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ABSTRACT 

Modelling Machine Induced Noise and Vibration in a Ship Structure 

by 

Wei-Hui Wang 

Most high speed vessels are fitted with powerful high speed engines which are installed in 

confined spaces and, as a consequence, cause an extremely high level of noise and vibration. 
Often structure-borne sound power is transmitted to a sound carrying structure from a source 
via a number of contact points. In turn, the noise and vibration are propagated in the structure 
and could possibly cause an undesired noise radiation. 

In this study, a model for predicting power flow based on the mobility theory has been 

addressed. The unique parts of the study include the establishment of the relationship of 

mobility functions with respect to four-pole parameters and the dynamic stiffness 

coefficients of a coupled machine/mount/foundation system. Also expressions to represent 
the sound input power, the output power and the transmitted power in relation to mobility 
functions are clarified. 

From a detailed analysis of relevant literature, it is shown that no validated models for 

predicting the propagation of structure-bome noise within the intermediate frequency range 

of 125 Hz to lkHz exist. As a consequence, a new numerical stress wave model has been 

developed to bridge this knowledge gap. This innovative approach extends the earlier works 

of Cremer, Heckl and Ungar in the field of stress wave propagation. 

Finally, a novel holistic model has been developed to line up the transmission, propagation 

and radiation predictions of a machine induced noise and vibration in ship's structure to take 
in account the fluid-structure interaction effect. A number of experiment measurements have 

been performed to validate the established models. From the comparisons, the prediction 

models are shown to be credible with an accuracy higher than 95 per cent. 

The established models are of a generic nature and can be applicable to diverse engineering 
fields regarding to the predictions of structure-borne noise and vibration transmission, 

propagation and radiation. Applications of these models to characterize the vibration 
reduction countermeasures, as in the case of resilient mounts and squeeze-film damping 

plates, from a machine are also discussed. 
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CHAPTER I 

INTRODUCTION 

1.1 The Structure-Borne Noise Source 

Noise in a ship can be a problem. For reasons of comfort and habitability, the control of 

structure-borne noise is of paramount importance in the design of high performance ships. 

Effective noise control has been one of the most difficult objectives to accomplish in ship 

building. In essence, noise is acoustic energy in air radiated from vibratory solid bodies. 

Therefore, to control noise is to reduce vibration. Vibrations are generated from periodical 

mechanical forces such as impact, torsion, shearing, bending, etc., produced by various 

machinery. They propagate via connecting junctions to beams, plates, shells, etc., to all 

structural parts of a ship. During propagation, vibration waves transmit in two principal 

modes, the longitudinal mode along the propagation orientation, and the transverse mode in 

all directions normal to the propagation orientation. In a ship structure, these two modes 

constantly transform in fraction into each other at the perpendicular joint of two structural 

members. 

For instance, consider two beams A and B perpendicularly cross jointed. A longitudinal 

wave propagation in beam A reaches the junction. There a major portion of the incoming 

wave continues its journey in beam A, and a fraction of the wave is scattered into beam B, 

with the vibration mode changing to transversal one. The magnitude of the scattered 

fraction depends on the frequency of the wave, the nature of the connecting joint, the 

fixtures and materials of either beams, etc. To complicate the matter further, as the 

vibration waves encounter the material discontinuities in the structure, some reflections 

will occur. In summary, there are vibrations with various frequencies, amplitudes, 
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oscillation orientations, and phases existing in a ship structure. As those vibrations transmit 

throughout the ship structure, the transversal modes radiate acoustic energy into the air in 

direct contact with the structural solid surfaces. Thus, in a noisy compartment, for example, 
it is often difficult to identify the specific noise sources. 

As ships adopt lighter weight structure to improve their speed performance, this causes 

stronger structural vibrations and louder noises. Especially for those fast patrol boats, 

where the structure is super light, with comparatively more powerful propulsion engines 

confined in relatively smaller spaces, the vibrations and noises become unbearable. The 

noise sources generated by the mechanical forces or the forces acting directly on structural 

parts of a machine are called structure-borne noise sources. From an onboard measurement 

survey of structure-borne noise level of sources, such as the main diesel engine, the 

reduction gear, the generator and the exhaust pipe etc, onboard a fast vessel, it has been 

found that the main diesel engine is often the most dominant one, Wang (1996). 

Naturally, it is desirable to contain the vibrations at the origin. To this day, resilient mounts 

are utilized between the engine block and the base structure as the vibration isolator. But in 

reality, there is no resilient material in the world capable of isolating the entire vibration 

power by its molecular friction mechanism alone. Thus, a large portion of the vibration 

power does pass through the mounts into the structure. Then every portion of the structure 

is a noise source. To analyse and describe the whole picture is a mission next to impossible. 

However, with sufficient knowledge of the vibration transmission mechanisms in the 

structure, a simplified model may be constructed and an approximate solution may be 

obtained for this noise control problem. 

1.2 Noise Source Transmission in Structure 

Structure-borne sound power is predominantly transmitted to a sound carrying structure 

from a source via a number of contact points. In turn, the noise and vibrations are 

propagated in the structure possibly causing sensitive equipment to vibrate or to cause 
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undesired radiated noise. In principle, this may be avoided by measures at source, in 

transmission, during propagation or at radiation. It is, of course, preferable to cope with the 

problems at the generation sites and thereby avoid more comprehensive and expensive 

measures later in the chain. To this end, the resilient mounts are utilized as an effective 

countermeasure to reduce noise and vibration power transmitted from the source to sound 

receiver. 

In reviewing noise transmission paths, it is noted that from the machinery room 

compartment to other areas of a ship, there are three parallel paths : air, water, and 

structure, the latter being the most important. While structure-borne noise is familiar, it 

takes an uncommon form in ship hulls : compared to industrial environments, the hull is 

relatively homogeneous and long wave-guide and whose transmission characteristics are 

affected by spatially periodic stiffening frames. Furthermore, the waterborne path is 

intimately coupled to the structure-borne path, partially short-circuiting structural 

impedance discontinuities such as bulkheads, which, in the atmosphere, would constitute 

effective barriers to structure-bome noise propagation. Another peculiarity of a hull is that, 

over much of the relevant frequency range, radiation loading is associated with inertia 

forces, exerted by the entrained mass of water, which modify the hull plating response. 

Because of the high sound velocity of water, the coincidence frequency of surface ship hull 

plating lies in the ultrasonic range. Flexural waves therefore radiate from areas where wave 

number conversion occurs, viz. drive points and impedance discontinuities. Once launched, 

the waterborne acoustic signal suffers propagation losses which are small compared to 

those encountered in the atmosphere. 

Noise propagation in ship structures as well as the choice of appropriate steps for 

control/reduction are intimately related. Figure 1.1 shows the relation between each step on 

structure-borne noise transmission in ships. 
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Noise and vibration source excitations 

Multiple important paths 

Elastic mountings and/or Direct acoustic couplings, 
Step I damping layers for main and airborne or fluid-borne noise 

auxiliary engines, pumps, pipes 
radiation. and ducts 

I --+ 

Step2 Vibrational power input at connection points of seat structure 

Step3 I Structure-borne noise propagation from impinging points to compartment 

Step4 I Radiation of structure-borne noise from the compartment walls 

Figure 1.1 Relation between each step on structure-borne noise transmission 

Machines fitted to a ship structure generate unwanted vibrations, therefore, they are often 

mounted on the structures via vibration ioslators as a vibration control measure. In practice, 

machines are mounted on large flexible structures (referred to as the seating) which may 

have many modes of vibration, therefore, it is not convenient to consider each mode 

separately. For this situation, the dispersion properties of elastic waves in rib-stiffened 

plate systems need to be determined for application with geometries typical of a ship's 

structure. 

1.3 Background and Objective of the Study 

Operational motions of engine and other machinery start vibrations, and the resilient 

mounts under the machinery seatings initiate the noise control reduction efforts. The 

effectiveness of the mounts can be defined in terms of the force or velocity at the machine 

seating. But the vibration force and the velocity may not be in phase. Besides, a large 

response in a structure does not always lead to a high level radiated noise. Here a more 

appropriate method to describe the vibration condition is adopted for each machine. The 
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effectiveness of isolation is defined as the measure of the power transmitted to the structure. 

This single quantity includes both the vibration parameters of force and velocity. An 

important reason for using the concept of power is that it provides a means of comparing 

the effects of both translational and rotational excitations. Minimizing the power 

transmitted through an isolator is also consistent with the first step in any vibration control 

exercise, ie, to deal with the problem at the source. Normally, the resilient mounts are 

composed of elastic and viscoelastic materials and designed in various configurations. 

The vibration power fed into a structure for a multipoint mounting system can be 

calculated by utilizing the concept of effective mobility of the source /mount /receiver 

system and the source characterization as a force or a velocity. Furthermore, if the relations 

between the mobility function pertaining to the coupled and decoupled source/ mount/ 

receiver systems can be derived, then the effectiveness and performance of the mount can 

be identified. To achieve a successful design and an appropriate selection of the mount, 

sensitivity analyses of the mobility function value with respect to the dynamic properties 

should be undertaken. 

Owing to the complexity of a ship structure, the effectiveness of the structure-borne noise 

isolation measure should be tightly dependent on the propagation wave patterns. 

Besides considering the resilient engine mounts, a model of structure-borne noise 

propagation in the foundation structure has to be developed. In most cases, however, the 

foundation is formed in branch structure, which means the interactions between the contact 

points maybe reduced due to intermediate stiffeners and/or energy transmission to adjacent 

structural parts, Cremer et al (1988). The main reason of this phenomenon has been found 

to be the standing wave effect in the complex branch structure. Basically, a structure which 

is excited, e. g. by means of a point force, will disperse motion. To describe the dynamic 

behaviour of the structure, the transfer mobility function matrix- approach is used in the 

study. 
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Both in the predictions of the effect of design modifications for vibration isolation and in 

predictions of structure-borne noise propagation through complex systems, the structural 

characteristics of the source and the receiver are required. The quantity primarily sought is 

the active sound power transmitted to the supporting structure. The aim of this research 

investigation is to establish a new holistic model to line up the transmission, propagation 

and radiation predictions of a machine induced noise and vibration in a ship's structure that 

takes into account the fluid-structure interaction effect. 

To achieve the above, the research objectives are: 

(a) Engine or machine characterization as a velocity source coupled with mobility data in 

order to obtain convenient measurements and power calculations; 

(b) Develop models for transfer mobilities and transmissibilities from engine to 

foundation; 

(c) Numerical analysis and validation of the results by experimental measurements; 

(d) Establish a model of propagation of structure-borne noise and vibration from the 

engine or machine foundation; 

(e) Numerical analysis based on the stress wave model for the sound and vibration 

distribution in the ship's structure by using a computer package and self-generated 

software; 

(f) Develop a combined finite element and boundary element method in dealing with the 

prediction of underwater sound radiation. 

(g) Validation of the analysis accuracy by undertaking experiment measurements. 

It is intended that the developed model will be suitable for use in the design stage of such, 

or similar, marine craft and to assist in the reduction of vibratory noise in existing ones. 

1.4 Contributions of this Research Work 

The contributions to knowledge that have been made as a result of this research study are 

as follows: 

(a) Establishment of the relations of the mobility functions with respect to the four-pole 
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parameters and the dynamic stifffiess coefficients of a coupled machine/mount 

/foundation system. 

(b) Clarification of the expressions to represent the sound input power, the output power 

and the transmitted power in relation to mobility functions of a coupled 

machine/mount /foundation system. 

(c) Development of a new numerical stress wave model to predict the propagation of 

structure-borne noise within the intennediate frequency range of 125 Hz to 1 kHz 

where existed a knowledge gap in the pervious literature. 

(d) Accomplishment of a holistic model to line up the transmission, propagation and 

radiation predictions of a machine induced noise and vibration in ship's structure to 

take in account the fluid-structure interaction effect. 

1.5 Outline of the Report 

In more detail, the works carried out in this study are summarized in Table 1.1. In which 

the stress wave finite element method (FEM) is developed by continuing the previous work 

by Cremer et al (1998). An interface program to link the finite element and boundary 

element software is also developed. In the transfer mobility prediction model, the 

establishment of the relations of the mobility functions with respect to the four-pole 

parameters and the dynamic stifffiess coefficients is a unique contribution. 
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Table 1.1 Summary of the works carried out in this study 

Application Mobility and Transmission Structure-Borne Sound Underwater 
ropagation Acoustic Radiation 

\ 

Test Test Patrol Test Rig Test Rig Patrol Test Spherical MM Model odel Beam Plate 
Rig(l) Rig(ll) vessel (1) (11) vessel Rig(Il) shell 

FEM 

(ANSYS) 

FEM. /BEM 

Stress wave 
FEM 

Analytical 

Experimental 

Measurement 

A literature survey in those areas where vibrational power transmitted from machines into 

various ship structures and prediction models for propagation of structure-borne noise in 

ships is given in Chapter 2. The survey clearly reveals the fact that there are not enough 

validated models for predicting the propagation of structure-borne noise within the medium 

frequency range, i. e. from 125Hz to IkHz, present in the published literature. Thus this gap 

in knowledge needs to be bridged. 

The mobility model to calculate the transmitted power flow to the foundation structure 

from a machine is introduced and developed in Chapter 3. A mobility theory is offered in 

this Chapter for evaluating the point and transfer mobilities of various machine-isolator- 

receiving structure systems. It is the predominant and important aspect to cope with the 

machine induced structure-borne noise and vibration problems. 

In order to evaluate the mobility reduction behaviour of structure-borne sound transfer 

from a marine engine via resilient mounts, the concept of mechanical four-pole parameters, 

which represent the physical state at a junction, is adopted to explain the sound attenuation 
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theory of a resilient mount. 

A coupling model, combining finite element method (FEM) and boundary element method 

(BEM), is developed in Chapter 4 for the purpose of predicting the sound propagation in a 

ship structures to take into account for the fluid-structure interaction effect. In the 

derivations of the transfer matrices of a finite beam and a finite rectangular plate element, a 

stress wave model has derived. A FORTRAN program is developed based on this stress 

wave model. This program is especially suitable for analysing structure-borne noise and 

vibration within medium frequency range in a more efficient way. The validations of the 

developed stress wave model and the coupled FEM/BEM model are given in this Chapter. 

Also, the developed coupled FEM/BEM model has applied to study the machine induced 

underwater radiation problem. 

In Chapter 5, the experimental model studies for measuring point and transfer moiblities 

from a machine to foundation are described. Validation of the four-pole parameters model 

is made by comparing the measurement results on two different scale engine room models. 

Also, the investigations of the effect of the resilient mounts in the attenuation of structure- 

bome noise power transmission are discussed. 

A mobility study on the improved engine room structure by using squeeze film damping 

plates in a patrol vessel is also exhibited in Chapter 5. The improved radiated cabins' noise 

levels from the machines were discussed by measurements. 

In Chapter 6, an application of the coupled FEM/BEM model to predict a machine induced 

underwater acoustic radiation is performed on the scale engine room model. Experimental 

measurement for validation was also given. 

The discussion and the conclusions of this work are 

Recommendations for further work are also given. 

presented in Chapter 7. 

Some of the chapters have appendices related to them. In connection with Chapter 5, 
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Appendix A details derivations of the transfer function matrix of finite rectangular element 

for the elastic bending wave. Furthermore, in Chapter 4, the discretization model of the 

Helmholtz equation by boundary element method is given in Appendix B. Also, there is a 

requirement to consider the Green's function for the solution of Helmholtz equation, this is 

discussed in Appendix C. 

Al. ppendix D are the technical papers published during the progress of this study. 

Finally, shown in Appendix E is the FORTRAN program written for analysing the 

structure-borne noise propagation based on the stress wave model described in Chapter 4. 
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F. 

CHAPTER 2. 

OVERVIEW OF THE FIELD OF RESEARCH 

2.1 General Background 

The interest in acoustics and structural dynamics has increased in Naval Architecture 

Engineeing during the last decade. The possibilities of looking into the details of sound and 

vibration transmission, propagation and radiation to , 
in and from the solid structures have 

also been enhanced due to the rapid progress of advanced electronic devices, such as the 

piezoelectric accelerometer, the impedance head, the hammer kit, the hydrophone, the 

digital sound level meter and the fast Fourier transformer. Owing to the increased 

complexity with respect to both technical equipment and constructions as well as to the 

environment demand sophisticated methods are required to predict the consequences of 

planned alterations and to validate by measurements. 

Many noise problems do not surface until the ship is in operation. Simple as well as 

inexpensive methods to rectify the undesirable situations must be sought. Otherwise, it 

may be extremely difficult to get a solution. In addition, the assembly of different 

subsystems can lead to unintended sound and vibration problems despite the fact that each 

subsystem works extremely well separately. Therefore, all parts of the sound and vibration 

chain are important and should be equivalently treated. 

The following summary is a short version of the research works done on the problem, 

providing a general background of this study. The references are arranged more or less in 

accordance with the steps outlined in Fig 1.1. 
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The works of Middleton (1976), Kihlman (1978), and Plunt (1982) have discussed the 

possible ways in which the structure-bome noise source strength could be defined and 

measured. They concluded that the practical methods, available for the noise level 

prediction in buildings and ships, were those which define source strength of machinery by 

reference to the response of a typical foundation to the force source. Machinery impedance 

methods might appear to offer some assistance in the derivation of the vibration source 

strength of a prime mover or other item of machinery. Classical impedance theories treat 

vibration generators as ideal elements such as force sources or velocity sources. Real 

machines tend not to fall neatly into these categories because the machine itself is a 

structure. Large machines, such as main engines, appreciably affect the structure of the 

ship. The source strength of an engine could be quantified by measuring the velocity or 

acceleration response of the bed plate in the test house when the engine is undergoing land 

trial. However, the infonnation would only be useful if the characteristics of the bed plate 

could be defined and compared with the characteristics of the ship's hull. 

The transmission in turn, is completely determined by the source strength together with the 

dynamic characteristics of the source, of the receiver and of the coupling elements in 

between the two subsystems. A series of research works, such as Pinnington (1980,1987, 

1988), Pinnington and White (1981), Pinnington and Pearce (1990), Dobson et al. (1993); 

Janssen and Buiten (1973), Buiten (1976), Ohlrich (1979,1980), Petersson (1980,1983), 

Petersson and Plunt (1980,1981,1982a, 1982b), Plunt (1983), Plunt and Jensen (1983), 

have been undertaken in United Kingdom and Nordic Co-operative Organization 

respectively since 1980. Such works concentrated on investigating the parameters 

controlling power transmission from a vibrating machine to an extensive receiving 

structure, such as a ship hull, via spring-like vibration isolators. Part of the work was an 

investigation looking into convenient ways of representing a machine as a source of 

vibration power. Two simple models of a machine were develoýed, namely a mass and a 

finite beam. For the first one, a mass was used to represent a machine at low frequencies, 

when it moves as a rigid body. This model was used by Pinnington and White (1981), 

which was applied to an experimental investigation of power transmission from a mass 
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excited by a force, the mass being coupled to a long finite beam by a rubber spring. The 

rubber spring represented a machine isolator, and the long finite beam, represented an 

extensive receiving structure. At low frequencies a machine can be considered as a rigid 

mass, but at higher frequencies it vibrates in its natural modes of vibration, therefore 

impossible to accurately model it with a simple element. Thus a free-free beam has been 

chosen, at this first instance, to characterise a resonant machine source. This choice is 

simple enough to permit mathematical analysis, yet it has the necessary feature to provide 

an understanding of power transmission from a resonant machine source. Furthermore, the 

theory of Pinnington (1980), Pinnington and White (1981) considered the power input to, 

and transmitted from, a short finite beam connected to a semi-infinite beam by a spring- 

like isolator. The semi-infinte beam was the simplest way in which to represent the 

receiving structure. For the second one, the theory considered power transmitted from a 

short finite beam connected to a long finite beam by a spring-like isolator. In this case the 

long finite beam, having many resonances, represents an extensive but finite receiving 

structure. Experiments were then carried out with physical models of the above two 

configurations, and the measurements of peak and frequency average power were 

compared with the predictions. Most experimental measurements in these research works 

were undertaken in a laboratory. While in the case of a ship structure, the characterization 

of power flow of structure-borne noise source by measurements will be much more 

complicated. 

Heckl (1976) pointed out that the behaviour of elastic mounts at low frequencies was fairly 

well understood and it was possible to predict their performance provided the stifffiess of 

the mount and the impedances of the structures on both sides of the mount were known. 

For higher frequencies, elastic mounts must be considered as wave-guides having higher 

order resonances. It was shown that the first higher order resonance depends mainly on the 

mass of the resilient element. It was also shown that for large r6iliently mounted engines 

at medium and higher frequencies (100-500 Hz) the sound transmission through the 

surrounding air can be more prominent than that through a good resilient mount. 
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Kihlman (1982) developed a simple model to calculate the vibrational power fed into a 

structure for a multipoint mounting system based on the concept of effective overall 

mobility of the source and the foundation and the effective transfer mobility of the 

vibration isolators. However, the vibration source was considered to be under rigid body 

motion only. 

Homer (1990), Homer and White (1990,1991) have developed the models to determined 

the wave type, either flexural or longitudinal wave, which carry most vibrational power 

through bends or joints in beam-like structures. By establishing the wave type which 

predominantly carries power transmission, it is then possible to apply the most suitable 

vibration control measure. Gibbs and Tattersall (1987) considered all modes of vibration, 

including compression, torsion and bending, both for the incident and generated waves of 

vibrational energy transmission at a comer-junction of square section rods. 

At the beginning of the 1980's, Goyder and White's works (1980a, 1980b, 1980c) studied 

the phenomena of wave propagation and power flow in the far field of an infinite plate 

with a single infinite line-beam. Such a structure is excited by forces or torques applied to 

the beam at the driving point. In the far field, power transmitted by flexural waves in the 

beam is radiated into the plate but power transmitted by torsional waves in the beam is not 

radiated. The general conclusion from their analysis is that the power flowing into the 

system is controlled by the beam while the subsequent flow of power throughout the 

structure is governed by the plate. Also the plate carries a cylindrical wave with a strong 

directivity. However, their method is hardly applicable to the vibrational power flow 

analysis of real ship structure, as the later is composed of plate-stiffener combination with 

limited plate extent and multiple stiffeners. 

Regarding the development of the measurement technique of power flow, Pavic (1976) 

examined the signal propagation characteristics in both nondispersive and dispersive media 

based on the signal coherence at two different points along propagation paths. In 

propagation along nondispersive paths, coherence was achieved by characteristic time lag 
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shifting and crosscorrelation analysis was used. For dispersive paths in which the 

coherence of the traveling signal was degraded along the path and conventional 

crosscorrelation ceased to be useful as a method of analysis, Pavic showed that the 

coherence between the signals can be restored by applying some transformation to the 

spectra of the signals. The resultant simplified power flow measurement methods and the 

conceptual design of analog electronic measuring devices could be applicable in some 

special cases of flexural vibrations in both beams and plates. The finite difference approach 

was chosen for obtaining spatial derivatives of kinematical quantities relevant to power 

flow detennination. 

The two processes, i. e., generation and transmission of the noise in ship structure are not 

independent. Knowledge of the mechanisms governing the generation as well as the 

dynamic characteristics of the source allows for an approximate description of the source 

strength. Verheij (1976) discussed an experimental method in which the internal excitation 

of a machine was replaced by an equivalent external force. Application of this method to 

three diesel engines for the octave bands with central frequencies from 125 to 2kHz 

showed that the real excitation may be replaced by an external equivalent force, which 

generates within MB the same response as that of the running engine, for various receiver 

positions, various sound transmission paths, various ways of mounting and various 

enviroments. There are some limitations of such a method: (1) the vibrational energy 

should be distributed over the respective transmission paths in the same ratio; (2) the 

equivalent forces measured with the aid of a loudspeaker should be easily recognizable by 

their narrow band signature of the open circuit voltage of a reciprocal transducer in the 

mechano- electrical two-port system, whereas for broad band sources this will be less easy; 

(3) the transmission system would be reciprocal. 

The works of Cremer et al (1988) have dealt with analysis of the propagation of structure- 

bome noise in vehicles and buildings, especially concentrating on the propagation wave 

pattern for the fundamental structure such as simple infinite (or semi-infinite) beam, thin 

plate or shell. 
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Nilsson (1976,1977ý 1981) investigated the propagation of the structure-bome noise in the 

superstructures for typical medium-sized tankers. It was found that the attenuation of 

structure-borne noise was sufficiently well described by a simple flexual wave model for a 
frequency range of 31.5-4kHz. After Sawley (1969) and Lyon (1975) developed a 
framework of the study of the energy flow of structural vibration systems called Statistical 

Energy Analysis (SEA), Jensen (1976) discussed the possibility of calculating expected 

vibration amplitude distribution throughout a ship's structure with a higher degree of 

accuracy using a power flow model based on SEA. The comparison between measured and 

calculated values of the insertion loss on a ship model section has shown that the 

agreement was reasonable; somewhere acceptable and elsewhere poor. The experimental 

investigation on the ship structure model has shown that it is hardly appropriate to limit the 

SEA model of a ship section to include only flexual vibration modes in the structure. At 

last, when the intention is to carry out a complete analysis of the structure-borne noise 

propagation in complicated steel plate construction (composed of combinations of plates 

joined in either T-junction, L-junctions or crucifon-n junctions), it is necessary to consider 

the flexual wave combined with longitudinal and shear wave transmission through the hull 

plate sections simultaneously. The main problems involved in the application of SEA for 

prediction of noise level concerning structure-bome noise propagation, as pointed out by 

Sawley (1969), Kihman and Plunt (1976) and Irie and Takagi (1978), was in getting proper 

input data to the calculation. 

Sound radiation as a result of structure-bome vibration has been treated by Gophey (1967), 

Ginsberg and Rosenkilde (1986), Cremer et al. (1988), Chen and Ginsberg (1988) and 

Fahy (1989). Fahy explained that sound radiation from vibrating surfaces could be 

expressed in tenns of the distribution of normal surface velocity. Analysis of sound 

radiation from planar surfaces by means of far-field evaluation of the Rayleigh integral and 

synthesis of travelling wave Fourier components were presented in such a way that the 

equivalence of these dual approaches could be appreciated. Gophey derived a regular 

integral equation from the classical Helmholtz integral and a numerical quadrature 

technique, successfully solved the integral equation to obtain the distributions of pressure 
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and velocity over a vibrating surface submerged in an unbounded acoustic medium. The 

acoustic radiation from an elastic plate driven by an underwater shock (Ginsberg and 

Rosenkilde, 1986)or by a central point force (Chen and Ginsberg, 1988) was numerically 

solved by the Doubly Asymptotic Approximation (DAA) model which took the fluid- 

structure interaction into consideration. The results showed that the pressure distribution 

was not in good accord with the displacement. The main reason is that in the formulation 

of DAA model the numerical error for displacement is of the first order whilst that for 

pressure, which is proportional to the velocity, is of the second order. 

2.2 Special Topics 

There are some subjects of particular interest as this study is concerned. The relevant 

references are assembled accordingly. 

2.2.1 Multi-Point Transmission 

The classical approach for calculating structure-borne noise and vibration transmission is 

based on the assumption of a velocity source perfonning rigid body motions. Thus a multi- 

point coupling between the source and the receiving structure may be considered as a 

combination of separate poles according to Pinnington and Pearce in 1990. For a machine 

mounted at four sites there will be four possible modes of motion; the monople motion 

with all sites moving in phase, two dipoles with opposite pairs moving in anti-phase 

(rocking about two perpendicular axes), and a quadrupole in which diagonal pairs move in 

anti-phase. 

Although it was possible to handle mathematically all six degrees of freedom in motion as 

well as the potential coupling between them, the unwieldiness of the classical approach 

grows rapidly as the number of degrees of freedom included increases (Timoshenko and 

Young, 1955). It is therefore customary to simplify the transmis. sion problem to only one 

degree of freedom. The rigid body motion treatment underlying this approach is often 

questionable. Instead it is usually necessary to treat both the source and the receiving 

structure as continuous systems for low frequencies. Such a description of linear source 
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and receiver systems is conveniently obtained by means of the concept of mobility which, 

most often, is more preferable than the mechanical impedance in dealing with structure- 
borne sound and vibration transmission problems. 
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Figure 2.1 Possible acoustic transmission paths 

The source and receiver structures are commonly coupled to each other at several discrete 

points as shown in Figure 2.1. The word "point" herein is used in a somewhat extended 

meaning, denoting an area with its dimensions smaller than a fraction of the governing 

wavelength. The physical coupling of the structural subsystems is often constituted by 

relatively small elastic elements ( chocks, isolators, etc) called the transmission elements. 

For a general system, the subsystems are thus consisting the source (including possible 

feet), the transmission elements and the receiver. If no transmission elements are present, 

the interface between the source and the receiver is located below the feet. Of course, there 

are other possible assembly variations, but the one described facilitates a unified treatment 

of rigid and resilient installations. 

In the general case, the interaction between the different contact points as well as between 

the different components of motion must be taken into account. For the wide frequency 

band of interest, the handling of the general matrix formulation results in an excessive task 
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since not only the contact points between the source and the receiver can be quite 

numerous, but also the six components of motion relative to Cartesian axes and excitation 

at each connection must be taken into account. 

A large number of works concerning developing the methodology and describing 

experimental methods for the determination of structure-borne noise and vibration 

transmission have been reported. It is also shown that in the experimental situation the 

benefits of the mobility representation are apparent. 

Ohlrich (1979,1980) compared the dynamic characteristics of four types of bedplates used 

for engine mounting in ships and revealed that the characteristic of the bedplates has a 

local effect to the structure-borne noise control in the frequency range from 20Hz to 20kHz 

of interest for shipboard acoustics. The bedplate structure is composed of two parallel 

platestrips supported by girders and frames, which may from an integral part of the double- 

bottom structure in a ship. The results presented were derived from experiments on models 

of 5-frame bottom sections of ships. Also the vibration transmission from the bedplate to 

the hull structure by applying a hannonic point force excitation non-nal to the bedplate in a 

single point was discussed. This relationship is an important factor for the prediction of 

engine-generated noise in remote areas. 

In 1980 to 1983, Petersson(1980,1983), Petersson and Plunt (1981,1982a, 1982b), Plunt 

and Jensen (1983) and Plunt (1983) applied the effective mobility concept to the analysis 

of a structure-borne sound power transmission between coupled structures via multi-paths 

from a machine. Also the methods for detenning the effective mobilities in the 

transmission of vibrations between complex structures connected at several points were 

developed. The general moblilty matrix of multi-point, coupled structures can be 

formulated into a 6N x 6N matrix, where N is the number of contact points. The effective 

moblilty represents the ratio of the total velocity due to all applied forces to the force 

acting at a contact point to be considered. Thus it is possible to neglect the influence of 

some element in the mobility matrix and to rearrange the general mobility matrix into some 
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corresponding effective mobilities. Some results from full scale measurements of point and 
transfer mobilities on the feet of shipboard diesel engine and the foundations were 

presented and some possible simplifications of the mobility description of these structures 

were discussed. The measurements were performed for the frequency range 50-320OHz. 

The examples of measured point and transfer mobilities for the structures in their studies 

showed that the point mobilities were generally greater than the transfer mobilities because 

of the inhomogeneity of the sturctures. Also, the point mobilities were found to be mainly 
determined by the local dynamic properties of the structure. Accordingly, the effective 

point mobilities of complex, inhomogeneous structures can be approximated by the 

corresponding ordinary point mobilities in many case. For homogeneous structure and 

structures where there are no strong discontinuities between the contact points, at which 

the source and the receiving structure are connected, the interaction between the points 

must be taken into account. However, the effective point mobility can be approximated in 

such cases by the ordinary point mobility multiplied by different correction factors. The 

agreements between the measurement mobility results and the results from the estimation 

precedures were very good. Besides, in the utilization of the effective moblilties as the 

descriptive parameters to evaluate the structure-included acoustic engergy input on the 

combination of diesel engine --- coupling elements --- foundation structure, the prediction 

models of structure-borne noise power transmission still need the appropriate source 

velocity data. 

Verheij (1986) made some significant contributions to the methodolgy for analysing the 

multi-path sound transfer in resilient mounting systems in ships, and for improving such 

systems in an economical way by using the experimental methods of reciprocal transfer 

function measurement for quantifying the sound transfer path. The concept of this 

approach for the path analysis is that, the measurements were performed with the engine 

stopped, whereas the machinery noise is simulated by excitation upon the outside of the 

engine with a number of incoherent exciters. It is assumed that for the frequency range 

where the engine no longer vibrates as a rigid body, the internal excitation may be 

modelled with sufficient accuracy by this artificial excitation. Only by using this artificial 

20 



excitation does it become practicable to interrupt sound transfer path, e. g. by removing a 
flexible pipe coupling. If then for constant excitation the sound transfer to a distant 

position decreases, it is certainly a quantitative indication for the relative importance of the 

interrupt path. An essential step simplifying these experiments is to perform the transfer 

measurements reciprocally. The great advantage of this approach might be that the 

predominant transfer paths can be detected with relatively simple experiments. Moreover, 

a quantitative insight is obtained as to what extent a certain resilient mounting system can 
be improved without modifying the paths through the mounts and through the air. 

The sound source under investigation was 4MW medium-speed propulsion diesel engine 

onboard a twin propeller passenger and car-ferry. Measurements had been performed both 

at sea during a nonnal service trip and at the yard before the ship went into service. During 

the measurements at sea, the two outer of the four main engines were in service. They were 

running deliberately at different speeds to facilitate source identification. The engine close 

to the receiver location was running at 512 rpm, the more distant engine at 480 rpm. The 

receiver location for determining the sound transfer to the accommodation, was on the hull 

at approximately 10m above the tanktop of the double bottom in the engine room. To 

characterise the total sound transfer to this location, the open circuit voltage of a reciprocal 

electrodynamic vibration exciter was used. It's response at sea was completely determined 

by the nearest main engine for the frequency range of the path analysis, i. e., the 63Hz- 

I kHz octave bands. 

