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Reinforcement Learning in Intelligent Control: 

A Biologically-Inspired Approach to the Relearning Problem 

Brendan DlCruz 

Abstract 

The increasingly complex demands placed on control systems have resulted in a 

need for intelligent control, an approach that attempts to meet these demands by emulating 

the capabilities found in biological systems. The need to exploit existing knowledge is a 

desirable feature of any intelligent control system, and this leads to the relearning problem. 

The problem arises when a control system is required to effectively learn new knowledge 

whilst exploiting still useful knowledge from past experiences. This thesis describes the 

adaptive critic system using reinforcement learning, a computational framework that can 

effectively address many of the demands in intelligent control, but is less effective when it 

comes to addressing the relearning problem. The thesis argues that biological mechanisms 

of reinforcement learning (and relearning) may provide inspiration for developing artificial 

intelligent control mechanisms that can better address the relearning problem. A conceptual 

model of biological reinforcement learning and relearning is presented, and the thesis 

shows how inspiration derived from this model can be used to modify the adaptive critic. 

The performance of the modified adaptive critic system on the relearning problem is 

investigated based on simulations of the pole balancing problem, and this is compared to 

the performance of the original adaptive critic system. The thesis presents an analysis of 

the results from these simulations, and discusses the significance of these results in terms 

of addressing the relearning problem. 
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Chapter One 

Introduction 

1.1 - Background 

A general definition of a control system is a system that maintains some physical 

quantities more or less accurately around prescribed values [Narendra, 1994]. The physical 

quantities are part of a dynamical system usually referred to as the 'plant'. The plant is 

situated in a particular 'environment', which affects the dynamic processes in the plant by 

providing unpredictable disturbances to the plant. The control inputs to the plant are 

produced by a device called the 'controller', which is an intrinsic part of the control 

system. This device observes the outputs ftom the plant, and then modifies its own inputs 

to the plant to achieve the desired behaviour. Figure 1.1 illustrates this control scheme. 

CONTROLLER 

Control Observed Plant 
Inputs Outputs 

---------- -- 
Plant PLýANT 

Outputs 

Environment Inputs 
L ---------------- 

ENVIRONMENT 

Figure 1 -1 - Simplified Control Scheme 



The design of the controller is usually achieved by applying a particular control 

paradigm to suit a particular task. An example of this is model-based control which 

identifies a model of the plant, and then uses this model to set the internal parameters of the 

controller. This approach has been widely adopted by conventional control systems in 

industry, and has found successful application in many tasks where the controller is 

required to maintain dynamical performance despite disturbances within the plant or the 

I environment. However, these control systems are increasingly expected to cope with more 

complex tasks, such as when the dynamic processes in the plant are highly non-linear, or 

when observing and measuring the plant outputs involves uncertainty. It has been argued 

that as tasks become even more challenging and complex, the control systems used to 

control them will require a different approach [Brown & Harris, 1994]. Autonomous 

behaviour is one such challenge, where the control system must be able to perform well 

under significant changes and uncertainties in the plant or the environment for extended 

periods of time without external human intervention [Antsaklis et al., 1991 ]. In order to 

achieve this, the control system must be able to learn about the environment based only on 

observations of that environment, and use this information to adapt its behaviour to deal 

with any changes that may affect performance. 

There are many tasks that require autonomy, e. g. control systems used in nuclear 

power stations, fire fighting vehicles, and in unimanned space exploration where a 

spacecraft may be beyond the direct control of an Earth-based operator because of 

communication delays [Gupta & Rao, 1994]. In these tasks, the autonomous controller is 

expected to deal with unexpected situations and new control tasks, while still being able to 

tolerate failures within certain limits. Such tasks may occur in situations where human 

involvement is either hazardous, tedious or impossible, and control can only be achieved 

by means of the information directly available to the control system. Autonomous control 
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of this type is the motivating factor in the field of Autonomous Control which has 

specifically attempted to address these difficult problems [Antsaklis, 1995]. 

Autonomous control is made possible because the control system is able to acquire 

knowledge about the state of its environment based upon its experiences in that 

environment. It then uses this knowledge to adapt its behaviour in response to situations 

that it might not have yet encountered, i. e. it possesses the ability to apply its existing 

knowledge in states where knowledge is yet to be acquired. A problem arises when the 

environment changes because the knowledge the controller possesses about particular 

states no longer correlates with the environment. The controller therefore needs to be able 

to identify when this situation occurs, and learn new knowledge about those states in the 

environment that have changed. This might involve having to learn about the whole 

environment all over again, although it is possible that some of the knowledge acquired by 

the controller may still be applicable to parts of the environment. This is the relearning 

problem because the controller needs to decide which parts of the environment need to be 

learned, and this decision could be based on what the controller perceives to be novel or 

unexpected aspects of either the enviromnent or its own behaviour. Thus, the controller 

needs to possess mechanisms that allow it to :- 

9 Obtain knowledge about the envirom-nent and its actions based on observations of both 

the environment and its own behaviour 

* Recognise when the knowledge it has acquired is appropriate to a particular situation in 

the environment, and use this knowledge to modify its behaviour 

o identify when the knowledge it has acquired is no longer appropriate to a particular 

situation in the environment, and thus obtain new knowledge about the environment. 
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The relearning problem is different to learning about the whole environment all 

over again because it allows for the learning of new knowledge simultaneously with the 

retention of still useful knowledge from past experiences, an ability not typically offered by 

existing control systems [Denham, 1994]. This issue must be addressed for the successful 

realisation of autonomous behaviour in control systems, and is one of the key aspects to 

this thesis. If the relearning problem is not adequately addressed, then costs could be 

incurred as a result of unnecessary learning even when only minor changes occur in the 

environment, and this is clearly not desirable in autonomous control systems. 

Intelligent Control is one of the more recent approaches to dealing with the need for 

autonomous behaviour, as well as the problems of increased complexity and greater 

uncertainty in the plant and environment. Section 1.2 explains what is meant by 'Intelligent 

Control', and provides a detailed look at what this approach hopes to achieve. Section 1.3 

looks at the imperatives that have led to a greater emphasis on biological control systems, 

and how an understanding of the underlying mechanisms provided by these systems can be 

considered a source of inspiration for further developments in intelligent control. Section 

1.4 looks at the specific objectives of this research, and the approach taken towards 

achieving these objectives. Section 1.5 provides an outline of the structure of the thesis, 

and the contribution made to knowledge by particular aspects of this research. 

1.2 - What is Intelligent Control ? 

The term 'intelligent control' has been around for very many years, and Brown 

Harris [1994] point out that the idea of intelligent control was originally proposed to 

extend the range and flexibility of then existing automatic control systems. There has since 

been much research activity in the field of so-called "Intelligent Control", with various 

attempts at defining both the term and the field of research [Denham, 1994]. There are two 
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major issues that need to be addressed. The first issue considers what is meant by the 

'intelligent' aspect of intelligent control. This is a problem in itself because there has been 

no real consensus as to what defines intelligent behaviour in either living beings or 

artificial systems, and therefore this thesis will make use of the definition of an intelligent 

system used by Werbos [ 1994]: 

"A system capable of maximising some kind of measurement of utility or 

reinforcement or performance or goal-satisfaction (with or without prior knowledge of 

how that measure is defined as ajunction of other variables) over time, in an environment 

whose dynamics are not known in advance, so that the system must learn both the 

dynamics and a strategy of action in real time through experience. wl 

The second issue considers the role of control in an intelligent system. In May 

1993, a Task Force working at the invitation of the Technical Committee on Intelligent 

Control of the IEEE Control Systems Society set about addressing both of these issues. The 

Task Force's main aim was to define what is encompassed by the term 'intelligent control', 

and its key objectives were outlined as follows [Antsaklis et al., 1994]: - 

9 To characterise intelligent control systems, thereby clarifying the role of control in 

intelligent systems 

9 To be able to recognise these intelligent control systems, and distinguish them from 

conventional control systems 

* To help identify problems where intelligent control methods appear to be the only 

appropriate techniques. 
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The Task Force found that the area of intelligent control is in fact interdisciplinary, 

it attempts to integrate or extend theories and methods from areas such as conventional 

control, operations research and artificial intelligence in order to meet the demands of 

complex control problems. Intelligent controllers are seen as control systems that are able 

to emulate some of the capabilities of intelligent biological systems, such as adaptation and 

learning, planning under large uncertainty, and coping with large amounts of infon-nation. 

Antsaklis et al. [ 1994] state that this has always been used as the prime justification for the 

word "intelligent" in intelligent control because it is these capabilities that are considered 

to be the important attributes of human intelligence. They cite the following as examples of 

intelligent control systems on an extensive list of real-time control system implementations 

compiled by the National Institute for Standards and Technology :- 

* NASA space-station telerobot 

* Intelligent highway vision-based road following vehicle 

* Autonomous undersea vehicle. 

Topics and applications in the field of intelligent control are gradually evolving and 

extending the areas of conventional control systems, greatly assisted by recent advances in 

computing technology. It may be argued that two unique features differentiate intelligent 

control systems from conventional control systems: the ability to make decisions, and the 

ability to learn [Shoureshi, 1991]. At the same time, it may also be argued that there is no 

clear distinction between intelligent and conventional controllers because intelligent 

controllers often consist of both intelligent and conventional components [Passino, 1993]. 

The important point is that the integration of intelligent and conventional control 
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approaches hopes to achieve the capabilities that have up until now only been possible in 

control systems that were operated by humans. 

1.3 - Biological Inspiration 

The focus in intelligent control is on designing controllers that can perfonn or 

emulate certain functions of intelligent biological systems in order to solve control 

problems. It is logical to assume that developments in the field of intelligent control are 

limited by our current understanding of the fundamental processes that occur in biological 

systems, and for this reason existing intelligent controllers can only weakly reproduce the, 

complex functions of their biological counterparts. Gupta and Rao [1994] argue that the 

incredible flexibility and adaptability of biological neural control mechanisms may provide 

the inspiration for developing more capable intelligent control mechanisms. Their 

argument is based on the fact that biological methods of processing information are 

fundamentally different from those used in conventional control techniques, but solve 

similar problems. For example, a robot arm that must pick up an object performs the same 

task as a human picking up that object. The human (i. e. biological system) executes the 

task at a conscious level, but subsequent computations are performed subconsciously e. g. 

muscle coordination and detailed calculations of joint angles are carried out in 

subconscious computing centres of the central nervous system. To perform the same task, 

the robot an'n must measure the position of its hand relative to the object, and then compute 

the direction vector to move the hand towards that object. Gupta & Rao [1994] argue that 

this requires a great deal of computation and a priori knowledge about the robot's 

enviromnent and the robot ann itself, such as the position of ann joints etc. They also argue 

that if either the enviromnent or the robot arm changes, then a robot arm using a traditional 

control methodology may fail to perform the desired task. A human can still perform the 
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task because the biological processes can easily adapt to changes in the environment or 

changes to muscles and joint angles that might occur at a subconscious level. Therefore, if 

robots are to perform the same tasks as humans, they need to be able to emulate the 

capabilities found in biological systems. Biological systems thus provide a clue as well as a 

challenge for the design of artificial intelligent systems that can emulate capabilities for 

dealing with the uncertainty in executing complex tasks in an unstructured environment. 

