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Role of Posidonia oceanica bed structure in determining the 
diversity of associated macroin vertebrate assemblages 

JOSEPH ANTHONY BORG 

Abstract 

Seagrass beds are highly productive shallow-water marine ecosystems and serve as a habitat for 
numerous invertebrates and fishes, some of which constitute important fisheries species. Seagrass beds 
play an important role in physical coastal dynamics, since they stabilise soft bottoms, while their leaf 
canopy attenuates strong wave action and currents, thereby, reducing coastal erosion. However, seagrass 
habitats are undergoing a decline worldwide, hence, there is an urgent need for data on the influence of 
bed fragmentation and changes in plant architecture on the diversity of associated biota. In the 
Mediterranean Sea, the endemic seagrass Posidonia oceanica forms extensive beds that have a high 
structural complexity and support a high biodiversity, making them one of the most important marine 
habitat types in the region. The present study investigated the influence of P. oceanica bed structure 
(seagrass bed morphology and within-bed architecture) on the diversity of associated macrofauna. Pilot 
surveys were made to map the occurrence and spatial distribution of different types of P. oceanica beds 
present off the northeastern coast of the Maltese Islands, to enable selection of four appropriate study 
locations. A quantitative sampler, which samples the total macroinvertebrate assemblages of P. 
oceanica beds, was designed and tested to determine the appropriate area and number of sampling units 
required to achieve given levels of accuracy and precision. Using data gathered from the pilot survey, 
studies were made to examine for differences in P. oceanica plant architecture, and in the species 
richness and abundance of motile macroinvertebrates between continuous (non-fragmented) and 
reticulate (fragmented) beds of the seagrass, across three different spatial levels: (a) large (several km), 
(b) medium (circa 100 in) and small (tens of metres). A separate study examined differences in the 
species richness and abundance of associated motile macro invertebrates between living matte (bearing 
living shoots) and dead matte (without living shoots) of P. oceanica. Results of univariate and 
multivariate analyses indicated that there was no consistent pattern of significant differences in plant 
architecture, and in the species richness and abundance of associated motile macroinvertebrates between 
the two P. oceanica bed types. Significant differences in macroinvertebrate species richness and 
abundance were detected between P. oceanica beds at the large spatial level that were significantly 
related to seagrass epiphytes and mean sediment grain size. Significant differences in macroinvertebrate 
species richness and abundance were detected between P. oceanica beds at the medium spatial level that 
were significantly related to shoot biomass. Significant differences in the assemblage composition of 
macroinvertebrates associated with P. oceanica beds were detected by multivariate analysis at the large 
and small spatial levels, with the best explanation for the multivariate assemblage structure being a 
combination of environmental variables that included epiphytes and sediment grain size. The results of 
the study comparing the motile macroinvertebrates of living and dead matte showed that dead matte 
supported significantly higher species richness and abundance of associated motile macro invertebrates, 
and had a significantly different macroinvertebrate assemblage structure, compared to living matte. 
Furthermore, a greater number of species occurred exclusively in dead matte than in living matte. It was 
concluded that natural fragmentation of continuous to reticulate P. oceanica beds does not lead to 
changes in plant architectural differences, or to a reduction in diversity of associated 
macroinvertebrates, nor does complete loss of the foliar canopy necessarily lead to a reduced diversity 
of macrofauna. Local factors, including nutrient levels in the water colunm (which enhanced epiphytic 
growth on the seagrass), sediment grain size and the hydrodynamic regime, were more important in 
influencing the diversity of macrofauna associated with P. oceanica beds, than bed type, leading to 
significant spatial variation in the associated macro invertebrate assemblages. The study concluded that 
the relative importance of different factors in influencing the diversity of macro invertebrates associated 
with P. oceanica beds varied, depending on scale. The results are discussed in the light of the available 
published data on fragmentation of seagrass habitat and on current Euro-Mediterranean proposals for 
the conservation of different bed types of P. oceanica. Attempts to classify different bed types of P. 
oceanica in categories according to value should be based on adequate ecological data. Different bed 
types of P. oceanica all form part of a dynamic heterogeneous landscape where transformation from one 
bed type to another may occur, but which does not necessarily lead to loss of biodiversity. Hence, equal 
effort should be directed at conserving and managing different bed types of P. oceanica. 
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CHAPTER I 

GENERAL INTRODUCTION 



1.1 IMPORTANCE OF STUDYING SEAGRASS BED STRUCTURE 

Biological diversity (or 'biodiversity'), the variety among living organisms, can be viewed 

at various levels: genetic, species, phyletic, functional, assemblage, habitat and ecosystem 

(Gray, 1997). Natural and human processes act at all these levels, causing alteration of 

biodiversity (Huston, 1994). Biodiversity provides essential resources for fanning, 

biotechnology, recreation, fuels and raw materials for industry. Furthermore, biodiversity 

provides essential services for recycling waste, controlling the global nutrient and chemical 

cycles, and buffering against climate change. Alteration that leads to loss of biodiversity is 

of major concern, as evidenced by the huge scientific research effort and attention of 

intemational policymakers to the concept (e. g. the 1992 United Nations Convention on 

Biological Diversity). Rapid growth of the human population in recent years, accompanied 

by increased industrialisation, land use and exploitation of natural resources, and 

associated indirect anthropogenic effects (e. g. pollution and global wanning), have led to 

alteration and/or loss of habitat, the most serious threat to biodiversity, since this leads to 

loss, and possibly extinction, of species (Wilcox & Murphy, 1985). Efforts to counteract 

habitat loss are hindered by the dearth of knowledge of the relative ecological value of 

different habitats, natural factors controlling their physical and biotic characteristics, te 

biology of the species inhabiting them, and effects of alteration by anthropogenic activities. 

Since the survival of a species depends on the properties of the surface or medium on/in 

which it lives, one of the most important attributes of a habitat that influences its biological 

diversity is its 'structure'; its physical arrangement in the environment (McCoy & Bell, 

1991). Habitat structure varies greatly between different habitats and also between habitats 

of the same type located in different environmental regimes (e. g. Wiens, 1989). Habitat 

structure can be quantified in different ways in order to examine the relationships between 

the physical and enviromnental characteristics of a habitat and its associated biodiversity 

(Bell et al., 1991). 
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Coastal areas support a greater variety of marine habitats than the open ocean (Gray, 1997). 

Many coastal habitats, for example, coral reefs, mangrove forests and seagrass beds, 

support biotic assemblages with a very high biodiversity (Costanza et al., 1997), which 

provide important resources and services for the human population, including fisheries, 

aquaculture, biotechnology, recreation and fuels. However, being located closest to human 

settlement, coastal areas are beanng the brunt of anthropogenic disturbance and 

degradation, and loss of marine coastal habitats is occurring at an alarming rate. For 

example, Wilkinson et al. (1993) claimed that more than half of the coral reefs of southeast 

Asia, which constitute a third of the world's coral reef habitat, have already been 

destroyed, or are on the verge of destruction. Hammond (1992) claimed that 40 - 70% of 

Africa's mangrove forests have been lost, while in the Philippines and Equador over 70% 

of this habitat type has been destroyed to make way for shrimp farms (Honculada 

Primavera, 1991). Degradation and decimation of seagrass habitats is equally alarming and 

a global decline is evident (Short & Wyllie Echeverria, 1996; Ruckelshaus & Hays, 1998; 

Green & Short, 2003), with global loss estimated at 16% (Short & Wyllie Echeverria, 

2000). As a result, marine biodiversity is a priority for conservation and management 

(Ehrlich & Ehrlich, 1992; Perrings et al., 1992; O'Neill, 1997). 

Seagrasses form beds that consist of one or more phanerogam species and constitute 

habitats that have a high ecological value. They are highly productive and serve as refugia 

against predation and as a nursery for many motile macroinvertebrates and fishes (see 

reviews by den Hartog, 1967; Kikuchi & Peres, 1977; Kikuchi, 1980; Philips & McRoy, 

1980; Hemminga & Duarte, 2000). Several seagrass-associated macrofauna, for example, 

large decapods and fishes, constitute important fishery species (see review by Jackson et 

al., 2001). Seagrass beds also have an important Mfluence on the physical environment, 

since their leaf canopy traps suspended matter (Ward et al., 1984) and acts as a buffer 
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against strong water movement (Fonseca et al., 1982; Fonseca & Kenworthy, 1987; 

Fonseca & Cahalan, 1992), while their root-rhizome layer consolidates soft sediments 

(Strawn, 1961; den Hartog & Phillips, 2001), thereby reducing coastal erosion. Because of 

their high productivity and important interaction with the physical environment, seagrass 

beds are considered to be important shallow-water ecosystems, with very high ecological 

and economic values (Costanza et al., 1997). Consequently, many countries have adopted 

conservation measures to protect seagrass habitats against degradation and loss (Green & 

Short, 2003), while in other areas, seagrass beds are the focus of special conservation and 

management programmes (e. g. Pulich et al., 1997). However, effective conservation is 

hindered by lack of data on the relationships between seagrass bed structural attributes, 

such as bed type and within-bed plant architecture, and the diversity of associated biotic 

assemblages. As a result, conservation biologists and coastal managers are unable to: (i) 

determine whether alteration of seagrass bed structure (i. e. fragmentation) will affect the 

associated biodiversity; (ii) justify the application of different (or similar) conservation 

measures for different bed types (e. g. fragmented vs non-fragmented); (iii) quantify loss of 

biodiversity when seagrass beds are fragmented or lost completely; and (iv) quantify and/or 

predict gain of biodiversity during attempts to restore seagrass habitat. Clearly, it is 

important that a detailed understanding of seagrass bed structure and its relationship with 

the associated biodiversity is obtained. 

1.2 SEAGRASS BIOLOGY 

1.2.1 Seagrass diversity 

Seagrasses are angiospen-ns that occur in shallow, coastal areas worldwide, including 

estuaries and brackish waters, but are generally absent from freshwater environments (den 

Hartog, 1967; 1979), although some species are capable of tolerating fresh or hypersaline 
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waters (Hernminga & Duarte, 2000; Short et al., 2001). Palaeontological evidence suggests 

that seagrasses colonised the marine environment, probably the Tethys Sea, during the 

Cretaceous (Brazier, 1975; Mazzella et al., 1986; Phillips & Menez, 1988). Three genera 

of living seagrasses, Halophila, Zostera and Posidonia comprise around 55% of seagrass 

species and appear to have evolved from lineages that appeared relatively early in time 

(den Hartog, 1970). Traditional views on the origin of seagrasses have maintained an 

evolutionary descent from coastal plants, rather than hydrophytes, and the possession of 

lignified stems by most seagrass taxa supports this theory (Larkum. & den Hartog, 1989). 

However, the holders of such views also suggest that the more recently evolved seagrass 

species, such as those belonging to the genus Enhalus, have evolved from a freshwater 

ancestor (Larkum & den Hartog, 1989). Evidence from genetic studies (e. g. Les et al., 

1997) indicates a polyphyletic origin of seagrasses from three major ancestral groups: (i) a 

freshwater plant for the Hydrochartaceae, (ii) a saltmarsh or aquatic ancestor for the 

Zosteraceae, and (Ili) an ancestor of Ruppia for the remaining families. Whatever the 

evolutionary lineage, seagrasses have acquired three key adaptations to enable them to 

colonise the manne envirom-nent successfully: (i) leaves that are morphologically adapted 

to a high-energy environment, (ii) hydrophyllous pollination, (iii) extensive lacunar 

systems to allow transport of oxygen to belowground structures buried in anoxic sediment, 

and (iv) the plants acquire bicarbonate ions from the water rather than carbon dioxide for 

their carbon requirements (Hemminga & Duarte, 2000). All seagrasses have a relatively 

similar gross morphology, characterised by the presence of linear or strap-like leaves (den 

Hartog, 1967). Different seagrasses, however, exhibit a broad structural anatomy (den 

Hartog, 1970). The considerable plasticity of seagrass morphology has led to the use of 

different characters for taxonomic purposes, resulting in disagreement on the exact number 

of living species (Hemminga & Duarte, 2000). However, most authors agree that there are 

around 60 species of seagrasses, grouped into 13 genera and 5 families (den Hartog, 1970; 
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Short et al., 2001). The family Posidoniaceae Lotsy comprises a single genus Posidonia 

K6nig, with nine species: P. sinuousa Cambridge & Kuo, P. angustifolia Cambridge & 

Kuo, P. australis Hook, P oceanica (Linnaeus) Delile, P. oestenfeldii den Hartog, P 

denhartogii Kuo & Cambridge, P. robertsoniae Kuo & Cambridge, P. kirkmanii Kuo & 

Cambridge, and P. coriacea Cambridge & Kuo (Kuo & den Hartog, 2001). Of these, eight 

species occur in Australia and one (P. oceanica) occurs in the Mediterranean Sea. 

1.2.2 Seagrass distribution 

The global distribution of seagrasses has been described by several workers (see den 

Hartog, 1970, Phillips & Menez, 1988; Green & Short, 2003), however, distribution data 

are lacking for the southeast Pacific, South America, West Africa and Antartica (Short et 

al., 2001), and for deeper waters worldwide (e. g. Lee Long et al., 1996). Thus, estimates of 

gobal seagrass cover have been made indirectly and are only approximate (e. g. 0.6 x 106 

kM2 = 0.15% of the global ocean; Charpy-Roubaud & Sournia, 1990). In general, 

seagrasses have a wide geographical distribution, extending from above the Arctic Circle 

southward to the southern hemisphere (Short et al., 2001). Hemminga & Duarte (2000) 

discriminated between nine different biogeographical seagrass floras, however, separation 

between them was not distinct, since several seagrasses occur in more than one 

biogeographical group. The presence of congeneric species in different floras may have 

resulted from fragmentation of a much wider distribution through rearrangement of 

continental land masses, followed by extinction of some taxa (Larkum & den Hartog, 

1989). Seagrasses occur in a broad variety of ecosystems, ranging from estuaries to the 

open sea (den Hartog & Phillips, 2001), from the intertidal to water depths of around 50 m 

(den Hartog & Phillips, 2001). Most species grow on soft sediment substrata but some (e. g. 

Phyllospadix) grow on rocky substrata (Hemminga & Duarte, 2000). Overall, the primary 

factors influencing the distribution of seagrasses appear to be nutrient and light availability 
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(Dennison, 1987; Short, 1987), however, the quality and type of substratum are also 

important determinants (Marba & Duarte, 2001). For example, soft sediments with high 

organic content may have high concentrations of phytotoxic compounds (e. g. sulphide), 

which inhibit seagrass growth (Hemminga, 1998). 

Posidonia oeeaniea (Linnaeus) Delile is endemic to the Mediterranean Sea, where it is the 

dominant seagrass throughout both west and east basins. Of the five seagrass species 

known from the Mediterranean Sea [P. oceanica (L. ) Delile, Cymodocea nodosa (Ucria) 

Ascherson, Zostera marina Linnaeus, Zostera noltii Homemann and Halophila stipulacea 

Forsskal], P. oceanica forms the most extensive beds (estimated total coverage of 2.5 - 5.5 

million hectares; Buia et al., 2000) and is common at depths ranging between I and 40m 

(den Hartog, 1970), where it may comprise the dominant habitat type (Boudouresque et al., 

1975). P. oceanica thrives best on sandy bottoms in clean waters, but also occurs 

frequently on rocky substrata (Pessani et al., 1984; Augier, 1986; Chimenz et al., 1989) 

where it can form continuous meadows. P. oceanica does not occur in estuaries 

(Procaccini et al., 2003), but has been reported from hypersaline (42-46%o) environments 

(e. g. Perez-Ruzafa et al., 1989). P. oceanica may occur at depths that are unusual for other 

seagrasses (> 40m), for example in Levant Island (France) (Augier & Boudouresque, 

1979), in Sulana Bay (Corsica) (Boudouresque et al., 1990a), and in Malta (Borg & 

Schembri, 1995a). The spatial extent of P. oceanica beds has been mapped in several parts 

of the Mediterranean, mainly using side-scan sonar (e. g. Rey & Diaz del Rio, 1989; Piazzi 

et al., 2000) or aerial photography (e. g. Augier & Boudouresque, 1976; Ramos Espla, 

1984; Boudouresque et al., 1985b) in combination with diving techniques to enable 

ground-truthing of data collected remotely. Studies of the spatial distribution of P. 

oceanica beds have also been made to monitor temporal changes in coverage of the 

seagrass. In surveys of the last type, the periphery of the seagrass beds has been marked by 
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permanent means (for example small moorings) and progression/regression of the bed 

boundary measured with time (Augier, 1986; Boudouresque et al., 1990b). Other workers 

have monitored changes in P. oceanica coverage and within-bed structure with time by 

deploying permanent quadrats (e. g. Boudouresque et al., 1981). The results obtained from 

such monitoring indicate a general trend of decrease in shoot density and coverage during 

the past few decades (Procaccini et al., 2003). 

1.2.3 Reproduction in seagrasses 

Seagrasses reproduce using sexual and asexual mechanisms, however, there are large 

differences in the reproductive strategy used by different (and sometimes the same) 

seagrass species in different regions. For example, on exposed sandy bottoms in the Baltic 

Sea, Z marina propagates mainly by vegetative propagation, whereas in sheltered areas it 

reproduces sexually (e. g. Baden & Bostrom, 2001). P. oceanica is a monoecious species, 

with both male and female flowers occurring in the same inflorescence (den Hartog, 1970; 

Procaccini et al., 2003). Dispersal of P. oceanica occurs mainly by: (i) dispersal of cuttings 

that are separated from the parent bed by strong wave action and transported to a new site 

where they become established; (ii) production of new shoots by asexual reproduction, 

leading to lateral growth of the parent bed; and (iii) sexual reproduction, which involves 

the production of flowers followed by fruiting, with seeds genninating if conditions are 

favourable. Of these three methods of dispersal, the first two are by far the commonest. 

Sexual reproduction occurs sporadically (den Hartog, 1970; Pergent et al., 1989; 

Procaccini et al., 2003) as can be seen from the irregular records of flowering (e. g. Pergent, 

1985; Acunto et al., 1996). The predominantly asexual reproductive strategy of this 

seagrass has resulted in populations having very low genetic variability (Procaccini et al., 

1996; Procaccini & Mazzella, 1998). 
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1.2.4 Growth of seagrasses 

Seagrasses possess a root-rhizome system that enables some species to live in nutrient- 

poor waters by exploiting the higher concentration of nutrients present in sediments 

(Hernminga, 1998). The growth rate of seagrass leaves varies with species and 

environmental conditions, particularly the availability of light and water temperature (e. g. 

lbarra-Obando et al., 1997), but is typically around 5 mm per day (den Hartog & Phillips, 

2001). Thus, the dynamics underlying seagrass growth and productivity are driven 

primarily by light, temperature and availability of nutrients (Sand-Jensen, 1975; Dennison, 

1987; Short, 1987; Hemminga et al., 1991). Recent experiments have demonstrated that 

seagrasses can translocate nutrients, in particular inorganic carbon and nitrogen, between 

adjacent ramets of the same clone, hence, enabling physiological integration within the 

same plant, which can be exploited for clonal growth and expansion (Marba et al., 2002). 

P. oceanica is a very slow-growing species of seagrass (Duarte, 1991); around 10 leaves 

are produced annually per shoot (Ott, 1980). Besides light, temperature and nutrient 

availability (Alcoverro et al., 1997a), another factor influencing growth of this seagrass is 

the sediment redox potential (Alcoverro et al., 1995). To exploit the low nutrient 

concentration of the Mediterranean's oligotrophic waters, P. oceanica can acquire 

nutrients (e. g. phosphorous) from the water column through its leaves and from sediment 

pore water through its root-rhizome system (Alcoverro et al., 1997b). P. oceanica can 

thrive in waters with nutrient concentrations low enough to limit other seagrasses, such as 

C nodosa (Perez et al., 1991; 1994). Moreover, depending on the season, P. oceanica is 

capable of reutilising internal nutrients (namely nitrogen and phosphorous) by reclamation 

from the root-rhizome system and from the older leaves, before the latter are detached 

from the shoot (Alcoverro et al., 2000). Nutrient uptake from the external medium occurs 

during winter, such that their concentration in tissue exceeds that of carbon. Conversely, 
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nutrient reclamation from internal pools occurs during spring and autumn, when the 

external nutrient concentrations are low and internal carbon balance high (Alcoverro et al., 

2000). 

The growth pattern exhibited by P. oceanica is remarkably different from that of other 

seagrasses: (i) its leaves have strong seasonal growth, with rates being highest in spring 

and lowest in late summer (Wittman & Ott, 1982; Alcoverro et al., 1995), and high 

longevity (mean leaf lifespan of 150 - 300 days; Romero, 1989a), which exceeds that 

recorded for most other seagrass species (Duarte, 1991); (ii) there is a time delay in leaf 

production of around one month between shallow (circa 5 m), intennediate (circa 15 m) 

and deep (circa 30 m) beds (Mazzella & Ott, 1984; Mazzella et al., 1989); (iii) the plant 

accumulates unusually high carbohydrate reserves (Pirc, 1989), which can be mobilised to 

balance out the asynchrony between carbon fixation and use (Alcoverro et al., 2001), 

therefore enhancing its survival (Genot et al., 1994); (iv) the plant accumulates an 

unusually high belowground biomass (Ott, 1980); and (v) rates of elongation of P. 

oceanica rhizomes can vary in response to different sedimentation regimes, hence 

counteracting burial by sediment (Boudouresque et al., 1984). The genus Posidonia has the 

lowest rhizome elongation rates among the seagrasses (Hillman et al., 1989). Two types of 

rhizomes are recognised: (i) orthotropic, which grow vertically and (ii) plagiotropic, which 

grow horizontally. The plant usually has 4 to 8 strap-like leaves per shoot (Boudouresque 

& Meinesz, 1982), which can exceed a metre in length (Drew & Jupp, 1976). Leaf 

phenology is influenced strongly by season, but changes in shoot density are negligible 

over an annual period (Buia et al., 2000), although interannual variations do occur (Buia & 

Mazella, 2000). As in most seagrasses, leaf fall occurs in autumn (Mazzella & Ott, 1984), 

by which time the leaves are laden heavily with epiphytes, which aid detachment from the 

rhizomes by strong currents and wave action. The slow decomposition/fragmentation of P. 

oceanica leaves and transport to adjacent habitats constitutes a highly important source of 
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detritus, which is thought to influence secondary production in other shallow-water 

ecosystems (Bellan-Santini & Picard, 1984). Leaves washed ashore form dense banks, 

known as 'banquettes', which serve as a habitat for a characteristic assemblage of 

invertebrates (Procaccini et al., 2003) and protect beaches against erosion (Boudouresque 

Meinesz, 1982). 

1.3 SEAGRASS BED STRUCTURE 

While most seagass beds tend to be monospecific, beds that consist of several seagass 

species occur in many places (Duarte, 2000). Such beds are considered to have a relatively 

simple assemblage composition composed of a small number of species (maximum of 

around 12; den Hartog, 1967; Kirkman, 1985), of which only one or two comprise the bulk 

of the seagrass biomass (Terrados et al., 1998). In some geographical areas, particularly in 

tropical and sub-tropical regions, there is a vertical 'zonation' pattern of occurrence of 

seagrasses, the structure and sequence of which depends on the growth strategy and 

specific ecological requirements of the individual species (den Hartog, 1967). In many 

places, zonation and succession of seagrasses is influenced greatly by natural 

environmental processes including the ecophysiological requirements of the individual 

species, interspecific competition, and/or human disturbance (den Hartog, 1967). For 

example, in the Mediterranean Sea, C nodosa often precedes P. oceanica in the succession 

sequence and may recolonise the area again when beds of the latter undergo degradation 

(Moliner &Picard, 195 1; Aleem, 1955). 

In general, seagrass coverage vanes greatly over both large and small spatial scales such 

that patterns of occurrence of natural beds range from small patches to large continuous 

beds (Robbins & Bell, 1994; Fonseca & Bell, 1998). Seagrass patches have sizes ranging 
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from less than I M2 to tens of square metres (Fonseca et al., 1983; Irlandi, 1997; Reusch, 

1998; Frost et al., 1999; Bowden et al., 2001), while continuous beds cover extensive areas 

of several square kilometres (e. g. Worcester, 1995). Seagrass beds may also occur 

interspersed with a different habitat type, for example, bare sand, to form reticulate beds 

(also referred known as 'semi-continuous' beds, 'interconnected patches' or beds with 

'blow-outs') (Kirkman & Kuo, 1990; Fonseca & Bell, 1998; Hovel & Lipcius, 2001; 

2002), which may have a coverage that varies between several square metres and hundreds 

of square metres, or greater. Such bed patterns, or landscapes (Robbins & Bell, 1994), are 

thought to result from the seagrass growth response to the physical setting of the particular 

locality where the seagrass occurs (Patriquin, 1975; Fonseca et al., 1983; Fonseca & 

Kenworthy, 1987; Kirkman & Kuo, 1990; Fonseca & Bell, 1998). Within-bed 

characteristics of seagrass beds are also influenced by local factors, since plant architecture 

(which comprises the plant morphological characteristics, i. e. number of leaves, leaf 

length, leaf width, shoot density, epiphytic load etc. ) varies (Robbins & Bell, 1994) 

depending on the current regime (Fonseca et al., 1983), wave exposure (Fonseca & Bell, 

1998), the physico-chemical properties of the substratum (Terrados et al., 1998), and the 

temperature (Koch, 2001) and physico-chemical properties of the water column (e. g. 

Tomasko et al., 1996). Other probable controlling factors of bed structure include 

disturbance by storms (Patriquin, 1975; Kirkman, 1985), bioturbation (Suchanek, 1983; 

Valentine et al., 1994; Townsend & Fonseca, 1998) and grazing by megafauna (e. g. Preen, 

1995). The way in which these factors influence patterns of seagass bed structure is 

undoubtedly complex but they probably act by promoting or halting development at the 

bed boundaries, or by creating pockets (also known as 'blowouts'; Patriquin, 1975) within 

the seagrass beds that are devoid of plants (den Hartog, 1970; Kirkman, 1985). 

Disturbance from anthropogenic activities also affects seagrass bed morphology and plant 

architecture through direct physical damage (e. g. deployment of moorings or anchoring; 
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Hastings et al., 1995; Francour et al., 1999) and through indirect degradation, such as that 

resulting from alteration of water quality (e. g. Delgado et al., 1997; 1999; Pergent et al., 

1999; Ruiz et al., 2001; Dimech et al., 2002) (see Section 1.7). 

The first detailed descriptions of the morphology and growth dynamics of P. oceanica beds 

were by Moliner & Picard (1952), who maintained that P. oceanica beds constituted the 

climax community in a succession started in shallow waters by the smaller seagrass C 

nodosa. The latter acts as a pioneer species, spreading over sandy substrata and enriching 

the sediment with organic matter. Detached P. oceanica plants take root and form circular 

patches within the C nodosa meadows, eventually completely replacing the latter through 

lateral spreading (Moliner & Picard, 1952). P. oceanica is one of the largest marine 

anglosperms, with leaf lengths that may exceed a metre in length and a leaf width of 

around I cm (Drew & Jupp, 1976). The plant fonns beds having a high shoot density (e. g. 

1,200 shoots M-2 at a depth of 5 m) and a high biomass (e. g. 1617g dw M-2 at a depth of 5 

m) (Mazzella et al., 1992) compared with other phanerogams (Pergent et al., 1994; Duarte 

& Chiscano, 1999). The characteristic growth pattern of P. oceanica leads to formation of 

beds that have an extensive root-rhizome network called 'matte' (Figure 1), which 

provides finn anchorage for new plants and can be thousands of years old (Mateo et al., 

1997). The lignified P. oceanica rhizomes of this belowground structure may contribute to 

more than 50% of the total seagrass biomass (Mateo & Romero, 1997). Vertical growth of 

the rhizomes, coupled with accumulation of sediment in the matte interstices 

(Boudouresque et al., 1984), causes a slow upward lifting of this biogenic structure at the 

rate of around I cm/yr (Moliner & Picard, 1952; Boudouresque & Jeudy De Grissac, 

1983). However, vertical growth of the matte varies interannually, depending on variations 

in sedimentological processes of the locality, such as rates of transport and deposition of 

soft sediment (Boudouresque et al., 1984). In some Mediterranean bays and inlets, for 
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example, in France (Moliner & Picard, 1952; Augler & Boudouresque, 1970), Sicily 

(Calvo & Frada-Orestanio, 1984; Accardo-Palumbo et al., 1992), along the north African 

coast (Aleem, 1955) and in Malta (Borg & Schembri, 1995a), vertical growth of the P. 

oceanica matte close to the water's surface at mean sea level has led to the formation of 

4reefs' which, in some cases, have closed off the inner parts of bays to form lagoons (den 

Hartog, 1970; Accardo-Palumbo et al., 1992). A number of different reef types have been 

described from France and Corsica (Boudouresque et al., 1985b, and references therein). 

Foliar stratum 

Root-rhizome 'matte' 

Figure 1. Posidonia oceanica bed structure. 

Because of the peculiar growth pattern exhibited by P. oceanica, its high and dense foliar 

stratum, and the thick matte formed, beds of this seagrass have a high structural 

complexity (Buia et al., 2000). Furthermore, since both the leaf stratum and root-rhizome 

matte play important roles in the complex interactions with the substratum, this seagrass is 

known to have profound influences on the sediment texture and the hydrodynamic regime 

(Jeudy de Grissac, 1984; De Falco et al., 2000; Granata et al., 200 1). P. oceanica bed 

morphology is plastic and numerous forms can be recognised, ranging from very small 

patches to large and extensive continuous beds, all of which can be found growing on soft 
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and hard bottoms (Mazzella et al., 1986; Buia et al., 2000). The dynamics underlying the 

formation of different P. oceanica bed types (Buia et al., 2003) are complex, with different 

forms resulting mainly from the influence of different physical environmental factors, 

amongst which water movement and the sedimentary regime exert major influences 

(Colantoni et al., 1982; Blanc & Jeudy de Grissac, 1984; Jeudy de Grissac, 1984). P. 

oceanica forins patches that range in size between one and several square metres (Mazzella 

et al., 1986). An unusual P. oceanica patch type, known as 'colline', resembles a small 

hillock and results from a higher rate of growth of the matte at the centre than at the 

periphery (Boudouresque et al., 1985a). Another peculiar bed type of P. oceanica consists 

of long narrow strip-like beds that have been named 'tigre' (striped or banded) by French 

workers (Buia & et al., 2003). Discontinuous P. oceanica beds, in which the seagrass 

meadow is intermixed with a different bottom type, such as rock (e. g. Chimenz et al., 

1989) or bare sand (e. g. Buia et al., 1989) to attain a reticulate morphology, occur 

commonly (e. g. Barbera Cebrian et al., 2002). According to some workers, reticulate P. 

oceanica beds result from erosion of the bed along certain directions by sagittal and 

longshore currents (Blanc & Jeudy de Grissac, 1984) to produce channels that are cut in 

the P. oceanica matte (known as 'inten-natte' channels; Boudouresque & Meinesz, 1982; 

Peres, 1982; Buia et al., 1989). Eventually, complete erosion of the matte exposes the 

underlying sandy bottom (Boudouresque & Meinesz, 1982). Continuous P. oceanica beds 

occupy the upper extreme end of the broad range of different bed morphologies, and 

comprise extensive and fairly homogeneous beds of the seagrass, which cover areas that 

can be tens of square kilometres (e. g. Colantoni et al., 1982). Differences in environmental 

factors, such as variation in the light, temperature and hydrodynamic regimes that occur 

with changes in water depth, cause large variations in the within-bed structure of P. 

oceanica beds (Panayotidis et al., 1981; Dalla Via et al., 1998; Zupo et al., 1997; Gobert et 

al., 2003). The general tendency is for within-bed structural attributes, such as shoot 
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density, leaf biomass and mean leaf length, to decrease with increasing water depth 

(Gambi et al., 1992; Pirc, 1984). In extreme adverse conditions, for example, when the 

matte surface reaches a critical water depth such that it becomes exposed to erosion by 

wave action (Boudouresque & Meinesz, 1982; Blanc & Jeudy de Grissac, 1984; Meinesz 

et al., 1988), or in conditions of eutrophication or pollution (e. g. Ramos Espla, 1984; 

Bourcier, 1989), complete death of the P. oceaniea shoots occurs and the resulting bare 

root-rhizome matrix is known as 'dead matte' (Harmelin, 1964; Vaccarella et al., 198 1; 

Abada Guerroui & Willsie, 1984; Bellan Santini et al., 1986; Somaschini et al., 1994). 

1.4 FLORA AND FAUNA ASSOCIATED WITH SEAGRASS BEDS 

Several authors (e. g. Kikuchi & Peres, 1977; Kikuchi, 1980; Mazzella et al., 1986) divide 

the flora and fauna associated with seagrass beds into a number of categories: (i) the 

epiphytic flora and the micro- and meiofauna present on the shoots and rhizomes; (ii) the 

sessile macrofauna associated with the leaves and rhizomes; (iii) the mobile epifauna that 

creep or crawl on the leaves; (iv) the swimming fauna that rest on the leaves; (v) the highly 

mobile fauna that swim above and under the leaf canopy; (vi) the mobile epifauna 

associated with the root-rhizome surface; and (vii) the infauna. 

Numerous phototrophic epiphytes, mainly consisting of cyanobactena, diatoms and algae 

are associated with seagrass beds (Humm, 1964; Novak, 1984; Borowitzka et al., 1990; 

Moncreiff & Sullivan, 2001). The species richness of algal epiphytes can be very high, 

with recruitment being controlled largely by the growth pattern and age of the individual 

seagrass plants (Borowitzka et al., 1990; Trautman & Borowitzka, 1999). For example, 

Humm. (1964) recorded 113 algal epiphytes from a Thalassia testudinum Banks & Soland 

ex Koenig bed in Florida, while Borowitzka et al. (1990) recorded 150 species from an 
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Amphibolis griffithii (Black) den Hartog bed in Western Australia. Algal epiphyte 

production in seagrasses has been reported to attain a biomass of up to 60% of the seagrass 

itself (e. g. Morgan & Kitting, 1984; Moncreiff & Sullivan, 2001); however, such high 

epiphytic biomass is usually the result of nutrient enrichment of the water column and/or 

low herbivory rates (den Hartog & Phillips, 2001). According to most workers, seagrass 

algal epiphytes are mostly facultative and are found growing on other macrophytes and on 

hard substrata; relatively few species are confined exclusively to seagrasses (den Hartog, 

1967). Furthermore, while some algal epiphytes have a seasonal occurrence, others are 

present on the seagrass all year round (den Hartog, 1967). The species richness and 

"I.. abundance of epiphytes are strongly influenced by the leaf turnover rates of a particular 

seagrass species, which vary between 11-24 days in Halophila ovalis (R. Brown) Hook 

(den Hartog & Phillips, 2001) and 150-300 days in P. oceanica (Romero, 1989a). 

The sessile epifauna of seagrass beds mainly compnses hydroids, bryozoans, sponges and 

ascidians (e. g. Pansini & Pronzato, 1985; Borowitzka & Lethbridge, 1989; Pessam et al., 

1989; Trautman & Borowitzka, 1999). In comparison to the motile macrofauna associated 

with seagrass habitats, the sessile epifauna has disthbutional patterns (on the host plant), 

life cycles and growth characteristics intimately related to the growth characteristics of the 

seagrass (Trautman & Borowitzka, 1999). Furthermore, because space is a very limited 

resource, the sessile epifauna of seagrasses have adaptatIons that enable them to compete 

interspecifically. For example, different hydroids may have different orientation of growth 

such that some grow downward toward the younger parts of the seagrass leaves (Hughes et 

al., 1991b). 

Of all the biotic components associated with seagrass beds, the motile macroinvertebrate 

fauna has probably received the greatest attention, with the majority of studies showing 
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that, in terms of species richness and abundance, gastropods, polychaetes and crustaceans 

dominate (Brook, 1977; 1978; Heck, 1977; Young & Young, 1978; Greening & 

Livingston, 1982; Vimstein, 1987; Vimstein & Howard, 1987a; Pihl Baden, 1990; Ansari 

et al., 1991; Knowles & Bell, 1998). Abundance values of motile macroinvertebrates 

recorded in the literature vary greatly, depending on sampler mesh size. For example, the 

following maximum values of macroinvertebrate abundance have been recorded from Z. 

marina beds: 80,000 individuals M-2 (Pihl Baden, 1990; 0.2 mm. mesh size), 25,000 

individuals M-2 (Marsh, 1973; 0.5 mm. mesh size), and 160 individuals M-2 (Pihl Baden 

Pihlq 1984; 1 mm mesh size). Seagrass beds constitute important nursery habitats for 

several commercial species (e. g. blue crab Callinectes sapidus Rathbun; Heck & Thoman, 

1981; Orth & van Montfrans, 1987; 1990). While many motile invertebrates are permanent 

residents of seagrass beds and complete their reproductive cycles in the seagrass habitat, 

others are temporary inhabitants and visit at some time during the day to feed or during a 

specific part of the year to reproduce (e. g. prawns; Howard, 1984; Bauer, 1985; Gray 

1991a; 1991b). Some of the associated macroinvertebrates have speciallsed niches; for 

example, some isopods and polychaetes are capable of mining the tissue of seagrasses 

belonging to the genus Posidonia (e. g. Brearly & Walker, 1995). Herbivores constitute an 

important component of seagrass-associated macrofauna, with the majority of species 

feeding on epiphytes or on the detritus (e. g. Nelson, 1997). However, direct consumption 

by grazers can exert a profound influence on seagrass beds, for example, sea urchins may 

control seagrass density (Alcoverro & Mariam, 2002). The species richess and abundance 

of macroinvertebrate assemblages associated with seagrass beds has been shown to vary 

diurnally (Brook, 1977; Greening & Livingston, 1982; Bauer, 1985; Howard et al., 1989; 

Connolly & Butler, 1996), seasonally (e. g. Gray, 1991a; 1991b), and inter-annually (e. g. 

Vimstein, 1987). For example, Bauer (1985) noted that the abundance of caridean shrimps 

was higher at night and attributed this partly to nocturnal emergence of the animals from 
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burrows in the sediment. Gray (1991a) suggested that the prawn Macrobrachium 

intermedium Stimpson migrates out from seagrass in winter to deeper waters. Temporal 

variation in the diversity of macroinvertebrates associated with seagrass beds may also 

result from changes in predation pressure (e. g. Nelson et al., 1982). 

Several studies have considered the fish fauna associated with seagrass beds (see reviews 

by Pollard, 1984; Bell & Pollard, 1989; Jackson et al., 2001, and references therein). 

Fishes constitute a highly mobile biotic component of seagrass habitat; while some species 

are permanent 1 abitants of seagrass beds (e. g. gobfids and other small fishes), others (e. g. 

sparids) are temporary visitors and use them as feeding grounds and/or nurseries 

(Weinstein & Heck, 1979; Burchmore et al., 1984; Middleton et al., 1984; Aliaume et al., 

1993; Gray et al., 1996). Large variations in the species richness and abundance of 

seagrass-associated fishes have been noted to occur diurnally, however, seasonal variations 

are less pronounced (Weinstein & Heck, 1979; Orth & Heck, 1980). 

The species composition and structure of the biotic assemblages associated with P. 

oceanica have received considerable attention since the pioneering works of KeneYs 

(1960), Ledoyer (1962) and Hannelin (1964). Around 800 species have been recorded 

from P. oceanica beds, of which some are exclusive to this habitat (e. g. the noble pen shell 

Pinna nobilis Linnaeus) and having become rare or endangered (Procaccini et al., 2003). 

Because of this high biodiversity, some authors (e. g. Boudouresque & Meinesz, 1983; 

Boudouresque et al., 1994) consider the P. oceanica community as the most diverse in the 

Mediterranean Sea. 

The epiphytic flora associated with P. oceanica has been well studied (e. g. Cinelli et al., 

1984; Casola et al., 1987; Bula et al., 1989) and the published results show a high species 

richness of algal epiphytes. For example, Battiato et al. (1982) recorded 81 leaf epiphytic 
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algae from a P. oceanica meadow in the island of Ischia (Naples), of which Fosiliella sp. 

and Myrionema orbiculare Agardh had the highest abundance in terms of leaf coverage. 

Several algal epiphytes, including the red algae Pneophyllum fragile Kutzing and 

TT- . nydrolithonfarinosum (Lamoroux), and the brown algae Giraudia sphacelarioides Derbes 

& Solier and M orbiculare, occur exclusively in P. oceanica beds (Procaccini et al., 

2003). Leaf epiphytes also constitute a considerable proportion of the total primary 

production of P. oceanica beds (Battiato et al., 1982; Mazzella et al., 1992; Cinelli et al., 

1984; Mazzella & Ott, 1984; Casola et al., 1987; Alcoverro et al., 1997a). The occurrence 

and species composition of leaf epiphytic assemblages of P. oceanica tends to be strongly 

dependent on the life cycle of the epiphytes, the growth characteristics of the seagrass 

leaves, and on physical factors such as water movement, temperature and availability of 

light (Cinelli et al., 1984; Mazzella & Ott, 1984; Mazzella et al., 1989; Alcoverro et al., 

1997a). For example, in their study of a P. oceanica meadow that extended between depths 

of I in and 32 in, Mazzella & Ott (1984) noted a discontinuity in epiphyte biomass at a 

depth of 15 in, which coincided with sharp changes in leaf architectural characteristics of 

the seagrass and hydrodynamic features characteristic of a high-energy environment. 

Battiato et al. (1982) found that the most abundant leaf algal epiphytes were red algae (61 

species), followed by brown algae (15 species) and green algae (5 species), and concluded 

that the species composition and abundance of the leaf algal epiphyte community was 

influenced by the P. oceanica meadow structure and by water movement. Three zones have 

been identified on the P. oeeaniea leaves that appear to be colonised predominantly by 

different epiphytes: (i) the basal parts, which are colonised by pioneer species, namely 

bacteria and diatoms; (ii) the ageing portion, which is encrusted with soft and calcareous 

encrusting algae; and (ill) the tips, which support a layer of upright algae (namely red and 

brown algae) growing on the encrusting epiphytes (Casola et al., 1987; Mazzella & Russo, 

1989). In general, the epiphytic assemblages of P. oceanica have been found to be more 
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diverse in shallow beds than in deeper ones (Mazzella et al., 1989). The P. oceanica matte 

surface frequently supports a more sciaphilic algal assemblage, dominated mainly by 

Peyssonnelia squamaria (Gmelin) Decaisne and Flabellia petiolata (Turra) Nizamuddin 

(e. g. Moliner & Picard, 1959-1960; KemeYs, 1960). 

The heterotrophic sessile epipytes of P. oceanica comprise mainly bryozoans (e. g. Fresi et 

at., 1982, Balduzzi et al., 1983; Castritsi-Catharios & Ganias, 1989), hydroids (e. g. Boero, 

1981 a; 1981b) and sponges (Pansmi & Pronzato, 1985), the latter occurring mainly on the 

rhizomes and matte surface. Some of the hydroids (e. g. Aglaophenia harpago Schenck and 

Sertularia perpusilla Stechow) and bryozoans (e. g. Electra Posidoniae Gantier) occur 

exclusively in P. oceanica beds (Mazzella et al., 1986; Procaccini et al., 2003), while other 

sessile epiphytes have very specific growth and reproductive strategies closely tied and 

adapted to the life cycle of the seagrass. For example, the hydroid S. perpusilla has a very 

peculiar growth strategy and is able to survive on the seagrass shoots beyond the life of the 

individual leaves by means of asexual reproduction and colonisation of young leaves by 

stolonisation (Hughes et al., 1991 a; Rossi et al., 1997). The species richness of these 

sessile macroinvertebrates can be high for P. oceanica beds, but not as high as for the 

motile macrofauna. For example, Pessani et al. (1989) recorded a total of 68 species of 

sessile epifauna from P. oceanica beds off the Ligurian coast, of which 12 species were 

hydrozoans and 32 bryozoans; Boero et al. (1985) recorded a total of 25 hydroids from a 

single meadow in Ischia (Naples, Italy); Castritsi-Catharios & Ganias (1989) recorded 49 

species of bryozoans from P. oceanica beds in the Gulf of Patras (Greece); and Pansim & 

Pronzato (1985) recorded 75 species of Porifera from Italian P. oceanica beds located in 

two different locations. 

The motile macroinvertebrates associated with P. oceanica beds comprise mainly 

crustaceans, molluscs, polychaetes and echinoderms (Mazzella et al., 1989; 1992). The 

21 



majority of investigations on the motile macroinvertebrates of P. oceanica beds have 

considered either the leaf stratum (Mazzella et al., 1989; Gambi et al., 1989b; 1992; 

Scipione et al., 1996; Sanchez Jerez et al., 1999a; Barbera Cebrian, 2002) or the root- 

rhizome layer (e. g. Bourcier & Willsie, 1986; Willsie, 1986; Somaschini et al., 1994; 

Garcia Raso et al, 1996); few have considered the whole motile macrofauna of both 

subhabitats (e. g. Templado, 1984; Bianchi et al., 1889; Chimenz et al., 1989). Where both 

leaf stratum and root-rhizome layer have been studied, the investigations generally deal 

with a single taxon, for example, polychaetes (Gambi et al., 1995), molluscs (Russo et al., 

1983; 1985) and decapods (Garcia Raso, 1990). Several studies are available for specific 

groups of macroinvertebrates associated with the leaf stratum, including molluscs (Russo 

et al. 1983-84; 1984a; 1984b), polychaetes (Colognola et al., 1984; Gambi et al., 1989b), 

mysids (Barbera Cebrian et al., 2002) and amphipods (Scipione & Fresi, 1984; Scipione, 

1999). In the foliar stratum, the highest abundance values are contributed by the Mollusca 

and Amphipoda, while the polychaetes of this subhabitat have a low abundance but high 

species richness (Mazzella et al., 1989; Gambi et al., 1989b). Relatively few studies have 

centered on the macroinvertebrates of the root-rhizome stratum and most of these deal with 

the polychaetes (Hannelin, 1964; San Martin & Vieitez, 1984; Bourcier & Willsie, 1986; 

Willsie, 1986; Somaschini et al., 1994; Gambi et al., 1995; Garcia Raso et al, 1996). 

Polychaetes are more abundant in the root-rhizome layer than in the leaf canopy, with 

syllids being dominant in both subhabitats (San Martin & Vieitez, 1984; Colognola et al., 

1984; Gambi et al., 1989b; Gambi et al., 1995). Despite the high species richness of 

polychaete assemblages recorded from single studies of the P. oceanica matte, for 

example, 100 - 218 species (Hannelin, 1964; San Martin & Vieitez, 1984; Somaschini et 

al., 1994), the majority of the recorded species also occur in other habitats and none occurs 

exclusively in the root-rhizome matte (Chimenz et al., 1989; Gambi et al., 1995; 

Procaccini et al., 2003). The P. oceanica matte also constitutes an important habitat for a 
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large variety of decapods, such that for this group of macrofauna, this subhabitat may be 

more important than the leaf canopy (Garcia Raso, 1990; Garcia Raso et al, 1996). The 

published data indicate that the root-rhizome layer of P. oceanica beds supports a higher 

species richness of associated macroinvertebrates (Chimenz et al., 1989; Templado, 1984; 

Gambi et al., 1995; Borg & Schembri, 2000), which for some groups (e. g. polychaetes; 

Somaschini et al., 1994) may be higher than that recorded from other habitats. A recent 

review has pointed out that this compartment lacks detailed study (Buia et al., 2000). 