More recently, Koh (1992) recognised that for the study of machine-induced vibration 

problems, considering resonance responses of the coupled systems as well as the 

interactions among governing degrees-of-freedom, a more detailed model is necessary. The 

unifying concept of time-averaging vibrational power was utilized to examine the vibration 

transmission from a machine source to flexible beam and plate-like seating structures via 

the translational and rotational motions as well as the coupling between these motions, for 

the case when the seating structures were subjected to co-located simultaneously acting 

sinusoidal force and moment excitations. For linear structures subjected to simultaneously 

21 



acting force and moment excitations, the driving point coupling mobility function always 

exist, except for the special case when the excitation point coincides with a symmetrical 

point of the mode shape. These coupling mobility functions contribute to vibrational power 

components transmitting to the structures as important as the direct force and / or moment 

mobility functions. Thus the cancellation among the transmitted vibrational power 

components to the seat structure is possible, which constitutes a special vibration control 

technique. Koh proposed this vibration control technique to reduce the unwanted machine- 

induced vibration levels on the seat structure, at a specific frequency, by means of 

controlling the rate of the applied moment to the applied force via suitably designed force 

and moment seatings attached to the mounting point. This control technique is most 

suitable for the case of a low to medium constant speed machine mounted on a flexible 

seating structure. 

2.2.2 Mobility Prediction 

The mechanical point mobility at a point of a structure is defined as the complex ratio 

between the velocity and the force acting at the same point. The moment mobility may 

analogously be defined as the ratio between the angular velocity and the moment. 

Generally the magnitude and the phase of both the velocity (angular velocity) and the force 

(moment) are required. The force and moment mobility functions are completely 

determined by the dynamic characteristics of the actual structure, such as the mass (inertia), 

the stiffness and the losses (internal losses as well as coupling or radiation losses). 

In case where the subsystems (machinery, foundation) are connected at several points, as 

shown in Figure 2.1, the so-called transfer mobilities must also be defined. These transfer 

mobilities are defined as the ratio of the velocity component at point k to the force 

component acting at point m. Generally, there are six independent components of motion 

at a point, three translations and three rotations. Accordinglý there must be transfer 

mobilities defined between all six components, obviously including point mobilities. Thus 

O'Hara (1967) generally defined the elements in a total mobility matrix as: 
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(2.1) 

Where F. ' is the force at point m in the direction i and Vk the velocity at point k in the Ii 

direction j due to this force. For the linear systems, the reciprocity principle should be valid, 

which means that the indices could be transposed but with the restriction that both the 

point indices and the direction indices are transposed simultaneously, i. e., 

mmk = Mkm 
ii ji (2.2) 

For continuous systems where the number of degrees of freedom are infinite, the mobility 

can be deduced from the wave equation. Such a deduction can be rather complicated, 

especially for finite structures in resonances. Generally, the mobility can only be expressed 

in a closed form for infinite system. However, there are special cases often of great 

practical importance for first order calculations and estimations. Figure 2.2 presents a 

typical mobility plot. The mobility of an infinite elementary structure is called the 

characteristic mobility. Whilst finite structures possess more or less recurrent resonances. 

The expressions of the mobility are quite complicated, since they are mainly determined by 

these resonances. In many cases, it is not even possible to find practically useful 

expressions unless special methods for the determination of the eigen-functions are used. 

Low freq Intennediate freq I High freq 
Modal Analysis Stress wave I Infinite Structure 

0 

125 Hz I kHz Frequency 

Figure 2.2 Typical mobility plot 

23 



The mobility (or the inverse quantity of mechanical impedance) has been derived for a 

number of systems that are either of infinite or semi-infinite in extent. Two compilations of 

expressions were given by Cremer et al. (1988) and Pinnington (1988). For a limited 

number of finite systems, closed form expressions representing the mobility have been 

estabilshed, such as by Snowdon (1968). However, in the general case of a finite system, 

the mobility is not obtainable in closed fonn. 

For the low frequency region the mobility may be estimated using a series solution 

approach (Cremer et al., 1988), or a finite element analysis (Hale and Meirovitch, 1980). 

But, to consider a moderate number of eigen-fanctions (modes) contributing to the 

dynamic behaviour of the system, the numerical work required is very time-consuming. 

Moreover, the fineness of the finite element mesh needed is related to the maximum 

frequency of interest, which in sound and vibration problems can be relatively high. 

Naturally, the physical size of the system under consideration also put a limit to this 

approach. 

Damping is the removal of energy from a vibratory system. The energy loss is either 

transmitted away from the system by some mechanism of radiation or dissipated within the 

system. Most measurements of damping are performed under conditions of cyclic or near 

cyclic oscillation. Usually, the decay of free oscillation is observed directly, or by 

measurements of steady-state forced vibration at (or in the vicinity of) resonance. In both 

cases the total energy removed in a cycle can be inferred, but the results are seldom precise 

enough to provide a detailed picture of how the instantaneous rate of energy removal 

fluctuates within a single cycle. Apart from the correct data input problems, the handling of 

amplitude and frequency dependent losses can be rather intricate (Crandall, 1970). Surveys 

and discussions of the different mechanisms governing the damping are found in the works 

of Crandall (1970), Unger (1973), Bert (1973), Nashif et al. (I 98ý) and Sun and Lu (1995). 

Another approach which has become increasingly attractive is the synthesis of 

experimental and numerical methods owing to the development of the Fast Fourier 
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Transform (FFT)-technique. The modal parameters were extracted from a few transfer 
function measurements and a complete mobility matrix was found numerically by Ewins 

(1980) and Goyder (1980). Unfortunately, it is found that such an approach is critically 
dependent on the measurement technique and the subsequent analysis of the results, and 

misleading conclusions can be reached (Ewins and Griffin, 1981). The discrepancies 

between measurement and analysis are due to localised errors (loss of stiffness at joints, 

etc), or to more general factors (such as incorrect values of elastic modulus or material 
density etc), or to the case that the location of the response points used in the modal test 

does not coincide exactly with any of the mesh of grid points used in the analytical model. 
In addition, the extraction of the modal parameters can be very cumbersome for heavily 

damped systems or for cases of high modal density with strong coupling (Looser, 1982). 

For the high frequency region of the non-resonant system, i. e., where the modal density of 

built-up structures is generally high, Skudrzyk (1980) and Cremer et al. (1988) discussed 

the validity that the mobility of the actual finite system can be approximated by the 

mobility of the corresponding infinite system. It was demonstrated for some structure 

configurations for which expressions giving the frequency for the onset of the infinite 

system behaviour were proposed by Goyder and White (1980a). Moreover, as frequency 

increases, the mobility is determined better by the dynamic characteristics of a small 

substructure surrounding the point under consideration. This means that the infinite system 

behaviour and thereby the mobility may be estimated for the structural element within the 

nearest discontinuities (Bishop and Mahalingam, 198 1). 

Consequently, the prediction of the mobility is most difficult in the mid-frequency range. 

However, if details of the vibrations are not of interest but rather the average dynamic 

behaviour of the system is under consideration, the mobility can be derived from that of the 

corresponding infinite system (Skudrzyk, 1980). 

The inadequate understanding of the numerous mechanisms governing the losses of a 

structural system, both with respect to the dissipation and to the coupling or radiation to 
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external systems, makes the prediction of the mobility more difficult. This in turn, is 

essential for the determination of the structure-borne noise and vibration power 

transmission. Thus, in general, such predictions still, to a great extent, must be based on 

experience and empirically acquired data. 

The problems in predicting the real part or mobility, i. e., that part associated with the 

power transmission, were discussed by Goyder and White (1980a, 1980b, 1980c) and 

Pinnington (1980). For the low and mid-frequency regions, the real part of the mobility of 

the finite system is normally, on the average, less than predicted on the assumption of an 

infinite behaviour, and is approximately equal to that value at high frequencies. 

2.2.3 Prediction Method for Propagation of Structure-Borne Noise in Ship 

The majority of prediction methods for structure-borne noise propagation are basically 

empirical and written in computer software programs which are easy and inexpensive to 

operate. This approach views previous ships as full-scale models for future similar ones, 

meanwhile trying to find rules for arranging experimental findings and for translating them 

into reliable predictions. The accuracy of these programs is satisfactory for standard ship 

designs. In principle, this approach comes down to asking what is the difference in 

acoustical effect between a new ship and ships that could be investigated. However, 

parameter studies and prediction for non-standard ship design cannot be accommodated 

using these methods. Among these, probably the most well-known is the method proposed 

by Janssen and Buiten (1973). Also further developments of this method, where more 

detailed data for the reductions in velocity levels per deck and per frame were taken into 

account by Buiten (1976) and Plunt (1980), are available. Common to all these empirical 

methods is the requirement that a velocity level for the foundation of the source is used as 

the input data. 

other prediction methods are, in general, based on the Statistical Energy Analysis (SEA) 

method (Lyon, 1975) or the so-called waveguide methods (Nilsson, 1978a). Such methods, 

which describe the propagation of structure-borne noise in a ship structure, have certain 
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limitations in the low frequency region, i. e., below the first few plate resonances (Nilsson, 

1980). The first resonance frequency can be fairly high for a plate element in the tanktop 

construction or in the engine foundation. This naturally causes uncertainties for the 

predicated noise levels in the octave bands with centre frequencies at and below 125 Hz. 

However, Nilsson (1976,1978b, 1981) has developed a method for extending the 

waveguide model for calculating the attenuation of structure-borne sound in the junction 

between a plate panel and a boundary stiffener in a ship structure. 

The SEA provides a means for high-frequency vibration prediction by estimating the 

equilibrium energies of a network of subsystems which are subjected to an assumed 

distribution of external sources of time-stationary vibrational power input. It offers a good 

tool to analyse and predict acoustic and vibration transmissions in coupled systems. From 

the practical point of view, the capital element for applying SEA is the determination of the 

coupling loss factors (CLF). Theoretical estimations of CLF has been obtained in simple 

cases from wave propagation in infinite coupled beams by Gibbs and Tattersall (1987). 

The SEA approach for analysing complicated structures with many resonant modes in 

every frequency band considered has been developed by Lyon (1975). It was applied firstly 

to predict a ship's noise level by Plunt (1980). Other studies by Sawley (1969), Jensen 

(1976), Kihlman and Plunt (1976), and Irie and Takagi (1978) also reported positive results 

from the use of the method on marine vessels. They use the transmitted structure-bome 

noise power, which is not directly measurable, as the quantity to describe the source 

strength. However, knowing the mobilities of the foundation and the machinery as well as 

the velocity level of the contact points of the freely suspended machinery, it is possible to 

calculate the input power. 

The waveguide method or the grillage method has been developed by Nilsson (1977, 

1978 a&b, 1980,1981) for the calculation of the attenuation of the structure-borne noise in 

a ship structure, which is modelled by a grillage consisting of the plates between two 

successive frames. The moments and rotation at the plate junctions are calculated. In this 

method the input power to the plates is given by the product of the moment and the angular 
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velocity. Accordingly, the primary quantity for the description of the source is the fore- 

and-aft directed moment, transmitted from the engine to the foundation. Direct 

measurements of these moments are very complicated to perform. Nilsson investigated 

various methods to decrease the noise levels in the accommodation spaces in 

superstructure by model tests. The attenuation of structure-borne sound in the propagation 

path between source and receiver is increased by means of damping layers, resilient 

mounts and changed boundary conditions between main deck and superstructure. Damping 

layers were found to have only a local effect. Resilient mounts between superstructure and 

main deck can reduce the noise levels in the superstructure by the order of 10 dB(A). 

More recently, Cabos and Jokat (1998) proposed a Noise Finite Element Method (Noise- 

FEM) to predict the propagation of structure-borne noise in complex structure by using the 

concept of "sound temperature" and "sound conductivities". The sound temperature is 

defined as the mean energy per mode of a subsystem that is capable of vibration. The 

sound temperature can determine the direction of sound energy flux. The sound 

conductivities rspresent the coefficients of energy flux in different directions of a 

subsystem considering the losses at discontinities and the changed coupling loss factors. 

To derive the conductivities relation, methods combining the acoustical waveguide model, 

the power flow finite element analysis and the SEA are used. Once the sound 

conductivities are determined, a power balance equation can be solved with the aid of the 

method of finite elements. The result is the sound temperature distribution and hence the 

energy distribution based on the given power fed into the system. Owing to the sound 

temperature just represents a mean energy per mode, thus when applying the Noise-FEM 

to analyse the structure-bome sound of a container ship ECOBOX 42, larger deviations of 

the noise level generally occur in the lower frequency range (below 160 Hz) compared 

with measurements. 

2.3 Summary of the Field of Previous Research 

A number of the methods for previous activities regarding the prediction and control of 

structure-borne noise induced by a onboard machine have been proposed. These research 
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works can be categorised as calculation methods about structure-borne sound propagation 

in the ship's structure, the methodologies for determining structure-borne sound 

transmission from engine to foundation, and the measures for reducing the structure-bome 

sound transmission. Comparisons of what each process does and how these methods have 

been applied are summarized in Table 2.1. The review clearly highlights the fact that there 

are very few validated models for predicting the propagation of structure-borne noise 

within the medium frequency range, i. e., from 125 Hz to I kHz, and thus served as the 

impetus for this research work reported herein. 
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Table 2.1 Comparsion of the methods for previous activities concerning the 
prediction and control of structure-borne noise 

Calculation of structure-borne sound propagation in the shiD struchirp. 
Calculation methods 

I. Empirical methods (Janssen and Butien, 
1973; Plunt, 1980; Buiten, 1976) 

2. Statistical energy analysis (Jensen, 1976; 
Sawley, 1969; Kihlman and Plunt, 1976; 
Irie and Takagi, 1978) 

3. Grillage method (Nilsson, 1977,1978b, 
1981) 

4. Noise Fininite Element Method(Cabos and 
Jokat, 1998) 

Description 
Statistical approach of previous ships as full-scale models to find the propagation 
rules of vibration velocity different of sound transmission through different parts 
of the hull for frequency range 32Hz-8kHz. Input data is the shaft speed, shaft 
power, main structure characteristics and the velocity levels of engine and foundation. 

High-frequency vibration prediction by estimating the equilibrium energies of a 
network of subsystems. Input data is the transmitted power ( velocity levels and 
effective mobility of foundation ) from sources. 

The calculation of the attenuation of the structure-bome noise power flow, 
represented by the velocity squared, in the vertical direction in a ship structure is 
determined by the propagation of flexural waves in the plate elements between 
two successive frames. Based on the prediction model it is found that the 
velocity level of a deck is a function of the input data at the source, wave 
numbers, masses, losses and dimensions of the plate elements in the structure. 
The input data is the transmitted moments ( angular velocity and moment 
mobility of foundation). 

Applied the concept of sound temperature and sound conductivities and 
combined the acoustical waveguide method, the power flow finite element 
method and the statistical energy analysis to calculate the structure-bome noise 
propagation in complex structures. The input data is the transimitted power fed 
into the structure system. 

Determination of structure-borne sound transmission from eneine to foundation 
Methods 

I. Petersson and Plunt's method (1981,1982a, 
1982b) 

Description 
Applied the effentive mobility concept to analyse structure-bome sound power 
transmission between coupled structures via multi-paths from a machine. Besides 
the full scale measurements of point and transfer mobilities on the feet of 
shipboard diesel engine and foundation, the source velocity is needed for 
transmitted power calculation. 

2. Verheij's method (1986) 

3. Koh's method (1992) 

Facilitate source and path identification by using the experimental method of 
reciprocal transfer function measurement. Linear structural system is assumed. 

The unifying concept of time-averaged vibrational power was used to examined 
the vibration transmission from a machine source to flexible beam and plate-like 
seating structures via the translational and rotational motions as well as the 
coupling between these motions. 

Reduction of structure-borne sound power transmission by changes in design of foundations 
Methods 

I. Empirical methods (Middleton, 1976; 
steenhoek, 1976; Besio and Loredan, 1993) 

2. Partly theoretical methods (Heckl, 1976; 
Petersson, 1983) 

Description 
Undertook model and /or full-scale experiments to measure the velocity levels at 
various foundations and the hull. 

Predicting the behaviour of elastic mounts at low frequencies (<100 Hz) fairly 
well provided the stiffness of the mount and the impedances of structures on both 
sides of the mount were known. For higher frequencies (>50OHz) elastic mounts 
must be considered as wave-guides having higher order resonances. The first 
higher order resonance dependends mainly on the mass of resilient element. At 
medium frequencies (100-50OHz) the sound transmission through air cavity 
beneath the engine can be more important than that through a good resilient 
mount. 
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CHAPTER 3 

THEORY OF MOBILITY 

AND 

POWER FLOW TRANSMISSION 

The mobility of a structure is the ratio between velocity and force for simple harmonic 

vibration in the range of linear behaviour. The term point mobility is used where velocity 

and force are at the same position and in the same direction. The term transfer mobility is 

used when velocity and force are at different positions and/or in different directions. 

Fi 
mechanical system ---<) 2 

Figure 3.1 Input and output of a mechanical system 

Assumed that a mechanical system as shown in Figure 3.1, with instantaneous forces F, 

and F2 applied at the input and output respectively resulting in corresponding 

.VI instantaneous velocities V, and V2. The ratio -=M is the point mobility at I and 
F, 

V2 
=M 2, 

'S the transfer mobility at 2 induced by force acting at 1. For linear system the 
F, 

transfer mobilities 
M2, andM, 2 are reciprocal, i. e. M2, = M12 The velocity vector 

' is related to the force vector 
F, 

by the ftill mobility matrix, i. e. 
V2 F2 
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iv, mi 
1 

V2 

1 [M 

21 

M12 If F, 
M221 [F2 (3.1) 

In this Chapter consideration is given to developing the theory of mobility prediction and 

power flow transmission. 

3.1 Mobility of Single Degree of Freedom (SDOF) Vibration Model 

Ix 

Figure 3.2 Single degree of freedom spring-mass-hysteresis damping system 

Consider a single degree of freedom spring-mass-hysteresis damping system, as shown 

in Figure 3.2, with mass, damping and stiffness coeffcients denoted by m, h, and k, 

respectively. If the system is subjected to a harmonic exciting force, i. e., F(t) = F,, e j(I)t I 

then the equation of motion for the response x(t) can be expressed as 

.. 
h 

mx + -k + kx = F(t) (3.2) 
(0 

Thus for the harmonic excitation, where i= jcox, equation (3.2) becomes 

rn, ý + k(l + jq)x = Foeicot (3.3) 

where q=h is called the structural damping loss factor. The quantity k(l + jq) is called 
k 

the complex stiffness. 
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The mobility of the system is 

M(co) =' 
Lt) 

= jcoR(co) = 
jo) jw 

F(t) [(k _ 0)2 m) + jilk] nl[(0)2 _(02)+j1,0) n 

(3.4) 

where 

R((o) = 
X(t) 

-1 F(t) [(k _ (02M) + jilk] 

CO 
nk 

271 fn 

m 

: receptance 

: natural frequency 

The mobility of such a damped system is always a complex quantity and is frequency 

dependent. Evidently, the mobility is influenced by the system parameters, namely mass, 

damping and stifffiess. If the damping ratio is small then the mobility has the following 

characteristics: 

1. As (J) >> (L) 
ný 

M(co) ý -- 
i 

(3.5) 
mco 

In this situation, the mobility is said to be mass dependent only. 

2. As (J) = (J) 
n9 

1 (3.6) 

71 

At resonance, the mobility is said to be damping dependent only. 

As (J) << (j) 
n9 

M(c»-- j(0 (3.7) 

In this case, the mobility is stiffness dependent only. 
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Taking logarithms and absolute values on both sides of equations (3.5) to (3.7), the 

following relations is obtained: 

logim(CO)i = log =- log(m) - log(CO), for co >> (j) (3.8) WM n 

logjm((O)j = log for (o = O)n (3.9) 

log 
k 

log(w) - log(k), for (i) << o) n 
(3.10) , 0) 

Equations (3.8) to (3.10) show that providing M(co) and co expressed in logarithmic 

coordinates, they have linear relations in the very high and very low frequency ranges as 

shown in Figure3.3. 

70 
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1.0 10.0 100.0 1000.0 

Frequency co (rad/s) 

Figure 3.3 Characteristics of mobility spectrum for a. SDOF system 

These correspond to "mass-like" and "spring-like" behaviour as would be expected. 

Figure 3.3 represents the mobility spectrum of a SDOF system with m=8,096 kg, il=62,000 
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Ns/m, k= 12,000,000 N/m and (on =38.5 rad/s. 

In Figure 3.3, it is seen firstly that the magnitude of mobility spectrum curve approaches a 

straight line with slope equaling +20 dB/decade in the lower frequency region. The 

intersection distance OA along the ordinate axis is, 

OA = logIM(o))Il. 
g(,, )=o - -log(k) 

or 

I k(collog(m)l 

Secondly, in the mobility spectrum curve has a peak value OC at resonance, that is, 

OC = 1091M(Con)l = log( 
1) 

,q 

or 

11 = ým(w")j-, 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

Finally, the mobility spectrum curve approaches another straight line with slope equaling 

-20 dB/decade in the higher frequency region. The intersection distance OB along the 

ordinate axis is 

OB = logl M (c» 1 
log(0»=o =- log(m) (3.15) 

or 
ýM(O))Ilog(co)=Oll 

(3.16) 

Equations (3.11), (3.13) and (3.15) constitute the bases for the data checking methods of 

the mobi ity measurements. 
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C 

I'spring" 
+20dB/decade 

"resonance" 

(a) Excited on mass (rigid foundation) 

ll:: ý 

"anti-resonance" 

(b) Excited on spring 

Figure 3.4 Mobility of general SDOF system 

For generality, the mobility curve of SDOF spring-mass-dashpot system can be shown as 

Figure 3.4. Figure 3.4(a) represents the driving point mobility f6r excitation on the mass. 

The height of the maximum in the mobility curve is determined by the damping. The lower 

the damping, the higher the IMIM. 
X. 

For f >> L the curve shows "mass-behaviour", i. e., 

------------------------------ 

imi 

"mass" 
-20dB/decade 

ltspring" 
+20dB/decade 
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IMI ;:: ý l/ (o m (slope -20dB/decade) and for f << f,, the curve shows "spring-behaviour", i. e., 
MI 

max ;:: ý (o /k (Slope +20dB/decade). The mobilities in the ranges of "spring-behaviour" 

and "mass-behaviour" are symmetrical about the axis f=f,, with equal magnitude but 
opposite s opes. 

Figure 3.4 (b) shows the driving point mobility for excitation on the lower side of the 

spring. There is now an "anti-resonance" at f,,, giving a minimum mobility. Now the mass- 

behaviour is seen for f<<f,,. For the " tuning" frequency such a spring-mass system may 

apply a high dynamical load using a relatively small mass. This set-up can be used for 

vibration suppression, especially on resonant structures. 

3.2 Mobility of Two Degrees of Freedom (TDOF) Vibration Model 

A two degrees of freedom vibration system, as shown in Figure 3.5, is represented by two 

discrete lumped mass mi andM2 and linked by two pairs of massless spring and hysteresis 

damper in series. The spring constants are k, and k2 and structural damping loss 

coefficients are h, and h2respectively. 

When the exciting forces F1 and F2 are applied at mass I and mass 2 respectively, then 

the equations of motion for mass I and 2 are: 

[m] {k) +1 [h] {kl + [k] {xj = 0) 
(3.17) 

where [m], [h] and [k] are the 2x2 mass, damping and stiffness matrices, respectively. 

j: R 1, ( Yc } and {x I are the acceleration, velocity and displacement vector, respectively. 

f F(t) I is the exciting force vector. Their expanded fonns are: 

[m] 
[M 

11 M12 
- 

[h] = 
hl, h12 

[k] = 
k1l k12 

9 
M21 M22 

- 

[h2l 

h221 

I 

k2l k221 
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{: ki = 
ki 

9M= 
ki 

9 {XI = xi 
1: 

k2 

1 ik2 1 1X2 1 

and 

{FI = 
IFI 1 

I 

KI 

2 

X2 

Figure 3.5 Gemeral two degrees of freedom system 

For discrete lumped mass system, 

Mil =M 19 M12 =M 21 =0 
.1 

M22 =M2* 

By equilibrium relations, hij and kij are found to be: 

h1l =h, h12 = h2l = -hl 
h22 = h, + h2 

and 

k1l = k, 5 kl2= k2l = -kl 
k22 

= k, + k2 

The expanded form of equation (3.18) is 

MII M12 : kl 
+ 

hl, h12 XI 
+ 

kl, k12 xll=IFI(t)1 
[M21 

M2211: k21 

[h2, 

h2211X21 

[k2, 

k2211X2 F2 (t) 

5 

(3.18) 
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When harmonic forcing functions are applied, i. e., 

Fi (t) = fFiej", i= 1ý2. 
(3.19) 

then the vibration displacements can be represented as 

xi Xiej(ot, i= 152. (3.20) 

in which X15 X2 are called complex response amplitudes. Substituting equation (3.19), 

(3.20) into (3.18), and defining the dynamic stifffiess functions Sij(co)of the system as 

Sij (0) = -0) 
2 
mij + jhij + kij 9 ij = 192 (3.21) 

then, equation (3.16) becomes 

Sij(co)Xj = Fi i, j = 1,2 (3.22) 

The response amplitudes can be solved from equation (3.22) as 

XjS 
ý--j 

Fi ij = 1,2. (3.23) 

or 

S22(0»F, 
_S12(C0)F2 (3.24a) 

SI 
1 

(0»S22 «0) 
- 

S12 (0»s21 (0» 

X2(0» = -S2l(o»FI + S, , (o»F2 (3.24b) 
SI 

1 
(0»S22 (0» - 

S, 
2 

(0»s2, (0» 

The vibration velocity vector is 

AA 

=V 

j(l)t 

Vi = ki (t) j (oXi ej" je 
i= 1ý2. (3.25) 

where 

S22(C0)FI 
_S12«0)F2 (3.26a) vl (w) = jcoxl = j(o - Sll (0»S22(0» 
- 

S12(0»S21 (4 

-S2l(o»FI + S, , «»)F2 (3.26b) V2(0» : -"- jo)X2 
s 

11 
(C0)S 

22 
(0» 

-S 12 
(C0)S 

21 
(0» 
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Then the mobility matrix of a TDOF system is related by: 

V, 

= 

Mll M12] [ F, 
V2 M21 M22 F2 (3.27) 

where the mobility functions Mij (i=1,2 and j=1,2) can be expressed in terms of the 

dynamic stifffiess functions: 

Mil =si 
(OS 22 

(0» 

(3.28a) 
11 

(0»S22 (0» 
- 

S12 (0»S21 (0» 

M12 =- 

je)S12 (0» 

(3.28b) 
SI 

1 
«0)S22 (0» 

- 
S12 «0)S21 (Co) 

M21 =- 

j(OSM (0» 
(3.28c) 

S 
11 

(0»S 
22 

(0» 
-S 12 

«0)S 
21 

«0) 

M22 
= 

j(osil(0» (3.28d) 
S 

11 
(0»S 

22 
(0» 

-S 12 
(0»S 

21 
(0» 

Expanding equation (3.27) and rearranging gives: 

v, 
= 

I 
(Xii (X12] V2 

(3.29) 
F, ()C21 ()C22 F2 

where a... are the four-pole parameters and can be expressed in terms of mobility 

fumctions as: 

(X = 

Mil 

9 
(X 12 = 

M12M21 
- 

MI1M22 

9 
(X 21 =19 (X 22 = - 

M22 

(3.30) 
11 M12 M21 M12 

- 
M12 
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For the linear system with proportional damping, there exists the symmetry properties for 

mij, hij and kij, therefore, the dynamic stifffiess Sij and the transfer mobility Mij are also 

symmetncal. 

3.3 Mobility of Multidegrees of Freedom (MDOF) Vibration Model 

Consider an N degrees of freedom system with structural or hysteresis damping. The 

equation of motion can be expressed as: 

IM 
ij 

I 
NXN 

tk INXI 
+ j[hij] NXN 

f)ý INXI 
+ [kij INXN IXINXI 

= 
fFINXI (3.31) 

where the mass matrix [mij], the damping matrix [hij] and the stifffiess matrix [kij] are 

NxN matrices. 

When the exciting force vector {Fj equals zero, equation (3.31) becomes the equation of 

motion for the free vibration of a linear dynamic system. There exists the mass normalized 

modal matrix [(D], in which the rth damped eigenvalue is 

x2 = (0 2 (3.32) 
rr 

(1 + jllr) 

where 

(or: the undamped natural frequency of the rth mode; 

11r : the structural damping loss factor of the rth mode. 

For a linear dynamic system, the mass normalized modal matrix [(D] possesses the 

following orthorgonality properties, 

[(D]T [m] [(D] = 
[1] 

= 
[**- M, = l... 

] 

[kij ] [(D] ( : 02... 

[(D]T [hij ] [(I)] 

The response JX) can be expressed as a linear combination of modal shapes, i. e., 

(3.33a) 

(3.33b) 

(3.33c) 
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=[(D] {Y) (3.34) 

where {Y) is called modal displacement vector. Substitute equation (3.34) into equation 

(3.3 1) then multiply both sides by [(D]T , equation (3.3 1) becomes: 

[(D] T [mij ][(D] {Yý + j[(D] T [hij ][(D] {YI + [(D]T [kij ] [(D] lyl = [(D]T {FI (3.35) 

By utilizing the orthogonality relations, equation (3.35) can be simplified and decoupled as: 

* 11r (0 r2*.. 
ýyl+ 

q1 

[* -. 0) 2... ý= [(D ]T tF1 = 
[Fe YI 

fyl+i[** 

r (3.36) 

If there is a single force Fj applied at the jth degree of freedom, then the external modal 

force is 

(Dil (1)21 (1) jI 
(D 12 (1)22 (Dj2 

{F, 
q (Dlr (I) 2r ... (I) jr 

L(DIN (D2N *" (DjN 

(DNI 0 ýj, Fj 
(DN2 0 ýj2Fj 

(DNr Fj ýjrFj 

(DNN_ 0, jNFj 

The solution of the rth modal displacement in equation (3.36) is obtained as: 

Yr = 
(DjrFj 

(0) 2_ 
(0 0)2) + illr 

r 

where o) is the excitation frequency of the external force Fj. 

By equation (3.34) the displacement of the ith degree of freedom is: 

Xi --": (Dilyl + (Di2y2 +----+(Diryr + ----(DiNYN 

(3.37) 

(3.38) 

(3.39) 

Substituting equation (3.38) into equation (3.39), the receptance coefficient can be 

expressed as: 

N Aijr 
Rij( 

xi 

222 Fj r=I 0)r Co + jllr(Or 

where 

Aij-r= (Dir (Dir the modal constant. 

(3.40) 
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Therefore the mobility coefficient can then be written as: 

jcoAijr (CO) =L2 
2) + jllrü)2 (3.41) 

r=I (O)r -Co r 

From equation (3.41), it is seen that the mobility coefficient of an N degrees of freedom 

system can be expressed as the sum of the N modal mobilities. 

In reality, a mechanical structure system has an infinite number of degrees of freedom. It 

can be approximated by aN degrees of freedom system, with approximations being made 

to the higher modes. For the mobility of the real system, a residual term C+jD has to be 

added to equation (3.41), 

jcoAijr Mii «0) =Z 
(0)2 

_ ü)2) 
+ (C + jD) (3.42) 

r=I r+ 
illro)r 

3.4 Mobility of Infinite Beam and Plate Model 

Not only for beams, but also for structures like plates, cylinders, etc., the asyrmptotic 

approximation obtained by averaging over frequency is nearly equal to the mobility of the 

corresponding infinitely extended system, as shown by Skudrzyd (1980) and Cremer et al. 

(1988). Such infinite system mobilities are often applied in machinery acoustics 

calculations. The reason is that, for many problems a detailed frequency analysis is not 

relevant. Often the noise spectrum is broadband and/or varying with rotation speed. If such 

an excitation generates structural responses in the frequency range far above the lowest 

eigenfrequency, a change of structural design parameters would affect many relevant 

eigenfrequencies simultaneously. Averaging over frequency bands is then profitable in 

analysis procedures. 
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The driving point mobilities for infinite beams and plates are respectively given by Cremer 

et al. (1988): 

Mboo = 
0.1 g(1 - j) 

(3.43) 
c hf PbSý Lb 

mpoo 
= 

0.125 
ý 

0.453 
2 ;: Zý 

5.41 
(3.44) -ýBým" 

PpCLph co p Pk2Bh 

where m" : mass per unit area; B' : bending stiffness per unit width; pb : density of 

beam; p, : density of plate material; CLpýCU : longitudinal wave speed in plate and beam 

respectively; h: thickness of plate/beam; XB: bending wavelength. 

Figure 3.6 shows the frequency behaviour of 20 log IMI for a mass, a spring, an infinite 

beam and an infinite plate. Note that, for IMIP. to be approximately valid not only 

averaging over frequencies is required, but also the driving point has to be at least a 

distance of X B/2 away from plate boundaries. 

bi) 

10 

spring( oc (o 

plate 

% 
b oear earn( oc 

-io- -mass( oc co 

100 

f (Hz) 
1000 

Figure 3.6 Mobility from idealized structural elements and infinite beam and plate 
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3.5 Mobility of Multipole Coupling System 

Structure-borne noise excitation caused by mechanical coupling between an engine and a 
hull structure via a resilient mount can be represented as shown in Figure 3.7. By assuming 

that it can be simplified to aI -direction coupling then it may be modelled as an isolator 

suspension system. 

Point to be 
connected to 
mount 

(c) 

(a) 

Engine 
FE 

VE V 0A 

FA 'VA E 
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resilient hE 
mount 
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B 
F 

2 

S 
FB'VBFHUII 

[7,1,1ZZ11IZZ, 
VS 

1 

(b) 

F, 

ME 

T 
V, Mo h 

2 M, T 
F2 V2 

(d) 
FS 

loint I le 
connected to 
mount 

Seat 
vs 

(e) 

Figure 3.7 Modelling the engine-mount-hull coupling as aI -D isolator suspension system 

The dynamic behaviour of this coupled system can be expressed in terms of frequency 

response characteristics. If the responses are defined as velocitips VA 
ý 

VB 
. the frequency 

response function will take the form of the mobility (or impedance) relationships. Thus, 

similar to equation (3.27), it is written as 

45 

FE VE 



VA [MAA 

VB MBA 

MAB] FA FA ZAA 

MBB FB or F B 

= 

[ 

ZBA 

ZAB ] VA 

Z13B VB (3.45) 

where the mobility matrix M= 
[MAA MABI 

is the inverse of the impedance matrix LMBA MBB I 

ZAA ZAB IZBA 

ZBB-- 

IM] 
= [ZY, (3.46) 

From equation (3.46), the driving point impedance Z AAý the receiving point impedance 
ZBB and the transfer impedance Z AB or Z 

BA can be expressed as, 

ZAA -- 

MBB 

(3.47a) MAAMBB 
- 

MABMBA 

ZBB -- 

MAA 

(3.47b) MAAMBB 
- 

MABMBA 

ZAB = ZBA = -- 

MAB 

(3.47c) 
MAAMBB 

-MABMBA 

where 

MAA = 

VA 
MBB = 

VB 
MAB 

_ 

VA 
MBA 

_ 

VB 

(3.48) 
FFFF ABBA 

FA, FB and VA, VBare the forces and velocities at the engine side and seating side of the 

equivalent resilient mount respectively. M AA ý 
MBB are the point mobilities andMAB 5 

MBA are the transfer mobilities of the engine-mount-hull coupled suspension system. 

