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Ecology and behaviour of postlarvae and juveniles of the velvet 
swimming crab Necora puber (L. ) 

James T. Lee 

Abstract 

Ecological studies of early benthic stages of brachyurans are rare for most of the 

species, leaving a gap in the understanding of processes regulating the recruitment to adult 

populations. The velvet swimming crab Necora puber (L. ) is a valuable commercial 

species where most of studies have been focused on the adult population. Little is known 

about the supply-side ecology and the post-settlement processes that affect the dynamics of 

the adult populations. The aims of the present study were to investigate the physical 

processes affecting the supply of recruits to the nearshore, to examine the processes 

associated with habitat selection during settlement, and to describe the biology and ecology 

of the juveniles of N. puber. The study was carried out in the shallow waters and on the 

rocky shores of Plymouth Sound, on the southwest coast of the UK. 

Distribution of the pelagic postlarvae was patchy, and the abundance varied spatially in 

tens and thousands of metres. In temporal scales, the annual pattern was dominated by low 

occurrence of megalopae, punctuated by episodic peaks of high abundance. In the water 

column, most of the megalopae were collected at the surface and their abundance appears 

to be regulated by the tidal cycle, as megalopae were more abundant during flood than ebb 

tides. This behaviour could produce a net shoreward transport of megalopae. Laboratory 

experiments indicated that flow conditions set initial patterns of distribution of settlers on 

substrata of different tri-dimensional structure. However, active habitat selection occurred 

and the settlers were actively modifying the distribution patterns set by the hydrodynamics. 

Ontogenetic shift in habitat use occurred early in the juvenile phase and first juvenile 

instars were less habitat specific than megalopae. During the benthic phase, juvenile 

growth was markedly seasonal, and virtually no growth occurred in winter. Results from 

the present study indicated that juvenile growth rate is slower than previously described for 

N. puber. Magnitudes of juvenile recruitment were variable between years, but level off at 

the end of the 1+ year class on most of the shores studied. This suggests that mortality is 

high for early juveniles and appears to be density dependent on some shores. High 

density-dependent mortality can obscure the connectivity between larval and adult 

populations, so for the population of N. puber studied, better correlations may be obtained 

from juvenile-to-adult relationships. 
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Chapter I General introduction 

The recognition that most marine benthic invertebrates have a dispersive larval phase 

which is uncoupled from the local population, has confirmed the notion that most benthic 

populations are demographically open (Caley et al. 1996). This has led to an increasing 

number of studies emphasizing the importance of recruitment, rather than larval output, as 

one of the main detem-iinants of spatial and temporal variation in the local population 

density (Booth & Brosnan 1995, David et al. 1997). Understanding how the processes 

affecting the pelagic and the benthic phases are coupled, and how they influence 

recruitment to the adult population, is one of the major goals in marine population 

dynamics (Roughgarden et al. 1988). The knowledge on the processes controlling 

recruitment of sessile populations on hard substrata have increased considerably in the past 

20 years (Underwood & Keough 2001), but relatively less progress has been achieved in 

the studies of large mobile species (Wahle 2003). 

In this thesis, the velvet swimming crab Necora puber (L. ) (Fig. 1.1) has been used to 

examine the processes involved in the potential connectivity between the pelagic (larval) 

and benthic (adult) life history, and to understand how these processes could affect the 

dynamics and distribution of the population. The processes affecting the fate of the 

organisms involved can be grouped in three parts: (1) the pre-settlement processes, those 

related to the larval supply and operating from the production of larvae until their delivery 

to the benthic habitats; (2) settlement processes, involved in the transition to the benthos; 

and (3) the post-settlement processes, occumng soon after settlement through adulthood. 

However, before a detailed background can be given, some of the ten-ninology used 

should be clarified as they have been used in different contexts and with different 

meanings in the literature. Amongst those with many different meanings are settlement 

and recruitment. Settlement will be used throughout the text as defined by Butman (1987), 

and will refer to the first stage to reach the seabed and to begin living as benthic organism, 
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Chapter I. General introduction 

usually accompanied by some physiological change. Recruitment will be used as an 

observer-defined term, and refers to the organisms surviving to a size, collected by the 

sampler or defined by the researcher (as defined by Keough & Downes 1982). When 

recruitment of a specific phase or stages is referred to, it will be specified in the text. 

Figure 1.1 The velvet sWimming crab Necora puber (L. ). Image: Sue Daly (published on the 
MarLIN Web site). 

1.1 Supply-side ecology 

The history of larval ecology over the past 40 years has been punctuated by 

controversies surrounding the role of larvae in structuring marine communities. During the 

1960s, the prevailing view was that larvae are hapless victims of their environment, being 

overwhelmed by 'stochastic planktonic processes' which resulted in erratic recruitment to 

the adult population. Investigators were emphasizing post-settlement benthic processes in 

the regulation of populations and communities (reviewed by Booth & Brosnan 1995, 

Morgan 2001, Underwood & Keough 2001), which were largely assumed to mask and 

decouple any vanation in benthic population caused by changes in the larval supply. 

During the 1980s, experiments showed that competition and predation were strong only 

when settlement was heavy, whereas when settlement was light, larval supply was more 

important in explaining variations in community structure (Underwood & Denley 1984, 
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Caffey 1985, Connell 1985, Gaines & Roughgarden 1985, Roughgarden 1986, Raimondi 

1990, Sutherland 1990). Following these experiments, larval supply re-emerged as a 

strong structuring force on the population structure and dynamics of benthic communities 

(Underwood & Fairweather 1989). Supply-side ecological theory postulates that arrivals 

of settlers, and spatial and temporal patterns in the availability of larvae nearshore, may be 

affected by processes involved in the production of larvae, the dispersal of those larvae in 

the plankton, and the risk of mortality while dispersing (Underwood 2001). 

Few studies have examined the effects of spatial and temporal variations of 

reproductive output on the larval availability (Morgan 2001). This has been discouraged, 

possibly, by the long history of poor spawner-to-recruit relationship observed in fisheries 

(Morgan 2001, Wahle 2003). In rocky shore communities, little is known about the factors 

affecting the reproductive output of the organisms, but physiological constraints caused by 

variation in food availability are presumed to affect growth (Morgan 2001). In 

crustaceans, growth may be a particularly important factor as the reproductive output is 

generally proportional to body size (Hartnoll 1985). For organisms that release eggs and 

sperm into the water column, fertilization may also limit the production of larvae. In high- 

energy habitats, such as the intertidal zone of rocky shores, or in tidal flows, sperm may be 

dispersed rapidly from their point of release decreasing the chance of fertilizing an egg 

(Underwood & Keough 2001). In sea stars, urchins, corals and ascidians, less than 20% of 

eggs are fertilized during a spawning event (Levitan 1995). 

Subsequently, the fate of the cohort in the plankton will be dependent on the dispersal 

processes and the mortality the larvae suffer during dispersal. Quantifying the mortality 

rate faced by the larvae, and the processes affecting it, has been problematic because of the 

difficulties in tracking cohorts of microscopic larvae in the plankton. Causes of mortality 

in the plankton include: physiological stress, food resources, predation nskq sinking and 

advection (see Morgan 1995). Pelagic predators have been regarded as the major source 

for mortality by predation in the plankton, but it remains uncertain as few studies have 
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Chapter 1. General introduction 

accurately measured predation rates. Even the identity of the predators continues to be 

unknown in many cases, but the most important groups of pelagic predators appear to be 

planktivorous fishes and gelatinous zooplankters, especially hydromedusae, 

scyphomedusae and ctenophores (Morgan 1995). 

Advection of the larvae may affect survival by taking them away from areas of food 

supply or dispersing the larvae too far away from sites for settlement. For larvae that reach 

inshore regions, their availability may be largely determined by physical transport 

processes that returned them from offshore waters (Morgan 2001). The main processes 

include those originating from wind-driven flows, tidal currents, density-driven flows and 

coastal boundary layers (Shanks 1995). A number of studies have been able to correlate 

the strength of cross-shelf wind vectors or wind-driven flows with larval recruitment 

(Hawkins & Hartnoll 1982, Roughgarden et al. 1988, McConnaughey et al. 1995, Bertness 

et al. 1996, Clancy & Cobb 1997, Epifanio & Garvine 2001, Almeida & Queiroga 2003). 

The currents generated by this process are generally superficial and will transport only 

larvae residing at or very near the surface. Below the surface, Ekman transport will 

transport the larvae at roughly a right angle to the wind direction (Shanks 1995). In 

addition, wind-induced (or density-driven) fonnation of upwelling/downwelling events 

have been associated with transport of larval stages across the continental shelf (Wing et 

al. 1995, Shkedy & Roughgarden 1997, Shanks 1998, Shanks et al. 2000, Menge et al. 

2003) 

Residual tidal currents are generally slow over the continental shelf, and probably have 

little impact on the cross-shelf transport of larvae (Shanks 1995). However, under some 

circumstances, tidal currents can form internal waves, where currents are produced deeper 

in the water column. Evidence that internal waves are capable of transporting larvae 

onshore have been shown in the Pacific coast of the USA (Shanks 1983,1985, Shanks & 

Wnght 1987). Internal waves can also produce shoreward currents when the waves 

become too large and 'break', forming an internal bore. Such bores can propagate until 
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shallow waters and transport larvae very rapidly (Pineda 1991, Pineda 1994,1999). 

Although velocity and scale of transport produced by these physical processes are several 

orders of magnitude higher than the swimming capability of larvae (Chia et A 1984), 

vertical movement between strata of water can be achieved by the larvae and the final 

destination may be modified by larval behaviour (Young 1995). 

The final result of these oceanographical processes is a density-independent dispersal 

and survival of the recruits (Roughgarden et al. 1988, Sutherland 1990, Okubo 1994, 

McConnaughey et al. 1995, Garvine et al. 1997). The number of recruits surviving drives 

how quickly space is colonized and probably the intensity of competition for space (Menge 

et al. 2003). Physical processes may also affect bottom-up control by varying primary 

production in space and time. This will cause variation in the availability of food, 

affecting growth and survival (Morgan 2001). Differential survival of larvae or recruits 

when availability of food is higher would, in turn, change trophic interactions and increase 

secondary production, which may then support a denser predator population (Menge et al. 

1997). Such processes produce spatial and temporal variability in the larval recruitment of 

benthic animals, and make an important contribution to the variability in community 

dynamics in many areas (e. g. Underwood et al. 1983, Connell 1985, Menge 1991, Menge 

et al. 1994, Booth & Brosnan 1995, Robles 1997, Connolly & Roughgarden 1999, Hughes 

et al. 1999, Menge et al. 2003). 

1.2 Settlement processes 

When pelagic larvae or postlarvae (postlarva: -- the transitional stages between the 

larvae and the juveniles sensu Gore 1985, in brachyurans, only one postlarval stage occurs, 

which is tenned megalopa) are competent to settle and they encounter a substratum, 

settlement can take place. Thus, settlement is responsible for the initial spatial distribution 

on the sea bed, and the most frequent response observed has been an active selection of 

habitats by the settlers (Butman 1987, Underwood & Keough 2001). For sessile organisms, 
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searching for a suitable substratum is particularly important, as permanent attachment 

occurs after settlement and the availability of food or risk to predation will be dictated by 

the site selected (Morgan 2001). In mobile species, settling in an unfavourable habitat that 

provides poor shelter leads to high predation, and have been extensively reported for crabs 

(Eggleston & Anustrong 1995, Morgan et al. 1996, Pile et al. 1996, Moksnes et al. 1998, 

Palma et al. 1998, Loher & Armstrong 2000, Luppi et al. 2001) and lobsters (Incze & 

Wahle 1991, Wahle & Steneck 1991,1992, Cobb & Wahle 1994). Therefore, the selection 

of a suitable habitat plays an important role in the subsequent survival of the recruit. There 

is also evidence that the level of distinction in habitat selection may be closely related to 

the reproductive biology of the individual taxon. Larvae of species that are highly fecund, 

such as in crabs, tend to be less selective at settlement relative to those of less fecund 

species such as in lobsters (Cobb et al. 1997, Palma et al. 1998). Consequently, the ability 

of larvae to choose favourable places to settle, and persist there, may cause pattems of 

recruitment to differ from those of the larval supply (Risk 1997). 

As the settlers encounter the substratum, they may show exploratory behaviour, 

moving over the substratum surface (Butman 1987, Mann & Lazier 1991). In laboratory 

conditions, larvae have been shown to respond to a wide range of stimuli and the 

substratum itself may provide a stimulus, with settlers capable of responding to substratum 

texture (Butman 1987). There are also a number of factors which can influence the choice 

made by the larvae during settlement, normally involving the detection of positive or 

negative cues (Butman 1987, Abelson & Denny 1997). Chemical cues have received 

much attention in settlement studies (Pawlik 1992, Hay 1996, Rittschof et al. 1998, Diaz et 

al. 1999, Forward et al. 2003b), and can originate from conspecifics (Jensen 1989, Gebauer 

et al. 2002), nursery habitats (Forward et al. 2003b) or predators (Diaz et al. 1999). 

However, water movement is much greater than the swlmmlng speed of planktonlc 

organisms (Chia et a]. 1984). and will interfere with their habitat selection (Butman 1987, 

Abelson & Denny 1997), particularly in areas such as rocky shores where extensive water 
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movement may occur. Thus, to understand the patterns observed in the distribution of 

benthic animals of rocky shores, it is crucial to determine the role of flow during 

settlement. This will enable the separation of the effects of hydrodynamics, active habitat 

selection and post-settlement mortality on the distribution of adult populations. 

1.3 Post-settlement processes 

After settlement, the survival of the juveniles is regulated by processes that are specific 

to the early phase (Gosselin & Qlan 1997). High juvenile mortality is widespread among 

benthic marine invertebrates and extreme vulnerability at the onset of juvenile life is a trait 

that is largely responsible for the survivorship trends of the population (Gosselin & Qian 

1997). Survivorship curves of early juveniles are often type III (sensu Deevey 1947), 

where mortality rates are heavier on the young stages, decreasing with older individuals 

(Hunt & Scheibling 1997). The early juvenile mortality, exceeding 90% in most of marine 

invertebrates, can cause profound transformation on cohorts, reducing dramatically the 

initial numbers of settlers (Gosselin & Qlan 1997). Amongst the species reviewed by 

Gosselin and Qlan (1997), by the age of 4 months virtually all cohorts of marine 

invertebrates were reduced to less than 20%. Hence, small variations in early mortality 

will have significant repercussions on population size and, therefore, be important 

determinants of population parameters (Gosselin & Qlan 1997). 

Few long-term studies on recruitment have been attempted, and these have indicated 

that, in marine populations, recruitment varies by many orders of magnitude at spatial and 

temporal scales (Booth & Brosnan 1995). Some studies have found that recruitment to 

rocky shores were inconsistent and unpredictable on a temporal basis. Shores that ranked 

first in recruitment in one year did not necessarily retain the ranking in subsequent years. 

In other studies, sites did have consistent high or low settlement and maintained their 

recruitment ranking through time (Booth & Brosnan 1995). 
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Variation in recruitment rate has been shown to affect competitive interactions 

(Sutherland & Ortega 1986), predation (Menge et al. 1994, Robles 1997), and other 

community level processes on rocky shores (Booth & Brosnan 1995). Roughgarden et al. 

(1985) modelled the demographic consequences for populations resulting from differential 

recruitment and predicted that where recruitment is limiting, larval supply would be 

correlated with adult density. By contrast, when recruitment is high, the model predicted 

that abundance would oscillate, and cohorts would be scattered spatially on the shore, and 

other factors such as competition and predation would be important. 

The causes of early post-settlement mortality in benthic marine invertebrates have been 

extensively reviewed by Hunt and Scheibling (1997), and the main sources of mortality 

include delay of metamorphosis, biological disturbance, physical disturbance, 

physiological stress, predation and competition. The single most documented cause of 

mortality in juveniles is predation. In sessile organisms, experiments excluding predators 

have often caused changes in the distribution pattern of recruits and an increase in 

recruitment at small spatial scales, but there is less evidence of the influence of mortality at 

larger scales (Hunt & Scheibling 1997). 

For mobile species, vulnerability to predation has been shown to be exceptionally high 

when shelter is not available (Smith & Hen-nkind 1992, Fernandez et al. 1993a, Heck & 

Coen 1995, Moksnes et al. 1998, Heck et al. 2001, Moksnes 2002). Several studies have 

found evidence that such vulnerability to predation causes elevated early post-settlement 

mortality, which influences the patterns of distribution among the habitats (Hunt & 

Scheibling 1997). The capability of predator avoidance appears to be crucial for the 

chances of survival in the settling stage, where benthic predation (including cannibalism) 

has repeatedly been identified as a key factor controlling the recruitment success and the 

local population size (Eggleston & Armstrong 1995, Hunt & Scheibling 1997). Beside 

predation, competition for space or food can be additional sources of mortality, but these 
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factors are more relevant when recruitment is intense and growth rates high (see Gosselin 

&Qlan 1997, Hunt & Scheibling 1997). 

Positive relationships between the abundances of recruits and settlers has been found in 

most studies of sessile species (Hunt & Scheibling 1997). However, for mobile species, 

this relationship has been more variable. For the American lobster (Homarus americanus), 

Incze and Wahle (199 1) found a significant correlation between the number of one year old 

lobsters and the density of recent settlers collected the previous year. Conversely, many 

studies found that when post-settlement mortality was high, the relationship between larval 

nil abundance and juvenile abundance was decoupled (e. g. Pile et al. 1996, Palma et al. 1998, 

Heck et al. 2001) and, in some instances, decoupling occurred at extremely small temporal 

scales. In the Dungeness crab (Cancer magister), the correlation between postlarval 

supply and density of first juvenile instars was significant only when specific predators 

were excluded, and the decoupling of settlement patterns and density of first juvenile 

instars took place within 48 h. 

In most studies when recruit and settler density were related, mortality was either 

density independent or inversely density dependent; however, there is still insufficient data 

to support a general conclusion about the conditions under which recruitment rate can be 

predicted from settlement rate (Hunt & Scheibling 1997). Understanding the processes 

regulating the early life history of benthic invertebrates will be especially relevant for the 

stock forecast of commercial species. Some advances in the development of recruitment 

indices and forecasting methods have been made, but mainly for the Australian rock 

lobster Panuhrus cygnus, where successful forecasts of annual catches have been predicted 

four years in advance (Caputi & Brown 1986, Caputi et al. 1995a, Caputi et al. 1995b). 

1.4 Taxonomic nomenclature 

The velvet swimming crab Necora puber is one of the 13 portunid species known to 

occur in the Plymouth Sound region (MBA 1957). It is morphologically similar to other 
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species of Liocarcinus and was fonnerly part of the genus Liocarcinus until the revision by 

Holthuis (1987). This separation is currently supported by genetic studies (Manto". "ani et 

al. 1993, Passamonti et al. 1997). Below is the classification of N. puber and related 

Liocarcinus species known to occur in the Plymouth area (MBA 1957), according to the 

classification used by Ingle (1996). 

Order Decapoda 

Infraorder Brachyura 

Family Portunidae 

Subfamily Polybiinae 

Genus Necora 

Necorapuber (Linnaeus) 

Genus Liocarcinus 

Docarcinus corrugatus (Pennant) 

Docarcinus holsatus (Fabricius) 

Docarcinus marmoreus (Leach) 

Docarcinuspusillus (Leach) 

Docarcinus depurator (Linnaeus) 

Docarcinus arcuatus (Leach) 

1.5 Distribution and life history 

-Necora puber is a coastal species, occurring commonly in shallow waters from the 

intertidal to 80 m (Clark 1986) and is found mostly on rocky shores. Although found in 

the intertidal zone, N. puber is restricted exclusively to the lower tidal mark, where it is 

I'll, abundant (Choy 1986a, Norman 1989, Flores & Paula 2001, Hearn 2001). The 

geographical distribution ranges from western Norway to West Africa and the 

Mediterranean Sea (Hayward et al. 1995). In the Mediterranean Sea, occurrence is limited 

to the Spanish, French and Adriatic coasts (Clark 1986). In Plymouth Sound, N. puber is 

common from the tide-marks to 12-14m below Chart Datum (MBA 1957, Norman 1989, 

Devon Wildlife Trust 1993), and local fishermen capture them mainly close to the shores 

in depths shallower than 30 m. 
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The main animal items in their diet are crustaceans and bivalves, (Choy 1986b, 

Nonnan & Jones 1992, Freire & Gonzalez- Gum aran 1995, Gonzalez-Gurriaran et al. 

1995), and on rocky shores, Necora puber also ingest large proportions of brown algae 

(Choy 1986b, Norman & Jones 1990). Overall, the velvet swimming crab appears to be an 

opportunistic omnivore, which vanes the food items consumed according to local and 

seasonal availability (Freire & Gonzalez-Gurriaran 1995). 

The reproductive period 

During the reproductive period, males display agonistic behaviour towards each other 

in the presence of sexually receptive females (Smith et al. 1994) and pairing occurs a few 

days before the female moults. Copulation follows soon after the female has moulted, 

(Gonzalez-Gurriaran 1985b), and males have been seen attending their partners for up to 3 

days after copulation (Gonzalez-GuMaran 1985b). During this period, when the females 

are hardening their carapace and are most vulnerable, males can protect them against 

predators (Hartnoll 1969). 

After copulation, sperin plugs can be observed as in other crabs (Hartnoll 1969), which 

can prevent loss of the sperm from the spermathecae, and stored sperm can be used in 

successive spawning (Gonzalez-GuMaran 1985b). Females bearing eggs occur from 

December until October, with peaks in spawning in April, May and June in Plymouth 

(Norman & Jones 1993). In the Spanish and Welsh populations, more than one spawning 

per year has been suggested (Gonzalez-Gurriaran 1985b, Choy 1988). Embryonic 

development carried out in the laboratory (Gonzalez-Gurriaran 1985b, Choy 1991) 

indicated that at spring temperatures in Plymouth Sound (ca 12'C), the embryonic 

development of Necora puber takes around 48 days. Subsequently, the eggs hatch and 

larvae are released into the plankton. Larvae develop through 5 zoeal stages before 

metamorphosing to the megalopa (Fig. 1.2) (Lebour 1928, Rice & Ingle 1975). In the 

laboratory, this larval development lasts for around 50 days in temperatures of 15'C (Choy 

1991, Mene et al. 1991) and in the sea, development apparently occurs offshore as 
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indicated by collections in the Continuous Plankton Recorder (Lindley 1986, Lindley 

1987). 

Figure 1.2 Larval development of Necora puber from zoea I to V and the postlarval stage, the 
megalopa. Photographs were taken from specimens cultivated in the laboratory from an ovigerous 
female. 

Definition of the megalopa as the last larval (zoeal) stage or the first postlarval is 

controversial, with larval biologists considering it a larval stage (e. g. Ingle 1992, Anger 

2001), while most benthic ecologists considering it a postlarva. In the text I follow the 

definition of Felder et al. (1985) and the usage by the vast majority of researchers on 

megalopae of the blue crab Callinectes sapidus, that consider the megalopa a postlarva. 

Larval biologist prefer the tenn decapodid instead of postlarva (Felder et al. 1985, Anger 

2001) 

The megalopa is the transitional stage from the pelagic larval phase to the benthic 

juvenile period. In this stage, they bear a combination of morphological characters 

associated with both environments, with developed thoracic appendages that are used for 
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walking in the juveniles (including chelae), while still retaining strong swimming ability 

with the pleopods (Felder et al. 1985, Anger 2001). The megalopa is the first settling 

stage, and will moult to the first juvenile instar. This transitional period is crucial because 

it involves extensive morphological, physiological and behavioural changes, and is the 

linking stage between the larval and the adult population. 

1.6 The fisheries 

Necora puber is the second most important species in tonnages after Cancer pagurus in 

the UK crab fishery (ICES Catches database). Production is mainly exported to the French 

and Spanish market. Official data from landings are sometimes not reliable and often 

underestimated, as data are based on the declared landings by the fishers, and vessels of 

less than 10 m are not required to declare their catches. Nonetheless, the ICES database 

shows that the landings in the British Isles, on the western English Channel, from 1989 to 

1998 averaged 30 tonnes per year, and total catches for the British Isles peaked at over 

2900 tonnes in 1997. 

Figure 1.3 Local shellfish fishery in Plymouth Sound and adjacent coastal area during collection 

and re-baiting of creels. 
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The crab fishery in Plymouth Sound targets mainly the edible crab Cancer pagurus and 

the spider crab Maja squinado, and Necora puber is only third in landings. Statistics of 

catches in Plymouth are particularly scarce as all vessels are under 10m. In recent years, 

landings have been very small, but possibly caused by personal decision of fishers rather 

than decrease in abundance (pers. comm., P. Edwards, Department for Environment, Food 

and Rural Affairs officer in Plymouth). Legal fishing is allowed only outside Plymouth 

Sound and is small, with a fleet of around six vessels (Fig. 1.3). In the UK, the fishery of 

Necora puber is concentrated along the southwest coast and in Scotland. The Scottish 

fishery of N. puber is the largest in Europe and has been recently reviewed by Tallack 

(2002) and Combes (2002), showing a continuous growth since 1984. Landings on 

Orkney alone were in the order of 600 tonnes in 1995, and is as large as the fisheries in 

France, Spain and Portugal combined (Hearn 2001). In recent years, the fishery of N. 

puber has become particularly valuable in the Scottish fishing industry. The Scottish 

landing alone in the late 1990s was over 1800 tonnes per annum and valued on the order of 

f3 million (Combes 2002). 

1.7 Justification 

Determining the processes that affect recruitment is a key component in understanding 

the fluctuations in the dynamics and distribution of benthic populations. Much progress 

has been achieved in this area for sessile organisms, but less is known about mobile 

species. Necora puber is a good test organism to examine these questions because it has a 

relatively long pelagic larval development, when dispersive processes may be taking place. 

In addition, N. puber is an abundant mobile species of the rocky shore community, so 

itats will help to understand the understanding the link between the larval and juvenile habi 

"es of the processes controlling other mobile speci II which may also be relevant 

when detennining conservation areas. 
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Many studies have been camed out on the adult population of Necora puber, but the 

knowledge of the larval and juvenile ecology is sparse. A better understanding of the 

sources of variation of early juvenile mortality will undoubtedly help solve the problematic 

link between planktonic abundance, settlement and recruitment to the adult segment of this 

population. Finally, as the fishery of Necora puber sustains a valuable industry in the UK, 

understanding the processes regulating the renewal of the adult population is essential to 

maintain a sustainable fishery. Large variation in larval supply and recruitment is 

characteristic of many crabs, and could mask the effect of over-exploitation. Thus, failing 

to produce correct information on the dynamics of the population can lead to poor 

management of the fishery, which could have large socio-economic implications for the 

industry. 

1.8 Aims and structure of the thesis 

To help bridge the gap in the understanding between the two fundamentally different 

phases of the life history of Necora puber (the pelagic and the benthic), the following alms 

were set for this thesis: 

1. A) To describe the spatial and temporal variability in the occurrence of pelagic 

megalopae in the shallow waters in Plymouth Sound. B) To investigate the effect of 

exposure to wave and tidal regime on the distribution and density of megalopae in the 

water column. The findings are presented in Chapter 3, 'Abundance, distribution and 

tidal transport of megalopae in coastal shallow waters'. 

2. A) To detennine the distribution of megalopae on natural substrata in the sublittoral. 

B) To determine the settlement behaviour of megalopae and juveniles under 

hydrodynamic conditions in the laboratory. The results are presented in Chapter 4, 

'Settlement of megalopae and early juveniles'. 

3. A) To detennine the growth of the juveniles, and B) to examine the seasonal patterns 

in recruitment and dynamics of the juvenile population. These are presented in Chapter 

5, 'Growth and population dynamics of Juveniles'. 
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4. A) To evaluate the connectivity between the pelagic and benthic phases of Necora 

puber; B) to evaluate the tools used in the study; and Q to propose further 

improvements for future studies. These were discussed in Chapter 6. 
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2.1 Carapace width measurement 

Carapace width was used as a measurement of size, and was defined as the distance 

between the tips of the 5 th antero-lateral teeth of the carapace (Fig. 2.1). References to the 

carapace width (CW) throughout the text will refer to this measurement. For comparison 

with other studies of Necora puber, where the interteeth carapace width (CWI, defined as 

the distance between the indentations of the 4 th and 5 th carapace teeth) was used, the CWI 

was converted to CW according to the following regression obtained by Nonnan (1989): 

CW(mm)=-0.914+1.07CWI(mm) 

All crabs collected on the lower shore, irrespective of size, were measured and 

presence of eggs in mature females was noted for the determination of the spawning 

period. 

I 

Figure 2.1 The two common measurements of carapace width for Necora puber. CW, carapace 

width (distance between the tips of the 5" carapace teeth) used in the present study; and CWI, the 

interteeth carapace width (distance between the indentation of the 4th and 5th carapace teeth). 
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2.2 Identification of specimens 

2.2.1 Megalopae 

Identification of the megalopal stage to subfamily Polybiinae was achieved easily 

following Ingle (1992). However, identification to species level was not always 

straightforward. Potentially, a combination of the different characters described by Ingle 

(1992) on the antennae and pereopods could separate the species in Polybiinae. 

Unfortunately, many specimens in the present study lost key pereopods used for the 

identification, leaving only the number of segments and setae on the antennal flagellum as 

meristic characters. In practice, recognizing each of the segments of the antennal 

flagellum was complicated, as they were not always separated clearly. Therefore, the 

megalopae of Necora puber could potentially be confused with the Liocarcinus species 

common in Plymouth Sound (Lebour 1928, MBA 1957) which have similar setal formulae 

of the antennal flagellum, notably Liocarcinus holsatus and L. depurator. 