Several workers have found a diurnal variation in the species richness and abundance of 

motile macroinvertebrates associated with P. oceanica, which was attributed to diumal 

differences in the vertical migration pattern between the root-rhizome layer and the leaf 

canopy (e. g. Sanchez Jerez et al., 1999b). The species composition of assemblages of some 

other abundant macroinvertebrate groups associated with P. oceanica beds, for example, 

the mysids, has received relatively little attention (but see Maj & Taramelli, 1989; Barbera' 

Cebrian et al., 2002). This is due partly to the lack of taxonomic expertise and dearth of 

Mediterranean identification keys for such groups. 

As with most seagrass beds, P. oceanica meadows are recognised as important spawning, 

nursery and feeding grounds for numerous fishes, including scorpaenids, serranids, spands 

and labrids (Bell & Hannelin-Vivien, 1982; Harmelin-Vivien, 1982; Hannelin-Vivien, 

1984), many of which are of considerable economic importance (Procaccini et al., 2003). 

The species richness of fishes recorded from P. oceanica beds off the southern coast of 

France varied in the range of 41 - 58, however there was diumal variation in both species 

richness and abundance, with a tendency for higher values at night (Harinelin-Vivien, 

1984). 

23 



1.5 PRODUCTIVITY AND TROPHIC DYNAMICS OF SEAGRASS 
BEDS 

The primary productivity of seagrasses may be very high, with an estimated average net 

production of circa 1012g dw M2 year-' (Duarte & Chiscano, 1999), which is comparable to 

that of terrestrial plants (e. g. Hillman et al., 1989). Seagrasses serve as important feeding 

grounds for herbivores that consume the living seagrass leaves and the seagrass epiphytes 

(e. g. Moncreiff & Sullivan, 2001) or feed on the detritus (Klumpp et al., 1989). Several 

birds, marine mammals and reptiles consume the living leaves of seagrass (see review by 

Thayer et al., 1984). Generally, it is accepted that because of the high content of refractory 

substances in seagrass tissue (namely structural carbohydrates, lignin and cellulose, which 

make it not easily digestible), few macroinvertebrates feed directly on seagrasses (Thayer 

et al., 1984; den Hartog & Phillips, 2001) and most of the primary production of seagrasses 

is either stored in the root-rhizome compartment or is exported to adjacent marine 

ecosystems via the detrital pathway (e. g. Thresher et al., 1992). However, a recent review 

by Valentine & Heck (1999) challenged this paradigm and proposed that direct herbivory 

on seagrasses may have been underestimated. In any case, the high content of refractory 

substances in seagass tissue and the unusual C: N: P ratios (Enriquez et al., 1993) slow 

down the rate of decomposition of detached shoots and leaves, and conversion to detritus 

(Thayer et al., 1977; Bourgues et al., 1996). For example, Z marina beds located in an 

estuary in North Carolina (USA) had an estimated rate of detrital export that ranged 

between 4.9 - 6.0 g dw mo-1 M-2 for sheltered embayment-type beds and 1.0 - 13.0 g dw 

mo-I m -2 for exposed beds (Bach et al., 1986). The difference in rates of export was 

attributed to entrapment of detrital material by the embayment type beds (Bach et al., 

1986). The role of seagrass beds as producers or sinks of detritus is dictated by the 

hydrodynamic regime of a particular locality; they serve as a source of detritus when 

located in areas characterised by high current velocities and as a sink when located in areas 
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characterised by low current velocities (Fonseca et al., 1983). Release of inorganic 

nutrients (e. g. nitrogen and phosphorous) through decomposition of seagrass tissue occurs 

at a faster rate than that of macroalgae and, therefore, seagrasses appear to play a 

significant role in the recycling of inorganic nutrients (Bourgues et al., 1996). Hence, 

export of seagrass litter to nearby or distant ecosystems, including those located at great 

depths (e. g. Wolf, 1976), may represent an important supply of detritus and nutrients 

(Duarte & Cebrian, 1996), and constitutes one of the two major trophic pathways; the other 

pathway is that based on grazing (Klumpp et al., 1989). Studies have suggested that the 

nutritional value of detritus consumed by macrofauna actually lies in the micro- and 

meiofauna associated with it (Fenchel, 1977; Coull, 1990), while epiphytes may also be 

important contributors to secondary production, possibly more than the detritus (Kitting, 

1984; Johnson & Johnstone, 1995; Moncreiff & Sullivan, 2001). 

Crustaceans, nemerteans, sipunculids and ophiuroids mainly constitute the detritivorous 

miild in seagrass beds, while polychaetes and bivalves are the main suspension feeders 
cp-- 

(e. g. Greenway, 1995). A significant proportion of the total associated macrofauna, mainly 

comprising the amphipods and the gastropods, constitutes a herbivorous guild that grazes 

on seagrass algal epiphytes (e. g. Lewis & Hollingworth, 1982; Greenway, 1995). Recent 

studies have indicated that some herbivores contribute to productivity via complex 

mechanisms. For example, suspension-feeding bivalves may increase seagrass bed 

productivity by consuming epiphyte propagules, thereby, controlling excessive 

proliferation of epiphytes, which may have an adverse impact on seagrass (Reusch et al., 

1994; Reusch & Williams, 1998; Peterson & Heck, 2001 a; 2001b). 

The total secondary production of seagrass beds can be very high. For example, total 

macroinvertebrate secondary production for a mixed Z marina and Ruppia maritima 
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2 -1 Linnaeus bed has been estimated at around 200 g dw m yr (Fredette & Diaz, 1990). Pihl 

(1986) recorded a total annual value of 6g dw m2 yr-1 for macroinvertebrate secondary 

production in a Swedish Z marina bed. In addition to macroinvertebrate carnivores, the 

presence of a diverse and abundant class of opportunistic omnivores in seagrass beds 

contributes to complex inter-specific relationships and trophic processes, and adds to the 

overall complexity of these ecosystems (e. g. Nelson, 1981). Because of their important 

contribution to energy transfer to higher trophic levels, mainly fishes (e. g. Brook, 1977; 

Young & Young, 1978; Stoner, 1980; Burchmore et al., 1984; Leber, 1985; Greening, 

1995), the macroinvertebrate fauna of seagrass beds constitute a highly impoitant 

component and studies of this group form an important basis for understanding their 

ecological role in seagrass habitat and in ecosystem function. Overall, therefore, the 

contribution of seagrass beds to coastal productivity is considerable, and in some regions, 

may account for a major proportion of the total primary production. 

Several studies have measured the production of P. oceanica beds. For example, 

measurements of the total production of P. oceanica made off the Medes Islands (Spain) 

ranged from 925 g dw M-2 yr-1 at a depth of 5m to 490 g dw M-2 yr-I at a depth of 12 m 

(Romero, 1989b). These estimates are in close agreement with values recorded from other 

studies (e. g. Plante-Cuny & Libes, 1984) and with the more recently estimated net primary 

M-2 -1 f production of 130-1284 g dw yr or the Mediterranean (Pergent-Martini et al., 1984). 

However, the influence of water depth on the primary production of individual shoots of P. 

oceanica is not as large as one would expect since: (i) the amount of photosynthetically 

active radiation (PAR) available throughout the depth range occupied by the seagrass is 

usually well within the levels at which photosynthesis saturation occurs, and (ii) shoot 

density values of P. oceanica beds decrease with depth, thereby counteracting conditions 

of reduced light imposed by self-shading by leaves (Hemminga & Duarte, 2000). For 
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example, Romero (1989b) did not find significant differences in production of individual 

shoots of P. oceanica with depth. This author estimated the following mean values of 

production of individual shoots of the seagrass: 2.53 g dw M-2 yr-1,2.14 g dw M-2 yr- 15 2.04 

g dw M-2 yr-1 and 1.34 g dw M-2 yr-1, at the respective depths of 5 m, 6.5 m, 8.7 m and 13 m 

Romero (1989b). As a result, differences in productivity with depth are mainly due to 

reduced rates of primary production of P. oceanica per unit area, resulting from changes in 

shoot density values (Romero, 1989b). Consequently, as the water depth increases, values 

of leaf standing crop decrease (Drew & Jupp, 1976; Bay, 1984; Buia et al., 1992). 

A particular characteristic of P. oceanica is the distinct partitioning of primary production 

into shoot and root-rhizome compartments, with leaf production accounting for more than 

90% (Wittman, 1984), even though the root-rhizome compartment contributes up to 50% 

of the total biomass (Mateo & Romero, 1997). Overall, P. oceanica production is very 

high (Ott, 1980) and values exceed those of other seagrasses, including the Australian 

Posidonia species (Mazzella & Zupo, 1995). 

Several works have addressed the trophic role of P. oceanica and those of the biota 

associated with beds of this seagrass (e. g. Vizzini et al., 2002). P. oceanica beds support 

meiofaunal production of the order of 7.5 - 13.2 gC M-2 yr-1, which is one of the highest 

recorded worldwide (Danovaro et al., 2002). However, the production efficiency of this 

seagrass is lower (3 - 5%) than that of other seagrasses such as C nodosa or Z noltii 

(Danovaro et al., 2002). There are relatively few direct grazers of P. oceanica (Mazzella et 

al., 1992); these comprise mainly the fishes Sarpa salpa Linnaeus (Velimirov, 1984), 

echinoderms (Zupo & Fresi, 1984), some polychaetes and isopods (Guidetti et al., 1997), 

some palaemonid shrimps (Vizzini et al., 2002), and the decapod Galathea squamifera 

Leach (Chessa et al., 1989). Therefore, the seagrass itself contributes very little to direct 
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consumption by herbivores (circa 2% of P. oceanica leaf production is consumed by 

herbivores; Cebrian et al., 1996). This is probably due to the poor nutritional value and 

high lignocellulose content of P. oceanica (Ott & Maurer, 1977), hence, most of the 

seagrass tissue enters the detrital food chain (Velmirov et al., 1981; Wittman et al., 1981), 

thereby constituting an important pathway in P. oceanica trophic dynamics (Mateo & 

Romero, 1997; Vizzini et al., 2002). There are, however, numerous herbivorous species 

that graze the epiphytes growing on P. oceanica, including taxa that fonn part of the 

meiofauna (e. g. nematodes; Novak, 1984), gastropods (Mazzella & Russo, 1989; Takada et 

al., 1999) and amphipods (Scipione & Fresi, 1984; Scipione, 1989; Scipione & Mazzella; 

1992). Such grazers constitute an important trophic guild through which epiphytic matter 

enters the trophic system of the P. oceanica habitat (Vizzini et al., 2002). The grazer guild 

appears to be considerably complex, with niche separation occurring between closely- 

related species within the same macrofaunal group. For example, Mazzella & Russo 

(1989) noted that the two trochid gastropods Gibbula ardens (Von Salls) and Gibbula 

umbilicaris (Linnaeus) feed on different P. oceanica leaf algal epiphytes: G. ardens feeds 

on the bacteria and diatoms present on the newer basal parts of the seagrass leaves, while 

G. umbilicaris feeds on the erect macroalgae present on the older parts of the leaves. 

Overall, the motile macroinvertebrates of P. oceanica beds constitute the main diet of 

fishes (Khoury, 1984), including several species that are commercially important 

(Hannelin-Vivien, 1982). 

The fish fauna of P. oceanica beds feed primarily on crustaceans, while polychaetes and 

molluscs also contribute to their diet (Bell & Harmelin-Vivien, 1983). The total prevalence 

of carnivorous fishes in P. oceanica beds contrasts with the common occurrence of 

herbivorous and detritivorous fishes in seagrass beds outside the Mediterranean (Bell & 

Harmelin-Vivien, 1983). 
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Given that P. oceanica beds constitute a major component of the Mediterranean 

infralittoral zone, the study of the ecology of the associated motile macroinvertebrates 

constitutes the basis for an understanding of the contribution of seagrass habitat to coastal 

productivity and biodiversity in the region. 

1.6 INFLUENCE OF SEAGRASS BED STRUCTURE ON 
ASSOCIATED MACROFAUNA 

In the course of the extensive research on the ecology of seagrass beds and their associated 

fauna, a number of studies concluded that seagrass beds supported higher species richness 

and abundance of fauna than other habitat types such as bare sand (e. g. Lewis, 1984; Orth 

et al., 1984; Pihl, 1986; Connolly, 1997), however, there are doubts as to the validity of 

generalising this concept to fish fauna (Jackson et al., 2001 and references therein). Since 

the early 1980s, the structural organisation (sometimes referred to as 'complexity') of 

seagrass beds (at different spatial scales) was proposed as the main factor responsible for 

the observed high diversity of associated fauna (Phillips & McRoy, 1980; Orth et al., 1984; 

Virnstein, 1987 and reviews therein), as has been surmised for other marine habitats 

(Huston, 1994). Considerable work has addressed this hypothesis and numerous studies 

have been undertaken in attempts to confirm its validity, and to identify the specific 

attribute that influenced most the diversity of the macrofauna associated with seagrass beds 

(see reviews by Heck & Orth, 1980a; Orth et al., 1984; Virnstein, 1987). According to the 

paradigm that has developed (e. g. Leber, 1985; Summerson & Peterson, 1984), seagrass 

structural complexity enhances macrofaunal abundance by providing refugia from 

predation, increased habitat space and/or increased food availability (Young & Young, 

1978; Nelson, 1979; Heck & Orth, 1980a; Orth et al., 1984; Virnstein et al., 1984, Mattila, 

1995; Ray & Stoner, 1995 and reviews therein). Accordingly, total plant biomass and/or 
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plant surface area have been used as measures of seagrass structural complexity and, 

therefore, as predictors of macrofaunal abundance (Lewis, 1984; Heck & Wetstone, 1977; 

Heck & Orth, 1980b; Stoner, 1980; Gore et al., 1981; Ansari et al., 1991). However, 

despite the great effort, there has been a lack of concordance in the conclusions reached by 

the different workers. For example, Young & Young (1982) did not find a relationship 

between seagrass biomass and macroinvertebrate diversity, nor were the number of species 

recorded from the seagrass habitat significantly higher than those from bare sand. Brook 

(1978) investigated the abundance of macrofauna associated with T testudinum at different 

locations, and concluded that the positive correlation between seagrass biomass and faunal 

abundance does not always hold true. Bell & Westoby (1986a, b) showed that correlations 

between seagrass bed density and the associated macrofaunal species richness and 

I'll, abundance were not consistent when beds located at different sites were compared. Young 

& Young (1978) noted that the abundance of macrofauna associated with seagrass did not 

decrease following clipping and removal of the leaf layer. Connolly (1995) showed that 

removal of the leaf canopy of a seagrass bed had a weak effect on the macrofaunal 

ý1- abundance associated with the seagrass. Gray (1991b) found that the abundance and 

demographic patterns of the prawn M. intermedium were similar between two seagrasses 

(Zostera capricorni Ascherson and P. australis) that had broadly different bed 

architectural characteristics, hence different structural complexity. Virnstein & Howard 

(1987a, b) showed that classical seagass bed structural descriptors, such as plant biomass 

and surface area, were poor predictors of macrofaunal abundances, and that additional 

processes such as plant-animal interactions and active habitat selection may also be playing 

an important role in determining the diversity of associated macrofauna. In particular, there 

was lack of agreement between two paradigms concerning bed structure: one proposed that 

prey abundance increased with increasing structural complexity, because predation success 

decreases concordantly (e. g. Nelson, 1979; Heck & Orth, 1980a; Stoner, 1982), while the 
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other proposed that prey abundance increased with increasing structural complexity 

because of preferential habitat selection by the prey itself (Bell & Westoby, 1986b, c). The 

lack of disagreement led to enthusiastic debates and spawned subsequent investigations in 

attempts to uncover the specific factor/s that was mainly responsible for the high 

biodiversity found in seagrass beds (e. g. review by Virnstein, 1987). There are several 

reasons for the lack of concordance between the conclusions reached by different workers, 

including the following: 

(i) Seagrass beds constitute highly complex systems (den Hartog, 1979; Livingston, 

1984; Knowles & Bell, 1998), whose structure and function are influenced by a large 

number of inter-related envirom-nental factors that go beyond structural attributes of 

the beds (Heck & Orth, 1980a; Orth et al., 1984; Leber, 1985; Knowles & Bell, 

1998). It is, therefore, very difficult to single out a 'main' factor or milieu 

responsible for the high species richness and abundance of associated fauna (Bell et 

al. , 
19 8 5). 

(ii) Lack of understanding of the basic ecological processes underlying seagrass systems 

(for example, the spatial and temporal dynamics of seagrass coverage and other 

seagrass habitat attributes, and the trophic dynamics of associated fauna) has 

hindered the unravelling of the potentially complex role of seagrass bed structure in 

detennining the species richness and abundance of associated species. 

(iii) Use of selected taxa (for example, decapods and fishes; e. g. Nelson, 1979; Coen et 

al., 1981; Gore et al., 1981; Stoner, 1982; Leber, 1985) in attempts to identify the 

main factors responsible for the high biodiversity supported by seagrass beds, has 

often led to generalisations and extrapolations from the single taxon level to the 

much more complex community levels, despite the caution advocated by some 

workers (e. g. Young & Young, 1978) against this approach. 
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(iv) Use of cages (e. g. Young & Young, 1978; Mattila, 1995) and tethering techniques 

(e. g. Heck & Thoman, 1981) in predator-exclusion experiments introduce 

confounding effects (e. g. cages trap pelagic larvae and create an environment of 

decreased water flow in their vicinity), which make interpretation of results very 

difficult (Virnstem, 1987). As a result, the majority of studies of this type have not 

shown convincingly that exclusion of predators from seagrass habitats results in an 

increase in species richness of prey macrofauna. 

(V) Attributes of seagrass beds, such as the physical structure of the habitat and the 

abundance of associated plant and animal assemblages, vary greatly between beds 

fonned by different seagrass species (e. g. Young, 1981; Lewis, 1984; Vimstein & 

Howard, 1987a; 1987b; Hovel & Lipcius, 2002) and between beds of the same 

species at different localities that have broadly different environmental 

characteristics (e. g. Sogard et al., 1987). Observations made for a particular seagrass 

bed cannot readily, therefore, be generalised and extrapolated to other beds or bed 

types. 

(vi) Despite the large number of available studies on the ecology of the macrofauna 

associated with seagrasses, few studies have adopted designs that included adequate 

spatial replication. As a result, relationships between high macrofaunal abundance 

and seagrass architectural attributes (e. g., leaf density, see Bell & Westoby, 1986a) 

are not likely to be consistent over larger spatial scales (Brook, 1978; Virnstein et al., 

1984; Bell & Westoby, 1987). Harlin et al. (1996) emphasised that quantitative 

investigations of macrophyte habitats and associated invertebrates should adopt 

designs that incorporate a number of study sites, while Tanaka & Leite (2003) stated 

that descriptions of phytal communites should include several spatial scales. 

(vii) There has been a general lack of standardisation of sampling techniques and, at 

times, use of inadequate or inefficient sampling methods (see Virnstein, 1987; Borg 
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et al., 2002), despite the caution indicated by some workers (e. g. Lewis & Stoner, 

198 1). As a result, it is frequently difficult to compare and assess the results obtained 

by different studies aimed at investigating the same ecological aspect. 

(viii) Most studies emphasising the high diversity of macrofauna associated with seagrass 

beds have done so by comparison with adjacent unvegetated habitats (Lewis, 1984; 

Orth et al., 1984; Pihl, 1986; Heck et al., 1989; B6strom & Bonsdorff, 1997; 

Connolly, 1997; Gray et al., 1996; 1998). However, comparisons with other 

vegetated habitats are rare and the available data indicate that the macrofaunal 

diversity of seagrass beds is not particularly high when compared with other 

macrophyte habitats (e. g. Sogard & Able, 1991; Sheridan, 1997). 

More recently, Attrill et al. (2000) suggested that the general inference of using seagrass 

biomass as a measure of bed structural complexity (e. g. Heck & Orth 1980b; Stoner, 1980; 

Gore et al., 1981; Ansari et al., 1991) is incorrect, since biomass is effectively a measure of 

plant surface area, but not necessarily of architectural complexity. For example, shoots 

belonging to two different species of seagrass may have similar biomass values, but their 

architectural characteristics (e. g. number of leaves) may differ. Thus, the species richness 

and abundance of macroinvertebrates associated with seagrass beds may follow a simple 

space-occupancy model, described by the classical 'species-area relationship' (e. g. 

McGuiness, 1984), in which an increase in habitable area (e. g. leaf surface) leads to an 

increase in species diversity, hence implying a sampling artifact in many of the results 

presented to date (Attrill et al., 2000). Furthennore, there has been a general lack of 

consideration of adequate scales in studies of relationships between seagrass bed structural 

complexity and the diversity of associated macrofaunal assemblages (Robbins & Bell, 

1994; Attrill et al., 2000; Bartholomew et al., 2000). For example, the perception of a 

dense seagrass bed differs between an amphipod and a large crab (the 'perception 
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windows' of Attrill et al., 2000). There is increasing evidence that the importance of 

factors such as the presence and amount of seagrass epiphytes, and grazing, in determining 

the species richness and abundance of seagrass-associated macrofauna, may have been 

underestimated (e. g. Harlin, 1980; van Montfrans et al., 1984; McGlathery, 1995; 

Jernakoff et al., 1996; Bologna & Heck, 1999; Heck et al., 2000; Schanz et al., 2000). 

Sessile organisms associated with seagrass, such as mussels and algal epiphytes also 

contribute to the habitat of a seagrass bed and, therefore, may themselves (rather than the 

seagrass plants per se) be the more important factor in determining the diversity of certain 

macroinvertebrate groups. For example, Greening & Livingston (1982), Leber (1985) and 

Hall & Bell (1988) found that seagrass algal epiphytes provide a refuge to small 

macroinvertebrates (amphipods and copepods) against predation. Most studies have been 

centered on the foliar canopy, however, the role of the root-rhizome compartment in 

influencing the diversity of associated macrofauna has drawn less attention, despite the 

importance of this compartment in enhancing macroinvertebrate species richness and 

, 4.. 
abundance (e. g. by serving as a refuge against predation; Orth, 1977; Reise, 1977). 

Therefore, it appears that the most frequently posed questions (i. e. Why do seagrass beds 

support a high biodiversity and which attributes of the seagrass bed influence the diversity 

of associated plant and animal assemblages the most? ) have not been adequately answered 

through the research carried out so far. 

Of the five seagrass species that occur in the Mediterranean Sea, the endemic P. oceanica 

(L. ) Delile forins the most extensive beds down to depths of around 45 in, which constitute 

an important, but vulnerable, shallow-water ecosystem (Buia et al., 2000; Procaccini et al., 

2003, and references therein). Besides plant and animal interactions, P. oceanica has 

important interactions with the physical environment. In turn, these may have indirect 

influence on the associated biotic assemblages. The thick leaf canopy acts as a buffer 
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against strong wave action and water movement (Gambi et al., 1989a), thereby, reducing 

hydrodynamic erosive forces acting on the seabed and the shore. In addition, the leaves 

trap suspended sediment (Gacia & Duarte, 2001), while the P. oceanica matte stabilises 

soft bottoms by reducing transport of mobile sediments and the banquettes on beaches help 

protect the underlying mobile sediments against loss by erosion (Boudouresque 

Meinesz, 1982; 1984; Mazella et al., 1986). 

Although the available literature on the biology of P. oceanica, and on the ecology of flora 

and fauna associated with beds of this seagrass, is very extensive, most of the ecological 

studies carried out to date are mainly descriptive and have focused on analyses of 

envirom-nental gradients and seasonal trends (see review by Buia et al., 2000). For 

example, studies of the macrofaunal assemblages associated with P. oceanica deal mainly 

with the influence of depth and the concomitant changes in seagrass bed structure on the 

assemblage structure of motile macrofauna (Mazzella et al., 1989; Gambi et al., 1989b; 

Gambi et al., 1992; Borg & Schembri, 2000). However, since depth also influences plant 

architecture (Bay, 1978; Mazzella & Ott, 1984; Mazzella et al., 1989; Borg & Schembri, 

2000), such studies have not concluded whether the observed differences in the associated 

macroinvertebrate assemblages with changes in water depth were due to environinental 

changes (e. g. water movement, sediment characteristics, light and temperature) along the 

bathymetric gradient, or due to changes in bed architecture of the P. oceanica beds that 

occur with changes in bathymetry. Furthermore, most of the available experimental studies 

lack spatial replication and many have serious shortcomings of inappropriate expenmental 

designs and/or sampling techniques (see reviews in Underwood, 1997 and Borg et al., 

2002). Therefore, studies of the role of P. oceanica meadow structural complexity in 

determining the diversity of associated macrofaunal assemblages are lacking. This lack of 

data has hindered efforts to assess loss of biodiversity, if any, that may occur when the bed 
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structure of this seagrass is altered, for example, as happens when natural and 

anthropogenic factors act to fragment continuous beds into non-continuous ones, and 

change the bed's architectural attributes. Very few data are available on the influence of 

overall change in bed structure (i. e. fragmentation) of P. oceanica and within-bed changes 

in plant architecture on the associated macrofauna. A study by Barbera Cebrian et al. 

(2002) on the mysid assemblages inhabiting the foliar canopy of naturally fragmented beds 

of P. oceanica concluded that fragmented seagrass beds supported a higher species 

richness and abundance of mysids than homogeneous beds. However, Barbera Cebrian et 

al. 's (2002) study area had a mixture of two fragmented seagrass bed types (P. oceanica 

and C nodosa), each of which was also interspersed with bare sand, hence, their study 

design lacked direct comparison between continuous and fragmented beds of the same 

seagrass. Overall, studies designed specifically to address the influence of fragmentation 

and changes in plant architecture of P. oceanica beds on the associated macrofauna are 

unavailable. 

Several investigations have addressed the macrofaunal assemblages associated with dead 

P. oceanica matte (Hannelin, 1964; De Metrio et al., 1978; 1980; Vaccarella et al., 1981; 

Willsie, 1983; Abada Guerroui & Willsie, 1984; Bellan Santini et al., 1986; Somaschini et 

al., 1994). Most of these studies noted that dead P. oceanica matte appeared to support a 

high diversity of associated macrofauna. This was attributed to the presence of numerous 

small cavities and hollow interstices, which provide microhabitats for cryptic 

macroinvertebrates (e. g. Vaccarella et al., 1981; Somaschini et al., 1994), and the 

abundance of organic matter originating from the decaying roots and rhizomes, which 

provided a rich food supply (e. g. Harmelin, 1964). However, these results have remained 

largely ignored and, except for Somaschini et al. 's (1994) study (which only considered the 

polychaete fauna), no further recent work on the diversity of macrofauna associated with 
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dead P. oceanica matte has been undertaken. In the meantime, dead P. oceanica matte has 

been generally viewed as a degraded habitat with low ecological value (Notiziario 

S. I. B. M. 5 
2003). 

1.7 ECONOMICAL IMPORTANCE AND CONSERVATION OF 
SEAGRASSBEDS 

Clearly, the published data highlight the functional role of seagrass beds as an important 

link between terrestrial and marine ecosystems (e. g. Holligan & De Boois, 1993). Also, 

seagrass beds are highly productive habitats (Zieman & Wetzel, 1980; Hillman et al., 

1989) that serve as nursery areas and feeding grounds for a large number of invertebrate 

and vertebrate species (Heck & Orth, 1980a; Jacobs et al., 1981; Orth et al., 1984; 

Vimstein et al., 1987; Bell & Pollard, 1989, Howard et al., 1989; Edgar, 1990). Seagrass 

beds also act as traps and stabilisers of sediments, and as natural buffers against strong 

water movement and wave action, thereby reducing coastal erosion (Orth, 1977; Ward et 

al., 1984; Fonseca & Fisher, 1986). 

Traditional uses of seagrasses by human populations in various parts of the globe (Wyllie 

Echeverria & Cox, 2000) date back hundreds, and possibly thousands of years (see review 

by Hemminga & Duarte, 2000). Up to the early 20th century, leaves of Zostera & 

Heterozostera spp. were widely used in Australia for house insulation and as a soil 

improver, while up to the late 1990s beach-cast leaves of Posidonia spp. were used for the 

latter purpose (Kirkman & Kendrick, 1997). However, the high ecological and economic 

importance of seagrass beds was only realised around the late nineteenth century (Phillips 

Menez, 1988). The work of Petersen & Boysen-Jensen (1911), and the occurrence of the 

seagrass 4 wasting disease' in the 1930s (Stauffer, 1937; Rasmussen, 1977; den Hartog, 
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1987), highlighted the loss of biodiversity following decimation of seagrass beds and 

stimulated increased interest in seagrass ecology worldwide. Following these works, 

extensive research on the ecology of seagrass beds has firinly established their high 

ecological and economic value. 

The economic value of seagrasses is linked to their various important ecological 

characteristics and uses to humans, namely: (i) dynamic role in physical coastal processes, 

(ii) role as a habitat for a large number of species that have either a direct economic 

importance to fisheries, or that serve as food for economically important species, and (ill) 

role in biogeochemical cycles. 

The role of the canopy of seagrass beds as a buffer against strong wave action and water 

movement (Fonseca et al., 1982; Fonseca et al., 1983; Fonseca & Fisher, 1986; Gambi et 

al., 1989a; Fonseca & Cahalan, 1992), and of the role of the root-rhizome matrix in 

consolidating and stabilizing soft bottoms (e. g. Strawn, 1961; Gacia & Duarte, 2001), is 

widely acknowledged. Through these roles, seagrass beds help protect shores against 

coastal erosion, and reduce resuspension and shifting of mobile sediments from one place 

to another (Terrados & Duarte, 2000; Gacia & Duarte, 2001), thereby contributing directly 

against economic losses; for example, those incurred by the tourism industry when large 

amounts of soft sediments are lost from popular sandy beaches by erosion, resulting in 

reduction of their size and thus utilisation. The economic importance of seagrass beds to 

the fisheries industry is documented widely and supported by published data (see Jackson 

et al., 2001). Seagrass beds serve as nurseries and feeding grounds for decapods (for 

example blue crab C sapidus; Orth & van Montfrans, 1987, and the prawn M 

intermedium; Gray, 1991a; 1991b) and fishes (e. g. Burchmore et al., 1984; Jackson et al., 

2001) that constitute important food items for human consumption. The role of seagrass 
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beds in contributing to marine chemical and biogeochemical cycles has probably been 

underemphasized. Seagrasses act as modulators in the recycling of carbon, oxygen and 

nitrogen in the water column and sediments, hence contributing to the biogeochemical 

linkage between the water column and the seabed (Hemminga & Duarte, 2000), and 

maintenance of the balance between nutrient input and utilisation in littoral environments 

(Buzzelli & Meyers, 1998). The high rates of seagrass oxygen production (e. g. around 4-20 

litres oxygen M-2 day-' are produced by P. oceanica; Bay, 1978) may help counteract 

anoxic conditions in low-energy coastal areas subjected to eutrophic conditions. Parallel 

with increased concern with the onset of global warming, there has been increased 

awareness of the role of seagrass ecosystems as carbon sinks; circa 15% of the total carbon 

storage in all marine ecosystems is contributed by seagasses (Duarte & Cebrian, 1996; 

Mateo et al., 1997). Hence, seagrasses help counteract anthropogenic production of carbon 

gases (Hemminga & Duarte, 2000). 

Being frequently located in shallow waters close to the shore, seagrass beds are highly 

susceptible to disturbance from both natural events and anthropogenic activities (Short & 

Wyllie Echeverria, 1996; Green & Short, 2003), however, the degree to which a seagrass 

bed is adversely impacted varies between different seagrasses. For example, Livingstone 

(1984) noted that seagrass beds in the Gulf of Mexico were easily disturbed, but were more 

resilient than beds of different seagyasses that may be more resistant to disturbance. 

Natural factors, in particular the hydrodynamic regime (Fonseca & Bell, 1998), together 

with other physical processes such as sporadic floods, which lead to deposition of large 

amounts of silt (e. g. Hanekom & Baird, 1988), may fragment seagrass beds, hence altering 

their morphology and plant architectural characteristics (den Hartog & Phillips, 2001). 

However, despite the documented alteration of seagrass habitat resulting from natural 
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disturbance events, data on the effects of fragmentation on the macrofauna associated with 

seagrass beds and the resulting potential loss of biodiversity are scarce. 

The worldwide intensification of coastal development and other anthropogenic activities in 

recent decades is believed to have led to the decline of seagrasses in many countries 

(Thayer et al., 1975; Cambridge & McComb, 1984; Larkum et al., 1989). Recently, there 

has also been an increase in awareness of the potential loss of seagrass habitat resulting 

from global warming; the predicted adverse impacts include altered growth rates and 

physiological function resulting from increased water temperature, and large changes in the 

distributional patterns of seagrasses resulting from increased water depths, changes in tidal 

variation and increased frequency of stonns (Short & Neckles, 1999). Adverse 

anthropogenic factors include increased turbidity of the water column and nutrient loading 

of coastal waters (e. g. Orth & Moore, 1983a). Reduced transparency of the water column 

due to an increase in phytoplankton populations resulting from excessive nutrient input, or 

an increase in the amount of suspended matter, or a combination of both, lead to a 

reduction in the amount of light reaching the seagrass, with consequent reduced 

photosynthetic rates and subsequent reduced growth or even death of the plants 

(Hemminga, 1998). In particular, eutrophication resulting from nutrient inputs into the 

marine environment is thought to be a major cause of regression of seagrass beds (Orth & 

Moore, 1983a; Cambridge & McComb, 1984; Larkum & West, 1990; Duarte, 1995; 

Kirkman, 1996; Short & Burdick, 1996). Eutrophication leads to an increase in the amount 

of epiphytes growing on the seagrass leaves, reducing further the light reaching the plant 

photosynthetic tissue (Silberstein et al., 1986, Buzzelli & Meyers, 1998), leading to 

impaired growth and possibly death (den Hartog, 1994; Hemminga, 1998; den Hartog & 

Phillips, 2001). 
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Such adverse impacts are envisaged to result in degradation of seagrass beds, involving 

gradual death of plants in parts of the bed (Nienhius, 1983; Walker & McComb, 1992; den 

Hartog & Phillips, 2001), leading to fragmentation of the habitat (i. e. continuous beds --> 

semi-continuous/reticulate beds --> patches). Other adverse impacts include pollution from 

ol spi s (e. g. den Hartog & Jacobs, 1980), industry (e. g. Pihl Baden, 1990) and offshore 

drilling for oil and gas (Weber et al., 1992), fertilizer used in agriculture (e. g. ammonium, 

see Van Katwijlk et al., 1997), disposal of sewage (e. g. Neverauskas, 1987), and other 

forms of pollution resulting from land reclamation and changes in land use (e. g. Thayer et 

al., 1975; Kemp et al., 1983). Workers have shown that degradation of seagrass habitat 

resulting from pollution has led to a decline of commercially important fisheries stocks, for 

example, in Japan (Kikuchi, 1974) and Spain (Perez-Ruzafa et al., 1991), but their studies 

are not supported by data showing whether the decrease in fisheries stock was directly due 

to alteration of seagrass habitat structure or to other effects of pollution. 

The adverse impacts of physical damage to seagrass habitat resulting from anthropogenic 

activities such as trawling (e. g. Sanchez Lizaso et al., 1990; Sanchez Jerez & Ramos Espla, 

1996; Martin et al., 1997; Sanchez Jerez et al., 2000) and anchoring and/or deployment of 

moonngs (e. g. Hastings et al., 1995; Francour et al., 1999) are well documented. In 

particular, the adverse impact of boat moorings on seagrass habitat has been well 

described. For example, initial deployment of boat moorings in Australia was found to 

decimate seagrass in the vicinity, leading to a bare sandy patch, which extends in size with 

time. Sandy patches may eventually coalesce, leading to increased fragmentation of the 

seagrass habitat and loss of seagrass area, such that loss of nearly 20% of the original beds 

occurred over the span of 50 years (Hastings et al., 1995). However, quantitative data 

showing whether fragmentation of seagrass beds resulting from direct physical damage due 
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to such activities leads to loss of biodiversity are lacking (Sanchez Jerez & Ramos Espl, a, 

1996; Martin et al., 1997; Sanchez Jerez et al., 2000). 

Once the source of disturbance is removed, the time taken for recovery of a seagrass bed 

depends on various factors, including the seagrass species and the degree of damage 

suffered. Slow-growing seagrasses, such as P. oceanica (Duarte, 1991), take longer to 

recover than fast-growing species such as Z marina. In any case, recovery of the seagrass 

is generally slow (Kirkman & Kuo, 1990) and may require human intervention for 

effective regeneration within a reasonably short time-span (Fonseca et al., 1988; West et 

al, 1990). Furthermore, if conditions remain unfavourable for seagrass growth (i. e. adverse 

conditions persist), efforts to rehabilitate seagrass beds will be hindered or indeed rendered 

impossible (Tamaki et al., 2002). Given such slow recovery (if any), rather than allowing 

uncontrolled fragmentation followed by attempted recovery/restoration, it makes more 

sense to gain an understanding of the influence of seagrass bed structure on the associated 

biodiversity, so that the conservation value of seagass habitat is established and 

fragmentation mitigation efforts established. 

On a regional scale, the ecological and economic importance of P. oceanica beds has been 

recognised widely, and many countries have adopted conservation measures and legislation 

to protect this habitat (Procaccini et al., 2003). Furthermore, P. oceanica habitats are listed 

in the EC Habitats Directive 92/43/EEC as priority habitats whose protection requires 

special areas of conservation to be designated (EEC, 1992). Mediterranean coastal 

populations have exploited P. oceanica for some traditional uses, including use of leaves 

as packing material in mattresses, cushions, pillows and sound proofing panels, as an 

agricultural fertiliser and as a constituent of fodder in animal husbandry (Mazzella et al., 

1986; Chemello & Toccacelli, 1990). The beneficial interactions between P. oceanica beds 
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and the environment, namely attenuation of wave action and currents (e. g. Gambi et al. 

1989a) and stabilization of soft sediment bottoms (Jeudy de Grissac, 1984; Gacia & 

Duarte, 2001), contribute significantly to protection against coastal erosion (Boudouresque 

& Meinesz, 1982; Jeudy de Grissac, 1984; Boudouresque et al., 1994) and have very 

important economic implications, especially given the high importance of the 

Mediterreanean's shore and coastal areas to the region's tourism industry. The direct 

ecological and economic importance of P. oceanica beds is also highlighted by their 

contribution to fisheries, since the habitat supports numerous fishes (e. g. sparids, serranids, 

labrids and scorpaenids) and invertebrates (e. g. the urchin Paracentrotus lividus Lamarck) 

which have high commercial demand (Procaccim et al., 2003). Several authors also view 

P. oceanica as a very useful indicator of water quality (e. g. Augier et al., 1984; Pergent et 

al., 1995; Pergent et al., 1999). The ability of this seagrass to forin large reservoirs of 

carbon (Mateo et al., 1997) and phosphorous (Delgado & Vidal, 1989) in its rhizomes, and 

its capacity to mobilise them to the rest of the plant under certain circumstances, has 

important implications for cycling of these elements in the Mediterranean Sea (Hemminga 

Duarte, 2000). 

P. oceanica is a relatively hardy seagrass but disturbance from adverse natural and 

anthropogenic factors has led to regression and damage to beds of this seagrass in many 

parts of the Mediterranean (Procaccini et al., 2003). Natural disturbance processes include 

strong wave action and currents, which cause direct physical damage to P. oceanica beds, 

and heavy rainfall, which increases the turbidity of coastal waters through runoff carrying 

suspended material into the sea. 

Numerous anthropogenic activities impact P. oceanica beds adversely, leading to a decline 

of the seagrass (Boudouresque et al., 1975; Peres, 1984; Boudouresque et al., 1985b; 
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Bourcier, 1989; Boudouresque et al., 1994; Marba et al., 1996; Pergent-Martini & 

Pasqualini, 2000). As with seagrass beds worldwide, the most widespread adverse 

anthropogenic impacts on P. oceanica beds are those arising from nutrient enrichment of 

coastal waters and the addition of suspended matter in the water column. Increased nutrient 

concentrations in the water column enhance the growth of epiphytes on the seagrass leaf 

surfaces (Pergent et al., 1999; Ruiz et al., 2001; Dimech et al., 2002) and may also lead to 

phytoplankton blooms, both of which reduce the amount of light reaching the seagrass, 

with consequent reductions in plant growth rates or possibly even death of the plants 

(Boudouresque et al., 1994). The presence of suspended sediments in the water column, 

such a those originating from dredging works and artificial beach replenishment projects 

(Astier, 1984), also lead to turbid conditions which reduce the amount of 

photosynthetically active radiation (PAR) reaching P. oceanica, with resulting adverse 

impacts leading to regression and loss of seagrass habitat (Boudouresque et al., 1994). For 

example, Astier (1984) recorded that the lower distribution limit of P. oceanica beds 

migrated upwards from 28 in to 15 m, following the construction of jetties and the creation 

of artificial sandy beaches in Toulon (France). Other forms of coastal development 

(Meinesz et al., 1982; Blanc & Jeudy de Grissac, 1989; Ruiz et al., 1993) and pollution 

resulting from harbour activities, discharge of sewage (Balduzzi et al., 1984; Ramos Espla, 

1984; Accardo-Palumbo et al., 1995; Pergent-Martini & Pasqualini, 2000), fish fanning 

activities (Delgado et al., 1997; 1999; Pergent et al., 1999; Ruiz et al., 2001; Dimech et al., 

2002) and oil spills (Sandulli et al., 1992) have contributed to degradation of P. oceanica 

in many parts of the Mediterranean. 

Despite the widespread degradation and regression of P. oceanica beds resulting from 

eutrophication and other forras of pollution, data on alteration of bed architecture resulting 

from these factors are restricted mainly to studies of the impact of offshore fish farms on 
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nearby beds of the seagrass. For example, Delgado et al. (1999), Pergent et al. (1999), Ruiz 

et al. (2001) and Dimech et al. (2002) recorded reductions in leaf length, shoot biomass 

and shoot density of P. oceanica located in the vicinity of fish farms in their respective 

study areas, which implies that excessive nutrient loading in the vicinity of seagrass beds 

results in gross alteration of their bed architecture. Dimech et al. (2002) noted changes in 

the diversity of seagrass macrofauna with increasing distance from the fish cages, but it 

was not clear whether this was due mainly to the nutrient gradient or to changes in seagrass 

bed architecture, since the two effects could not be separated in the study design. 

Adverse impacts involving direct physical damage to P. oceanica beds include boat 

anchoring (Francour et al., 1999) and trawling (Ardizzone & Pelusi, 1984; Sanchez Lizaso 

et al., 1990; Martin et al., 1997; Ramos Espla et al., 1997). Studies carried out to assess the 

impact of trawling on P. oceanica beds and their associated biota in the western 

Mediterranean have detected some differences in the assemblage composition and 

structure of macroinvertebrates (Sanchez Jerez et al., 1996) and fishes (Sanchez Jerez et 

al., 2000) between trawled and untrawled areas. According to these authors, both seagrass 

coverage and shoot density were significantly different between pristine P. oceanica beds 

and ones degraded by trawling (e. g. Sanchez Jerez et al., 2000), but other plant 

architectural attributes, namely shoot biomass, foliar area and epiphyte biomass, were not 

significantly different. Martin et al. (1997) estimated that a medium-sized trawler may root 

out between 99,200 and 363,300 P. oceanica shoots per hour, depending on the state of 

degradation of the meadow (i. e. whether the meadow is pristine or has already undergone 

physical alteration by previous trawling activities). 

Changes in the species composition and structure of assemblages associated with P. 

oceanica beds resulting from coastal development and harbour activities have been 

recorded by some workers. For example, Accardo Palumbo et al. (1995) noted an increase 
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in the abundance and number of detritivorous gastropods in P. oceanica beds exposed to 

disturbance from coastal development activities, namely harbour construction works, 

which were attributed to changes in the sedimentary and hydrodynamic regimes of the 

area. Azzolina & Hamelin (1989) noted that the abundance of the holothurian Holothuria 

pohi Delle Chiaje increased in beds of P. oceanica degraded by pollution, while that of 

Holothuria tubulosa Gmelin, which is more characteristic of pristine beds, decreased. 

However, these works lack quantitative data on seagrass bed structural attributes between 

healthy and degraded seagrass beds in their study area. 

The recent introduction of exotic species into the Mediterranean, for example, the alga 

Caulerpa taxifolia (Vahl) Agardh (Meinesz & Hesse, 1991), poses new threats to P. 

oceanica beds, since these may be able to displace the seagrass (Ribera et al., 1996). 

Cecherelli et al. (2000) concluded that the alien alga Caulerpa racemosa (Forsskal) 

Agardh had a higher potential to invade heterogeneous P. oceanica beds that were 

interspersed with bare sand (reticulate beds), than continuous beds of the same seagrass, 

thereby highlighting the higher vulnerability of fragmented P. oceanica beds to alien 

macrophytes. 

Although there are several published studies dealing with the adverse impacts on P. 

oceanz . ca, fewer works have addressed its recovery following disturbance. These limited 

studies indicate that P. oceanica has a low resilience and requires several years to recover 

following an adverse impact (e. g. Meinesz & Lefevre, 1984; Delgado et al., 1999, Pergent- 

Martini & Pasqualini, 2000). As in other species of the same genus (Gordon et al., 1994), 

recovery of abundance after mortality is poor in P. oceanica. This probably results from 

the large belowground biomass and low rhizome growth rate, such that recolonisation in 

areas where the seagrass has died requires vegetative propagation from other beds, or 
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germination of plants from seeds transported to the site (Ruiz et al., 2001). It is also 

thought that because asexual reproduction constitutes the main mode of spread of P. 

oceanica, the limited genetic flow may also contribute to its decline, especially in places 

where conditions are unfavourable (Procaccini et al., 1996). 

Attempts to restore P. oceanica beds have focused on vegetative transplantation techniques 

(e. g. Meinesz et al., 1992; Molenaar & Meinesz, 1992; Molenaar et al., 1993; Molenaar 

Meinesz 1995) and, to a lesser extent, on planting of seeds and seedlings (e. g. Meinesz et 

al., 1993; Balestri et al., 1998). The success rates for the former techniques have been 

rather low, probably as a result of the lack of knowledge on the enviromnental factors 

which influence survival of transplanted shoots (e. g. sediment stability, Molenaar & 

Meinesz, 1995). On the other hand, very encouraging results have been obtained from 

studies on techniques of planting of seeds and seedlings where the type of substratum is an 

important determinant for their survival (Balestri et al., 1998). 

There is a dearth of infortnation on basic ecological characteristics of different bed types of 

P. oceanica, such as data on whether plant architectural characteristics and the species 

richness and abundance of associated macrofauna differ between fragmented and non- 

fragmented beds, and between living and dead matte of the seagrass. Several published 

studies are available showing changes in macrofaunal assemblages with variation of P. 

oceanica bed structure, as a function of changing depth, or with degradation resulting from 

anthropogenic activities. However, such studies do not present data on changes in plant 

architectural attributes and in the diversity of associated fauna that may possibly 

accompany fragmentation of the seagrass beds. Such data will enable ecologists to 

establish whether fragmentation of P. oceanica beds, or complete loss of the foliar canopy, 

will result in loss of biodiversity, and will therefore help in the formulation/revision of 
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recommendations for the conservation and management of different beds types of the 

seagrass. 