According to the relations in (3.48) all of these mobility spectra can be measured by 

accelometer transducers mounted on point A and B with an exciting force, such as an 

impulse, applied at point A and B. 
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Through the relations of velocity consistency and force equilbrium at the junctions, the 

mobility functions M AAý 
MBBý MAB5 MBA 

can be analyzed and combined from the 

individual mobility characteristics of the separate subsystems, such as engine, resilient 

mount and seating structure, as shown in Figure 3.7 (c) (d) (e). 

Considering the individual hoisted engine system shown in Figure 3.7 (c), if FEandVEare 

respectively the exciting force and velocity response at the site on the engine bed which is 

connected to the mount, then the relation between FE and VE isý 

VE =MEFE (3.49) 

The point mobility M Eof the engine can be expressed as, 

ME =-- 
0)2 

j (0 (3.50) 
[(kE ME)+ jhEl 

where rn El kE and hE are the effective mass, stifffiess and damping coefficients of the 

engine respectively, at the point to be linked to the mounts. 

For the individual resilient mount subsystem shown in Figure 3.7 (d), this can constitute a 

two degrees of freedom system and the relation of equation (3.27) holds as well. Equations 

(3.28a) to (3.28d) can be utilized to attain the mobility functions of such a separate resilient 

mount. While in this case the added effective masses of the engine and the seating structure 

at the junction points have to be considered. That is: 

mii ý-- 
i 0) S22 (0» 

(3.5 1 a) S 
11 

(0»S'22 (Co) 
-S 12 

(C0)S'21 (0» 

M12 -- 
-je)S12(C0) (3.5 1 b) 

Si 
1 

(0»Sf22 (0» 
- 

S12 (C0)S'21 (Co) 
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S'21 (0» 
21 S, 

11 
(0»S22 «0) -S 12 

(0»S'21 (0» 

jo)st, , «0) M22 =- 1 
Si 

1 
(0»S2 

1 22 
(Ct» - S12 (0»S121 (0» 

where 

Sp = _(02 (M 
ij li + ME) + jhlj + klj 

Si2 ý -0) 
2(M 

i2+ms)+jhi2+ 
ki2 

(3.5 1 

(3.5 1 d) 

j= 12 (3.52a) 

i=Iý2 (3.52b) 

By a similar consideration, the separate individual seating structure, as Figure 3.7 (e), has 

the relation: 

Vs = MsFs (3.53) 

and the point mobility function of the seating structure will be: 

ms =2j (0 (3.54) 
[(ks - (i) ms) + icohs i 

By connecting the engine, mount, and seat structure together in series, equation (3.27) 

holds. Considering the relations of force equilibrium and velocity compatibility at the 

junction point A between the engine and the mount: 

VE = VI = VA 

FA 
- 

VA 

MAA 

it yields the relation 

VE 
+ _Vl 

ME Mll 

MAA 
MEMIl 

ME + Mll 

Similarly, by the relations at the junction point B between the mount and the seat : 

(3.55) 

(3.56) 

(3.57) 
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VS :- V2 ý- VB 
(3.58) 

FB - 

VB 

= 

VS 
+ 

V2 

(3.59) MBB MS M22 

one has 

MBB = -MSM22 (3.60) MS+M 
22 

Then, the transfer mobilities MAB and MBA are found, by equations (3-51b) and (3.51c), 

to be 

MAB =- 
-jo)S12(0» 

(3.61 a) S 
11 

(C0)SP22 (0» 
- SI 

2 
(C0)S'21 (CO) 

- 
jcos, 

, 
«0) 

MBA =2 (3.6 1 b) S 
11 

(0»S'22 (0» 
- Si 

2 
(C0)S'21 (0» 

The comparison of the results calculated from equations (3.57), (3.60), (3.61a) and (3.61b) 

with those by measurements following the relations of equation (3.48) will be carried out to 

check the validity of the current model. 

3.6 Vibrational Power Input to a Receiving Structure from Engine 

The instantaneous vibration power input (Pi,,, t) to a structure is defined as the product of 

the excitation force (F) and the associated velocity (V). For a hannonic excitation 

IFI sin cot applying at a point on a structure of mobility, M= IMI ejý, it causes a velocity 

IVI sin (o)t + ý) at that point, where 0 is the phase angle between the driving excitation 

force and the associated velocity. The instantaneous vibration power input will be: 

(Pinst) =FV*= IFI IVIsinco t sin ((ot + ý) 

where V* is the conjugate of complex velocity V. 

(3.62) 
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In general, it is of greater interest to know the time averaged power input (P). It is 

calculated by integrating equation (3.62) over one period of vibration to yield: 

=IT IFI I VI sin (ot sin ((ot + ý)dt = -1jFjjVjcosý 
(P) -f T02 (3.63) 

The averaged power input is related to the phase angle ý. If ý =-7ý i. e., undamped, then 2 

the averaged power (P)=O. 

At any point on a structure, the velocity and force is related via frequency response 

mobility (or impedance) functions, so that equation (3.63) may be rewritten in the 

following fonns: 

(P) =I IF 12 Re[M] (3.64) 2 

or 

(P) =I 
IV12 Re[Z] (3.65) 

2 

where Re[ M] and Re[ Z] are the real part of the point mobility function and the point 

impedance at the excitation site, respectively. The choice of which equation to apply in a 

practical situation is controlled by the nature of the vibration source and the ability to 

measure either the force or velocity. In many cases, equation (3.65) can be applied if a 

machine is unaffected by the method of attachment, such that it behaves on site as if it were 

freely suspended. For a machine mounted on an isolation system, this condition is usually 

fulfilled velocity source. 

The above equations are applicable only to a harmonically varying point force. In general, 

machinery is supported at a number of sites and each site will have some contact area over 

which both direct forces and moments may be transmitted. This will lead to a very 
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complicated set of inter-related expressions for the total input power. Suppose that there 

are N coordinates involved in the coupling of the machine to the sub-structure, then it will 

be necessary to define an N xN matrix of mobility functions. Equations (3.64) and (3.65) 

are rewritten in matrix forin as: 

(P) -= 
1 

{FýT Re[M] {Fý (3.66) 
2 

or 

(P) =1 {VIT Re[Z] {Vj (3.67) 
2 

Prediction, or measurement, of (P) value via these full matrix relationships can be 

extremely difficult. This is particularly true in situations where moment excitations 

represent a major source of the resultant vibrational power. 

From expressions (3.66) and (3.67), it is clear that the power injected into a structure by the 

machine is dictated by the excitation force or velocity exerted by a machine and the 

mobility or impedance characteristics of the supporting structure. The characterization of 

an engine as a" velocity source" will now be considered. 

There are many techniques available for modelling engineering structures in order to 

predict the mobility frequency response functions. These include finite element analysis, 

expenmental modal analysis and analytical techniques based upon the use of infinite 

structures. Finite element analysis and experimental modal analysis are limited in their 

application to frequencies whose behaviour can be described as "moda". For a finite 

element model, this implies that the use of many degrees of freedom may lead to 

difficulties and can be a serious concern. It has been shown (Pinnington, 1980) that 

relatively simple models of "patches" around mounting sites can be used to predict the 
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higher frequency performance of a seating structure. The introduction of realistic damping 

( which is essential if one is seeking to estimate the mathematically real component of the 

mobility function) into the preliminary modelling phase of a finite element idealization also 

poses a problem in many instances. However, it is possible to introduce a form of modal 

damping, extracted from experimental observations, into the calculations of frequency 

domain data based upon a finite element model. 

In practical measurements by utilizing a FFT analyser, the power can be found by using the 

force spectrum density function Gff , or the vibration velocity spectrum density function 

Gv, or the cross power spectrum density function Gfv , which can be expressed as: 

P((o) = Gff Re[M] = Re[Gf, ]=G, Re[Z] (3.68) 

The driving point impedance matrix, the receiving point impedance matrix and the transfer 

impedance matrix for well-installed system can be obtained in the same way as equations 

(3.47a) to (3.47c), i. e., 

lZinput I ý-- IZAA I= 

lZoutput I IZBB I 

IMBB I 

IMAA]IMBBI -IMAB]IMBA] 

IMAAI 

IMAA IIMBBI 
- 

IMABIIMBA I 

[Z 
transniitl = [Z 

BAI -= [Z 
AB]= 

-IMABI 

IMAJIMBB I- IMABIIMBA I 

(3.69a) 

(3.69b) 

(3.69c) 

Substituing [Zj,, 
pj, 

[Z,,, tPj and 1ZtmnsrrJinto equation (3.68), the input power, output 

power and transmitted power can be calculated respectively, i. e., 

(pinput)= GAARe[Zinput] (3.70a) 

(Poutput) = G,,,, Re[Z.,, tput] 
(3.70b) 
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(ptransmi)=G 
VA VA Re[Ztransmit] (3.70c) 

Thus the general methodlogy for obtaining the power fed into a receiving structure from 

the excitation sources of a engine via the contact points is derived. More details concerning 

the transfer mobility reduction of the structure-borne sound transmitted from a marine 

engine will be discussed later. 

3.7 Logic of Structure-Borne Sound Reduction 

The low noise design problem for a simple engine room onboard a vessel is schematically 

shown in Figure 3.8. The primary noise generating mechanism is the main engine that 

injects vibrations into the structure via the mounts and foundations. These vibrations will 

be transmitted throughout the structure and eventually radiate sound to the surroundings. 

Primary Transfer 
path 

Radiating 
surface 

I 
source 

Engine room 

Transfer via mounts 

Radiated sound 
in compartment 

engine 
vibration 

Bottom plate vibration 

Figure 3.8 Schematic of machinery noise analysis for low noise design 

To simulate the vibration reduction behaviour of the resilient mounts of a machine, a 

model can be established by utilizing simple input/output transfer mechanisms, which may 

be represented in terms of mobility functions. Figure 3.9 shows the analysis models which 
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can be used to model the structure-borne sound transfer between the primary source and 

the radiating surface. For a uni-directional simple harmonic excitation force F, the engine 

structure vibrates with a simple harmonic velocity V, at the driving point. Structural 

waves propagate from the excitation point to the adjacent bottom plate, where bending 

waves generate a velocity field V2(x, y). This vibration field radiates a sound field 

p (X, Y, Z). 
Engine room 

Mobility: Mii= V1 
F, 

IF, 

VI 

Prad or p(x, y, z) 

V2(X, Y) 

(a) Linear model 
Area S 

Fi( [ HtF 

V, total transfer P(Xýy9zlf) 
IH4, tv 

(b)Energetic model "force excitation" 
2 

F, m2 
21 2 V2 

mean square 
transfer mobility 

(c)Energetic model "velocity excitation" 
VI 2 

Htv 

velocity transfer 
function 

PCs a 

radiation 

PCs cy 
V2 21 

radiation 

Prad 

Prad 

Figure 3.9 Schematic for the analysis of structure-borne, noise transfer 

The linear equations which relate the radiated sound pressure with the force and the 

velocity at the driving point are (Verheij, 1995): 

p(x, y, z, f) = HFF, (f) 

p(x, y, z, f) = H, v V, (f) (3.72) 

here H tFand 
Htv are so-called frequency response functions, describing the sound 
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transfer for force and velocity excitation respectively. Basically, these frequency response 
functions have a complex value at each frequency, indicating the magnitude and the phase 

of the vibration. 

The force and velocity at the diving point are related as 

mi 
1= 

vi 

(3.73) 

here Mi 1 is called driving point mobility. It is a measure of the vibration velocity for a 

given force F,. 

In many practical situations instead of linear equations, equations in terms of mean square 

quantities or so-called " energetic " quantities are used. In principle, these formulations are 

exact, if derived directly -from equations (3.7 1) and (3.72). However, for practical purposes, 

approximations of transfer functions are used. Those functions relate e. g. 1/3-octave band 

levels of F, ' and V, ' with the radiated sound power Prad (Verheij, 1995). In the scheme of 

Figures 3.9(b) and 3.9(c), the " energetic " models are presented. The transmission chain is 

divided into two blocks. The first block represents the structure and gives the ratio between 

the spatially averaged mean square velocity V, ' of the bottom surface and F, ' or V,: 

22 
m2 

Vý 
H2 

Vý 

21 -F, 2 tV V12 
(3.74) 

The function M2 is called the mean square transfer mobility and the function H2 is 
21 tv 

called the velocity transfer function. 

The second block represents the sound radiation and gives the ratio between the radiated 

2 

sound power and Vý 
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p 

_ýal = pCS(T v2 (3.75) 

The right side of equation (3.75) contains the characteristic impedance pc of the 

surrounding fluid (air, water, etc), the area S of the radiating surface, and the radiation 

efficiency a. a is a measure of the efficiency with which a structure converts vibrations 

into sound. 

The factors which determine the sound transfer is influenced by design as seen in Figure 

3.9 and from the following equations: 

PLad 
- (M 2= (M2 

IH 
2 SCY)PC (3.76) 2 21SCY)PC I tv FI 

Prad 

= (H 2 S(T)PC (3.77) 
v2 tv 

If the nature of the excitation is such that for different engine design F, is unaffected, 

equation (3.76) implies that sound reduction is obtained by: 

(a) decrease of driving point mobility; 

(b) reduction of radiating surface area; 

(c) decrease of velocity transfer function; 

decrease of radiation efficiency. 

If the nature of the excitation is such that for different engine designs V, is unaffected, 

equation (3.77) implies that sound reduction is obtained by: 

(a) reduction of radiating surface area; 

decrease of velocity transfer function; 

(c) decrease of radiation efficiency. 
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A design measures to decrease S significantly, have very limited applications. However 

measures to decrease M 11 and are H2 are very important and will be tv discussed extensively 

in this study. 

3.8 Velocity Transfer Function and Transfer Mobility 

The velocity transfer function H' 
, 

defined in equation (3.74), depends strongly on the size tv 

and nature of the structure. For noise reduction purposes, the main interest is in the 

eigenfrequency range. Here again the discussion will be limited to the elementary case of a 

finite plate. In principle, H' can be calculated with the aid of an eigenfunction model by tv 

the finite element method. Again it can be said that, if in the intermediate frequency range 

(from 100 Hz to I kHz) of interest a large number of eigenfrequencies is involved, the 

calculations become time consuming. Moreover, from the view point of the designer it is 

important to look at some smoothed data and to understand the relation between the design 

parameters and these data. 

To derive a simple expression for H' on a plate, the following assumptions are made: tv 

(a) the plate length and width are large compared with X,,, ; 

(b) many weakly damped resonances occur simultaneouly; 

(c) results are for frequency bands that contain at least 3-5 eigenfrequencies. 

In that case the velocity distribution over the plate is approximately homogeneous (so 

called diffuse field). 

At equilibrium, the power injected into the plate is equal to the power dissipated by the 

plate. 
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(Pin)'--(Pdiss) 
(3.78) 

From equations (3-62) and (3.63), the power injected by a point source into the plate at a 

single frequency is given by: 

(pin) Re IF, Vl*) = F12 

,,, n, 
Re {M, II= 

V12 
2 , n,, 

Re I 
Mil 

(3.79) 

where Fl,,,,, is the root-mean-square of Fl. For averaging over frequencies, MI, may be 

replaced by MpOO . Using equations (3-44) and (3.79) this leads to : 

0.453F, 2, 
ý, f (pi'l 

-c, 2 
Pp Lph 

2.2ppCLph 2V2 
I, Af (3.80) 

whereCLP is the longitudinal wave speed of the plate; h is the thickness of the plate; pp is 

V2 - the density of the plate; 
,, ý, f is the driving point velocity within the frequency band Af 

The power dissipation from the plate is caused by material damping, by energy transport 

across the plate boundaries into the support, and by sound radiation from the plate. The 

well known parameter which includes all these damping mechanisms is the (apparent) loss 

factor il . For each frequency or frequency band it was defined by Verheij (1995) as: 

P 
liss 

(t)M"SV2 

energy dissipation per vibration period 
27c(reversible) mechancial energy 

(3.81) 

where m" is the mass per unit area of the plate. In equation (3.81) it is assumed that the 

total mechanical energy (i. e. the sum of kinetic and potential energy) is twice the kinetic 

energy, i. e. 

"s 2 (3.82) E=m Vý 

Therefore, the dissipated power may be wntten as: 
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P= 

llo)M"S , diss Vý (3.83) 

Using equations (3.78), (3.80) and (3-83), the second equation of (3.74) becomes 

H' (f) = 
0.35CLph 

tv fsq(f ) (3.84) 

Fi ure 3.10 shows the effect on H2 of different loss factor. It is seen that at low 9 tv 

frequencies H' >>l. The frequency at which H2 =1 decreases with increasing il and tv tv 

decreasing plate thickness. 

The square transfer mobility M2 defined by the first equation of (3.74), in the 215 

eigenfrequency range follows from equations (3.78), (3.79), (3.83) and putting 

ReIMII}=Mp,,: 

v2m2.85 
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Figure3.10 Velocity transfer function of a steel plate (480mmx340mmx5mm) of 
different loss factor 
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Comparing equation (3.84) and (3.85) reveals that the influence of damping upon H' and tv 
m2 is the same, but the influence of plate thickness variation is quite different. Therefore) 21 

it is of vital importance for a designer to distinguish the source (or component) type which 

drives the structure and to determine either equation (3.76) or equation (3.77) to apply. 

3.9 Mechanical Four-Pole Parameters Method in System Mobility Evaluation 

In 1970's, a powerful method used to calculate the transmission and isolation of structure- 

bome vibration and noise has been successfully developed. This is the so-called 

mechanical four-pole parameters method (Cremer et. al., 1988). It has been applied in the 

vibration and noise control field by Snowdon (197 1). 

3.9.1 Basic Theory of the Four-Pole Parameters Method 

The mechanism of high frequency noise transmission through a mechanical system such as 

an elastic mount can be characterized in terms of the parameters at each end as shown in 

Figure 3.1. This allows physical insight into how high frequency noise generated by the 

input end transmits through the elastic mount, and hence how it may be suppressed at the 

output end. To keep the analysis simple in the first instance, only two parameters at each 

end are considered. These are the complex frequency functions of force and velocity. The 

matrix equation relating velocities and forces to point and transfer mobilities for a general 

system is equation (3.27), repeated here for clarity, 

IVII 

= 

[Mll M12 1 f F, 1 
V2 M21 M221 [F2J 

(3.86) 

The main advantage of the mobility method is that system components can be coupled by 

way of these functions that are defined at the interfaces between components. This 

technique is used to investigated the effects of fitting a simple compliant element between 
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the engine and seat. 

Expanding equation (3.86) and rearranging gives: 

vI (III OC12 V2 

= 
F, 

[ 

(121 

] 

(122 (3.87) F2 

The coefficients (x 1,9 
()C12 

9 CC21 
ý OC22 

, in equation (3.87) are called the four-pole 

parameters (Cremer er. al., 1988). Their definitions are: 

V, 

V2 
F2ýO 

(X12 = 

V, 

F2 
V2 ýo 9 

21 = V2 
F2 =O 

(X22 _ 
F, 
F2 

V2 ýo 

(3.88) 

V2ýOrneans that the output end is fixed, while F2ýOrneans that the output end is free. 

From equation (3.88), it can be seen that (x, l and CC22are dimensionless, U-, 2 has the 

dimension of mobility and CC2, has the dimension of impedance. 

In general, all four-pole parameters are frequency dependent complex quantities. They are 

relevant to the characteristics of the mechanical system itself. Expanding equation (3.87), 

the driving point mobility can be obtained as: 

Mil - 

VI 

- 
(111V2 + (Y«12F2 

- 
F, (121 v2 +(X 

22F2 

(XI I 
M22 + (X12 

(X21M22 + (X22 
(3.89) 

where M22 ý-- V2 /F2 iS the receiving point mobility. Reciprocally, the driving point 

impedance is: 

Zil _ 
F, 

_' 
(121V2 + (122F2 

- 
(121 + (X22Z22 

(3.90) 
VI (XIIV2 + (112F2 ()CI I+ (X12Z22 

where er mobilities and Z22 = 
L2 

is the receiving point impedance. Also, the transf 
V2 

impedances can be derived as: 
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M12 = 

vi 

OC 1IM22 
+OC12 

F2 (3.91) 

M21 = 

V2 M22 

F, OC21M22 +a22 (3-92) 

and 

Z12 
- 

F, 
= (X21 + (X22Z22 

(3.93) V2 

Z21 
- 

F2 

- 

Z22 

(3.94) V, ()CII + ()Cl2Z22 

The force and velocity transmissibilities are defined and expressed as: 

Trl 

2= 

F2 
= 

Z22 

(3.95) F, (X21M22 + (X22 (X21 + (X22Z22 

T V12 = 

V2 

= 

M22 

_= (3.96) VI alIM22 +(112 (111 +(112Z22 

By equations (3.95) and (3.96), the system transmissibilities can be found provided the 

four-pole parameters and the receiving point mobility or impedance are known. 

3.9.2 Connection of Mechanical Four-Pole Systems 

Analogous to an electric circuit system, there are two basic types of connection for the 

mechanical four-pole systems, namely the series and parallel connections. If the output end 

of one system is rigidly joined to the input end of another system, it is said to be in series 

connection. While the input (output) ends of two or more mechanical systems are rigidly 

joined together and move with the same velocity, then it is said to be in parallel 

connection. 
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Fi, Vi F25V2 F3, V3 Fn, Vn - Fn+I, Vn+ 
--00- 2 ----0 ... 0- 

Figure 3.11 Four-pole subsystems in series connection 

As the four-pole mechanical subsystems are connected in series, as shown in Figure 3.11, 

then the output of one subsystem is just the input of the subsequently adjacent subsystem. 

For each subsystem, the matrix form expression in terms of the four-pole parameters is: 

VI 

F, 
JV2 

F2 

jVn 1 
(X n 

F (), n n 21 

Therefore, 

(X12I1V21 

f ()t 22 F2 

(X12 

ff (X22]IVF3 

n Vn CC12 +1 
n (X22- Fn+l 

- 
(X 

] 
11 1 12 

ff ()ýff nn (XI 1 12 
fVn+I 1 

Fý, 

1 
: 

(X 

[(x21 

()c22 OF ff ()c21 (122 nn (X (x21 22 
IF 

n+I 

f 

For example, if there only two subsystems connected in series, then 

Vi 
= 

[Pll P12] fV31 

F, P21 P221 [ F3 I 

in which 

ßll ß12 + (IiiGtil + ()C'12()t21 (X 11 (X 12 12 22 (X [ß21 

ß22 

[ 

1 ff y+at (X 0 
22 et'2 1 (X'l 1+ (X'22 (X 21 (X'2 1 (X'l 2 22 

(3.97) 

(3.98) 

(3.99) 
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Fi, ý V2 

Figure 3.12 Four-pole subsystems in parallel connection 

Figure 3.12 shows the n subsystems in parallel connection, in which the terminal input or 

output forces of the system is equal to the sum of the input and output forces of each 

individual subsystems. Then 

VI 

= 

[Pl 
I 

P12 I f V2 I 

F, P21 P221 [F2 j 

where 

A P12 =17 P21 = 
AC-B 2 

BBB 

and 

B= 
n1 112: 

1 i=I (X 12 i=I (X12 
I _22 

(X 12 

P22 

(3.100) 

(3.101) 

(3.102) 

For example, if the system is composed of two subsystems in parallel connection, then 

I ff + cc f oc ff OC I 1(' 12 12 11 (3.103a) A-ýfN 
CC 12 CC 12 

+ cc N0 (3.103b) 
B 

OC 12 12 
= 

f Ff 6 a 120C 12 

Ff +a ra (3.103c) 
c 

OC 22 OC 12 12 22 

(X f (X or 6 
12 22 

Thus 
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A 
=. 

(p 
B0 

P21 
I- F- 

B0 

where 

3.10 

(P = (X p ff f ff 
22 (112 + (X 12 (X 22 

0= (X, p 12 + (Y'12 

C= (X f ff 
12 ()t 12 

t A, = (X , 
(x" + ec p ff 

12 12(1 

AC-B 2 
(px - o2 ß 

12 
B F, 0 

ß22 =c 
B 

Explanation of Reduction in Transfer Mobility by Inserting an Isolator 

F2 

V, 

(a) 
' V2 

F3 F4 

e 
V3 V4 

(3.104) 

(3.105a) 

(3.105b) 

(3.105c) 

(3.105d) 

Figure 3.13 Mobility of intergrated system combined by mobility matrices of the subsystems 

Suppose the two ends of the subsystems a, b are 1,2 and 3,4 respectively, as shown in 

Figure 3.13, where F represents the force and V represents the velocity. When the 

subsystems are linked together, thenV3=V2and F3 = -F2 , equation (3.97) the becomes: 

V, 

= 

[all 
()C 12 

] v2 [(XII 
(X12] 

[ 
(X33 34 

1 V4 
11 14 

] F [a V4 

(3.106) 
F (X (X 21 22 

F2 ()c21 ()C22 4 (Y'43 ()t4 F4 
1 ()tf 4 44 

F4 

It requires that 1`4ýOsince 4 is the receiving point and I is the driving point. Thus, 

1-=M 

=V4 (3.107) 
f 41 

F 41 4 

From equation (3.106) 
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(X 1= (X - 

M22 + M33 

41 21(X33 -(X22(X4i 
M12M34 

or 

M41 = 

M12M34 

M22 + M33 

subsystem a F, I\, 
V4 

subsystem b 
I 

driving point ý /1", 4 

(a) receiving point 

23 

F1 
V14 

N, -/ 

Figure 3.14 System before and after installation of isolator 

(3.108) 

Form equation (3.108), it can be seen that the transfer mobility of the combined system 

(M4, )is 
not a simple additive combination of the transfer mobilties 

(M12 
andM34)of the 

two subsystems. The linking point mbilities (M22 and M33)of the subsystems play a vital 

role in determining the total transfer mobility. As an isolator is connected to the input end 

of the subsystem b, such as in Figure 3.14 (b) which represents the improved system of 

Figure 3.14 (a), the mobility M33 would increase significantly. It follows from equation 
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(3.108) that the total transfer mobility M 4, is reduced. In other words, to reduce the total 

transfer mobility, it requires the introduction of a larger mobility than the original one. This 

is the reason of the basic principle for a good structure-bome noise attenuation result that, 

the structure on both sides of a resilient mount must be properly designed with smaller 

mobility than that of the mount itself. Simply said, the desired mobility changes for the 

coupled machine --- resilient mount --- foundation structure in series system should be 

"heavy-compliant-heavy" and/or "stiff-compliant-stiff'. 

Thus, the evaluation model and control principle (equation (3.108)) for structure-borne 

sound tramission from engine to the receiving structure have been established. Besides 

this, numerical model for the analysis of the transfer function of a complicated stiffened- 

plate structure like a ship will describe in the next Chapter. 
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CHAPTER 4 
STRUCTURE, -BORNE VIBRATION AND NOISE 

PROPAGATION IN A SHIP STURCTURE 

In most cases the engine foundation and hull structure are composed of beams and plates. 

Once the vibrational power flow feeding in the receiving structure from an engine via the 

contact points, the structure-borne sound and vibration can propagate in the structure. 

Structure-borne noise implies elastic waves in the sound frequency range. Besides the 

longitudinal waves, there are many transverse wave patterns existing in the stiffened-plate 

structure during the noise propagation, such as bending waves, shear waves and torsional 

waves etc. Structure-borne noise propagation is more complicated than sound 

propagating in fluid. To analyse the structure-bome noise propagation, the FEM for the 

lower frequency range and the SEA model for the higher frequency range can be applied. 

While in the medium frequency range there is a knowledge gap. If the FEM is used to solve 

this medium frequency propagation problem, it can be assumed as a rule of thumb that, in 

the discretization process, about ten elements are needed per wavelength. In the case of a 

container ship of length 250 m in the range of frequencies around I kHz, it leads to FE 

models with over 106 degrees of freedom, which is pointed out by Cabos and Jokat (1998). 

It sounds to be an impractical model of computation. Thus an innovative numerical model 

based on the stress wave concept is developed as follows. 

68 



4.1 Wave Propagation in a Finite Beam 

4.1.1 Elastic Bending Wave in a Finite Beam 

For the radiation of airborne noise or hydroacoustics, the elastic bending wave in a 

stiffened plate structure is the most important wave pattern owing to its larger lateral 

displacement. The one dimensional bending wave equation in a beam of finite length can 

be expressed as (Cremer et al, 1988): 

B a4V 
y+ 

a2 Vy 
-[a, +B+ 

ýLz 
= m aX4 at 2m K] aX2at2 K at 4 

y 

Fyo, vyo FYL ýV YL 
MZ09 w zo 

k 
MZLýWZL 

h 
T- 

L I 

Figure 4.1 Coordinate system of a beam 

where the coordinate system is shown in Figure 4.1, and the symbols are: 

B bending rigidity of a rectangular beam = El Ebh 3( N-M) 
12 

mass per unit length = PS ( kg /m 

VY= velocity along y axis (m/ sec ) 

WZ = angular velocity about z axis (rad / s) 

Fy = force along y axis (N) 

Mz 
= moment about z axis (Nm) 

14 z 
lpdx = rotary mass moment of inertia of dx about z( kg-m 

K -QýS- = the shear rigidity (N-m 
K 
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E= Young's modulus (N / M2) 

cross-sectional area ( M2) 

h thickness of plate or web height of beam (m) 

K shear distribution factor ( m- I) 

ýt Poisson's ratio 

t time ( sec ) 

The first two tenns of equation ( 4.1 ) correspond to the differential equation for pure 

bending waves. The other three tenns represent the corrections. The first of these, with 

the coefficient W/ m' (which is equal to the square of the radius of gyration), would z 

occur by itself if only rotational inertia were considered, and the second would occur by 

itself if only shear deformations were taken into account. For homogeneous structures, 

these two parts are not independent of each other. First of all, 

at 

- IRT -s 

and secondly, 

B- IEK 

K SG 

In the case of a steel beam, if the bending wavelength to the web height ratio is less than 6 

then the last three terms in equation ( 4.1 ) should be maintained. Otherwise, Cremer et al, 

pointed out that there exists an error of around 10% to the solution of phase velocity. The 

phase velocity CB and the elastic wavelength ý, B can be expressed as: 

Bf )1/4((0)1/2 (4.2) 
m 

'ýB 
= 

27CCB (4.3) 
(0 
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where (0 is the circular frequency of the bending wave. 

For a 3% error of phase velocity, the ratio of ý'B/h should be greater than 10, thus 

according to equation (4.3) the frequency range has to be less than 3.2 kHz for a steel beam 

of the scantling for ship structure type (Wang, 1996). In these cases equation (4.1) can be 

reduced to the pure bending wave equation: 

-ý-4v + m' 
02V 

=0 aX4 &2 (4.4) 

In an actual vibration carrying structure, there always exists the boundaries. The 

boundaries may change the wave direction, phase and amplitude, furthermore, they may 

even change the wave pattern. To consider the progressive wave, the reflection wave and 

exponentially decayed near-field wave due to the boundaries, the solution of equation (4.4) 

with a circular frequency (o is: 

v= v+e- . 1a + v-e 
jkx +v 

-i e -kx + vje 
kx (4.5) 

where 

V(t) has the form of harmonic function of time 

bending wave number _ 
27c 

= 
(o 

= (Co 2 
m'/ B) 1/4 (4.6) 

xBcB 

V+ amplitude of the progressive wave along the positive x direction 

v- = amplitude of the progressive wave along the negative x direction 

v-j amplitude of the decayed near-field wave along the positive x direction 

vj amplitude of the decayed near-field wave along the negative x direction 

From equation (4.5) and the fundamental theory of plate, the angular velocity w, the 

bending moment M. and the shear force F, can be obtained from the following relations: 
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W= av Mz -- 
B O)w Ba2V F amz aFy 

ax jco E jo(o aX2 yN ON = -j(om, v (4.7) 

If the state parameters of both ends of abeam element of length L are (vyo, 
wzo5FY05Mzo) 

and (V 
YL 5w ZL 5F YL 3MZL 

)9 
then the transfer relationships between the end parameters can 

be represented by: 

or 

v Yo Mll M12 M13 

wzo M21 M22 M23 
IVYL 

M31 M32 M33 

WZL 
j LM 

41 
M 

42 
M 

43 

fVNP 1 
7-- 

[Mij I fFNp I 

M14- F Yo 
M 

24 
mzo 

M34 F 
YL 

M44- 

ým 
ZL 

(4.8a) 

(4.8b) 

where [M ij ], (i, j=1,2,3.4 ), is called the complex transfer matrix or mobility matrix, 

VY0 I FY0 

ýNP 
w 

zo 
is the nodal velocity vector, and 

JFNp J= 
M 

zo is the nodal force vector 
v YL 

F YL 

w 
YL 

M 
YL 

Setting v= vyO and w= wZO at x=O; v=v YL and W= WZL at x=L. from these four 

conditions it can be collected as a matrix equation : 

v Yo 

wzo 
-jk jk -k 

vY e -jkL -eJ e- L 

- jke -jkL jke jkL 
- ke -kL 

IWZL, _ 

. or 

where 

IV 
NP 

I 
--ý 

[AIIVcoeff ) 

V+ 
k V- 

e 
kL v 

keKL vi 

(4.9a) 

(4.9b) 
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V+ 

V- 
fVcoeff 

V-i 

vi 

I111- 

[A] -jk jk -kk 
e -jkL e 

jkL 
e -kL e 

kL 

jke -jkL jke jkL 
- ke -kL ke kL 

then 

fV 
coeff 

I 
=[A]-' 

fVNP 

(4.10) 

From equation (4.8b), (4.9b) and (4.10) 

FNP 
I' 

'= 
[Mij 1-1 fVNP I= [Mij 1-1 [A]fVcoeff I 

or IFNP I 
-: 

WIVcoeff 1 

Where [0] = 
[Mij ]-'[A] 

or 
[Mij ]= [A] [p]-l 

(4.12) 

Using the relationships in equation (4.7) and setting EYO =13, M 
zo =0, F 

YL =0 and 

MZL =0 into equation (4.8a), B, j can be derived. 