It is argued that emulating the precise neurophysiological behaviour of biological 

control systems is not necessary as it is sufficient to simply incorporate some of the 

computational operations that facilitate biological learning and adaptation [Gupta & Rao, 

1994]. The basic hypothesis is that if the fundamental principles of neural computation 

used by biological control systems are understood, then this may provide inspiration for 

developing an entirely new generation of control methodologies that provide capabilities 

not found in existing control techniques. Werbos [19911 also argues that inspiration from 

the brain is important because the brain may be considered a living example of a controller 

capable of controlling millions of variables simultaneously under conditions of extreme 

non-linearity, uncertainty and noise. The last few decades have seen considerable progress 

in our understanding of neurobiological systems, and the most recent discoveries in 

neuroscience have greatly contributed to our understanding of the structure, function and 

neurochemistry of biological control systems. The rationale behind the research conducted 

for this thesis is that these discoveries need to be taken into account if artificial control 

systems are to effectively emulate the intelligent capabilities found in biological control 

systems. There are other researchers who have adopted a similar rationale. The pioneering 

work of Sutton & Barto [1981] was based on earlier work into the computational 

modelling of leaming processes involved in biological systems, and was supported by 

evidence from learning and behavioural studies. More recently, Grossberg & Merrill 
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[1992] proposed a computational architecture modelled on a brain region called the 

hippocampus, and showed that this architecture is able to reproduce some of the intelligent 

functions thought to be attributed to this brain region. 

1.4 - Objectives of this Research 

The ability to adapt is a fundamental characteristic of biological organisms since 

they attempt to maintain physiological equilibrium in the midst of changing environmental 

conditions [Ogata, 1990]. This may be considered an adaptive process because the 

organism must go through the stages of learning about its behaviour in the environment, 

identifying changes to dynamic processes occurring in both organism and the environment, 

and then modifying its behaviour accordingly. The learning process is also fundamental to 

intelligent behaviour, and the computer modelling of the process of learning has been the 

subject of research in the field of Machine Learning for very many years. Learning in a 

control system may be defined as the process by which the controller can alter its actions to 

perform a particular task more effectively due to increases in knowledge related to the task 

[Antsaklis, 1995]. Learning is therefore an important feature of any intelligent or 

autonomous control system, and the introduction of learning methods into control has been 

an attempt to widen the range of existing control system applications. The objective of the 

research conducted here is to look more closely at the learning processes that occur in 

biological systems, as these processes are likely to be involved in autonomous behaviour 

and other intelligent functions. Specifically, this research will address the relearning 

problem and look at how biological systems deal with this problem. The aim is to see if 

there are mechanisms for dealing with the relearning problem inherent to biological 

systems that may provide inspiration for similar mechanisms in intelligent control systems. 
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1.5 - An Outline of the Thesis 

The remainder of the thesis is organised as follows. Chapter Two provides a 

detailed look at learning control systems, describing how they are able to learn about the 

dynamic processes occurring in their environment, and how they are able to adapt to 

changes in that environment. A particular type of learning known as reinforcement learning 

will be introduced, and the significance of this type of learning will be explained. One of 

the more successful approaches using reinforcement learning in control systems has been 

the Adaptive Critic approach, a computational architecture that has been used to solve a 

variety of control problems. The adaptive critic system assumes that the controller will 

learn to control a given system based upon a fixed schedule of reinforceinent. 

Reinforcement schedules are described in the chapter, but essentially this means that the 

adaptive critic system has been designed to learn about the environment under the 

assumption that the reinforcement information that it receives will always be representative 

of the environment. This reinforcement information is not expected to change and thus the 

adaptive critic system continually learns about the environment. This is only one aspect of 

the overall reinforcement learning problem, and has been described by Barto [1995] as a 

'subproblem'. The adaptive critic system must be able to detect changes to reinforcement 

schedules in order to adapt its behaviour accordingly, i. e. know when relearning is 

necessary. This is the relearning problem because the adaptive critic system has already 

acquired knowledge during the initial process of learning, and some of this knowledge may 

still be useful and not need to be learned again. The chapter discusses the need for a 

mechanism that can detect changes in reinforcement schedules, and how this mechanism 

may be used to address the relearning problem. The implications of the relearning problem 

have not been considered in this context, and therefore the work in this thesis can be seen 
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as a contribution to existing research on leaming control systems and reinforcement 

leaming. 

Modem reinforcement leaming is based on the fundamental concepts derived from 

theories of animal conditioning, and has also been influenced by concepts in artificial 

intelligence and control theory. This has been the main inspiration behind the development 

of the adaptive critic system described in Chapter Two. Despite the similarity between the 

architecture used by this system and the structure and function of certain regions of the 

brain, relatively little effort has been made to relate this architecture to the nervous system 

[Barto, 1995]. The nervous system of all animals has a number of basic functions in 

common, including the coordination of movement and the analysis of sensory information 

[Llinas, 1990]. The nervous system may thus be considered a biological control system in 

that sensory information comes in from the environment (vision, sound, smell, etc. ), and is 

then processed by specialised areas of the brain. The processed output is used to determine 

the future behaviour of the animal, and therefore the processing of sensory information 

must include an evaluation of the animal's previous behaviour. This constitutes a reward 

system because desirable behaviours are rewarded, and undesirable behaviours are 

punished. Chapter Three investigates the biological basis of the reward system that enables 

reinforcement learning in the brain, and looks in detail at the anatomy and physiology of 

the amygdala (the part of the brain thought to assign emotional significance to sensory 

stimuli) and the basal ganglia (the part of the brain thought to act as the interface between 

sensory and motor information processing). The objective is to develop a conceptual model 

to support the hypothesis that the amygdala influences learning in the basal ganglia, and 

that this influence is particularly important when relearning is necessary. The model is 

based on the involvement of various neurochemical substances found in these brain 

regions, and the functional implications of these substances are discussed. This work is an 
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attempt to bring together the findings from a number of recent studies into a coherent 

biological model of the reward system that facilitates reinforcement learning (and 

relearning) in the brain, and thus makes a contribution to the understanding of the 

biological mechanisms involved. 

Having developed a conceptual model to explain the involvement of the amygdala 

in reinforcement leaming and relearning, the aim of the thesis is to then show how this 

model can be used to provide established control approaches using reinforcement learning 

(e. g. the adaptive critic system) with mechanisms that can address the relearning problem. 

The conceptual model accounts for the interaction of the amygdala with structures in the 

basal ganglia. Houk et al. [1995b] have developed a model that attempts to relate the 

anatomy and physiology of structures in the basal ganglia to the theory of adaptive critics. 

Chapter Four describes the Houk et al. model, and shows how the basal ganglia can be 

considered functionally equivalent to the adaptive critic system. The chapter then describes 

how the adaptive critic system may be relocated in another part of the basal ganglia in 

accordance with the conceptual model presented in the previous chapter, yet still retain the 

functional characteristics of the adaptive critic system. This therefore allows the interaction 

of the amygdala to be considered, and how this can be used to modify the adaptive critic 

system to provide new capabilities. In the conceptual model, the amygdala modulates the 

effect of various neurochernical substances, and it is suggested that the role of these 

substances is equivalent to the role of the learning parameters in the adaptive critic system. 

The chapter attempts to show how these parameters can be related to neurochernical 

substances, and suggests how the adaptive critic system can be modified to include the 

functions of the amygdala in relearning. The computational modelling of the amygdala as a 

modulator has not previously been considered, particularly in the context of relearning. The 

modified adaptive critic system with modulation of parameters governed by an amygdala- 
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inspired mechanism therefore represents an original contribution to knowledge, and may 

lead to mechanisms that effectively address the relearning problem. 

The pole balancing problem is a classic control task examined exhaustively in 

control theory texts, and is a good example of an inherently unstable system representative 

of a wider range of tasks [Wieland, 1991]. Chapter Five presents the pole balancing 

problem as an experimental framework for evaluating the success of a reinforcement 

learning control system, and describes how this problem needs to be extended to 

investigate the relearning problem. An experimental benchmark definition for simulation 

of the pole balancing problem is presented [Geva & Sitte, 1993], and the inclusion of the 

benchmark in this work is an attempt to standardise the problem for future comparison. 

Chapter Five uses the modified adaptive critic system described in Chapter Four to solve 

the benchmark pole balancing problem extended to include the relearning problem. The 

performance of the modified system is shown by providing a set of preliminary results 

based on simulation experiments. These results have been analysed, and compared to the 

original adaptive critic system working on the same problem. This work represents a 

contribution to knowledge because it provides empirical results that can be compared to 

future work on the relearning problem, which may lead to further developments in 

intelligent control and the objectives of this research being achieved. 

Chapter Six provides a summary of the thesis and an outline of the contribution that 

this research has made to knowledge. In addition, the chapter looks at the main conclusions 

that can be drawn from this work, and outlines the limitations of the research conducted. 

The possibilities for future work arising from this research are discussed. 
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Chapter Two 

Reinforcement Learning and the 

Relearning Problem 

2.1 - Introduction 

The ability to adapt is important to intelligent control systems, as discussed in 

Chapter One. The term 'adaptive' has a variety of specific meanings, but usually implies 

that a system is capable of modifying its own behaviour in response to disturbances in its 

environment, regardless of whether these are internal or external to the system [Ogata, 

1990]. This chapter discusses learning control, a field in control that has developed because 

of the need for control systems that are able to adapt. The chapter then looks in detail at 

reinforcement learning, a sub-class of learning control that has achieved much success 

when dealing with the problems of intelligent control. Reinforcement learning is the basis 

for the adaptive critic system, a computational architecture that has received much attention 

in intelligent control because of its "brain-like" characteristics [Werbos, 1995]. The chapter 

discusses how the adaptive critic system successfully utilises the reinforcement learning 

framework to solve learning control problems, but is found lacking when it is required to 

address the relearning problem. The chapter explains what the implications of the 

relearning problem are in the context of the adaptive critic system. 