On some occasions, it was possible to separate the megalopae of Necora puber from 

Liocarcinus depurator from the size of the rostrum, as suggested by J. A. Lindley (pers. 

comm. ) and Lebour (1928). As the rostrum from L. depurator does not bend downwards 

as in N. puber, the rostrum appears longer in dorsal view (Fig. 2.2). 

Figure 2.2 MegalOpae of A) Necora puber, and B) Docarcinus depurator. Specimens were 

photographed from the collection held by the Natural History Museum, London. 

18 



Chapter 2 General matenals and methods 

Known specimens from cultivated larvae were always used as comparison to aid the 

identification. The majority of the cultivated megalopae from wild caught larvae, initially 

identified as Necora puber, were later confinned as such by identification of subsequent 
I 

instars. Consequently, it was expected that confusion with Liocarcinus spp would 

probably be low. 

2.2.2 Juveniles and adults 

Identification of early juveniles followed the description given by Ingle and Rice 

(1984). Juveniles as small as 5 min CW could be identified by the multiple teeth in the 

frontal region of the carapace (Fig. 2.1), as described for the adults (Ingle 1983). 

2.3 Cultivation methods 

Cultivation of animals was necessary to produce a consistent supply of megalopae and 

juveniles for the experiments in Chapter 4. Also, larvae cultivated from ovigerous females 

were used to aid the identification of wild megalopae and early juveniles. 

2.3.1 Larval cultivationftom ovigerous females 

Zoeae hatched in the laboratory from berried females were mass cultivated in inverted 

plastic bottles from which the bottoms had been removed (see Ingle 1992). Gentle aeration 

occurred from the neck side of the bottle and seawater was changed every two days. 

Larvae were fed daily a mix of Liquifry Marine (Interpet) and Tetramin E (Tetra). This 

diet has been shown to obtain the best survival rates during the larval development of 

Necora puber (Choy 199 1). In addition, dried Spirulina spp. was added to the diet, as this 

algae is rich in fatty acids important for crustacean growth (Rees et al. 1994, Coutteau et 

al. 1996, Kontara. et al. 1997, Anger 1998). The proportion of Liquifry and algae were 

decreased progressively from the diet with larval development, and newly hatched Artemia 

nauplii were added to the diet as replacement. When larvae moulted to the megalopal 

stage, they were transferred to individual cups and examined daily for moults. Moults 

were preserved to aid the identification of specimens from field samples. 
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2.3.2 Wild megalopa cultivation 

For the settlement experiment (Chapter 4), megalopae were maintained at the salinity 

measured during the collection date in a temperature-controlled room at 15±1'C. 

Photoperiod was set to 14 h L: 8hD, with approximately I hour of diffuse light at dusk 

and dawn (close to natural conditions at Plymouth during that period of the year). 

Megalopae were kept in plastic tanks, fed with newly-hatched nauplil of Artemia spp. ad 

libitum and kept under these conditions for at least 48 h before the experiments were 

carried out. First juvenile instars of Necora puber were cultivated from wild megalopae 

and fed newly-hatched nauplii of Artemia sp and flaked marine fish food (only first or 

second juvenile instars were used). 

2.3.3 Juvenile cultivation 

Juveniles (>10 mm CW) and adults, used during trials of the marking techniques, were 

maintained in 10 1 tanks with recirculating seawater. Crabs were fed a combination of 

items used in previous studies (Choy 1986a, Norman 1989) and items known to be part of 

the diet of Necora puber (Choy 1986b, Non-nan & Jones 1990, Freire & Gonzalez- 

Gurriaran 1995): macroalgae (red alga Palmaria palmata and brown alga Laminaria spp), 

fish, shrimps, crabs and mussels. All seawater used was filtered through a 10 ýtm filter and 

changed from the tanks once a week; temperature was maintained at 18'C. 

2.4 Study Area 

2.4.1 Physical characterization 

Plymouth Sound is a tidal inlet located on the south coast of England. The inlet has 

free connection to the English Channel, but the entrance is partially blocked by an artificial 

Breakwater, which divides the Sound into two channels for navigation (Fig. 2.3). The 

western channel has an average depth of II- 12 m whilst the eastern one a depth of 8-10 m. 

Two main river systems enter Plymouth Sound. The larger is the River Tamar, which lies 

to the northwest and is tidal to 30 kin upstream. To the northeast, the River Plym is a well- 
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mixed estuary system (Fitzpatrick 1991). The sloping seabed begins from an average 
depth of 5m in the west of the Breakwater, and from 8m in the east (Fitzpatrick 1991). 

Tidal range is 4.7 m for spring tides and 2.3 m for the neap tides (UKHO 1991). Tidal 

currents are stronger in the inner Sound and can reach 0.6 and 0.3 m. s-1 on the eastem 

channel, during springs and neaps, respectively (UKHO 1991). 
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(c) Crown Copyright Ordnance Survey. An EDINA Digimap/JISC supplied service 

Figure 2.3 Study areas in Plymouth Sound. Sheltered area, comprised of shores: A) Batten Bay 
and B) Jennycliff Bay. Moderately exposed shores: Q Andurn Point and D) Heybrook Bay. 

2.4.2 Habitat characterization 

The shores of the Sound consist mostly of steep rocky substrata, with gravel and stones 

between the rocks (MBA 1957). Sublittoral sediments vary considerably, but the inner 

eastern shores are composed of vast mud or muddy sand areas. Outer shores consist of 

slate reefs with many surge gullies (Devon Wildlife Trust 1993). On the lower rock 

47 As 49 
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surfaces, a broad band of Fucus serratus is present frequently, below which is usually a 
dense strip of Himanthalia elongata. A dense kelp growth then extends into the sublittoral 

fringe where an understory of foliose red algae is present, dominated by Mastocarpus 

stellatus and Chondrus crispus (Devon Wildlife Trust 1993). Lower shore underboulders 

sustain a rich fauna and is densely populated by invertebrates, with decapods particularly 

well represented (Devon Wildlife Trust 1993). 

2.4.3 Sampling sites 

Sampling was concentrated in two areas on the eastern shores of Plymouth Sound. The 

first area was located inside the Breakwater, and was characterized by shores with low 

exposure to waves, and was defined as 'very sheltered' according to Hiscock's (1990) 

definition. Within this area, two shores with extensive boulder and cobble cover were 

selected for the intertidal and sublittoral sampling: Batten Bay (A, Fig. 2.3) and Jennycliff 

Bay (B, Fig. 2.3). The second area was located outside the Breakwater, where the shores 

were considered as 'moderately- exposed' to waves (sensu Hiscock 1990). Within this 

area, shores with boulder and cobble cover were relatively rare. The following shores were 

selected for the samplings: Andurn Point (C, Fig. 2.3) and Heybrook Bay (D, Fig. 2.3). 

Batten Bay. Around 500 m south of the Mount Batten Breakwater, this is a large, 

gently-shelving slate reef with a broad area of the lower shore uncovered during low water 

of spring tides. The upper shore is covered by coarse sand and pebbles, and the mid shore 

dominated by fucoids with many slates and limestone boulders-filled gullies. The lower 

shore is sandy and silty with boulders and reef outcrops (Devon Wildlife Trust 1993). For 

the study of the intertidal juveniles (Chapter 5), a 40 in strip along the low water mark was 

searched, covering an estimated area of 250 in 2 (Fig. 2.4). 

Jennydiff Bay. The extent of this shore is similar to Batten Bay, except for the 

boulder area uncovered at low tide, which is narrower., In general, boulders at Jennycllff 

were larger than at Batten Bay and the searched area (Chapter 5) covered ca 50 m of the 

intertidal shore, an estimated 300 m2 (Fig. 2.5). 
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Figure 2.4 Batten Bay. Red square indicates approximate area of search during LWST. 
Sublittoral sampling with divers occurred within 100 m of the intertidal sampling area. MLW, 
mean low water; MHW, mean high water. 
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Figure 2.5 Jennycliff Bay. Red square indicates approXimate area of search during LWST. 

Sublittoral sampling with divers occurred within 100 in of the intertidal sampling area. MLW, 

mean low water; MHW, mean high water. 
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Andurn Point. This shore is 800 m south of Bovisand (Fig. 2.3), and is a large reef 

with slate ridges running out to the sea forming many scoured surge gullies with mobile 

gravel, sand and cobble. A few very large boulders are present, and the underboulder 

fauna is generally poor (Devon Wildlife Trust 1993). There is an extensive intertidal area, 

but substrata with small boulder cover are limited and the available area for searching for 

2 juveniles extended to a stretch of only 30 m, covering an estimated area of 120 m 

Fig. 2.6). Frequently, after strong southerly winds the area was exposed to large waves 

and the lower shore was not uncovered during LWST, which precluded the search for 

juveni es. 
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Figure 2.6 Andurn Point. Red square indicates approximate area of search during LWST. 
Sublittoral sampling with divers occurred within 100 m of the interfidal sampling area. MLW - 
mean low water; MHW - mean high water 
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Heybrook Bay. The shore is 300 m south of Heybrook Bay and is formed by slate 

reefs with many scoured surge gullies extending into the infralittoral (Devon Wildlife Trust 

1993). Areas with small boulders are patchy and only a narrow stretch of small boulders 

and cobbles is uncovered during LWST. The searches for intertidal crabs occurred in this 

small stretch of ca 40 m and an estimated 200 m2 was covered (Fig. 2-7). Waves were 

particularly strong on this shore after southerly winds, preventing many searches during 

the winter period. 
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Figure 2.7 Heybrook Bay. Red square indicates approximate area of search during LWST. 
Sublittoral sampling with divers occurred within 100 m of the intertidal sampling area. MLW - 
mean low water; MHW - mean high water 
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Chapter 3 Abundance, distribution and tidal transport of 

megalopae of Necorapuber in coastal shallow waters 

3.1 Introduction 

Most decapods have a larval development that may last for a few days or weeks in the 

pelagic environment, although some may remain in the plankton for several months before 

they eventually return to the benthos. During their planktonic phase, the larvae are 

exposed to variations in numerous ecological factors, which influence their chance of 

surviva an development. These include physical and chemical variables such as 

temperature, salinity, light, and toxic pollutants, as well as the principal biotic factors food 

and predation (for a review, see Anger 2001). For coastal species with larval development 

in offshore waters, the return of their pelagic stages to inshore benthic habitats must also 

involve a fonn of cross-shelf migration that may affect their dispersal and recruitment 

(Shanks 1995). 

Amongst meroplanktonic invertebrates, megalopae are generally strong swimmers 

(Chia et al. 1984, Luckenbach & Orth 1992, Femandez et al. 1994); however, they are 

unable to swim large distances towards the shore and must rely on transport with the flow 

for large-scale movement (Butman 1987, Shanks 1995). Oceanographic processes can 

deliver larvae to near-shore habitats, but they can also deliver them too far offshore, 

causing loss of larvae and contributing substantially to spatial and temporal variation in 

larval supply (Roughgarden et al. 1986, Gaines & Bertness 1992, Underwood & Keough 

2001). Some of the major transport processes involve tidally-driven currents, wind-driven 

currents and density-driven flow (see reviews by Shanks 1995, Bradbury & Snelgrove 

2001). 

Despite larvae appeanng to passively drift with the prevailing transporting processes, 

there is a body of evidence showing that they can behaviourally regulate their vertical 
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position in the water column and influence their final destination (Metaxas 2001). 

Moreover, once larvae reach coastal areas, where deten-ninistic processes such as tide are 

more pronounced and consistent, larval behaviour that synchronises with transport 

processes is of particular importance for the local-scale distribution (Young 1995). One 

mechanism used commonly by invertebrates and fishes to return to shallow coastal areas or 

estuaries is selective tidal-stream transport, where horizontal transport is accomplished by 

vertically migrating into and out of the water column synchronously with the direction of 

tidal currents (Forward & Tankersley 2001). Larvae that develop offshore need to move 

up in the water column during flood tides and, to avoid being transported back, they must 

migrate to the bottom (or near) during ebb-tide currents. Flood-tide transport has been 

observed in many species as a mechanism for postlarval stages to return to estuarine 

habitats after larval development offshore (e. g. Pereira et al. 2000, Forward & Tankersley 

2001, Gonzalez-Gordillo et al. 2003). 

When wind-driven currents are the main transport process, local landscape can obstruct 

the wind and affect the currents at local scale, and in turn affect the delivery and dispersal 

of settlers. Consequently, the amount of exposure to wave action may have an effect on 

the distribution of the larval supply. In addition, the turbulence caused by the water 

motion near the bottom is known to affect settlement and post-settlement survival, which 

are important detenninants of assemblage structures (Underwood & Denley 1984, Caffey 

1985, Connell 1985, Gaines & Roughgarden 1985, Roughgarden 1986, Raimondi 1990, 

Sutherland 1990). 

The processes controlling the transport of the recruits act, therefore, as the 

demographical bottleneck for larval and postlarval recruitment to the shore, which directly 

affects the abundance of the early benthic population. Hence, understanding the processes 

controlling the transport and abundance of the recruits is the first step to predict the 

variability in the recruitment and distribution of the population. Some successful links 

have been achieved for the blue crab Callinectes sapidus in the east coast of the USA, 
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where the postlarvae of C sapidus has been shown to correlate with the adult population, 

and has been an important tool in the management of its fisheries (Lipcius & Stockhausen 

2002, Forward et al. 2004). 

For Necora puber, no inforination is available on the processes involved in the larval 

dispersal and recruitment but, as zoeal stages have been recorded offshore in the English 

Channel (Lindley 1987), larval development appears to occur offshore, in similar ways to 

other shallow-water portunids (Queiroga 1996, Epifanio & Garvine 2001). In Carcinus 

maenas, the zoea I was found nearshore while the older zoeal stages were dispersed 

progressively offshore. The return of the pelagic phase apparently occurred at the 

megalopal stage since they were occupying depths where onshore flows were observed 

(Quelroga 1996). The early juvenile stages of N. puber occur abundantly in the intertidal 

zone (Choy 1986a, Norman 1989, Heam 2001), thus, pelagic stages must possess 

appropriate mechanisms to ensure a return to coastal areas. 

There is a lack of quantitative inforination on the local larval abundance and 

distribution for N. puber despite the fact that early qualitative studies had been carried out 

over half of a century ago (Lebour 1947). Therefore, the alms of this chapter were to 

examine the supply of pelagic recruits (megalopae) in Plymouth Sound and the processes 

involved in their return to the shores. To achieve this the following objectives were set: (1) 

to describe the spatial and temporal (within months and years) variability of planktonic 

megalopal abundance of N. Puber in nearshore, waters; (2) test the hypotheses that: (a) 

different levels of wave exposure can cause variation in the local postlarval abundance and 

(b) vertical distribution of megalopae is affected by the tidal phase. 

3.2 Materials and methods 

3.2.1 Sampling protocol 

Plankton samples were collected from two regions of the study area: (1) the inner 

Plymouth Sound, which is characterized by sheltered shores and (2) the region outside the 
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Breakwater, comprised of moderately exposed shores (Fig. 2.3). Based on available data 

on (1) the period of occurrence of ovigerous females with recent ly-rel eased egg cases 

(Norman & Jones 1993), (11) period of high abundance of zoeae in the plankton (Lebour 

1947, MBA 1957, Lindley 1987), and (111) duration of larval development (Choy 1991, 

Mene et al. 1991 
, 
Valdes et al. 199 1) 

, it was estimated that the period of highest occurrence 

of megalopae would be between May and October. Therefore, samples were collected 

within this period to maximize the detection of the effects of the factors tested. Sampling 

was carried out from 6 June to 17 October 2000. In 2001, sampling started on 15 May and 

was planned to continue until October but, based on results from 2000, sampling was 

stopped on 31 August after two consecutive zero occurrences of megalopae. 

Logistical and safety constraints limited sampling to daylight and one phase of tide per 

date only. In 2000, samples were collected during spring tides but, due to bad weather, 

two samplings during flood tides were cancelled and a total of 7 ebb and 4 flood tides was 

sampled. In 2001, the sampling programme overlapped with other shore sampling (see 

Chapter 5), therefore, the collection of plankton samples was shifted from spring to neap 

tides, and 5 ebb and 5 flood tides were sampled. Four replicates were collected per 

depth/tidal phase/exposure treatment tested; hence, a total of 176 and 160 plankton 

samples was collected in 2000 and 2001, respectively. 

Sampling was carried out in shallow waters (depth of 5-8 in ) at distances of 50-100 in 

from the shore. Plankton samples taken with a conical net (30 cm diameter, 500 ýtm mesh 

size) were collected at two depths, at the surface (< 0.5 m depth) and near the bottom (<I 

in above the substratum). The net was equipped with a flowmeter (model 2030, General 

Oceanics, Miami) to measure the amount of water filtered and, during the retrieval of 

bottom samples, the net was equipped with a closing device (Fig. 3.1) to avoid 

contamination with material from upper layers. In addition, to avoid sampling waters 

mixed by the turbulence and drag produced by the propeller, the boat followed a circular 

trajectory at a speed of ca. I m. s-1. Initial bottom samples collected large amounts of 
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macroalgae, causing the net to clog and the propeller of the flowmeter to snag. Thus, tow 

duration was decreased to 3 min per sample. Salinity and temperature was measured at 

Im depth with a conductivity meter (model 30, YSI, Yellow Springs, Ohio). Plankton 

samples were preserved in 5% formaldehyde for sorting and identification in the 

laboratory. All density values were standardized as number of individuals per 10 M-3. 

Figure 3.1 Conical net used for plankton sampling (30 cm diameter). A) The net was equipped for 
bottom tows with a flowmeter, a5 kg depressor and a secondary rope used as closing device. B) 
Closed net during retrieval from bottom sampling. 

3.2.2 Sampling design and data analysis 

To test for differences in salinity and temperature between the years and between the 

tidal regimes, a two-way Analysis of Covanance (ANCOVA) was used. Factors tested 

were year (2000 vs. 2001, random factor), tidal phase (flood vs. ebb, fixed factor) and the 

covariate was the Julian day of the sampling date (used to standardize for the differences in 

the time of the year when sampling was made). Dates included in the analysis were the 

same as those used for the megalopal density (see next paragraph). Salinity was 

I/ Vx 
-transformed to meet homogeneity of variance assumption, and the assumptions of 

homogeneity of slopes and linearity of response were likewise met. ANCOVA was carried 

out using SPSS v. 10.1.3 (SPSS Inc., Chicago). 

A 4-way Analysis of Variance (ANOVA) was perfonned separately for each year to 

examine if the concentration of megalopae was affected by following factors: tidal regIme 
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(flood vs. ebb, fixed factor), date (4-level, random factor, nested in tide), exposure 

(sheltered vs. exposed, fixed factor), and depth (surface vs. bottom, fixed factor) (Fig. 3.2). 

Sampling design 

Tide (fixed) Flood Ebb 

//A\ 11n\ 

Date (random, nested) 12345678 

AAA 
exposure(fixed) E Sh E Sh E Sh E Sh 

Depth (fixed) SBSBSBS 

Replicates 1234 

Figure 3.2 General sampling design employed in the study of megalopal density. Factors tested 
were: tidal phase (flood and ebb tides), date (4 random dates), exposure to wave (E-exposed and 
Sh-sheltered), and depth (S-surface and B-bottom). 

The number of dates considered in each analysis was balanced by removing samples 

randomly from factors with replicates in excess. Statistical analyses were carried out using 

Gmav5 for Windows (Centre for Research on Ecological Impacts of Coastal Cities, 

University of Sydney, Australia), and post hoc SNK tests were carried out on significant 

interactions (Underwood 1997). Density of megalopae was ln(x+l) transforined, but failed 

to remove heterocedasticity. Analysis of variance is robust to departure from the 

assumptions when the experimental design is large (>5 treatments) and balanced 

(Underwood 1997); thus, the analysis proceeded with the null hypothesis being rejected at 

ce-level lower than the p-value of the Cochran's test for homogeneity of variance 

(Underwood 1981). 
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3.3 Results 

3.3.1 Salinity and temperature 

No general seasonal trend was observed for salinity. In 2000, mean salinity was 33.1 

ranging from 27.7 to 35.6, and in 2001, mean salinity was 32.2 and ranged from 29.6 to 35 

(Fig. 3.3). Assumption of homogeneity of regression was valid for the ANCOVA of 

Salinity (F(3,25)= 1.6; MS=3.208; p>0.05) and no sIgnIficant difference In sali ity was n 

detected between year or due to the tides (Table 3.1). Differences in salinity occurred only 

amongst the dates when sampling took place, but varied little within the dates (Fig. 3.3). 

Table 3.1 Summary of Ancova of Salinity to test the effect of year (2000 vs. 2001) and tidal regime 
(ebb vs. flood). Salinity was I/ Fx- -transformed for the analysis and factors tested were: year (2- 
level, random factor) and tide (2-level, fixed factor). Covariate was Julian date. N=32. ns. p>0.05 
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Figure 3.3 Mean salinity (± ISE) measured during sampling dates in 2000 and 2001. Means were 
calculated from 4 replicates. Data shown include values excluded for balancing the number of 
replicates in the ANCOVA. 
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Water temperature increased progressively from 12.6'C at the beginning of the 

sampling to a peak at 18'C in mid August in 2000. In 2001, temperature increased from 

12. PC in mid May to 16.80C at the end of August (Fig. 3.4). Assumption of homogeneity 

of regression slopes was met (F(3,25)= 1 
. 
6; MS=3.208; p>0.05) for the ANCOVA of 

temperature, and 2000 showed a significantly higher temperature than 2001; however, no 

difference due to tide was significant (Table 3.2). 

Table 3.2 Summary of Ancova of Temperature to test the effect of year (2000 vs. 2001) and tidal 
regime (ebb vs. flood). Factors tested were: year (2-level, random factor) and tide (2-level, fixed 
factor). Covariate was Julian date. N=32. ns. p>0.05 

Source df ms Fp 

year 1 2.6448 6.9491 P<O. 01 
tide 1 0.2229 0.5856 ns 
yearXtide 1 0.0256 0.0673 ns 
Error 27 0.3806 
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Figure 3.4 Mean temperature (±ISE) measured during sampling dates in 2000 and 2001. Means 

were calculated from 4 replicates. Data shown include values excluded for balancing the number 
of replicates in the ANCOVA. 
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3.3.2 Abundance and distribution 

In general, megalopae were rare in the plankton and when they were present in the 

samples, the coefficient of variation amongst replicates (taken a few minutes apart) was on 

average 160% (2000) and 146% (2001) (at a scale of tens of metres). Most samples were 

comprised of zeros (159 samples had no megalopae out of 176 samples examined in 2000, 

and 143 out of 160 samples in 2001), suggesting that megalopae might occur in small 

patches of swanning postlarvae. 

For the 2000 sampling, the mean ± SE volume of seawater filtered per tow was 

10.1 ± 0.3 m3 and, despite the large number of replicates collected (N=176), megalopae 

were present in only 10% of the samples. On these occasions, the mean density of 

megalopae reached 1.8 individuals. 10 M-3 in June (Fig. 3.5), indicating that the abundance 

of the megalopae in the plankton was nom-lally low, with occasional peak of high 

concentration. During these peaks of abundance, megalopae are possibly concentrated in 

patches as suggested by the larger variability amongst the replicates. For example, on 15 

3 June 2000, replicates varied from 0 to 12.6 individuals. 10 in- 
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Figure 3.5 Mean density (± ISE) of megalopae per collection date in 2000. Means were obtained 
pooling all replicates of each date. Note that sampling occurred during spring tides only. 

Density of megalopae during ebb tides was predominantly lower compared to flood 

tides and no megalopae were found in the bottom samples during the ebb tide (Fig. 3.6). 

However, the ANOVA showed a significant Interaction for depth, exposure and date 
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(F(6,96)=2.26, p<0.05) (Table 3.3). The post-hoc SNK tests for the interaction (Table 3.4) 

showed significantly higher densities of megalopae at the surface than on the bottom on 

three dates (two during flood and one during ebb tides). 

Table 3.3. Summary of the main effects of the ANOVA for 2000 sampling. Factors tested: 
tide, date (nested in tide), exposure and depth. ns. P> 0.05 

source df MS F p 
tide 1 1.034 1.55 ns 
date(tide) 6 0.665 4.88 P<0.01 
exposure 1 0.749 6.35 p<0.05 
depth 1 2.091 7.86 p<0.05 
tideXexposure 1 0.008 0.07 ns 
tideXdepth 1 0.452 1.70 ns 
exposureXdate(tide) 6 0.118 0.87 ns 
depthXdate(tide) 6 0.266 1.95 ns 
exposureXdepth 1 1.465 4.76 ns 
tideXexposureXdepth 1 0.191 0.62 ns 
depthXexposureXdate(tide) 6 0.307 2.26 p<0.05 
error 96 0.136 

The effect of exposure also showed significant differences in three SNK tests, when 

higher abundances were found on the exposed area (p<0.01), one during ebb and two 

during flood tides, but only on the surface waters. Therefore, the SNK tests as a whole, 

strongly indicated that in the exposed area, megalopae were predominantly at the surface, 

whereas at the surface,, they were more abundant in the exposed than in the sheltered areas. 

2000 
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-0 1.5 
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Figure 3.6 Mean density (±ISE) of megalopae per tidal phase/exposure on the surface and the 

bottom in 2000. Note that sampling occurred during spring tides only. 
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Table 3.4 Results of the post-hoc SNK tests for the significant interaction of factors 
depth-exposure-date (tide) in the 2000 sampling. ns. p>0.05; *p<0.05; **p<0.01. 

nested levels factor tested 
tide date exposure depth 
Ebb Jun23 Exposed ns 
Ebb Jul5 Exposed ns 
Ebb JU119 Exposed ns 
Ebb Aug2l. Exposed surface>bottom** 
Ebb Jun23 Sheltered ns 
Ebb Jul5 Sheltered ns 
Ebb JU119 Sheltered ns 
Ebb Aug2l. Sheltered ns 
Flood Junl. 5 Exposed surface>bottom** 
Flood Jun29 Exposed ns 
Flood Aug3 Exposed surface>bottom* 
Flood Augl6 Exposed ns 
Flood Jun15 Sheltered ns 
Flood Jun29 Sheltered ns 
Flood Aug3 Sheltered ns 
Flood Au216 Sheltered ns 

nested levels factor tested 
tide date depth exposure 
Ebb Jun23 bottom ns 
Ebb Jul5 bottom ns 
Ebb JU119 bottom ns 
Ebb Aug2l. bottom ns 
Ebb Jun23 surface ns 
Ebb Jul5 surface ns 
Ebb JU119 surface ns 
Ebb Aug2l surface exposed>sheltered** 
Flood Jun15 bottom ns 
Flood Jun29 bottom ns 
Flood Aug3 bottom ns 
Flood Augl6 bottom ns 
Flood Jun15 surface exposed>sheltered* * 

Flood Jun29 surface ns 
Flood Aug3 surface exposed>sheltered* * 

Flood Augl6 surface ns 
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Figure 3.7 Mean density (± ISE) of megalopae per collection date in 2001 sampling. Means were 
obtained by pooling all replicates of each date. Note that sampling occurred during neap tides only. 

For the 2001 sampling, the overall results were similar to those obtained in 2000. 

Mean volume filtered by the net per sample was 11.4 ± 0.3 M3 and the densities of 

megalopae observed were in the same order of magnitude as in 2000. The pattern of a 

predominance of low abundance reoccurred as megalopae were collected in only I I% of 

thesamples. The highest mean density occurred in June (0.9 individuals. 10 M-3) (Fig. 3.7), 

-3 and the highest density observed in the replicates was 6.3 individuals. 10 M. Megalopae 

were absent from the bottom samples during ebb tides as in the previous year (Fig. 3.8). 
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Figure 3.8 Mean density (± ISE) of megalopae per tidal phase/exposure on the surface and the 
bottom in 200 1. Note that sampling occurred during neap tides only. 
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The results of the ANOVA were similar to those obtained in 2000, ývhich also 

indicated that megalopal density was dependent on all three factors depth, exposure and 

date (F(6,96)=3.56, p<0.01) (Table 3.5). In general, the results from the SNK tests 

corroborated the findings from the previous year, indicating an even stronger pattern 

occurring during flood tides (Table 3.6). Significant differences in density of megalopae 

occurred only during flooding tides, further supporting the findings from 2000, which 

indicated that the abundance of megalopae was higher in surface waters than near the 

bottom. However, the effect of exposure to waves was less clear in 2001, and showed one 

significant test where density of megalopae was higher on sheltered shores than on 

exposed ones (Table 3.6). 

