Elemental concentrations and bioaccessibilities in beached plastic foam litter, with particular reference to lead in polyurethane

Turner, Andrew

http://hdl.handle.net/10026.1/6506

10.1016/j.marpolbul.2016.08.005
MARINE POLLUTION BULLETIN
Elsevier BV

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Elemental concentrations and bioaccessibilities in beached plastic foam litter, with particular reference to lead in polyurethane

Andrew Turner* and Kwan S. Lau

School of Geography, Earth and Environmental Sciences
Plymouth University
Drake Circus
Plymouth PL4 8AA
UK

*Corresponding author. Tel: +44 1752 584570; Fax: +44 1752 584710; e-mail: aturner@plymouth.ac.uk
Abstract

Seventy samples of foamed plastic collected from a high-energy, sandy beach in SW England have been characterised by FTIR and XRF. Most samples were polyurethane (PU; \(n = 39 \)) or polystyrene (PS; \(n = 27 \)) that were associated with variable concentrations of Br-Cl, Fe and Zn, indicative of the presence of halogenated flame retardants, iron oxides and Zn-based additives, respectively. Many samples of rigid PU contained Pb, historically used as a catalyst, at concentrations of up to 16,000 \(\mu \text{g} \) g\(^{-1}\). A physiological extraction test that simulates the conditions in the gizzard of plastic-ingesting seabirds was applied to selected samples and results revealed that while Br and Zn were not measurably bioaccessible, Pb mobilisation progressed logarithmically over a period of time with maximum accessibilities after 220 h of ~10% of total metal. Foamed PU is a source of bioaccessible Pb in the marine environment that has not previously been documented.

Keywords: plastics; polyurethane; foams; seabirds; lead; flame retardants
1. Introduction

Because of their wide usage in society, coupled with a high durability, poor degradation and low density, plastics are widely distributed throughout the global ocean and littoral zone (Li et al., 2016). The impacts of plastic waste in the marine environment are many and varied and include a reduction in aesthetic and amenity value, damage to vessels and fishing gear, a threat to public safety and adverse effects on wildlife (Gregory, 2009). Regarding the latter, plastics can cause alterations to benthic community structure, entanglement, strangulation and suffocation, and starvation and choking via ingestion when material is mistaken for food (Baulch and Perry, 2014; Sigler, 2014; Wilcox et al., 2016). Through the association of chemicals with the polymeric matrix or the adsorption of aqueous species to the polymer surface, ingestion can also act as a vehicle for the transfer of contaminants into the foodchain (Ashton et al., 2010; Rochman et al., 2013; Tanaka et al., 2013).

Beached plastic items categorised by OSPAR include multi-pack yokes, bags, bottles, engine oil containers, injection gun containers, cigarette lighters, toys, crates, food packaging, lobster pots, rope, cord, netting and foams (OSPAR Commission, 2010). With respect to foams, different size categories of expanded or extruded polystyrene (PS) pieces are specified but polyurethane (PU) is not mentioned. This is perhaps surprising because beach surveys that we have recently conducted have revealed an abundance of foamed PU that, in some cases, represents the dominant form of plastic litter on a number basis (Turner, 2016; Turner and Solman, 2016). The widespread occurrence of PU waste may be attributed to its extensive application in the domestic, industrial, transportation and maritime settings, with an annual demand among synthetic polymers that is exceeded only by polyethylene, polypropylene and
polyvinyl chloride (Plastics Europe, 2015). PU foam may be classified as flexible or rigid, with the former being open-cell, porous and having a density typically between 10 and 80 kg m$^{-3}$, and the latter being closed-cell, semi-porous to non-porous and having a density ranging from 30 to 400 kg m$^{-3}$. Flexible PU foam is used for packaging and as cushioning in furniture and bedding, under carpets and in automobile and aircraft seating, while rigid PU foam is used principally as an insulator in buildings, refrigerators, pipelines, vehicles and storage facilities.

Additional, maritime applications of rigid foam involve flotation, buoyancy, support and void filling in boats, pontoons, docks, baffles and barrels (Szycher, 1999).

