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AMANDA HOPPER 

LANDFILL DESIGN, CONSTRUCTION AND NON-INVASIVE MONITORING 

Three techniques are investigated in order to assess their applicability for use in landfill design, 

construction and monitoring. Firstly, an assessment is made of QA procedures during liner construction 

through the detailed evaluation of two case studies. Construction QA procedures on-site are compared to 

available guidelines. The research illustrates the requirement for standardised, regulated QA procedures 

on landfill sites in order to provide a recognised framework for construction control. The Moisture Condition 

Value Test (MCV) is evaluated for use as a method of monitoring the placement of compacted clay landfill 

liners. London Clay and Mercia Mudstone, collected from the QA case study sites, are tested in terms of 

their suitability as engineered clay liners. Although, London Clay is the most acceptable it is this material 

which exhibits the poorest results in the MCV testing. This is due to seepage from the apparatus at high 

moisture contents. The research highlights the problems with the interpretation of the protocol for the 

testing and the differences between the Scottish and English Road Research Laboratory guidelines (Green 

& Hawkins, 1987). Thirdly, two airborne remote sensing techniques (ATM and CASI) are appraised as 

methods of monitoring landfill gas, or possibly leachate migration, from two case study landfill sites in 

South West England. Vegetation stress can be linked to landfill gas migration (Flower et al., 1981) and this 

stress can be detected as a deviation from normal spectral reflectances in vegetation (Honer et a!., 1983a). 

Anomalies are identified on-site through remote sensing but they cannot be directly attributed to the 

landfills. This research emphasises the effects of contamination from other sources. It also requires the 

use of a simultaneous ground survey to collate data from boreholes with measurements of soil and 

vegetation types. Essentially, the QA case studies and the remote sensing show potential for future use 

and suggestions are made in this thesis for further research. The MCV technique provides a method for 

assessing the controlling parameters of compaction. With further development of aspects outlined in this 

investigation there is the potential for specified use of these techniques In landfill engineering and 

monitoring. 
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1.0 INTRODUCTION 

1.1 INTRODUCTION 

An integrated waste management system has been adopted in the United Kingdom (UK) as 

the main approach to the solution of the problem of waste disposal (DoE, 1995a). Waste 

management strategies have had to be adapted over time in order to keep pace with an 

increase in waste arisings. Landfill is one generally accepted solution and, indeed, is a 

requirement comprising a strategic element of current, overall waste management practice 

(DoE, 1995a). Landfill design, development and management have each been subjected to 

rigorous change over the past two decades in order to encourage safe, environmentally 

sound and sustainable waste disposal practice throughout the operational lifetime of a 

landfill site and into the future. 

Historically, landfilling has been the most popular method of waste disposal since it has 

been a relatively cheap and 'efficient' option. However, attitudes to landfilling have 

changed. In the UK, landfilling is now index linked to financial taxation (DoE 1996a), the 

objective of which is to reduce the volume of waste deposited. More importantly, it has now 

been unquestionably proven that, unless controlled effectively, landfills can damage the 

environment in both the long and short term (Hart & Davy, 1996). Uncontrolled landfilling 

was merely a means to store waste, although it was recognised that it would create 

problems in future (Swinnerton, 1984). Consequently, the appearance of problems, such as 

contamination of groundwater, has led to the incorporation of landfilling within the sphere of 

modem environmental legislation. Current policy (DoE, 1995a) ensures that landfilling may 

be an acceptable practice and that the construction and operation of sites meet the latest 

legislation and controls. 

1 



1.2 WASTE MANAGEMENT ISSUES 

There are five fundamental elements within a total waste management strategy: 

f Production of waste; 

f Reduction and minimisation of waste generated; 

f Transportation; 

f Recovery potential in the form of reuse and recycling; 

f Disposal. 

Waste Type % Produced 

(1989-90) 

Annual Arisings 

(MT") 

Agricultural 18 80 

Mining & Quarrying 25 92 

Industrial 16 69 

Dredged Spoil 8 30 

Sewage Sludge 8 33 

Demolition & Construction 16 32 

Household 5 20 

Commercial 3 15 

TOTAL 99% 371 
*MT - Million Tonnes 

Table 1.1 Estimated Waste Production (DoE, 1998a & DoE, 1995a). 

Table 1.1 represents a break down of waste arisings in the UK. It illustrates the nature and 

scale of the waste disposal problem since there are over 370 Million Tonnes (MT) produced 

each year. The waste management industry must address the concept of environmental 

sustainability within the bounds of cost effectiveness, since, as global population increases, 

so too will waste production. The aim of a waste management strategy is to integrate 

effectiveness, in terms of long term disposal, with cost efficiency, to attain the best outcome 

in terms of the effects on the environment. 
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The reliance on landfilling within the current, complete waste management strategy is 

illustrated in Table 1.2. Landfill far outweighs any other current means of waste disposal. 

The proportion of recycling is higher than that of incineration (Table 1.2), highlighting the 

significance of recycling within the waste management hierarchy, particularly in the 

construction industry. 

Waste Type Landfill % Incineration % Recycled % Other % 
Household 90 5 5 0 

Commercial 85 7.5 7.5 0 
Construction & Demolition 30 0 63 7 

Other Industrial 73 1 18 6 

All Controlled 70 2 21 7 

Table 1.2 Controlled Waste Disposal Routes (DoE, 1995a) 

Landfilling is so heavily relied upon in the UK, that if an effective alternative were to be 

found, it would require many years of restructuring and re-education to make the change. 

The present UK waste management strategy (DoE 1995a) emphasises recovery. This 

policy anticipates limiting the increase in waste generation industrially, commercially and 

domestically. This in turn should result in a reduction in waste disposal to landfill. However, 

the strategy will still require a degree of landfill activity as a method of final disposal. There 

are limits to both recovery and recycling which are set by the nature of the materials and the 

economics of the programmes. Within current technology, certain materials cannot be 

recycled economically, whilst, in the case of others, recycling cannot always guarantee a 

perfect, uncontaminated final product outcome. Properties of recycled materials may in 

general be poorer than the original products from which they are derived, e. g., paper and 

glass. As a result, there is always a requirement for landfills. 
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1.3 LANDFILL DESIGN PHILOSOPHY 

A principal factor for the achievement of safe and environmentally sound disposal of waste, 

lies in the design and engineering of an individual landfill site. Most landfills were, until the 

early 1980's unlined i. e., 'attenuate and disperse' sites (as described by Swinnerton 1984 in 

relation to the Wessex Region, and Bonney, 1984). Unlined sites are those based 

essentially upon the principles of attenuation as leachate seeps out of the site. The toxicity 

of the leachate seepage is stabilised through attenuation processes in the zone beneath the 

landfill, thus minimising risk to the environment. Originally, the nature of these attenuation 

effects was unknown, as indicated by Woodward (1906). However, research by Griffin et al. 

(1976) and Campbell et al. (1983), provided evidence of the attenuating capacity of clays in 

general and sand in the Lower Greensand respectively. 

Lined, containment landfills require further controls for specific waste types. These lined 

landfills have engineered collection facilities in place for the control of the products resulting 

from the waste; leachates and landfill gases (LFGs). The objective of the lining system is to 

eliminate leakage. In practice this is not a straightforward task. Research into more 

environmentally sound and cost effective landfilling is essential. This is because there will 

always be a requirement for an improved final waste disposal method which poses the least 

environmental risk. An investigation into the practical realities of liner construction is 

illustrated through the case studies at Sites Alpha and Beta (Chapter Four). 

1.4 SCOPE OF RESEARCH 

1.4.1 Background 

Landfill regulations and guidelines (e. g., DoE, 1986 & NWWDO, 1995) have assisted in the 
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provision of a framework for the creation of fully designed and engineered landfill sites. This 

is to reduce the potential for pollution of the atmosphere, aquifers and surface waters. The 

extent and concentration of possible contamination is dependent upon a range of factors 

that impact upon landfill design, engineering and operation. These factors are investigated 

in detail in this thesis. 

As background, this thesis investigates the changes in landfill philosophy over the past two 

decades and explores the reasons for this. The type of landfill design is fundamentally linked 

to the type of waste to be deposited and the ground conditions (IWM, 1998). Both regulatory 

and legislative frameworks have been examined in the light of the movement towards 

containment landfilling. 

It is critical to consider the influence of legislation and Codes of Practice relating to landfill. 

Essentially, this will provide an understanding of how landfill technology has been directed by 

the experiences in the UK and Europe. Advances in landfill technology during the past two 

decades, have resulted in changes to existing policies and the instigation of new legislation 

and regulatory Codes of Practice (Bonney, 1984 and Caimcross, 1993). Indeed, the 

proposed European Commission Directive on the 'Landfilling of Waste' (EC, 1997), in its 

attempt to create a common European approach to waste disposal, (as early as 1991), 

acknowledges the rapid developments in the waste management industry. It is important to 

recognise this evolution since there are currently new laws and research which have been 

adopted in order to govern and regulate the field of landfilling (DoE, 1995a, 1995b, 1995c & 

1994, for example). These are described in detail in Chapter Two. 

Additionally, the achievement of a sustainable landfill design and management strategies 

aimed at safeguarding the environment is critical. The thesis puts this into context with 

regard to the current situation of landfilling in the UK. The provision of sections on landfill 
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design, in Chapter Three, aim to illustrate the changing nature of strategies which are directly 

linked to other techniques researched for this thesis. 

The three techniques presented in this thesis are the Quality Assurance (QA) of landfill 

construction, the Moisture Condition Value (MCV) Test and multispectral airborne remote 

sensing. These techniques have been developed for different purposes, although, the route 

to their final application by the landfill industry and the difficulties encountered in their 

acceptance as valid procedures are related. This investigation aims to explore the 

applicability of these three techniques to landfill site construction and monitoring. 

The process for the development of a technique is illustrated through the use of Figure 1.1. It 

provides a model for the relationship between research, development, demand and use, in 

the evolutionary design and refinement of an application. This model has been developed to 

evaluate the use of these three particular applications in the landfill industry. 

Problematic conditions arising during on-site work are usually the result of inadequate 

investigations conducted prior to commencement of earthworks and construction. This may 

be true in the macroscale, i. e. in broad terms, on all sites where investigation techniques are 

sufficient and have been applied appropriately. However, on the mesocale, i. e. specific to an 

individual site, unexpected ground conditions are most likely to be encountered to a certain 

extent. On-site problems arising in the latter case will be site specific and in most cases, 

could not have been predicted during the initial phases of site investigation. A combination of 

site, or even structure specific variables, may further culminate in necessary changes to 

construction, and construction monitoring techniques, after work has begun. Clearly, it is 

imperative that research is carried out in order to verify this. An opportunity to investigate the 

integrity of the site after earthworks and liner construction is then potentially available through 

the processes of Quality Assurance (QA). An investigation into the application of QA to 

address the issue of differences between guidelines and practical reality is described in the 
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following research carried out at two sites as described in Chapter Four. It is necessary to 

use case study landfill sites in order to acquire an appropriate knowledge foundation for this 

study. 

On-site experience was seen as a pivotal point for this investigation, enabling an insight into 

landfilling in order to understand issues arising during the construction of a landfill site. It 

enables an understanding of the on-site restrictions and the differences between theoretical 

and laboratory conditions. For example, 'real' events that clearly need to be investigated and 

that one would anticipate to be important a priori include material standards; personnel 

management; financing and costings; operational and planning restraints and material 

delivery problems. Each of these is influential in the day to day running of a construction 

project, thus affecting the overall efficiency of its operation. Thus, the primary objective has 

been to achieve an understanding of landfill construction through experience, In order to 

provide a comparison with design and construction stipulations and regulations. 

1.4.2 QA Case Studies 

Quality Assurance programmes are increasingly influencing the effectiveness of the design 

and construction of a landfill lining system (Jessberger, 1994). In order to appraise the 

effectiveness of landfill QA, an investigation must be completed into its effectiveness on-site 

throughout construction phases. This is completed through the use of two contrasting landfill 

case studies, Sites Alpha and Beta. Design and construction issues are addressed, 

concerning: 

" The choice of barrier system; 

" The placement and Quality Assurance of clay and composite lining systems; 

9 Material suitability. 
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1.4.3 Moisture Condition Value (MCV) Testing 

The importance of material suitability in the construction of landfill liners, as highlighted in 

Chapter Three, is assessed in this thesis. The Moisture Condition Value (MCV) technique 

was chosen for assessing clay suitability for landfill lining material taken from Sites Alpha and 

Beta. In order to determine suitability, it is essential to complete engineering tests, such as 

Atterberg testing (NWWRO, 1996), as outlined in Chapter Five. The MCV technique is 

investigated in its potential to monitor the placement of clays for lining landfill sites. It is 

chosen as a technique for use in this particular application due to its previous effective use 

for testing engineered fill (Parsons, 1979). The MCV testing for this investigation is conducted 

under laboratory conditions and its methodology is researched in order to compare with its 

potential use on-site. 

1.4.4 Non-Invasive Airborne Remote Sensing 

Monitoring is an integral part of the design, construction and management of a landfill site. 

Engineered, operational systems must now be provided throughout the lifetime of the site 

and into the future. The requirement for new systems which are fast and effective, whilst 

also being non-invasive, is examined with respect to the provision of a remote sensing 

technique. This thesis investigates the use of multispectral airborne remote sensing in the 

form of Airborne Thematic Mapper (ATM) and Compact Airborne Spectrographic Imager 

(CASI) for deployment in non-invasive landfill monitoring. 

Multispectral remote sensing is evaluated as a method for monitoring landfill gas (LFG) 

and, possibly leachate migration using two contrasting case study landfills in the South 

West of England. The data is collected without ground survey information in order to 

assess the importance and validity of the results without ground referencing. It is thought 

that this would enable a faster monitoring process. The rapidity of data collection and 
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manipulation and eventual sharing of the results with the site operators was to be 

appraised. Early on in the investigation, previous work indicated that stressed vegetation 

can be used as an indicator of landfill gas migration (Flower et al., 1981) and that 

damaged vegetation has a different spectral signature to that of normal vegetation (Horler, 

1983a, Rock et a/. 1988). In combination, these observations could provide an effective 

monitoring tool which is investigated in Chapter Six. 

1.5 OUTLINE AND SUMMARY OF OBJECTIVES 

The thesis thus provides a detailed account of the current situation of landfilling in the UK 

together with research into QA procedures, the MCV and airborne remote sensing. The 

construction QA case studies indicate a requirement for alternative techniques to those 

currently available for landfill liner monitoring and contaminant monitoring. In terms of 

describing new development techniques, this thesis illustrates alternative construction 

monitoring and non-invasive contaminant monitoring methods available to the landfill 

industry. It is after all, the overriding responsibility of all parties involved in a landfill project, 

based upon current knowledge, to construct and manage a site which poses the least 

environmental risk throughout time. 

Landfill satisfies the basic requirement for waste disposal. However, a question remains 

with regard to its suitability. Landfill must be judged in relation to current issues including: 

environmental impact, land availability and aesthetic effects which are present in both the 

short and the long term. The methods proposed by this investigation aim to assist in the 

provision of a landfill site which is both cost effective as well as offering minimal 

environmental impact in the long term. 
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The objectives therefore are: 

f To provide a detailed account of the influential legislation and Codes of Practice 

relating to landfill; 

f To outline the current situation in terms of landfill design and management strategies 

which can also be applied a basis for the landfill construction case studies; 

f To investigate the construction QA procedures which are employed on-site through the 

use of case studies. To assess the requirement for a regulated QA on landfill sites; 

f To evaluate the MCV technique in its use as a method for monitoring the placement of 

compacted clay landfill liners; 

f To appraise the use of airborne remote sensing (ATM and CASI) as a method for 

monitoring landfill gas or leachate migration from the landfill. 
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2.0 LANDFILL LEGISLATION AND GUIDANCE 

2.1 INTRODUCTION 

The controls placed upon landfilling practices in the UK have been strengthened in the 

past two decades primarily due to environmental enlightenment of the effects of landfilling 

(Montgomery, 1992), increased policing by the NRA (now Environment Agency (EA)) and 

new European Union (EU) legislation (such as EC, 1991). The UK had originally been 

generally reliant upon attenuation landfills and, as other countries' policies changed, was 

increasingly influenced by 'successful' experiences in the US and Germany. This 

culminated in the implementation of the Groundwater Directive (EC, 1991) which required 

heavier controls to prevent any control of contamination of groundwaters. Environmental 

protection had become an issue of paramount importance, influenced by the general 

consensus of support from the public. 

Due to changes in landfill design philosophies, alterations to legislation (DoE 1995c) have 

been accompanied by new guidelines issued by Government sources (1995a & 1995c for 

example) which are also affected by European Directives (EC 1997,1994 & 1991). The 

guidelines reflect current thinking on landfilling operations whilst also considering the 

effects of other environmental policies, an important example being sustainability (DoE, 

1995b). They must encourage the Best Practical Environmental Option (BPEO) for all 

landfills, with the current knowledge and available technology. The BPEO is the result of 

decision making and consultation processes which stress environmental protection and 

conservation in order to provide the most benefit or least damage (DoE, 1995a). Thus, 

guidelines must constantly evolve, in accordance with results from research, in order to 

provide the best environmental solution for waste disposal at any one time. 
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2.2 LEGISLATION 

2.2.1 Legislation and Regulation 

The role of landfill legislation and regulation is primarily to encourage protection of the 

human population and the environment into the future through pollution control, protection 

of health and safety and organised land management (DoE, 1996b). The responsibility for 

this falls mainly upon the Government in its legislative capacities. As a result, sites 

operating within the current prescribed standards should pose minimal risk. However, 

these standards cannot be imposed retroactively. 

Cairncross (1993) states that UK legislation has addressed the issues of air and water 

pollution before those of solid waste landfilling. For example, the Clean Air Act (DoE, 

1956) recognised the threat of air pollution and instigated measures to address it, twenty 

years before the formulation of any waste management legislation. This might be 

explained by the fact that waste is usually hidden underground and degrades over time, 

delaying the onset of any easily detectable problems until long in the future. Air and water 

pollution is generally visible and, if inhaled or imbibed, can be detrimental to public health. 

Waste confinement in specified areas minimises pollution however, the early landfill sites 

were clearly not as tightly controlled compared to their modem counterparts. Over the 

course of time, it has been seen that even controlled sites exhibit signs of pollution of 

groundwater, surface waters, soils although more frequently, the air in the immediate 

vicinity. Case study evidence of this is provided in IWM (1998b) in the case of gas 

migration from partially controlled sites. 

This section addresses past and present legislative procedures impacting upon landfilling 

in the UK. Such explanation cannot be attempted without considering the wider European 

view, as the UK has developed and constantly has to reflect its legislative, economic and 
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financial links with the EU. It is not feasible to overlook the importance of general 

environmental legislation, in terms of environmental protection, policies and governmental 

guidance. In particular, the National Rivers Authority Policy and Practice for the Protection 

of Groundwater (NRA, 1992), the EU Groundwater Directive (80/68/EEC) (EC, 1991), the 

Hazardous Waste Directive (EC, 1994) the Government White Paper 'This Common 

Inheritance' (DoE, 1990a), Special Waste Regulations (DoE, 1996c), and the Government 

instigated Waste Management Papers (Nos. 26 A (DoE, 1994) B (DoE, 1995b), D (DoE, 

1998b), E (DoE, 1996b) and F (DoE, 1998c) which have been crucial to the formulation of 

UK policy. These clearly show that UK waste legislation and regulations are now mainly 

aimed at the protection of both ground and surface waters, as well as to air quality. 

2.2.2 Legislative Terminology 

Legislative terminology in this field aims to distinguish clearly between types of waste and 

their capabilities for contamination. For the purposes of this investigation, it is appropriate 

to outline the following definitions as used by the UK Government (DoE, 1995a) and the 

EU (EC, 1997): 

'Waste' implies 'any substance or object... which the producer or the person in possession 

of it discards or intends or is required to discard ; 

'Inert waste' implies that which does 'not undergo any significant physical, chemical or 

biological transformations. Inert waste will not dissolve, bum or otherwise physically or 

chemically react, biodegrade or adversely affect other matter with which it comes into 

contact in a way likely to give rise to environmental pollution or harm human health. The 

total leachability and pollutant content of the waste and the ecotoxicity of the leachate must 

be insignificant, 

'Municipal solid waste' (MSW, domestic or putrescible) shall mean Waste from 

households, as well as commercial, industrial, institutional and other waste which, because 

of its nature or composition, is similar to waste from households, 
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'Controlled waste' is the term used to imply household, industrial or commercial wastes 

solely, or in combination. 

Other waste types include hazardous and non-hazardous wastes. This investigation is not 

directly concerned with these types of waste which require specific handling and treatment. 

Ball & Bell (1997) describe the principle of gradualism in relation to pollution controls. This 

principle states that such controls should be adaptable according to economic climate, 

scientific attainments and the goodwill of producers. Therefore, any legislative and 

regulatory changes deemed appropriate should only be completed if the scientific basis is 

suitably reliable and supports the case for change. In this way, scientifically proven results 

of investigations and research projects influence regulatory and legislative procedures to a 

high degree. As explained in the next section, this has resulted in a delayed approach to 

waste management legislation and, possibly, system fragmentation. 

2.2.3 Legislative Background 

Environmental legislation specifically aimed at landfilling is a relatively new concept, 

having originated through the Deposit of Poisonous Wastes Act (DoE, 1972) (Ball & Bell, 

1997), as a direct response to environmental disasters which had already occurred 

particularly, contamination in mining areas. As a result, waste management legislation 

originates in a reactive process, i. e. measures were initially only taken to protect the 

environment where failure had already occurred. 

The 1972 Act was closely followed by a real attempt to address future problems in the form 

of the Control of Pollution Act 1974 (CoPA) (DoE, 1974). This proved to be a skeletal form 

of legislation. It soon became apparent that the CoPA (DoE, 1974) was insufficient to 

cope with the demands placed upon it by rapidly advancing technologies in waste 

disposal. 
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In the long term, one of the foremost drawbacks of the system laid out by CoPA (DoE, 

1974) was the creation of Waste Disposal Authorities (WDAs). These were County 

Council run organisations in England, but District Councils in Wales, totalling 79 individual 

bodies. The WDAs were responsible for a licensing scheme for new waste disposal sites 

comprising mainly landfills or incinerators. Gronow (1993) states that it soon became 

apparent that CoPA (DoE, 1974) was insufficient, since the WDAs were able to operate 

their own sites in a county, and were responsible for the regulation of these as well as 

other, privately run, sites. Regulation of waste disposal sites was completed through the 

county organised Waste Regulation Authorities (WRAs), causing a conflict of interest. 

Another shortcoming of this early legislation could be found in the new licensing scheme. 

For example, under CoPA (DoE, 1974), the licence holder had the right to hand back the 

site to the WRA at any stage during, or even prior, to completion. This ultimately meant 

that the WRA could be made responsible for a highly problematic site costing thousands of 

pounds to complete or remediate. Hence, the polluters were relatively easily able to 

renounce their responsibilities. 

CoPA (DoE, 1974) also failed by not addressing other issues involving storage, 

transportation and treatment of waste. It was mainly concerned with the actual deposit of 

waste, which alone proved to be too restrictive. It became clear that it would be necessary 

to create regulations which would protect the environment, both the atmosphere and the 

lithosphere, in a more holistic fashion. 

2.2.4 Recent Legislation 

Waste disposal sites in the UK have always been required to obtain planning permission, 

even before the inception of CoPA (DoE, 1974). Prior to CoPA (DoE, 1974), it was 

covered in the Town and Country Planning Acts (Ball & Bell, 1997). Today, these Acts, 
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the Town and Country Planning Act (DoE, 1990b) and the Planning and Compensation Act 

(DoE, 1991a), partially cover planning requirements. However, for the most part, the 

requirements, such as the need for an Environmental Impact Assessment (EIA), are dealt 

with under the umbrella of the Town and Country Planning Regulations Number 1199 

(DoE, 1988). 

The Environmental Protection Act (EPA), (DoE, 1990c) was a direct attempt by the 

Government to address and resolve the issues which had arisen since the introduction of 

CoPA (DoE, 1974). The EPA (DoE, 1990c) addresses issues such as waste regulation 

and licence surrendering, presenting them in a clearer fashion. This Act was strongly 

influenced by the advances made by both the German and US legal systems in 

environmental protection. Furthermore, it is arguable that the UK's legal system was 

inevitably also influenced by pressure groups and public opinion due to a rapid escalation 

in general awareness of environmental issues. 

The EPA, Part 2 (DoE, 1990c) includes the 'Duty of Care' and 'Registration of Carriers' in 

an attempt to clarify responsibilities for waste. The Duty of Care places a legal 

responsibility for the waste on the producer who is responsible for the waste from the 

moment of its creation to the point of its disposal. The onus is now on the producer of 

controlled wastes through which it is hoped to discourage illegal (fly tipping) and 

unsustainable waste disposal. 

In 1992 the Government outlined the possibility of creating an Environment Agency (EA) 

which was compared to that of the Environmental Protection Agency in the USA (USEPA). 

This organisation was to embody the Government organisations which operated 

separately and included: the NRA, the WRA's and Her Majesty's Inspectorate of Pollution 

(HMIP). It was hoped that through amalgamation, the existing interest overlap would be 

minimised, leading to a single, more efficient authority directed from one source. Thus, in 
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1994 the EA was born in England and Wales (SEPA in Scotland) with resultant 

reorganisation. 

Under the EPA (DoE, 1990c), a landfill still requires a site licence from the EA as well as 

planning permission. In 1994 the Waste Management Licensing Regulations, (Part II of 

the EPA) were introduced. These regulations implement part of the EU Groundwater 

Directive (80/68/EEC) (EC, 1991) in order to protect groundwater quality (Rukin & Walker, 

1998). Even at this early stage of the process, a large amount of detailed information is 

required. For example, statutory consultees must be consulted about the location and 

impact of a landfill, in both the short and long term. The process is then opened for public 

consultation, which itself necessitates close liaison between the main parties involved in a 

project: the statutory consultees, the landfill designer and the operator. Section 74 EPA 

(DoE, 1990c) sets out the requirements of a 'Fit and Proper Person' to hold a waste 

management licence. This requirement is applicable to all aspects of waste management 

and the body which applies for the licence and operates the site must now demonstrate it 

has achieved these requirements. 

An applicant for a landfill licence is required to produce a document to account for the 

financial costs 'involved throughout all stages of landfilling. Once the landfill owner has 

proved that the landfill no longer has a capacity to pollute, the site may secure a 

'Certificate of Completion' and the license surrendered. Owners are no longer able to 

surrender their licences at any point up to completion, indeed, they must prove that there 

are sufficient funds available to operate, restore and also to complete long term 

monitoring. In the draft compliance cost assessment published by the DoE, a polluting 

lifetime of a landfill site was limited to 30 years. Research (Lee & Jones, 1992b) has 

shown that processes of degradation may still be in operation within a site even after this 

period has elapsed. Any leachates and gases which had migrated within the attenuation 

layer still possess a polluting capacity, possibly up to 100 years after completion (Estrin & 
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Rowe, 1997). 

It is, therefore, in the best legal interests of the engineer to ensure that minimum risk is a 

concept encapsulated in each landfill project. Estrin & Rowe (1997) highlight the 

importance of margin of safety measures which are adopted by the UK in the Engineering 

Council Code of Practice. These measures facilitate the reduction of the environmental 

risk posed by landfills, thus also diminishing the responsibility of the landfill engineer 

through the deployment of containment facilities based on the latest technological 

developments. 

2.3 UK GOVERNMENT POLICIES 

The Waste Strategy for England and Wales (DoE, 1995a) aimed to outline the main waste 

sources and the options available for their disposal. It states the policy for waste disposal 

in England and Wales, outlining the main aim which is waste reduction. The UK 

Government is now progressively committed to a recycling and waste minimisation policy, 

through which it is hoped to reduce the amount of waste going to landfill and, therefore, 

protect the environment for future generations. In this respect, the policy is based on 

principles of sustainability, encouraging an increased environmental efficiency of landfill 

operation. 

A waste hierarchy has now been outlined comprising Reduction, Re-use and Recovery 

prior to waste disposal which is described as the 'least attractive option' (DoE, 1995a). 

These options achieve a direct reduction in the amount of waste to be disposed of finally to 

landfill. Government policy states that there is no gain to be achieved from final disposal 

although, as illustrated in Chapter Three, LFG can be used to produce electricity. 

Landfilling of waste causes problems over a longer period of time in comparison with 

reduction, re-use and recovery which may be achieved and managed effectively with 
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relative ease. The latter options have the ability to be more economical both in terms of 

the financial cost and the re-use of materials. Recycling currently perhaps has the highest 

profile, and is aimed at achieving a goal of 25 % reduction in the amount of biodegradable 

waste to landfill by 2006 and 65 % by 2016 from 1995 levels (Pearce, 1998). In line with 

this are targets for the Packaging Waste Directive which aims to achieve 50 to 65 % 

recovery by 2001 (DoE, 1995a). Thus, the Government is firmly committed to the 

reduction of waste disposal through landfill or incineration. Landfill, however, is the only 

waste management process to be described as final disposal. Incineration, for example, 

still produces waste, in the form of a cake, which must be disposed of to landfill. 

In 1996 a tax (DoE 1996a) was imposed on waste going to landfill at £7 per ton of 

hazardous wastes and £2 per ton of inert which in April 1999 is to be increased to £10 for 

the former (Pearce, 1998 and IWM, 1998a). This acted towards promoting recovery and 

reducing landfilling, the price of disposal to landfill reflecting the environmental costs (DoE, 

1995a). In this respect the 'polluter pays' mechanism was enacted. Ball & Bell (1997) 

state that the EC (European Community) had always included this principle within its policy 

framework (Economic Commission Article 130R(2)). It implies that the producer of goods 

should be responsible for the costs of preventing or dealing with any of the polluting 

processes it causes. Thus, the costs of landfilling should be attributed to the waste 

producers in order to provide a financial incentive to reduce waste production. 

2.4 EUROPEAN UNION DIRECTIVES 

The EC Landfill Directive (97/0085 (SYN)) (EC, 1997) is currently progressing through the 

European Parliament and once implemented will have extensive implications for UK 

practice. It will affect the type and quantity of wastes which are currently sent to landfill 

whilst also stipulating stricter controls on current regulatory and operational management 

strategies. 
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The EC Landfill Directive (EC, 1997) has stipulated the collection and treatment of 

leachates through the employment of contained landfill which will result in attenuate and 

disperse sites eventually being phased out. The latter are still currently used in the UK 

and are monitored closely but still rely on the proviso that the migrating contaminants will 

be attenuated in the unsaturated zone under natural conditions. 

Bradley (1997) states that in the drive to commit to policies of sustainable development, 

the EU has been able to promote the reduction of waste and pre-treatment prior to 

landfilling. A main objective of EU policies is to encourage the reduction of the organic 

content in wastes disposed of to landfill through pre-treatment. This has resulted in 

pressure on the industry in the UK to do the same. 

2.5 GROUNDWATER PROTECTION 

Groundwater protection is a prime concern throughout the landfilling process. Mather 

(1992) notes that in England and Wales, 32 to 70 % of public water supplies are derived 

from groundwater sources. Therefore, protection of these potable sources must be 

prevalent in the environmental protection legislation. Lee & Jones (1992b) indicate that of 

the 75,000 landfills in the USA, approximately 75 % are polluting groundwaters, compared 

to 1 in 60 in the UK (Roche, 1996). The importance of recognising the potential impact on 

groundwaters is seen by Waste Management Paper 26B (DoE, 1995b) which advocates 

the use of risk assessment as a method for quantitative analysis. 

Groundwater is defined by the Groundwater Directive (EC, 1991) as the 'liquid in the zone 

below the uppermost level of the water table'. Conversely, the Water Resources Act (DoE, 

1991b) includes all water in underground strata (Hart & Davy, 1996). Both of these are 

used as legal definitions under the term 'controlled waters' (DoE, 1991b) to enable the 

protection of all groundwaters from point or diffuse pollution sources. 
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The Policy and Practice for the Protection of Groundwater (NRA, 1992) provides a 

framework for the protection of groundwaters in the UK. It enables the recognition of the 

aquifer protection policy and classification of vulnerable zones, which, in turn, denotes 

areas of acceptability and unacceptability for landfill sites. Engineering requirements for 

landfill design must encompass the minimisation of contamination. Stringent monitoring 

requirements are, however, still stipulated for all sites. Thus, as a direct result, attenuate 

and disperse sites are being phased out, especially in potable water zones, and replaced 

by engineered containment sites to prevent aquifer contamination. There is currently an 

on going debate into the effectiveness of attenuate and disperse sites with respect to the 

protection of groundwaters. Concern for the protection of existing groundwater reserves 

has led to the encouragement of containment sites, however, the potential for these sites 

to operate at 100% efficiently is questioned in Chapter Three. 

2.6 GUIDELINES FOR LANDFILL PRACTICE 

It is obviously in the best interest of the landfill operator to adhere to guidelines. The role 

of the landfill designer and engineer is to liaise with the regulatory authority in order to 

produce a design, specific to the site, which poses the least risk, complies with guidelines 

and enables the achievement of a profit margin. In addition, this must ensure the use of 

Best Available Technology Not Entailing Excessive Cost (BATNEEC) (DoE, 1995b). 

The document 'Guidance on Good Practice for Landfill Engineering' (DoE, 1996b) aims to 

offer a basis for the achievement of 'environmentally safe' landfills. It is possible that these 

initial types of independent guidelines can be used to provide the framework for future 

Department of the Environment, Trade and Regions (DETR) regulations and legislation. 

Estrin & Rowe (1997) note that most regulatory agencies outline prescriptive standards for 

landfill sites as opposed to performance based ones, which could improve the operation of 

22 



the sites, i. e. based upon a liner permeability of no more than 1x 10'9 ms" and a1m 

leachate head. This is especially seen in the details of minimum standards for landfill 

liners and was defined in Waste Management Paper No. 26 (DoE, 1986), which as Rukin & 

Walker (1998) state, was preceded in the requirements of the North West Waste 

Regulation Authority (NWWRA) in 1979. However, these are standards implemented 

without prior investigation into the level of control which is required by an individual site. 

Full implications in terms of costs, both operational and outlay, and long term 

environmental impact of the site are therefore generally ignored through this method. 

Interestingly, Rukin & Walker (1998) highlight that in most cases the landfill operator will 

accept the conditions outlined by the overseeing EA office without challenge. This 

inevitably hastens the planning process but does not necessarily permit the most suitable 

approach. Therefore, the use of a risk assessment for the proposed site remains 

underestimated by both parties. The importance of the relationship between the EA and 

the designer is vital to the success of the project but compromise is not always easy. The 

current state of the reorganisation of management and policies has caused a 'lack of policy 

consistency' resulting in different approaches being implemented across the country (Rukin 

& Walker, 1998). 

Estrin & Rowe (1997) indicate that the timescale for concern about a landfill site is 

generally limited. Sites in the UK were deemed to be potentially problematic for a period of 

30 to 50 years following completion. Today, however, a landfill site is deemed to be a 

potential polluter until the owner can prove, using monitoring applications, that the site is 

no longer producing dangerous levels of leachates or gases. This period therefore cannot 

necessarily be defined with precision given the unknown quantities of waste degradation, 

water influx and leachate quantity and quality. 
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2.6.1 Design Regulations 

Estrin & Rowe (1997) compare the regulatory designs of the USA, Germany and the EC 

Directive (EC, 1997) (Table 2.1). The German standard is immediately noticeable since it 

has a minimum of 3.75 m attenuation layer (including Compacted Clay Liner (CCL)) in 

total, in comparison with the Im of the EC and 0.6 m of USA. Calculations by Estrin & 

Rowe (1997) revealed that the seepage of highest quantities would occur through the US 

liner, to reach the aquifer below. Based upon specified premises of retardation in the 

attenuation layer, concentration and diffusivity, results indicated that after 14 years the 

maximum acceptable concentration (50 µg 1.1 of organic carbon) would be attained and it 

would peak at approximately four times this level after 44 years. In comparison, the 

Minimum Design Geomembrane Compacted Attenuation Layer 
Clay Layer 
(CCL) 

USA (EPA) 1.5 mm HDPE 0.6 m CCL N/A 
K: 5 10'9 ms" 

EC Directive Geomembrane N/A 1m attenuation 
laver KS 10"9 ms' 

Germany 2.5 mm 0.75 m CCL 3m geological 
geomembrane K: 5 5x 10'9 ms' barrier K 510-7 ms" 

Table 2.1 Minimum Design Requirements for Landfill Liners (Estrin & Rowe, 1997) 

German liner gave a maximum of 0.2 µg1'1 organic carbon in the aquifer at 150 years. The 

EC approach resulted in a peak at 70 years. These results give an idea of the effects of 

variation within standards in current operation in different countries. The EC proposals 

must consider the strategies of those countries, such as the UK which employ less strict 

guidelines for sites, whilst also attempting to include more complex approaches, such as 

those in Germany. They remain, however, merely guidelines and it is up to the regulators 

and the site designers to achieve the best environmental option for each individual site. 
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A further point of interest is associated with the stipulated maximum head of leachate. In 

most cases this is Im and is incorporated within the design strategy. However, basal 

lining has reduced the need for this, since the approach is now to encourage waste 

degradation which necessitates wet conditions to increase the rate of stabilisation. 

The primary aim of the EC policy, the Council Directive (EC, 1997) on the Landfill of Waste 

(EC, 1997), is to homogenise the approach to landfilling carried out by all the member 

states. The Environment Act (DoE, 1995c) states that the EU as a whole will 'become self- 

sufficient in waste disposal' which will be completed through individual plans implemented 

by the Member States. It has been illustrated that there are differing philosophies in 

operation at present which could inevitably lead to future problems. 

General basic requirements, as outlined in the EC Directive (EC, 1997), are already largely 

in use. However, municipal waste landfills are now required to be situated 0.5 km from 

urban sites or waterbodies and 2 km distance in the case of hazardous sites. This may 

lead to difficulties involving landfill siting in the UK, which does not appear to have the 

availability of locations respecting such requirements. This was only a minor change in 

comparison with the aim to phase out co-disposal and to enforce lining for all sites. 

Waste Type I Liner I Liner 

Permeability I Thickness 

Inert IKS1x10-1ms' IZ1m 

Non-hazardous K: 5 1x 10'9 ms'' Z1m 
Hazardous K: 5 1x 10'9 ms' 12: 5 m 

Table 2.2 Landfill Liner Minimum Standards (EC, 1997). 

Table 2.2 gives the EC standard landfill liner stipulations according to waste type. In 

circumstances where the geological barrier does not naturally achieve these specifications 
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it must be engineered to a minimum thickness of 0.5 m. Attenuation processes below the 

landfill liner are therefore still relied upon, although the policy is one of engineered 

containment. A suitable geological barrier must be provided in order to prevent or at least 

reduce the risk to groundwater and soils in the environs. 

2.6.2 Landfill Guidelines 

In the UK there are several bodies which have set guidelines for the landfill engineer. 

These include the papers in the Waste Management series, North West Waste Regulation 

Officers Sub-Group Technical Reports (NWWRO, 1995 & 1996) and Guidance on Good 

Practice for Landfill Engineering (DoE, 1996b). These are based upon input from 

researchers in the field and landfill engineers, operators and regulators. They provide 

sources of reference but do not act as Codes of Practice. 

The main Codes of Practice related to landfilling include the British Standards for Site 

Investigation BS 5930 (1981), Soils Testing BS 1377 (BSI, 1990) and for Earthworks (BS 

6091) (BSI, 1981). The Department of Transport Specification for Highway Works Series 

600 (DoT, 1991) is also relevant to landfilling and its application is explained in further 

detail in Chapter Five. These are derived predominantly from civil engineering and at 

present there are no Codes of Practice in use specifically related to landfill construction. 

However, there are stipulated standards for drilling of landfills given by the British Drilling 

Association 'Guidelines for the Safe Investigation by Drilling of Landfills and Contaminated 

Land' (1988), DD 175 (BDA, 1992) and Site Investigation in Construction (SISG, 1993 a& 

b). Drilling guidelines are necessary in order to install boreholes in a completed landfill for 

proactive monitoring purposes. In addition, Waste Management Papers (DoE, 1998c, 

1996b, 1996d, 1995a & 1994) provide guidelines for construction. 

The guidelines published by the NWWRO (1995 & 1996) aim to provide a reference base 
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for the landfill engineer since many changes have occurred in the design and construction 

of landfills in recent years. These are not intended to be specifications for landfill 

construction, in the way the Earthworks Specifications (DoT, 1991) are regarded in 

Engineering practice. However, it is necessary to comprehend the complete changes 

experienced in this field and therefore guidance notes of just a few years ago will today be 

completely outdated. The field continues to advance rapidly, which is reflected in these 

guidelines. DoE (1996b) gives additional information about the processes of site 

investigation, liner choice and construction, quality assurance and monitoring. 

2.7 DISCUSSION 

This Chapter has outlined the main legislative and regulatory requirements for landfilling in 

the UK at the present day. This is a continually evolving process, that is closely linked to 

available technologies and current research into understanding the processes involved 

within the waste mass and environs of the landfill. Changes in the philosophy of landfilling 

have necessitated the adoption of new guidelines and regulations. This has outlined a 

common framework for the design, construction and operation of landfills. 

In the past, environmental legislation took a reactive form, but this has now been 

superseded by a more proactive approach. Measures are now designed within the 

framework to assist in the prevention of environmental disasters rather than merely dealing 

with the problems created after an incident has occurred. However, it should be 

recognised that with even the most efficient controls, regulations and legislation in place, 

difficulties cannot always be averted. For example, the general problems of controlling 

leachates and gases within a confined site give rise to engineering construction and 

operational problems to enable their permanent control. 

The landfill legislative system in the UK has inevitably become highly influenced by 
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European practice. The UK is now influenced (or restricted) by events elsewhere, perhaps 

because of the reactive nature of its early legislative procedures. For example, the 

possibility for the removal of the co-disposal landfilling practice from waste disposal routes 

in the UK, as stipulated in EC proposals. However, the process of building a 

comprehensive European framework is not yet complete and, to date it has not been 

harmonious. 

This chapter has also attempted to illustrate the nature of some of the discrepancies within 

current procedures. The fragmentation of the governing system appears to have been 

inevitable considering the nature of the origins of legislation and regulations. Furthermore, 

both of these must be put into practice in order to reveal their shortcomings and 

problematic areas. With regard to the design and construction of landfill sites, legislation 

can only provide a minimum standard, which is to be inevitably questioned in the light of 

future research and experience. The most widely recognised requirement is to 

acknowledge and assess the potential risk posed by a landfill site on the environment, with 

a final aim of complete risk reduction. 

Regulatory processes can stipulate certain routes to the achievement of the best 

environmental option, however, the parties involved need to liaise in order to construct and 

operate a site. It is hoped that through this liaison, the most suitable approach will be 

achieved, although situations may still arise involving disagreements between parties. 

This chapter has provided a review of the main legislative procedures currently in operation 

in the UK. Emphasis has been placed upon the changes which new European led 

legislation and regulations will have upon landfilling practice. It is now hoped that with the 

presence of one general body, the EA, consultation for new landfills and the licensing and 

regulation of operating sites will be greatly improved. The almost total reliance upon 

landfilling within the current waste management strategy will in the future be reduced by 
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recovery of waste. This being a main objective in the UK's waste management strategy 

outlined in the Waste Strategy for England and Wales (DoE, 1995a) and enacted by the 

Environment Act (DoE, 1995c) Section 12, Schedule 12. 
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2.8 SUMMARY 

  Landfill legislation and guidance aim to provide the framework for landfilling which 

poses the least environmental risk and which encompasses the implications of 

sustainability concepts. 

  There is a requirement for a new legislative framework to address and resolve 

problems arising from waste management issues. Individual Government legislation 

must adhere to the trends of European policies and legislation relating to waste 

management. 

"A changing emphasis on the Codes of Practice in the UK for modem landfilling 

techniques has been influenced by American and German practices and advances in 

technology and materials science. 

" Legislation and guidance provides minimum prescriptive standards for landfill design 

and practice (as opposed to performance based ones), although their shortcomings are 

not usually recognised until the system is realised and operational. 

  Waste management legislation and regulations relating to landfill operations have an 

opportunity to achieve uniformity across Europe through the EC Landfill Directive. 

However, Codes of Practice relating to design requirements are still relatively varied 

between countries. 
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3.0 LANDFILL SYSTEMS 

3.1 INTRODUCTION 

An important theme throughout this thesis is the growing concern regarding the 

anthropogenic effects of landfilling on the environment. In converse to the understanding 

of Geological Time (i. e. the present is the key to the past), it could be said of landfilling 

that it is the practice of the past which may be a key to the present, and indeed, the 

future. Old landfill sites now provide a basis for studies about the effects of decomposing 

waste on the environment. These original sites were completed without guidance in 

terms of design, construction and monitoring indicated as early as Woodward (1906). 

This chapter provides a discussion of the philosophies behind and components involved 

in landfill design and the environmental and engineering management techniques for 

landfill sites. It attempts to provide a basis for an understanding of the fundamental 

aspects of landfilling design in the UK. Changes in design have facilitated the use of new 

materials for construction and operation. Little is known about the long term effects upon 

these, however, they are highly dependent upon understanding the active processes in 

operation within the waste mass. Due to the inhomogeneous nature of wastes, areas of 

this understanding are fairly convoluted. 

Landfill practice in the UK has been strongly influenced by the waste management criteria 

imposed in other countries, predominantly Germany and the USA (Chapter Two). 