Table 3.5. Summary of the main effects of the ANOVA for 2001 sampling. Factors tested: tide, 
date(nested in tide), exposure and depth. ns. P> 0.05 

source df ms F p 
tide 1 1.244 6.48 p<0.05 
date(tide) 6 0.192 2.16 ns 
exposure 1 0.001 0.00 ns 
depth 1 1.718 14.03 p<0.05 
tideXexposure 1 0.000 0.00 ns 
tideXdepth 1 0.846 6.91 p<0.05 
exposureXdate(tide) 6 0.555 6.26 P<0.01 
depthXdate(tide) 6 0.122 1.38 ns 
exposureXdepth 1 0.025 0.08 ns 
tideXexposureXdepth 1 0.043 0.14 ns 
depthXexposureXdate(tide) 6 0.316 3.56 P<0.01 
error 96 0.089 

3.4 Discussion 

3.4.1 Spatial and temporal distribution 

For most benthic marine invertebrates, larval transport during return to nursery areas is 

controlled by oceanographical processes which are generally stochastic in nature, causing 

high temporal and spatial variability in the local supply of larvae (Okubo 1994, Shanks 

1995, Garvine et A 1997). In addition, the patchy nature of zooplankton distribution is a 

phenomenon that has been deschbed at all levels of spatial and temporal scales (Haury et 

al. 1978). Consequently, patchiness causes large variability in local larval abundance and 
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Table 3.6 Results of the a posteriori SNK tests for the significant interaction of factors depth- 
exposure-date (tide) of the year 200 1. ns. P> 0.05; *p<0.05; * *p<0.0 1. 

nested levels factor tested 
tide date exposure depth 
Ebb Jun4 Exposed ns 
Ebb Jun2l. Exposed ns 
Ebb Au92 Exposed ns 
Ebb Aug3l. Exposed ns 
Ebb Jun4 Sheltered ns 
Ebb Jun2l. Sheltered ns 
Ebb Aug2 Sheltered ns 
Ebb Aug3l. Sheltered ns 
Flood Mayl. 5 Exposed surface>bottom** 
Flood May29 Exposed ns 
Flood Jun16 Exposed ns 
Flood Jun28 Exposed surface>bottom** 
Flood Mayl. 5 Sheltered ns 
Flood May29 Sheltered ns 
Flood Jun16 Sheltered surface>bottom** 
Flood Jun28 Sheltered ns 

nested levels factor tested 
tide date depth exposure 
Ebb Jun4 bottom ns 
Ebb Jun2l bottom ns 
Ebb Au92 bottom ns 
Ebb Aug3l. bottom ns 
Ebb Jun4 surface ns 
Ebb Jun2l surface ns 
Ebb Aug2 surface ns 
Ebb Aug3l. surface ns 
Flood Mayl 5 bottom ns 
Flood May29 bottom ns 
Flood Jun16 bottom ns 
Flood Jun28 bottom ns 
Flood Mayl 5 surface exposed>sheltered** 
Flood May29 surface ns 
Flood Jun16 surface sheltered>exposed** 
Flood Jun28 surface exposed>sheltered** 
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can mask the effects of processes controlling the structure of species assemblages. In 

decapods, the variability of abundance of larvae and postlarvae over spatial and temporal 

scales has been described widely (e. g. Olmi et al. 1990, van Montfrans et al. 1995, Pereira 

et al. 2000, Moksnes & Wennhage 2001, Gonzalez-Gordillo et al. 2003) and large-scale 

trends of abundance have been difficult to determine even within single speci is ies (Rabalai 

et al. 1995, van Montfrans et al. 1995). 

The data presented here showed high variability in megalopal abundance at small 

spatial (metres) and temporal (min) scales; nevertheless, there were significant differences 

in densities among the sampling areas and between dates. In addition, most samples were 

comprised of zeros suggesting that return of the megalopae might occur through 

punctuated peaks of small patches of swarming postlarvae. These peaks are possibly not 

easily detectable in discrete samplings or without high sampling effort. During the 

collection of live specimens for settlement experiments (Chapter 4), the formation of 

patches (swarms) of megalopae of Necora puber was noted near the eastern end of the 

Breakwater (Plymouth Sound) (Fig. 2.1). On these occasions, megalopae were collected in 

relatively large numbers within these slicks (of <50 in), but nowhere else. Examples of 

similar variability in planktonic abundance were recorded in the Atlantic coast of the USA, 

where daily variability of Callinectes sapidus megalopae among sites was observed within 

and across the Atlantic estuaries (van Montfrans et al. 1995); the same was reported for the 

Gulf of Mexico estuaries (Rabalais et al. 1995). 

At the scale of 103 metres, differences in megalopal abundance were not always 

consistent between the exposed and sheltered areas. During most dates, there was no 

difference in density, possibly related to frequent low abundance in the water column and 

high variability over small scales; however, on 5 occasions, SNK tests suggested that in 

surface waters, densities at the exposed area were significantly higher than at the sheltered 

one during flood tides. As the exposed area is in the outer region of Plymouth Sound, 

megalopae that arrive from offshore to coastal areas could be concentrating there until 
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inward currents transported some to the sheltered shores, thus proportionally lower 

numbers might be reaching inner shores. 

The magnitude of the densities observed in each year was similar, suggesting that the 

mechanism used by the megalopae to return to coastal areas is relatively consistent. 

Moreover, daily density values observed in this study were similar In magnitude to those 

reported for Necora puber in shallow waters (<30 m) off the west coast of Cotentin 

(Normandy, France) (Martin 1980). Nevertheless, inter-annual variability in megalopal 

density is common (e. g. van Montfrans et al. 1990, McConnaughey et al. 1995, Olmi 1995, 

van Montfrans et al. 1995, Clancy & Cobb 1997) and highlights the importance of long- 

term data sets for a more robust inter-annual assessment of larval supply. 

3.4.2 Tidal transport 

Selective tidal-stream transport (STST) is a mechanism that has been observed 

frequently for larvae of estuarine species with oceanic larval development (Forward & 

Tankersley 2001). The best described model of STST is for the blue crab, Callinectes 

sapidus, for which the underlying behavioural controls have been described in detail and 

are based on environmental cues (Forward & Tankersley 2001, Tankersley et al. 2002). 

The mechanisms controlling postlarval behaviour of C. sapidus during the flood-tide 

transport involve four stages (Forward et al. 2003a). (1) Megalopae remain near the 

bottom dunng the day and dunng noctumal ebb tides; swimming is inhibited dunng the 

day by light (Forward & Rittschof 1994) and during the ebb tide by a decrease in salinity. 

(2) Megalopae ascend from the bottom during the flood in response to increase in salinity 

(DeVries et al. 1994, Tankersley et al. 1995). (3) Swimming is sustained and megalopae 

remain in the water column stimulated by turbulence from the flood currents (Welch et al. 

1999, Welch & Forward 2001). (4) Turbulence decreases at the end of flood tide, cueing 

megalopae to stop swimming and descend from the water column to settle (Tankersley et 

al. 2002). 
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STST has been demonstrated also for megalopae of other swimming crabs, including 

two unidentified Liocarcinus spp (Gonzalez- Gordi I lo et al. 2003) and the European shore 

crab Carcinus maenas, as a mechanism to reach shallow coastal areas and/or enter 

estuaries (Queiroga et al. 1994, Zeng & Naylor 1996, Queiroga 1998a). The range of 

vertical migration, and the levels of synchrony with the tidal cycle, dictate the extent of 

transport achieved by an organism, which varies geographically and among taxa (Forward 

Tankersley 2001). Even amongst conspecifics, geographical variation in vertical 

migration behaviour occurs. Megalopae of C maenas acti igrate up "vely use STST to in* 

estuaries with strong tidal cycle (Queiroga 1998a); however, in a micro-tidal system, where 

surface currents were mostly associated with atmospheric pressure rather than tidal 

changes in water level, megalopae were not observed to di II in 'splay vertical migration i 

relation to the tide, but only to light levels (Quelroga et al. 2002). 

In the present study, megalopae occurred in surface waters on both, ebb and flood 

tides, but were on average, more abundant during flood tide. The patterns observed were 

consistent in 2000 and 2001, and indicated that, on average, the majority of the pelagic 

megalopae were transported shoreward. In addition, because of the proximity of the 

samples to the shore, where settlement occurs, megalopae would not be required to 

undergo full vertical migration to reach littoral areas. On the contrary, full use of STST 

could potentially take megalopae further up the estuarial region of Plymouth Sound. 

Simulation of surface currents in Plymouth Sound using tracers , indicated that some 

particles released at the eastem entrance of the Sound at the beginning of a flood tide, 

could be carried into the Sound and up to the mouth of the River Tamar (see Fig. 2.3) 

dunng flooding tides (Siddom et al. 2003). 

Although megalopae were collected in low numbers on the bottom during flood tides 

n (sheltered areas), they were cons'stently absent from bottom samples du ing ebb t1des. A 

possible explanation is that the individuals near the bottom dunng flood tide have settled 

onto the substratum during the ebb tide, and are therefore, unavailable for collection with 
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the plankton sampler used in this study. At the surface, the decrease in density of 

megalopae during ebb could have been caused by animals having small vertical migratlons 

to mid-waters and dispersing more evenly in the water column. For Carcinus niaenas, 

Queiroga (1998) showed that, during the ebb tide, megalopae were found throughout the 

water column with no significant difference between the depths, but in lower numbers than 

during flood tide. Alternatively, megalopae of Necora puber could have migrated to the 

bottom and settled, as observed for the megalopae of Callinectes sapidus, which rapidly 

dropped out of the water column and showed maximum settlement during the slack water 

before the ebb tide (Welch & Forward 2001, Tankersley et al. 2002). However, this 

alternative appears unlikely since some megalopae of N. puber remained at the surface 

during ebb tides and none were collected in bottom waters. Instead, their presence in the 

surface during ebbs suggests a weak effect of tidal regime on vertical migration. 

Many potential cues have been proposed to control the vertical migration of 

invertebrates during flood-tide transport (Forward & Tankersley 2001). Change in salinity 

and riverine odours were amongst the cues demonstrated for Callinectes sapidus, and these 

cues may also be the major components in the initiation of the vertical migration for 

Necora puber. A recent 3D model of the circulation in Plymouth Sound (Siddorn et al. 

2003) has shown that change in salinity is influenced strongly by the discharge from the 

River Tamar, and is consistent enough with the tidal cycle; hence, tidally driven changes in 

salinity could be used by the megalopae as a cue to identify a flooding tide flow. The 

inhibition of swimming during the ebb tide for Callinectes sapidus has been correlated 

with low salinity from parcels carried during ebb tide (Welch & Forward 2001). In the 

present study, odours from suitable susbtrata of the intertidal area could also be carried 

during ebb tides and stimulate the migration of megalopae of Necora puber. The detection 

and response to cues from nursery areas have been shown recently for premolt megalopae 

of C sapidus (Tankersley et al. 2002, Forward et al. 2003b). At the exposed shores, 

megalopae were absent from the bottom samples (in both years) and highest abundances 
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were found near the surface,, suggesting that nverine or intertidal cues in this area may be 

weak and have not promoted megalopae to perfon-ning vertical migration or utilize the 

bottom waters. 

Studies on the ecology of megalopae have shown a higher abundance during the 

dawn/dusk and night period compared to day-time, and several studies demonstrating tidal- 

stream transport for megalopae have shown that most of the transport occurred during 

night-time (Forward & Tankersley 2001 and references therein). The present study did not 

sample during the night, but evidences of high larval predation by planktivorous fishes 

during daytime (Morgan 1995, Hovel & Morgan 1997) suggest that nocturnal use of flood- 

tide transport by crustacean larvae could be the preferred period of shoreward transport. In 

northeast Mediterranean crabs, the commonest pattern of occurrence of megalopae in 

superficial waters is during or around night-time (Abello & Guerao 1999, Gonzalez- 

Gordillo et al. 2003). Particularly in coastal areas, evidence suggests that Liocarcinus spp 

use nocturnal flood tide to re-invade inlets in southwest Spain (Gonzalez-Gordillo et al. 

2003). In contrastl megalopae of Carcinus maenas showed high abundance during both 

day and night flood tide (Queiroga 1998a), thus, indicating that diel patterns in vertical 

migration of megalopae vary amongst related taxa and appear to be species specific. 

In summary, the results of this chapter indicate that during the day: (i) megalopae of 

Necora puber are present in higher abundance near the surface than the bottom of the 

water column; (ii) megalopae respond to the flood/ebb cycle by decreasing density in the 

water column during the ebb tides; and (111) hydrodynamic characteristics of a site, such as 

exposure to waves may have an effect on the abundance of megalopae and initiation of 

"es on the pelagi migration to bottom waters. Further studi ic stages of N. puber should 

concentrate in solving whether circadian patterns of vertical distribution affect horizontal 

transport as they may have great Implicatlon for the survIval and d1spersal of the recrults. 
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4.1 Introduction 

The first step in determining processes controlling recruitment of benthic organisms is 

understanding the variation in the arrival of settlers. This includes: (1) production of 

larvae, (2) their dispersal in the plankton, (3) mortality while dispersing, and (4) the 

settlement of the larvae (Underwood & Keough 2001). For meroplanktonic animals, the 

transition to the benthos (or settlement) is a critical period in their life cycle, and can be a 

major influence on the structure of local populations (Underwood & Fairweather 1989). 

Settlement of crabs, like many benthic invertebrates, can be influenced by chemical 

and/or physical cues, including surface texture or chemistry and presence of microbial 

films or other benthic species (see reviews by Pawlik 1992, Rittschof et al. 1998). Blue 

crab Callinectes sapidus megalopae avoid odours from potential predators (Welch et al. 

1997, Diaz et al. 1999), and modify swimming behaviour according to turbulence and 

presence of odours from nursery area vegetation (Welch et al. 1999, Welch & Forward 

2001, Forward et al. 2003b). Similarly, megalopae of the porcelain crabs Petrolisthes 

cinctipes and P. eriomerus have aggregated settlement with adults in response to 

conspecific chemical cues (Jensen 1989,1991). 

Although crabs and lobsters settle in a wide variety of habitats (Cobb et al. 1997, Booth 

2001), settlement occurs primarily onto structurally-complex habitats, such as oyster shells 

(Fernandez et al. 1993a), macroalgae (Hedvall et al. 1998), hydroids (Stevens 2003), 

gravel (Stevens & Kittaka 1998) and cobble (Linnane et al. 2000). High levels of mortality 

during settlement or soon after are observed widely in marine invertebrates and can 

substantially alter the distribution of recruits and the structure of the population (Gosselin 

& Qian 1997, Hunt & Scheibling 1997). Settling in an unfavourable habitat that provides 

* An article based on the results presented in this Chapter has been published In the Journal Marine Ecology 

Progress Series, 2004, Vol. 272: 191-202 (Appendix 1) 
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poor shelter could lead to high predation as reported for crabs (Eggleston & Annstrong 

1995, Pile et al. 1996, Moksnes et al. 1998, Loher & Annstrong 2000, Luppi et al. 2001) 

and lobsters (Incze & Wahle 1991, Wahle & Steneck 1991,1992, Cobb & Wahle 1994). 

Despite decapod postlarvae generally being strong swimmers (Cobb et al. 1989, 

Luckenbach & Orth 1992, Fernandez et al. 1994), tidal stream velocities commonly exceed 

their swimming capabilities and during the postlarval. stage, flow plays a major role in 

dispersal. Flow can affect settlement of marine organisms at different levels (see reviews 

by Butman 1987, Abelson & Denny 1997). Firstly, it may exert hydrodynamic forces on 

settlers, affecting encounters with substrata and behaviours following encounter (e. g. 

Pawlik & Butman 1993). Secondly, flow may act as a settlement cue which induces active 

behaviour of settlers; recent advances in the understanding of the mechanisms controlling 

selective flood-tide transport have demonstrated the importance of turbulence (Forward & 

Tankersley 2001). Finally, flow may be a modifying factor affecting the various 

settlement cues mentioned above. 

Necora puber is an abundant crab in the shallow waters of British rocky shores (Ingle 

1983), and juveniles are found commonly in the lower intertidal (Choy 1986a, Norman 

1989). The ecology of the benthic adult has been examined in many studies (e. g. 

Gonzalez-Gurriaran 1985a, b, Choy 1988, Norman & Jones 1992,1993, Gonzalez- 

GuMaran et al. 1995, Freire et al. 1996). However, there is limited understanding of the 

planktonic phase of the life cycle of N. puber, despite the classical works of Lebour (1928, 

1947). There are some reports on larval biology (Alvarez-Ossono et al. 1990, Choy 1991, 

Mene et al. 1991, Valdes et al. 1991) and postlarval ecology (e. g. Lindley 1986,1987) but 

none, to my knowledge, on the transition from pelagic to the benthic periods of the life 

history of this crab. 

To increase understanding of the integration of these environments, and the processes 

controlling the abundance and distribution of benthic populations of N. puber, it is 

essential to determine the processes involved in the initial distribution of settlers. As 

46 



Chapter4 Settlement of megalopae and early juveniles 

illustrated above, the former is a direct consequence of water flow conditions and larval 

behaviour; therefore, the following questions have been investigated: (1) Does flow affect 

the passive distribution of settlers? (2) Is there an active component during settlement of 

megalopae and early juveniles of N. puber under hydrodynamic conditions? (3) Do first 

juvenile instars and megalopae settle in the same habitats? (4) Is there a diel variation in 

the settlement patterns of megalopae? 

4.2 Materials and methods 

4.2.1 Field settlement of megalopae. 

Abundances of sublittoral megalopae (this chapter) and Juveniles (described in Chapter 

5) were obtained using a diver-operated suction sampler on 7 and 21 of May 2002; on each 

date only 2 shores were sampled due to logistical constraints. The sampler consisted of a 

water dredge, and it works in a similar way to an airlift. The main advantage lies when 

sampling at shallow depths, where the water dredge can continue to produce suction 

effectively. 

The sampler 

The water dredge (Fig. 4.1) was constructed with PVC pipes using a design adapted 

from Dean (1995). The sampler was 1.60 in in length (Fig. 4.2) and suction was produced 

from water pumped down through a 10 in hose to produce suction on the venturi section of 

a 45 degree Y-shaped pipe. Material was suctioned from a 53min diameter and collected 

on a nylon mesh bag of Imm. mesh, which could be changed underwater for successive 

quadrats. 
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Sampling consisted of suctioning quadrats IxIm on the seabed at approximately 1-5m 

below Chart Datum and involved 2 divers, one carefully lifting and removing rocks 

individually while the other operating the suction sampler. Quadrats were haphazardly 

placed on 2 substrata chosen for the study: (1) pebble/cobble/boulder (which will be 

referred to generally in this chapter as 'boulders') and (2) bedrock with algae covering at 

least 50% of the quadrat. 

Depth in relation to Chart Datum was detennined by subtracting the height of the water 

from tide tables at the time of sampling from the depth of the locality sampled. Efficiency 

of the sampler at collecting small juveniles (<20 mm CW) was quantified using marked 

animals and estimated to be less than 60%. No efficiency for sampling megalopae was 

estimated, and is assumed to be higher than for juveniles due to their limited swimming 

ability in comparison to the suction power of the sampler. Samples were fixed in 5% 

formaldehyde for sorting in the laboratory. 
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Figure 4.1 Sublittoral suction sampler. Divers controlled the suction by adjusting the valve. 
Nozzle was 53 mm in diameter and total length of the sampler was 1.60 m. 
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Figure 4.2 Schematic diagram of the suction sampler used to collect sublittoral samples. The 
sampler was powered by a water pump on the boat and suction levels were controlled by the diver 
using a valve near the suction nozzle. Total length of the sampler was 1.60 m and the diameter of 
the suction nozzle 53 mm. 

Hypotheses tested 

The purpose of the field expenment was to examine the distribution of megalopae in the 

natural substrata where early juveniles are commonly found, and to achieve that the 

following hypotheses were tested: (1) Settlement of megalopae differs between the boulder 

and algal-bedrock substrata. (2) Abundance of megalopae is different amongst the shores. 

Sampling design and statistical analysis of field study 

Sublittoral samples were collected on two substrata: (1) bedrock with algal cover and 

(2) boulder-cobble, on all four shores described on Chapter 2 (Batten Bay, Jennycliff Bay, 

Andurn Point and Heybrook Bay). Five replicates were collected for each substrata/shore 

treatment. The density of individuals (per M2) in these two habitats was compared using 

ANOVA. The factors tested were: (i) substratum (2-level fixed factor), and (ii) shore (4- 

level, random factor) as a spatial replication. Density of megalopae was 

log(x+ I)-transformed to meet homogeneity of variance, and SNK tests were used for post- 

hoc pairwise comparisons. 

4.2.2 Flume experiment 

An initial attempt to cultivate megalopa from eggs provided poor quality megalopae. 

Swimming speed and frequency of cultivated megalopae were much lower than observed 

49 



Chapter 4 Settlement of megalopae and earlvj*uveniles 

in wild ones; thus, it was judged not suitable f or the test of settlement in the flume. 

Despite uncertainties identifying live megalopae, wild ones were used In the experiment as 

results from freshly collected megalopae were expected to be more realistic than from 

cultivated ones. 

Collection and maintenance of specimens 

Megalopae were collected as described in Chapter 3, two to three days prior to the trial 

runs. However, only surface tows were taken and samples were pre-sorted on board. All 

specimens resembling megalopae of Necora puber were kept in an iced cool box with 

aeration. Megalopae were transported to the laboratory immediately after collection 

finished and maintained under similar conditions of salinity and temperature as in the 

envirom-nent. First juvenile instars of N. puber were cultivated from wild megalopae and 

only first or second juvenile instars were used. In this chapter, they will be generally 

referred to as 'juveniles'. 

Flow tank 

All experiments were carried out using an annular flume constructed of acrylic material 

(full description is given by Widdows et al. 1998). External diameter was 64 cm and the 

water channel dimensions were 10 cm width by 40 cm height (Fig. 4.3). Flow was induced 

by a rotating annular drive plate on the surface of the water at a height of 20 cm above the 

substrata. The most important benefit of an annular over a linear flume is a continuous 

system where megalopae can face a flow regime for many hours as experienced in the 

envirom, nent. Due to the curvature of the channel, small differences in flow in the inner 

and outer walls of the flume may cause minor secondary radial flows, nonetheless these 

can be minimized by reducing the channel width (see Fukada & Lick 1980). Current 

velocity was measured in the middle of the channel, 10 cm above the substratum, using an 

electromagnetic current flow meter (Valeport Model 800-175) inserted via a port in the 

base of the flume. Flow measurements were taken after the trials to avoid interference of 

the probe with the settlement behaviour. At the rotating plate speed used (34 rpm), and 
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with the addition of substrata, the flume generated a current velocity of ca 6 cm-s-1 which 

is broadly representative of benthic conditions in Plymouth Sound at neap tides. 
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Figure 4.3 Schematic diagram of the annular flume. (A) Top view of substrata arrangement. 
Shadings indicate differences in substrate types; all possible combinations of substrate type were 
used in the experiment. (B) Side view of the annular flume. 

Hypotheses tested 

The main purpose of the experiment was to determine the factors affecting substratum 

selection of megalopae and early juveniles of N. puber under flow conditions. The 

following hypotheses were tested: (1) passive deposition of megalopac or early juveniles 

creates a non-even distribution. Passive distribution of dead animals was tested against the 

null hypothesis of an even disti-ibution to determine the importance of flow on the dispersal 

of settlers. (2) Passive deposition differs from active settlement for each developmental 

stage. Distribution of live animals was tested against dead ones to provide the extent of 

active substratum selection. In both of the tests above, dead crabs were used, as these are 

identical to live crabs in terins of cross-sectional area, drag and buoyancy but without the 

ability to cling. (3) Substratum selection amongst megalopae and early juveniles differs. 

Distribution of live megalopae was tested against distribution of I've early Juveniles to 

deten-nine ontogenetic variation of settlement selection. (4) Substratum selection of 
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megalopae vanes according to time of day. Distribution of animals at night was tested 1. 

against distribution from day-time to examine possible diel difference in selection or 

strategies during settlement. Evidence from the blue crab Callinectes sapidus showed no 

difference in planktonic dispersal between day and the night for first and second instars, 

and only a tendency for greater dispersal at night for third through fifth instars (Blackmon 

& Eggleston 200 1); thus only night trials were run for live N. puber juveniles. 

Experimental design 

Trials were carried out during the summer and autumn of 2002 at the Plymouth Marine 

Laboratory, Plymouth, U. K. The design employed followed the pioneering study of 

Hedval et al. (1998) using an annular flume. Four substrata of differing structural 

complexity were chosen for the study (Fig. 4.4): (1) a red macroalga Mastocarpus stellatus 

with a complex 3-dimensional structure, hereafter referred to as "alga". This alga is 

reasonably abundant on the rocky shores where early juveniles are commonly found, 

further details of M stellatus can be found in Hiscock (1986). It was chosen as a natural 

complex structure that represents the lower intertidal area and possessed biotic cues. 

Individual branches of the alga were attached to a mesh to create a uniform height of 5 cm 

and stems were evenly distributed about 2 cm apart. This density was lower than on the 

shore, but was chosen due to the logistics of frequently replacing decaying or damaged 

branches. (2) An artificial grass (AstroturfTM), with "leaves" of 2 cm long, 2 mm width 

and about 1- 2 mm apart was chosen as a habitat with complex structure that lacked biotic 

chemical cues. Preliminary studies had shown that megalopae and juvenile N. puber could 

get between the blades. Mats were washed in hot water, then soaked in filtered seawater (I 

gm) for five days prior to the experiment to minimise traces of manufactunng chemIcals. 

(3) Pebbles, ranging from 2 to 6 cm diameter, were collected from the intertidal area. This 

substratum was chosen as a structurally less complex habitat. (4) Sand, an unstructured 

habitat, was collected from the same intertidal area, sieved through a2 mm mesh size sieve 
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to remove small pebbles. Substrata (3) and (4) were thoroughly hand cleaned of visible 

biota, washed in hot water and air-dried. 

Figure 4.4 Substrata used in the flume experiments: (A) Astroturf, (B) pebble; (C) red macroalgae, 
Mastocarpus stellatus; and (D) sand. 

The bottom of the flume channel was divided into 4 sections and each was covered with 

one of the substrata (Fig. 4.3A). The circular arrangement of the four substrata was 

permutated in six different ways, minimizing the possible effect of the order of the 

substrata; each treatment was replicated with all six possible permutations, except the 

dispersal of dead megalopae where five replicates were perforined. Flow velocity used 

was ca 6 cm. s-1, and below the velocity in which sand erosion was observed. To reduce 

additional turbulence incurred by difference in height from edges of substrata, Astroturf 

(the lowest one), was raised by adding acrylic plates. To give clear differences in 

substrata, 6 cm gaps were left between sections and covered with a acrylic plate at the 

same horizontal level of the substrata. Rotation of the flume drive plate was initiated at 

least 30 min prior to specimens being introduced through the gap between the rotating lid 

and the flume outer wall; 40 specimens per trial were released, 10 on top of each 
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substratum whilst the flume was running. Tests of nocturnal settlement were initiated 

shortly after natural dusk time and lasted for 9 11. Daytime experiments started around 

midday and lasted 6 h. At the end of each experiment, acrylic plates were placed vertically 

amongst the substrata sections to avoid movement of megalopae or crabs during removal 

of substrata for counts. 

Passive deposition was tested using freshly anaesthetized and killed animals as initial 

trials have shown sinking rates to differ from those of preserved specimens. Runs lasted 

for only 2h to avoid any changes in sinking rate due to decomposition of specimens. 

Data analysis 

Due to the occurrence of nil values, data were (x + 1) transformed to permit the taking 

of In values. A replicated goodness of fit test (Sokal & Rohlf 1995) was used to compare 

proportions of settlement on the substrata. When the null hypothesis of pooled data was 

rejected, an additional analysis was performed excluding the substratum with highest 

contribution to the G value and the level of p was adjusted accordingly (Sokal & Rohlf 

1995). In addition, the net response (residuals obtained by subtracting passive deposition 

of dead animals from distribution of live specimens) from pairing trials with identical 

substrata arrangement was calculated for each substratum at each time of day tested. 

4.3 Results 

4.3.1 Observation ofswimming 

Usually, deposition of dead megalopae took less then I minute while dead Juveniles 

sank within 10 seconds. On some occasions, dead megalopae were carried for a distance 

over the sand section before they stopped; this secondary transport was not observed on the 

other substrata or with dead juveniles. Most live megalopae settled within 1-2 minutes 

after being introduced to the flume, but it was common for a few individuals (1 -5) to swim 

throughout the trial. Megalopae swam in short horizontal bursts; some maintained position 

ith a tendency to swi or at times moved against the flow for up to 4 seconds wl im upwards. 
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However, most were carried with the flow and settled during the experiment; fe", animals 

were observed swimming after 6 h. At the end of night trials, after separation plates Nvere 

placed among the substrata and light was used, some megalopae appeared to show positive 

phototaxis. No juvenile was found swimming at the end of trials and all settled in a few 

seconds after being introduced to the flume. 

4.3.2 Field data 

Sublittoral samples also collected a large amount of algae, particularly kelps and red 

macroalgae. The following genera were amongst the most abundant: Delesseria, 

Phycodrys, Mastocarpus, Ceramium, Plocamium, and Lomentaria. 

Abundance of megalopae in the samples was low, and only 8 were collected in total. 

Nevertheless, results were consistent amongst the shores and no megalopae of Necora 

puber were found on samples from the boulder habitat (Fig. 4.5). 
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Figure 4.5 Mean density of megalopae on algae cover and boulder substrata on each shore (Andurn 

Point, Heybrook Bay, Jennycliff Bay and Batten Bay). Bars show mean density (megalopae. m-1) 

SE. 
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Due to the high variability and small number of replicates, detection of the differences 

by the ANOVA was difficult. As the preliminary test revealed no significant effect of the 

interaction, t is component from the ANOVA was pooled to increase the sensitivity of the 

ANOVA. This procedure performs a more powerful test provided the variance within 

samples is not significantly different than zero (Underwood 1997). The results with the 

pooled component are summarized on Table 4.1. 

Table 4.1 Summary of ANOVA results of density of megalopae. Factors tested were: shore 
(Batten Bay, Jennycliff Bay, Andurn Point, Heybrook Bay); and substrata (algae covered bedrock, 
boulder). Data was log(x+1) transformed and error component from the interaction was pooled. ns- 
p>0.05 

Source df ms F p-value 
substrata 1 0.6175 7.49 P<0.01 
shore 3 0.0723 0.88 ns 
substrataXshore pooled data 
error 32 0.0833 

4.3.3 Substratum selection in theflume 

On average, recovery rate of dead megalopae and Juveniles was above 99%, likewise 

that of live megalopae and juveniles was above 97%. Moulting Erom megalopa to juvenile 

crab instar occurred on all night runs, ranging from I to 10 individuals, which suggests that 

megalopae used in the expenment were competent to metamorphose and ready to settle. 

Dispersal pattern of dead animals was significantly heterogeneous amongst replicates. 

Results from pooled data showed that, under the hydrodynamic conditions tested, a non- 

even distribution of the dead megalopae was produced (Table 4.2, Fig. 4.6). 