Similarly, by setting Fyo =Oý Mzo =1, FY, =0, Ný, =0 ; FY,, =0, Mzo =0, F YL 
=15 

KL = 0; and FY0 = 0, Xto = 0, FY, = 0, MýL =I respectively, the transfer functions P 2j , 

0 3j and P 4j can be obtained. The complete relation between the nodal force vector and 

the velocity coefficient vector is listed in matrix form as: 
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Bk 3 Bk3 
F (1) (1) yo 
M Bk2 Bk 2 

zo j co j (1) 
F Y 

1 

Bk 3e-jkL_ 

_ 
Bk 3e-jkL 

L (0 0) 

IM ZL, Bk 2e-AL Bk 2e-i' 

- 
jo) 

- BU Bk3 
j (» j (0 

- Bk2 Bk2 
v 

j 0) je) V- 
Bk3 e-kL Bk3 e xL V jco jco -i 

1 

Bk2e -kL Bk 2e-xL vi 
j (0 j(o 

From equation (4.12), the final form of [Mij] can be derived as: 

(4.13) 

IIII jk -jk -kk 
]= jo) [m -jk jk -k k I1 -1 1 

ij Bk 2 e -jkL -e 
jkL 

e -kL e kL jke-jkL - jkeikL e -kL e kL 

-- 
jke-jkL jkeikL - ke -kL ke KL 

_j 
e -jkL e jkL 

-e -kL -e 
kL 

(4.14) 

This forms the mobility matrix of a beam element of finite length for pure bending wave 

propagation. 

4.1.2 Longitudinal Stress Wave in a Finite Beam 

If two straight beams are joined at right angles, the bending waves propagating in one bearn 

may be partly changed to the longitudinal waves in another beam. Thus, in a grillage 

structure, the longitudinal wave and torsional wave are capable of coupling with the 

bending wave in the beam elements joined at right angle. For the longitudinal stress wave 

propagation in a finie beam, the governing equation of propagating velocity v,, can be 

expressed as (Cremer et al, 1988): 

L92v' 
=p 

a2VX 

aX2 at2 
(4.15) 

If the longitudinal wave velocity has the form of harmonic function of time, then the 

solution of equation (4.15) can be express as: 

v, -jkx +ve jkx 

, 
(x) = v+e 

where 

(4.16) 
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k= the longitudinal wave number = 2" = 10 = (o(E/p)-' XL cL (4.17) 

and the coordinate system, the longitudinal nodal forces and velocities of a finite beam 

element are shown in Figure 4.2 

F,, O, v,, o F,, L ý VxL 

L 

Figure 4.2 Longitudinal nodal force and velocity of bar element 

In equation (4.16), the representation has considered the wave field on a rod to be 

composed of forward and backward propagating waves, where v, - and v- are unknown 

for the present. 

Taking into account the relations of nodal velocities, 

vxo Iv (4.18a) 
VxLj 

jKL jKL -": 
[e- 

el 

]v 

or 

JvNpj= [A] f vc (4.18b) 
.. eff 

I 

Define the mobility matrix [M, J, which relates to the longitudinal wave propagation in a 

finite rod as : 

vxo 
Mil 

VxL 

[M21 M12 If F,, o 
M22J[FxL j 

(4.19a) 

f vmpl= 
[Mij I FNpj 

The corresponding force that acts in the beam is given by: 

(4.19b) 
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F(x) = Z(v, e 
-jKX 

_ v-e 
jKX ) 

where Z is the driving point impedance at free end and 

Z -": CL PS ý'-- 
VEp S 

From equation (4.20) 

F,, o = Z(v+ - v-) 

F�, = Z(v, e-i' - v- ei') 

Express equations (4.22a) (4.22b) in matrix fonn, it becomes 

IF�o 1 
=[Z 

Z 
FxL e-jKL 

v 

-Ze 
jKL 

I 

(4.20) 

(4.21) 

(4.22a) 

(4.22b) 

(4.23) 

or 

I FNP I= 1011 Vcoeff 1= [P] [A]-' JVNP I (4.24) 

Compare equation (4.19b) and (4.24), the mobility matrix regarding to the longitudinal 

wave propagation in a finite beam can be obtained as: 

[ Mij ]= [A][ß] -l= 
[111 

L L 

[ z -Z - 
L L 

-, 
(4.25) 

e 
jK 

e-jK ze -jK 

- Ze 
jK 

4.1.3 Torsional wave in a Finite Beam 

The torsional wave equation of a rectangular bar can be expressed by (Cremer et al, 1988): 

at 
a2W 

N2 at 2 
(4.26) 
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where w,, is the angular velocity about the x-axis, 4' represents the mass moment of inertia per unit length of the bar, T is the torsional rigidity. For a rectangular bar of height h 

and width b. 

11 f13312hb 
, 91 =-p(bh +hb )=-pS (-+-) 

12 12 bh 

T=GKb'h 

(4.27) 

(4.28) 

where G is the shear modulus. r, is a factor depending on the aspect ratio h/b, as shown in 

Table 4.1 from theory of elasticity. 

Table 4.1 r, value of rectangles with various ratios of h/b 

h/b 1.0 1.5 2.0 2.5 3.0 5.0 6.0 10 00 
K 0.141 0.196 0.229 0.249 0.263 0.291 0.298 0.312 0.333 

Analogous to equation (4.15), the solution of equation (4.26) can be obtained by: 

w. = w+e-JKx + w-eJKx (4.29) 

where 

27r (0 12KGSb 2 (4.30) 
CT p(h 

2 
+b 

2 )h_ 

CT T) 1/2 
=( 

12KGSb ) 1/2 
(4.31) 

191 p(h 
2 

+b 
2 )h 

By the similar procedure, the mobility matrix for the torsional wave propagation in a finite 

bar is derived by: 
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[mij 1=11 
[ZeZicL 

zejKL 

[e-jKL 
eiKL -j 

1 
-Z 

--, 

where 

a'CT 

4.2 Wave Propagation in a Finite Rectangular Plate 

4.2.1 Two Dimension Elastic Bending Wave in a Finite Rectangular Plate 

(4.32) 

(4.33) 

The two dimensional bending wave equation of a finite thin plate is (Cremer et al, 1988): 

AATJ -K4,9 =0 (4.34a) 

or 

AAV _, K4V =0 (4.34b) 

where A is the Laplace operator, 'q and v are the lateral displacement and velocity of 

the plate particle in z direction respectively. 

a2 a2 

(N2+ 
C-Ny 

2 Laplace operator 

K4= (0 
2 
m"/B' : wave number 

mN = ph : mass per unit area of plate (kg/M2) 

P: density of plate 

h: plate thickness (m) 

BF= 
Eh' bending rigidity of plate (N-m 2) 

12(1 _ ý, 
2 

For deriving the mobility function of a plate in a bending wave, it consists of solving the 
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differential equation (4.34a), subject to the following boundary condition: 

I- There is no rotation of the plate particle at the site of excitation about x and y axes, in 

other words, this implies that the vibration is small and the first derivatives of the particle 

displacement with respect to x and y are equal to zero. 

2. The excitation force is equal to the sum of the shear force Q, in the plate around the 

excitation site. 

3. Far away from the excitation point, a decayed wave field occurs. 

4. The displacements must be axially symmetric. 

Equation (4.34a) may then be replaced by two differential equations of second order, 

namely 

ATI +K 21, 
=0 (4.35a) 

All - K'll =0 (4.35b) 

Equation (4.35a) may be recognized as the usual wave equation for nondispersive media 

(e. q., for sound wave in air); its axially symmetric solution in two dimensions, as is well 

known, consists of zero-order cylindrical functions. If one takes account of the boundary 

condition (3), one finds that Hankel function of the second kind is the only type of these 

functions that can serve as a solution. Thus, 

CIH (2) (icr) 
0 (4.36) 

where r represents the distance from the excitation point. For the remainder of the 

discussion, one may use the asymptotic expression for the Hankel function, 

2 2' 
Ho( )(lo) 

ý- - -ý-j In for lxrl <<I (4.37a) 
71 2 

2 -j(Kr-7c/4) for lial >> 1 (4.37b) 
7C 
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instead of a more exact representation. Detail derivations of equations (4.37a) and (4.37b) 
are shown in Appendix A. 

The solution of equation (4.35b) that satisfies the previously mentioned boundary 

conditions simply by replacing xr in equation (4.36) by - jKr, thus, 

112 = C2H (2) (_j Cr) 0 (4.38) 

Using equation (4.37b) for large values of xT, one finds 

7C1a2 
H (2) ( 

_jK 
2 j7r/4 -icr Cr) -ee 7i7Cii (4.39) 

Thus equation (4.38) represents a near exponentially decay field. 

The general solution, obtained by combining equations (4.36) and (4.38), may be expressed 

as: 

CIH (2) (Kr) +CH 
(2) (_j. Kr) 020 (4.40) 

The boundary condition (1) requires that 

CKAr 
I +-]-iC2 

[2+... ] 
= 

2j 
(_Cl - 

C2) +... 

[ 

71'KT Mcr 7cr 

Because the tenns in xr and in higher power of xi reduce to zero at r --> 0, only the 

first term remains for consideration. Hence 

C, = -C2 

Thus 

(2) (2) C, [Ho (xr) - Ho (4.41) 

The value of equation (4.4 1) at r=0 again may be found from -the asymptotic expansion 

of the Hankel functions: 
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ii«» = Tio = cl 
3iInK'7 

+... + 
2j 

(InKr + In(-j) +--- 
1- 

TC 2 71 21 

ýi In(-j) 
7[ 

The constant C, here is equal to the displacement amplitude at the excitation point, thus 

(2 2 
0) (ia) -H 

(0 ) (-jKr) il (ia) 11 =, qo 00 (4.42) 

where the propagation function I-I(Kr) is defined by: 

(2) (2) (_j,, Cr) I-I H0 (icr) -H0 (4.43) 

The remaining unknown i1o may be related to the exciting force on the basis of boundary 

con ition 2). For this purpose, one may consider the excitation point to be at the center of 

a small circle of radius r, and one may take the external exciting force F,, to act on the 

area enclosed by that circle. Let the shear force that acts on the circumference of this circle, 

per unit length, be represented by Q,. From mechanics of elasticity 

Qr =B, 
aAll (4.44) 
ar 

Substituting equation (4.42) into equation (4.44), it becomes 

(2) 
B'K 3, 

[dH 
13 

(Kr) 
Tlo [ d(Kr) 

dH (2) (-jKr) 
0 

d(icr) 

For xT= icrý and by using of the small-argument expansion of the Hankel functions, then 

Q, I r=ro - 
4jB'K 2 

. 10 
(4.45) 

7rro 

Thus 

Fo = 2nroQ�, = 8jB'K 2 Ilo (4.46) 

The work of Cremer et al (1988) stopped here. The following derivation extends the 

Cremers' work to an innovative numerical model to cope with the analysis of structure- 
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bome noise propagation. If FO is applied to one comer of a rectangular plate, then FO can 

be considered as applied in a quarter of a small circle of radius r,, and with center at the 

comer. In this case, 

Fo = 2jB'K 2 
110 (4.47) 

Now, equation (4.42) becomes: 

- 
Fo [H (2) (, KT) -H 

(2) (4.48) 
2jB'K 200 

Considering that vO = jo)il,,, the driving point force impedance ZFO 
at one comer of a 

rectangular plate regarding to the bending wave propagation is : 

z Fo 
= 

2Bfk 2 

-- 
2(o m (4.49) Fo 2 vo co k 

Thus the lateral velocity distribution of the plate particle is: 

Fo(o 
_ [H (2) (kr) -H 

(2) (-jkr)] =F0 1-1 (kr) (4.50) V(X, Y) = 2B'k 200Z 
Fo 

The rotational speed w. and wy about x and y axis can be expressed as : 

"v O-Iv 
(2) (2) 

0 Fo c9H (Kr) M (-j icr) x 
wx (X, y) =----=-200 

c9 x c9r Öx 2B'K ar ar r 

av av ar Foo) all(o )(icr) aH 
(2) (_j I<T) y 

wy(x, y) =-=-. - -20 
(4.52) 

ay ar ay 2BK ar ar r 

For a finite rectangular plate element, as shown in Figure 4.3 with nodal force vector 

Fzj *** 
Fz4 Mxl'**Mx4Myl*'*My4 >T and nodal velocity vector <vzl*'*Vz4WXI"*Wx4 

Wyl *** w 
y4 >, the transfer relationships between the nodal parameters can be related by: 
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Figure 4.3 State nodal parameters of the bending wave pattern in a rectangular plate 

element 

Vzl 

Vz4 

WX1 

Wx4 

Wyl 

Wy4 

Mi'l ... m 
1,4 

MI, 
5 

MI, 
8 

MI, 
9 

M1,12 Fj 

M491 M4,4 M 
4,5 

M 
4,8 

M 
4,9 

M 
4,12 

Fz4 

M 
5,1 

M 
5,4 

M5,5 M5,8 M5,9 ... M5,12 mxl 

M891 M8,4 M 
8,5 

M 
8,8 

M8,9 M8,12 Mx4 

M991 M9,4 M 
9,5 

M 
9,8 

M9,9 M9,12 Myl 

. 

M12,1 M12,4 M12,5 M12,8 M1299 M12,12_ 

, 

My4. 
) 

(4.53) 

By use of equations (4.50) , (4.51) and (4.52) and successively setting one nodal force 

F,, =I and all the other nodal forces and moments equal to zero, then M. ( i=1,2,3,4 and 

can be obtained by equation (4.53). 

For an excitation moment Mo applied to one given comer, the moment can be replaced by a 

set of two coupling forces with a small distance 2a apart each other as shown in Figure 4.4. 

Mo = 2aF (4.54) 
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- 

2 
K= 2aF 

I 
X=O 

Figure 4.4 Moment excitation at a comer of a rectangular plate 

From equation (4.50), it can be seen by superposition principle that the lateral velocity of 

the plate particle is : 

V, (X, y) = 
Fo) 

21 
fl (Krl )- F' ('Cr2 )] 

2B'K 
(4.55) 

where r, , r2are the distances from the excitation point x=a and x= -a to any point (x, y in 

the plate respectively. 

For the points along x axis, there are: 

rl(krl) = H (2) [k(x - a)] - 0 H (2) 
0 [-jk(x - a)] 

rl(kr2) =H 
(2) [k(x + a)] - 0 H (2) 

0 [-jk(x + a)] 
(4.56) 

Expanding the Hankel functions with respect to the small quantity of k(x-a) or k(x+a), then 

rl(la, ) 1+ 2k 2 (y -a)2 CCI +OC2 In y k(y - a) 1 
(X 2 In(-j) 

1221 

rl(kr2) 1+ 2k 2 (y + a)2 OCI + CC2 In y k(y + a) I 
CC 2 In(-j) 

122 

where cc 
jI 

oc 2 y=1.781. 
4 27c 27c 

Thus, for a -> 0, the angular velocity at the excitation comer can be obtained from 

equation (4.55) as: 
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w 
IVZ Fawk 2 4j ka) j ka 

y(o) =I In L- ýL In L-) 
N 

a->O 2Bfk 2 7r 2 4B' 7E 2 (4.57) 

Using equation (4.5 5) and the relations wx=Nz/ O'Y ,wy= av 
z/N; successively setting 

M0=I at each node and substituting them by the coordinates of nodal points, then M ii ý 
(i=5,6,7,8 ;j=1,2,.., 12 ), in equation (4-53) can be obtained. 

A similar procedure can be followed to derived the transfer mobility function Mij, ( i= 

9'..., 12; in equation (4.53) along y axis. Thus a full mobility matrix of a 

finite rectangular plate element in bending wave is derived as show in Table A. 1 of 

A ppendix A. L-"F 

4.2.2 Longitudinal Wave in a Rectangular Plate 

Analogous to the longitudinal wave pattern in a finite rod, the longitudinal wave patterns in 

both x and y directions of a rectangular plate can be expressed as: 

v -jkx jkx 

, 
(x, y) = vxe + vx-e 

vy (x, y) = vy-, e -jky +v 
y- e 

jky 

The transfer matrix between the nodal parameters, which includes the nodal forces and 

nodal velocities as shown in Figure 4.5, can be followed by: 
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Fx3N3 

FYP VY3 FYVV 
Y4 

FX4 
ý VX4 

-F 34 

bx 

thickness h IIF 
2 X2 I VX2 

Fxlgvxl I 
Fy,, vy, aI FY2 

9 VY2 

Figure 4.5 State nodal parameters of the longitudinal wave pattern in a rectangular plate 

element 

VX1 Mll M12 M13 M14 M15 M16 M17 M18 Fxj 
Vx2 M21 M22 M23 M24 M25 M26 M27 M28 Fx2 

Vx3 M31 M32 M33 M34 M35 M36 M37 M38 Fx3 

Vx4 M41 M42 M43 M44 M45 M46 M47 M48 Fx4 

Vx5 M51 M52 M53 M54 M55 M56 M57 M58 Fx5 

Vx6 M61 M62 M63 M64 M65 M66 M67 M68 Fx6 

Vx7 M71 M72 M73 M74 M75 M76 M77 M78 Fx7 

. 
Vx8, 

-M81 
M82 M83 M84 M85 M86 M87 M88 

- 
Fx8 

where 

MII M12 - 

=[M33 

M34]=Z-l[ 1 la][ 1 [M21 

M22- M43 M44 1e -jka e 
jk 

e -jka _e 
jka 

[ M55 M57 M66 M68 

=Z -1 
111 -1 

M75 M771 

[M86 

M881 2[e -jkb e 
jkb 

][ 

e -jkb -e 
jkb 

(4.58) 

(4.58a) 

(4.58b) 

Mij =0 for all the elements not mentioned in equations (4.58a) and (4.58b). where 

k= 0) D=EZ, 
1 ýD--p bh Z21 ýD--p ah 

, 
JD -/p 1-ýt2 22 
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4.3 Modelling Noise Propagation in a Ship Structure 

4.3.1 Fluid-Structure Interaction 

Xn 

Figure 4.6 Definition Of lxnj and Ixil 

When a ship is floating in water and subjected to machine induced vibrating forces If 1) 

then the equations of motion of the ship structure can be expressed in matrix fonn as: 

[M] {kl + [C] {kl + [K] {xl = {fl - {pl (4.59) 

where [M], [C] and [K] represent the mass, damping and stiffness matrices respectively. 

ffI is the acoustic loading transmitted from the machine mountings which is obtained by 

the mobility theory and charaterising the vibrational sources as velocity sources. While {pj 

represents the hydrodynamic pressure which can be only applied to the surfaces of the 

structure in contact with the water and shall be analysed by the coupling algorithm which is 

a combination of finite element (FE ) and boundary element (BE ) methods. 

If the internal structural damping effect can be neglected and the displacement vector jxj 

of the structure is divided into lxn), ie, the normal displacment of the surface contacted 

with the ambient water, and (xij, ie, the displacement of the interior structure as well as 

the tangential displacement on the water contacting surface as shown in Figure 4.6, then 

equation (4.59) becomes: 
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Mnn Mni ]Rnl+[Knn Kni] Xnj= fn 

_P (4.60) Min Mii 

I 

Ri Kin Kii xi fi 0 

4.3.2 Coupling of the FE and BE Methods 

Consider a linear structure system and put jx) = fXj ei(Ot into equation (4.60) then, 

Knn Kni] Xn 

_(02[Mnn 

Mni] Xn fn 

_P Kin Kii xi Min mii xi fi oi 
(4.61) 

The second equation in (4.61) is: 

([Kin I- (O'lMin 1) {Xn)+ QKii ]- o)'[Mij ]) {Xi) = ffi) (4.62) 

and I Xj) can be expressed in ten-ns Of {Xn I from equation (4.62) as: 

fXil=([Kii]-(o 2 [Mii I)-' (ffi I -([Kin F(O 2 [Minl)fXnl) (4.63) 

Substituting (4.63) into the first row column expansion of equation (4.61), 

([Knn I- Co 
2[m 

nn 
1) fXn 1+ ([Kni I- (o 

2 IMni 1) fXi ) ý-- ffn I- IPI 

or 

(([Knn I- (o 
2[m 

nn D-QKni ]- (o 
2 [Mnil)([Kii] _ (02 [Mii ])-I QKin 1 _(02 

[Min D) fXn I 

2A {f I+ ff I 
-([Kni (o [Mni])([Kii] J)2[Mii ]) 

in_ 
{pj (4.64) 

Since the underwater acoustic pressure distribution radiated from a vibrating hull surface is 

govemed by the Helmhotz equation: 

v2 p(ip) +k 
2p(i, (O) =0 (4.65) 

and p(f) can be expressed as in Appendix B: 

P(f) =1 
f[P( -) ap(f) 

- G(i, i, ) 
ap(f) ]dS, (4.67) 

2n S, 
rs an(i) c9n(i) 

where 
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r position vector in water; 

r posi ion vector on immersed hull surface; S 

n(f, ) = normal direction vector at 

SS 
= immersed hull surface area; 

underwater acoustic pressure amplitude at i; 

i, ) = Green's function. 

The relation between P(i) and the normal displacement amplitude Xn on the hull surface 

must satisfy : 

ap (is )= 

-1f)o 0)V. (i, )= Po 0) 
2X 

an(i, ) (4.68) 

Utilizing the discretization technique with interpolating shape functions to the water 

contacting hull surface, equation (4.68) becomes : 

[A] {Pj = [G] fXn I (4.69) 

Substituting equation (4.69) into (4.64), the governing equation for the combined FE and 

BE methods for the structure-borne noise transmission problem inboard ships can show to 

be: 

[([Knn I- Co 
2 [m 

nn I)-([Kni I- Co 
2[m 

ni])([K ii ] _(02[Mii ])-' ([Kin I_ C02 [Min DRXn I 

+[A]-'[G]fXn} = {fnl-([Kni I_ C02 [Mni])([Kii] _(02[Mii])-Ilf i1 
(4.70) 

4.4 Flow Chart of the Computer Program 

Based on the above mentioned formulation of mobility matrix regarding to the stress wave 

propagation in finite beam and rectangular plate elements, a computer program has been 

coded in Matlab software and FORTRAN language to analyse the structure-bome sound 
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propagation in a stiffened-plated structure. In principle , this program developed is 

somewhat analogous to the general existing finite element analysis program which created 

mainly for strength and vibration computations. The procedure is : 

1. Assembly of element mobility matrix 

Combining the mobility matrices of a beam for bending wave (equation (4.14)) 
, 

longitudinal wave (equation (4.25)) and torsional wave (equation (4.32)) and allocating 

each elements of Hij to its corresponding position in the assembly mobility matrix with 

respect to the numbering of the degrees of freedom of the modal forces and nodal velocity, 

the complete mobility matrix of a beam element can be formed 
. Which has a dimension of 

IN 12 . Similarly, the complete mobility matrix of a rectangular plate element can then be 

obtained by combining the matrix in equation (4.53), as shown in Table A. 1 of Appendix A 

for bending wave, and the matrix in equation (4.5 8) for longitudinal wave. 

2. Transfer the element mobility matrix to the global mobility matrix 

Since the derivation of element mobility matrices is referred to the local coordinate system 

(x, y, z) , which is depending on the orientation of the element . While the coordinates of the 

locations of nodal points are referred to the unified global coordinate system (X, Y, Z) - 

Thus the unit vectors , 

n. 
1-21 

r12 

ny = ný x n. 

f 12 X Y13 

JY12 X F131 

where yij means the vector from nodal point i to nodal point j- 

n. , n,, fiz 9 along x, y, z -axis are given by 

(4.95a) 

(4.95b) 

(4.95c) 
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To calculate the direction cosines between the axes (x, y, z) and (X, Y, Z) , the rotation 

transformation matrix [T] between these two coordinate system can be attained . Thus the 

global mobility matrix for one element, 
[M' ], 

can be given by: G 

Me 
]T[Me] [T 

GI =[T 

where [He] is the assembly element mobility matrix . 

Form integrated structural mobility matrix 

(4.60) 

Recurring the process of step 2 for each element in the order of the numbering of the 

elements . The whole structural mobility matrix [M 
GI can be attained . 

4. Partition of [M 
G] and boundary conditions 

For given kinematic boundary conditions at constrained supports and given source 

excitations the wave propagation equation, such as 

f V) «: -- 
[MG ]ý F1 

can be partitioned to the fon-n as: 

Vk 
= 

Mi i Mi ii Fu (4.61) 
vu 

[Mii 

i Mn ii] Fk 

where 
fVkj 

and 
jFkj 

are the known velocities and forces , 
jvj and 

fF,, ) 
are the 

unknown velocities and force excitations . 
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Solution 

Expanding equation (4.61) the solution of the unknown nodal velocities and nodal forces 

can be expressed in ten-ns of the given velocities and forces as : 

I --I 
Fu Mii -Mill 

I 
MIIIIMIII MIIIMI-Ill Vk (4.62) 

VU -M -m -I Fkj lill Mill 
iiii 

6. Backward transfonnation 

The solved nodal velocities and nodal forces in global coordinate system should be 

transformed backward to the local coordinate system . 

7. Power flow calculation 

Detail of the calculation of the structure-borne sound power transmission in structure will 

be illustrated in the next section by example . 

To follow this procedure, the FORTRAN program listed in Appendix E was written to 

perform the analysis of structure-bome sound propagation and Figure 4.7 illustrates a 

simplified flow chart of its development. This program allows the user to cope with the 

mobility distribution of a structure composed of rectangular plate elements and beam 

elements and is especially suitable for analysing structure-borne noise within the medium 

frequency range. 

To validate the correctness of this program the comparison of the mobility spectra of 

simple structures obtained by experiment and conventional FEM solution are made. This 

will be discussed in the next section. 
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Input : 
Number and numbering of nodal 
points and elements, Boundary 

conditions 

Input : 
Material properties, Structure mesh 

Input : 
Coordinate of nodal points 

Coordinate transformation 

Beam element Rectangular plate element 

Mobility Mobility Mobility Mobility Mobility 
Mobility 

Mobility Mobility 
matrix for matrix for 

matrix for matrix for matrix for matrix for 
matrix for matrix for 

horizontal vertical longitudinal torsional long. 
lateral 

moment f moment bending bending 
wave wave wave 

orce M. excit. excit 
M excit. Y 4) E wave wave . 
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(D 75 
, r( 
(1) 
Z 

Assembly mobility of beam bility matrix of Assembly oým 
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(D 

element 
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at ý 
ri x Form structural mobility m 

Combine 
(v) = [NtXF) 

Partition and boundary conditions 
Yk m 11 Mill Fu 

Vu u 

[M 

III M ljjlfý 

Solution 
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Calculate transmission loss I 

Plotting of results 

END 

Figure 4.7 Flow chart of the program development for structure-bome sound propagation 

analysis 
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4.5 Validation of the Computer Code by Analysing the Structure-Borne Noise 

Propagation via Simple Structures 

To validate the correctness of the developed software, the mobility analysis are carried out 

for simple structures such as a beam and a rectangular plate. Then compare the results to 

experiment measurements. Also the results are compared with that by FEM using the 

software ANSYS (De Salvo and Swanson, 1983) for double check. 

4.5.1 Validation of Mobility of a Free-Free Beam 

Consider a pipe beam of length Im and diameter 0.0156 m. The beam was bolted to the 

shaker at midspan, so it acted as a free-free beam. The input data of the beam for FE 

analysis are: 

pipe thickness (t) 

pipe diameter (d) 

cross section area (A) 

moment of inertia (1) 

Young's modulus (E) 

density (p) 

Poisson's ratio 
damping ratio (4 

element length (L) 

number of elements 

LOE-3 m 
15.6E-3 m 

4.585E-5 m2 
1.227E-9 M4 

2. IE+ll N/M 2 

7850 k g/M3 

0.3 

0.001 
0.01 
100 

The beam was divided into 100 equal elements as shown in Figure 4.8. Each beam element 

has a length I cm. The origin of the coordinates put on the left end of the beam. Since the 

beam was rigidly linked to the shaker at midspan, hence the driving point of the beam has 

only the vertical force applied and without any moment and torque existed for such 

symmetrical arrangement. In this case only the flexural bending modes can be excited. 
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Oro 

Figure 4.8 FE model of the pipe beam 

ANSYS 5.3 
DEC 25 1998 
21: 56: 54 
PLOT NO. 1 
ELEMENTS 
TYPE NUM 

XV =1 
Yv -1 
ZV -1 
DIST=. 388917 

XF =. 5 
Z-BUFFER 

In addition, experimental measurement of the mobitities at driving point and free end of the 

beam is conducted by utilizing the experiment instrument layout shown in Figure 4.9. In 

which an impedance head (B&K 8001) was put at A and an accelerometer (B&K 4374) 

put at B. 

Pipe thickness LOE-3(m) 
Cross section area 4.585E-5 (m 

2) 
Moment of inertia 1.227E-9 (m ) 
Young's modulus 2.1 E+ II (N/m 

Material density 7850 (Kg/m 
Poisson's ratio 0.3 
Damping ratio 0.001 

JOOOMM 

15.6 Mm 500 mm 
Pipe IA tTý -- L jImpedance head B&K 8001 

F 
Shaker Power Amplifier [ZK4810 

B&K 2706 

F. F. 1 
B&K 3550 

Computer 

Figure 4.9 Experiment layout for the mobility measurement of the beam 
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The comparisons of the driving point mobility at A and the transfer mobility at B obtained 

by FE analysis and the measurement are shown in Figures 4.10 and 4.11 respectively. Good 

coincidence of the mobility spectra in the frequency below 800 Hz is displayed. To check 

the correctness of these two Figures by analytic solution of the model frequencies, the 

natural frequency of a beam in bending vibration, refer to Thomson (1993), can be 

expressed as: 

EI 1/2 

0) n= Cn (rad / s) (4.63) 

Here 

Con = Cn 
2.1 x 10 11 x 1.22 x 10-9 

1/2 

= 26.68 Cn 
7850 x 4.585 X, 05 X, 

Where Cn= 22.49 121.0,298.6,. .. for symmitrical modes. Thus, the natural frequencies 

of the first two symmitrical modes are 597.6 and 3228.3 rad/sec respectively, i. e., 95.1 Hz 

and 513.8 Hz. These are coinciding with the peak frequencies shown in Figures 4.10 and 

4.11. 

Also. the same driving point and transfer mobilities are analyzed by using the developed 

stress wave model with two equal beam elements only, each of length 0.5m, and compare 

to that by ANSYS. The results are shown in Figures 4.12 and 4.13. Very good coincidence 

is obtained. 
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Figure 4.10 Comparison of the driving point mobility spectra of the beam by ANSYS and 
experiment. 
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Figure4.11 Comparison of the transfer mobility spectra of the beam by ANSYS and 

experiment 
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Figure 4.12 Comparison of the driving point mobility spectrum of the beam by stress 
wave model and ANSYS 
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Figure 4.13 Comparison of the transfer mobility spectra of the beam by stress wave 
model and ANSYS 
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From these comparisons in Figures 4.10 to 4.13 
ý it illustrates: 

I. The mobility experiment is credible. 

2. The stress wave model is very efficient in time saving to form the global mobility matrix 

by using fewer elements and accurate for mobility analysis by using only very few 

elements. 

3. Even in higher frequency range up to 4000 Hz, the stress wave model for mobility 

analysis can maintain the precision by using very few number of elements, while the 

number of elements used for the FE analysis has to be increased as the frequency is 

increased. This is compared in Figure 4.14. 

lE+l 

1 E+O 

1 E-1 

1 E-2 

-0 1 E-3 

1 E-4 

1 E-5 

1 E-6 

Driving point mobility 4 

Experimental data 

ANSYS predicted 

Stress wave beam element 

rrrr 

1 10 100 1000 10000 

Frequency(Hz) 

Figure 4.14 Comparison of the driving point mobility spectra of the beam in higher 
frequency range. 

4.5.2 Validation of Mobility of a Square Plate 

Consider a square steel plate of dimension I 000mm xI 000mm x 2mm. All four edges of the 

plate are simply supported. Driving point of the excitation is located at the center of the 
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plate. The input data for the driving point mobility analysis by using the stress wave model 

and ANSYS are: 

plate size 
Young's modulus 
density 
Poisson's ratio 
damping ratio 
element length 

number of elements 

1000mmxlOOOmmx2mm 
2.1 E+ II N/M2 

7850 k g/M3 
0.25 
0.001 
0.1 mxO. Im for ANSYS and 0.5mxO. 5m for stress wave 
model 
100 for ANSYS and 4 for stress wave model 

The mesh generation for the FE mobility analysis is shown in Figure 4.15. Where 100 

rectangular plate elements are used. While in the stress wave model only 4 stress wave 

plate elements are adopted. 

ANSYS 5.3 
FEB 17 1998 
23: 18: 49 
PLOT NO- 1 
ELEHENT9 
TYPE NUM 
u 
F 
JUST 

XIf -I 
YV -1 
ZV =1 
DIST=. 673605 
XF =. 5 
YF =. S 
Z-BUFFER 

Figure 4.15 Mesh generation of the plate for FE mobility ana ysis. 
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:: > 1E-4 
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1 E-6 - 

Figure 4.16 

1 E-7 -1 71 rit 
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Comparison of the driving point mobility spectra of the plate by stress wave 
model and ANSYS. 

The analysis results of the central driving point mobility spectra by the stress wave model 

and the FEM are compared in Figure 4.16. Also very good coincidence is shown in lower 

frequency range (to 120Hz ) only, while in higer frequency range the deviation of FEM 

becomes greater and greater. Once again it proves that the stress wave model for mobility 

analysis in plate is efficient by using fewer elements especially when applying in the higher 

frequency range. 