Landfills now involve complex engineering structures and, as discussed later, landfill 

engineers are required to be knowledgeable over a very broad spectrum of ideas and 

technologies. 
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3.2 LEACHATE AND LANDFILL GAS 

The degradation of wastes over time within a landfill system produces secondary 

aqueous and gaseous products, leachates and landfill gases (LFGs). Experiments by 

Jones and Owen (1932), as discussed in Mather (1992), revealed that decaying wastes 

produced gases, although, at that time, the consequences were not fully understood. 

Both leachate and LFG have since proved their potential to exhibit extremely hazardous 

properties and demonstrated their ability to migrate from the site should conditions allow. 

The probability of the latter ultimately lies with the geological and geochemical properties 

of the surrounding rock strata of the site and the nature of the contaminants themselves. 

The inception of the total containment principle, i. e. the inclusion of a provision for 

management schemes for leachates and LFGs, has facilitated some control on their 

production. In addition, it may become necessary to consider the development of 

possible on-site works for their treatment. The latter has thus become a part of waste 

management in itself (Christensen et al., 1992). Therefore, in order to evolve 

complementary treatment practices, it is critical to understand the generation and 

composition of both leachates and LFGs. For example, the estimation of flow regimes 

through the waste is important in order to comprehend rates of generation and to plan 

appropriate engineered environmental management schemes. 

3.2.1 Leachate Generation and Composition 

Leachate is the solution produced by the decomposition of the wastes in the landfill in 

combination with rainfall which is intercepted by the waste body. The decomposition 

mechanisms encompass the degradation of organic matter and the leaching and 

dissolution of readily soluble constituents within the waste. Rainfall is a highly influential 
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factor in the quantity and quality of leachate generated, thus making it variable and 

therefore individual to each site (Ham & Bookter, 1982). The composition and rate of flow 

may be subject to seasonal variations to the point that during summer months, leachate 

production may cease altogether (Robinson & Maris, 1983). Chemical composition is 

also importantly affected by waste composition, pH, redox potential (Eh) and landfill age 

Parameter Range 
COD (mg I" 150-100 000 
BOD (mg 1" 100-90 000 
Ph 5.3-8.5 
Alkalinity m CaCO31" 300-11 500 
Hardness m CaCO3I' 500-8900 
NH4 m I' 1-1500 
Norm 1' 1-2000 
N (mg 1' 50-5000 
NO3 m I' 0.1-50 
NOZ m I' 0-25 
P (mg 1" 0.1-30 
P04 m 1" 0.3-25 
Cam I' 10-2500 
Mg (mg 1' 50-1150 
Nam I' 50-4000 
K (mg 1' 10-2500 
SO4 m I' 10-1200 
Cl m 1' 30-4000 
Fe (mg 1" 0.4-2200 
Zn (mg 1' 0.05-170 
Mn (mg I' 0.4-50 
CN m 1" 0.04-90 
AOX' (gg CII" 320-3500 
Phenol (mg f 0.04-44 
As (gg 1"' 5-1600 
Cd (gg 1" 0.5-140 
Co (RQ F' 4-950 
Ni (gg 1' 20-2050 
Pb 1" 8-1020 
Cr (gg 1' 30-1600 
Cu (Rg 1" 4-1400 
Hg (µg 1'') 

Adsorbable Or 
0.2-50 

ganic Halogen 
COD Chemical Oxygen Demand 

BOD Biochemical Oxygen Demand 

Table 3.1 Typical Leachate Composition (Andreolotta & Cannas, 1992). 
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(Andreolotta & Cannas, 1992). Thus, there can be little possibility for identical leachates, 

only common components which are found typically to comprise the solutions (Table 

3.1). Phillips et al. (1994) have identified five stages of chemical transformation that are 

operational within a landfill site. These are predominantly based upon the work of 

Farquar & Rovers (1973), which is detailed later. 

1. Waste emplacement, moisture accumulation and site closure. 

2. Anaerobic microbial activity increases as oxygen is depleted; reducing conditions 

form; biological activity produces volatile carboxylic acids which dissolve to form 

leachate. 

3. Shorter chain carboxylic acids are produced which further lowers the pH; waste 

metals form complexes; esters are produced; the leachate has a high organic 

content. 

4. Methane is produced; consumption of carboxylic acids as pH increases; metals 

precipitate; leachate decreases in organic content. 

5. Oxygen slowly reappears; methane production ceases; humic-like substances 

complex with heavy metals. 

This can be fitted to the diagram of Farquar & Rover's work on LFGs in Figure 3.1. The 

composition and generation of landfill leachate is thus seen to be highly complex, 

therefore research completed on one site may only be indicative of that particular site. 

However, in a broader sense, the main recognised processes in operation and their 

relative timing within production and generation processes may be recognised between 

sites. 

3.2.2 Landfill Gases 

The decomposition of waste through volatisation processes and chemical reactions of 
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WASTE MANAGEMENT PHYSICAL AND KEY GAS 

CHARACTERISTICS FACTORS CLIMATIC GENERATION 

FACTORS FACTORS 

Placement method Waste compaction Air temperature Oxygen - 

e. g. area, trench Aeration 

Composition Form e. g. bales Precipitation Moisture 

Density Depth of fill Atmospheric Nutrients 

Pressures 

Moisture content Area of waste fill Land form pH 

Age Daily cover; thickness, Hydrogeology Eh 

absorbing and 

Adsorbing capabilities 

Drainage Ground permeability Temperature 

Cover e. g. final or Topography Toxicity 

Intermediate 

Table 3.2 Factors Affecting Landfill Gas Generation. 

Adapted from Campbell, (1985) and Farquar & Rovers, (1973). 

micro-organisms under aerobic conditions generates a variety of LFGs, for example, 

methane (CH4), carbon dioxide (C02) (Cemuschi & Giugliano, 1989 and Senior, 

1984). Gas generation therefore depends upon the characteristics and parameters as 

outlined in Table 3.2. Gas generation will begin from approximately 6 to 12 months after 

the first stages of waste inception, (i. e. during the operational stage of the landfill), 

possibly through decades after completion (Falzon, 1997). In order to design a landfill 

site which can control the generation and release of these gases, it is important to 

understand the nature of the gases and their properties and thus estimate the length of 

time the landfill will take to reach a steady state equilibrium. 
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Although the presence of landfill gases has always been acknowledged, until relatively 

recently (post 1986), there was a limited awareness of the need for their monitoring and 

control measures, hence the latter were not originally incorporated into site design. 

Indeed, Campbell (1989a) indicates that this may be due to 'a lack of understanding of 

the basic nature and composition of the gases; potential production rates and yields'. 

This changed with 'a realisation of the potential adverse environmental impacts resulting 

from the uncontrolled release of gas' (Campbell, 1989a). The problems incurred by the 

production of gases (for example Loscoe, Section 3.2.7) have, however, been 

exacerbated by landfill practices today coupled with increasing public awareness of 

environmental protection. Research into gas production from landfill sites has revealed 

that there is indeed a danger due to the quantities produced and the properties of the 

gas, namely its high combustibility (Jarre et al., 1997), which are both predominantly 

related to the composition of the wastes. 

3.2.3 Landfill Gas Generation 

The pioneering study by Farquhar & Rovers (1973) is the main source of reference on the 

production of LFGs throughout the stages of waste degradation. The study identified four 

stages in the decomposition of the waste which affected the gas production. Figure 3.1 

illustrates the composition of the gas by volume in terms of the four identified phases. 

Prior to this influential research, the mechanism for the production and estimation of the 

quantities of these gases had not been identified, since, before the 1960's, there was 

very little published evidence (Campbell, 1989a). Researchers still attempt to recreate 

such an explanatory model in relation to the production of leachate. To date, this has not 

been achieved as effectively, but in the event, it would provide an interesting focus in 

order to attempt integration with the work of Farquar & Rovers (1973). The alternative 
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Phase 1: Aerobic 

TIME 

Consumption of the oxygen occurs predominantly at the time of waste placement. 

Phase II: Anaerobic Non-Methanogenic 

Carbon dioxide bloom and some hydrogen production. 

Phase III: Anaerobic Methanogenic Unsteady 

Increase in methane concentration to some 'relatively constant terminal value' and 

reduction of carbon dioxide and nitrogen to terminal levels. 

Phase IV: Anaerobic Methanogenic Steady 

Phase V Steady production rates achieved. Abrupt changes in the gas composition at 

this stage may illustrate changes in environmental conditions. 

Over the long term methane formation becomes negligible. Solid organic carbon oxidised 

to form CO2. Rates of the processes begin to reach those in the 'active soil' so the LFG 

starts to resemble soil air (IWM, 1998b) 

Figure 3.1 Sanitary Landfill Gas Production Pattern (Farquar & Rovers, 1973). 
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solution, which is currently in use, is to attempt to fit the production of leachate within the 

structure of the Farquar & Rovers (1973) model. 

Farquar & Rovers' research (1973) noted that, although the above explanation is typical, 

there may be changes in relation to differing conditions at individual landfills which is to 

be expected with consideration to variations in the type of waste (Willumsen, 1996). 

These conditions are generally the same as those that affect the production of leachates 

in the waste body, as discussed earlier. This is to be a repetitive theme throughout this 

investigation, underlining the proposition that landfills are site specific and that their 

chemical and biological behaviour depends upon varying circumstances experienced at 

each individual landfill site. 

3.2.4 LFG Composition and Rates of Production 

LFG composition and production rates are a function of the nature of the organic matter 

of the wastes, its biodegradability and the moisture content and temperature within the 

system. Table 3.3 illustrates the typical composition of landfill gases, indicating their 

diverse nature and the resultant problems which may occur. 

The rates of gas generation decrease over time with the maximum being phases II and 

IV in Farquar & Rover's (1973) model. Theoretical yields may be in the region of 

400 - 550 m3t7' over a 10 - 30 year period (Campbell, 1989a). Cossu et al. (1996) give a 

breakdown of the reported LFG generation yields (Phase III) which vary from 40- 50 m311 

Municipal Solid Waste (MSW) by Bowerman et al. (1977) to as much as 400 m3 i' MSW. 

Methane is the largest contributor to LFG composition, while approximately half as much 

carbon dioxide is produced based on typical values (Table 3.2). Willumsen (1996) 
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illustrates that methane production rates are in the range of 0.5 to 10 m3 methane per ton 

of waste per annum (typically, 2.5 m). The EU Directive on the Landfilling of Waste 

states that 32 % of the total methane production can be attributed to waste disposal, 

mainly landfilling, methane being the second most common contributor to the greenhouse 

effect (EC, 1997). 

3.2.5 Potential LFG Hazards. 

Both leachate and LFG have the potential to be hazardous, a feature which increases if 

neither are diluted or diffused. The combination of gases may be capable of causing the 

following, (although this is not necessarily applicable to all landfills): 

1. Increasing gas pressures in the landfill enable, and may encourage, vertical or 

lateral migration from the site; 

2. Since LFG is highly flammable, it is a potential fire and explosion hazard; 

3. LFGs commonly possess an odorous nature, which mainly derives from trace 

components, for example, Hydrogen Sulphide (H2S). Odour is one of the main 

causes of complaints from local landowners and inhabitants as it is directly 

noticeable; 

4. Vegetation damage on the landfill itself and areas affected by migrating 

pollutants. Further details of this are explained in Chapter Six. 

3.2.6 Landfill Gas Migration 

The possibility and extent of gas migration from a landfill is dependent upon parameters, 

including the design of the landfill, i. e. whether it is lined, geological characteristics and 

barometric pressures. 
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Gases will migrate through a permeable geological medium if the pressure within the site 

is sufficient to drive out the gas. The possibilities for migration include flow through 

macrostructures such as fractures, joints, bedding and fault planes (Williams & 

Aitkenhead, 1991), although the type of strata will also have a direct affect. Migration 

through porous rocks may occur as molecular diffusion, due to the concentration gradient 

or flow as a result of the pressure gradient. Higher permeability may exist in harder 

crystalline rocks which exhibit these features, as opposed to mudstones which tend to 

have closed fissures. It is also understood that the potential for migration can be 

enhanced by the existence of processes such as, periglacial frost-heave, landslipping or 

cambering which can create additional features through shearing and unloading. 

3.2.7 The Loscoe Disaster (1986) 

The Loscoe explosion of March 1986 is probably the best documented case in the UK 

illustrating the adverse environmental impacts of landfill gas. It was possibly the turning 

point in the assessment of the potential of landfill gas in terms of its migrational 

characteristics. The enquiry into the explosion that occurred reported that `it is fair to say 

however, that the possibility of lateral migration of landfill gas was not a subject of 

widespread knowledge until about 1986', a learning curve in terms of landfill gas 

management having begun around 1980 (WEPC, 1995). 

The Loscoe Brick pit, which had been worked for clay, provided the void for the landfill 

which accepted 'agreed material' until an adjacent housing development was completed 

in 1973, when inert waste was also deposited. Later in 1973, a licence was issued for the 

site to begin accepting domestic wastes, and, upon completion in 1982, a clay capping 

layer was applied (Williams & Aitkenhead, 1991). Warning signs from the landfill were 

apparent, such as reports from local residents of odours and vegetation die back, which, 
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in hindsight, is characteristic of the build up of gases. 

The explosion was attributed to the landfill as a consequence of the investigation of gas 

samples taken from the site. An investigation revealed that the gas comprised 60 % 

methane and 40 % carbon dioxide Williams & Aitkenhead, 1991), i. e. a typical LFG. The 

presence of low permeability mudstones and seatearths, and surface deposits of head 

and glacial till, served to reduce vertical migration, but lateral migration remained 

unchecked. The surrounding geology of the site had, therefore, unintentionally provided a 

migrational pathway for the gases from the landfill. 

3.3 LANDFILL DESIGN PHILOSOPHY 

The design of a landfill site is fundamentally dependent upon the type of wastes to be 

deposited, local geology, hydrology and hydrogeology, potential contaminant production 

and locality of pollution targets in the direct vicinity of the proposed site (DoE, 1996d & 

1995b). As a result, landfill design and construction is site specific. The ensuing sections 

describe the types of landfill currently in operation in the UK today. 

There are primarily two influential philosophies in landfill design which are dependent 

upon opposing parameters. Historically, the most widely used design relied upon natural 

attenuation processes in the strata surrounding the waste to reduce the capacity for 

leachate contamination, i. e. an unlined, self diluting site. More recently, the increase of 

environmentally sensitive legislation, regulations and Codes of Practice (as illustrated in 

Chapter Two), have resulted in the instigation of engineered landfill liners employing the 

most recent technology in order to encourage complete containment of aqueous and 

gaseous emissions (Seymour, 1992 and Street, 1993). 
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The more recent decision to landfill using encapsulation techniques depends upon the 

type of waste to be landfilled. For example, domestic wastes, which have a greater 

potential to create polluting compounds, are now limited to contained sites. Unlined sites, 

if licensed today, would only be able to accept the less polluting inert wastes (for 

example, construction wastes) which would have already been sorted. This is further 

illustrated by the case studies in the following chapter. 

3.4 DILUTE AND ATTENUATE LANDFILL 

Attenuation is the minimisation of concentrations of chemical species in leachate or 

groundwater as the species move through the subsurface unsaturated or saturated zones 

(Rowe et al., 1995 and Christensen et a!., 1994). Dilute and attenuate landfills are 

unlined and thus encourage egress of solutions and gases from within the site (Figure 

3.2). Gray et al. (1974) defined these landfills as sites which allow `/eachates to move 

from the landfill at such a rate that natural chemical and biological processes such as 

absorption and dilution, have rendered such leachates innocuous by the time they reach 

active or potentially active groundwater abstraction zones. These biochemical and 

geochemical mechanisms are not only at work on the leachate but also have the ability to 

stabilise some components of the landfill gases. For example, the carbon dioxide content 

may be reduced by dissolution in porewaters to produce weak carbonic acid (HCO3') and 

hydrogen (H) ions. 

Since there are no basal or side barriers, the base of the waste abuts the top of the in situ 

deposits, above the level of the water table. A detailed example of this type of site is 

given by Hopper (1994). A pit, in Runfold, Surrey was licensed for the extraction of high 

quality sands alongside the deposition of inert wastes (although there will always be a 

small percentage of organic waste within this) as illustrated by Plate 8.1. There was no 
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form of liner or leachate control employed by the site and there was approximately 5m 

depth of unsaturated zone. The landfill gases diffuse through pathways of higher 

permeability to the edges of the site, although they are mainly extracted from one 

location. 

ý. ý, ý� ý 

Some controlled 
gas release 
by flaring 

Rainfall enabling 
a flushing effect 

Vertical gas migration 
and diffusion 

Subsoil gas 
migration 

Leachate & gas 
migration into 
strata beneath waste 

Zones of 
higher 
permeability 

Unsaturated Zone 

Figure 3.2 A Typical Attenuate and Disperse Landfill. 

Adapted from Swinnerton, (1984). 

The assessment for site suitability as an attenuate and disperse landfill requires the 

combination of results from an environmental risk assessment in a design protocol in 

order to monitor and control the rate of discharge and composition of the pollutant. The 

DoE (1996d) research report states that this assessment requires 'considerable skill' to 

achieve effectively, since huge amounts of site specific monitoring data are required over 

prolonged periods. Complete reliance is placed upon the natural attenuation 

mechanisms in the vicinity of the site which must be monitored closely to prevent pollution 
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of the saturated zone. Rouse & Pyrih (1993) describe the choice of unlined sites as a 

technically sound approach to landfilling, an assessment based on research into the 

existence and effective operation of attenuation mechanisms. Rouse & Pyrih (1993) 

state that it is the regulatory reliance upon certain design parameters, for example, 

Leachate and LFG control, which have necessitated a change in favour of liners. 

3.4.1 Attenuation Zones 

The importance of an unsaturated zone to enable beneficial attenuation processes is 

highlighted in research by Campbell et al., (1983), Kehew & Passero, (1990), Blakey et 

a/., (1993) and Mather (1989). The presence of this type of horizon will delay the arrival 

of the pollutants to the groundwater or saturated zone by biochemical and geochemical 

attenuation mechanisms. Attenuation mechanisms discussed here may also be 

operational in the saturated zone where dilution and interaction will occur with the 

groundwaters. 

Attenuation is dependent upon the travel time *of the leachate and, importantly, the 

mineralogy of the substrata, predominantly the carbonate content (Mather, 1989, Blakey 

et al., 1993 & Campbell et al., 1983). Mather (1989) highlights the importance of the type 

of material which constitutes the unsaturated zone. This research implies that the highly 

acidic conditions found in some strata, for example, many Permo-Triassic Sandstones, 

are not conducive to attenuation mechanisms. Rouse & Pyrih (1993) give the most active 

pH range for attenuation mechanisms as between 5-8. A high buffering capacity of the 

attenuator is required to increase the pH of the predominantly acidic leachate permeant. 

This buffering process constitutes the dominant attenuation mechanism. 

Although research has proved the relative efficiency of the attenuative mechanisms, the 
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method has never since been employed fully in landfill design. This is due mainly to the 

NRA groundwater protection policy (1992), EA regulations and those stipulations 

increasingly imposed by the EU. Campbell et al. (1983) advocate the use of attenuation 

(in the unsaturated zone) for groundwater protection from landfill pollutant migration. 

Alone, however, this is an unacceptable approach under current national and 

international policies of environmental protection. The characteristics in favour of and 

against the facilitation of attenuation are given in Table 3.4. 

FOR AGAINST 

Deep unsaturated zone Shallow unsaturated zone 

Intergranular flows Preferential fissure flow pathways 

Fine grained Coarse grained underlying strata 

Mixed mineralogy (CEC) Monomineralic unsaturated zone 

High buffering capacity i. e. 

significant carbonate content 

Low buffering capacity (pH) 

Steady flows through the zone High flow variation, especially 

rapid, high concentration flows 

Balanced 'nutrient' leachate 

produced by the waste 

Leachate containing persistent 

compounds, namely high NH4, Cl & 

Total Organic Carbon (TOC) levels. 

Table 3.4 Factors of High Influence on Attenuation Mechanisms. 

Adapted from Blakey eta!., (1993). 

These sites are now generally considered to be environmentally unacceptable and would 

probably no longer be licensed, unless a liner is employed. The risk of polluting the 

sensitive and valuable groundwater reserves is too great, especially considering public 
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awareness of environmentally sensitive issues. 

3.4.2 Attenuation Mechanisms 

Attenuation mechanisms have been known to exist for some years, although, until the 

early 1990's, considerably little research had been completed on the subject. Robinson & 

Gronow (1992) state that biological mechanisms had been identified as being mainly 

responsible for attenuation. Nicholson et al. (1983) indicate that the main processes in 

occurrence are chemical reactions, dispersion and dilution with movement of the 

contaminant plume. These processes include anion and cation exchange with clays, 

adsorption of anions and cations onto hydrous oxides of iron and manganese, sorption 

on organic matter, precipitation of ions in solution, co-precipitation by adsorption, 

volatilisation and biodegradation (Rouse & Pyrih, 1993). These processes are dependent 

upon suitable conditions within the attenuating layer, some of which are portrayed in 

Table 3.4. 

Cation exchange results in the storage of some cations and the release of others to 

solution, i. e. into leachates. Natural clays possess Ca 2+ and Mg2+ ions which can be 

exchanged by Na+, K+ and NH4; present in leachate, through processes of advection and 

diffusion. For example, Rowe et al. (1995) illustrate that, as it takes two Na+ to exchange 

one Ca2+ in clays, the permeability of the material will be reduced. This is particularly 

beneficial to discourage migration in unlined sites, but will also decrease permeability in 

engineered clay liners. Matrix diffusion, i. e. the movement of contaminants from fractures 

into the adjacent matrix thus restricting migration provides a further example and is well 

documented in its role as an attenuator (Freeze & Cherry, 1979). 

The Cation Exchange Capacity (CEC) may be determined for the geological components 
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and, therefore enabling an estimation of their suitability as attenuators. This is rather a 

complex process, given the variety and quantity of possible cations involved, Mgt+, Fe 2+' 

Mn2+, Cat+, K+, & Na', for example. Research completed on the attenuation mechanisms 

of a sandy aquifer (Nicholson et a!., 1983), illustrated that cation exchange can be 

responsible for the release of calcium and subsequent precipitation of calcite. Griffin et 

al. (1976) completed some of the inaugural work in this area and showed that `attenuation 

was a direct function of the CEC of the clay mineral'. Heavy metals (Pb, Cd, Zn) were the 

easiest to be attenuated, whereas Cl and Na were the poorest. Within this framework, 

intermediate attenuation of K, NH4, Si and Fe was also achieved. 

Attenuation mechanisms are therefore diverse and highly dependent upon the strata 

underlying the landfill and that in the vicinity of the contaminant plume. Research has 

proved their existence under field and laboratory conditions. Indeed, it has even proved 

that they decrease permeabilities of clays, which would support a proposal for a form of 

engineered leakage. 

3.5 ENGINEERED CONTAINMENT 

3.5.1 Philosophy 

The landfill design philosophy of Dilute and Attenuate has gradually been superseded by 

the practice of Engineered Containment, which is also reliant upon attenuation to a 

certain extent. Containment may be defined as the total isolation of wastes from the 

environment through entombment and instigation of measures to control the products of 

the waste mass. In theory, it is the most effective approach to the management of 

wastes. However, in practice on-site, real situations have meant that total containment is 

unachievable, as acknowledged by Giroud & Bonaparte (1989), Blakey et al. (1993) and 
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importantly, more recently by the proposed EC Landfill Directive (1997). As a result, it 

might be true to state that most sites are, in the long term, a form of engineered leakage. 

In landfills situated above the water table leachate leakage can be reduced by lowering 

the head of leachate. For those below the water table, the head is reduced to a level 

below that of the piezometric level thus creating a hydraulically contained site (Rukin & 

Walker, 1998), as illustrated by the Site Alpha case study in Chapter Four. 

Figure 3.3 portrays the main components of an engineered landfill, illustrating the 

potential complexity of the system. An engineered site requires both basal and side 

liners (Figure 3.4) and also a capping system. These components must function 

independently of one another, in case of failure in part of the system. Ultimately, 

however, this is not the case, owing to the complex interactive relationships between 

individual parts of the system. For example, failure in a geomembrane liner would result 

in increasing pressure on the attenuating liner and subgrade. Since the attenuating layer 

was not designed to operate alone, it may be only a thin layer, resulting in limited 

attenuation and eventually, possible groundwater contamination. 

3.5.2 'Bioreactor' or'Wet Cell' Landfills 

'Bioreactor or'Wet Cell' landfills are a variation upon the entombment of wastes concept. 

These landfills are based on the same premises as the contained sites, although, instead 

of the removal of leachates to create 'dry tombs' (Lee & Jones, 1992a & b), leachates are 

actively recirculated within the waste, the main aim being to encourage an increase in the 

rate of degradation. 

The recirculation of leachate increases the microbial activity in the site. This results in the 

transfer of the organic load from its aqueous to its gaseous producing phase (according 
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Figure 3.3 Typical Components of a Landfill System (Adapted from Jessberger, 1994) 
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to Farquar & Rovers, 1973) over a faster period (Blakey et al., 1997). The rates of both 

leachate and LFG generation are thus maximised at an earlier stage, therefore reducing the 

polluting lifetime of the site. In this way, it could be seen as a more sustainable approach to 

landfilling, particularly for those sites with high organic content (Guyonnet & Come, 1997). 

However, experience in European climates has shown that this may not be possible and 

may lead to a build up of water within the site (Christensen eta/., 1992). 

The present debate on bioreactors explores whether it is a suitable form of sustainable 

landfilling. Waste Management Paper 26B (DoE, 1995b) defined a sustainable landfill as 

one which becomes a stable, non-polluting environment after 30 to 50 years. However, this 

does not mean that the wastes are completely degraded and, as such, polluting leachate 

may still be produced, although possibly at weaker concentrations (Beaven, 1997). Beaven 

(1997) states that it is not merely enough to quicken waste degradation within the landfill but 

acceleration of the flushing of leachate (as achieved in many attenuate and disperse sites) 

must also be considered. Field and laboratory trials at Brogborough (Phases I& II), Landfill 

2000 (Knox, 1996) and other sites are being completed to provide evidence for the 

achievement of the best approach towards reducing the polluting potential of landfill sites. 

3.6 GEOSYNTHETICS 

The term geosynthetics encompasses geomembranes, geotextiles and geogrids which are 

the main materials employed in composite landfill design. The materials derived their usage 

from the field of civil engineering applications, for example to provide reinforcement, 

drainage and filtration (Rankilor, 1981 and Anon, 1997a). 
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3.6.1 Geomembranes 

Geomembranes or Flexible Membrane Liners (FMLs) have been employed since around 

1982 in the US, when the US Environmental Protection Agency (USEPA) adopted them 

within the regulatory structure of landfill design. It stated that `prevention (via FMLs), 

rather than minimisation (via clay liners), of leachate migration similarly produces better 

environmental results' (Page, 1994). 

Geomembranes comprise mainly High Density Polyethylene (HDPE), 2 mm thick or 

greater, Low Density Polyethylene (LDPE) and Very Low Density Polyethylene (VLDPE). 

Within these groups there are also variations in the structure of the material, for example, 

Hyper-elastic liners and textured sheet lining. HDPE includes polyethylenes in the range 

0.935 - 0.97 g cm's in density and LDPE covers 0.915 - 0.935 g cm-3 (Cadwallader & 

Barker, 1994). On most occasions in the UK, HDPE is used as the lining material for 

landfill. HDPE is composed typically 97 % polyethylene resin, a single polymer, with the 

remaining 3% comprising carbon black, which is used to enhance Ultra Violet (UV) 

resistance. This type of geomembrane is fairly durable throughout site construction and 

initial phases of landfilling and it has a high resistance to chemical attack. Table 3.5 

illustrates the typical values for HDPE lining material as produced by Gundle, an 

American manufacturer which was one of the first in the market and who has encouraged 

further development in the lining field. These parameters are typically tested during the 

installation of the liner, in order to assure its integrity. Most factors remain the same with 

an increase in material thickness and an increase in tear resistance is noticeable. It is 

also more difficult to handle and installation times may be increased. For landfill lining, 

the liner thickness generally used is between 2 and 2.5 mm. 
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Typical Properties Test Method Gauge (Nominal) 

40 mil 80 mil 100 mil 
(1 mm) (2 mm) (2.5 mm) 

Density (g cc) (Minimum) ASTM D1505 0.94 0.94 0.94 

Melt Flow index (g minutes ) ASTM D1238 0.3 0.3 0.3 

(Max. ) 

Tensile strength ASTM D638 

Strength at break lbs inch" 160 320 400 

width 
Elongation at break % 700 700 700 

Elongation at yield % 13 13 13 

Low temp brittleness (°F) ASTM D746 -112 -112 -112 
Environmental stress crack ASTM D1693 1500 1500 1500 

(Hrs) (Minimum) 

Puncture resistance (Ibs) FTMS 101 22.7 47.6 59 

Unless specified, figures are typical values for test results. 

Table 3.5 Properties of High Density Polyethylene (Gundle, 1991) 

The factors portrayed in Table 3.5, can, however, be altered over time with exposure to 

leachate (Peggs, 1994). Research by Rollin et al. (1994) showed that over a relatively 

short period of time (7 years), leachate had specifically affected the basal lining as 

opposed to side and top covers. HDPE liner degradation is, therefore, a relatively large 

area of interest for current research, which needs also to address the issues of longer 

term durability and the effects of more aggressive leachates. 

These types of material generally provide an extremely low permeability barrier, although, 

if their integrity is damaged through a tear or puncture, leakage at significant rates can be 

recorded. Chapter Four details the use of Construction Quality Assurance (CQA) for the 

reduction of such rates. Specific HDPE liner CQA can be based on the premises as in 
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the following guidelines (DoE, 1995b); 

Very good CQA 

Average CQA 

Poor CQA 

2 to 3 holes ha" 

10 to 20 holes ha" 

30 to 50 holes ha" 

The order of permeability (K) under laboratory conditions for HDPE is approximately 

1x 10"15 m s" (Mollard et al., 1996) but this will be increased through inevitable 

construction problems and possibly even degradation during operational phases. Table 

3.6 gives the gas transmission rates in HDPE compared to LDPE, which, although 

measured at different temperatures, show significant differences. Thus, HDPE would be 

the preferred liner, but, due to its thickness, may experience limitations in its use. 

Synthetic 

Membrane 

Gas Transmission Rate 

MI (St P) M-2 d"1 atm"' 

CO2 CH4 
HDPE 

0.61 mm thick 

729 138 

HDPE 

0.86 mm thick 

467 104 

LDPE 6180 1340 

0.25 mm thick I 

stp Standard temperature and pressure 

Measured at 30 °C. 

Table 3.6 Gas Transmission Rates (Adapted from Haxo & Haxo, 1994). 

Geomembranes have lower permeabilities (both aqueous and gaseous) than engineered 

mineral liners if deployed correctly and therefore would be the preferred choice of liner. 

However, geomembranes also have a variety of disadvantages: 

f Handling difficulties which increase with greater liner thickness; 

" Construction and installation problems including folded wrinkles, damage 
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to liner from protruding stones in the subgrade, excessive grinding during 

seaming, overheated seams; 

f Susceptibility to mechanical stresses causing cracking or creep; 

f Low frictional (shear) resistance with soils and other geosynthetics; 

f Susceptibility to UV damage and chemical stresses to cause polymer 

degradation; 

f Minor break down by attack from biological agents, micro-organisms and 

birds; 

f As yet undetermined long term behaviour. 

(Adapted from Haxo & Haxo, 1988, Peggs, 1994, & Seymour, 1992). 

In order to provide assurance of their integrity at the time of installation, continual 

monitoring (Quality Assurance) of materials, installation procedures etc. is required, this is 

explained in detail in Chapter Four. After inception of the wastes, assurance of the liner 

integrity is minimised, since direct access to them is difficult. As with clay liners, even if 

leakage is known to occur, the 'point and rate of discharge still remain to be determined. 

As yet, there are no British Standards for geosynthetics liners, therefore manufacturers 

employ American Standards from the American Society of Testing Materials (ASTM), 

(ASTM, 1998) which until recently had not included tests specifically for materials 

employed in landfill design. 

3.6.2 Geocomposite Liners (GCLs) 

Geocomposite Liners (GCLs) comprise thin layers of FMLs (usually HDPE) covered with 

dried sodium bentonite and fixed together with an adhesive to a complete thickness of 10 

mm. The hydraulic conductivity (K) of this type of material is low at approximately 
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1 to 5x 10'" m s" (Daniel, 1997). The HDPE backing has the same properties as those 

used in single liners (Table 3.7) although the strength is considerably reduced since the 

material is thinner. 

Standard Construction 

Gundline HD membrane backing 0.5 mm (20 mil) 
Roll width 5.3 m 
Roll Length 60 m 
Roll weight 1792 kg 

Typical Properties 

Bentonite loading 0.0488243 kg cm" 
Effective hydraulic conductivity No measurable leakage 

Permeability coefficient of 

membrane (ASTM E96) 

2.7 x 10' cm s' 

Bentonite hydraulic conductivity 3.7 x 10' cm s 

Table 3.7 Gundseal (HDPE / Bentonite Composite Liner) Properties. 

Adapted from Gundle, (1991). 

GCLs possess advantages over engineered clay barriers: 

9 Low volume; 

" Fast and simple deployment and low cost in comparison with clay liners; 

" Deployment by relatively light weight plant; 

" Self-healing abilities; 

" Ability to withstand significant tensile strain without loss of hydraulic 

integrity; 

" No in situ density or moisture content monitoring is necessary since they 

are manufactured to a consistent and guaranteed quality. 

However, they possess a high vulnerability in terms of puncture, chemical alteration and 
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low shear strength properties of the hydrated bentonite. Table 3.8 indicates some of the 

GCL types available and the differences in properties which can be found with varying 

materials currently available. Choice of GCL will influence engineering design of the liner 

and placement: 

f To reduce the possibility of liner slippage at point of contact with the subgrade; 

f To create sufficient friction between liner components to prevent this. 

GCL type Effective cohesion 
(kPa) 

Effective angle of 
internal friction (°) 

Gundseal® 8 8 

Claymax 4 9 

Bentomat® 30 26 

®Trade name 

Table 3.8 Shear Strength Parameters for GCL (Daniel, 1993). 

Water 

height (m) 

QGCL 

K=1x10'1' 

ms'' 

QGCL 

K=5x10'" 

ms 1 

QCCL 

K=1x10'9 

ms's 

QCCL 

K=1x10'' 

ms'1 
0.1 0.01 0.05 0.10 9.50 

0.3 0.03 0.13 0.11 11.23 

1.0 0.09 0.44 0.17 17.28 

QGCL Seepage in I day'' through 1 m2 Geocomposite Clay Liner (10 mm thick). 
QCCL Seepage in I day"I through 1 m2 Compacted Clay Liner (1 m thick). 

Table 3.9 Seepage Rates Through a GCL and Compacted Clay Liners (CCL). 

(Naismith, 1997). 

GCLs are widely employed to provide an effective low permeability liner since their 

advantages significantly outweigh their disadvantages. Table 3.9 illustrates the 

effectiveness of a GCL at different permeabilities in comparison with a compacted clay 

57 



liner (CCL). A combination of the GCL and CCL would produce an even lower hydraulic 

conductivity, if installed efficiently. However, as with most of the newer materials on the 

market at present (HDPE etc. ), little is known about the long term properties of GCLs 

(Jaros, 1996). 

3.6.3 Geotextiles 

Geotextiles comprise synthetic fibres of polypropylene, polyester, polyethylene and 

polyamide. It is generally the first two which are most widely used (Cazzuffi et aL, 1994). 

Geomembranes will need protection from the drainage layer and waste components of 

the landfill. This is required in the short term due to continual trafficking during installation 

of the liner and in the long term from point loading by the gravel drainage layer. 

Protection for geotextiles generally comprises non-woven, needle punched materials 

which are resistant to chemical erosion from the effects of leachates. Fine particles from 

the aggregate layer may filtrate into the geotextile which could weaken its protective 

abilities. In addition, Seeger & Muller (1991) indicate that the components of the 

geotextile are affected by chemical activity throughout the waste degradation process. 

The effects of such activity cannot be reliably predicted due to the inability to define a 

standard leachate composition. 

The geotextile layer has several fundamental roles: 

1. To envelope the individual grains of aggregate comprising the drainage layer in 

order to absorb point loading effects and protect the underlying geomembrane. 

2. To distribute the load from an individual aggregate grain, due to its tensile 

strength (Kirschner & Witte, 1991), and act as a reinforcement. 

3. To act as a substrate for the deployment of the aggregate drainage layer 

(Seeger & Muller, 1996). 
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4. To act as a filter and drainage mechanism in the lining system (Rankilor, 1981). 

These materials are known to clog, due to mechanical and biological mechanisms 

(Cazzuffi et al., 1994). Research is being completed in this relatively new field, although 

interestingly, geotextiles are currently used for their known protective and reinforcing 

abilities. 

3.7 LANDFILL LINERS 

The objective of landfill liners is to maintain the highest possible retention of leachate and 

LFGs within the site. Liner requirements are prescriptive and an integral part of the 

landfill design. Requirements, as per DoE (1995b), include the control of leachate and 

LFG migration, groundwater ingress control and, finally, to achieve and maintain stability 

throughout the life of the site. Liners are now designed in the UK on a site specific basis 

determined by required prescriptive standards. 

3.7.1 Objectives of Landfill Liners 

Compliance of the liner with the assurance that waste has been disposed of in an 

environmentally sound manner is of fundamental importance in order to ensure: 

" An assurance of the quality of underlying groundwaters; 

"A guarantee of the integrity of the liner, should one be used; 

" Restoration to an enhanced / improved and non-hazardous environment; 

" The control of LFGs and leachates by collection or diffusion into the 

atmosphere. 

Since it has been proved that attenuation processes in the unsaturated zone are 
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beneficial to the reduction of the potential polluting capacity of migrating leachates, 

attenuation processes may also be employed in containment site design. The liner will 

reduce the capacity for migration from the site, but the insurance of an attenuation zone 

beneath the site will again reduce possibilities of groundwater contamination (Bright et a/., 

1996). An example of this is provided in Chapter Four where case study Site Alpha is an 

engineered containment landfill, provided with a basal unsaturated depth of >30 m of 

London Clay in which attenuation will undoubtedly occur. 

3.7.2 Single Liners 

These comprise a primary barrier system, either clay or Bentonite Enhanced Soils (BES), 

overlying a prepared subgrade. If necessary a groundwater control system may be 

installed within the subgrade. Leachate Control Systems (LCS) overlie the barrier in 

order to contain and divert the solutions. The location of these components within the 

lining system is given in Figure 3.3. This type of liner is employed in situations involving 

inert materials due to the low degree of environmental protection provided. The most 

common primary barrier deployed is an engineered mineral layer, 1m or greater in 

thickness. 

3.7.21 Single mineral liners 

Single mineral liners (Figure 3.4a) comprise engineered weathered mudrocks and clays 

which have the ability to achieve the specifications as set out in the prevalent guidelines 

and Codes of Practice. These are possibly the most common form of landfill liner 

employed in the UK for inert wastes. This is due to their. 

f Known effectiveness in leachate attenuation; 

f Widespread availability across the UK. 

However, contrary to the above, they can be: 
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Figure 3.4 Simple Liner Systems 
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f Difficult to engineer, 

f Difficult to achieve the suitable moisture content, if wetting or 

drying is required; 

f Bulky and expensive to transport and store; 

f Time consuming to install. 

Single mineral barriers are also employed as subgrade (to similar specifications) 

underneath geosynthetics, to form a composite liner. Examples of both a single mineral 

liner and a composite formation are given in detail in Chapter Four. 

The clay liner provides clay minerals to attenuate polluting species (retardation) as 

extensively proven (Griffin et al., 1976). The choice of a clay liner will depend upon 

availability and quality of the mineral and its geochemical variability. Obtaining a single 

source for the clay liner is generally of primary importance to ensure a degree of 

uniformity in the material (Weeks, 1990). 

3.7.2.2 Technical requirements 

An engineered mineral liner is required to achieve a low permeability coefficient under 

conditions outlined below. Minimum specifications for a clay liner are as follows but 

variability of this will be associated with the potential risk posed by the site: 

K=s1x10'9ms1 

thickness z1m 

The above are considered in further detail in Chapter Five which specifically addresses 

the use of clays and mudstones as engineered landfill liners. 

3.7.3 Composite Liners 

The development of these types of liner (Figure 3.4 d to f) has occurred in parallel with 
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technical advances in geosynthetics and plastics over the past 25 years. The 

geosynthetics provide several components of a composite liner. The design integrates 

geosynthetics with an engineered mineral sealing layer, the latter adheres to the previous 

technical specifications in terms of hydraulic conductivity. In this way, the combination of 

the material creates a landfill liner which has a reduced susceptibility for leakage. 

Possible leakage through the FML could be attenuated by the clay layer underneath. 

This type of liner is the most suitable for the containment of domestic wastes. 

There are further variations to this strategy, including double composite liners and single 

sandwich composite liners as illustrated in Figure 3.4. 

3.8 GEOSYNTHETIC INSTALLATION PROCEDURES 

This section is intended to give a review of some of the methods available for 

geosynthetics placement and testing. This area of landfilling technology was until 

recently dominated by only a few companies (German and American) which developed 

equipment and set standards according to their own techniques. As a result, this is 

reflected in the literature and the techniques are set out in standard manuals, which differ 

between the companies according to their particular choice of lining material. In recent 

years, there has been an influx of other companies, mainly from Europe, which have 

developed alternative liners, albeit based upon similar components. A specialised 

engineer is required for geomembrane installation in order to ensure the highest 

performance of the liner. 

3.8.1 Installation and Seaming Conditions 

Geomembranes require specific weather conditions for installation, especially in the 
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seaming stages of deployment, the practice of which is addressed in more detail in 

Chapter Four. However, all geosynthetics must be deployed under non-windy conditions, 

since even small gusts are able to pick up the liner and carry it some distance with force. 

GCLs must be laid under dry conditions in order to protect the integrity of the bentonite 

sealing layer. The same is recommended for the geotextile, since it has a huge capacity 

for absorbency, the weight of which inhibits rolling and placement. Indeed the Gundle 

Manual (1995) states that welding and placement of materials cannot take place during 

`any precipitation, in the presence of excessive moisture, blowing dust, or in the presence 

of high winds (unless wind barriers are provided) : This will therefore place heavy timing 

restrictions upon countries with certain climatic conditions such as seasonal heavy 

rainfall. 

3.8.2 Liner Placement 

All these liners are anchored at the top of the landfill site's surrounding containment side 

slope, in 'anchor trenches', as illustrated in Figure 3.5 and Plate 8.2. This is in order to 

keep the liner in place throughout installation and operation of the cell. The GCL layer 

deployment is relatively straightforward, providing the conditions are correct. An overlap 

layer is required between each sheet which bonds on addition with solution. The 

geotextile solely requires heat bonding at the point of over lap for each seam. Figure 3.6 

M 
Geosynthetics 

(a) Tz 

Backfliled Subgrade 
Trenches 

1 
Side 

(b) Liner 

Figure 3.5 Possible Anchor Trenches for Composite Geosynthetic Liner Systems. 
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HDPE sheets 
2mm (80 mil) 

Geotextile 

Figure 3.6 Composite Liner Overlap Detail. Adapted from details in Gundle, (1995). 

illustrates the organisation of the overlap detail and standard required overlap distances. 

The HDPE cannot be deployed in a simplistic fashion. Each sheet, cut to size and shape, 

is required to be heat bonded to prevent the immediate escape of leachates or LFGs. 

The HDPE is therefore rolled out with an overlap which is individually cut to enable 

bonding. There are two main methods of this, fusion and extrusion. 

3.8.3 Seaming 

In order to perform consistent and efficient seaming, the welder must attain a certain 

temperature and retain this throughout the procedure. Trial seams are completed on 

fragments of HDPE in order to assess the conditions at the start of the day, prior to 
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welding. The seams must be aligned to create the fewest number of wrinkles or 

'fishmouths', which will affect the performance of the welding. The areas must be 

cleansed to remove debris, oils and dust from the vicinity. 

3.8.4 Welding Procedure 

Fusion is the most common form of welding and involves an automated machine running 

along the length of the seam, heat bonding the two sheets of HDPE (Plate 8.3). It 

creates a solid HDPE double seam with an enclosed air void within. This type of weld is 

generally employed on straight seams. In odd shaped areas, where 'pie, boot and skirt' 

shaped HDPE cuts (Figure 3.7 and Plate 8.4) need to be bonded, an extrusion fillet weld 

Skirt Boot 
HDPE Patch 

Geotextil xtrusion Welds 

--., HDPE panel 

GCL 

Figure 3.7 Typical Boot and Skirt Construction in HDPE. 

is used as illustrated in Figure 3.8. This involves a hand held gun which heats HDPE 

cord and redistributes it around the seam (Plate 8.5). Prior to this, the seam edges are 

buffed and a thin liner of copper wire is placed at the join along their length. 
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3.8.5 Seam Testing 

Geomembrane 
sheets 

Figure 3.8 An Extrusion Fillet Weld 

In order to guarantee the integrity of the seams at the time of liner installation, they must 

be tested. There are generally two forms of testing procedures, non-destructive and 

destructive. 

Weld 

Upper Geomembrane sheet 

Lower Geomembrane Sheet 
Air inflated 
weld sealed 
at point of PRESSU air entry 

Measurement of L--j 
GAUGE pressure 2.5 mm 

over 5 mins with 
max. pressure loss 
of 3 PSI permitted. 