Settlement of live megalopae occurred mostly on complex substrata, in a similar pattern 

to the distribution of dead specimens (Fig. 4.6). Although overall patterns amongst 

replicates of live megalopae were highly variable, their deviations in relation to expected 

frequencies from the distribution of dead megalopae were consistently positive towards 

algae and pebbles, and negative to Astroturf. As a result, the G values of pooled data for 

day and night trials were both highly significant (Table 4.3), supporting the hypothesis of 

active habitat selection. 
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Table 4.2 Summary of replicated goodness of fit tests to test the null hypothesis of even 
distnbution. The data were (x+l) transformed to allow for zeroes. Each replicate was 
tested separately, followed by the test of all the data (GTotal), the pooled data (Gp"01), and 
the test of heterogeneity (GHet). The distributions of. Meg(dead) = dead megalopae; 
Juv(dead) = dead Juveniles; were tested against the extrinsic hypothesis of Even = even 
distnbution. *p<0.05, **p<0.01, ***p<0.001, (ns): p>0.05 

replicates 
Distnbution 123456 GTotal Gp,, ol 

GFIet 

df 3 3 3 3 3 15 3 12 
Meg(dead) vs. Even G 18.8 4.1 26.8 16.8 32.4 99.0 76.8 22.2 

p (ns) *** 

df 3 3 3 3 33 18 3 15 
Juv(dead) vs Even G 37.7 3.5 14.5 2.1 6.5 8.8 76.2 32.2 40.9 

1) (ns) (ns) (ns) 

Frequencies of live megalopae found on algae, pebbles and sand were, on average, 

higher than those of dead megalopae distribution by 10,10 and 1% at night, and 2,5 and 

3% during day-time, respectively (Fig. 4.6). In contrast, Astroturf showed not only the 

highest residuals on average (Fig. 4.7a), but also a negative effect with the proportion of 

settlement reduced by 19 and 20% at night and during day-time, respectively (Fig. 4.6). 
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Figure 4.6 Mean proportion of dead megalopae, megalopae during the daytime and during night- 

time for each substratum (± SE). 
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Examination of the contribution of each substratum to the G value for the live 

megalopae treatments suggested that settlement on Astroturf was one of the main factors, 

and an a Posteriori test was carried out excluding the settlement on the artificial 

substratum. Data (as a whole) continued to show poor fit to the null hypothesis of passive 

distribution; nevertheless, pooled data showed no significant difference for the nocturnal 

period (Table 4.3), suggesting that at night, differences in the settlement pattern in relation 

to the distribution of dead megalopae occurred mainly on Astroturf. 

When the diel component was tested, the distnbution of live megalopae was 

significantly affected by the time of day (Table 4.4) and results from mean residuals 

suggested that net response on complex substrata (algae, pebbles and Astroturf) tended to 

be lower during day-time than at night-time (Fig. 4.7a). 
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Figure 4.7 Mean net response (counts from live animal minus counts from dead animal trials) of: 
(a) megalopae during day and night-time; (b) megalopae (meg) and juveniles Ouv) from night-time 
(± SE). 

Once more, Astroturf was the largest contributor to the G value and the pooled data 

from the analysis with Astroturf excluded indicated no difference in the pattern of 

settlement due to time of day (Table 4.4). 
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Table 4.3 Summary of replicated goodness of fit tests to test the hypothesis of active substratum 
selection. The data were (x+l) transformed to allow for zeroes. Each replicate was tested 
separately, followed by the test of all the data (GTotal)) the pooled data (Gp,,,,, ), and the test of 
heterogeneity (GHet). The distributions of: Meg(day) = live megalopae during daytime; Meg(night)) 

live megalopae during night-time; Juv(night) = live juveniles during night-time; were tested 
against the extrinsic hypotheses: Meg(dead) = dead megalopae; Juv(dead) = dead juveniles. 
*p<0.05, **p<0.01, ***p<0.001, (ns): p>0.05. Corrected probability values for substratum 
excluded test are: *p<0.025, **p<0.01, (ns): p>0.025 

replicates 

Distribution 12 345 6 GTotal Gpol GHet 

df 33 333 3 18 3 15 
Meg(day) vs. 
Meg(dead) G 4.0 18.4 11.8 0.7 9.1 18.1 62 20.4 41.6 

tncý tn C, 

Meg(night) vs. 
Meg(dead) 

Juv(night) vs. 
Juv(dead) 

Meg(day) vs. 
Meg(dead) 

F kilo/ kIA01 

df 3 3 3 3 3 

G 21.4 5.6 12.4 22.6 2.8 
p (ns) *** (ns) 

df 3 3 3 3 3 

G 4 1.0 3.4 0.6 9.8 
p (ns) (ns) (ns) 

As troturf excluded 

df 2 2 2 2 2 

G 3.7 4.4 4.2 0.6 8.5 
p (ns) (ns) (ns) (ns) 

3 18 3 15 

18.3 82.7 48 34.7 

3 18 3 15 

10.0 33.3 11.4 21.8 
(ns) 

2 12 

12.8 35.2 

2 10 

8.5 25.7 

df 2 2 2 2 2 2 12 2 10 
Meg(night) vs. 
Meg(dead) G 0.6 1.3 8.9 16.7 1.1 1.7 29.7 5.8 23.8 

p (ns) (ns) (ns) (ns) (ns) 

df 2 2 2 2 2 2 12 2 10 

Juv(night) vs. 
Juv(dead) G 3.3 0.4 2.1 0.5 2.6 5.0 14.0 0.8 13.2 

p (ns) (ns) (ns) (ns) (ns) (ns) (ns) (ns) (ns) 
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Table 4.4 Summary of replicated goodness of fit tests to test the hypothesis of diel variation in 
substratum selection. The data were (x+l) transformed to allow for zeroes. Each replicate xvas 
tested separately, followed by the test of all the data (GTotal)ý the pooled data (Gpool), and the test of 
heterogeneity (GH, t). The distributions of Meg(night) = live megalopae during night-time were 
tested against the extrinsic hypothesis: Meg(day) = live megalopae during daytime. *p<0.05. 
* *p<0.0 1, ** *p<0.00 1, (ns): p>0.05. Corrected probability values for substratum excluded test are: 
*p<0.025, **p<0.01, (ns): p>0.025 

replicates 

Distnbution 1 2 34 5 6 GTotal Gpoo, GHet 

df 3 3 33 3 3 18 3 15 
Meg(night) vs. 
Meg(day) G 11.8 3.7 8.8 13.1 1.5 9.5 47.8 13.2 34.6 

p (ns) (ns) 

Astroturf excluded 
df 2 2 22 2 2 12 2 10 

Meg(night) vs. 
Meg(day) G 1.0 3.2 7.8 11.9 1.5 0.8 26.2 2.3 23.8 

p (ns) (ns) (ns) (ns) (ns) 

Results from the juvenile treatments were similar to those from the megalopae. Dead 

animals were dispersed non-evenly (Table 4.2), and the distribution of live juveniles 

differed significantly from the distribution of dead juveniles. Replicates were 

homogeneous and supported the hypothesis of active substrata selection (Table 4.3). 

However, when the analysis was carried out excluding Astroturf, no significant difference 

was found in any replicate nor on the total and pooled data (Table 4.3). 

With reference to differences due to developmental stages, the pattern of deposition of 

dead megalopae was significantly different from that of dead juveniles (Table 4-5). 

Deposition of dead megalopae was, on average, 8 and 5% higher than of dead juveniles on 

algae and Astroturf, and 7 and 6% lower on pebbles and sand, respectively (Fig. 4.8). 
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The pattern for live animals was similar and distribution of live juveniles was sIgnIficantly 

different from that of live megalopae (night trials only) (Table 4.5). Megalopae settled in 

higher numbers on alga compared to juveniles, whereas juveniles were found in higher 

proportion on pebble, Astroturf and particularly on sand than megalopae (Fig. 4.9). 

Differences in settlement proportion on sand and algae produced the highest contributions 

to the G value of pooled data, 17.0 and 9.5 respectively. Thus, a posteriori analysis was 

carried out excluding results from settlement on sand, the largest contributor to the G 

value. Variation in the replicates became homogeneous and differences remained 

significant (Table 4.5), indicating that settlement of megalopae on algae was significantly 

higher than for juveniles. 
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Figure 4.8 Mean proportion of. live juveniles (live juv. ), dead juveniles (dead juv. ), live megalopae 
(live meg. ), dead megalopae (dead meg. ). Only night trials are included (±SE). 
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Figure 4.9 Mean change in distribution due to developmental stage (counts from live juveniles 
minus counts from live megalopae trials) (± SE). 

Table 4.5 Summary of replicated goodness of fit tests to test the hypothesis of ontogenetic change 
in substratum selection. The data were (x+l) transformed to allow for zeroes. Each replicate was 
tested separately, followed by the test of all the data (GTotal)i the pooled data (GpO,, I), and the test of 
heterogeneity (GHet). The distributions of. Juv(dead) = dead juveniles, Juv(night) = live juveniles 
during night-time; were tested against the extrinsic hypotheses: Meg(dead) = dead megalopae, 
Meg(night) = live megalopae during night-time;. *p<0.05, **p<0.01, ***p<0.001, (ns): p>0.05. 
Corrected probability values for substratum excluded test are: *p<0.025, * *p<0.0 1, (ns): p>0.025 

replicates 

Distnbution 12346 GTotal Gp,, i 
GHet 

df 333333 18 3 15 
Juv(dead) vs. Meg(dead) G 11.7 25.9 4.9 22.5 5.7 6.1 76.8 35.8 41.0 

p (ns) (ns) (ns) 

df 333333 18 3 15 
Juv(night) vs. Meg(night) G 0.9 12.9 11.6 10.0 16.4 3.9 55.8 35.2 20.6 

p (ns) (ns) 

Sand excluded 
df 222222 12 2 10 

Juv(night) vs. Meg(night) G 0.2 11.1 6.0 6.1 0.4 4.0 28.0 14.6 13.4 

p (ns) (ns) (ns) (ns) (ns) (ns) 
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4.4 Discussion 

It has been proposed that finding and remaining in sheltered areas after settling should 

maximize subsequent survival, particularly in megalopae and juveniles of crabs (e. g. 

Eggleston & Annstrong 1995, Pile et al. 1996, Luppi et al. 2001, Moksnes 2002). This 

study shows that selection of sheltered habitats by early benthic stages can occur in a small 

spatial scale (< I metre) under the influence of flow. 

4.4.1 Megalopal settlement 

Passive settlement 

Observations of dead megalopae demonstrated that hydrodynamics produce a non-even 

distribution with higher settlement on complex habitats; and this will be referred to as 

passive settlement. No dead megalopae were observed to re-suspend in the water column 

once movement ceased. It was possible that secondary transport after the dead megalopae 

have reached the sand section caused a proportion of the megalopae to be carried away to 

other substrata. Therefore, the numbers deposited on the sand section should be viewed as 

conservative values, and the mean net response of live megalopae toward sand could be 

lower. My results on passive dispersal of megalopae differ from the experiments carried 

out at a lower current velocity (3 cm. s-1) by Hedvall et al. (1998). The difference in the 

outcomes could have been a result of a combination of the differential turbulence caused 

by the higher current velocity used in the present study and the difference in the flume size 

(5.3 in compared to 1.7 in circumference in this study). In the present study, a dead 

megalopa would have been transported, on average, for 120 cm (average sinking rate of I 

cm-s-1), thus covering an average of 2 substrata. In Hedvall et al. 's (1998) work, 

megalopae would have been transported for 115 cm on average (sinking rate 1.3 cm. s-1), 

covering I substratum (47 cm) and I transition section (87 cm). 

Active substrata selection 

The passive settlement experiment demonstrated that hydrodynamics could produce the 

higher settlement on algal substrata observed in the field. In addition to initial patterns set 
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by passive deposition, the differential distribution amongst substrata could be exacerbated 

by an active component of the settlers. Evidence for such a mechanism included the 

significant difference between settlement frequencies of live and dead mecyalopae, in 

particular the results from pooled data, which showed that, despite the large variability 

amongst replicates, the overall difference was highly significant. Whilst net response 

(residuals) on algae and pebble were, on average, positive, the opposite response of 

megalopae towards Astroturf occurred, where an active avoidance was observed (Fig. 

4.7a). This result indicated that most of the increase in settlement on algae and pebble, in 

relation to passive dispersal, was caused by movement away from Astroturf by some 

megalopae. Despite the structural architecture that allowed individuals to be deposited 

passively and remain in the tufts of fibres, Astroturf caused a negative effect either 

inhibiting settlement or lacking the cues to stimulate permanence of the animals. Detection 

of chemical cues, from suitable substrata (Forward et al. 2003b) and predators (Diaz et al. 

1999), have been observed in megalopae of C sapidus. and settlers of the American 

lobsters Homarus americanus (Boudreau et al. 1993a, b). Chemical cues as suggested by 

Hedvall et al. (1998), do not seem to be the most important factor since the chemical cue 

would be spread equally among the substrata in the flume. Thus, the physical structure of 

substrata may be playing the strongest influence on the selectivity of the substrata. 

The lack of chemical or biological cues on Astroturf suggests that inhibition by some 

waterborne cue seems unlikely; however, surface rugosity could have played a role in the 

avoidance of Astroturf. Hacker & Steneck (1990) reported preference for a rugose surface 

among artificial algal mimics of similar spatial and structural architectures for the 

amphipod Gamarellus angulosus. While Astroturf has a complex structure, its surface is 

very smooth and could be influencing tenacity (ability to grasp) of the postlarvae. This 

was observed during counting, when megalopae were removed easily by shaking the 

Astroturf mat, whilst the alga required vigorous shaking to displace crabs. 
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Alternatively, I propose that spatial complexity of the habitat, and its reffi(ye value It) 
against predators was influencing the behaviour of megalopae to remain in the substratum. 

Bartholomew et al. (2000) demonstrated that predator success on the amphipod Gai? iniarus 

mucronatus increased with increase of the ratio of inter- structural space size to predator 

size. The me alopae of the shore crab Carcinus maenas, although settling in higher 9 
11-71 

proportions on macroalgae than on open sand, seemed to avoid the most three- 

dimensionally complex alga, (Hedvall et al. 1998). This macroalga (Entocarpus 

siluculosus) produced poor refuges under enhanced predation conditions (Moksnes et al. 

1998) and it was suggested that megalopae actively selected complex habitats that 

provided good refuge against predation (for other examples see Heck Jr & Crowder 199 1). 

In this experiment, Astroturf could have been less attractive to settlers than the structurally 

less complex pebble habitat, due to structural dimensions of the tufts, just 2 cm height, 

compared to pebble, where megalopae could be well protected in the interstices amongst 

the pebbles. Nonetheless, Astroturf must provide some level of protection against 

predation as total numbers settling were high, and field studies have shown it collects 

similar numbers of postlarvae of the American lobster Homarus americanus and the rock 

crab Cancer irroratus to natural cobble habitats (Palma et al. 1998). 

In the laboratory, active habitat selection has been demonstrated for postlarvae of a 

number of decapod species (Fernandez et al. 1993a, Hedvall et al. 1998, Stevens 2003). In 

these studies, the hydrodynamic conditions were relatively slower than the known 

swimming capacity of the postlarvae. In the work presented here, the megalopae could 

swim against the current for only brief periods of time; overall, flow exceeded their 

swimming capabilities. Literature on weak swimming larvae suggests that when larvae are 

faced with water movement greater than their horizontal swimming speed, a passive 

process drives substratum selection (see references in Butman 1987, Abelson & Denny 

1997). For example , in the larvae of the abalone Haliotis rufescens, as current velocItY 

increased above a threshold, larvae acted Increasingly Ilke a passive particle (Boxshall 
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2000). In the present work, the negative net response to Astroturf suggested that 

megalopae of Necora puber were actively deserting this substratum. In flow conditions, 

megalopae could be using this mechanism to avoid an unfavourable substratum and to be 

passively transported among the habitats. An active selection could occur once an 

appropriate habitat is encountered. This active selection supports evidence from recent 

field studies showing that selective settlement is a major determinant of distribution of 

megalopae of the portunid crabs Carcinus maenas (Moksnes 2002) and Callinectes 

sapidus (van Montfrans et al. 2003). 

As pointed out by Butman (1987), active habitat selection and passive deposition of 

larvae need not be considered mutually exclusive, and could be operating at different 

scales of time or space. The implications of this finding are that, under hydrodynamic 

forces higher than the settler's swimming capability, dispersal is a passive mechanism, 

while active selection of substratum is possible when a less suitable substratum is 

encountered. Hence, the proposed mechanism of differential settlement caused by 

desertion of unfavourable site rather than exploration and an active selection of an 

appropriate site (Abelson & Denny 1997) should be taking place. K- 

Diel settlement pattern of megalopae also showed a significant difference, with net 

response (residuals) towards the complex substrata tending to be stronger at night, in 

particular on the level of avoidance of Astroturf. Conversely, during day trials, settlement 

on complex substrata tended to be less specific, i. e. less selective and closer to the passive 

deposition (mean residuals closer to zero, Fig. 4.7a). Overall, lower selectivity by 

megalopae during the day-time is similar to that described in the field for megalopae of the 

shore crab C maenas (Moksnes 2003). Moksnes (2003) observed that megalopae were 

found in the plankton in higher numbers at night, whereas benthic megalopae were more 

abundant during the day, and many remained in a poor habitat until dusk before 

emigrating. The adaptive value of this behaviour is thought to be related to the high 

predation risks in the plankton at day-light, and such a strategy is evidenced in juveniles of 
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the brown tiger shrimp Penaeus esculentus, whose diel activity pattern of burrowing 

during day-time, and actively swimming and feeding at night, reduced predation rates by 

fish (Lapnse & Blaber 1992). 

4.4.2 Earlyjuvenile settlement and ontogenetic change in distribution 

Settlement of live juveniles was different from the passive distribution of dead animals 

and similar to the pattern found in megalopae; most of the contribution to the G value was 

due to a negative effect of Astroturf (Fig. 4.7b). Juveniles were found in higher numbers 

on the complex substrata, possibly in search for the refuge qualities of these habitats. The 

sheltering value against predation of substrata with complex architecture has been 

described many times for early crab juveniles (e. g. Pile et al. 1996, Loher & Annstrong 

2000, Orth & van Montfrans 2002). 

With regard to ontogenetic changes in settlement pattern, the present study found 

passive deposition of dead juvenile crabs to be significantly different from the mean 

distribution of dead megalopae, possibly due to differential hydrodynamic morphology and 

density between the stages. As expected, the analysis companng live individuals also 

showed significant difference. In this test, the residuals suggested that selectivity of 

substrata by early juveniles was less specific than by megalopae (Fig. 4.7b) and the shift in 

substrata 'choice' from megalopa to juvenile consisted of a reduction of settlement on 

algae and an overall increase on the other three substrata byjuveniles (Fig. 4.9). Sheltering 

can be strongly affected by the interstitial space relative to prey size (Hacker & Steneck 

1990, Bartholomew et al. 2000) and, as juveniles grow, specific requirements for foraging 

and shelter might be shifting and this could explain the relatively lower negative effect of 

Astroturf compared to the megalopal response. Plasticity in the habitat requirement of 

early juveniles has also been observed for the shore crab Carcinus maenas (Moksnes et al. 

1998). 

When the largest contributor to the G value (sand) was excluded from the comparison 

between live megalopae and juveniles, pooled data continued to show significant 
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differences amongst the distribution of megalopae and juveniles, suggesting that the 

second highest contnbutor to the G value (algae) was also responsible for the significant 

differences in frequencies; this further supports the possibility that an ontogenetic change 

in habitat use is initiated early in the benthic instars. An ontogenetic shift of habitat use by 

the first juvenile instars has been observed for the shore crab Carcinus maenas (Hedvall et 

al. 1998, Moksnes 2002) and the blue crab Callinectes sapidus (Pardieck et al. 1999, 

Ethenngton & Eggleston 2000). In the latter, active post-settlement dispersal has been 

shown in early juveniles through planktonic movement (Blackmon & Eggleston 2001). 

High density has been evoked as a strong influence in the distribution of early juveniles 

of Callinectes sapidus in nature (Pile et al. 1996, Moksnes et al. 1997, Pardieck et al. 1999, 

Etherington & Eggleston 2000, van Montfrans et al. 2003), causing dispersal by density- 

dependent agonistic interactions and/or cannibalism. In the trials, the high numbers of 

individuals necessary for the statistical tests meant that density used was much higher than 

encountered in the field and cannibalistic and agonistic behaviours could have pressured 

animals for a more even distribution. However, the impact of cannibalism was apparently 

small as recovery rates were high. Occasionally, animals were observed within I cm and 

densities as high as 20 juveniles per section (>I 000 ind M-2) were observed on algal section 

during the trials, thus movement due to agonistic interaction must have been in scale of 

cm. 

Habitat- specific predation of early instars is commonly regarded as a factor structuring 

populations (e. g. Pile et al. 1996, Etherington & Eggleston 2000, Heck et al. 2001, Orth & 

van Montfrans 2002). Nonetheless, this is not always the case, as demonstrated recently 

for a population of Carcinus maenas in Sweden (Moksnes 2002), where high predation 

rates caused great changes in abundance, but not in the pattern of distribution of young 

juveniles. Thus, although the megalopae clearly settle mainly on algae in the field, it is not 

clear to what extent predation could be responsible for the formation of patchy distribution 
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on older juveniles of Necora puber, under cobbles and pebbles where they are mainly 

found (Choy 1986a, Norman 1989, Hearn 2001, Chapter 5). 

In summary, the findings suggest that megalopae of N. puber actively select substrata of 

higher structural complexity, particularly during the nocturnal period. This initial pattern 

of distribution is soon changed by post-settlement movement of early juvenile instars, 

which have different habitat requirements and are generally less selective. Conclusions, 

however, are limited by the spatial (metres) and the temporal scale (less then 12 h) of this 

study. I hypothesize that post-settlement migTation of juveniles at larger spatial and 

temporal scale, and reftige from predation should play an important role on the distribution 

of subsequent instars. Further work should focus on understanding the mechanisms 

involved in the stimuli towards the preferred substrata under larger temporal scales and the 

impact of predation pressure on the behaviour demonstrated by the early benthic stages as 

these would certainly affect the patterns observed. 
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Necorapuber 

5.1 Introduction 

population dynamics of juvenile 

In marine ecosystems, recruitment variability has a critical role in determining local 

population densities (Caley et al. 1996) and for commercially exploited species, large 

fluctuations in recruitment has been a major source of uncertainty in the management of 

fisheries (Jennings et al. 2001). Hence, for species of ecological or commercial 

importance, understanding the patterns and the processes that affect the dynamics of the 

early benthic phase is fundamental for the proper management and conservation of their 

populations. 

The investigation of dynamics of populations has been described as a two-step process 

by Miller and Smith (2003). The first step involves estimating vital rates, such as growth, 

fecundity and mortality; and in the second step, the consequences of the vital rates are 

examined in the light of the patterns of population abundance and structure over time. 

These authors have also regarded the determination of an accurate growth model as the 

single most important step in developing a deeper understanding of the population 

dynamics in crabs. Understanding the growth pattern is important for many ecological 

processes, which are often size-dependent, and survival is one of the most important for the 

population structure. Small individuals are subjected to higher predation mortality and the 

faster they grow the more rapidly this mortality decreases (Jennings et al. 2001). 

Moreover, an improved understanding of growth is a crucial part of stock assessments that 

are length-based. In length-based models, many assumptions are based on the growth 

pattern of the stock, so errors or biases in the growth model will cause similar inaccuracies 

in the recommended levels of exploitation (Miller & Smith 2003). 
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Information on the ecology of juveniles of Necora puber is scarce and most of the 

studies on this species have been based on fishery data, which are bias toward the adult 

population. Therefore, to advance the understanding on the processes controlling the 

dynamics of the juveniles of N. puber, the present chapter focused on the determination of 

growth in juveniles and the recruitment and mortality rates of this portion of the 

population. 

5. LI Growth 

Growth at the organism level is typically measured as the change in size (length or 

weight) with age (Sparre & Venema 1992). In crustaceans, growth is a discontinuous 

process in the forin of a succession of moults (ecdyses) separated by inten-noult periods, 

and the rate of growth is detennined by: (i) the increase in size at each moult and (11) the 

interval between successive moults. Intermoult increment and intermoult interval do not 

remain constant with age. Instead, with increasing size, generally the percentage moult 

increment decreases and the intermoult period lengthens (Hartnoll 1982). In addition, the 

moulting period is one of the most critical periods during the life cycle of decapod crabs, 

when mortality may occur as a consequence of the shedding process. During the period 

before the calcification of the new exoskeleton, animals are at the highest risk of mortality 

from predation (Conan 1985). Moulting is a costly process, as energy is lost with the old 

exoskeleton and new resources must be invested to form a new one after each shed. It is 

especially costly in reproducing females, where intermoult period is observed to last longer 

and moult increment to be smaller than for their male counterparts (Hartnoll 1985). 

In general, differences in the growth pattern between the sexes become more 

pronounced only after maturity (Hartnoll 1982). A rapid decrease in the moult increment 

after puberty is widely observed in decapods. This decrease is described as a 'competition' 

for energy resources in the body, causing a diversion of energy from growth to 

reproduction, and is apparently more marked In females than males (Hartnoll 1985). Other 
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factors that may affect growth include: (1) loss of appendages, which may affect growth 

due to the transference of resources to regenerate the appendages and is of particularly 

important in agonistic crabs (e. g. Norman & Jones 1991); (2) low food supply or quality, 

which generally causes a reduction in the moult increment, so animals generally grow 

slower (Hartnoll 1982, Mohamedeen & Hartnoll 1989, Oh & Hartnoll 2000); (3) salinity, 

but the effects on growth are generally small over the range of salinities faced by the 

species (Hartnoll 1982); and (4) temperature, which is the environmental factor most likely 

to limit growth. This factor affects interinoult duration, with the general effect of the 

intermoult duration shortening with a rise in temperature (Hartnoll 1982, Hartnoll 2001), 

thus increasing the development and growth rates. Moreover, temperature affects moult 

increment, by reducing the proportional increment. The effect may be related to the 

shortening of intermoult period, which may be caused by a decrease in the time for 

anabolism and accumulation of reserves for growth. The reduction of the inten-noult 

period is, however, much greater than the reduction in the intermoult increment, and result 

in a substantial increase in growth rate (Hartnoll 2001). In general tenns, for species 

occurring in geographical temperature gradients, an increase in the development time 

occurs, maximum body size increases and life span may be extended at lower temperatures 

(Hartnoll 2001). 

Growth model 

Several models have been proposed to describe crustacean growth (see Quinn & Denso 

1999). The growth model described by von Bertalanffy is the most commonly used model 

in fisheries and the average body growth of crustaceans appears to confonn to the von 

Bertalanffy growth function (VBGF) (Sparre & Venema 1992). The VBGF has become 

the comerstone in fishery biology, due to its use as a submodel in more complex models 

describing the dynamics of fish populations (Sparre & Venema 1992) and the function 

expressed in length is described by: 

L, =L,, [I -exp (-K(t-to))] 
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where L, is the length at age t; L,,, is the theoretical maximum (or asymptotic) length; K is a 

growth coefficient, which measures the rate at which L, is reached; and to is the theoretical 

age at zero length. 

Age determination 

One of the greatest challenges when studying growth in crustaceans is to obtain an 

accurate detennination of age. During ecdysis, all hard structures are lost, which precludes 

ageing by examination of annual rings, such as in molluscs or fish. Recent techniques for 

ageing crustacean have been proposed, with variable success (reviewed by Hartnoll 2001). 

One of the most promising methods is the measurement of lipofuscin, which is a pigment 

that accumulates in nervous tissue, and has been observed in a range of crustaceans 

(Sheehy 1990b). Correlations with age have been obtained in many species (e. g. Sheehy 

1990a, Sheehy et al. 1998, Bluhm. & Brey 2001). However, the accumulation of lipofuscin 

is not constant within species under different enviromnental conditions (Wahle et al. 1996, 

Tully et al. 2000, Castro et al. 2002) and would require a demanding new calibration for 

each study. 

The most common alternative to directly determine age is the use of size-frequency 

analysis. If spawning occurs seasonally as discrete events, the size-fTequency distribution 

of the population will produce modes of size groups that can be related to the spawning 

period, and the lengths of these modes are taken to be the mean size for the cohorts. 

Approximate ages can then be attributed to these cohorts, based on the spawning period, 

and the increase in mean size of these groups can be followed through time (King 1995). 

In practice, as the individuals grow older, growth rates slow down and older individuals of 

different ages 'pile up' into a single broad mode, and only the youngest cohorts can be 

distinguished (Hilbom & Walters 1992). 

Another method frequently used in measuring crustacean growth involves marking 

animals (see review by Hartnoll 2001) and recapturing marked animals after a length of 
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time at liberty. This method can provide a valuable measure of the size increment under 

natural conditions and the data can be used to estimate the parameters of the VBGF (King 

1995). The main difficulties are the necessity of unique tagging of individuals to measure 

the growth increment and the loss of tags during moulting (King 1995). In the present 

study, only the size-frequency analysis and the mark-recapture techniques were logistically 

feasible, thereby were the methods applied in this chapter. 

5.1.2 Population dynamics injuveniles 

Dynamics of open populations are a consequence of the variability in the additions to 

(recruitment and immigration) and the removals from (mortality and emigration) a 

population. In many marine invertebrates and fishes, recruitment typically vanes spatially 

and temporally by several orders of magnitude (Caley et al. 1996). In brachyurans, there 

are many examples where the processes that shape recruitment take place soon after the 

settlers moult to the benthic phase (Eggleston & Annstrong 1995, Pile et al. 1996, Heck et 

al. 200 1). Nevertheless, the early juveniles are small, cryptic and difficult to study (Hunt 

& Scheibling 1997). To study this portion of the population, researchers have mainly 

relied on experimental approaches. 