PU is formed by reacting a diisocyanate or polyisocyanate with an oligomeric polyol (polyester or polyether) to produce a urethane linkage, with the precise properties of the product dependent on the nature (e.g. molecular weight) of the reactants and the preparation process. For the formation of PU foam, a blowing reaction is also required in which a gas is either added or created. Additives used in the production of PU include tertiary amine or metal salt catalysts for the polymerisation and blowing reactions, fillers, pigments for colour, halogenated flame retardants, smoke suppressants and plasticisers. Based on these characteristics and the carcinogenic and mutagenic properties of its component monomers, Lithner et al. (2011) ranked polyurethanes among the most hazardous polymers in current production.

Accordingly, PU waste is a potential source of a variety of highly toxic contaminants to the environment whose concentrations, mobilities and fates are largely unknown.

In the present study, foamed plastic waste has been collected from a section of a high-energy, macrotidal sandy beach in south west England and classified by polymer type
using Fourier transform infra-red (FTIR) spectrometry. The elemental composition of
the foams is ascertained by field portable-x-ray fluorescence (FP-XRF) spectrometry
configured in a ‘plastics’ mode for the analysis of low density samples, and the
bioaccessibilities of the predominant elements in selected foams (and mainly PU) is
determined by means of a physiological solution that simulates the digestive fluids
encountered in the gizzard of a plastic-ingesting marine bird.

2. Materials and methods

2.1. Sampling and sample location

Whitsand Bay is a protected coastal region a few km to the west of Plymouth Sound
that is characterised by an expansive, sandy beach. The beach faces south west and
directly towards the western English Channel and is backed by high cliffs that, at high
tide, fragment the region into a series of rocky coves. During October 2015, pieces of
foamed plastic that were visible to the naked eye were collected by hand from a ~30
m-wide transect of the beach at Tregantle (50.3525, -4.2719) between the high water
line and the backshore. Samples were stored in a series of clear polyethylene bags and
transported to the laboratory where individual items were cleared of sand and other
debris under running tap water and with the aid of a Nylon brush before being dried
under vacuum desiccation at room temperature for 48 to 96 h. Samples were then
weighed on a five-figure balance and measured for thickness through the flattest
surface using 300 mm Allendale digital callipers before being stored individually in
labelled polyethylene specimen bags and in the dark pending analysis.

2.2. FTIR analysis
In order to identify the polymeric composition of the foams, samples were analysed by FTIR spectroscopy. Initially, samples were analysed by attenuated total reflection- (ATR-) FTIR using a Bruker ALPHA Platinum ATR QuickSnap A220/D-01 spectrometer. Samples were cut to a suitable size using a stainless steel scalpel before being firmly clamped down on to the ATR diamond crystal in order to ensure good contact and sufficient penetration of the evanescent wave. Measurements, consisting of 16 scans in the range 4000 to 400 cm\(^{-1}\) and at a resolution of 4 cm\(^{-1}\), were activated via Bruker OPUS spectroscopic software, and polymer identification involved a comparison of sample transmittance spectra with libraries of reference spectra. Where identification was not definitive, sample offcuts were re-analysed by photoacoustic FTIR using a Bruker Vertex 70 spectrometer coupled with an MTEC 300 photoacoustic cell that was purged with He. Measurements were recorded as an average of 32 scans in the range 4000 to 400 cm\(^{-1}\) and at a resolution of 8 cm\(^{-1}\) with activation and identification undertaken as above.