2.1.1 - Feedback Control 

All control problems involve manipulating the input to a dynamical system so that 

the behaviour of this system meets a set of pre-specified requirements that constitute the 
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control objective [Sutton et al., 1992]. The task of the controller is to detennine control 

inputs in accordance with the control objective, and sometimes the control objective is 

specified in terms of target outputs that the output from the plant should match or track as 

closely as possible. This is known as Feedback Control, and assumes that the target 

outputs are known and can be supplied to the controller. The feedback control scheme is 

illustrated in Figure 2.1. 

Target Outputs 

CONTROLLER 

Control Observed Plant 
Inputs 

II 
Outputs 

r--- -- ------------- 

Plant PLANýý 
Outputs 

Environment Inputs 
L ---------------- 

ENVIRONMENT 

Figure 2,1 - Feedback Control Scheme 

However, it is often the case that target outputs cannot be provided to the controller 

because disturbances in the plant or environment create uncertainty so that the provision of 

target outputs is impossible or extremely difficult. If the control system is viewed as a 

mapping from desired plant outputs to control inputs, then the information required to 

make this mapping needs to be available a priori so that the controller can be appropriately 

designed. If this information is in any way limited or inaccurate (such that disturbances 
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cannot be accounted for), then the controller will be unable to provide the required control 

inputs that produce the desired plant outputs. This is where Adaptive Control is used. 

2.1.2 - Adaptive Control 

An adaptive control system is one that can adjust itself to accommodate new 

situations, such as changes in the observed dynamical behaviour of the plant [Baker & 

Farrell, 1992]. The adaptive control system monitors the input/output behaviour of the 

plant to identify the parameters of an assumed dynamical model, and adjusts these 

parameters to determine control inputs to produce the desired plant outputs. The adaptive 

control scheme is illustrated in Figure 2.2. 

System 
Identification 

PLANT MODEL 
Observed Plant 

Inputs 

CONTROLLER 

Control 
Inputs 

Observed Plant 
Outputs 

r----------------- 

Plant PLAN 
Outputs 

Environment Inputs 
L ---------------- 

ENVIRONMENT 

Fýigure 2.2 - Adaptive Control Scheme 
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An adaptive control system will attempt to adapt the parameters of the plant model 

whenever the behaviour of the plant changes by a significant degree, and this process is 

sometimes referred to as 'system identification'. Baker & Farrell [1992] argue that if the 

dynamical behaviour of the plant varies considerably over its operating envelope (e. g. due 

to nonlinearity), then the control system may be required to adapt continually. This is 

undesirable because degradation in performance can be associated with periods of 

adaptation. Such adaptation periods may also be required in the absence of nonlinearity or 

disturbances since the controller must re-adapt every time a different dynamical regime is 

encountered, and adaptation occurs even if the system is returning to an operating 

condition that it has encountered and handled before. This is clearly undesirable, and may 

incur unnecessary costs in terms of computational expense. If the control system could 

somehow use past experience to determine its control inputs, this would greatly reduce the 

computational burden on the control system. This is where Learning Control is used. 

2.1.3 - Learning Control 

A learning control system is one that has the ability to improve its performance in 

the future, based on experiential information it has gained in the past [Baker & Farrell, 

1992]. This implies that the learning control system is in some way autonomous because it 

can improve its own performance, and that it has memory since it can exploit past 

experience to improve its future performance. Adaptive controllers lack "memory" because 

they must re-adapt to compensate for all apparent variations in the dynamic behaviour of 

the plant, but learning controllers are able to correlate past experiences with present 

situations thereby not treating every distinct situation as a novel one. The learning control 

system will adapt the parameters of the plant model in accordance with the memory of its 

experiences, and this constitutes the learning aspect of this type of control. The plant model 
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is then used by the controller to detennine control actions in order to achieve the control 

objective more effectively due to increases in knowledge related to the task [Antsaklis, 

1995]. This increased knowledge is contained in the plant model, but the control system 

also needs to have an index of perfonnance in order to relate control actions to particular 

situations. This index is known as the objectivefunction, and is used to evaluate the actions 

of the controller. The control system thus updates the plant model on the basis of the 

objective function. An accurate plant model means that when particular situations are 

known, appropriate control actions can be determined. The mapping from situations to 

actions is known as the control policy, and the controller must learn a policy that gives the 

maximum value for the objective function. The aim of learning control is therefore to use 

the objective function to find the best control policy, which is often referred to as the 

optimal control policy. The distinguishing feature of learning control is that it uses past 

experience to determine the best control policy, and this policy is manifested in the plant 

model. This approach has been successfully applied to numerous learning control 

problems, but has only been possible when the objective function is known [Gullapalli et 

al., 1994]. There are many control problems where the objective function cannot be 

explicitly pxpressed due to the complexity of the problem. For example, suppose the 

behaviour of the plant can only be improved in accordance with a performance measure 

that evaluates the overall behaviour of the plant, such as maximising a measure of the 

energy efficiency of the plant over time. This requires a leaming control scheme known as 

'reinforcement leaming', where the objective function is not necessarily known and must 

be found. Section 2.2 describes the theory of reinforcement leaming, and the way in which 

it addresses the problems of learning control. Section 2.3 outlines the adaptive critic 

approach, an architecture that uses the reinforcement learning control scheme and has 

already achieved much success. Section 2.4 discusses how the adaptive critic approach has 
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difficulties when it comes to dealing with the relearning problem, and suggests that 

inspiration derived from biological mechanisms of reinforcement learning and relearning 

may help resolve these difficulties. A better understanding of the biological mechanisms is 

consistent with the rationale behind this work, i. e. that this inspiration may lead to 

developing computational mechanisms better able to address problems such as the 

relearning problem. Section 2.5 provides a summary of this chapter. 

2.2 - Reinforcement Learning 

Reinforcement learning addresses the problem of improving performance as 

evaluated by any measure whose values can be supplied to the control system [Barto, 

1989). This may also be described as the problem faced by a control system that must learn 

appropriate control behaviour based only on trial-and-error interactions with the plant. The 

desired control signals are those that lead to optimal plant performance, but the learning 

system is not told what these are because this information is not available. This means that 

instead of trying to determine control inputs from target plant outputs, the control system 

tries to detennine target control inputs (or desired changes to control inputs) that lead to 

increases in the measure of plant performance, which is not necessarily defined in terms of 

target plant outputs [Barto, 1989]. Reinforcement learning is therefore a sub-set of learning 

control because the problem is to find the optimal control signals, not simply to remember 

and generalise from them. 

Reinforcement learning is not so much a learning method as a framework within 

which a wide range of learning control problems can be formulated. Sutton [1992] states 

that reinforcement learning is based on the notion that if an action results in a satisfactory 

or improved situation, then the tendency to reproduce that action is strengthened. The 

converse is also true, such that if an action results in a poorer situation, the tendency to 
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reproduce that action is weakened. Leaming takes place by providing the control system 

with a reinforcement signal that either 'rewards' desirable situations, or 'punishes' 

undesirable situations. The reinforcement signal is a representation of the objective 

function because the control system is required to maximise the total reward (or minimise 

the total punishment) that it receives. The control system therefore relates its control 

actions (control inputs) to situations in accordance with the evaluation of the situation 

given by the reinforcement signal. The nature of the reinforcement signal is discussed in 

Chapter Three. 

2.2.1 - The Value Function 

Consider the problem faced by a mobile robot navigating through a maze. Each 

possible situation (state) in the maze that the robot finds itself in discrete time is given by 

xt, where XEX The robot can perform an action aEA to move it from the state x, to the 

next state x, +,. The robot is required to reach a terminal state in the maze that has been 

predefined as the goal state, xg,,,. The robot is given a reinforcement signal r(xd in each 

state, except for the starting state xO. This signal punishes the actions of the robot by 

making r(xd = -1 until the goal state is reached, at which point the reinforcement signal 

r(xd is set to zero. The control system is required to sum the total reinforcement over time 

received by the robot until it reaches the goal state xg,,,. This summation is calculated by 

the valuefunction, V(xd given by Equation (1): 

V(x, ) r(X, 
+k) 

k=O 

= r(x, ) + r(x, 
+, 

)+... +r(x 
goal 

) 

(1) 
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In Equation (1), k represents time steps in the future, and xg,,, is the first goal state 

the agent encounters after time t assuming the robot stops when it reaches the goal. The 

robot is encouraged to reach the goal as quickly as possible by maximising V(xd, which 

therefore gives the highest possible value. It should be noted that the reinforcement signal 

represents only the overall objective of the control system because all states except the goal 

state are punished. The controller does not specify how the objective should be achieved, 

i. e. the exact path to be taken. This means that the control system may focus only on the 

control objective which is to reach the goal state as quickly as possible. Otherwise, it is 

possible that the control system will find a way to achieve subgoals (reach other states that 

are not punished) without ever achieving the overall control objective. 

Reinforcement learning finds a control policy for mapping from situations to 

actions based on the reinforcement signal. If the control actions are denoted by a (where a 

(=- A), and the states are denoted by x (where xE X), then the policy ;T for mapping 

between x and a is given by ; r: X -> A. The controller is thus an implementation of the 

control policy because it maps states to actions in accordance with the policy. If the 

reinforcement signal is not provided externally, then the control system needs some kind of 

internal mechanism that will indicate which states are (or are not) desirable. This is referred 

to as the critic, which generates internal reinforcement signals based on observations of the 

plant. The critic observes the outputs from the plant (in the absence of a reinforcement 

signal), and then provides the controller with an internal reinforcement signal that reflects 

the success of its control actions. The control system designer detennines the way in which 

the internal reinforcement signal is produced, such that it evaluates the actions of the 

controller and how well the controller achieves the desired behaviour of the plant. The 

control system uses the internal reinforcement signal to determine an appropriate control 
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policy which will maximise, the reinforcement that it receives. Figure 2.3 is an illustration 

of a reinforcement learning control scheme using a critic. 