4.6 Validation of the Coupled FE and BE Model 

Consider a submerged spherical shell of radius Im and thickness 0.03m. When the shell is 

subjected to a harmonic internal pressure of magnitude I Pa, the analytical solution of the 

sound pressure and normal velocity on the surface of this spherical shell can be found in 

the studies of Everstine (1991) and Jeans and Mathews (1990). Figure 4.17 shows the 

coupled FEM/BEM model. Comparisons of the numerical solutions of the spectra of the 

surface pressure and normal velocity by using equations (4.61) to that by Everstine are 

Driving point mobility 

ANSYS predicted 

Stress wave plate element 
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I . 

shown in Figures 4.18 and 4.19 respectively. Where the abscissa in the Figures adopts the 

wave number in air kaý which is (o/c,,, Ca is the speed of sound in air. The coincidence of the 

curves validate the coupled FE and BE model being credible. Detail accuracy analysis of 

the application of the coupled FE/BE model for predicting the underwater sound radiation 

is discussed in section 7.1.3 of Chapter 7. 
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Figure 4.17 Coupled FEMMEM model of a spherical shell 
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Figure 4.18 Surface pressure spectrum on a spherical shell under harmonic internal 

pressure excitation 
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CHAPTER 5 

EXPERIMENTAL MODELS FOR VALIDATING 

POINT AND TRANSFER MOBILITY OF 

A MACHINE TO FOUNDATION 

To validate the accuracy of applying the mobility analysis model established in Chapter 4 

to the machine induced noise and vibration transmission, mobility measurement studies 

were undertaken on two scale models of engine room structure of two different ships. The 

larger model is 3m long and the smaller one is 0.585m long. Both models were performed 

the mobility measurements to validate the correctness of the four-pole parameters method 

described in Chapter 3 for ascertaining the mechanical vibration and structure-brone noise 

transmission. In addition, the effectiveness of the transmitted vibrational power reduction 

via the resilient mounts of a machine has also been characterized during the experiments. A 

resilient mount usually composed of an elastic element, such as a spring, and a viscoelastic 

element, such as a rubber piece, to absorb and dissipate the vibrational power. The 

characterization is performed by the comparison of the transfer mobilities, the vibrational 

velocity spectra and the transmitted power spectra when the scale model of engine room is 

installed resilient mounts with and without rubber pad respectively. 

Secondly, the smaller model of the engine room structure also used to illustrate the 

validation of a machine induced underwater acoustic radiation prediction obtained by the 

coupled FEM/BEM model described in Chapter4 and experiment measurement in a water 

tank respectively . This part of the study will be described in the next Chapter. The reason 

for the adoption of a smaller scale model for the underwater acoustic radiation studY is 
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owing to the consideration of reducing the reflection effect of the tank wall as far as 

possible. 

Finally, a patrol vessel study was undertaken by applying the mobility theory and FEA to 

understand the structure-borne noise transmission from engine. For the purpose of 

reducing the noise level onboard, the effectiveness of squeeze-film technique was also 

assessed in the application. A squeeze film is an auxiliary plate attached parallel to the 

surface of a structure at comers, thereby trapping a thin layer of air. Relative vibration of 

the plates pump this air at high velocities, resulting in energy loss due to the viscosity of air. 

Once the loss factor of the squeeze film damping plate is determined, the mobility 

reduction can be analysed by FEA. 

Basically, the measuring system common to the mobility measurements were arranged as 

shown in the block diagram of Figure 5.1. The specifications were: 

Accelerometer, B&K 4370, weight 54g , suitable for a frequency range of 0-5 kHz, 

5% error for a range 0.2-3.5 kHz, and 10% error for a range of 0.1-4.8 kHz, 

-2 maximum acceleration 20kms 

Hammer-kit , B&K 8202, suitable for a frequency range of 0-7 kHz (which was 

defined as a lOdB force amplitude drop range) with steel tip, weight 10.3g, force 

range 500-5000N, exerted duration 0.25-2 ms; attached force transducer, B&K 8200, 

suitable for a frequency range of 0- 10 kHz, weight 21 g, force range 1 OOON (tension) - 

500ON (compression) stiffness 5xlO 
8 Nm -1 

, resonant frequency 35 kHz, charge 

sensitivity 3.79 P C/N. 

40 Charge amplifier, B&K 263 5*8 sets, magnification factor range 0.1 - 1000 mv/unit. 
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Tape recorder, TEAC RD-135T, 16 channels, reliable frequency band 0-5 kHz for 8 

channels used simultaneously. 

0 Spectrum analyser, B&K 3550,8 channels, highest effective analysis frequency range 

26.5 kHz for each channel. 

Impedance head, B&K 800 1, weight 31g, 5% error for range 1 Hz -6 kHz and 10% 

error for I Hz -10 kHz. 

The accelerometers, charge amplifiers, and force transducer attached to the hammer-kit and 

the digital tape recorder were utilized together to measure the necessary data related to the 

mobility. 

Hammerkit Force transducer Charge amplifier 
BNC Cable 

FFT analyser Recorder 

Structure ANC Cable BNC Cable 

ccelerometer 
Pj Charge amplifi 

Figure 5.1 Instrument arrangement for mobility measurement 

5.1 Mobility Study of Scale Engine Room Model (1) 

Consider a scale model of an engine room structure as shown in Figure 5.2. This model 

with a length 3 m, consists of two equally spaced web frames, two end bulkheads, four 

girders on the bottom, one stringer on each side shell and two hatchside deck longitudinals. 

In the middle of the bottom a bedplate, 600mmx3OOmm, is installed and botted to the 

bottom girders. On the top of the bedplate four resilient mounts were used to support a 
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steplees motor. On the shaft of the motor there is attached a deliberately designed eccentric 

mass to simulate a dynamical unbalance. 

In order to recognize the structure-borne sound transmission via the resilient mount of the 

motor-resilient mount-foundation structure, also shown in Figure 5.2, all mobilities in 

equation (3.108) are necessary to be measured. 
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5Lý 
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400 

400- ---ý 800 

150 

150 200 

752 

mount 

Figure 5.2 Scale engine room model (I) for mobility measurement 

The locations of the mobility measuring and knocked points for the motor-resilient mount- 

foundation structure are shown in Figure 5.3. Where point T was located at the centre of 

All steel plate 
B-B section 
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gravity of the motor, points 2 and (5) were located close to the bolt joint of the motor and 

the resilient mount while point (A) was close to the bolt joint of the bedplate and the bottom 

girder. The scale engine room model, had a mass of 500 kg, was hung in air and floating in 

a water tank respectively during the mobility measurements. The mobility measurements 

were undertaken by the conditions defined by: 

M12: hung and separated the subsystem A, knocked point 2 by a hammer and 

measured the transfer mobility at point T. 

M22: hung and separated the subsystem A, measured the point mobility at point 0. 

M33: put subsystem A on subsystem B together but did not fasten, measured the 

point mobility at point (5). 

M34: put subsystem A on subsystem B, knocked point (A) by a hammer and 

measured the transfer mobility at point (5). 

M41: linked and fastened the subsystems A and B, knocked point T and measured 

the transfer mobility at point (A). 

where subsystems A and B are coupled in series as shown in Figure 5.5. 

computer 

knocked 
point T 

measuring 
point 

FFT 
B&K 3550 

hammerkit 

accelerometer 

Figure 5.3 Mobility measuring points and experiment setup of the motor-resilient mount- 

foundation system 

For the mobility testing of the mounts, which interposing the bedplate and the girders in 
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Figure 5.2, a sleeve type of resilient mount as shown in Figure 5.4 was selected to study. In 

which the spring and rubber piece put in series connection within a sleeve. Where the 

rubber piece can be replaced. Thus, the selction of this type of resilient mount is capable of 

studying and comparing the vibration isolation characteristics for different kind and 

thickness of rubber in a replaceable way. 

8.2 

bolt 

sleeve 

spring 
rubber piece 

Unit: mm 

Figure 5.4 Configuration of the sleeve type of resilient mount 

5.1.1 Validation of the Four-Pole Parameters Model 

Consider the scale model as two subsystems A and B coupled in series as shown in Figure 

5.5. Subsystem A consists of the motor and the upper part of the sleeve type mount, while 

subsystem B consists of the lower part of the sleeve type mount, bedplate and the hull 

structure. To validate the model of equation (3.108), the comparison of 
IM41 I by direct 

measurement and by calculation were made. The comparisons have carried out for four 

cases, i. e., the scale engine room model hung in air as shown in Figure 5.6, and floated in a 

water tank, of dimension 4.2m long, 3.6m wide and 2.4m deep, with and without inserting a 

Butyl rubber piece in the resilient mounts. 

The comparison results are shown in Figures 5.7 to 5.10. Detail accuracy analysis of the 
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mobility model for evaluating vibration transmission via mounts is discussed in Section 

7.1 .1 of Chapter 7. 

Figure 5.7 represents the comparison of the predicted and measured mobility spectrum M41 

when the scale model was hung in air with rubber pieces interposing in the mounts. 

Figure 5.8 represents the comparison of the predicted and measured mobility spectrumM41 

when the scale model was hung in air without rubber pieces interposing in the mounts. 

Figure 5.9 represents the comparison of the predicted and measured mobility spectrumM41 

when the scale model was floating in the tank with rubber pieces interposing in the mounts. 

Figure 5.10 represents the comparison of the predicted and measured mobility spectrum 

M41 when the scale model was floating in the tank without rubber pieces interposing in the 

mounts. 

subsystem A 
------------- 

"ýJ'sýubsys-tem B7/ 

Figure 5.5 Couped subsystems A and B of the scale engine room model (1) 
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Figure 5.6 The hanging arrangement of the scale engine room model (1) 
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Figure 5.7 Comparison of the predicted and measured mobility spectrumM41 when the 

scale model (1) was hung in air with rubber pieces interposing in the mounts 
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Figure 5.8 Comparison of the predicted and measured mobility spectrumM41 when the 

scale model (1) was hung in air without rubber pieces interposing in the 

mounts 
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Figure 5.9 Comparison of the predicted and measured mobility spectrumM41 when the 

scale model (1) was floating in the tank with rubber pieces interposing in the 

mounts 

112 

10 100 1000 

Frequency (Hz) 

10 100 1000 

Frequency (Hz) 



-40 

I. -I 

-80 

-120 

-160 

Figure 5.10 Comparison of the predicted and measured mobility spectrumM41when the 

scale model (1) was floating in the tank without rubber pieces interposing in 

the mounts 

From the measured transfer mobility sprectra, M41 shown in Figures 5.7 and 5.8, the effect 

of the rubber pad for the reduction of transfer mobility function from the motor to the 

bottom structure can be characterized and is shown in Figure 5.11. It can be seen that the 

rubber pad can reduceM41 by an average amount around 12dB at the peak frequencies 

below 200 Hz, while the reduction in higher frequency is not apparent. 

113 

10 100 1000 
Frequency (Hz) 



-40 

z 

cn 1-1 E 

co 

-80 

-120 

-160 

a' 0-4 Gf 

% 

177 

measured in air 

With rubber 

Without rubber 

10 100 1 000 

Frequency (Hz) 

Figure 5.11 Effect of rubber pad in reducing the transfer mobility of the scale engine 

room model (I) hung in air. 

5.1.2 Prediction of Vibrational Power Transmission via Resilient Mount from Motor 

When the motor in the scale engine room model was rotating at a constant speed 1140 rpm, 

there was a vibration caused by the unbalanced mass attached to the shaft. This vibration 

can transmit to the foundation via the mounts. The vibrational power flow transmission 

can be predicted by using the velocity and impedance spectra as expressed in equations 

(3.70a) to (3.70c), in which the impedances are also related to the mobilities by equations 

(3.69a) to (3.69c). Thus the power flow calculation can be schemed as the flow chart 

shown in Figure 5.12. 

The measured vibrational velocity spectrum density functions at motor side and girder side 

of the resilient mount with/without rubber pad are compared in Figures 5.13 and 5.14 . 

Combining the measured mobility spectra, the predicted vibration power at input of the 
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mount are calculated as shown in Figures 5.15 and 5.16. Comparison of the vibrational 

power reduction via the resilient mount with and without rubber pad is shown in Figure 

5.17. It clearly shows that the Noise Reduction (NR) in power transmission via a resilient 

mount with rubber pad is better than that without rubber. Detail quantitative analysis of the 

effect of the rubber pad in reduction of vibration transmission is discussed in Section 7.1.4 

of Chapter 7 about the results shown in Figures 5.11 to 5.16. 

Installation of 
resilient mount 

Motor running 

Measure 
input velocity 

Pi. 
IV21 

- Re 
2 

in 

output velocity I -a (0 CL 
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P. 
NR=101og( 'n 

P-.., 

Figure 5.12 Flow chart for calculating the noise reduction in power flow transmission via 

resilient mount 
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Figure 5.13 Velocity spectra density at input and output sides of the resilient mount 

without rubber pad. 

20 

10 

0 

-10 

-20 

-30 

Vibrational velocity with rubber in air due to rotating motor 

Input end 

Output end 

Ll 

A 
4 

. , %, A/ 

%q 9 4 

0 1000 2000 3000 
Frequency(Hz) 

Figure 5.14 Velocity spectra density at input and output sides of the resilient mount with 

rubber pad. 
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Figure 5.15 Vibrational power spectra at input and output sides of the resilient mount 

without rubber pad 
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Figure 5.16 Vibrational power spectra at input and output sides of the resilient mount 

with rubber pad 
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Figure 5.17 Comparison of Vibrational power reduction via mount with and without 
rubber pad 

5.1.3 Validation of the FEM/BEM Model for Mobility Analysis 

To validate the coupled FEM/BEM model described in Chapter 4, the driving point 

mobility of the separate subsystem B in Figure 5.5, of the scale engine room model (1) as 

shown in Figure 5.18 and 5.19, was analyzed by the software ANSYS/SYSNOISE and 

compared with the measured mobility. Detail accuracy evatuation of the mobility analysis 

by using the FEM/BEM model is discussed is Section 7.1.2 of Chapter 7. 

Input data to the analysis are: 

plate thickness 
density 
Young's modulus of steel 
Poisson's ratio 
damping ratio 
Young's modulus of bungie rope 
linear stiffness of bungie rope 
number of rectangular plate elements 
number of master degree of freedom 

minimum element size 

:3 mm 
: 7860 kg/m 3 

: 2.1 x 1011 N/M2 

: 0.3 
: 0.0014 
: 4.7 x 106 N/m 2 

: 8.3 N/m 
: 8217 
: 670 
: 0.05 m 
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Figure 5.18 Geomentry of the experimental scale engine room model (1) 
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Figure 5.19 Mesh generation of the scale engine room mode (I). 
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The mobility experiment arrangement is shown in Figure 5.20. The driving point is located 

at the foot of the mount. The driving point mobility was measured when the scale model 

was floating in the water tank and hung by four bungie rope simultaneously. 

PoW 

/ 

Figure 5.20 Experiment arrangement 

The driving point mobilities predicted and measured in this condition is compared in 

Figure 5.21. The coincidence of the mobility spectra is fairly well below 550 Hz and 

deviates in higher frequency range. 

Even in lower frequency range the measured mobility spectrum existed fluctuations 

deviated from the predicted spectrum curve. This illustrates the influence of the reflection 
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effect of the tank wall. Deviations in higher frequency range can be explained as that 

element size should be less than one tenth of the structure-borne wave length as a common 

practice, Cabos and Jokat (1998), i. e., the credible frequency range is below 450 Hz for the 

established FEA mesh model. Thus, it can be concluded that FEA is only suitable for 

mobility analysis in lower frequency range of the analysis and the one sixth rule is proved 

to be applicable. 

0 
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2 

Figure 5.21 Comparison of the driving point mobility 
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Mobility Study of Scale Engine Room Model (11) 

5.2.1 Description of the Experiment 

In order to validate the accuracy of the mobility analysis and the FENI/BEM noise 

propagation models, experiments were undertaken on a smaller scale model of an engine 

room structure having a round bilge. This model with a length 808mm, is shown in 

Figure 5.22, consists of two end bulkheads, four girders on the bottom, one bilge tank on 

121 

0 200 400 600 800 

Frequency(Hz) 



each side. On the top of the girders there installed a bedplate and a stepless motor 

supported by four resilient mounts bolted on the bedplate. The motor was also designed 

with a deliberate eccentric mass on the shaft. The arrangement of mobility measurement 

is shown in Figure 5.23 and the configuration of the resilient mount used is the same as 

shown in Figure 5.4. 

1 

3 

5 

I 

169 

314 283.5 

unit: mm 

808 

T 

Xw. I S) 

1 

364.1 
1 397 

1404 

Figure 5.22 Scale engine room mode (H) for mobility measurement. 
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Figure 5.23 Instrument arrangement for mobility measurement 

5.2.2 Comparisons of Mobility and Vibrational Power 

The measured and predicted transfer mobilityM41when the model being put in water and 

in air with and without rubber pad are compared in Figure 5.24 to Figure 5.27. The 

resilient mount effect on measured transfer mobility of the same scale model (II) in water 

and in air are compared in Figures 5.28 and 5.29. When the motor ran at a speed 1800 

rpm, the rubber pad effect on the exciting vibration velocity and the transfer power of the 

same acale model (11) at the input and output ends are shown in Figure 5.30 to Figure 5.37. 

From the results, it is evident that resilient mounts have the effects to reduce transfer 

mobility, vibratory velocity and vibrational power by an amount of 5-200,2-5dB and 

10-40% respectively. The entrained mass of water apparently reduced the transfer 

mobility by an amount 5-1 OdB in the lower frequency range. 

Detail discussions regarding the accuracy analysis of the mobility model applying to the 

scale model (11) and the quantitative analysis of the effect of the fluid-structure interaction 

on the structure-bome vibration propagation are given in Sections 7.1.1 and 7.1.5 of 

Chapter 7 respectively. 
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Figure 5.24 Comparison of transfer mobilityM41 in air without rubber pad in resilient 

mount 
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Figure 5.25 Comparison of transfer mobilityM41 in air with rubber pad in resilient mount 
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Figure 5.26 Comparison of transfer mobilityM41 in water without rubber pad in resilient 

mount 
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Figure 5.27 Comparison of transfer mobility M41 in water with rubber pad in resilient 

mount 
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Figure 5.30 Velocity auto-spectra in air at input and out sides of the resilient mount 

without rubber pad 
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Figure 5.31 Velocity auto-spectra in air at input and out sites of the resilient mount with 

rubber pad 
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Figure 5.32 Vibrational power spectra in air at input and output sides of the resilient 

mount with rubber pad. 
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Figure 5.33 Vibrational power spectra in air at input and output sides of the resilient 

mount without rubber pad. 
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Figure 5.34 Velocity auto-spectra in water at input and output sides of the resilient mount 

with rubber pad 
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Figure 5.35 Velocity auto-spectra in water at input and output sides of the resilient mount 

without rubber pad 
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Figure 5.36 Vibrational power spectra in water at input and output sides of the resilient 

mount with rubber pad. 
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Figure 5.37 Vibrational power spectra in water at input and output sides of the resilient 

mount without rubber pad. 
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5.3 Patrol Vessel Study 

The fast patrol vessel investigated in this study was of 100 gross tonnage, with a maximum 

continuous main diesel engine output of 3000 HP*2 sets, with rpm=2100, gear ratio=2.7, 

and shaft rpm=780. It could achieve a maximun speed of approximately 31.55 knots. 

The measured noise levels in cabins were: 

engine room 11 5dB(A) 

captain's room 90dB(A) 

pilothouse 85dB(A) 

The main structure-bome sound sources are from main engines, reduction gears, generators 

and exhaust pipes. A major part of the structure-borne noise onboard the vessel was 

identified to be the main engine vibration transmitted via the mounts (Wang, 1996). The 

principal particulars of the vessel are listed and the general arrangement of the vessel is 

shown as Figure 5.38. 

length overall: 30.50 m; 

breadth moulded: 6.80 m; 

depth moulded: 3.55 m; 

draft moulded: 1.70 m; 

maximun speed: 31.55 knots; 

cruising speed: 28 knots. 

The specifications of the machinery in engine room were: 

Main diesel engine 

model: 

revolution speed: 

continuous rating: 

weight: 

MTU 16 V 396; 

2100 rpm 

3000 HP *2 sets; 

7.5 tons x2 sets. 
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Generator 

revolution speed: 

output: 

Reduction gear 

reduction gear ratio: 

shaft speed: 
type: 

1900 rpm 
23 kW*2 sets. 

2.7; 

780rpm; 

V drive. 

In order to attenuate the noise level in the cabins of the vessel, one of the measures adopted 

to reduce the structure-borne noise transmission from the main diesel engines was to install 

squeeze plates to the web of the engine girders. The squeeze-film damping technique and 

the prediction of its loss factor were developed by Chow and Pinnington (1982 and 1985). 

Each squeeze plate used is a rectangular steel plate of dimensions 300 mm long, 200 mm 

wide and 1 mm thick and tack welded to the web, at its comers, beneath the engine mounts. 

Figure 5.39 shows the locations of these squeeze plates. When the squeeze plate and the 

web vibrate out-of-phase with each other or in different wave length, then it fonns a air 

pumping effect, with the alternative action to squeeze the air in between the plates out and 

attract the outer air in, so as to dissipate the vibrational energy. 
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Figure 5.38 General arrangement if a fast vessel 
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Figure 5.39 Locations of the spot welded squeeze plates to engine girders. 

To perform the mobility reduction analysis, concentration is put on the bottom of engine 

room, as shown in Figure 5.40, since it is the structure part, close to the excitation source of 

the main desiel engines. The FE mesh generation including shell elements and beam 

elements is shown in Figure 5.41. 

The inuput data fed to ANSYS were: 

thickness of plate elements : 1.5,3,4.5,5,6,8,10,15 mm 

density of material : 7850 kg/m 3 

Young's modulus : 2. lxlOI1 N/rn 3 

Poisson's ratio : 0.3 

number of nodes : 5281 

number of shell elements : 7260 

number of beam elements : 1249 

number of master degrees of freedom : 500 
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Figure 5.40 Bottom structure of the engine room of the patrol vessel 
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Figure 5.41 FEA model of the engine room bottom of the patrol vessel 
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Figure 5.42 Number of the locations for mobility analyis 

By this FEA model, the mobility's at the mount positions on the girder, which were 

numbered as in Figure 5.42, can be analysed for the conditions before and after the 

installation of the squeeze film damping plates. The boundary conditions and the locations 

of master degree of freedom of the FEA model are shown in Figures 5.43 and 5.44 

respectively. The damping ratio at these portion of attached plates raised from 0.001 of the 

original structure to 0.01, corresponding to the loss factor 0.02 in the frequency range 

below 500 Hz as shown in Figure 5.45. This data was obtained by Wang and Yang (1999). 

The comparsons of the analysed driving point mobilities at the mount positions are shown 

in Figure 5.46 to Figure 5.49. 
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Figure 5.44 Locations of the master degree of freedom 
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Figure 5.45 Comparision of loss factor by the SEA model between two finite parallel 

coupled plates and the compressive flow model between two infinite parallel 

coupled plates (Wang and Yang, 1998) 
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Figure 5.46 Comparison of mobility at mount I with and without squeeze film 
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Figure 5.47 Comparison of mobility at mount 2 with and without squeeze film 

-60 

-80 

(j) 

-100 

-120 

-140 

-160 
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Figure 5.49 Comparison of mobility at mount 4 with and without squeeze film 

It is apparent that the peak mobilities were reduced by 5-10 dB after the installation of the 

squeeze film damping plates. Also, the comparison of airborne noise level in the cabins 

were measured and the improvements can be seen in Table 5.1. There are also a 3-11 dB(A) 

in airborne noise reduction. Detail discussions of the quantitative effect of the squeeze-film 

damping on the reduction of structure-bome vibration transmission are given in Section 

7.1.6 of Chapter 7. 
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Table 5.1 Comparison of airborne noise level in cabins of the patrol vessel 

C Airborne noise level 
ompartment Original Improved 

Engine room 115 112 
Captain room 90 86 
Lavatory of captain's room - 91 
Deputy captain's room - 89 
Lavatory of deputy captain's room - 93 
Cabin room - 82 
Dining room - 84.5 
Galley - 85 
Meeting room - 80 
Pilothouse 85 74 
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CHAPTER 6 

APPLICATION OF THE COUPLED FEM/BEM MODEL 

TO PREDICT MACHINE INDUCED UNDERWATER 

ACOUSTIC RADIATION 

The coupled FEM/BEM model can be applied for solving the fluid-structure interaction 

problem in structure-borne noise propagation and underwater acoustic radiation of ships. 

Accordingly, the estimation of the structure-bome noise characteristics of a ship is 

important in the design of a quiter ship structure. The hull vibration response and the 

pressure distribution on the wetted surface of a ship subjected to the excitation from the 

source like a machine can be analysed by utilizing the developed method. For this part of 

application and validation of the numerical model can be illustrated by taking the scale 

engine room model (11) into account. 

6.1 Numerical Analysis Model of the Underwater Sound Radiation for Scale Engine 

Room Model (11) 

The FEM and BEM meshes of the scale engine room model (II), as described in section 5.2, 

were established in Figures 6.1 and 6.2. 

number of shell elements 

number of nodes 

plate thickness 

Young's modulus 

Poisson's modulus 

material density 

Input data fed to the FEA are 

: 711 

: 654 

: 0.0024 m 

: 2.1 x1011 Pa 

: 0.3 

: 7860 k g/M3 

142 



SHIP FINITE ELEMENT MODEL 

Figure 6.1 FEM mesh generation of the scale engine room model (H) 

Figure 6.2 BEM grid generation of the wetted surface of the scale engine room model (II) 

Input data fed to BEM are : 

number of boundary elements : 180 

number of nodes : 201 

sound speed : 1500 m/s 

fluid density : 998 k g/M3 

When the scale model was floating at the center part of the free surface of the water tank, 
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with size 4.2 mx3.6 mx2.4 m (deep), and the motor ran at a speed 1800 rpm, the output 

power and vibrational velocity have been measured at the feet of reslient mounts as 
described in Section 5.2. Once these measured excitations input to the numerical model, 
the vibration velocity and pressure distribution on the wetted surface of the scale model (11) 

can be analysed by equations (4.62) and (4.63). The underwater radiated sound pressure 

can also be obtained by equation (4.67). 

6.2 Experimental Arrangement for Underwater Acoustic Radiation Measurement 

Put the scale engine room model (11) at the center part of the water surface and let the 

model floating freely but keeping it in the doubly symmetrical position relative to the tank 

with four bungee rope hung in assistance, as shown in Figure 6.3. Arrange four 

hydrophones also in the doubly symmetrical positions as shown in Figure 6.4. During the 

motor in the engine room was running at a speed 1800 rpm (30 Hz), the underwater 

radiated sound pressure from the surface of the bottom plate could be measured by these 

hydrophones. 

1. 

Figure 6.3 Experimental arrangement for underwater acoustic radiation measurement 
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Figure 6.4 Locations of the hydrophones 

6.3 Predicted and Measured Underwater Sound Pattern 

When the scale model (11) was floating at the surface center of a rectangular water tank of 

length 4.2m, breadth 3.6m and water depth 2.4m, the motor ran at 1800 rpm. The 

distributions of sound pressure, normal velocity, and sound intensity on the wetted surface 

are predicted as shown in Figure 6.5 to Figure 6.7. The predicted underwater sound 

pressure on two symmetrical planes in the fluid domain, apart from the wall of a distance 

0.3m for the location of hydrophones I and 3 and 0.6m for hydrophones 2 and 4, and a 

horizontal plane at a depth 1.5m are compared with the measured sound pressure level 

(SPL) by the four hydrophones in Figure 6.8 to Figure 6.10. 
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Figure 6.5 Predicted sound pressure distribution on the wetted surface 
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Figure 6.6 Predicted normal velocity distribution on the wetted surface 
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Figure 6.7 Predicted sound intensity distribution on the wetted surface 
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Ship Vibration Induced Radiation on Y-Z Plane at R=2.12m, 3OHz 
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Figure 6.9 Machine vibration induced underwater sound radiation at 30 Hz on Y-Z plane 

Ship Vibration Induced Radiation on X-Y Plane at R=2.12m, 3OHz 
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Figure6.10 Machine vibration induced underwater sound radiation at 30Hz at X-Y plane 
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From the comparisons of the radiated SPL shown in Figure 6.8 to Figure 6.10, it can be 

found some deviations. By the error comparison shown in Table 6.1, points 1 and 3 have 

larger errors than points 2 and 4. This is owing to that the locations of points 1 and 3 are 

closer to the tank wall than points 2 and 4. Thus the influence of the sound reflection effect 

at points I and 3 is bigger than that at points 2 and 4. While the predicted model by using 

the FEM/BEM software only consider the free-field sound radiation., Indeed, the validation 

of the FEM/BEM model needs an underwater anechoic chamber to constitute a free field 

environment for underwater sound radiation measurement. 

Table 6.1 Error analysis between the predicted and measured SPL 

Measuring point 1 2 3 4 

Predicted SPL (dB) 98.35 98.35 98.35 98.35 

Measured SPL (dB) 105-44 102.47 108.36 103.79 

Error (dB) +7.09 +4.12 +10.01 +5.44 
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CHAPTER 7 

CONCLUDING REMARKS 

7.1 Discussion and Conclusions 

In this study the machine (e. g. a motor or a diesel engine ) induced structure-borne sound 

propagation in the engine room model structures or the underwater acoustic sound 

radiation was analysed and measured. Basically the structure-bome sound power is 

predominantly transmitted through a sound carrying structure from a source via a number 

of contact points. In turn, the noise and vibrations are propagated in the structure possibly 

causing sensitive equipment to vibrate or to cause undesired radiated noise. In principle, 

this may be avoided by measures at sources, in transmission, during propagation or at 

radiation. 

To this point, the resilient mounts were characterised as an effective countermeasure to 

reduce noise and vibrational power transmitted from the source to the sound receiver as 

discussed in Chapter 5. In addition, the effectiveness of the squeeze-film damping plate 

has also been evaluated in this study, shown in Figure 5.46 to Figure 5.49, as a measure for 

the attenuation of structure-borne noise propagation at the positions close to the excitation 

source of the receiving structure. 

The quantitative evaluation of these countenneasures for attenuating the structure-bome 

noise and vibrations and the error analyses of the prediction models established in this 

study are discussed as follows. 
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7.1.1 Accuracy of the Mobility Model for Evaluating Vibration Transmission via 

Mounts 

The mobility theory discussed in Chapter 3 for the prediction of power flow transmission 

via a mount has been validated by a number of experimental measurement results on the 

scale engine room models (I) and (II) as shown in Chapter 5. The error analyses between 

the predicted and measured transfer mobilities, shown in Figure 5.7 to Figure 5.10, of the 

scale engine room model (I) are listed in Table 7.1. While that for the scale engine room 

model (11), shown in Figure 5.24 to Figure 5.27, are also analysed as appeared in Table 7.2. 

From Table 7.1, the mobility prediction model only has the average errors 2.8% and 4.0% 

different from that measured on the scale mode (1) in dry condition, with and without the 

rubber pad inserted in the resilient mounts, respectively. Whilst the mobility predictions 

of the scale model (I) have the corresponding errors 4.8% and 3.6% in water respectively. 

The greater errors are owing to the wave reflection effect of the tank wall in the 

measurements. This reflection effect does not have taken into consideration in the 

prediction model. 

From Table 7.2, it is evident that the average mobility prediction errors in the case of the 

smaller scale engine room model (11) are obviously reduced, to 1.4% and 3.6% in air, and - 

3.5% and 4.6% in water respectively. Since the smaller scale model subjected to less 

influence from the tank wall reflections. 

Thus, it can be concluded that a credible mobility model for predicting the transfer 

mobility of engine vibrations via resilient mounts has been established with a considerable 

precision at least over 95% both in dry and wetted hull conditions. 
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7.1.2 Accuracy of the Coupled FE and BE Model for Mobility Prediction 

When the machine induced vibrations fed into the bottom structure of a engine room via 
the contact points of mounts, this vibrations can propagate in the structure domain and 

radiate noise to ambient envirom-nent. To evaluate the vibration mobility spectral function 

of the structures, the coupled FE and BE model has been used to take the fluid-structure 

interaction effect into consideration. Applying this model the driving point mobility 

analysis of the engine scale room scale model (1) has been analysed and been compared 

with the measurements as described in Figure 5.21. Error analysis of the predicted mobility 

and the mean line of the fluctuating measured mobility spectrum is shown in Table 7.3. 

The mean error is exhibited to be only 4.0%. The fluctuations existing in the measured 

mobility spectral curve has been demonstrated to be the reflection effect of the tank wall. 

Table 7.3 Error analysis of the mobility predicted by the coupled FE/BE model on scale 
engine room model (1) in water 

Frequency (Hz) Mean error 
Condition 

100 200 300 400 500 600 700 800 
In 
-E lei I, 
n i=1 

predicted (dB) -65 -52 -60 -59 -38 -55 -60 -66 

measured (dB) -62 -50 -61 -62 -40 -53 -58 -63 4.0 

Error ej (%) -4.8 -4.0 +1.7 +4.8 +5.0 -3.8 -3.4 -4.8 

As described in Chapter 5, this FEM/BEM model is only suitable for mobility analysis of 

structure-bome propagation of vibrations in a lower frequency range, i. e., below 450 Hz. 

The mesh sizes of numerical model is limited by one-tenth of the structure-borne wave 

length, which is dependent on the frequency range to be considered, and can be considered 

as a common rule. 
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7.1.3 Accuracy of the Coupled FE/BE Model for Predicting Underwater Sound 

Radiation 

The established coupled FEM and BEM model can also be applied to the underwater sound 

radiated from the vibrations of the wetted hull. In Chapter 4, a fully submerged spherical 

shell in infinite fluid domain has been studied. By using this numerical model the predicted 

pressure and velocity spectrum due to unit han-nonic internal pressure has been compared 

with the analytical solutions by Everstine (1991) and Jeans and Mathews (1990) as shown 
in Figures 4.18 and 4.19. From the error analyses in Table 7.4 and 7.5, it can be seen that 

both mean errors within the range below the wave number under kaý2.25 are less than 3%. 

So this model can be concluded to be credible. 

Again, application of this combined FE/BE model to predict the radiated underwater sound 

of the scale engine room model (II) in fluid domain has been described when it was excited 

by the operating motor. By the error analysis of the SPL shown in Table 6.1, there is a 

mean error of -6.3% compared to the SPL measured at two pairs symmetrical positions. 

The greater error occurs owing to the developed FE/BE model was only considered the 

infinite and semi-infinite fluid domain conditions, thereby the error enlarged in the tank 

measurement. 

Table 7.4 Error of the pressure spectrum on the shell surface by FEM/BEM prediction 

with respect to analytical solution 

Condition 
Wave number in air, k. 