1.8 STUDY AIMS 

The general study aim was to compare plant architectural features and the diversity of 

macrofauna assemblages between different P. oceanica seagrass bed types. The results of 

such a study will increase our understanding of the influence of bed structure on the 

species richness and abundance of seagrass-associated flora and fauna, which will help 

assess the relative ecological value of different seagrass bed types and predict loss of 

biodiversity and habitat that may result from alteration of this system (e. g. alteration of 

plant architecture and bed fragmentation) resulting from natural or anthropogenic 

disturbance. In turn,, such information will help in the formulation of appropriate 

conservation and management strategies for seagrass habitats. However, collection of 

useful data on which to base sound conclusions depends a great deal on the 

appropriateness of the study design. 

The specific study aims were: 

(i) Identify the main different bed forms of P. oceanica in the Maltese islands to 

enable selection of a bed type that represents a fragmented seagrass habitat, for 

comparison of plant architectural characteristics and associated 

macroinvertebrate diversity with those of non-fragmented beds. An important 

requirement was that the fragmented P. oceanica bed types selected for the 

present study had widespread occurrence, enabling the planning of an 

appropriate experimental design, based on the inclusion of a number of spatial 

levels and adequate spatial replication (Chapter 2). 

48 



(ii) Design a suitable sampler that enabled appropriate and efficient collection of 

the motile macroinvertebrates associated with P. oceanica beds, given that the 

sampling techniques employed in other studies either had practical problems of 

use in the field, or are considered inefficient in collecting the total 

macroinvertebrate assemblage associated with P. oceanica beds (Chapter 2). 

(111) Detennine whether two different bed types of P. oeeanica, continuous and 

reticulate (= naturally fragmented) beds, sampled at a number of spatial scales, 

had different plant architectural characteristics, given the apparent importance 

of seagrass bed structure in influencing the diversity of associated macrofauna. 

To address this aspect of study, the null hypothesis tested was that within-bed 

architecture did not differ between adjacent reticulate and continuous beds, over 

spatial scales varying from kilometres to metres. Establishing whether different 

bed types of P. oceanica have different plant architectural characteristics (and 

the spatial scales at which such differences may occur) will enable assessment 

of the degree of within-bed structural change that may take place when beds of 

this seagrass undergo fragmentation as a result of natural or anthropogenic 

disturbance (Chapter 3). 

(iv) Determine whether continuous and reticulate (= naturally fragmented) beds of 

P. oceanica, sampled at a number of spatial scales, support motile 

macroinvertebrate assemblages with different species richness, abundance, and 

composition. To address this aspect of study, the null hypothesis tested was that 

seagrass plant architectural characteristics did not have a significant influence 

on the species richness, abundance and composition of motile 
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macroinvertebrate assemblages associated with P. oceanica beds, over spatial 

scales varying from kilometres to metres. Establishing whether fragmentation 

of seagrass beds results in a lower diversity of associated macrofauna is 

important, in view of the widely held paradigm that habitat fragmentation 

results in loss of biodiversity (Chapter 4). 

(v) Determine whether the diversity of associated motile macroinvertebrate 

assemblages, sampled at a number of spatial scales, differed between P. 

oceanica living matte (supporting living shoots of the seagrass) and dead matte 

(not supporting living shoots of the seagrass). To address this study aspect, the 

null hypothesis tested was that the species richness, abundance and composition 

of motile macroinvertebrate assemblages did not differ between living and dead 

P. oceanica matte. Establishing the effects of loss of the foliar layer of P. 

oceanica beds on the associated macrofaunal assemblages is important, given 

that dead matte often remains following severe anthropogenic disturbance and 

adverse natural envirom-nental processes (Chapter 5). 

(vi) Assess, through integrating the results and interpretations made in the various 

stages of the proposed study with a comparison of the current knowledge of the 

influence of seagrass bed structure on the associated macrofauna and current 

conservation guidelines, the implications of the study's findings for 

conservation and management of P. oceanica beds in the Maltese islands and 

the rest of the Mediterranean. Establishing conservation proposals and 

recommendations for further research will help Mediterranean conservation 

biologists and environmental managers to update current conservation 
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guidelines, propose new conservation measures and identify related issues that 

require further investigation for P. oceanica habitat (Chapter 6). 
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CHAPTER 2 

SELECTION OF STUDY SITES, EXPERIMENTAL 
DESIGN, AND CHOICE OF GEAR AND 

TECHNIQUE FOR SAMPLING 
POSIDONIA OCEANICA BEDS 

Part of this chapter has been included in the following publication: 

Borg J. A., Attrill M. J., Rowden A. A., Schembri P. J. & Jones M. B., 2002. A 

quantitative technique for sampling motile macroinvertebrates in beds of the seagrass 
Posidonia oceanica (L. ) Delile. Scientia Marina 66 (1): 53-58. 
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2.1 INTRODUCTION 

2.1.1 Study design 

The importance of adopting a well thought-out design for ecological studies has been 

emphasised often (e. g. Green, 1979; Hairston, 1989; Kingsford & Battershill, 1998). In 

most ecological surveys, the specific subject of study is conceived usually after an 

observation raises a specific question, for which an explanation is desired. In such a case, 

the most widely adopted procedure is for the investigator to formulate a hypothesis and, 

subsequently, to test it by designing an appropriate experiment. Such an approach has 

arisen with time from scientific philosophy (Ford, 2000). The outcome, validity and overall 

success of an ecological experiment depend, ultimately, on the appropriateness and 

robustness of the underlying design (Underwood, 1997). Assessment of the practical 

feasibility and successful implementation of a particular sampling design requires adequate 

prior knowledge of the environment/habitat/organism under study. In addition, to ensure 

collection of a robust data set, the worker needs to acquire information on the minimal 

sample size that should be collected, the number of replicates required and the optimal 

design of the sample collecting device (Andrew & Mapstone, 1987). Although information 

on prior knowledge and sampling effectiveness may be obtained from previous studies 

carried out by other workers, such sources are hardly ever likely to be a reliable substitute 

for a pilot study made by the workers themselves (Downing & Anderson, 1985). A pilot 

study has the added advantage of helping the investigator become familiar with the study 

area and its environmental characteristics. Pilot studies, therefore, constitute an important 

preliminary part of any detailed ecological study (Green, 1979). 

The present study aimed to identify the main different forms of Posidonia oceanica 

Linnaeus (Delile) beds in the Maltese islands, to enable selection of bed types that 
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represent naturally fragmented and non-fragmented seagrass habitats, for comparison of 

plant architectural characteristics and associated macro invertebrate diversity. An important 

requirement was that the bed types selected for the present study had widespread 

occurrence, enabling the implementation of an appropriate experimental design, based on 

the inclusion of a number of spatial levels and adequate spatial replication. Furthermore, 

the study aimed to design a suitable sampler that enabled appropriate and efficient 

collection of the motile macroinvertebrates of P. oceanica, given that the sampling 

techniques employed in other studies either had practIcal problems of use in the field, or 

are considered inefficient in collecting the total macroinvertebrate assemblage associated 

with P. oceanica beds (Borg et al., 2002). 

2.1.2 Selecting an appropriate sampling design 

Compared to manipulative experiments, where the experimenter imposes some external 

factor/s on the expenmental. units, mensurative experiments usually only require collection 

of data in space and/or in time (Hurlbert, 1984). If some statistical tests are applied to test 

for the significance of difference between different treatments, then the experiment is 

classified as 'comparative mensurative' (Hurlbert, 1984). The inclusion of spatial 

replication (i. e. replication applied at different spatial scales) in sampling programmes 

designed for mensurative benthic studies has been increasingly evident in recent years (e. g. 

Morrisey et al., 1992, James & Fairweather, 1996; Kendall & Widdicombe, 1999; Cole et 

al., 2001). The issue of scale is central to the design of ecological studies, since 

environments are seldom homogeneous, and because factors and processes that influence 

the biology of species and the structure of biotic assemblages are scale dependent (Wiens 

et al., 1986; Wiens, 1989; Levin, 1992). As a result, the scale of sampling has an important 

influence in determining the outcome of an ecological experiment and the validity of the 

results obtained (e. g. Thrush, 1991). Studies of seagrass habitats are no exception; no 
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single scale should be considered sufficient for investigating them (Robbins & Bell, 1994; 

Virnstem, 1995). The appropriate choice of scale, and number of scales, underlying the 

experimental design must be a trade-off between an ability to observe landscape processes 

without losing information on the finer scale, and an ability to detect fine-scale 

infon-nation, without being hindered by unrelated environmental 'noise' (Andrew & 

Mapstone, 1987; Dutilleul, 1993). Choice of the appropriate scale depends also on the 

region where the study is held (Vimstein, 1995). For the purpose of the present study, three 

spatial scales were selected to test the proposed hypotheses: (i) 'large' (kilometres), (ii) 

6 medium' (few hundreds of metres) and 'small' (tens of metres). Comparison of the 

different P. oceanica bed types over the large spatial scale required identification of a 

number of study 'locations' within a suitably large stretch of coast. Within one of the 

locations, selection of a number of 'sites' would enable comparison at the medium scale, 

while selection of a number of 'plots' within one of the sites would enable comparison at 

the small spatial scale. Establishing four sampling stations at each spatial scale enables 

sound spatial replication without imposing excessive demands on sampling and effort and 

analyses that would render the study programme unpractical. In this way, the basic 

experimental design would incorporate adequate spatial replication between different P. 

oceanica bed types, across a number of spatial scales (Robbins & Bell, 1994; Vimstein, 

1995). 

Data collected using such an experimental design, involving a hierarchy of spatial scales, 

have been analysed frequently using univariate statistical tests, such as Analysis of 

Variance (ANOVA), which estimates variance components at each hierarchical level (for 

the proposed study, the different spatial scales). The most frequently advocated strategy is 

to have a fully balanced nested (FBN) design (Morrisey et al., 1992; Underwood, 1997) 
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(Figure 2). However, FBN designs are not without problems. For example, since allocation 

is hierarchical, there is more information available on the lower nested factors than on the 

LARGE SCALE Location Location 

MEDIUM SCALE Site Site Site Site 

I -1 17-- 17- 111 ---1 
SMALL SCALE Plot Plot Plot Plot Plot Plot Plot Plot 

Figure 2. Fully balanced nested design with three spatial levels and eight sampling 
compartments. 

higher ones, resulting in unequal allocation of degrees of freedom between the lower and 

higher levels (Pettitt & McBratney, 1993; Khattree et al., 1997). Furthennore, FBN designs 

require huge sampling and processing efforts, such that they may not be cost effective or 

even affordable (Khattree et al., 1997). For example, a FBN design that involves three 

levels, two sampling compartments on the first level, four on the second and eight on the 

third, will require sampling from a total of 8 stations. If three replicates are taken from 

each station, the total number of required sampling units is 24. If such a design were to be 

applied to the present study plan, that is, four locations (large scale) having four sites 

(medium scale) nested in each, and with four plots (small scale) nested in each site, and if 

say four sample units are collected per station from each of two different seagrass bed 

types, the whole sampling programme will involve collection of a total of 512 (4 x4x4x 

4x 2) samples! Such a large number of samples would require an exceedingly long period 

of time to collect and process, which by far exceeds what is usually practically possible. 

Sampling effort in a FBN design may be reduced by limiting the number of sampling 

compartments at the upper scale, e. g. by reducing the number of proposed locations for the 

present study to 2, but this is not recommended since it aggravates the problem of having 
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an unequal distribution of degrees of freedom. On the other hand, reducing the number of 

sampling compartments at each level, say to 2, would reduce the robustness of the design 

in detecting spatial variation, since only a small number of localities are sampled at each 

spatial scale. 

An alternative design proposed by some statisticians (e. g. Pettitt & McBratney, 1993) is 

'staggered nesting' (Figure 3). Staggered nested (SN) designs reduce sampling effort but 

retain te same number of sampling compartments at each level (Pettitt & McBratney, 

1993; Khattree et al., 1997). For example, a SN design that involves three levels (two 

sampling compartments on the first level, three on the second and four on the third) will 

require sampling from a total of 4 stations (half the number that would be required for an 

equivalent FBN design). If three replicates are taken from each station, the total number of 

samples required is 16. SN designs have the added advantage that they do not produce 

negative estimates of the variance components, which could pose problems in fully nested 

designs (Khattree et al., 1997). Furthermore, SN designs allow for an equal number of 

degrees of freedom at each level (except the highest, which has one less than the lower 

one), ensuring that no level is estimated more efficiently than another (Khattree et al., 

1997). However, a major problem with SN designs is that they cannot be used in 

experiments that involve mixed (both random and fixed) factors, since estimation of the 
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variance components is not commensurable and, therefore, illogical where interactions 

occur (Underwood & Petraitis, 1993), although some workers (e. g. Burdik & Graybill, 

1992) have shown that calculations of this type can be made. Another disadvantage is that 

SN designs have been used rarely in ecological studies and their applicability to research in 

ecology is still at an 'experimental stage' (Cole et al., 2001), so much so that the 

availability of statistical programs based on this method is very restricted (Cole, 2001). 

Given the problems of fully balanced nested and staggered designs, it is thought 

appropriate to employ a design in which adequate spatial replication is not compromised 

and the required total number of samples collected is not exceedingly large to pose 

problems of excessive cost and effort. To meet these requirements, the proposed study 

design consisted of three different spatial scales (small, medium and large) across which to 

test differences in P. oceanica bed structure and the diversity of associated 

macroinvertebrates (Figure 4). Using this design, which in principle is based on staggered 

nesting, sampling stations were planned at each of four localities within each of the three 

different spatial scales: small, medium and large. Differences in bed structure, and in the 

diversity of associated macroinvertebrates between bed types, can be tested at each of 

LARGE SCALE (circa 10 Km) 

MEDIUM SCALE (circa 200 m) 

SMALL SCALE (circa 20 m) 

Location 1 Location 2 Location 3 Location 4 

F- -- 

II 

Site A Site B Site C Site D 

T- 

II 

Plot 1 Plot 2 Plot 3 Plot 4 

Figure 4. The experimental design proposed for the present study. There are three spatial levels, 

with a total of ten sampling compartments. 
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the three different spatial scales using a 2-factor ANOVA, in which bed type is a fixed 

factor and sampling locality is random. In addition, this design enabled the use of 

multivariate analyses to test for differences in the composition of macroinvertebrate 

assemblages between the different bed types. Multivariate techniques are used in the 

analysis of ecological data to reduce the apparent dimension of large data sets, by making 

the classification of samples more visual. Using this technique, samples are classified into 

groups, depending on the similarity between the species composition and abundance 

recorded from the various samples. 

2.1.3 Selecting bed types and appropriate study sites 

Acquiring complete information on the environmental characteristics of a study location, 

prior to commencement of the actual investigation is crucial, since establishment of the 

study design and successful implementation of the sampling programme are dependant 

entirely on detailed knowledge of the environniental characteristics of the proposed study 

area (Green, 1979; Andrew & Mapstone, 1987). In particular, the first step in ecological 

studies on seagass beds is the collection of baseline data on the occurrence, condition and 

spatial extent of the habitat (Kirkman, 1996). Therefore, to meet the main aim of the 

present study, that is, to examine the influence of P. oceanica bed structure on the diversity 

of associated macroinvertebrate assemblages, it was essential to gather information on the 

distribution of P. oceanica beds around the coast of the Maltese Islands and, subsequently, 

select those bed types and localities that would support the testing of the central hypothesis 

of the proposed study: that is, identify locations and sites where such bed types are located 

in broadly similar environmental conditions (e. g. similar depth, exposure and water 

quality) and distributed throughout the Maltese Islands. Adherence to the latter two criteria 

would allow a degree of control over confounding factors (Green, 1979; Underwood, 

1997) and enable an adequate, spatially-replicated sampling programme, given the 
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importance of including adequate spatial replication In ecological experiments (Andrew & 

Mapstone, 1987; Thrush, 1991; Underwood, 1997). Adequate spatial replication ensures 

the detection of natural variation, where present, and also ascertains that sampling is not 

pseudoreplicated (Hurlbert, 1984). 

The Maltese Islands consist of a small archipelago, aligned northwest-southeast, located at 

the centre of the Mediterranean Sea, between latitudes 35.48' and 36.05' North and 

between longitudes 14.110 and 14.350 East (Figure 5). Being located at the centre of the 

Mediterranean Sea, the Maltese Islands have biogeographical features that are 

characteristic of both west and east Mediterranean basins. As in most other Mediterranean 

coastal areas, the most extensive marine coastal benthic habitat types present in the 

shallow Maltese coastal waters to a depth of around 40 m are those of photophilic algae, 

beds of the seagrass P. oceanica and bare sand (Borg et al., 1997). Detailed maps of the 

distribution of marine benthic assemblages are lacking for the Maltese Islands, however 

the precise spatial distribution of P. oceanica beds in some Maltese coastal areas is known 

from surveys commissioned by local environmental agencies', from undergraduate and 

postgraduate projects undertaken at the University of Malta, and from works forming part 

of baseline surveys and assessments of environmental impacts prepared by local private 

agencies (e. g. Borg et al., 1997). Where data are lacking, maps showing the spatial 

distribution of shallow-water marine benthic habitats, including seagrass beds, can be 

produced from aerial photographs taken during local remote surveys commissioned by the 

Maltese Gove=ent. Aerial photographs are a very useful source of data since they can 

provide detailed inforniation on the occurrence and distribution of seagrasses (Meinesz et 

al., 1982; Orth & Moore, 1983b; Kirkman, 1996; Short & Coles, 2001). 

' The main local Governmental organisation responsible for issuing requests for baseline surveys, 
environment impact assessment/statement studies and other environmental surveys is the 
Environment Protection Directorate (EPD) of the Malta Environment and Planning Authority 
(MEPA). 
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The geology of the Maltese Islands is characterised by marine sedimentary rocks, mainly 

limestones, which were deposited during the Oligo-Miocene (Pedley et al., 1976; 1978). 

The two main islands, Malta and Gozo, are both tilted to the northeast, such that their 

southwestern coast is characterised mainly by high cliffs, while their northeastern coast is 
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Figure 5. The Maltese Islands showing the study inlets (*) on the northeastern coast. 

characterised mainly by gently sloping shores. Tectonism, coupled with changes in sea 

level, have led to submergence of coastal valleys to produce 'drowned valleys' whose 

existence is indicated by the many headlands, creeks and bays, in particular those found 

along the low-lying northeastern coast (Paskoff & Sanlaville, 1978; Ellenberg, 1983). 

61 

COMINO 



Off the southwestern coast, the predominant typical geomorphology consists of steep 

sloping escarpments (known locally as 'rdum'), which support boulder fields at their base 

and extend downwards atop cliffs that lead to the sea. The vertically-faced cliffs found in 

these parts of the Maltese islands extend down to mean sea level and beyond, such that the 

seabed located a few tens of metres away from the cliff bases may lie at a depth of 30 m or 

more. As a result, the coastal area is characterised by extensive assemblages of photophilic 

algae that cover the vertical submarine cliff faces, drop-offs and large boulders littering the 

seabed close to the cliff bases. Bare sand is usually present close to the cliff bases, at 

depths of 30 - 60 m, where narrow bands of 'maerl' (accumulations of living and dead 

unattached non-geniculate carcareous rhodophytes that form a distinct habitat; 

BIOMAERL team, 2003) often occur. However, because sandy bottoms in shallow waters 

are uncommon in these coastal areas, seagrass beds are rarely encountered and, where 

present, are confined to around five small bays and inlets. 

Off the northeastern coast of the islands, along rocky headlands and off rocky shores, the 

seabed is characterised by a gently sloping bottom, which extends underwater to a depth of 

around 3-5m and supports a narrow band (mean width circa 15 m) of photophilic algal 

habitat. Further offshore (circa 10 - 20 m horizontal distance from the shore), at depths of 

4-6m, the bottom is characterised by a heterogeneous mixture of different habitat types: 

bare sand, patches of photophilic algae on bedrock and boulders, and small patches of 

seagrasses (P. oceanica and Cymodocea nodosa (Ucria) Ascherson). At geater depths (6 - 

45 in), the predominant habitat types are those of P. oceanica beds and bare sand. At 

depths exceeding 45 m, which corresponds to the 'lower infralittoral/upper circalittoral 

transition zone', the characteristic habitat types are bare sand and maerl beds (Borg et al., 

1998; Schembri, 1998). 
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Physical oceanographical data for the Maltese Islands are generally lacking. During 

summer, a strong thermocline is present to a depth of 30 m, with a temperature difference 

between surface and bottom, which may exceed I OOC (Havard, 1978; 1979; Drago, 1997). 

During winter, the water mass is well mixed by storms to depths of more than 50 m 

(Havard, 1978; 1997). In bays and inlets, the water column is more homogeneous and may 

have temperatures in excess of 27'C due to intense surface heating and water stratification, 

while retention time is relatively long (Drago, 1997). As for most of the Mediterranean, 

the seas around the archipelago are microtidal (maximum tidal range = 0.20 in), with 

fluctuations in mean water level of less than 0.5 in and mainly arising from differences in 

atmospheric pressure. However, Drago (1995) noted that diurnal variations in sea levels 

may also be related to coastally-trapped (topographic) waves on the continental shelf 

between Malta and Sicily. Two main opposite flowing currents occur close to the Maltese 

islands in the Strait of Sicily; one consisting of surface water (Modified Atlantic Water) 

flowing east from the Atlantic, and the other consisting of an underlying denser layer 

flowing west from the Levantine Basin (Drago et al., 2003). A transitional layer occurs 

between these two water masses, coinciding with a pen-nanent then-nocline and halocline, 

where mixing of the Levantine and Atlantic waters occurs (Drago; 1997; Drago et al., 

2003). 

The Maltese Islands present an obstacle to the general surface water exchange between the 

western and eastern basins of the Mediterranean. As a result, the Atlantic flow separates 

west of Malta and results in a surface current, which flows predominantly in a southeast 

direction in the Malta Channel (Havard, 1978; 1979; 1980; Drago et al., 2003). This 

predominant southeast current flow is reinforced by waves generated by the prevailing 

northwesterly winds (Havard, 1980; Drago et al., 2003). Coastal current measurements 

made off the northeastern coast of Malta have detected a general southeast current having a 

63 



mean value of around 0.1 - 0.2ms-1 which, however, may exceed 3 ms-1 in gale conditions, 

and has a strong diurnal variation (Havard, 1978; 1979). Coastal currents off the northeast 

coast also have a strong longshore component, with a mean transport to the southeast 

(Havard, 1980). The coastal current regime is affected also by a strong seiche that pervades 

the whole coastal region round the Maltese Islands and which causes water body 

movements with very short time periods of the order of 20 min (Drago, 1999). 

Consequently, the hydrodynamic regime around the Maltese Islands is considerably 

complex. The complex coastal current regime is probably responsible in some way for the 

observed natural occurrence of different bed types (e. g. patchy, reticulate, continuous, etc; 

Fonseca & Bell, 1998; Fonseca et al., 2002) and distribution of P. oceanica beds (Borg 

Schembn, 1995a). 

The Maltese Islands have a combined surface area of around 315 kM2 and a total shoreline 

length of circa 271 km (Mallia et al., 2002). The climate is typically Mediterranean, with 

hot dry summers and mild wet winters. Annual rainfall is within the range 500 - 599 mm, 

with most (circa 85%) occurring from October to March. Although the islands have several 

small water courses and streams, there are no permanent rivers or estuaries, and the main 

supply of fresh water to the marine environment consists of sporadic runoff following 

rainfall, mainly during autumn and winter. Mean monthly temperatures range from 12.30C 

to 26TC, with the coldest months being January, and February, and the hottest being July 

and August. The mean annual sea surface temperature is 19.7'C, with the highest value 

(circa 27'Q being recorded in August and the lowest (circa 140C) during January to March 

(Chetcuti et al., 1992). 

Given the absence of rivers and the sporadic runoff following rainfall, coastal turbidity 

following precipitation probably does not have a major influence on the distribution of P. 
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oceanica beds around the Maltese Islands. Consequently, input of allocthonous material 

and nutrients into the Maltese marine environment is relatively low. Hence, eutrophication 

and turbidity resulting from terrestrial runoff are not expected to have major influences on 

P. oceanica bed form (via fragmentation). On the other hand, fragmentation of P. oceanica 

beds resulting from anthropogenic disturbance has almost certainly taken place in some 

areas, particularly in bays and inlets where extensive coastal development to accommodate 

hotels has taken place, and in the vicinity of Valletta and the Grand Harbours (Figure 5), 

which support intense shipping, yachting, ship repair and other port-related activities, and 

where Malta's largest sewage outfall is located (see Borg & Schembri, 1995a). 

At the end of September 2003, the Maltese population was 398,985 (Malta National 

Statistics Office), making Malta the most densely populated country in Europe. Because of 

this high population density, and Malta's popularity with tourists, the coastal envirom-nent 

is also under intense pressure from other forms of human disturbance, including water 

sports and other leisure activities, fishing, fish fanning and disposal of effluents from 

desalination plants and from power station cooling systems (Mallia et al., 2002). 

Disturbance from such anthropogenic activities is therefore likely to have an impact on P. 

oceanica in some coastal areas by causing bed fragmentation and by altering the plant 

architectural features of beds of the seagrass. 

By acquiring data on the occurrence and spatial extent of P. oceanica from locally- 

available survey reports and aerial photographs, Borg & Schembri (1995a) established a 

coarse, large-scale map of the spatial distribution of this seagrass in the Maltese Islands 

(Figure 6). The most extensive P. oceanica beds occurred off the northeastern coast, 

whereas off the southwestern coast, P. oceanica was much less abundant and beds of this 

seagrass were present mainly in a small number of shallow embayments and inlets (Borg & 
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Schembri, 1995a). Benthic mapping surveys carrIed out locally (Borg et al., 1997) 

indicated that, where present, the pattern of occurrence of different bed types of P. 

oceanica beds around the Maltese Islands was similar to that recorded from other parts of 

the Mediterranean (e. g. Colantoni et al., 1982; Mazzella et al., 1986; Meinesz et al., 1988; 

Mazzella et al., 1992). Furthermore, while several different bed types of P. oceanica 

occurred locally (e. g. reefs, patches, and reticulate and continuous beds), only two were 

found adjacent to each other, at a similar depth and in broadly similar environmental 

conditions. These were: continuous beds and reticulate beds (Figure 7). The continuous 

type comprised extensive and relatively homogeneous beds (Figure 8a), while the 

reticulate type comprised beds that may also be extensive, but in which the seagrass was 
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Figure 6. Map showing the distribution of P. oceanica habitat (green shading) in the Maltese 

Islands. Adapted from Borg & Schembri (1995a). Also shown are the four sites, which were 

selected for subsequent study. 
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interspersed with another different habitat, such as bare sand (Figure 8b) or photophilic 

algae on rock (Colantom et aL, 1982; Buia et al., 2000). The occurrence of adjacent zones 

of different seagrass bed types of P. oceonico in the Maltese Islands results, probably, from 

a gradient of environmental conditions. For example, in a recent study, Manzanera & 

Romero (2000) reported differences in the structure of P. oceanica beds exposed to 

different degrees of environmental disturbance. Throughout the Mediterranean, P. 

oceanica frequently forms continuous and reticulate beds (e. g. Boudouresque & Melnesz, 

1982; Colantoni et al.,, 1982; Buia et al., 2000; Barberý Cebrian et al., 2002), therefore, the 

present study focused on a comparison of these two bed types. Although desirable, the 

inclusion of patchy beds in the comparison was not possible, since these occurred at 
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Figure 7. Aerial photograph showing the distribution of P. oceanica beds (dark blue) In the 4- 13 
m depth range, in a part of Mellieha Bay. Adjacent reticulate (R) and continuous (C) beds of the 
seagrass, are indicated by the orange circles. Patches of P. oceanica present on rock arnongst 
photophilic algal assemblages (PA) are not distinguishable. However, some patches of P. oceanica 
on sand are visible in places (P). 
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depths of 4-6m that were largely different from those at which the reticulate and 

continuous beds occurred; it has been well established that P. oceanica architectural 

characteristics may vary greatly with changes in depth (e. g. Gobert et al., 2003). 

Based on the above assessment of the study area, potential study sites for the present study 

were examined at four locations on the northeastern coastal area of the Maltese Islands for 

potential use in the proposed experimental design (Section 2.1.2). The four potential study 

locations were Ramla Bay, Mellieha Bay, White Rocks and St Thomas Bay (Figure 5). 
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Selection was based on the presence of extensive reticulate and continuous P. oceanica 

beds (Borg & Schembri, 1995a), their relatively undisturbed characteristics (as compared 

to other local coastal areas exposed to disturbance and pollution), and because they are 

separated from each other by a similar distance (circa 10 km), which made them suitable 

for the large-scale comparison. 

The successful implementation of an appropriate sampling programme ultimately depends 

on identification of locations having sufficiently large and representative areas of the 

habitat under study. Therefore, for the present study, it was necessary to map the spatial 

distribution of the two different bed types of P. oceanica (continuous and reticulate beds) 

to identify suitable areas where they were present with sufficient coverage and in broadly 

similar environmental conditions, hence avoiding any confounding effects. Knowing the 

location and spatial extent of the two different bed types also enabled the allocation of 

sampling stations at each of four localities within each of the three different spatial scales: 

small, medium and large. 

2.1.4 Selecting an appropriate sampling device/technique 

Increased interest in seagrass research over the last three decades has resulted in the 

development and use of a wide array of remote and in-situ sampling devices and 

techniques, including dredges, trawls, push nets, hand nets, drop nets, drop traps, corers, 

suction samplers and box samplers (see Heck and Wilson, 1990; Rozas & Minello, 1997). 

The area or volume sampled by these different techniques varies greatly, and such lack of 

use of standardized methods has hindered comparison of the results obtained from 

different studies (Virnstein, 1987; Attrill et al., 2000). Furthermore, the choice of sampler 

and sampling procedure has often lacked critical appraisal, despite the importance of these 

aspects in the design of ecological studies (Andrew & Mapstone, 1987). The need to assess 
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the appropriateness of sampling methodology and design is even more evident in the 

Mediterranean, where the majority of seagrass ecological research has centered on 

meadows of P. oceanica (L. ) Delile (see review by Bula et al., 2000). The robust physical 

nature of R oceanica (Section 1.3) makes sampling difficult (Ott, 1990) and has 

contributed to the lack of effort towards improving techniques for sampling the associated 

macro-invertebrate assemblages from both leaf and root-rhizome strata of this seagrass. In 

the Maltese Islands, sampling of P. oceanica is even more difficult since this seagrass is 

known to have some of the highest values of shoot density in the Mediterranean (Borg & 

Schembri, 1995b; Micallef, 1996). Most studies of the ecology of macroinvertebrates 

associated with P. oceanica meadows have employed hand-held nets and/or suction 

samplers, or removal of the entire plant to collection bags by hand (Buia et al., 2003). 

However, these techniques have severe limitations and are open to the following 

criticisms. 

The hand-held net technique (e. g. Ledoyer, 1962; Mazzella et al., 1989) is semi- 

quantitative and collects mainly the macroinvertebrates inhabiting the foliar stratum 

(Gambi et al., 1992). Suction samplers have also been commonly employed, sometimes in 

combination with the hand-held net technique (e. g. Gambi et al., 1995). Although suction 

sampling gives reproducible, quantitative results (e. g. Brook, 1978), the device is usually 

bulky, and difficult to transport and operate underwater. Furthennore, its efficiency in 

capturing species inhabiting the deeper layers of the P. oceanica matte is also questionable, 

and the fauna collected usually suffers extensive damage from the pronounced turbulence 

generated in the airlift and collection bag, making later identification difficult or even 

impossible. Manual removal of portions of the P. oceanica matte together with attached 

living shoots, has been adopted by some workers (e. g. Garcia-Raso, 1990; Somaschini et 

al., 1994) but the more mobile component of the macrofauna may be lost during sampling. 
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Sampling techniques that utilise 'enclosure devices' (such as corers) provide the most 

reliable and reproducible quantitative data on motile macrofauna associated with 

submerged aquatic vegetation, due to their high catch efficiency (Rozas & Minello, 1997) 

and have been used successfully in quantitative studies of seagrass-associated 

macroinverte rates (e. g. Stoner, 1980; Lewis & Stoner, 1981). However, with few 

exceptions (e. g. Vaccarella et al., 1981; Willsie, 1983), the use of corers and other 

enclosure devices to sample macrofauna associated with P. oceanica has been avoided, 

with the result that the potential of these techniques for studying Mediterranean seagrass 

ecosystems has remained largely ignored. Thus, the study aimed to design a suitable 

sampler that enabled appropriate and efficient collection of the motile macroinvertebrates 

associated with P. oceanica beds. A corer that samples quantitatively the total 

macroinvertebrate community associated with P. oceanica meadows, was designed and 

tested in the field. Tests were also carried out to establish an appropriate sample unit size 

and to detennine the number of replicates required to achieve two pre-determined levels of 

precision, given the importance of these aspects in ecological experimental design (Lewis 

&Stoner, 198 1; Andrew& Mapstone, 1987). 

2.2 MATERIALS AND METHODS 

2.2.1 Seagrass bed survey 

Data on the spatial distribution of P. oceanica at each of the four study locations were 

obtained from colour aerial photographs (scale 1: 10,000) taken in May 1998 by Datatrak 

Ltd (Malta) (Appendix A). The aerial photographs were scanned at a resolution of 300 dpi 

and the area occupied by P. oceanica beds, and other habitat types, delineated by eye using 

PC imaging software (Corel Draw). Differences in colour and shade of different habitats 
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makes them easily identifiable from aerial photographs (Kirkman, 1996), especially given 

the clear transparent coastal waters of the Maltese Islands, and since local seagrasses 

(namely P. oceanica and Cymodocea nodosa) mainly occur in monospecific beds. Ground 

truthing of these data was carried out using SCUBA diving, according to standard methods 

(e. g. Orth & Moore, 1983b; Kirkman, 1996). Because of the large areas involved, only part 

(circa half) of the sea areas in Mellieha Bay and St Thomas Bay were surveyed. For this 

purpose, the northwestern sides of these two bays were chosen. 

All fieldwork was carried out from January to July 1998. During fieldwork, shore-normal 

transect lines, graduated at 5m intervals, were laid underwater by the divers. The divers 

swam along the transects and recorded the distance from the shore of the boundaries of P. 

oceanica beds and of the other main benthic habitats present, using waterproof slates and 

pencils. Adjacent transects were separated by a distance of circa 150 m, while the exact 

location of the transect starting points was predeten-nined following an examination of the 

aerial photographs, scale maps of Maltese coastal areas and Admiralty Charts showing the 

bathymetry of local sea areas. 

Selection of the transect starting points was based on availability of access to the sea from 

the shore or by boat, and on the presence of topographic features, such as promontories and 

indentations of the shore, that could be readily identified on a map. The length of the 

transects varied between 200 m and 800 m, while the maximum depth reached during the 

surveys was 25 m. Because of the limitation of the maximum time spent underwater during 

any one SCUBA dive, transects longer than 300 in were subdivided into separate shorter 

ones that had a maximum length of 100 - 300 m and which were surveyed during separate 

dives, but which were all aligned along the same compass bearing (shore-normal). To 

survey transects located offshore at distances greater than 300 m, divers were transported 
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to the transect starting points using a 4.5 in boat, which remained on site to accompany the 

divers and to collect them at the end of the dive. Position finding, to record the 

geographical location of the two extreme ends of the transects, was made from the boat 

using a portable Geographical Information System (GPS) set (Garmin 45, USA). 

To map the distribution of the benthic habitats of the four study sites, electronic images of 

the aerial photographs (Appendix A) were georeferenced and orthorectified (Green et al., 

2000; Lillesand & Kiefer, 2000) against accurate digital survey maps (Mapping Unit, 

Malta Envirom-nent and Planning Authority) using the GIS computer program Erdas 

Imagine 8.4 (Erdas Inc., USA). Following fieldwork, transect data were compared with the 

P. oceanica spatial distribution data acquired from the aerial photographs and, where 

necessary, adjustments made such that the spatial extent of the seagrass, as shown on the 

map, was a true representation of its coverage in the field. Using the same GIS computer 

program, the electronic images of the aerial photographs were used to obtain estimates of 

coverage for the two different seagrass bed types, at each of the four study sites. This was 

done by selecting randomly a standard length of shore (circa 600m), which included both 

reticulate and continuous seagrass beds, and extending the area out from the shore to the 

13 m contour. The relative coverage of each bed type was then estimated using 

unsupervised classification techniques (Green et al., 2000; Lillesand & Kiefer, 2000). 

To obtain an estimate of the exposure of at each of the four study sites, the Relative 

Exposure Index (REI) proposed by Keddy (1982) and adapted by Fonseca & Bell (1998), 

was used: 

8 

REI = E(Vi x Pi x Fi) 
i=l 
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where i= ith compass heading (1 to 8; i. e. N, NE, E, SE, S, SW, W& NW); V= mean 

monthly maximum wind speed in m s-1; P= percent frequency which wind occurred in the 

ith direction, and F= effective fetch. Values of V were calculated using wind data records 

obtained from the local Meteorological Office (Malta International Airport) for the three 

years prior to the study (1997 - 1999). to obtain mean values over an appropriately long 

period (see Fonseca & Bell, 1998). Wind velocities that exceeded 95% of the recorded 

velocities (> 10 m s-1; 'exceedance winds', Keddy, 1982) were removed from the data set, 

and the remaining values used to calculate V, which was therefore the grand mean (mean 

of monthly means of daily maximum wind speeds). Fetch was taken as the distance from 

the particular site under consideration (taken at the centre of the bay/inlet) to land along a 

given compass heading (Shore Protection Manual, 1977). Effective fetch was estimated by 

measunng fetch along 4 lines radiating out from either side of the ith compass heading 

with a spacing of 11.250, and along the ith heading (n = 9), and then averaging the product 

of each of the 9 lines multiplied by cosine of the angle of departure from the ith heading 

(Shore Protection Manual, 1977). 

2.2.2 Sampler selection 

Sample size and replicate number is often a trade-off between precision and effort/cost 

expenditure. A good sampler must have an adequate construction and design for the 

required purpose, and be practical to deploy in the field. To meet these demands, a 

cylindrical corer was designed which had a simple yet sturdy construction and was light 

and easy to use in the field. Three different corer diameters were selected and the 

corresponding sample unit sizes assessed for relative accuracy, precision, and efficiency of 

sampling as defined by Andrew & Mapstone (1987). Choice of corer diameters was based 

on criteria given in Andrew & Mapstone (1987), that is, setting: (1) a lower sample unit 

size (0.05 M2), which was at least an order of magnitude larger than the upper size limit 
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(40 mm) of the macro invertebrates studied, and (n) an upper sample unit size (0.16 M2), 

which corresponded to the dimension limit that the operator could handle reasonably well. 

Furthen-nore, consideration was given to the prach II of use of the sampler in P. 

oceanica meadows, especially penetration of the dense matte. Therefore, three cylindrical 

corers, differing only in diameter (25,35 and 45 cm) and height (40,50 and 63 cm 

respectively) were constructed using galvanised sheet metal (0.55 mm thickness) (Figure 

9). A band-saw blade (25 xI mm) was welded along one of the cylinder's open ends, 

whilst a rein orcing circular metal bar (20 x5 mm) was welded at the other end. Two 

strong handles were riveted to the cylinders, one on each side. A 0.5 mm mesh collecting 

bag was attached to the top of each sampler and held in place by a length of twine inserted 

in the bag's seam (Figure 10). 
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Fieldwork was carried out during September 1998 in a pre-designated area (50 x 100 in) of 

a continuous seagrass bed in Mellieha Bay (Figures 5& 6). Sampling was carried out by 

SCUBA diving, during which six replicates were taken randomly using each of the three 

different corers. Adjacent samples were at least 10 in apart and collections were always 

made in the afternoon. During each collection, the sampler was placed over the Roceanica 

and the serrated edge lowered quickly onto the bed. The sampler was held by the handles 

and driven slowly into the P. oceanica matte by a turn-cutting action until a vertical 

penetration of 10 cm was achieved. A 'Bushman garden knife' was used to make vertical 

incisions in the matte surrounding the sampler to produce a small 4-5 cm wide gap 

between the matte and the outer wall of the corer into which the diver's hand could be 

inserted. Incisions in the matte, angled under the corer, were also made to separate the 
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matte core from the rest of the root-rhizome layer. Complete detachment of the sample was 

achieved by inserting the diver's hand down the sides of the corer and under the lower 

edge of the device. Once this was achieved, the sampler was removed from the bed, 

inverted quickly and the sample pushed into the collecting net. In this way, the core of 

excised P. oceanica matte served as a 'plunger', pushing down the whole sample into the 

net. The net was then removed from the corer and closed tight with the draw-string before 

sealing with a knot. 

In the laboratory, each sample was washed in seawater, and the shoots and P. oceanica 

matte separated and examined carefully to remove the motile macroinvertebrates. The 

remaining sediment and washings were passed through a 0.5 mm sieve and the retained 

material sorted in trays under a x5 magnifying lens. Macroinvertebrates were fixed in 10% 

formaldehyde in seawater and transferred to 70% ethanol prior to identification. Where 

identification to species level was not possible, the putative species present were labelled 

using an alphabetical code (e. g. Syllidae sp. A etc. ). Identification of polychaetes to species 

level presented special difficulties, given the incomplete knowledge on Mediterranean 

Polychaeta and the lack of good identification keys for this group in the region. Sessile 

macroinvertebrates (sponges, cnidarians and bryozoans) and small fishes were also 

collected but were not considered in the present study. 

Throughout the different sampling stages, the time taken to achieve each of the following 

was recorded: (i) collection, (ii) washing and sieving, and (iii) sorting. Total time per 

replicate was taken as the sum of these components. The highest mean estimates obtained 

for standardised total abundance, and for the number of species recorded, were taken as the 

greatest estimates of accuracy (Andrew & Mapstone, 1987). This estimation of accuracy is 

based upon the assumption that what is not present cannot be counted and, therefore, 
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overestimation is very unlikely (Caughley, 1977). Differences between mean values of 

total abundance and species richness (untransformed data, checked for homogeneity of 

variances) obtained for the three different core sizes were analysed using one-way 

ANOVA (at (x = 0.05). Precision was calculated from the ratio SE/x, where SE is the 

Standard Error and x is the Sample Mean (Pihl & Rosenberg, 1982; Morin, 1985). 

Precision increases as the value approaches 0 (for example, 0.1 is more precise than 0.2). 

The number of replicates (n) required to achieve two levels of precision (0.1 and 0.2) for 

both abundance and number of species was calculated for each of the three core sizes using 

n= [sd/(px)]2, where sd is Standard Deviation and p is the pre-established precision 

(Andrew & Mapstone, 1987). Efficiency was estimated by multiplying 'n' by the mean 

total time taken to process samples collected by the respective corers (James & 

Fairweather, 1996). A one-way ANOSIM permutation analysis (number of permutations = 

5000) was carried out on the species-abundance matrix (Clarke & Green, 1988), using the 

software package PRIMER (Clarke & Gorley, 2001), to test for differences in assemblage 

composition within and between groups of replicate samples collected by each of the three 

corer sizes. SIMPER analysis (Clarke, 1993) was also carried out using the PRIMER 

InL- -- 

software package to identify the species contributing to the observed similarity within, and 

dissimilarity between, groups of replicate samples. 

2.3 RESULTS 

2.3.1 Seagrass bed survey 

Overall, there was very good agreement between the distribution of P. oceanica 

determined from the aerial photographs and data collected from the ground-truthing 

surveys. Scale maps showing the distribution of P. oceanica beds at the four study sites are 
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presented in Figures II- 14. At each site, the general pattern of P. oceanica distribution 

was as follows. In shallow waters (2 m-4 m), P. oceanica occurred as small patches on a 

rocky substratum; patches varied greatly in size but rarely exceeded ImxI in. In 

deeper waters (5 - 10 m), the patchy stands were often replaced by reticulate beds 

consisting of P. oceanica interspersed with bare sand. Further offshore (I I- 13 m), a 

transition from reticulate to continuous beds occurred, where both reticulate and 

continuous beds occurred on a thick matte growing on fine to medium sand. Continuous 

beds extended to depths of around 25 - 30 m and eventually formed reticulate or patchy 

beds in deeper (>25 m) water. Therefore, the sequence of occurrence of the different P. 

oceanica bed types, moving away from the shore, was: patchy - reticulate - continuous - 

reticulate - patchy (Figures 11 - 14). In Mellieha Bay, patches of dead P. oceanica matte 

interspersed amongst living matte were also encountered in various places during the 

survey, at depths ranging between 5m and 13 m. These patches of dead matte varied in 
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Figure 11. Map showing the distribution of Posidonia oceanica beds and other main habitat types 

in Rarnla Bay. 
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The results of the GIS analyses to deten-nine the area of seagrass cover are given in Table 

1. The areas surveyed in Mellieha Bay, White Rocks and St Thomas Bay had very similar 

total seagrass coverage values (circa 30,000 m2_ 39,000 m 2), while Ramla Bay had much 

less coverage (circa 9,600 m 2) 
- Ratios of reticulate: continuous bed coverage recorded from 

each location varied considerably with an overall tendency for the ratio to decrease 

between sites in a southeast direction (0.9 - 0.3). Estimated values of Relative Exposure 

Index for the four study sites are given in Table 2. St Thomas Bay and Ramla Bay had the 

highest exposure, followed by White Rocks, while Mellieha Bay had the lowest exposure. 

Table 1. Coverage (m) of the two different Posidonia oceanica bed types recorded from each of 
the four study sites. 

Locality Total area 
surveyed 

Total 
seagrass 
coverage 

Reticulate 
bed coverage 

(R) 

Continuous 
bed coverage 

(C) 

Coverage 
ratio 
R: C 

Ramla Bay 437745 95930 44910 51020 0.9 

Mellieha Bay 391966 306921 124939 181982 0.7 

White Rocks 393987 365212 131438 233774 0.6 

St Thoma s Bay 394692 386172 87326 298846 0.3 

2.3.2 Sampler selection 

Field sampling with the 25 cm and 35 cm corers was carried out without difficulty, and 

intact samples of P. oceanica matte with attached shoots were obtained easily. Using the 

45 cm corer, however, separation of an intact core was not achieved without difficulty and, 

on most occasions, portions of the sample dropped out of the corer and were lost. This loss 

of sample was reflected in the reduced mean total time taken for collection and processing 

of samples using the 45 cm diameter compared with the 35 cm diameter corer (Table 3). 
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Figure 12. Map showing the distribution of Posidonia oceanica and other main habitat types in 
Mellieha Bay. 

Table 2. Values of Relative Exposure Index (REI) estimated for each of 
the four study locations. 

Locality REI value 

Ramla Bay 3.22 X 106 

Mellieha Bay 1.66 X 106 

White Rocks 2.46 X 106 

St Thomas Bay 3.28 X I o6 
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Table 3. Mean time taken (± I SID) for collection, washing and sorting of samples collected using 
the three different samplers (diameter 25,35 & 45 cm). n=6 for each sampler. 

Sampler Mean time (minutes) 
Collection Washing Sorting Total 

25 cm 10.2 ± (2.7) 48.8 (8.0) 

1 

213.2 ± (29.8) 272.2 ± (24.6) 

35 em 12.2 ± (2.3) 65.5 (21.3) 330.2 ± (68.4) 407.8 ± (61.6) 

45 cm 19.3 ± (4.1) 81.0 ± (21.9) 
T T 240.0 ± (137.5) 340.3 ± (128.8) 

A total of 1018 individual motile macroinvertebrates (2 nemerteans, 330 polychaetes, 439 

crustaceans, 233 molluscs and 14 echinoderms) comprising 154 species were collected 

from the 18 samples (Appendix B). ANOVA indicated that there were significant 

differences in macroinvertebrate abundance between the 25 cm and the 35 cm diameter 

corers (F = 10.9, p<0.01), and between the 25 cm and 45 cm diameter corers (F = 14.16, p 

< 0.01), but not between the 35 cm and 45 cm diameters corers. Significant differences 
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Figure 14. Map showing the distribution of Posidonia oceanica and other main habitat types in St 
Thomas Bay. 

were detected also in the mean number of species recorded from groups of replicate 

samples between the 25 cm and 35 cm diameter corers cm (F = 7.16, p<0.05), and 

between the 25 cm and 45 cm diameter corers cm (F = 7.65, p<0.05), but not between the 

35 cm and 45 cm diameter corers. 