CRITIC 

Internal 
Reinforcement 

Signal 

CONTROLLER 

Control 
Inputs 

------------ 

Observed Plant 
Outputs 

(Reinforcement 
Signal) 

PLANT 

Environment Inputs 
L ---------------- 

ENVIRONMENT 

Plant 
Outputs 

Figure 2.3 - Reinforcement Learning Control Scheme 

Therefore, it can be seen that a learning control problem may be framed as a 

reinforcement learning problem in terms of: - 

e The choices made by the controller (control actions) 

* The situations in the plant or environment on which the choices are made (states) 

* The criteria which defines the control objective (reinforcement signal). 
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The design of a reinforcement learning control system essentially involves two 

problems [Barto, 1990]. The first problem is to construct the critic so that it is capable of 

evaluating the perfonnance of the plant appropriate to the control objective, and allows the 

learning of an optimal control policy. In other words, a value function must be learnt that 

can rapidly map states to values. The second problem is to determine how the control 

signals should be modified to improve the performance of the plant based on the internal 

reinforcement signal provided by the critic. In other words, a control policy must be learnt 

that can rapidly map states to actions. These problems are addressed separately by the two 

main components in this type of reinforcement learning system, called the 'actor-critic' 

architecture for reinforcement learning control. In this architecture, the actor is responsible 

for learning the control policy for control signals to the plant, and the critic is responsible 

for the value function that determines the internal reinforcement signal. This architecture is 

the basis of the adaptive critic approach discussed in Section 2.3. There are a number of 

aspects to the design of a reinforcement learning system which are outlined in the 

following sections. Much of the material in these sections is taken from the work of 

Kaelbling et al. [ 1996], Sutton & Barto [ 1995], and Barto [ 1995]. 

2.2.2 - The Environment 

Consider the problem of a reinforcement learning control system that chooses a 

particular control action a by sending a control signal to the plant. The plant uses this to 

change the state x depending on the dynamic processes and disturbances to the plant and 

the environment. The critic then provides an internal reinforcement signal based on the 

consequences of taking the action a in state x. This problem can be modelled as a Markov 

Decision Problem (MDP) because the internal reinforcement signal provided by the critic 

depends only on the consequences of taking action a in the current state x, and not on any 
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previous actions or states. An MDP consists of a set of states X, a set of actions A, a reward 

function R: XxA -> 93, and a state transition function T. - XxA -> 17(Ag where 17(Ag is a 

probability distribution over the set X The state transition function T maps states to 

probabilities, and this gives the probability of making a transition ftorn the current state x, 

to the next state x, +, using the action a in discrete time. The reward function R specifies the 

expected reward as a function'of the current state x, and the action a. The model is Markov 

if the state transitions are independent of any previous state or action. 

2.2.3 - The Discount Factor 

The objective of the learning control system is to find a policy ir that gives the 

maximum r(xd value for each x, which is referred to as the optimal policy. An optimal 

policy is any policy that is "greedy" with respect to selecting actions that maximise the 

overall reinforcement that is obtained. There may be several optimal policies, but all of 

these policies share the same optimal value function. If the goal state is denoted by xgo,,, 

and the robot is given a reinforcement signal r(xd in each state x,, then the optimal value 

function is calculated by summing the total reinforcement received until the goal state is 

achieved when following an optimal policy. The optimal value function is denoted by 

V*(xd, given by Equation (2): 

M 

max E (1r(Xt+k) 

7r k=O 

=maxE ( r(x, )+r(x, 
+, 

)+... +r(x 
ff 

goal 

In Equation (2), k represents time steps in the future, andXg, 
al 

is the goal state, and 

EO is used to indicate that the equation will yield the maximum expected value when the 
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optimal policy is used. The optimal value function accumulates the total reinforcement 

over time when the controller uses policy ir starting at time t. This is based on the 

reinforcement signal, and equates to the maximum possible reward (or least possible 

punishment) that the system will receive. In some cases however, the reinforcement signal 

is delayed and may only be given at the end of a long sequence of control actions. This is 

known as the temporal credit assignment problem, and requires that the learning control 

system must determine which actions from a series of control actions deserve the credit (or 

blame) for improvements (or decrements) to the perfonnance of the system. This problem 

can be solved by using a discountfactor, Y, which determines the present value of future 

reinforcements [Sutton & Barto, 1995]. A reinforcement that is received k steps in the 

future will only be worth k of what it would be worth if it was received now. The discount 7 

factor is included in the calculation of the value function V(xd, which is now given by: 

00 k 
V(x, ) =Er r(Xt+k) 

k=O 

= r(x t) 
+ ýr(X, 

+, 
) + Y2 r(Xt+2)+... 

(3) 

When y=0, the reinforcement from any state is just the immediate reinforcement 

from the transition to that state, and the optimal value function will give the maximum 

immediate reinforcement. As y increases towards one, future reinforcements become more 

significant in determining optimal actions such that y=I is the undiscounted case and all 

future reinforcements are taken into consideration. The value of the discount factor is 

therefore important, and this issue will be revisited in Chapter Four 
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2.2.4 - Approximating the Value Function 

There are a number of methods that can be used to find optimal control policies 

using discounted rewards [Barto et al., 1995]. Dynamic Programming (DP) methods are a 

family of algorithms that allow the discounted reward case of the optimal value function to 

be written in a special form known as the Bellman Optimality Equation, which is given by: 

V*(x)=maxE(r(x, )+, v V*(x,,, )Ix, =x, a, =a) 
a 

Equation (4) is independent of any specific policy, and can be used to find an 

optimal policy by defining a system of equations (one for each state) that can be solved 

uniquely for V*(x) providing the dynamics of the plant are known. For each state x, there 

will be one or more actions that will obtain the maximum value according to the Bellman 

equation. These are all equally good control actions, and any policy that selects greedily 

from among these actions can be considered an optimal policy. DP methods can therefore 

solve the delayed reinforcement learning problem, but are equivalent to an exhaustive 

search that must consider all the possibilities, compute the probability of their occurrence, 

and evaluate their utility in terms of expected reinforcement [Sutton & Barto, 1995]. This 

is only made possible if the dynamics of the system are completely known, and assumes 

that there are enough computational resources to complete the computation. Sutton & 

Barto [1995] point out that this is never completely true in practice, and that it is better to 

approximate solutions using DP methods. This is a topic of ongoing research, and many 

different methods have been proposed that enable this to be done. These include Heuristic 

Dynamic Programming [Werbos, 1992] which defines a utility function that estimates the 

optimal "reward-to-go", and uses this to select a control policy which is automatically the 

26 



optimal policy. Another method is Incremental Dynamic Programming which uses an 

algorithm known as Q-Learning [Watkins, 1989]. The Q-Learning algorithm is very 

popular because it unifies the functions of the 'actor-critic' architecture, and is therefore 

easier to implement [Kaelbling et al., 1996]. The Q-function is given by Q*(xa), and gives 

the expected discounted reinforcement received by taking an action a in state x. If V*(x) 

represents the optimal value function over all states x, then V*(x) = max EQ *(x, a)) if the 
a 

Q-function continues to select the best actions. The Q-function makes the action explicit, 

and so the optimal policy is found by acting greedily to select the actions that have the 

maximum Q-value for each state. Q-Learning will be briefly revisited when exploitation 

and exploration issues are discussed later in this chapter. 

DP methods exploit the fundamental principle of optimality, but are often criticised 

because of the extreme computational requirements that arise from conventional 

implementation using quantised states and actions [Millington & Baker, 1990]. This means 

that there have been few practical successes using reinforcement learning in large-scale, 

complex real-world problems. These problems still need to be resolved. Tesauro [1995] 

states that one of the more promising developments that may lead to overcoming such 

problems is the use of Temporal Difference methods. 

2.2.5 - Temporal Difference Methods 

The DP methods described in the previous section are most applicable to off-line 

learning because of their vast computational requirements, and the assumption that the 

problem can be modelled as an MDP. Temporal Difference (TD) methods are a family of 

algorithms that are less restricted, and are able to use on-line reinforcement learning with 

an incompletely known system to control the behaviour of that system [Sutton, 1988]. This 

is achieved by 'predicting' the future behaviour of the system. A prediction is an estimate 

27 



of future behaviour based on what happened in similar situations in the past. This can also 

be considered as the discounted estimation of the value function V(xd which was given in 

Equation (3). The prediction is likely to be a good estimate of the value function because it 

incorporates a sample of the immediate reinforcement r(x, ) [Kaelbling, 1996]. The basic 

idea behind TD is that learning is based on the difference between temporally successive 

predictions, and so the goal of leaming is to make the current prediction more closely 

match the prediction at the next time step [Tesauro, 1995]. For example, suppose we would 

like to compare the prediction at two successive time steps, and these predictions are 

denoted by P, and P, 
-j. 

The prediction P, is the estimate of V(xd for a given state x,, and is 

given by: 

P,,: t: V(x, )=r(x,,, )+, v r(Xt+2)+, v'r(x (5) 
1 t+3 

)+, 

.. +e, 

In Equation (5), ; ý- means "approximately equal", and e, is the error in the prediction 

at time t. The prediction P, 
-, 

is the estimate of V(xj-d for the previous time step, as given 

by: 

V(X, )+Y2 r(X, 
+2)+, .. +e, t-I -, 

)=r(x, )+y r(x,,, -1 
(6) 

The term e, -, 
is the error in the prediction at time t-1. The difference between the 

two predictions at adjacent time steps is called the 'temporal difference error' (or TD error) 

[Sutton, 1988]. This error is often referred to as effective reinforcement, and is denoted by 

P, TD methods attempt to predict the next reinforcement signal based on the immediate 
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reinforcement (if any), plus the difference between the previous prediction and a 

discounted version of the current prediction. This can be summarised as: 

r, =r(x, )+, v (7) 

If P, is positive, then the effective reinforcement represents a move from a predicted 

bad state to a predicted better state. If ý, is negative, then the effective reinforcement 

represents a move from a predicted good state to a predicted worse state. Leaming 

therefore attempts to maximise the effective reinforcement until P, (the error) is zero, at 

which time the prediction is equal to the actual reinforcement that the system receives. This 

method is very simple computationally, and actually converges to the optimal value 

function if given sufficient time [Barto, 1995]. The predictions therefore replace the 

estimated value functions given in earlier equations, and can be used to learn optimal 

control policies through predicting and observing the consequence of successive actions. 

Learning stops when the TD error becomes zero, i. e. when all predictions become equal to 

the reinforcements actually observed, and the control policy is optimal. 

The TD method described above still requires a large number of computations, but 

the algorithm can be modified so that it is suitable for learning concurrently with real-time 

system operation [e. g. Barto et al., 1995]. The method described is actually an instance of a 

more general class of algorithms developed by Sutton [1988] known as TD(A). The general 

TD(A) can be calculated using Equation (8): 

r, =(r(x, )+y (8) 
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In Equation (8), U(x, ) represents an eligibility trace which is kept for every state. 