Figure 3.9 Air Pressure Testing Procedure. 

Non-destructive testing usually involves a vacuum test unit or air pressure testing along 

the length of the individual seam. Figure 3.9 illustrates the set up for the procedure for 

the air pressure testing. The seam is 'inflated' through a needle which penetrates the top 
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of the welded sheeting and is left for approximately 5 minutes in order to assess if there 

is any leakage. Each seam is also visually monitored along its entirety for any defects. 

The extruded welds are tested using the spark test method. Defect testing is completed 

by passing a wand of positive polarity over the weld which contains the copper wire. 

Voids in the weld allow the establishment of an electrical conductivity and therefore 

sparks are created at the point of weakness. The Gundle Manual (Gundle, 1995) states 

that the two must be in intimate contact to create a valid test since air is such a good 

insulator. 

For destructive testing, samples are taken from the seams to evaluate strength and 

efficiency of bonding which in turn can be used to assess long term durability. This type 

of testing comprises peel and shear testing. Peel testing gives an indication of the 

homogeneity and continuity of the seam through peeling the top sheet back against the 

overlapped edge of the bottom sheet (Gundle, 1995). The latter involves applying a 

tensile strength to the top sheet through the weld into the bottom sheet. 

Samples are taken, at the instruction of the Quality Assurance Engineer, for laboratory 

testing as required. Sample locations are recorded and patched using extrusion welds. 

Failure of a seam necessitates seam reconstruction between test locations which have 

been passed. Alternatively the seams can be traced for no less than a further 3m from 

the point of failure and new tests carried out. Success of these tests results in rewelding 

of the area in-between. Additional failure demands further tests in closer proximity. 
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3.9 LEACHATE COLLECTION AND TREATMENT SYSTEMS 

3.9.1 Leachate Collection System Design 

Leachate Collection systems are generally embedded within the gravel drainage layers 

(Figure 3.10) and graded towards the point for extraction. Lechner (1994), however, has 

noted that this system has problems, due to silting and precipitation blocking the pipes, 

and also deformation of the pipe itself. 

The pipes are most commonly HDPE, slotted pipes which are attached by collars. Pipe 

junctions are available to create herringbone arrangements for leachate drainage. Pipe 

arrangement will depend upon the location of the sump and the size and shape of the 

cell. Each cell will require an individual system, although collected leachate can be 

amalgamated for extraction and treatment. 
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Figure 3.10 Typical Leachate Collection Pipe Design. 
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Leachate generation calculations are fundamental in order to supply adequate piping in 

correct locations to fulfil the requirements of the collection system. Research by Cossu et 

al. (1997) has indicated that the leachate flow regime will be affected by non- 

homogeneous waste characteristics, well clogging and damaging. To reduce the latter 

problems, pipe cleansing and monitoring after site completion are necessary. 

3.9.2 Leachate Management and Treatment 

The control of leachate is directly related to the waste in terms of its storativity, i. e. the 

capacity of the waste to hold solutions, and its permeability properties (Beaven, 1997). In 

order to understand the processes necessary for leachate treatment, scientists must first 

learn about the hydraulic properties of the waste mass. These can be likened to the flow 

regimes of 'bounded, multi-layer, aquifer systems with bulk mass and preferential 

pathway flow in confined, leaky and unconfined aquifers interbedded with aquitards and 

aquicludes' (Burrows et al., 1997). 

Leachate can be managed by extraction through integrated drainage systems at the base 

of the waste, as well as vertical pumping wells. Robinson et al., (1997) highlight the use 

of aeration schemes which are efficient in on-site leachate treatment, following extraction. 

The main problems associated with leachate are the high content of ammoniacal nitrogen 

and COD levels and these can be reduced effectively by over 90 % in 10 to 20 days 

through this strategy. Other systems include ammonia stripping, reverse osmosis and 

anaerobic methods. 

3.10 LANDFILL GAS COLLECTION FACILITIES 

LFGs may be collected in active systems or allowed to diffuse through passive systems 
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within the landfill. The choice depends upon management strategies for the site and the 

anticipated environmental impact which in turn is related to the expected gas output. 

LFG collection facilities are an integral part of the design of the site and must be 

completed throughout waste placement. However, some systems can be installed after 

site completion, although this is not generally recommended unless there are special 

conditions. For example, large completed sites may now want to utilise the gas 

produced. 

3.11 LANDFILL CAPPING 

Landfill capping is a requirement of a site licence (DoE, 1996d). Regulations of capping 

contribute towards ensuring the containment of waste and eventual integration of landfills 

with the environment (DoE, 1996d). There are two basic types of cover system, very low 

permeability and quasi-impermeable. The fundamental requirements are: 

  To contain the gases and leachates in order that they can be controlled; 

  To minimise precipitation infiltration and also control run-off; 

  To allow for waste settlement and to cope with seasonal wetting and 

drying; 

  To prevent migration of perched leachate through the side liners; 

  To allow final landscape integration; 

  To maintain a long term integrity. 

Capping mechanisms have similar components to the landfill basal barriers i. e. 

compacted clay or composite (Figure 3.4). The most common components in landfill cap 

design, as portrayed in Figure 3.11, can be divided into the five phases as demonstrated 

(Daniel & Koerner, 1993). DoE (1996d) gives the minimum soil thicknesses for the 
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capping layer which are dependent upon afteruse. For example, an inert site with an 

after use for grazing must have a minimum 0.5 m cap in contrast to the 1m specified for 

sites accepting other types, for example, domestic wastes. 

The cap can be profiled to the height and shape agreed in previous design stages. The 

general compliance is for progressive restoration to be completed as cells are filled. In 

order to reduce the effects of runoff, which cause minor erosion features such as rills, the 

final gradients and cover materials must be considered carefully. Problems are also 

incurred due to waste settlement, for example, cap failure by cracking or rupture, which 

will increase possibilities of infiltration, thus increasing leachate head levels within the 

completed landfill. 

1. Surface Layer 
possibly with a geosynthetic 
erosion control layer at the 
surface 

3. Drainage Layer 

4. Barrier Layer 
CCL, GCL or 
geomembrane 

2. Protection Layer 
Mixed soils, cobbles or possibly 
a geotextile layer 

5. Gas Collection Layer 
Gas channelled to collection 
points through sands or geonets 

Figure 3.11 Possible Components of a Landfill Capping Design (Not to Scale). 

The last layer of waste to be deposited is specified as inert in order to reduce polluting 
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possibilities in the top layers. The final layers of the capping comprise sub soil and top 

soil. This is usually derived from the site prior to the landfilling process is begun or can 

be imported. The latter is less preferential since it may be inhomogeneous or of suspect 

provenance (DoE, 1996d). It could, however, be manufactured to specifications. Top soil 

is a particularly important layer in its ability to support indigenous and vigorous vegetation 

growth. 

3.12 RESTORATION AND AFTERCARE 

This is the process in which the completed landfill is integrated into the environment. The 

afteruse of a landfill site is now agreed at the design and licensing stage of landfilling so 

that restoration work can be completed accordingly. This is indicated by the case studies 

used in this investigation which also serve to illustrate the diverse nature of the end uses 

available to landfill. The requirements and recommendations for restoration and aftercare 

of landfill sites in the UK are given in the DoE (1996d) Document' Landfill Restoration and 

Post Closure Management. 

3.12.1 Restoration 

The design considerations for this stage of landfill completion are considered in the 

formation of the Restoration Working Plan. This outlines the restoration and after care 

strategy and works, leachate and gas monitoring and post-closure management of 

engineering systems (DoE, 1996d). 

Alongside phased capping, phased restoration can be conducted, which is beneficial in 

terms of the following (Adapted from DoE, 1996d): 

0 Screening more recent phases with restored ones; 
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9 Reducing the area which is to be worked at the completion of the operational 

phase; 

0 Returning land to its end use as soon as possible to create a more aesthetically 

pleasing feature; 

0 Reducing the amount of infiltration to completed areas of the site, thus keeping 

leachate heads to the minimum specified; 

0 Importantly, in order to test the effectiveness of control and monitoring systems 

while there is time available to change unfinished areas. 

Drainage may be employed on the surface of landfills which are to be restored for an 

agricultural use. Surface drains are used to collect run-off and discharges from any 

operational underdrains. They may comprise open ditches, french drains and land 

drains, for example. Drainage designs are diverse and therefore, specifically dependent 

upon the choice of landfill design in terms of, angle of slope, estimated run off potential 

and finished cover material. 

3.12.2 Aftercare 

Landfill afteruse is the planned application for the use of the landfill site after completion 

of waste tipping and restoration. It is, however, reliant upon results of monitoring to show 

there are no immediate causes for concern regarding leachate or LFG migration. 

Afteruse is diverse, which highlights the possibilities now available for completed sites. In 

terms of the older completed sites, these may now be restored to agricultural use, nature 

conservation areas or locations of formal recreation with remediation. 

Afteruse requires a specified level of monitoring in order to ensure the integrity of the site 

and that there is no contamination occurring. Integrated landfill systems must be 

protected in order to ensure that they fulfil their role in accordance with the requirements 
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for the individual landfill site. 

3.13 LANDFILL MONITORING 

Landfill monitoring is an essential measure in order to reduce the risk of pollution 

occurring in operating and closed sites. Pollution can take many forms and will occur at 

varying concentrations. Costs of remediation treatment may be minimised by 

comprehensive monitoring systems employed at each site, such as those illustrated in 

Figure 3.12. A comprehensive monitoring strategy is required to encompass all stages of 

landfilling, even prior to waste placement. 

Initially, monitoring serves two main purposes (Bagchi, 1990). These are: 

1. To find out whether a landfill is performing as designed; 

2. To ensure that the landfill meets its regulatory requirements. 

However, although these may be the prime considerations, they are not the only aims 

associated with the operation of a holistic monitoring system. The North West Waste 

Regulation Officers Technical Sub-group (NWWDO, 1995) includes a further two 

purposes: 

3. Ensuring an accurate level of flammable gas, oxygen and carbon dioxide is 

recorded at a given point. It should also enable gas flow rate and barometric 

pressure trends to be measured and representative samples of gas to be taken for 

further analysis. 

4. Monitoring for gas and leachate migration plumes outside the waste boundary. 

Specifically, it is the last of these points that is of direct relevance to this study. Chapter 

Six examines the possibility of airborne remote sensing for contaminant migration 

detection, which will invariably be lateral migration outwards from the entombed wastes. 
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Organisation of the types of monitoring in Figure 3.12 would only be able to determine 

the affected area within the scope of the equipment employed. Remote sensing can 

provide a more holistic method which enables detailed coverage of the vicinity of the 

landfill site. 

Gas extraction 
Perimeter system Multilevel 

Sampling Surface water 
monitoring well sampling 

Surface water 
Groundwater 
sampling interception boreholes ditch 

WASTE 

Leachate 
Liner collection 
System system 

1: 100 

CONTAMINANT PLUME 

(Not to Scale). 

Figure 3.12 Schematic Diagram Illustrating Basic Forms of Landfill Monitoring. 

(Adapted from Bennet, (1997) and Christensen, (1992)). 

Individual landfills have continuous monitoring schemes for both ground and surface 

water, as well as for gas in the soil and atmosphere around the site. The objectives of the 

monitoring strategies are stringent, in order to enable rapid response in the event of 

contamination. Indeed, Gervasoni & Repoli (1989) state that monitoring strategy must be 

an `integral part of the landfill design preceding its construction and should include the 
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control of environmental quality and the control and study of the structures and the waste 

in order to create predictive scenarios 

This approach to recording the environmental quality has now been widely adopted in the 

UK. However, not all landfills require the same levels of detailed monitoring. A site 

which accepts 'inert' wastes only would not require as complicated a system for 

monitoring as one accepting 'putrescible' wastes. This is illustrated in Chapter Four 

which examines two contrasting landfill designs employing management systems with 

varying degrees of complexity, directly related to the local geological considerations and 

waste type. In addition, Chapter Six deals with the examination of an approach to 

monitoring that could be applied to all sites, regardless of size or waste type. 

3.13.1 Techniques for Landfill Gas Monitoring 

LFG monitoring is required to indicate levels of oxygen and nitrogen to assess the degree 

of mixing of the gases with the air. Wright (1995) suggests the monitoring of freons in 

order to diagnose the source of the gas in terms of age and origin. Monitoring may be 

completed in the following manner. 

0 Ground surveys to indicate emissions at surface level using a probe which 

detects results in parts per million (ppm). These techniques are particularly 

useful for detecting the integrity of the completed capping layer and efficiency 

of gas control systems; 

0 Spiking or searcher bar surveys and borehole monitoring to determine gas 

regimes in subsurface levels; 

0 Monitoring of buildings and confined spaces in the vicinity. 

It is important, when considering the systems, to choose realistic strategies which can 
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achieve the targets set for the site. However, the quantity and quality of the data must be 

assessed in terms of ease of collection and of comparison to standards, for example. It is 

pointless to collect unnecessary data which is not used in the general monitoring scheme. 

The importance of controlled computerised databases is critical to the extraction of 

relevant data, particularly in the identification of anomalous results. 

3.13.2 Leakage Detection through Liners 

Many of the most commonly used methods for leakage detection are outlined in Bagchi 

(1990) including: direct forms of monitoring, such as lysimeters, and indirect forms, for 

example, electrical and heat probes and salinity sensors. The electrical probes have 

been used since 1993 on sites employing geomembranes (Mosley & Crozier, 1996). 

Such liners have an insulating effect therefore, if no leak is detected the voltage 

produced by the hand held probe has a low current flow and uniform distribution. Leaks 

are detected when anomalies are found in the electrical potential gradient. Mosley & 

Crozier (1996) indicate that this is a highly effective method which reduces monitoring 

costs over the long term. Chapter Six highlights these forms of monitoring techniques in 

further detail. 

3.14 DISCUSSION 

This chapter has illustrated the principal components involved in the design of a landfill 

site in the UK and the complexities of current research. The issues for landfill design and 

construction thus encompass a diverse set of criteria. It is necessary to highlight this at 

this stage in the investigation in order to provide a foundation for the design and 

construction issues to be addressed in the following chapters. In addition, the chapter 

provides evidence of the intensity of current research in landfilling design and practice. 
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This review has illustrated the use of new materials in the field of landfilling and 

emphasised the fact that little is understood about their long term durability. The question 

whether the deployment of new liners in landfills, such as geomembranes, might raise the 

potential to cause future risks to the environment has not yet been fully answered through 

research. 

Today's main problems in landfilling stem from older unlined attenuate and disperse sites. 

The prime decision for landfilling is which design should be employed to achieve an 

environmentally sustainable site. Sustainability, i. e. the creation of a non-polluting site in 

the future, is therefore a critical objective that must now be considered throughout the 

decision processes in landfill design, construction, operation and restoration. 

There are, at present, various theories for landfill design which ultimately relate to the 

nature of the wastes, geological location and hydrogeological conditions of the site. 

Since research is conducted in different countries, there are varying approaches to 

design, related to the criteria imposed by contrasting national regulations. However, the 

research and opposing strategies need to be set in real environments in order to 

determine the precise nature of the problems. Research may be able to prove that a 

particular material is complementary to the parameters of a particular landfill design, but it 

is only through installation, operation as lining system component and monitoring of long 

term effectiveness, that underlying difficulties with the materials become apparent. For 

example, HDPE provides an ideal very low permeability barrier but it is difficult to install, 

i. e. it requires a high degree of expertise in order to complete proper seaming, joining and 

final quality assurance. 

Leachate has the potential to be a highly polluting solution should it come into contact 

with the environment. Compounds produced within the waste body can be highly 
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complex, with a potential to cause pollution in even extremely small quantities, for 

example phenols, trichloroethylene and metal complexes. Measures, natural or 

anthropogenic, must ensure that the impact of the leachates on the environment is 

minimised. It is also clear that the landfill design must incorporate the parameters of 

leachate composition and generation, in order to facilitate the construction of an 

environmentally sound and sustainable site. The engineering of such features within the 

design of the site is also of fundamental importance for LFGs, if complete containment is 

to be achieved. The reality of the issue of complete containment is addressed in further 

stages of the thesis, through site experience in construction and liner installation 

(Chapters Four and Five) and, most importantly, aspects of landfill monitoring (Chapter 

Six). 

Landfill design parameters are, at present, so diverse that some aspects, by necessity, 

have not been dealt with in depth. This does not imply that they are less important, only 

that they are less relevant to the content of this particular study. 

A wider scientific understanding of the role of leachates and LFGs in landfilling should 

improve future standards whilst also providing enhanced protection for the environment 

and public health. Change in current landfill technology is driven by the need to 

completely contain these products of deposited waste. It has perhaps, however, only 

encouraged their controlled release into the environment. 
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3.15 SUMMARY 

f It is evident that landfills will leak over time whether they are constructed to do so 

(attenuate and disperse), or not (containment sites). 

f Minimum prescriptive requirements for compacted clay liners comprise Im liner 

thickness and a permeability (K) of <_ 1x1 0'° m s''. Composite liners must ensure 

attainment of the permeability requirement at least. 

f Geologically engineered mineral barriers are a less effective landfill liner, in terms of 

hydraulic conductivity, in comparison with modem plastics and fabrics. However, they 

are not without advantages, such as, attenuation mechanisms and lower cost. 

f Leachates and LFGs are potentially hazardous pollutants leading to contamination of 

vegetation, soils and ground waters. If managed and treated, their potential for 

pollution can be reduced, and sometimes create benefits, e. g. the production of 

electricity. 

Geosynthetics have enabled the exploitation of otherwise unused areas due to 

relative ease of deployment and more favourable material characteristics. 

fA landfill comprises different systems which are independent, but intrinsically they 

must work together, e. g., leak detection and a lining system. 
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4.0 CASE STUDIES IN LANDFILL DESIGN AND CONSTRUCTION 

4.1 INTRODUCTION 

Landfill is inevitably set to remain a fundamental component of the waste management 

strategies in the UK and internationally. The development of landfilling practice today 

occurs alongside the evolution of Codes of Practice guidelines and legislation to facilitate 

a controlled approach. Prior to COPA (DoE, 1974), the organised design and construction 

of a landfill site was a rare requirement of the waste management and construction 

industries. Now, however, this is no longer the case since there is a well-developed 

international field comprising experienced engineers and researchers. Much of the data 

which have been recorded on landfills have been gained through practical experience of 

situations in on-site construction and, in post closure conditions. This illustrates the 

importance of site conditions for the evaluation of the short and long term performance of 

landfilling components, strategies, and procedures. 

The main emphasis for this chapter concerns the construction of two landfills and 

illustrates the dependence of their design upon certain parameters. Fookes (1997) 

highlighted the possibility of the diversity of results from materials on-site compared with 

the results achieved under laboratory conditions, the latter being the most influential in 

determining site construction specifications. This chapter develops these concepts 

through a discussion of real situations and illustrates the value of procedures for assuring 

the quality of the work completed throughout all stages of landfilling. The case studies are 

an important aspect of this investigation since they provide an understanding of site 

procedures and inter-relationships between the parties involved in landfill construction. 
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4.1.1 Investigation Outline 

An outline of the design and construction procedures is presented for two contrasting case 

study landfill sites in the UK: Site Alpha in Harmondsworth and Site Beta in 

Nottinghamshire. 

Observations on the practical site engineering, which were completed over a period of 

three months on-site, are highlighted through this chapter. This investigation facilitated 

the collection and evaluation of information relating to the complexities of on-site practice 

and the variability that may occur between landfill sites as a result of the differing designs 

and extant ground conditions (SISG, 1993a). It was established through on-site 

experience that effective landfill design and site construction practice are directly related to 

the specific ground conditions of the individual landfill. 

This chapter addresses the main construction issues which influence modem landfills. 

Legislation and Codes of Practice, as outlined in Chapter Two, guide these and the 

regulatory procedures enforced by the EA. In relation to site construction, these Codes of 

Practice and guidelines may be open to further interpretation by the engineer and 

contractor. As a result, contrasting site conditions will probably be the influencing factor in 

the application of these requirements and specifications. Figure 4.1 shows the decision 

processes and parties involved throughout the development of a landfill site, through the 

following stages: 

1. Definition of potential objectives and concepts for the site; 

2. Construction; 

3. Operation; 

4. Performance Monitoring; 

5. Restoration and completion; 

6. Continual environmental monitoring. 
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This chapter is therefore concerned with the construction stage which is primarily 

controlled by the design criteria. The case studies provide an understanding of the 

decision making processes and techniques involved in the construction of a modem 

landfill including: 

(i) Earthwork supervision for the liner placement; 

(ii) Quality Assurance (QA) for the liners throughout construction and after to 

completion; 

(iii) Monitoring to ensure compliance by the contractors with the QA plan; 

(iv) Liaison between the designer and contractor, (also other involved parties), 

in order to verify the level of QA in accordance with the design and 

construction specifications. 

With regard to the fourth point, the author's role on-site was to monitor proceedings and 

report to the site engineer. For legal reasons, the QA engineer, a 'competent engineer, is 

independent of both the owner and the contractor on the site, in order to prove compliance 

with previously agreed working and operational plans. However, there is no statutory 

requirement for this, as opposed to, for example, the works associated with the 

construction of a reservoir dam (Seymour & Peacock, 1994). 

Landfill design is inextricably linked to the ground conditions at each site. This results in 

specific site designs being considered with respect to anticipated conditions, whilst 

allowance is made for possible minor refinements throughout the procedure. Rigid, 

unadaptable approaches will inevitably lead to problems on-site, which are not only time 

consuming, but prove sequentially to become an increasing financial drain on the original 

profit margin estimate. SISG (1993b) state that it is the economic and the ground 

restraints of a project, which dictate the form of the structure, therefore, these should be 

included in the primary stages of the design. 

In order to design and construct a landfill that meets an acceptable level of risk, good 
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working and contractual relationships between the designer, construction engineer, QA 

engineer and regulation authorities, i. e. those represented in Figure 4.1, are of paramount 

importance. Discussion and negotiation between these parties usually reach solutions to 

complications that arise after construction has commenced. The results achieved depend 

upon combined knowledge of the best practical options for the individual site, i. e., 

mediation between all parties involved in the decision-making processes and putting cost 

effectiveness into practice. 

4.1.2 Realisation of Landfill Design 

This on-site investigation achieved an insight into the practical realities of working on the 

construction of a landfill site. The primary objective of this area of the study was to 

investigate the design approaches and construction programmes adopted on two landfills. 

Previous work by Fookes, 1997, Day & Daniel, 1985 and Daniel, 1984 has indicated 

clearly that it is necessary to attempt a comparison between the concepts generated by 

theoretical studies with those that are directly feasible on-site. The waste management 

industry requires the newly researched and developed applications to be workable and 

readily operational. Conversely, the theory presented is not always practically achievable 

in the first instance. 

An illustration of the difficulties involved in Design Realisation may be demonstrated by a 

comparison of results of in situ field permeability tests after compactive action with results 

of in-house laboratory tests, such as the triaxial permeability test. For example, 

permeability tests on samples with modified (Heavy) Proctor effort (4.5 kg rammer), 

revealed that the laboratory results were lower than field tests by at least 2x 10-3 times, at 

all moisture contents (Elsbury et al., 1990). Previously, Daniel (1984) had determined that 

hydraulic conductivities of clay barriers were 10 to 1000 times higher than laboratory 

measurements performed on undisturbed and recompacted samples. This indicates that 
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laboratory test results cannot be used in a comparison with in situ testing without error, 

which poses a question concerning the reliability of both. However, when considering the 

explanation, the evaluation of influences of laboratory conditions and sample preparation 

techniques is of importance. Research (Day & Daniel, 1985), proved that on-site testing 

alone should be used to calculate the hydraulic conductivity of clay liners. Further 

research is therefore essential to enable a direct comparison between results achieved in 

the laboratory and those encountered on landfill liners in real situations. Some 'theoretical' 

and 'real' differences have been highlighted in more detail in this chapter. 

4.2 QUALITY ASSURANCE (QA) AND QUALITY CONTROL (QC) 

At all landfill construction sites. a regime of rigorous testing procedures must be completed 

in order to provide assurance that the landfill has been constructed in accordance with the 

design specification (NWWRO, 1995 and Workman & Keeble, 1993) and is also within 

regulatory parameters. This demonstrates the importance of integrating Quality 

Assurance within landfill construction procedures in order to reduce the risk potential for 

environmental pollution. 

QA may be defined as 'the features and characteristics, both planned and systematic, of a 

product or service that bear on its ability to satisfy stated or implied conformance to quality 

through contractual and regulatory requirements. (Adapted from CIRIA, 1996, DoE, 

1996b and Belfiore & Magri, 1995). Therefore, the basic objective of QA in landfill 

construction is 'to verify, document and certify that, at the end of construction, the landfill 

meets or exceeds the design criteria and the legal requirements' (Belfiore & Magri, 1995). 

QA monitoring must be incorporated into the design, operation and maintenance 

processes (NWWRO, 1996). Indeed, Waste Management Paper 26B (DoE, 1995b) states 

that 'quality cannot be inspected in, it has to be designed and constructed in. Ultimately, 

in current situations, the owner may employ QA as a means to protect himself against 
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future unforeseen design faults and environmental problems. It provides independent 

third party assurance of the quality inspection stages and may result in stricter procedures 

than those stipulated by the regulators. 

Conversely, Quality Control (QC) is 'the operational techniques and activities that are used 

to provide a means for measuring the requirements for quality according to plans and 

specifications' (BSI 4778,1987 and Belfiore & Magri, 1995). This is generally completed 

by the contractor in order to ensure compliance with the previously outlined design 

specifications. 

Throughout the design and construction of a landfill, the Construction Quality Assurance 

(CQA) plan should address the following (Cossu & Muntoni, 1994): 

" Design quality control and assurance; 

" Construction quality control and assurance; 

" Operating quality control and assurance. 

Specific to soil liners, Daniel (1993) subdivides the Construction Quality Control (CQC) 

into: 

(i) Tests to verify that the materials of construction are adequate; 

(ii) Tests and observation to verify that the compaction process is adequate. 

These strategies are completed in accordance with guidance notes on quality and British 

Standards. For example, the geomembrane liner system, must meet its performance 

criteria in terms of `permeability, chemical and mechanical compatibility and durability' 

(Haxo & Haxo, 1994), whilst also verifying compliance with stipulations upon completion. 

Since the geomembrane is prefabricated, a degree of materials compliance testing will 

have already been completed after manufacture, certification for which must accompany 

the material. 

The QA engineer must also be concerned with effects on health, the environment and 
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general safety against uncertainties, all within the financial framework of the project, and, 

as Koerner & Koerner (1989) state, the cost benefit ratio must also be addressed. DoE 

(1995b) indicates that the Construction Quality Assurance (CQA) of liner systems may 

constitute between 2.5 -5% of total construction costs. Cost effectiveness cannot be 

understated in the financial plan, which encompasses operational to post construction 

phases. The project plan must therefore allow for a reasonable profit to be made by each 

investing party. 

4.3 GROUNDWATER CONTROL FOR LANDFILL CONSTRUCTION 

This section highlights the considerations involved during landfill construction specifically 

in voids below the level of perched groundwater tables (Hopper & Leach, 1997). 

Construction of sites below the water table has become a necessity with the decrease in 

suitable *sites throughout the UK, coupled with the increase in waste productivity (Table 

1.1) of which 70 % now goes directly to landfill (DoE, 1995b). However, this may not be 

acceptable practice in other countries. For example, German regulations and practice 

would not currently permit the operation of such a design without a minimum 1m barrier 

above the groundwater (TA Sieglungabsfall, 1993 & Stromberg, 1995). 

Ground conditions will, under normal circumstances, be in a state of equilibrium with 

natural groundwater flow. However, variations can be related to a change in flow. Barnes 

(1995) states that ground engineering works will alter the stable state, disturbing the 

pattern of groundwater flow which will lead to inevitable instability problems, especially 

during excavations. This is a predominant problem affecting the construction of landfill 

sites. Groundwater controls must therefore be effectively incorporated within the design 

and working plans. 

Interception of water entering a landfill is essential in order to minimise leachate 
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production and reduce the potential for groundwater contamination. Installation of an 

interceptor system is required to divert groundwater temporarily since ingress is inevitable. 

Waste Management Paper 26B (DoE, 1995b) states that the design of the landfill liner 

should take into consideration the continual seepage of groundwater, its effect on leachate 

quantity and uplift pressures. Diversion of the ingress also serves to relieve the hydraulic 

loading on leachate control and management systems (NWWRO, 1995) which have to 

cope with natural influxes dependent upon weather regimes. The requirement for this 

should be established during the site investigation when regional and perched water 

tables are recognised (Whittle & Swanson, 1986). Finally, a hydrogeological model for the 

landfill can be put forward for integration into the design procedure. Investigation of the 

latter should include location, quality, movement, and seasonal variation of groundwaters 

all of which influence site conditions (Workman & Keeble, 1993). 

4.4 SITE ALPHA LANDFILL CASE STUDY 

4.4.1 Introduction 

This section considers the aspects of design, methods of construction and the QA 

procedures involved in the construction of a single engineered mineral landfill liner of low 

hydraulic conductivity. Mollard et al. (1996) emphasise the controversy over clay liners, 

stating that `there has been concern over the effectiveness and durability of such liners 

when exposed to some of the more aggressive leachates and liquids associated with 

waste disposal'. In contrast, Workman & Keeble (1993) indicate that clays with a low 

hydraulic conductivity, less than K=1x 10'9 ms', are `commonly considered to provide 

long-term protection of the environment'. 

At Site Alpha, the single mineral liner was employed due to the local geological and 

hydrogeological suitability of the site and the relatively inert nature of the wastes to be 
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deposited (Table 4.1). The latter could result in the production of a less aggressive 

leachate in comparison with sites accepting putrescible wastes. Therefore, the leachates 

produced at Site Alpha will be less aggressive than the ones referred to previously by 

Mollard et aL (1996). 

Waste Type Max. Tonnes day' 

Category A: Inert Waste 130 
Category B: General non-putrescible wastes 370 

Table 4.1. Site Alpha Waste Acceptance Figures (LWRA, 1994). 

The Waste Strategy for England and Wales' (DoE, 1996a) states that landfills accepting 

inert wastes only, as well as those sites that are 'well managed' are unlikely to pose a 

pollution risk in the future. Landfills categorised as having a minimal pollution potential 

have achieved the principles of sustainable development. They are therefore compatible 

with the NWWRO's (1995) definition of sustainable waste management as `disposing of 

wastes in a manner that, because it minimises the pollution control burdens we leave 

behind for our future generations, is compatible with the concept of sustainable 

development : It remains to be seen, however, whether a site can maintain sustainability 

through leachate recirculation or dry entombment 

This investigation concentrates upon the construction of the first cell of two at Site Alpha, a 

site owned and operated by a sand and gravel extraction company. The local geology has 

had a profound influence upon the area since there are many pits in the locality which 

have now been completely filled. This is important to consider, with respect to Site Alpha, 

which is only operated within a small area and is infilled with only inert wastes, in 

comparison with adjacent and nearby sites which are far larger and accepted putrescible 

wastes. 
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Since the completion of the site work, a second, 'mirror-image' cell at Site Alpha and an 

aeration lagoon, for the collection of both ground and surface diverted waters, have been 

constructed, as illustrated by Figure 4.2. The second cell is based upon a continuation of 

the design principles from the first cell, thus the groundwater control system in operation in 

the first is directly linked to that of the second cell. By November 1997 waste tipping had 

filled both cells and progressive restorative processes had commenced. 

4.4.1.1 Site Location 

Site Alpha (Figure 4.2) is located to the West of London, close to Heathrow Airport. Upon 

completion it is to be integrated into part of a development scheme for a 'Combined 

Business Centre' headquarters. This development, will eventually encompass an area 

comprising new landfills and landraises, as well as pre-existing landfills. The whole 

complex is due to be finished during 1998, when it is expected that the offices will have 

been completed for occupation (Nuttall News, 1995). 

Essential remedial work had previously been completed on the pre-existing uncontained 

sites in the vicinity to enable the environmentally sound, future development of the entire 

area. It is important to consider that the pre-existing landfills were uncontrolled, thus their 

contents remain unrecorded and the sites probably did not benefit from a construction 

design procedure. It is known that some of the landfills received putrescible wastes, which 

have since produced aggressive leachates. As a result, the environmental impact of such 

a complex site was investigated in an Environmental Impact Assessment (EIA) using the 

current knowledge of the polluting potential of completed landfills. Site Alpha provides a 

direct comparison with these sites, in that it is a lined site, accepting inert materials 

illustrating the importance of the change in design philosophy as described by Chapter 

Three. 

As the pre-existing landfills have potentially been producing leachates before the 
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construction of the new sites, monitoring was conducted, over a three month period to 

reveal any previous contamination of groundwaters from the pre-existing landfills. These 

background measurements were considered in relation to the results for the new sites. 

Such a situation will become widespread if, as it seems probable, future landfills will be 

constructed on or near to existing sites. Indeed, it is more likely that planning permission 

will be granted for an extension to an existing landfill site, as opposed to the construction 

of a new landfill on an undisturbed area of land (Hopper, 1994). 

4.4.1.2 Site Description 

The first cell to be constructed was 100 m by 50 m and rectangular in shape at a depth of 

approximately 13 m illustrated by Figure 4.2. The void was particularly suitable for 

landfilling as it was previously a shallow sand and gravel pit, excavated for superficial 

River Thames alluvial deposits. Following the site investigation and suitability testing of 

the in situ London Clay, the site was given planning permission and a licence for 

landfilling, with the employment of a single engineered clay liner as the containment 

structure. The presence of clay minerals would enable attenuation processes to reduce 

toxicity of the contaminants whilst also delaying their migration. 

4.4.2 Geology 

The geology of the area comprises Reading Beds overlain by Tertiary London Clay and 

Quaternary Floodplain Gravels, the lowest of the Thames Valley gravel terraces (BGS, 

sheet 269,1920). These alluvial sands and gravels are in turn overlain by thin layers of 

Holocene Alluvium and Made Ground. Figure 4.3 illustrates the site geology and Table 

4.2 provides the stratigraphic sequence. 

The Floodplain deposits are sands and gravels comprising predominantly sandy coarse, 

flint GRAVEL, which was approximately 5m in depth across the site. The gravels appear 
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Figure 4.3 Site Alpha Geology 

to be poorly sorted across the entire site and are bound by a matrix of weak ferrunginous, 

fine sands. The deposits exhibit noticeable stratification related to the size of the particles 

and their ferrous content (Plate 8.6). These floodplain deposits have been exposed on the 

slopes of the void for several months since the cessation of extraction. 

The underlying London Clay is predominately a blue-grey, thinly laminated, heavily 

overconsolidated, stiff CLAY with inclusions of pale grey siltstone. Chapter Five will 

describe in further detail the geotechnical properties of this clay with respect to its potential 

deployment as a landfill liner. At the site, the clay was weathered to a depth below the 

base as determined by the ground investigations prior to construction (Foundation & 

Exploration Services, 1994). As seen from Table 4.2 the clay is fissured which was 

substantiated by Skempton's work (1964) in other locations. 

Borehole investigations indicated the depth of the London clay to be in excess of 13.25 m 

below the base of the existing excavation. It was considered unwise to sink a new 
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Strata Thickness Description Depth AOD 
(m) (m) 

Made Ground Firm, dark brown to yellow 
brown. Silty to very silty 

1.00 CLAY. 
Occasional flint gravel and 
brick. 

21.98 
Clay Firm brown silty CLAY and 

0.70 some gravel. 
19.68 

Gravel Medium dense, light brown to 
orange brown. Fine to coarse, 
subangular to rounded flint 

2.70 GRAVEL. 
Below 3m occasional rounded 
flint cobbles. 

IR 98 

London Clay Stiff, brown to grey CLAY with 
1.50 close fissures. 14.48 

negligible Brown, grey moderately - 
weathered weak mudstone. 
Weak. 
Very stiff and very closely 

> 30 fissured CLAY. 
Thinly laminated very silty with 
occasional shell fragments. To base of 

borehole 
? Basement Reading. Beds 

Table 4.2 Borehole Log Description for Site Alpha. (Adapted from FES, 1994) 

borehole at any point across this site or in the rest of the development, in order to 

determine the base of the London Clay, since this could provide a pathway for subsequent 

leachate migration into the Reading Beds below. The boreholes in existence indicated the 

depth of the London Clay to be in excess of 30 m. The site investigation also revealed the 

slightly heterogeneous nature of the clay deposit with the existence of a thin band of 

siltstone (approximately 0.20 m in thickness) throughout the site at a depth of 8.5 m below 

the contemporary ground surface. In this example, the layer of siltstone would have little 

effect, since it is covered to a significant thickness (a minimum of 1 m) by the compacted 

clay barrier. The presence of such an horizon demonstrates that in situ materials are 

rarely perfectly homogeneous and should always be considered in the design of any 
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landfill. 

The clay exhibits other variable characteristics. For example, naturally occurring fissure 

spacing throughout the layers, (which was also revealed by the site investigation), which is 

a characteristic of all heavily overconsolidated clays. After clay extraction, extensive 

fissures are in evidence in newly exposed locations. These fissures can cause uncertainty 

in the integrity of the in situ material, because they encourage the flow of aqueous or 

gaseous landfill products along their profile and thus away from the site. Conversely, 

permeants from other sources could, in the same way, penetrate the liner, making a 

substantial contribution to the head of leachate. For the purposes of landfilling design of 

containment sites, it is unacceptable practice to allow fissures to remain. A containment 

structure must prevent, as far as possible, the release of contaminants from the cell. 

4.4.3 Hydrology and Hydrogeology 

The hydrology of Site Alpha is controlled by two bounding sources of surface water: a 

Ditch and, more importantly, a minor River (Figure 4.2). The river is the main water source 

flowing from North to South along the Eastern boundary of the site and through the main 

area of development. It was necessary to prevent point pollution of the river both 

throughout the construction works and the future of the site. In other areas of the 

development, however, the River was diverted to allow expansion of the site and preclude 

pollution from landfilling activities. 

Hydrogeological considerations are very influential in determining the suitability of a site 

for landfill. The hydrogeology is dependent upon geological parameters with particular 

consideration given to the permeability and porosity of the underlying materials and the 

direction and degree of the hydraulic gradient. Ultimately, this is one of the main criteria 

for consideration during the site investigation. 
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At Site Alpha, groundwater is present in the Floodplain Gravel at a depth of approximately 

2m below contemporary ground level and forms a minor, but influential, perched water 

table above the aquiclude comprising the London Clay. The virtually free draining alluvial 

sands and gravels lying above the clay thus provide a medium for the passage of 

permeants via ingress or egress. Discharges out of the site are more problematical in 

terms of contamination potential. It is also important to consider the quantities of possible 

ingress waters because the influence of these pressures must be accounted for in the 

minimal risk liner design. Consistent groundwater levels were recorded in piezometers 

along the East of the site which revealed that the static water level was lower than the river 

level. Therefore, it was concluded that the river recharges the groundwater and ultimately 

the void. Along the Western side, groundwater levels are lower, which indicate that the 

general direction of groundwater flow on the site is to the North West. 

One of the uncertainties during the construction of the liner was the strength of the 

hydraulic pressures bearing on the back of the liner, derived from the sands and gravels. 

Therefore, when placing the liner, it was necessary to consider the increased hydraulic 

pressure created as the groundwater is naturally drawn towards the void. As a result, the 

design necessitated the use of temporary groundwater control measures throughout the 

earthworks and placement of the liner. The existence of a groundwater control system 

also enabled the use of thinner side liners without compromising the integrity of the site. 

This proved to be important in terms of economics, as a thinner barrier meant that enough 

material was available on-site for the construction of the liners, the separation bund 

between the two cells, the future capping and for the restoration. Once the liner was 

completed and the wastes buttressed against the sides, groundwater control would no 

longer be necessary as the system would then be self-regulating. 
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4.4.4 Site Work Prior to Placement of Liner 

4.4.4.1 Preparation 

The entire site was geodetically surveyed prior to the commencement of work. The survey 

was completed from several pre-recorded triangulation points strategically placed on-site. 

A profile of the site was then produced on Computer Aided Design (CAD) software and 

progress updated throughout construction. The surveyors were then called upon to 

relocate the different site levels in accordance with the progression of the construction. 

Levels placed on the batters or slopes of the landfill liner were sighted at appropriate 

locations and set to prearranged angles which enable the contractor to achieve the 

specified degree of slope by aligning the profile with the temporary slope of the compacted 

clay. This system is used by earthwork contractors throughout the UK and works 

adequately. Finally, upon completion of the site, profiles could then be rechecked by more 

accurate surveying techniques. 

4.4.4.2 Drainage and Earthworks 

The area comprising the first cell was already waterlogged through natural ingress prior to 

the earthworks which necessitated dewatering by continual pumping until long term 

measures could be put into effect. The unusable saturated material, forming the base of 

the extraction pit and comprising some London Clay and alluvial deposits, was removed 

from the void and deposited in the future, second Cell, alongside a temporary aeration 

lagoon. 

Drainage was achieved by channelling the waters under gravity to several temporary 

sump points dug into the in situ materials. From there, two six inch pumps were used to 

pump the water into the temporary aeration lagoon discharge. The pumping rate was 

measured at approximately 4.5 Isl from each pump. 
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The aeration lagoon was a temporary sump at the start of the works for the collection of 

the site drainage waters. Upon completion of the first cell, the sump area was lined with a 

High Density Polyethylene (HDPE) membrane (2.5 mm in thickness) and an aeration 

system for the water was installed (Plate 8.7). Discharge was subject to controls in terms 

of quality and quantity, i. e. the suspended solids and ammonia levels, such as those 

stipulated by the Water Authority and the NRA. 

Groundwater ingress was collected in the temporary trench and diverted to two sumps at 

the Northern end of the cell where the pumps were situated. This worked successfully 

during the main earthworks. However, on one occasion when the pump broke down this 

led to flooding of the base and saturated material had to be excavated and deposited 

temporarily in Cell Two. 

A bench was cut into the clay on three sides of the cell, at an elevation of 17 m AOD, 

except the North where a2m vertical compacted clay bund was constructed for cell 

division. The aim of the bund was to separate the leachate between the two cells, thus 

maintaining different containment systems for the leachate. In the unlikely event of a 

catastrophic failure of the liner, any problem area could then be traced back to a particular 

cell. The bund also allowed for the independent development of each cell, as the second 

cell was to be constructed whilst the first cell was being filled. 

The 2m height for the bund was determined by the site licence which stipulates a 

maximum 1m head of leachate in the completed cells. Should the leachate rise above 

this level, it could then be extracted from the main sump at the centre of each cell base. 

The bund also had a minimum stipulation for a4m width at the crest to enable the plant to 

place and compact the material. 

The slopes of the pre-existing void were lying at approximately the natural angle of repose 
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for the in situ materials prior to construction of the liner. The slopes of the Thames 

Gravels were regraded to 1: 1.5 (V: H) (generally less than the angle of repose for these 

deposits) and London Clay to a 1: 2 (V: H) gradient providing sufficient standing stability 

throughout the works. 

4.4.4.3 Plant 

The plant employed for this work included an excavator, several 25 ton capacity dumper 

trucks for the transportation of the clay material and a D6 bulldozer with the facility to tow a 

vibrating compactor. In this case a sheepfoot compactor (static weight per metre width of 

roll >4000 kg) was used due to the nature of the material employed, for the construction 

of the mineral liner. In many situations the choice of plant will be affected by factors such 

as availability of plant and / or qualified operator, and, importantly, cost In the case of the 

second case study site an alternative approach was employed due to the contrasting 

nature of the materials and the particular subgrade finish required in the design. 

Needham (1991) states that the type and weight of the compactor is crucial to the 

achievement of the compaction specification, since the dimensions, number and size of 

the feet could invite substandard permeability. 

The natural London Clay was relatively dry, although within the moisture content 

specification, and had formed macrostructure clodding (Elsbury et a/., 1990), which had to 

be broken down in order to achieve maximum compaction and to reduce interclod voids 

(Needham, 1991). The hard, dry clods could inhibit compaction and lead to fissures in the 

structure of the liner, if they were allowed to remain unbroken. This particular soil is also 

brittle which could increase the probability of compaction-induced fractures (Rowe et al., 

1995) which are created during compaction by the roller feet. The clay is compacted in 

loose layers or 'lifts' at a specified thickness, no greater than 250 mm in thickness, and 

passed over by the compactor. Guidelines may specify that the top of each lift should be 

scarified in order to provide an adequate interlift bonding. If the surface is dessicated, for 
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example at the start of the day's work when the liner section has been left semi-completed 

overnight, the surface should be wetted or scraped off. This provides a prime example of 

the difference between theory and on-site practice, since the actions required in theory are 

time consuming and costly. With regard to the wetting of the clay, this presumes a water 

supply on-site or the presence of a bowser and sufficent time to allow homogeneous 

distribution. Research investigations (Chapter Five) explain the presence of preferential 

flowpaths between lifts, but these could be reduced by adequate 'keying in' of the clay 

between the lifts with further passes of the compactor. 

4.4.5 Groundwater Collection System 

Due to the hydrogeological nature of the area, (i. e. the perched water table in the 

superficial deposits), groundwater ingress had to be controlled temporarily during the 

construction works and a permanent system was then installed for use throughout the 

lifetime of the site and post closure. Monitoring of the groundwater ingress into Site Alpha 

indicated that contaminant migration was occurring, even before the onset of waste 

tipping. 

The origin of the water seepage was of particular interest. On the Western side of the site 

is a pre-existing fill, which was subject to remedial works before further landraising took 

place. The works comprised the construction of an HDPE and bentonite slurry 

containment wall to prevent seepage from the site. It seemed possible that the 

contaminated water emanated from this site, especially considering the hydraulic flow 

gradient across the area. 