2.3. XRF analysis

Sample surfaces were analysed for a suite of elements, of which Br, Cl, Fe, Pb and Zn are the focus of the present study, by energy dispersive field portable-XRF using a battery-powered Niton XRF analyser (model XL3t 950 He GOLDD+). The instrument was operated in a plastics mode that employs a compensation for mass absorption coefficient based on Compton scatter and corrects for sample thickness down to 0.05 mm. The XRF was used in the laboratory in a bench-top accessory stand and was connected to a laptop computer via USB and a remote trigger. Samples were placed on 3.6 \(\mu\)m polyester film and positioned centrally and with the measurement surface face downwards over the XRF detector window. On closing the steel shield of
the stand, measurements, with appropriate thickness correction, were activated through the laptop for a total period of 120 seconds (60 seconds each at 50 kV/40 μA and 20 kV/100 μA). Spectra were quantified by fundamental parameters to yield elemental concentrations on a dry weight basis (in μg g⁻¹) with a counting error of 2σ (95% confidence). At the end of each measurement session data were downloaded to the laptop using Niton data transfer (NDT) PC software.

Limits of detection, as 1.5 × 2σ, varied according to the precise density, shape and thickness of sample, but mean values were about 20 μg g⁻¹ for Br and Pb, 40 μg g⁻¹ for Zn and 300 μg g⁻¹ for Cl and Fe. Multiple analyses (n = 5) of two Niton reference plastics (PN 180-554, batch SN PE-071-N, and PN 180-619, LOT#T-18) that had been impregnated with Br and Pb revealed measured concentrations that were within 10% of reference concentrations.

2.4. PBET

In order to evaluate the bioaccessibility of Pb and other elements (with the exception of Cl), selected foams (n = 8) of varying appearance and polymeric and elemental composition (based on XRF and FTIR analyses) were subjected to an avian physiologically-based extraction test (PBET). The extraction was modelled on the digestive characteristics of the northern fulmar, Fulmarus glacialis, a procellariform seabird known to ingest substantial quantities of plastic debris. Because dissected specimens have revealed ingested plastic within the proventriculus-gizzard but not within the duodenum (Furness, 1985; Robards et al., 1995), the PBET described below replicates conditions encountered in the former components of the digestive tract.
Briefly, the extraction fluid was prepared by dissolving 10 g of pepsin (lyophilised powder from porcine gastric mucosa; Sigma-Aldrich) in one litre of 0.1 M NaCl solution and adjusting the pH by dropwise addition of 1 M HCl to 2.5. Shavings of about 0.1 g of each foam sample were weighed into individual 60 ml screw-capped polypropylene centrifuge tubes before 40 ml of extraction fluid was added. All tubes, including a control containing no solid, were then capped and incubated in a shaking water bath set at 100 rpm and at 40 °C, or the average body temperature of marine birds (Warham, 1996), for a period of about 220 h. Although this is longer than typical proventriculus-gizzard retention times for food in piscivorous birds, ingested plastic may remain trapped in this part of the digestive tract for periods of weeks or months (Avery-Gomm et al., 2012). At pre-determined time-intervals, 1 ml aliquots of extract, including triplicate aliquots at selected intervals, were pipetted into individual Sterilin tubes where they were diluted to 5 ml with 2% HNO₃ and stored at 4 °C and in the dark pending analysis.

2.5. Analysis of extracts

Extracts were analysed for ⁷⁹Br, ⁵⁶Fe, ²⁰⁸Pb and ⁶⁶Zn by collision cell-inductively coupled plasma-mass spectrometry (ICP-MS) using a Thermo X-series II (Thermoelemental, Winsford UK) with a concentric glass nebuliser and conical spray chamber. The instrument was calibrated externally using five mixed standards and five blanks prepared in 2% HNO₃ and operated under conditions described elsewhere (Turner and Holmes, 2015). Limits of detection, based on three standard deviations arising from blank measurements, ranged from about 0.03 μg L⁻¹ for Pb to about 10 μg L⁻¹ for Br and Fe.
3. Results

3.1. Sample characteristics

Overall, 70 samples were retrieved from Whitsand Bay, with a selection illustrated in Figure 1. Sample mass ranged from a few mg to > 10 g and thickness through the flattest (measurement) surface ranged from about 2 to 40 mm. FTIR spectra revealed that the majority of samples were polystyrene (PS; \(n = 27 \)) or polyurethane (PU; \(n = 39 \)), with the presence of ester-based plasticisers and inorganic fillers evident in many of the latter type that were rigid.