This means that the effective reinforcement is calculated according to the eligibility of the 

current state the system is in, this eligibility being the degree to which the state has been 

visited in the recent past. When a reinforcement is received, the trace is used to update all 

states that have been recently visited according to their eligibility. There are various 

methods that can be used for keeping eligibility traces in every state x, one version of 

which is given by: 

a +, 
(x) = iii, (9) 

Equation (9) holds an eligibility trace for every state x, and decays with time in 

accordance with the value of the coefficient 'A'. When A=0, the system will only look 

ahead one step when calculating the effective reinforcement, which is identical to the 

method used in Equation (7). When A=1, this is equivalent to looking ahead an infinite 

number of steps, and this converges to a solution much faster than by simply using A=0. 

However, this is likely to be computationally more expensive. Therefore, it is clear that the 

value of 'A'needs to be carefully chosen if an improvement in computational efficiency is 

to be achieved, as compared to simply using A=I or A=0. The issue of A will be revisited 

in Chapter Four. 

2.2.6 - Exploration and Exploitation 

The previous sections have described how the optimal value function is the solution 

to a set of equations defined by the Bellman Optimality Equation, given in Equation (4). 

Learning can be seen as the process of improving the approximation of the optimal value 
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function by incrementally finding a solution to this set of equations. The Bellman 

Optimality Equation is defined over all states, and therefore dynamic programming 

requires that the optimal value function is satisfied for all states in the problem space. 

Similarly in Q-Leaming, the Q-values will slowly converge to optimal as long as state- 

action pairs are tried often enough [Kaelbling et al., 1996]. This requirement introduces the 

need for experience, which involves exploration of the state space in order to gain 

knowledge about the environment. Consider the example of the robot in a maze. The robot 

needs to explore and gain knowledge about its environment as this knowledge will help to 

minimise the time the robot takes to learn a path through the maze. The knowledge gained 

also needs to be exploited so that the robot can minimise the costs associated with learning, 

such as negative rewards when the robot collides with obstacles. The robot does not know 

which'actions will result in collisions until all of the state space has been explored. 

Although it is possible that the robot can learn a policy that is "sufficiently" good without 

having to explore the whole state space, there is still an important trade-off between 

exploration and exploitation. The robot needs to be able to efficiently explore the 

enviromnent to maximise the effects of learning, but exploit the knowledge it gains to 

minimise the costs of exploration. Thrun [1992] argues that exploitation is part of efficient 

exploration because exploiting the knowledge gained constrains the system to the more 

relevant parts of the environment thus reducing learning time. However, he also argues that 

exploration is part of efficient exploitation because the costs of learning cannot be 

minimised over time without efficiently exploring the environment. There are various 

exploration techniques that can be used in reinforcement learning, and these fall into two 

major categories :- 
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* Undirected techniques - these are based on randomness (e. g. random exploration based 

on probability distributions) without considering previous experience 

* Directed techniques - these use exploration-specific knowledge from previous 

experience to guide exploration and maximise the knowledge gained. 

Thrun [1992] argues that directed techniques are superior because they make use of 

previous experience in the enviromnent to guide exploration, and this is effective 

exploitation. Examples of directed techniques include -- 

* Counter-based - counts the occurrence of states and then drives the system to less 

explored states, i. e. "go to the least visited neighbouring state" 

* Recency-based - drives the system to least recently visited (or unvisited) states, and 

therefore maintains a record of the time elapsed since visiting a state 

9 Dynamic switching - uses a trade-off parameter with function thresholds to guide 

exploratory behaviour such that the "desire to explore" is balanced against the "desire to 

exploit" 

e Selective attention - uses dynamic switching, but accounts for earlier decisions using a 

gain parameter that biases the system towards either exploration or exploitation. 

More detail about these techniques can be found in Thrun [ 1992]. The main interest 

in these techniques lies in their close relationship to the relearning problem. The relearning 

problem considers the problem of how knowledge that already exists can be used to guide 

effective exploration of the environment as a result of changes to the environment, and how 

exploiting that knowledge can lead to minimising the costs of exploration. The selective 

attention technique uses a gain parameter to dynamically switch between exploration and 
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exploitation on the basis of previous experience. What constitutes this "previous 

experience" is an important issue as the work reported by Thrun [ 1992] describes selective 

attention as a means of maintaining equilibrium between exploration and exploitation. The 

relearning problem is not so much concerned with maintaining equilibrium, but instead 

considers how the appropriate balance between exploitation and exploration can make use 

of past experience in the environment. Note that the idea of selective attention from a 

biological perspective will be discussed in Chapter Three, and the use of gain parameters 

will be discussed in Chapter Four. 

There are a number of methods that attempt to use experience effectively to explore 

the environment, and these often require a model of the environment. Real-Time Dynamic 

Programming [Barto et al., 1995] uses Q-Leaming and a learned model to concentrate 

computational effort on the state spaces most likely to be occupied. This method is specific 

to problems where an agent has a particular goal state to achieve, and reinforcements are 

zero elsewhere. Prioritised Sweeping [Moore & Atkeson, 1993] and Dyna-Q [Sutton, 

1990] also use a leamed model to speed up the process of temporal credit assigmnent. 

Dyna-Q is of particular interest because this system has been tried on problems with robots 

in changing worlds. Dyna-Q has been used on the blocking problem (an obstacle is added 

that blocks the optimal path, and the robot is required to find a new optimal path), and the 

shortcut problem (an obstacle is removed to create a more optimal path, and the robot is 

required to learn this optimal path). Sutton [1990] reports that by keeping track of 

experience using an internal model, and then providing an exploration bonus to exploit this 

experience, a dramatic improvement can be made to the speed of learning.. The work in 

this thesis is related because the relearning problem is a generalised equivalent to the 

blocking and shortcut problems, and the research conducted has the same objectives i. e. 

how can existing knowledge be used to minimise the costs of leaming. 

33 



2.3 - The Adaptive Critic Approach 

The reinforcement learning method previously described was developed because of 

the need for adaptive capabilities in intelligent control systems. This need has resulted in a 

great deal of effort directed towards developing more brain-like control systems because 

these adaptive capabilities are intrinsic properties of the brain. Werbos [1995] argues that if 

intelligent control system designs are ever to be considered truly "brain-like", they must 

not only demonstrate applied engineering functionality, but also possess all three of the 

following adaptive components - 

(1) an Action or Motor system capable of generating control signals for the plant or 

enviromnent 

(2) a Critic or Evaluation system used to assess the long-term costs and short-term benefits 

of alternative actions 

(3) an Expectations system which identifies and serves as a model of the external 

enviromnent or plant to be controlled. 

The first two components (the Action and Evaluation systems) are the same as the 

actor and critic found in the actor-critic architecture used for reinforcement learning 

described earlier. Werbos [1995] argues that a third component (the Expectations system) 

is essential in order to explain the results of animal conditioning experiments that have 

been the basis for modem reinforcement learning. The first two components are already 

part of the Adaptive Critic system, which Werbos [1995] describes as the only type of 

design that anyone has ever formulated (in engineering, biology or anywhere else) with any 

hope of explaining the generic kinds of capabilities seen in the brain. The theory of 

adaptive critics is a highly complex field of study with several levels starting from very 
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simple designs, and extending all the way up to the brain itself It is appropriate to briefly 

describe these levels, because each level corresponds to the chronological and progressive 

development of the adaptive critic design :- 

4, Level Zero - the first adaptive critic design originally fonnulated by Widrow et al. 

[1973], and now obsolete in terms of its practical application to control systems. 

9 Level One - the Barto et al. [1983] design which uses an internal reinforcement signal to 

train the actor, and TD methods to adapt the critic. It is still widely used even though it 

learns very slowly when there are a large number of continuous variables. It has proven 

to be very robust in problems where there are fewer variables that are binary rather than 

continuous e. g. the pole balancing problem. The application of the level one adaptive 

critic design to the pole balancing problem is described in detail in Chapter Five. 

e Level Two - Werbos [1995] describes these as "advanced" adaptive critics developed 

between 1990 and 1993. These designs use an Action-Dependent Adaptive Critic 

(ADAC) that sends derivative signals back to the actor, and use a backpropagation 

mechanism to adapt its parameters. The rich feedback received by the actor makes it 

possible to more effectively control a large number of variables. 

e Level Three - this was the first real attempt to move into the realm of "brain-like" 

control. These use Heuristic Dynamic Programming [e. g. Santiago & Werbos, 1994] to 

adapt the critic, and the backpropagation of derivative signals through a model (the 

Expectations system) to adapt the actor. 
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0 Levels Four and Five - these use more powerful techniques to adapt the actor and critic, 

particularly Dual Heuristic Programming (DHP) and its variations [Prokhorov & 

Wunsch 11,1996]. These techniques were designed to minimise the error in the 

derivative signals sent back to the actor. Santiago & Werbos [1995] reported early 

simulations of DHP, an optimisation technique that was explicitly designed to scale to 

very large numbers of controls. They argued that existing optimisation designs are 

limited to batch, off-line, and small engineering problems where only a few controls can 

be used. The human brain routinely handles complex problems requiring many controls 

in real-time, and so this capability should be provided by an intelligent control system. 

The DHP controller has four components: an Action network, Critic network, Model 

network, and Utility function. A detailed discussion of this design is beyond the scope 

of this thesis (for more details see [Prokhorov et al., 1995]). The important functional 

capability in the design is the backpropagation of values from the outputs to the inputs, 

and DHP provides a dual mechanism to achieve this. 

Werbos [1995] proposes that the human brain might be a level five adaptive critic 

system, made up of three highly interconnected components. He suggests that new 

evidence supports the idea that the learning part of the brain is in fact made up of three 

entire adaptive critic control systems, which he describes as subbrains. The "upper brain" 

is the decision-making system, the "middle brain" is a task executor and implementer of 

intentions, and the "lower brain" is a high-speed motion co-ordinator for motor actions. 

Werbos cites a number of studies that point to parts of the basal ganglia as highly involved 

in providing reinforcement signals that are learned in a way that is remarkably similar to 

the TD methods described earlier. This issue is discussed in Chapter Four. Werbos argues 
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that more research needs to be done to better understand and exploit the recent findings 

from neuroscience, and the work presented in this thesis is a part of that effort. 