Mean error 
n 
Z lei I, 

n i=1 
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 

Analytical(Pa) 0.01 0.03 0.05 0.087 0.13 0.17 0.23 0.27 0.33 

FEM/BEM (Pa) 0.01 0.03 0.05 0.082 0.125 0.18 0.24 0.28 0.34 2.93 

Error ej 0 0 0 -6.1 -4.0 -5.6 -4.2 -3.6 -2.9 
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Table 7.5 Error of the velocity spectrum on the shell surface by FEM/BEM prediction 
with respect to analytical solution 

Wave number in air, ka Mean error 
Condition 

0 25 0 50 0 75 1 0 25 1 1 50 1 75 2 00 2 2' 
n Zleil 

. . . . . . . . . 5 

Analytical 
(X 10-7 M/S) 

0.20 0.40 0.65 0.80 1.20 1.30 1.76 2.00 2.30 

FEM/BEM 
(x 10' m/s) 

0.20 0.40 0.65 0.82 1.19 1.40 1.70 2.10 2.40 2.63 

Error ej (%) 0 0 0 -2.4 -1.7 -7.1 -3.5 -4.8 -4.2 

7.1.4 Quantitative Effect of Rubber Pad in the Reduction of Vibration Transmission 

The mobility analyses and measurements have been discussed in Chapter 5. To quantify 

the effect of a rubber pad in the resilient mount to reduce the machine induced vibration 

transmission into the bottom structure, two scale engine room models (1) and (H) has been 

considered by interposing in the resilient mounts with or without rubber pads 

respectively during the motor was running. 

In the case of the scale model (1) hung in air, the peaks of the transfer mobility spectrum 

were reduced by the amount summarized in Table 7.6 and the mean reduction of the effect 

of the rubber pad on the transfer mobility attained to be 6.42 dB. The comparisons of the 

vibrational velocity auto-spectra at the input and output sides of the resilient mount with or 

without rubber pad at spectral peaks are detailed in Table 7.7 and 7.8 respectively 

Table 7.6 Effect of the rubber pad on the transfer mobility reduction at the peak 
frequencies of the scale engine room model (1) hung in air 

Peak frequency (Hz) 
Mobility (dB) 

20 32 48 60 101 140 160 180 200 360 420 540 

with rubber -81 -84 -87 -73 -77 -95 -95 -83 -92 -84 -96 -79 

without rubber -71 -78 -63 -65 -50 -78 -78 -79 -82 -84 
1-82 

-90 

reduction 10 6 14 8 14 17 17 4 10 0 -14 -11 

mean reduction 6.42 (dB) 
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From the quantitative analyses, it is found that the rubber pad in the resilient mount has the 

effect to reduce the vibration power flow transmission in three ways, i. e., (1) the reduction 

of the transfer mobility level at the peak frequencies in a wide band as summarized in 

Table 7.6, (2) the reduction of the input velocity auto-spectrum level at the peak 

frequencies in wide band as indicated in Table 7.7, and (3) the reduction of the output 

velocity auto-spectrum level at the peak frequencies also in wide band. While the velocity 
differences at input and output sides in both conditions of the resilient mount with or 

without rubber do not change apparently 

7.1.5 Quantitative Effect of the Fluid-Structure Interaction on Structure-Borne 

Vibration Propagation 

To quantify the effect of the fluid-structure interaction on the structure-borne vibration 

propagation, the study of the scale engine room model (H) described in Chapter 5 can be 

illustrated as an example. Comparisons of the changes in the transfer mobilities of the 

model both in dry and wetted conditions are shown in Figures 5.28 and 5.29, the changes 

in the velocity auto-spectra are shown in Figures 5.30 and 5.34 and the changes in the 

vibrational power spectra are shown in Figures 5.32 and 5.36, respectively. Tables 7.9,7.10 

and 7.11 exhibit the individual comparison results for the condition concentrating on that 

the resilient mount interposed with rubber pad. 

Table 7.9 Effect of the fluid-structure interaction on the transfer mobility 
of the scale engine room model (II) 

Peak frequency range (Hz) 
Mobility 

spectrum (dB) 20 32 
40 
1 

50 

55 
1 

60 
105 180 230 350 

600 
1 

650 

700 
1 

800 
Dry model -83 -90 -91 -78 -78 -83 -90 -90 -90 -88 

Wetted model -90 -90 -100 -102 I -92 -110 -97 I -96 -103 -100 
Reduction 7 0 9 24 1 14-- - r27 

7 6 
rl 3ý 12 

Mean reduction, 11.9 (dB) 
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It is found that the mean reduction of the peak transfer mobilities with an amount 11.9 dBý 

as shown in Table 7.9, due to the fluid radiation impedance effect. When the motor on 
board was running, the mean velocity auto-spectrum level was reduced by 0.6 dB and 1.5 

dB at input and output sides of the mount respectively by the fluid-structure interaction 

effect, as shown in Table 7.10. A special phenomenom has been found in Table 7.11 that 

the mean peak vibrational power at the output side of the mount was enhanced by 0.016 

Watt due to the fluid-structure interactions. While in a usual condition the power at the 

input side of the mount should be reduced. This phenomenom could be explained by the 

reason that the vibrational power spectra at both sides of the mount changed hugely within 

the range between 450-550 Hz, as shown in Figures 5.32 and 5.36. Since the bigger the 

area between the power spectral curves the more the power flow was transmitted. Thus, in 

the wetted hull case, the input side of the mount absorbed more vibrational power from the 

output side owing to the change of vibration pattern within this frequency range compared 

with the dry hull condition. 

Thereby, it can be concluded that the fluid-structure interaction affects the structure-borne 

vibration propagation in many aspects. Normally, this interaction can reduce not only the 

mobilities and vibrational velocity levels, but also change the vibration pattern of the 

structure. 

7.1.6 Quantitative Effect of the Squeeze-Film Damping on the Reduction of Vibration 

Transmission 

By Figures 5.46 to 5.49, the driving mobilities at the four engine mounts supported by the 

bottom girders, which was improved by attaching the squeeze-film damping plates, have a 

mean reduction at the top twelve peak frequencies 6.3 dB at mount 1,6.2 dB at mount 3; 

5.3 dB, at mount 2 and 5.6 dB at mount 4; as displayed in Table 7.12. It is seen that the 

reductions at mounts I and 3; and that at mounts 2 and 4 are analogical respectively. This 

is owing to the mounts 1 and 3; and the mounts 2 and 4 were respectively supported by the 

same individual girder as shown in Figure 5.39. The girders linked to the engine via the 
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mounts disperse vibrations. Thus, once the driving point mobilities were reduced, the 

cabins' noise levels were attenuated accordingly. 

7.1.7 Conclusions 

From the work of the study, it is concluded that the developed models for predicting the 

mac ine nduced noise and vibration in a ship structure have been ascertained to be 

credible with an error less than 5%. These models were established in order to solve the 

transmission, propagation and radiation of noise and vibration problems starting from a 

machine source to the receiver in a logical and realistic ways. 

Besides, the characterisation method of the resilient mount of a machine and the squeeze 

film damping plate used as the countermeasures for the structure-bome noise and vibration 

control has been prefonned. 

7.2 Recommendations for Further Work 

Based on the stress wave model of beam element and the rectangular plate element derived 

in Chapter 4, the stress wave shell element is necessary to derive for more diverse 

applications. Further, the interface program of the stress wave model should be edited to 

combine the BEM software to predict the structure-borne noise and vibration propagation 

in the intennediate and higher frequency range. 

The optimization algorithm for determining the size, quantity and locations to apply the 

squeeze-film damping plates needs to be realized for practical use. 

Once the underwater anechoic chamber at the author's Institution, the National Taiwan 

Ocean University, being completed, the underwater sound radiation experiment performed 

in this study shall be repeated by virtue of the free field environment and comparisons 

made. 
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Appendix A 

Derivation of the Transfer Function Matrix of Finite Rectangular Plate 
for the Two Dimensional Elastic Bending Wave 

Wave equation of a plate in flexure(Cremer et al, 1933): 
AATi-- k"-ri =0 

The solution of equation (A. 1) can be expressed as: 

fi = C, Ho") (kr) + C, H. 2) (-jkr) (A-2) 

where H -1 (kr) and H(, 2)(-jkr) are the Hankel functions of the second kind, The 
0 

expanded form of H12) (kr) is: 0 

H(23 (kr) = Jo (kr) - jYo (kr) 0 
(A-33) 

where J, (kr) is the Bessel function of the first kind of order zero and YO (kz) is the 

Bessel function of the second kind of order zero. They are : 

JO(k. r) I-+ 
(kr)" (kr) (A-4) 

22(1! )2 2"(2! )2 2 

Y, (kr) 
2J. (Icr) (In 

kr 
+, Y) + 

m-1 h' 
(kr) (A-5) 

22 it 

I 

(in! )' 

where 

,y ~- 0.5772 is the Euler constant 

hr[L =I+ 
I+I 

+- - -+ 
I (A-6) 

23 In 

Using an asymptotic expansion, H2(kr) and H(2)(-jkr) have the fbHowing 
000 

characteristics -: 
'- Lj 

In -kr for jký << I 

H(l) (kr) =, 'x) 24 for jký >> I 
Fe 

g ; ikr 

(A-7) 
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By using the boundary conditions explained in section 5.4, the solution of equation (A. 1) 0 
has the form as: 

_Fo 7) (kr) - H, 2) (-jkr)] 
2jB'k' 

[H 0 (A-8) 

for the force excitatioa Fzj acting at a comer, as shown in Figure k 1. Thus the lateral 

velocity and angular velocity distribution of the plate can be obtained by: 

FzcD 
2 [H(") (kr) -H 

(2) (_jk,. )] - 
Fzl 

rl(kr) (A-9) V, - (x, y) = icoli =- 2B'k ZFO 

-IV G'v Fw öH(2)(rr) aH (2) (-j 1, cr) 

W. (x, y) -0ZZ -Z, . -, .00y (A. 10) 
le ODY ODY 2B ,1 er r 

Fzco M02) (Kr) M02)(-jlcr) x -)Vz ar (A. 11) wy(x, y)=o -avz c=2r 
ay &N 2B'x 

[ 

O-r & 

where r= (x :1+ Y') 
Y2 

F, v 
Z3 

w 
YI'm Y3 

X1 

F, 
. 13, vzl 

X1 -1 
m 

xi 

/ (X3, Y3) 

(Xl') Y') 
wyl7myl 

Fz42v 
Z4 

Iw P) 
m 

Y4 Zllp 

WX42MX4 

(X4; Y4) 

z Fz2) v Z2 
xm 

ZWX2. 

X2 
WYZ m 

Y/ 
Y. ) 

Figure A. I Nodal forces and nodal velocities of a rectangular in bending waves 

For the mobility transfer relations between nodal forces and nodal velocities, it can be 

written as: 

v -v wxl ... ww... wT= 
[Hij IF, 

*Fz4Mxl *Mx4MY, ... m )T (A-12) 
Zl z4 x4 YI y4 

)I 

y4 

w. or w, can be From equation (A. 9) - (A. 11), the relations between F. and v7 

established respectively. 
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Setting Fj =1 in equation (A. 9) at node j, then 

Hij = v. 1 -K 
a) 

2 
for 

2(am" 2B'K 

H= CD (2) (2) (-j -Kr, for i#j ij 
Vz 

2 
[H,, (Krij) - HO ij 

where rij is the distance between nodes i and j. Then Hij, i, j=1,2,3,4 can be 

obtained. 
By equations (A. 10) and (A. 11), the derivatives of Hankel functions with respect to kr 
are: 

(2) 2k(kr) 4k(Icr)3 6k(kr)5 2j 07-+4 
! )2 62F...... -Jo (kr) [(In JE + r) or (17 2 (2 2 (T) 7C r2 

2k(kr) 00 (-I)m-1 hm 2mk(kr)2m-1 2(11)2 
+4+6 

)2 
++7 

2M(M! )2 22 (2! )2 2 (T 1--d 2 (A. 13) 
M=l 

and 

-il (2) ( kr) 0 2k(kr) 
i- -4jk(-jkr)3 -6jk(-jkr)5 + 

2 (,! )2 4 )2 26 (T )2 022 (2! 

2j Jo (-jla) I-L [(In -jkr + r)(- -2jk(-jkr) + -4jk(-jkr)3 
7C r 7c 222 (1! )2 26 (2! )2 

-6jk(-jkr)5_ + ... )+ 
00 (-') m 2mik(-jkr)2, -l 

26 (3! )2 

E2 

2m( 2 (A. 14) 
M=l 

Substituting the distance r= rij ( i, j =1,2,3,4), and the relative y distance y=y ij for the 

mode i to the node j of force excitation F. into equations (Al 0), then Hij (i=5,..., 8; 

j=l,... 4) can be found. Similarly, substituting the distance rij ( i, j =1,2,3,4) and the 

relative x distance x ii for the node i to the force applied node j into equation (A. 11), 

Hij (i=9,... )12; 
j=l,. - -4) can be found. 

For the excitation couple M, applied at node j of a relative small arm 2a, as shown in 

figure A2, the total velocity can be obtained as: 
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-F 

2 
K =2aF 

I 
X=O 

Figure A2 A couple applied at node j of a rectangular plate 

(2) (k ) (2)(_jkr )] (2) (kr V2 (X, Y) = 
Fz 

'w {[H, - Ho - [HO 2) - Ho 2) (_j k12 )], (A. 16) rl 1 2B k2 

where 

2 [(y +X 

2 ]l r2=[(y+a)2+X 2 

The angular velocities w,, and wy are: 

wx (X, Y) = "v. = v. or 
e ör e 

m 
xj aH (2) (kll aH(2) (_jkll) 

00] Y-1 

2 B'k a ar, ar, ri 

aH (2) (k M (2 
2)3 0 r2 0) 

Hla y+q) 
&2 ar2 r2 (A. 17) 

W N=av & 

X(XýY) =0 
ay ar ay 

(2) (k aH(2) mxjcü L9H 0 rl 0x 
2 

ff 

2 B'k a er, ri 

aH (2) (kr2 LDH 
(2 ) Hkr2 

001 'X 
&2 &2 r2 

where "a "' is set to be a small distance, namely a= 10-5 m. Expanding the Hankel 

functions 
(2) (krI H 1) and 0 H (2) (kr 0 2) with respect to k(y+a) respectively then the 

propagation functions become: 
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rl I+ 2k 2 (y - a)2 [(XI + CC2 In yk(y-a) I CC2 In(-J) 
22 (A. 19a) 

(la2) 1+ 2k 2 (y + a)2 CCI yk(y+a) 
-I + CC2 In 

2 CC2 In(-j) (A. 19b) 

=--L- ii where a14 Tx-) a2 jj, y=1.78 1. 

For 

1 2(y-a) 
_ 

y-a &l 
-x «j7 - -i - ri 

y+a X 
rr OY 
2 cr, 2 

Successively substituting the x distance x= xi (i=1,..., 4) and ri = (rAj of the distance 

from the concer node i to the moment excitaion comer j into equations (A. 16) to (A. 18) 

respectively, then Hij (i=1,... 12; j=5,... 8) can be attained. 

Similar procedure can be utilized to derive the mobility transfer functions Hij (i=1,... 12; 

j=9,..., 12) for the moment excitations Mýj (j 1,... 4) applied at comer j via the velocity. 

propagation distributions as: 
mýj(0 (2)(kr, ) (2)(-j14z1)] (2)(kl, v, 2) - Ho 2) (_jkr 

2 
)]j 

ý 
(x, y) ([HO - Ho - [HO 

23k2 

aH (2) (kr, ) L9H 
(2) (_jkr, )X avz 

- C-ýf &= MXJGD 0 2 c9r e2 B'k a00 

aH (2) (k, aH (2) (_jla ) 
0202X 
&2 0r -t2 

2 

(X, y) = 
ýM- 

w 
mxjüD 

= 
av JL 

- 
9 

aH(2) (kr, ) 

m 
öH (2) (_jkr 1) 0] x-a 

y ok r 0931 2 B'k a 0 o r, 09r, ri 

aH (2) (la 
2 

aH(2) -AT2 x+a} [ 
-r2 r 0 &2 

2 

Thus, to summarize the results of Hij i, j=1,2, ..., 12 and take a =10-' m, the full mobility 

matrix of a rectangular plate for bending wave propagation can be fisted as table Al. 

Clearly, [Hij ] is symmetrical. 
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Appendix B. 

Helmhotz Equation and Boundary Integral Method 

B. 1 Helmhotz Equation 

If the underwater acoustic pressure can be expressed as a harmonic function of time with frequency 

cD, then 

P(Y)e"' 

The governing wave equation for underwater sound propagation is, 

V2 P(ilt) ::: 
I 

C2 
130(7) 

where c is the sound propagation speed in water and 

transform on both sides of equation (B. 2). 

[V'p(ft)- 9,, p(-r, t)]e-i"tdt =0 
00 c 

or 

v2 
p(it)e-""dt) + (0 (f p(i, t)e-"'dt) =0 

C2 Co 

a 
a2 

tt &2 

Define P(i, O) p(Y, t)e-"'dt and the wave number k= a) / c, then equation (B. 3) becomes 

V2p(f, o) +k 2p(y, Lo) = 

Equation (B. 4) is known as the Hetmhotz equation. 

The time domain pressure distribution can then be obtained by the inverse 

P(Y,, co)e"'dcD P(Tt) 27c 

Fourier transform 

(B. 1) 

(B. 2) 

Take Fourier 

(B. 3) 

(B. 4) 

(B. 5) 

Bl 



B. 2 Boundary Inte-gral Method Im 

B. 2.1 Basic Boundary Integyral Theorem 

Suppose there are two functions 0 and X which have continuous first and second order derivatives, 

then the following relation can be obtained from the Green's Second Identity: ZD 

f ((DV2% - %V'(D)dV f ((D a% 
- 1% 

a(D)ds 
(B. 6) 

vv an an 

where 
a 

means the outward divergence on the surface of the control volume. an 

Consider the field point F= F(x, y, z) and the source point f=F 
, 
(x.,, y., z., ) in the control volume, 

set r to be the distance between these two points, then the free space Green's function can be 

expressed as: 

e 
ikr 

(B. 7) 
r 

where 

r= 
V(x. 

- X)2 + (y 
3_ 

y)2 + (ZS 
_ Z)2 

If P represents the pressure function in V, then from the Green's theorem 

'2p aG 
_ 

ap f (PV2G - GV )dV f (P Gý-)ds (B. 8) 
n vv 13n n 

Substituting the Helmholtz equation (B. 4) and the Green's function (B. 7) into equation (A. 8), then it 

becomes 

V'G+k'G=O (B. 9) 

From equations (B. 4) and (B. 9), it can be shown that within the control volume but excluding the 

points within the infinitesimal sphere aroUnd the field point there exists the relation : 
B2 



V(PVG - GVP) =0 (B. 10) 

or 

PVG - GVP =0 

B. 2.2 Boundary Integral Equation 

As in the right side of equation (B. 8) the boundary integral should consider the normal direction of 

the boundary surface. The propagation direction of sound can be characterised by the relative 

position of the source point and the field point. If within the control volume the sound field point is 

outside the sound source body, then it is an exterior propagation problem as shown in Figure B 1. 

Otherwise, it is an interior propagation problem, shown in Figure B2. 

nv 
/ F, 

SS 

/(9 \s 
-"(Field point) 

so 
ý 00 

V 

Figure B 1. Exterior propagation problem 

nv 

S 
r: 

r(Fleld point) 

F. 

so 

Source point 

Figure B2. Interior propagation problem 
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Consider the exterior propagation problem described as in Figure B 1, in which i means the 

position vector of a sound field point, SE is the spheric surface which encompassing the considered 

sound field point with a infinitesimal radiuse Sw represents the surface area of the infinite control 

volume V) nv is outward normal vector of the surface Sx, ns is outward normal vector of the 

surface of source body. At the source point nv and ns have opposite directions, ie, 
a 

=- a. 
an, anv 

From the Green's theorem, equation (B. 8) becomes: 

f 
G(f, F, ) IdS f (PVG - GVP)dV =0 (B. 12) 

SO+S, +S. anv anv v 

in which 

f[p(? 
) 

OG(7, 
G(f, "F) ]dS(Y) = 47cP(Y) 

S. anv anv 

f 
[P(00) 

OG(7, is) 
- G(F, Y) ]dS(oo) =0 

S'. anv L9nv 

so that 

47cP(Y) +, 
flp(ys) aG(f, G(T, 7 ap(f) 

s 
(B. 13) 

., 
) ýý \ýs / ]dS(f 

so anv anv ,) 

or 

47cP(i) = 
f[P(i.:, ) aG(f, G(Y, fs) ]dS(f, ) (B. 14) 
so anv anv 

Equation (B. 14) is named as the Exterior Helmholtz Integral Equation. 

If both the sound source point and sound field point are sited on the boundary surface of the sound 

source body, then the field point F can be only encompassed by an infinitesimal semi-spheric 

surface. Now equation (B. 14) becomes: 

f[p(f) IG(F2 fs) 
; 7CP(Y) = 

so 3 anv 
G(F2 is) 

anv 
]dS(Ys) (B. 15) 
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In the exterior propagation problem, if the field point is considered within the source body and is not 

pertaining to the interior region of the control volume V, then equation (B. 13) should be taken 

account for deleting the surface integral domain S je, 

G(i, is) ]dS(i) =0 ;0 önv anv (B. 16) 

As for the interior propagation problem, the derivations are the same as the exterior propagation 

problem except to put ns and nv in the same directions. 

After surnmarising various conditions of the r positions the Helmholtz equation can be expressed 

as : 

C(F)P(r) 
f 
[P(F) aG(i, is) 

_ G(f, fr 17) )'OP(S)IdS(f) 
so anv Onv 

where the C( F) values are listed in Table B. 1. 

Table BA C(F) values for various r position 

Position of r Exterior propagation Interior propagation 

outside So C(r 47c C(r 0 

on SO C(F) 27c C(F 27c 

F inside SO C(F) 0 C(r 47c 

As for other surface boundary like a corner or plane, then C(F) is taken to be : 

a-ir Cr r, 7 
C(-r) = 47c 

-fr, 's dS(-ý 
So an 

(B. 18) 
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B. 3 Fluid-Structure Interaction 

As the density of water is much greater than air, the coupling effects of fluid-structure interaction 

have to be taken into consideration for the vibration problems of an immersed structure. As shown 

in equation (B. 15), p(r ) represents the relative acoustic pressure on the wetted surface of a 

submerged sturcture in vibration. On the wetted surface there exists the relation: 

an = ip(ovn (? 
s) 

(B. 19) 

Now the Helmhotz Integral Equation of the submerged body surface can be expressed as : 

C("F)P(-r) =f lp(f, ) aG(-F, fs) 
+ ipcoG(Y, F, )V,, (?, )]dS(-r, ) (B. 20) 

so anv 

Utilizing the boundary element discretization technique on the submerged body surface, equation 

(B. 20) can be written as : 

f 
[N(?, )P(Y, ) ipco G(Y, 7 

So anv 

Equation (B. 21) can be expressed in matrix form as : 

(A](P)=[B]{Vn } 

where 

C(-r) - 
f[N(i, ) aG(r, ý)]dSj-r 

so anv 

f 

So 

By assuming that the modal point displacements of the 

form: 

boundary 

(B. 21) 

(B. 22) 

(B. 23) 

(B. 24) 

structure elements have the 
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(xn) = (X. }e icot 

then 

%, ý ýr (v 
a{x 

iG3{xn) (B. 25) at 

Substituting into equation (B. 22), it becomes 

[A]{PI=i(D[B]{x, ) (B. 27) 

-or 

[A] {P} = [G] {x�) (B. 28) 

where 

[GI=ko[B 

The fluid interacting forces applied to the nodal points of the wetted structure. boundauy surface are : 

ff,,, )= (a)T {p) = {ajT [A]-'[Býca{x. ) = 
(a)T (A]-'[G]{x. ) 

in which (a) represents the area parameters of each nodal point. 

(B. 28) 
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Appendix C 

Half-Space Green's Function for Helmhotz Equation 
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Appendix 

Half-Space Green's Function for Helmhotz Equation 

The Green's function in equation (A. 7) represents that of the submerged body situated within an 

unbounded water space. When the body nears or is located at the free surface or the seabed, there 

exists an infinite plane surface SP as shown in Figure Cl and C2, the Green's function used in the 

boundary surface integral equation (B. 8) should be changed. In this case the impedance boundary 

condition should be satisfied on both the submerged body surface So and the infinite plane surface 

Sp The impedance boundary condition can be expressed as : 

ikP +z 
ap 

=0 
poc ano 

(C. 1) 

where Z represents the surface sound impedance and Do C is the characteristic value of the 

impedance in the medium. Now the boundary surface integral should be taken over the domains 

So and Sp 
. In order to overcome the difficuty of integrating over the unbounded plane surface Sp it 

is intended to choose a Half-Space Green's Function Gh so as to make that 
f[P 

+Gh I'P ]dS =0 (C. 2) 
3p ano ano 

and simultaneously to satisfy the impedance boundary condition: 

ikGh +Z 
OGh 

=0 (C. 3) 
poc ano 

sp 

Figure CI 

5 

r(image point) 

r (field 

SO 
.,, 

(source point) 0 rs 

point) 

Submerged body nears half-space boundary 

Figure C2 Submerged body situated in half-space 
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There are different boundary conditions which need to be considered for each type of the half space 

propagation problem, and they are : 
(a) If the submerged body is near the ftee surface, then P =0 on Sp. 

(b) If the submerged body is situated on the seabed, then 
ap 

=0 on SP 
ano 

Choose the Helf-Space Green's Function so considered as 

GI, -e 

ikr 

- Rp e -ikr' 

(C. 4) 
r rl 

The above expression is ust to increase an image point Y' to the field point 7 with respect to the iW 

free surface. Where R represents the refraction ratio of the plane boundary surface Sp 
. When Rp P 

=1 , ie, in the rigid body surface condition Z -> cO and 
dGh 

=0 which means the velocity is 9no 

zero as located on Sp. When Rp = -1 , 
ie, in the free surface conditions, Z=O and P=O. As is 

on Sp, Gh: '--O. Both the conditions Rp =1 and Rp = -1 can satisfy equation (C. 2). 
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Publication Works 

The following technical papers related directly to the work of the study have been 
published during its progress. 

1. W. H. Wang, R. Sutton and B. Dobson (1995) "Modelling Mobility and Transmissibility 
of Sound and Vibration from Machinery to Ship Structure", Journal of the Society 
of Naval Architects and Marine Engineers, ROC, Vol. 14, No. 2, pp. 31-53. (This 
paper was awarded as to be the outstanding paper on the annual meeting of the 
Society of Naval Architects and Marine Engineers, ROC, 1995). 

2. W. H. Wang, R. Sutton and B. Dobson (1997) "Structure-Bome Noise Control for a 
Marine Engine", Proceedings of the 10th Symposium of the Acoustical Society, 
ROC, Taipei, pp. 190-199. 

3. W. H. Wang, R. Sutton and B. Dobson (1997) "Behaviour of Structure-Bome Noise 
Attenuation in a Resilient Mount", Proceedings of TRAM'97 SIMGAPORE, pp. 
241-251. 

4. W. H. Wang, R. Sutton and B. Dobson (1998) "Behaviour of Structure-Bome Noise 
Attenuation in a Resilient Mount", Journal the Society of Naval Architects and 
Marine Engineers, ROC, Vol. 17, No. 2, pp. 49-62. 

5. W. H. Wang, R. J. Shyu and J. R. Chang (1998) "Viscoelastic Passive Damping 
Technology on Ship's Vibration and Noise Control", Proceedings of PRADS'98, 
Hague, pp. 943-950. 

6. W. H. Wang, and T. C. Yang (1999) "Mobility Analysis of the Improved Bottom Structure 

by Squeeze Fihn for Structure-Borne Noise Reduction", Proceedings of Third 

International Students' Congress of the Asia-Pacific Region Countries, Part III, pp. 
7.1-7.18. (This paper was awarded as to be the outstanding paper on the field of 

ocean engineering and shipbuiding. ) 

7. W. H. Wang, J. H. Liou, R. Sutton and B. Dobson (2000) "Machine Vibration Induced 

Underwater Acoustic Radiation", Journal of Marine Science and Technology, 

Vol. 8, No-1, pp. 1-11. 
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Appendix E 

FORTRAN Program for Structure-Borne Noise Propagation Analysis 
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PROGRAMMAIN 
C 
C PURPOSE: TFHS PROGRAM IS DEVELOPED TO PREDICT 
C PROPAGATION OF STRUCTURE-BORNE NOISE 
C NW IS FREQUENCY 
C A_M IS MASS 
C DB IS THE RIGII) OF THE BENDING 
C A_K IS K 
C N_FORC(NT, 3) IS THE NUMBER OF THE FORCE 
C N_DISP(NT, 2) IS TBE NUMBER OF THE DISPLACE 

IMPLICIT DOUBLE PRECISION (A, B, D-H, O-Y) 
IMPLICIT C. OMPLEX*16 (C, Z) 
PARANIETER (NT=100, CI=(0.0,1.0), CJ=(1.0,0.0)) 
DIMENSION A_NODE(NT, 4), NýELEM(NT, 5), CAHM(NTNT), CHR1(24,24) 

+K(4), N_FORC(NT, 3), N_DISP(NT, 3), NIN(NT) 
C OPEN(17, FILE=: ýTEST_1. TXT) 

OPEN(18, FU, E='T33. TXT') 
c OPEN ELEM, A, 

_ 
NODE FILES 

OPEN(12, FILE=4NPU`T. TXT') 
READ(12, *) NE, NN, E, U, RO, TH, N_FORNýDIS 
CLOSE(12) 
OPEN(13, FILE=ýELEM. TXT) 
OPEN(14, FELE=NODE. TXT') 
DO 10 I=1, NE 
READ (13, *) Ný-ELEM(I, 1), Ný_ELEM(I, 2), 

+N_ELEM(I, 3), NýELEM(1,4), NýEtEM(I, 5) 
10 CONTINUE 

DO 20 I=1, NN 
20 READ(14, *) A, 

_NODE(l, 
l), A, 

_NODE(1,2), 
A, 

_NODE(I, 
3), k_NODE(I, 4) 

CLOSE(13) 
CLOSE(14) 

C READ THE BOUNDARY CONDITION 
c N_ALL IS THE NUMBER OF ALL NODES 
C N_UKN IS THE NUMBER OF THE UNKNOW DEGREE OF FREEDOM 
c NIN IS THE INDEX AFTER CHANGING THE LOCATION ' 

OPEN(15, FILE='FORCE. TXT') 
OPEN(16, FILE=DISP. TXT') 
DO 50 I= 1, NJOR 

50 READ(15, *) N_FORC(I, 1), N_FORC(I, 2), NýFORC(I, 3) 
DO 51 M, NýDIS 

51 READ(16, *) NýDISP(I, l), NýDISP(I, 2), N_DISP(I, 3) 
CLOSE(15) 
CLOSE(16) 
N_ALL=NN*6 
N_LU<N = N_ALL-N_DIS 
CA-LLNINDEX(NT, NýDISP, NýDIS, NýALL, N_UKN, NIN) 
W=l 
DO 500 I11=1,1000 
A_M = RO*TH 
DB = E*TH**3/(12*(l-U**2)) 
DD = E/(I-U**2) 
Aý_K = (W**2*A_M/DB)**0.25 
A_Kl= W/SQRT(DD/RO) 
DO 21 J=1, N_ALL 
DO 21 I= I, NýALL 

21 CAHM(LJ)=(0.0,0.0) 
DO 30 L=1, NE 
DO 22 J=1,4 
K(J)=N_ELEM(L, J+I) 

22 CONTR*IUE 
CALL HMATR(WDB, DD, kYkKI, TH, R0, A_NODENýELEM, CHR1, NTL) 

c ASSEMBLE THE CHR1 MATRIX 
E1 



DO 40 JJ=1,4 
DO 40 KK=1,4 
DO 40 I=1,6 
DO 40 J=1,6 
CAHM(((K(JJ)-l)*6+I), ((K(KK)-l)*6+J)) 

*= CAHM(((K(JJ)-l)*6+1), ((K(KK)-I)*6+J)) 
* +CHR1((I+(JJ-1)*6), (J+(KK-I)*6)) 

40 CONTU*, TIM 
30 CONTWLM 
c PAR=ON CAHM 

CALL PARTIT(WN-FORNýDISNýUKN, NýALL, NIN, CAHM, NTNýFORC, N_DISP) 
W=W+l 

500 CONTE*4UE 
c CLOSE(17) 

CLOSE(18) 
STOP 
END 

SUBROUTINE NINDEX(NTNýDISPNýDIS, N_ALL, N_LTKNNIN) 
C TBE SUBROUTINE THE INDEX OF THE BOUNDARY CONDITION AFTER 
C REARRANGEMENT 
C N_DISP IS THE LOCATION OF THE DISPLACE 
C N_KN IS THE LOCATION OF THE DIMENSION 

IMPLICIT DOUBLE PRECISION (A, B, D-H, O-Y) 
DIMENSION N_DISP(NT, 3), NýKN(NýPIS), NýUN(N--. ýALL), NIN(NT) 
DO 10 I= 1, NýDIS 
NýKN(I)=(NýPISP(I, 1)-l)*6+N_DISP(I, 2) 

10 CONTINUE 
cI SET THE N_LTN(I)=O 

DO 20 I=1, N ALL 
NjTN(I)=I 
DO 30 K=1, N_DIS 
IF (I. EQ. NýKN(K))THEN 
NýUN(I)=O 
END IF 

30 CONTEqUE 
20 CONTINUE 

DO 40 K=(N_ALL-1), 1, -1 
DO 50 J=1, K 
U(N_ýUN(J). GT. N_UN(J+1)) THEN 
M= N_UN(J) 
NýUN(J) = NýUN(J+l) 
NjJN(J+l) =M 
END IF 

50 CONTH, 4UE 
40 CONTR'4UE 

DO 60 I=1, NýUKN 
Ný_`UN(I)=NýUN(I+NýDIS) 

60 CONTR-4UE 
DO 61 I=I, N_DIS 

61 NIN(I)=N_KN(I) 
DO 62 M, NýUKN 

62 NIN(I+NýDIS)=NýUN(I) 
RETURN 
END 

SUBROUTINE HMATR(WDB, DD, A_K, A_Kl, TH, R0, TNNTE, CHR1, NTL) 

C TIES SUBROUTINE IS MOBILITY MATRIX OF FINITE RECTANGULAR 
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C K(4) COULD FIND NODE NUM. 
C T_X, T Y' Z ARET]HE GLOBAL COOR. 
C R12, R13 AND R14 ARE THE VECTOR FROM I TO 2,3 AND 4. 
C RCROS IS R12 X R13. 
C UNIT_X, UNU_YUNIT_Z ARE THE LOCAL UNIT VECTOR. 
C X(I, J) AND Y(I, Y) IS THE MAGNITUDE OF THE UNIT_X AND UNIT-Y 
C FROM NODE I TO NODE J. 
C R(Ij) IS THE DISTANCE FROM NODE I TO NODE J. 