Comparison of the relative accuracy measurements showed that the estimate based on 

abundance was highest for the 25 cm diameter corer, whilst that based on number of 

iameter species was highest for the 35 cm diameter corer (Figures 15a & 15b). The 25 cm di 

sampler gave the best estimates of precision (Figures 15c & 15d) and efficiency (Figures 

l5e & 15f) for both abundance and number of species. Table 4 shows the total number of 

replicates required for each core size to attain the two levels of precision (0.1 & 0-2). 
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Figure 15. Estimates of accuracy (a & b), precision (c & d) and efficiency (e & f) for the three 
core sizes (25,35 and 45 cm diameter; n= 6). a, c and e: estimates based on standardised 
abundance (per M2) ; b, d and f- estimates based on number of species (per core). Error bars are 
+1SE. 

ANOSIM indicated a significant difference (R = 0.221, p<0.06) in the composition of the 

macroinvertebrate assemblages between groups of replicates collected by the 25 cm and 

the 45 cm diameter corers, but not between either the 25cm and 35 cm or 35cm and 45 cm 

diameter corers (Table 5). 
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I , Yable 4. hstimated total number ot'replicates of each core size required for two pre-established 
levels of precision. Estimates are for total mean abundance and number of species. 

Core size (cm) Precision level Number of replicates 
bundance) 

Number of replicates 
(species) 

25 0.1 2.2 3.9 
35 0.1 9.2 5.3 
45 0.1 8.5 5.0 
25 0.2 0.6 1.0 
35 0.2 2.3 1.3 
45 0.2 2.1 1.2 

Table 5. Results of ANOSIM. S= 25 cm core replicates; M 35 cm core replicates; L= 45 cm 
core replicates. **=p<0.0 1. 

Groups Statistic 
value 

Possible 
permutations 

Permutations 
used 

Significant 
statistics 

Signiflcance level 

S, M 0.081 462 462 119 25.8% 
S, L 0.407 462 462 3 0.6% 
M, L 0.169 1 462 462 30 6.5% 

SIMPER analysis revealed that the five species contributing most to the difference between 

the 25cm and 45 cm diameter core replicates were the amphipod Lysianassa longicornis 

Lucas (1.76%), the polychaete Piromis eruca (Claparede) (1.64%), the thalassinidean 

shrimp Gourretia denticulata (Ditze) (1.53%), the polychaete Notomastus latericeus M. 

Sars (1.52%) and the bivalve Anadontiafragilis (Philippi) (Table 6). 

Table 6. Results of the SIMPER analysis for the five species having the highest dissimilarity 

values between the 25 cm and 45 cm core replicates. Average dissimilarity between the two 

groups of replicates = 62.19 %. 
Species Average Average % % 

abundance abundance Contribution Cumulative 

45 cm core 25 cm core 
Lysianassa longicornis 4.50 1.08 1.76 1.76 

Piromis eruca 1.00 1.17 1.64 3.40 

Gourretia mi . nor 0.17 1.08 1.53 4.93 

Notomastus latericeus 1.17 1.92 1.52 6.45 

Anadontia/ragifis 0.33 0.92 1.52 7.97 
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2.4 DISCUSSION 

Once an appropriate experimental design was selected from a review of the literature, the 
first aim of the present study was to identify and map the main different bed types of P. 

oceanica in the Maltese Islands at each of four proposed study locations. The second aim 

was to design and test a suitable sampler for appropriate and efficient collection of the 

motile macroinvertebrates of P. oceanica. 

The survey results indicated that three main types (patchy, reticulate and continuous) of P. 

oceanica beds occurred at each of the four localities surveyed. While seagrass patches 

occurred mainly on bedrock in shallow waters (circa 4 ra), the continuous and reticulate 

beds (with broadly similar shoot densities) occurred adjacent to each other, at similar 

depths, on fine to medium sand. 

The occurrence of patches and beds of P. oceanica on rock has been reported from other 

parts of the Mediterranean (e. g. Mazzella et al., 1986), while reticulate beds growing on 

sandy bottoms have been described often by other Mediterranean workers as meadows 

with 'inter-matte' channels (e. g. Colantoni et al., 1982). The presence of adjacent reticulate 

(: 
--- 

fragmented) and continuous (=- non-fragmented) beds of P. oceanica provided an 

opportunity to study and compare attributes of plant architecture diversity of associated 

fauna, between the two different bed types. That is, the results of the seagrass bed survey 

confinned that the four proposed study locations were appropriate for the planned 

sampling programme, since each supported adjacent non-fragmented and fragmented beds, 

located at the same depth and in broadly similar environmental conditions. Furthermore, 

one of the locations (Mellieha Bay) was large enough to support the sampling programme 

dealing with the two lower spatial scales: (i) medium (hundreds of metres) and small (tens 

of metres). 
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GIS analyses indicated that the P. oceanica beds at the four localities surveyed had 

different reticulate/continuous (R: C) coverage ratios. This variation cannot be ascribed to 

any single environmental factor and results, probably, from differences in the degree of 

influence exerted by a complex set of envirom-nental variables at the different localities, 

including variations of the hydrodynamic regime (Colantoni et al., 1982) and other factors 

such as the physico-chernical characteristics of the substratum and bottom geornorphology 

(Fonseca et al., 2002). Several studies have shown that seagrass beds tend to be more 

fragmented where water movement is strong, whereas, in more sheltered places, beds tend 

to have a more continuous morphology (Fonseca et al., 1983; Marba & Duarte, 1995). The 

Maltese Islands are severely exposed to high winds. On average, only 7.7 days of the year 

are calm in the Maltese Islands; winds of between 1.8 and 39 kmh- I occur during the rest 

of the year. The predominant winds are northwesterly, which, on average, blow during 

19% of the year (Chetcuti et al., 1992). As a result, San Dimitri Point (Figure 5), which lies 

on the northwestern tip of the island of Gozo, is the most exposed point in the Maltese 

Islands, while the southeastern tip of Malta, Marsaxlokk Bay (Figure 5) is, on average, the 

most sheltered. Therefore, this exposure regime, coupled with the main currents flowing 

towards the southeast (Harvard, 1978; 1979; 1980; Drago, 1991), may partly explain the 

decrease in the R: C coverage ratio (hence decrease in reticulate bed coverage) in a 

southeasterly direction along the northeastern coast of the Maltese Islands. On the other 

hand, the estimated RET values indicate a similar exposure for Ramla Bay and St Thomas 

Bay, while Mellieha Bay had the lowest REI value. However, the hydrodynamic properties 

of a particular locality are not determined solely by wave exposure. The submarine 

geomorphology (e. g. Fonseca et al., 2002), currents (e. g. Havard, 1978; 1979) and other 

physical environmental factors (e. g. seiches; Drago, 1999) also contribute to the 

hydrodynamic properties of a particular locality. Both Mellieha Bay and St Thomas Bay 
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have extensive shoal areas located outside the mouth of the bays, which are expected to 

dampen wave action and currents. For example, Drago (1997) described Mellieha Bay as a 
low-energy environment, resulting from the presence of the extensive shoal area outside 

the bay and complex hydrodynamic processes, which inhibit flushing. Therefore, it is 

envisaged that since the index used for calculating the exposure for Mellieha Bay and St 

Thomas Bay did not take the presence of shoals into consideration, the obtained values are 

probably overestimates. 

Overall, the results of the seagrass survey pilot study confirtned that the proposed 

experimental design can be applied to the field. That is, comparisons at three spatial scales, 

of differences in plant architecture and in the diversity of associated motile 

macroinvertebrate assemblages between reticulate and continuous bed types can be carried 

out in an unconfounded manner by sampling different P. oceanica bed types where they 

are located adjacent to each other at a depth of 9-12 m. 

The occurrence of dead P. oceanica matte, interspersed with live matte, is interesting since 

there are no nearby sources of pollution or other anthropogenic disturbances which may 

have led to death of the seagrass. It appears that death of the P. oceanica matte has resulted 

from natural environmental processes, possibly following physical damage to the shoots by 

strong wave action (Colantoni et al., 1982; Blanc & Jeudy de Grissac, 1984). Dead P. 

oceani . ca matte effectively represents the lower extreme along the seagrass bed 

fragmentation gradient, hence it would be interesting to study the assemblage structure and 

composition of macroinvertebrates associated with this habitat, and to compare these 

attributes with those of living matte. Thus, the presence of dead matte, as revealed by the 

seagrass survey, presents the useful possibility of comparing the macroinvertebrate 

assemblages associated with dead and living P. oceanica matte in Mellieha Bay. 
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The study designed to enable selection of an appropriate sampling device/technique 

demonstrated that a cylindrical enclosure sampler, not much different in design from a 

basic corer, is a useful and practical device for quantitative sampling of the 

macroinvertebrates associated with beds of the seagrass P. oceanica. Of the three samplers 

tested, the smallest (25 cm diameter) gave the highest precision and efficiency estimates 

for both abundance and number of species. in their comparative study of the relative 

efficiency of three core sizes (5.5,7.6 and 10.5 cm diameters) in sampling the macrofauna 

of Thalassia testudinum Banks & Soland ex Koenig dominated seagrass meadows, Lewis 

& Stoner (1981) also concluded that a smaller corer collected significantly more 

macroinvertebrates than either of the two larger ones used in their study. The 25 cm 

diameter sampler used in the present study gave the highest accuracy estimate for 

ni, abundance but not for number of species, suggesting that this sample unit size is suitable 

for comparative studies between different meadows/sites but not for surveys in which 

complete species richness and abundance estimates for a specific area are required. In the 

latter case, use of the 35 cm diameter corer may be more appropriate since it gave the 

highest accuracy estimate for number of species. The lower accuracy estimate for 

ni.. abundance obtained by the 35 cm diameter corer was somewhat unexpected since the 

predictions from classical species-area relationships are that the total number of species 

and individuals collected in a given sampling unit should increase as the size of the 

sampler is increased. However, loss of sample (namely of matte) during collection, albeit 

unnoticed in the field, may have contributed to the lower accuracy estimate for abundance 

obtained for the 35 cm diameter sampler. On the other hand, the smaller 25 cm diameter 

sampler enabled collection of a more 'intact' core, without loss of sample. 
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Serious difficulties were experienced using the largest corer (45 cm diameter). Besides 

being more cumbersome to use in the field than the smaller corers, there was often partial 

loss of the sample during collection. This is reflected clearly in the relative densities of 

deep-burrowing macrofauna such as the polychaetes P. eruca and N. latericeus, the 

thalassinidean shrimp G. denticulata, and the bivalve A. fragifis, which were the species 

contributing most (as revealed by the SIMPER analysis) to the differences between 

samples collected by the 25 and the 45 cm diameter samplers. 

Overall, the sampler selection study indicated that, for comparative studies, the 25 cm 

diameter corer provided robust quantitative samples of the macroinvertebrates associated 

with both the foliar and root-rhizome strata of P. oceanica meadows. To achieve a 

precision level of 0.1 the survey showed that, using this core size, three replicates for 

abundance estimates and four replicates for species richness estimates were required. 

Based upon these conclusions, it is most prudent to use four replicates taken with the 25 

cm diameter corer to estimate the species richness and abundance of macroinvertebrates 

associated with P. oceanica beds for the subsequent research programme. 

Therefore, based on the results of the pilot studies, a scientific ally-robust comparison of 

within-bed plant architectural characteristics, and motile macroinvertebrate diversity 

between continuous and reticulate P. oceanica beds, can be best achieved by collecting 

four replicate samples using a specifically-designed 25 cm diameter corer at each of three 

spatial scales within a staggered nested sampling design. This same sampling strategy is 

also useful to compare motile macroinvertebrate diversity between dead and living matte 

of P. oceanica. This approach was used in subsequent work (Chapters 3,4 and 5). 
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CHAPTER 3 

ARCHITECTURAL CHARACTERISTICS 
OF TWO BED TYPES OF THE 

SEAGRASS POSIDONIA OCEANICA 
OVER DIFFERENT SPATIAL SCALES 

Part of this chapter has been included in the following: 

Poster entitled 'Structural Characteristics of two different bed types of 
Posidonia oceanica (L. ) Delile', presented at the 5 th International Seagrass 
Biology Workshop, 7 th 

- IlthOctober 2002, Ensenada, Mexico. 

Paper entitled 'Architectural characteristics of two bed types of the seagrass 
Posidonia oceanica over different spatial scales', accepted for publication in 
Estuarine, Coastal and She4f Science. 

91 



3.1 INTRODUCTION 

Seagrass beds are highly complex habitats, with a structure that varies with the constituent 

seagrass species, and the complex interactions between numerous biotic and abiotic factors 

(Heck & Orth, 1980; Attrill et al., 2000; Hemminga & Duarte, 2000 and references 

therein). Seagrass beds occur in a wide range of morphotypes, ranging from small patches 

to large reticulate stands and continuous beds (Vimstein, 1995; Fonseca & Bell, 1998). 

This spatial patterning enables the direct application of the principles underlying landscape 

ecology (formerly a concept applied exclusively to the terrestrial realm) to the marine 

environment (see Robbins & Bell, 1994). Recently, numerous seagrass studies have 

addressed important landscape ecological issues, such as the effect of patch size on the 

diversity of associated biotic assemblages (e. g. Bowden et al., 2001). Data generated by 

such studies provide an understanding of the fundamental processes underlying the 

dynamics of seagrass ecosystems, thereby, underpinning appropriate management and 

conservation strategies (Robbins & Bell, 1994; Fonseca et al., 2002; Hemminga & Duarte, 

2000). 

Seagrass beds are undergoing a worldwide decline as a result of both natural and 

anthropogenic disturbances (Short & Wyllie Echeverria, 1996). Adverse impacts can lead 

to fragmentation of this habitat, whereby, continuous seagrass beds are transformed to 

discontinuous ones through decimation of parts of the bed, resulting in a decrease in 

overall area coverage of the seagrass (Hemminga & Duarte, 2000). The consequences of 

seagrass habitat fragmentation may include changes in physical environmental 

characteristics (e. g. sediment grain size), and in the structure of associated flora and fauna 

(Marba & Duarte, 1997; Frost et al., 1999; Bell et al., 2001). Furthermore, regression of 

seagrass is often as elf- accelerating process (Duarte, 1995) such that recovery, if any, is 

often very slow (Hemminga & Duarte, 2000). Since effective management of seagrass 
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habitats depends on knowledge of the processes that govern the spatial and temporal 

properties of seagrass beds (Fonseca et al., 2002), there is an urgent need to study the 

ecological consequences of the physical alteration of seagrass habitats (Vimstein, 1995). 

Given the lack of data on the consequences of fragmentation of seagrass habitat, a useful 

starting point is an examination of the role of variability in plant architectural 

characteristics of different natural bed types. 

The architectural characteristics of seagrass beds are deten-nined partly by the 

morphological features of the individual plants, such as the number of leaves, leaf length, 

leaf width and epiphytic load, and by the number of plants present per unit area (shoot 

density) within a seagrass bed (Kikuchi & Peres, 1977). In turn, the morphological 

attributes of individual seagrass plants depend on the growth characteristics of the 

particular species (Hemminga & Duarte, 2000), while shoot density varies, depending on 

the plant's dispersal pattern and local environmental factors; namely, the amount of 

available light and the physico-chemical properties of the substratum and water column 

(e. g. Panayotidis et al., 1981; Gobert et al., 2003). 

In the Mediterranean Sea, the endemic Posidonia oceanica (L) Delile is the most abundant 

seagrass species (Buia et al., 2000 and references therein). P. oceanica occurs at depths 

ranging from I in to 40 in (den Hartog, 1970) and forms some of the most productive 

seagrass beds worldwide (Pergent et al., 1994). Beds of this seagrass serve as feeding and 

nursery grounds for many species (Mazzella et al., 1992), including commercially 

important fishes (Bell & Harmelin-Vivien, 1982). Furthermore, P. oceanica beds 

constitute important marine autotrophic ecosystems, since they contribute a source of net 

oxygen release and act as a carbon sink (Romero et al., 1994; Mateo et al., 1997; 

Hemminga & Duarte, 2000). Because of these important features, P. oceanica beds are, 
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arguably, the single-most important shallow-water marine habitat in the Mediterranean 

Sea. Consequently, P. oceanica beds are listed in Annex I of the EU's Habitats Directive 

(92/43/EEC) on the Conservation of Natural Habitats and of Wild Fauna and Flora, as a 

habitat whose presence requires the designation of Special Areas of Conservation, and are 

further designated as a priority habitat type (EEC, 1992). The need to implement such 

protection and conservation measures has become even more apparent following the 

conclusion that P. oceanica is experiencing a widespread regression in the Mediterranean 

(Peres, 1984; Marba et al., 1996). 

Besides being a large plant, with strap-like leaves around I cm wide and sometimes 

exceeding Im in length (Drew & Jupp, 1976), P. oceanica forms a dense root-rhizome 

mat, known as 'matte', that can sometimes develop to a thickness of several metres (see 

Romero et al., 1994). Similar to beds formed by other seagrasses, P. oceanica bed 

morphology is influenced by natural events and environmental processes such as storms, 

currents and sedimentation (Blanc & de Grissac, 1984; Marba & Duarte, 1997), and by 

anthropogenic activities such as trawling (e. g. Sanchez Lizaso et al., 1990), coastal 

development and beach rehabilitation works (Ruiz et al., 1993), boat anchoring (e. g. 

Francour et al., 1999) and pollution (e. g. Bourcier, 1989). As a result, P. oceanica beds 

may be patchy (collection of isolated patches, each completely surrounded by a different 

habitat type), reticulate (non-continuous beds intennixed with a different habitat type, for 

example 'bare' sand) or continuous (Colantoni et al., 1982; Bula et al., 1989; 2000). The 

growth pattern of P. oceanica (Wittmann, 1984) can also lead to the formation of peculiar 

bed types such as 'collines' (seagrass patches resembling hillocks, with a thick matte at the 

centre but not at the periphery; Boudouresque et al., 1985) and extensive reef structures 

(Moliner & Picard, 1952; Augier & Boudouresque, 1970; Calvo & Orestano, 1984). 

94 



While some studies have addressed the spatial variation of P. oceanica bed structural 

characteristics (Manzanera & Romero, 2000; Gobert et al., 2003), data on differences in 

plant architecture with bed type are generally lacking. Although previous studies of the 

seagrass Zostera marina established differences in architecture between patchy and 

continuous beds (e. g. Irlandi, 1997), similar information for reticulate and continuous 

seagrass beds is almost entirely lacking (but see Hovel & Lipcius, 2001). P. oceanica is an 

ideal candidate for such studies since, unlike other seagrasses, it does not undergo large 

seasonal changes in spatial coverage or shoot density (Hovel & Lipcius, 2001). Therefore, 

the confounding effects introduced by temporal changes in seagrass structure are avoided 

in comparative studies of P. oceanica bed types. 

Consideration of spatial variation in ecological studies is crucial, since environments are 

seldom homogeneous, and because factors and processes that influence the occurrence and 

disthbution of species populations are scale dependent (Wiens et al., 1986; Wiens, 1989; 

Levin, 1992). Therefore, the inclusion of a number of appropriate scales in a sampling 

programme is highly advisable (Harlin et al., 1996; Tanaka & Leite, 2003), since this 

enables examination of the magnitude of variability in space of the attribute under study. 

On the other hand, the appropriate choice of scales in an experimental design must be a 

trade off between an ability to observe landscape processes without losing infonnation on 

the finer scale, and an ability to detect fine-scale information, without being hindered by 

unrelated environmental 'noise' (Andrew & Mapstone, 1987). The appropriate choice of 

scales will depend also on logistic considerations, such as availability of funds and time to 

implement sampling, and on practical feasibility of sampling (Green, 1979, Underwood, 

1997; Kingsford & Battershill, 1998). 
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For the purpose of the present study, three spatial scales were selected to test the proposed 
hypotheses: (i) 'large' (kilometres); (ii) 'medium' (few hundreds of metres); and 'small' 

(tens of metres). Comparison of the different P. oceanica bed types over the large spatial 

scale required identification of a number of study 'locations' within a suitably large stretch 

of coast. Within one of the locations, selection of a number of 'sites' would enable 

comparison at the medium scale, while selection of a number of 'plots' within one of the 

sites would enable comparison at the small spatial scale. Establishing four sampling 

stations at each spatial scale enables sound spatial replication without imposing excessive 

demands on sampling effort and analyses that would render the study programme 

unpractical. In this way, the basic experimental design would incorporate adequate spatial 

replication between different P. oceanica bed types, across a number of spatial scales (see 

Chapter 2). 

Data on the architectural characteristics of different P. oceanica bed types collected over 

appropriate spatial scales will contribute to our understanding of how seagrass habitat 

fragmentation may affect the diversity of the associated biotic assemblages, given that 

macrofaunal. assemblage composition has been shown to vary with seagrass bed 

architecture (e. g. Tolan et al., 1997; Webster et al., 1998). Thus, the aim of the present 

study was to examine the foliar architecture of two different bed types of P. oceanica, 

reticulate (=- fragmented) and continuous (=- non-fragmented), over a range of spatial 

scales; varying between several kilometres to a few tens of metres. The null hypothesis 

tested was that seagrass bed architecture did not differ between adjacent reticulate and 

continuous beds, over the range of spatial scales examined. 
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3.2 MATERIAL AND METHODS 

3.2.1 Study sites and experimental design 

The distribution of P. oceanica beds along the coastline of the Maltese Islands was 

established recently from mapping surveys using SCUBA diving and aerial photography 
(Borg et al., 1997). In some places, these beds extended to a depth of 43 in (Borg & 

Schembri, 1995a) and shoot densities were some of the highest recorded from the 

Mediterranean (Borg and Schembri, 1995b). Surveys indicated that dense, healthy P. 

oceanica beds were present along the northeastern coast of the Maltese Islands where four 

locations were selected for conducting the present study (see Chapter 2). The distribution 

of P. oceanica at these four locations [Ramla Bay (RB), Mellieha Bay (MB), White Rocks 

(WR) and St Thomas Bay (STB); see Figure 5] was characterised by a general pattern in 

which the seagrass occurred as small patches in shallow waters (2 -4 m) and as reticulate 

and ýcontinuous beds in deeper waters (5 - 30 m) (Figures 7& 8). 

Within the 9- 12 m depth range, all four locations had reticulate beds adjacent to 

continuous ones, which enabled comparison of the two bed types without introducing 

external influences (e. g. differences in bathymetry) that would confound the experimental 

design. The four locations, which were separated from each other by a distance of circa 12 

km, were free from major pollutant discharges and riverine inputs, and have a similar 

underwater geology. However, the southern half of the Maltese Islands, where White 

Rocks and St Thomas Bay are located, is more densely populated and supports a higher 

industrial activity than the northern half, resulting in higher nutrient loading of coastal 

waters (Axiak et al., 2000). Furthennore, because of the small size and high exposure of 

the Maltese Islands (overall length just under 40 km, some differences in exposure 

between the different locations were present. The extreme northwestern parts of the islands 
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are the most exposed due to the predominant northeasterly winds, while the main currents 
flow towards the southeast (Harvard, 1978; 1979; 1980) (see Chapter 2). 

For the purpose of the present study, three spatial scales were selected to test the proposed 
hypotheses: (i) large (kilometres); (ii) medium (few hundreds of metres); and small (tens of 

metres) (Figure 16). Establishing four sampling stations at each spatial scale enables 

adequate replication between different P. oceanica bed types, across a number of spatial 

scales (Chapter 2). 

LOCATIONS Ramla Bay Mellieha Bay White Rocks St Thomas Bay 
(RB) (MB) (WR) (STB) 

RCRCRC 

IIII ----I 
SITES WITHIN LOCATION Site A Site B Site C Site D 

RCRCRC 

PLOTS WITHIN SITE Plot 1 Plot 2 Plot 3 Plot 4 

RCRCRCRC 

Figure 16. The experimental design. There are four plots (small scale) in adjacent continuous and 
reticulate Posidonia oceanica beds, all of which are nested within site A in Mellieha Bay. The 
four sites A-D (medium scale) are located within Mellieha Bay, one of the four locations (large 
scale). 

To test for differences in the plant architecture of reticulate and continuous P. oceanica 

bed types over the large spatial scale, sampling stations were established within each of the 

two different bed types, at each of the four different locations (Figure 17). To test for 

differences in architectural characteristics of the two P. oceanica bed types over the 

medium spatial scale, four sites, separated from each other by a distance of circa 150 in 

were selected within one of the locations, Mellieha Bay (Figure 18a). Each site measured 

50 mx 100 m and had continuous and reticulate bed types (Figure l8b). To test for 

differences over the small spatial scale, eight plots (four plots in the continuous and four in 
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Figure 18. (a) Map of Mellieha Bay showing the bathymetry (2 m, 5 in, 10 in and 20 in depth 

contours) and the location of the four sites (A to B); (b) the four sites within Mellieha Bay (R = 
reticulate Posidonia oceanica bed and C= continuous Posidoni, a oceanica bed); and (c) the 
location of the plots within Site A (plots I to 4 in each of the two bed types). 

the reticulate type meadows), each measuring 25 mx 25 m, were selected within site A in 

Mellieha Bay Figure 18c). 
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3.2.2 Data collection and analyses 

To measure seagrass architectural characteristics, twelve orthotropic (vertically-growing) 

shoots (e. g. Mazzella et al., 1989) were collected from adjacent reticulate and continuous 

P. oceanica beds, at each of the three spatial scales considered. Plants sampled were at 

least Im apart and from at least Im inside the bed edge. Shoot density estimates were 

made in adjacent reticulate and continuous P. oceanica beds, at each of the three spatial 

scales considered, by counting the number of shoots enclosed in f2 our replicate 0.05 m 

samples taken using the corer (see Chapter 2) designed for the study of associated fauna 

(Chapter 5). All sampling was carried out between 2 nd August and 4 th September 1999. 

In the laboratory, the leaves of each shoot were counted, and estimates were made of the 

number of leaves, leaf width and leaf length (± I mm) for each shoot sample. Estimates of 

shoot biomass were obtained by scraping off all epiphytes, drying the leaves for 24 h in an 

oven at 80'C, and weighing (± 0.001g) the dry leaf and epiphyte fractions separately. 

Two-factor ANOVA tests (with alpha set at 0.05) were carried out on the P. oceanica 

architectural data obtained from each of the three different spatial scales, using an 

orthogonal model in which 'bed type' (two levels) was fixed and 'sampling locality' (four 

levels) was a random factor. At the large (location) and medium (site) spatial scales, data 

from site A and plot I were respectively selected 'a priori' for use in the analyses. Prior to 

analyses, data were tested for homogeneity of variances using Cochran's test and, where 

necessary, appropriate transfon-nation of data was carried out (Underwood, 1997). 

Analyses were carried out using the PC software package GMAV5 produced at the 

University of Sydney (GMAV5,1996). When the ANOVA indicated significant 

differences, the source of difference was identified using Student Neuman Keuls (SNK) 

tests Underwood (1997). SNK tests use an estimate of the standard error of the mean in 
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each treatment to make comparisons between all pair combinations of means, after they 

have been arranged in rank order from the smallest to largest (Underwood, 198 1). SNK 

tests were also used to identify the source of difference when the ANOVA indicated a 

significant interaction. However, when investigating a significant interaction, rather than 

using SNK tests that compare the means for the main effects (as can be done when 

ANOVA does not indicate a significant interaction), means of the levels of one factor were 

compared within each level of the other factor, and vice-versa (Underwood, 1981). 

3.3 RESULTS 

Although there were general trends in the seagrass architectural measures taken, there were 

always exceptions. For example, mean shoot densities were generally higher for 

continuous than reticulate beds at each spatial scale, but the reverse was found at White 

Rocks and St Thomas Bay at the large scale, and in plot D at the medium scale (Figure 19 

a- c). ANOVA indicated a significant interaction between the two factors at the large 

scale, while significant differences in shoot density values between the two different bed 

forms were present only at the small scale. The significant interaction detected at the large 

spatial level was attributed to significant differences in shoot density: (i) between 

continuous and reticulate beds at Mellieha Bay and St Thomas Bay (SNK; p<0.05), and 

(ii) between the continuous bed at Ramla Bay and continuous beds at the other three sites 

(SNK; p<0.01), and between the reticulate bed at Ramla Bay and the reticulate bed at 

Mellieha Bay (SNK; p<0.05). The significant difference between the two bed types at the 

small spatial level was attributed to significant differences in shoot density between the 

two bed types, averaged over the four plots (SNK; p<0.01) (Table 7). 
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Shoot biomass values recorded from the two different bed types were similar at the large 

and small scales. However, at the medium scale, values recorded from reticulate beds were 

generally higher than those of continuous beds (Figure 19 d-0. ANOVA did not detect 

any significant differences in shoot biomass values between the two different bed types at 

any of the three spatial scales. On the other hand, significant differences were detected for 

the factor 'sampling locality' at the large scale and a significant interaction was detected 

between the two tested factors at the medium scale. The significant difference in the factor 

'sampling locality' at the large scale was attributed to significant differences in shoot 
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Figure 19. Mean values of shoot density (a - c), shoot blomass (d - f) and leaf width (g - i) at the 

three spatial levels: large (a, d& g), medium (b, e& h) and small (c, f& i). Error bars are +1 SD. 
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biomass, averaged over the two bed types: (i) between Ramla Bay and Mellieha Bay 

(SNK; p<0.05), and (ii) between Mellieha Bay and White Rocks (SNK; p<0.05), with 

shoot biomass averaged over the two bed types (Table 8). The significant interaction 

between the two tested factors at the medium scale was attributed to significant 

differences: (i) between the two bed types at site B (SNK; p <0.01) and site C (SNK; p< 
0.01); and (ii) between the continuous bed at site B and the continuous bed at site D (SNK; 

p<0.05), between the reticulate bed at site A and the reticulate bed at site C (SNK; p< 

0.05), and between the reticulate bed at site B and the reticulate bed at site C (SNK; p< 

0.05) (Table 8). 

Table 7. Summary of ANOVA results for shoot density (per quadrat). The significance of Cochran's test following transformation (where applicable) is indicated. NS = not significant; 
p<0.05; ** = 1) < 0.01, *** =D<0.001. 

Spatial level Source of variation df Shoot density 
n=4 

Transformation: none 
Cochran's test: NS 

Ms F P 
Large Bed type (B) 2.53 0.02 NS 

Location (L) 3 236.78 9.34 
BxL 3 112.11 4.42 

Residual 24 25.36 
Medium Bed type (B) 1 300.12 2.68 NS 

Site (S) 3 75.87 1.24 NS 
BxS 3 111.87 1.83 NS 

Residual 24 61.06 
Small Bed type (B) 1 258.78 46.09 

Plot (P) 3 55.11 1.23 NS 
BxP 3 5.61 0.12 NS 

Residual 24 44.93 

Leaf width values recorded from the two different bed types were similar and no general 

pattern was evident (Figure 19 g- i); no significant differences were detected by ANOVA 

between the two different bed types at any of the three spatial scales. Significant 

differences were, however, detected by ANOVA for the factor 'sampling locality' at the 

large scale. This was attributed to significant differences in leaf width, averaged over the 
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two bed types, between Ramla Bay and St Thomas Bay (SNK; p<0.05), and between 

Ramla Bay and Mellieha Bay (SNK; p<0.05) (Table 8). 

Generally, the mean number of leaves and the mean leaf lengths were similar, although 

there was a tendency for the number of leaves per shoot to be larger in continuous beds at 

the large scale, and for leaves to be longer in reticulate beds at the small scale (Figure 20). 

Table 8. Summary of ANOVA results for shoot biomass (g dw per shoot) and mean leaf width 
(cms). The significance of Cochran's test following transformation (where applicable) is 
indicated. NS = not significant; *=p<0.05; ** =p<0.01; p<0.001. 

Spatial 
level 

Source of 
variation 

df Shoot biomass 
n= 12 

Transformation: none 
Cochran's test: NS 

Leaf width 
n= 12 

Transformation: none 
Cochran's test: NS 

NIS F P NIS F P 
Large Bed type (B) 1 0.0241 0.15 NS 0.001 0.03 NS 

Location (L) 3 0.4230 3.55 0.013 3.26 
BxL 3 0.1577 1.32 NS 0.002 0.45 NS 

Residual 88 0.1191 0.004 
Medium Bed type (B) 1 0.9101 3.05 NS 0.004 0.74 NS 

Site (S) 3 0.2909 2.96 0.005 1.36 NS 
BxS 3 0.2980 3,03 0.005 1.35 NS 

Residual 88 0.0983 0.004 
Small Bed type (B) 1 0.1828 7.28 NS 0.002 0.21 NS 

Plot (P) 3 0.0147 0.33 NS 0.004 0.11 NS 

I 
BxP 3 0.0251 0.57 NS 0.001 0.29 NS 

I Residual 88 0.0442 0.004 

ANOVA detected significant differences between the two different bed forms for number 

of leaves at the large scale and for leaf length at the small scale. Significant differences in 

leaf length values were also detected for the factor 'sampling locality' at the large and 

medium scales. The significant difference in number of leaves detected for 'bed type' at 

the large scale was attributed to significant differences between the two bed types (SNK; p 

< 0.05), averaged across the four locations. The significant difference in leaf length 

detected for 'bed type' at the small scale was attributed to significant differences between 

the two bed types in plot 4 (SNK; p<0.05). The significant difference in leaf length 
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Figure 20. Mean values of number of leaves per shoot (a - c) and leaf length (d - f), at the three 
spatial levels: large (a & d), medium (b & e) and small (c & f). Error bars are +1 SD. 

Table 9. Summary of ANOVA results for mean leaf length per shoot (cm) and mean number of 
leaves per shoot. The significance of Cochran's test following transformation (where applicable) 
is indicated. NS = not significant; *=p<0.05; ** p<0.01; *** =p<0.001. 

Spatial 
level 

Source of 
variation 

df Mean number of leaves 
n= 12 

Transformation: none 
Cochran's test: NS 

Mean leaf length 
n= 12 

'Transformation: Ln (X) 
Cochran's test: NS 

NIS F P MS F P 

Large Bed type (B) 1 1.50 27.00 0.0042 0,05 NS 
Location (L) 3 0.55 0.58 NS 0.21 4.57 

BxL 3 0.06 0.06 NS 0.093 1.99 NS 
Residual 88 0.96 0.047 

Medium Bed type (B) 1 0.17 0.10 NS 145.51 1.29 NS 

Site (S) 3 0.57 0.68 NS 747.06 12.17 
BxS 3 1.69 2.02 NS 112.61 1.83 NS 

Residual 88 0.84 61.38 
Small Bed type (B) 1 0.014 0.02 NS 649.47 33.67 

Plot (P) 3 1.094 1.51 NS 44.42 1.25 NS 

I BxP 3 0.45 0.63 NS 19.29 0.54 NS 
I Residual J 88 ý 0.72 35.47 

- 
'Transformation was only necessary for 'location' data. 
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detected for the factor 'sampling locality' at the large scale was attributed to signifIcant 
differences, averaged over the two bed types, between Ramla Bay and Mellieha Bay (SNK; 

p<0.01), and between Ramla bay and White Rocks (Table 9). 

Overall, the results of ANOVA indicated that most of the significant differences detected 

were associated with the factor 'sampling locality' rather than 'bed type', thereby 

indicating a general similarity in the foliar architecture between reticulate and continuous 

bed types of P. oceanica. However, significant differences in bed architectural 

characteristics were detected between different sampling localities at the various spatial 

scales examined, indicating significant spatial variation in P. oceanica bed architecture. 

3.4 DISCUSSION 

The results of the present study show that there were no consistent patterns in bed 

architecture between the two different P. oceanica bed types. Furthennore, ANOVA 

indicated that most of the detected significant differences were associated with 'sampling 

locality', thereby, indicating a predominance of spatial differences in bed architecture 

rather than consistent differences between the two different bed types. Therefore, the null 

hypothesis of no differences in architectural characteristics between the two bed types was 

accepted. 

Physical and biotic environmental factors have different magnitudes of influence on 

different seagrass bed types. For example, currents and strong wave action may be 

expected to cause greater physical stress on reticulate than on continuous beds, since the 

former have a greater edge to area ratio (Foncesa et al., 1983; Irlandi et al., 1995). Re- 
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suspension of sediment, originating from the sandy patches interspersed amongst the 

reticulate beds (Gacia & Duarte, 2001), would decrease the amount of light available to 

plants located in reticulate beds, through a reduction in water transparency, leading to 

reduced photosynthetic rates and subsequent lower growth rates and changes in plant 

architectural characteristics (see Hemminga & Duarte, 2000 and references therein). The 

greater edge to area ratio of reticulate beds may also render plants making this bed type 

more exposed to physical injury resulting from grazing by fishes and other megafaunal 

species (Cebrian et al., 1996) that may exert larger feeding pressures along the border of 

seagrass beds. It may be predicted, therefore, that such environmental and biotic stresses 

would impact plants within reticulate beds more than those located within continuous beds, 

resulting in consistent architectural differences between the two different bed types. 

However, in the case of the P. oceanica beds studied, the present results do not support 

this proposition. 

Some differences in P. oceanica bed architectural measures were detected between 

reticulate and continuous beds, but the inconsistency of these differences was highlighted 

by significant interactions between the two factors 'sampling locality' and 'bed type' for 

shoot density at the large scale and for biomass at the medium scale. For example, at the 

large scale, shoot density values were higher for the continuous beds at Ramla Bay and 

Mellieha Bay, but the reverse was true at White Rocks and St Thomas Bay where shoot 

density values were higher for the reticulate beds. Significant differences between the two 

different bed types were detected also for shoot density and leaf length at the small scale, 

and for number of leaves at the large scale. However, there were no broadly consistent 

patterns of occurrence of differences over the three spatial scales considered. Furthennore, 

ANOVA indicated that most of the significant differences detected were associated with 

the factor 'sampling locality' rather than 'bed type'. 
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In the present study, the lack of a clear difference in the plant architecture between the two 

different bed types, over a number of spatial scales, is somewhat unexpected considering 

the observations of previous studies for other species of seagrass (e. g. Zostera marina). For 

example, Irlandi (1997) noted significant differences in shoot density between small (I m 

across) and large (5 - 10 m across) Zostera marina patches. Hovel & Lipcius (2001) also 

found significant differences in the same architectural measure between small (area <1 m) 

and large (area = 1000 - 3000 M2) patches of the same seagrass. However, comparisons of 

shoot density of the same seagrass between larger patches of different sizes, did not detect 

significant differences in this architectural measure. For example, Bowden et al. (2001) did 

not find significant differences in shoot density between patches having a diameter of 15 in 

and 30 m, while the same held true for the study by Hovel & Lipcius (2001) when 

comparing this architectural measure between a nearly continuous bed (area = 30,000 ra 

and 'connected' patches (area = 10 - 100 rn 2) 
. Therefore, at least for Zostera marina, it 

appears that significant differences in shoot density of healthy seagrass beds are mainly to 

be expected when companng very small patches (circa 1 m) with larger patches or 

continuous stands. On the other hand, spatial differences in architectural characteristics 

within the same Zostera marina bed have been observed (e. g. between different in-patch 

locations for the same seagrass patch; see Bowden et al., 2001), indicating potential small- 

scale 'within-bed' variation. 

Several studies have indicated that a number of physical and biological environmental 

characteristics differ between the edge and inner parts of a seagrass bed. These include 

seagrass bed architecture (e. g. Duarte & Sand-Jensen, 1990; Bowden et al., 2001) and the 

abundance of associated fauna (e. g. Irlandi et al., 1995; Bologna, 1998). However, such 

4 edge effects' do not appear to extend to the core of a seagrass bed, unless the latter have a 

small area (e. g. small patches measuring one or two metres across) such that they consist 
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almost entirely of edge habitat. Consequently, comparisons of bed architectural 

characteristics between large patchy/reticulate and continuous seagrass beds, based on 

samples taken away from the edge (as was deliberately planned in the present sampling 

design to eliminate the potential confounding influence of 'edge effects'), indicate similar 

physical and biological characteristics. The results for P. oceanica beds obtained from the 

present study support this notion (for bed architectural characteristics). 

The present study indicated that most of the detected sIgnificant differences in P. oceanica 

bed architectural characteristics were associated with 'sampling locality', thereby 

indicating a predominance of spatial differences in bed architecture rather than consistent 

differences between the two different bed types. Although the results obtained from the 

4 small' and 'medium' spatial scales (inside Mellieha Bay) should not be extrapolated to the 

three other locations considered in the study, they are consistent with the findings of other 

workers who examined the spatial variation of P. oceanica bed architectural characteristics 

(e. g. Panayotidis et al., 1981; Scardi et al., 1989; Balestri et al., 2003). For example, in 

their study of the spatial variation of P. oceanica bed architectural characteristics over a 

number of spatial scales, varying between tens of kilometres and a few metres, Balestri et 

al. (2003) noted significant differences, with most variability being detected at the 

following two spatial levels: 'tens of kilometres' and 'few hundred metres'. The present 

results are comparable with those obtained from the latter study. However, the extent of 

such variability between different bed types of P. oceanica has not been reported 

elsewhere. 

The spatial variations in plant architecture recorded by the present study are due, probably, 

to differences in the degree of influence exerted by edaphic factors, such as the 

hydrodynamic regime and the physico-chemical properties of the substratum (e. g. Fonseca 
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& Bell, 1998). In the present study, the significant difference in plant architecture detected 

at the large spatial level between P. oceanica beds at Ramla Bay and those present in the 

other locations was due to higher shoot densities, narrower leaf width and higher leaf 

length values recorded from the former location. It appears, therefore, that the P. oceanica 
beds at Ramla Bay (the location which is most exposed to the predominant northwest 

winds; Chapter 2) have responded to the higher energy environment, by having longer and 

narrower leaves. Some Mediterranean workers have noted changes in plant architecture of 

P. oceanica beds located in certain physical environmental conditions (e. g. high energy 

hyrodynamic regimes and/or bottom geomorphology), to which the seagrass responds by 

increasing leaf area (e. g. Wittman, 1984; Abbate et al., 2000). Increases in leaf area enable 

the plants to optimise the photosynthetic yield to meet the high physiological demand 

required by the seagrass to survive in such conditions. Other studies have shown that the 

plant architecture of Zostera marina beds is influenced by variations in the interstitial 

ammonium concentrations of the sediment (Short, 1983). However, large variations in 

sediment chemical properties between the different sampling localities in the present study 

are not expected. 

In general, landscape ecological studies dealing with seagrass habitats are relatively recent 

and are lacking for P. oceanica beds. As far as is known, the present study is the first to 

examine differences in P. oceanica architectural characteristics between different bed types 

over a range of spatial scales. The results of the present study do not yield any evidence 

that changes in P. oceanica bed types (continuous -+ reticulate) that may result from 

anthropogenic or natural habitat fragmentation, affect overall the habitat architecture 

within the beds. That is, the present results suggest that from a 'within' habitat structure 

perspective, reticulate and continuous P. oceanica should be treated as having broadly 

similar within bed architectural characteristics and, hence, presumably of similar 
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ecological value for the associated macroinvertebrate fauna. However, it should be 

remembered that changes in bed type will bring about changes in habitat area and 

configuration (Hernminga & Duarte, 2000) that will have consequences for some fauna 

that associate with seagrass (e. g. fish; Bell & Hannelin-Vivien, 1982; Harmelin-Vivien, 

1982; Procaccini et al., 2003). Furthennore, the observed spatial variation in P. oceanica 

architecture, that was apparently independent of bed type, may have important implications 

for the associated faunal assemblages, given that the species richness and abundance of 

macrofauna inhabiting seagrass beds are known to be influenced by variations in seagrass 

structural complexity (Heck & Wetstone, 1977; Heck & Orth, 1980a; Tolan et al., 1997; 

Webster et al., 1998; Lee et al., 2001) that are likely to operate in taxon-specific ways (the 

4perception windows' of Attrill et al., 2000). It would be useful, therefore, to examine 

whether the species richness and abundance of the motile macroinvertebrate biota 

associated with P. oceanica varies with plant architecture (and combinations of 

architectural attributes, i. e. complexity) and whether this relationship is independent of bed 

type or not (Chapter 4). The results of such a study would serve to better infonn 

environmental managers of the relative ecological value of reticulate and continuous P. 

oceanica beds. 
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CHAPTER 4 

INFLUENCE OF POSIDOMA OCEANICA 
BED TYPE AND PLANT ARCHITECTURE 

ON ASSOCIATED MOTILE 
MACROINVERTEBRATES 
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4.1 INTRODUCTION 

Concern amongst ecologists and conservation biologists about the loss of biodiversity that 

may result from habitat fragmentation (Wilcox & Murphy, 1985; Wilson, 1992; Hobbs, 

1994) has increased in recent years in parallel with increased awareness of human-induced 

environmental degradation. Habitat fragmentation implies disruption of continuity, 

especially as it relates to ecosystem processes (Lord & Norton, 1990). As a result, 

numerous studies have attempted an assessment of the ecological effects of habitat 

fragmentation through investigations of terrestrial (e. g. Andren, 1992) and, to a lesser 

extent, aquatic habitats (e. g. Ward, 1998). The paradigm that habitat fragmentation leads to 

loss of species richness (see review by Wilcox & Murphy, 1985) is mostly supported by 

data for terrestrial habitats, for example studies carried out on forests (Andren, 1992). 

However, recent detailed reviews of terrestrial habitat fragmentation studies (e. g. Halla, 

2002) are critical of the fact that the results obtained sometimes have contradictory 

implications. Fewer studies of habitat fragmentation have been undertaken for the aquatic 

environment, with most of these studies targeting intertidal rocky reef habitats (e. g. 

Keough, 1984; Farrell, 1989; Svane & Setyobudiandi, 1996; Underwood & Skilleter, 1996; 

Anderson, 1998). Attention has been paid also to the effects of fragmentation of sublittoral 

habitats, including coral reefs (Riegl & Riegl, 1996; Acosta & Robertson, 2002) and 

seagrass beds (Irlandi, 1994; 1997; Irlandi et al., 1995; Frost, 1999; Bowden et al., 2001, 

Hovel & Lipcius 2001; 2002). 

Seagrasses form beds, which differ greatly in overall morphology (i. e. bed type) and within 

bed structure (i. e. plant architectural characteristics), depending on the constituent seagrass 

species and on the natural physico-chemical and biological characteristics of the particular 

locality where the beds occur (Fonseca et al., 1983; Kirkman & Kuo, 1990). Natural 

abiotic factors such as water movement (e. g. Fonseca & Bell, 1998), bottom 
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geomorphology (e. g. Fonseca et al., 2002), physico-chemical properties of the sediment 

(e. g. Koch, 2001; Terrados et al., 1998) and water quality (e. g. Nienhuis, 1983), together 

with natural disturbance events, such as stonns (e. g. Patriquin, 1975; Kinnan & Kuo, 

1990) and biotic process such as bioturbation (Suchanek, 1983; Valentine et al., 1994; 

Townsend & Fonseca, 1998) and grazing (Hovel & Lipcius, 2001; Preený 1995), may also 

play a role in influencing the morphology of seagrass beds and their architectural 

characteristics. As a result, the morphology of seagrass beds varies widely from small 

patches (e. g. measuring I- 20 m in diameter; Irlandi, 1997; Frost et al., 1999; Reusch, 

1998; Hovel & Lipcius, 2002) to reticulate beds (beds interspersed with soft sediment or 

other habitat types (e. g. Holt et al., 1983; Kirkman & Kuo, 1990; Barbera Cebrian et al., 

2002) to large continuous 'meadows' (Fonseca et al., 1983; Fonseca & Bell, 1998). 