Methodologies 

Experimental interventions have often been used to study the dynamics of early 

juveniles, and the most common approaches include: (1) population addition or removal, 

(ii) resource manipulation (e. g. shelter habitat or food availability), (iii) tethering, (iv) 

predator inclusion or exclusion, (v) mark-recapture, and (vi) benthic sampling of natural 

habitats. 

(1) Population addition or removal experiments involve the manipulation of the density 

of recruits and the subsequent estimation of survival of these recruits (Eggleston & Lipcius 

1992., Ifibame et al. 1994, Femandez 1999, Wahle et al. 2001). This approach is used to 

test the hypothesis of density-dependent mortality, and in lobsters, has been used to assess 
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the efficacy of population enhancement (Butler & Hermkind 1997, Butler et al. 1997, van 

der Meeren 2000). (11) Resource manipulation experiments, e. g. shelter habitat, evaluate 

survival under variable levels of habitat complexity, size, or patchiness (Eggleston et al. 

1998, Eggleston et al. 1999, Hovel & Lipcius 2001). These expenments are of 

fundamental importance in determining the effect of habitat enhancement on the 

improvement of recruitment rates. 

(Iii) Tethering is one of the most common techniques used to detennine predation rates 

on early juveniles (Hunt & Scheibling 1997), but many studies have pointed out the 

potential artefacts of the method (Peterson & Black 1994, Zimmer-Faust et al. 1994, 

Aronson et al. 2001). Wahle (2003) emphasizes that an important constraint, that must be 

recognized, is that tethering experiments provide only a relative measure of the predation 

Z potential', and not necessarily absolute predation rates. (iv) Predator inclusion/exclusion 

experiments provide information on losses due to predation and also allow the estimation 

of losses due to emigration (e. g. Iribarne et al. 1994, Eggleston & Armstrong 1995, 

Moksnes 2002). Predation exclusion is also widely used to measure predation rates, but 

with some criticism over the artefacts caused by caging (Hall et al. 1990). These are 

especially important for recruitment studies, as cages may increase settlement rates and/or 

post-settlement survival (Hunt & Scheibling 1997). 

(v) Mark-recapture experiments have been employed to assess population size and 

dynamics (e. g. Fitz & Wiegert 1992, Butler & Hermkind 1997, Blackmon & Eggleston 

2001) and, recently, an effort to separate losses due to emigration and mortality 

components has been made (Etherington et al. 2003). The greatest challenge is to satisfy 

the restrictive assumptions regarding movements out of the area, equal catchability, tag 

loss, and the considerable time and effort required to get the intended level of accuracy 

(Krebs 1999). Finally, (vi) benthic sampling of natural habitats, where density of early 

juveniles is followed for a length of time and mortality inferred from the change in density 
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(e. g. Wahle & Steneck 1991, Herrnkind & Butler 1994, McMillan et al. 1995, Pardieck et 

al. 1999, Etherington & Eggleston 2000, Robinson & Tully 2000b) 

Patterns of early mortality 

As emphasized in Chapter 1, high juvenile mortality is widely observed in benthic 

marine invertebrates. Amongst the decapods, crabs are notably known to have the 

dynamics of the early juveniles dominated by high mortality rates (Wahle 2003). 

Vulnerability to predation is regarded as the single-most important cause of early juvenile 

mortality (Keough & Downes 1982, Hunt & Scheibling 1997, Wahle 2003) and for these 

individuals, habitat refuges such as vegetation or crevices among shells and cobbles, play 

an important role in mitigating post-settlement mortality (Wahle 2003). Predation risk is 

lower in vegetated or other structurally complex substrata than in the bare substrata (for 

examples see Hunt & Scheibling 1997), and intense habitat-specific mortality may modify 

the patterns of distribution of juveniles set during settlement (e. g. in crabs McMillan et al. 

1995). In some species, predation pressure may further influence patterns of spatial 

distribution by increasing movement amongst habitats and in the shore crab Carcinus 

maenas, much of this pressure is caused by cannibalism (Moksnes 2002). In many crabs, 

inter cohort cannibalism seem to be a major cause of population loss or migration (see 

Hines et al. 1990, Fernandez et al. 1993b, Lovnch & Sainte-Marie 1997). Overall, post- 

settlement survival is a consequence of a multifactor process that is strongly influenced by 

a three-way interaction of predation risk, habitat quality and body size. As a result, in 

crabs and lobsters, refuge habitat has been shown to be more often a limiting factor than 

other variables such as food availability, physical disturbance, physiological stress or 

diseases (Hunt & Scheibling 1997, Wahle 2003). 

In decapods, cohort strength may be determined early on in the benthic phase (Sainte 

Marie et al. 1995), and field studies have suggested that early juvenile mortality has a 

deterinining effect on the population structure in lobsters (Incze & Wahle 1991, Smith & 

Hen-n-kind 1992, Barshaw et al. 1994) and crabs (Eggleston & Armstrong 1995, Palma et 
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al. 1998). However, relating the abundance of settlers or early benthic instars to older 

juveniles has produced variable results and is not always consistent across temporal or 

spatial scales (Hunt & Scheibling 1997, Wahle 2003). In the case of the Dungeness crab 

Cancer magister, decoupling of the relationship amongst juvenile instars was caused by 

density-dependent processes that occurred in less than 48 h (Eggleston & Armstrong 

1995). 

In lobsters and crabs, density-dependence in the post-settlement processes seem to be 

the rule rather than the exception, and for virtually all the species in which juvenile-to- 

fishery recruit relationship have been documented, non-linear relationships provide the 

best statistical fit (Wahle 2003). Hence, many populations appear to have their size 

regulated in the form of a demographic bottleneck during the juvenile period, further 

supporting the importance of understanding the nature and processes affecting this 

demographic bottleneck. 

5.1.3 Aims and objectives 

The aim of the present chapter was to provide further information on the ecology and 

dynamics of the juvenile population of N. puber, a portion of the life history of this species 

that has frequently been neglected. The main objectives of the present study were to (1) 

detennine the growth pattern of the population based on the cohort progression of the 

juveniles; (2) test different methods to cletennine mortality (survivorship) of the juvenile 

population and (3) describe the distribution and dynamics of the early juvenile population 

through estimates of recruitment levels and mortality rates. 

5.2 Materials and methods 

5.2.1 Capture and measurements of intertidal crabs 

Crabs were collected during low water spring tides at the lower shore (sensu Hiscock 

1990) at Batten Bay, Jennycliff Bay, Andum Point and Heybrook Bay (see Chapter 2). 

Searches consisted of turning slabs, small boulders, and cobbles over a timed period. 
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Searching time varied with height and duration of low water, and a minimum of 30 min of 

search took place per day of sampling. An example of the habitat can be seen on Fig. 5.1 

and Fig. 5.2. 

Figure 5.1 Typical habitat where juveniles are found. Photograph shows the habitat before search 
begins. 

Carapace width (CW) (see section 2.1) of all crabs was measured with vernier callipers 

in the field to the nearest I mm and infonnation on sex, presence of eggs and partial 

hardening of carapace (as indicative of the early post moult stage and recent ecdysis) was 

noted. After marking (described below), crabs were released under boulders or algae as 

close as possible to collection area. Animals smaller than 8 mm CW were taken to the 

laboratory for identification and measurement, and returned to the shore the following 

sampling date. 
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Figure 5.2 A. After removal of boulders, and B. Zoom of central area where two crabs can be seen. 
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5.2.2 Marking techniques and samplingftequency 

Two different marking techniques were tested and are described according to the year 

the experiment took place. 

2001 study 

Animals were sampled from February to November in 2001, but sampling had to be 

interrupted for two months (March and April) due to restrictions caused by the foot-and- 

mouth disease. Shores were sampled one day each spring tide every 2-4 weeks. Crabs 

were marked using the Visible Implant Elastomer (Northwest Marine Technology, 

Washington, U. S. A. ), which is easily identifiable and is fluorescent under blue light. 

Elastomer was injected from the edge of the sternite to the basis segment of the pereopods 

(Fig. 5.3), and a unique marking was used per crab by permutating a combination of up to 

4 marks with 4 colours on the 10 pereopods. Elastomer marking has been used to mark 

decapods with retention rate of over 90% and mortality of less than 10% as a result of the 

procedure (Linnane & Mercer 1998, Jerry et al. 2001). In the present study, marking was 

possible only on crabs larger than 10 mm CW. 

2002 study 

In 2002, sampling occurred from January to December and marking procedure was 

modified as recapture rates from the previous year's experiment were low. Temporary 

marks were used instead, to increase the number of animals marked at each sampling. 

Crabs were batch marked with a fast drying nail varnish on the thoracic sternites (Fig. 5.4) 

and, to avoid loss of marks due to moulting, sampling occurred in two consecutive days on 

80 



Chapter 5. Growth and population dynarnics 

Figure 5.3 Elastomer marking. A) Injecting the Elastomer from the basis of the pereopod; B) 
marked crab ready to be returned. 

each shore per spring tide. On the first day, a unique batch marking for that shore/date was 

performed using a different combination of colours and position of the marks; the 

following day, only searches for marked crabs took place. Each shore was sampled every 

4-8 weeks. Laboratory trials indicated that the nail varnish lasted for at least 2 weeks, 

therefore, the method was assumed adequate for time scale of each mark-recapture. 
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Figure 5.4 A) Female marked with Elastomer in 24-Jul-2001 (29 min CW) and recaptured in 
28-May-2002 (36 mm CW); B) female marked 16-Nov-2001 (25 mm CW) and recaptured 
26-May-2002 (30 mm CW). Nall varnish marks were applied the previous day. 

5.2.3 Sampling ofsublittoral crabs 

Sublittoral crabs were collected using a suction sampler (see section 4.2.1 for details) on 

May and August 2002, to test the hypothesis that early juveniles occupy differently 

habitats of different three-dimensional structure. Samples from May collected only I 

juvenile; thus, only results from August were used for the analysis. The densities of 

juveniles (number of juveniles per m 2) were compared using an ANOVA in two habitats: 

(1) algal substrata on bedrock, and (2) boulder-cobble. The factors tested were: (i) 
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substrata (2-level fixed factor) and 00 shore (2-level, random factor as a spatial 

replication). 

5.2.4 Estimation ofgrowth 

Analysis of size-frequency distribution 

For each calendar month, catches from all shores in 2001 and 2002 were combined and 

a CW frequency distribution of the total catch was constructed in 2 mm size-class. A total 

of 20 months of size-frequency data was collected and used to determine modal groups. 

Decomposition of year-class cohorts 

Year-class, or cohort, is defined as a group of individuals that were spawned in the same 

year. For each monthly distribution, cohorts were identified using PeakFit v. 4 (SPSS Inc., 

Chicago). Frequency data were smoothed to remove noise using an automated procedure 

in PeakFit, where an optimum smoothing level based on least square polynomial fitting is 

determined automatically. Peak identification was attained using an automated procedure 

that involved identifying regions of local maxima based on the residuals from the 

smoothed data. Fitting Gaussian curves to the peaks was based on the minimization of 

least-squares of the parameters: amplitude, centre and width of the curve. Automated 

procedures were used to minimize bias caused during identification of cohorts; however, 

on a few occasions, in particular when sample numbers were low, too many peaks were 

identified, and levels of smoothing were adjusted manually. 

Separating cohorts for animals with CW >50 mm with no recognisable modes is a 

difficult task in Necora puber (Nonnan 1989, Heam 2001, Combes 2002) and introduces 

much error in the construction of the growth curve. As numbers of large animals were 

low, and separation of overlapping of cohorts would add too much personal bias, there was 

no attempt to track progression of cohorts much larger than 40 mm CW (approximate size 

at maturity according to Norman 1989). 

To assign a mean 'birth date' for the cohorts, the information on the peak period in the 

occurrence of ovigerous female (Fig. 5.5) was used. This assumption was supported by the 
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observed peaks of megalopae in the plankton in June (Chapter 3), which was the expected 

period of peak in megalopae from a spawning that occurred in April. According to Choy 

(1991), larval development at temperatures ca 12-15'C takes ca. 50-60 days. Therefore, 

the modal class-size of the first cohort must belong to spawnings that occurred in April. 

Consequently, the ages assigned to the cohorts were based on the mean birth date of 15'h 

Apnl. 

40 

30 

CID 

20 

10 

n 
Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

month 

Figure 5.5 Period of peak of ovigerous female based on the percentage of adult females carrying 
eggs. Data from 2001 and 2002 combined. 

Growth function 

Seasonal variation in growth is known to occur in crustaceans from temperate waters 

(Sparre & Venema 1992). Therefore, the VBGF, modified by Pauly and Gaschutz (1979) 

to incorporate seasonal variation in growth was used to fit the cohort progression data. 

L, =L, [1-(e 
(-K(t-to)+C*K/27r sin(2 7r (t-t, ) I 

Where, L, = the carapace width at age t; L,, = the asymptotic carapace width; K=growth 

coefficient, which measures the rate at which L,,,, is reached; to=the theoretical age at zero 

length; C= the amplitude of seasonal growth oscillation; t, --the summer point, time of the 

year when growth is highest; and e=the base of the natural logarithm. 

Parameter estimation 

The population measured in the intertidal was almost exclusively composed of 

juveniles; therefore, initial estimates of L, using size increments from mark-recapture and 
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cohort progression data were very biased. On graphical procedures, such as Ford-Walford 

or Gulland-Holt plots, small changes in determination of mean size causes great change in 

the estimated L,,,, (Castro & Erzini 1988). In addition, there are many examples of 

exceptions to the assumption that growth increment decreases with age in crustaceans 

(Hartnoll 1982), and it has been observed in some crabs, that pre-pubertal moult increment 

increases with size to a maximum at puberty then it declines (Botsford 1985), which would 

preclude the use of these two graphical methods. In Necora puber, results have been 

ambiguous, Combes (2002) showed that the percentage increment (sensu Mauchline 1976) 

was very variable with size in pre-pubertal individuals and, only after maturity did the 

growth factor decrease with size. Choy (1986a) described a logarithmic decrease with age. 

Thus, classical graphical methods of estimation of the asymptotic size L. were not used in 

this study, instead, L,,,, was estimated based on a previous study (Norman 1989). 

Pauly (1998) suggested that maximum length should be roughly similar to the 

asymptotic length, therefore, the approximation L,,, =Lmax/0-95 suggested by Pauly (1980) 

was used. Considering the estimates obtained for Plymouth, the maximum observed size- 

class (95-1 00mm) observed by Norman (1989) was used and, the value of L,,,, was fixed at 

105mm for the fitting of the data to the VBGF. Age-length data (from modal progression 

analysis) was fitted to the seasonal VBGF through least squares minimization (Quinn & 

Deriso 1999) using TableCurve 2D v5-0 (SPSS Inc., Chicago). Estimation of K, to, C and 

t, required an initial seed and the average value of known parameters from other studies 

were used as seed to minimize the effects of finding local minima. 

5.2.5 Survival and mortality models 

Mark-recapture methods 

Data from mark-recapture experiments were stratified to the juvenile portion of the 

population, and an upper boundary of 50 mm. CW was set. Because recaptures of marked 

animals did not occur on every sampling date, the Cormack-Jolly-Seber (CJS) model was 
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chosen, as this model was more flexible in the requirements regarding to the recaptures of 

marked animals. The program MARK (White & Burnham 1999) was used to fit mark- 

recapture data from 2001. The CJS model used by MARK estimates survival from a 

multiple recapture experiment and includes procedures to test goodness-of-fit for models 

accounting for variable survival and capture rates over time. 

The Petersen model for closed populations was used to estimate monthly population 

111-11 abundance for 2002, and the unbias estimator 

N= (M+1)(C+1) 
-1 

(R+1) 

suggested by Seber (1982) was used. Where M=number of individuals marked in the first 

day; C--total number captured in the second day of sampling; and R=number of captures 

from the second day that bear marks from the first day. Time interval between mark and 

recapture was short; therefore, an assumption for constant population size between the 

paired sampling dates was considered valid. 

Modal progression (catch curve) method 

Data collected for the mark-recapture studies in 2001 and 2002 were also analysed by 

the catch curve method. For each shore, monthly catches were standardized to catches per 

unit effort (CPUE) which was equivalent to catches per hour of search per person. This 

was used as an index of relative abundance. Frequency distribution from months with less 

than 60 crabs collected were averaged with data from adjacent months. Separations of 

cohorts from size-frequency distribution in CPUE were accomplished as in section 5.2.4. 

To construct the age-based catch curves, ages of cohorts were assigned based on 'birth 

date' of 15 th April (see section 5.2.4 - Decomposition of year-class cohorts), and the sizes 

of the cohorts were estimated by the area of the Gaussian curves fitted to the cohort. 
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Mortality was estimated assuming the exponential decay model: 

N, =No*e(-z*t) 

where N, = numbers surviving at age t, No=initial number, Z=instantaneous mortality 

rate. The linearized age-based catch curve in the forin: 

LnNt=Ln No-Z*t 

was used to fit a linear regression on the data and estimates of Z obtained from the slope 

of the regression. As there is no fishery mortality for this portion of the population, all 

mortality was considered natural. A conversion table between instantaneous mortality rate 

(Z) and mortality rate in percentage (M%) is provided in Appendix 2 for reference. 

All analyses comparing slopes of the regression curves were performed with 

ANCOVAs test of homogeneity of regression slope, and the age was used as the covariate 

variable. 

5.3 Results 

5.3.1 Growth 

A total of 38 and 64 days of sprmg tide was sampled in 2001 and 2002, respectively, and 

1071 (2001) and 3631 (2002) crabs were measured. Overall, the separation of the cohorts 

using PeakFit was not complicated and most curves assigned to the cohorts showed good 

fit to the data (Fig. 5.6). The process was simplified when N> 100, but exceptions 

occurred when one of the modes was very high, causing 'confusion' in the identification of 

smaller peaks. The frequency distribution showed clear modes for the youngest two 

cohorts and the progression of the mean size of the cohorts could be followed up to a mean 

size of around 40-45 mm CW. Central size of the cohorts identified was tentatively linked 

between consecutive samplings to visualize the modal progression (Fig. 5.6). 

87 



Chapter 5. Growth and population dynamics 

9 23.6 
February 01 

45 199 

March 02 7 
N=66 35 

N=392 
5 25 

3 51 
3 

15 

1 
5A 

ýa 5 
443 

6U 5 

25 

20 23.8 May 01 
45 -2 1 

Apri 102 
15 

10 

N=237 
49.8 

35 

25 
N=498 

5 
60.5 

15- 504 

0 
72,6 

5 
38 5 

< 63 5 

6 June 01 30 4 

May 02 
4 

N=90 
20 N=337 

43.4 62.6 
50 

2 73.7 10 

0 5,5 55 0 
71 6 

20 

15 
28.7 July 01 45 

116 

5, June 02 
N=214 35 

N=465 10 58.4 
10 25 

5 
43.1 

15 
4,76 51 

0 
68.7 

5 IT 

, 16 

12 
3,7 

August 01 
25 1 

20 601 July 02 
N=104 15 

30 5 N=251 

36 1 

r 

10 

4 
1 

70ý5 

) 

5 50 3 62 5 

0 0 
30 80 i 

16 September 01 9 
60 ý86 August 02 

20 N=227 N=207 
40 

10 41 2 

20- 

0- 
35A 

_ýO. 
2 623 70.1 

8 

6 
21.7 

October 01 
45 14.3 September 02 

N=33 
35 N=361 

4 25 

2- 3S. 7 51.3 
67.8 

15 
37 6 
I 

0, 
----- 

5 
--- 

579 

- 
12 

9 
November 01 40 16,3 

October 02 
19.6 N=102 30- N=313 

6 
48.3 58 A 20- 

3 39.2 

\ 
10- 

41 S 

O- \ý 
0 

60,8 

10 5 January 02 8 16,8 November 02 
4- 

3- 22 7 
N=28 6 N=55 

2 
2 

/ 45ý7 
1 44ý9 

0 0 

60 
50- February 02 

40 
December 02 

40- N=432 
30 

N=292 
30- 

L 

2 
20- 

10- 48.2 
10 45.6 

63 3 
01 

0 20 40 60 80 0 20 40 60 80 

Figure 5.6 Size frequency distribution of monthly total catches for Intert, dal crabs In 2001 and 
2002. Total capture for each month was grouped in 2 mm size class. Cent re of modes were 
tentatively connected to indicate modal progre ssion. 
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Mean central size of the cohorts was obtained from Fig. 5.6 and cohorts were aged 

assuming the mean birth date of 15 April. The fitting of the data to the VBGF (Fig. 5.7) 

estimated the following parameters: K=0.281 yr-1; to=0.043; C=O. 103; and t, =0.268. 
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Figure 5.7 Seasonal VBGF estimated using cohort progression data from intertidal crabs. The 
mean growth curve is described by L, =105 [1-(e-0,281(t+0.043)+0.103*0.281/2rsin(2 ir(t-0.268)) ]; r 

2=0 

. 927, N=3 1, 
P<0.0 1. 

The data showed good fit to seasonal VBGF (r 2=0.954 ), except for the larval portion of 

the growth curve. In individuals smaller than size of the I't juvenile instar (2.4 mm), the 

function described a bias to, and indicated that larval growth did not follow the VBGF. 

Seasonal growth was distinct, with the highest growth rate at the end of June (ts=0.268yr) 

and the lowest period 6 months later. According to the estimated growth function, 

juveniles attain maturity size (40 mm) (Norman 1989) at around 1.5 years, and only enter 

the legal fishery (65 mm CW) after 3 years of age (Fig. 5.8). 
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Figure 5.8 Predicted growth curve for Necora puber assuming L,, of 105 mm. Parameters from the 
VBGF were estimated from cohort progression of juveniles from the intertidal. Dashed line 
represents the asymptotic size and the arrow shows the age when legal size is attained. 

5.3.2 Abundance and Mortality 

Sublittoral distribution of juveniles 

Early juveniles were rare in May and only 1 crab was collected on boulder habitat out of 

40 samples. In August, early Juveniles were more abundant and 13 Necora puber were 

collected from a total of 20 samples. All crabs were less than 13mm CW, with the 

exception of one (38 min CW). The highest density found in the samples was 2 crabs. m 

and occurred on both substrata. The highest mean density per substrata was only I 

-2 crabs. M on boulders (Fig. 5.9). Crab densities on algae were not significantly different 

from boulder-cobble substrata (Table 5.1). 
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Table 5.1 Summary of ANOVA of density of sublittoral juveniles collected in August 2002. 
Factors tested were: shore (Andurn Point, Heybrook Bay; random factor); and substrata (algae 
covered bedrock, boulder-cobble, fixed factor). ns p>0.05 

Source df MS Fp 

shore 1 1.250 2.63 ns 
substrata 1 0.450 0.36 ns 
substrataXshore 1 1.250 2.63 ns 
error 16 0.475 

Andurn Point 

1.2 

,?, >' 0.8 
. mg 

l= 
0. 

0.0 

algae boulder 

substrata substrata 

Figure 5.9 Juveniles of Necora puber from sublittoral samples. Mean density (crabs. m-'± I SE) on 
algae and boulder substrata in Andurn Point and Heybrook Bay. Samples obtained with the suction 
sampler in August 2002. 

Intertidal distribution of juveniles 

Cormack-Jolly-Seber model (2001 study) 

Effectiveness of the long-tenn marking for juveniles can be seen by the maximum 

period the recaptured crabs spent 'at large', and the 10 longest periods ranged from 192- 

323 days (Table 5.2). 
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Table 5.2. Top 10 longest periods 'at large' and increment in carapace width (CW) from recaptured 
crabs using Elastomer marking. 

days at 
large sex 

marking 
date 

initial 
CW (mm. ) 

recapture 
date 

final CW 
(mm) 

increment 
(mm) 

323 in 22/06/2001 61 11/05/2002 70 9 
306 in 22/08/2001 17 24/06/2002 40 23 
279 f 24/07/2001 29 29/04/2002 36 7 
278 f 20/09/2001 19 25/06/2002 28 9 
269 in 16/11/2001 15 12/08/2002 23 8 
267 in 22/07/2001 45 15/04/2002 56 11 
236 in 05/09/2001 53 29/04/2002 53 0 
220 in 16/11/2001 13 24/06/2002 26 13 
192 f 17/09/2001 12 28/03/2002 21 9 
192 in 16/11/2001 20 27/05/2002 22 2 

In 2001,8 intervals (9 collection dates) of 2-4 weeks were sampled for Batten Bay, 

Jennycliff Bay and Andurn Point, and 9 intervals for Heybrook Bay. A total of 754 crabs 

with less than 50 mm CW were marked, and on average, recapture rates were only 3% 

(Table 5.3). On most occasions, no recapture occurred (21 sampling days out of 37) and 

the largest number of crabs recaptured in any given day of sampling was only 2 crabs. 

Table 5.3. Recapture rates of intertidal crabs collected from Batten Bay, Jennycliff Bay, Andurn 
Point and Heybrook Bay in 2001. Marking was carried out using Elastomer. 

Shore marked recapture rate 
Batten Bay 156 3.8 
Jennycliff Bay 185 1.1 
Andurn Pt. 193 2.6 
Heybrook Bay 220 4.5 

Due to the frequent absence of recaptures during the samplings, survival estimates were 

highly variable, and according to Seber (1982), bias is large when probability of recapture 

is low and recaptures are less than 3. As an illustration of the spurious estimates that were 

produced, only survival from Heybrook Bay is shown (Fig. 5.10). Heybrook Bay is the 

shore where highest recovery of marked crabs occurred, and on average one recapture 

occurred per marking interval. Data presented in Fig. 5.10 was fitted to the most general 

model (i. e. the most parameterised model) with survival (phi) and probability of recapture 

(p) variable over time. This model is the most 'flexible' and is always the first to be tested. 

Nevertheless, estimates observed for Heybrook in Fig. 5.10, indicated survival rates (phi) 
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of 100% in many marking intervals and did not represent the real fluctuation in survival 

rates. 

1.2 - 

1.0 - 

0.8 - 

0.6 - 0- 

0.4 - 

0.2 - 

0.0 
1 -May 

2001 

1-Jun 1-jul 1 -Aug 1 -Sep 

month 

1 -Oct 1 -Nov 

Figure 5.10 Survival estimates (phi) for intertidal juveniles from Heybrook Bay in 2001. Data 
were fit to the model with survival and recapture probability variable over time Jphi(t), p(t)J. 

Petersen model (2002 study) 

A total of 1238 crabs (<50 mm CW) were marked, and recapture rates increased to an 

average of 8% (Table 5.4) compared to the previous year. From the 27 pairs of dates the 

shores were sampled, only once did recapture not occur. Notwithstanding the increase in 

frequency of recaptures, the mean recapture per date was only 3.9 and less than the 

minimum required (7 recaptures) for an unbiased estimate (Krebs 1999). 

Table 5.4 Recapture rates of intertidal crabs collected from Batten Bay, Jennycliff Bay, Andurn 
Point and Heybrook Bay in 2000. Marking was carried out using Nall varnish 

Shore marked recapture rate 
Batten Bay 308 8.8 
Jennycliff Bay 295 6.1 
Andurn Pt. 350 9.1 
Heybrook Bay 260 8.8 

Population size estimated by this method is illustrated in Fig. 5.11, and although biased 

it provided an estimate of the magnitude of the population on the shores. On average, the 

size of the population estimated for Batten Bay and Jennycliff Bay were 553 and 662 
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individuals,, respectlively. Using these figures, an approximate density of 2.2 crabs M2 is 

calculated for these shores. 
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Figure 5.11 Estimated population size ± 95% CI of juvenile crabs smaller than 50 mm CW using 
the Petersen method during the year 2002. * indicates estimates calculated with more than 7 

recaptures. 

The average population size estimated for Heybrook Bay and Andurn Point was 460 

and 664 individuals, and a density of 2.3 and 5.5 crabs. m 2 is estimated for these shores, 

respectively. 

Modal progression method (2001-2002) 

A clear predominance of juveniles less than 30 mm CW (ca. 1.3 years old) was observed 

in the frequency distribution of the total annual CPUE of crabs (Fig. 5.12). Crabs < 30 mm 

CW were more than twice as abundant as those >30 mm CW. 
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Figure 5.12 Frequency distribution of intertidal crabs using the total catch per unit of effort (CPUE) 
in 2002. Class sizes were arranged in 2mm intervals. (N=363 1) 

Individuals from 0+ age-class were first detected in samples in June (0.17 yr) 

(Fig. 5.13B), and abundance of the cohorts increased until about the completion of their 

first year. In general, the abundances of the cohorts were similar amongst the shores 

(Fig. 5.13), but vaned largely amongst years (Fig. 5.14). The increase in the population 

size, shown by the left ascending portion of the cohort progression curve (Fig. 5.14), 

indicated that additions (recruitment and immigration) were larger than removals 

(mortality and emigration) from the population. Recruitment vaned largely between years 

and abundances of 0+ age-class were considerably higher in 2002 than in 2001. The 

pattern was repeated in all four shores (Fig. 5.14), suggesting a general similar benthic 

recruitment to the shores in Plymouth Sound. 
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Figure 5.13 Progression of cohorts of intertidal crabs recruited in (A) 2000, (B) 2001, and (C) 
2002 for all four shores sampled (Batten Bay, Jennycliff Bay, Andurn Pt., and Heybrook Bay). 
Size of cohorts (CPUE) obtained from length-frequency distribution. Horizontal bars on top of the 

graphs represent the year sampling took place. 
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Figure 5.14 Progression of cohorts intertidal crabs in the four shores sampled: A-Batten Bay, B- 
Jennycliff Bay, C-Andurn Pt., and D-Heybrook Bay. Data included cohorts recruited in 2000, 
2001 , and 2002. Size of cohorts (CPUE) obtained from length frequency distribution. 
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For 1+ crabs, the abundance of the cohorts of 2001 was more than twice as large as 

cohorts of 2000 at ca. age 1.2 yr, and decreased to similar levels at ca. age 1.7 yr (the end 

of the period where the cohorts could be followed) in all shores but Batten Bay (Fig. 5.14). 