Samples of expanded PS were always white and were usually smooth and well-rounded through erosion and weathering, with brown, oxidic deposits visible on the surface in many cases. The fewer number of extruded PS samples appeared to be more fragmented and exhibited a broader colour range of browns, yellows and blues. Most PU samples were rigid (or semi-rigid), brittle and well-rounded, displaying a variety of shades of brown and yellow but with discolourations on the surface of deeper shades of brown or black often evident. Although dissection of these samples usually revealed a paler interior, no significant change in IR spectra were observed across individual sections. Five PU samples were flexible, with a squarer and less smooth or torn appearance and colours that were yellow, brown, blue or green. Remaining, non-PS and non-PU samples \((n = 4) \) were elasticsed rubber or acrylic- or PVC-based expanded polymers that were black, pink or yellow and that appeared to be derived from neoprene products, beach footwear and rubber toys.

3.2. Elemental concentrations
XRF analysis of sample surfaces revealed the occurrence of different combinations of As, Ba, Bi, Cr, Cu, Sb, Sn, Ti and V among the foams, with median concentrations of a few hundred μg g⁻¹ or less for each element. Bromine, Cl, Fe, Pb and Zn were, however, more commonly encountered and at variable concentrations that are summarised in Table 1. Concentrations of Br, Cl and Fe in samples of PS spanned two to three orders of magnitude in each case, with maximum concentrations of about 12,000, 70,000 and 30,000 μg g⁻¹, respectively. Lead always occurred at concentrations less than 70 μg g⁻¹, while Zn was detected in 21 samples with a median concentration on the order of 100 μg g⁻¹. No statistically significant correlations were observed between any pair of elements, but the highest concentrations of Br were generally associated with the lowest concentrations of Pb.

Concentrations of Br, Cl, Fe, Pb and Zn in the PU samples spanned two or three orders of magnitude and mean and median concentrations of Cl, Pb and Zn were considerably higher than respective concentrations in samples of PS. Although no statistically significant correlations among the elements were observed, the highest concentrations of Br were often accompanied by relatively low concentrations of Pb and vice versa. PU samples of a flexible nature contained variable concentrations of Br, Cl and Fe and relatively low concentrations of Zn (~ 100 μg g⁻¹) but Pb was never detected. Among the remaining (‘other’) expanded polymers, concentrations of detectable Br were about 10 μg g⁻¹, concentrations of Cl, Fe and Zn were on the order of a few thousand μg g⁻¹, and Pb was not detected.

Spatial analysis of the surfaces of selected PS and rigid PU samples revealed a degree of heterogeneity whose relative standard deviation (σ_n−1/\bar{x} x 100%; n = 5 – 10) was
generally less than 30% for Br, Cl, Fe, Pb and Zn. Analysis of sample sections revealed no statistically significant differences between surficial and internal concentrations with the exception of Fe. Here, concentrations within samples of both PU and discoloured, expanded PS were often an order of magnitude lower than corresponding concentrations measured on the surface.

3.3. PBET results

Of the elements analysed in the PBETs, Br and Zn were never detected at concentrations above those in the respective controls, while Fe and Pb were detected throughout the time-courses in two and four cases, respectively. Specifically, Fe was detected in extracts of one sample of rigid PU and a sample of expanded PS that was partially covered in brown, oxidic deposits, while Pb was detected in extracts of four samples of rigid PU.