Within-bed structure varies depending on plant architectural characteristics (e. g. shoot 

density, leaf density, leaf length and leaf width) and on the plant's general growth pattern 

(e. g. simple strap-like or branching leaves; Orth et al., 1984). Moreover, the stability of 

seagrass beds varies from one locality to another, such that some exhibit changes in size 

and position, while others are more stable and retain their original configuration over a 

long period of time (den Hartog & Phillips, 2001). 

Differences in bed type and plant architectural characteristics between different seagrass 

beds over large spatial scales result in varied landscapes and, possibly, in variations in 

habitat characteristics which are expected to influence the species composition of the 

associated faunal assemblages (Robbins & Bell, 1994; Reusch, 1998; Hovel & Lipcius, 

2002). For example, predation pressure is expected to be higher in reticulate (fragmented) 

beds than in continuous (non-fragmented) beds, since the presence of bare sand 

interspersed amongst the former bed type would enable a higher mobility of predators 

(Holt et al., 1983) and hence more efficient foraging (e. g. Irlandi, 1994; Irlandi et al., 1995; 

Hovel & Lipcius, 2002). 
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Besides predation, other biotic factors are expected to result in small changes in the 

assemblage composition of motile macroinvertebrates between the two different bed types, 

given that fragmented beds have a much larger edge to area ratio than continuous beds. 

These include preferential selection for seagrass edges by some species (e. g. mysids; 

Bdrbera Cebrian et al., 2002 and decapods; Eggleston et al., 1998), higher larval settlement 

at bed borders (McNeill & Fairweather, 1993; Bologna & Heck, 2000; Tanner, 2003) and 

enhanced food delivery (e. g. for infaunal bivalves; Irlandi, 1996) in fragmented beds. For 

example, Reusch (1998) found that recruitment of the mussel Mytilus edulis Linnaeus was 

optimal in medium sized (1.6 m across) Zostera marina Linnaeus beds. Plant architecture 

would also be expected to influence the species richness and abundance of associated 

macrofauna both directly and indirectly. For example, differences in seagass leaf 

morphology have been shown to influence directly the abundance of associated motile 

epifauna, since some seagrasses have an external anatomy that enhances physical 

complexity more than others (e. g. Schneider & Mann, 1991; Kenyon et al., 1997). 

Differences in the density of plants and leaves, the total area of leaf surface available, and 

leaf turnover (which influences the colonisation pattern of leaf epiphytes), are also 

important in directly determining the diversity of associated macrofauna, since variation of 

these plant attributes translates to variation of within-bed architectural complexity and, 

hence, differences in habitat structure (e. g. Lewis, 1984). Furthermore, the dynamic leaf 

turnover (e. g. Alcoverro et al., 1997a) would influence the structure and composition of the 

epiphytic assemblages (e. g. Gambi et al., 1992), which may in turn influence the species 

richness and abundance of macrofauna feeding on the epiphytes. The presence of 

macroalgae and epiphytes directly imparts additional physical complexity to the seagrass 

bed, which may enhance habitat space (Schneider & Mann, 1991) or act as an obstacle for 

some macrofauna (Heck & Orth, 1980a). Differences in bed type and plant architecture also 

have an indirect influence on the associated biota by exerting different magnitudes of 
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influence on water movement (e. g. Worcester, 1995; van Keulen & Borowitzka, 2000) and 

on the physico -chemical properties of nearby sediments (Fonseca et al., 1983). 

Certain anthropogenic activities, for example trawling (Sanchez Lizaso et al., 1990; Martin 

et al., 1997; Sanchez Jerez et al., 2000) and deployment of boat moorings (e. g. Hastings et 

al., 1995) may cause direct physical alterations in the morphology and within-bed structure 

of seagrass beds. The recent increased awareness of the global decline of seagrasses (Short 

& Wyllie Echeverria, 1996; Ruckelshaus & Hays, 1998; Green & Short, 2003) has 

highlighted the urgency of examining whether fragmented seagrass beds support the same 

species richness and abundance of associated biota as non-fragmented beds. Given the lack 

of data on the direct consequences of fragmentation of seagrass habitat on the diversity of 

associated biota (Irlandi, 1994; 1997; Irlandi et al., 1995; Frost, 1999; Bowden et al., 2001, 

Hovel & Lipcius 2001; 2002), it is useful for ecologists to examine the biotic diversity of 

different naturally occurring seagrass bed types, so that coastal managers can be provided 

with the information that will help them predict the consequences of fragmentation of 

seagrass beds resulting from anthropogenic disturbance. A small number of studies have 

addressed the likely influence of seagrass bed fragmentation in this manner by comparing 

the flora and fauna between continuous and patchy beds (Irlandi, 1994; Irlandi et al., 1995; 

Frost et al., 1999; Hovel & Lipcius, 2001; Hovel & Lipcius, 2002) and between differently 

sized patches (McNeill & Fairweather, 1993; Bell et al., 2001; Bowden et al., 2001; 

Irlandi, 1997). Comparisons of motile macroinvertebrate assemblages associated with 

continuous and reticulate seagrass beds are largely unavailable (but see Hovel & Lipcius, 

2001; 2002), despite the possibility that the latter may constitute the first stage in 

fragmentation of continuous beds (Fonseca & Bell, 1998). 

In the Mediterranean Sea, the endemic Posidonia oceanica forms beds that are 

characterised by variable morphology and high structural complexity. P. oceanica grows 
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on both soft and hard substrata, and fanns several different bed types, including patchy, 

reticulate and continuous beds (e. g. Colantoni et al., 1982; Sanchez Jerez et al., 1999a; 

Buia et al., 2000; Barbera an 1.3). J Cebri' et al., 2002), and other particular forms (Section 

Reticulate P. oceanica beds (frequently referred to as 'intermatte' beds; e. g. Calvo & 

Frada-Orestanio, 1984) constitute naturally fragmented seagrass beds (Sanchez Jerez et al., 

1999a; Barbera Cebrian et al., 2002), whose structure is determined by a complex suite of 

envirom-nental factors. Because of such large vanation in bed morphology, P. oceanica 

beds are ideal candidates for studies that address the influence of seagrass bed type on the 

diversity of the associated macrofauna. However, their use in such studies has only been 

recognised by very few workers (e. g. Barbera Cebrian et al., 2002). Thus, it is evident that 

data collected from different bed types of P. oceanica will contribute to our understanding 

of how seagrass habitat fragmentation may affect the diversity of the associated biotic 

assemblages. Consideration of different spatial levels in such studies is crucial, given that 

the distribution patterns of biotic assemblages and the processes influencing them are scale 

dependent (Wiens et al., 1986; Wiens, 1989; Levin, 1992); hence proper understanding of 

community dynamics in seagrass habitats can only be achieved by considering more than 

one spatial scale. Furthermore, selection of the appropriate scales of study ultimately 

depends on the size(s) of the particular species under study, given that organisms of 

different sizes have different 'perceptions' of their habitat (the 'perception windows' of 

Attrill et al., 2000). 

Therefore, the first aim of the present study was to establish whether the species richness, 

abundance and composition of associated motile macroinvertebrates (i. e. excluding 

sponges, hydroids, bryozoans and foraminiferans), differed between seagrass beds of 

different type, over a range of spatial scales. To address this aim, the null hypotheses tested 

were that the species richness and abundance of motile macroinvertebrate assemblages 

associated with reticulate and continuous P. oceanica beds did not differ between the two 
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bed types, over spatial scales varying from kilometres to metres. The second aim was to 

establish whether seagrass plant architectural characteristics (Chapter 3) had any 

significant influence on the species richness, abundance and assemblage composition of 

macroinvertebrates associated with P. oceanica beds, again at spatial scales varying from 

kilometres to metres. To address the latter aim, the null hypothesis tested was that seagrass 

plant architectural characteristics did not have a significant influence on the species 

richness, abundance and composition of motile macroinvertebrate assemblages associated 

with P. oceanica beds, over spatial scales varying from kilometres to metres. 

4.2 MATERIALS AND METHODS 

4.2.1 Study area and experimental design 

Surveys have shown that most of the different P. oceanica bed types described in the 

literature from other parts of the Mediterranean also occur around the Maltese islands 

(Borg & Schernbri, 1995a; Borg et al., 1997). Detailed surveys aimed at mapping the 

occurrence and spatial extent of the different P. oceanica bed types present, were carried 

out at four chosen locations in the Maltese islands: Ramla Bay, Mellieha Bay, White Rocks 

and St Thomas Bay (Figure 17). The reasons why these locations were chosen and details 

of the physical environmental characteristics of the four locations are given in Chapters 2 

and 3. 

To test for differences in motile macroinvertebrate assemblages associated with reticulate 

and continuous P. oceanica bed types over the spatial scale of kilometres (large spatial 

scale), sampling stations were established within each of the two different bed types, at 

each of the four different locations. To test for differences between the two P. oceanica 

bed types over a spatial scale of a few hundred metres (medium spatial scale), four sites, 
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separated from each other by a distance of circa 100 m were selected within one of the 

locations (Mellieha Bay) (Figure 18a). Each site measured 50 x 100 m and comprised 

continuous and reticulate bed types (Figure l8b). To test for differences over a spatial scale 

of tens of metres (small spatial scale), eight plots (four plots in the continuous and four in 

the reticulate beds, each measuring 25 in x 25 m), were selected within a single site (site A 

in Mellieha Bay; Figure 18c). The overall experimental layout, based on a staggered nested 

design (Section 2.1.1), is shown in Figure 16 (Section 3.2.1). 

4.2.2 Sampling and laboratory analyses 

Sampling of P. oceanica in the two different bed types was carried out using a specially 

designed corer having a diameter of 25 cm, to which a 0.5 mm mesh collecting bag was 

attached. The design, selection, justification and operation of this particular corer are 

described in Chapter 2. Using this sampler, four replicate cores were collected by SCUBA 

divers from adjacent reticulate and continuous beds, at each of the three spatial levels 

considered (i. e. 20 stations x4 replicates = 80 samples). All sampling stations were located 

within a narrow depth range (9 - 12 m; see Chapter 3). To reduce edge effects, cores were 

collected at least 2m away from bed boundaries. Four replicate samples were also 

collected from each sampling station using a smaller (10 cm) diameter metal corer, to 

enable physico-chemical examination of the sediment and of the root-rhizome material. To 

obtain estimates of epiphyte (algal and sessile fauna) biomass on P. oceanica shoots, 

twelve orthotropic (vertically-growing) shoots were collected from each sampling station 

located within the adjacent reticulate and continuous beds, at each of the three spatial 

levels. Plants sampled were at least I in apart and located at least I in inside the bed edge 

(see Section 3.2.2 for details of sampling procedure). All sampling was carried Out between 

10-00 h and 14.00 h during the period 2 nd August to 4th September 1999. To avoid variation 

in the corer sampling technique, samples were collected by the same diver (the author), 

while the accompanying diver assisted by closing the draw-string of each sample collecting 
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bag, and securing the sample to a line attached to the accompanying boat that was 

anchored on site. 

In the laboratory, samples collected using the 25 cm diameter corer were washed in 

seawater, the shoots/leaves and root-rhizome matrix separated, examined carefully by eye 

and the motile macroinvertebrates removed. The number of shoots per core was counted to 

determine estimates of shoot density. The total shoot/leaf and root-rhizome fractions 

(separately) were first scraped free from epiphytes and then washed in freshwater and dried 

at 80'C for 48 h to constant weight (± 0.001g), to obtain biomass estimates. The remaining 

sediment and washings were passed through a 0.5 mm sieve and the retained material 

sorted in trays under a x5 magnifying lens to remove any remaining motile 

macroinvertebrates. The macroinvertebrates were fixed in 10% fonnaldehyde in seawater 

and transferred to 70% ethanol prior to identification to species level using microscopy 

(x12 - x150) and appropriate taxonomic keys (Tortonese, 1965; Fauvel, 1969a; 1969b; 

Fauchald, 1977; Ruffo, 1982; 1989; 1993; 1998; Cachia et al., 1991; 1996; 2001; Poppe & 

Goto, 1991; 1993; Falciai & Minervini, 1992). Where identification to species level was 

not possible, the putative species present were labelled using an alphabetical code (e. g. 

Cirratulidae sp. A, etc. ). All identified macroinvertebrates were enumerated, and the 

numbers of species and abundance determined per core. 

Samples collected for sediment analyses using the 10 cm diameter corer were first sorted to 

separate the root-rhizome matrix and other plant material from the sediment. Sub-samples 

of the sediment for the determination of total organic carbon were taken and frozen at -50C, 

while the remaining portions for granulometric analysis were dried in air. Analyses to 

deten-nine total organic carbon in the sediment (Walkley & Black, 1934) and mean 

sediment grain size (Folk & Ward, 1957) were carried out following Buchanan (1984). 
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The leaves of the 12 P. oceanica shoots collected separately from the core samples 

shoots/leaves were scraped using a razor blade to remove all the epiphytes present. 

Epiphytic material was then (separately) dried for 24 h in an oven at 80'C and weighed (± 

0.001g) in order to determine the epiphyte biomass per shoot (see Chapter 3). Estimates of 

epiphyte biomass per core were obtained by multiplying mean epiphyte biomass per shoot 

by the P. oceanica shoot density recorded from each core sample. Estimates of leaf area 

per core were obtained by multiplying the mean leaf area per shoot (= total leaf length x 

mean leaf width per shoot; data from Chapter 3) by the P. oceanica shoot density recorded 

from each core sample. 

4.2.3 Data analyses 

Differences in macroinvertebrate species richness and abundance between continuous and 

reticulate P. oceanica beds, at each of the three spatial levels, were tested using two-factor 

ANOVA (with alpha set at 0.05), based on an orthogonal model with two factors: 'bed 

type' (two levels, fixed) and 'sampling locality' (four levels, random). Similarly, 

differences in shoot biomass, leaf area, epiphyte biomass, root-rhizome biomass, sediment 

organic content and mean grain size, were tested using the two-factor ANOVA. Prior to 

analyses, all data were tested for homogeneity of variances using Cochran's test and, 

where necessary, appropriate transfonnations of data were made (see section 4.3.1). 

Analyses were carried out using the software package GMAV5 produced at the University 

of Sydney (GMAV, 1997). When the ANOVA indicated significant differences, the source 

of difference was identified using Student Neuman Keuls (SNK) tests Under\vood (1997) 

(see Chapter 3). SNK tests were also used to identify the source of difference when the 

ANOVA indicated a significant interaction (see Chapter 3). 

Where attributes of seagrass architecture and/or sediment demonstrated the same pattern of 

significant differences as macroinvertebrate species richness and abundance, linear 
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regression analysis was used to investigate the corresponding relationship. Furthermore, to 

test whether the infauna were masking the relationship between seagrass architecture and 

the total motile macroinvertebrate assemblages, linear analyses were carried out using the 

same attributes of seagrass architecture, but with a reduced faunal data set from which the 

burrowing bivalves had been removed (i. e. the full macroinvertebrate data set, less the 

burrowing bivalves). Prior to such analyses, all data were checked for non-nality using the 

Shapiro-Wilk Statistic (D'Agostino, 1986) and transforination (In) applied where necessary 

(Section 4.3). The Shapiro-Wilk Statistic was also used to assess regression residuals for 

normality (D'Agostino, 1986), while residual variances were checked for homoscedasticity 

by examining for patterns of increasing or decreasing variance in plots of standardised 

residuals (Draper & Smith, 198 1). 

To test for differences in the composition of assemblages associated with the two different 

P. oceanica bed types at each of the three spatial levels, multivariate analyses was carried 

out on the species-abundance data (. \ý[transfonned, to downweight the contribution of 

dominant species; Clarke & Warwick, 1994) using the PRIMER v5 suite of programs 

(Clarke & Gorley, 2001). The analyses consisted of Non-Metric Multidimensional Scaling 

(NMDS) using the Bray-Curtis index to construct the underlying similarity matrix (Clarke 

& Warwick, 1994). NMDS was chosen on the basis that it is a superior multivariate 

technique (e. g. compared to Principal Components Analysis) in the analyses of biological 

data from ecological communities, since it is less affected by the 'imbalances' of data sets 

resulting from low counts (e. g. abundance) of rare species and/or high counts of dominant 

species (Digby & Kempton, 1987). Furthermore, NMDS requires fewer assumptions about 

the nature and quality of the data compared to other ordination methods (Clarke & 

Warwick, 1994). NMDS uses the rank order of the values in the similarity matrix to depict 

the samples in space (for example, a two-dimensional plot), such that samples that are most 
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similar are grouped closest together, while those that have a low similarity with the other 

samples in the set are placed further apart (Clarke & Warwick, 1994). 

The significance of differences in assemblage composition between samples grouped 

according to bed type was assessed using Analysis of Similarity (ANOSIM; Clarke, 1993). 

The contribution of the different species to the observed similarity within groups of 

samples taken from the same type of bed, and the dissimilarity between groups of samples 

taken from a different bed type, were tested using the Similarity Percentages (SIMPER) 

procedure (Clarke, 1993). SIMPER uses the Bray-Curtis index to compute the average 

dissimilarity between all pairs of inter-group samples and then breaks the average value 

into a separate contribution for each species. The program then averages the contribution 

of each species over all possible sample pair combinations to calculate the contribution of 

the particular species to the overall dissimilarity between the groups being compared. In 

this way, SIMPER identifies and ranks species according to their overall contribution to 

dissimilarity between the various groups of samples (Clarke, 1993), and helps identify the 

species that are good discriminators. Species are good discriminators when they show large 

differences in their respective average abundances (between the sample groups compared) 

and have a high average dissimilarity value and ratio of average dissimilarity to standard 

deviation of dissimilarity (Clarke, 1993). Knowledge of the biology of the discriminating 

species can then be used to interpret the observed differences between groups of samples 

being compared, in the light of possible ecological attributes and mechanisms. 

BIOENV analysis was carried out to examine the relationships between the multivariate 

assemblage composition and measured envirom-nental variables (Clarke & Ainsworth, 

1993). BIOENV enables linking of the multivariate assemblage composition to a specified 

set of environmental variables, by ranking the latter in order of importance, based on the 

best match with the biotic data. The underlying computation in the BIOENV procedure 
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consists of comparison of the similarity matrix for the species-abundance data with the 

similarity matrix for the environmental data, using Spearman's rank correlation coefficient 
p, (Clarke & Ainsworth, 1993). The environmental variables included in the analysis were 

shoot biomass, root-rhizome biomass, shoot density, leaf area, mean sediment gain size, 
total organic carbon in sediment and epiphyte biomass. 

4.3 RESULTS 

4.3.1 Univariate analyses 

Macroinverteb rates 
A total of 6227 individuals were collected (22 nemerteans, 166 sipunculids, 1690 

polychaetes, 12 pyenogonids, 3421 crustaceans, 805 molluscs and III echinodenns), 

comprising 316 species of motile macroinvertebrates (3 nemerteans, 3 sipunculids, 71 

polychaetes, 2 pycnogonids, 109 crustaceans, 109 molluscs and 19 echinoderms; see 

Appendix B). 

There was no obvious consistent pattern of differences in values of total macroinvertebrate 

ý11 abundance and species richness between continuous and reticulate beds at the three spatial 

levels and, overall, values recorded from the two different bed types for a given location 

were somewhat similar (Figure 2 1). However, higher values of total abundance and species 

richness were recorded from both continuous and reticulate beds at White Rocks and St 

Thomas Bay, than at Ramla Bay and Mellieha Bay (Figure 21 a& d). Higher values of 

total abundance and species richness were also recorded at the medium spatial scale from 

both continuous and reticulate beds at site D, than at other three sites (Figure 21 b& e). 

The ANOVA results (Table 10) for total abundance and species richness did not indicate 

any significant interactions at any of the three spatial levels; however, significant 
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differences were indicated for the factor 'Sampling locality' at the large and medium 

spatial levels respectively. At the large spatial level, total abundance and species richness 

differed significantly: (i) between the continuous bed at St Thomas Bay and the continuous 

beds at Ramla Bay (SNK; p<0.01) and Mellieha Bay (SNK; p<0.01), and between the 

continuous bed at White Rocks and the continuous beds at Ramla Bay (SNK; p<0.01) and 

Mellieha Bay (SNK; p<0.01); and (ii) between the reticulate bed at St Thomas Bay and 

reticulate beds at Ramla Bay (SNK; p<0.05) and Mellieha Bay (SNK; p<0.05), and (for 

species richness only) between the reticulate bed at St Thomas Bay and the reticulate bed 

at Mellieha Bay (SNK; p<0.05). At the medium spatial scale, total abundance and species 

richness differed significantly between the reticulate bed at site D and reticulate bed at site 

B (SNK; p<0.05). 
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Table 10. Summary of ANOVA results for total number of individuals and total number of species. The significance of Cochran's test following transformation (where applicable) is indicated. NS 
not significant; *=p<0.05; ** p<0.01; *** =p<0.001. 

Spatial 
level 

Source of 
variation 

df Total abundance 
(per core) 

n=4 

'Transformation: Xx + 1) 
Cochran's test: NS 

Total species richness 
(per core) 

n=4 

Transforination: none 
Cochran's test: NS 

NIS F P Ms F p 
Large Bed type ýB) 1 0.033 0.01 NS 82.28 1.75 NS 

Location (L) 3 34.38 15.58 2382.61 14.96 
BxL 3 2.48 1.13 NS 46.36 0.29 NS 

Residual 24 2.21 159.22 
Medium Bed type (B) 1 0.05 0.05 NS 3.78 0.05 NS 

Site (S) 3 4.42 4.42 1528.61 4.42 
BxS 3 0.21 0.21 NS 73.78 0.21 NS 

Residual 24 84.40 345.82 
Small Bed type (B) 1 10.12 0.09 NS 40.50 1.84 NS 

Plot (P) 3 202.21 1.45 NS 60.79 1.51 _ NS 
BxP 3 113.37 0.81 NS 22.00 0.55 NS 

Residual 24 139.5 40.33 

'Transfon-nation was only necessary for large spatial level data. 

Plant architecture 

Although there were some trends in the seagrass architectural measures taken, there was a 

lack of consistency in differences between the two bed types (Figures 19 & 20, Chapter 3). 

Overall, the results of two-factor ANOVA for the five plant architectural measures (shoot 

density, shoot biomass, number of leaves per shoot and mean leaf length and leaf width) 

did not indicate consistent differences in bed architecture between the two different P. 

oceanica bed types, over the three different spatial levels. Where significant differences 

were detected by the ANOVA, these were mainly associated with the factor 'sampling 

locality', thereby, indicating a predominance of spatial differences in within-bed 

architecture rather than consistent differences between the two different bed types. The 

results of these analyses have been presented in Chapter I 

There was no consistent pattern of differences in values of shoot epiphyte biomass between 

the two different bed types, at the large spatial level. However, values of shoot epiphyte 
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biomass recorded from continuous beds were somewhat higher than those recorded from 

reticulate beds at both medium and small spatial levels (Figure 22). Furthennore, values 

recorded from St Thomas Bay and White Rocks (large spatial scale) were much higher 

than those recorded from Ramla Bay and Mellieha Bay, while values recorded from sites C 

and D (medium spatial scale) were higher than those recorded from sites A and B (Figure 

22 b). The results of two-factor ANOVA for epiphyte biomass (see Table 11) indicated a 

significant interaction at the large spatial level, but not at the medium and small spatial 

levels. ANOVA also detected significant differences for the factor 'bed type' at the small 

spatial level, and for the factor 'sampling locality' at the medium spatial level. The 

significant interaction detected at the large spatial level was attributed to significant 

differences: (i) between the two different bed types at White Rocks (SNK; p<0.01) and St 

Thomas Bay (SNK; p<0.01); (ii) between the continuous bed at White Rocks and the 

continuous bed at Mellieha Bay (SNK; p<0.01), between the continuous bed at St 

Thomas Bay and continuous beds at the other three locations (SN-K; p<0.01), and 

between the continuous bed at Ramla Bay and the continuous bed at Mellieha Bay (p < 

0.05); and (iii) between the reticulate bed at White Rocks and reticulate beds at the other 

three locations. The significant difference detected for the factor 'sampling locality' at the 
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Figure 22. Mean values of epiphyte biomass at the three spatial levels: large (a), medium (b) and 

small (c). Error bars are +1 SD. 

128 



medium spatial level was attributed to significant differences between site C and sites A 
(SNK; p<0.01) and B (SNK; p<0.01), averaged over the two bed types. The significant 
difference detected for the factor 'bed type' at the small spatial level was attributed to 
significant differences between the two bed types, averaged over the four plots (SNK; p< 
0.05). 

Table 11. Summary of ANOVA results for epiphyte biomass. The significance of Cochran's test 
following transformation (where applicable) is indicated. NS = not significant; p<0.05; p 
< 0.01; p<0.001. 

Spatial level Source of variation Df Epiphyte biomass (g dw per core) 
n= 12 

Transformation: none 
Cochran's test: NS 

Ms F 
Large Bed type (B) 1 6.145 0.15 NS 

Location (L) 3 51.744 48.21 
BxL 3 42.223 39.34 
Residual 88 1.073 

Medium Bed type (B) 1 15.839 6.29 NS 
Site (S) 3 9.193 5.85 
BxS 3 2.518 1.60 NS 
Residual 88 1.572 

Small Bed type (B) 1 0.677 13.14 
Plot (P) 3 2.474 2.81 NS 
BxP 3 0.515 0.06 NS 
Residual 88 

There was no consistent pattern of differences in values of leaf area between the two 

different bed types, at the large and small spatial levels. However, values of leaf area were 

recorded from continuous beds were somewhat higher than those recorded from reticulate 

beds at the medium spatial level (Figure 23). The results of two-factor ANOVA for leaf 

area (see Table 12) did not indicate significant interactions at any of the three spatial 

levels; however, significant differences were indicated for the factor 'sampling locality' at 

the large and medium spatial levels, and for 'bed type' at the medium spatial level. 

ANOVA did not detect any significant differences for either of the two factors tested at the 

small spatial level. The significant difference detected for ' sampling locality' at the large 

spatial level was attributed to significant differences, averaged over the two bed types, 

between Ramla Bay and the other three localities (SNK; p<0.01). The significant 
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difference detected for 'bed type' at the medium spatial level was attributed to significant 

differences between the two bed types, averaged over the four sites (SNK; p<0.05), while 

the significant difference detected for 'sampling locality' at the same spatial level was 

attributed to significant differences between site C and the other three sites (SNK; p< 

averaged over the two bed types. 
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Figure 23. Mean values of leaf area at the three spatial levels: large (a), medium (b) and small (c). 
Error bars are+ I SD. 

Table 12. Summary of ANOVA results for leaf area. The significance of Cochran's test following 
transformation (where applicable) is indicated. NS = not significant; p<0.05; ** p<0.01; 

p<0.001. 

Spatial level Source of variation df Leaf area 
(per core) 

n=4 

Transfonnation: none 
Cochran's test: NS- 

Ms F P 

Large Bed type (B) 0.0111 0.30 ýs 
Location (L) 3 0.3778 27.45 

BxL 3 0.0367 2.66 NS 

Residual 24 0.0138 
Medium Bed type (B) 1 0.0462 11.82 

Site (S) 3 0.1529 4.58 
BxS 3 0.0039 0.12 NS 

- 
Residual 24 0.0334 

Bed type (B) I 0.0262 3.82 NS 

Plot (P) 3 - 0.0316 1.50 NS 

BxP 1 
3 0.0069 

- 
0.33 

- - 
NS 

i 
Residual 24 0.0210 
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Shoot and root-rhizome biomass 

There was no consistent pattern of differences in values of shoot biomass (Figure 24 a-c) 

and root-rhizome biomass (Figure 24 d-f) between the two different bed types, at the three 

different spatial levels. The results of two-factor ANOVA (see Table 13) for shoot biomass 

indicated a significant interaction at both large and medium spatial levels, but not at the 

small spatial level. The significant interaction detected at the large spatial level was 

attributed to significant differences in shoot biomass: (i) between the continuous bed at 

White Rocks and continuous beds at the other three locations (SNK; p<0.0t), and (ii) 

between the two different bed types at White Rocks (SN-K; p<0.05) and at St Thomas Bay 

(SNK; p<0,05). The significant interaction detected at the medium spatial level was 

attributed to significant differences in shoot biomass: (i) between the two different bed 
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Figure 24. Mean values of shoot biomass (a-c) and root-rhizome blomass (d-f) at the three spatial 
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types at site C (SNK; p, < 0.01) and site D (SNK; p<0.01); (ii) between the continuous bed 
at site C and continuous beds at the other three sites (SNK; p<0.05), and (iii) between the 
reticulate bed at site D and reticulate beds at the other three sites (SNK; p<0.01). 

Table 13. Summary of ANOVA results for shoot biomass and root-rhizome biomass. The 
significance of Cochran's test following transfon-nation (where applicable) is indicated. NS = not 
-significant; 

*=p<0.05; ** =p<0.01; =p<0.001. 

Spatial level Source of 
variation 

df Shoot biomass 
(per core) 

n=4 

Transformation: none 
Cochran's test: NS 

Root-rhizome biomass (g) 
(per core) 

n=4 

Transformation: none 
Cochran's test: NS 

MS F P MS F P 
Large Bed type (B) 1 12.12 0.04 NS 17632.07 2.39 NS 

Location (L) 3 495.05 6.62 23214.93 1.99 NS 
BxL 3 301.83 4.03 7373.07 0.63 NS 

Residual 24 74.81 11669.34 
Medium Bed type (B) 1 236.26 0.38 NS 49980.94 2.12 NS 

Site (S) 3 679.49 8.05 6676.82 0.54 NS 
BxS 3 619.53 7.34 23580-81 1.90 NS 

Residual 24 84.40 12442.25 
Small Bed type (B) 1 59.02 2.55 NS 14430.46 1.83 NS 

Plot (P) 3 63.58 1.27 NS 30168.39 4.30 
BxP 3 23.17 0.46 NS 7873.24 1.12 NS 

Residual 24 50.07 7015.99 

The results of two-factor ANOVA (see Table 13) for root-rhizome biomass did not 

indicate any significant interactions at any of the three spatial levels. However, ANOVA 

detected significant differences for the factor 'sampling locality' at the small spatial level, 

which was attributed to significant differences between the continuous bed in plot 4 and 

continuous beds in plots 1 and 2 (SNK; p<0.05). 

Sediment characteristics 

Values of organic carbon in the sediment were higher in continuous beds than in reticulate 

beds at Ramla Bay and Mellieha, but were similar between the two bed types at White 

Rocks and St Thomas Bay (Figure 25 a). Values of organic carbon in the sediment were 

also higher in continuous beds at both medium (Figure 25 b) and small (Figure 25 c) 

scales. The results of two-factor ANOVA (see Table 14) indicated significant interactions 

at the large and medium spatial levels. At the large spatial level, the significant interaction 
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was attributed to significant differences in organic carbon content of the sediment: (i) 

between the two different bed types at Ramla Bay (SNK; p<0.05) and Mellieha Bay 

(SNK; p<0.01); and (ii) between the continuous bed at Mellieha Bay and continuous beds 

at the other three locations (SNK; p<0.01). At the medium spatial level, the significant 

interaction was attributed to significant differences in organic carbon content of the 

sediment: (i) between the two different bed types at all four sites (SNK; p<0.01); and (ii) 

between the continuous bed at site A and the continuous bed at site C (SNK; p<0.05), 

between the continuous bed at site B and the continuous beds at site D (SNK; p<0.05), 

and between the continuous bed at site C and the continuous bed at site D (SNK; p<0.01). 
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Figure 25. Mean values of organic carbon content (a-c) and mean sediment grain size of the 

sediment (d-f) at the three spatial levels: large (a & d), medium (b & e) and small (c & f). Error 

bars are+ I SD. 

The significant difference in the factor 'bed type' at the small spatial scale was attributed 

to significant differences in organic carbon content of the sediment between the two 

different bed types, averaged over the four plots (SNK; p<0.05), while the significant 
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difference in the factor 'sampling locality was attributed to significant differences, 

averaged over the two bed types, between plot D and the other three plots, and between 

plot B and plot C. 

Table 14. Summary ot'ANOVA results for organic carbon content and mean sediment grain size of 
the sediment. The significance of Cochran's test following transformation (where applicable) is 
indicated. NS = not significant; *=p<0.05; **=p<0.0 1; ***=p<0.00 1. 

Spatial level Source of 
variation 

Df Organic carbon in 
sediment 

n=4 

'Transformation: In x 
Cochran's test: NS 

Mean sediment 
grain size (Phi) 

n=4 

Transformation: none 
Cochran's test: NS 

NIS F P MS F P 
Large Bed type (B) 1 0.138 2.97 NS 0.044 0.09 NS 

Location (L) 3 0.050 12.83 0.402 20.40 
BxL 3 0.046 11.78 0.519 26.35 

Residual 24 0.039 0.020 
Medium Bed type (B) 1 0.578 18.86 6.381 22.62 

Site ý(S) 3 0.007 1.43 NS 0.864 7.41 
BxS 3 0.031 5.87 ** 0.282 2.42 NS 

Residual 24 0.005 0,120 
Small Bed type (B) 1 6.805 33.46 4.176 150.31 

Plot (P) 3 0.465 5.22 0.246 6.65 
BxP 3 0.203 2.28 NS 0.028 0.75 NS 

Residual 24 0.089 0.037 
2 Transformation was only necessary for small spatial level data. 

Values of mean sediment grain size were similar between continuous and reticulate beýds in 

all four locations, except at Mellieha Bay, where Phi values were higher (indicating a 

predominance of finer sediment) in the continuous beds, (Figure 25 d). Phi values were 

also higher in continuous beds than in reticulate beds at the medium (Figure 25 e) and 

small (Figure 25 f) spatial levels. The results of the two-factor ANOVA (see Table 14) 

indicated a significant interaction for mean sediment grain size at the large spatial level, 

but not at the medium and small spatial levels. At the large spatial level, the significant 

interaction was attributed to significant differences in mean sediment grain size: 

between the two different beds types at Mellicha Bay and at White Rocks; and (ii) between 

continuous beds in all pair combinations of the four locations (SNY,; p<0.01), except 

between the continuous bed at St Thomas Bay and the continuous bed at White Rocks, and 
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between reticulate beds in all pair combinations of the four locations (SNK; p< 

except between the reticulate bed at St Thomas Bay and the reticulate bed at White Rocks. 

Although the two-factor ANOVA did not indicate a significant interaction at the medium 

and small scales, significant differences were indicated for both 'bed type, and 'sampling 

locality'. At the medium spatial scale, values of mean sediment gain size were 

significantly different: (i) between the two different bed types, averaged over the four sites 

(SNK; p<0.01), and (ii) between site D and sites A (SNK; p<0.01) and C (SNK; p< 

0.05), and between site A and site B (SNK; p<0.01), averaged over the two bed types. At 

the small scale, values of mean sediment grain size were significantly different: (i) between 

the two different bed types, averaged over the four plots (SNK; p<0.01); and (ii) between 

plot 4 and the other three plots, averaged over the two bed types (SNK; p<0.01). 

Relationship between macroinverteb rates and bed characteristics; full data set 

Linear regression carried out using the full macroinvertebrate data set (see Table 15) 

indicated that at the large spatial level, macroinvertebrate abundance was significantly 

related to epiphyte biomass (Figure 26 a). Linear regression (see Table 16) also indicated 

that, at the medium spatial level, macroinvertebrate abundance was significantly related to 

epiphyte biomass and shoot biomass (Figure 26 b& c). On the other hand, none of the 

other attributes of seagrass architecture (shoot density, leaf area and shoot biomass) or 

sediment characteristics (mean grain size and total organic carbon of sediment) had a 

significant relationship with macroinvertebrate abundance at either of the two spatial levels 

(Tables 15 & 16). 

Linear regression (see Table 17) indicated thatý at the large spatial level, macroinvertebrate 

species richness was related to epiphyte biomass and mean sediment grain size (Figures 27 

a& b). Linear regression (see Table 18) also indicated that, at the medium spatial level, 

macroinvertebrate species richness was related to shoot biomass only (Figures 27 c). On 
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the other hand, none of the other attributes of seagrass architecture (shoot density, leaf area 

and root-rhizome biomass) or total organic carbon of sediment had a significant 

relationship with macroinvertebrate species richness at either of the two spatial levels 

(Tables 17 & 18). 

Table 15. Details of regressions for relationships between macroinvertebrate abundance (full data 
set) and attributes of seagrass architecture and sediment, at the large (location) spatial level. The 
critical value for the Shapiro-Wilk (S-W) statistic for normality in regression residuals (n = 32) 
being 0.927 at p<0.05. NS = not significant. 

Regression variables R2 p-value S-W Statistic 
In (Shoot density) 
In (Abundance) 0.024 NS 
In (Leaf area) 
In (Abundance 0.016 NS 
In (Shoot biomass) 0 013 NS In (Abundance) . 
In (Epiphyte biomass) 0 555 <0 001 0 938 In (Abundance) . . . 
In (Mean sediment grain size) 0 095 NS In (Abundance) . 
In (Organic carbon in sediment) 0 095 NS In (Abundance) . 

Table 16. Details of regressions for relationships between macroinvertebrate abundance (full data 
set) and attributes of seagrass architecture and sediment, at the medium (site) spatial level. The 
critical value for the Shapiro-Wilk (S-W) statistic for non-nality in regression residuals (n = 32) 
being 0.927 at p<0.05. NS not significant. 

Regression variables 
R2 p-value S-W Statistic 

Shoot density 0.084 NS 
Abundance 
In (Leaf area) 0.120 NS 
In (Abundance 
Shoot biomass 0.254 < 0.01 0.968 
Abundance 
In (Epiphyte biomass) 0.150 < 0.05 0.941 
In (Abundance) - 
Mean sediment grain size 0.067 NS 
Abundance 
Organic carbon in sediment 0.004 NS 
Abundance 

Linear regression also indicated a significant relationship between leaf area and epiphyte 

biomass at the medium scale (R 2=0.865; p<0.001) (Figure 26d), but not at the large scale 

0.007; p= NS). 
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Figure 26. Scatter plots of. epiphyte biomass with (a) macroinvertebrate abundance at the large 
(location) spatial level; shoot biomass (b) and epiphyte biomass (c) with macroinvertebrate 
abundance at the medium (site) scale; and leaf area with epiphyte biomass at the medium scale (d). 

Table 17. Details of regressions for relationships between macroinvertebrate species richness (full 
data set) and attributes of seagrass architecture and sediment, at the large (location) spatial level. 
The critical value for the Shapiro-Wilk test for normality in regression residuals (n = 32) being 
0.927 at p<0.05. NS not significant. 

Regression variables R2 p-value S-W Statistic 

Shoot density 0.023 NS 
Species richness 
In (Leaf area) 0.038 NS 

In (Abundance 
Shoot biomass 0.004 NS 
Species richness 

_ In (Epiphyte biomass) 0.582 < 0.001 0.947 
hi (Species richness) 

_ Mean sediment gram size 0.172 < 0.05 0.973 
richness Species 
_ _ In (Organic carbon in sediment) 0.083 NS 

In (SDecies richness) 
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Figure 27. Scatter plots of. epiphyte biomass (a) and mean sediment grain size (b) with 
macroinvertebrate species richness, at the large (location) spatial level; and shoot biomass (c) with 
macroinvertebrate species richness at the medium (site) scale. 

Table 18. Details of regressions for relationships between macroinvertebrate species richness (full 
data set) and attributes of seagrass architecture and sediment, at the medium (site) spatial level. The 
critical value for the Shapiro-Wilk test for normality in regression residuals (n 32) being 0.927 at 
p<0.05. NS = not significant. 

Regression variables R2 p-value S-W Statistic 

Shoot density 0.049 NS Species richness 
In (Leaf area) 0.080 NS 
In (Species richness) 
Shoot biomass 0.261 < 0.01 0.975 
Species richness 
In (Epiphyte biomass) 0.073 NS 
In (Species richness) 
Mean sediment grain size 0.001 NS 
Species richness 
In (Organic carbon in sediment) 0.080 NS 
In (Species richness) 
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Relationship between macroinverteb rates and bed characteristics; reduced data set 

Linear regression carried out using the reduced macroinvertebrate data set (see Table 19) 

indicated that at the large spatial level, macroinvertebrate abundance was significantly 

related to epiphyte biomass. Linear regression (see Table 20) also indicated that, at the 

medium spatial level, macroinvertebrate abundance was significantly related to epiphyte 

biomass and shoot biomass. On the other hand, none of the other attributes of seagrass 

architecture (shoot density, leaf area and shoot biomass) or sediment characteristics (mean 

grain size and total organic carbon of sediment) had a significant relationship with 

macroinvertebrate abundance at either of the two spatial levels (Tables 19 & 20). 

Table 19. Details of regressions for relationships between macroinvertebrate abundance (reduced 
data set) and attributes of seagrass architecture and sediment, at the large (location) spatial level. 
The critical value for the Shapiro-Wilk (S-W) statistic for normality in regression residuals (n = 32) 
being 0.927 at p<0.05. NS = not significant. 

Regression variables R2 p-value S-W Statistic 

In (Shoot density) 0.011 NS In (Abundance) 
In (Leaf area) 0.012 NS In (Abundance 
In (Shoot biomass) 0.007 NS In (Abundance) 
In (Epiphyte biomass) 0.585 < 0.001 0.930 
In (Abundance) 
In (Mean sediment grain size) 0.098 NS 
In (Abundance) 

-- In (Organic carbon in sediment) 0.054 NS 
In (Abundance) 

Table 20. Details of regressions for relationships between macroinvertebrate abundance (reduced 

data set) and attributes of seagrass architecture and sediment, at the medium (site) spatial level. The 

critical value for the Shapiro-Wilk (S-W) statistic for normality in regression residuals (n = 32) 

eing 0.927 at p<0.05. NS not significant. 

Regression variables R2 p-value S-W Statistic 

Shoot density 
Abundance 

0.081 NS 

In (Leaf area) 0.111 NS 
In (Abundance 
Shoot biomass 0.254 < 0.01 0.983 
Abundance 
In (Epiphyte biomass) 0.146 < 0.01 0,944 
In (Abundance) 
Mean sediment grain size 0.080 NS 
Abundance 
Organic carbon in sediment 0.001 NS 
Abundance 
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Linear regression (see Table 21) indicated that, at the large spatial level, macroinvertebrate 

species richness was related to epiphyte biomass and mean sediment grain size. Linear 

regression (see Table 22) also indicated that, at the medium spatial level, 

macroinvertebrate species richness was related to shoot biomass only. On the other handý 

none of the other attributes of seagrass architecture (shoot density, leaf area and root- 

rhizome biomass) or total organic carbon of sediment had a significant relationship with 

macroinvertebrate species richness at either of the two spatial levels (Tables 21 & 22). 

Table 21. Details of regressions for relationships between macroinvertebrate species richness 
(reduced data set) and attributes of seagrass architecture and sediment, at the large (location) spatial 
level. The critical value for the Shapiro-Wilk test for normality in regression residuals (n = 32) 

, being 0.927 at p<0.05. NS not significant. 

Regression variables R2 p-value S-W Statistic 

Shoot density 0.035 NS Species richness 
In (Leaf area) 0.059 NS In (Abundance 

- Shoot biomass 0.005 NS Species richness 
In (Epiphyte biomass) 0.564 < 0.001 0.938 
In (Species richness) 
Mean sediment grain size 0.172 < 0.05 0.973 
Species richness 
In (Organic carbon in sediment) 0.074 NS 
In (Species richness) - 

Table 22. Details of regressions for relationships between macroinvertebrate species richness 
(reduced data set) and attributes of seagrass architecture and sediment, at the medium (site) spatial 
level. The critical value for the Shapiro-Wilk test for normality in regression residuals (n = 32) 
being 0.927 at p<0.05. NS not significant. 

Regression variables R2 p-value S-W Statistic 

Shoot density 
Species richness 

0.043 NS 

In (Leaf area) 
In (Species richness) 

0.066 NS 
- 

Shoot biomass 
Species richness 

0.261 < 0.01 0.961 

In (Epiphyte biomass) 
In (Species richness) 

0.064 NS 

Mean sediment grain size 0.002 NS 
Species richness 
In (Organic carbon in sediment) 0.065 NS 
In (Soecies richness) 
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Linear regression indicated a significant relationship between leaf area and epiphyte 
biomass at the medium scale (R 2 =: 0.865; p<0.001), but not at the large scale (R2= 0.007; 

p= NS). 

Overall, the results of linear regression obtained from the reduced macroinvertebrate data 

set, from which the burrowing bivalves (comprising a total of 283 individuals equivalent to 

4.5% of the total macroinvertebrate abundance, and 36 species equivalent to 11.4% of the 

total macroinvertebrate species richness) had been removed, were similar to those obtained 

from the full macroinvertebrate data set. 

4.3.2. Multivariate analyses 

None of the NMDS ordination plots for species-abundance data indicated clear separation 

between samples collected from continuous and reticulate P. oceanica beds, showing that 

motile macroinvertebrate assemblage composition of the two different bed types at all 

three spatial levels was not dissimilar (Figure 28 a-c). However, the NMDS plot for data 

collected at the large scale indicated some degree of separation between groups of samples 

collected from different locations. This separation was especially evident for samples 

collected from Ramla Bay and Mellieha Bay, which were grouped somewhat distinctly 

from samples collected form White Rocks and St Thomas Bay. Samples collected from the 

latter two localities were grouped more closely (Figure 28 a). The stress values of the 

NMDS plots (0.23 - 0.28) were somewhat high, indicating that caution is required in the 

interpretation of the ordination results (Clarke & Warwick, 1994). 
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Figure 28. MDS plots produced from the species-abundance data for core samples collected at the 

three spatial levels: (a) large, (b) medium and (c) small. The last letter denotes the bed type (C 

continuous; R= reticulate). 
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The ANOSIM test indicated that the composition of samples collected from the two 

different bed types did not differ significantly at any of the three spatial levels (Table 23). 

However, the test indicated that samples collected from different sampling localities 

differed significantly at the large (Global R=0.526; p<0.01) and small (Global R= 

0.199; p<0.01) spatial levels, but not at the medium spatial level. At the large spatial 

level, pairwise ANOSIM indicated significant differences between all four locations (R == 

0.439 - 0.652; p<0.01), while at the small spatial level, the same test indicated significant 

differences between plots I and 4 (R = 0.43; p<0.01) and between plots 2 and 4 (R = 

0.33; p<0.01). 

Table 23. Results of ANOSIN4 for samples taken from reticulate and continuous beds at the three 
spatial levels (large, medium and small). 