IMPLICIT DOUBLE PRECISION (A, B, D-H, O-Y) 
IMPLICIT COMPLEX* 16 (C, Z) 
PARAMETER (CI=(0.0,1.0), CJ=(1.0,0.0), A=1. OE-5, AND=1.0, 

+PI=3.141592653589793DO) 
DIMENSION NTE(NT, 5), TN(NT, 4), CHR(24,24), CHR1(24,24) 

" CHL(24,24), CHLB(24,24), CBLL(24,24), CBL1(12,12), CHL2(8,8), K(4) 
" T_X(7), Tý_Y(7), T_Z(7), Rl2(3), Rl3(3), Rl4(3), R(7,4), X(7,4), Y(7,4) 
" UNIT_X(3), UNTIý_Y(3), UNITý_Z(3), RCROS(3), TL(24,24), CTL(24,24) 
" CTTL(24,24) 
" CHZ1(2,2), CHZ2(2,2), CHZlI(2,2), CHZ2I(2,2), CHAB(2,2), CHEF(2,2) 
" CHAB1(2,2), CBEF1(2,2) 
" CHL2A(8,8), CBL2B(8,8), CHL2C(8,8), IN(8) 
DO 3 J=1,12 
DO 3 I=1,12 

3 CHL1(I, J)=(0.0,0.0) 
DO 4 J=1)8 
DO 4 I=1,8 

4 CHL2(I, J)=(0.0,0.0) 
DO 1 I=1,3 
RCROS(I)=O 
UNITý_X(I)=O 
ITNIT_Y(I)=O 

1 UNIT 
- 

Z(I)=O 
DO 2 I=1,7 
DO 2 J=1)4 
R(I, J)=O 
X(I, J)=O 

2 Y(I, J)=O 
C CALL THE ROTATION TRANSFORMATION MATRIX [T] 

C CTL=TL*i 
C CTTL=CTL TRANSPOSE CTL 

CALL TRANS(TN, NTE, TL, NTL) 
DO 9 1=1,24 
DO 9 J=1,24 
CHR1(I, J)=(0.0,0.0) 
CTL(I, JHO. O, 0.0) 

9 CTTL(I, J)=(0.0,0.0) 
DO 10 I=1,24 
DO 10 J=1,24 
CTL(I, J)=CJ*TL(I, J) 

10 CONTR-; UE 
CALL TNO? Y(CrL, CTTL, 24,24,24,24) 
DO 20 J=1,4 
K(J)=NTE(L, J+l) 

20 CONTNUE 
DO 30 I=1,4 
'jý_X(j)=TN(K(l), 2) 
jý_Y(I)=TN(K(I), 3) 
jý_Z(j)=TN(K(I), 4) 

30 CONTR*; UE 
c CALCULATE THE DisTANCE R(I, J) 

DO 31 1=1,4 
DO 31 J=1,4 
D_X=T_X(I)-lý_X(J) 
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D_Y==-T_Y(I)-Tý_Y(J) 
D_Z=T 

- 
Z(I)-T-Z(J) 

R(I, J)=SQRT(D_X**2+D_Y**2+D_Z**2) 
31 CONTR'4UE 

DO 60 I=1,3 
T_X(I+4)=T_X(I) 
Tý_Y(I+4)=Tý_Y(I) 
T_Z(I+4)=Tý_Z(I) 

60 CONTWUE 
C FIND THE VECTOR X AND Y 

DO 70 ID=0,3 
R12(1)=T_X(2+ID)-T_X(I+ID) 
R12(2)=T_Y(2+ID)-Tý_Y(1+ID) 
R12(3)=T_Z(2+ID)-T_Z(1+ID) 
R13(1)=T_X(3+ID)-T_X(I+ID) 
R13(2)=T_Y(3+1D)-T_Y(1+ID) 
R13(3)=Tý_Z(3+lD)-T_Z(1+1[D) 
R14(1)=T_X(4+ID)-Tý_X(1+ID) 
R14(2)=T_Y(4+ID)-T_Y(1+1[D) 
R14(3)=T_Z(4+ID)-T_Z(I+ID) 
RCROS(1)=Rl2(2)*Rl3(3)-Rl2(3)*Rl3(2) 
RCROS(2)=RI2(3)*Rl3(l)-Rl2(1)*RI3(3) 
RCROS(3)=Rl2(1)*RI3(2)-Rl2(2)*Rl3(l) 
AM-Rl2=SQRT(Rl2(1)**2+RI2(2)**2+RI2(3)**2) 
AM-Rl3=SQRT(Rl3(1)**2+Rl3(2)**2+Rl3(3)**2) 
AM RCR=SQRT(RCROS(I)**2+RCROS(2)**2+RCROS(3)**2) 

C CALCULATE THE UNIT-X, UNIT_Y AND UNIT-Z 
DO 40 ][[=1,3 
UNITý_X(III)=Rl2(II)/AM_Rl2 
UNIT 

- 
Z(I[I)=RCROS(II)/AM-RCR 

40 CONTINUE 
IJNq_Y(I)=UNTIý_Z(2)*UNIT_ X(3)-UNU_Z(3)*UNIT_X(2) 

Z(3)*UNIT_ UNITý_Y(2)=UNTIý X(l)-LJNIT_Z(1)*LNIT_X(3) 
_ UNIT_Y(3)=IJNIT_Z(I)*UNIT_ X(2)-UNIIý_Z(2)*UNIT-X(l) 

X(2+]]D, 1+]]D)=UNTIý_X(1)*Rl2 (1)+LNIT_X(2)*Rl2(2)+IJNITý- X(3)*Rl2(3) 
X(3+DD, I+ED)=UNIT_X(1)*Rl3 (1)+UNITý_X(2)*RI3(2)+UNIT_ X(3)*Rl3(3) 
X(4+]]D, I+I]D)=UNIT_X(I)*RI4 (1)+UNIT_X(2)*Rl4(2)+UNrF- X(3)*Rl4(3) 
Y(2+ID, I+I]D)=UNIT_Y(1)*RI2 (1)+UNITý_Y(2)*Rl2(2)+IJNIT_ Y(3)*RI2(3) 
Y(3+1]D, I+DD)=UNIT_Y(I)*Rl3 (1)+UNIT_Y(2)*RI3(2)+UN7_ Y(3)*RI3(3) 
Y(4+]]D, 1+E[))=IJNITý_Y(I)*Rl4 (1)+UNIT_Y(2)*R14(2)+UNTIý_ Y(3)*RI4(3) 

70 CONTINUE 
X(1,2)=X(5,2) 
X(1,3)=X(5,3) 
X(2,3)=X(6,3) 
X(1,4)=X(5,4) 
X(2,4)=X(6,4) 
X(3,4)=X(7,4) 
Y(1,2)=Y(5,2) 
Y(1,3)=Y(5,3) 
Y(2,3)=Y(6,3) 
Y(1,4)=Y(5,4) 
Y(2,4)=Y(6,4) 
Y(3,4)=Y(7,4) 

c CHL I IS THE MOBILITY MATRIX OF FINITE REcTANGULAR PLATE 

c IN BENDING WAVE 
DO 80 I=1,4 
DO 80 J=1,4 
IF(I. EQ. J) TBEN 
CHLI(I, J)=W/(2*DB*A_K**2)*CJ*ANIP 
ELSE 
C A=CJ*A 

- 
K*R(I, J) 

C-B = -I *CI*A_K*R(I, J) 
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CALL HANO((ý_A, CHANýA) 
CALL HANO(CýB, CHAN_B) 
CHAN=CHAN_A-CHAN 

-B CHL1(1, J)=W/(2*DB*A_ýK**2)*CHAN*ANT 
END IF 

80 CONTINUE 
DO 90 I=5,12 
DO 90 J=1,4 
IF((I-J). EQ. 4) THEN 
CHL1(I, J)=O*CJ 
ELSE IF((I-J). EQ. 8) THEN 
CHL1(1, J)=Q*CJ 
ELSE 
IF((I. GT. 4). AND. (I. LE. 8)) THEN 
H=I-4 
CALL DliANO(A, 

_K, 
R(][[, J), CDHANA) 

CALL DHAN1(At_. K, R(lj, j), CDHANB) 
CDEIAN=CDHANA-CDHAND 
CHLI(I, J)=W/(2*DB*A_K**2)*CDHAN*Y(H, J)/R(11, J)*AM[P 
ELSE 
H=I-8 
CALL DHANO(A,. 

_K, 
R(II, J), CDHANA) 

CALL DHAN I (A, 
_K, 

R(I[I, J), CDHANB) 
CDHAN=CDHANA-CPHANB 
CHL1(I, J)=W/(2*DB*A_K**2)*CDHAN*X(11, J)/R(II, J)*ANI[P 
END IF 
END IT 

90 CONTRSTLM 
DO 100 I=1,4 
DO 100 J=5)8 
IF((J-I). EQ. 4) TEEN 
CHL1(I, J)=O*CJ 
ELSE 
jj=j4 
Rl=DSQRT((Y(I, JJ)-A)**2+(X(I, JJ))**2) 
R2=DSQRT((Y(I, JJ)+A)**2+(X(I, JJ))**2) 
C Al =CJ*A K*Rl 
C-A2 = -1*CI*A_K*Rl 
C-Bl =CJ*A - 

K*R2 
C-B2 = -1*CI*A_K*R2 
CALL HANO(Cý_AI, CHANAI) 
CALL HANO(q_A2, CHANA2) 
CALL HANO(Cý_B 1, CHANB 1) 
CALL HANO(Cý_M, CHANB2) 
CHANA=CHANAl-CHANA2 
CHANB=CHANBl-CHANB2 
CHL1(1, J)=(0.5E+5)*W/(2*DB*A,, 

_K**2)*(CHANA-CHANB)*AND END IF 
100 CONTINUE 

RGAMA=1.781 
DO 110 I=5,8 
DO 110 J=5,8 
IF((I-J). EQ. 0) THEN 
CHL1(I, J)=W/(4*DB)*(14*CI/PI*DLOG(RGAMA*A_K*A/2))*AUIP 
ELSE 
IM-4 
JJ=J-4 
RI=SQRT((Y(I[I, JJ)-A)**2+(X(II, JJ))**2) 
R2=SQRT((Y(II, JJ)+A)**2+(X(H, JJ))**2) 
CALL DHANO(A,. 

-K, 
R1, CDHAO) 

CALL DHAN1(A, 
_K, 

R1, CDHAI) 
CALL DHANO(A,. 

_K, 
R2, CDHBO) 
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CALL DHAN1(A, 
_ýR2, 

CDHBl) 
CDHA=CDHAO-CDHAI 
CDHB=CDHBO-CDHB1 
f"TffT 

CHlal(I, J)=(0.5E+5)*W/(2*DB*A 
- 
K**2)*(CDHA*(Y(11, JJ)-A)/Rl- 

+CDHB*(YCII, JJ)+A)/R2)*ANT 
END IF 

I 10 CONMUE 
DO 120 1--9,12 
DO 120 J=5,8 
IF((I-J). EQ. 4) TIEN 
CHL1(1, J)--O*CJ 
ELSE 
ll=I-8 
JJ=J-4 
Rl=SQRT((Y(U, JJ)-A)**2+(XCII, JJ))**2) 
R2=SQRT((Y(II, JJ)+A)**2+(X(111, JJ))**2) 
CALL DHANO(A, 

_K, 
R1, CDHAO) 

CALL DHAN1(A, 
_K, 

R1, CDHAl) 
CALL DHANO(A,. 

_K, 
R2, CDHBO) 

CALL DHAN I (A,. 
_K, 

R2, CDHB 1) 
CDHA=CDHAO-CDHAl 
CDHB=CDHBO-CDHB1 
CHL1(I, J)=(0.5E+5)*W/(2*DB*A_K**2)*(CDHA*X(H, JJ)/Rl- 

+CDHB*X(I[I, JJ)/R2)*ANT 
END IF 

120 CONTINUE 
DO 130 I=1,4 
DO 130 J=9,12 
IF((J-I). EQ. 8) THEN 
CHLI(I, J)=O*CJ 
ELSE 
JJ=J-8 
Rl=SQRT(Y(I, JJ)**2+(X(I, JJ)+A)**2) 
R2=SQRT(Y(I, JJ)**2+(X(I, JJ)-A)**2) 
C Al =CJ*A K*Rl 
C-A2 =-1 *CI*A_K*Rl 
C-B 1 =CJ*A - 

K*R2 
C-B2 =-1 *CI*A_K*R2 
CALL HANO(C_A1, CHANAl) 
CALL HANO(C_A2, CHANA2) 
CALL HANO(Cý_B 1, CHANB 1) 
CALL HANO(Cý_W, CHANB2) 
CHANA=CHANAl-CHANA2 
CHANB=CHANBl-CHANB2 
CHLI(I, J)=(0.5E+5)*W/(2*DB*A_K**2)*(CHANA-CHANB)*AIVT 
END IF 

130 CONTENUE 
DO 140 I=5,8 
DO 140 J--9,12 
IF((J-1). EQ. 8) THEN 
CHLI(I, J)=O*Ci 
ELSE 
H=14 
JJ=J-8 
Rl=SQRT((Y(][[, JJ))**2+(X(H, JJ)+A)**2) 
R2ýSQRT((Y(H, JJ))**2+(X(II, JJ)-A)**2) 
CALL DHANO(kK, R1, CDHAO) 
CALL DHANI(A, 

-KR1, 
CDHA I) 

CALL DHANO(A, 
_K, 

R2, CDHBO) 
CALL DHAN1 (A, 

_K, 
R2, CDHB 1) 

CDHA=CDHAo-cDHAi 
CDHB=CDHBO-CDHBI 
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%C -1 I(I, J)=(0.5E+5)*W/(2*DB*A K**2)*(CDHA*Y(jj, jj)/Rl- M- 
+CDHB*YOI, JJ)/R2)*ANT 
END IF 

140 CONTHin 
DO 150 1--9,12 
DO 150 J--9,12 
IF((I-J). EQ. 0) THEN 
CHL1(I, J)=W/(4*DB)*(1-4*CI/PI*DLOG(RGAMA*A_K*A/2))*ANT 
ELSE 

Rl=SQRT((Y(I[I, JJ))**2+(X(H, JJ)+A)**2) 
R2=SQRT((Y(I[I, JJ))**2+(X(11[, JJ)-A)**2) 
CALL DHANO(A, 

_K, 
R1, CDHAO) 

CALL DHAN1(A, 
_K, 

R1, CDHAl) 
CALL DHANO(A, 

_KR2, 
CDHBO) 

CALL DHANl(A, 
_. 
K, R2, CDHB I) 

CDHA=CDHAO-CDHAl 
CDHB=CDHBO-CDHB1 
CHL1(I, J)=(0.5E+5)*W/(2*DB*A_K**2)*(CDHA*(X(iii, JJ)+A)/Rl- 

+CDHB*(X(II, JJ)-A)/R2)*AMIP 
END IF 

150 CONTINUE 
c CHL2 IS THE MOBILITY MATRIX OF FINITE RECTANGULAR PLATE 
c IN LONGITUDINAL WAVE 
C ZI=SQRT(D*RO)*Sl 
C Z2=SQRT(D*RO)*S2 

DIS 
- 
A=R(2,1) 

DIS 
- 
B=R(4,1) 

AZ1=SQRT(DD*RO)*(0.5*DIS_B*TH) 
AZ2=SQRT(DD*RO)*(0.5*DIS-A*TH) 
CHZ1(1,1) =AZ1*CJ 
CHZ1(1,2)=-l*A. Zl*CJ 
CHZ1(2, I) =AZ1*CDEXP(-l*CI*A_KI*DIS_A) 
CHZ1(2,2) = -1*AZI*CDEXP(CI*A_Kl*DIS_., A) 
CHZ2(l, 1) =AZ2*CJ 
CHZ2(1,2) = -I *AZ2*CJ 
CHZ2(2, l) =AZ2*CDEXP(-l*CI*A_KI*DIS-B) 
CHZ2(2,2) =-1 *AZ2*CDEXP(CI*A_Kl *DIS_B) 
CALL DLINCG(2, CHZ1,2, CHZ11,2) 
CALL DLINCG(2, CHZ2,2, CHZ21,2) 
CHAB 1 (1,1) =I *CJ 
CHAB 1(1,2) =1 *CJ 
CHAB 1(2,1) = CDEXP(- 1 *CI*A_Kl *DIS_A) 
CHAB 1(2,2) = CDEXP(CI*A_Kl *DIS_. 

_: 
A) 

CHEF 1 (1,1) =1 *CJ 
CHEF 1 (1,2) =I *CJ 
CHEF 1(2,1) = CDEXP(- 1 *CI*A_Kl *DIS-B) 
CHEF 1(2,2) = CDEXP(CI*A 

- 
Kl*DIS-B) 

CALL AlVO? Y(CHAB1, CHZlI, CHAB , 2,2,2,2,2,2) 
CALL AWY(CHEF1, CHZ21, CHEF, 2,2,2,2,2,2) 
DO 160 I=1,8 
DO 160 J=1,8 

160 CHL2(I, J)=(0.0,0.0) 
CHL2(1,1)=CHAB(1,1)*ANT 
CHL2(1,2)=CHAB(1,2)*AIVIP 
CHL2(2,1)=CHAB(2,1)*AlVIP 
CHL2(2,2)=CHAB(2,2)*AUIP 
CHL2(3,3)=CHAB(2,1)*AMP 
CHL2(3,4)=CHAB(2,2)*AMIP 
CHL2(4,3)=CHAB(1,1)*AIVIP 
CHL2(4,4)=CHAB(1,2)*ANT 
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CHL2(5,5)--CHEF(1,1)*ANV 
CHL2(5,8)=CHEF(1,2)*AUT 
CHL2(8,5)=CHEF(2,1)*ANT 
CHL2(8,8)=CHEF(2,2)*ANT 
CHL2(6,6)=CHEF(1,1)*ANT 
CHL2(6,7)=CHEF(1,2)*ANT 
CHL2(7,6)=CHEF(2,1)*ANT 
CHL2(7,7)=CHEF(2,2)*ANT 

C CHANGE THE COOR. 
C 1->l 2->6,3->3 
C 4->8 5->5,6->2 
C 7->7 )8->4 C IN(I)=l 
C IN(2)=6 
C IN(3)=3 
C IN(4)=8 
C IN(5)=5 
C IN(6)=2 
C IN(7)=7 
C IN(8)=4 
C DO 161 I=1,8 
C CHL2A(3, I)=-I. O*CHL2(3, I) 
c CHL2A(4, I)=-1.0*CHL2(4, I) 
c CHL2A(6, I)=-1.0*CHL2(6, I) 
C161 CHL2A(7, I)=-1.0*CHL2(7, I) 
C DO 162 I=1,8 
C Cl-IL2B(I, 3)=-I. O*CBL2A(I, 3) 
C CHL2B(I, 4)=-I. O*CHL2A(I, 4) 
C CHL2B(I, 6)=-1.0*CHL2A(1,6) 
C162 CHL2B(I, 7)=-1.0*CHL2A(1,7) 
C DO 163 I=1,8 
C DO 163 J=1,8 
C163 CHL2C(I, J)=CHL2B(IN(I), J) 
c DO 164 I=1,8 
C DO 164 J=1,8 
C164 CHL2(I, J)=CHL2C(I, IN(J)) 
C ASSEMEBLY OF MOBILITY NLkTRIX OF PLATE ELEMENT 

DO 170 I=1,24 
DO 170 J=1,24 
CHLL(I, J)=(0.0,0.0) 

170 CBL(I, J)=(0.0,0.0) 
C THIS IS LONG1'1 MEN A 1, WAVE 

DO 180 1=1,8 
DO 180 J=1,8 

180 CHL(I, J)=CHL2(I, J) 
C THIS IS BENDING WAVE 

DO 190 I=1)12 
DO 190 1=1ý12 

190 CHL(I+8, J+8)=CHLI(I, J) 
C GIVE A SMALL NUM13ER LOE-20 

DO 191 I=21,24 
191 CHL(I, I)=I. OE-20 
C CHANGE THE ADDRESS ACCORDING TO NODE 1 ->4 

DO 200 J=1,24 
CHLB(l, J)=CHL(l, J) 
CHLB(2, J)=CHL(5, J) 
CHLB(3, J)=CHL(9, J) 
CHLB(4, J)=CHL(13, J) 
CHLB(5, J)=CHL(17, J) 
CHLB(6, J)=CHL(21, J) 
CHLB(7, J)=CHL(2, J) 
CHLB(8, J)=CBL(6, J) 
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CHLB(9, J)=CHL(10, J) 
CHU(10, J)=CHL(14, J) 
CHLB(l 1, J)=CHL(l 8, J) 
CHLB(12, J)=CHL(22, J) 
CHLB(13j)ýHL(3j) 
CHLB(14, J)=CHL(7, J) 
CHLB(15, J)=CHL(11, J) 
CHLB(16, J)=CHL(15, J) 
CHLB(17, J)ýHL(19, J) 
CHLB(18, J)=CBL(23, J) 
CHLB(19, J)=CIHL(4, J) 
CHLB(20j)ýBL(8,1) 
CHLB(21, J)=CHL(12, J) 
CHLB(22, J)=CHL(16, J) 
CHLB(23, J)=CHL(20, J) 

200 CHLB(24, J)=CHL(24, J) 
DO 210 I=1,24 
CHLL(I, l)--CBIB(I, 1) 
CHLL(I, 2)=CBI, B(1,5) 
CHLL(I, 3)=CHLB(I, 9) 
CHLL(I, 4)=CHLB(I, 13) 
CHLL(1,5)=CHLB(1,17) 
CHLL(I, 6)=CBIB(I, 21) 
CHLL(I, 7)=CHLB(1,2) 
CHLL(I, 8)=CHLB(I, 6) 
CHLL(I, 9)=CliLB(I, 10) 
CH-LL(1,10)=CHLB(I, 14) 
CHLL(I, 11)=CIHLB(I, 18) 
CHLL(I, 12)=CHLB(I, 22) 
CHLL(I, 13)=CHLB(I, 3) 
CHLL(I, 14)--IMB(I, 7) 
CHLL(I, 15)=CBIB(I, 11) 
CIILL(I, 16)=CIHLB(I, 15) 
CHLL(I, 17)=CIHLB(I, 19) 
CI-ILL(I, 18)=CHLB(I, 23) 
Cl-ILL(I, 19)--CIHLB(I, 4) 
CI-ILL(I, 20)=CIHLB(I, 8) 
CliLL(I, 2j)=CHLB(I, 12) 
CHLL(1,22)=C=(I, 16) 
CHLL(I, 23)=CHLB(I, 20) 

210 CHLL(I, 24)=CIHLB(I, 24) 
c CHRI=[CTL] (CHRI (CTLI 

CALL Alýpy(CTTL, CHLL, CHR, 24)24)24,24,24,24) 
CALL AN2y(CHRCTL, CHRI, 24,24,24,24,24,24) 
RETURN 
END 

SUBROUTINE HANO(Zl, CýHAN) 
C TIIIS SUBROUTINE IS FOR HANKEL FUNCTION, 
CX IS INPUT REAL NUMBER 
C C-HAN IS OUTPUT CONTLEX NUMBER 
C HO(X)=IO(X)-J*YO(X) 

EMPLICIT DOUBLE PRECISION (A, B, D-H, O-Y) 

EMPLICIT CONdOPLEX* 16 (C, Z) 
PARAMITER (Cl=(0.0,1.0)) 
CALL CJY01(ZI, CBJO, CDJO, CBJ1, CDJI, CBYO, CDYO, CBYI, CDYI) 

C-HAN=CBJO-CI*CBYO 
RETURN 
END 
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DO 25 K=1,30 
WO=WO+I. ODO/K 
RO=-0.25DO*RO/(K*K)*X2 

25 
30 

35 
40 

45 

R=RO*WO 
CSO=CSO+R 
IF (DABS(R). LT. DABS(CSO)*l. OD-15) GO TO 30 
CONTINUE 
BYO=RP2*(EC*BJO-CSO) 
CSI=1. ODO 
Wl--O. ODO 
Rl=l. ODO 
DO 35 K=1,30 
Wl=WI+I. ODO/K 
Rl=-0.25DO*Rl/(K*(K+1))*X2 
R=Rl*(2. ODO*Wl+l. ODO/(K+I. ODO)) 
CS1=CSI+R 
IF (DABS(R). LT. DABS(CSI)*I. OD-15) GO TO 40 
CONTRqUE 
BY1=RP2*(EC*BJ1-1. ODO/X-0.25DO*X*CS1) 

------- ---- -- ----------, ---- -7 & -. 5725014209747314D+00,. 6074042001273483D+01, 
&1 100171402692467D+03,. 3038090510922384D+04, 
& 11 88384262567832D+06,. 6252951493434797D+072 
& -. 4259392165047669D+09,. 3646840080706556D+I 1, 
& -. 3833534661393944D+l 3,. 4854014686852901D+l 51 
DATA B/ . 732421875000000OD-01, -. 2271080017089844D+00, 

& . 1727727502584457D+01, -. 2438052969955606D+02, 
& . 5513358961220206D+03, -. 1825775547429318D+05, 
& . 8328593040162893D+06, -. 5006958953198893D+08, 
& . 38362551 80230433D+10, -. 3649010818849833D+122 
& . 4218971570284096D+14, -. 5827244631566907D+16/ 

ELSE 
DATA A/-. 703125000000000OD-01-. 1 121520996093750D+00- 

DATA Al/. 1171875000000000D+00, -. 1441955566406250D+00, 
& . 6765925884246826D+00, -. 6883914268109947D+01, 
& . 1215978918765359D+03, -. 3302272294480852D+04, 
& . 1276412726461746D+06, -. 6656367718817688D+07, 
& . 4502786003050393D+09, -. 3833857520742790D+l 1, 
& . 4011838599133198D+ 1 3, -. 5060568503314727D+l 51 
DATA B I/-. 1025390625000000D+00,. 2775764465332031D+00s 

& -. 1993531733751297D+01,. 2724882731126854D+02, 
& -. 6038440767050702D+03,. 1971837591223663D+05, 
& -. 8902978767070678D+06,. 5310411010968522D+08, 
& -. 4043620325107754D+10,. 3827011346598605D+12, 
& -. 4406481417852278D+14,. 6065091351222699D+16/ 
KO=12 
IF (X. GE. 35.0) KO=10 
EF (X. GE. 50.0) KO=8 
Tl=X-0.25DO*PI 
PO=I. ODO 
QO=-0.125DO/X 
DO 45 K=1, KO 
PO=PO+A(K)*X**(-2*K) 
QO=QO+B(K)*X**(-2*K-1) 
CU=DSQRT(RP2/X) 
BJO=CU*(PO*DCOS(Tl)-QO*DSIN(Tl)) 
BYO=CU*(PO*DSIN(Tl)+QO*DCOS(Tl)) 
T2=X-0.75DO*Pl 
Pl=I. ODO 
QI=0.375DO/X 
DO 50 K=I, KO 
PI=Pl+Al(K)*X**(-2*K) 

50 Ql=Ql+BI(K)*X**(-2*K-1) 
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SUBROUTINE GANDAA(X, GA) 
c 
C PURPOSE: CONPUTE GAMMA FUNCTION X) 
C INPUT: X --- ARGU]MENT X) 
C (X IS NOT EQUAL TO 0, -1, -2, C OUTPUT: GA --- X) 
C 
C GAMMA(X) FUNCTION IS (X-1)! 

IMPLICIT DOUBLE PRECISION (A-H, O-Z) 
DIMENSION G(26) 
PI=3.141592653589793DO 
IF (X. EQ. INT(X)) THEN 
IF (X. GT. O. ODO) THEN 
GA=1-0D0 
mi=x-i 
DO 10 K=2, Ml 

10 GA=GA*K 
ELSE 
GA=1. OD+300 
ENDIF 
ELSE 
IF (DABS(X). GT. LODO) THEN 
Z=DABS(X) 
M=INT(Z) 
R=1.0D0 
DO 15 K=1, M 

15 R=R*(Z-K) 
Z=Z-M 
ELSE 
Z=X 
ENDIF 
DATA G/1. OD020.5772156649015329DO9 

&-0.6558780715202538DO, -0.420026350340952D-1, 
&0.1665386113822915DO, -. 421977345555443D-1, 
&-. 9621971527877OD-2,. 7218943246663OD-2, 
&-. 1165167591859 1D-2, -. 2152416741149D-3, 
&. 1280502823882D-3, -. 201348547807D4, 
&-. 1250493482 1D-5,. 1133027232OD-5, 
&-. 2056338417D-6,. 6116095OD-8, 
&. 50020075D-8, -. 11812746D-8, 
&. 1043427D-9,. 77823D-11, 
&-. 36968D-11, .5 ID-12, 
&-. 206D-13, -. 54D-14,. 14D-14, . ID-15/ 

GR=G(26) 
DO 20 K=25,1, -l 

20 GR=GR*Z+G(K) 
GA=1. ODO/(GR*Z) 
IF (DABS(X). GT. 1. ODO) THEN 
GA=GA*R 
IF (XXT. 0.0D0) GA=-Pj/(X*GA*DSIN(PI*X)) 
ENDIF 
ENDIF 
RETURN 
END 
SUBROUTINE DHANO(X, YCDHANO) 

WITH C TIJIS IS THE DERIVATIVE OF HANKEL FUNCTION 

C RESPECT TO YdZ. 
C XISK 
C YISR 
C C-DHAN IS THE RESULT 
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IMPLICIT DOUBLE PRECISION (A, B, D-H, O-Y) 
IMPLICIT COMPLEX*16 (C, Z) 
PARAMETER (Cl=(O. O, 1 . 0), CJ=(l . 0,0.0), PI=3.1415926535 89793DO, 

+ERR= 1013- 15) 
HI = 0.0 
H4 = 0.0 

C ADD IS GAIN NUMBER 
C IF ADD IS SMALLER THAN ERR 
C THEN THE FUNCTION WILL EMT DO-LOOP 
C ERR IS DEFINED AS I OE-1 5 

DO 10 1=1,100 
G- I=I+l 
CALL GAMMA(Gj, GA) 
A=2.0**(I*2.0) 
ADD= (-l)**I*(2*I)*(X)*(X*Y)**(2*I-I)/(A*GA**2) 
HI =Hl +ADD 
IF (ABS(ADD). LT. ERR) GOTO 40 

10 CONTINUE 
40 C Hl =CJ*Hl 

Z= X*Y*CJ 
CALL CJY01(Z, CBJO, CDJO, CBJ1, CDJI, CBYO, CDYO, CBY1, CDYI) 
C112 = -2*CI/PI*CBJO/Y 
C_113 = -2*CI/Pl*(DLOG(X*Y/2)+0.5772)*HI 
DO 20 I=1,100 
AH=0.0 
DO 30 J=I, I 
A- H= A_H +I O/J 

30 CONTITITUE 
G- I=1+1 
CALL GAMNIA(G. 

-I, 
GA) 

ADD = (-I)**(I-I)*A_H*2*I*X*(X*Y)**(2*I-1) 
+/(2.0**(2.0*I)*GA**2.0) 
H4=H4+ ADD 
IF (ABS(ADD). LT. ERR) GOTO 50 

20 CONTINUE 
50 C-H4 = -2.0*CI/PI*H4 

CDHANO = C_Hl+C_H2+C-H3+C-H4 
RETURN 
END 

SUBROUTINE DHANI(X, YCDHANI) 
C TIUS IS THE DERIVATIVE OF hANKEL FUNCTION WITH 
C RESPECT TO -JKR. 
C XISK 
C YISR. 
C C-PHAN IS THE RESULT 
C C-K =-CI*X 

IMPLICIT DOUBLE PRECISION (AB, D-H, O-Y) 
IMPLICIT COMPLEX* 16 (C, Z) 
PARAMETER (Cj=(0.0,1.0), Cj=(1.0,0.0), PI=3.141592653589793DO, 

+ERR= I OE- 15) 
C-K=-l*CI*X 
C-Hl = (0.0,0.0) 
C-H4 = (0.0,0.0) 

C ADD IS GAIN NUMBER 
C IF ADD IS SMALLER THAN ERR 
C THEN THE FUNCTION WILL EMT DO-LOOP 

C ERR IS DEFINED AS IOE-15 
DO 10 1=1,100 
G_I=I+l 
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CALL GAMMA(Gj, GA) 
A=2.0**(1*2.0) 
ADD = (-I)**I*(2*D*(Cý-K)*(CýK*Y)**(2*1-1)/(A*GA**2) 
C-HI=C 

- 
HI+ADD 

IF (ABS(ADD). LT. ERR) GOTO 40 
10 CONTENUE 
40 Z =C K*Y*CJ 

CALL CJYOI(Z, CBJO, CDJO, CBJI, CDJI, CBYO, CDYO, CBYI, CDYI) 
C-H2 = -2.0*CI/PI*CBJO/Y 
C_H3 = -2*CI/PI*(CDLOG(Cý_K*Y/2)+0.5772156649)*C-HI 
DO 20 I=1,100 
A_H = 0.0 
DO 30 J=I, I 
A H=A H+I. O/J 

30 C6NTRaM 
G-I=I+l 
CALL GAMMA(Gj, GA) 
ADD= (-l)**(I-I)*A H*2*I*C K*(CýK*Y)**(2*I-1) 

+/(2.0**(2.0*1)*GA**2.0) 
C_H4 = C_H4 +ADD 
IF (ABS(ADD). LT- ERR) GOTO 50 

20 CONTWUE 
50 C-H4 = -2-0*CI/PI*C H4 

CDHANJ = C-Hl + C- H2 + C-H3 + C-H4 
RETURN 
END 

SUBROUTINE TRANS(TN, NTE, TL, NTL) 
c MS PROGRAM TRANSFER LOCAL COOR. TO GLOBAL COOR. 
C M(4) COULD FIND NODE NUM. 
C T_X, T YZ ARE THE GLOBAL COOR. 