The time-courses of the PBETs in which Pb was detected are shown in Figure 2. Extracted concentrations exhibit a biphasic distribution with rapid release within the first day followed by a slower, more protracted period of mobilisation. Because equilibrium does not appear to be approached, a pseudo-first-order diffusion model only partially fitted the data; specifically, and employing a “quasi-equilibrium” concentration as the last measured point in the time series, such a model overestimated concentrations within the first few days and underestimated concentrations thereafter. Better fits in each case were obtained using a modified version of a diffusion-controlled and parabolic model based on Fick’s second law (Ruby et al., 1992):
Here, \([\text{Pb}(t)]\) is the time-dependent concentration in \(\mu g \text{L}^{-1}\), \(k\) is a rate constant in \(\mu g \text{L}^{-1} \text{h}^{-1/\beta}\), and \(b\) is a coefficient whose theoretical value is 2 but in this case is empirically adjusted. Best fits to the data are annotated on Figure 2 while the fitted constants are shown in Table 2. Also shown in Table 2 are total Pb concentrations, \([\text{Pb}]\) (\(\mu g \text{g}^{-1}\)), and as determined by surficial XRF measurements, alongside the maximum concentrations of Pb extracted, \([\text{Pb}_{\text{max}}]\) (\(\mu g \text{g}^{-1}\)), at the end-point of each time-course. The latter are on the order of 1000 \(\mu g \text{g}^{-1}\), with the percentage of total Pb released at the end-point (or bioaccessibility) ranging from about 4 to 10. By comparison, the maximum percentage bioaccessibilities of Fe in PU and PS were about 4 and 12, respectively, with values of \(k\) and \(b\) of 22.9 \(\mu g \text{L}^{-1} \text{h}^{-1/\beta}\) and 2.25, and 118 \(\mu g \text{L}^{-1} \text{h}^{-1/\beta}\) and 3.72, respectively.

4. Discussion

Although plastic foams have been mentioned or categorised in several publications dealing with marine litter in general (Moore et al., 2001; Topcu et al., 2013; Nuelle et al., 2014; Ryan, 2015), the present study appears to be the first to specifically focus on expanded and extruded materials as waste and address their composition and potential hazards. Because of the diversity of applications in the industrial, domestic, transportation and maritime settings, foams have a wide variety of sources to the marine environment. While some sources to the beached litter pool may be local (e.g. toys, footwear and flotation devices), the low density, well-roundedness and/or discolouration of many of the samples of PS and PU observed here suggest that most
fragments are likely to have travelled considerable distances and undergone significant ageing since their original site of disposal.

Of the foams identified and characterised, the rigid (and semi-rigid) PU types are of greatest concern from an environmental perspective because of their relative abundance and the concentrations of hazardous elements or elements that are indicative of hazardous chemicals in the polymeric matrix. For instance, high concentrations of Br and/or Cl in many rigid PU (and PS) foams likely reflect the addition of various halogenated flame retardants to the polymer, especially when the materials had been used for insulation. Bromine in the foam products analysed herein was not, however, measurably accessible to the avian PBET using ICP-MS. This suggests that in aged, expanded polymers, at least, residual brominated flame retardants are largely bound in the polymeric matrix through various functional (e.g. hydroxyl) groups rather than being mechanically mixed into the formulation (Szycher, 1999).

The presence of Fe and Zn in many of the foams, and in particular in PU, may be attributed to the use of additional additives in foam manufacture. For instance, synthetic iron oxides are used as high opacity pigments for colour (yellows, browns and black) (Szycher, 1999) while various zinc compounds have been used as pigments, catalysts, flame retardants (through char production) and smoke suppressors (Forrest, 2001). It is also likely that the Fe content of foamed plastics is augmented by the precipitation of natural iron oxides on to the polymer surface while suspended in sea water. This effect was apparent from the visible discoloration of many of the aged
PS samples and is consistent with higher concentrations of Fe on the surfaces of many
samples of PS and PU than in their respective interiors.

The only reference to Pb in PU foams is as various organic lead salts (lead benzoate,
lead oleate, lead 2-ethylhexoate) and organolead compounds (e.g. tetramethyl lead)
that were historically used as chain extension and gelation catalysts (Huber, 1987;
Carraher, 2005). Up to 0.05% of the lead salt catalysts were typically added during the
reaction (Doyle, 1971), although it is conceivable that significantly greater quantities
may have been employed where rapid foam formation was sought (Overmars, 1970).