This suggested that density-dependent processes may be controlling mortality levels and 

limiting the maximum size of the population in Jennycliff Bay, Andurn Point and Hebrook 

Bay. 

The instantaneous mortality rates (Z) of 1+ cohorts are described by the slopes of the 

linearized catch curves shown in Fig. 5.15. Estimated Z as high as 5.08 yr-1 was observed 

in Andum Point, which corresponded to a mortality rate of 99.4% per year, and even the 

lowest estimated value of Z was 0.88 yr-1 (58.5%). Thus, for the period the cohorts were 

followed (0.7 yr or -8.5 months), it was the equivalent to 34.5% and 7% of the population 

being removed per month, respectively. 

In cohorts from 2000, mortality rates (Z) were consistent across shores and showed no 

significant difference (ANCOVA test of homogeneity of slopes; F(3,11)=2.359, MS=2.359, 

p>0.05). In contrast, cohorts from 2001 showed significantly different mortality rates (Z) 

amongst the shores (ANCOVA test of homogeneity of slopes; F(3,11)=12.425, MS=0.651, 

p<0.01), and suggested that, at higher recruitment levels, different processes regulating the 

size of the population occur depending on the shore (Table 5.5). Using Gabriel's graphical 

approximation method to perform the post hoc test, where significant differences are 

declared when confidence intervals do not overlap (Sokal & Rohlf 1995), mortality rates Z 

at the exposed shores (Andurn Point and Heybrook Bay) were significantly higher than at 

Batten Bay (Fig. 5.16). Interestingly, mortality for Batten Bay and Heybrook Bay was not 

significantly different between the cohorts recruited in 2000 and 2001 (Table 5.5). That is, 

Heybrook Bay showed consistent high Z and Batten Bay consistent 'relatively' lower Z. 
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Table 5.5 Summary of individual homogeneity of slope (ANCOVA) of linearized catch curve for 
each shore. Factor tested was cohort year (2000 vs. 2001) and covariate was age. 

Shore df error df ms F p-value 
Batten Bay 5 1 0.00095 0.102 n. s 

Jennycliff Bay 4 1 0.15 9.803 p<0.05 
Andurn Pt. 7 1 0.998 8.849 p<0.05 

Heybrook Bay 6 1 0.486 4.947 n. s 

8 

Batten Bay Jennycliff Bay Andurn Pt. Heybrook Bay 

shore 

Figure 5.16 Instantaneous mortality rate (Z) for Batten Bay, Jennycliff Bay, Andurn Pt., and 
Heybrook Bay. Values were obtained ftom the regression slopes of linearized catch-curves for 
cohorts of 2001. Confidence intervals are 95%. 

5.4 Discussion 

5.4.1 Growth 

The VBGF estimated for Necora puber described well the relationship between size and 

age in the early crab instars, and estimated sizes were consistent with those observed in 

laboratory cultivation. The time estimated, by the VBGF, to reach the size of the first 

juvenile instar (2.4 mm CW according to cultivation of wild megalopae) was 54 days, and 

closely matched the duration of larval development obtained in the laboratory for 

temperatures found in Plymouth Sound, i. e. 50-60 days (Choy 1991). Although the 
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duration of the larval development was consistent with observed data, the size was poorly 

described. Since the larval and juvenile phases are morphologically very distinct, and 

Choy (1986a) has also shown that larval growth in Necora puber does not follow the 

VBGF, this result was expected. However, the use of any single model is unlikely to 

represent growth over the entire life span of a species (King 1995). Larval phase was short 

relative to the life spain of Necora puber and juvenile data fitted well the model; therefore, 

growth predictions of juveniles and adults using the VBGF is justified, but should be 

restricted to this phase of the life history. 

The juvenile population in Plymouth Sound exhibited a marked seasonal growth, 0+ 

age-class reached on average 22 mm CW by December, when growth virtually stopped. It 

was easy to identify the boundaries of this cohort, but an increase in the range of the sizes 

after the cohort completed 1 year, in particular in June, strongly indicate that age-class 2+ 

and older will be virtually impossible to separate by size alone. This suggests that growth 

estimates should be extremely biased when obtained by modal progression based on adults 

only. 

Although a somewhat arbitrary method of choosing the asymptotic size (L,,, ), assuming 

a L,,,, based on previous studies produced less biased values compared to graphical methods. 

Moreover, small changes in L,,,, produced little change in the estimates of the other 

parameters of the VBGF. Estimates of K should be viewed as a range of values from the 

possible asymptotic lengths (Table 5.6), hence, K is probably ranging between 0.299 and 

1 0.265 yr- . 

Table 5.6 Estimated K5 

possible range of L,,,,. 
to ,C and t, from the least square fitting of the data to the VBGF with a 

L,, ý K to c ts r2 

100 0.299 -0-039 0.102 0.267 0.951 
105 0.281 -0.043 0.103 0.268 0.953 
110 0.265 -0.047 0.103 0.269 0.954 
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This range is slightly lower than previous results from Plymouth (Norman 1989) and 

lower than estimates for Necora puber populations at higher latitude (Table 5-7). In Ficr 
117, * 

5.17, most of the curves have estimated higher growth rates than in the present study, in 

particular studies from Choy (1986) and Bakir (1990), which were carried out in higher 

latitudes and would be expected to have slower growth rates than in Plymouth. 

Table 5.7 Summary of the VBGF parameters L, and K estimated for males in studies in Spain, 
France and UK. * Studies where the value of L,,, was given in CWI, were converted to CW for 
comparison. 

Study L,,,, K 
Gonzalez-Gurriaran (1985a) - Galicia, Spain 109 0.65 
Wilhelm (1995)- Brittany, France ill. 0.55 
Non-nan (1989) - Plymouth, England 110 0.33 
*Choy (1986) - Swansea, Wales 114 0.61 
Bakir (1990) - Dalkey, Ireland 103 0.53 
*Combes (2002) - Clyde, Scotland 122 0.10 
Heam (2001) - Orkney, Scotland 98 0.27 
Tallack (2002) - Shetland, Scotland 102 0.46 

Present studv 105 0.28 

The exception are the estimates from Heam (2001) and Combes (2002). Combes 

(2002) described his results as excessively low estimates for growth rate and attributed the 

bias to the lack of data on juveniles. Hearn (2001) referred to his results from adults as 

unreliable and preferred estimates obtained from juvenile data, despite the latter data only 

covering 4 months. All other studies were mainly based on adults and they estimated 

higher growth rates during the Juvenile period than the present study. 

Because the detennination of the cohorts (Fig. 5.6) was highly reliable and the 

coefficient of determination of the fit to the VBGF was high, the estimated growth rates for 

juveniles are believed to be robust in the present study. Therefore, studies carried out in 

higher latitudes appear to have over-estimated the juvenile growth of Necora puber. This 

illustrates the importance of the juveniles in the determination of the growth for the 

population and fishery managers of Necora puber should reconsider their values of K 
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when estimating other important fishery parameters, such as the age at maturity, the total 

mortality Z (natural and fishing) and length-based yields, as growth rates could be much 

slower than previously assumed. 
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Figure 5.17 Necora puber, comparative VBGF for males. Data originated from: Gonzdlez- 
Gurriardn (1985), Galicia, Spain; Choy (1986), Swansea, Wales; Bakir (1990), Dalkey, Ireland; 
Norman (1989), Plymouth; Wilhelm (1995), Brittany, France; Hearn (2001), Orkney, Scotland; 
Combes (2002), Clyde, Scotland; Tallack (2002) Shetland Islands, Scotland; and this study. Mean 
values were used for the VBGF parameters when more than one estimate was obtained using 
different methods. 

5.4.2 Abundance and Mortality 

Sublittoral distribution of juveniles 

Sublittoral distribution of early juveniles was consistent with conclusions from 

laboratory experiments on settlement of juveniles (chapter 4), which indicated that early 

juveniles were less selective of substrata than megalopae, and distributed more evenly 

amongst the substrata. These findings agreed with the ontogenetic change in habitat use 
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observed in early instars of Carcinus maenas (Hedvall et al. 1998) and Callinectes sapidlis 

(Pardieck et al. 1999). In the case of Necora puber, early juveniles are probably changing 

from algal habitat (where megalopae are found, Chapter 4) to the interstitial spaces 

between cobbles and boulders as they increase in size and become more vulnerable to 

predators in algal habitats. The conclusions are only preliminary as results from replicates 

were variable and more spatial and temporal replications are needed. 

Intertidal abundance and mortality 

Marking methods 

The Elastomer was a useftil tool for marking crabs through successive moults. It was 

good for determining growth of adult individuals, but for small juveniles (<15 mm), 

growth rate was too high and crabs outgrew the marks quickly, making it hard to identify 

the markings. Despite this disadvantage, it should be of great value for future studies on 

early juvenile crabs as only a few other expensive methods are available for such small 

crabs; most of the cost-effective methods such as T-bar or streamer tags are available only 

for adults due to the size of the tags. 

The minimum recapture required for an unbiased estimate using Petersen method (7 

recaptures) occurred on only 5 occasions, so estimates can be highly biased and unreliable 

(Krebs 1999). Moreover, the coefficient of variation of the Petersen estimate is 

approximately II/R 
, where R is the number of recaptures (Seber 1982), so to achieve a 

level of confidence with a coefficient of variation of 25%, at least 16 recaptures would be 

required. Considering a population size ranging between 500-1000 crabs, estimated for 

2002, using the sample size chart from Robson and Rieger (1964) (Krebs 1999), around 

250 should be marked and examined to achieve ±10% accuracy estimates of the population 

size. Furthermore, part of the variability in the estimated size of the population, by mark- 

recapture models, may have been caused by the range of sizes included in the model, 
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which mixed two cohorts. To resolve this, a solution would be to stratify the samples into 

narrower class size bands that move with the growth of the crabs. However, this would 

require an increase in the effort that is unlikely to be attained. Finally, the lengthy time 

needed for marking individual crabs with Elastomer was also a major limitation of the 

method, and in this study a maximum of 41 crabs were marked during one low water 

(approximately I h, by one person marking only). 

In temporary marking techniques, due to early Juveniles moulting very frequently, loss 

of marks with the moult may occur (as in some occasions in the present study) and should 

be avoided if the interval until the recapture is longer than 1-2 days. In addition, loss by 

predation or migration can be high in mobile animals such as swimming crabs (Hunt & 

Scheibling 1997); thus, short intervals between marking and recapture should be 

emphasized. 

Recruitment and mortality 

The clear predominance of 0+ juveniles within the total catches of the year (Fig. 5.12) 

showed the importance of the intertidal shores for the early juveniles and supported the 

vast amount of evidence that this area is a nursery ground for this age-group (e. g. 

Fernandez et al. 1993a, McMillan et al. 1995, Cowan 1999, Paula et al. 2003). In this area, 

juveniles could be facing lower predation pressure, as has been suggested for Callinectes 

sapidus that inhabited shallow waters (Dittel et al. 1995, Hines & Ruiz 1995). 

First detection of the 0+ age-class occurred in June, with crabs ca. 5 min CW, which is 

11'k "bed by Norman (1989). The difference is likely to have 
about a month earlier than descri 

been caused by interannual variability in the recruitment period and difficulty in the 

detection of small juveniles. The abundance at this size was probably underestimated as 

early juveniles blended well amongst the pebbles and algae (Fig. 5.2), and many possibly 

escaped detection. The crabs probably began to be fully detected by the search technique 

only when they reached about 15 mmCW. In addition, recruitment period was long due to 
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the broad spawning period of the ovigerous females (Fig. 5.5) and occurred at least until 

July and possibly August. Modifying the VBFG to describe the growth of individuals from 

late spawning, i. e. shifting the to (theoretical age when size is zero) to August (Fig. 5.18), 

suggests that these larvae should reach Is' crab instar in September. These late recruits will 

be affecting the estimation of the size of the cohort until they reach a size to be fully 

captured by the technique employed (c. a. 15 mm CW), i. e. in the following May (Fig. 

5.18). In May, the mean age of the cohort is ca. 1.1 yr and the effect of recruitment should 

have finished. 
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Figure 5.18 Growth curve of the individuals born in the peak period of spawning (solid line) and at 
the end of spawning period (dotted line). Note that tick marks in the abscissa refer to the 15 th of 
each month as birth date of the modal class was assigned 15'hof April. 

Once the effect of recruitment had finished, a great reduction in cohort size was 

observed, notably on 2001 cohorts (Fig. 5.14), when recruitment levels were twice as high 

as those in 2000 cohorts, but reached similar levels by the end of the 1+ year. A similar 

pattern has also been observed for the 0+ age-class of the Dungeness crab Cancer magister 

in intertidal habitats in the northwest coast of the USA, where similar year-class strength 
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was obtained for late 0+ age crabs despite different magnitudes of settlers being measured 

at the time of settlement (early 0+ age-class) (McMillan et al. 1995). In the present study, 

the observed instantaneous mortality rate for the period between 1.1 and 1.8 yr (8.5 

months) vaned between 0.62 and 3.6 (46% and 97%), so by the time crabs complete their 

second year, a reduction of at least 50% occurred in the size of the population. The high 

mortality rates estimated for this period is characteristic of the juvenile period of 

invertebrates (Hunt & Scheibling 1997), and emphasizes its importance in shaping the 

structure of the population. Particularly for crabs it has been shown to be very high in the 

first benthic instars (e. g. Pile et al. 1996, Palma et al. 1998, Botton et al. 2003), and in 

Callinectes sapidus, mortality rates of 40-90% per day have been observed in 0+ juveniles 

(Hines & Ruiz 1995). An exception to this pattern was noted in Batten Bay, where 

mortality rates remained at the same level despite the difference in abundance between 

cohorts, and could suggest a different habitat complexity compared to the other shores. 

Batten Bay probably had a larger amount of suitable habitats that supports higher densities 

of juveniles, whilst on the remaining shores studied, the amount of suitable habitat may be 

limited. The availability of suitable habitat for the initial settlers appears to structure the 

assemblage of young-of-the-year in decapod communities and in turn the shape of the 

adult population assemblage (Robinson & Tully 2000a). 

Migration may also greatly affect local distribution of crabs (Moksnes 2002) and may 

have confounded the mortality estimates. Nonetheless, the different pattern in the 

reduction of the population, which was dependent on the shore in this study, suggested that 

mortality, rather than migration, was the force controlling the size of the cohorts. In 

addition, immature N. puber apparently shows little migratory movement (Norman 1989). 

Migration in decapod crustaceans has often been associate with ontogenetic shift in habitat 

use (Pittman & McAlpine 2003) and evidences for that are strong in blue crabs (Ruiz et al. 

1993, Hines et al. 1995, Pardieck et al. 1999). Hence, if migration were the cause for high 
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rates of reduction in the population, a similar pattern would be expected on all shores since 

all cohorts were at the same age. 

Density-dependent control is difficult to determine and requires many years of data with 

different levels of abundance to be formally tested; thus, the results from the present study 

cannot confinn whether a density-dependent process was controlling the juvenile 

population. Yet, distribution of suitable refuge habitats for Necora puber was limited and 

patchy, so when densities surpass levels of carrying capacity, high population density will 

inevitably cause habitat availability to become a demographic bottleneck and limit the 

amount of crabs surviving to the next age-class. The density-dependent losses are 

characteristically the results of agonism, predation, disease, or competition for resources 

(Menge & Sutherland 1987), and in decapod Juveniles, competition for habitat (Fogarty & 

Idoine 1986, Wahle & Steneck 1991,1992, Butler & Henmkind 1997, Wahle & Incze 

1997) and predation (Pile et al. 1996, Palma, 1998 #18, Spitzer et al. 2003), including 

cannibalism (Lovrich & Sainte-Marie 1997, Moksnes et al. 1997, Luppi et al. 2001, Sainte- 

Mane & Lafrance 2002, Moksnes 2004), have been regarded as the primary sources of 

reduction in population size. 

Amongst large crustaceans, cannibalism appears to be exclusively seen in crabs and is 

an important density-dependent contributor to post-settlement mortality (Fernandez et al. 

1993b, Wahle 2003, Moksnes 2004). Inter-cohort cannibalism is known to occur in 

portunid crabs due to their agonistic behaviour. During this fast growth period, the 

juveniles are notably vulnerable due to the frequent moulting (Ryer et al. 1997), and 

mortality by cannibalism strongly influences the regulation of juvenile portunid crabs, e. g. 

Callinectes sapidus (Dittel et al. 1995, Hines & Ruiz 1995, Moksnes et al. 1997) and 

Carcinus maenas (Moksnes et al. 1997, Moksnes et al. 1998, Moksnes 2004). In the 

present study, differences in size caused by the extended recruitment are likely to have 

exacerbated the levels of cannibalism from individuals that settled early onto those settling 

late in the season. 
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As emphasized earlier, the high mortality observed is characteristic of the juvenile 

period and directly related to size, with smaller individuals facing higher rates of mortality 

(e. g. Wilson et al. 1990, Smith & Hermkind 1992, Wahle & Steneck 1992, Robinson & 

Tully 2000c). Subsequently, a gradual levelling off of the survivorship is a common 

feature and results from individuals reaching critical sizes at which vulnerabil'tY to 

physical and biological impacts is substantially reduced (e. g. Orth & van Montfrans 1987, 

Smith & Hermkind 1992, Wahle & Steneck 1992, Robinson & Tully 2000c). This effect 

should be expected in Necora puber as crabs reach maturity (towards the end of 1+ age- 

class) and start to face the lower mortality rates experienced by adults. 

Conclusions and suggestions 

Changes in growth influence the age of maturity and onset of egg production (Wenner 

et al. 1985), which are vital information in managing populations. Variation in growth 

amongst different populations due to differences in environmental conditions and density- 

dependent processes have been well documented (Hartnoll 1982), and within a population, 

growth is likely to vary amongst the different cohorts (Conan 1985). In addition, the 

present study indicated that juvenile growth rates have been over-estimated in studies 

based on adults only, which may cause an inflated expectation on the rates the adult 

population is renewed. Considering that recruitment and growth occurred mostly during 

the summer, and that cohorts of juveniles can be clearly distinguished, a monitoring 

programme of the intertidal juvenile population during summer would be a great tool to 

estimate cohort-specific growth parameters and to monitor changes in the population, at 

relatively low cost. This will in turn provide grounds for a cohort-specific decision in 

stock management. 

Furthermore,, the present study presented the first estImates of mortality for the early 

juvenile population of Necora puber, and despite its limitation in the temporal scale, it 

described quantitatively the high levels of mortality in the early age-classes. This first step 

is essential for a better understanding of the processes controlling the recruitment to the 
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fishery population and a crucial tool for the management of this species. Many questions 

remain to be addressed and, possibly, the main challenge would be to determine to what 

extent migation affects the estimation of late juvenile survival. Further studies should 

focus on understanding the connectivity between juvenile and adult habitat, as it is of 

considerable implications for fisheries management and effective conservation of these 

organisms (Gillanders et al. 2003). If this connectivity is established for Necora puber, the 

use of 1+ age-class as annual indices would be of great potential for forecasting the adult 

population entering the fishery about 2-3 years later. 
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In marine organisms with pelagic larval dispersal and settlement to the seabed, cohorts 

are affected by a host of physical and biological processes occurring before and soon after 

settlement. The importance of larval supply as a major determinant of demographic 

pattern is illustrated in many taxa, and the recognition that post-settlement processes must 

be viewed in the context of the larval supply has been emphasized and reviewed recently 

(e. g. Caley et al. 1996, Underwood & Keough 2001). Dunng the post-settlement Period, 

mortality is high (Gosselin & Qian 1997) and, amongst the many processes causing 

variability in mortality rates, predation is regarded normally as the most important factor 

for mobile species (Hunt & Scheibling 1997). In large decapods, such as crabs and 

lobsters, a full range of density-independent to density-dependent controls have been 

described for the juvenile-to-fishery recruit relationship (Wahle 2003). Hence, 

determining the species- specific impact of the pre- and post-settlement processes on the 

strength of the year-class is a crucial step for understanding the dynamics of a population. 

6.1 Transition from the pelagic to the benthic phase 

The general aims for the study of the pelagic phase of Necora puber, proposed in the 

introduction of this dissertation, were accomplished and the first quantitative description of 

the supply and transport of postlarvae for the population of N. puber in Plymouth Sound 

was achieved. The stochastically variable supply of larvae in time and space, observed 

generally in marine species (Underwood & Keough 2001), was reiterated by the results in 

Chapter 3 on the pelagic megalopal abundance of Necora puber. These explain (at least 

from the supply side point of view) the notion that benthic recruitment is variable in spatial 

and temporal scales. 

In spatial scale, postlarval abundance of Necora puber was largely variable in I Os and 

1000s of metres, but overall pattern was consistent between the years. In temporal scale, 
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the annual abundance pattern was predominated by low postlarval recruitment. with few 

peaks of high abundance. The pattern observed confomied to those for other portunids, 

where variable peaks of abundance indicated that recruitment was normally low, xNith 

occasional occurrence of peaks of high abundance. Studies on the postlarval recruitment 

of Callinectes sapidus suggest that over 50% of the recruitment occurs during these 

infrequent peaks (van Montfrans et al. 1995), and the detection of peaks were only possible 

because postlarval recruitment was measured at daily basis. In addition, the ephemeral 

nature of the megalopal stage must further complicate their detection in the plankton. This 

illustrates the difficulties in detecting the infrequent pulses of high recruitment of pelagic 

postlarvae and the importance of intense sampling programmes. 

Studies with more efforts over temporal scales are needed to determine the causes of 

the fluctuations in larval supply and the fate of the pelagic megalopae. This is particularly 

important during the design of marine reserves, where the effectiveness and importance of 

a conservation area will ultimately depend on the connectivity of the local populations to 

other source and sink areas of larvae. In marine reserves with the goal of preserving 

biodiversity, it is important to increase persistence of the species by designing the reserves 

to minimize export of larvae from reserves. On the other hand, when the goal is to 

maximize yields for fisheries, the design of the reserves focuses on source areas of larval 

production, which maximizing export of larvae to fished areas (Hastings & Botsford 2003). 

Therefore, understanding how the larval behaviour of a species may influence the patterns 

of dispersal and recruitment produced by oceanographic processes will be essential for the 

management of marine reserves. This information, along with infon-nation on the areas 

where adults spawn will help managers in the decision of the locality and the size of the 

ecosystem that needs to be protected (Allison et al. 1998, Stobutzki 2001). 

When megalopae are competent to settle and a substratum is available, settlement 

occurs. The experiments from Chapter 4 demonstrated that during this period, an active 

habitat selection takes place, which will affect their distribution amongst the fittoral 
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habitats. Megalopae and early juveniles actively selected structurally complex substrata 

that provided shelter against predation. This suggests that when suitable habitats are 

limited, saturation of the habitat may occur, leading to losses by predation and a 

demographic bottleneck that may filter the levels of larval supply in excess. 

Many questions remain to be examined concerning the fon-nation of patchy 

distributions. A fundamental question which needs to be addressed next is the impact 

predation (inter and intra-specific) will have on the densities within patches; that is, 

whether predation exacerbates or minimizes the initial distribution set by the postlarval 

behaviour and what factors affect the intensity of predation. Laboratory experiments are 

one of the few alternatives to test recruitment processes in mobile animals. Certainly for 

the settlement study (Chapter 4), the experiments carried out with the annular flume 

allowed the control of factors that are variable in the field, and would have produced 

confounding results. In addition, laboratory experiments provide the possibility of 

performing more rigorous replication that is relatively quick to set up compared with field 

studies. Consequently, more replicates can be carried out, which will produce statistically 

more powerful tests. 

Conceptual model ofpostlarval transport 

Largely, the high variability of megalopal abundance also affected the detection of 

clear, unambiguous effects of the factors tested (tide, depth and exposure) (Chapter 3), and 

only tendencies of significant effects were observed, although results were similar in both 

years sampled. The main patterns observed in the water column during postlarval 

recruitment were: (1) higher density at surface than bottom waters, and tendency of higher 

density during floods than ebbs; (2) for waters outside the breakwater, on more exposed 

shores, megalopae were not found near the bottom, whilst at sheltered shores, were 

collected only during floods. 

Considering the evidence from the vertical distribution of megalopae during the tidal 

cycle, the follOWing conceptual model for the megalopal recrultment of Necora puber ls 
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proposed (Fig. 6.1). At exposed areas outside the Breakwater, megalopae are concentrated 

nearshore by shoreward oceanographical processes, such as those described for larvae of 

sessi e species (Menge et al. 2003). In this exposed area, offshore physical characteristics 

of the water are predominant during flood tides, and this stimulates most of megalopae in 

exposed areas to remain on the surface (Fig. 6.1-A). Megalopae will only begin the 

movement to the bottom when they are much closer to the shore. 

Figure 6.1 Conceptual model of the vertical distribution of megalopae in relation to tidal phase and 

exposure. The diagram represents the distribution of megalopae in the water column near the 

surface and near the bottom (grey). Direction of the tidal current is indicated by the arrow. 
Relative abundance is represented by number of dots and exposure represented by size of waves at 

the top of each diagram. A-D see text. 

In sheltered areas, riverine cues and intertidal odours are stronger and stimulate some 

of the megalopae to migrate to the bottom waters in search for suitable substrata 

(Fig. 6.1 -B), possibly those megalopae which are competent to metamorphose. As the tide 
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ebbs, intertidal and riverine odours are carried with the current. Cues from the shore 

become stronger and part of the megalopal population, which is competent to settle, 

migrate to the substratum (Fig. 6.1 -C), while those remain at the surface are more spread in 

the water column. In exposed areas, megalopae are also more dispersed in the water 

column and some are carried further away from the shore (Fig. 6.1 -D). 

The conceptual model is based on the described megalopal behaviour known for other 

portunids (Queiroga 1998b, Forward et al. 2003a) and assumed to apply to Necora puber. 

Therefore, many questions regarding to the cues controlling vertical migration of the 

megalopae still need to be confirmed. One important question that remains to be tested is 

the role nocturnal tides may have on the vertical migration of megalopae. Nocturnal 

vertical migration patterns may be distinct from those occurring during day-time and must 

also be tested to confirm the true nature of the mechanisms used by the megalopae to reach 

the shores. 

Suggestionsfor improving the estimation ofpostlarval supply 

In the present study, high temporal and spatial variability of postlarval supply in the 

plankton indicated that the punctual sampling, carried out in Chapter 3, may be an 

inadequate measurement to represent daily postlarval recruitment. Alternatives to obtain a 

better daily estimate of postlarval supply would be the use of ovemight drift-net to measure 

over a longer period of time, which should reduce a large portion of the noise introduced 

by the patchy disthbution in the plankton. Furthermore, megalopae of many decapods 

show strong diel patterns of vertical migration (Gonzalez-Gordillo et al. 2003) that may 

affect the estimation of the intensity of postlarval abundance. 

Finally, an approach that deserves attention in future studies is the measurement of 

settlement rates using artificial substrata. Such an approach was successful in obtaining 

settlement indexes for megalopae of the blue crab Callinectes sapidus (Metcalf et al. 1995, 

Rabalais et al. 1995, van Montfrans et al. 1995) and the shore crab Carcinus maenas 

(Moksnes & Wennhage 2001, Almeida & Queiroga 2003). These artificial samplers can 
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be deployed daily and produce a temporal series of the fluctuation in the recruitment, 

which is more likely to detect the episodic pulses of postlarval recruitment. 

6.2 Population dynamics of juveniles 

Literature on the importance of post-settlement processes on the population dynamics 

of juveniles is mounting (e. g. Gosselin & Qian 1997, Hunt & Scheibling 1997, Heck et al. 

200 1), and in Necora puber, the need for data on the biology and ecology of juveniles has 

been emphasized recently ((Hearn 2001, Combes 2002, Tallack 2002). One of the 

difficulties in studying the early juvenile population of N. puber is the collection of these 

animals. They are cryptic and are not normally attracted to traps, so no standard 

methodology exists to collect them on rocky shores. The most unbiased method used to 

study juveniles of N. puber was by suction sampling, but effort needed was high as the 

distribution of the early juveniles in the sublittoral was highly patchy and variable, and 

logistically precludes the development of most experimental studies. In the present study, 

the limited results obtained from suction sampling of the sublittoral provided a qualitative 

view, though an important one, in understanding the processes regulating the ecology of 

the early juveniles. The results suggested a similar occupation of algal and boulder 

habitats by the early juveniles, which were inconsistent with the specific settlement of the 

megalopae on algae. Consequently, the results indicate an early ontogenetic shift in habitat 

use by the first juvenile instars. 

To estimate abundance and mortality of older juveniles (size >20 mm CW) in the lower 

intertidal, mark-recapture models were a theoretically sounder alternative than CPUE. 

Nevertheless, fulfilling all requirements for these models proved to be a difficult task. 

Recaptures were low and the method required a much larger number of animals to be 

marked than was possible. In addition, time available for searching the intertidal during 

the slack low water was limited and, to determine a more accurate age-specific mortality 

rate, marking will need to be stratified for each age class, which will increase substantially 

116 



Chapter 6 General discussi . on 

the number of animals marked. Therefore, this methodology is not suggested, unless a 

large team of researchers and resources are available for the study. 

The most promising method to measure juvenile abundance was the estimation of 

CPUE on the hand collected intertidal crabs. In Plymouth Sound, the intertidal abundance 

was high, and allowed collection of more than 100 juveniles per low water with a team of 3 

people. Identification of the early cohort from size-frequency distribution was confidently 

carried out, and non-problematic up to around mean CW of 40 mm. Any cohort with mean 

CW larger than 40 mm certainly has a large proportion of individuals, with the sizes 

overlapping with older age-classes. Separating older cohorts was more difficult due to the 

extended period over which reproductive period occurred (Chapter 5, Norman & Jones 

1993), and illustrated the possible inaccuracy of results based on length frequency of 

predominantly adults. Overlapping of different cohorts is so large in adults, it would be 

virtually impossible to separate the age groups by cohort progression methods. Hand 

collection was an invaluable tool for studying early juveniles, and the method that 

produced the best results considering the effort and technical skills necessary for the 

sampling. It was particularly important in determining the growth parameters for the 

VBGF, which suggested that previous studies, based on adults overestimated the growth 

rates of juveniles (Chapter 5). This overestimation of juvenile growth has important 

consequences for the management of the species, as expected restocking rates to the adult 

population may be lower. 