_ 
Tý_ 

C R12, R13 ARE THE VECTOR FROM 1 TO 2 OR 3 
C RCROS IS R12 X R13 
C UNIT X, UNIT YZ ARE THE LOCAL UNIT VECTOR 

_ 
UNIT_ 

IMPLICIT DOUBLE PRECISION (AB, D-H, O-Y) 
RAPLICIT CONTLEX*16 (C, Z) 
DMENSION NTE(NT, 5), TN(NT, 4), TL(24,24), K(4), iý_x(6) 

+, T_Y(6), Tý_Z(6), Rl2(3), RI3(3), IJNITý_X(3), UNIIý_Y(3), 
+UNIT 

- 
Z(3), RCROS(3) 

DO I J=1,24 
DO 1 I=1ý24 

1 TL(i, i)--o 
DO 20 1=1,4 
K(J)=NTE(L, J+I) 

20 CONTINUE 
DO 30 1=1,4 
Tý_X(I)=TN(K(I), 2) 
lý_Y(I)=TN(K(I), 3) 
Tý_Z(I)=TN(K(I), 4) 

30 CONTR*iUE 
DO 60 I=1,2 

60 CONTRSTLM 
DO 70 ID=0,3 
R12(1)=Iý_X(2+ID)-lý-X(I+ID) 
R12(2)=7ý_Y(2+ID)-T-Y(I+ID) 
R12(3)=Tý_Z(2+ID)-T-Z(I+ID) 
R13(1)=Tý_X(3+ID)-T-X(I+ID) 
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R13(2)=T_Y(3+jD)-T_y(j+ID) 
R13(3)=Tý_Z(3+ID)-Tý_Z(j+ID) 
RCROS(I)=Rl2(2)*Rl3(3)-RI2(3)*Rl3(2) 
RCROS(2)=RI2(3)*RI3(l)-RI2(1)*RI3(3) 
RCROS(3)=Rl2(1)*RI3(2)-Rl2(2)*Rl3(l) 
AM-R12=SQRT(Rl2(1)**2+RI2(2)**2+RI2(3)**2) 
AM-Rl3=SQRT(RI3(1)**2+Rl3(2)**2+RI3(3)**2) 
AM 

- 
RCR=SQRT(RCROS(1)**2+RCROS(2)**2+RCROS(3)**2) 

DO 40 ]I=1,3 
UNIT X(H)=Rl2(II)/AAf_Rl2 
UNlT-Z(II)=RCROS(II)/AM_RCR 

40 CONTINUE 
, UNIT_Y(I)=UNIT_Z(2)*UNIT_X(3)-UNq_Z(3)*UNIT_X(2) 

UNlT_Y(2)=UNq_Z(3)*UNIT 
- 
X(l)-UNIT_Z(1)*UNITý_X(3) 

UNIT 
- 

Y(3)=UNITý_Z(I)*UNIT_X(2)-UNITý_Z(2)*UNITý_X(l) 
DO 50 IA=1,3 
TL(l+ID*6, IA+ID*6)=UNITý_X(IA) 
TL(2+ID*6, IA+ID*6)=UNIT_Y(IA) 
TL(3+ID*6, IA+ID*6)=UNITý_Z(IA) 
TL(4+ID*6, IA+3+ED*6)=LTNITý_X(IA) 
TL(5+ID*6, IA+3+ID*6)=UNIT_Y(IA) 
TL(6+ID*6, IA+3+ID*6)=UNIT_Z(IA) 

50 CONTINUE 
70 CONTINUE 

RETURN 
END 

SUBROUTINE MOMENT-1 (X, WYCMO 1) 
c TIUS IS THE FUNCTION (A-29). 
C EXPANDING THE HANKEL FUNCTION HO(KR1) WITH RESPECT TO K(Y+A) 
C XISK 
C YISR. 
Cw is x 

EMPLICIT DOUBLE PRECISION (A, B, D-H, O-Y) 
IMPLICIT CONIPLEX* 16 (C, Z) 
PARAMITER (Cj=(0.0,1.0), CJ=(1.0,0.0), PI=3.141592653589793DO, 

+ERR =1 OE- 15) 
c THIS IS (A-29) 

A= 10E-5 
RI = SQRT((Y-A)**2+W**2) 
R2 = SQRT((Y+A)**2+W**2) 
CRII=X*RI*CJ 
CR12=X*Rl*(-l)*CI 
CALL HANO(CR11, CHII) 
CALL HANO(CRI2, CH12) 
CANS1=CH11-CH12 

c THIS IS (A-29) 
CM = -0.25-CI/(PI*2) 
CX2 = CI/(2*Pl) 
R=1.781 
CM01= 1.0+2*X**2*(Y-A)**2*(CX1+ 

+CX2*DLOG(O. 5*R*X*(Y-A))-0.5*CX2*CDLOG(-l*CI)) 
RETURN 
END 

SUBROUTINE CJYOI(Z, CBJO, CDJO, CBJJ, CDJI, CBYO, CDYO)CBYI, CDYI) 

c 
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C Purpose: Compute Bessel functions JO(z), Jl(z), Yo(z), 
C Y1(z), and their derivatives for a complex 
C argument 
C Input: z -- Complex argument 
C Output: CBJO - JO(z) 
C CDJO JO'(z) 
C CBJ1 Jl(z) 
C CDJ1 - Jl'(z) 
C CBYO --- Yo(z) 
C CDYO --- YO'(Z) 
C CBYl -- Yl(z) 
C CDYl --- Y1'(Z) 
C 

MIPLICIT DOUBLE PRECISION (A, B, E, PRW) 
HVIPLICIT CONTLEX*16 (C, Z) 
DDAENSION A(12), B(12), Al(12), Bl(12) 
PI=3.141592653589793DO 
EL=0.5772156649015329DO 
RP2=2.0D0/PI 
CI=(O. ODO, 1. ODO) 
AO=CDABS(Z) 
Z2=Z*Z 
Zl=Z 
IF (AO. EQ. O. ODO) THEN 
CBIO=(I. ODO, O. ODO) 
CBJ1=(O. ODO, O. ODO) 
CDJO=(O. ODO, O. ODO) 
CDJ1=(0.5DO, O. ODO) 
CBYO=-(l. OD300,0. ODO) 
CBYI=-(I. OD300,0. ODO) 
CDYO=(l. OD300,0. ODO) 
CDY1=(l. OD300,0. ODO) 
RETURN 
ENDIF 
IF (REAL(Z). LT. 0-0) Zl=-Z 
IF (AO. LE. 12.0) TBEN 
CBJO=(l. ODO, O. ODO) 
CR=(I. ODO, O. ODO) 
DO 10 K= 1,40 
CR=-0.25DO*CR*Z2/(K*K) 
CBJO---CBJO+CR 
IF (CDABS(CR). LT. CDABS(CBJO)*l. OD-15) GO TO 15 

10 CONTINUE 
15 CBJI=(l. ODO, O. ODO) 

CR=(l. ODO, O. ODO) 
DO 20 K=1)40 
CR=-0.25DO*CR*Z2/(K*(K+1. ODO)) 
CBJI=CBJ1+CR 
IF (CDABS(CR). LT. CDABS(CBJ1)*l. OD-15) GO TO 25 

20 CONMUE 
25 CBJI=0.5DO*Zl*CBJ1 

WO=O. ODO 
CR=(I. ODO, O. ODO) 
CS=(O. ODO, O. ODO) 
DO 30 K=1,40 
WO=WO+1. ODO/K 
CR=-0.25DO*CR/(K*K)*Z2 
CP=CR*WO 
CS=CS+CP 
IF (CDABS(CP). LT. CDABS(CS)*I. OD-15) GO TO 35 

30 CONTR41JE 
35 CBYO=RP2*(CDLOG(Zl/2. ODO)+EL)*CBJO-RP2*CS 
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WI=O. ODO 
CR=(l. ODO, O. ODO) 
CS=(I. ODO, O. ODO) 
DO 40 K=1,40 
WI=Wl+l. ODO/K 
CR=-0.25DO*CR/(K*(K+I))*Z2 
CP=CR*(2. ODO*WI+I. ODO/(K+I. ODO)) 
CS=CS+CP 
IF (CDABS(CP). LT. CDABS(CS)*1. OD-15) GO TO 45 

40 CONTWJE 
45 CBY1=RP2*((CDLOG(Zl/2. ODO)+EL)*CBJ1-1. ODO/Zl-. 25DO*Zl*CS) 

ELSE 
DATA A/-. 703125D-0 1,. 1 12152099609375D+00, 

& -. 5725014209747314D+00,. 6074042001273483D+OlI 
& -. 1 100171402692467D+03,. 3038090510922384D+04p 
& -. 1 188384262567832D+06,. 6252951493434797D+072 
& -. 4259392165047669D+09,. 3646840080706556D+l 1, 
& -. 3833534661393944D+13,. 4854014686852901D+15/ 
DATA B/. 732421875D-01 2-. 2271080017089844D+00, 

& . 1727727502584457D+01, -. 2438052969955606D+021 
& . 5513358961220206D+03, -. 1825775547429318D+05, 
& . 8328593040162893D+06, -. 5006958953198893D+08, 
& 

. 3836255180230433D+10, -. 3649010818849833D+12) 
& 

. 42189715702$4096D+14, -. 5827244631566907D+16/ 
DATAAl/. 1 171875D+00, -. 144195556640625D+00, 

& 
. 6765925884246826D+00, -. 68 83914268109947D+O 1, 

& . 1215978918765359D+03, -. 3302272294480852D+04, 
& . 1276412726461746D+06, -. 6656367718817688D+07, 
& . 4502786003050393D+09, -. 3833857520742790D+l 1, 
& . 4011838599133198D+13, -. 5060568503314727D+15/ 
DATA B 1/-. 1025390625D+00,. 2775764465332031D+00, 

& -. 1993531733751297D+01,. 2724882731126854D+02, 
& -. 6038440767050702D+03,. 1971837591223663D+05, 
& -. 8902978767070678D+06,. 5310411010968522D+08) 
& -. 4043620325107754D+101.3827011346598605D+12) 
& -. 4406481417852278D+14,. 6065091351222699D+16/ 
KO=12 
IF (AO. GE. 35.0) KO=10 
IF (AO. GE. 50.0) KO=8 
CT1=Zl-. 25DO*Pl 
CPO=(l. ODO, O. ODO) 
DO 50 K=I, KO 

50 CPO=CPO+A(K)*Zl **(-2*K) 
CQO=-0.125DO/Zl 
DO 55 K=I, KO 

55 CQO=CQO+B(K)*Zl **(-2*K-1) 
CU=CDSQRT(RP2/Zl) 
CBJO=CU*(CPO*CDCOS(CTI)-CQO*CDSIN(CT1)) 
CBYO=CU*(CPO*CDSIN(CT1)+CQO*CDCOS(CT1)) 
CT'2=Zl-. 75DO*Pl 
CPI=(I. ODO, O. ODO) 
DO 60 K=I, KO 

60 CP1=CP1+AI(K)*Zl**(-2*K) 
CQI=0.375DO/Zl 
DO 65 K=1, KO 

65 CQ1=CQI+BI(K)*Zl**(-2*K-1) 
CB11=CU*(CP1*CDCOS(CT2)-CQ1*CDSIN(CT2)) 
CBYI=CU*(CP1*CDSIN(CT2)+CQ1*CDCOS(CT2)) 
ENDIF 
EF (REAL(Z). LT. O. 0) THEN 
IF (DEqAG(Z). LT-0.0) CBYO=CBYO-2. ODO*CI*CBJO 
IF (DEqAG(Z). GT. 0.0) CBYO=CBYO+2. ODO*CI*CBJO 
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IF (DEqAG(Z). LT. O. 0) CBYI=-(CBYl-2. ODO*CI*CBJI) 
IF (DIMAG(Z). GT. O. 0) CBY1=-(CBYI+2. ODO*CI*CBJI) 
CBJI=-CBJ1 
ENDIF 
CDJO=-CBJI 
CDJ1=CBJO-1. ODO/Z*CBJ1 
CDYO--CBY1 
CDYI=CBYO-I. ODO/Z*CBY1 
RETURN 
END 

SUBROUTINE JY01A(XBJO, DJO, BJ1, DJ1, BYO, DYO, BYI, DYI) 
C 
C Purpose: Compute Bessel fimctions JO(x), Jl(x), YO(x), 
c Yl(x), and their derivatives 
c Input :x --- Argument of Jn(x) & Yn(x) (x ?0 
C Output: BJO --- JO(X) 
C DJO JO'(x) 
c Bjl Jl(x) 
C DJ1 Jl'(x) 
C BYO YO(x) 
c DYO YO'(x) 
C BY 1 --- Y1 (x). 
c DY1 --- Yl'(X) 
C 

EMPLICIT DOUBLE PRECISION (A-H, O-Z) 
DIlqENSION A(12), B(12), Al(12), BI(12) 
PI=3.141592653589793DO 
RP2=0.63661977236758DO 
X2=X*X 
IF (X. EQ. O. ODO) THEN 
BJO=1. ODO 
BJ1=0. ODO 
DJO=O. ODO 
DJI=0.5DO 
BYO=-I. OD+300 
BY1=-l. OD+300 
DYO=I. OD+300 
DY1=1. OD+300 
RETURN 
ENDIF 
IF (X. LE. 12. ODO) THEN 
BJO=1. ODO 
R=1.0D0 
DO 5 K=1,30 
R=-0.25DO*R*X2/(K*K) 
BJO=BJO+R 
IF (DAB S(R). LT. DABS(BJO)* LOD- 15) GO TO 10 

5 CONTINUE 
10 BJ1=1. ODO 

R=1.0D0 
DO 15 K=1,30 
R=-0.25DO*R*X2/(K*(K+1. ODO)) 
BJ1=BJ1+R 
IF (DA. BS(R)XT. DABS(BJ1)*l. 0D-15) GO TO 20 

15 CONTINUE 
20 BJ1=0.5DO*X*BJ1 

EC=DLOG(X/2. ODO)+0.5772156649015329DO 
CSO=O. ODO 
WO=O. ODO 
R0=1.0DO 
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CU=DSQRT(RP2/X) 
BJ1=CU*(Pl*DCOS(T2)-Ql*DSIN(T2)) 
BY1=CU*(PI*DSIN(T2)+Ql*DCOS(T2)) 
ENDIF 
DJO=-BJ1 
DJ1=BJO-BJI/X 
DYO--BY1 
DY1=BYO-BY1/X 
RETURN 
END 

SUBROUTINE PARTIT(WNýFORNýDIS, N_LTKN, NýALL, NIN, CAHM,, 
+NT, NJORC, NýDISP) 

C THIS IST]HE PARTITION OF THE MATRIX 
C GET CH11, CH12, CH21, CH22 
C CIH22 IS THE HWERSE OF THE CH22 
C CHA=CH11-CH12*INV(CH22)*CH21 
C CIH]3=CH12*RW(CH22) 
C CHC=-INV(CH22)*CH21 
c CHD=INV(CH22) 

IMPLICIT DOUBLE PRECISION (A, B, D-H, O-Y) 
IMPLICIT COMPLEX* 16 (C, Z) 
PARAMETER (CI=(0.0,1.0), CJ=(1.0,0.0)) 
DM4ENSION CAEM(NTNT), NIN(NT), Cý_AHM(N-ALL, NýA-LL), Ný_IN(Ný. ALL), 

+CCAHM1(N__, ALL, NýALL), CCAHM2(N__., ALL, NýALL), 
+CH11(NýPIS2N_DIS), CH12(NýDIS, NýUKN), CH21(N_ýUý, Ný_DIS). I +CH22(N_UKN, Tqý_UKN), CH22I(N_ýý, NýUKN), 
+CHA(NýPIS, N_DIS), CHB(NýPIS, NýUKN), CHC(Nýý, N_DIS), 
+CHD(N_ýý., NýUKN), 
+CHA1(NýPIS, NýUKN), CHA2(NýDIS, NýDIS), CHCI(Nýý, NýDIS), 
+CAM(N_, ALL, N_ALL), CANH(Ný. ALL, NýALL), 
+N_FORC(NT, 3), N_DISP(NT, 3), Aýý_NN(NýPIS),, CAý-NU(N-UKN)) 
+A, 

_FN(N_UKN), 
CA_FU(NýPIS), A,. 

_NFN(N_: 
ALL), A, 

_F(N_ALL), +CNODE(N__.: ALL),, CFORC(N-ALL) 
c SET C-AHM(N_ALL, N_ALL) IS THE SAME AS CAHM(l ->N_ALL, 1 ->N_ALL) 
C SET N_IN(N_: ALL) IS THE SAME AS NIN(l ->N_ALL) 

DO 10 I= 1, N_ALL 
NýIN(I) = NIN(I) 
DO 10 J=1, NýALL 

10 C-AHM(I, J)= CAIHM(I, J) 
DO 20 I=I, NýALL 
DO 20 J=1, N_ALL 

20 CCAI-lMI(I, J)=Cý, AfIM(N-IN(I), J) 
DO 30 I=1, N_ALL 
DO 30 J=l ,N ALL 

30 CCAHM2(I, J)=CCA1HMI(I, NjN(J)) 
C SET CHII, CH12, CH21, CH22 

DO 40 I=1, N_DIS 
DO 40 J=I, Ný_DIS 

40 CHI I(I., J)=CCAHM2(I, J) 
DO 50 I=1, NýDIS 
DO 50 J=I, N_LTKN 

50 CH12(I, J)=CCAHM2(I, NýDIS+J) 
DO 60 I=1, N_UKN 
DO 60 J=I, NýDIS 

60 CH21(1, J)=CCAHM2(N_PIS+I, J) 
DO 70 I=1, N_UKN 
DO 70 J=I, N_UKN 

70 CH22(I, J)--CCAHM2(N-PIS+INýDIS+J) 
C CALCULATE CHA=CH11-CH12*INV(CH22)*CH21 
C CHB=CH12*HW(CH22) 
C CHC=-INV(CH22)*CH21 
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C CHD=INV(CH22) 
CALL DLINCG(N_VKN, CH22, NýUKN, CH22I, NýUKN) 
CALL ANTYI (CHI 2, CH22I, CHA1, NýDIS, NýUKN, NýUKN) 
CALL AMEPY1(CHA1, CH21, CHA2, NýDIS, NýUKN, NýDIS) 
DO 80 I=1, Ný_DIS 
DO 80 J=1, NýDIS, 

80 CHA(I, J)=CH11(I, J)-CHA2(I, J) 
CALL AIVIPY1(CH12, CH22I, CHB, NýDIS, N_UKN, NýUKN) 
CALL ANTY1(CH221, CH21, CHC1, NýUKN, NýUKN, N_DIS) 
DO 90 I=1, NýUKN 
DO 90 J=1, N_DIS 

90 CHC(I, J)=-l*CHC1(1, J) 
DO 100 I=1, N_UKN 
DO 100 J=1, N_UKN 

100 CHD(I, J)=CH22I(I, J) 
C ASSEMBLE CHA, CHB, CHC, CHD 

DO 110 I=1, N_ALL 
DO 110 J=1, N_ALL 

110 CAM(I, J)=(0.0,0.0) 
DO 120 I=1, NýDIS 
DO 120 J=1, N_DIS 

120 CAM(I, J)=CHA(I, J) 
DO 130 I=1, N_DIS 
DO 130 J=1, N_UKN 

130 CAM(I, J+N_DIS)=CHB(I, J) 
DO 140 I=I, N_UKN 
DO 140 J=1, NýDIS 

140 CAM(I+NýDIS, J)--CHC(I, J) 
DO 150 I=LNýUKN 
DO 150 J=1, N_UKN 

150 CAM(I+N 
- 
DIS, J+N_DIS)=CHD(I, J) 

CA NN IS KNOWN NODE VALUE 
C A_FN IS KNOWN FORCE VALUE 
CA NFN ASSEM13LE A NN AND A_FN 

DO 160 I=1, NýDIS 
160 A_NN(I)=N 

- 
DISP(1,3) 

DO 170 I=1, NýALL 
170 A_F(I)=O. O 

DO 180 I=1, N_FOR 
1)-l)+Tý_FORC(I, 2))=Tý_FORC(I, 3) 180 A_F(6*(N_YORC(I, 

DO 190 I=LNý-UKN 
190 A_FN(I)=A,. 

-F("N(N-PIS+I)) DO 200 I=1, NýDIS 
200 A_NFN(I)=A,. 

_NN(I) DO 210 1=1, N_UKN 
210 A_NFN(I+N 

- 
DIS)=A,. 

_FN(I) CALL DLINCG(N__., ALL, CAM, NýALL, CAMI, NýALL) 
C CALCULATE THE UNKNOWN VALUE A_FU, kNU 

DO 220 M, NýDIS 
220 CA 

- 
FU(I)=(0.0,0.0) 

DO 230 I=I, N_UKN 
230 CA 

- 
NU(I)=(0.0,0.0) 

DO 240 I=I, NýDIS- 
DO 240 MNýALL 

240 CA 
- 
FU(I)=CA,. 

-FU(I)+CANH(I, 
J)*kNFN(J) 

DO 250 MNýUKN 
DO 250 J=1, N_ALL 

250 CA,,. 
_NU(I)=CA,. 

NU(I)+CANU(I+N_DIS, J)*A,. NFN(J) 
C TBE SOLUTION OF THE NODE ANDT]HE FORCE ARE 

C CNODE AND CFORC 
DO 260 I=I, N_ALL 
CFORC('i)=(0.0,0.0) 
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260 CNODE(I)=(0.0,0.0) 
DO 270 M, NýDIS 
CFORC(N_ýN(I))=CA,,. 

_FU(I) 270 CNODE(N_W(l))=k_NN(I)*CJ 
DO 280 I=I, N-UKN 
CFORC(N_W(I+NýDIS))=AjN(I)*CJ 

280 CNODE(N_jN(I+N_DIS))=CA NU(I) 
ANS=cdabs(CNODE(33))/1.0 
WRITE(18, *) WANS 
RETURN 
END 

SUBROUTINE ANTY1(CAA, CAB, CACN, M, L) 
c THIS IS MATRIX A*B=C 

EMPLICIT DOUBLE PRECISION (A, B, D-H, O-Y) 
RAPLICIT COMPLEX* 16 (C, Z) 
PARA]METER (CI=(O. O, 1.0), CJ=(1.0,0.0)) 
DIMENSION CAA(N, M), CAB(M, L), CAC(N, L) 
DO 9 J=1, L 
DO 9 I=1, N 
CAC(I, J)=O*CI 
DO 9 K=1, M 

9 CAC(I, J)=CAC(I, J)+CAA(I, K)*CAB(K, J) 
RETURN 
END 

SUBROUTINE ANTY(CAA, CAB, CAC, N, M, L, NANB, NC) 
C TIES IS NIATRIX A*B=C 

IMPLICIT DOUBLE PRECISION (A, B, D-H, O-Y) 
IMPLICIT CONIEPLEX* 16 (C, Z) 
PARAMETER (CI=(0.0,1.0), CJ=(1.0,0.0)) 
DIMENSION CAA(NANA), CAB(NB, NB), CAC(NCNC) 
DO 10 J=IýL 
DO 10 1=1, N 
CAC(I, I)=O*CI 
DO 10 K=1, M 

10 CAC(I, J)=CAC(I, J)+CAA(I, K)*CAB(KJ) 
RETURN 
END 

SUBROUTINE TNTY(CA, CB, MNNA, NB) 
C TIHS IS THE TRANSPOSE OF MATRIX 
C B=A' 

EýTLICIT DOUBLE PRECISION (A, B, D-H, O-Y) 
MIPLICIT COMPLEX*16 (C, Z) 
DIMENSION CA(NANA), CB(NB, NB) 
DO 100 J=1, M 
DO 100 I=I, N 

100 CB(I, J)=CA(J, I) 
RETURN 
END 

PROGRAMMAIN 
ITAPLICIT DOUBLE PRECISION (A, B, D-H, O-Y) 
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IMPLICIT COM[PLEX* 16 (C, Z) 
PARAMIETER (NT=6, CI=(0.0,1.0), CJ=(1.0,0.0)) 
DIMENSION A_NODE(NT, 2), NýELEM(NT, 3), CAHM(NTNT), CHR1(4,4) 

+, NýFORC(NT, 3), q_FOR(NT), CAliNU(NT, NT) 
PI=DACOS(-l. OdO) 
OPEN(12, FILE='INPLTT. TXTt) 
READ(12, *) NE, NN, E, U, R0, THO, Tffl, NjOR 
CLOSE(12) 
OPEN(13, FILE='ELEM. TXT') 
OPEN(14, FILE=NODE. TXT') 
OPEN(118, F11LE=`N3. DAT) 
OPEN(119, FILE='N4. DAT') 
DO 10 I=1, NE 

10 READ (13, *) Ný_ELEM(I, 1), NýELEM(I, 2), NýELEM(I, 3) 
DO 20 I=1, NN 

20 READ(14, *) A, 
_NODE(I, 

l), A, 
_NODE(I, 

2) 
CLOSE(13) 
CLOSE(14) 
N_ALL=NN*2 
A_L=A 

- 
NODE(2,2)-A,. 

_NODE(1,2) Aj 0.25*PI*((THO/2.0)**4-(THI/2.0)**4) 
A_S PI*((THO/2.0)**2-(THI/2.0)**2) 
AM= RO*A S 
A_B= E*A 

-I c A_Z= (E*RO)**0.5*A-S 
DO 49 I=1,, N_ALL 

49 C-FOR(I)=(0.0,0.0) 
OPEN(15, FILE='FORCE. TXT') 
DO 50 I=1, NJOR 

50 READ(l 5, *) Ný_FORC(I, 1), NjORC(I, 2), NjORC(I, 3) 
CLOSE(15) 
C- FOR((N_YORC(l, l)-l)*2+N_FORC(1,2))=CJ*N_FORC(1,3) 
F=1.0 
DO 500 IH=1,800 
W=2.0*PI*F 

c A_G = E/(2*(l+U)) 
c A_KK= 1.18 
cA K=A G*A S/A KK 

A_K = (W**2*A 
- 

NVA 
- 

B)**0.25 
DO 21 J=1)N 

- 
ALL 

DO 21 I=1,, N_ALL 
21 CAHM(I, JMO. ODO, O. ODO) 

DO 22 J=1,4 
DO 22 I=1,4 

22 CHR1(I, J)=(O. ODO, O. ODO) 
CALL ENiATR(A, 

-B, 
A, 

_K, 
A, 

_L, 
CHRl) 

DO 30 L=1, NE 
C ASSEMBLE THE CHR1 MATRIX 

DO 40 I=1,4 
DO 40 J=1,4 
CAHM(I+2*(L-1), J+2*(L-1)) 

+= CAHM(I+2*(L-1), J+2*(L-1))+CHR1(1, J) 

40 CONTINUE 
30 CONTINUE 

CAHNIINýALL) CALL DLINCG(N_ALL, CAHM, Ný_ALL, 
CALL SOLVE(FNýALL, CAHNH, CjORNT) 
F=F+1.0 

500 CONTINUE 
STOP 
END 
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SUBROUTINE IH2viATR(A, 
_B, 

A,. 
_K, 

A, 
_L, 

CHRl) 
IMPLICIT DOUBLE PRECISION (A, B, D-H, O-Y) 
IMPLICIT CONTLEX*16 (C, Z) 
PARAMETER (CI=(0.0,1.0D0), CJ=(l. 0D0,0.0)) 
DIMENSION CHR1(4,4), CB1(4,4), CB(4,4), CB2(4,4), CB2I(4,4) 

+, CBII(4,4), CBT(4,4) 
PI=DACOS(-I. OdO) 
DO 10 I=1,4 
DO 10 J=1,4 

10 CHR1(I, J)=--(O. ODO, O. ODO) 
B_SS=DSIN(A,. 

_K*A, _L) B-LS=DSINH(A, 
_K*A, _L) B_SC=DCOS(A,. 
_K*A_L) B_LC=DCOSH(A,. 

_K*A_L) CBI(1,1)=O*CJ 
CBI(1,2)=l. ODO*CJ 
CBI(1,3)--O*CJ 
CBI(1,4)=l. ODO*CJ 
CB 1(2,1)= kK 
CB1(2,2)= 0.0 
CB1(2,3)=kK 
CB1(2,4)= 0.0 
CB1(3, l)=B_SS 
CB1(3,2)=B_SC 
CB1(3,3)=Bý_LS 
CB1(3,4)=Bý_LC 
CB1(4,1)=A, 

_K*B-SC CBI(4,2)- I*A_K*B-SS 
CB1(4,3)=kK*B_LC 
CB1(4,4)=A, 

__K*B_LS c DO 20 J=1,4 
C20 CB1(3, J)=-1.0*CB1(3, J) 
C20 CBI(4, J)=-1.0*CB1(4, J) 

CB2(l, 1)= -1 *A_K* *3 
CB2(1,2)= 0.0 
CB2(1,3)=kK**3 
CB2(1,4)= 0.0 
CB2(2,1)= 0.0 
CB2(2,2)= kK**2 
CB2(2,3)= 0.0 
CB2(2,4)= -I *A_K* *2 
CB2(3,1)=kK**3*B-SC 
CB2(3,2)= -1*A_K**3*B- SS 
CB2(3,3)= -1 *A_K* *3 *B_ LC 
CB2(3,4)= -1 *A_K* *3 *B_ LS 
CB2(4,1)= -1*A_K**2*B- SS 
CB2(4,2)= -1*A_K**2*B- SC 
CB2(4,3)=kK**2*B_LS 
CB2(4,4)=kK**2*B_LC 
DO 25 I=1,4 
DO 25 J=1,4 

25 CB2(1, J)=A,, 
_B*CB2(I, 

J) 
C DO 29 J=1,4 
c CB2(3, J)=-1.0*CB2(3, J) 
C29 CB2(4, J)=-1.0*CB2(4, J) 

CALL DLINCG(4, CB2,4, CB2I, 4) 
CALL DLINCG(4, CB 1,4, CB 11,4) 

C CALL cinvs(CB2, CB2I, 4) 
CALL AWY1(CB 1, CB21, CB, 4,4,4) 
CALL ANIPY1(CB2, CBlI, CBT, 4,4,4) 

C DO 29 J=1,4 
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c CB(3, J)=-I. O*CB(3, J) 
C29 CB(4,1)=-I. O*CB(4, J) 

DO 50 I=1,4 
DO 50 J=1,4 

50 CHRI(I, J)=CBT(I, J) 
RETURN 
END 

SUBROUTINE ANVYI(CAA, CAB, CAC, N, M, L) 
C TIUS PROGRAM IS MATRIX A*B=C 

IlýTLICIT DOUBLE PRECISION (A, B, D-H, O-Y) 
IMPLICIT COMPLEX*16 (C, Z) 
PARAMETER (CI=(0.0,1.0), CJ=(1.0,0.0)) 
DIMENSION CAA(N, M), CAB(M, L), CAC(N, L) 
DO 9 J=I, L 
DO 9 I=1, N 
CAC(I, J)=O*CI 
DO 9 K=I, M 

9 CAC(I, J)ýAC(I, J)+CAA(I, K)*CA]3(KJ) 
RETURN 
END 

SUBROUTINE ANTY(CAA, CAB, CAC, N, M, L, NANBNC) 
C TIUS PROGRAM IS MATRIX A*B=C 

IMPLICIT DOUBLE PRECISION (A, B, D-H, O-Y) 
IMPLICIT COMPLEX* 16 (C, Z) 
PARAMETER (CI=(O. O, 1.0), CJ=(l . 0,0.0)) 
DIMENSION CAA(NANA), CAB(NB, NB), CAC(NC, NC) 
DO 10 J=I, L 
DO 10 I=IYN 
CAC(I, J)=O*CI 
DO 10 K=I, M 

10 CAC(I, J)=CAC(I, J)+CAA(I, K)*CAB(K, J) 
RETURN 
END 

SUBROUTINE TNPY(CA, CB, M, N, NA, NB) 
C TIES IS FOR MATRIX TRANSPOSE 
C B=A' 

IMPLICIT DOUBLE PRECISION (A, B, D-H, O-Y) 
IMPLICIT COMPLEX* 16 (C, Z) 
DIMENSION CA(NA, NA), CB(NBNB) 
DO 100 J=I, M 
DO 100 I=1, N 

100 CB(I, J)=CA(J, I) 
RETURN 
END 

SUBROUTINE CINVS(HH[NVSN) 
c FIND INVERSE (HINVS) OF COMPLEX MATRIX H 

COMPLEX*16 H(N, N), HENVS(N, N), A(N, N), B(NN), SUM 

CALL CSLTBN(H, A, N) 
NMI=N-1 
DO 40 I=I, NMI 
SUM=(0.0,0.0) 
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DO 41 K=IN 
41 SUM=SUM+A(K, K) 

SUM=SLTIVM 

DO 42 J=I, N 
42 A(J, J)=A(J, J)-SUM 

IF (I. EQ. NM1) CALL CSUBN(A, BINVS, N) 
CALL CWLY(H, A, B, N) 

40 CALL CSUBN(B, A, N) 
DO 43 I=I, N 
DO 43 J=I, N 

43 HINVS(I, J)=H[NWS(j, J)/A(j, j) 
RETURN 
END 

SUBROUTINE CSLTBN(A, B, N) 
CON2LEX* 16 A(N, N), B(N, N) 
DO 50 I=I, N 
DO 50 J=1, N 

50 B(I, J)=A(I, J) 
RETURN 
END 

c REAL MATRIX MULTEPLICATION: C=A*B 
SUBROUTINE CMPLY(A, B, C, N) 
CONd[PLEX* 16 A(N, N), B(N, N), C(N, N) 
DO 60 I=I, N 
DO 60 J=I, N 
C(Ili)=O 
DO 60 K=1, N 

60 C(I, J)-=C(I, J)+A(I, K)*B(K, J) 
RETURN 
END 

SUBROUTINE SOLVE(FNý_ALL, CAHM, C_FORNT) 
IMPLICIT DOUBLE PRECISION (A, B, D-H, O-Y) 
EMPLICIT CON[PLEX* 16 (C, Z) 
PARAMIETER (CI=(0.0,1.0), Cl=(1.0,0.0), IPATH=l) 
DIMENSION CAHM(NTNT), Cý_FOR(NT), CA(N__ALL, N_ALL), 

+CB(N_ALL), CX(NýALL) 
PI=DACOS(-I. OdO) 
DO 9 I= I, N_ALL 

9 CX(I)=O*Ci 
DO 10 I=I, N ALL 
DO 10 J=I, N_ALL 

10 CA(I, J)=CAHM(I, J) 
DO 20 I=I, N_ALL 

20 CB(I)=CJOR(I) 
c CALL DLSLCG (N_ALL, CA, N_ALL, CB, ITATH, CX) 

DO 30 I=I, N_ALL 
DO 30 J=l , N_ALL 

30 CX(I)=CX(I)+CA(I, J)*CB(J) 
ANS=CDABS(CX(29)) 

c ANS=CDA. BS(CX(8)) 
c WRITE(118, *) F, 20 *LOG I O(CDABS(CX(29)/l OE+20)) 

WRITE(I 18, *) FANS 
c VVRITE(119, *) F, 20*LOGIO(CDABS(CX(6))) 
c WRITE(l 19, *) FCDABS(CX(6)) 

WRITE(I 19, *) FCDABS(CX(30)) 
RETURN 
END 
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