The level one adaptive critic design will be the focus of effort in the remainder of 

this thesis. This design is already well understood, but little effort has ever been made to 

relate this to the corresponding neurophysiological mechanisms [Barto, 1995]. By 

considering the original level one design, it is hoped that some of the mechanisms 

suggested in this thesis will also be applicable to higher level designs. These higher level 

designs are advanced only insofar as they provide functions thought to be "brain-like". For 

example, level three introduces an expectations component into the design that allows 

better approximations for dynamic programming, but has the same basic components as the 

level one design. The work in this thesis does not devalue the significance of the higher 

level designs, but takes the position that recourse to the biological mechanisms needs to be 

understood at a lower level before it can be applied at the higher levels. Indeed, it may be 

argued that backpropagation and similar mechanisms introduced at higher levels are not 

really biologically plausible given. our current knowledge about the brain [Denham, 1994]. 

This position is consistent with the rationale of this research because as more is understood 

about the structure and function of the brain, perhaps this knowledge will support or lead to 

a better understanding of the higher level designs. 

2.4 - Adaptive Critics and the Relearning Problem 

The adaptive critic approach relies on the fact that the learning control system 

operates under a fixed schedule of reinforcement reflected by the reinforcement signal that 

rewards or punishes the actions produced by the controller. Catania [1970] describes a 

reinforcement schedule as: 
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"... the conditions under which a response can produce a reinforcer. These 

conditions may include the time elapsed since some prior event, the number or temporal 

patterning of prior responses, or any variety of modifications and combinations of such 

specifications, When a particular schedule operates, these conditions determine the way in 

which reinforcement comes into contact with behaviour and generates a characteristic 

performance. " 

Learning in the adaptive critic system is dependent on the reinforcement schedule, 

and the controller eventually learns to predict the reinforcement schedule and develop a set 

of control actions (control policy) that optimises the reinforcement that it receives. It is 

assumed that the leaming system will employ the same control policy throughout the 

prediction process [Barto, 1995]. This does not mean that the actor always produces the 

same action, but that it always responds in the same way if a particular situation recurs. 

This is because the prediction of reinforcement is directly related to the reinforcement 

schedule, and the control policy is derived from the predictions. The critic generates an 

internal (effective) reinforcement signal by learning to predict the expected schedule of 

reinforcement, which may be delayed or even absent. The internal reinforcement is used by 

the actor to modify control actions. This therefore demands that the schedule of 

reinforcement does not change, and provides an accurate representation of the control 

objective throughout the learning of the problem space. This may not always be the case, 

and thus leads to a situation where the relearning problem is a factor. The consequence of 

changing the reinforcement schedule while the control system is learning about the 

problem space can amount to changing the overall control objective, thus affecting the 

control policy. If this occurs, the control system (both actor and critic) will have already 

acquired some knowledge about the problem space, and this knowledge may still be 
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appropriate to particular regions of that space. The time required to change from one policy 

to another might be an important consideration for the intelligent control system, as might 

the learning costs (negative rewards) associated with responding to that change. There 

needs to be some mechanism that can detect when a change to the reinforcement schedule 

has occurred, can decide which states need to be releamed, and then direct computational 

effort to these states. This is the same as exploiting existing knowledge to maximise 

exploration, hence minimising both learning time and exploration costs. It would seem 

natural to assume that this is a selective process based upon previous experience with the 

schedule of reinforcement, and subsequent chapters in this thesis will consider how this can 

be achieved using the inspiration of biological systems. 

The relearning problem has not been addressed with specific reference to the 

adaptive critic system using inspiration derived from biological systems. The work 

presented in this thesis attempts to do exactly that. There have been some studies that have 

touched upon surrounding issues, but little work has been done specifically on the 

relearning problem. For example, Anderson [1989] highlighted the importance of a 

mechanism in the adaptive critic system that can concentrate on appropriate regions of the 

problem space as and when required. He used artificial neural networks to represent the 

actor and critic in a level one adaptive critic system, and applied this to the pole balancing 

problem. Neural networks were used because they are able to generalise across states, and 

can therefore acquire information about states that have not yet been experienced because 

of this generalisation. However, in many real-world situations, the control objective does 

not need to be generalised to all states, but to only a small subset of states. Take for 

example a control objective that may be expressed in tenns of avoiding punishments rather 

than receiving rewards. When relearning is necessary, the control system needs to be aware 

of states that already possess information about punishments, information which may still 
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be relevant. There would be little need to learn about the entire state space all over again. 

Such a mechanism would help reduce the computational requirements imposed on the 

system, thus minimising the costs associated with learning, and would be invaluable when 

reinforcement schedules change. Such a mechanism would therefore be required to detect 

changes to the expected schedule of reinforcement, identify where existing knowledge is 

still appropriate, and thus constrain exploration efforts to only the relevant states. This 

work is a contribution towards the provision of such a mechanism. 

2.5 - Summary 

This chapter looked at learning control systems, and introduced reinforcement 

learning as a framework that can be used to solve the problems of learning control. The 

adaptive critic system was introduced as an approach that has adopted the reinforcement 

learning framework, and leads the way towards more brain-like intelligent control. The 

relearning problem was described as a problem that intelligent control systems (perhaps 

using the adaptive critic design) need to be able to address in order to maximise existing 

knowledge and minimise the costs associated with learning. This ability is currently not 

found in the adaptive critic system, and it is suggested that a mechanism that can detect 

changes to the reinforcement schedule and use this knowledge to guide learning behaviour 

may lead to the provision of such an ability. An investigation into how biological systems 

deal with reinforcement learning and relearning may provide inspiration for developing 

artificial mechanisms similar to those in biological systems, and may eventually lead to 

intelligent control systems that possess the necessary adaptive capabilities for dealing with 

the relearning problem. The next chapter looks more closely at biological reinforcement 
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learning processes, and a conceptual model of reinforcement learning and relearning is 

presented based on a number of neurophysiological studies. 
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Chapter Three 

A Model ofBiological 

Reinforcement Learning and Relearning 

3.1 - Introduction 

This chapter focuses on biological mechanisms that are the basis for reinforcement 

learning and relearning processes in the brain, and outlines the neural structures that are 

thought to be involved. The function of these structures is considered, and a conceptual 

model proposed that attempts to explain how biological relearning mechanisms are, 

provided. The model is based on the interactions between neural structures that make up 

the limbic and motor systems of the brain, and the main neurochernical substances 

involved. The model attempts to explain how the brain is able to use predictions of 

reinforcement to learn appropriate behaviour (i. e. how associations between perceptual 

stimuli and motor responses are formed on the basis of predicting external reinforcement). 

These predictions would no longer be appropriate when reinforcement schedules are 

changed, and thus detecting such changes could be useful for relearning processes. The 

conceptual model is based on the hypothesis that an area of the brain called the amygdala is 

involved in detecting when predicted reinforcements no longer correlate with actual 

reinforcements. The amygdala is then able to use this knowledge to modulate several 

neurochemical systems involved in the processes of learning, memory and attention when 

relearning is required. The conceptual model is derived from observations and 

experimental findings drawn from a number of behavioural studies, and this model is an 

attempt to put these observations into a coherent conceptual framework. 
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3.2 - Reinforcement Learning from a Biological Perspective 

The previous chapters explained why it is important for intelligent control systems 

to have the ability to detect changes in reinforcement, and know how to exploit this 

knowledge when relearning is necessary. It would now be appropriate to examine the role 

that reinforcement learning (and relearning) plays in the control of behaviour in biological 

systems. Many of the key ideas in modem reinforcement learning have been derived from 

theories of animal conditioning, such as classical and instrumental conditioning. 

3.2.1 - Classical Conditioning 

Classical conditioning is a well studied phenomenon, and the neural mechanisms 

involved in classical conditioning have been extensively investigated [Carlson, 1986]. This 

form of conditioning can be viewed as a mechanism that allows an organism to make 

predictions about the reinforcing properties of stimuli that it encounters. Classical 

conditioning is illustrated in Figure 3.1. 

Unconditioned Stimulu!! l::,,!, j Unconditioned Resp 
Or 

(UCS) - "Footshock"' rganism (UCR) - "Jump" 

Before Conditioning 

Unconditioned Stimulu 
(UCS) - Tootshock" 

Organism - "Rat" Unconditioned Resp 
(UCR) - "Jump" 

Conditioned Stimulus>During Conditioning 

1 

(CS) - "Bell" 

Conditioned Stimulus Conditioned Response Organism -1:: ý, Ei umr (CS) - "Bell" ýCR) - "J umr 
After Conditioning 

Fi2parell - Classical Conditioning 
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Classical conditioning assumes that an organism possesses knowledge about a basic 

set of reinforcing stimuli called 'primary' or unconditioned stimuli (UCS). These stimuli 

automatically trigger an unconditioned behavioural response (UCR) from the organism 

(such as freezing or jumping) because this response is beneficial to the survival of the 

organism. Classical conditioning requires that an organism is able to develop associations 

between the UCS and other 'secondary' or conditioned stimuli (CS). These CS only have 

reinforcing properties because of their association with the UCS, to the extent that the CS 

become able to elicit the required response in the absence of the UCS. For example, a rat 

(the organism) is given a foot shock (a negatively reinforcing UCS) a few seconds after the 

sound of a bell (the CS) is presented. The appropriate unconditioned response (UCR) is to 

jump in order to avoid the foot shock. The bell becomes associated with the footshock so 

that the rat learns to predict the footshock from the bell alone, and is thus able to produce 

the appropriate response, now a conditioned response (CR). The nature of the conditioning 

is often differentiated by referring to behaviour that is positively reinforced as appetitive, 

and behaviour that is negatively reinforced as aversive. 

3.2.2 - Instrumental Conditioning 

This type of conditioning (sometimes called operant conditioning) is different from 

classical conditioning in that behavioural responses are governed by the consequences of 

actions, sometimes referred to as the 'law of effect' [Schwartz & Robbins, 1995]. 

Conditioning is instrumental in that an organism must operate on its environment in order 

to receive a reinforcement, and the learning of this operant or instrumental stimulus (IS) 

comes to control behaviour. For example, a rat (the organism) learns to predict a food 

reward (a positively reinforcing UCS) by associating the UCS to the sight of a lever (the 

IS). Therefore each time the rat sees the lever, it will press the lever (a conditioned 
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response or CR) in order to receive a food reward. This type of conditioning is mostly 

studied in appetitive behavioural experiments. Instrumental conditioning is illustrated in 

Figure 3.2. 