Because Fe and Zn are not particularly toxic and exhibit relatively low (and frequently
undetectable) accessibilities in the PU matrix, they are not likely to be of great
concern in the marine environment or to wildlife that inadvertently consume plastics.
In contrast, however, elevated concentrations of the highly toxic, priority pollutant,
Pb, are accompanied by maximum bioaccessibilities up to about ten per cent that,
presumably, reflect the solubilities of organic lead salts (rather than organolead
compounds) in the PU matrix under the low pH conditions of the simulated avian
gizzard. Clearly, therefore, certain types of (older) PU have the potential of acting as a
significant source of local Pb contamination that may be readily transferred into the
foodchain. For example, since beach sediment around the southern coast of south west
England typically contains total Pb at concentrations of about 10 μg g⁻¹ (Schuwerack
et al., 2007), the intertidal zone need only be contaminated by the addition a few parts
per thousand of abraded PU particulates to result in an order of magnitude increase in
the local Pb content.
We are unaware of studies that report the precise mass of foamed plastics in the dissected digestive environments of seabirds but assume that they are encountered on a regular basis since this category (and, specifically, PU) is mentioned as part of the OSPAR Ecological Quality Objective for marine litter in fulmars (Franek et al., 2011). Based on the observations in the present research, the mobilisation of Pb from ingested foams will be dependent on retention time in the gizzard, the absolute concentration of Pb and the constants defining its rate of release. As a specific example, ingestion and regurgitation of just 10 mg of PU foam (or a small fraction of the total mass of plastic encountered in fulmars from remote locations; Trevail et al., 2015) containing 15,000 µg g\(^{-1}\) of total Pb could result in the mobilisation of about 15 µg of the metal into the avian digestive environment after a period of ten days. While this figure may be regarded as an upper-bound estimate for the conditions considered because Pb is likely to undergo partial precipitation or readsorption in the higher pH environment of the duodenum (Turner and Hambling, 2012), bioaccessibility in the gizzard (or stomach) is often regarded as a good proxy for overall Pb bioavailability (Furman et al., 2006).

Exposure of Pb to birds is known to cause both lethal and sublethal effects. The latter may be observed at concentrations as low as about 5 µg g\(^{-1}\) in the liver and feathers, and include loss of appetite, drooped wings, lethargy, tremors, and impaired locomotion and balance (Burger and Gochfeld, 2001). Although Pb exposure from leaded paints and lead-based gunshot pellets are well documented in respect of both seabirds and waterfowl (Finkelstein et al., 2003; Bingham et al., 2015; Kim and Oh, 2015), the present study has highlighted a widespread, historical source of relatively bioaccessible Pb in the marine environment that has thus far not been recognised.
Greater systematic reporting of the occurrence of foamed litter on beaches, in the oceans and ingested by organisms is called for, while further studies are required to evaluate the wider impacts of Pb in PU foam in the marine environment and on wildlife that are exposed to or consume plastics.

Acknowledgements

Mr Kev Solman, Mr Andy Arnold, Mr Andrew Tonkin, Dr Dave Harwood and Dr Andrew Fisher (UoP) are thanked for technical assistance and advice during the study. This work was funded by a UoP Marine Institute HEIF V grant.

References

Baulch, S., Perry, C. Evaluating the impacts of marine debris on cetaceans. Marine Pollution Bulletin 80, 210-221.

Trevail, A.M., Gabrielsen, G.W., Kuhn, S., van Frankener, J.A., 2015. Elevated levels of ingested plastic in a high Arctic seabird, the northern fulmar (*Fulmarus glacialis*). Polar Biology 38, 975-981.

Table 1: Distributions and summary statistics for the concentrations of Br, Cl, Fe, Pb and Zn (μg g⁻¹) in samples of beached foams from Whitsand Bay.