Spatial level Statistic 
value 

Possible 
permutations 

Permutations 
used 

Significant 
statistics 

Significance 
level 

Large -0.013 300540195 999 608 60.9% 
Medium 0.05 300540195 999 98 9.9% 
Small 0.004 300540195 999 445 44.6% 

Table 24 lists the species having the highest contribution to the dissimilarity observed 

between stations at the large spatial level, which ANOSIM detected significant differences 

for. The SIMPER analysis showed that the average dissimilarity values between groups of 

samples taken from the P. oceanica beds at different locations were (in order of decreasing 

value) as follows: 81.65% between Mellieha Bay and White Rocks; 81.48% between 

Ramla Bay and Mellielia Bay; 81.00% between Ramla Bay and White Rocks; 80-38% 

between Mellieha Bay and St Thomas Bay; 77.88% between Ramla Bay and St Thomas 

Bay; and 70.74% between White Rocks and St Thomas Bay. However, despite the 

relatively high dissimilarity values, no single specles had a large contributory influence to 

the observed dissimilarity for any of the pairwise comparisons; the largest contribution of 

any one species being 3.77% (the gastropod Alvania mamillata Risso; Table 24). A pattern 
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Table 24. Results of the SIMPER analysis for species having the highest dissimilarity values between groups 
of samples taken from the four different locations (large spatial level). RB = Ramla Bay; MB = Mellieha 
Bay; WR = White Rocks; STB = St Thomas Bay. AA = average abundance (number of individuals per core); AD = average dissimilarity; AD/SD = ratio of the average dissimilarity to the standard deviation of dissimilarity for the particular species. 

Species Stations AA AA AD AD/SD % Contribution 
x Y x Y 

-Alvania 
mamillata RB MB 3.88 0.50 3.07 1.08 3.77 

-Pagurus 
chevreuxi RB MB 3.75 0.00 3.00 1.14 3.68 

Athanas nitescens RB MB 4.13 1.75 2.76 1.42 3.38 

_Atnphicteis 
midas RB MB 0.13 2.75 2.41 1.25 2.96 

Piromis eruca RB MB 0.75 2.38 2.04 1.00 2.50 
Hippolyte inermis RB MB 0.00 2.00 

_1.73 
1.07 2.12 

Maera grossimana RB STB 0.75 6.38 2.31 1.42 2.85 

_Elasmopus 
brasiliensis RB STB 0.00 5.13 2.25 1.83 2.78 

_Lysianassa 
costae RB STB 0.38 4.63 1.99 1.27 2.45 

Maera inaequipes RB STB 1.25 5.50 1.96 0.85 2.42 

_Syllidae 
sp. A RB STB 1.38 4.13 1.82 0.90 2.25 

_Aora 
sp. RB STB 1.50 4.75 1.77 0.92 2.19 

Alvania mamillata RB STB 3.88 0.75 1.70 1.06 2.10 
_ Thoralus cranchii RB STB 0.63 5.13 1.70 1.19 2.10 
Pagurus chevreuxi RB STB 3.75 2.75 1.61 1.27 1.99 

_ Athanas nitescens RB STB 4.13 2.13 1.25 1.14 1.54 
Maera grossimana MB STB 0.88 6.38 2.29 1.39 2.80 

_ Maera inaequipes MB STB 0.50 5.50 2.03 0.83 2.48 
Thoralus cranchii MB STB 0.00 5.13 1.95 1.34 2.39 
Lysianassa costae MB STB 0.75 4.63 1.91 1.22 2.34 

_ Syllidae sp. A MB STB 0.50 4.13 1.91 0.91 2.34 
Elasmpous brasiliensis MB STB 1.00 5.13 1.90 1.55 2.32 

_ Aora sp. MB STB 1.13 4.75 1.74 0.89 2.13 
_ Amphicteis midas MB STB 2.75 0.25 1.28 1.21 1.56 
_ Hippolyte inermis MB STB 2.00 0.75 0.90 1.11 1.10 
Piromis eruca MB STB 1.75 0.00 0.80 0.70 0.98 
Cestopagurus timidus RB WR 1.13 5.50 2.56 1.05 3.29 
Syllidae sp. A RB WR 1.38 4.38 2.21 1.00 2.84 

Avania mamillata RB NVR 3.88 1.88 2.20 1.00 2.83 
Pagurus chevreuxi RB WR 3.75 0.38 2.09 1.09 2.68 
Athanas nitescens RB VYTR 4.13 2.13 1.94 1.16 2.49 

- Maera inaequipes RB WR 1.25 4.00 1.67 1.26 2.14 
- Aora sp. RB WR 1.50 3.50 1.62 1.34 2.07 
- Lysianassa costae RB WR 0.38 3.13 1.58 1.43 2. A 
- Galathea bolivari RB WR 0.00 2.75 1.52 

_1.26 
1.95 

Sabeffidae sp. B RB WR 0.50 2.50 1.27 1.31 1.63 

Cestopagurus timidus MB WR 0.00 5.50 2.86 1.15 3.56 
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of differences in the occurrence and/or abundance of several discriminating species was 

evident, as follows: 

(i) The amphipods Maera inaequipes (Costa), Lysianassa costae Milne Edwards and 

Aora sp., and the syllid Syllidae sp. A, all of which were more abundant at White 

Rocks and St Thomas Bay than at Ramla Bay and Mellieha Bay. Particularly 

large differences in abundance values of these species recorded from the former 

two locations, compared to those recorded from the latter two locations were 

evident. 

(ii) The gastropod A. mamillata, the hermit crab Pagurus chevreuxi (Bouvier) and the 

alpheid shrimp Athanas nitescens (Leach), all of which all of which were more 

nu abundant at Ramla Bay than at the other three locations. 

(ill) The polychaetes Amphicteis midas (Gosse) and Piromis eruca (Claparede), and the 

shrimp Hippolyte inermis Leach, all of which all of which were more abundant at 

Mellieha Bay than at the other three locations. 

(iv) The hen-nit crab Cestopagurus timidus (Roux), the squat lobster Galathea bolivari 

Zanquiey Alvarez and the sabellid Sabellidae sp. B, all of which all of which were 

more abundant at White Rocks than at the other three locations. 

The amphipods M. inaequipes and Elasmopus brasiliensis (Dana) and the shrimp 

Thoralus cranchii (Leach), all of which were more abundant at St Thomas Bay than 

at the other three locations. 

SIMPER analysis showed that the average dissimilarity values between the two pairs of 

C plot' samples (small spatial level), which ANOSIM detected significant differences for, 

were as follows: 70.13% between plot 1 and plot 4, and 67.96 between plot 2 and plot 4. 

However, despite the relatively high dissimilarity values, no single species had a large 

contributory influence to the observed dissimilarity at any of the two group comparisons; 
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the largest contribution of any one species being 3.47% (the sipunculid Phascolion strombi 

(Montagu). Overall, the observed differences were due to a broad range of relatively small 

differences in the abundance values of several species, rather than large difference in the 

occurrence and/or abundance of one or a few species. 

BIOENV indicated that the combination of environmental variables, which best explained 

the macroinvertebrate assemblage composition observed at the large spatial scale were: 

leaf area, epiphyte biomass and total organic carbon in sediment (p, = 0.439). Values of 

Speannan's rank correlation coefficient were rather low (< 0.3) for each of the single 

environmental variables on their own. At the medium spatial scale, a combination of leaf 

area, root-rhizome biomass, sediment grain size, and total organic carbon in sediment, 

explained best the macroinvertebrate assemblage composition (p, = 0.264). Values of 

Speannan's rank correlation coefficient were very low (< 0.15) for each of the single 

environmental variables on their own. At the small spatial scale, relationships between 

biotic and environmental variables were weak, the highest correlation being from a 

combination of shoot density and sediment grain size (p, = 0.096). Like the combined 

vanables, values of Spearman's rank correlation coefficient were very low (< 0.085) for 

each of the single enviromuental variables on their own. 

4.4 DISCUSSION 

The results of the present study indicated that univariate measures of species richness and 

abundance, and multivariate measures of the macroinvertebrate assemblage composition 

did not differ significantly between continuous and reticulate beds of P. oceanica, across 

three spatial levels. Based on these results, the null hypotheses drawn for these measures 

were accepted. Significant differences in some of the physico-chemical attributes between 
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the two bed types were noted; mean grain size and organic carbon content of the sediment 

differed significantly between continuous and reticulate beds of P. oceanica at the medium 

and small spatial levels. However, according to the results of multivariate (BIOENV) and 

linear regression analyses, these two factors did not appear to play a major role in 

influencing the species richness or abundance of motile macroinvertebrates between P. 

oceanica continuous and reticulate beds. 

The similarity in plant architectural features between the two bed types (see also Chapter 

3) may account for the lack of significant differences in the diversity of associated 

macroinvertebrates, given that bed-dependant plant architecture may be important in 

influencing macrofaunal species richness and abundance (Heck & Wetstone, 1977; Heck & 

Orth, 1980a; Orth et al., 1984; Tolan et al., 1997; Lee et al., 2001). Therefore, factors that 

do not necessarily vary with bed type may be more important (e. g. Sogard et al., 1987; 

Irlandi, 1997; Hovel et al., 2002) in influencing the species richness and abundance of the 

macrofauna associated with P. oceanica. However , it is possible that there is some 

threshold of P. oceanica plant architectural change (Gotceitas & Colgan, 1989; 

Bartholomew et al., 2000) that can only be attained by large alterations in bed morphology, 

at which point species number and abundance of associated macroinvertebrate assemblages 

would be affected (Orth et al., 1984; Worthington et al., 1991). It is noteworthy that while 

studies into how alteration of seagrass bed structure influences the associated macrofauna 

have been undertaken for other Mediterranean seagrasses (e. g. Cymodocea nodosa (Ucria) 

Ascherson; Connoly & Buttler, 1996), no such investigations have made on P. oceanica 

beds. Thus, it is reasonable to conclude that continuous and reticulate beds support a 

similar species richness and abundance, and that any changes in these measures with the 

fragmentation process are more likely to occur between reticulate and patchy seagrass bed 

types. 
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Nevertheless, the possibility that P. oceanica bed architecture influences the diversity of 

associated macrofauna should not be dismissed. Significant differences in species richness 

and abundance of macroinvertebrates associated with P. oceanica were detected for the 

factor 'sampling locality' at the large (location) and medium (site) spatial levels, while 

multivariate analyses indicated that the assemblage composition was significantly different 

for the same factor at the large and small spatial scales. This significant spatial variation in 

attnbutes of the macroinvertebrate assemblages associated with P. oceanica is concomitant 

with significant spatial variation in some seagrass architecture and physico-chemical 

attributes recorded at the same spatial scales. 

The results of linear regression for both 'full' and 'reduced' data sets indicated that, at the 

large spatial level, both macroinvertebrate species richness and abundance were 

significantly related to epiphyte biomass. Additionally, at the large spatial level, the 

number of macroinvertebrate species was significantly inversely related to mean sediment 

grain size. At the medium spatial level, macroinvertebrate abundance was significantly 

related to epiphyte biomass and shoot biomass, while species richness was significantly 

related to shoot biomass. 

The results of BIOENV indicated that epiphyte biomass was amongst the three 

environmental variables which best explained the multivariate assemblage composition at 

the large spatial level, thus supporting the significant relationship obtained by the 

univariate analyses between this attribute and the macroinvertebrate assemblage. The 

correlation values obtained by BIOENV at the medium and small spatial level for any 

single environmental vanable or a combination of such variables were rather low (p,, 

0.27), hence, these results should be interpreted with caution (Clarke & Warwick, 1994). 
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Taken together, the results obtained indicate that epiphytes appear to constitute an 
important factor in influencing both the species richness and abundance of 

macroinvertebrates associated with P. oceanica beds at the large spatial level, while mean 

sediment grain size also exerts an influence on species richness. Linear regression did not 
indicate any significant relationships between macroinvertebrate species 

richness/abundance and leaf area, or between leaf area and epiphyte biomass. Therefore, 

the observed significant relationship between macroinvertebrate species 

richness/abundance and epiphyte biomass did not result from a species-area relationship. 

Thus, the null hypothesis of no relationship between epiphyte biomass and mean sediment 

gain size, and the species richness and abundance of associated macroinvertebrates at the 

large scale, was rejected; the diversity of macroinvertebrates associated with P. oceanica 

beds appears to be significantly influenced by the amount of shoot epiphytes present. 

The hypotheses of no significant relationship between the abundance of macroinvertebrates 

and P. oceanica shoot biomass and epiphyte biomass, and between the macroinvertebrate 

species richness and P. oceanica shoot biomass at the medium scale werýe also rejected. 

However, given that linear regression indicated a significant relationship between shoot 

biomass and epiphyte biomass, it appears that the significant relationship between 

macroinvertebrate abundance and epiphyte biomass at this spatial level has resulted from a 

species-area relationship. In their study of the macroinvertebrate fauna of Zostera marina 

beds, Attrill et al. (2000) noted that seagrass biomass is related to the plant's surface area, 

and therefore significant relationships between macroinvertebrate species richness and/or 

abundance and shoot biomass may be attributed to species-area relationships. 

The present results add to the recent and growing appreciation that the diversity of 

macrofauna does not differ consistently between different types of seagrass bed, and other 

factors not associated with the bed can have an overriding importance in determining the 

149 



composition of associated fauna. Some workers have noted differences in the associated 

faunal assemblages between different seagrass bed types, which indicated that 

fragmentation of seagrass beds may influence the diversity of associated macrofauna. For 

example, Tolan et al. (1997) and Frost et al. (1999) reported significant differences in the 

assemblage structure of associated macrofauna between different types of seagrass beds. 

Bowden et al. (2001) found that the total number of taxa associated with two differently 

sized patches of Z marina was significantly higher in the larger patch, while the 

assemblage composition also differed significantly between the two patches. On the other 

hand, different conclusions have been made by other workers, and recently the consensus 

appears to be changing. For example, Irlandi (1997) noted that the type and size of 

seagrass patches were relatively unimportant in influencing the survival of the infaunal 

clam Mercenaria mercenaria (Linnaeus), and concluded that within-bed architectural 

attributes were more important; the same conclusion was reached by Hovel & Lipcius 

(2001) for the blue crab Callinectes sapidus Rathbun. Turner et al. (1999) noted that the 

factors structuring the assemblage composition of macroinvertebrates associated with 

seagass patches appeared to be independent of patch size, seagrass percentage cover and 

seagrass biomass. Bell et al. (2001) reported that variation in patch size of Halodule 

wrightii Ascherson did not have any consistent impact on the associated fauna, whilst 

Hovel & Lipcius (2002) concluded that fragmentation of seagrass beds does not have an 

overriding influence on juvenile blue crab survival and density. A possible reason for the 

contrasting results obtained by different workers is that the scale at which most of the cited 

studies have been carried out may have been inappropriate to reveal consistent differences 

between different seagrass bed types (McNeill & Fairweather, 1993; Bell et al., 2001; 

Hovel & Lipcius, 2002). In any case, the more recent conclusions indicate the need to 

establish a somewhat different paradigm, which is that fragmentation of seagrass beds does 

not necessarily lead to loss of diversity of the associated macrofauna. 
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The present findings go some way in identifying the factors that appear to influence the 

diversity of macroinvertebrates associated with P. oceanica beds, and the scale at which 

different factors may operate. The significant differences in species richness and 

au abundance, and in the assemblage composition between different sampling localities at the 

large and small spatial scales, suggest that environmental factors operating at local scales 

are more important in influencing the assemblage composition of associated motile 

macroinvertebrates. This finding agrees with the observations made by various other 

workers. For example, Brook (1978) recorded large differences in the species richness and 

abundance of macrofauna associated with the same type of seagrass beds between and 

within different sites, which were attributed to large differences in physical environmental 

characteristics and seagrass bed architectural features. Vimstein & Howard (1987a) found 

that the species composition of associated macrofauna differed between seagrass beds of 

the same species that were located in different environmental regimes. Orth (1977) and 

PH (1986) recorded differences in faunal attributes (biomass, secondary production and 

species composition) within seagrass beds of the same type experiencing different wave 

exposures and current regimes. 

Significantly higher species richness and abundance were recorded from White Rocks and 

St Thomas Bay at the large spatial scale. However, none of the measured plant 

architectural features (shoot density, leaf area and shoot biomass) had correspondingly 

significantly higher values at White Rocks and St Thomas Bay. On the other hand, shoot 

epiphyte biomass was significantly higher at these two localities, and was also significantly 

correlated to macroinvertebrate species richness and abundance. The southern half of the 

Maltese Islands, where White Rocks and St Thomas Bay are located, is more densely 

populated and supports a higher industrial activity than the northem half, resulting in 

higher nutrient loading of coastal waters due to the presence of a greater number of sewage 

outfalls, industrial effluents and harbour activities (Mallia et al., 2002). Therefore, elevated 
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nutrient concentrations off the southern coast of the Maltese Islands (Axiak et al., 2000) 

may account for the significantly higher values of shoot epiphyte weight recorded from the 
P. oceanica beds at White Rocks and St Thomas Bay. 

Several studies have shown the importance of seagrass epiphytes as a food supply for the 

associated macroinvertebrate assemblages (Orth & van Montfrans, 1984; Alcoverro et al., 
1997a; Jemakoff et al., 1996; Jernakoff & Nielsen, 1997; Bologna & Heck, 1999; 

Moncrelff & Sullivan, 2001). For example, Gambi et al. (1992) highlighted the importance 

of P. oceanica epiphytes in influencing the species richness and abundance of associated 

motile macroinvertebrates, although they did not provide statistical data that directly 

showed the positive correlation between epiphytes and macroinvertebrate diversity. 

However, epiphytes add another dimension to the foliar canopy: they increase physical 

complexity, thereby enhancing microhabitat space (Heck & Orth, 1980a; Kitting, 1984; 

Virnstein, 1987; Worthington et al., 1991). Small hermit crabs and other walking 

crustaceans use epiphytes to climb up into the seagrass foliar canopy by clinging onto the 

epiphytes, while smaller macroinvertebrates use them as a refuge against predation (e. g. 

Greening & Livingston, 1982; Leber, 1985; Hall & Bell, 1988). For example, Greening & 

Livingston (1982) noted that the crab Neopanope texana Sayi (Smith) and the shrimp 

Alpheus normanni Kingsley appeared to seek refuge from predators in epiphytic red algae 

growing on seagrass. Epiphytes may also help the passive settlement of the larvae of some 

organisms, while tube-building amphipods use them for support ý(Nelson, 1979; Coen et al., 

1981; Worthington et al., 1991). Use of P. oceanica epiphytes as a microhabitat would 

particularly apply to the size range (circa I mm -5 mm) of most of the macroinvertebrates 

recorded from the study area, since the physical structure of epiphytes (Virnstein, 1987) 

falls within the 'perception window' (Attrill et al. 2000) for such macrofauna. For 

example, the species that contributed most to the observed differences and were good 

discriminators between samples taken from the P. oceanica beds at White Rocks and St 
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Thomas Bay (the two locations having the highest seagrass epiphyte biomass) and samples 

taken at the other two locations, were the small amphipods M. inaequipes, Aora sp. and L. 

costae, and the polychaete Syllidae sp. A. These species could be utilising the shoot 

epiphytes as microhabitat, and may also be feeding on epiphytes, or on particulate organic 

matter deposited on their surface (e. g. Gambi et al., 1992). In particular, amphipods are 

known to be important constituents of the mesograzer guild that feed on epiphtes in 

seagrass beds (Howard, 1982; Jernakoff & Nielsen, 1997; Duffy & Harvilicz, 2001). 

Higher abundances of M inaequipes, Aora sp. and L. costae and of other amphipods (for 

example, Maera grossimana (Montagu) and E. brasiliensis), and the small shrimp T. 

cranchil, were recorded from P. oceanica beds at St Thomas Bay, where shoot epiphyte 

biomass was significantly higher than at the other three locations. Besides having a small 

size, and, therefore, possibly using the epiphytes as a microhabitat (Nelson, 1979; Coen et 

al., 1981; Greening & Livingston, 1982; Leber, 1985; Worthington et al., 1991), the 

aforementioned suite of species comprise a mixture of herbivores, herbivores-deposit 

feeders and deposit feeders-carnivores, which may be grazing the epiphytes or feeding on 

food particles trapped in the fine thalli of algal epiphytes (Marsh, 1973; Scipione, 1989; 

Scipione, 1999; Gambi et al., 1992). 

The motile macroinvertebrates that were more abundant in the P. oceanica beds at White 

Rocks, and which were also identified by SIMPER as having a high contribution to the 

observed differences between this and the other three locations, included the anomurans C. 

timidus, G. bolivari and Pisidia longicornis (Linnaeus). These macroinvertebrates are 

predominantly inhabitants of the P. oceanica matte (Lopez de la Rosa & Garcia Raso, 

1992), therefore, the higher abundance of these species in the P. oceanica beds at White 

Rocks may be related to some particular property of the matte (e. g. physical structural 

complexity; Chapter 5) which was not considered in the present study. 
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In summary, higher nutrient levels at White Rocks and St Thomas Bay (Axiak et al., 

2000), appear to enhance epiphyte production, leading to an increased species richness and 

abundance of macroinvertebrates that use the epiphytes as a refuge from predation and/or 

as food, and ultimately leading to higher secondary production in P. oceanica beds at these 

localities. The importance of seagrass epiphytes in influencing the diversity of associated 

macroinvertebrates has been noted earlier by other workers (e. g. Kitting, 1984; Schneider 

& Mann, 1991; Gambi et al., 1992), but it appears that this observation has not been given 

due consideration in seagrass ecological studies made so far (Virnstein, 1987). For 

example, Lewis & Hollingworth (1982) and Hall & Bell (1988) found that abundances of 

epiphyte and macrofauna were positively correlated in beds of Thalassia testudinum Banks 

& Soland ex Koenig, while Edgar & Robertson (1992) noted that a reduction in seagrass 

(Amphibolis) epiphytes resulted in a corresponding decrease in epifaunal abundance. 

In the oligotrophic Mediterranean Sea, nutrient enrichment may serve to enhance 

secondary production associated with P. oceanica beds, as long as nutrient levels are not 

exceedingly high. For example, Kirkman et al. (1991) found that the species richness and 

nlý. duundance of macrofauna associated with a Posidonia australis Hook bed located in 

eutrophic waters were higher than those recorded from a Posidonia sinuosa Cambridge & 

Kuo bed located in oligotrophic waters. However, excessive nutrient input may cause 

adverse effects, for example those caused by excessive epiphytic growth, which may lead 

to inhibition of seagrass photosynthesis (e. g. Sand-Jensen, 1977), or by algal blooms that 

can eventually lead to bed decline (e. g. Ott, 1980, Silbertein et al., 1986). Such effects have 

indeed been observed in the Mediterranean. For example, nutrient enrichment originating 

from an offshore fish farm located in St Paul's Bay, Malta, led to increased species 

richness and abundance o macroinvertebrates associated with P. oceanica beds at a 

distance of around 50 m from the fish cages, but a lower diversity was recorded closer to 

the farrn where the seagrass bed was very degraded (Dimech et al., 2002). Excessive 
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epiphytic growth may also impede the movement of fauna (Heck & Orth, 1980a), such that 

macroinvertebrate abundance decreases (Bell & Westoby, 1987). The amount of epiphytes 

present on seagrass shoots is also indirectly influenced by the hydrodynamic regime of a 

particular coastal area, since this would influence the supply of nutrients to a particular 

seagrass bed. 

Because of the highly complex mechanisms involved, the direct ways in which variation of 

the hydrodynamic regime influences the diversity of seagrass-associated macrofauna is not 

clearly understood. Several authors have proposed variation in effective transport of food 

and larvae by currents to seagrass beds (e. g. Hovel et al., 2002), and disturbance to the 

larger macrofauna by strong currents that cause dislodgment (e. g. gastropods; Schanz et 

al., 2000) as possible explanations. The importance of hydrodynamic factors in influencing 

the macrofauna of seagrass beds has long been recognised (e. g. O'Gower & Wacasey, 

1967; Orth, 1977; Pihl, 1986). Of the four locations considered (at the large scale) in the 

present study, Ramla Bay was identified as the most exposed, while Mellieha Bay had the 

lowest exposure (Chapter 2). The species that contributed most to the observed differences 

(SIMPER analysis) between Ramla Bay and the other three locations were the small 

gastropod A. mamillata, the hermit crab P. chevreuxi and the alpheid shrimp A. nitescens, 

all of which were more abundant at the former location. While the latter two species are 

known to mainly inhabit the P. oceanica matte (Lopez de la Rosa & Garcia Raso, 1992), 

where they may seek shelter from predators and adverse factors such as strong water 

movement, it is possible that the small gastropod A. mamillata is capable of out-competing 

other macroinvertebrate gazers on the seagrass leaf surfaces by resisting detachment (e. g. 

Schanz et al., 2000). 

Mellieha Bay had the lowest exposure value of the four locations. The species indicated by 

SIMPER to be high contributors and good discriminators between Mellieha Bay and the 
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other three localities, were the shrimp H. inermis and the polychaetes P. eruca and A. 

midas. The first species is a typical inhabitant of the P. oceanica leaf canopy, where it can 

have a very high abundance (Pessani et al., 1995; Borg & Schembri, 2000), while the last 

two species are typical inhabitants of seagrass beds growing on soft bottoms that have a 

high proportion of fine sediments (Castelli, 1989; Martinelli et al., 1998). The 

hydrodynamic regime of a particular coastal locality also plays an indirect role in 

influencing the species composition of benthic macroinvertebrate assemblages present by 

influencing the sedimentary regime; the general tendency being for high-energy 

environments to have coarser sediments than low energy environments (Pihl, 1986; 

Fonseca & Bell, 1998). For the same bay, Drago (1997) concluded that complex 

hydrodynamic processes, resulting from the presence of an extensive rocky shoal off its 

mouth, act in concert with the coastal configuration of the area and the seabed topography 

to inhibit flushing of the inner bay areas by the open sea. Therefore, the particular 

hydrodynamic properties inside Mellieha Bay apparently favour species that prefer 

sheltered conditions (e. g. H. inermis) and high sedimentation rates (e. g. P. eruca and A. 

midas), and may also be responsible for the observed significant differences in values of 

organic carbon and mean sediment grain size between continuous and reticulate beds. 

Interpretation of the significant relationship indicated by linear regression between 

macroinvertebrate abundance and P. oceanica shoot biomass and epiphyte biomass, and 

between macroinvertebrate species richness and P. oceanica shoot biomass at the medium 

spatial level requires caution. Several workers have related shoot biomass to seagrass bed 

structural complexity (Heck & Wetstone, 1977; Heck & Orth, 1980a; Stoner, 1980; Gore et 

al., 1981; Ansari et al., 1991). However, Attrill et al. (2000) showed that the use of 

seagrass biomass as a measure of bed structural complexity could introduce the 

confounding effects of sampling area, since shoot biomass is related to the plant"s surface 

area. The significant relationship indicated by linear regression between leaf area and 
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epiphyte biomass at the medium spatial level supports Attrill et al. 's (2000) inference. 
Therefore, at the medium spatial level, the significant relationship indicated by linear 

regression between macroinvertebrate species richness and abundance, and shoot biomass 

and epiphyte biomass probably result from species-area relationships. 

The significant differences detected by multivariate analysis (ANOSIM) at the small 

spatial level were attributed to small differences in abundance of a large number of species, 

rather than large differences in the abundance of several species. It is therefore probable 

that the significant difference in the assemblage composition at the small spatial level 

results from natural patchiness in the distribution of macroinvertebrates associated with P. 

oc, eanica beds at such scale. Processes that contribute to patchiness at small spatial scales 

include stochastic settlement of larvae, aggregations caused by colonisation of patchily 

distributed microhabitats, and small-scale patterns of differences in behaviour (Hughes, 

1979; Bell & Westoby 1986b; Jemakoff et al., 1996). 

Studies on fragmented P. oceanica beds, similar to the present one, are not available for 

comparison. A study by Barbera Cebrian et al. (2002) on the structure of the mysid 

assemblages of P. oceanica beds in Spain concluded that fragmented seagrass beds 

supported a higher species richness of mysids than homogeneous beds. However, the study 

by these authors centered on mosaics formed by two seagrass species, namely P. oceanica 

and C nodosa, both of which were also intermixed with bare sand (Barbera Cebrian et al., 

2002). In another study by Accardo-Palumbo et al. (1992), comparison of P. oceanica 

reefs and 'atolls' did not reveal significant differences in the associated prosobranch 

assemblages between the two different bed types. 

4 

While naturally occurring reticulate and continuous P. oceanica beds appear, overall, to 

support similar motile macroinvertebrate assemblages, this finding should be interpreted 
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with caution with respect to the issue Of anthropogenic related seagrass bed fragmentation. 

Certainly the results of the present study do not provide evidence that fragmentation of 
continuous seagrass beds should be considered as an 'acceptable' change, and hence a 

pretext for allowing anthropogenic activities to modify continuous beds to reticulate ones. 
It should be remembered that fragmentation of seagrass habitat leads not only to a change 
in bed configuration but also to reduced coverage and thus to loss in habitat area 
(Hemminga & Duarte, 2000), the latter potentially also having consequences for some of 

the seagras s- associated fauna other than the motile macroinvertebrates (e. g. fish; Sanchez 

Jerez et al., 1996). Furthen-nore, fragmentation of continuous seagrass beds to very small- 

sized patches (e. g. I- 10 m across) leads to bed types that essentially consist of edge 

habitat, which would have implications for the associated macrofauna (Irlandi, 1997, 

Bowden et al., 2001). Additionally, fragmentation of seagrass beds increases their 

exposure to colonisation by opportunistic species (e. g. the alien Caulerpales; Ceccherelli et 

al., 2000). 

The present results suggest that reticulate and continuous P. oceanica beds have a broadly 

similar habitat 'value' for macroinvertebrates, when total available area is not considered. 

In a recent review, Bell et al., (2001) concluded that there is no current overwhelming 

evidence that fragmentation of seagrass beds has any impact on the associated fauna. 

Therefore, fragmented beds should receive the same attention as non-fragmented ones, 

when considering conservation and protection issues (McNeill & Fairweather, 1993). As 

in the case of terrestrial habitats, fragmented seagrass beds should not be viewed from the 

island-biogeographic point of view or as 'unitary entities' (Haila, 2002), but as part of a 

hierarchical arrangement of different bed types in a heterogeneous seagrass landscape 

(Robbins & Bell, 1994). 
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In conclusion, reticulate and continuous P. oceanica beds appear to support similar 

assemblages of motile macroinvertebrates and local environmental factors, apparently 
independent of bed type, including shoot epiphytes (possibly both as food and physical 
habitat; Virnstein, 1987; Schneider & Mann, 1991; Moncreiff & Sullivan, 2001), sediment 

grain size (e. g. Frost et al., 1999; Bostr6m & Bonsdorff, 1997), and (albeit indirectly) the 

hydrodynamic regime (e. g. Hovel et al., 2002) are more important in influencing the 

diversity of associated motile macroinvertebrates than bed type. However, not all these 

factors influence the macroinvertebrate assemblages associated with P. oceanica at the 

same spatial scale. 

Overall, the present results support the findings of recent workers (e. g. Frost et al., 1999) 

that began to challenge the earlier paradigm that fragmented habitats support a lower 

diversity of fauna. It is therefore proposed that fragmentation of continuous to reticulate P. 

oceanica beds does not necessarily lead to alteration of the species richness and abundance 

of the associated macroinvertebrates and local factors, both natural (e. g. the hydrodynamic 

regime) and anthropogenic (e. g. nutrient enrichment of coastal waters) are more important 

in influencing seagrass-associated maýcroinvertebrate assemblages. 

Clearly there is still much research to be undertaken in order to gain a better understanding 

of the effects of seagrass habitat fragmentation on the associated faunal assemblages. For 

example, it would be useful to address whether the diversity of macrofauna differs between 

reticulate beds and discrete patches of P. oceanica. Although it appears that such a 

comparative study is difficult to undertake in Malta, due to the apparent rare occurrence of 

adjacent reticulate and patchy beds located at the same water depth, it may be possible to 

make such a study elsewhere in the Mediterranean. Other useful questions that need to be 

addressed are: Which is the more important role of seagrass epiphytes to the associated 

macroinvertebrates; as food or as microhabitat? Does complete loss of the foliar canopy 
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lead to loss of diversity of associated macroinvertebrates? The latter study could compare 

the species richness and abundance of macrofauna associated with dead matte (lacking a 

foliar canopy) and living matte (having a foliar canopy) of P. oceanica (Chapter 5). In the 

meantime, data generated from the present study will, at the very least, inforra 

conservation biologists and assist coastal managers in fonnulating appropriate 

conservation measures for the different naturally occurring bed types of P. oceanica in the 

Maltese Islands. 
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CHAPTER 5 

DIFFERENCES IN MOTILE 
MACROINVERTEBRATE ASSEMBLAGES 

OF LIVING AND DEAD 
POSIDONIA OCEANICA MATTE 
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5.1 INTRODUCTION 

Seagrass beds can be divided broadly into different structural compartments, namely the 

foliar canopy and the root-rhizome matrix (Orth et al., 1984; Mazzella et al., 1992; Buia et 

al., 2000), which vary in their habitat characteristics and in the biotic assemblages they 

support (e. g. Bianchi et al., 1989). Although these different compartments are referred to 

frequently as separate subliabitats supporting different biotic assemblages (Kikuchi & 

Peres, 1977; Kikuchi, 1980), complex interactions occur between the species associated 

with each, together with vertical migration by some species (e. g. Sanchez Jerez et al., 

1999b), thereby making clear distinction untenable (Mazzella et al., 1986; Baden & 

Bostr6m, 2001). 

A current paradigm in seagrass ecology is that the abundance of motile macrofauna 

associated with seagrass beds is greater than that of unvegetated habitats (Thayer et al., 

1975; Orth, 1977; Vimstein et al., 1983; Lewis, 1984; Pihl, 1986; Kirkman et al., 1991; 

Curras et al., 1993; Bostr6m & Bonsdorf, 1997). The foliar canopy is utilised by 

macrofauna as a refuge against predation (e. g. Lee et al., 2001) and as a nursery habitat for 

larvae and juveniles of many macrofaunal species (Jacobs et al., 1981; Orth et al., 1984; 

Virnstein, 1987; Bell & Pollard, 1989, Howard et al., 1989; Edgar, 1990). The plants 

themselves are a rich source of organic matter and detritus (Bach et al., 1986; Mateo & 

Romero, 1997), while the plant surfaces support a high biomass of epiphytes which serves 

as food for many grazers (Kitting, 1984; Johnson & Johnstone, 1995; Jernakoff et al., 1996; 

Jernakoff & Nielsen, 1997) and as microhabitat for small motile macroinvertebrates (Heck 

& Orth, 1980a; Virnstem, 1987; Hall & Bell, 1988; Worthington et al., 1991). In turn, 

detritus feeders and grazers serve as prey items for a large number of invertebrates and 

vertebrates (e. g. decapods and fishes; Brook, 1977; Young & Young, 1978; Heck & Orth, 

1980b; Stoner, 1980; Burchmore et al., 1984; Howard, 1984; Leber, 1985; Greenway, 
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1995). Therefore, it is not surprising that several studies have reported significant 
differences in the abundance of macrofauna between seagrass beds and unvegetated 
bottoms, when comparing the seagrass foliar canopy with adjacent 'bare' substrata (e. g. 
Howard et al., 1989; Edgar et al., 1994; Connolly; 1997). On the other hand, very few 

studies (e. g. Lewis & Stoner, 1983; Curras et al., 1993) have included the root-rhizome 

layer when comparing the associated macrofauna of seagrass beds and adjacent bare 

substrata, and the contribution of the former habitat to the diversity of seagrass-associated 

macrofauna has not been clearly established, although workers have pointed out that it may 

play an important role (Orth; 1977; Orth et al., 1984; Virnstein, 1987; Webster et al., 1998; 

Buia et al., 2000). In principle, given that the root-rhizome matrix has a large proportion of 

trapped sediment, one may expect that the diversity of macrofauna associated with this 

subhabitat would not be very dissimilar to that of surrounding bare sand habitats. However, 

experiments involving reduction of leaf height or complete removal of the foliar stratum of 

a seagrass bed have shown that the leaf canopyper se may not be of overriding importance 

for associated macroinvertebrates, and other factors, possibly the root-rhizome layer that 

persists after removal of the foliar canopy, may be involved (Bell & Westoby, 1986a; 

1986b; Connoly, 1995). The root-rhizome layer may increase habitat structural complexity 

by providing cavities and interstices in the mat that can be inhabited by cryptic macrofauna 

(e. g. Garcia Raso, 1990; Somaschini et al., 1994; Garcia Raso et al, 1996) and protect the 

infauna against predation (e. g. Blundon & Kennedy, 1982; Peterson, 1982). Additionally, 

the network of roots and rhizomes prevents the accumulation of toxic compounds 

(Terrados et al., 1999) and stabilises the mobile sediments (Ward et al., 1984 , creating a 

favourable habitat, which supports a high diversity of associated macrofauna (e. g. 

Harmelin, 1964; Templado, 1984; Chimenz et al., 1989; Somaschini et al., 1994; Gambi et 

al., 1995; Borg & Schembri, 2000). The root-rhizome layer also traps sand and other 

sediment that provides a habitat in itself, while the roots and rhizomes may serve as a 

source of food for the infauna and cryptic macroinvertebrates (Bellan Santini et al., 1986). 
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The possible contribution of dead seagrass matte to localised organic enrichment, long 

after disappearance of the canopy, has been pointed out by Jackson et al. (2001). Thus, it is 

probable that the root-rhizome compartment supports a substantial amount of the 

biodiversity of seagrass habitats (Orth et al., 1984; Vimstein, 1987). 

Fragmentation of seagrass habitat is a gradual process that may involve slow degradation 

of large continuous beds into non-continuous ones, and ultimately to smaller bed 

fragments. In some cases, degradation of seagrass beds leads to complete loss of the foliar 

canopy, such that only the root-rhizome layer remains (e. g. Meinesz et al., 1988). 

Therefore, the remaining root-rhizome matrix can be viewed as the lower extreme end of 

the gradual process of seagrass bed fragmentation and degradation. It would be useful to 

compare the diversity of macrofaunal assemblages associated with the root-rhizome matrix 

after loss of the foliar canopy to that of the root-rhizome matrix in seagrass beds having an 

intact foliar canopy. The data generated from such a study would enable a quantitative 

assessment of the contribution of the root-rhizome matrix to seagrass bed diversity. In turn, 

such data will help assess whether the root-rhizome matrix remaining after complete loss 

and degradation of the foliar canopy of a seagrass bed, has any conservation value. 

In the Mediterranean Sea, the endemic Posidonia oceanica (Linnaeus) Delile forms beds 

that constitute one of the most important shallow-water coastal habitats in this sea, through 

their roles as nurseries, refugia and feeding grounds for many invertebrates and fishes 

(Mazzella et al., 1992; Boudouresque et al., 1994), and their contribution to physical 

coastal dynamic processes, including protection against coastal erosion (e. g. Boudouresque 

& Meinesz, 1982; Jeudy de Grissac, 1984). Because of their high conservation importance, 

P. oceanica beds are listed in the EC Directive 92/43/EEC (the 'Habitats Directive') as a 

priority natural habitat, whose protection requires the designation of Special Areas of 

Conservation (EEC, 1992). P. oceanica is one of the largest seagrasses, with strap-like 
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leaves sometimes exceeding one metre in length (Drew and Jupp, 1976) and having a 
width of around I cm. Beds of this seagrass are characterised by very high shoot densities 
(e. g. 1,200 shoots M-2 at a depth of 5 in; Mazzella et al., 1992) and a root-rhizome layer 

consisting of tough lignified roots and rhizomes aýdmixed with sediment, known as 'matte', 

that has a complex structure and can be several metres thick (e. g. 4-5 in; Romero et al., 
1994; Mazzella et al., 1986). The high structural complexity of both leaf canopy and root- 
--I- rhizome matte of P. oceanica beds (Buia et al., 2000) makes them ideal for comparisons of 

the role of these two compartments in determining the diversity of seagrass-associated 

macroinvertebrate assemblages. To date, investigations on the total macrofauna have been 

centered mainly on the leaf canopy (e. g. Mazzella et al., 1989; Scipione et al., 1996; 

Sanchez Jerez et al., 1999a), while the few available studies on matte macrofauna mainly 

deal with single taxa (e. g. the polychaetes; San Martin & Vietez, 1984; Willsie, 1986; 

Somaschini et al., 1994). Only a handful of studies have investigated the total biotic 

assemblages of the different subhabitats comprising P. oceanica beds (e. g. Templado, 

1984; Bianchi et al., 1989; Chimenz et al., 1989). 

Disturbance from natural processes and events, such as strong currents and wave action 

(Blanc & Jeudy de Grissac, 1984) and anthropogenic activities, for example, discharge of 

sewage and harbour activities (Ramos Espla, 1984), and trawling (Ardizzone & Pelusi, 

1984), may lead to death of P. oceanica in parts of the bed, exposing the underlying root- 

rhizome matrix (Meinesz et al., 1988; Mazzella et al., 1986). The remaining root-rhizome 

matte consists of the compacted remains of the seagrass root-rhizome matrix, having 

numerous small crevices and other spaces, some of which are filled with sediment, and 

commonly referred to as 'dead matte' (e. g. Hannelin, 1964; Vaccarella et al., 1981; 

Willsie, 1983; Salghetti-Drioli et al., 1989; Mazzella et al., 1986). Dead P. oceanica lacks 

the foliar canopy and would therefore be more exposed to currents (Gambi et al., 1989b), 

and hence to the loss of the interstitial sediments, which are easily resuspended by water 
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movement and eroded from the matte (Terrados & Duarte, 2000). Therefore, one would 

expect loss of the finer sediments from the dead matte so that the mean grain size of the 

retained sediments would be larger than in the case of living P. oceanica matte. Living 

matte also has a higher rate of sediment deposition, since the overlying leaf canopy traps 

suspended fine particles from the water column (Duarte et al., 1999), hence leading to 

differences in sediment grain size between living and dead matte of P. oceanica. The 

hollow cavities thus produced in dead P. oceanica matte may serve as a habitat for cryptic 

macrofauna (Hannelin, 1964; Vaccarella et al., 1981; Willsie, 1983; Somaschini et al., 

1994), while the slowly decomposing root-rhizome matrix may provide a rich source of 

detritus and organic matter that may serve as food for the associated macrofauna (Bellan 

Santini et al., 1986; Edgar et al., 1994). However, since dead P. oceanica matte lacks the 

overlying leaf canopy, the surface is easily accessible to predators (e. g. Lee et al., 2001), 

hence, predation pressure may be higher in this habitat than in the case of living matte. The 

dead matte surface is often colonised by epiphytes (Vaccarella et al., 1981), which 

themselves increase structural complexity (Heck & Orth, 1980a; Virnstein, 1987; 

Worthington et al., 1991) and provide food (Kitting 1984; Jemakoff et al., 1996; Moncreiff 

& Sullivan, 2001), hence serving as a new microhabitat for other macrofauna. The dead P. 

oceani . ca matte surface can also become colonised by macroalgae (e. g. Boudouresque et 

al., 1985b; Meinesz et al., 1988; Salghetti-Drioli et al., 1989; Barberi et al., 1995), and 

sometimes by the pioneering seagrass Cymodocea nodosa (Ucria) Ascherson (e. g. Calvo & 

Frada-Orestanio, 1984; Mazzella et al., 1986), thereby acting a substratum for other 

vegetation assemblages and their associated fauna. 

Dead P. oceanica matte may persist for several years, or even decades (e. g. Meinesz & 

Lefevre, 1984), and can have a continuous cover over large areas, or can occur as patches 

intermixed with living matte (Augier & Boudouresque, 1970; Augier, 1985; Meinesz et al., 

1988; Panayotidis & Simboura, 1989). Large areas of dead P. oceanica matte have been 
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reported from many parts of the Mediterranean, including Spain (e. g. Ramos Espla ', 1984), 
France (e. g. Augier, 1986), Corsica (e. g. Meinesz et al., 1988), Italy (e. g. De Metrio et al., 
1978; 1980; Vaccarella et al., 1981), Sardinia (e. g. Barberi et al., 1995), Sicily (e. g. Calvo 

& Frada-Orestanio, 1984) and Greece (e. g. Panayotidis & Simboura, 1989), showing that 

the occurrence of this habitat is widespread in the region. Given the high conservation 
importance of P. oceanica beds, the widespread occurrence of dead matte is potentially 

alarming. Where present, dead P. oceanica matte is generally viewed as a degraded habitat 

having a low ecological value (Notiziario S. I. B. M., 2003), but such discrimination is not 

supported by ample data. Surprisingly, few studies of the ecology of this habitat are 

available (Hannelin, 1964; De Metrio et al., 1978; 1980; Vaccarella et al., 1981; Willsie, 

1983; Abada Guerroui & Willsie, 1984; Bellan Santini et al., 1986; Somaschini et al., 

1994). Furthermore, quantitative studies designed specifically to compare the macrofauna 

of living and dead matte are generally lacking (Harmelin, 1964) and most deal only with 

single taxa, namely amphipods (e. g. Bellan Santini et al., 1986) and polychaetes (e. g. 

Somaschini et al., 1994). The available data indicates that dead P. oceanica matte may 

support a high diversity of associated macrofauna, which could possibly be higher than that 

of living matte (Harmelin, 1964). However, Somaschini et al. (1994) concluded that dead 

matte of P. oceanica did not support a higher diversity of polychaetes than living matte. It 

would be useful to study the diversity of the whole macrofaunal assemblages associated 

with P. oceanica dead matte and compare them to those of living matte of the seagrass. 

Data generated from such a study will enable a quantitative assessment of the contribution 

of dead P. oceanica matte to the diversity of associated with seagrass habitats. In turn, such 

data will help assess whether dead matte resulting from fragmentation and/or degradation 

of P. oceani, ca beds has any conservation value. Given that dead P. oceanica matte 

sometimes results from natural disturbance, a useful starting point would be comparisons 

of the diversity, species composition and structure of biotic assemblages associated with 

naturally occurring dead and living matte. 
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The present study aimed to establish whether the diversity of associated motile 

macroinvertebrate assemblages, sampled at a number of spatial scales, differed between 

living P. oceanica matte (supporting living shoots of the seagrass) and dead matte (not 

supporting living shoots of the seagrass). To address this aim, the null hypothesis tested 

was that the species richness, abundance, and assemblage composition of associated motile 

macroinvertebrates did not differ between living and dead P. oceanica matte. To examine 

any possible relationships between macroinvertebrate diversity and enviromuental 

variables (namely the organic carbon content and grain size of the sediment, and root- 

rhizome biomass), the study also aimed to examine for differences in these variables 

between living and dead P. oceanica matte. To address this aim, the null hypothesis tested 

was that the aforementioned physical attributes examined did not differ between living and 

dead P. oceanica matte. 

5.2 MATERIAL AND METHODS 

5.2.1 Study area and experimental design 

Previous surveys (Borg & Schembri, 1995a; Borg et al., 1997) showed that areas of dead 

P. oceanica matte, interspersed with the living seagrass, occur in several bays and inlets in 

the Maltese Islands (Central Mediterranean). While in some bays and inlets, large areas of 

dead P. oceanica matte have resulted from degradation of the seagrass due to 

anthropogenic disturbances, in other places, such regression appears to have resulted from 

natural events, most probably strong currents and wave action (Blanc & Jeudy de Grissac, 

1984; Meinesz et al., 1988). Mellieha Bay, located on the northeastern coast of mainland 

Malta, is a relatively undisturbed locality. A detailed survey of the bay showed the 

presence of large patches of dead P. oceanica matte interspersed with living matte of the 

seagrass (Figure 29), predominantly in the 5-8m depth range (see Chapter 2 for details of 
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survey methodology and results). The presence of interspersed living and dead matte of P. 

oceanica provided an opportunity to compare the two habitat types, since water depth and 

other physical environmental conditions are the same for bothl hence enabling 

unconfounded comparison (Underwood, 1997). 