Instrumental Stimulus 
(IS) - "Sight of Lever" 

Unconditioned Stimu Organism - "Rat" (UCS) - "Food Rewa 

Unonditioned Response First Encounter 
(UCR) - "Press Levee' 

Instrumental Stimulus 
(IS) - "Sight of Levee' 

Organism - "Rat" 0 
Unconditoned Stimulus 
(UCS) - "Food Reward" 

Conditioned Response After First Encounter 
(CR) - "Press Levee' 

Figure 3.2 - Instrumental Conditioning 

There are important differences between classical and instrumental conditioning. In 

classical conditioning, associations occur between stimuli so that the conditioned response 

(CR) is triggered as a result of the conditioning of the CS to the reinforcing UCS. With 

instrumental conditioning, however, the conditioned response actually controls the 

behaviour because the IS is conditioned to the appropriate motor action (CR) in order to 

receive the reinforcing UCS. This difference is important because the adaptive critic 

system described in Chapter Two (and in more detail in Chapter Five) is based on a model 

of reinforcement learning that enables classical but not instrumental conditioning [Barto et 

al. 1983]. Therefore, this adaptive critic design has not considered the full capabilities 

embodied in the theories of animal conditioning. 
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3.2.3 - Reinforcement and Reward 

Reinforcing stimuli that depend on an instrumental action (e. g. lever pressing) have 

the effect of altering the future probability of repeating that action. The action itself may be 

any action from an entire repertoire of possible behavioural actions. Reinforcing stimuli 

can thus have two possible values: positive reinforcers have the effect of increasing the 

probability of an action, and negative reinforcers have the effect of decreasing the 

probability of an action. To complicate matters, these reinforcements can be omitted or 

terminated having the opposite effect of increasing or decreasing the probability of the 

action upon which they are dependent. Table 3.1 summarises the relationship between 

reinforcement and the probability of a behavioural action. The up and down arrows 

represent the respective increase or decrease in the probability of an action based on the 

presentation or withdrawal of a stimulus that could be either positively reinforcing or 

negatively reinforcing. 

Positive Negative 

Stimulus 

Presentation 

Termination/ 

Omission 

Table 3.11 - Change in Action Probabilities (Adapted from Gray [ 19911) 

It can be seen that the change in action probability for the presentation of a 

positively reinforcing stimulus is the same as for the withdrawal of a negatively reinforcing 

stimulus, and that the change in action probability for the presentation of a negatively 
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reinforcing stimulus is the same as for the withdrawal of a positively reinforcing stimulus. 

Thus, any reinforcement learning system can function on the basis of a single 

reinforcement signal indicating the nature of the reinforcement. The lack of a positively 

reinforcing stimulus could be interpreted as a negatively reinforcing stimulus (or vice 

versa), which means that only one reinforcement signal is required [Bozarth, 1991]. The 

reinforcement signal forms the basis of a reward system. This system 'pulls' the animal 

towards a particular goal by using stimuli associated with an expected positive reward. 

Stimuli associated with an expected negative reward could equally be used to 'push' the 

animal away from non-goals. Therefore, a reward can be defined as a stimulus that 

increases or decreases the probability of any action with which it is regularly associated 

[Stein, 1980]. 

Although many researchers use the terms 'reward' and 'reinforcement' 

interchangeably, it has been argued that the two terms are different because 'reward' is 

more commonly used to represent a stimulus or event, whereas 'reinforcement' refers to 

the process of strengthening specific actions in accordance with the reward [Stellar & 

Stellar, 1985]. Rewards are only effective if their presentation is made contingent on the 

occurrence of a particular action, and this action in turn may have an effect on the 

environment (allowing for both classical and instrumental conditioning). Stimuli not 

associated with specific actions are therefore not rewards. This thesis will use 'reward' 

when referring to any stimulus that is reinforcing, and the term 'reinforcement 

contingency' to describe the dependency of a reward on specific behavioural actions. 

Changing the reinforcement contingency means to make the reward dependent on a 

different set of behavioural actions, and this can be seen to have the same effect as 

changing the reinforcement schedule described in Chapter Two. 
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3.2.4 - Biological Substrates of Reinforcement Learning and Relearning 

Many researchers have attempted to explain the reward system in the brain in terms 

of the underlying neurophysiology, e. g. evidence from physiological and behavioural 

experiments such as lesion studies and brain stimulation. Gray [1991] proposes that the 

control of behaviour involves three separable subsystems based on rewards. The evidence 

to support separable subsystems comes from the way in which different lines of research 

have converged on the same set of brain structures. Most of this research comes from 

experiments with monkeys and rats, but is assumed to be equally applicable to humans. 

The control of behaviour is mediated through a number of operational (controlling) states 

in the brain, and these are elicited by particular reinforcing stimuli under the guidance of 

the subsystems [Gray, 1991]. These subsystems consider the relationship between the 

behaviours elicited by either the presentation, omission or termination of stimuli associated 

with rewards. The subsystems are the Approach Systeni, the FightlFlight Systein, and the 

Behavioural Inhibition System. These subsystems will be described in terms of their inputs, 

outputs, and the brain regions implicated in the functioning of each subsystem :- 

1) The Approach System -a system that is responsive to stimuli associated with positive 

rewards, or the termination/omission of stimuli associated with negative rewards, as 

illustrated in Figure 3.3. 

INPUTS OUTPUTS 

Stimuli associated with Initiate Approach 
--------------- Positive Rewards, Behaviour 

I 
Approach System 

--------------- or the removal of 
Negative Rewards Select Motor Action 

Eilau jt3a - The Approach System (Mapted from Gray t19911) 
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This system is responsible for approach behaviour, and may be considered to be the 

positive reward system of the brain. It allows an organism to respond to stimuli associated 

with positive rewards, or the removal of stimuli associated with negative rewards. For 

example, an organism will approach a food source (stimulus associated with positive 

reward), but only if it sees a predator leave the area (removal of stimulus associated with a 

negative reward). Such behaviour promotes the survival of the organism. Gray [1991] 

suggests that this system exercises a selective function in that it facilitates the selection of 

motor programs (a sequence of motor actions) for immediate execution, as well as playing 

a more general role in facilitating the performance of whichever motor program has already 

been selected. This system has implications for relearning because when reinforcement 

contingencies change, the relationship between stimuli and rewards also changes. It is this 

system that will be required to change the association between stimuli and their previously 

appropriate avoidance responses. Gray [1991] uses the evidence from lesion studies to 

suggest that this system is based around ascending projections from regions called the 

ventral tegmental area and substantia nigra in the brain stem. These projections innervate 

various regions of the basal ganglia, limbic system and neocortex using the 

neurotransmitter substance dopamine, and the importance of this neurotransmitter 

substance is discussed later in the chapter. 

2) The Fight/Flight System -a system that is responsive to stimuli associated with 

unconditioned negative rewards, or the termination/omission of stimuli associated with 

positive rewards, as illustrated in Figure 3.4. 
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INPUTS OUTPUTS 

Stimuli associated with 
Stop Current 

Negative Rewards, --------------- Behaviour 

or the removal of 
Fight/Flight System 

Positive Rewards --------------- Initiate Fight/Flight 
Behaviour 

Figure-a. 4 - The Fight/Flight System (Adapted from Gray [1991]) 

This system is responsible for initiating either confrontation or avoidance 

behaviours in response to stimuli associated with negative rewards, or the 

ornission/tennination of stimuli associated with positive rewards. For example, an 

organism may avoid a food source because of the threat of a predator (stimulus associated 

with negative reward), but may risk the presence of that predator because of the absence of 

food (omission of stimulus associated with positive reward). These behaviours are essential 

whenever the organism is under threat and will greatly affect its chances of survival. Gray 

[1991] argues that this system is essentially suppressed until it receives a signal to indicate 

that a fight or flight situation has been detected, and then uses a decision mechanism that 

selects between confrontation or avoidance behaviours. In terms of relearning and 

reinforcement contingencies, it is this system that will be required to rapidly initiate the 

appropriate behaviour selected by the decision mechanism whenever reinforcement 

schedules are changed. This effectively stops the current motor program and replaces it 

with some other behaviour, perhaps innate physiological responses such as freezing or 

increased heart rate. Gray [1991] suggests that this system is activated by a part of the brain 

called the amygdala based on evidence from experimental lesion studies. He also cites 

evidence to suggest that terminating the current motor program is the responsibility of a 

brain region called the septo-hippocampal system, and that the decision mechanism is 

located in a region called the hypothalamus. 
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3) The Behavioural Inhibition System -a system that is responsive to stimuli associated 

with negative rewards, the termination/omission of stimuli associated with positive 

rewards, or novel stimuli. This is illustrated in Figure 3.5. 

INPUTS OUTPUTS 

Stimuli associated with --------------- Inhibit Behaviour 
Negative Rewards, Behavioural Inhibition ' 
or the removal of System i Increase Arousal 

Positive Rewards, I 
or Novel Stimuli --------------- Increase Attention 

Fi gure 3.5 - The B ehavioural Inhibition System (Taken from Gray [ 199 1 ]) 

This system is responsible for interrupting whatever ongoing behaviour is occurring 

whenever the inputs shown in Figure 3.5 are received. This system is also responsible for 

incrementing the level of arousal so that the next behaviour is carried out with more speed 

or vigour, and increasing attention so that more information is taken in (particularly with 

regard to novel features in the environment). Any one of the inputs will cause the system to 

elicit all of the outputs. The neural structures that form the Behavioural Inhibition System 

are still under investigation, but Gray [1995] proposes that this involves a group of neural 

structures found in the "Limbic System", and the ascending projections that innervate these 

regions using the neurochernicals noradrenaline and serotonin. The structures that comprise 

the limbic system are still the subject of some debate, but Brodal [1992]. suggests that these 

include the amygdala, the septo-hippocampal system and the associated "Papez Circuit" 

(anterior thalamic nuclei, cingulate cortex, mammillary bodies), and areas of the temporal 

lobe and frontal cortex. 