As the groundwater percolated through the lower 1m of the sands and gravels, water was 

continuously seeping into the site. This proved to be a problem for several reasons: 

0 It caused contamination of surface and groundwaters; 
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0 Site construction could not be completed in wet conditions as the plant could not 

operate on the saturated material; 

0 Once the moisture content of the London Clay had risen it could not easily be 

compacted to achieve the specified compaction requirements and first would 

require drying. This was deemed to be an impractical on-site procedure. 

Temporary groundwater control measures were maintained throughout the earthworks 

until it was possible to install the permanent water collection system. Installation was 

completed in line with the construction of the side liners. The top of the bench height did 

not coincide with the base of the terrace deposits. As a result, approximately 0.5 m of clay 

existed between the two. Figure 4.4 provides a diagrammatic explanation of the design 

for the permanent groundwater control system. 

The installation of the groundwater interceptor system involved excavating a2m width 

bench in the clay at a height of approximately 17 m Above Ordnance Datum (AOD), 

approximately 0.5 m below the Floodplain Gravel / London Clay contact (Figure 4.4a). 

The 2m width was stipulated to allow it to serve as an access route for plant during liner 

deployment, since traffic was to be continual throughout side and basal liner construction. 

The weight of the daily traffic received by the clay bench would also contribute to the 

compaction of the clay. However, this was not an engineering design stipulation. 

The collection system comprised a trench bedded with washed gravel into which a 30 cm 

diameter HDPE perforated slotted pipe was placed. The pipe system was covered with 

the same washed gravel to enable a good hydraulic connection. At regular intervals the 

pipe system was attached to riser pipes (Figure 4.2 and 4.4) using a junction comprising 

slotted, perforated HDPE piping 50 cm in diameter. These were attached to the 

groundwater system via small HDPE sumps for the collection of water (Figures 4.4b and 

4.4c). The risers provided means of access to the system in case a build up of water due 
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to a blockage or an excessive flow. The diameter of the pipe enabled a small submersible 

pump to be maintained inside, in case of any of the aforementioned problems incurred. 

The trench was graded towards the temporary sump which would also suffice for the 

permanent system, as this was directed to the aeration lagoon. The piping was covered 

with gravel which was also piled up the side of the slopes to abut the terrace deposits. 

The granular layer is required to have good drainage characteristics and a hydraulic 

conductivity of at least Ix 10 cm s' (1 x 10'5 m s') (Gordon, 1987). This provides a 

channel for the removal of the water without saturating the rear of the clay liner. 

Saturation of clay could possibly lead to instability problems and eventual slumping of the 

finished liner. 

4.4.6 Clay Liner Specifications 

The landfill liner comprised both a basal and side barrier system of London Clay to 

encompass each of the two cells. The side liner extended up the edge of the cell to 

surface level, except at the adjunct of the two cells, where it forms a2m high separation 

bund. Thickness of the soil was agreed between the regulators and the designer at 1m 

minimum, which is the standard minimum (Cossu & Muntoni, 1994). The main parameter 

for the placement of the clay is the consideration of the hydraulic conductivity which 

should be a maximum coefficient of permeability of K=1x 10 ms'. This value was 

derived from Waste Management Paper 26 (DoE, 1986) and in accordance with the 

standards employed by the US (Seymour & Peacock, 1994). 

Based upon the above liner thickness, hydraulic conductivity and leachate head 

parameters, it is possible to assess an approximate rate of seepage from the site. This is 

done in order to calculate the possible effect on the environment in relation to leachate 

egress. 
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Prior to the start of construction at Site Alpha, testing was completed to determine the 

optimum moisture content and maximum dry density of the material using the Proctor Test 

(rammer 4.5 kg) (Table 4.3 and Appendix 9.1). The clay liner specification for the 

maximum permeability coefficient, as stated, was 98 % of the maximum dry density, that is, 

1.53 Mg m3. 

Optimum Moisture Content' Maximum Dry Density 

25% 1.53Mgm 

Table 4.3 Clay Specifications 

Field density QA measurements were completed to ensure that the engineered clay 

consistently attained values within the parameters in Table 4.3. Values recorded included 

those in Table 4.4 and Appendix 9.2 which were taken in the first stages of the liner 

construction works. Action was taken to remediate those locations which did not fall within 

the specified limits. This is to be expected on-site owing to inconsistent weather and 

material conditions. 

Moisture, Content 

'Oven "dry% 

Dry Density 

Mg m4 . 

Relative Density ! 
1 0.1,1 -4 1.1 

Comments 

27 1.48 97.2 Recompacted 

27 1.46 96 Recompacted 

24 1.5 98 OK 

Table 4.4 Some Typical In-situ Density Test Results From Site Alpha. 
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4.4.7 Deployment of the Clay Liner 

London Clay was placed on the bench in 250 mm lifts which were monitored in accordance 

with the construction specification and QA guidelines. The clay was deposited on the ramp 

and along the bench through the constant cycle of transportation vehicles and dumper 

trucks. The D6 bulldozer was then able to push out the clay in thin layers, dragging the 

vibrating tamping foot compactor behind it, over the material. The machine was also able 

to compact the sides of each individual lift, down the slope (Plate 8.8). 

The base of the site was excavated a further 1m beyond finished base level, reworked 

and recompacted to the same specification as the rest of the mineral liner. The placed 

clay was graded at a shallow fall (V: H 1: 100) towards the centre of the cell, from the toe of 

the slopes, where the leachate sump was to be situated. This is a sufficient fall to facilitate 

the removal of the leachate from a central recovery pumping chamber, should it reach its 

maximum head limit. 

Once the liner had been completed and permission given by the EA, waste tipping began. 

Initially, waste had to be deposited around the outside of the cell, in order to provide 

support to the base of the liner. Creep of the clay down slope had become visible since 

completion of the liner and so it was important to provide support to the base. The liner 

was also subject to the effects of the high daytime summer temperatures experienced and 

lack of precipitation, from June to September 1995, approximately 25 - 28 °C. This was 

evident from the desiccation cracks which appeared at the top level of the liner and around 

the riser pipes (Daniel, 1984). 
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4.4.8 Leachate Collection System 

Site Alpha is a containment site, implying that the leachate must be collected upon 

production and removed, if necessary. The leachate control measures were installed to 

discourage the egress of leachates from the site. The system employed enables the 

collection of leachate at a central point from where it can then be extracted, if necessary. 

In larger sites, preparation would usually be made to treat the leachate on-site, but at Site 

Alpha this system of management would not have been an economically viable option due 

to: 

(i) The small scale predicted leachate production from inert wastes; 

(ii) The overall (small) area of the site. 

Upon completion of the site it will slowly become flooded with the leachates, and 

precipitation and groundwaters seeping in through the clay barriers. In this event, 

groundwater control would no longer be necessary and a flushing effect is created. 

4.4.8.1 Installation 

Gravel finger drains, with perforated HDPE pipe at 15 cm diameter, were placed in a 

radiating position out from the central leachate sump (Figure 4.5a). The sump comprises 

a concrete base, 0.5 m from the top level of the clay liner, on top of which rests a 50 cm 

diameter perforated HDPE pipe (Figure 4.5b). This was surrounded and held in place by 

well graded washed gravel. Throughout this procedure the pipes were checked for 

blockages from gravel and clay. There is an obligation to place the pipes at specified 

areas of the base in line with its fall, in accordance with the design criteria. However, 

where necessary, supplementary pipes were placed with junctions to the main system. 

Continuous monitoring of the junctions was necessary In order to ensure that the pipes 

fitted and would not drift apart at the start of tipping. 
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Figure 4.5a Typical Detail of the Gravel Finger Drain 
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Figure 4.5b Schematic Diagram of the Leachate Sump 

Figure 4.5 Details of the Leachate Management System for Site Alpha 

The sump pipe was extended upwards in conjunction with the level of waste. It provides 

access for leachate removal throughout the waste deposit operation and post restoration. 

This design is possibly one of the most standard approaches to leachate management, as 

outlined previously in Chapter Three. This site did not demand any leachate removal 

construction programmes, beyond the normal requirements of an inert site. 

At the start of waste placement, the first amount of stipulated fill was inert waste, free from 

sharp objects. Such material could prove detrimental to the leachate collection system and 

could cause damage to the finished liner, thereby affecting its integrity. 
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4.4.9 Landfill Gas Control 

Gas control techniques comprising wire mesh, containing roughly-broken brick 

constructions were installed, extending concurrently with waste placement. This creates 

passages of higher permeability zones through which gases can be channelled and 

dispersed to the atmosphere. Each of the cells has several diffusion mechanisms. Gas 

monitoring was completed in accordance with the site licence and the gas control design 

specifications (CQA, 1995a). The licence specifies that concentrations of 1% of methane 

and 1.5 % carbon dioxide, at or beyond the facility boundary, would require control 

measures to prevent further migration (LWRA, 1994). 

4.4.10 Clay Capping and Closure 

The landfill was restored progressively with waste placement to create a final landform 

above original ground elevation. The water retention lagoon is decommissioned at this 

stage, enabling groundwater levels to return to those prior to construction, until the site 

eventually becomes water logged. It was proposed that the lagoon will be back-filled with 

inert material to attain the previous elevation. Telescopic HDPE pipes were placed in the 

leachate sumps which allow for settlement in the future. The leachate pumping chambers 

extend to the height of the waste to enable access for leachate removal. 

The clay capping comprises material stockpiled during excavation of the cells and the 

layer comprises clay compacted to a minimum of 1000 mm, placed in 250 mm lifts. The 

compaction specification complies with that for the clay liner outlined in the original 

earthworks specification. The cap is keyed into a trench, 0.5 m in depth, located at the top 

of the engineered cell walls, along the perimeter of the landfill and the cap follows the 

graded contour of the waste at a gradient of 1: 4 (V: H) it is finally covered with thin lifts of 

compacted top soil. This comprises 750 to 1000 mm of soil forming materials, combined 
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with some original soils (CQA, 1997). 

4.4.11 Quality Control and Assurance 

Since most incidences of damage to landfill liners occur mainly in the construction and 

operational phases (Workman & Keeble, 1993), strict QA and QC procedures must be 

implemented and adhered to. The QC and QA for this site were completed by the 

engineer through continual visual monitoring, materials testing and compliance of the 

works with the design plan. 

The CQA programme for Site Alpha (Hopper & Leach, 1997) comprised: 

f Material suitability: clay content, liquid limit, plasticity index, moisture content (BS 

1377 Tests: 2,3,7) (BSI, 1990); 

f Checking of setting out and earthworks outline for the waste cells; 

f Monitoring dewatering and quality of discharge; 

f Monitoring installation of groundwater interception drain and pumping chambers; 

f Monitoring placement of soil liner in terms of moisture content, dry density and lift 

thickness per 250 m2 (Table 6/4 (Method 1) of DoT Specification of Highway works, 

Part 2 (DoT, 1991) and BS 1377 (Tests 1 and 15) (BSI, 1990); 

f Monitoring formation of earthworks outline for groundwater retention lagoon. This is 

achieved upon completion using surveying techniques; 

f Construction of lagoon outfall upon completion; 

f Construction of the groundwater pump chamber and lagoon outlet; 

f Monitoring of the installation of HDPE liner in the lagoon and supervision of 

non-destructive testing; 

f Sampling of the geomembrane liner for third party testing; 

f Documenting the works and the preparation of the Construction Records Report. 
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Third party testing of the clay soil after installation was completed by a visiting testing 

laboratory, which was consulted on an 'as required' basis. A nuclear density meter was 

employed at the site to test for bulk density and moisture content at a frequency of I per 

250 m2. If tighter controls were necessary over these measurements, the testing 

frequency could be increased. At Site Alpha however, this was unnecessary and only a 

few locations required recompaction and further testing. 

At the start of the density testing procedure it became apparent that the moisture results 

on-site did not correlate with those in the laboratory. This was a recognised problem in 

Ward et al's. (1965) work, where a comparison of site and laboratory testing on the 

London Clay was completed to determine a relationship between undrained shear 

strength and depth. At Site Alpha, soil samples at each test site were taken and the 

material retested under laboratory conditions. The necessity for retesting indicates that 

although QC is being undertaken, it cannot guarantee that the finished material will be 

within the requirements of the QA design plan. QA can only help to reduce the 

possibilities of failing standards, but cannot alone act as a guarantee for the future integrity 

of the site. 

4.4.12 Discussion 

The Site Alpha case study example has provided an illustration of the design and 

construction of an engineered mineral barrier system. This might be regarded as a 

'typical' landfill site in that the waste was to be deposited in a redundant sand and gravel 

quarry which was then to be lined with the London Clay found in location. Chapter Five 

illustrates that London Clay was highly suitable for use as landfill liner and no construction 

problems were related solely to the properties of this material. 

This site necessitated the control of groundwaters within the top horizons of sand and 
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gravel behind the engineered clay liner. The importance of this control system was 

reiterated during a break through of groundwater which was caused by increasing 

pressures behind the in situ clay deposits. The river had been blocked downstream and 

had backed up to increase the hydraulic pressures towards the cell. The liner had not 

been placed at that point so the cell wall was particularly vulnerable. The event resulted in 

the excavation of saturated material from the base and the installation of a replacement 

5m section of the interceptor drain. Work on the liner was then diverted from other areas 

of the cell in order to strengthen the cell wall at that point. This example strongly 

demonstrates the requirement for adaptable landfill design and construction practice and, 

also, the effects of delaying construction, i. e. costs and changes in the schedule. The 

landfill design and construction plan was otherwise implemented successfully at this site 

but the example proves that, even on small sites, unexpected ground condition related 

problems may occur. 

The groundwaters are diverted around the site, this is not to say that, at some time in the 

future, leachate produced by the inert waste deposited might dilute with the groundwaters. 

However, the likelihood at Site Alpha is minimal, since this type of waste produces a small 

amount of leachate and the site has a stipulation for a1m leachate head. In addition, the 

groundwater is only to be found in the top 5 or 6m of sands and gravels adjacent to the 

clay liner. 

The procedures for and the importance of the assurance of quality have been 

demonstrated in this section. The techniques involved, although straight-forward, are 

necessary to prove compliance with the site specifications in terms of compaction and, 

therefore, coefficients of permeability. The main discussion at the end of this chapter 

provides an examination of the different QA procedures in relation to the type of liner 

employed. 
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4.5 SITE BETA CASE STUDY LANDFILL 

4.5.1 Introduction 

The second case study landfill involves rather more complex design criteria than those 

relating to Site Alpha. In this respect, the two landfills create an interesting contrast in 

terms of the choice of liner and, ultimately, the QA procedures involved. This contrast is 

largely influenced by selection of the site and the waste type licensed for acceptance. 

As the design and construction of Site Beta is still under contract, the actual name and 

location cannot be specified. Indeed, the extreme sensitivity of the project was 

compounded by the relationship between the design specifications and the geology and 

hydrogeology of the area. The site, which is here referred to as Site Beta, is located in the 

Trent Valley in the East Midlands. There are two previous phases at this site, one 

restored and one operational, that include land raise and a combination land fill and raise. 

The principal objective of the designer was to minimise the risk of environmental pollution 

from the third phase at the site through: a suitable liner system; competent monitoring and 

QA schedule; and action plans. Not only does a lining system have to be appropriate to 

the waste type, but it should also provide a level of environmental protection and make 

use of locally available resources, in order to contain costs of construction and operation. 

4.5.2 Site Details 

The cell, to be used for waste placement, was approximately 100 m by 150 m and 

rectangular in shape, as predetermined by prior extraction of overlying sands and gravels. 

Preceding the commencement of the earthworks, the cell base was located in the top of 

the Mercia Mudstone, since the overlying superficial deposits had been excavated to a 
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depth of 5 m. Excavations left the side slopes at an angle of 1: 3 (V: H) which remained the 

criterion for the cell wall design. Uncontrolled flooding of the void occurred after the 

excavation of the water-bearing alluvial deposits had taken place. The standing water was 

then allowed to stagnate until the start of the works. 

Site Beta is licensed to accept domestic refuse, i. e. putrescible wastes, alongside more 

inert construction wastes. it is also a busy civic amenity site. It is this combination of 

different types of waste which enables production of a more hazardous leachate. 

A single composite liner was chosen as the best option for Site Beta. It comprised an in 

situ compacted marl subgrade overlain by a Geosynthetic Clay Liner (GCL), HDPE and a 

geotextile layer (Figure 4.6). The requirement for the GCL was governed by the fact that 

the properties of the in situ Mercia Mudstone did not facilitate the construction of a mineral 

layer component of the barrier. 

HDPE 5 mm 
thickness 

Reworked and 
recompacted 
Mercia Mudstone 
overlying in situ 
deposits. 

Washed drainage 
gravel (0.5 m) 

Nonwoven 
Geotextile 

Geocomposite Liner 
(Bentonite coated) 

012 cm 

Figure 4.6 Composite liner Typical Detail 

4.5.3 Geology 

Site Beta is located on the ancient flood plain of the River Trent where Recent alluvium 

and sand and gravel terrace deposits overlie Triassic Mercia Mudstone (previously the 
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Keuper Marl) as indicated in Figure 4.7. The mudstone is generally fine grained although 

it does include approximately 10 % rounded flint gravel and cobbles with an average 

diameter of > 30 mm. Chapter Five provides a detailed description of the materials on-site 

in terms of their geotechnical and mineralogical characteristics. 

Thickness 

ý5m 

1-3 m 

300 mm 

10 m+ 

s 

Intermittent Skerry 
Bands 

Not to scale 

Figure 4.7 Site Beta Geology (After CQA, 1995a) 

J 

Locally, within the top 2m of the Mercia Mudstone strata are bands of calcareous 

'skerries' varying in thickness (50 to 250 mm) and composition (Plate 8.9). On-site, a total 

of five skerry bands were found, three of which were water-bearing. The skerries are 

described as intermittent siltstone or sandstone bands of quartz and feldspar containing 

dolomite crystals and other detrital minerals (Anon, 1975). Generally, the skerries dip to 

the South East at approximately 2° in the area of the site. This was determined during the 

ground investigations. The predominant thickness of skerry band is found in the North 

West comer at an approximate elevation of 10.42 m AOD and the South East comer at 

9.37 m AOD. (Prior to site development, the base of the site lay at an approximate 

average elevation of 15.5 m AOD). On investigation, these skerry bands appeared to be 

finely laminated, cross bedded siltstones. 

1.5-6m 
3anda & gravels; ' ý., 

ý 

116 



4.5.4 Groundwater Considerations 

Prior to the construction of the cell, background readings of groundwater levels were taken 

and the direction and rate of flow were also recorded. These measurements enabled flow 

rate calculations to be input into a computerised 3D hydrogeological model, based on the 

principles of Darcy's Law, and, also, established how the new phase will interact with or 

adversely affect the current hydrogeological situation. Here, there is a direct contrast with 

practice at Site Alpha where such detailed models were deemed unnecessary, owing to 

the comparatively straight forward design characteristics and lack of demand for 

interactive models. At Site Beta, it was important to consider the direct relationship 

between the existing phases in order to determine how the new cells would be integrated 

within such a model. 

There were two highly influential hydrogeological factors for consideration at Site Beta: 

1. Groundwater was present in a perched water table in the superficial deposits, 

which flowed in an Easterly direction. This was the main source of water ingress 

to the site and could be controlled by continuous pumping throughout the 

earthworks and liner installation until waste placement. 

2. The skerries have a relatively high capacity for bearing water and if they were 

disturbed during the earthworks, water seepage would occur through the base of 

the site, even after engineering of the Mercia Mudstone to the required 

specification. Experience at this site, from site investigations and trial pits, proved 

that the skerries were a permanent source of groundwater, being recharged at a 

considerable rate. This proved to have considerable impact in terms of 

construction of the subgrade, owing to the lack of manoeuvrability and margin for 

error, whilst working in the top 2m of Mercia Mudstone. 

It was necessary to contain the waters from the skerries within a separate system under 
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the liner to prevent underlying instability problems. There were problems of basal heaving 

and rolling that were exacerbated by the installation of the groundwater control system 

which took place millimetres above the most extensive skerry band. The heaving and 

rolling in front and behind the plant indicated that excess pore water pressures were 

developing within the basal materials. In single engineered liners, this would indicate that 

it would be impossible to attain the specified densities and shear strengths (Matheson & 

Oliphant, 1991). In this example, since this material was only intended for subgrade, this 

would not be detrimental to the integrity of the earthworks. 

Along the site perimeter, except for the Eastern side, a slurry cut-off wall (Figure 4.8a) had 

previously been installed. It was designed to prevent the ingress of groundwater into 

either phase 2 or the proposed new landfill cells. It became apparent during the ground 

investigations of Site Beta that this cut-off wall was inefficient. It resulted in the continuous 

seepage of groundwater into the site, prior to completion of the subgrade, through the 

sands and gravels exposed on the side walls. 

The possible causes of the resultant failure of the cut-off wall included insufficient keying 

depth into the marl and fracturing within the slurry wall. These factors encouraged 

hydraulic continuity of the intermittent skerry bands. Tedd et al. (1995) also suggest that 

bentonite slurry may be highly susceptible to chemical attack from leachate. The extent of 

this is a function of the original composition of the slurry. In Phase 2 of the site, the 

external groundwater level is 1m higher than the leachate levels within the site, therefore 

the groundwater flow from the slurry wall is into, and not out of, the site. 

As these earthworks were completed prior to the current ownership of the site, 

documentation about the exact work completed, namely the specifications indicating the 

depth of the wall, were not available. Previous site records were not available, even 

through the regulatory agencies. The faulty cut-off wall could give rise to future risk, 
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should the leachate from existing phases one and two and contaminated surface waters 

disperse in the groundwater at the site. 

Ultimately, cross contamination would be inevitable to some degree. Separate 

groundwater drainage systems were therefore designed to contain the potentially polluting 

perched groundwater, thus separating it from the currently uncontaminated groundwater 

below the site. During the site works, all waters were tested monthly by the relevant 

authorities (at that time the NRA and Waste Regulation Authority (WRA)) prior to being 

pumped into a drainage culvert on-site. This culvert diverted the contaminated waters in 

an open channel to a major River, where they would be diluted. 

4.5.5 Subgrade Preparation 

The base required cut and fill earthworks to achieve the required basal gradient of 1 %. 

Cutting was completed in the South East comer to a maximum depth of 1 m. At the start 

of the cutting, the material was suitable for fill since it was particularly dry. However, 

nearer completion of the cut, ingress through the sands and gravels had saturated the 

material which had to be removed for use as daily cover later. Ingress had occurred due 

to: 

(a) Disturbance of the skerry bands during cutting; 

(b) Water in the sands and gravels along the side of the void was now flowing 

more freely since the removal of vegetation and superficial material. 

The fill area of the site, the Western side (Figure 4.8a), had its own similar problems. This 

area had been the worst affected by the original flooding of the site prior to the earthworks. 

Not only was it necessary to build up the basal height of. the site, but further material had 

to be removed from the original level, as it was unsuitable for use as the subgrade. Dry 

Mercia Mudstone from another of the Owner's sites, which met the site specification for 

Site Beta, was used to achieve the completed level. 
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The compacted Mercia Mudstone was to be the subgrade for the liner, but, unlike Site 

Alpha, it was not intended that this should be an important integral part of the liner system. 

However, it was recognised that the presence of such suitable subgrade would assist in 

reducing the risks of contamination should a failure of the main lining system occur. No 

liner, clay or composite, is one hundred percent efficient over time, therefore, a clay 

subgrade would reduce the migration potential of polluting leachates and gases from the 

cell by encouraging a degree of attenuation. 

4.5.6 Groundwater Drainage Systems 

As Site Beta was water logged at the start of the works, dewatering techniques were 

employed to enable construction of the subgrade and liner. A system of pumps was 

temporarily installed in two opposite comers of the cell to counteract ingress and enable 

continual efficient removal of water (Figure 4.8b). Efficiency of leachate removal is 

enhanced by large and properly designed draining systems which will enable influence of 

the leachate flow regime (Cossu et aL, 1997). 

A system of french underdrains was used in order to contain the groundwater below the 

basal liner. They were installed within the top 1m of reworked or in situ Mercia Mudstone 

subgrade. The actual placement of the system was highly dependent upon the location of 

the skerry bands, since their disturbance would lead to groundwater ingress and 

associated problems of basal uplift. 

The design of the drain was standard, comprising a trench, 0.5 m by 0.5 m in depth and 

width, excavated by minidigger. It was constructed in herringbone fashion, extending from 

the South Eastern comer of the site, (Plate 8.10) where the groundwater sump was to be 

positioned. The trench was lined with 10 mm thick needle punched geotextile (Terram 

Polyfelt 600) to act as a filtration system for fines, as illustrated in Figure 4.9 and Plate 
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8.11. The slotted, perforated 0.3 m diameter HDPE pipe was placed on the clean Terram 

and covered in 30 mm graded, washed, gravel similar to the finger drains in the leachate 

drainage system at Site Alpha. Once the pipe was covered, the Terram was wrapped 

around and weighed down, until it could be covered with the Mercia Mudstone subgrade. 

The stone was to act as a filtration system to assist in the prevention of clogging of the 

pipe. However, the actual effectiveness of such systems is highly debatable. Research 

completed to date has indicated that clogging will occur to partially, or, even totally, block 

the drainage pipes (Rowe et at, 1997, Bordier et al., 1997, Brune et al., 1994, Koerner & 

Koerner, 1989 and Bass, 1985). Although clogging is a subject of research, it appears 

that it has not been recognised in operational stages, where designers must reduce any 

risks of leakage from a contained landfill site. Obviously, further studies are needed to 

influence the type and management of leachate control techniques used in landfill design. 
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Figure 4.9 Schematic Diagram of the Groundwater Drainage System at Site Beta 

(Not to scale) 

The thicker band of skerry was at a depth of only 50 to 100 mm in places below the trench 

and subgrade which did not allow for much margin of error. A more detailed diagrammatic 

representation of the drainage system can be found in Figure 4.9. The entire drainage 

system was required to be graded to 1: 100 (V: H) towards the sump to facilitate 
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gravitational drainage. 

The designer adopted standard controls that were hampered by the Mercia Mudstone 

being at a state of 100 % saturation (Plate 8.10). The South East comer of the site was 

waterlogged and as a result it was decided to attempt dewatering through underdrains. In 

fact, the drainage varied slightly from the original preconstruction plan, since the ground 

conditions demanded a more extensive system. An alteration in design such as this is 

dependent upon parameters such as: 

f The availability of materials on-site; 

f Delivery time from stockists; 

f The construction time scale plan. 

The local geology, hydrogeology and the putrescible nature of the domestic wastes to be 

accepted necessitated groundwater controls. The liner system required groundwater 

control throughout its installation to reduce the effects of pressure and uplift. At Site 

Alpha, uplift pressure was not a factor for consideration whilst constructing the liner. 

The design of the subgrade was obviously influenced by the requirement for a degree of 

fall to one comer of the site, allowing for the eventual collection and removal of leachate. 

As a result, Mercia Mudstone was cut from the Northern end of the cell and employed as 

fill in the Southern to attain the required levels. 

The completed side slopes of the subgrade revealed the Floodplain Gravel / Mercia 

Mudstone contact which allowed seepage from this groundwater pathway into the site. 

Seepage occurred on a small scale in comparison with that from the perched water table 

in the Skerries, but had to be contained to create workable conditions for the installation of 

the GCL liner. Mercia Mudstone was smeared along the length of the contact using the 

bowl of the excavator to achieve a minimum covering of 50 mm. As the subgrade was not 

an integral part of the lining system, testing was not required on the side slopes. 
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The water was pumped at a rate of 0.2 1 s'1 from the underdrain, in comparison with 

0.61 1 s' from the pump in the engineered wall at the North Eastern side of the site. Once 

the water was removed, the saturated clay (and some decaying organic matter) was 

excavated and stored for use as cover material during future operational phases. 

4.5.7 Subgrade Completion 

The primary stipulation for the subgrade was to achieve a smooth and even finish in order 

that the plastic liners could be installed without damage. The completion of this task was 

the earthwork contractor's final responsibility on-site. Subgrade completion was monitored 

by the QA engineer and all sharp and loose objects were removed from the basal and side 

subgrade. The final grade of the base was to a gradient of 1: 100 (V: H), the same as at 

Site Alpha. The achievement of such small gradients is difficult owing to the weight of the 

plant and lack of manoeuvrability in constricted areas. Once subgrade completion is 

finished, guidelines, such as NWWRO (1996) and Waste Management Paper 26B (DoE, 

1995b), state that under no circumstances should plant be allowed to track on the site. In 

the event of plant being allowed to track across the site, it would result in inevitable rutting 

and destruction of the smooth finished layer. On some sites, however, drainage layers 

must be laid using a bulldozer and a delivery vehicle. 

Due to the problems with the Mercia Mudstone, (i. e. its partial saturation), earthworks to 

achieve the shallow gradient proved difficult. The water in the clay was brought to the 

surface, creating a sheen, by continual trafficking during compaction. The groundwater in 

the skerry bands and that held within the clay soil structure had migrated upwards through 

capillary action and loading during continual trafficking. This led to an increase in the 

moisture content of the clay subgrade in isolated pockets or 'blisters'. These were 

unacceptable as subgrade since the GCL and HDPE require a smooth, relatively solid 

subgrade. 
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On both basal and slope surfaces, the excavator employed a smooth iron bar to remove 

loose debris, such as, stones and vegetation. The slope subgrade was completed using a 

small, 3 ton smooth sit-on roller for the sides and base. Its use was restricted to the base 

and bottom half of the slopes since it was deemed to be unstable at higher gradient and 

was not equipped with a safety roll bar. An agricultural tractor, with low pressure tyres and 

a wide roller (4 m in length), was brought onto site to complete the finish of the basal 

subgrade since the weight of the original plant had rutted the base. 

4.5.8 Additional Permanent Drainage Systems 

As a result of the continuous seepage in the North West comer of the site, side slope 

instability developed as slippage due to an increase in pore water pressures within the 

Mercia Mudstone. This created the problem of an unstable slope subgrade for the liner 

placement which, if ignored, would be unacceptable practice (Mollard et al., 1996 and 

Adams, 1997). In order to control the ingress of water behind the liner it was deemed 

necessary to remove the affected material and replace it with an engineered wall. 

The engineered wall was developed using geotextile wrapped around washed gravel in a 

`step form' to build up the new slope to the angle and height of the adjacent slopes. A 

25 m length of side wall was removed and replaced as shown in Figure 4.10. Dry, 

imported Mercia Mudstone, with almost identical geotechnical properties, was then placed 

against the newly engineered wall and 'moulded into shape', using a small smooth 

wheeled sit-on roller. 

Seepage control was maintained through the installation of a groundwater collection sump 

which prevented a build up behind the liner. The pipe is perforated for the first 1m and 

allows a one inch pump to remove the build up of water at its base. Such groundwater 

control is necessary throughout the placement of the liner and into the future. The 
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Figure 4.10 Typical Detail of the Reconstructed Toe of the Slope. 

importance of this system was demonstrated when the pump stopped, which caused 

immediate flooding. This delayed the construction programme for approximately three 

days as some of the filled subgrade had to be removed and replaced with dry material. 

This is an example of an adaptation to the original design plan, which may have been 

envisaged during conceptual stages of the cell design, since there was a high potential for 

groundwater ingress. The rate of seepage and relative instability of the slope through the 

earthworks called for remedial measures prior to placement of the geosynthetic barrier 

system. This illustrates the important effect that ground conditions have on the installation 

of these types of lining systems. 

Once the subgrade of the engineered wall had been completed to the satisfaction of the 

QA engineer and liner contractors, installation of the lining system could then commence. 

Pumping Chamber 
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4.5.9 Composite Liner Specifications 

A composite liner was chosen to achieve a very low coefficient of permeability for a 

number of reasons: 

(1) The landfill was licensed to accept putrescible wastes alongside inert 

materials; 

(2) The nature of the groundwater conditions in the vicinity of the site; 

(3) Although, less likely, should failure occur in the liner, other system 

components would provide a further interception barrier. 

4.5.10 Liner Installation Procedures 

The installation of the GCL, HDPE and Geotextile was completed by trained personnel 

and verified by the QA Engineer. The manufacturers' representatives first drew a layout 

plan for the geomembrane liner with standard requirements for. 

(i) The least amount of seaming possible; 

(ii) The minimum amount of materials wastage. 

It is important to consider the expense of these lining systems in comparison with a single 

mineral liner where the material may be located in situ, as at Site Alpha. Landfills with 

complex lining systems are able to accept those wastes which are more costly to deposit. 

4.5.10.1 Anchor trenches 

In order to hold the liner in place, it was necessary to excavate trenches along the 

perimeter of the top of the slope. They were located 0.5 m back from the top of the slope 

and were 0.5 m in depth. The cell design had allowed for the width of a small excavator to 

track around the length of the site, constructing an anchor trench just preceding 

deployment of the liner. The liner was laid along the depth of the near-side and base of 

the trench (Figure 3.5 and Plate 8.2). Once each section of the liner had been placed, the 
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trench was backfilled with the excavated material provided, it was free of sharp objects, 

stones etc., which could cause damage to the barrier system. The liner was keyed into 

the ground to prevent slippage down-slope and to maintain coefficients of friction between 

the subgrade and liner. 

4.5.10.2 Geosynthetic Clay Liner (GCL) deployment 

The GCL was laid flat upon the approved subgrade which was free of projections and had 

a smooth surface. The Gundseal panels were deployed from the top of the slope. An 

excavator held the roll aloft using a length of chain through the roll, demonstrating the 

need for adaptability on-site should suitable plant or kit be unavailable. 

The slopes were covered sequentially and the GCL was cut at the toe each time. The 

basal layer was rolled flat and cut prior to installation of each section of HDPE. Each 

panel of GCL was overlapped by 25 cm on each connecting side which enabled the 

material to self-seal. Self-sealing has been proved in laboratory experiments, at the 

bentonite / polyethylene point of contact, upon addition of moisture (Daniel, 1993). The 

seal provides an added barrier to reduce leakage should penetration of the top 

components of the lining system occur. 

The GCL may face difficulties in transportation due to bentonite erosion from the edges of 

the rolls, or, if the cover is compromised, the bentonite may have already swelled due to 

wetting. The latter destroys the main properties of the GCL and does not enable adequate 

sealing. Hence the need to cover the GCL as soon as possible, once its installation is 

complete. 

4.5.10.3 HDPE Installation 

The HDPE was used together to prevent leakage through to the underlying GCL. Chapter 

Three has already outlined the different methods of liner welding: namely heat fusion, 
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through varying methods and extrusion. 

At Site Beta, both fusion and extrusion welding methods were employed. During heat 

fusion welding, the overlap of HDPE must be kept clean, smooth and free from debris and 

dirt to enable a high weld quality. The temperature of the welder must be maintained 

throughout the bonding procedure and is therefore measured at the start. In this case, the 

welder maintained a temperature of 415°C. Section 3.8.4 highlights the tests completed 

on the welder prior to operation and the individual test welds completed in order to verify 

this. Each panel is fusion welded to the adjoining side and base panels. Any sections 

which require internal or circular welds such as boots and skirts (Figure 3.7 and Plate 8.4) 

necessitate the use of an extrusion welder. 

4.5.10.4 Geotextile and drainage layer deployment 

A layer of geotextile was placed over the HDPE to protect the lining system from sharp 

objects and to enable leachate filtration before it came into contact with the liner. The 

effectiveness of similar protective systems has recently been questioned, since they could 

be clogged by the waste and also by soluble species within the leachate, particularly, 

shortchain carboxylic acids combined with ammonia, sulphate, calcium, carbonates, silica, 

and metals such as magnesium, sodium, potassium and iron, (Campbell et aL, 1983 and 

Rowe et al., 1997). Some of these, in the long term, will precipitate to form a calcite-rich 

cement around the stone inhibiting drainage. This will also occur within the drainage 

layers of the landfill, in this case, the washed gravel. Approximately 0.25 m of gravel was 

placed on top of the geotextile and pushed out by bulldozer to achieve a drainage system 

above the composite liner. It was within this gravel layer that an interconnecting leachate 

drainage system was laid. 
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4.5.11 Quality Assurance Procedures 

4.5.11.1 Subgrade QA testing 

At Site Beta, QA monitoring of the following activities was an integral part of the 

construction programme: 

1. Groundwater installation system; 

2. Subgrade; 

3. Contractors obligations; 

4. Composite liner testing. 

Moisture content and density testing of the Mercia Mudstone liner was completed using a 

nuclear density meter, this being an accepted approach to in situ testing. Measurements 

were taken on the surface layers of the compacted marl. Tests were completed on the cut 

section of the site, but the material here was still in situ and, as proven by the ground 

investigation results, was of superior compaction. 

Although the Mercia Mudstone was only intended as a subgrade for the lining system, 

tests were completed on the clay in line with those at Site Alpha. Employing a nuclear 

density meter, the moisture content and the dry density of the compacted material were 

measured. Approximately 20 tests were completed on the base in order to prove that the 

material was homogeneous and that a degree of compaction had been achieved. 

4.5.11.2 Geomembrane QA testing 

As each site is an individual project, the CQA procedures vary accordingly. In this case, 

site QA practices comprised the following procedures: 

(1) Visual inspection during deployment, which included inspection of the 

materials upon delivery and throughout installation. Random spot 

monitoring of liner thicknesses and climate readings were completed 
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accordingly; 

(2) Trial seam preparation; 

(3) Trial seam testing; 

(4) Production third party seam destructive testing at a rate of I sample per 

160 m of seam with a total of 16 samples; 

Two peel and two shear tests on tabs cut from two ends of each weld with a 

total of 300 tests in total; 

(6) Production seam non-destructive testing in the form of air pressure tests on 

each fusion welded seam and spark testing on extruded seaming; 

(7) Visual inspection of the finished installation. 

(Adapted from Hopper & Leach, 1997 and Adams, 1997). 

Table 4.5 illustrates how all uses of the plastic geomembrane liners on-site were logged. 

Documentation of individual rolls of liner (GCL and HDPE) was also a stipulation for the 

CQA procedure. Liner placement and associated documentation was recorded in the 

event of future problems, i. e. faulty batches of materials and break outs, for example. 

Date of Roll No. Weather; Panel Panel Size 

Arrival Temp. No. and Shape 

29/10/95 9022115 dry and sunny. 12 rectangular 

14°C 9m by 3.2 m 

29/10/95 9022116 as above. 15°C 13 pie 

30/10/95 9022118 Damp start becoming 14 boot 

dry. 12°C 

Table 4.5 Typical QA Documentation Procedure for HDPE Sheets 
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The two seaming techniques employed on-site had to be tested individually using different 

procedures. The techniques used are currently accepted as standard approaches to 

geotextile seaming QA, for instance, those outlined by the American Society of Testing 

Materials No. D4437 (ASTM). Firstly, the weather throughout the welding process has to 

be dry and there should be no adverse weather conditions. Secondly, it is of vital 

importance that the welder reaches the stipulated temperature (usually 200 °C) before 

welding can begin. Failure to achieve this may result in impairment and an increased 

possibility that completed HDPE welds may separate during expansion and contraction 

under variable atmospheric conditions and changes in loading. 

Hall & Marshall (1992) discuss the importance of QA in the installation of geomembranes 

and conclude that welding is the most critical area. The HDPE was subjected to test 

welding using off cuts, prior to the start of liner deployment each day, in order to assess 

the suitable temperature of the fusion welding machine. Once the seam had cooled 

sufficiently, approximately five peel tests were completed per day on a range of samples. 

The weather was monitored on a daily basis, specifically the temperature and humidity 

which can affect the efficiency of the welding by reducing or varying the temperature of the 

welder along the length of the weld itself. This leads to substandard welds which would 

weaken and fracture at points along the length. Not only would they permit leakage to 

occur, but may also be susceptible to persistent chemical attack over extended periods of 

time. 

The geomembrane should also be clear of dirt and debris from the travel and loading 

procedures and wiped dry of moisture prior to the start of welding. Any moisture or dirt in 

the weld will increase the likelihood of an unsatisfactory finish to the seam which will 

weaken its performance over time. In view of this, tests on finished welds are also 

completed which would hopefully identify problematic areas of seaming. It is important to 

consider at this point that QA is only a means of minimising the risks of leakage from the 
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site and cannot be considered as a guarantee that the HDPE composite liner system will 

be completely free from holes. 

4.5.12 Leachate Control System (LCS) 

An HDPE leachate sump was placed at the bottom end of the fall and welded, using an 

extrusion seal, to the liner. A herringbone network of leachate drainage pipes was laid in 

the gravel and attached to the sump, in order that all the leachate is drained to the sump 

from where it could be extracted and treated. 

4.5.13 Monitoring Procedures 

The monitoring procedures for this site, (Table 4.6) are more detailed than those for Site 

Alpha. Similarly, however, background monitoring was required, data for which was 

available from the previous two phases of the landfill. The important requirement was the 

integration of this third phase into a long term monitoring plan which could be completed 

for the entire site. In addition, if there should be a pollution related incident the aim would 

be to achieve an indication of the locality in terms of phase, cell and even exact location 

and possible nature of the fault. 

4.5.14 Discussion on Site Beta Design and Construction 

Site Beta is more complex than Site Alpha in terms of design and construction techniques 

The QA of a geomembrane requires more detailed recorded data and when combined 

with a clay liner in a composite form, techniques and procedures will vary considerably. 

This case study has illustrated how the nature of the wastes affects the landfill design in 
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Product Frequency Determinants 

Surface Water Monthly (dependant on water pH, Temp, EC, DO, COD. 

body and flow rate) 

Groundwater Monthly Water level, pH, EC, Temp, DO, 

NH4, N, Cl 

Quarterly (may be reduced as monthly plus: SO4. Alk, TON, 

To 6 monthly if evidence of TOC, Na, K Ca, Fe, Mn, Cd, Cr, Cu, 

stable conditions Ni, Pb, Zn. 

Weekly Discharge volume, pH, Temp, EC 

Monthly as weekly plus: NH4, N, Cl, BOD, 

and COD. 

Quarterly as monthly plus: SO4, Alk, TON, 

TOC, Na, K Ca, Mg. 

Cu, Ni, Pb, Zn. 

Six monthly 
Leachate Monthly Leachate level, pH, Temp, EC. 

as monthly plus: Cl, NH4N, SO4, 

Quarterly Alk, COD, BOD, TON, TOC, Na, K, 

Ca, Mg. 

as quarterly plus: Fe, Mn, Cd, Cr, 

Cu, Ni, Pb, Zn. 

Annually 

Landfill Gas As WMP 27 (1991) CH4, C02,02, Temp. 

Other Parameters Annually Void utilisation, settlement. 

Leachate Pumping as above as above 
Chamber 

Sample Location Frequency Determinants 

Groundwater 49 Hrs. NH4N (on-site) 

Pumping Chamber, 
(SW Corner) Weekly DO, NH4N, Suspended Solids, 

BOD, COD, Cl, Conductivity, water level, 

Monthly pH, EC, Temp, DO, NH4N, Cl. 

as monthly plus: SO4, Alk, TON, 

TOC, Na, K, Ca, Fe, Mn, Cd, Cr, Cu, Ni, 

Quarterly Pb, Zn. 

Groundwater ingress Weekly pH, EC, NH4N, Cl, COD, DO; BOD. 

monitoring point 
(NE corner pumping 
chamber) 

Alk: Alkalinity 

COD: Chemical Oxygen Demand 
TON: Total Organic Nitrogen 
TOC: Total Organic Carbon 

EC: Electrical Conductivity 
DO: Dissolved Oxygen 
BOD: Biological Oxygen Demand 

Table 4.6 The Proposed Monitoring Plan for Site Beta, Phase 3, Cell 1. (Adapted from CQA, 1996). 
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order to ensure further protection for the environment in the long term. However, this has 

created new areas for concern through modem approaches to landfilling. For example, 

the use of geosynthetics as landfill liner components is now questioned, since little is 

understood about the effects of these materials and, also, their long term properties. 

Research has nevertheless, been completed in these areas, but, as this chapter has 

illustrated, results obtained under laboratory conditions may not reflect the true 

circumstances on-site and the influencing variables cannot always be replicated. For 

instance, a synthesised leachate will not be identical to that which is produced in a 'real' 

landfill at a specific time. The properties of the in situ waste will usually be different as 

accurate waste proportions are generally unknown and infiltration data can only be 

predicted. The constituency of leachate has also been proven to vary through time, 

affected by the age of the wastes in terms of their stage of decomposition. As such, 

different constituencies will have variable effects on the geosynthetics, some being much 

more vigorous than others. 

Lined landfills are becoming more common in the UK, since it seems more likely that an 

existing site will be granted planning permission and a license. This may be true even with 

regard to potential sites with existing voids, as consideration of the following will also be 

required: 

  Impact on local highways in terms of traffic frequency; 

" Mud on roads; 

  Public opinion. 

However, Site Alpha was a new site, but its location, within the close vicinity of older sites 

and gravel pits, warranted its use for landfilling. 
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4.6 DISCUSSION 

This research has illustrated, using real examples, that landfill sites must attain a 

previously agreed degree of design and construction in order to pose the least possible 

environmental risk. This chapter has outlined the details for the design, construction and 

QA monitoring of two contrasting landfill sites in the UK. It can be seen that both sites 

have similar hydrogeological considerations, but due to variations in other parameters, 

they employ contrasting operational containment systems. These parameters include; 

waste type, site location, licensing requirements, availability of on-site materials and 

ultimately, the site specific design and construction influenced by ground conditions. 