The high mortality rates estimated for juveniles were in accord with the patterns 

generally observed for crabs (Wahle 2003). Conclusions are limited by the lack of ability 

to separate migration from estimates of mortality. Progresses in solving this question have 

been achieved through experimental approaches testing predator exclusion. However, 

these techniques are notoriously difficult to control for artefacts and complicated to 

maintain in rocky shores, and continues to be the one of the greatest challenge in the study 

of mobile macrofauna of rocky shores (Wahle 2003). 
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Chapter 6 General discussion 

The differences in the levels of mortality between years, on shores where mortality 

rates were higher during stronger recruitments, suggested that density-dependent processes 

could be limiting the transfer of early juveniles to the adult population. Larval supply 

appeared to be in excess, causing a saturation of the benthic habitats. As the juveniles 

grew and reached the end of their first year, the habitat appeared not to sustain the same 

density of crabs, causing a strong demographic bottleneck that level off the density of the 

crabs irrespectively of the intensity of the benthic recruitment. This suggests that the 

connectivity between larval supply and the fishery recruitment for Necora puber is weak. 

Alternatively, a better chance for developing predictions of the adult population dynamics 

should be achieved with the juvenile-to-adult relationship. Unless density-dependent 

processes are weak, larval abundance and fishery recruitment will continue to lack 

correlation, and therefore, leave use of spawner-recruit relationships very limited. 

6.3 Further questions and applications 

Long-term monitoring of postlarvae recruitment should be the next step to determine 

and understand the consistency of the processes involved in the variability in the postlarval 

supply. Amongst the oceanographical processes which have been demonstrated to 

transport postlarvae (Shanks 1995), wind-driven currents and internal tidal bores could be 

relevant processes affecting the variability in the supply of postlarvae to the shores for the 

Sound and should be examined. This knowledge will provide the base for the 

determination of sensitive areas for conservation or protection. 

However, larval supply appears to be of limited value for predicting the population 

dynamics, due to the difficulty in obtaining reliable measurements of larval supply, and to 

the strong post-settlement processes that regulate the density of the juveniles. Further 

studies should focus on the detennination of the effects of predation on the habitat specific 

survival and selection by the postlarvae and the early Juvenile instars of Necora puber. 
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Chapter 6 General discussion 

Predators may be strong forces affecting distribution of recruits and the relative importance 

of the predator may vary between habitats or communities. 

The present study provided the first description of juvenile mortality for Necora puber 

and a preliminary understanding of the processes limiting the adult population. A direct 

application of the intertidal survey of juveniles could be used to monitor the changes in the 

population biology by detennining yearly growth curves for the 1+ age-class, which would 

provide grounds for detection of changes in biological parameters such as age-at-matunty. 

If yearly indices of 1+ age-class recruitment are produced, a forecast model could be 

created to predict the magnitude of adult population with 2-3 years in advance. 

119 



References 

Abello P, Guerao, G (1999) Temporal variability in the vertical and mesoscale spatial 
distribution of crab megalopae, (Crustacea: Decapoda) in the northwestern 
Mediterranean. Estuar Coast Shelf Sci 49: 129-139 

Abelson A, Denny M (1997) Settlement of marine organisms in flow. Annu Rev Ecol Syst 

28: 317-339 

Allison GW, Lubchenco J, Carr MH (1998) Marine reserves are necessary but not 

sufficient for marine conservation. Ecol Appl 8: S79-S92 

Almeida MJ, Quelroga H (2003) Physical forcing of onshore transport of crab megalopae 

in the northern Portuguese upwelling system. Estuar Coast Shelf Sci 57: 1091-1102 

Alvarez-Ossorio MT, Valdes L, Gonzalez- Gurri aran E (1990) Effects of several diets on 
larval development of Necora puber (L., 1767). Bol Inst Esp Oceanogr 6: 73-80 

Anger K (1998) Patterns of growth and chemical composition in decapod crustacean 

larvae. Invertebr Reprod Dev 33: 159-176 

Anger K (2001) The biology of decapod crustacean larvae. Crustacean issues 14. A. A. 

Balkema, Lisse 

Aronson RB, Heck KL, Valentine JF (2001) Measuring predation with tethering 

expenments. Mar Ecol Prog Ser 214: 311-312 

Bakir WMA (1990) The biology of Liocarcinus puber (L. ), the velvet swimming crab and 

some aspects of commercial exploitation. Ph. D thesis, University College, Dublin 

Barshaw DE, Able KW, Heck KLJ (1994) Salt marsh peat reefs as protection for post- 

larval lobsters Homarus americanus from fish and crab predators: companson with 

other substrates. Mar Ecol Prog Ser 106: 203-206 

Bartholomew A, Diaz RJ, Cicchetti G (2000) New dimensionless indices of structural 

habitat complexity: predicted and actual effects on a predator's foraging success. 

Mar Ecol Prog Ser 206: 45-58 

Bertness MD, Gaines SD, Wahle RA (1996) Wind-driven settlement patterns in the acorn 

bamacle Semibalanus balanoides. Mar Ecol Prog Ser 137: 103-110 

Blackmon DC, Eggleston DB (2001) Factors influencing planktonic, post-settlement 

dispersal of early juvenile blue crabs (Callinectes sapidus Rathbun). J Exp Mar 

Biol Ecol 257: 183-203 

120 



References 

Bluhm BA, Brey T (2001) Age determination in the Antarctic shrimp Notocrallgoll 

antarcticus (Crustacea : Decapoda), using the autofluorescent igment lipofusci p in. 
Mar Biol 138: 247-257 

Booth Dj, Brosnan DM (1995) The role of recruitment dynamics in rocky shore and coral 
reef fish communities. Adv Ecol Res 26: 309-385 

Booth JD (2001) Habitat preferences and behaviour of newly settled Jasus edwardsii 
(Palinundae). Mar Freshw Res 52: 1055-1075 

Botsford LW (1985) Models of Growth. In: Wenner AM (ed) Factors in adult growth - 
Crustacean Issues 3. A. A. Balkema, Rotterdam, p 171-188 

Botton ML, Loveland RE, Tiwari A (2003) Disthbution, abundance, and suirvivorship of 
young-of-the-year in a commercially exploited population of horseshoe crabs 
Limuluspolyphemus. Mar Ecol Prog Ser 265: 175-184 

Boudreau B, Bourget E, Simard Y (1993a) Behavioral responses of competent lobster 

postlarvae to odor plumes. Mar Biol 117: 63 -69 
Boudreau B, Bourget E, Simard Y (1993b) Effect of age, injury, and predator odors on 

settlement and shelter selection by lobster Homarus americanus postlarvae. Mar 
Ecol Prog Ser 93: 119-129 

Boxshall AJ (2000) The importance of flow and settlement cues to larvae of the abalone, 

ha II "--liotis rufescens Swainson. J Exp Mar Biol Ecol 254: 143-167 

Bradbury IR, Snelgrove PVR (2001) Contrasting larval transport in demersal fish and 
benthic invertebrates: the roles of behaviour and advective processes in detennining 

spatial pattern. Can J Fish Aquat Sci 58: 811-823 

Butler MJ, Hen-nkind WF (1997) A test of recruitment limitation and the potential for 

artificial enhancement of spiny lobster (Panulirus argus) populations in Florida. 

Can J Fish Aquat Sci 54: 452-463 

Butler MJ, Hermkind WF, Hunt JH (1997) Factors affecting the recruitment of juvenile 
Caribbean spiny lobsters dwelling in Macroalgae. Bull Mar Sci 61: 3-19 

Butman CA (1987) Larval settlement of soft-sediment invertebrates: the spatial scales of 

pattern explained by active habitat selection and the emerging role of 

hydrodynamical processes. Oceanogr Mar Biol Annu Rev 25: 113-165 

Caffey JM (1985) Spatial and temporal variation in settlement and recruitment of intertidal 

bamacles. Ecol Monogr 55: 313-332 

Caley MJ, Carr MH, Hixon MA, Hughes TP, Jones GP, Menge BA (1996) Recruitment 

and the local dynamics of open manne populations. Annu Rev Ecol Syst 27: 477- 

500 

121 



References 

Caputi N, Brown RS (1986) Relationship between indexes of juvenile abundance and 
recruitment in the western rock lobster (Panuhrus cygnus) fishery. Can J Fish 
Aquat Sci 43: 2131-2139 

Caputi N, Brown RS, Chubb CF (1995a) Regional prediction of the western rock lobsterg 
Panuhrus cygnus, commercial catch in Western Australia. Crustaceana 68: 245-256 

Caputi N, Brown RS, Phillips BF (I 995b) Predicting catches of the western rock lobster 
(Panulirus cygnus) based on indices of puerulus and juvenile abundance. ICES Mar 
Sci Symp 199: 287-293 

Castro M, Erzini K (1988) Comparison of two length- frequency based packages for 

estimating growth and mortality parameters using simulated samples with varying 
recruitment. Fish Bull 86: 645-653 

Castro M. Encamacao P, Tully 0 (2002) The effect of dietary antioxidants on lipofuscin 

accumulation in the crustacean brain. J Exp Mar Biol Ecol 269: 53-64 

Chia FS, Buckland-Nicks J, Young CM (1984) Locomotion of marine invertebrate larvae: 

a review. Can J Zool 62: 1205-1222 

Choy SC (1986a) Ecological studies on Liocarcinus puber(L. ) and L. holsatus (Fabncius) 

(Crustacea, Brachyura, Portunidae) around the Gower Peninsula, South Wales. PhD 

thesis, University of Wales, Swansea 

Choy SC (1986b) Natural diet and feeding habits of the crabs Liocarcinus Puber and L. 

holsatus (Decapoda, Brachyura, Portunidae). Mar Ecol Prog Ser 31: 87-99 

Choy SC (1988) Reproductive biology of Liocarcinus puber and L. holsatus (Decapoda, 

Brachyura, Portunidae) from the Gower Peninsula, South Wales. PSZN1 Mar Ecol 

9: 227-241 

Choy SC (199 1) Embryonic and larval biology of Liocarcinus holsatus and Necora puber 
(Crustacea: Brachyura: Portunidae). J Exp Mar Biol Ecol 148: 77-92 

Clancy M, Cobb JS (1997) Effect of wind and tidal advection on disthbution patterns of 

rock crab Cancer irroratus megalopae in Block Island Sound, Rhode Island. Mar 

Ecol Prog Ser 152: 217-225 

Clark PF (1986) North-east Atlantic crabs; an atlas of distribution. Marine Conservation 

Society, Ross-on-Rye 

Cobb JS, Wahle RA (1994) Early-life history and recruitment processes of clawed lobsters. 

Crustaceana 67: 1-25 

Cobb JS, Booth JD, Clancy M (1997) Recruitment strategies in lobsters and crabs: a 

companson. Mar Freshw Res 48: 797-806 

Cobb JS, Wang DB, Campbell DB, Rooney P (1989) Speed and direction of swimming of 

postlarvae of the American lobster. Trans Am Fish Soc 118: 82-86 

122 



References 

Combes JCH (2002) Aspects of the biology and fisheries ecology of the velvet sw-imming 
crab, Necora puber (L. ), and the squat lobsters Munida rugosa (Fabricius) and 
M. sarsi Huss (Crustacea: Decapoda) in Scottish waters. PhD thesis, University of 
London 

Conan GY (1985) Periodicity and phasing of molting. In: Wenner AM (ed) Factors in adult 
growth - Crustacean issues 3. A. A. Balkema, Rotterdam, p 73-101 

Connell JH (1985) The consequences of variation in initial settlement vs. post-settlement 
mortality in rocky intertidal communities. J Exp Mar Biol Ecol 93: 11-45 

Connolly SR, Roughgarden J (1999) Theory of marine communities: Competition, 

predation, and recruitment-dependent interaction strength. Ecol Monogr 69: 277- 
296 

Coutteau P, Camara MR, Sorgeloos P (1996) The effect of different levels and sources of 
dietary phosphatidy1choline on the growth, survival, stress resistance, and fatty acid 

composition of postlarval Penaeus vannamei. Aquaculture 147: 261-273 

Cowan DF (1999) Method for assessing relative abundance, size distribution, and growth 

of recently settled and early juvenile lobsters (Homarus americanus) in the lower 

intertidal, zone. J Crustac Biol 19: 738-751 

David P, Berthou P, Noel P, Jame P (1997) Patchy recruitment patterns in marine 
invertebrates: A spatial test of the density-dependent hypothesis in the bivalve 

Spisula ovalis. Oecologia 111: 331-340 

Dean K Ferrari B, Oxley 1, Redknap M, Watson K (eds) (1995) Aechaeology Underwater. 

The NAS guide to principles and practice, Nautical Archaeology Society and 

Archetype Publications Ltd. 

Deevey ES (1947) Life tables for natural populations of animals. Q Rev Biol 22: 283-314 

Devon Wildlife Trust (1993) Plymouth Sound and approaches. Marine Survey Report, 

Devon Wildlife Trust 

DeVries MC, Tankersley RA, Forward ", Jr., Kirby-Smith WW, Luettich RA, Jr. (1994) 

Abundance of estuarine crab larvae is associated with tidal hydrologic variables. 

Mar Biol 118: 403-413 

Diaz H. Onhuela B, Forward RB, Rittschof D (1999) Orientation of blue crab, Callinectes 

sapidus (Rathbun), Megalopae: Responses to visual and chemical cues. J Exp Mar 

Biol Ecol 233: 25-40 

Dittel Al, Hines AH, Ruiz GM, Ruffin KK (1995) Effects of shallow water refuge on 

behavior and density-dependent mortality of juvenile blue crabs in Chesapeake 

Bay. Bull Mar Sci 57: 902-916 

123 



References 

Eggleston DB, Lipcius RN (1992) Shelter selection by spiny lobster under variable 

predation risk, social conditions, and shelter size. Ecology 73: 992-1011 

Eggleston DB, Armstrong DA (1995) Pre- and post-settlement determinants of estuanne 
Dungeness crab recruitment. Ecol Monogr 65: 193-216 

Eggleston DB, Etherington LL, Elis WE (1998) Organism response to habitat patchiness: 

species and habitat-dependent recruitment of decapod crustaceans. J Exp Mar Blol 

Ecol 223: 111-132 

Eggleston DB, Elis WE, Etherington LL, Dahlgren CP, Posey MH (1999) Organism 

response to habitat fragmentation and diversity: habitat colonization by estuarine 

macrofauna. J Exp Mar Biol Ecol 236: 107-132 

Epifanio CE, Garvine RW (2001) Larval transport on the Atlantic continental shelf of 
North America: a review. Estuar Coast Shelf Sci 52: 51-77 

Etherington LL, Eggleston DB (2000) Large-scale blue crab recruitment: liking postlarval 

transport, post-settlement planktonic dispersal, and multiple nursery habitats. Mar 

Ecol Prog Ser 204: 179-198 

Etherington LL, Eggleston DB, Stockhausen WT (2003) Partitioning loss rates of early 

juvenile blue crabs from seagrass habitats into mortality and emigration. Bull Mar 

Sci 72: 371-391 

Felder DL, Martin JW, Goy JW (1985) Patterns in early postlarval development of 

decapods. In: Wenner AM (ed) Larval growth - Crustacean issues 2. A. A. Balkema, 

Amsterdam, p 163-225 

Fernandez M (1999) Cannibalism in Dungeness crab Cancer magister: effects of predator- 

prey size ratio, density, and habitat type. Mar Ecol Prog Ser 182: 221-230 

Femandez M, Iribame 0, Anustrong D (1993a) Habitat selection by young-of-the-year 

Dungeness crab Cancer magister and predation risk in intertidal habitats. Mar Ecol 

Prog Ser 92: 171-177 

Femandez M, Armstrong D, Iribame 0 (1993b) First cohort of young-of-the-year 

Dungeness crab, Cancer magister, reduces abundance of subsequent cohorts in 

intertidal shell habitat. Can J Fish Aquat Sci 50: 2100-2105 

Fernandez M, Inbame 0, Armstrong DA (1994) Swimming behavior of dungeness crab, 

Cancer magister Dana, megalopae in still and moving water. Estuaries 17: 271-275 

Fitz HC, Wiegert RG (1992) Local population dynamics of estuarine blue crabs: 

Abundance, recruitment and loss. Mar Ecol Prog Ser 87: 1-2 

Fitzpatrick F (1991) Studies of sediments in a tidal environment. PhD thesis, University of 

Plymouth, Plymouth 

124 



RefeTences 

Flores AAV, Paula J (2001) Intert, dal distribution and species composition of brachyuran 

crabs at two rocky shores in central Portugal. Hydrobiologia 449: 171-177 

Fogarty MJ, Idoine JS (1986) Recruitment dynamics in an American lobster (Homams 

americanus) population. Can J Fish Aquat Sci 43: 2368-2376 

Forward R-B, Cohen JH, Irvine RD, Lax JL, Mitchell R, Schick AM, Smith MM, 
Thompson JM, Venezia J1 (2004) Settlement of blue crab Callinectes sapidus 
megalopae in a North Carolina estuary. Mar Ecol Prog Ser 269: 237-247 

Forward RB, Jr., Rittschof D (1994) Photoresponses of crab megalopae in offshore and 

estuarine waters: Implications for transport. J Exp Mar Biol Ecol 182: 183-192 

Forward RB, Jr., Tankersley RA (2001) Selective tidal-stream transport of marine animals. 
Oceanogr Mar Biol Annu Rev 39: 305-353 

Forward RB, Jr., Tankersely RA, Welch JM (2003a) Selective tidal-stream transport of the 
blue crab Callinectes sapidus: an overview. Bull Mar Sci 72: 347-365 

Forward RB, Jr., Tankersley RA, Smith KA, Welch JM (2003b) Effects of chemical cues 

on orientation of blue crab, Callinectes sapidus, megalopae in flow: implications 
for location of nursery areas. Mar Biol 142: 747-756 

Freire J, Gonzalez-Gurriaran E (1995) Feeding ecology of the velvet swimming crab 
Necora puber in mussel raft areas of the Ria de Arousa (Galicia, NW Spain). Mar 

Ecol Prog Ser 119: 139-154 

Freire J, Sampedro MP, Gonzalez-Gurriaran E (1996) Influence of morphometry and 

bioniechanics on diet selection in three portunid crabs. Mar Ecol Prog Ser 13 7: 111 - 
121 

Fukada MK, Lick W (1980) The entrainment of cohesive sediment in freshwater. J 

Geophys Res 85: 2813-2824 

Gaines S, Roughgarden J (1985) Larval Settlement Rate -a Leading Detenninant of 

Structure in an Ecological Community of the Marine Intertidal Zone. Proc Natl 

Acad Sci USA 82: 3707-3711 

Gaines SD, Bertness MD (1992) Dispersal of juveniles and variable recruitment in sessile 

marine species. Nature 360: 579-580 

Garvine RW, Epifamo CE, Epifanio CC, Wong KC (1997) Transport and recruitment of 

blue crab larvae: A model with advection and mortality. Estuar Coast Shelf Sci 

45: 99-111 

Gebauer P, Paschke K, Anger K (2002) Metamorphosis in a semiterrestrial crab, Sesarma 

curacaoense: intra- and interspecific settlement cues from adult odors. J Exp Mar 

Biol Ecol 268: 1-12 

125 



References 

Gillanders BM, Able KW, Brown JA, Eggleston DB, Shendan PF (2003) Evidence of 

connectivity between juvenile and adult habitats for mobile marine fauna: an 
important component of nurseries. Mar Ecol Prog Ser 247: 281-295 

Gonzalez-Gordillo Jl, Arias AM, Rodriguez A, Drake P (2003) Recruitment patterns of 
decapod crustacean megalopae in a shallow inlet (SW Spain) related to life history 

strategies. Estuar Coast Shelf Sci 56: 593-607 

Gonzalez-GuMaran E (1985a) Crecimiento de la necora Macropipus puber (L. ) 
(Decapoda, Brachyura) en la Ria de Arousa (Galicia, NW Espafia), y primeros 
datos sobre la dinamica de la poblacion. Bol Inst Esp Oceanogr 2: 33-51 

Gonzalez-Gumaran E (1985b) Reproduccion de la necora Macropius puber(L. ) 

(Decapoda, Brachyura), y ciclo reproductivo en la Ria de Arousa (Galicia, NW 

Espaiia). Bol Inst Esp Oceanogr 2: 10-32 

Gonzalez-Gurriaran E, Freire J, Fernandez L (1995) FeedIng actIvity and conthbutlon of 

mussel raft culture in the diet of crabs in the Ria de Arousa (Galicia, Northwest 

Spain). ICES Mar Scl Symp 199: 99-107 

Gore RH (1985) Molting and growth in decapod larvae. In: Wenner AM (ed) Larval 

growth - Crustacean issues 2. A. A. Balkema, Amsterdam, p 1-65 

Gosselin LA, Qian PY (1997) Juvenile mortality in benthIc marine invertebrates. Mar Ecol 

Prog Ser 146: 265-282 

Hacker SD, Steneck RS (1990) Habitat architecture and the abundance and body-size- 

dependent habitat selection of a phytal amphipod. Ecology 71: 2269-2285 

Hall SJ, Raffaelli D, Turrell VVR (1990) Predator-caging expenments in marine systems: a 

reexamination of their value. Am Nat 136: 657-672 

Hartnoll RG (1969) Mating in the Brachy-ura. Crustaceana 16: 161-181 

Hartnoll RG (1982) Growth. In: Abele LG (ed) Embryology, Morphology and Genetics - 
The Biology of Crustacea, vol 2. Academic Press, pII 1- 196 

Hartnoll RG (1985) Growth, sexual maturity and reproductive output. In: Wenner AM (ed) 

Factors in adult growth - Custacean Issues 3. A. A. Balkema, Rotterdam, p 10 1- 128 

Hartnoll RG (2001) Growth in Crustacea - twenty years on. Hydrobiologia 449: 111-122 

Hastings A, Botsford LW (2003) Comparing designs of marine reserves for fisheries and 

for biodiversity. Ecol Appl 13: S65-S70 

Haury LR, McGowan JA, Wiebe PH (1978) Patterns and processes in the time-space 

scales of plankton distnbutions. In: Steele JH (ed) Spatial pattern in plankton 

communities; NATO conference series: IV, Marine sciences; vol 3. Plenum Press, 

New York, p 277-327 

126 



References 

Hawkins SJ, Hartnoll RG (1982) Settlement patterns of Semibalanus balanoids (L. ) in the 

Isle of Man (1977-198 1). J Exp Mar Biol Ecol 62: 119-126 

Hay ME (1996) Marine chemical ecology - what's known and what's next? J Exp Mar Biol 

Ecol 200: 103-134 

Hayward PJ, Isaac MJ, Makings P, Moyse J, Naylor E, Smaldon GS (1995) Crustaceans. 

In: Hayward PJ, Ryland JS (eds) Handbook of the marine fauna of North-west 

Europe. Oxford University Press, Oxford 

Hearn A (2001) The biology and fishery of the velvet swimming crab, Necora puber (L. ) 

(Brachy-ura, Portunidae) in the Orkney Islands, UK. PhD Thesis, Henot-Watt 

University, 

Heck Jr KL, Crowder LB (1991) Habitat structure and predator-prey interactions in 

vegetated aquatic systems. In: Bell SS, McCoy ED, Mushinsky HR (eds) Habitat 

structure: the physical arrangement of objects in space. Chapman and Hall, p 281- 

299 

Heck KL, Coen LD (1995) Predation and the abundance of juvenile blue crabs: A 

comparison of selected east and Gulf coast (USA) studies. Bull Mar Sci 57: 877-883 

Heck KL, Coen LD, Morgan SG (2001) Pre- and post-settlement factors as determinants of 

juvenile blue crab Callinectes sa idus abundance: results from the north-central 

Gulf of Mexico. Mar Ecol Prog Ser 222: 163-176 

Hedvall 0, Moksnes PO, Pihl L (1998) Active habitat selection by megalopae and juvenile 

shore crabs Carcinus maenas: a laboratory study in an annular flume. 

Hydrobiologia 375/376: 89-100 

Herrnkind WF, Butler MJI (1994) Settlement of spiny lobster, Panuhrus argus (Latreille, 

1804) , in Florida: Pattern without predictability? Crustaceana 67: 46-64 

Hilborn R, Walters CJ (1992) Quantitative fisheries stock assessment: choice, dynamics 

and uncertainty. Chapman and Hall, London 

Hines AH, Ruiz GM (1995) Temporal variation in juvenile blue crab mortality: nearshore 

shallows and cannibalism in Chesapeake Bay. 57: 884-901 

Hines AH, Haddon AM, Wiechert LA (1990) Guild structure and foraging impact of blue 

crabs and epibenthic fish in a subestuary of Chesapeake Bay. Mar Ecol Prog Ser 

67: 105-126 

Hines AH, Wolcott TG, Gonzalez-GuMaran E, Gonzalez-Escalante JL, Freire J (1995) 

Movement patterns and migrations in crabs: telemetry of Juvenile and adult 

behaviour in Callinectes sapidus and Maja squinado. J Mar Biol Ass UK 75: 27-42 

127 



References 

Hiscock K (1990) Marine Nature Conservation Review: methods, Joint Nature 

Conservation Committee, Nature Conservancy Council, CSD Report, No. 1072 
(Marine Nature Conservation Review Report No. MNCR/OR/5), Peterborough 

Hiscock S (1986) A field guide to the British red seaweeds (Rhodophyta). Field Studies 
Council, Preston Montford 

Holthuis LB (1987) Necora 
,a new genus of European swimming crabs (Crustacea 

Decapoda, Portunidae) and its type species, Cancer puber L., 1767. Zool Meded 
61: 1-14 

Hovel KA, Morgan SG (1997) Planktivory as a selective force for reproductive synchrony 
and larval migration. Mar Ecol Prog Ser 157: 79-95 

Hovel KA, Lipcius RN (2001) Habitat fragmentation in a seagrass landscape: Patch size 
and complexity control blue crab survival. Ecology 82: 1814-1829 

Hughes TP, Baird AH, Dinsdale EA. Moltschaniwskyj NA, Pratchett MS, Tanner JE, 
Willis BL (1999) Patterns of recruitment and abundance of corals along the Great 

Barrier Reef Nature 397: 59-63 

Hunt HL, Scheibling RE (1997) Role of early post-settlement mortality in recruitment of 
benthic marine invertebrates. Mar Ecol Prog Ser 155: 269-301 

Incze LS, Wahle RA (1991) Recruitment from pelagic to early benthic phase in lobsters 
T-T- 

humarus americanus. Mar Ecol Prog Ser 79: 77-87 

Ingle RW (1983) Shallow-water crabs. Cambridge University Press, Cambridge 

Ingle RW (1992) Larval stages of Northeastern Atlantic crabs. Chapman & Hall, London 

Ingle RW (1996) Shallow-water crabs. Field Studies Council Publications, Shrewsbury 

Ingle RW, Rice AL (1984) The juvenile stages of eight swimming crab species (Crustacea: 

Brachyura: Portumdae); a comparative study. Bull Br Mus (Nat Hist) Zool 46: 345- 

354 

Iribame 0, Fernandez M, Armstrong D (1994) Does space competition regulate density of 

juvenile Dungeness crab Cancer magister Dana in sheltered habitats? J Exp Mar 

Biol Ecol 183: 259-271 

Jennings S, Kaiser MJ, Reynolds JD (2001) Marine fisheries ecology. Blackwell Science, 

Oxford 

Jensen GC (1989) Gregarious settlement by megalopae of the porcelain crabs PetroliSthes 

cinctipes (Randall) and P. eriomerus Stimpson. J Exp Mar Biol Ecol 131: 223-231 

Jensen GC (199 1) Competency, settling behavior, and postsettlement aggregation by 

porcelain crab megalopae (Anomura: Porcellanidae). J Exp Mar Biol Ecol 153: 49- 

61 

128 



References 

Jerry DR, Stewart T, Purvis IW, Piper LR (2001) Evaluation of visual implant elastomer 
and alphanumeric internal tags as a method to identify juveniles of the freshwater 

crayfish, Cherax destructor. Aquaculture 193: 149-154 

Keough MJ, Downes BJ (1982) Recruitment of marine invertebrate: the role of active 
larval choices and early mortality. Oecologia 54: 348-352 

King M (1995) Fisheries biology, assessment and management. Fishing New Books, 
Oxford, England 

Kontara EKM, Coutteau P, Sorgeloos P (1997) Effect of dietary phospholipid on 
requirements for and incorporation of n-3 highly unsaturated fatty acids in 
postlarval Penaeusjaponicus Bate. Aquaculture 158: 305-320 

Krebs CJ (1999) Ecological methodology. Benjamin/Cummings, Menlo Park, California 

Laprise R, Blaber SJM (1992) Predation by Moses perch, LuYanus russelli, and blue- 

spotted trevally, Caranx bucculentus, on juvenile brown tiger prawn, Penaeus 

esculentus: effects of habitat structure and time of day. J Fish Biol 40: 627-635 
Lebour MV (1928) The larval stages of the Plymouth Brachyura. Proc Zool Soc Lon 

2: 473-560 

Lebour MV (1947) Notes on the inshore plankton of Plymouth. J Mar Biol Ass UK 

26: 527-547 

Levitan DR (1995) The ecology of fertilization in free-spawning invertebrates. In: 