The experimental design for the present study was based on a randomised spatial layout 

consisting of four plots, each measuring 60 x 80 in, and located at a depth of 6 in in 

Mellieha Bay (Figure 30). Adjacent plots were separated from each other by a distance of 

around 80 m, and each had dense and healthy P. oceanj'ca beds interspersed with patches of 

dead matte which varied in size between 0.05m 2 and 25 m2. Such a design ensures spatial 

replication and allows for detection of spatial differences, if any, between live and dead 

matte between localities (Underwood, 1997). 

5.2.2 Sampling and laboratory analyses 

Sampling of living and dead P. oceanica matte was carried Out using a specially designed 

corer having a diameter of 25 cm, to which a 0.5 mm mesh collecting bag was attached see 
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Chapter 2). The design, selection, justification and operation of this particular corer are 
described in Chapter 2. Using this sampler, four cores were collected randomly by SCUBA 

divers from adjacent areas (each ranging between 8 M2 and 12 M) having the two different 

matte types, within each of the four plots, such that a total of 32 samples were obtained (4 

plots x2 treatments x4 replicate samples; Figure 30). Four replicate samples were 

collected also from each sampling station, using a smaller (10 cm) diameter metal corer, to 

study physico-chemical properties of the sediment and of the root-rhizome material. To 

reduce edge effects, all samples were collected at least 2m away from the boundary 

between the two different matte types. All sampling was carried out between 10.00 h and 

15.00 h, during the first three weeks of August 2000. 

14 20' 21' 22' 23' 

59 

MELLIEHA BAY 

20 
210 

52 
2 

35 58j' I km 

Figure 30. Map of Mellieha Bay showing the location of the four plots (arrow) and bathymetrY (2 

m, 5 m, 10 m and 20 m depth contours). 

In the laboratory, samples collected for faunal studies, using the 25 cm diameter corer, 

were washed in seawater, and the shoots (for living matte) and root-rhizome Matnx 

separated and examined carefully to remove the conspicuous motile macroinvertebrates. 
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The remaining sediment and washings were passed through a 0.5 mm sieve and the 

retained material sorted for any remaining motile macro invertebrates in trays under a x5 

magnifying lens. The macroinvertebrates were fixed in 10% formaldehyde in seawater and 

transferred to 70% ethanol prior to identification to species level using microscopy (x12 - 

x 15 0) and appropriate taxonomic keys (see Chapter 4). 

The P. oceanica shoots collected in cores taken on the living matte were separated from 

the root-rhizome fraction, and counted to obtain estimates of shoot density. To obtain 

estimates of biomass the shoots from samples taken on living matte, and the root-rhizome 

fractions from samples (25 cm diameter core) taken on living and dead matte were washed 

in tap water and dried at 80'C for 48 h to constant weight (± 0.001g). Samples collected for 

sediment analyses using the 10 cm diameter corer were first sorted to remove the root- 

rhizome matrix and other plant material from the sediment. Sub-samples of the sediment 

for determination of total organic carbon were frozen at -25'C, while the remaining 

portions were dried in air for granulometric analysis. Analyses to detennine total organic 

carbon in the sediment (Walkley & Black, 1934) and mean sediment grain size (Folk & 

Ward, 1957) were carried out as given in Buchanan (1984). 

5.2.3 Data analyses 

Differences in the species richness and abundance of motile macroinvertebrates between 

the two different matte types were tested using two-way ANOVA (with alpha set at 0.05). 

Differences in organic content and mean grain size of the sediment, and of the dry weight 

of the root-rhizome fraction between the two different P. oceanica matte types, were tested 

likewise, using two-way ANOVA. The ANOVA model used was orthogonal, in which 

gmatte type' (M; two levels) was a fixed factor and 'plot' (P; four levels) was random. 

Differences in shoot density and leaf biomass between living P. oceanica matte in the four 

plots were tested using one-way ANOVA (with alpha set at 0.05). Prior to analyses, all 
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data were tested for homogeneity of variances using Cochran's test and, where necessary, 

appropriate transfon-nation of data (see Section 5.3) was made. Analyses were carried out 

using the PC software package GMAV5 produced at the University of Sydney (GMAV, 

1996). When the ANOVA indicated significant differences, the source of difference was 

identified using SNK tests (Underwood, 1997) (see Chapter 3). 

To test for differences in the assemblage composition associated with the two different P. 

oceanica matte types, multivariate analyses were carried out on the species-abundance data 

(sAftransformed, to downweight the contribution of dominant species; Clarke & Warwick, 

1994) using the PRIMER v5 suite of programs (Clarke & Gorley, 2001). The analyses 

consisted of Non-Metric Multidimensional Scaling (NMDS), using the Bray-Curtis index 

to construct the underlying similarity matrix (Clarke & Warwick, 1994) (see Chapter 4 for 

a justification of use of this multivariate ordination technique). Significance of differences 

in assemblage composition for samples from living and dead matte was assessed using 

two-way Analysis of Similarity (ANOSIM) (Clarke, 1993). The contribution of the 

different species to the observed similarity within groups of samples taken from the same 

type of matte, and the dissimilarity between groups of samples taken from different matte 

types, were tested using the Similarity Percentages (SIMPER) program (Clarke, 1993). 

BIOENV analysis was carried out to examine the relationships between the 

macroinvertebrate assemblage composition and environmental variables measured (Clarke 

& Ainsworth, 1993). The environmental variables included in the analysis were mean 

sediment grain size, total organic carbon in sediment and root-rhizome biomass. A brief 

description of the principles underlying these four different statistical analyses techniques 

has already been presented in the preceding chapter (Chapter 4). 
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5.3 RESULTS 

A total of 5695 individuals were collected (7 nemerteans, 47 sipunculids, 1447 

polychaetes, 12 Pycnogonids, 3680 crustaceans, 416 molluscs and 86 echinodenns) 

comprising 215 species (I nemertean, I sipunculid, 54 polychaetes, 2 pycnogonids, 84 

crustaceans, 67 molluscs and 7 echinoderms; see Appendix B). Of these, 39 species were 

recorded exclusively from dead matte and 32 exclusively from living matte (Appendix Q. 

In all four plots, the mean total abundance (Figure 31a) and species richness (Figure 31b) 

were significantly higher in samples collected on dead P. oceanica matte than on the living 

matte (Table 25). 

(a) (b) 
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0 Dead Posidonia oceanica matte 11 Living Posidonia oceanica matte 

Figure 3 1. Mean values of abundance (a), number of species (b). Error bars are +I SD. 

Table 25. Summary of ANOVA results for abundance (per core) and number of species (per core). 
The significance of Cochran's test following transformation (where applicable) is indicated. NS 

not significant; p<0.05; p<0.01; p<0.001. 

Source of df Abundance Number of species 

variation n=4 n=4 

Transformation: none Transformation: none 
Cochran's test: NS Cochran's test: NS 

F MS F P MS 

Matte type MA 1 146746.53 70.04 1875.78 10.22 
_ 55 2 NS 

Plot 3 1109.86 0.32 NS 202.44 _ . 
231 NS 

MxP 3 ý 2095.20 
- 

0.60 NS 183.53 1 

Residual -2, Tf 3470.38 

173 



The significant difference in abundance detected for the factor Cmatte type' was attributed 
to significant differences between dead and living matte in all four plots (SNK; p<0.01), 

while the significant difference in species richness detected for same factor was due to 

significant differences between the two matte types in plot 2 (SNK; p<0.05) and plot 3 

(SNK; p<0.01). Overall, total species richness and abundance recorded for the various 

major macroinvertebrate phyla were consistently higher on dead P. oceanica matte (Figure 

32). 

0 2500 - 80 - 0 U 2000 - L- 70 - Q) 0- CL 60 - 
1500 - cn 50 - 

c 40 - 1000 
cl 30 - c =3 20 - -0 500 0 

Mc 10 - 
cu 0 cu 0 0 

r 
ej 0 

Dead Posidonia oceanica matte El Living Posidonia oceanica matte 

_Figure 
32. Values of total abundance (a) and total number of species (b) for the major taxa. 

One-way ANOVA indicated that leaf biomass (Figure 33a) and shoot density (Figure 33b) 

were not significantly different between living P. oceanica matte in the four plots. No 

consistent pattern of differences in mean organic carbon content (Figure 33c) and mean 

grain size of the sediment were evident between living and dead P. oceanica matte in the 

four plots (Figure 33d); the two-factor ANOVA did not indicate any significant differences 

in these sediment properties between the two matte types (Table 26). Values of dry weight 

of the root-rhizome fraction of the dead matte were, overall, higher (Figure 33e), although 

not significantly so (Table 26). 
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Figure 33. Mean values of shoot biomass (a), shoot density (b), % organic carbon in sediment (c), 
mean sediment grain size (d) and root-rhizome biomass (e) recorded from the four plots. Error bars 
are +1 SD. 

The NMDS plot gave a clear separation between the two groups of samples collected on 

living and dead P. oceanica 'matte', except for a single sample (U) taken on living matte, 

which was an outlier (Figure 34). Furthermore, the NMDS plot indicated that samples 

collected from living P. oceanica matte were less closely grouped together than samples 
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taken on dead matte. The stress level of the NMDS plot (0.11) indicated a god ordination 

with no prospect of a misleading interpretation (Clarke & Warwick, 1994). 

Table 26. Summary of ANOVA results for total organic carbon in the sediment, mean sediment 
grain size and root-rhizome biomass. The significance of Cochran's test following transformation 
(where applicable) is indicated. NS = not sinificant. D<0.05: n< 001 <0 001 

% Organic carbon in Mean sediment grain Root-rhizome biomass 
sediment size (mm) (g) 

Source of df n=4 n=4 n=4 
variation 

Transformation: ln(X) Transformation: none Transformation: none 
Cochran's test: NS Cochran's test: NS Cochran's test: NS 

MS F p MS F p MS F p 

_Matte 
type (M) 1 0.151 0.21 NS 0.048 1.73 NS 20034.21 15.30 NS 

Plot 3 0.052 2.01 NS 0.007 1.40 NS 4194.55 0.82 NS 
Mxp 3 0.070 1 2.73 , NS 0.003 1 0.54 , NS 1309.24 

. 
0.26 _ 

Residual 1 24 1 0.026 1 1 0.005 11 1 5106.46 1 

STRESS: 0.11 
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Figure 34. MDS plot for the specles-abundance data from the 32 Core samples; the 

letters D and L represent samples taken on dead or living Posidonia oceanica matte 

respectively, while the number indicate the plot from where the respective sample was 

taken (plots 1,2,3 and 4). 

The distinct grouping of samples by NMDS was corroborated by the 2-way crossed 

ANOSIM, which indicated that samples collected on the two matte types were 

significantly different (Global R=0.88; p<0.01). The ANOSIM test also revealed that 

samples collected from the same type of matte did not differ significantly between the four 
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different plots, for either living or dead P. oceanica matte (Global R=0.054; p>0.05). 

The species having the highest contribution to the dissimilarity and that discriminate 

between the two groups of samples taken from the two different matte types, are listed in 

Table 27. The SIMPER analysis showed that the average dissimilarity value between the 

Table 27. Results of the SIMPER analysis for species having the highest dissimilarity values 
between the two groups of samples taken from different Posidonia oceanica matte types. AA = 
average abundance (number of individuals per core); AD = average dissimilarity between the two 
locations being compared; AD/SD = ratio of the average dissimilarity to the standard deviation of 
dissimilarity for the particular species. 

Species AA 
Dead matte 

AA 
Living matte 

AD AD/SD Contribution % 

Leptocheirus guttatus 34.63 0.00 9.56 3.30 11.98 
Maera inaequipes 14.50 2.00 3.46 1.46 4.33 
Nereis rava 12.88 1.13 3.27 1.89 4.09 
Maera grossimana 11.50 2.25 2.63 1.61 3.30 
Elasmopus pocillimanus 2.44 8.63 2.31 0.90 2.90 
Athanas nitescens 8.94 3.38 1.91 1.08 2.39 
Lysianassa costae 6.56 0.00 1.90 1.04 2.38 
Anphinomidae sp. 6.69 0.13 1.89 1.88 2.36 
Galathea bolivari 5.81 0.00 1.62 1.95 2.03 
Syllidae sp. B 7.50 2.25 1.62 1.38 2.03 
Aoridae sp. 6.63 8.88 1.58 1.41 1.98 

Terebellidae sp. A 5.38 0.25 1.56 1.07 1.95 

Cyathura carinata 5.31 0.31 1.39 1.59 1.75 

Leptochelia saw . gnyi . 5.25 0.50 1.33 1.45 1.67 

Leptocheirus bispinosus 5.00 0.38 1.29 1.13 1.61 

Alpheus dentipes 5.25 1.00 1.28 1.62 1.60 

Liljeborgia dellavallei 0.06 4.13 1.18 1.23 1.48 

Pontogenia chrysoscoma 4.63 0.63 1.14 1.47 1.43 

Piromis eruca 4.06 0.50 1.09 1.20 1.37_ 
- Ampelisca cf rubella 0.00 3.75 1.05 1.35 1.32 
- Amphithoe ramondi 4.13 0.44 1.02 1.34 1.28 
- Notomastus latericeus 4.13 1.38 0.94 1.01 1.18 

Microjassa cumbrensis 1.31 3.69 0.94 1.38 1.18 

Cestopagurus timidus 
-- 0.44 

r- ý31 31 0.88 1.17 1.10 

two sample groups was 79.81%. The amphipod Leptocheirus guttatus (Grube) alone 

contributed to 11.98% to the dissimilarity, being found only in samples from dead matte. 

Overall, the observed differences were due to species that were either recorded only from 

one of the two P. oceanica matte types (e. g. the amphipods L. guttatus and Lysianassa 

costae Milne Edwards, and the decapod Galathea bolivari Zanquiey Alvarez, which were 

recorded only from dead matte, and the amphipod Ampelisca cf rubella A. Costa, which 

was only recorded from living matte), or to large differences in abundance of species 
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between the two matte types (e. g. the amphipods Maera inaequipes (Costa) and Maera 

grossimana (Montagu), the decapod Athanas nitescens (Leach), and the polychaete Nereis 

rava Ehlers, all of which were more abundant on dead matte, and the amphipod Elasmopus 

pocillimanus (Bate) and Aora sp., which were more abundant on living matte) (Table 27). 

BIOENV indicated that the environmental attribute that best explained the 

macroinvertebrate composition was mean sediment gain size (p, = 0.136); however, the 

value of the correlation coefficient was relatively low. On the other hand, no combination 

of the three environmental attributes achieved a correlation higher than that attained by 

mean sediment grain size alone. 

5.4 DISCUSSION 

The present study showed that dead P. oceanica matte supported significantly higher 

species richness and abundance of motile macroinvertebrates than living matte, the 

ni ý 

observed results being consistent between mattes of the same type across the spatial SCa. L%., 

considered. Multivariate analysis indicated that the assemblage composition of the 

associated motile macroinvertebrates differed significantly between the two matte types, 

such that many species were recorded exclusively from each of the two habitat types. 

Based on these results, the null hypothesis of no difference in the spemes richness and 

abundance between living and dead matte of P. oceanica was rejected. In, the study area, P. 

oceanica dead matte supported a higher species richness and abundance of associated 

motile macroinvertebrates. 

Previous studies on the macroinvertebrate assemblages of dead P. oceanica matte 

(Harmelin, 1964; Abada Guerroui & Willsie, 1984; Somaschini et al., 1994) have indicated 
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that the habitat may support a rich macrofauna, both in terms of number of species and 
abundance. Some of these investigations indicated also that the species composition and 

structure of the biotic assemblages associated with dead P. oceanica matte may vary, 
depending on matte type and structure (Harmelin, 1964; De Metrio et al, 1978; 1980). For 

example, De Metrio et al. (1978; 1980) noted differences in the assemblage structure of 

associated macroinvertebrates between two dead mattes of P. oceanica that had different 

e evation (hence, the two matte surfaces were located at different water depth), while 

Hannelin (1964) and Abada Guerroui & Willsie (1984) also noted differences in the 

associated macroinvertebrate assemblages between dead matte located in different water 

quality regimes. 

Univariate analyses indicated that the physical properties of the substratum, namely 

organic content, grain size and root-rhizome biomass, were not significantly different 

between the two matte types, nor were these variables strongly correlated with the 

assemblage composition of macroinvertebrates associated with living and dead matte. 

Based on these results, the null hypothesis of no difference in the physical attributes 

examined between living and dead P. oceanica matte was accepted. Thus, other factors 

must be considered to explain the observed difference in the motile macroinvertebrate 

assemblages of living and dead matte. 

The NMDS plot indicated that the motile macroinvertebrate assemblages associated with 

dead P. oceanica matte were more homogeneous than those associated with the living 

matte. This relative lack of variability between samples could reflect the relatively more 

'Stable' habitat characteristics of the dead matte. Living P. oceanica beds undergo 

considerable seasonal changes in within-bed structure, characterised by changes in plant 

growth rates and architectural features (e. g. leaf turnover, biomass etc.; Romero, 1989a), 

and dynamic epiphyte turnover rates (Alcoverro et al., 1997a), which would influence the 
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structure and composition of associated macrofaunal assemblages accordingly (Gambi et 

al., 1992). Furthermore, the macrofauna associated with the leaf canopy is expected to be 

continually exposed to environmental stress, for example hydrodynamic forces cause the 

shoots to undergo a swaying motion (Fletcher & Day, 1983), which may dislodge the 

macrofauna, while strong currents may also dislodge and transport. small macrofauna away 

from the bed (Schanz et al., 2000). Exposure to hydrodynamic forces and may also hinder 

larval recruitment (Luttenton & Rada, 1989). Thus, higher disturbance, leading to a more 

variable macroinvertebrate assemblage composition associated with the leaf canopy 

subhabitat (Bianchi et al., 1889; Chimenz et al., 1989) is the probable underlying reason 

for the observed loose grouping of samples collected from living P. oceanica matte. On the 

other hand, the root-rhizome layer of both dead and living P. oceanica matte is less 

exposed to such environmental stress (Mazzella et al. 1986), although in the case of dead 

matte, the absence of an overlying leaf canopy may result in greater overall exposure to 

water movement (e. g. Gambi et al., 1989a). 

Other factors then, not considered in the present study, appear to be responsible for the 

observed significant differences in macroinvertebrate diversity between living and dead 

matte of P. oceanica. Whilst the present results indicate that there is no significant 

difference between the organic matter content of sediment from living and dead matte, the 

quality value of this food source for macroinvertebrates could differ between the two bed 

types. Living P. oceanica matte is enriched by detritus resulting from the breakdown of P. 

oceanica leaves (Mateo & Romero, 1997) and from particulate organic matter (POM) 

suspended in the water column that is intercepted by the leaf canopy, which is thereafter 

partly deposited on the living matte (Duarte et al., 1999). On the other hand, P. oceanica 

dead matte could be serving as a richer source of detritus for the fauna, for whilst part 

originates from the leaf canopy of adjacent living seagrass (Mateo & Romero, 1997), 

organic matter will also originate from the continuously decomposing dead root-rhizome 
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layer (Harrison, 1989; Enriquez et al., 1993). Most of the macroinvertebrates that were 

recorded in higher abundance from dead P. oceanica matte, and which contributed most to 

the dissimilarity between samples collected from dead and living matte, are predominantly 

detritivores and depo sit- suspension feeders. These include the amphipods L. guttatus, m 

inaequipes, M. grossimana and Leptocheirus bispinosus Nonnan, the polychaetes N. rava, 

Amphinomidae sp. and Terebellidae sp., the isopod Cyathura carinata (Kroyer) and the 

tanaid Leptochelia savignyi (Kroyer) (Wittmann et al., 198 1; Scipione, 1999; Gambi et al., 

1992). The species identified by SIMPER as high contributors to the samples taken on 

living P. oceanica matte (and good discriminators between living and dead matte) included 

herbivores and deposit-suspension feeders (e. g. the amphipods E. pocillimanus, Aora sp., 

Liljeborgia dellavallei Stebbing and Microjassa cumbrensis (Stebbing & Robertson); 

Wittmann et al., 1981; Scipione, 1999). Dead P. oceanica matte comprises a high biomass 

of slowly decomposing roots and rhizomes, part of which would have had its organic 

composition altered by bacterial action and chemical reactions (Harrison, 1989; Enriquez 

et al., 1993). Therefore, the resulting chemically modified vegetal matter may be more 

palatable and readily available for assimilation by the macrofauna (Edgar et al., 1994). 

Furthermore, burrowing organisms such as the shrimp Alpheus dentipes Guerin-Meneville 

(which was much more abundant in dead P. oceanica matte and was identified by SIMPER 

as an important contributor to the observed differences between the two matte types) may 

be playing an important role in increasing the amount of detrital matter available for 

consumption by other macroinvertebrates, through harvesting of seagrass leaves and root- 

rhizome material, and reworking of the sediment (e. g. Stapel & Erftemeijer, 2000). Since 

the shrimps ventilate their burrows, they help create an environment rich in organic matter 

and oxygen, which favours bacterial growth (e. g. Branch & Pringle, 1987) and more rapid 

decomposition of seagrass (leaf + root-rhizome) tissue to a detrital form that is more 

palatable and has a higher energy yield for the consumers (the macrofauna of dead matte). 

181 



Thus it is possible, as observed in the present study, that there could be no difference in the 

amount of organic matter between living and dead matte habitat, nor any relationship 
between simple univariate measures of the associated macroinvertebrate assemblage and 

the organic matter content, but the dead P. oceanica matte habitat would be supplying 

larger amounts of detritus in a form that is more readily available as food. This may also 

account for the observed preference of several species (e. g. the decapods G. bolivari, 

Thoralus cranchii (Leach)) recorded from the dead matte that usually occur in living P. 

oceanica matte, but which were absent altogether in the latter habitat. These findings 

suggest that the macroinvertebrates of adjacent living and dead matte of P. oceanica may 

be actively selecting the latter due to the better food supply, but only when the dead matte 

habitat is immediately adjacent to living matte. 

The less compact and spongy texture of the dead P. oceanica matte offers much less 

resistance to burrowers (e. g. the anomuran G. bolivari and the shrimp Upogebia 

mediterranea No6l; see Appendix C), while the presence of more hollow spaces and 

crevices in the dead matte (compared to its living counterpart), will increase microhabitats 

available to cryptic fauna (Harmelin, 1964; Garcia Raso, 1990; Garcia Raso et al, 1996). 

For example, the alpheid shrimp A. nitescens, the isopod C carinata and the tanaid L. 

savi . gnyz ., were all more abundant in samples taken on dead matte, SIMPER indicating 

these species as high contributors and good discriminators between samples taken on living 

and dead P. oceanica matte. Several workers have emphasised the important role of the 

physical complexity of the seagrass foliar stratum in enhancing the diversity of associated 

macrofauna by providing refugia against predation, habitat for larval settlement and 

growth, and food (see reviews by Heck & Wetstone, 1977; Orth et al., 1984; Virnstein, 

1987; Heck & Crowder, 1991; Jemakoff et al., 1996). However, the present results indicate 

that the root-rhizome layer of P. oceanica beds alone (i. e. without the presence of an 

overlying foliar stratum) can support a very high species richness and abundance of 
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associate macroinvertebrates, possibly because this habitat is characterised by both high 

structural complexity and stability. Harmelin (1964) had indicated that dead P. oceanica 

matte may support a higher diversity of associated macrofauna by stating that c4cette entite 
biocoenotique est particulierement bien definie dans le cas des matte mortes qui 

representent paradoxalment, le milieau type de la biocoenose". Recently, Somaschini et al. 
(1994) compared the polychaete fauna of dead and living P. oceanica matte, and 

concluded that dead matte did not support a significantly higher diversity of polychaete 

fauna than living matte, thereby contending Hannelin's (1964) statement. However, since 

Somaschini et al. 's study considered only the polychaete taxon, the results of their study 

cannot be extended to the whole motile macroinvertebrate assemblages associated with 

dead P. oceanica matte. The present findings, however, support the conclusions reached by 

Hannelin (1964). 

The surface of the dead P. oceanica matte also serves as a hard substratum, enabling 

colonisation by algae and other sessile epibiota, whose species composition would 

resemble that of the photophilic assemblages on hard substrata (e. g. Vaccarella et al., 

1981). The epibiota of P. oceanica living matte receives less light, being shaded by the 

overlying leaf canopy, and is therefore sciaphilic in nature (e. g. Garcia Raso et al, 1996). 

Such differences in the species composition of associated epiphytic assemblages between 

living and dead matte of P. oceanica would be expected to influence the species 

composition of motile macroinvertebrate grazers that feed on them (Jemakoff et al., 1996; 

Jernakoff & Nielsen; 1997). 

The present results, that dead P. oceanica matte resulting from natural disturbance supports 

a distinct and richer motile macroinvertebrate assemblage than living matte, and which is 

apparently not correlated to the root-rhizome biomass or physical properties of the 

sediment (total organic carbon content and grain size) considered in the present study, 
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cannot be generalised to other dead matte habitats which might exist in different 

enviromuental conditions (e. g. at different water depths Han-nelin, 1964; De Metrio et al., 

1978; 1980) or result from death of the seagrass due to pollution (Bellan Santini et al., 

1986). The present results do, however, highlight the importance of the matte habitat in its 

own right (Harmelin, 1964; Vaccarella et al., 1981) and indicate the need for further study 

to: (1) establish whether the detritus produced by dead matte is more palatable to the 

associated macrofauna than that originating from living matte; (ii) examine for positive 

correlations between the structural complexity of dead matte and the species richness and 

abundance of associated macrofauna; (iii) determine whether the epiphytic assemblages of 

dead matte provide better habitat or food than living matte; (iv) determine whether dead 

matte is more suitable for burrowing infauna than living matte; and (v) establish whether 

the species richness and abundance of macrofauna associated with dead matte varies with 

distance from living matte of P. oceanica. 

The unfortunate labelling of one of the P. oceanica matte habitat types as 'dead', could 

easily lead to general acceptance that this habitat type supports a lower biodiversity and is 

of low conservation importance. Clearly, the present data indicate otherwise. Furthermore, 

the present results and those of other studies (e. g. Harmelin, 1964; De Metrio et al.; 1980) 

show that some of the species that occur in dead P. oceanica matte are rare, making this 

habitat of potentially high conservation value. For example, De Metrio et A (1978; 1980) 

recorded a number of species from this habitat (e. g. the serpulid polychaete Hydroides 

helmatus (Iroso) and the gastropod Tectonatica filosa (Philippi)), which they considered 

very rare. Loss of the foliar canopy can be considered as the most extreme form of 

fragmentation of P. oceanica habitat. However, the present findings show that even this 

extreme fragmentation may not necessarily result in a loss of diversity (with respect to 

number of species) of the associated macrofauna, though clearly the assemblage 

composition changes. 
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Seagrass habitats are undergoing a worldwide decline as a result of both natural and 

anthropogenic disturbances (Short & Wyllie Echeverria, 1996; Green & Short, 2003; 

Procaccini et al., 2003), and beds of P. oceanica are no exception; regression is apparent 

throughout the Mediterreanean Sea, in particular the western parts (Peres, 1984; Marba et 

al., 1996). Studies that relate to the fragmentation of P. oceanica beds and the diversity of 

associated biota are, therefore, essential to understand the consequences of loss of this 

habitat and to provide coastal managers with useful data on which to base appropriate 

management and conservation strategies. Thus, the results of the present study and those of 

a related study (Chapter 4) can be utilised towards this end. 
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CHAPTER 6 

GENERAL DISCUSSION 
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6.1 INTRODUCTION 

A huge effort has been made to increase knowledge of seagrass biology and of the ecology 

of seagrass habitats, and the available literature is very vast. However, investigations of the 

role of seagrass bed structure in influencing the diversity of associated biota have often 

yielded results that lack agreement. Researchers have proposed that different factors 

influence the species richness and abundance of macrofauna associated with seagrass beds, 

including shelter against predation (Heck & Orth, 1980a), use as habitat and nursery areas 

for settlement of larvae and growth of juveniles (Heck & Thoman, 1984; Bell & Westoby, 

1986a, b; Heck et al., 1989) and provision of food (e. g. van Montfrans et al., 1984; 

Klumpp et al., 1989; Schneider & Mann, 1991; Mateo & Romero, 1997; Nelson, 1997; 

Vizzini et al., 2002). On the other hand, recent data suggest that the species richness and 

abundance of macroinvertebrates associated with seagrass beds may follow a simple space- 

occupancy model in which increase in habitable area (e. g. leaf surface) leads to an increase 

in macroinvertebrate diversity, hence, a 'sampling artifact' may be present (Attrill et al., 

2000). 

The lack of concordance of results between different studies may also be attributed to the 

following: (i) adoption of different sampling techniques, hence hindering comparison of 

results; (ii) use of inadequate and/or inefficient samplers; (iii) use of experimental designs 

that are undermined by lack of consideration of spatial variation and/or by the presence of 

confounding factors; and (iv) lack of acknowledgement of the complex nature of seagrass 

ecosystems (e. g. Livingston, 1984). In many cases the last has led workers to 

inappropriately: (a) generalise and extrapolate the conclusions reached for a particular 

seagrass bed in one geographical area/spatial level to those of seagrass beds of the same or 

of different species in a different geographical areas/spatial level; and/or N attempt to 

single out 'a main factor' responsible for the observed high biodiversity characterising 

187 



seagrass beds. Progress towards an understanding of the ecology of seagrass beds, which is 

essential for the eventual implementation of effective conservation and management of 

seagrass habitats (Virnstein, 1995; den Hartog & Phillips, 2001), depends on knowledge of 
the more fundamental aspects of the habitat, such as those underlying the dynamics of 

seagrass coverage, the processes that determine variation in bed morphology and 

architecture, the factors that control colonisation and habitat use by the associated biotic 

assemblages, and the scales at which such factors operate. Data on processes that influence 

the species composition and structure of biotic assemblages associated with seagrass beds, 

will, undoubtedly, help in assessing the magnitude of habitat loss and associated 

biodiversity that may result from anthropogenic disturbance of seagrass ecosystems. 

A major concern, that has important direct ecological and economical implications, is the 

loss of biodiversity that may result from the alteration of seagrass bed structure due to 

anthropogenic disturbance; for example, those brought about by fragmentation of large 

continuous beds into smaller patches and the subsequent observed or presumed 

concomitant changes in within-bed structure (e. g. Lewis, 1984; Robbins & Bell, 1994; 

Reusch, 1998; Hovel et al., 2002). Well-documented causes of anthropogenic disturbance 

of seagrass habitats that lead to fragmentation include the deployment of boat moorings 

(Hastings et al., 1995), anchoring (e. g. Francour et al., 1999), trawling (e. g. Martin et al., 

1997) and eutrophication (Nienhius, 1983; Walker & McComb, 1992; den Hartog & 

Phillips, 2001). While several studies (Irlandi, 1994; 1997; Irlandi et al., 1995; Hovel & 

Lipcius 2001,2002; Frost el al., 1999; Bowden et al., 2001; Barbera Cebrian et al., 2002) 

have addressed the role of fragmentation of seagrass beds on the associated fauna, very 

few (Frost el al., 1999; Bowden et al., 2001) have considered the 'whole' macrofaunal 

assemblage associated with both leaf stratum and root-rhizome layer. Where available, the 

results of such investigations tend to lack agreement as to the degree of influence of 

fragmentation on seagrass-associated fauna (e. g. Irlandi, 1994; 1997; Frost el al., 1999; 
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Bowden et al., 2001), possibly because of lack of consideration of more than one spatial 
level during study (Robbins & Bell, 1994; Bell et al., 2001), or perhaps because other 
important aspects, such as the degree of isolation of seagrass fragments (e. g. Hovel & 

Lipcius, 2002), have not been taken into account. 

Nevertheless, recent reviews have concluded that published data do not show compelling 

evidence that fragmented seagrass beds support a lower diversity than non-fragmented 

ones (e. g. Bell et al. 2001), which potentially supports Haila's (2002) view that habitat 

fragmentation has received excessive attention and the subject is more of an 'intellectual 

attractor' than an ecological reality. On the other hand, given the alarming rate at which 

loss of seagrass habitat is occurring worldwide (Short & Wyllie Echeverria, 1996; 

Ruckelshaus & Hays, 1998), the possible loss of biodiversity that may result from 

anthropogenic fragmentation of seagrass habitats cannot be ignored. Knowledge of the 

composition of biotic assemblages associated with different seagrass bed types and within- 

bed architecture, and how the relationships between the two vary across spatial (and 

temporal) scales, will help quantify the loss of biodiversity that may result from the 

fragmentation of seagrass habitat, and in predicting recovery of biodiversity during 

attempts at habitat restoration. 

The present chapter aimed to (i) integrate the results and interpretations made in the 

preceding studies with current knowledge of the influence of seagrass bed structure on the 

associated macrofauna, and (ii) examine current conservation guidelines; hence, enabling 

assessment of the implications for conservation and management of Posidonia oceanica 

(Linnaeus) Delile beds in the Maltese Islands and the rest of the Mediterranean. The 

chapter also aimed to present conservation proposals and recommendations for further 

research, which will help Mediterranean conservation biologists and enviromnental 
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managers to update current conservation guidelines, propose new conservation measures 
and identify related issues that require further investigation for P. oceanica habitat. 

6.2 STUDIES OF THE ROLE OF POSIDONIA OCEANICA BED 
STRUCTURE IN INFLUENCING ASSOCIATED MACRO- 
INVERTEBRATE ASSEMBLAGES 

The present research, which addressed the influence of seagrass bed structure on the 

diversity of associated motile macroinvertebrate assemblages, was carried out on beds of 

P. oceanica in the Maltese Islands because: (i) this species produces some of the most 

morphologically and structurally complex seagrass beds worldwide (Buia et al., 2000), 

including ones found in Malta (Borg & Schembri, 1995b) and, therefore, provides an ideal 

candidate for investigating the role of seagrass bed type and within-bed structure on the 

associated fauna; (ii) data comparing plant architecture and the composition of the 

macroinvertebrate assemblages associated with different bed types of this seagrass are 

lacking; (iii) the endemic P. oceanica forms the largest and most widespread seagrass beds 

in the Mediterranean, which constitute one of the most important shallow-water habitats in 

this sea (Boudouresque et al., 1994); and (iv) P. oceanica habitats are seriously threatened 

by the intense anthropogenic activities that prevail in the region (Procaccini et al., 2003), 

hence, there is an urgent need for the assessment and subsequent implementation of 

appropriate conservation measures and management strategies for beds of this seagrass. 

Ultimately, effective habitat conservation and management (Grumbine, 1994) depend on 

knowledge of the influence of changes in the structure of P. oceanica beds on the 

associated biotic assemblages, and on assessment of the relative ecological value (e. g. in 

terms of biodiversity supported) of different bed types of this seagrass. Therefore, the 

present study addressed the fundamental aspects of the influence of P. oceanica bed 
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structure on the associated assemblages of motile macroinvertebrates, namely, whether: (a) 

continuous (non-fragmented) and reticulate (fragmented) beds of P. oceanica differed in 

their plant architectural characteristics; (b) assemblages of associated motile 

macroinvertebrates differed between continuous and reticulate beds of P. oceanica; and (c) 

assemblages of associated motile macroinvertebrates differed between P. oceanica beds 

that have been completely defoliated (dead matte) and others that have retained the foliar 

stratum (living matte). 

Given the importance of considering different spatial scales in ecological experiments, the 

present study was carried out across different spatial levels, which varied between several 

kilometres to a few tens of metres. Appropriate study locations, which as far as practicality 

would allow, had similar environmental characteristics and, hence, enabled unconfounded 

comparison of the different bed types of P. oceanica across the chosen spatial levels, were 

selected following an extensive pilot survey. Furthennore, as part of the pilot study, the 

construction and testing of a sampler, specifically designed to sample the motile 

macroinvertebrates of P. oceanica beds, enabled efficient and precise sampling of the total 

associated macroinvertebrate assemblages (Chapter 2). 

The absence of significant differences in plant architectural features between the 

continuous and reticulate beds of P. oceanica studied suggests that the presence of bare 

sand areas interspersed amongst the latter bed type does not influence the growth pattern 

and plant architecture of the seagrass (Chapter 3), despite the fact that plants in such a bed 

type would presumably be more exposed to adverse factors such as water movement 

(Fonseca & Bell, 1998), siltation (Gacla & Duarte, 2001) and grazing by megafauna 

(Alcoverro et al., 1997a). While reticulate beds have a greater edge: area ratio compared to 

continuous beds, the present results and data from the published literature indicate that 

differences in attributes of seagrass architecture resulting from 'edge effects' do not extend 
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to the core of the bed (irrespective of bed type) and, hence, appear to be restricted to the 
bed periphery, probably within a distance of around Im from the latter (Duarte & Sand- 
Jensen, 1990; Irlandi, 1997; Hovel & Lipcius, 2001; Bowden et al., 2001). 

Comparison of macroinvertebrate species richness, abundance, and assemblage 

composition between continuous and reticulate beds of P. oceanica also showed that the 

associated macroinvertebrate fauna did not differ significantly between the two bed types 

(Chapter 4), thereby, indicating that fragmentation of continuous seagrass beds to reticulate 
beds does not necessarily lead to a decrease in the diversity of macrofauna, as has been 

reported for fragmented terrestrial habitats (e. g. Wilcox & Murphy, 1985; Andren, 1992). 

The latter result is not surprising, given the observed similarity in plant architectural 

features between the two bed types, for seagrass within-bed structure has been shown to be 

an important determinant of the diversity of associated macrofauna (Heck & Wetstone, 

1977; Heck & Orth 1980a; Tolan et al., 1997; Webster et al. 1998). As in the case of plant 

architecture, despite the greater edge: area ratio of reticulate beds compared to continuous 

beds, the present results and those obtained by other workers (e. g. Irlandi et al., 1995; 

Bologna, 1998) indicate that differences in the species richness and abundance of seagrass- 

associated macroinvertebrates resulting from 'edge effects' do not extend to the core of the 

bed (irrespective of bed type, and are probably restricted to the bed periphery, probably 

within a distance of around Im from the latter (e. g. Irlandi et al., 1995; Bologna, 1998). 

However, the results (Chapter 4) indicated also that P. oceanica in different localities, but 

having similar plant architectural charactenstics, supported different assemblages of 

associated macroinvertebrates. 

At the large spatial level, macroinvertebrate species richness and abundance were 

correlated with epiphyte biomass. Epiphytes enhance macrofaunal diversity by increasing 

micohabitat complexity (Heck & Orth 1980a; Greening & Livingstone, 1982; Hall & bell, 
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1988; Worthington et al., 1991) and by providing food (van Montfrans et al., 1984; 

Schneider & Mann, 1991; Jemakoff et al., 1996; Jemakoff & Nielsen, 1997; Bologna & 

Heck, 1999). The higher abundance of epiphytes recorded from White Rocks and St 

Thomas Bay (which was significantly related to higher macroinvertebrate species richness 

and abundance) resulted, possibly, from higher nutrient concentrations in coastal waters in 

the southern half of the Maltese Islands (Axiak et al., 2000; Axiak & Sammut, 2002). The 

observed significant correlation between the diversity of macroinvertebrates associated 

with beds of P. oceanica and seagrass epiphyte load has important regional implications. 

The Mediterranean Sea is oligotrophic (Estrada et al., 1985) and, therefore, moderate 

increases in nutrient concentrations will increase primary production (in the case of P. 

oceanica beds this would mostly be epiphyte production), therefore, enhancing the 

physical complexity of microhabitat (the epiphyte layer) and increasing food supply within 

beds of the seagrass (Jemakoff et al., 1996). In turn, increased epiphyte abundance 

enhances the diversity of grazer assemblages, leading to enhanced secondary production 

and efficiency of resource use (Duffy et al., 2003). The increased secondary production has 

particular implications where crustaceans are involved, since crustacean mesograzers 

dominate the diets of shallow-water fishes (Edgar & Shaw, 1995); an increase in 

abundance of crustaceans may enhance trophic transfer up the food chain, hence, 

potentially increasing fishery yields. However, excessive nutrient loading may lead to 

excessive epiphytic growth on P. oceanica, which may hinder movement of the larger 

macrofauna within the beds (e. g. Bartholomew et al., 2000), leading to reduced 

macrofaunal diversity. Severe reduction in the amount of light reaching the seagrass due to 

shading by epiphytes (Silberstein et al., 1986, Buzzelli & Meyers, 1998), may lead to death 

of the seagrass and potential loss of the habitat (den Hartog, 1994; Hernminga, 1998; den 

Hartog & Phillips, 2ool; Dimech et al., 2002). 
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The significant relationship between the species richness of macroinvertebrates associated 

with P. oceanica beds and mean sediment grain size (at the large spatial scale), highlighted 

the importance of this physical measure in influencing the diversity of seagrass-associated 

macrofauna, in particular the infauna, as has been indicated by other workers (e. g. Frost et 

al. 1999). The sediment characteristics of a particular locality are influenced strongly by 

the hydrodynamic regime (Plhl, 1986; Fonseca & Bell, 1998) and the same applies for 

other environmental attributes , including supply of nutrients (e. g. Schanz et al., 2000). 

Therefore, local environmental factors, namely the hydrodynamic regime (O'Gower & 

Wacasey, 1967; Orth, 1977; Pihl, 1986; Scipione, 1999), epiphyte load and mean sediment 

grain size, all appear to be important in influencing the diversity of motile 

macroinvertebrates associated with P. oceanica beds, at large spatial levels. At the spatial 

level of a few hundred metres, the present results indicated that seagrass shoot biomass and 

epiphyte biomass were important in influencing the abundance of macroinvertebrates 

associated with P. oceanica beds, while shoot biomass on its own was important in 

influencing macroinvertebrate species richness. However, the significant relationships 

detected at this spatial level appear to have resulted from species-area relationships and not 

from the direct influence of seagrass shoot biomass and/or epiphyte biomass on 

macroinvertebrate species richness and abundance. At the small spatial level of tens of 

metres, no positive correlation was found for any specific factor. Different factors, 

therefore, which are independent of bed type, may influence the diversity of macrofauna 

associated with seagrass beds, depending on the spatial scale considered (Chapter 4). 

The results of the comparison of motile macroinvertebrate assemblages between living and 

dead P. oceanica matte indicated a distinct difference between bed types near the extreme 

ends of the fragmentation gradient and, to some extent, the findings were unexpected. The 

present findings indicate that assemblage composition of macroinvertebrates associated 

with dead matte of P. oceanica is very dissimilar to that of living matte and that dead matte 
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can support a higher diversity of associated macroinvertebrates. The higher species 
richness and abundance of macrofauna recorded from dead matte may be due to greater 
availability of detrital matter and a higher matte structural complexity, however, such 

propositions remain untested (Chapter 5). 

6.3 EVALUATING CURRENT CONSERVATION AND MANAGE- 
MENT PRACTICES FOR POSIDONIA OCEANICA BEDS 

Because of their high productivity, biodiversity and vulnerability to natural and 

anthropogenic threats, many countries have adopted strict measures to protect seagrass 

beds (see Green & Short, 2003, and reviews therein), sometimes in combination with 

special conservation and management programmes (e. g. Pulich et al., 1997). Zostera 

marina Linnaeus is the most abundant seagass in the northern hemisphere (Hemminga & 

Duarte, 2000). The Atlantic coast of Europe supports extensive Z. marina beds, which, 

therefore, constitute the single-most widespread seagrass habitat in many countries of 

western Europe (den Hartog, 1970). Consequently, some of these countries have adopted 

conservation measures for Z marina beds. For example, in the United Kingdom, areas 

with this seagrass habitat are protected in many coastal sites by being included in several 

Nature Reserves (e. g. Buck, 1997). Furthennore, Z marina beds are included in the UK 

Habitat Action Plan for seagrass beds, which outlines conservation and protection 

measures for all seagrass beds in the United Kingdom (e. g. Holt et al., 1997). Indeed, Z. 

marina beds are widely protected throughout Europe since: (i) they are frequently included 

in Special Protected Areas that have been established under the EU's Bird Directive 

(79/409/EEC); and (ii) Z. marina is a named component of coastal lagoons which 

constitute a priority habitat under the EU's Habitats Directive (92/43/EEC). Indirectly, it is 

also protected where it occurs in the following 'Annex I' habitats of the same EU 
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Directive: (a) shallow sandbanks slightly covered by seawater all of the time; (b) large 

shallow inlets; (c) estuaries; (d) sandflats not covered by seawater at low water. 

Beds of P. oceanica have even stricter protection measures than Z. marina, since they are 
listed in Annex I of the EU's Habitats Directive (92/43/EEC) on the Conservation of 

Natural Habitats and of Wild Fauna and Flora (the 'Habitats Directive'), which require the 

designation of Special Areas of Conservation, and are further designated as 'Priority 

Habitat' (EEC, 1992). In addition, P. oceanica is included in Appendix I (strictly protected 

flora) of the Bem Convention on the Conservation of European Wildlife and Natural 

Habitats and in Annex H (endangered and threatened species) of the Protocol Concerning 

Specially Protected Areas and Biological Diversity (SPABIM) in the Mediterranean. 

Despite the diversity of regulations, P. oceanica lacks protection in many parts of the 

Mediterranean since: (i) the EU Habitats Directive does not apply to non-EU countries, and 

therefore excludes all North African and southeast European Mediterranean countries that 

also border the Mediterranean Sea; and (ii) not all Mediterranean countries are signatories 

to the SPABrM Protocol. Furthermore, the general tendency has been for a few 

Mediterranean states, particularly those that have led P. oceanica research (namely: 

France, Italy and Spain), to formulate their own legislation on an ad hoc basis, to protect 

seagrass beds in their country (Buia et al., 2003). 

With regard to the EU regulations for protection of P. oceanica, the large variation in 

seagrass bed morphology of this seagrass poses serious difficulties in interpretation of the 

regulations, since they do not specify whether they apply to all bed types, nor do they 

define the way in which a P. oceanica 'bed' is defined. For example, while it may seem 

obvious that continuous and largely homogeneous beds of P. oceanica qualify for 

protection, do the regulations apply also to fragmented beds and patches of the seagrass? A 

recently published manual on methods for the study of the Mediterranean benthos (Gambi 
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& Dappiano, 2003) includes a comprehensive review of methods to study Mediterranean 

seagrasses and seagrass bed habitats (Buia et al., 2003) and a review of the various 
classifications of P. oceanica bed types. Buia et al. (2003) listed four classifications, as 
follows: (i) according to the substratum on which the seagrass grows, namely sand, rock, 
or biogenic, the latter mainly referring to the P. oceanica matte; (ii) whether monospecific 

or polyspecific; (iii) according to coverage, namely homogeneous or heterogeneous; and 
(iv) according to bed morphology. The latter classification includes several bed types that 

have been described in the literature from various Mediterranean countries (Table 28). 