The research has demonstrated the importance of QA to ensure that construction work is 

completed in accordance with the design and construction plans, therefore providing a 

degree of assurance. However, the ultimate assurance is dependent upon the final 

achievement of the required level of QA. Planned and competent performance of QA will 

reduce the risk of leakage through the liner (Giroud & Bonaparte, 1989). Landfill 

construction is generally monitored by the contractors' QC engineer, through the tests 

outlined, while the QA engineer will ensure the performance, relative to the entire project 

This enhances the significance of a QA procedure formulated using approved guidelines 

derived from Codes of Practice. Moreover, the importance of an experienced third party 

for the completion of these tests cannot be understated. 

The concept of Design Realisation can be portrayed through examples of the procedures 

involved in the QA programme at Site Alpha. A comparison between the on-site 

procedures at Site Alpha can be made with those of Jessberger's (1994) criteria in order to 

illustrate that the procedures stipulated in theory are not always realistic and sometimes 

unnecessary. Jessberger (1994) stipulates that QA should, importantly, aim to achieve 

measurements of the following: 
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f Characteristics of materials to be used; grain size, Atterberg testing (as 

described in Chapter Five section 5.7) etc. every 1000 m2. 

At Site Alpha, three tests were undertaken on the whole site as the material appeared 

homogeneous. 

f Moisture content and homogeneity upon placement, number of passes with the 

compactor every 1000 m2; 

The Site Alpha working plan stipulated a minimum of five passes with the vibrating 

sheepsfoot roller, although in some cases further passes were deemed appropriate. It is 

also impractical to test for the moisture content after the placement of each lift with the 

present testing methods available today. 

f Lift thickness and adherence to specifications per 1000 m2; 

In some cases specific lift thickness testing is disregarded and a general trust placed by 

the engineer in the experience of the construction worker involved in lift placement and 

compaction, 'as was the case at Sites Alpha and Beta. 

f Determination of the permeability of the sealing layer of each lift every 2000 m2. 

Conversely, NWWRO (1996) stipulates a general testing frequency of 1 per 250 m3 

although hydraulic conductivity, particle size distribution and density could be completed at 

a rate of 1 per 500 m3. 

f Degree of compaction in determination of density, moisture content and 

plasticity per 1000 m2; 

At Site Alpha, a frequency of 1 test per 250 m2 was employed which related only to density 

testing. 

Testing at the frequencies suggested by Jessberger (1994) is generally regarded as 

impractical, since it is both time consuming and costly. It may add several days onto the 

time scale of a project, this also being dependent upon the receipt of laboratory results. 

Maintaining a technician on-site in order to measure these criteria and produce a fast turn 

around of data is usually unacceptable in view of the financial cost, particularly on small 
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projects. Such testing would also delay construction, particularly if results were required 

before the next stage of liner placement could commence. If invalid results were obtained 

in clay liner compaction, for example, retesting would also mean the removal or 

recompaction of the newly placed lifts. 

Such an 'idea& system of QA testing would result in a liner of greater integrity, but, at 

relatively small sites, the economics would be questionable. At Site Beta, the installation 

of a geomembrane liner may partially reduce the importance of the clay component since 

there are further barriers comprising the composite liner. As such, there may be a 

reduction in density and moisture content testing which is not in line with the best practice 

of landfill engineering. 

These differences illustrated between actual and proposed criteria for QA (Jessberger, 

1994 & NWWRO, 1996) are evident throughout the comparison of research with on-site 

practice. The guidelines vary due to: 

1. The different design specifications and site characteristics; 

2. The type and deployment of materials involved; 

3. The influence of the designers and regulators over proceedings and their 

interpretation of guidelines and Codes of Practice. 

These factors demonstrate that, although there are precedent regulations and Codes of 

Practice, there appears to be little recognised uniformity between them. There are few 

statutory controls in this area and only the QA engineers test data collection and final 

assurance report to prove that the efficient QA has been completed. 

Furthermore, a site accepting inert wastes only (Site Alpha) would not warrant the complex 

depth of QA testing as indicated by Jessberger (1994), if the lining material, specifically 

clay, is homogeneous and deployed correctly. However, if engineered leakage is 

designed into the site, this will affect the frequency and complexity of the QA testing. 
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Indeed, combined with design, construction, restoration and after-care, QA must remain 

within economic limits in order to render the landfill site financially viable. Ultimately, 

landfills must be constructed and operated to produce a return on their investment whilst 

also combining the associated environmental risk reducing criteria, i. e. the BPEO. 

Another aspect of the Design Realisation concept can be illustrated in the construction 

phases of a landfill site. An example of this can be portrayed through the design and 

installation of leachate collection systems. In the design stages of a landfill site, leachate 

systems are planned to cope with a predicted, estimated volume of liquid. More often, 

important aspects for consideration, such as installation difficulties and faults and future 

risks of clogging, may be neglected. The main causes for the failure of leachate control 

schemes are outlined in Chapter Three. It may become apparent during the construction 

of the leachate control system that the initial allotted gradient of fall for the scheme only 

enables minimal flow and, also, possibly encourages settlement of solids within the 

system. Therefore, if the construction work were completed by experienced, competent 

engineers and construction workers, combined with an efficient QA procedure, such 

occurrences would be minimised. For example, theory suggests that leachate control 

systems, such as those at Site Beta would work effectively. However, research has 

proven that blockages occur. As a result, pipes should be checked upon completion and 

monitored throughout the life of the site. With regard to the latter, this is not a common 

occurrence at present. 

The small scale failure of the cutting for the side liner bench at Site Alpha was an 

unexpected event which occurred as the result of a blockage in the river up-stream. This 

scenario could not have been built into the design of the site. For the purposes of this 

investigation, it illustrates that an element of adaptability should be achieved by the overall 

design plan. The event highlights the possibility that varying ground conditions may give 

rise to changes in design and construction techniques which must additionally be covered 
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by rigorous QA techniques. 

On the basis of the research carried out on two landfill construction projects, this 

investigation has illustrated that an element of adaptation needs to be built into the landfill 

design plan. This is, therefore, highly dependent upon the ground conditions at the site. 

Indeed, unexpected conditions are usually the result of inadequate ground survey and site 

investigations. On the microscale, substantial discrepancies are not generally 

encountered at ground level. Clearly, at Sites Alpha and Beta, the site investigations were 

adequate. For example, on the microscale at Site Beta, the approximate thicknesses and 

variances between the flow rates in the skerries were known prior to construction of the 

liner. On the macroscale, the location of water bearing skerries was known and, also, the 

high possibility of water ingress, once exposed. However, despite this, minor adaptation 

to the original plan was still necessary during construction. 

One of the main points for consideration was the subgrade drainage system at Site Beta, 

as it provides an ideal example of how theory cannot be effectively completed on-site. The 

achievement of the gradient (1: 100 (V: H) fall towards the sump) was particularly difficult 

due to the restricted availability of suitable plant and site conditions which comprised 

saturated subgrade and water bearing Skerries. It was necessary to avoid penetrating the 

Skerry deposits which, therefore, did not allow much grounds for manoeuvring along the 

150 m length of the cell (Figure 4.4). In effect, the design of the French drains, which 

although suitable in the plan, could not be completely efficiently realised which may result 

in future siltation within the system. In addition, a more comprehensive network of drains 

had to be installed in order to attempt to drain the saturated Mercia Mudstone. 

This chapter has illustrated many of the material differences between two sites which must 

be placed in context within the field of landfilling in the UK These case studies comprise 

an investigation of one of the cells at two sites and therefore each cell will be integrated 
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upon completion of the site. They also indicate areas where further research is required in 

order to improve the efficient installation and operation of encapsulation systems. Most 

importantly, the chapter has addressed landfill design and construction in real terms in 

order to provide an applied study of aspects of Design Realisation. 
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4.7 SUMMARY 

f Detailed case studies of site work involved in the construction of two landfill sites have 

for the first time provided vital information on actual construction procedures central to 

the theme of landfill Design Realisation. The case studies have highlighted the site 

specific nature of design issues and construction related problems. 

f The investigation of practical Design Realisation is proving to be of growing interest in 

the current environmental climate. Landfill sites must fulfil their approved design 

criteria and need to be constructed under conditions which achieve Best Available 

Practice or BPEO. 

f Researchers and the waste management industry are both keen to establish extensive 

applied links in order to minimise differences between theoretical knowledge and that 

which is directly applicable under site conditions. 

f The two case studies have illustrated some aspects of the contrasting nature of 

landfilling in the UK related to Design Realisation. The key reasons include site 

locality, licence requirements, geology, hydrogeology, hydrology, waste type and 

amount, climate and further anthropogenic factors which, generally, can be integrated 

within a site design plan. 

f Sites Alpha and Beta highlight the nature and importance of QA procedures 

throughout the design and construction of a landfill site. QA enables an assurance 

that the design and construction specifications have, to a degree, been adhered to. 

This research has demonstrated that the QA strategy will vary according to 

construction practices and, even, interpretation of guidelines and Codes of Practice. 
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5.0 GEOTECHNICAL ENGINEERING PROPERTIES OF CLAYS 

5.1 INTRODUCTION 

Chapter Three has outlined the use of clays in single and composite liners of solid waste 

landfill depositories and Chapter Four has investigated the practicalities involved in their 

use. However, neither have fully explored the reasoning behind the specific choice of 

clays. This chapter examines the application of clay soils in terms of their geotechnical 

requirements for the achievement of low permeability engineered landfill liners and defines 

the relationship between moisture content and dry density which may be used to calculate 

compaction specifications. 

Site experience (Chapter Four) revealed the necessity for a review of compaction testing 

procedures since existing methods have proved to be complicated and time consuming. 

In order to ensure that the design specifications were adhered to in terms of compaction 

and material type, compaction Quality Control (QC) procedures were carried out on the 

clay liner. The research examines a testing method, the Moisture Condition Value test 

(MCV) which has to date not been commonly used on-site in England and Wales (Green & 

Hawkins, 1987). The MCV test is examined In comparison with recognised, standard 

laboratory tests, namely the Proctor methods (BS 1377) (BSI, 1990), for its effectiveness 

in terms of ease of use on-site, acceptability and reliability of results, time consumption 

and labour efficiency. 
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5.2 CLAY LANDFILL BARRIERS 

Clays are currently the predominant form of landfill liner, employed either as single liners 

or in double and composite systems. Clay barriers are already established in approved, 

quality controlled single liner systems against which the new technology of geofabrics and 

geomembranes must compete (Anon, 1997b & Rankilor, 1981). 

The aim of an engineered compacted clay liner is to provide a barrier of low permeability to 

discourage the escape of 'silent leachates and gases from the landfill sites (Jessberger & 

Stone, 1991). Increasingly, research (Thornton eta!., 1997 & 1993, Mather, 1989, Daniel & 

Shackleford, 1989, and Griffin et a!., 1976), is orientated towards examining the effects of 

landfills on clays, especially those in the long term, and how this influences the choice of 

liner. 

lt is inevitable that there will be some quantity of leakage from a site and as a result there 

is a necessity for research into the assessment and improvement of liner performance 

covering all barrier systems (Thornton et al., 1997). Examination of the geotechnical 

properties and behaviour of clays, under the conditions experienced by landfill liners in the 

field and also under controlled laboratory conditions (Hird et aL, 1997), is necessary in 

order to address the following (Adapted from Thornton et al., 1997): 

f Define possible contaminant release in terms of quality and quantity; 

f Define a possible time-scale for this release; 

f Quantify the environmental risks caused by liner failure; 

f Investigate the form and level necessary for future landfill remediation 

strategies. 
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Soil, (i. e., engineering 'soil') is a particularly variable material, so the engineer may 

experience disparities in its type and condition even over small areas. This was explained 

by Croney (1977) in relation to subgrade compaction for road pavement, and the same 

concepts can also be applied to the construction of a landfill liner. Croney (1977) accepts 

that an average assessment of soils for road pavement design will necessitate future 

remedial work to the structure. However, this cannot be permitted in landfill liner 

construction due to the potential detrimental environmental effects that failure would 

create. It is, therefore, critically important to be precise in the measurement and suitability 

testing of the clays used as liners. To investigate the nature of the materials and their 

variability, prior to the commencement of works, the engineer must complete tests, some 

of which are outlined in this chapter. 

As with any construction, an element of risk is accepted by the engineer since, as the case 

studies in Chapter Four illustrate, there may be unexpected variations in ground conditions 

or inhomogeneities within the materials. In order to reduce these risks, a programme of 

testing must be completed to enable identification of possible problem areas by the 

geotechnical engineer and to ensure that the stability of the works is maintained (Barnes, 

1995). Material suitability testing is completed as part of the site investigation and then 

again regularly throughout the construction of the landfill site in order to maintain the 

assurance of the quality of materials. Therefore, a reduction in the time taken by these 

tests is necessary in order to prevent the expensive cessation or slowing down of 

construction. 

5.3 SOIL CHARACTERISITCS 

One of the most influential characteristics of soils Is their variability of engineering 
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parameters from location to location, even within the same horizon. This may be 

particularly true of marls, such as those at Site Beta, which may show a 'high degree of 

variability in terms of cementation and weathering' (Seymour, 1992). It may not be 

necessary for the geotechnical engineer to be aware of the exact composition of the soils 

used in construction of the landfill barrier, though the fundamental behavioural 

characteristics must be understood. This does not generally take into consideration the 

fact that the liner will be subject to chemical and mechanical stresses which may react with 

the composites of the soil. Neither does it consider the role of attenuation processes 

within the liner or unsaturated zone beneath. In order to consider these mechanisms, one 

must examine the suitability of the liner material and in situ deposits in terms of factors 

which influence attenuation processes (Table 3.4). 

The three fundamental components of a soil system include soil particles (including detrital 

material); air (in the form of voids between the individual particles) and water. However, 

air content is of limited concern under these circumstances except in the fact that it affects 

the movement of moisture through the soil (TRRL, 1952). Individual soil particles are 

surrounded by a mineral skeleton and in turn are kept apart by pore spaces which contain 

both air and water. Thus, it is by the reduction of the air and water that the particles are 

brought closer together and the overall volume of the soil is reduced (compaction). This is 

obviously dependent on the constraining forces applied to the soil which is important to 

observe when comparing laboratory test results to those in the field. Indeed, a more 

reliable measurement of compaction characteristics and permeability may be achieved 

from field tests. Ultimately, soil behaviour depends upon the protean factors of pressure, 

time and environment Time being the dependent variable for other factors which may 

contribute to a change in the behaviour of the soil. 
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5.4 SAMPLE DESCRIPTIONS 

Chapter Four has described the construction works of the liners and testing procedures 

which were duly implemented on-site. Clay samples from the case study landfill sites in 

Chapter Four were tested for their mineralogical and engineering characteristics in relation 

to their use in engineered landfill liners. The inclusion of an investigation on the 

engineering properties of the materials was deemed to be an appropriate, complementary 

measure alongside a detailed description of liner installation, in order to provide a 

representative description of the processes involved throughout the design and 

construction of a landfill liner. This chapter illustrates the methodology and tests involved 

in the determination of material suitability. The tests and methods involved could be used 

on other landfills, most being common practice, demonstrating that in general one can 

apply the equivalent guidelines to all liner construction. 

5.4.2 London Clay 

The dominant clay facies of the London Clay sequence was deployed as a single 

engineered mineral landfill liner at the Site Alpha landfill. London Clay comprises a suite 

of facies including sands, silts and clays. It comprises predominantly marine strata 

deposited throughout transgression and regression stages, as indicated in the sequence 

through silting up processes from marine to estuarine and lagoonal deposits (Burnett & 

Fookes, 1974). The London Clay deposit, described by Cripps & Taylor (1986) and 

Burnett & Fookes (1974) in detailed studies, is an over-consolidated Tertiary marine clay 

formed in the cratonic basin of South East England, and is located in both the London and 

Hampshire Basins. Details for the weathering grading scheme of London Clay are given in 

Chandler & Apted (1988), portrayed in Table 5.1, based on a study of the deposit in Essex 
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Zone Classification Description 

IV Fully Remoulded clay or a few lithorelicts occupying < 30 %, in a 
Weathered matrix of soft to firm remoulded clay; brown or light grey, 

mottled brown. 

IIIb Partially Larger lithorelicts separated by remoulded matrix, 
Weathered occupying 30 to 70 %; fissure surfaces and matrix often 

gleyed; selenite crystals common 
Ilia Dominantly brown (oxidised), with clay fragments showing 

original clay structure (lithorelicts) with 30 to 70 mm 

average dimension occupying >70 %; remoulded matrix 
developing in fissures and joints; some selenite crystals. 

lib Partially Clay fragments bounded by heavily iron stained joints and 
Weathered fissures, the brown colouration penetrating up to 20 mm; 

centre of fragments colour of Ila clay; fissure spacing 70 - 
120 mm. 

lia Weathering on surfaces of discontinuities only, with rusty 

yellow staining on joint, fissure and bedding planes, bulk of 
clay grey-brown; fissure spacing > 100 mm. 

Unweathered Uniformly grey-brown or grey-blue; discontinuity spacings 
typically > 100 mm. 

Table 5.1 Weathering Scheme for London Clay at South Ockenden, Essex. 

(Chandler & Apted, 1988) 

Skempton (1964) states the weathering zone is typically 9.1 to 12.2 m in depth. The 

weathering zone comprises the whole strata of 'Brown' London Clay which extends from 

approximately 6.1 to 9.1 m and also includes 1.5 to 4.6 m of the predominantly 

unweathered 'Blue' London Clay. On-site at Site Alpha the exposed London Clay 

appeared to be grey-brown, typically Zone I but, also, exhibited aspects of Zone II, and 

some selenite crystals were found. This could be attributed to the variation in factors 
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affecting weathering in the locality, such as climate, groundwater fluctuations and 

exposure. 

Skempton (1964) identified that fissured clays and joints in natural slope formation can 

lead to progressive slope failure, over a period of 19 to 49 years, until the residual strength 

is reached. The investigation was based upon clays exhibiting pore pressures which were 

in hydrostatic equilibrium with the groundwater. This stage is not reached by cutting 

formations until months, or even years, after excavation and is dependent upon clay 

permeability. Further to this, Skempton & LaRochelle (1965) attributed slips in over- 

consolidated London Clay primarily to the migration of pore water and the presence of 

fissures. This is an important factor for consideration if cutting and filling is required on a 

landfill site in order to construct slopes which are stable in the long term and able to 

maintain the integrity of the overlying compacted clay and geomembranes liners. It also 

illustrates the importance of groundwater control through earthworks and post construction 

where cuttings exist behind a liner, e. g., the side liners at Site Alpha. 

The excavated material at Site Alpha was a light grey silty CLAY with a dull, smooth, fine 

texture. From field identification the clay was found to be firm to stiff since it could be 

moulded by strong finger pressure or indented with the thumb. The average natural 

moisture content of this clay on-site was approximately 20 %. 

5.4.2 Mercia Mudstone (formerly Keuper Marl) 

The Triassic Mercia Mudstone formation comprises evaporites, sandstones, calcareous 

mudstones and red-brown to green shales and silty mudstones (Chandler et al., 1968). 

Sandstones and siltstones (Skenies) are interspersed within the mudstones. These are 
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mainly found in the most common situation where the red-brown Mercia Mudstone 

(formerly known as the Keuper Marl) is the predominant deposit. 

Previous research (Chandler et al., 1968) indicated the absence of definite boundaries 

between these minor features. This situation was proven by the field investigations carried 

out at Site Beta for this study. It is this part of the main deposit, i. e. the shales and 

calcareous mudstones (Mar), which this investigation is concerned with. 

The heavily over-consolidated Mercia Mudstone deposit is exposed in Central England 

today, forming outcrops either side of the Pennines. Chandler et a/. (1968) estimated an 

overburden of between 1219 m and 1829 m of the mudstone in Central England. In the 

Nottinghamshire area, Chandler et al. (1968) state that the deposit may now be as little as 

225 m in thickness, in comparison with 1200 to 1500 m to the west of the Pennines. 

The skerries in the deposit possess higher permeabilities than the facies in which they are 

present which can cause problems as they allow increased groundwater flow. This is 

illustrated in Chapter Four where temporary and permanent groundwater controls were 

necessary throughout the earthworks and post site completion. Site conditions were 

exacerbated by stability problems, such as basal heave, and the ability to maintain the 

marl in a workable form in order to comply with the compaction specifications. Further 

details of these are outlined later. 

An important feature of the Marl deposits is the degree of weathering of the material. This 

has been studied and categorised by Chandler (1969), Chandler & Davis (1973) and 
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Zone Description Notes Liquid Plastic Plasticity 

Limit Umit Index 

WI Wp Pl 

Contains no pebbles. 
Fully Plastic slightly silty 
Weathered IVb Matrix only clay. May be fissured. 

35-60 17-33 17-35 

Matrix with Little or no trace of 
occasional clay- Zone I structure, 

Partially stone pellets less though may be 

Weathered IVa than 3 mm diameter fissured. 

but more usually Lower permeability 

coarse sand size than underlying layers 

Matrix with frequent Water content of 
lithorelicts up to 25 matrix greater than 25-40 17-25 10-18 

mm. As weathering that of lithorelicts 

III progresses lithorelics 

become less angular 
Angular blocks of Spheroidal weathering. 

unweathered marl Matrix starting to 

with virtually no encroach along joints: 

II matrix first Indications of 25-35 17-25 10-15 

chemical weathering 

Un- Mudstone Water content varies 
Weathered I (often fissured) due to depositional 

variations 

Table 5.2 Weathering Classification for Mercia Mudstone 

(After Chandler & Davis, 1973). 

Cripps & Taylor (1981 & 1986). It was impossible to examine and classify the degree of 

weathering of this material on Site Beta since earthworks had already commenced and the 

ground was disturbed. However, examination of small exposures and particle size 
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analysis has led to the conclusion that the material at this location was partially weathered 

as in Zone IVa, indicated in Table 5.2 (Chandler & Davis, 1973). 

At Site Beta, the mudstone was a very soft reddish brown sandy CLAY. Although it was 

mainly fine grained, there were some small rounded gravels present within the material. It 

had a weak dry strength and was relatively friable due to the nature of the particles and 

relatively high granular content. 

5.5 CLAY MINERALOGY 

5.5.1 Sample Suitability for Landfill Liners 

Burnett & Fookes (1974) state that 'generally the London Clay is homogeneous' although 

Bishop et al. (1965) had previously attempted to attribute the geotechnical trends within 

the clay to mineral variations. Indeed, suitability of clays for use in a landfill barrier system 

is highly dependant upon their individual mineralogical components and structure 

(Batchelder et at, 1997). Thus, for this study, an investigation of the mineralogy of the 

clays was required. 

5.5.2 X-Ray Diffraction (XRD) Results 

Samples of the clay and mudstone from each investigated landfill site were subjected to 

whole rock XRD quantification using an Enraf-Nonius diffractometer with a fixed geometry 

1200 position-sensitive detector (PSD) (Batchelder & Cressy, 1998). The samples were 

gently ground and dry-loaded into a1 mm deep plastic holder prior to analysis. Data 

acquisition time was 10 minutes, using a primary-beam monochromated CuKa, radiation. 
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Identification was achieved by comparison with the whole-pattern database held at the 

Natural History Museum and corrections for absorption were then applied to the raw data. 

Mineral Mercia Mudstone 

(Wt %)+ 
London Clay 

(Wt %). 

Quartz 16 20 

Fe-o)dde* 1 7 

Dolomite 24 1 

Haematite 3 0 

Plagioclase° 2 0 

Calcite 0 2 

Chlorite 1 2 

Muscovite 0 3 

Kaolinite 4 12 

Illite 29 14 

Illite-smectite 16 35 

TOTAL 97 96 

Table 5.3 Mineral Proportions Determined by XRD. 

'All proportions are given in weight %. Totals are less than 100 % due to the presence of X-ray 

amorphous material such as organic matter. 

* Denotes a poorly-crystalline phase. Data supplied by the Natural History Museum, (Batchelder, 1997). 

The PSD was the preferred approach since conventional scanners, (i. e., those with 

moving components), do not provide adequate reproducibility for quantification purposes 

as `non-random orientation of crystallite, changing size of irradiated area with scan angle 

or variable slit systems preclude this' (Batcheider, 1997). 
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5.5.3 Interpretation 

Burnett & Fookes (1974) state that, in the London Clay, calcite and dolomite usually 

appear in approximately equal amounts which concurs with the results of this investigation 

(Table 5.3). The clay content of the London Clay is dominated by illite-smectite 

(montmorillonite) (35 %), a highly swelling clay mineral. Sellwood & Sladen (1981) 

state that the clay minerals in this unit comprise in excess of 60 % of total weight. In 

contrast, these results indicate 50 % clay minerals by total weight. The London Clay is 

dominated by illite, as in Sellwood & Sladens' (1981) study. Shaw (1981) states, of the 

Mercia Mudstone, that previous research has concluded that the clay minerals present 

were mainly detrital illite, and small amounts of chlorite, supplemented by assemblages 

such as, smectite and illite-smectite. 

The percentage of illite present within a clay will positively affect its ability to adsorb 

species, such as heavy metals, since the CEC of illite is in the region of 25 meq per 100 9 

(measure of the number of positive ions (in meq) to neutralise 100 g of clay) (Rowe et al., 

1995). The nature of the structure of this clay mineral, i. e. its 2: 1 layering with a strong K+ 

band (partially sunk) and the fact that there is no inter-layering, does not allow for swelling 

or contraction. As a result of these properties it is recommended for use in a landfill liner. 

However, the effect of low pH concentrations could cause leaching of the r layer which 

will affect the clay minerals' properties and may lead to the formation of degraded illite. 

Erosion of the K' layer may result in distortion since this inter layer is usually strong 

enough to resist. 

The illite-smectite mineral is a clay swelling mineral which is highly suitable for landfill 

liners, the most commonly used being Bentonite, a sodium enriched clay. It is the 
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interlayer which enables it to swell due to the high void ratios. This mineral may have 

hydraulic conductivites of as low as K=1x 10'h' to 10'15 m s'1 (Rowe et aL, 1995 and 

Rowe 1994). Their characteristics are important to understand, with regard to the addition 

of chemicals present in some leachates which can make clay minerals inherently unstable. 

5.6 PARTICLE SIZE ANALYSIS 

5.6.1 Method 

Disturbed samples of the clays were prepared for particle size analysis using a Malvern 

Mastersizer instrument. Pre-preparation comprised sieving the clays in order to remove 

particles larger than 2 mm. In the case of the London Clay the material was so fine that 

this proved unnecessary. Small rounded flints, approximately 300 mm in diameter, were 

picked out by hand from the Mercia Mudstone sample. In proportion, these larger particles 

accounted for most of the weight of the total sample but in terms of percentage present, 

made up <5% of the total volume of the material. It was determined that there would be 

a relatively high sand content in the Mercia Mudstone in comparison to that of the London 

Clay. 

Preparation was completed using 5 ml of the sieved sample which was added to a mixture 

of 0.1 % calgon and distilled water. The calgon acted as a dispersant for flocculants in the 

sample. It is important to note that organic material will alter the results from the analyser. 

It was believed that the proportions present in these samples, if any, would be safe. The 

prepared sample of each clay was placed on a magnetic stirrer for several minutes and 

then centrifuged for one minute in order to accelerate the process of the dispersant. 
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5.6.2 Results 

The results, in Figure. 5.1a, show that the London Clay has a normal particle size 

distribution. It has a relatively low obscuration (14 %) in comparison to the Mercia 

Mudstone (31.2 %) as the larger particles will block the deflection from the smaller ones. 

This is evident from Figure 5.1b which shows a minor bimodal distribution for the 

cumulative particle size. The first being 64 % at 7.9 µm and 12.5 % at > 1000 µm. 

Fraction Size % present % present 
in London in Mercia 

Clay Mudstone 
Clay Very Fine 20 12 

0.1 - 2.0 m 
Silt Fine 76 68 

2.0 - 60 m 
Fine - Medium 4 16 

Sand 60-1000 m 
Coarse 0 4 
1000 itm-2 
mm 

Table 5.4 Breakdown of Fraction Sizes (%) for the London Clay and Mercia Mudstone. 

From Table 5.4 it can be seen that the average particle size for the Mercia Mudstone is in 

the silt region which supports Sellwood and Sladens' (1981) statement that the grain size 

averages less than 64 µm. These results (Table 5.4) indicate that the London Clay is a 

clayey SILT with minor quantities of fine to medium sand. The Mercia Mudstone is a 

clayey sandy SILT comprising similar quantities of sand and clay. This demonstrates that 

although the initial classification on-site was completed to the best ability it did not reveal 

the extent of the silt content within either material. 
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Modal grain size Fissile Non-fissile 

> 2/3 silt Silt-shale Siltstone 

1/3 - 2/3 silt Mud-shale Mudstone 

> 2/3 clay Clay-shale Claystone 

Table 5.5 Classification of Argillaceous Rocks (Shaw, 1981) 

In addition, Table 5.5 provides a classification of argillaceous sedimentary rocks. If 

compared to Table 5.4, a contrast to an engineering geological classification can be 

achieved. Therefore in geological terms, from Table 5.5, the Mercia Mudstone may be 

classed as a Siltstone, bordering on mudstone, and the London Clay as a definite 

Siltstone. 

NWWDO (1996) states the requirements for landfill liners in terms of material properties, 

namely: 

Percentage fines > 20 - 30% 

Percentage Gravel < 30% 

Maximum particle size 25 - 30 mm. 

The materials used in this investigation fall into these specific categories and are therefore 

classed as 'suitable' in terms of the above. This is provided that the minor gravel content 

is removed from the Mercia Mudstone if it is to be used either as a single or composite 

barrier. 

158 



indicated in Figure 5.2. 

For the purposes of this investigation, in order to measure the Atterberg limits, the samples 

were prepared in accordance with BS 1377: Part 1 (BSI, 1990). 
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SL PL 
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Moisture Content (%) 

Figure 5.2 Schematic Diagram of the Consistency Limits of Soil. 

Adapted from Barnes, 1995 & Whyte, 1982. 

5.7.2 Liquid Limit ((h) 

The liquid limit was calculated using the cone penetrometer (definitive method) in 

accordance with BS 1377 (BSI, 1990): Part 2. The Casagrande type percussion cup was 

considered but was deemed to be unreliable (Whyte, 1982). Moisture content and cone 
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penetration were recorded and plotted against each other to ascertain the liquid limit. The 

average liquid limit for London Clay was 68 % and for Mercia Mudstone was 32 % (Figure 

5.3 and Appendix 9.3). Burnett and Fookes (1974) indicate that the liquid limit of the 

London Clay to the west of London is lower than 70 % and extends to 95 % in the East 

and the area exhibits more lateral as opposed to vertical variation. In the location for this 

investigation there would not have necessarily been a great variation in liquid limit since 

the site covered only a small, shallow area. 

Property 2 
Liquid Limit 80% 68% 
Plastic Limit 28% 28% 
Plasticity index 44% 40% 
Natural Moisture Content (%) 23 - 49 18 - 32 

12-28 
Bulk Density (Mg m 1.7 -2 1.74 -2 

I from Cripps & Taylor (1986) for weathered clay. 

2 in situ from Coinbrook, west London. (* corrected measurement) 

Table 5.6 Typical (average) Atterberg Values of London Clay. 

The liquid limit of the Mercia Mudstone appears to be at the lower scale of the results of 

Chandler et al. 's (1968) work, the latter ranging with variable depths between values of 27 

to 50. However, the liquid limit of the Mercia Mudstone from this investigation is identical 

to typical results as shown in Table 5.7. 

5.7.3 Plastic Limit (wp) 

The plastic limit is the empirical moisture content at which point the soil becomes too dry to 

be plastic (BSI 1377: 1990). It defines the arbitrary limit between the plastic and semisolid 
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states of soil consistency. The Atterberg test for the plastic limit of the samples was 

completed under the guidelines of BS 1377 (BSI, 1990): Part 2 using the bead rolling test. 

Whyte (1982) suggests that a preferred method would be extrusion testing which produces 

more reliable results. However, this was not considered for inclusion in the revised BS 

1377 (BSI, 1990) which to date provides the main scientific basis from which to compare 

the results of soils testing. 

The plastic limit for London Clay is 28% (Appendix 9.3) which, when compared to the 

results of West (1991), is at the upper end of the results range. However, 28% is an 

average value for samples taken across the site. Table 5.6 gives an indication of the 

comparison between 'typical' published data from Cripps & Taylor (1986) and those results 

recorded from the site. 

Liquid Limit 32% 

Plastic Limit 18% 

Clay Size Content 32% 

Specific Gravity 2.74 

Table 5.7 Tests Completed on 'Typical Keuper Mar'. 

(Data from Chandler et a!., 1968). 

The Mercia Mudstone plastic limit at Site Beta is 26% (Appendix 9.3). With reference to 

the results for the Mercia Mudstone, the difference in plastic limit from that in Table 5.7 can 

be explained through variation in local soil attributes. 
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5.7.4 Plasticity Index (PI) 

The British Soil Classification System (Dumbleton, 1981) provides a plasticity chart to 

determine fine grained soils in terms of clays (C) or silts (M). Most soils lie below the 'B' 

line and silts and organic soils are found below the 'A' line. This is well documented in 

Barnes (1995). 

PI= LL - PL((o, - op) (Equation 5.1) 
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Figure 5.3 Plasticity Chart (BS 5930: 1981) 
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The London Clay PI value was 40 %, which from the plasticity chart (Figure 5.3) indicates 

that the clay is highly plastic (CH) and it falls within the values specified by West (1992) of 

18 - 48 %. Burnett & Fookes (1974) state that the plasticity index variations resemble 

those of the liquid limit across the deposit but it is important to consider these variations on 

a site specific basis since local variations will affect engineering properties. The Mercia 

Mudstone results indicate that it is a low plasticity clay / silt with a PI of only 6 %, placing it 

almost on the 'A' line as CL / ML. This is confirmed by the particle size analysis which 

demonstrates the high silt content of the material. 

On comparison of the results of this investigation with the work of Chandler & Davis 

(1973), the plasticity index results indicate that the Mercia Mudstone should perhaps be 

classified in weathering Zones II to III since Zone IV is typical of clays with much higher 

liquid limits and plasticity indexes. 

Burnett & Fookes (1974) research on the London Clay (Orford Ness) indicated that 

Atterberg limits will increase with decreasing quartz grain size, all plotting above and 

parallel to the 'A' line on the Plasticity Chart. This could account for some of the variation 

between published results and those of this investigation which are directly related to 

variation between location due to formation, mineralogy and weathering. 

5.8 ACCEPTABILITY OF MATERIAL FOR FILL 

The main discussion on the acceptability of material for fill is found in the Conference on 

Clay Fills, (Anon, 1979) although, in addition, material is deemed acceptable if it meets the 

requirements of the Specification for Highway Works Clause 601 (DoT, 1991). The term 

suitability has been replaced by acceptability in order to cover a wider range of materials 
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available for use in earthworks (Perry, 1995). The Specifications (DoT, 1991) outline 

acceptable materials in terms of compaction methods used to achieve a specific state of 

compaction or the final compaction required to be achieved. The following comprise the 

main parameters associated with acceptability (Barnes, 1995): 

0 Nature of the works, i. e., appropriate use of materials on-site; 

0 Earthmoving efficiency in terms of maintaining trafficability which is related to the 

strength of the soils (Vaughan et al., 1979 and Parsons & Darley, 1982); 

a Compactability associated with air voids content, permeabhity and strength. 

These are addressed in this chapter and Chapter Four and are of fundamental concern 

throughout on-site construction procedures. 

In addition, engineered fill comprising landfill barriers will be subjected to other criteria 

which are of less concern for the engineering of highways works. These are chemical 

attack, frost action and desiccation cracking, alongside liner deformation caused by 

differential waste settlement (Jessberger & Stone, 1991). Therefore, the specification 

requirements for the liner material must take this into account. 

5.9 MOISTURE CONTENT 

The determination of the in situ moisture content (w) is a primary function of the suitability 

of the soil for use in a landfill barrier system. It is a highly influential factor affecting the 

properties and hence behaviour of soils (Anon, 1974 Harrop-Williams, 1985 and Day & 

Daniel, 1985). A small change in moisture content will lead to major consequences in 

terms of earthworks construction. Such changes in moisture content may be due to either 

natural or human induced causes. 
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The Optimum Moisture Content (OMC) is that which is necessary to achieve the 

compaction specification, i. e. as in a Proctor Compaction Test (BS 1377: Part 4) (BSI, 

1990). The dry density' achieved by a certain compactive effort depends on the amount of 

water present (Anon, 1974). Therefore the dry density will increase to reach a maximum 

(ydmax) for the given compactive effort at which point the OMC is also achieved. 

In terms of earthworks, the control of the moisture content is of importance in order to 

ensure the minimum of settlement, and maximum strength and, hence, stability upon 

completion. In relation to landfill liners, after completion of compaction the material must 

have a hydraulic conductivity of no greater than 1x 10'9 ms 1 stipulated by regulations 

(DoE, 1995b). Attempts to compact material which has a moisture content wet of OMC 

will result in deformation, rutting, possibly heave and less than the maximum dry density. 

However, compaction of material dry of OMC results in only a small amount of deformation 

at the base of the lift (Whyte & Vakalis, 1988), although the maximum dry density will not 

be achieved. The greater the discrepancy between the achieved density and the 

maximum, the greater will be the post-placement settlement. 

Moisture tests are taken to determine suitability during the site investigation and continual 

quantitative testing must then be completed throughout the ensuing works to provide 

insurance that the liner achieves its minimum specification. The proposal made by 

Harrop-Williams (1985) is to specify confidence limits to the measurement of hydraulic 

permeability which allows for the distribution of permeability results generally found on 

sites. Instead of the landfilling construction guidelines for a specific permeability 

coefficient of K=1x 10'9 ms', the specifications should allow for a distribution around 

this value but within a minimum and maximum specified. This would enable material 

' (y = mass of soil particles / volume occupied) 
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suitability testing using the values of dry density (yd) and moisture content (w) throughout 

the construction process and, would also allow for repairs to the liner on an as required 

basis. 

5.10 PERMEABILITY / HYDRAULIC CONDUCTIVITY 

The permeability of compacted clays will reach a minimum value wet of OMC which 

coincides with a maximum dry unit weight (dry density) as illustrated in Figure 5.4. 

IQ% 
Yd- 

i 

Moisture Content (%) 

Y 

c c O 
U 
U 

R 
ß 
a 
2 

Figure 5.4 Typical Compaction, Moisture Content and Permeability Relationships. 

(After Mitchell et al., 1965 and Seymour, 1992). 
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Therefore, for a specified moisture content and dry density the permeability can be 

minimised (Harrop-Williams, 1985). Rowe et al. (1995) state that under these initial 

conditions, the performance of a liner may improve over time. This is owing to increased 

consolidation, and diffusive chemical migration that results in the replacement of calcium 

and magnesium ions with sodium within the clay structure (Griffin et al., 1976). 

Hydraulic conductivities will vary over time and are dependent upon many variables as 

outlined below. 

5.10.1 Internal Flow Structures 

Hydraulic conductivity is dependent on the soil structure, primarily relying on the void 

space between individual particles for the transference of permeants. There are however, 

other possible voids, such as natural fissuring within the clay soils. Fissured pathways are 

generally tortuous (Olsen, 1962) and may also be interconnected to provide preferential 

seepage paths (Jones et al., 1995). London Clay provides an example of a naturally 

fissured material as indicated by the logs of the site investigation boreholes (Chapter 

Four). 

Elsbury et al. (1990) completed an investigation into the possibility of flow systems within 

the completed liner. A dye was placed into an infiltrometer and left to permeate the liner 

for six days. Three vertical cuts were made in the liner below the location of the 

infiltrometer to reveal evidence of flow paths. The dye had travelled along the lift interface 

and there was evidence of horizontal voids along its length. Pathways ranged from 1 to 

10 mm wide and proved to be tortuous. Elsbury et al. (1990) noted that the lift interface 

was the location of deepest penetration in most areas, although interestingly, the dye 
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penetrated 20 cm into the liner. This provides evidence that even in engineered fills, 

completed in accordance with the design parameters, seepage can occur. 

An alternative potential pathway of permeants is through the fissures created during 

compaction. This anthropogenically induced route may be laterally extensive along the 

lifts whilst also interconnecting each lift vertically through fissures created during 

compaction procedures, desiccation etc. (Elsbury et aL, 1990). 

5.10.2 Clod Theory 

Clods are particle aggregates which will affect the size of the pore structures in the 

compacted clay, i. e. big clods will form large interpore spaces, increasing hydraulic 

conductivity thus enabling the movement of water through these areas (Olsen, 1962). The 

London Clay was susceptible to clod formation which at low moisture contents resulted in 

solid aggregates of material which proved very difficult to break down. Chapter Four has 

outlined the difficulties associated with such material. 

The removal of clod features is, therefore, of vital importance to ensure that the liner 

achieves its specified hydraulic conductivity. In addition, if the clay is to be used as 

subgrade to a geomembrane, dry clods may damage the material, adversely affecting the 

integrity of the liner. Under circumstances dry of optimum moisture content, large pores 

between clods were noted at standard (2.5 kg rammer) Proctor effort. This produced 

permeabilities at least 25,000 times greater than those completed on homogenous 

material (Elsbury et aL, 1990). 
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5.10.3 Permeability Monitoring 

Continual permeability monitoring is necessary throughout the construction thus 

demanding rapid monitoring techniques which enable continuation of construction. Control 

of permeability may be by: 

(i) Reduction of hydraulic conductivity (coefficient of permeability); 

(ii) Reduction of hydraulic gradient; 

(iii) Control of the permeant. 

It is impractical to measure permeability in situ or in a laboratory with in situ samples due 

to the long duration of these tests. In addition to this, it is also difficult to acquire 

undisturbed site samples. It is important to consider that permeability is a highly variable 

parameter spatially. Indeed, adjacent test areas could show huge factors of difference 

which could be attributed to local variations in moisture, soil mineralogy, compaction effort 

and type received (Seymour, 1992). All the aforementioned variables, either in 

combination or individually are likely to affect measurements of the hydraulic conductivity. 

Harrop-Williams (1985) indicates that large hydraulic gradients may be applied in 

laboratory testing techniques for rapid measurements, which are not indicative of the site 

conditions and may also cause particle migration (Hird et at, 1997). Field testing 

procedures are advocated by Daniel (1984) and Harrop-Williams (1985) due to the 

following uncertainties associated with laboratory sample preparation and testing: 

" Smear zones formed during trimming; 

" Incorrect temperature; 

" Air in the samples; 

" Voids created from sample preparation; 
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" Selecting samples on-site without representative distribution of 

desiccation cracks, fissures and slickensides, indicated by yd and w 

values; 

0 Incorrect modelling (in the laboratory) of the compacted effort which 

would be achieved in the field. 

(Adapted from Daniel, 1984 and Harrop-Williams, 1985). 

Measurement of the moisture content on-site is also prone to error, particularly in clays 

where strata may exhibit variations in mineralogy. For the case studies included in this 

investigation, the soils are believed to be relatively homogenous and are well within the 

permitted criteria for their compaction specification in terms of moisture content and dry 

density. This must be considered by field testing techniques which must generally be 

calibrated to the material on-site. Consistency in sampling and monitoring is also 

necessary in order to provide some degree of uniformity of the results, thus reducing the 

margin for error. Indeed, Lambe (1958) encourages determination of the moisture content 

at different depths in the sample area, excluding areas which have undergone excessive 

drying. 

Current methods of hydraulic conductivity testing in the laboratory (tria)ial permeability) 

would inevitably mean the cessation of construction until the results are available. This 

leads to immediate negative impacts in terms of: 

(a) Financing of the project; 

(b) The detrimental effect on the work completed to date. 

As a result, Harrop-Williams (1985) states that to achieve 'real-time control of clay 

placement other measured parameters (moisture content and dry density), as part of the 
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compaction process, are used to correlate and therefore imply permeability. This enables 

the faster turn around of results and it can be seen comparatively quickly whether or not 

the compaction specifications have been met in terms of the hydraulic conductivity. 

Therefore, if the ideal moisture content and dry unit weight are known, it is possible to 

reduce the permeability of the clay liner by compacting it within these identified 

parameters. 

It is, therefore, immediately apparent that a rapid on-site technique is required for the 

measurement of permeability, or even, suitability of the material. Such a method should 

allow the continuation of construction works directly after testing on-site in order to reduce 

the effects of (a) and (b) highlighted above. 

5.11 COMPACTION 

5.11.1 Compaction Process 

Compaction is the process by which the volume of voids in the soil are reduced through 

the compression and constraint of soil particles, typically by the application of mechanical 

pressures (Parsons, 1992 and Lambe & Whitman, 1969) at constant moisture content 

(Cox, 1996). The degree of compaction may be measured in terms of the dry density (id) 

of the material, thus the higher the rate of compaction, the higher the dry density. 

However, the dry density of a material will vary according to the moisture content (Section 

4.9). 
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5.11.2 Behaviour of Soils During Compaction 

The bulk density (yb) will initially increase with the moisture content until the zero air voids 

line is reached, at which stage, once a maximum has been achieved, it will decrease with 

increasing moisture content (Figure 5.5). This can be explained in that at low moisture 

contents, the soil is stiff and difficult to compact, so low dry densities and high air contents 

are obtained. 
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Figure 5.5 Typical Compaction Curves (Adapted from Barnes, 1995). 

