
ty, lending further evidence to the efficacy and robustness of our

ethod.
The neural correlates of anger and fear are interesting. These
orrelates are almost inverse maps of one another. Anger involves
rontal cortical regions and central motor regions, while fear
nvolves occipital regions and left/right motor regions. This obser-
ation warrants further investigation in future work.
 Hz frequency band automatically identified by our method.

For this study we  only considered the 10 Hz frequency band of
the EEG. The reason for this was  due to the widely reported involve-
ment of this frequency band in emotional responses (Kabuto et al.,
1993; Schmidt and Trainor, 2001; Schaaff, 2008). Other frequency
bands of the EEG have also being reported to be involved in emo-
tional responses (Aftanas et al., 2006). However, as the primary
purpose of our work is to demonstrate the efficacy of our pro-
posed method, rather than to explore different neural correlates
of emotion, we  have restricted our search to the alpha frequency
band.

Potential uses of our method are not limited to EEG studies. The
method operates in feature space, hence any data set for which
a correlation is sought between components of the dataset and a
continuous or discrete independent variable containing multiple
unique values may  be explored via the use of this method. Addition-
ally, the method could potentially be applied to identify features
which differentiate groups of participants, for example different
developmental groups.

However, it is important to consider a potential caveat of our
method. The runtime and memory required by the method are pro-
portional to the square of the size of the input data due to the use of
covariance matrices due to the need to identify a similarity matrix
and perform eigen-decomposition. Thus, for very large datasets it
may be necessary to use parallelisation techniques to compute the
results. However, this is also the case for CSP, which is also based
upon eigen-decomposition.

In conclusion, the proposed method is able to perform an auto-
mated search for a subset of features in a dataset which relate to
either discrete or continuous independent variables. It is able to
outperform both CSP and CCA in terms of correlation between the
independent covariate and the selected features as the number of
groups increases and has a large number of potential applications.
However, its use is currently restricted by the size of the dataset,
although this restriction may  be ameliorated by the use of advanced
computation techniques such as parallel computing.
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