However, despite being the most comprehensive classification available in the published 

literature, Buia & Dappiano (2003) omit the following important P. oceanica bed types: (i) 

patchy beds on sand/matte; (ii) reticulate beds growing on sand/matte; (iv) reticulate beds 

growing on bedrock; and (v) dead matte. 

able 28. List of different P. oceanica bed types, as given in Buia et al. (2003). 
Posidonia oceanica bed 
type 

Description 

_Continuous 
Continuous bed growing on homogeneous matte 

Sugarloaf Continuous bed growing on a non-homogeneous matte, such that different 
parts of the bed are more elevated than others. 

jerraced Continuous bed growing on matte, but having a terraced relief 
Cordon Beds having a cordon morphology in which the P. oceanica alternates with 

sand channels and usually aligned perpendicular to the shore 

_Striped 
(or banded) beds Similar to cordon beds, but their orientation is usually parallel to the shore 

_Patchy 
beds (on rock) Patches of seagrass growing on bedrock (and sometimes on large boulders) 

Hillocks Small, hill-shaped patches growing on matte, surrounded by bare sand 
Barrier reef Bed forming a continuous reef structure in shallow waters close to the shore, 

sometimes enclosing a body of water between the shore and the reef which 
has lagoon-type characteristics 

Fringe barrier reef The precursor of a Posidonia barrier reef, distinguished from the latter by the 
absence of a lagoon 

Atoll A ring-shaped bed growing on matte, having sparse seagrass toward its centre 

The RAC/SPA' bioceonosis classification scheme used for the SPABIM protocol, which is 

based on one elaborated for French Atlantic and Mediterranean coasts (Dauvin, 1994), 

Regional Activity Centre for Specially Protected Areas. The RAC/SPA scheme was prepared by a 

meeting of experts on Mediterranean marine habitat types convened by RAC/SPA and held in 

Hy6res (18-20 November, 1998). It was subsequently finalized by the Fourth Meeting of Focal 

Points for Specially Protected Areas (Tunis, 12-14 April 1999) and was ultimately adopted by the 

Eleventh Meeting of the Contracting Parties (Malta, 27-30 October 1999). 
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revise and adapted for the specificities of the French Mediterranean zone and then 

extended to the whole of the Mediterranean Sea to meet the needs of SPABIM, lists the 
following P. oceanica bed types: 

- Ecomorphosis (=- bed type) of P. oceanica striped meadows. 

- Ecomorphosis (=- bed type) of P. oceanica 'barrier reef meadows. 

- Ecomorphosis (= - bed type) of P. oceanica dead matte without much epiflora. 

- Association (2-ý bed type) of P. oceanica meadows with Caulerpa prolifera 

(Forsskal) Lamouroux. 

Clearly, the above classification is far from complete, especially when compared to Buia et 

al. 's (2003) list and the findings of this study (Chapter 2). The incompleteness of the 

RAC/SPA scheme was acknowledged recently by a number of delegations at the 

RAC/SPA Meeting of Experts held in Rome 2. As it is the only available intemational 

classification that lists different bed types of P. oceanica, the RAC/SPA scheme is 

frequently referred to and expanded upon, when Mediterranean seagrass ecologists and 

coastal managers raise the subject of conservation and protection of different bed types of 

this seagrass. For example, in their report on alignment of marine habitat data to the 

requirements of the EU Habitats Directive, Borg & Schembri (2002) used the RAC/SPA 

scheme for different bed types of P. oceanica, but emphasise several problems with this. 

Borg & Schembri (2002) noted that, of the four P. oceanica bed types listed in the 

RAC/SPA scheme, only three occurred in the Maltese Islands, the striped (or banded) beds 

had not yet been recorded locally. Furthermore, Borg & Schembri (2002) noted that a 

number of other distinctive so-called 'ecomorphoses' (bed types) that occurred in the 

2 Meeting of experts for the finalisation of the Standard Data-Entry Form (SDF) for national 

inventories of natural sites of conservation interest. Rome, 23-24 March 2000. 
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Maltese Islands, were not listed in the official RAC/SPA classification, and new categories 
were added for local use, as follows: 

Ecomorphosis of continuous P. oceanica meadows on bedrock with enclaves of photophilic algae. 
Ecomorphosis of continuous P. oceanica meadows on sand with enclaves of bare sand. 
Ecomorphosis of reticulate P. oceanica meadows on sand with enclaves of bare sand. 
Ecomorphosis of continuous P. oceanica meadows on bedrock with enclaves of sciaphilic algae. 
Complex of. Ecomorphosis of reticulate P. oceanica on bedrock with 
enclaves of bare sand, mixed with the Association of Peyssonnelia 
squamaria (Gmelin) Decaisne and Flabellia petiolata (Turra) 
Nizamuddin. 

Complex of: Ecomorphosis of reticulate P. oceanica on bedrock with 
enclaves of bare sand, mixed with the Association of Dictyopteris 
polypodiodes (De Candolle) Lamouroux. 
Complex of: Ecomorphosis of reticulate P. oceanica on bedrock with 
enclaves of bare sand, mixed with the Association of Cystoseira spp. 

In particular, these authors found difficulty in defining a unit that consists of what is 

effectively a mixture of two distinct habitat types (for example, an association of 

macroalgae on rock interspersed with a particular P. oceanica bed type). To solve this 

problem, Borg & Schembri (2002) introduced the concept of a 'complex of habitats', as in 

the last four listed above. In another example, the set of proposed recommendations for the 

classification of different P. oceanica bed types, published in the official bulletin of the 

Italian Marine Biological Society (Notiziario S. I. B. M., 2003), following the 2003 National 

Convention of the same society, refer to the P. oceanica bed types listed in the RAC/SPA 

scheme and include an additional classification of the various bed types of this seagrass 

according to value (Table 29). While the recommended valuation scheme gives equal 

ecological status to the different listed bed types of P. oceanica, and this is supported by 

the findings of the present study, it gives a much lower value to dead matte of P. oceanica; 

which is contrary to the findings of the present study. 
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Table 29. Evaluation criteria proposed during the 2003 meeting of the Italian Marine Biological Society for different bed types of P. oceanica listed in the RAC/SPA scheme. V= vulnerability; VP = ecological/heritage value; R= degree of rarity; Es = aesthetic value; Ec = Economic value; C 
= classification (D = key habitat; R= habitat considered important; NR = habitat of low 
importance). I= high; 2= medium; 3= low. 

P. oceanica bed type V VP R Es Ec C 

'Praterie a Posidonia oceanica' = P. oceanica beds. 11211D 

'Facies dei rhizomi morti (mattes mortes) di Posidonia 
oceanica senza epiflora' = ecomorphosis of dead matte of P. 23233 NR 
oceanica without epiflora. 

II 
'Ecomorfosi di praterie a bande' = ecomorphosis of striped (or 

11211D banded) beds of P. oceanica. 

'Ecomorfosi di praterie a barriera' = ecomorphosis of P. 11211D 
oceanica reefs. 

A main problem underlYing the formulation of such classification schemes is the lack of 

data on the ecological value of different seagrass bed types, while adoption of these 

classification schemes for local use in various countries poses difficulties due to the 

unavailability of a comprehensive classification of different bed types of P. oceanica for 

the whole Mediterranean. Attempts at giving a 'face value' to different bed types of the 

seagrass appears to be premature at present, given the dearth of ecological data on different 

bed types. While the reasons underlying such value-weighting classifications are well 

intended, there are dangers, since such an exercise could be misleading or even counter- 

productive if there is insufficient information on which to base them. The present findings 

suggest that the various bed types (continuous, reticulate, dead matte) of P. oceanica all 

appear to have a high ecological value, yet all form an integral part of a heterogeneous 

dynamic landscape having interchangeable components. For example, in unfavourable 

conditions, living matte of P. oceanica may change to dead matte, but the latter may 

eventually be recolonised by living shoots when favourable conditions return. Hence, an 

equal effort should be directed at protecting and conserving different bed types of P. 

oceanica, and in restoring them following damage. 
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Overall, the present study has provided information for drawing conservation and 

management programmes for beds of P. oceanica, and for the revision of existing ones, 
including international ones, such as that administered by RAC/SPA. Besides continuous 

P. oceanica beds, reticulate beds and dead matte of the seagrass support a high 

biodiversity, although the latter is in many respects a temporary habitat, presumably 

moving towards bare sand. Using the present results, Mediterranean coastal managers can 

argue in favour of adopting conservation measures for reticulate beds and dead matte of P. 

oceanica that are similar to those proposed for continuous and living matte of the seagrass 

(Notiziario S. I. B. M., 2003). Current international schemes listing different bed types of P. 

oceanica having a high ecological value should be amended to include ones (e. g. reticulate 

beds and dead matte) that have been indicated by the present study as being equally 

important, hence requiring equal protection. 

In the more local context, the present study has contributed valuable data for a better 

understanding of the ecology of P. oceanica beds in the Maltese Islands. Few studies of the 

ecology of the macrofauna associated with local P. oceanica beds are available (Borg & 

Schembri, 2000; Howege, 1998), and none deals with the 'whole' macroinvertebrate 

assemblages. Generally, the motile macroinvertebrate assemblages recorded from the 

present study are similar to those recorded from Italian (e. g. Mazzella et al., 1989; Gambi 

et al., 1995; Scipione, 1999) and Spanish (e. g. Garcia Raso, 1990; Sanchez Jerez at al., 

2000) P. oceanica beds. The present findings have confirmed the similar ecological and 

economic value of continuous and reticulate beds of P. oceanica, which has traditionally 

been recognised also by local fishermen, who consider both bed types as important fishing 

grounds (hence, an indication of their high productivity). In general, members of the local 

community have viewed fragmented beds as having a lower ecological value than 

continuous beds. However, the general public sector is less likely to have a developed 

understanding of seagrass habitats than fishermen. Community knowledge of traditional 
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uses of seagrasses and of the socio-cultural values of seagrass bed habitats, such as that 
obtained from fishermen, may form the basis for increased success in efforts to protect the 
habitat (Wyllie Echeverria et al., 2002). In Malta, coastal managers have frequently 

requested advice on the 'relative ecological value' of the two different bed types, 

particularly when required to make decisions on coastal development projects that would 
directly affect fragmented beds located inshore, but their requests could not be met. The 

present results will, therefore, help local managers to make more informed decisions when 
dealing with coastal projects that may affect beds of P, oceanica by considering 

fragmented beds and 'dead' matte as having a high ecological value, as has been 

acknowledged to date for non-fragmented beds of the seagrass. 

The present findings will also help in formulating mitigation measures and restoration 

programmes for P. oceanica. Mitigation measures should apply to any bed type of the 

seagrass, given the similar ecological value of the various bed types. Once a particular 

anthropogenic activity is identified as having a significant adverse impact on P. oceanica 

beds, the source of disturbance should be eliminated or reduced to a level that does not 

cause further damage to the habitat. Where damage has already occurred, for example, 

where a continuous bed has been transformed to a reticulate one, or where only dead matte 

remains, the altered bed should not considered as lost completely and efforts at restoration 

(den Hartog, 2000) are still worth attempting. Restoration should, therefore, not be 

necessarily aimed solely at regenerating areas where homogenous or continuous beds were 

once present, especially given the low rates of success in regenerating seagrass beds in 

areas where enviroranental conditions have been appreciably altered (den Hartog, 2000). 

The difficulties in regenerating beds of slow-growing seagrasses such as P. oceanica; 

regeneration of seagrass patches or reticulate beds, may equally lead to a valuable habitat. 

In the case of dead P. oceanica matte, restoration attempts through transplantation may 

yield better results than have been achieved to date on sandy substrata, since the root- 
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rhizome matte may offer better anchorage for newly-transplanted shoots until they have 

taken root and established themselves. 

In conclusion, present results indicate that fragmented seagrass beds should not be viewed 

as isolated habitat fragments, but as part of a hierarchical arrangement of different bed 

types in a heterogeneous seagrass landscape (Robbins & Bell, 1994). Continuous and 

reticulate beds of P. oceanica appear to have broadly similar plant architectural features 

and support a similar biodiversity of associated motile macroinvertebrate assemblages. 

While plant architecture may be important in influencing the diversity of 

macroinvertebrates associated with other seagrass beds, edaphic factors have also been 

identified has having a potentially overriding importance (Hemminga & Duarte, 2000). 

Local environmental factors, including nutrient concentrations in the water column and 

hydrodynamic processes (O'Gower & Wacasey, 1967; Orth, 1977; PH, 1986; Fonseca & 

Bell, 1998), appear to be more important in influencing the diversity of macrofauna 

associated with P. oceanica beds, leading to spatial variation in the faunal assemblage 

structure. It is possible, that for those seagrasses having a high structural complexity 

including P. oceanica, alteration of plant architectural features may not necessarily have 

the same impact on the associated biota as would physical changes in seagrass beds having 

a lower structural complexity as, for example, Z marina beds. The present findings 

indicate that the influence of the root-rhizome compartment of seagrass beds on the 

associated diversity of macrofauna may be considerable, especially for seagrass beds that 

have a very thick matte, such as P. oceanica. Classifications of different bed types of P. 

oceani . ca in categories according to 'ecological value' appear to be counterproductive and 

should be avoided, since all bed types form part of a heterogeneous dynamic landscape 

(Fonseca & Bell, 1998) that incorporates interchanges and transitions between different 

seagrass bed forms, hence, an equal conservation effort should be directed at them all - 

Given the current lack of success in restoration of seagrass habitat by transplantation where 
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P. oceanica beds have been adversely impacted and degraded by anthropogenic activities, 

appropriate legislation should be enacted to ensure that the source of disturbance is 

removed, or reduced to a level that is acceptable for ensuring health and survival of P. 

oceanica as a habitat of great importance to the coastal ecosystem of the Mediterranean 

Sea. 

6.4 RECOMMENDATIONS 

In view of the present findings, the following recommendations for future research are 

proposed: 

1) Reviews of the published data (e. g. Bell et al., 2001), and the results of this study, 

indicate that, in general, fragmented and non-fragmented seagrass beds (i. e. beds of 

different morphology) appear to have similar ecological value. However, to 

ascertain whether this proposition is generally true, it is necessary to conduct 

studies of biotic assemblages in different geographical areas. Further study also 

needs to be made since the conclusions reached based on investigations of natural 

fragmentation of seagrass beds may necessarily hold true for human-induced 

habitat fragmentation, since much depends on: (i) the period over which the change 

in habitat configuration occurs, and (ii) the type and pen-nanency of the 

anthropogenic disturbance. For example, a single disturbance event leading to 

direct physical fragmentation of seagrass beds (e. g. damage caused by boat 

propellers) would be expected to cause changes in the associated macrofaunal 

assemblages that are different from those caused by fragmentation resulting from 

long-term pollution caused by a sewage outfall. Ideally, long-term observational 

studies of fragmentation of seagrass habitats caused by natural or anthropogenic 

disturbance should be carried out over multiple spatial scales, while manipulative 
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experiments would enable the gathering of more precise data on the effects of rapid 
fragmentation of seagrass beds on associated assemblages and subsequent rates of 
habitat and assemblage recovery. There is also the need for more detailed studies 

on the extent of 'edge effects' in seagrass beds, i. e. the distance from the bed 

perip ery to the core of a seagrass bed, within which attributes of plant architecture 

and the associated fauna are different from those found further inside. 

2) The present findings highlight the importance of avoiding generalisation in seagrass 

ecological studies. For example, what may be applicable to aZ marina bed in 

nutrient-rich waters may not hold true for beds of the same seagrass in a different 

locality having lower nutrient concentrations. More so, what may be concluded for 

beds of a particular seagrass (e. g. Z marina) in one locality with a given set of 

environmental characteristics may not hold true for beds of a different seagrass 

(e. g. P. oceanica) present in a another geographical locality having a completely 

different environmental regime. Furthermore, the present findings highlight the 

need for consideration of spatial scale when undertaking ecological studies of 

seagrass beds; the influence of different factors on seagrass-associated faunal 

diversity varies depending on scale, while the influence resulting from a particular 

factor at one scale may be different from that of the same factor operating at a 

different scale. The incorporation of adequate spatial replication in seagrass 

ecological research, as has already been emphasised by other workers (e. g. Turner 

et al, 1999) is therefore crucial. 

3) The present finding that the species richness and abundance of motile 

macroinvertebrates associated with P. oceanica beds are positively correlated with 

the amount of seagrass epiphytes has been previously suspected (e. g. Gambi et al., 

1992), but quantitative data to support the observation (as supplied in the present 
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study) was lacking. Since excessive epiphyte load may be detrimental to the 
seagrass (Sand-Jensen, 1977; Sibertein et al., 1986; den Hartog, 1994; Hemminga, 
1998; den Hartog & Phillips, 2001), experiments are needed to establish the upper 
thresholds at which the amount of epiphytes present will impact the seagrass bed 

adversely. It would also be useful to identify whether P. oceanica epiphytes are 

more important as food or as habitat for the associated macroinvertebrates. Studies 

aimed at identifying the herbivores that feed on the P. oceanica epiphytes will help 

in understanding the role of herbivory in controlling epiphyte load on the seagrass. 

4) With regard to the implications for conservation and management P. oceanica, 

there is an urgent need for gathering data on the various bed types fonned by this 

seagrass to evaluate their relative contribution to the whole ecosystem. Regulations 

for the conservation and management of P. oceanica beds should include clear 

descriptions of the various existing bed types. Reference to some bed types, but not 

to others, leads to ambiguities as to whether a particular bed type is important to 

protect or not. Morphological distinctions between different bed types should be 

fort-nalised and the distribution of the various P. oceanica bed types in the 

Mediterranean Sea ascertained. Thereafter,, it would be useful to examine for 

differences in the faunal assemblages of bed types not yet compared. Such 

investigations would provide results to support or refute the suggestion made by the 

present study that, for conservation purposes, non-fragmented and fragmented beds 

should not be discriminated. For the time being, restoration and mitigation efforts 

should be directed at treating the various different bed types of P. oceanica as 

habitats of equal potential ecological value. Where alteration of a particular bed 

type has occurred, even if this is of an extreme form (e. g. complete loss of the 

seagrass shoots, leading to dead matte), every effort should be made at restoration; 

no bed should be 'written off as having a low ecological value. Where P. oceanica 
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beds have been completely altered to dead matte, there is a need to establish 

whether the latter can be re-colonised by living P. oceanica, hence, possibly, using 

it as a substratum for restoration of seagrass habitat. 

5) The possibility of the existence of a threshold of bed fragmentation of P. oceanica 

below that of the fragmented (reticulate) bed type examined, which may influence 

the diversity of associated macrofauna, cannot be excluded. Furthermore, P. 

oceanica beds that have been fragmented to patches may have within-bed 

architectural attributes (shoot density, number of leaves, leaf length etc. ) that differ 

from those of the reticulate and continuous beds considered in the present study, 

which may, therefore, have an important influence on the associated 

macroinvertebrate diversity (e. g. Tolan et al., 1997; Webster et al. 1998). Such 

propositions could be considered by examining the relationship between the bed 

structural and biodiversity attributes of patchy P. oceanica beds. 

6) Manipulative field experiments are needed to establish whether alteration of within 

bed plant architecture of P. oceanica influences the diversity of associated 

macrofauna. The present findings, and those of other workers, indicate that P. 

oceanica plant architecture may not be as important for the associated macrofauna 

as in the case of beds fon-ned by other seagrasses having a lower structural 

complexity. However, if this assertion generally holds true, it could still be that 

there exists a particular threshold of alteration of P. oceanica architecture that 

would result in changes in the diversity of associated macrofauna (the 'threshold' 

hypothesis of Gotceitas & Colgan, 1989; see also Heck & Crowder, 1991 and 

Bartholomew et al., 2000). Studies to determine if such an architectural threshold 

exists, and what factors cause changes past the threshold, would contribute to an 

207 



understanding of the degree of alteration of within bed seagrass architecture that 

would start affecting the associated diversity adversely. 

7) The case of P. oceanica dead matte requires special attention. Ecological studies of 
dead matte occurring in different environmental regimes (e. g. water depth, degree 

of isolation, location, type of disturbance leading to their occurrence etc) are 

required in different parts of the Mediterranean to gain a better understanding of the 

characteristics of this habitat. The somewhat inconclusive results obtained from the 

present study indicate the need for further investigations. In particular there is a 

need to establish: (1) whether the high diversity associated with dead P. oceanica 

matte is due to a greater of availability of cletritus (originating from the dead root- 

rhizome matrix) that may be more palatable to the associated macrofauna than that 

originating from living matte: (ii) whether the dead P. oceanica matte has a higher 

structural complexity than living matte, which may, therefore, be significantly 

correlated with the observed higher diversity of associated macroinvertebrate 

assemblages; (iii) whether the epiphytic assemblages of dead matte differ from 

those present on living matte, hence, possibly, providing better habitat and food 

than living matte; and (iv) the stability and 'longevity' of this habitat type. In the 

meantime, use of the term 'dead' matte for this habitat may be misleading, since it 

implies a habitat with low ecological value; use of the more appropriate term 'bare' 

matte is recommended. 

8) Last, but not least, there is a need for better understanding of the biology of key 

macroinvertebrate species associated with seagrass beds, in particular their feeding 

habits, trophic status, larval dispersal and recruitment patterns. Such information is 

particularly useful for interpreting differences in macroinvertebrate assemblage 

composition between different seagrass bed types and/or seagrass beds located in 
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places having different environmental characteristics, and hence better understand 

the influence of seagrass bed structure on the associated macroinvertebrate 

assemblages, 
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APPENDIX A 

Aerial photographs used to deteri-nine the spatial distribution of Posidonia oceanica and 
other benthic habitats in the four study locations. Scale = 1: 16,000. Courtesy of Data Trak 
Ltd (Malta). 

Ramla Bay 
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APPENDIX A (continued) 

Mellieha Bay 
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APPENDIX A (continued) 

White Rocks 

212 



APPENDIX A (continued) 

St Thomas Bay (larger inlet) 
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Appendix B 

Classified list of species, indicating the respective sub-study/s from which the respective species were recorded (e). 

Species Selection of 
sampler size 
and minimal 

sampling area 
(Chapter 2) 

Macroinvertebrate 
assemblages of 
reticulate and 

continuous 
Posidonia oceanica 

meadows 
(Chapter 4) 

Macroinvertebrate 
assemblages of 
living and dead 

Posidonia oceanica 
meadows 

(Chapter 5) 

NEMERTEA 
Nernertea sp. A 
Nernertea sp. B 
Tubulanus sp. 

SIPUNCULA 
Aspidosiphon muelleri Diesing, 1815 
Phascolion strombi (Montagu, 1804) 
GoUiingia vulgaris (de Blainville, 1827) 0 

POLYCHAFTA 
Ampharetidae sp. 
Amphicteis midas (Gosse, 1855) 0 

, ýahinqmidae s2. 
? Amphitrite sp. 
Aphroditidae sp. 
Arabella sp. 
Aricidea sp. 0 
Capitellidae sp. 0 

Chaetozone setosa Malrngren, 1867 0 0 

Cirratulidae sp. A 0 0 

Cirratulidae sp. B 0 

Dasybrachus gajolae Eisig, 1887 0 0 

Diopatra sp. 
Dorvilleidae sp. A 
Dorvillidae sp. B 
Eunice torquata Quatrefages, 1865 
Eunice vittata (Delle Chiaje, 1828) 
Glycera sp. 
Goniada emerita Audouin & Milne-Edwards, 
1833 
H i id es on ae sp. 

1862 Keferstein t K i i i , a eferste ac rra n 
L fid acydon ae sp. 

1758) aeus i 
_ , nn Lepidonotus squamatus ( * 

Lumhriclymene cf minor Arwidsson, 1907 0 

Lumbrineris sp. 
1868) Lumbrineris . .... . .... . .... ... '"-, ''Ill 

Lumbrineris latreilli Audoin & Milne-Edwards, 
1834 
lir,,,,; A.,,., h;,,,,,, rihri7nehiata Cantone, 1983 

! _dy%J, tJ 
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Appendix B (continued) 

Species Selection of Macroinvertebrate Macroinvertebrate 
sampler size assemblages of assemblages of 
and minimal reticulate and living and dead 

sampling area continuous Posidonia oceanica 
(Chapter 2) Posidonia oceanica meadows 

meadows (Chapter 5) 
(Chapter 4) 

Lysidice ef collaris Grube, 1870 __ 0 0 
Lysidice ninetta Audouin & Milne-Edwards, 
1833 
Maldanidae sp. A 
MaIdanidae sp. 13 
MaIdanidae sp. C 0 
Marphysa cf belhi Audoin & Milne Edwards, 
1833 
Marphysafallax Marion & Bobretzky, 1875 
Marphysa sanguiney (Montagu, 1815) 
Nematonereis unicornis (Grube, 1840) 0 0 0 
Nepthydae sp. A 
Nepthydae sp. B 
Nereis rava Ehlers, 1868 0 
Nereidae sp. A 
Nereidae sp. B 
Nereidae sp. C 0 

Notomastus sp. 
Notomastus latericeus M. Sars, 1851 
Opheliidae sp. 
Orbiniidae sp. 
Palola sicifiensis (Grube, 1840) 
Pectinariidae sp. 

0 

Pherusa monififery (Delle Chiaje, 1841) 0 

Phyllodocidae sp. A 
B Ph llodocidae sp . y 

Ph llodocidae s C y p. 
1870) er&de (Cla Pi i r c 

0 
, rom p se u a 

P l i A 0 0 
o yno nae sp. 0 

P l i B 0 
o yno nae sp. 0 

P l h l 0 
o yopt a mus sp. 

1865) d i B 0 0 
, r a Pontogenia chrysocoma ( 0 

Psammolyce arenosa D 0 0 
0 

Sabellidae sp. A 0 0 
0 

Sabellidae sp. B 
0 
0 

Sabellidae sp. C 
0 

Scalibregmatidae sp. 0 
Serpulidae sp. 

0 0 

Spionidae sp. 
ýpirorbis sp. 0 0 
Sthenelais sp. 

0 
--------- 0 

Syllidae sp A 0 
0 0 

Syllidae sp B 0 
0 0 

Q-11; A- ýý 0 0 
ýw - 
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Appendix B (continued) 

Species Selection of Macroinvertebrate Macroinvertebrate 
sampler size assemblages of assemblages of 
and minimal reticulate and living and dead 

sampling area continuous Posidonia oceanica (Chapter 2) Posidonia oceanica meadows 
meadows (Chapter 5) 

(Chapter 4) 
Syllidae sp D 0 
Syllidae sp E 
Terebellidae sp. A 
Terebellidae sp. B 
Terebellidae sp. C 

MOLLUSCA 
Polyplacophora 
A can thochitona fascicularis (Linnaeus, 1767) 
Chiton corallinus (Risso, 1826) 
Lepidochitony afticanus (Nierstrasz, 1906) 
Lepidochitonafurtiva (Monterostato, 1879) 
Lepidopleurus cajetanus (Poli, 1791) 
Leptochiton bedulli Dell'Angelo & Palazzi, 
1986 
Leptochiton cancellatus (Sowerby, 1840) 

. Gastropoda 
Adis ascaris (Turton, 1819) 
Alvania discors (Allan, 1818) 
Alvania lineate Risso, 1826 
Alvania mamillata Risso, 1826 
Ascobulafragilis (Jeffreys, 1856) 

1803) Barleeia unifasciata (Montagu, 
_ . Berthella cf plumula (Montagu, 1803) 

Berthella cf stellata (Risso, 1826) 

d 
0 0 0- 

- 
Bolma rugosa (Linnaeus, 1767) 

Bittium lacteum (Philippi, 1836). 

Bittium latreillii (Payraudeau, 1826) 

Bittium reticulatum (da Costa, 1778) 

Buccinulum corneum (Li laeus, 1758)_ 

1792 ui&re Bru i t t ll B 0 
, g a a as r u 

Calliostoma dubium (Philippi, 1844) 
- 

Calliostoma zizyphinum (L nnaeus, 17L8L) 

1792 i&re B l , rugi gatum Cerithium vu 
Clanculus jussieui (Payra deau, 1826) 

Clathromangelia gra 
Columbella rustica (Linnaeus, 1758) 

Colubraria reticula 
Conus mediterraneus Hwass in Brugui&re, 1792 

Crepidula 1822 
- 

Emarginuld octaviana Coen, 1939 

Emarginula tenera Locard 1992 

EI pitonium sp. 
Ir--; 

- tT innni-ii-, 1758) ýOL41 &" OJL, -, -- 
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Appendix B (continued) 

Species Selection of 
sampler size 
and minimal 

sampling area 
(Chapter 2) 

Macroinvertebrate 
assemblages of 
reticulate and 

continuous 
Posidonia oceanica 

meadows 
(Chap! ýý 

Macroinvertebrate 
assemblages of 
living and dead 

Posidonia oceanica 
meadows 

(Chapter 5) 

Euspira guillemini (Payraudeau, 1826) 0 
Euspira nitida (Donovan, 1804) 0 
Gibberula caelata (Monterosato, 1877) 
Gibberula miliaria (Linnaeus, 1758) 
Gibbula ardens (Von Salis, 1793) 
Gibbulafanulum (Gme Lin, 1791) 
Gibbula guttadauri (Philippi, 1836) 
Gibbula turbinoides (Deshayes, 1835) 
Gibbula umbilicaris (Linnaeus, 1758) 
Gibbula varia (Linnaeus, 1758) 
Haliotis lamellosa Lamark, 1822 
Haminoea hydatis (Linnaeus, 1758) 
Hexaplex trunculus (Linnaeus, 1758) 
Jujubinus exasperatus (Pennant, 1777) 
Jujubinus striatus (Linnaeus, 175 8) 
Mangelia sp 
Mangifiella caerulans (Philippi, 1844) 
Mangeliella taeniata (Deshayes, 1835) 
Metaxia metaxae (delle Chiaje, 1828) 
Mitra corniculum (Linnaeus, 1758) 
Mitrella minor ýScacchi, 1836) 
Mitrella cf scrLpta (Linnaeus, 1758) 
Mitrolumna mediterranea Mifsud, 2001 
Muricopsis cristata (Brocchi, 1814) 
Nassarius cuvieri (Payraudeu, 1826) 
Ocinebrina aciculata (Lamarck, 1822) 
Ocinbebrina edwardsi (payraudeau, 1826) 
Odostomia conoidea (Brocchi, 1814) 
Payraudentia intricata (Donovan, 1804) 
Parvioris anderswareni Van Artsen & Savelli, 
1991 
Phifine aperta (Linnaeus, 1767) 
Pollia dorbignyi (Payraudeau, 1826) 
Raphithoma cordieri (Payraudeau, 1826) 
Raphitoma linearis (Montagu, 1803) 
Raphitoma philberti (Michaud, 1829) 
Rissoa s p. 
Rissoa auriscalpium (Linnaeus, 1758) 
Rissoa labiosa (Montagu, 1303) 
Rissoa variabilis (Von WhIfeldt, 1824) 

Rissoa ventricosa Desmarest, 18 14 
IS 14 Ri i l D mareqt ssoa v o acea es - 

Rissoina bruguieri (P 

. 'ýmarnadin viridiv Linnaeus. 1758 
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Appendix B (continued) 

Species Selection of 
sampler size 
and minimal 

sampling area 
(Chapter 2) 

Macroinvertebrate 
assemblages of 
reticulate and 

continuous 
Posidonia oceanica 

meadows 
(Chapter 4) 

Macroinvertebrate 
assemblages of 
living and dead 

Posidonia oceanica 
meadows 

(Chapter 5) 

Tricolia pullus (Linnaeus, 175 8) 0 0 
Tricolia speciosa (Von Miffilfeldt, 1824) 0 0 
Tricolia cf tenuis (Michaud, 1829) 
Trivia cf pulex (Solander in J. E. Gray, 1828) 0 
Turbonilla jeffreysii (Jeffreys, 1848) 0 0 
Turbonilla lactea (Linnaeus, 1758) 0 
ITurbonilla striatula (Linnaeus, 1758) 0 
Turridia sp. 0 
Vexillum ebenus (Lamarck, 1811) 0 9 
Vexillum savignyi (Payraudeau, 1826) 0 
Vitreolina philippi (Rayneval & Ponzi, 1854) 0 0 
Volvarina mitrella (Risso, 1826) 0 
Bivalvia 

bra alba (Wood W., 1802) 0 
nodontiafragilis (Philippi, 1836) 0 0 

Arca noae Linnaeus, 1758 0 0 
Arca tetragonal Poh, 1795 0 
Arcopagia balaustina Linnaeus, 1758 0 0 
Callista chione (Linnaeus, 1758) 0 
Chlamys varia (Linnaeus, 1758) 0 
Dena decussata (O. G. Costa, 1829) 0 0 0 
Glans aculeata (Poh, 1795) 0 0 
Glans trapezia (Linnaeus, 1767) 0 0 
Gouldia minima (Montagu, 1803) 0 
Irus irus (Linnaeus, 1758) 0 

Lamellaria perspicua (Linnaeus, 1758) 0 

Lima hians (Gmelin, 179 1) 0 0 

Limaria inflate Link, 1807 0 

Lissopecten hyalinus (Poh, 1795) 0 0 

Loripes lacteus (Linnaeus, 1758) 0 0 

Loripes lucinalis (Lamarck, 1818 
- -- 

0 

Modiolus barbatus (Linnaeus, 1758) 0 0 

Musculus costulatus (Risso, 1826) 
- 

0 
- 

0 

ýLyrtea spinifera (Montagu, 1803) 

Nucula nitidosa winckworth, 1930 0 
0 
0 0 

Nucula nucleus (Linnaeus, 1 758) 
_ 

Paphia au , 1791) 
95) Plagiocardium papillosum (POILLIZ. 

0 

Parvicardium scriptum (Bucquoy, Dautzenberg 
1892) &D llf o us, 

Parvioris microstoma (Brusina, 1864) 

Petallifery 
, -ydiata (T, f-. qch- 1814) 
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Appendix B (continued) 

Species Selection of 
sampler size 
and minimal 

sampling area 
(Chapter 2) 

Macroinvertebrate 
assemblages of 
reticulate and 

continuous 
Posidonia o, ceanica 

meadows 
Chapter 4) 

Macroinvertebrate 
assemblages of 
living and dead 

Posidonia oceanica 
meadows 

(Chapter 5) 

Pinna nobilis (Linnaeus, 1758) 0 
Pitar rudis (Poli, 1795) 0 
Solemya togata (Poli, 1795 
Striarca lactea (Linnaeus, 1758) 0 
Tellina balaustina (Linnaeus, 1758) 0 0 
Thracia pqpyracea (Poli, 179 1) 0 
Venericardia antiquata (Limiaeus, 1758) 
Venus verrucosa Linnaeus, 1758 
Cephalopoda. 
Sepia sp. 

ARTROPODA 
Pycnogonida 
Achelia sp. 
Ascorhynchus sp. 
Cumacea 
Cumacea sp. A 
Curnacea sp. B 
Leptostraca 
Nebalia bipes (0. Fabriclus, 1780) 0 0 
Tanaidacea 
Apseudes cf talpa Montagu, 1808 

Leptochelia savingyi (Kroyer, 1842) 

Mysidacea 
Gastrosaccus sanctus (van Beneden, 1861) 

Siriella clausii G. 0. Sars, 1877 0 0 

Isopoda 
Ancyroniscus sp. 
Cirolanidae sp. 
? Cyathura carinata (Kroyer, 1847) 
Cymodoce truncata Leach, 1814 
Dynamene tubicauda Holdich, 1968 
Eurydice sp. 
Gnathia sp. 
Idotea sp. 
? Janira sp. 
Jaeropsis sp. 
ýynisoma lancifer (Miers, 18 8 1) 
Zenobianaprismatica (Risso, 1826) 

Amphipoda. 
Ampelisca cf rubella A. Costa, 1864 
Ampelisca ica (Bate, 1856) 
Ampelisca unidentata Schellenberg, 1936 
ýmphilochus neopolitanus Della Valle, 1893 
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Appendix B (continued) 

Species 

Amphithoe helleri G. Karaman, 1975 

Selection of 
sampler size 
and minimal 

sampling area 
(Chapter 2) 

Macroinvertebrate 
assemblages of 
reticulate and 

continuous 
Posidonia oceanica 

meadows 
(Chapter 4) 

Mac roinverteb rate 
assemblages of 
living and dead 

Posidonia oeeanica 
meadows 

(Chapter 5) 

mphithoe ramondi Audouin, 1826 

ora sp. 
pherusa chiereghinii Giordani-Solka, 1950 
tylus guttatus (Costa, 185 1) 
tylus vedlomensis (Bate & Westwood, 1862) 0 

iCaprella sp. 0 
Caprella acanthifera Leach, 1814 0 
Ceradocus orchestiipes Costa, 1853 0 
Ceradocus semiserratus (Bate, 1862) 0 
Cheirocratus sundevallii (Rathke, 1843) 0 0 
Corophium sp. 0 
Dexamine cf spiniventris (A. Costa, 1853) 
Dexamene spinosa (Montagu, 1813) 
Elasmopus sp. 
Elasmopus brasiliensis (Dana, 1855) 
Elasmopus pocillimanus (Bate, 1862) 
Gamarella fucic, ola (Leach, 1814) 
Harpinia sp. 
Hyale sp. 
Hyalepontica Rathke, 1837 0 
Iphimedia eblanae Heller, 1867 0 
Iphimedia minuta G. O. Sars, 1864 
Isaeldae sp. 
Lepidepicreum sp. 
Leptocheirus bispinosus Norman, 1908 

eptocheirus guttatus (Grube, 1864) 9 0 

eptocheirus cf longimanus Ledoyer, 1973 

eptocheirus pectinatus (Norman, 1869) 0 

eucothoe richiardsii Lessona, 1865 
i1jeborgia cf dellavallei Stebbing, 1906 

Lysianassa costae Milne Edwards, 1830 
Lys ianassa -Iongicorn is Lucas, 1849 
Lysianassa pilicornis (Heller, 1866) 
Maera grossimana (Montagu, 1808) 
Maera hirondellei Chevreux, 1900 
Maera inaequipes (Costa, 1857) 
Melita hergensis Reid, 1939 

icrojassa cumbrensis (Stebbing & Robertson, 
1891) 
Monoculodes sp. 
Orchomene humilis (Costa, 1853 == 0. batei, 

, 
Costa, 1853) 
IPeltocoxa cf marioni Catta, 1875 
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Appendix B (conthmed) 

Species Selection of 
sampler size 
and minimal 

sampling area 
(Chapter 2) 

Macroinvertebrate 
assemblages of 
reticulate and 

continuous 
Posidonia oceanica 

meadows 
(Chapter 4) 

Macroinvertebrate 
assemblages of 
living and dead 

Posidonia oceanica 
meadows 

(Chapter 5) 

Pereionotus tesudo (Montagu, 1808) 
Phoxocephalidae sp. A 0 
Phoxocephalidae sp. B 0 
Phoxocephalidae sp. C 0 
Pontocrates arenarius (Bate, 1858) 
Psammogammarus caecus Karaman, 1955 
Socarnesfilicornis (Heller, 1866) 
Sthenothoe sp. 
Urothoe elegans Bate, 1857 
Urothoe cf intermedia Bellan. Santini & Ruffo, 
1986 
Decapoda 
Achaeus cranchii, Leach, 1817 
Achaeus gracilis O. G. Costa, 1839 
Alpheus dentipes Gu6rin. -Wneville, 1832 
Alpheus macrocheles (Hailstone, 1835) 
Anapagurus sp. 
Athanas nitescens (Leach, 1814) 
Calcinus tubularis (Linnaeus, 1767) 
Cestopagurus timidus (P. Roux, 1830) 
Dromia personata Linnaeus, 175 8 
Ebalia edwardsi O. G. Costa, 1838 
Eurynome aspera (Pennant, 1777) 
Galathea bolivari Zariquiey Alvarez, 1950 
Galathea sp. 
Galathea squamifera Leach, 1814 

1816) Gnathophyllum elegans (Risso, 
Gourretia denticulata (LUtze, 1937) 

- Herbstia condyliata (Fabriclus, 1787) 
Hippolyte garciarasoi d'Undekem d'Acoz, 1996 

Hippolyte inermis Leach, 1815 
Hýppolyte leptocerus (Heller, 1863) 
Hippolytidae sp. 
Ilia nucleus (Linnaeus, 1758) 
Liocarcinus arcuatus Leach, 1814 
Lysmata seticaudata (Risso, 1816) 

-- Macropodia czernjawskii (Brandt, 1880) 

Paguristes cf eremita (Linnaeus, 1767) 
Pagurus anachoretus Risso, 1827 
Aagurus chevreuxi (Bouvier, 1896) 
Palaemon xiphias Risso, 1816 

1830) assena (Roux P th , enope m ar 
Philocherasfasciatus (Risso, IS 16) 

Pilumnus hirtellus (Linnaeus, 176 1) 
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Appendix B (conthmed) 

Species Selection of 
sampler size 
and minimal 

sampling area 
(Chapter 2) 

Macroinverteb rate 
assemblages of 
reticulate and 

continuous 
Posidonia oceanica 

meadows 
(Chapter 4) 

Macroinvertebrate 
assemblages of 
living and dead 

Posidonia oceanica 
meadows 

(Chapter 5) 

Pisa muscosa (Linnaeus, 1758) 0 0 
Pisa nodipes (Leach, 1815) 0 
Pisa tetraodon (Pennant, 1777) 
Pisidia longicornis (Linnaeus, 1767) 
Pontonia cfflavomaculata Heller, 1864 
Processa sp. 
Sirpus zariquiqyi Gordon, 1953 
Thoralus cranchii (Leach, 1817) 
Upogebia mediterranea Noýl, 1992 0 0 0 
Xantho incisus Leach, 1814 - 0 

ECHINODERMATA 
Ophiuroidea 
ATRhipholis squamata (Chiaje) 0 
Amphiura chiajei Forbes, 1843 0 
Ophioderma longicauduni Retzius, 1805 
Ophiocomina nigra (Abilgaard, 1789) 
Ophiomyxa pentagona (Lamarck, 1816) 0 
Asteroidea 
Asterina gibbosa (Pennant, 1777) 0 
Astropecten spinulosus (Philippi, 1837) 
Echinoidea 
Brissus unicolor (Leske, 1778) 
Echinocyamus pusillus (0. F. Muller, 1776) 
Genocidaris maculata A. Agassiz, 1869 0 

Paracentrotus lividus (de Lamarck, 1816) 0 
Psammechinus microtuberculatus (de Blainville, 
1825) 

0 

ýj Spatangus purpureus 0. F. Muller, 1776 
Holothuroidea 
Holothuria helleri Marenzeller, 1878 
Holothuria mammata Grube, 1840 
Holothuria pohi Delle chiaje, 1823 
Holothuria tubulosa Gmelin, 1788 
Leptosynapta minuta (Becher, 1906) 
Tachythyone tergestina (M. Sars, 1857) 
Trochodota venusta (Semon, 1887) 
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APPENDIX C 

List of invertebrate species and respective total abundance that were recorded exclusively from either dead or living Posidonia oceanica matte (Chapter 5). 

Taxon 
P l 

Dead m Livin matte o ychaeta 
A h p roditidae sp. 2 A b ra ella so. 4 C apitellidae sp. I Diopatra sp. 
Eunice sp. 3 

7 

Glvcera sp. 8 
Goniada emerity Audouin & Milne-Edwards, 1833 2 
Lepidonotus squamatus (Linnaeus, 1758) 2 
Ltimbriclvmene cf minor Arwidsson, 1907 2 
Lysidice ninetta Audouin & Milne-Edwards, 1833 
Marphvsa sanguinea (Montagu, 1815) 1 
Nepthvs sp. 3 
Nepthydae sp. A 
Nereidae sp. B I 
Polyopthalmlis sp. I 
Phyllodocidae sp. A I 
Phyllodocidae sp. B I 
Serpulidae sp. 2 

Mollusca 
Leptochiton cancellatus (Sowerby, 1840) 1 
Lepidopleurus caietanus (Poli, 179 1) 1 
Adis ascaris (Turton, 1819) 3 
Alvania discors (Allan, 1818) 25 
Berthella sp. I 
Bittium latreillii (Payraudeau, 1826) 1 
Bulla striata Brugui6re, 1792 1 
Cerithium vulgatum Brugui6re, 1792 4 
Colubraria reticulata We Blainville, 1826) 1 
Emargainula octaviana Coen, 1939 1 
Gibbula auttadauri (Philippi, 1836) 2 
Gibbula umbilicaris (Linnaeus, 1758) 3 
Haminoea hydatis (Linnaeus, 1758) 23 
Hexaplex trunculus (Linnaeus, 175 8) 2 
Mangelia sp. I 
Mangiliella taeniata (Deshayes, 1835) 5 
Mitra corniculum (Linnaeus, 1758) 

-1 Mitrella minor (Scacchi, 1836) 6 
Ocinebrina edwardsi (Payraudeau, 1826) 1 
Odostomia conoidea (Brocchi, 1814) 1 
Parvioris anderswareni Van Artsen & Savelli, 1991 
Philine aperta (Linnaeus, 1767) 2 
Raphitoma codieri (Payraudeau, 1826) 1 
Raphitoma philberti (Michaud, 1829) 1 
Thracia papyracea (Poli, 179 1) 1 
Tricolia speciosa (Von WhIfeldt, 1824) 
Trivia pulex (Solander in J. E. Gray, 1828) 1 
Turbonilly jeffrevsii (Jeffreys, 1848) 1 
Turbonilly lactea (Linnaeus, 1758) 
Viteolina philippi (Rayneval & Ponzi, 1854) 
Ascobully fragilis (Jeffreys, 1856) 1 
Glans aculeata (Poli, 1795) 3 

_Lima 
hians (Gmelin, 179 1) 

Loripes lucinalis (Lamarck, 1818) 
Modiolus barbatus (Linnaeus, 1758) 

6 

1 
2 

Telling balaustina (Linnaeus, 1758) 
Sepia sp. 

1 
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APPENDIX C (continued) 

Taxon 
Crustacea 

Dead 'matte' Living matte ing m 

Cumacea sp. B 2 2 
Nebalia bipes (0. Fabricius, 1780) 8 
Ampelisca cf rubelly A. Costa, 1864 60 
Amphithoe helleri G. 

_Karaman, 
1975 11 

Atylus guttatits (A. Costa, 185 1) 5 
AMus vedlomensis (Bate & WestWood, 1862) 3 
Caprella acanthifera Leach, 1814 45 
Dexamine cf spiniventris (A. Costa, 1853) 1 
Harpinia sp. I 
Iphimedia minuta G. O. Sars, 1864 3 
Leptocheirus Vittatus (Grube, 1864) 554 
Lvsianassa costae Milne Edwards, 1830 105 
Lvsianassa longicornis Lucas, 1849 46 
Melita herKensis Reid, 1939 
Pereionotus testudo (Montagu, 1808) 3 
Phoxocephalidae sp. 2 
Stenothoe sp. 3 
Urothoe cf intermedia Bellan Santini & Ruffo, 1986 2 
Dynamene tubicaudy Holdich, 1968 1 
Eurydice sp. 2 
Gnathia sp. 13 
Idotea cf emarginata (Fabriclus, 1793) 1 
Synisomy cf lancifer (Miers, 188 1) 1 
Zenobiana prismatica (Risso, 1826) 2 
Alpheus macrocheles (Hailstone, 1835) 4 
Anapa, Zurus sp. 4 
Galathea bolivari Zariquiey Alvarez, 1950 93 
Gourretia denticulata (LUtze, 1937) 3 
Ilia nucleus (Linnaeus, 1758) 1 
Pazuristes cf eremity (Linnaeus, 1767) 1 
Palaemon xiphias RiSSO, 1816 2 
Philocheras fasciatus (Risso, 1816) 4 
Thoralus cranchii (Leach, 1817) 14 
Upogebia mediterraney Nq6,1992 15 

Echinodermata 
Ophiomyxy pentagona (lamarck, 1816) 5 
Asterinagibbosa (Pennant, 1777) 9 

Total number of exclusive species in respective 'matte' type 39 32 
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