An increase in moisture content results in lubrication of the particles causing softening and 

creating an ease of workability whereby there is a decrease in air contents and higher dry 

densities (Figure 5.6). The total air voids continue to increase with the moisture content 

resulting in a decrease in dry density. The saturation line (zero air voids) remains a 
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constant throughout the compaction process and is never attained since it is impossible to 

expel all the air entrapped in the voids using compaction (DoE, 1952 and Croney, 1977).. 

Figure 5.7 illustrates soil composition of a compacted soil. 

Similar compaction curves, in terms of shape and proximity to the zero air voids line, are 

achieved with different compactive efforts on the same material. For example, the 

Standard Proctor Test (BS 1377: Part 4) which is commonly used in the laboratory to 

determine compaction specifications for materials in the field. A 2.5 kg rammer was 

originally used for the test, although an additional test has been employed using a 4.5 kg 

rammer. This was specified due to an advance in the technology of site plant which 

enabled the use of larger, heavier machines on-site. The Standard Proctor test employs a 

2.5 kg rammer dropped from a height of 30.5 cm. A total of 25 blows is used to compact 

each of three layers. Alternatively, the Heavy (modified) Proctor test uses a 4.5 kg 

rammer dropped from a height of 45.8 cm with 25 blows applied to five layers of the 

sample. Cobbe and Threadgold (1988) state that there is a problem with the current 

compaction testing procedures as a model for site control, in that both the Standard 

Proctor Tests, have the disadvantage of `poor repeatability and lack of a well defined 

optimum in practice 

5.11.3 Field Compaction 

The Specification for Highway Works (DoT, 1991) Clause 612 states that compaction 

should `produce a minimum state of compaction equal to 10 % air voids at a moisture 

content at the dry limit for acceptability. This can be applied to the compaction of material 

used to form a landfill liner at the required permeability. 
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Earthworks require a state of compaction which is commonly specified as a percentage of 

the maximum dry density which is obtained from laboratory testing or in terms of a 

maximum percentage of air voids. The percentage air void lines (Figure 5.5) used are the 

0 %, 5% and 10 % air voids of the material. For civil engineering purposes, such as 

roadworks (Chandler et a!., 1968) and clay fills (Charles et al., 1998), the percentage air 

voids method is most widely employed as a measurement of the compaction. 

A series of lab and field compaction tests therefore must be completed prior to earthworks 

in order to determine the maximum dry density and optimum moisture contents in order to 

achieve the compaction specifications. Seymour (1992) indicates that there may be 

variability in compaction across the site when using equivalent densities to those of 

laboratory investigations. The moulds used in the lab enable the breakdown of the 

material into basic clay particles due to confinement whereas in the field the material is 

able to move laterally thus avoiding remoulding. These problems may be more significant 

in clays of an inhomogeneous nature. 

Compaction is measured in terms of the dry density of the material which is calculated by: 

Dry density (yd) = yb x 100 / 100 +w (%) Equation 5.2 

Where yb is bulk density 

And w (%) is moisture content 

Dry density increases with moisture content until the zero air voids line is approached. As 

this stage is reached, the soil will respond to the stress of compaction and excess pore 

water pressures will be achieved. In addition, a fundamental parameter in determining the 

maximum efficiency of compaction may be the choice of plant. 
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5.11.4 Field Compaction Plant 

Compaction machinery or 'plant' are primarily chosen according to the nature of the 

material which is to be worked. However, choice is also dependent upon; size and shape 

of the area for compaction; lifespan of compacted material; current state of the material; 

compaction specification; end use; and financial cost. 

The list below illustrates the main different mechanical compacting plant which are 

available for use on-site: 

f Smooth drum rollers with or without vibration are used to produce smooth 

surfaces. However, these cause problems in clay compaction as they can 

produce plant-created shear surfaces, although, scarification could reduce the 

effects of this. Speeds between 2.5 to 5 km hr' without vibration are needed 

and 1.5 to 2.5 km hr' with vibration (Barnes, 1995); 

f 'Sheepsfoot' (tamping foot) or club-foot compactor. This is a smooth drum 

covered in sturdy, radially extensive hooked projections or feet, 180-240 mm 

long. These penetrate the clay and compact it from the bottom of the lift 

upwards providing good interlift connection (O'Flaherty, 1974); 

f Grid rollers are towed providing high localised pressure and are more effective 

in breaking down clods in cohesive soils; 

f Vibrating plate compactors are slow and manually operated for use in small, 

confined spaces; 

f Pneumatic-tyred rollers use a kneading action to apply pressure, which may be 

increased with ballast or by the adjustment of tyre pressures; 

Power rammers manually operated and actuated by explosions 
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(Barnes, 1995); 

f Dropping weight or dynamic compactors, where a 200 - 500 kg weight is 

dropped from I-3m using a hoist. 

Either of the first two can be separately towed compactors (Plate 8) or self-propelled and 

are the main plant used in landfill liner placement. The tamping foot roller is generally 

used in the compaction of the waste at landfill sites. For example, a Macpactor machine 

with block feet, shallower in depth than those of the club or sheeps foot compactors. 

Figure 5.8 illustrates the difference in compaction achieved between static and vibrating 

rollers on silty clay soil. The difference in compaction is extremely noticeable, in fact the 

compaction capacity is doubled when a vibrating roller is employed and the lowest values 

for K are achieved with a kneading as opposed to static compaction (Figure 5.9). 
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Figure 5.8 Influence of Technique upon Compaction of Silty Clay Soil (O'Flaherty, 1974) 
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Figure 5.9 Results from Kneading and Static Compaction (Rowe et al., 1995) 

The compaction technique is defined by Daniel (1993) as, 'one pass of the compactor, not 

just an axle, over a given area'. The number of passes may be altered throughout the 

works, as it will be dependent upon the moisture content of the clay, to achieve an 

accepted level of compaction. 

The smooth compactor has drawbacks in that it compacts the clay in layers as it is spread. 

Each clay lift placed by the bulldozer is therefore not combined with the next as well as it 

might be with the sheepsfoot. The club (as opposed to taper) sheepsfoot compactor could 

be vibrated in order to compact the clay further. This also provides the keying-in 

mechanism for the next lift, thus reducing the possibilities for interlift migration of leachates 

and increasing shear strength at the interface (Whyte & Vakalis, 1988). 

The suitability of a particular piece of kit may be determined financially, although, of 
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greatest importance is the ability of the kit to achieve the designers specifications. This is 

explained in Section 4.5.7 where the subgrade finish is vital to the integrity of the 

completed composite liner. The size and location of ramps, other access points and even 

the liner itself can be influenced by the suitability of particular plant. 

5.11.5 Field Testing 

The Nuclear Density Meter is used on the compacted clay to determine the compaction of 

the engineered mineral liner through the use of moisture content and bulk density. The 

method depends upon the scattering and absorption by the soil of the gamma rays emitted 

by the kit, i. e. the higher the bulk density, the lower the detection rate of gamma rays 

(Parsons, 1992). The most popular nuclear density probe (Figure 5.10) used today is the 

portable kit measuring density by direct transmission. Moisture content is measured in the 
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Figure 5.10 Nuclear Density Probe (after Parsons, 1992) 
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same way using neutron radiation. 

This kit uses a nuclear probe which is extended into a hole made by hitting a metal pin of 

similar dimensions into the ground. This has the potential for error, particularly since the 

hole made is irregular, being larger than the pin in depth and diameter. The probe must be 

pushed against the side to achieve a reputable result. Parsons (1992) noted that this 

method created greater disturbance in sandy materials, decreasing density in the 

immediate locality. There may be limitations in the use of a probe, although it will achieve 

more representative results than the back scatter measurement apparatus which only 

measures gamma rays at ground surface level upon rebound from the soil. 

New, faster and more robust methods for on-site testing are therefore necessary to 

provide accurate field techniques for the determination of the prescriptive requirements for 

compaction, moisture content and other required measurements. Methods, such as the 

density probe, require further laboratory confirmation of results, using test controls and 

samples, which are time consuming to acquire. A technique is required which needs only 

one control test of the material at the start of the project, or even, during the site 

investigation in order to determine the degree of required suitability. Murray et al. (1992) 

state that a performance specification for permeability is preferred. However, due to the 

time required for such on-site tests, it would be preferable to relate the permeability to 

other parameters (density and moisture content) which can be monitored more easily. In 

addition, confirmation would perhaps still be required through more detailed laboratory 

testing. 
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5.12 THE MOISTURE CONDITION VALUE TEST 

5.12.1 Introduction 

Importance is placed upon determining a suitable hydraulic conductivity testing procedure 

in order to reduce the time and costs incurred in the construction of a compacted clay liner 

or placement of subgrade. It was with this aim that an alternative approach the Moisture 

Condition Value (MCV) was researched in order to investigate the possibilities and 

practicalities for its use on-site. 

Dennehy (1988) states the principal advantages of the MCV test are the speed of result 

availability and the simplistic nature of both the technique and the application of results. 

Originally developed by the Transport and Road Research Laboratory (TRRL) (now TRL) 

(DoE, 1952) as a modification of the aggregate impact test apparatus, the MCV is a test 

for the rapid and reproducible measurement of the moisture condition of material for 

earthworks (DoT, (1991), Clayton, (1979) and Parsons & Boden, (1979)). The technique 

has been used routinely in Scotland, both in the laboratory and in the field, to assess the 

acceptability of soils for earthworks (Smith et al., 1993). In the UK it is primarily used in 

order to control compaction of lime stabilised clays (DoT, 1991 and Cobbe & Threadgold, 

1988). It could replace other methods, for example triaxial permeability testing, through a 

definition of the effectiveness of a material in terms of the upper limit of the moisture 

content (Scottish Development Department (SDD), 1983). 
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Figure 5.11 Typical Proctor and MCV Compaction Curves. 

Adapted from Murray et al., 1996. 

The method is integrated in the Specification for Highway Work (DoT, 1991), the critical 

Clauses being Cl. 612: Compaction of Fills, and Cl. 632: Determination of MCV of 

Earthworks Materials. The former denotes a maximum MCV of 12.5 for cohesive soils 

which is approximately equivalent to a moisture content at which >_ 10 % air voids is 

achieved whereas at >_ 5% air voids the MCV would be 11.5 or less. 

The MCV assesses the suitability of a material in relation to specified limits of moisture 

limits or strength (Parsons & Boden, 1979). It provides a density (y) versus moisture 

content (w) relationship which lies between the BS 2.5 kg Standard (light) Proctor and BS 

4.5 kg Heavy Proctor as illustrated by Figure 5.11. 
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Green & Hawkins (1987) outlined the primary objectives for the MCV test as those below. 

1. Providing a rapid result; 

2. Applicable to a wide range of soil types; 

3. Suitable for use on-site or in the laboratory; 

4. Minimising operator error, 

5. Using a sufficiently large sample to be representative. 

These parameters were considered throughout the MCV testing procedures completed for 

the laboratory investigation in this current research. This investigation did not consider the 

use of more granular materials or chalks because it is known that under these conditions 

the test can be employed successfully as the MCV is an adaptation of the aggregate 

compaction testing method (Parsons & Boden, 1979 and Barnes, 1988). 

Parsons & Darley (1982) devised a formula in order to determine the MCV of the sample, 

which was applicable for plant, such as motorised scrapers and dump trucks with rigid 

chassis, operational at any speed. Research by Parsons (1979) and Parsons & Boden 

(1979) also proved a relationship between the bulk density, compactive effort and moisture 

content, and, that shear strength can be an effective measure of suitability (SDD, 1983). 

The MCV test is limited between the permeability requirement for landfill liners of 

K=1x 10'9 m s" and an undrained shear strength of no less than 40 to 50 kN m2 which is 

required for earthworks (Murray et aL, 1992). 

5.12.2 MCV Apparatus Specifications 

5.12.2.1 Description 

The MCV apparatus is a manual device which was designed for operation either in the 

field or in the laboratory. The apparatus has a base with a weight of approximately 31 kg 
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in order that it can operate effectively in unfavourable site conditions. Figure 5.12 portrays 

the apparatus in simplistic form and Table 5.8 gives the different parts of the 

apparatus and their measurement. 

Apparatus Measurement 

Dimensions 

Height 

Base diameter 

950 mm 
300 mm 

Mass of rammer assembly 7 kg 

Diameter of cylindrical rammer 97 mm 

Height of drop 250mm 

Mould internal diameter 100 mm 
Mould internal height 200 mm 
Total mass of apparatus including 

Empty mould 

60 kg 

Mass of soil sample 1.5 kg 

Table 5.8 Moisture Condition Value Apparatus and Associated Measurements. 

5.12.2.2 Sample collection and preparation 

Samples were taken from each of the two case study sites in Chapter Four. The material 

at both Site Alpha and Beta was homogenous in terms of geotechnical characteristics, 

although there was some degree of variation for in situ moisture contents. This was to be 

expected as explained in Section 5.9.4, and, ultimately, would not detrimentally affect the 

final MCV result. 

The soil sample was first passed through a 20 mm BS test sieve, to separate the larger 

particles and clods, which were discarded (BS 1377: Part 1 (BSI, 1990)). In the London 
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Clay samples all the material passed, while the small amount of gravels from the Mercia 

Mudstone was removed. Problems may arise when the materials are dry, as hard clods 

can form which can only be removed by crushing. Immediate testing on-site would reduce 

the probability of this since the material would generally be at or near to its natural 

moisture content providing more ease of workability. 

The Moisture Condition Value was taken at varying moisture contents necessitating 

addition of moisture (water) to the samples. Upon the addition of moisture, the samples 

were placed in a sealed container to encourage uniformity of moisture content (Parsons & 

Toombs, 1987). The characteristics of the clay minerals ensured that there was no 

immediate homogenous distribution of moisture, therefore the wetted clays were allowed 

to stand for a minimum of 24 hours before the testing was completed. This test was, as a 

result, time consuming in the laboratory due to the limitations of ensuring even moisture 

distribution. However, in the field this procedure would be unnecessary since laboratory 

calibration of the samples means that materials could be tested immediately at their in situ 

moisture contents (Dennehy, 1988). 

5.12.2.3 MCV Test 

Tests on 1.5 kg samples of London Clay and Mercia Mudstone were completed in 

accordance with BS 1377: Part 4, as instructed by Cl.: 632 of the Specification for Highway 

Works (DoT, 1991). 

The test method uses the record of n (typically 1- 128) attempts required for a7 kg 

rammer, dropped over a distance of 25 cm, to compact a specific sample weight until its 

density can no longer be reduced, i. e., a full state of compaction has been achieved. This 

state is established when no change in depth of the sample, within the mould, is recorded 
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for at least two consecutive measurements. This is in contrast to the Proctor 

measurements which are based upon given amounts of compactive effort being applied to 

a sample. 

Moisture content is determined using a representative sample of the tested material 

(compacted soil) which has been removed form the mould. The weight of the sample is 

taken before and after drying (minimum of 24 hours), as instructed by BS 1377: Part 1, 

(BSI, 1990) and the moisture content expressed as a percentage. 

The MCV test may be completed at increasing moisture contents controlled by the 

operator in order to determine the MCV moisture calibration. The form of the test is given 

by Parsons (1979) who also suggested that it could be used as an earthworks control 

without the continual use of Atterberg limits or moisture testing (Parsons & Boden, 1979). 

Moisture content calibration of the sample is required at the primary stages of kit utilisation 

in order to determine the envelope of usable material. Once this has been achieved, the 

upper and lower limits of the MCV can be calculated and further procedures would not, 

under ideal conditions, require continual moisture content testing for calibration. 

5.12.3 Testing Procedure 

Prior to testing the samples, calibrations were made on the apparatus in order to check the 

drop height (Figure 5.12) was exactly 25 cm. This was rechecked at regular intervals 

throughout the procedure with each different sample. 

The samples for MCV testing were placed in the mould and the rammer was used to 
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compact the soil. A sturdy permeable plate, 1 cm in thickness, was placed between the 

rammer and the sample in the mould. This would prevent contamination of the rammer, 

i. e. clay sticking to it may cause friction within the mould, and provide a relatively even 

surface for distribution of the rammer weight. 

The measurement of the penetration of the rammer into the mould was then recorded, as 

opposed to the change in density of the sample, using a Vernier Depth Gauge. The trip 

counter on the instrument automatically recorded the number of blows (n). 

5.12.4 Calculations 

The penetration of the rammer for each blow at different moisture contents was measured. 

Calculations are based on the change in penetration between a given number of rammer 

hits (n) and four times as many blows (4n) i. e. 1 and 4,2 and 8 etc. The change is 

calculated and plotted on a logarithmic scale against n (initial number of blows) as in 

Figure 5.13. 

The steepest straight line is that drawn on the graph through the points before or passing 

through the 5 mm change in penetration mark (Figure 5.13). It must be stated that there is 

possible margin for error at this point due to variations in the interpretation of the 

instructions for procedure. 

The MCV can be defined from Figure 5.13 as: 

MCV = 10 Logo B (Parsons & Boden, 1979) (Equation 5.3) 

B is the number of rammer blows at which the penetration equals 5 mm, to the nearest 

0.1. Since a large number of blows may be required to remove the last remaining air voids 
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in the material, a change in penetration of 5 mm was chosen to 'represent the point 

beyond which no significant change in density occurs' (Barnes, 1995). 
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Figure 5.13 Example of a Plot for an MCV calculation. 

5.12.5 Moisture Content Calibration 

Typical calibration lines can be achieved for the material at various moisture contents. 

The relationship between the moisture control and the MCV is given by: 

w (%) =a-b (MCV) (Parsons & Boden, 1979) (Equation 5.4) 

where w is the moisture content 

a is the moisture content (%) at MCV = 0, (i. e. the intercept from Table 5.9b) 
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b is the slope of the line from trend lines such as those shown in Table 5.9b. 

Parsons & Boden (1979) state that b is indicative of the sensitivity of the soil to changes in 

moisture content and a is an arbitrary low-strength moisture content value which could be 

used 'in the same context as the liquid limit'. Therefore, this illustrates the possibility of a 

relationship between the moisture calibration and future soil classification. 

London Cla Mercia Mudstone 
MCV Moisture 

Content % 
MCV Moisture 

Content 
15.8 9.9 14.6 4.5 
10.5 11.3 8.4 13.9 
14.8 13.6 10 15.7 
9.7 31.5 2.3 16 
10.2 32.5 2 18.6 
5.9 36.8 4.5 19.8 
6 37.1 - - 

Table 5.9a MCV Results from London Clay and Mercia Mudstone Samples 

Moisture Condition Calibration 

" London Clay 
60 
50 A Marcie Mustone 

40 Linear (London Clay) 
o 30 " 

20 "- Linear (Marcia 

10 
" Mustone) 

0 
0 5 10 15 20 25 

Moisture Condition Value 
(MCV) 

Table 5.9b MCV Versus Moisture Content (%) 
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Parsons and Boden (1979) put forward a proposal for a method of soil classification based 

upon the use of parameters a and b. However, Ewan & West (1983) concluded that soil 

classification according to the Casagrande system using this method was inconclusive and 

inefficient. In addition, Green & Hawkins (1987) agree that such a system would be 

unworkable. 

5.12.6 Analysis of Results 

5.12.6.1 Results 

Throughout the plotting of the difference in penetration measurements (MCV), anomalies 

and outliers were noted either side of the steepest straight line, particularly in the London 

Clay sample. The results (Figure 5.9) indicate a general trend in increasing MCV with 

decreasing moisture content for both samples. This trend is more apparent in the Mercia 

Mudstone sample for which the moisture content results were not as diverse as compared 

to the London Clay. 

The results, as summarised in Table 5.9, are given in graph form in Appendix 9.4. There 

was difficulty in wetting the London Clay to achieve a moisture content in the range of 20 - 

30 %, which is actually approximate to its natural moisture content. Due to the fine nature 

of the material and its ability to dry very quickly, laboratory wetting proved to be a problem. 

In the case of the Mercia Mudstone, saturation was achieved easily after 20 % moisture 

content and mixing was not a problem. These observations can, therefore, be linked to 

the on-site difficulties of clay liner compaction. If the material is not at a suitable moisture 

content for adequate compaction, it would be extremely difficult to wet or dry it, especially 

if bulk quantities were required. 
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5.12.6.2 Seepage from apparatus 

The ELE manual instructions (ELE, 1993) and some research (Dennehy, 1988) state that 

the point of seepage from the base of the mould, should it occur, must be noted. 

However, if the test was continued after this point, it would affect the final results of the 

moisture condition value. For the purposes of this research, testing continued and the 

seepage point noted (Appendix 9.4). Therefore, this accounted for the anomalous, rogue 

results which are at the bottom of the MCV compaction curves. If the plotted results were 

ignored, then there is little reason to continue the test since seepage would then generally 

continue to occur with each blow, reducing the size of the sample. This problem was more 

prevalent in the London Clay samples at their higher moisture contents due to the fine 

nature of the particles. The seepage could be attributed to the fact that there was a loose 

fitting base on the apparatus to avoid the entrapment of air within or around the sample. 

This worked well in samples which were drier than OMC but those above optimum 

proceeded to seep. 

5.12.6.3 Evaluation 

Cobbe & Threadgold (1988) give data for the MCV test on both London Clay and Mercia 

Mudstone as shown in Table 5.10. The lower limit for the range of moisture contents over 

which the Moisture Condition Calibration is reliable is the optimum for maximum dry 

density under Moisture Condition compaction (Dennehy, 1988). The upper limit is the 

point at which density ceases to decrease with decreasing Co. Cobbe & Threadgold (1988) 

state that if the Yb was used, as opposed to the yd, the upper limit can be identified during 

the test and before moisture determinations and, also, that the upper limit varies greatly 

with the type of material under test. Table 5.10 illustrates that the OMC will vary with the 

parameter which is chosen for the test, i. e. measurement of MCV or BS Heavy Proctor and 
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Soil Type OMC OMC MCV 
(BS Heavy (Id) 
Proctor d 

Mercia 15.5 15.3 16.1 
Mudstone 
London 18 20.7 15.2 
Clay 

OMC: Optimum Moisture Content (%) 

OMC OMC MCV 
(BS Heavy (Yb) 
Proctor b 

16.5 16.3 14.6 

19 22 14.4 

Table 5.10 MCV and OMC Results for Dry and Bulk Density. 

Adapted from Cobbe & Threadgold (1988). 

yd or yb. 

The MCV test results from Table 5.10 indicate that the moisture content of the London 

Clay should be in the region of 20 - 22 % to achieve an ideal MCV of 15.2 to 14.4. The 

DoT (1991) stated that a suitable MCV should be in the region of 14.5 for compaction 

works. Therefore, from the results above this would be 16.3 % OMC for the Mercia 

Mudstone and 22 % OMC for the London Clay. The results from the samples in the 

previous chapter indicate a moisture content of 13.6 % for the London Clay and 4.5 % for 

the Mercia Mudstone. For the London Clay this is too low and for the Mercia Mudstone it 

is excessively low. Some moisture content results equivalent to that of the above were 

achieved on-site and compaction completed. However, a suitable degree of compaction 

was not achieved to concur with the QA. 

Barnes (1995) states that the minimum acceptability criterion for the MCV is about 8 'to the 

limits of strength for trafficability purposes as well as for the stability of an earth structure 

Under these circumstances, higher moisture contents for the London Clay (36.8 % +) or 

Mercia Mudstone (16 % +) would not attain the required specification. 
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In summary, the results achieved by the investigation in this thesis only partially indicated 

the true properties of the clays. Therefore, these results could not be relied upon in order 

to determine the clay material suitability for compaction to construct landfill liners. The 

following sections investigate possible explanations for this. 

5.12.7 Examination of the Apparatus and Procedure 

This investigation noted that the apparatus was under considerable strain when testing 

drier samples. Continued vibration of the smaller parts and guide columns may give rise . 

to loosening of parts over the long term which was confirmed by Green & Hawkins (1987) 

during prolonged testing. 

Since there were problems with the equipment during laboratory testing, (namely due to 

the interpretation of the procedures and apparatus set-up from the manual), it was seen 

that these could have been compounded under site conditions. It was also noted that, as 

with any testing procedure, the likelihood of variation between different laboratories could 

be high (Parsons & Toombs, 1987), especially since the MCV procedure is not a regularly 

completed test. 

Indeed, the procedural instructions do possess a degree of ambiguity in terms of the 

interpretation for setting up the apparatus and, additionally, for definition of the results 

(Dennehy, 1988). This is illustrated in the conflicting background research (Dennehy, 

1979 and Parsons, 1979) which was presented at the ICE Conference on Clay Fills (Anon, 

1979). The differences exist predominantly in the interpretation of the MCV curve. TRRL 

Scotland have adopted a different approach to that of the TRRL in England. 
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5.12.8 Analysis of MCV Interpretation Techniques 

There may be differing interpretations of the MCV calculation due to variations in the 

steepest line through the 5 mm change in penetration axis. The ELE manual (1993) solely 

states that 'the steepest possible straight line shall be drawn through the points 

immediately before or passing through the 5 mm change in penetration value : This 

appears to be ambiguous in that there is no indication of whether this is a best-fit line of all 

the points, or whether it should include two values either side of the 5 mm value. TRRL 

Scotland (LR 750) (SDD, 1983) states that the line must go through all the test points to 

intercept the 5mm line. Conversely, the TRRL in England state that the test curve must be 

projected through the change in penetration line. In the event, this could lead to variations 

in results with a difference in value of as much as 2 (Green & Hawkins, 1987). 

Interpretation for this investigation employed the steepest line was in line with the trend of 

the data on a point by point basis in line with TRRL Scottish guidelines (SH 7/83) (SDD, 

1983). 

Figure 5.14 Illustrates the differences in MCV which may occur, in this case a difference of 

1.8. This plot was taken from results achieved during this investigation. The final example 

interpretation (red line) indicates a best fit trend line between point immediately each side 

of the 5 mm change in penetration line. MCV interpretation is, therefore, an important 

consideration when using Codes of Practice and guidelines which stipulate a minimum or 

maximum MCV for earthworks. 
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Parsons and Toombs' (1987) study on the 'Precision of the Moisture Condition Test 

employed ten laboratories in order to determine the repeatability and reproducibility of the 

MCV test. Their report determined that there could be procedural errors involved with the 

test, such as those oultined previously, and efforts have since been made to reduce these. 

The main problems arose with the apparatus, specifically the rammer, where its free-fall 

may have been inhibited to produce undetectable errors, primarily due to the build up of 

friction. 

This current investigation revealed the apparatus was primarily suitable for use in the 

laboratory as opposed to on-site. Site conditions are not always favourable, requiring 

apparatus which is not too sensitive to movement and to conditions which may be 

experienced throughout earthworks and construction. For example, Parsons (1976) 
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Parsons and Toombs' (1987) study on the 'Precision of the Moisture Condition Test' 

employed ten laboratories in order to determine the repeatability and reproducibility of the 

MCV test. Their report determined that there could be procedural errors involved with the 

test, such as those oultined previously, and efforts have since been made to reduce these. 

The main problems arose with the apparatus, specifically the rammer, where its free-fall 

may have been inhibited to produce undetectable errors, primarily due to the build up of 

friction. 

This current investigation revealed the apparatus was primarily suitable for use in the 

laboratory as opposed to on-site. Site conditions are not always favourable, requiring 

apparatus which is not too sensitive to movement and to conditions which may be 

experienced throughout earthworks and construction. For example, Parsons (1976) 
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indicated the importance of maintaining the same drop distance throughout the procedure 

which will be affected during movement of the equipment. 

The weight of the equipment is also of consideration since it would have to be manoeuvred 

once on-site, or, from site to site. The base weight was designed to give balance and also 

decreases the propensity for apparatus movement which would directly affect results. 

However, the heavy weight also restricts portability of the kit since it is not possible to pick 

up by one person alone. In contrast to this, the nucleodensometer is portable, and 

relatively easy to use, enabling relatively fast data collection. It has drawbacks though, 

namely it's potentially dangerous nuclear charge and calibration which is necessary at 

each site. 

5.13 DISCUSSION 

This research has addressed the main requirements for geotechnical testing of clays used 

in the construction of engineered landfill liners. It has demonstrated the main problems 

associated with current testing procedures and, also, highlighted possible areas for 

concern with regard to ensuring the best possible construction practice on-site. 

Present methods of landfill liner construction monitoring are limited. For example, 

evidence has been presented to indicate that preferential flow paths exist in engineered 

clay liners, even after stringent QA. These flow paths restrict the precise measurement of 

permeability in both the short and the long term proven through laboratory and field trials. 

However, there is a potential for these pathways to become blocked and, therefore, less 

influential through time, provided chemical and biological precipitation and attenuation 

occurs. 
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Landfill liner suitability is predetermined through prescriptive controls on the permeability 

and thickness, for example. Performance controls may provide a more real approach, 

based on the characteristics of the individual materials which must be verified throughout 

construction procedures. Performance controls also enable the assurance of a degree of 

QA throughout the construction of the site. The MCV test provides such an example, 

although to date it has not proved successful for on-site liner construction monitoring. It 

clearly has a great deal of potential as a rapid monitoring approach. 

This investigation has given an indication of the validity of the MCV test and, also, a view 

of its practicality for on-site verification of clays. The results achieved indicated that 

difficulties may be experienced with the apparatus, which is reiterated by the fact that tests 

in different laboratories provided a range of results. The current available guidelines are 

not sufficiently stringent for the testing of clays for landfill applications. Therefore, there is 

a recognised need for stipulated Codes of Practice which can be employed by site 

engineers. 

The prime concern of this research is directed towards the operation and workability of the 

apparatus. Currently, it is portable but heavy and cumbersome, and, if used on-site as a 

regular testing procedure it would need to be refined. However, once on-site and in use, 

the technique could be applied to samples at varying moisture contents to provide an 

envelope of workable material which fits within the prescriptive permeability limitations. It 

may be true that a thinner liner can achieve the permeability requirements, however 

present Codes of Practice and guidelines, as employed by regulators, still require the 

minimum of 1m for a single clay liner. 

Since current methods, including the nucleodensometer, still give a degree of 
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understanding of the materials characteristics, new testing procedures must prove that 

they provide a more reliable result or are faster and easier to use. In addition to this, the 

methods must be widely applied in order to encourage use and to assist in the uniformity 

of testing methods, the results of which can be reliably compared. Importantly, it must be 

stated that monitoring methods, such as the MCV, do not provide an alternative to detailed 

laboratory testing procedures for permeability. In addition, the MCV cannot guarantee that 

the permeability has finally been achieved, since this is ultimately related to the 

compactive process and lift thicknesses, for example. This last point highlights possible 

areas for future research, using MCV test results to relate to lift thickness, compactive 

effort and to compare results obtained with permeability measurements. 

This research has highlighted existing discrepancies since the MCV test was originally 

proposed in order to facilitate the five criteria outlined by Green & Hawkins (1987) in 

Section 5.12.1. With reference to these points, in general, operator error is still a problem 

although this does not pose a great problem. The apparatus can be used on clays, chalks 

and aggregates, illustrating its use for a range of materials. Immediate results may be 

achieved on site but their acceptance is still debatable and, finally, the sample may be 

larger but there is an increased propensity for seepage at higher moisture contents. 

The conclusions drawn from the MCV testing directly illustrate the requirement for applied 

research in this field. The application may, in the future, be developed in order to fulfil the 

demands of the landfill construction industry. It would reduce the need for regular on-site 

permeability monitoring which could substantially reduce the construction time for larger 

projects. The test is cheap, fast and not operator demanding, giving it advantages over 

other testing procedures once the protocol has been defined. The MCV must also gain 

reputability as a QA method, through inclusion within recognised Codes of Practice. 
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The concept of Design Realisation can be applied to the use of the MCV test on landfill 

sites. Theoretically, the idea would appear relatively sound, however, difficulties with the 

apparatus and the samples themselves, i. e. seepage, have in practice demonstrated that 

this was not necessarily so. Design Realisation is, therefore, a suitable concept to 

illustrate the differences which exist with respect to the theory, laboratory and on-site 

practice. 
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5.14 SUMMARY 

" Soil variability is one of the fundamental criteria affecting engineering geological 

investigations. As such, thorough detailed procedures are required for site and 

ground investigation surveys (Fookes, 1997) in order to minimise future risk to landfill 

projects. 

" There is a recognised requirement for a standard suitability monitoring method for soil 

liners which can be applied on-site providing fast, effective results. The MCV has the 

potential to achieve this, however, this current investigation has proven that 

shortcomings related to both the apparatus and the procedure are still apparent. 

" Further refinement of the MCV is necessary if it is to be adopted by the landfill 

construction industry. The association between prescriptive permeability requirements 

and limits of MCV suitability must be established in relation to stipulations for landfill 

liner construction. In its present form it is not recommended for monitoring clay 

suitability for landfill barriers although it clearly has the potential as a cheap and 

accurate method of performance monitoring. 

f Many of the concepts relating to the geotechnical properties required of clays for 

landfill liners have been addressed. This can be applied within the framework of 

Design Realisation in order to demonstrate how the relative theoretical nature of some 

techniques means that they cannot always be simply applied to on-site construction 

practices. 
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6.0 NON-INVASIVE CONTAMINANT MONITORING 

6.1 INTRODUCTION 

Monitoring has become established as a critical component in the assessment of the 

integrity of landfill sites through operational to post-closure phases. Landfills require 

continual monitoring in order to assess: 

" The extent and mobility of the contaminant plumes; 

" The type and quantification of pollutants; 

" Future environmental risk. 

Monitoring is a strict requirement stipulated by regulations and legislation necessitating 

detailed, planned regimes at each site (Reynolds & Taylor, 1996) in order to ensure the 

criteria outlined by Bagchi (1990) and NWWDO (1995) in Chapter Three. 

Research by Griffiths et al. (1996) and Well et al. (1994) has revealed that there is a 

fundamental need for strategies which reduce the inevitable time delay between actual 

sampling and result reporting as identified in Chapter Five. In recognition of this, a 

technique is proposed encompassing technology which has now advanced to reach 

promising stages of development, thus enabling possible application in landfill studies. 

In this chapter, the main operational monitoring techniques available to date are outlined 

and an alternative non-invasive approach is suggested. The method proposed is low 

altitude multispectral airborne remote sensing which utilises the detection of vegetation 

damage as an indicator of landfill contaminant migration. Importantly, in the early stages of 

this investigation, it was recognised that the technique must meet unequivocal 

requirements placed upon it by the waste management industry which would enable its 
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deployment. The criteria can be broken down into three fundamental categories, including: 

Planning and costs: 

" Economies of scale, i. e. cost effectiveness in terms of financing (initial outlay) 

and deployment of staff; 

" Applicability as a short and / or long term project; 

" Time taken for data turnaround, i. e. sampling to reporting; 

" Possible training costs. 

System operation: 

" Ease of use, i. e. would a specialist or highly trained user be required; 

" Supply of a backup system, possibly even an invasive sampling method, in 

the event of failure of the remote sensing technique; 

" Ability to detect chronic or acute damage and produce a damage 

classification. 

Environment: 

"A non-invasive technique that would not be detrimental to the environment; 

" It would not change the existing environmental systems. For example, with 

existing approaches, groundwater regimes may be altered by uncased 

boreholes which could facilitate cross contamination. 

The aim of the research is to investigate the possibility of an alternative to current basic 

forms of invasive monitoring i. e., predominantly surface and borehole recordings as 

illustrated by Figure 3.12. Section 3.13 has outlined the main objectives and requirements 

for monitoring of landfill sites in the UK. Increasing pressures from regulatory bodies for 

effective, holistic monitoring systems, designed to operate well after restoration, have 

instigated advances in the technology employed in monitoring systems. Indeed, the 

growing necessity for detailed landfill monitoring has encouraged a review of current 

methods and an investigation of new ones. 
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This proposed application could reduce overall monitoring time due to the relative ease of 

data collection. It has been estimated, that data could possibly be collected and analysed 

over the period of one day in a refined system. This is in direct contrast to the current 

intensive data collection techniques at ground level which involve sampling at each 

borehole or surface water source, data entry, data analyses and, finally remediation if the 

results so required. Remote sensing would not be restricted by problems at ground level, 

(e. g., land ownership). Furthermore, the technique remains unaffected by man-made 

features, such as aerial power cables, buried utilities, roads and fencing, some of which 

can affect ground-based geophysical investigative methods. 

The prerequisite for improvement of environmental standards has encouraged the 

development of highly sensitive and inexpensive equipment (Campbell, 1985). The need 

for monitoring has been heightened by the concern for the welfare, in terms of health and 

safety, of operatives on site and nearby inhabitants. Furthermore, the application for new 

construction projects upon restored landfills, particularly in urban areas, has considerably 

increased in the past decade, necessitating refined monitoring techniques in order to prove 

the suitability of the land. Site Alpha, (Chapter Four), provides an ideal example where 

the site was restored and integrated as part of a business development park shortly after 

completion of restoration. 

A survey of approximately 4,000 UK landfill sites by Roche (1996) indicated that there is a 

very significant incidence of problematic sites in existence (18 % of 'around 1000' sites 

from the survey). The main problems involved LFG migration (48 %), groundwater (15 %) 

and surface water (27 %) contamination, with less important ones resulting from fires (4 %) 

and slope instability (6 %). Interestingly, the survey illustrated that almost a third of the 

problem sites were containment landfills in comparison with the remainder which were 

attenuate and disperse sites. 5% of the total sites were constructed after 1990 which 
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indicates that changes within the industry, i. e. stricter controls on landfill design, 

construction and monitoring have probably contributed to the operation of more effective 

sites. 

6.2 LEACHATE AND LANDFILL GAS MIGRATION 

Since migration of gaseous and aqueous solutions from within the 'confines' of a landfill 

site is to be expected, consideration and classification of the potential risk to the 

environment is significant and cannot be understated. Predominantly, this risk comprises 

the contamination of potable groundwater and localised contamination of vegetation and 

soils. Case study sites (Neumann & Christensen, 1996) give indications of damage 

occurring 150 m from the waste body and 100 m away from one landfill, the latter of which 

could be attributed to migration through old mine workings. Additionally, Flower et al. 

(1981) noted gases up to 305 m from the landfill, in the subsurface soils, leading to the 

widespread death of vegetation. IWM (1998b) details other cases indicating the 

importance of monitoring through routine or on-the-spot procedures. 

An emphasis is now placed upon managing the released gases and leachates through 

long term control schemes (DoE, 1995b). Under these circumstances, control should imply 

both the physical and financial steps to eliminate, reduce or transfer the risk upon 

identification. Principally, the aim is to prevent a repeat of the scenario experienced in 

1986 at Loscoe (UK), as described in Chapter Three (Section 3.2.7) (Williams & 

Aitkenhead, 1991 and WEPC, 1995). 

The majority of this research completed on the effects of pollutants from landfill sites, with 

regard to soil and vegetation damage, concerns the effects of landfill gases. The effects of 

leachates are mainly linked with groundwater contamination, which, to a lesser extent may 
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also result from migrating landfill gases. Leachate contamination can also be monitored 

through the surface water pollution it may create. Perched leachate in lenses above the 

height of the water table may be penetrated by plant roots, particularly the main tap roots, 

which may lead to future vegetation damage. Discussion in this area is current since 

recent research has provided evidence that plant roots do not penetrate landfill capping 

layers. Instead, they extend at shallow depths along the length of the cap, which may 

comprise either engineered clay or geomembrane sealing layers (DoE, 1996b). 

6.3 LEACHATE AND LFG MIGRATION ROUTES 

The behaviour of dispersing pollutants from landfill sites is highly complex (IWM, 1998b). 

Kjeldsen (1996) describes in detail the migrational features of gases through the soil which 

are mainly dependent upon the surrounding strata (Campbell, 1989b), anthropogenically 

induced pathways (Clay & Norman, 1989), (e. g. mine shafts), meteorological conditions 

(Kjeldsen & Fischer, 1995) and barometric pressure gradients (DoE, 1995b). A framework 

for the migration characteristics of landfill gas (Kjeldsen, 1996), is shown in Figure 6.1. 

Gas migration may occur vertically or laterally from a landfill under diffusion or pressure 

gradients, but is highly dependent upon the ground conditions and the stage of site 

operation (IWM, 1998b). Capping may decrease the likelihood of vertical migration, 

possibly placing increasing stresses upon the lateral boundaries of the landfill. LFG 

migration will also depend upon the stage of waste decomposition which affects the 

percentage components in the gas as illustrated in Figure 3.1 (Farquar & Rovers, 1973). 

For example, in initial phases of decomposition, comparatively high rates of Oxygen and 

Nitrogen will be produced, as opposed to, twenty years on when Carbon Dioxide and 

Methane would probably be the most prevalent. Geological features, such as fissures, 

bedding planes, fault planes, fractures and joints are also potentially influential and have 

207 



H 
U) U% C 
o o c0 0= o 
L 

Co - c: Co 
O:. COOM d ýOO5, cß L 

J 0<00( 0 

t\ 

ýý 

ö 

0 
y 

0 

lift 

W 

Q 

cn 

208 

M 
(D ` c ß cv 0 

v 
L- c 
ö a) 0 

ME . a> ' 
o( 1)- 
:3 cu 
-0 (D o z 
t - L- CU a) - a- LC > 
Cl) U 
cu 0 

> cu (D S (D _3 u 

N L 
0 

cý 

cc 

cu 0 
CD > 

co Cý 

m 0 0) -0. 

U) a) 0 CU C . 

Lao] 

O 

V 

.O 
u) 

O c. ca) 0 

0E *a- ID 
ouE aC 

M CL 

G 
rn 
rn 
c 

D 

E 
O 

10 

a 
cU 
a 

c 
0 
cU 
LM 

U) cv 

c 
co J 

O 
w 
Y 

O 
3 
aý E 

LL 

(0 
a) L 

C) 

IL 



been given greater attention previously. 

Chapters Four and Five have illustrated the complexities of the design and construction of 

landfill liners, specifically, the main problems associated with the heterogeneous nature of 

clays. Further to this, it can be seen that varied permeabilities, within the outlined liner 

specifications, can be recorded throughout the installation of a clay liner (Campbell, 

1989b), therefore creating preferential migration pathways for gases and leachates. The 

LFGs possess a higher potential for migration since leachate migration is highly dependent 

upon the head of leachate within the waste and the levels of groundwater in the 

hydrogeological regime. 

6.4 PRESENT MONITORING METHODS 

6.4.1 Standard Techniques 

The present standard in situ methods of landfill pollutant dispersion monitoring are 

illustrated in Figure 3.12. However, authorities and operators must also be concerned with 

the quantitative and qualitative assessment of contaminants. Fundamental quantitative 

and qualitative parameters include: chemical composition; temperature; specific 

conductance; pH; colour; odour, and turbidity (IWM, 1998b). In order to provide 

representative results, it is imperative that the risk of cross contamination during this 

process is reduced. In addition, traditional monitoring methods have proved costly in terms 

of installation, operation and maintenance. Indeed, they often produce large amounts of 

unnecessary data which could further be reduced and refined (Gervasoni & Repoli, 1989). 

Knowledge of the extent of the contaminant transport is of continued importance 

throughout the lifetime of the site. The existence of recently developed modelling systems 
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provide the ability to estimate quantification of future production and simulate possible 

migrational pathways for both LFGs and leachates (Metcalfe & Farquar, 1987). Cemuschi 

& Giugliano (1989) describe two different approaches to estimation which include: 

(i) The use of empirical and/or theoretical models of gas generation and migration 

processes from the landfill; 

(ii) Calculation of the emission from measurement of the pollutant concentration 

above and/or within the surroundings of the waste body. 

In fact, perhaps it is a combination of both which is necessary to achieve a representative 

figure for expected pollutant generation. In addition, the International IAEG Symposium 

Geoconfine '93 (Arnould et al., 1993) identified `modelling (either predictive or during the 

operation of the facilities), together with the in situ monitoring (hydrogeological or 

geochemical measurements)' as the key to the assessment and control of safety of 

confinement systems (Griffiths et al., 1996). 

Groundwater sampling is generally completed with the aid of boreholes at variable depths 

and with multilevel monitoring abilities. These subsurface boreholes have become highly 

specialised since their secondment from the fields of water abstraction and geotechnical 

drilling (Kent & Hemingway, 1993). 

Cross contamination is reduced by flushing the boreholes up to four times (Bagchi, 1990) 

before sampling is completed, as is the case during leachate sampling. However, the main 

complication associated with this type of monitoring is that the well must intercept the point 

of pollution (leakage plume) in order to detect it (Lee & Jones, 1992b). This is determined 

by the hydraulic gradients in the underlying strata. The well, therefore, must be down 

gradient and also take into consideration that the leachates may be higher in density and 

can sink upon mixing with groundwater (Lee & Jones, 1992b). The frequency of this 

monitoring is generally quarterly (3 monthly) in order to provide an assurance that there is 
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no contamination of groundwaters and to monitor the progress of the contaminant plume. 

Similarly, LFG is measured using probes in wells of varying depths at intervals of 30 to 

50 m distance around the site perimeter (DoE, 1996b). Since gas travels in the top layers 

of soil, shallow probes may be installed alongside deeper ones, beyond the base of the 

liner. Hand held probes also provide means for gas detection on an 'as required basis', in 

the event of reported odours, and for spot checks (IWM, 1998b). These probes are 

generally limited as they are only able to detect a single gas at any one time. Gas 

concentrations may disperse before the probe is able to detect them thus illustrating a 

further limitation of the equipment. 