McEdward L (ed) Ecology of Marine Invertebrate Larvae. CRC Press, Boca Raton, 

Florida, p 123-156 

Lindley JA (1986) Vertical distributions of decapod crustacean larvae and pelagic 

postlarvae over Great Sole Bank (Celtic Sea) in June 1983. Mar Biol 90: 545-549 

Lindley JA (1987) Continuous plankton records: the geographical distribution and seasonal 

cycles of decapod crustacean larvae and pelagic post-larvae in the north-eastem 

Atlantic Ocean and North Sea, 1981-3. J Mar Biol Ass UK 67: 145-167 

Linnane A, Mercer JP (1998) A comparison of methods for tagging juvenile lobsters 

(Homarus gammarus L. ) reared for stock enhancement. Aquaculture 163: 195-202 

Linnane A, Mazzoni D, Mercer JP (2000) A long-term mesocosm study on the settlement 

and survival of juvenile European lobster Homarus gammarus L. in four natural 

substrata. J Exp Mar Biol Ecol 249: 51-64 

Lipcius RN, Stockhausen WT (2002) Concurrent decline of the spawning stock, 

recruitment, larval abundance, and size of the blue crab Callinectes sapidus in 

Chesapeake Bay. Mar Ecol Prog Ser 226: 45-61 

129 



References 

Loher T, Armstrong DA (2000) Effects of habitat complexity and relative larval supply on 
the establishment of early benthic phase red king crab (Paralithodes camtschaticus 
Tilesius, 1815) populations in Auke Bay, Alaska. J Exp Mar Biol Ecol 245: 83-109 

Lovnch GA, Sainte-Mane B (1997) Cannibalism in the snow crab, Chionoecetes opillo (0. 
Fabricius) (Brachyura: Majidae), and its potential importance to recruitment. J Exp 
Mar Biol Ecol 211: 225-245 

Luckenbach MW, Orth RJ (1992) Swimming velocities and behavior of blue crab 
(Callinectes sapidus Rathbun) megalopae in still and flowing water. Estuaries 

15: 186-192 

Luppi TA, Spivak ED, Anger K (2001) Experimental studies on predation and cannibalism 

of the settlers of Chasmagnathus granulata and Cyrtograpsus angulatus 
(Brachyura: Grapsidae). J Exp Mar Biol Ecol 265: 29-48 

Mann KH, Lazier JRN (1991) Dynamics of marine ecosystems - biological-physical 

interactions in the oceans. Blackwell Scientific Publications, Boston 

Mantovani B. Scali V, Froglia C (1993) Allozymic characterization and phyletic 

relationships among four species of the genus Liocarcinus Stimpson 1871 
(Crustacca Decapoda). Zool Anz 229: 237-247 

Martin J (1980) Abondance des larves d'etrille (Macropius puber, L. ), d'araignee (Maia 

squinado, Herbst) et de tourteau (Cancer pagurus, L. ) sur de cote ouest du Cotentin 

(Manche) de 1977 a 1979. ICES CM K/21: 1-15 

Mauchline J (1976) The Hiatt growth diagram for Crustacea. Mar Biol 35: 79-84 

MBA (1957) Plymouth Marine Fauna. Marine Biological Association of the U. K., 

Plymouth, UK 

McConnaughey RA, Armstrong DA, Hickey BM (1995) Dungeness crab (Cancer 

magister) recruitment variability and Ekman transport of larvae. ICES Mar Sci 

Syinp 199: 167-174 

McMillan RO, Armstrong DA, Dinnel PA (1995) Companson of intertidal habitat use and 

growth rates of two northern Puget Sound cohorts of 0+ age Dungeness crab, 

Cancer magister. Estuanes 18: 390-398 

Mene L, Alvarez-Ossono MT, Gonzalez-GuMaran E, Valdes L (1991) Effects of 

temperature and salinity on larval development of Necora puber (Brachyura: 

Portunidae). Mar Biol 108: 73-81 

Menge BA, Sutherland JP (1987) Commurilty regulatIon: variation In d'sturbance, 

competition, and predation in relation to environmental stress and recruitment. Am 

Nat 130: 730-757 

130 



R Pfi 

Menge BA, Berlow EL, Blanchette CA, Navarrete SA, Yamada SB (1994) The keystone 

species concept: variation in interaction strength in a rocky intertidal habitat. Ecol 
Monogr 64: 249-286 

Menge BA, Daley BA, Wheeler PA, Dahlhoff E, Sanford E, Strub PT (1997) Benthic- 

pelagic links and rocky intertidal communities: Bottom-up effects on top-down 
control? Proc Natl Acad Sci USA 94: 14530-14535 

Menge BA, Lubchenco J, Bracken MES, Chan F, Foley MM, Freidenburg TL, Gaines SD, 
Hudson G, Krenz C, Leslie H, Menge DNL, Russell R, Webster MS (2003) Coastal 

oceanography sets the pace of rocky intertidal community dynamics. Proc Natl 
Acad Sci USA 100: 12229-12234 

Menge BANT (1991) Relative importance of recruitment and other causes of variation in 
rocky intertidal community structure. J Exp Mar Biol Ecol 146: 69-100 

Metaxas A (2001) Behaviour in flow: perspectives on the distribution and dispersion of 
meroplanktonic larvae in the water column. Can J Fish Aquat Sci 58: 86-98 

Metcalf KS, van Montfrans J, Lipcius RN, Orth RJ (1995) Settlement indices for blue crab 

megalopae in the York River, Virginia: Temporal relationships and statistical 

efficiency. Bull Mar Sci 57: 781-792 

Miller TJ, Smith SG (2003) Modeling crab growth and population dynamics: Insights from 

the blue crab conference. Bull Mar Sci 72: 537-541 
Mohamedeen H, Hartnoll RG (1989) Larval and postlarval growth of individually reared 

specimens of the common shore crab Carcinus maenas (L). J Exp Mar Biol Ecol 

134: 1-24 

Moksnes PO (2002) The relative importance of habitat- specific settlement, predation and 

juvenile dispersal for distribution and abundance of young juvenile shore crabs 
Carcinus maenas L. J Exp Mar Biol Ecol 271: 41-73 

Moksnes PO (2003) Settlement behavior in shore crabs Carcinus maenas: why do 

postlarvae emigrate from nursery habitats? Mar Ecol Prog Ser 250: 215-230 

Moksnes PO (2004) Self-regulating mechanisms in cannibalistic population of juvenile 

shore crabs Carcinus maenas. J Exp Mar Biol Ecol 85: 1343-1354 

Moksnes PO, Wennhage H (2001) Methods for estimating decapod larval supply and 

settlement: importance of larval behavior and development stage. Mar Ecol Prog 

Ser 209: 257-273 

Moksnes PO, Plhl L, Montfrans Jv (1998) Predation on postlarvae and Juveniles of the 

shore crab Carcinus maenas: Importance of shelter, size and cannibalism. Mar Ecol 

Prog Ser 166: 211-225 

131 



References 

Moksnes PO, Lipcius RN, Pihl L, vanMontfrans J (1997) Cannibal-prey dynamics in 
young juveniles and postlarvae of the blue crab. J Exp Mar Biol Ecol 215: 15 7-187 

Morgan SG (1995) Life and death in the plankton: larval mortality and adaptation. In: 
McEdward L (ed) Ecology of Marine Invertebrate Larvae. CRC Press, Boca Raton, 
Florida, p 279-311 

Morgan SG (2001) The larval ecology of marine communities. In: Bertness MD, Gaines 

SD, Hay ME (eds) Marine Community Ecology. Sinauer Associates, Inc., 
Sunderland, MA, p 159-181 

Morgan SG, Zimmer Faust RK, Heck KL, Jr., Coen LD (1996) Population regulation of 
blue crabs Callinectes sapidus in the northern Gulf of Mexico: Postlarval supply. 
Mar Ecol Prog Ser 133: 73-88 

Norman CP (1989) Ecology of the velvet swimming crab Liocarcinus puber (Brachyura: 

Portunidae). PhD thesis, University of Plymouth, Plymouth 

Norman CP, Jones MB (1990) Utilisation of brown algae in the diet of the velvet 

swimming crab Liocarcinus puber (Brachyura: Poitunidae). In: Bames M, Gibson 

RN (eds) Trophic Relationships in the Enviromnent Proc 24th Europ Mar Biol 

Symp. Aberdeen University Press, p 491-502 

Norman CP, Jones MB (1991) Limb loss and its effect on handedness and growth in the 

velvet swimming crab Necora puber (Brachyura, Portunidae). J Nat Hist 25: 639- 

645 

Nornian CP, Jones MB (1992) Influence of depth, season and moult stage on the diet of the 

velvet swimming crab Necora puber (Brachyura, Portunidae). Estuar Coast Shelf 

Sci 34: 71-83 

Norman CP, Jones MB (1993) Reproductive ecology of the velvet swimming crab, Necora 

puber (Brachyura: Portunidae), at Plymouth. J Mar Biol Ass UK 73: 379-389 

Oh CW, Hartnoll RG (2000) Effects of food supply on the growth and survival of the 

common shrimp, Crangon crangon (Linnaeus, 1758) (Decapoda, Candea). 

Crustaceana 73: 83-99 

Okubo A (1994) The role of diffusion and related physical processes in dispersal and 

recruitment of marine populations. In: Sammarco PW, Heron ML (eds) Coastal 

and Estuanne Studies The Bio-physics of Marine Larval Dispersal. Amencan 

Geophysical Union, p 5-34 

Olmi EJ (1995) Ingress of blue crab megalopae in the York River, Virginia, 1987-1989. 

Bull Mar Sci 57: 753-780 

132 



References 

Olmi EJ, 111, Van Montfrans J, Lipcius RN, Orth RJ, Sadler PW (1990) Variation in 
planktonic availability and settlement of blue crab megalopae in the York River, 
Virginia. Bull Mar Sci 46: 230-243 

Orth RJ, van Montfrans J (1987) Utilization of a seagrass meadow and tidal marsh creek 
by blue crabs Callinectes sapidus I. Seasonal and annual variations in abundance 
with emphasis on postsettlement juveniles. Mar Ecol Prog Ser 41: 283-294 

Orth RJ, van Montfrans J (2002) Habitat quality and prey size as deten-ninants of survival 
in post-larval and early juvenile instars of the blue crab Callinectes sapidus. Mar 
Ecol Prog Ser 231: 205-213 

Palma AT, Wahle RA, Steneck RS (1998) Different early post-settlement strategies 
between American lobsters Homarus americanus and rock crabs Cancer irroratus 
in the Gulf of Maine. Mar Ecol Prog Ser 162: 215-225 

Pardieck RA, Orth RJ, Diaz RJ, Lipcius RN (1999) Ontogenetic changes in habitat use by 

postlarvae and young juveniles of the blue crab. Mar Ecol Prog Ser 186: 227-238 

Passamonti M, Mantovani B, Scall V, Froglia C (1997) Genetic differentiation of 
European species of Liocarcinus (Crustacea: Portunidae): a gene-enzyme study. 
Zool Anz 235: 157-164 

Paula J, Dornelas M. Flores AAV (2003) Stratified settlement and moulting competency of 
brachyuran megalopae in Ponta Rasa mangrove swamp, Inhaca Island 

(Mozambique). Estuar Coast Shelf Sci 56: 325-337 

Pauly D (1980) A selection of simple methods for the assessment of tropical fish stocks. 

FAO Fish Circ 729: 53 p. 

Pauly D (1998) Beyond our original horizons: the tropicalization of Beverton and Holt. 

Rev Fish Biol Fish 8: 307-334 

Pauly D, Gaschutz G (1979) A simple method for fitting oscillating length growth data, 

with a program for pocket calculators. ICES CM G: 24: 1-26 

Pawlik JR (1992) Chemical ecology of the settlement of benthic marine invertebrates. In: 

Oceanogr Mar Biol Annu Rev, p 273-335 

Pawlik JR, Butman CA (1993) Settlement of a marine tube worm as a function of current 

velocity: Interacting effects of hydrodynamics and behavior. Limnol Oceanogr 

38: 1730-1740 

Pereira F, Pereira R, Queiroga H (2000) Flux of decapod larvae and juveniles at a station in 

the lower Canal de Mira (Ria de Aveiro, Portugal) during one lunar month. 

Invertebr Reprod Dev 38: 183-206 

Peterson CH, Black R (1994) An experimentalist's challenge: when artifacts of 

intervention interact with treatments. Mar Ecol Prog Ser 111: 289-297 

133 



References 

Pile AJ, Lipcius RN, Van Montfrans J, Orth RJ (1996) Density-dependent settler-recruit- 

juvenile relationships in blue crabs. Ecol Monogr 66: 277-300 

Pineda J (1991) Predictable upwelling and the shoreward transport of planktonic larvae by 
internal tidal bores. Science 253: 548-551 

Pineda J (1994) Internal tidal bores in the nearshore: warm-water fronts, seaward gravity 
currents and the onshore transport of neustonic larvae. J Mar Res 52: 427-458 

Pineda J (1999) Circulation and larval distribution in internal tidal bore warm fronts. 
Limnol Oceanogr 44: 1400-1414 

Pittman S, McAlpine C (2003) Movements of manne fish and decapod crustacean: 

process, theory and application. Adv Mar Biol 44: 206-294 

Quelroga H (1996) Distribution and drift of the crab Carcinus maenas (L. ) (Decapoda, 

Portunidae) larvae over the continental shelf off northem Portugal in April 1991. J 

Plankton Res 18: 1981-2000 

Queiroga H (1998a) Vertical migration and selective tidal stream transport in the megalopa 
of the crab Carcinus maenas. Hydrobiologia 375/376: 137-149 

Queiroga H (1 998b) Vertical migration and selective tidal stream transport in the megalopa 
of the crab Carcinus maenas. Hydrobiologia 376: 137-149 

Quelroga H, Costlow JD, Moreira MH (1994) Larval abundance patterns of Carcinus 

maenas (Decapoda, Brachyura) in Canal de Mira (Ria de Aveiro, Portugal). Mar 

Ecol Prog Ser 111: 63-72 

Queiroga H, Moksnes PO, Meireles S (2002) Vertical migration behaviour in the larvae of 
the shore crab Carcinus maenas from a microtidal system (Gullmarsfj ord, Sweden). 

Mar Ecol Prog Ser 237: 195-207 

Quinn TJ, Denso RB (1999) Quantitative fish dynamics. Oxford University Press, Oxford 

Rabalais NN, Burditt FR, Jr., Coen LD, Cole BE, Eleuterius C, Heck KL, Jr., McTigue 

TA, Morgan SG, Perry HM, Truesdale FM, Zimmer-Faust RK, Zimmerman. RJ 

(1995) Settlement of Callinectes sapidus megalopae on artificial collectors in four 

Gulf of Mexico estuanes. Bull Mar Sci 57: 855-876 

Raimondi PTNT (1990) Pattems, mechanisms, consequences of vanability in settlement 

and recruitment of an intertidal barnacle. Ecol Monogr 60: 283-309 

Rees JF, Cure K, Piyatiratitivorakul S, Sorgeloos P, Menasveta P (1994) Highly 

unsaturated fatty acid requirements of Penaeus monodon postlarvae: An 

experimental approach based on Artemia enrichment Aquaculture 122: 193-207 

Rice AL, Ingle RW (1975) A comparative study of the larval morphology of the 

BntishPotunid crabs Macropius puber (L. ) and M holsatus (Fabricius), with a 

134 



References 

discussion of generic and sub-familial larval characters within the Portunidae. Bull 

Br Mus (Nat Hist) Zool 28: 121-151 

Risk A (1997) Effects of habitat on the settlement and post-settlement success of the ocean 

surgeonfish Acanthurus bahlanus. Mar Ecol Prog Ser 161: 51-59 

Rittschof D, Forward RB, Cannon G, Welch JM, McClary M, Holm ER, Clare AS, 

Conova S, McKelvey LM, Bryan P, Van Dover CL (1998) Cues and context: 
Larval responses to physical and chemical cues. Biofouling 12: 31-44 

Robinson M, Tully 0 (2000a) Spatial variability in decapod community structure and 

recruitment in sub-tidal habitats. Mar Ecol Prog Ser 194: 133-141 

Robinson M, Tully 0 (2000b) Seasonal variation in community structure and recruitment 

of benthic decapods in a sub-tidal cobble habitat. Mar Ecol Prog Ser 206: 181-191 

Robinson M, Tully 0 (2000c) Dynamics of a subtidal population of the porcellanid crab 
Pisidia longicornis (Decapoda: Crustacea). J Mar Biol Ass UK 80: 75-83 

Robles CD (1997) Changing recruitment in constant species assemblages: implications for 

predation theory in intertidal communities. Ecology 78: 1400-1414 

Roughgarden. J (1986) A comparison of food-limited and space-limited animal competition 

communities. In: Diamond J, Case TJ (eds) Community ecology. Harper and Row, 

New York, p 492-516 

Roughgarden J, lwasa Y, Baxter C (1985) Demographic theory for an open marine 

population with space-limited recruitment. Ecology 66: 54-67 

Roughgarden J, Gaines S, pacala SW (1986) Supply side ecology: The role of physical 

transport processes. In: Gee JHR, Giller PS (eds) Organization of communities: 

past and present, p 491-518 

Roughgarden J, Gaines SD, Possingliam H (1988) Recruitment dynamics in complex life 

cycles. Science 241: 1460-1466 

Ruiz GM, Hines AH, Posey MH (1993) Shallow-water as a reftige habitat for fish and 

crustaceans in nonvegetated estuanes - an example from Chesapeake Bay. Mar 

Ecol Prog Ser 99: 1-16 

Ryer CH, vanMontfirans J, Moody KE (1997) Cannibalism, refugla and the molting blue 

crab. Mar Ecol Prog Ser 147: 77-85 

Sainte Marie B, Raymond S, Brethes JC (1995) Growth and maturation of the stages of 

male snow crab, Chionoecetes opilio (Brachyura, Majidae). Can J Fish Aquat Sci 

52: 903-924 

Sainte-Mane B, Lafrance M (2002) Growth and survival of recently settled snow crab 

Chionoecetes opillo in relation to intra- and intercohort competition and 

cannibalism: a laboratory study. Mar Ecol Prog Ser 244: 191-203 

135 



References 

Seber GAF (1982) Estimation of animal abundance and related parameters. Charles Griffin 
& Company, London 

Shanks AL (1983) Surface slicks associated with tidally forced internal waves may 
transport pelagic larvae of benthic invertebrates and fishes shoreward. Mar Ecol 
Prog Ser 13: 311-315 

Shanks AL (1985) Behavioral basis of intemal-wave-induced shoreward transport of 
megalopae of the crab Pachygrapsus crassipes. Mar Ecol Prog Ser 24: 289-295 

Shanks AL (1995) Mechanisms of cross-shelf dispersal of larval invertebrates and fish. In: 
McEdward L (ed) Ecology of Marine Invertebrate Larvae. CRC Press, Boca Raton, 
Florida, p 324-367 

Shanks AL (1998) Abundance of post-larval Callinectes sapidus, Penaeus spp., and 
Libinia spp. collected at an outer coastal site and their cross-shelf transport. Mar 
Ecol Prog Ser 168: 57-69 

Shanks AL, Wright WG (1987) Intemal-wave-mediated shoreward transport of cyprids, 
megalopae, and gammarids and correlated longshore differences in the settling rate 
of intertidal bamacles. J Exp Mar Biol Ecol 114: 1-13 

Shanks AL, Largier J, Brink L, Brubaker J, Hooff R (2000) Demonstration of the onshore 
transport of larval invertebrates by the shoreward movement of an upwelling front. 

Limnol Oceanogr 45: 230-236 

Sheehy M (1990a) Widespread occurrence of fluorescent morphological lipofuscin in the 

crustacean brain. J Crustac Biol 10: 613-622 

Sheehy M, Caputi N, Chubb C, Belchier M (1998) Use of lipofuscin for resolving cohorts 

of westem rock lobster (Panulirus cygnus). Can J Fish Aquat Sci 55: 925-936 

Sheehy MRJ (I 990b) Potential of morphological lipofuscin as an index of crustacean age. 
Mar Biol 107: 439-442 

Shkedy Y, Roughgarden J (1997) Barnacle recruitment and population dynamics predicted 

from coastal upwelling. Oikos 80: 487-498 

Siddorn JR, Allen JI, Uncles RJ (2003) Heat, salt and tracer transport in Plymouth Sound 

coastal region: a 3-D modelling study. J Mar Biol Ass UK 83: 673-682 

Smith IP,, Huntingford FA, Atkinson RJA, Taylor AC (1994) Mate competition in the 

velvet swimming crab Necora puber: Effects of perceived resource value on male 

agonistic behaviour. Mar Biol 120: 579-585 

Smith KN, Hermkind WF (1992) Predation on early juvenile spiny lobsters Panuhrus 

argus (Latreille): influence of size and shelter. J Exp Mar Biol Ecol 157: 3-18 

Sokal RR, Rohlf FJ (1995) Biometry. W. H. Freeman, New York 

136 



References 

Sparre P, Venema SC (1992) Introduction to tropical fish stock assessment. Part 1. 

Manual. FAO Fish Tech Pap No 306-1: 376p. 

Spitzer PM, Heck KL, Valentine JF (2003) Then and now: A comparison of patterns in 
blue crab post-larval abundance and post-settlement mortality during the early and 
late 1990s in the mobile bay system. Bull Mar Sci 72: 435-452 

Stevens BG (2003) Settlement, substratum preference, and survival of red king crab 

Paralithodes camtschaticus (Tilesius, 1815) glaucothoe on natural substrata in the 

laboratory. J Exp Mar Biol Ecol 283: 63-78 

Stevens BG, Kittaka J (1998) Postlarval settling behavior, substrate preference, and time to 

metamorphosis for red king crab Paralithodes camtschaticus. Mar Ecol Prog Ser 

167: 197-206 

Stobutzki IC (2001) Marine reserves and the complexity of larval dispersal. Rev Fish Biol 

Fish 10: 515-518 

Sutherland JP (1990) Recruitment regulates demographic variation in a tropical intertidal 

bamacle. Ecology 71: 955-972 

Sutherland JP, Ortega S (1986) Competition conditional on recruitment and temporary 

escape from predators on a tropical rocky shore. J Exp Mar Biol Ecol 95: 155-166 

Tallack SML (2002) The biology and exploitation of three crab species in the Shetland 

Islands, Scotland: Cancer pagurus, Necora puber and Carcinus maenas. Ph. D. 

thesis, UHI Millennium Institute, 

Tankersley RA, McKelvey LM, Forward RB, Jr. (1995) Responses of estuarine crab 

megalopae to pressure, salinity and light: Implications for flood-tide transport. Mar 

Biol 122: 391-400 

Tankersley RA, Welch JM, Forward RB (2002) Settlement times of blue crab (Callinectes 

sapidus) megalopae during flood-tide transport. Mar Biol 141: 863-875 

Tully 0, O'Donovan V, Fletcher D (2000) Metabolic rate and lipofuscin accumulation in 

juvenile European lobster (Homarus gammarus) in relation to simulated seasonal 

changes in temperature. Mar Biol 137: 1031-1040 

UKHO (1991) Tidal stream atlas. Plymouth harbour and approaches. The United Kingdom 

Hydrography Office, Taunton 

n Underwood AJ (1981) Techniques of analysis of variance In expe imental marine biology 

and ecology. Oceanogr Mar Biol Annu Rev 19: 513-605 

Underwood AJ (1997) Experiments in ecology: Their logical design and interpretation 

University Press, Cambn ge using analysis of variance. Cambn 

Underwood AJ, Denley EJ (1984) Paradigms, explanations, and generalizations in models 

for the structure of ecological communities on rocky shores. In: Strong D, 

137 



References 

Simberloff D, Abele LG, Thistle AB (eds) Ecological communities: conceptual 

issues and the evidence. Princeton University Press, Princeton, NJ, p 151-180 

Underwood AJ, Fairweather PG (1989) Supply-side ecology and benthic marine 

assemblages. Trends Ecol Evol 4: 16-20 

Underwood AJ, Keough MJ (2001) Supply-side ecology. The nature and consequences of 

variations in recruitment of intertidal organisms. In: Bertness MD, Gaines SD, Hay 

ME (eds) Marine Community Ecology. Sinauer Associates, Sunderland, p 183-200 

Underwood AJ, Denley EJ, Moran MJNT (1983) Experimental analyses of the structure 

and dynamics of mid-shore rocky intertidal communities in New South Wales. 

Oecologia 56: 202-219 

Valdes L, Alvarez Ossorio MT, Gonzalez Gurriaran E (199 1) Influence of temperature on 

embryonic and larval development in Necora puber (Brachyura, Portunidae). J Mar 

Biol Ass UK 71: 787-798 

van der Meeren GI (2000) Predation on hatchery-reared lobsters released in the wild. Can J 

Fish Aquat Sci 57: 1794-1803 

van Montfrans J, Peery CA, Orth RJ (1990) Daily, monthly and annual settlement patterns 

by Callinectes sapidus and Neopanope sayi megalopae on artificial collectors 

deployed in the York River, Virginia: 1985-1988. Bull Mar Sci 46: 214-229 

van Montfrans J, Ryer CH, Orth RJ (2003) Substrate selection by blue crab Callinectes 

sapidus megalopae and the first juvenile instar. Mar Ecol Prog Ser 260: 209-217 

van Montfrans J, Epifanio CE, Knott DM, Lipcius RN, Mense DJ, Metcalf KS, Olmi EJ, 

111, Orth RJ, Posey MH, Wenner EL, West TL (1995) Settlement of blue crab 

postlarvae in western North Atlantic estuaries. Bull Mar Sci 57: 834-854 

Wahle RA (2003) Revealing stock-recruitment relationships in lobsters and crabs: is 

experimental ecology the key? Fish Res 65: 3-32 

Wahle RA, Steneck RS (199 1) Recruitment habitats and nursery grounds of the American 

lobster Homarus americanus :A demographic bottleneck? Mar Ecol Prog Ser 

69: 231-243 

Wahle RA, Steneck RS (1992) Habitat restrictions in early benthic life: experiments on 

habitat selection and in situ predation with the American lobster. J Exp Mar Biol 

Ecol 157: 91-114 

Wahle RA, Incze LS (1997) Pre- and post-settlement processes in recruitment of the 

American lobster. J Exp Mar Biol Ecol 217: 179-207 

WAle RA, Tully 0, O'Donovan V (1996) Lipofuscin as an indicator of age in crustaceans: 

analysis of the pigment in the American lobster Homarus amerl*canus. Mar Ecol 

Prog Ser 138: 117-123 

138 



References 

Wahle RA, Tully 0, O'Donovan V (2001) Environmentally mediated crowding effects on 
growth, survival and metabolic rate of juvenile American lobsters (Homarus 

americanus). Mar Freshw Res 52: 1157-1166 

Welch JM, Forward RB (2001) Flood t1de transport of blue crab, Callinectes sapl*dus, 
postlarvae: behavioral responses to salinity and turbulence. Mar Biol 139: 911-918 

Welch JM, Forward RB, Jr., Howd PA (1999) Behavioral responses of blue crab 
Callinectes sapidus postlarvae to turbulence: Implications for selective tidal stream 
transport. Mar Ecol Prog Ser 179: 135-143 

Welch JM, Rittschof D, Bullock TM, Forward RB (1997) Effects of chemical cues on 
settlement behavior of blue crab Callinectes sapidus postlarvae. Mar Ecol Prog Ser 

154: 143-153 

Wenner AM, Page HM, Siegel PR (1985) Variation in size at onset of egg production. In: 

Wenner AM (ed) Factors in adult growth. A. A. Balkema, Roterdam, p 149-164 

White GC, Burnham KP (1999) Program MARK: Survival estimation from populations of 

marked animals. Bird Study 46 (Suppl. ): 120-13 8 

Widdows J, Brinsley MD, Bowley N, Barrett C (1998) A benthic annular flume for in situ 

measurement of suspension feedingibiodeposition rates and erosion potential of 

intertidal cohesive sediments. Estuar Coast Shelf Sci 46: 27-38 

Wilhelm G (1995) Contribution a Fetude de Petnlle Necora puber (Crustacea, Brachyura) 

dans le Mor-Braz (Bretagne-sud): Donnees halieutiques, biologiques et 

pathologiques. PhD Thesis, University of Paris, Paris 

Wilson KA, Able KW, Heck KL (1990) Predation rates on juvenile blue crabs in estuarine 

nursery habitats: evidence for the importance of macroalgae (Ulva lactuca). Mar 

Ecol Prog Ser 58: 243-251 

Wing SR, Largier JL, Botsford LW, Quinn JF (1995) Settlement and Transport of Benthic 

Invertebrates in an Intermittent Upwelling Region. Limnol Oceanogr 40: 316-329 

Young CM (1995) Behavior and locomotion during the dispersal phase of larval life. In: 

McEdward L (ed) Ecology of Manne Invertebrate Larvae. CRC Press, Boca Raton, 

Flonda, p 250-277 

Zeng C, Naylor E (1996) Occurrence in coastal waters and endogenous tidal swimming 

rhythms of late megalopae of the shore crab Carcinus maenas: ImplicatIons for 

onshore recruitment. Mar Ecol Prog Ser 136: 69-79 

Zimmer-Faust RK, Fielder DR, Heck Jr KL, Coen LD, Morgan SG (1994) Effects of 

tethering on predatory escape by juvenile blue crab. Mar Ecol Prog Ser 111: 299- 

303 

139 



Appendices 

Appendix 1 

Lee JT, Widdows J, Jones MB, Coleman RA (2004) Settlement of megalopae and early 
juveniles of the velvet swimming crab Necora puber (Decapoda: Portunidae) in 
flow conditions. Mar Ecol Prog Ser 272: 191-202 

140 



, 
/PAGES 

EXCLUDED 

UNDER 

INSTRUCTION 

FROM 

UNIVERSITY 