<table>
<thead>
<tr>
<th></th>
<th>no. detected</th>
<th>10¹-10²</th>
<th>10²-10³</th>
<th>10³-10⁴</th>
<th>10⁴-10⁵</th>
<th>>10⁵</th>
<th>min.</th>
<th>max.</th>
<th>mean</th>
<th>median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polystyrene (n = 27)</td>
<td></td>
</tr>
<tr>
<td>Br</td>
<td>23</td>
<td>12</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>12</td>
<td>11,500</td>
<td>1,190</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>27</td>
<td>1</td>
<td>13</td>
<td>14</td>
<td>554</td>
<td>69,000</td>
<td>14,900</td>
<td>11,300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>27</td>
<td>1</td>
<td>14</td>
<td>12</td>
<td>477</td>
<td>27,600</td>
<td>9,560</td>
<td>9,030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>61</td>
<td>23</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>21</td>
<td>9</td>
<td>12</td>
<td></td>
<td></td>
<td>42</td>
<td>245</td>
<td>118</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>Polyurethane (n = 39)</td>
<td></td>
</tr>
<tr>
<td>Br</td>
<td>34</td>
<td>23</td>
<td>9</td>
<td>2</td>
<td>21</td>
<td>5,820</td>
<td>440</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>38</td>
<td>4</td>
<td>7</td>
<td>27</td>
<td>1,160</td>
<td>518,000</td>
<td>214,000</td>
<td>226,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>39</td>
<td>1</td>
<td>18</td>
<td>20</td>
<td>799</td>
<td>26,900</td>
<td>11,300</td>
<td>10,100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>19</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>11</td>
<td>15,700</td>
<td>7,030</td>
<td>4,240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>17</td>
<td>9</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>47</td>
<td>23600</td>
<td>1630</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Other (n = 4)</td>
<td></td>
</tr>
<tr>
<td>Br</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>2,100</td>
<td>17,700</td>
<td>6,130</td>
<td>5,440</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>391</td>
<td>4,030</td>
<td>1,180</td>
<td>749</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>2630</td>
<td>3230</td>
<td>2810</td>
<td>4190</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Constants and concentrations defining the mobilisation of Pb from the four samples of rigid PU whose kinetic profiles are illustrated in Figure 2. (Note that terms are defined in the text and lettered samples do not correspond to those illustrated in Figure 1.)

<table>
<thead>
<tr>
<th>sample</th>
<th>[Pb\textsubscript{T}], (\mu\text{g g}^{-1})</th>
<th>[Pb\textsubscript{max}], (\mu\text{g g}^{-1})</th>
<th>[Pb\textsubscript{max}]/[Pb\textsubscript{T}], %</th>
<th>(k), (\mu\text{g L}^{-1}\text{ h}^{-1/b})</th>
<th>(b)</th>
<th>(r^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>13,800</td>
<td>516</td>
<td>3.7</td>
<td>522</td>
<td>6.84</td>
<td>0.897</td>
</tr>
<tr>
<td>b</td>
<td>14,500</td>
<td>1380</td>
<td>9.5</td>
<td>903</td>
<td>4.26</td>
<td>0.986</td>
</tr>
<tr>
<td>c</td>
<td>15,700</td>
<td>977</td>
<td>6.2</td>
<td>363</td>
<td>2.97</td>
<td>0.993</td>
</tr>
<tr>
<td>d</td>
<td>15,300</td>
<td>846</td>
<td>5.5</td>
<td>477</td>
<td>3.73</td>
<td>0.989</td>
</tr>
</tbody>
</table>
Figure 1: A selection of foams (between 4 and 8 cm in length) collected from Whitsand Bay: (a) light brown flexible polyurethane; (b) well-rounded and discoloured polystyrene; (c) elasticated pink rubber; (d) well-rounded and dark brown rigid polyurethane; (e) yellow-brown rigid polyurethane; (f) partly discoloured yellow-brown rigid polyurethane.
Figure 2: Kinetic profiles for the mobilisation of Pb from four samples of rigid polyurethane by the avian PBET. Annotated are best-fits to the data according to equation 1 and errors represent one standard deviation about the mean of three independent measurements. Concentrations of Pb (in μg g$^{-1}$) and rate constants defining the profiles are given in Table 2. (Note that lettered samples do not correspond to those illustrated in Figure 1.)