LFGs will be produced in higher concentrations over a specified period, possibly between 

10-30 years in the lifetime of the site, and production may start anywhere form three 

months to a year (DoE, 1998b). It is at this stage, therefore, that vegetation will be most 

susceptible to damage. Once contaminant production is minimised and subject to 

management strategies and controls, migration is less likely from the site and damage will 

be reduced dramatically. Studies of bioreactor landfills employing high rate leachate 

recirculation methods have successfully achieved a faster process of methane production 

(Blakey et al., 1997), effectively reducing the time taken to achieve the gas production 

phases as recognised by Farquar & Rovers (1973). The period for the production of 

leachate and LFG could then be calculated and an intense monitoring programme 

employed throughout this time. The investigation by Blakey et al. (1997), however, was 

limited due to the short nature of the trials and perhaps by atypical low temperatures 

recorded within the landfill (19 -15°C), as acknowledged by the authors. 
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6.4.2 Geophysical Methods 

The application of geophysical techniques in the field of environmental monitoring in the 

UK has proved to be slow in comparison with the rest of Europe and North America 

(Reynolds, 1996). However, on the whole, techniques have become more sophisticated, 

possibly demanding execution by fully trained operators with integration at the conceptual 

stages of landfill design. 

Variable electric conductivites may result from leachate in groundwaters, thus enabling 

detection and differentiation of contamination at depth. Indeed, higher conductivities may 

be indicative of zones of contaminated waters (Matias et al., 1994). This technique is of a 

highly qualitative nature, dependent upon changes in conductivities which, for example, 

cannot be linked to a particular contaminant. Methods of detection include; ground 

penetrating radar (Forde, 1996), seismic reflection and refraction, electrical resistivity 

(Reynolds & Taylor, 1996). Matias et al. (1994) highlight the variables involved in 

geophysical techniques which cannot be overlooked. These include the degree and depth 

of contamination; the geology of the site; lateral variations; and inhomgeneities within the 

material. Such knowledge would therefore be required in order to employ a suitable 

method correctly, although, new ones are available for which this may not necessarily 

apply (Anon, 1997b). 

To date it has not been possible to identify areas of LFG concentration under operational 

or post-closure conditions using geophysical techniques. However, it may be feasible to 

use differences in moisture content in order to determine concentration levels of leachates. 

Geophysical methods are potentially influential for monitoring landfills since they could be 

comprehensive, relatively easy to operate and cost effective. 
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Performance monitoring concerns the overseeing of the site construction and operation, in 

accordance with the operational design and Codes of Practice. It overlaps with 

contaminant monitoring in some instances. For example, large decreases in leachate head 

could indicate a catastrophic failure of the liner which may lead to contaminant migration. 

Performance monitoring could therefore, in the majority of cases, be a primary indicator of 

possible contaminant migration from a landfill site. 

Some geophysical systems can be built into the liner design, therefore providing a constant 

monitoring mechanism of the integrity geomembrane (Anon, 1997b). As a result, leak 

detection will occur before the leachate is able to cause contamination to any significant 

degree. It is based on the detection of differing resistivities which may occur across the 

liner where it is damaged. Figure 6.2 illustrates an example of a monitoring system which 
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Figure 6.2 A Schematic Diagram of an Integrated Geophysical Monitoring System. 

(Adapted from Anon, 1997b). 

is used alongside a single lining system. These systems are becoming prevalent since 

they can be integrated into the construction of the site and are predicted to have a 
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relatively long operational lifetime. The latter point is, therefore, also linked to the lifetime 

of the landfill lining system. It is expected that both systems will operate efficiently until the 

polluting potential for the waste has been reduced, approximately in excess of 30 years. 

6.4.3 Current Remote Sensing Methods 

Some waste management companies already integrate basic aerial remote sensing 

techniques within their standard monitoring strategies. The remote sensing includes 

techniques such as; black and white photography (Sangrey & Philipson, 1979 and Haynes 

et al., 1981); aerial thermography (Titman, 1996 and Irvine et al., 1997); infrared 

photography or a combination of techniques (Well et al., 1994 and Vincent, 1994) for the 

identification of stressed vegetation or thermal pollution. Leachates are generally warmer 

(by several degrees) than ground or surface waters which has enabled their recognition 

and verification. All of the aforementioned require less detailed knowledge of processing 

and analytical skills than the methods employing multispectral airborne remote sensing. 

Currently, they have the ability to present real time data turn around in comparison with 

other applications. That is, the data acquisition and analyses could be completed in less 

than a day, in ideal circumstances. 

6.5 AIRBORNE REMOTE SENSING OF LANDFILLS 

6.5.1 Remote Sensing Systems 

Multispectral airborne remote sensing is spatially expansive and non-invasive, having no 

effect upon the environment being surveyed (Figure 6.3). Thus, it proves able to 

effectively cover extensive areas, including those which may be difficult to access at 

ground level. Steven & Jaggard (1995) state that as early as 1972, with the launch of the 

214 



a/., 1980), land classification, planning (Green et al., 1994) and agricultural monitoring 

(Collins, 1978, Jago & Curran, 1996 and Puhr & Donnoghue, 1996). However, the main 

influence on the entire use of remote sensing derives from the technological developments 

used in military applications (Griffiths et al., 1996). 

Since the application is effective at covering extensive areas, it has proved to be 

successful over fragmented study areas. This is particularly important since remote 

sensing can be used to identify specific locations over an entire area which may later 

require further detailed ground sampling. 

Sources of energy 
Remote sensing 

, _r-ý platform 

Incident Energy 

E, (X) 

Reflected Energy 

EA(X) Absorbed Energy 

E, (ý) = E�(2. )+Eý(X)+E, %) 

E, (, )) Transmitted Energy 

smission through 
iosphere 

Figure 6.3 A Passive Receptor Airborne Remote Sensing System. 

Remote sensing of landfill sites is proposed as a monitoring application which could be 

applied on both a microscale and a macroscale. Data is recorded in pixels which reflect 

the resolution of the recorded data as illustrated in Figure 6.4. Therefore, data can be 
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the resolution of the recorded data as illustrated in Figure 6.4. Therefore, data can be 

interpreted at an individual pixel level (for this investigation 5m by 5 m), or as a whole, in 

terms of groups or clusters of pixels. Pixels enable interpretation of the most dominant 

reflectance. Therefore, if a small area of vegetation within the 5m ground space is 

damaged, the effect may be cancelled out by the rest of the healthy vegetation. In the 

future, data may be available at a resolution of 1m which would enable detection of 

vegetation damage at individual canopy level. 

6.5.2 Previous Applications 

Remote sensing can be applied in many fields from the environmental sciences to 

agriculture and civil engineering. Indeed, Goetz of al. (1983) outlined the possibilities for 

economic exploration and, Rock (1984) further describes its use in geobotanical mapping 

as an indicator of hydrocarbon microseepage. Honer et al., (1983c) investigated the 

relationship between a decreased concentration of chlorophyll in leaves and increases in 

the visible wavelength of plants indicative of geochemical anomalies. Collins of a/. (1983) 

and Chang & Collins (1983) have completed studies into the mapping of forest canopies 

affected by metal-induced stress. The application could be applied to areas of dense 

forestation, which previously demanded costly and tedious exploration surveys, therefore 

identifying locations of formerly unknown mineral reserves. These types of geobotanical 

studies have been influential in proving the ability for the discrimination of vegetation 

according to specified parameters. They have enabled initial categorisation of the 

manifestations of stress on vegetation whilst also enabling calculations of the degree of 

damage. In this way, future studies could assist in locating contamination whilst also 

enabling monitoring of the extent of the problem. 

Garofolo & Wobber (1974) have outlined the results of small-scale studies using aerial 

photography. Solid waste quantities on landfills could be estimated from high-altitude 
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generated by a waste source unit'. The results of their work would contribute towards the 

planning stages of landfill sites through the demonstration of spatial relationships in a 

'single viable format'. Garofolo & Wobber (1974) recognised the value of their research but 

realised that progress could only be achieved in co-operation with the waste management 

industry, a focal point for this current investigation. 

6.6 REMOTE SENSING 

6.6.1 Theory 

The general concept of remote sensing for a non-user is explained by Curran (1985) as the 

`observation and measurement of an object without touching it... it usually refers to the use 

of electromagnetic radiation sensors to record images of the environment which can be 

interpreted to yield useful information'. 

The art of remote sensing comprises two basic activities, data acquisition and the then 

subsequent analysis for interpretation. The former is associated with available technology 
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Figure 6.5 The Spectral Reflectance of Various Types of Vegetation (Drury, 1990). 
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for the remote collection of data and both are inextricably linked. Remote sensing may 

alternatively be explained as the measurement of how materials reflect and absorb 

radiation according to the wavelength in the different Electromagnetic (EM) regions (Drury, 

1990). The measurement of reflected radiation produces a spectral reflectance curve 

which is unique for all materials (Figure 6.5) and can enable identification. 

6.6.2 Electromagnetic (EM) Spectrum 

The electromagnetic (EM) spectrum, as portrayed in Figure 6.6, illustrates the classification 

of the energy in terms of radiation from 0.02 micrometers (µm) to 100 m wavelengths. The 

spectrum can be divided between the extremes, comprising cosmic rays and radio waves 

(Gupta, 1991) into the optical range and the microwave range. The most important 
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Figure 6.6 The Electromagnetic Spectrum (Adapted from Lillesand & Kiefer, 1994) 
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general wavebands used in remote sensing are; 0.4 - 14µm (optical; visible to mid Infra 

red) and 2 mm - 0.8 m (microwave). 

6.6.3 Spectral Reflectance (p7L) 

Electromagnetic energy is incident upon features on the earth, resulting in various fractions 

being reflected (ER (X)), absorbed (EA (X)), or transmitted (ET (X)). The interrelationship 

Angle of Incidence 
\ Angle of Reflection 

i 

Ideal specular reflector Near-perfect specular reflector 

Figure 6.7 Specular Versus Diffuse Reflectance (Lillesand & Kiefer, 1994) 

between these can be described as in Equation 6.1 (also in Figure 6.3): 

E, (7X) = ER (1) + EA (1) + ET (1) Equation 6.1 

The proportions of these, which can be recorded, are influenced by the type and condition 
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of the sensed features. In order to record the energy which is reflected (ER (X)), the 

geometric manner of reflectance from an element must be considered, i. e., specular 

reflectors (flat surfaces) and diffuse (Lambertian) reflectors from rough surfaces shown in 

Figure 6.7 (Lillesand & Kiefer, 1994). 

Reflected incident energy (ER (X)), from the Earths surface can be quantified from the 

reflectance characteristics of the earths surface features. The measurement, the spectral 

reflectance (pa, ), is measured as a function of the wavelength (X) and can be defined as the 

following: 

pý= E x100 
Ei (X) 

Energy of 7. (wavelength) reflected from the object x 100 
energy of 2. (wavelength) incident upon the object 

Where px is expressed as a percentage. 

Equation 6.2 Spectral Reflectance Measurement. 

6.6.4 Vegetation Reflectance 

In order to assess vegetation damage using remote sensing, the spectral regions must be 
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Figure 6.8. Typical Reflectance Curve of Green Vegetation. 
(Adapted from Rogers, 1997). 
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identified in which vegetation is most responsive to unfavourable growth conditions. It is 

primarily the interaction of both the physiological and chemical which produces the typical 

reflectance curve for vegetation as illustrated in Figure 6.8. 

Vegetation reflectance provides a good indicator of the structure, character and health of 

plants (Boochs et aL, 1990). Carter & Miller (1994) state that the best indication of stress 

within the 0.4 - 2.5 µm range is an increased reflectance in the visible (0.4 - 0.7 µm). 

Difficulties in obtaining representative results may be incurred if the reflectance of the 

background features, excluding the vegetation, are similar to that of the plants. However, 

Honer et aL (1983a) disproved this using studies involving opaque rock background which, 

in the spectral region of 0.68 - 0.74 µm, is similar to many soils. The study used simulated 

natural vegetation on this background which was scanned in order to locate the 

representative red edge. The investigation disproved the possibility of interference in 

reflectances recorded from vegetation with that of background soil features. This was 

achieved by sampling reflectance spectra from pea and maize leaves using a 

spectrophotometer, backed by a slice of opaque rock which simulated 100 % vegetation 

cover, in the laboratory. This was completed again with only 80,60,40 and 20 % of the 

sample aperture covered by the leaf. Honer et aL (1983a) found that, even at the lowest 

coverage, the red edge was still identifiable and its wavelength X. remained the same. 

Thus, the effects of ground cover in field applications would be unaffected. 

6.6.5. Red Edge 

Research by Horler et a/. (1983a & 1983b), Boochs et aL (1990) and Rock et aL (1988) 

have proved that a 'red-edge' exists in the reflectance spectra of vegetation in the range of 

0.68 - 0.75 µm (Figure 6.8). It is a unique feature of green vegetation as a result of two 

222 



optical properties of plant tissue (Honer et al., 1983a): 

" High internal leaf scattering to cause large Near Infrared (NIR) reflectance; 

Chlorophyll absorption giving low red reflectance. 

Reflectance in the 0.68 - 0.75 gm range is sensitive to early stress-induced decreases in 

chlorophyll content and is represented by a blue shift in the red edge as illustrated by 

Hoque & Hutzler (1992). Hoque & Hutzlers (1992) research, using beech tree leaves, 

indicated a blue-shift in the maximum inflection point of the red edge. This was statistically 

proven to be synonymous with damage which was defined as leaf loss and discolouration. 

Therefore, chlorophyll content and visible damage are closely related to blue-shifts in the 

reflectance red edge curve. In addition, Boochs et al. (1990) state that the red edge 

derived from high resolution spectral data may even be enough to ascertain small 

differences in morphology and the chemical structure of the vegetation. 

6.7 CHARACTERISATION AND ASSESSMENT OF VEGETATION DAMAGE 

6.7.1 Vegetation Damage 

Studies have been completed since the late 1960's (Murtha, 1976, Murtha, 1978, Gaucher 

et al., 1978, Pinar & Curran, 1996), on the application of remote sensing as a tool for the 

detection of vegetation characteristics. Furthermore, research by Jago & Curren (1996), 

Jones & Elgy (1994), Collins et al. (1983) and Chang & Collins (1983) has identified the 

use of damaged vegetation detected through remote sensing as a method for locating 

areas of contamination. The applications formulated as a result of such research projects 

have since been applied to landfill case studies in order to determine their effectiveness as 

monitoring techniques. Indeed, specifically chosen case study sites have also been used 

for this current investigation. 
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As early as 1972, when damage assessment was only based on data from aerial 

photography, Murtha identified the need for more than just the simplistic aerial estimations 

of vegetation damage (Murtha, 1978). Quantitative and qualitative spectral and spatial 

measurements could then be used in conjunction with each other and in association with 

the advances in technology and data recording to produce more definitive results. 

Definition of the term 'damage' is of primary importance for the purposes of this 

investigation since it may lead to confusion over dead and dying vegetation. Murtha (1978) 

regards damage as a 'detrimental change in form' of the vegetation. Changes are therefore 

expected in both the morphology and spectral reflectance patterns. The most suitable 

definition, however, was from Murtha (1976) who classified damage as the following; 

'any type and intensity of an effect on one or more plants, or parts thereof, produced by an 

external agent, that temporarily or permanently reduces the financial or aesthetic value, or 

impairs or removes the biological capacity for growth and reproduction or both 

Therefore, damage will include dead and dying species detectable through a variation in 

spectral reflectance or signature. 

For a detailed assessment of migration distances, specific site information is vital. The 

following provide examples which are specific to landfills; the location of high permeability 

pathways, capping and liner thicknesses. In terms of the damage created, it is also 

important to consider the type of vegetation and its health prior to contact with the 

pollutants. Environmental Impact Assessments (ElAs), prior to the commencement of the 

landfill, will provide details of the pre-existing vegetation types and health. These data can 

then be incorporated into a long term plan to facilitate an assessment of vegetation over 

the entire period of landfilling and post completion monitoring. 
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6.7.2 Damage Manifestations 

The use of remote sensing to monitor landfill sites is based upon the identification of 

stressed or damaged vegetation which may manifest itself in different forms as indicated 

below (from Lyon, 1987): 

9A decrease in size and vigour, 

"A decrease in the number or variety of species present; 

9 Absence of characteristic plant species; 

" The presence of dead vegetation (in extreme cases); 

" The presence of plant species adapted for growth on contaminated land. 

For the purposes of a ground investigation, it requires a trained eye in order to determine 

the different vegetation characteristics, even at ground level. This investigation now 

recognises the requirement for specialised knowledge in this area, although, at the 

beginning of the current study, it was not deemed to be of such importance. It was 

assumed that damaged vegetation could be identified solely through remote sensing 

regardless of species type. This may be true in extensive areas of damage concentration 

but with regards to the identification of specific plant types, classification of varying spectral 

reflectance patterns according to species is necessary. 

Murtha (1978) divides the damage into an assessment of the change in morphology or 

physiology of the vegetation. A change in morphology could be explained as a change in 

the shape or outline of the vegetation which could be defined further as cellular collapse or 

defoliation. In contrast, a changing physiology would be expressed as a deviation from the 

normal over time, for instance growth reduction or top dieback. Damaged vegetation in the 

form of chlorosis i. e. yellowing of the leaves, stunted growth and die back are all visible 

forms of damage associated with landfill contaminants. The interest lies in whether the 

landfill pollutants cause damage in either of these ways or possibly both. These can be 
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seen during ground monitoring and will provide evidence for the presence of contaminants. 

It is important to note the possible problems which may also be associated at this stage in 

anticipation of some representative results. Progressive analysis is necessary to 

determine changes in vegetation patterns throughout the year which occur with seasonal 

variation as a result of senescence, alterations in chemical composition and changes in 

chlorophyll accumulation, (Boochs et aL, 1990), that are in turn related to plant type. 

Reflectance spectra are affected by vegetation growth patterns throughout the year, 

indicating that damage to vegetation may also be related to seasonal change. 

Ground investigation is also imperative once analysis of the remote sensing data has taken 

place. This determines whether the vegetation damage can be denoted by the migration 

of either leachate or LFG. A flame gas de-ioniser field kit can register the presence of LFG 

in minute quantities in the subsurface of the soil. It would be necessary to carry out 

fieldwork on problem areas where vegetation damage is identified by remote sensing 

analysis. 

Importantly, the damaging agents from landfills, leachate and LFGs, need to be 

differentiated from other agents such: as fire; disease; insect damage; and human 

activities (Jones, 1991). This stage should be completed through ground surveys at the 

same time as the remote sensing data is recorded. Most landfills will already possess a 

detailed knowledge of the environment in the vicinity and records could even be updated 

from previous environmental impact assessments and site investigation surveys. 

It is also possible to define the manifestations of damage in terms of their acute or chronic 

nature. Acute can be defined as a high input of pollutants over a short time, in contrast to 

chronic which denotes an exposure to lower concentrations over a longer period. Larcher 
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(1995) suggests that acute lethal damage, seen in the immediate vicinity, may be 

recognised in the following forms: chlorosis; leaf discolouration; necrosis of tissues; and 

death. In contrast, chronic symptoms are less distinctive: reduced productivity; defective 

fertility; less vigorous growth of trees; and sparser foliage. Only the immediately apparent 

features would be recognisable in this case, since a comprehensive study of the local 

vegetation was beyond the scope of the investigation. However, a comparison over time 

would increase the possibility of classification in these terms. 

6.7.3 Chlorosis and Vegetation Dieback 

Chlorosis exhibits itself as a yellowing of the plant leaves and is a symptom of Virus Yellow 

infection which affects both efficiency and yield (Steven & Jaggard, 1995). As a result, 

chlorosis in plants will affect the reflectance pattern which deviates from that of normal, 

healthy vegetation. 

The extent of damage through vegetation dieback is a function of: 

1. Species type, since some species may be more tolerant of the components of 

LFG, namely methane and carbon dioxide along with the reduction in oxygen 

content; 

2. Soil type and thickness; 

3. Moisture content of the soil; 

4. Temperature; 

5. Retention time of pollutants within the soil itself. 

(WEPC, 1995) 

It is important to consider that the above may not always be directly attributed to landfilling 

activities, so, this must be proved to be the case. In addition to the first point, landfill 

restoration procedures may take advantage of the potentially resistant species during the 
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aftercare planting. 

6.7.3 Causation factors 

Damage to vegetation in the vicinity of a waste body will generally occur primarily as a 

result of root damage. The damage therefore may be attributed predominantly to the 

distribution of gas through the subsurface layers of the soil strata, although poor quality of 

groundwater may make some contribution. The presence of the gas leads to an anaerobic 

environment in which plants are unable to grow. This may be due to; 

1. A lack of oxygen in the root zone (asphyxiation). Most plants demand 5-10 % 

oxygen in soil air, rising to 12-14 % for woody species, although this fact 

depends on species. Shallow root systems and dwarf growth (Neumann & 

Christensen, 1996) give an indication that aeration has occurred from the 

atmosphere on the surface layer of the soil; 

2. The high toxicity of carbon dioxide leading to phytotoxic conditions. Under 

normal conditions, the amount of CO2 present within the soil will vary according 

to the amount of organic matter degradation. CO2 tolerance is again variable 

between species although plants can grow in 5% C02, Kjeldsen (1996) stating 

20 % CO2 to be a high concentration. The presence of methane (CH4) may be 

beneficial to plants although in high concentrations (45 %) minor damage may 

occur due to oxygen depletion caused by microbial oxidation of methane 

(Neumann & Christensen, 1996); 

3. The anaerobic conditions facilitate the collection of heavy metals, such as iron 

and manganese in higher, poisonous levels (Flower et aL, 1981). Neumann & 

Christensen (1996) consider this to be a minimal factor for consideration, since 

asphyxiation is the main cause of damage resulting in possible death. 
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6.8 AIRBORNE REMOTE SENSING DATA ACQUISITION 

6.8.1 Investigation Outline 

The research completed for this investigation assumed that the data analyst had no 

previous knowledge of remote sensing, possessing solely a background in landfill 

engineering and management. The criteria comprised the production of a systematic 

method for data collection and processing and, in addition, that the system could 

immediately be applied by the waste management industry. The latter may have been a 

demanding prerequisite. However, some progress has been made in the achievement of 

this, since fundamental difficulties have arisen especially during data collection which could 

be corrected at initial stages of the system development. 

6.8.2 Data Collection 

For this study, data was obtained from sensors mounted on a NERC Piper Chieftain plane 

which was specifically equipped as shown in Figure 6.9. The data collection was stipulated 

for 1995, March / April time at the start of the growth season. On the day of the flight the 

weather was mainly clear although cloud was recorded in some of the data. In the event, 

the data for Chelson Meadow was re-recorded on another flight (April, 1996). The second 

acquisition, along the same flight line, was completed a year later in 1996 using the 

identical data collection specifications in order to provide a temporal comparison. 

6.8.2.1 Airborne Thematic Mapper (ATM) 

Data was collected using a Daedalus 1268 -11 channel Multispectral Scanner or Airborne 

Thematic Mapper (ATM). The ground resolution was 5m and the wavebands recorded as 

in Table 6.1. 
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Figure 6.9 Cross-sectional Schematic of the NERC Piper Aircraft illustrating the General 

Equipment Layout (NSS, 1996) 
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Band Start (nm) End (nm) Purpose 
1 420 450 Water penetration 
2 450 520 Vegetation discrimination 
3 520 600 Peak green vegetation reflectance 
4 605 625 Water quality 
5 630 690 Max. chlorophyll absorption 
6 695 750 Vegetation red edge curve 
7 760 900 Vegetation max reflectance 
8 910 1050 Near Infra-red (NIR) 
9 1550 1750 Vegetation moisture 
10 2080 2350 Rock discrimination 
11 8500 13000 Surface temp, moisture 

Table 6.1 ATM Wavebands Recorded (NSS, 1996). 

6.8.2.2 Compact Airborne Spectrographic Imager (CASI) 

The second technique for the airborne data collection was the Compact Airborne 

Spectrographic Imager (CASI) at a ground resolution of 5 m. It is a Canadian high 

performance pushbroom sensor which was specifically designed to enable the acquisition 

of low cost multispectral data for both aquatic and terrestrial purposes (Franklin, 1994 and 

Babey & Anger, 1989). Multispectral scanners enable the collection of data in many 

narrow bands through 200 channels or more thus encouraging discrimination of surface 

features in terms of absorption and reflectance. 

CASI covers a spectral range typically from 450 - 950 nanometers (nm) (0.45 - 0.95 µm) 

which in turn can be further minimised to identify specific interests. This range is divided 

between 0.4 and 0.9 µm at 1.8 nm spectral intervals (Lillesand & Kiefer, 1994). The CASI 

can be operated in two modes; a spatial and / or a spectral one operational in 288 

channels. However, the spectral modes are programmable in the spatial ones i. e. spectral 

widths and ground cell resolutions (Gong et al., 1995). 

Spatial resolution: 578 pixels. 

Spectral resolution: 288 pixels (1.8 nm each). 
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Band Start nm 
(Channel No. ) 

End nm 
(Channel No. ) 

Purpose 

1 441.53 (264) 459.17 254 Blue vegetation response 
2 480.37 (242) 499.84 (231) Vegetation response 
3 547.74 (204) 556.63 (199) Max. reen absorption 
4 665.57 (138) 674.54 (133) Max. Vegetation absorption 
5 694.28 (122) 703.27 94 Red-edge 
6 705.07 (116) 711.06 89 Red-edge 
7 735.66 99 744.67 94 Red-edge 
8 746.47 (93) 753.68 89 Red-edge 
9 760.90 85 764.51 (83) O en absorption 
10 775.34 77 784.37 72 Max. vegetation reflectance 
11 815.13 55 824.18 50 Water absorption 
12 860.46 30 869.54 (25) Near Infra-red pla 

Table 6.2 CAST Wavebands Recorded (NSS, 1996). 

This application directly recorded information on a preset bandset of 11 channels 

specifically related to the spectral reflectances of vegetation (Table 6.2). 

The wavebands are directly relevant to the detection of vegetation quality and type and a 

comparison with the ATM data shows that the CAST covers a more specific area of the 

electromagnetic spectrum. Therefore, the CASI tool is possibly the most applicable in this 

area although, until recently, its use was minimal due to difficulties with the data correction 

techniques. 

6.8.2.3Aerial Photography 

A Wild RC-10 Survey Camera was used to record data at a ground resolution of 1: 1600 m 

and 1: 1000 m in the form of visible colour vertical aerial photographs. A set of 

photographs was received from both of the NERC flights (1995 and 1996) for the case 

study in Plymouth, but only one set for the Heathfield site (1995). This made it possible for 

a temporal comparison of operations on the former site whilst also providing an overview of 

the environment adjacent to the sites. The photographs also provided means for contrast 
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whilst working on the manipulated ATM data. 

6.8.3 Acquisition Problems 

The foremost complication was the time taken for the acquisition of data. An initial attempt 

was made to prove that the application could be planned, instigated and results achieved 

in a maximum of 24 hours. However, the raw data for this research was received in excess 

of one year after it was flown. In addition to this, the data received was not geometrically 

corrected and there was no geometric correction equation available for the relatively new 

CASI technique and one would have to be devised. At the date of submission of this 

thesis, this stage of the data processing has not been completed three and a half years 

after the original NERC flight, rendering the CASI data unusable for the purposes of this 

study. 

6.8.4 Data Correction 

Pre-processing of airborne data requires specific geometric and radiometric corrections. 

Airborne imagery possesses problems which are not experienced in satellite imagery. The 

main difficulties arise as a result of geometric variations. For example, differences in earth 

curvature, atmospheric refraction, altitude, velocity, pitch and roll of the remote sensing 

platform and nonlinearities in the Instantaneous Field of View (IFOV) possessed by the 

sensor. Geometric variations can be corrected by finding out the relationship between the 

pixels and the corresponding area on the ground which is achieved using a geometrically 

corrected map. Geometric correction is especially critical for the analyses of multi-temporal 

data. 

Radiometric problems also occur, namely errors occurring in the recorded brightness of the 
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pixels. For example, atmospheric conditions, viewing geometry and instrument response 

characteristics (Lillesand & Kiefer, 1994). Unpredictable interference (scattering) in the 

atmosphere will affect the reflected and emitted energy. This scattering takes two forms, 

Rayleigh and Mie. The former occurs when the radiation interacts with atmospheric 

particles (and other smaller ones) which are smaller than the wavelength of the recorded 

radiation. Mie scattering occurs when the size of the particles and the remote sensing 

wavelengths are of similar magnitude. Data must be corrected for scattering before it is 

analysed further to reduce error. 

These corrections are dependent upon the use of the imagery. Therefore, it was mainly 

the geometric corrections that were necessary for this study. For the purposes of this 

study, data correction was completed prior to receipt of the imagery from NERO. 

6.9 CASE STUDY SITES 

6.9.1 Introduction 

The study sites located in South West England (Figure 6.10) were chosen for the collection 

of three forms of airborne remote sensing data. The choice of site was a function of: 

f The location of the site; 

f The form of landfill design philosophy employed. 

Both of the above are related since the characteristics of the landfill location will influence 

the design as described in both Chapters Three and Four. The two sites therefore provide 

an ideal contrast from which to draw results. They were both operational throughout the 

entire period of data collection. 
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Figure 6.10 Location of the Case Study Sites. (Hopper, 1996) 

6.9.2 Chelson Meadow, Plymouth 

The first case study site is the Chelson Meadow landfill in Plymouth, operated by Devon 

Waste Management (DWM), the Local Authority Waste Disposal Company (LAWDC). It is 

based upon attenuate and disperse principles, relying on the unsaturated geological strata 

to attenuate pollutants, thus minimising effects on the underlying groundwater aquifer 

(Bagchi, 1990). However, there is an engineered leachate drain at a level of 7.5 m AOD 

and several leachate cut off drains which discharge to the lagoon. It is a combination land 

fill and raise, the majority of the waste being placed above the height of the flood plain. 

Prior to development, the location was originally part of the River Plym tidal estuary, a da 

infilled by both natural sedimentation, following the post-glacial rise in sea level, and 

tailings from the former kaolin quarries located in the headwaters of the River Plym. The 

sequence of deposits presented in Table 6.3 occurs at the site. 
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STRATA DESCRIPTION 

Landfill/raise Domestic and inert wastes, some asbestos. This 

is ongoing fill to date. 

Reclamation Fill Tipped wastes and sludges (Max. thickness 15m) 

Alluvial Deposits Sandy, silty clayey soils. The clays reduce 

recharge to the underlying aquifers and the 
likelihood of leachate migration. 

Bedrock Upper Devonian strata comprising grey fissured 

slates and mudstones which range in permeability 
from K=1.2 x 10'a to 5.3 x 10-8 ms'', i. e. moderate 

to low, which will impede leachate migration. 
Except in the South Western corner where 
limestones form interbedded with the slates. The 

limestones are a minor aquifer owing to fractures 

in the upper weathered zones. 

Table 6.3 Underlying Strata of Chelson Meadow Landfill Site (Adapted from DWM, 1996). 

Chelson Meadow was reclaimed in 1807 through the construction of an 890 m long 

embankment, 'The Ride', approximately 4.9 m above the level of the estuarine mud, to 

enclose an area of 73 hectares (180 acres). The area has been used as a racecourse, a 

World War 1 Airfield (Otter, 1994) and was developed as a landfill site from 1968. 

This landfill is of specific interest due to its licence which enables it to accept liquid and 

solid wastes (Table 6.4) as a co-disposal site. On-site collection and shredding of organic 

wastes enables composting in linear windrows (Figure 6.11). Chelson Meadow is the main 

repository for waste in Devon, although most of the waste is derived from the surrounding 

Plymouth areas. The site is expected to be operational until 2002. This has therefore 

encouraged the development of other proposals and strategies for the disposal of wastes 

from the area. Particular attention is given for the disposal requirements of domestic 
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wastes, since they comprise the greatest waste intake, as indicated in Table 6.4, and liquid 

wastes. 

Waste Type Quantity in Tonnes 

Covering Material 94,595.290 

Hardcore 25,383.820 

Domestic 102,969.600 

Commercial 41,364.440 

Civic Amenity 26,926.290 

Liquid 3,737.700 

(22,000m3) 

Total Input 294,977.140 

Table 6.4 Chelson Meadow Landfill Site Input Jan. to Dec. 1996 (DWM, 1997). 

Upon the completion of waste infilling, it is proposed that the landraise will have reached 

15 m AOD, approximately. Continuing partial restoration has been completed at the site in 

accordance with the licence (Waste Management Licensing Regulations, 1994) and Codes 

of Practice (DoE, 1996b). At present, the north of the site is partially restored to a golf 

course. 

Compacted clay bunds partially surround the site. At the river side of the site (North East 

and East) these bunds are lined with an impervious liner. It was noted that this could be a 

location for interest since break outs of both leachate and LFG had been acknowledged by 

the operators and flares installed to control the gas. Leats, previously surrounding the site, 

have since been diverted in order to reduce the possibility of surface water contamination. 

They now drain the meadow to the river Plym along the North and South sides. 

The site is located on the edge of the River Plym estuary (Figure 6.11), into which runoff 
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and leachate were pumped on a falling tide until November 1996. However, an automated 

leachate treatment plant (LTP), at a cost of £1.25 million, is currently in operation and will 

remain so post-closure. Operation of the LTP will be abandoned when the production of 

pollutants is nil or no longer of environmental consequence, the former being highly 

improbable in the decades immediately after completion of filling. Prior to the introduction 

of this system, leachate ammonia levels were in the region of 200 mg r1 in contrast with the 

50 mg I" specified by the EA (DWM, 1996). The employment of four sequence batch 

reactors using nitrifying bacteria to consume the ammonia has resulted in the reduction of 

levels to approximately 0.5 mg 1"1. From the plant, the leachate is pumped out into the 

estuary half an hour after low tide for a maximum of two consecutive hours. Regular 

monitoring of the estuarine environment in the vicinity of the outfall pipe has indicated no 

detrimental results to date. 

Present gas treatment for this site occurs in the form of passive venting through two flares 

which are to be replaced by an extensive gas utilisation scheme in the near future. 

Chelson Meadow is located adjacent to an operational limestone quarry (Figures 6.11 and 

6.12) which operates an on-site cement works. It is important for the purposes of this 

research to consider the possible effects of quarrying on the local groundwater regime and 

also as a potential source of background contamination of the results of this study. 

6.9.3 Heathfield, Newton Abbot 

The second site, Heathfield, is a more recent landfill which has had three operational fill 

and raise phases, each necessitating the placement of a form of engineered liner. It is 

now starting the fourth phase and there is a planned fifth. The site, owned by Haul Waste 

(a private waste management company), is located at Chudleigh Knighton (Figure 6.10), 
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Figure 6.11 Schematic Plan of Chelson Meadow Landfill Site from 1995 NERC data. 
From 1997 data. 
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near Newton Abbot. This is a relatively rural area in comparison with that of Chelson 

Meadow as illustrated in the aerial photographs. The site has been operational since 1980 

and was granted a licence for an extension in 1990 which enables approximately another 

ten years of fill from 1996. 

Heathfield is situated on the North Eastern edge of the Bovey Basin. The basin comprises 

Tertiary deposits of the Upper and Middle Bovey Formation overlying the Cretaceous 

Upper Greensand and the Carboniferous Crackington Shales and Ugbrooke Sandstones 

(Durrance & Laming, 1982). Clay horizons in the Bovey Formation and overlying 

Superficial deposits enable some attenuation and impediment of leachate flow. The Upper 

Greensand comprises a minor aquifer in the area which supplies potable soft water. 

The landfill accepts domestic, commercial and industrial solid wastes at a rate of 

700 t day'', in all but the fifth phase which is a piggy-back landfill between the old and new 

sites. Landfilling of asbestos is also licensed with the proviso that it is placed at a minimum 

distance of 2m from the edge of fill (Anon, 1994). 

The site is designed on the containment principle or 'dry tomb' approach (Lee & Jones, 

1992a). However, the first phase of operation remained uncapped for approximately ten 

years. This allowed rainfall to penetrate the compacted waste and generate leachate, thus 

establishing a flushing effect in the landfill (reverse osmosis) for the period of time prior to 

capping. The first phase has a single mineral liner whereas the subsequent operational 

phases have a composite liner of flexible membrane and GCL overlying engineered Ball 

Clay derived from the nearby clay pits, i. e. a similar design to that of Site Beta, Chapter 

Five. 

Long-term management systems have been established in each cell for the provision of 
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leachate treatment and landfill gas extraction. The latter is used to produce electricity for 

the National Grid on site. This active control system enables the collection of gas 

channelled to two turbines which produce 0.9 Mega Watts (MW) of electricity in total. 

Plans are underway to install a further two turbines with the ability to produce a further 

1 MW each. Less extensive passive venting systems are also in operation across the site. 

Passive control systems comprise gas vents along the perimeter of the site and regularly 

spaced gas monitoring boreholes. 

At the time of data collection Phase One was restored and Phase Two partially so. 

Regular leachate monitoring is completed by the operator through borehole and surface 

testing at the stipulated monthly and quarterly frequencies along similar procedures to 

those outlined in Table 4.6 for Site Beta. 

6.10 DATA PROCESSING 

6.10.1 Initial Stages 

The multispectral airborne imagery was initially subject to a range of image processing 

techniques using Erdas software which enabled processing, analysis and production of 

corrected imagery. At this stage of the investigation, a specified area from the entire 

image was identified for use in the analysis. The airborne imagery collected, also recorded 

locations outside the area of interest for the study. This represented excess data which 

was unnecessary for processing, therefore it was cut from the main image which was to be 

used. 
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6.10.2 Primary Processing Techniques 

6.10.2.1 Image enhancement 

The initial adjustments employed enhanced areas of low inherent contrast using simple 

contrast stretching procedures. Contrast stretching can be applied in several forms by 

adjusting the entire image or individual wavebands. An image histogram is created for 

each waveband, illustrating the distribution of brightness values for all pixels by plotting the 

number of pixels with a given brightness against the brightness value (Richards, 1993). 

The histograms were stretched to achieve a normal or 'Gaussian' distribution by resetting 

the Digital Number (DN). This is the integer value of an individual pixel which can be 

converted to radiance or temperature using a conversion factor. At this stage it became 

apparent that stretching aided the detection of finer spatial details. For example, Figure 

6.12 illustrates the different features which can be enhanced through contrast stretching 

processes. From Figure 6.12a (and reference to Figure 6.11), the co-disposal trenches, 

non-vegetated areas and on-site haul roads compacted through intense trafficing are 

identifiable. Figure 6.12b illustrates some of these aforementioned features in more detail. 

The overlay locates anomalous areas within the site such as the clay bund surrounding the 

landfill. 

6.10.2.2 Image filtration 

It may be necessary to filter the image in order to remove some of the noise which occurs. 

In this dataset, ATM band 1 has a poor signal to noise ratio. Noise is the interference in 

the image which creates a distortion as a result of limitations in image recording, 

equipment and signal digitisation (Lillesand & Kiefer, 1994). Noise is determined through a 

comparison of a pixel with its neighbours. Should the surrounding values exceed the 

operator specified threshold, the pixel contains noise. It is possible to remove much of the 

effects of noise through processing, such as periodic noise removal using algorithms, thus 
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restoring the image to a closer representation of the real life scene. 

A low pass Fourier filter, with a minimum affected frequency of 3 was used to 'smooth' the 

image. A frequency of 4 was also used but was not as effective in subsequent analyses. 

Smoothing the image reduces the spatial frequency in order to reduce the variation of grey 

levels across the image, specifically over a large area of pixels. These particular filters 

emphasise large area changes in brightness whilst reducing local detail (Lillesand & Kiefer, 

1994) as opposed to high pass filters which emphasise the high frequency components. 

6.10.2.3 Line Drop 

In the imagery there was also some evidence of line drop, i. e. false, unrepresentative 

pixels in an area of similar DN. However, this was not deemed a major problem for this 

study since they were generally outside the main area of interest, although it does add to 

the difficulties which arise in remote sensing processing, before further analyses can take 

place. In order to compensate for this, an average value can be found from the 

surrounding pixels, or if ground investigations were completed on the exact area at the 

same time as the flight, these reflectances could be used. The user must be able to 

recognise such errors in the data which could detrimentally affect the results unless 

corrected. 

6.10.3 Classification Techniques 

Following enhancement, the imagery can then be subjected to detailed analysis using 

statistical and mathematical techniques. This study has concentrated on the use of the 

supervised and unsupervised classification. These involve the substitution of the visual 

data which forms the image with a quantitative identification of the features based on 

decision rules. Statistical rules are applied in the primary stages of the analysis based on 
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the spectral radiances from each pixel. The result is a thematic map of the image 

replacing the visual features previously identified to create a non-overlapping classification 

of the pixels (Lillesand & Kiefer, 1994). Classification of an image involves the grouping 

together of pixels of similar spectral signatures depending upon an operator specified 

pathway as indicated in Figure 6.13. 

Classified Image 

Figure 6.13 Remote Sensing Classification System (Adapted from Swain, 1978) 

6.10.3.1 Supervised classification 

Supervised classification enables an operator to identify groups of similar pixels in an Area 

of Interest (AOI) which is called a training set, a collection of sets is termed a field. 

Training patterns therefore represent measurement vectors of known identity. These 

groups enable the classification of ground cover into groups or 'classes' such as: crop 

species; soil type; soil moisture; and land use. 

Typically, the AOIs should each have a minimum of a couple of hundred pixels (OU, 1989), 

in order to achieve a representative classification. Conversely, Richards (1993) states that 

the training set needs to represent less than 1 to 5% of the total pixels. In this analysis, 
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due to the lack of large clusters of pixels of a similar reflectance, smaller training sets had 

to be used. In the case of the AOls from the Heathfield site, classes such as woodland, 

water and clay-works were chosen and identified by the operator. It was recognised that 

there may be confusion at a pixel level since there may have been slight deviations in pixel 

radiances. Furthermore, reliable results can only be achieved if the classes are easily 

discriminated in the multispectral data. Failure of this leads inevitably to dubious boundary 

formation. As a result, this method requires ground survey data for input in order to ensure 

that similar pixels at ground level are grouped accordingly (Swain, 1978). Even so, 

unmitigated samples of the informational groups (AOIs) are difficult to locate at ground 

level. 

Once the training set is established, the type of classification can be chosen from 

maximum likelihood, minimum distance and parallelepiped. The maximum likelihood 

signatures comprise both mean vectors and covariance matrices, whereas the minimum 

distance classifier comprises only the mean vectors of the training set. The parallelepiped 

classification signatures are the upper and lower limits of the brightness in each spectral 

band (Richards, 1993). The minimum distance classifier was mainly used due to the lack 

of training samples for each class since it depends on the mean positions of the spectral 

classes and not the covariance information (Richards, 1993). 

The choice of bands is then made for the classification. Either the entire range can be 

used or a specified number. For this study, a range of options were used, although for the 

initial analysis, the choice of bands was primarily restricted to ATM 9,7 and 3 and ATM 8, 

11 and 2 in the red, green and blue guns on the Visual Display Unit (VDU) respectively. 

This choice of band combination for the colour composite image was based upon previous 

work in this field (Jones, 1990 and Sangrey & Phillipson, 1979). 
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6.10.3.2 Unsupervised classification 

Unsupervised classification does not use the training data process. Algorithms are used to 

group the pixels into classes based on natural groupings or clusters (Lillesand & Kiefer, 

1994) which may not be immediately apparent to an analyst completing a supervised 

classification. An example is shown in Figure 6.14 where the pixel values are plotted to 

visually identify natural spectral groupings. With reference to ground data, it could be 

determined that one group corresponds to coniferous trees, one to a plantation of 

deciduous trees and the final cluster to stressed trees of both varieties. In this case, the 

classifier has identified distinct spectral differences which may have been missed by the 

analyst in the supervised classification. 

ISs 
CS SS S 

SSS S 

SS cc 

CC C 
C CC 

cCCC 
co c 

DDD 
DD 

DD DD 

D 
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Figure 6.14 Spectral Classes in Two-channel Image Data (Lillesand & Kiefer, 1994). 

Unsupervised classification was completed on the same bandsets as the supervised. This 

is the main type of classification related to this type of study since it is generally used in 

situations where there is a lack of ground referencing data (Jones, 1991). This 

investigation specifically did not identify spectral reflectances at ground level in accordance 

with the data collection flight. Therefore, unsupervised classification was seen to be the 

most appropriate form. However, unsupervised classification did not enable the use of the 

identification of specific AOls made by the investigator, who could stipulate the number of 
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classes. The classification also grouped similar pixels to create an effect of averaging. 

This could, therefore, have the potential to remove smaller anomalous effects in the data, 

relating to damaged areas. It implies that over an extensive area, locations of minor 

damage, or, possibly small areas of concentrated stress may be overlooked. 

6.11 DATA ANALYSIS 

The principal aim of the study was to give an indication of anomalous areas for interest on 

and surrounding the landfill sites. Anomalies are hereby defined as those areas of greater 

contrast to their surroundings for no apparent reason. These locations would then demand 

further investigation at ground level. This could include sub soil gas testing, surface water 

monitoring and vegetation damage assessment, depending on what was apparent at site 

level. 

6.11.1 Airborne Thematic Mapper Data 

In the enhanced data, anomalies were found on site in terms of spectral signatures which 

are attached to each pixel. However, no anomalies were found outside the site which 

could not be attributed to moisture content variations or vegetation type, for example. The 

clay bund could easily be detected in the Chelson Meadow site which illustrates a 

possibility for identification of clays through remote sensing techniques. 

Figure 6.12b, ATM waveband 11 of Chelson Meadow, illustrates the patchy nature of the 

vegetation on the site, especially in comparison with the healthier nature of that 

surrounding the site. The overlay for this figure indicates some of the possibly anomalous 

areas which would require a walk-over survey and subsoil gas monitoring. It is recognised 

that both the sites follow a stringent monitoring regime with regards to LFG, both on and 
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around their perimeter. It is likely therefore, that LFG migration is minimal or indeed, 

adequately controlled, and to date there is little effect on the environment. 

The supervised classification completed on the Heathfield site revealed problems in that 

some pixels with differing ground features appeared to have the same spectral signatures. 

As a result, these were grouped together and colour coded. For example, in the 

classification of Heathfield in ATM bands 9,7 and 11 (Figure 6.15) the HDPE deployed at 

the site was classified, with vegetation shadow, in the black grouping. Interestingly, the 

classification highlighted the clay features from both the landfill and the Ball clay pits. 

Vegetation differentiation was limited to the aerial photographs which were used to choose 

the specific grouping for the classification. The results of this are highly dependent upon 

the season since fields may be fallow and plants naturally died back. This demonstrates 

the requirement for ground reflectance data which had not been acquired for this 

investigation. 

Figure 6.16 portrays Heathfield in ATM bands 8,11 and 2 respective to the blue, green 

and red guns in the VDU. Band 8 enables detection of the Near Infra-red, Band 11 the 

surface temperature and moisture levels and band 2 enables vegetation discrimination. 

Reflectance measurements would then enable a comparison with the typical reflectance 

curves found in Figures 6.5 and 6.8. For example, a deviation from the normal reflectance 

in the range 0.7 -1.3 µm (i. e. 40 - 50 % of the energy incident upon it) would indicate 

unhealthy vegetation (Lillesand & Kiefer, 1994). A decrease in chlorophyll absorption in 

the wavelengths 0.45 to 0.67 µm (the visible) is dominantly controlled by the leaf pigment 

(Figure 6.8). With regard to this stage of the process, the CASI data would provide a 

superior data source since it has a higher resolution, thus enabling a greater level of 

channels to be recorded over a similar band width as the ATM. In this way, the 

specification of CASI data acquisition in the vegetation analyses wavelengths would 
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Figure 6.15 Supervised Classification of Heathfield Landfill (ATM Bands 9,7 and 3) 

(1995 data). 
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enable the detailed changes within the vegetation to be seen. Not only would it 

differentiate between the damaged and healthy vegetation, but perhaps, indicate the 

degree of damage. 

Remote sensing can be applied in order to define areas of surface water. Polluted water, 

in the form of leachate, will be recognised in the thermal band since it is warmer than 

surface waters. The reflectance level may also be different to that of unpolluted water, 

thus enabling the detection of polluting streams which come into contact with river waters. 

For example, in Figure 6.15 of Heathfield, a differentiation was made between what was 

known to be a collection point for surface runoff and that for leachate. A supervised 

classification was run on the image which grouped all water together (blue) and leachate 

(brown). This illustrated the difference between runoff and leachate in terms of 

reflectance. Therefore, details of ground features can be used to group similar known 

pixels. 

6.11.2 Aerial Photograph Interpretation 

The stereo aerial photographs provided the study with an important visible, real-time 

comparison to the ATM and CASI. These give an immediate indication of the extent of the 

Ball Clay and Limestone quarries and their proximity to the landfill sites. Immediately 

apparent from a comparison of the images in Figures 6.17 and 6.18 is that the progressive 

restoration is more complete at Heathfield to that at Chelson Meadow and that it operates 

self contained phases to completion before moving on to the next. The tipping face 

appears to occupy a much smaller area in comparison and most areas of the site are 

accessible by track. 
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Figure 6.16 Heathfield in ATM Bands 8 (red), 11 (green) &2 (blue) (1995 data). 
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Chelson Meadow, conversely, has very little vegetative cover on the surface of the site as 

indicated by the photograph from the first flight (Figure 6.18). The second set of aerial 

photographs completed a year later (Figure 6.19), at a higher resolution, illustrate the 

extent of the restoration process and the location of the cell divisions. This demonstrates 

the use of the tool to map the development of a site and locates cells which were worked 

during specific time frames. The proximity of the site to the estuary is clear which 

highlights the risks of possible surface water pollution. On the other side of the estuary 

railway works are evident, providing another possible cause, should the estuary be found 

to be polluted. 

The quarrying in process adjacent to the landfill sites may ultimately affect the groundwater 

regime in the localised area, with even more extensive effects ascertained from larger or 

deeper sites. This is dependent upon the hydraulic gradient of the groundwater and the 

height of the water table. 

This illustrates the importance of aerial photographs being integrated in a preliminary desk 

study in order to locate areas of specific interest prior to the airborne imagery collection. In 

addition, infrared photography could provide a more effective means for data collection 

since its processing is faster than that of the ATM or CASI. As it is known that damaged 

vegetation can be detected in this electromagnetic band (Lillesand & Kiefer, 1994), this 

technique provides a cheap and fast method to immediately ascertain damage 

concentrations. However, once the CAST and ATM data have been processed, the 

equivalent information in part of the electromagnetic band can be gained digitally and be 

subject to a full range of analytical techniques. 
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Figure 6.17 Aerial Photograph of Heathfield Landfill Site (1995) (Altitude 1600) 
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Figure 6.18 Aerial Photograph of Chelson Meadow Landfill (1995) (1600 m Altitude) 
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Figure 6.19 Aerial Photograph of Chelson Meadow (1996) (1000 m Altitude) 
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6.12 SUMMARISED PROCESS 

The summarised flow diagram in Figure 6.20 portrays the stages envisaged for the 

effective application of this technique. An example of the data acquisition is taken from 

this chapter in order to illustrate the procedure. It recognises that difficulties may be 

incurred due to weather conditions and seasonal variations in vegetation patterns which 

also affected this research. Ground surveying has been included in the model since this 

current research has indicated its value in terms of linking the contamination specifically to 

the landfill. 

It is important to note that this process is only based on the research completed by the 

author, with little co-operation from the industry, who at this time mainly feel that the 

technique is too expensive for field trials. On a broad scale, perhaps on the larger sites in 

operation in the USA, such field trials would be more efficient in revealing the shortcomings 

of the application. The sites employed in this investigation were unable to indicate specific 

areas of interest related to the migration of landfill pollutants. 

The most important aspects are now recognised, post investigation, as the ground 

referencing data and the requirement to reduce the overall data to a manageable level. 

Remote sensing must now prove to be practical in terms of data acquisition and turn 

around. This investigation found that a ground survey would prove to be extremely 

complementary to the ATM and CASI data, both during airborne data acquisition and after, 

when identifying the reason for the anomalies. Once this system is running, within the 

monitoring strategy, relationships between ground surveying and the remote sensing can 

be used to pin-point damage locations. 
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6.13 CONCLUSIONS AND DISCUSSION 

The difficulties in data collection and processing, namely the time taken have indicated that 

the technology is presently unavailable to facilitate the development of a remote sensing 

application on a broader scale. This aspect has therefore proved the central concept to 

the investigation in that theoretical premises verify the technique but current technology 

restricts its use. The completed technique must demonstrate an ability to produce a faster 

data turn around and long term cost effectiveness in order for its development in the waste 

management or remediation industries. It must also provide a temporal reference since 

both chemical and biological interactions with the environment can be directly related to 

cause and effect events (Warner, 1994). As such, this investigation planned to use two 

datasets, flown a year apart. 

Some sites may encounter problems in the determination of the flight path. For example, 

permission for air space may be denied if the study area is located in a military zone. 

However, this would not be a problem on a typical site but was encountered in the flying 

zone to the South of Chelson Meadow landfill in Plymouth. 

Areas of interest (anomalies) have been located through this investigation but 

complementary evidence from ground surveying, is necessary in order to prove the link 

between the landfill and the damage. This would have important consequences for the site 

operators who will then need to discover the cause and remediate the problem as soon as 

possible. The effect of activities and areas other than the landfill sites may dominate. At 

both Chelson Meadow and Heathfield sites, outside influences were apparent including: 

quarries and pits being worked for Plymouth limestone and Ball clay; the tidal River Plym 

estuary; and less influential anthropogenically related features. This expanded to include: 

  Anthropogenic features. For instance, mining activities or processing plants which 
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pump effluent into surface water courses; 

  Uncharted areas of contaminated land. 

It may be possible to define the pollutants derived from the aforementioned and attribute 

them to specific polluters due to their chemical constituencies, i. e. a type of chemical 

fingerprinting. 

One of the aims of this research was to assess the viability of the project without time 

consuming and costly ground referencing which resulted in a failure to assess the exact 

reflectances for the sites. Furthermore, if the latter had been acceptable, the data would 

have to be acquired at a much higher resolution in order that the vegetation assessment 

and characterisation could be completed on a specific level. However, an increase in 

resolution may present other problems, such as an increase in scene noise. This type of 

noise may increase variability within a class resulting in a reduction of classification 

accuracy (Jones, 1991). 

The strategy presented in this research has proved not to meet the criteria as proposed by 

an ideal remote sensing system (Lillesand & Kiefer, 1994). In most cases, this is through 

no fault in the data acquisition and analyses, e. g., a perfect energy source. An ideal 

system, not that a typical one exists, would therefore possess the following: 

"A perfect energy source; 

"A non-interfering atmosphere; 

"A unique energy / matter interaction, a super sensor 

9A real-time data handling system; 

" Multiple end-users. 

The research aimed to complete a comparison of the two landfill sites over a year, since 

their operational and restoration activities could have afforded this. The CASI data, as 

indicated previously, would have provided a far superior indication of the damage incurred 
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(if any) by the vegetation, since the shorter concentrated bands of wavelengths are 

dedicated to provide more information indicating the manifestation of damage to 

vegetation. 

Since the sites employed by this investigation are still in operation, the probability of 

locating areas affected by pollutant migration would have been reduced. A site with known 

contaminant control problems would have provided more realistic opportunities in order to 

test the viability of the proposed system. Due to the timing of this research, the restricted 

choice of locality for the study, and possible 'political' disadvantages of finding a site with 

problems in South West England, it was decided to compare operational sites in terms of 

design strategies. 

The relative size of the sites is of additional importance. Chelson Meadow covers a more 

extensive area and is unlined, therefore possessing a greater capacity for leakage than 

Heathfield. At Chelson Meadow, the larger tipping faces and finished cells have been left 

uncovered for longer periods than Heathfield. This would have led to increased leachate 

production through higher rates of infiltration into the site. Higher rates of leachate 

generation, to increase the leachate head, will augment the possibility of breakout from the 

confines of the site. 

The proposed application could be an effective method in the evaluation of sites to be 

recorded in a contaminated land register. Although the proposal for such a register has 

been criticised, the methodology and techniques for the collection of the data is in place 

through other applications. Researchers, (Hooker et aL, 1996 and Coulson & Bridges, 

1984), have acknowledged the importance of the contribution that remote sensing could 

make towards recording existing sites of contamination. However, at present it has been 

decided that such a scheme would be impossible to implement nationally since there would 
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be a high possibility of property blight. Once refined, the method proposed in this 

investigation could enhance possibilities for the detection of such sites and enable their 

classification in terms of degree of contamination (Simmons, 1998). 

Brownfield sites in the UK have been recognised as areas for possible re-use under the 

principles of the sustainable development strategy (Agenda 21, Rio Conference 1992) 

(Lewis & Nathanail, 1996). Firstly, Brownfield sites are identified, followed by remediation 

which is reiterated in the USA in the form of Superfund classification (Herman et al., 1994) 

and clean up through Federal programs, namely the Brownfields Initiative (Nelson, 1996). 

Many of the latter have contributed to a degree of environmental detriment which could 

have been averted with earlier recognition of the situation. The Love Canal incident (1976) 

(Montgomery, 1992), near New York, provides such an example in which severe toxic 

contamination was recognised thirty years after waste inception (1942). It must be noted 

that even in terms of cost, prevention is preferable to remediation. Roche (1996) indicates 

costs for groundwater remediation in excess of £100,000, and 'large scale remediation' 

costing over £1 million. Groundwater 'clean-up' is probably the most expensive 

remediation work which may result from landfill contamination. 

Combined with a Geographical Information System (GIS) (Ehlers et aL, 1989 and Lewin et 

a1., 1997), data evaluation could be enhanced resulting in a user-friendly format to 

embrace other valuable criteria: hydrology; geology; local highways; residential 

developments; and anthropogenic features, for example. Such a format would provide a 

reliable, holistic means for monitoring sites and for use in land use classification 

applications. Problems in the field of land classification arising to date may in part be due 

to the lack of records of previous use. Computing systems, such as GIS, provide ideal 

opportunities to keep such records whilst also providing effective, adaptable means for 

regular updating and access. 
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Remote sensing coupled with applications, such as GIS and Environmental Management 

Systems (for example, ISO 14001, (ISO, 1996), the latter of which are to be integrated 

within the operational structure of the company, may in the future enable the development 

of a more integrated monitoring system. Such a strategy would encourage the landfill to 

meet environmental standards throughout construction, operation and closure. 
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6.15 SUMMARY 

f The application of airborne remote sensing in order to detect and assess the migration 

of pollutants from a landfill site can be investigated through the variation in reflectances 

recorded from plant canopies. 

f The airborne remote sensing monitoring technique is in early stages of development 

although the theory was realised as early as the 1970's. However, since then, there 

have been advances in data acquisition techniques and analysis so expectations for 

the future may be even greater. 

f The CAST technique should provide a more detailed and specific approach to the 

detection of plant damage since it possesses more wavebands over a smaller part of 

the EM spectrum than the ATM method. 

f Ground referencing must be an integral part of the remote sensing contaminant 

monitoring process and should be completed in conjunction with the airborne data 

acquisition (ATM or CASI). Further efforts may be required to identify causes of 

anomalous results and prove that they emanated from the landfill. 

f An economic evaluation must be made to ensure the long-term viability of such a 
project. An ideal scenario would involve a company which owned a series of sites or 

required multispectral data collected over an extensive area. 

f An approximate cost break down for this remote sensing project (1994 prices) would 
comprise £2500 for airborne data acquisition and 3 weeks processing at £1000 per 
week, totalling £5500. This is significantly less than mobilising a rotary coring rig at 
£5 - 7000 and installing regular boreholes at £2500 (£50 per m). Indeed, eventually the 
3 weeks processing could be reduced to a maximum of 3 days (Griffiths, 1998). 
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7.0 DISCUSSION 

7.1 INTRODUCTION 

This research has highlighted complex inter-relationships within the field of landfill design, 

construction and monitoring in the UK. Landfilling may not be the most suitable method of 

waste disposal, but at the present time it provides the only final solution to certain waste 

streams. Since there appears to be no practical alternatives, landfilling will remain a widely 

used method of disposal particularly given the worldwide increase in waste volumes 

(Caimcross, 1993). There are options available to landfill practice which may enable it to 

become a safer waste management process, mainly through complex lining and leak 

detection systems that entomb the material (Anon 1997 & 1997b). However, the 

effectiveness of modem containment strategies are questionable over the long term. 

Systems operating with leakage would perhaps be more effective than containment, 

provided that they can be controlled and monitored to ensure the environmental 

consequences are minimal. 

This thesis has concentrated on evaluating three technical processes that could provide a 

basis for aspects of future design, operation and monitoring practices in landfilling: on-site 

Quality Assurance (QA) procedures; use of Moisture Condition Value (MCV) for compaction 

control and; potential of Airborne Thematic Mapper (ATM) for non-invasive monitoring of 

landfill sites. The Quality Assurance procedures are well established and have been found 

to be critical in landfill practice (Cadwallader, 1994). However, MCV and remote sensing 

techniques require further development before they can be used by the landfill industry. 

Figure 1.1 separates aspects of research and development to illustrate the relationship 
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between the original research and development of a technique and its final application. 

Applied research (i. e. the application of theoretical concepts to real-world situations) is a 

critical stage in the development of new suites of concepts and techniques in landfill studies. 

Once the applicability of an approach has been proven through field trials and monitoring, 

this information can then be fed back to the theory and adjustments made. In the long term, 

it is the on-site testing and suitability of the methods and techniques that will be the deciding 

factor in their acceptance. This process is illustrated in Chapters Five and Six where 

techniques such as the MCV test and remote sensing, which have well established 

theoretical backgrounds, are shown to have the potential for use on-site in landfill operations 

but at present are not yet sufficiently robust for use in practice. 

Landfilling is a major environmental concern and applied research in this area is particularly 

important. The waste management industry recognises this and many of the innovations 

being made (e. g. in landfill design, contamination mapping, geomembrane deployment) 

come directly from the landfill designers and operators. Clearly, however, closer links 

between theorists and practitioners are needed. 

7.2 QUALITY ASSURANCE OF LANDFILL DESIGN AND CONSTRUCTION 

The thesis has highlighted the importance of a complimentary QA programme, which must 

be built into the design and construction phases of a landfill to ensure that the end product 

meets the specification requirements. During the time available, (three months), valuable 

experience was gained that allowed key problems encountered during the construction of 

two contrasting landfill sites to be identified and investigated. 

Whilst QA procedures are critical to ensure construction is carried out in line with the 

specification, allowances must be made for changes to be made to meet unexpected ground 

conditions. This is illustrated at Site Beta (Chapter Four, section 4.5.6) where groundwater 
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infiltration was difficult to control throughout the earthworks. Therefore, regular minor 

alterations to the design of the ground water control system were required as construction 

proceeded. At Site Beta, the consequences of the water bearing skerry strata upon the 

construction of the under drainage system were underestimated. Severe meteorological 

conditions can also have unexpected consequences. At Site Alpha, high summer 

temperatures dried the exposed clays, both in the stockpiles for the liner and the placed 

engineered liner. These conditions may have required the wetting of the clays prior to 

deployment or even have affected the integrity of the liner. Periods of intense rainfall and 

high winds also hampered the composite liner placement, further illustrating the effect of 

meteorological conditions. 

Notwithstanding the need for the design to be altered on-site to meet changing conditions, 

QA techniques are required to ensure that a successful landfill design is implemented in 

order to guarantee the long-term integrity of the landfill. Such measures provide assurance 

that the landfill has been constructed in accordance with the design plan and that deviations 

from this are both explained and recorded (Hopper & Leach, 1997). In addition, should 

problems arise from the site due to a failure in the liner they can be traced to a particular site 

location, length of liner material, type of seam and even roll number. During the site works 

described in Chapter Four, this was more important to achieve at Site Beta, than Alpha, as it 

would be accepting mainly putrescible wastes which are associated with the production of 

greater quantities of gases and leachates (IWM, 1998b). 

One of the most common variables in QA interpretation is the frequency of on-site testing 

(Jessberger, 1994). The testing frequency may deviate from the Specifications, Quality 

Plan, or even Codes of Practice, depending on the homogeneity of the material and the 

nature of the construction. For example, less rigorous testing may be required by a clay 

subgrade, (Site Beta), as opposed to a single compacted clay liner, (Site Alpha), since, often 

the liner system does not include the subgrade. The clay subgrade gives an additional zone 
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of attenuation whilst also providing a smooth, level base for the installation of plastic liners. 

7.3 MCV TESTING 

The MCV testing procedure, completed on the London Clay from Site Alpha and the Mercia 

Mudstone from Site Beta (Chapter Five), was originally designed to be a fast method for 

determining the suitability of materials for use in embankment fill construction (Parsons, 

1979). This allows the correct moisture content / compaction combination for the in-placed 

material to be assessed. In landfill liner construction and placement, the MCV could reduce 

the need for constant testing, to verify that the liner remains within its prescribed limits (for 

dry density and moisture content), in accordance with the compaction specification. 

It is important to compare results achieved in the laboratory with those on site, since 

throughout landfill liner construction, site monitoring must prove that the original design 

specifications have been adhered to. This concept is illustrated by Fookes (1997) in a 

comparison between `labrock and labsoit which may or may not reflect the in situ properties 

of `siterock. Ideally, the MCV method would be suitable for on-site use. However, the 

investigation into the equipment and the technique revealed that there were problems with 

its practicality. The nature of the equipment, in particular the possible increased friction on 

the guidelines, as observed by Green & Hawkins (1987) increased the error margin and may 

provide a basis for the explanation of the variable results observed in this study (Table 5.9). 

Ambiguous guidelines for the determination of the final MCV result also raised doubts about 

the overall results. The MCV has positive attributes but more robust equipment and stricter 

protocols are required, and indeed are achievable. Therefore, it has been identified that on- 

site monitoring requires a rapid technique, but that in its present form the MCV does not 

provide this. 

There is a definite necessity for the development of a faster technique for monitoring 
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permeability of placed materials throughout construction. The method must be able to 

operate simultaneously with construction of the liner. There is a requirement for a test which 

is easy to use, as well as providing instantaneous results on-site. However, it is recognised 

that the materials may still require random laboratory testing and comparison with on-site 

results in order to ensure that homogeneous placement has been attained and maintained 

throughout construction. This aspect of QA is important in the long term, since it provides 

evidence that material placement was completed in accordance with the design and 

construction criteria stipulated by the EA and planners and in Codes of Practice (such as, 

NWWDO 1995 & 1996). 

The final observation of Chapter Five is that the suitability of clays as landfill liners should 

not only be determined through their physical attributes but also their chemical constituents. 

The ability for clay minerals to attenuate chemicals in leachates should therefore influence 

the type- of liner or subgrade deployed. In this way, chemical testing should be integrated 

into both the pre-construction site investigation and the QA procedures in order to assess 

attenuation properties of clays used at each site, especially when only a single clay liner is 

being used. 

7.4 REMOTE SENSING FOR NON-INVASIVE LANDFILL MONITORING 

Non-invasive aerial remote sensing techniques (Chapter Six) could provide landfill 

monitoring procedures which are environmentally benign and also have significant temporal 

and spatial advantages. With development they could provide a rapid means of data 

collection. However, this investigation has outlined some of the current problems in data 

acquisition and processing. 

Aerial remote sensing can be used as a primary identifying mechanism in order to locate 

areas on the landfill, or in its immediate environment, which require further examination, 

269 



possibly through ground surveying. Aerial remote sensing also has long-term advantages 

since the cost of equipment maintenance would probably be less than the siting, operation 

and regular upkeep of boreholes (Griffiths, 1998). This does not mean, however, that 

remote sensing will supplant the need for monitoring at ground level. Indeed, remote 

sensing and ground based monitoring can be combined in order to produce more efficient 

monitoring results. From the results of this investigation it can be seen that once remote 

sensing monitoring becomes operational, its advantages, in terms of speed of data 

collection and results assessment will far outweigh those of invasive techniques, such as 

ground water borehole or surface water sampling. 

This project intended to assess the viability of Airborne Thematic Mapper (ATM) as a 

technique to produce a rapid data turn around for landfill monitoring on two case study 

landfills in the South West. In the early phases of this investigation, it was identified that 

since stressed vegetation was a good indicator of landfill contaminant migration, and could 

be detected through remote sensing, it could be used as a monitoring tool. Examination of 

the literature on airborne remote sensing indicated that another technique, the Compact 

Airborne Spectrographic Imager (CASI) was potentially a more useful approach than the 

ATM. However, whilst CASI were collected for this study (Chapter Six, section 6.8.2.2) the 

data were not made available by NERC in time for inclusion in this thesis. The quality of 

data which can be recorded in the CAST wavebands required to identify vegetation (Table 

6.2) is significantly higher than that of the ATM (Table 6.1) as reflectance data are collected 

on narrower wavebands (NSS, 1996). The narrower spectral wavebands could make it 

possible to be more specific about the location of the red edge (0.68 - 0.75 gm) (Boochs et 

a/., 1990). For example, a blue shift in the red edge is indicative of early stress-induced 

decreases in chlorophyll content (Hoque & Hutzler, 1992) The CASI data will therefore 

provide a valid comparison to the tested ATM techniques. In the future, an assessment can 

be made on the suitability of this approach. 
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Some landfill operators currently employ aerial photography within their monitoring strategy 

since it provides a spatial and temporal interpretation of the site. Should the CAST or ATM 

techniques fail to prove financially viable, then aerial photography could be enough to 

provide an immediate indication of changes at ground level, for example a deterioration in 

vegetation health. Furthermore, false colour Near Infra Red photographs and video 

thermography (Titman, 1996) provide other methods for assessment at ground level. Video 

imagery can be used in order to detect leachates since they are generally warmer than 

ground or surface waters (Titman, 1996). 

This investigation did not employ ground-referencing data in an attempt to decrease the turn 

around time of the data. The original aim was to identify anomalous areas on-site through 

remote sensing and then to complete a walk over survey in order to provide an explanation. 

This project has identified that ground truthing is required at the same time as the remote 

sensing data is recorded. This may be easier on an operational site where the operator or 

site manager is knowledgeable about the area and current strategies on-site. Since a 

specialist knowledge base is required for remote sensing imagery acquisition and 

processing, it is probable that waste management companies would need to contract 

specialist remote sensing consultants to complete the data analysis. 

7.5 DISCUSSION 

Throughout the process of landfilling, appropriate controls and requirements must be met in 

order to ensure the protection of the environment. This is a requirement both in the short 

term, through construction and operation stages, into the long term where the potential for 

severe environmental damage may be increased and may result in occurrences such as the 

Loscoe incident Williams & Aikenhead, 1991). 

Three techniques were identified at the start of this thesis which have been investigated in 
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terms of their applicability to landfill design, construction or practice. These methods, the 

investigation of on-site QA procedures, the MCV and airborne remote sensing, have had 

varied level of success as described. 

The impact and legacy of landfills upon the environment will continue to be an important 

issue in the future. Landfill engineers, operators and regulators need to co-operate to 

facilitate the prevention of contamination from all sites. There are some landfills in current 

operation for which contamination prevention has not or cannot be achieved, resulting in a 

requirement for effective remediation and clean-up techniques. It should be a requirement 

that landfill engineering should prevent damage to the environment as far as possible. 
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8.0 CONCLUSIONS AND FUTURE WORK 

This thesis has illustrated three techniques and evaluated them in terms of their use in landfill 

practice in the UK. The following summation outlines the key points of the thesis and gives 

details of possible areas for further research 

Chapter Two evaluates the legislative and policy development which has resulted in the 

current controls placed on landfill practice by the UK and Europe. Chapter Three assesses 

the design and construction issues involved in landfill practice in the UK to date and 

highlights techniques employed during construction. These two chapters set the context for 

landfilling practice in the UK and illustrate how UK and European legislation (for example, 

the Water Resources Act (DoE, 1991b)) and policies (for example, the Policy and Practice 

for the Protection of Groundwater, (NRA, 1992)) influence contemporary landfill construction 

and operation. 

Chapter Four illustrates the importance of continual Quality Assurance (QA) throughout the 

design and construction of landfill sites. Landfill sites may require diverse approaches to 

QA, but should provide a recognised, certified level of assurance. A standardised approach 

to QA would provide a higher overall degree of assurance, whilst also providing the engineer 

with a framework of working guidelines. In-house consultancy guidelines and others, such 

as manufacturers manuals (Gundle, 1995) and American guidelines (for example, ASTM, 

D4437 (ASTM, 1998)), could be replaced by a standardised, integrated approach which 

allows for varying site conditions and landfill design. Within such a framework, a landfill 

could be designed and constructed in order to minimise further the risks of contamination. 

In order to provide an effective method for deriving a set of QA procedures, data must be 

collected from different site construction projects. The data should take the form of 
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workable objectives for liner construction in terms of: 

" Testing frequency; 

" Financial cost to the project; 

" Time limitations incurred by testing and awaiting results. 

In regard to these points, the MCV test, examined in Chapter Five, provides a potential 

procedure for faster compaction monitoring whilst also enabling the control of the related 

parameters (moisture and density) during the construction of a clay liner. 

This research has shown that, although the MCV test can be used in other engineering 

circumstances, such as roadworks (Barnes, 1995), it is not directly applicable to landfill 

liners as it stands. Importantly, additional investigation is required into: 

" The design of the appliance, since seepage occurred both at higher moisture 

contents and also, when testing the much finare samples, i. e., London Clay. 

" The use of the equipment on-site due to the problems of manoeuvrability and 

stability, i. e. weight and impracticality, which were encounteres evened under 

laboratory conditions. 

The MCV could be integrated in a QA programme for a clay liner, (i. e. using density, 

moisture content, particle size and Atterberg limits testing), in order to assess its applicability 

and also, its validity as an on-site testing procedure. Integration of the MCV in this way can 

only be completed upon restructure of its instruction procedures for use on-site. This 

research has shown the existence of strategic problems through the interpretation of varying 

protocols thus appraising the potential of the MCV test. 

In Chapter Six, airborne remote sensing has been evaluated as a technique for non-invasive 

monitoring using two landfill site case studies. The results of this investigation have 

illustrated that the remote sensing technique should first be applied to sites which are known 

to have problems relating to Landfill gas (LFG) and leachate migration. In this way, the 
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technique can be directly tested, as opposed to attempting to manipulate a non-specialised 

technique to locate areas of contamination which may not even exist. Ideally, an unlined site 

which is closed (and capped), or even, an older uncontrolled 'tip' would provide a more 

effective study location. Thus the most effective wavebands could be pinpointed through 

data manipulation. In addition, the collection of ground survey information from vegetation 

and soil can be combined with meteorological and barometric data, alongside borehole gas 

measurements, collected at the same time as the remote sensing flight. These additional 

parameters could assist in eliminating the effects of moisture and variation in vegetation and 

soil type. Meteorological and barometric data would provide a detailed indication of the 

effects of localised conditions at the time of data collection. 

Development of a full prototype monitoring strategy was therefore not feasible during this 

phase of research. Indeed, the aim of providing a fast turnaround of data for landfill 

monitoring was not proven through this investigation due to data acquisition problems. At 

this current stage, data acquisition and manipulation proved too lengthy a process in order to 

warrant its use by the waste management industry. This does not imply, however, that the 

use of remote sensing will not be valid after further research to provide a more precise 

technique. 

The key to the remote sensing monitoring lies with the fact that Compact Airborne 

Spectrogrpahic Imager (CASI) acquired data possesses a greater number of wavebands 

over a narrower band width. This enables clarification of results to assess the degree, and 

possibly, type of vegetation damage. It may even be possible to isolate the type of 

contamination in occurrence and link this to the actual source. In this way, background 

sources of contamination can thus be eliminated. In combination with a leak detection 

system in lined sites, remote sensing using CASI may possibly be able to target the 

emanation of the contamination. 
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In future developments, remote sensing could provide a rapid monitoring technique in order 
to assess: 

9 Clay landfill capping integrity in the long term - 

Since clay types can be determined through remote sensing and the density of 
the clay cap may also be possible to assess. 

" Those sites which are difficult to access - 

Since aerial remote sensing may not always require ground referencing data 

imagery of inaccessible locations can be acquired. This is of particular interest 

for countries such as Australia where remote sensing in areas of the 'Outback' 

and Subtropical Rainforest would reduce the extensive ground surveying which is 

required, yet cannot be completed in inhospitable conditions. 

" Locations of extensive contamination and areas of contaminated land - 
Sites of unknown contamination can be located and recorded. Traditionally, 

identification of contaminated land would have required copious amounts of 

strategically placed boreholes and site surveys. Using the data recorded from 

one flight it would be possible to assess the extent of the contaminant plume and 

even produce a qualitative assessment provided stressed vegetation was 

evident. 

It is suggested that limits are set relating to the quantity of monitoring data collected by 

eventually defining a proven procedure. This is to achieve the enhancement of the overall 

quality of the data and reduce processing time. There could be problems with data 

management but these should be addressed through new computer software packages and 

GIS systems. 

The results of this thesis have shown that there is potential for both the MCV and remote 

sensing techniques. At their current stage of development however, sufficient precision is 

not directly achievable and therefore, their use cannot be justified. The thesis has 
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demonstrated the need for regulated QA procedures in order to provide working standards 

for the industry. The author of this thesis believes that with further development within 

specific aspects of QA monitoring, MCV testing and remote sensing, there is the potential for 

specified use these techniques in landfill engineering and monitoring. 
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9.0 PLATES 
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Plate 8.1. Attenuate and Disperse Landfill. 

Plate 8.2. Anchor Trench. 



Plate 8.3 Fusion Welding. 

Plate 8.4. Pie and Boot Construction. 
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Plate 8.5. Extrusion Welding. 

Plate 8.6. Gravel Deposits at Site Alpha. 
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Plate 8.7. HDPE Lined Aeration Lagoon at Site Alpha. 

Plate 8.8. D6 Bulldozer and Towed Sheepsfoot Compactor. 
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Plate 8.9. Mercia Mudstone Trial Pit Exposing Skerry Bands. 

Plate 8.10. Herringbone French Drain Layout for Site Beta. 
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Plate 8.11. French Drain Construction. 
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APPENDIX 10.1 

SITE ALPHAS OPTIMUM DRY DENSITY AND MOISTURE CONTENT TEST 
RESULTS 

Test Results 

Maximum Dry Density : 1.53 Mg/m' Optimum Moisture Content : 25 Iy.. 

Dry Density / Moisture Content 
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1.15 
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14 
1.10 t -- I_ «_ " ---. -... _r . 
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Moisture Content (%) 
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APPENDIX 10.2 
A SAMPLE OF SITE ALPHAS IN SITU MOISTURE CONTENT AND 

DENSITY RESULTS 

Maximum dry density: 1.53 Mg M-3 
Depth of Test: 175 mm 

Test 
No. 

Moisture Content 
(oven dry) (%) 

Dry Density 
Mg/m3 

Degree 
of Compaction 

1. 27 1.48 97.2 
2. 27 1.46 95.7 
3. 8.1 1.69 110.9 
4. 8.1 1.69 110.8 
5. 13 1.64 107.6 
6. 13 1.64 107.5 
7. 13 1.65 108.3 
8. 13 1.67 109.2 
9. 12 1.67 109.3 
10. 28 1.49 97.6 
11. 28 1.45 95 
12. 28 1.45 95.1 
13. 26 1.47 96.4 
14. 26 1.52 99.8 
15. 8.1 1.82 119.3 
16. 8.1 1.79 117.3 
17. 20 1.63 106.6 
18. 20 1.65 107.9 
19. 12 1.75 115 
20. 12 1.77 116.4 
21. 13 1.64 107.5 
22. 13 1.61 105.7 
23. 28 1.43 93.9 
24. 28 1.43 93.9 
25. 23 1.50 98 
26. 21 1.55 101.4 
27. 24 1.50 97.7 
28. 24 1.50 98.3 
29. 21 1.58 103.2 
30. 21 1.57 102.7 
31. 25 1.45 95 
32. 24 1.56 101.8 
33. 24 1.56 102.2 
34. 27 1.49 97.2 
35. 23 1.50 98 
36. 23 1.48 97.1 
37. 22 1.48 96.8 
38. 23 1.51 98.7 
39. 20 1.58 103 
40. 22 1.58 103.3 
41. 21 1.54 100.9 
42. 32 1.40 91.2 
43. 24 1.50 98.3 
44. 25 1.47 96 
45. 25 1.49 97.1 
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46. 24 1.48 96.6 
47. 24 1.50 98 
48. 24 1.52 99.5 
49. 20 1.53 100 
50. 21 1.54 100.7 
51. 18 1.63 106.6 
52. 22 1.56 101.7 
53. 24 1.51 98.6 
54. 22 1.53 99.7 
55. 23 1.56 101.5 
56. 23 1.54 100.4 
57. 24 1.53 100.2 
58. 22 1.55 101.2 
59. 27 1.50 98.4 
60. 27 1.44 93.9 
61. 26 1.51 98.6 
62. 25 1.51 98.7 
63. 26 1.48 96.6 
64. 26 1.48 96.8 
65. 26 1.46 95.6 
66. 26 1.44 94.2 
67. 25 1.5 98 
68. 24 1.55 101.4 
69. 25 1.58 103.2 
70. 21 1.55 101.4 
71. 24 1.55 101.9 
72. 24 1.47 96.4 
73. 24 1.56 102.5 
74. 23 1.6 105.1 
75. 20 1.6 105.2 
76. 19 1.58 103.6 
77. 20 1.61 105.6 
78. 20 1.62 106.4 
79. 26 1.38 90.1 
80. 26 1.41 92 
81. 26 1.45 94.5 
82. 25 1.57 102.5 
83. 25 1.56 102.1 
84. 27 1.52 99.4 
85. 25 1.55 101.6 
86. 26 1.57 102.7 
87. 26 1.54 100.7 
88. 26 1.58 103.1 
89. 24 1.61 105 
90. 27 1.5 98 
91. 26 1.55 101 
92. 26 1.4 91.3 
93. 26 1.38 90.1 
94. 26 1.44 94.1 
95. 26 1.53 100.3 
96. 26 1.54 100.7 
97. 24 1.55 101.4 
98. 25 1.49 97.5 
99. 26 1.56 101.8 
100. 25 1.46 95.6 
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APPENDIX 10.3 

ATTERBERG LIMIT RESULTS 

LIQUID LIMIT CALCULATION (CONE PENETROMETER METHOD) 

London Clay 

Test No. 1 2 3 4 5 

Sample Type LC LC LC LC LC 

Cone penetration (mm) 15 16 16 24.7 19.1 
Container No. 20 11 7 12 67 
Mass of wet soil & container 24.44 28.71 . 32.64 21.92 26.97 
Mass of dried soil & container 17.5 19.6 21.6 14.8 17.9 
Mass of container 4.94 4.71 5.37 5.28 4.8 
Mass of moisture (g) 6.94 9.11 11.04 7.12 9.07 
Mass of dried soil 12.56 14.89 16.23 9.52 13.1 
Moisture Content % 55.3 61.2 68 74.8 69.2 
Liquid limit 61 66 73 68 71 

Average London Clay II = 68 

Mercia Mudstone 

Test No. 1 2 3 4 5 

Sample Type MM MM MM MM MM 

Cone penetration (mm) 20.9 15 19.2 26.4 24.6 
Container No. 31 2 41 5 31 
Mass of wet soil & container 29.45 29.18 34.64 37.98 36.98 
Mass of dried soil & container 23.8 23.8 27.8 29.5 28.4 
Mass of container 5.36 4.59 5.39 4.81 5.38 
Mass of moisture 5.56 5.38 6.84 8.48 8.58 
Mass of dried soil 18.44 19.21 22.41 24.69 23.02 
Moisture Content 30.6 28 30.5 34.5 37.3 
Liquid Limit 30 31 31 33 35 

Average 11= 32 
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PLASTIC LIMIT 

Sample No 1 2 3 4 
Sample Type MM MM LC LC 
Mass of wet soil & container 11.40 12.69 10.09 13.8 
Container No. 9 7 18 5 
Mass of container 3.19 3.34 5.47 4.5 
Mass of dsoil & container 10.1 10.35 9.2 11.6 
Mass wet soil 8.21 9.35 4.62 9.3 
Mass dry soil 6.91 7.01 3.73 7.1 
Moisture Content % 18.8 33.4 23.9 31 
Plastic Limit (%) 26 28 
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APPENDIX 10.4 

MCV RESULTS 

LONDON CLAY MOISTURE CONDITION VALUE RESULTS 

Sample No. LC a LC b 

Soil Description Dry London Clay 
1.5kg 

Wet London Clay 
*Some break out from base 

Total No. of blows Penetration 
(mm) 

Change in 
penetration (mm) 

Penetration 
(mm) 

Change in 
penetration 
(mm) 

1 37 11.1 61.5 40.4 
2 43 11.2 83 22.8 
3 48.1 9.4 93.9 12.1 
4 48.1 12.2 101.9 4.6 
6 51.2 12.7 105.8 0.7 
8 54.2 13.8 105.8 0.7 
12 57.5 12 106 * 0.5 
16 60.3 10.7 106.5 0 
24 63.9 7.1 106.5 0 
32 68 3 106.5 0 
48 69.5 1.5 106.5 
64 71.0 0 
96 71.0 0 
128 71.0 0 
192 
256 
MCV 14.8 6 

Container No. 5M 12M 
Container mass 317.8 313.8 
Mass of wet soil & 
tray 

773.4 774.4 

Mass dried soil 407.9 335.9 
Mass wet soil 463.4 460.4 
Moisture Content % 13.6 37.1 
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Sample No. LC c LC d 

Soil Description Moist London Clay Dry London Clay 

Total No. of blows Penetration 
(mm) 

Change in 
penetration 
(mm) 

Penetration 
(mm) 

Change in 
penetration 
(mm) 

1 29.1 28.5 78.9 10 
2 37.4 43.5 84 10 
3 48.9 38.02 86.5 5. 

3 
4 57.6 30.3 88.9 10 

.1 6 71.8 16.1 91.9 9. 
6 

8 80.9 7 94 8. 
2 

12 86.92 0.98 91.8 10 

.4 16 87.9 0 99 3. 
2 

24 87.9 0 101.5 0. 
7 

32 87.9 102.2 0 
48 102.2 0 
64 102.2 
96 
128 
192 
256 
MCV 9.7 10.5 

Container No. 18 6 
Container mass 9.6 4.9 
Mass of wet soil & 
tray 

80.9 25.6 

Mass wet soil 71.3 20.7 
Mass dried soil 54.2 18.6 
Moisture content % 31.5 11.3 
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Sample 
No. 

LC e LC f 

Soil Description Moist London Clay Dry London Clay 

Total No. 
of blows 

Penetration 
(mm) 

Change in 
penetration 

(mm) 

Penetration 
(mm) 

Change in 
penetration 
(mm) 

1 32.3 48.7 42 18 
2 55.4 28.3 50.8 18.3 
3 69.7 14 57.1 19.3 
4 81 2.7 60 19 
6 83.7 SEEP 0 66.8 17.1 
8 83.7 0 69 17.7 
12 83.7 0 76.4 13.5 
16 79 10.9 
24 83.9 9 
32 86.7 7.1 
48 89.9 3.9 
64 89.9 3.9 
96 92.9 0.9 
128 93.8 0 
192 93.8 0 
256 93.8 0 
MCV 5.9 15.8 

Container No. 18 119B 
Container mass 9.7 9.1 
Mass of wet soil & 
tray 

93.3 94.4 

Mass wet soil 83.6 85.3 
Mass dried soil 61.1 77.6 
Moisture Content % 36.8 9.9 
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Sample No. LC g 

Soil Description Moist London Clay 

Total No. of blows Penetration 
(mm) 

Change in 
penetration 
(mm) 

1 11 44 
2 33.9 42.9 
3 45.4 36 
4 55 29 
6 69.9 14.1 
8 76.8 11.2 
12 81.4 2.6 
16 84 0 
24 84 0 
32 84 SEEP 0 
48 84 0 
64 84 0 
96 84 0 
128 
192 
256 
MCV 10.2 

Container No. 18 
Container mass 9.6 
Mass of wet soil & 
tray 

112.8 

Mass wet soil 103.2 
Mass dried soil 77.9 
Moisture Content % 32.5 
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MERCIA MUDSTONE MOISTURE CONDITION VALUE RESULTS 

Sample No. MM h MM i 

Soil Description Mercia Mudstone 
Dry stony material 

Mercia Mudstone 

Total No. of blows Penetration 
(mm) 

Change in 
penetration 
(mm) 

Penetration 
(mm) 

Change in 
penetration 
(mm) 

1 60.4 12.7 53 10.7 27.9 
2 65 16.5 66.9 93.1 26 
3 69.2 16.7 75(85) 23.6 
4 73.1 15.9 80.9 79.1 20.1 
6 77.5 14.5 87.8 72.2 13.2 
8 81.5 12.4 92.9 67.1 8.1 
12 85.9 10.1 98.6 61.4 2.4 
16 89 8.5 101(59) 0 
24 92 6.5 101(59) 0 
32 93.9 4.6 (59) 0 
48 96 2.5 (59) 0 
64 97.5 1 
96 98.5 0 
128 98.5 0 
192 
256 
MCV 14.6 10 

Container No. 19A A5 
Container mass 79.5 97.2 
Mass of wet soil & 
tray 

457.9 520.1 

Mass dry soil & 
container 

441.7 462.7 

Mass wet soil 378.4 422.9 
Mass dried soil 362.2 365.5 
Moisture Content % 4.5 15.7 
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Sample No. MM j MM k 

Soil Description Moist Mercia Mudstone 
Very stoney & sandy 

Drier MM - some small clods 

Total No. of blows Penetration 
(mm) 

Change in 
penetration 
mm 

Penetration 
(mm) 

Change in 
penetration 
(mm) 

1 99 18.3 69 17.8 
2 117 1.5 74.1 22.5 
3 115 3.5 81.2 19.3 
4 117.3 1.2 86.8 13.7 
6 118.5 0 93 7.5 
8 118.5 0 96.6 3.9 
12 118.5 0 100.5 0 
16 118.5 100.5 0 
24 100.5 0 
32 100.5 
48 
64 
96 
128 
192 
256 
MCV 2.3 8.4 

Container No. 72C 1A 
Container mass 4.5g 4.5g 
Mass of wet soil & 
tray 

76.2 44.6 

Mass wet soil 71.7 40.1 
Mass dried soil 61.8 35.2 
Moisture Content % 16 13.9 

296 



Sample No. MM I MM m 

Soil Description MM 
wet, v. sandy, stony 

Total No. of blows Penetration 
(mm) 

Change in 
penetration 
(mm) 

Penetration 
(mm) 

Change in 
penetration 
(mm) 

1 88 8.6 77.9 14 
2 95.9* seep 0.7 90 3.8 
3 96 0.6 91 4.5 
4 96.6 0 91.9 3.6 
6 96.6 0 91.9 3.6 
8 96.6 0 93.8 1.7 
12 95.5* seep 0 
16 95.5 0 
24 95.5 0 
32 95.5 
48 
64 
96 
128 
192 
256 
MCV 2 4.5 

Container No. 72C 72C 
Container mass 4.6 4.6 
Mass of wet soil & 
tray 

92.1 92.4 

Mass wet soil 87.5 87.8 
Mass dried soil 73.8 73.27 
Moisture Content % 18.6 19.8 
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