It is interesting to note that both the Fight/Flight System and the Behavioural 

Inhibition System receive the same inputs, but the Behavioural Inhibition System also 
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receives "novel" stimuli as additional inputs. Gray [1991] states that novel stimuli are 

detected by comparing predicted and actual stimuli, and this is carried out in the subiculum 

which is part of the septo-hippocampal system. This aspect will be considered when the 

subicular comparator hypothesis [Gray, 19951 is discussed later in the chapter. It is also 

interesting that both Fight/Flight System and Behavioural Inhibition System involve both 

the septo-hippocampal system and the amygdala. The apparent overlap between the 

functions of the amygdala and the septo-hippocampal system has been the focus of much 

investigation, and some attempts have been made to differentiate between the functionality 

of these neural structures. McDonald & White [1993] looked at the relationship between 

stimulus inputs and behavioural responses, and used evidence from behavioural and lesion 

studies to identify three distinct systems for the learning of different types of association :- 

e The Hippocampal System is thought to acquire infon-nation on the relationships among 

stimuli and how they relate to behaviour, i. e. the location of stimuli and the order in 

which they appear. This is sometimes referred to as a stimulus-response contingency 

because behavioural responses are related to a specific sequence of input stimuli. This is 

supported by evidence from rats on the win-shift task in a radial maze. This task 

consists of a radial maze in which each arm contains a food pellet, and rats must visit 

each arm only once without revisiting any arm in order to obtain a food pellet. The 

radial maze is in a room that has extra-maze cues, and rats would normally use these 

stimuli to differentiate between visited and unvisited arms of the maze to initiate the 

appropriate response (approach). Rats with lesions to the hippocampus were found to be 

impaired on this task, whereas lesions to the amygdala and dorsal striatum had no effect. 
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e The Dorsal Striatum is part of the basal ganglia, and is thought to mediate the formation 

of behaviours based on reinforced stimulus-response contingencies, i. e. where 

behavioural responses do not depend on the sequence or location of a set of input 

stimuli. This is supported by evidence from rats on the win-stay task in a radial maze. In 

this task, reinforcements (food pellets) are only available from arms of the maze that are 

lit. Rats are required to enter each lit arin twice per trial, thus receiving eight food 

pellets. Each pellet is given whenever the rat completes a stimulus (light) - response 

(approach) sequence, and this is independent of the spatial location of the arrn because 

each trial involves a different set of lit arms. The food pellets are reinforcements 

because they strengthen the light-approach associations and weaken the dark-approach 

associations, essentially reinforcing the stimulus-response contingency. Rats with 

lesions to the dorsal striaturn were impaired on this task, but lesions to the amygdala and 

hippocampus had no effect. 

* The Amygdala system is thought to mediate the formation of behaviours based on the 

association of neutral stimuli with stimuli that have rewarding properties, i. e. the 

relationship between input stimuli and rewards. This is supported by evidence from rats 

on the conditioned cue preference task (CCP) in a radial maze. In this task, each arm of 

the maze may contain a food pellet, and rats are exposed to either a visual cue or a 

neutral cue in either the presence or absence of a food pellet. The rats are allowed to 

consume the pellet in the presence of either cue without making approach responses 

towards that cue. The rats must associate the visual cue with only the rewarding 

properties of the food (such as its smell or taste), or the reinforcing consequences of 

consuming the food. The food pellet can be differentiated by its smell or taste, but rats 

are not able to discern this difference until they are close to or have consumed the food. 
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McDonald & White [1993] describe this association as a 'stimulus-reward' association 

because only the rewarding properties of the food are contingent on the visual cue, and 

not the food itself. The visual cue thus acquires the ability to attract the rat even in the 

absence of a reinforcement, i. e. a food pellet. Rats with lesions to the lateral nucleus of 

the amygdala were impaired on this task, but lesions to the hippocampus and dorsal 

striaturn had no effect. 

3.3 - The Amygdala 

The previous section introduced three different areas of the brain (amygdala, 

hippocampus and the dorsal striatum) thought to be involved in various aspects of 

reinforcement learning, and it is likely that these areas will also be involved in relearning 

processes. Some studies have focused on the relationship between stimulus inputs and 

behavioural responses, and particularly at how the hippocampus and septal regions are 

involved when this contingency is changed [e. g. Denham & McCabe, 1996]. If these 

regions are involved in detecting changes to input stimuli and their association with 

behavioural. responses, they may also be involved in changing these responses as part of 

the relearning process. However, in order for appropriate behaviour to occur, there must 

also be some way in which changes to the rewarding properties of input stimuli can be 

considered. This means that any mismatch between expected and actual rewards needs to 

be detected and quickly acted upon. This is an appraisal process, and it seems likely from 

various lines of research that the reward aspect of this process is tied to the functioning of 

the amygdala [LeDoux, 1995], and its interaction with other brain regions involved in 

reinforcement (e. g. the basal ganglia). LeDoux [19891 argues that the amygdala is at the 

centre of this process, and predicts the rewarding properties of stimuli which allows the 

evaluation of input stimuli even in the absence of reinforcement. More recently, LeDoux 
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[1997] suggests that the connectivity of the amygdala enables it to influence attention, 

memory and perception primarily in situations where the organism is facing danger. The 

amygdala provides a fast neural pathway by which behavioural responses can be initiated 

in response to threatening or dangerous stimuli. This view of the amygdala focuses its 

involvement on negative reward learning, and is supported by work on fear conditioning 

[LeDoux, 1992; Maren & Fanselow, 1996], and the acquisition and retention of avoidance 

behaviours [Liang & McGaugh, 1983]. These studies have begun to uncover plausible 

neural circuits for the involvement of the amygdala in specific reinforcement learning and 

memory processes, and have identified the pathways that provide sensory inputs into the 

amygdala, the contribution of individual regions within the amygdala, and subsequent 

output pathways to other areas of the brain. The amygdala has been implicated in almost 

every experimental task used to study reward representation in the brain, yet progress 

towards understanding the functional organisation of the amygdala has only been achieved 

very recently [LeDoux, 1995]. The amygdala is not exclusively involved in reinforcement 

learning, and its other functions (i. e. as a mediator of arousal) have also been the subject of 

investigation [e. g. Gallagher & Holland, 1994; LeDoux, 1995]. The remainder of this 

chapter looks in more detail at the anatomy and function of the amygdala, and in particular 

at its neurochemical interaction with the basal ganglia structures involved in reinforcement 

leaming. 

3.3.1 - The Amygdaloid Complex 

The amygdala is a subcortical. region of the brain located in the anterior part of the 

temporal lobe. It is often referred to as the 'amygdaloid complex' because it consists of a 

considerable number of interconnected subnuclei which are highly connected to other parts 

of the brain [Sarter & Markowitsch, 1985]. The subdivision of the amygdala has always 
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been difficult, and so the amygdala is frequently identified as a single functional unit which 

hides the true nature of its structure and function. Where the amygdala has been 

subdivided, it usually consists of two main divisions: the centromedial division (central 

and medial amygdaloid nuclei) and the basolateral division (basal and lateral amygdaloid 

nuclei). Many researchers have referred to these divisions in their experimental studies, but 

have not agreed upon exactly which individual groups of subnuclei actually belong to 

which divisions. This has resulted in confusion and dispute regarding the validity of some 

of the results. Amaral et al. [1992] argue that the subdivision of the amygdaloid nuclei is 

still an ongoing process, and that it is the complexity of the amygdala coupled with the 

relatively poor anatomical attention it has received to date that has caused these problems. 

In an attempt to introduce some standardisation, they describe the intrinsic organisation of 

the primate amygdala in terms of three major subdivisions :- 

9 The deep nuclei - lateral, basolateral, basomedial and accessory basal 

* The superficial nuclei and areas - anterior cortical nucleus, medial nucleus, nucleus of 

the lateral olfactory tract, periamygdaloid cortex, posterior nucleus 

9 The central nucleus and remaining amygdaloid nuclei - anterior arnygdaloid area, 

intercalated nuclei, amygdalo-hippocampal area. 

For the purposes of this chapter, discussion will focus on three of the main 

subnuclei groups described above: the lateral, basolateral and central nuclei. This follows 

the convention used by LeDoux [1990] and his work on relating the mechanisms of fear 

conditioning to individual amygdaloid nuclei in rats. It is assumed that the nuclei in rats 

more or less correspond to the nuclei identified in primates by Amaral et al. [1992], even 

though there may well be differences between these species. 
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3.3.2 - Afferent Connections to the Amygdaloid Complex 

There are numerous brain regions that send infon-nation to nuclei in the amygdaloid 

complex. Carlson [1986] in a review of the anatomy of the amygdaloid complex states that 

I this structure receives information from various sensory areas: the visual association cortex 

of the inferior temporal lobe, the auditory association cortex of the superior temporal lobe, 

the olfactory bulb, as well as from various thalamic and hypothalamic nuclei. The 

connections to the amygdaloid complex allow it to receive a great deal of sensory 

information from many different sensory modalities. Most of this information goes to the 

lateral nucleus of the amygdala [Bordi & LeDoux, 1992]. The lateral nucleus is not the 

only amygdaloid nucleus to receive afferent connections. Rolls [1990] reports that the 

basolateral nucleus receives projections from the ventral tegmental area, and he also 

describes reciprocal projections between the basolateral nucleus and the orbital prefrontal 

cortex. LeDoux [1997] suggests that the connections between the orbital prefrontal cortex 

and the basolateral. amygdala are particularly involved in storing memories about the 

rewarding properties of stimuli as they are experienced. The significance of the orbital 

prefrontal cortex will be discussed in relation to how the amygdaloid complex keeps a 

record of rewards as they are actually encountered. 

3.3.3 - Efferent Connections from the Amygdaloid Complex 

In addition to receiving information, the amygdaloid complex sends information to 

a number of brain regions. Carlson [19861 states that the amygdaloid complex sends 

projections to the cortex, basal forebrain, hypothalamus, dorsomedial thalamus, and 

various basal ganglia and brain stem nuclei. This allows it to influence various 

reinforcement mechanisms and activate species-typical behaviours. The interest in these 

behaviours lies in the fact that they are elicited from the central nucleus of the amygdala, 
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the origin of most of the efferent projections from the amygdaloid complex. Kapp et al. 

[1984] looked closely at the role of the central nucleus in species-typical responses to 

threatening stimuli in rabbits. They cited a number of studies that found that conditioned 

fear responses (e. g. freezing) were affected by lesions of the central amygdaloid nucleus, 

and suggested that this nucleus works in conjunction with forebrain and brain stem 

structures to enable various aspects of aversive conditioning. LeDoux et al. [1988] showed 

that projections from the central nucleus to the lateral hypothalamus mediated autonomic 

aspects of conditioned fear, and projections from the central nucleus to the central gray (an 

area in the brain stem) mediated behavioural aspects of conditioned fear. This latter finding 

is of significance because if the central nucleus influences the control of learned 

behaviours, then it may also be involved when the relearning of new behaviours is 

required. This could be in tenns of changing the associations between 

confrontation/avoidance behaviours and stimulus inputs, consistent with the idea of the 

fight/flight system presented by Gray [ 199 1 ]. 

The connections from the amygdala to the cortex are also important. LeDoux 

[1997] notes that the projections from the cortex to the amygdala are considerably fewer 

than the projections from the amygdala to the cortex. He also notes that the amygdala 

projects back to cortical sensory processing areas from which it does not receive inputs, 

which enables the arnygdala to exert a direct influence on the cortex. The nature of this 

influence will be discussed later in relation to the neurotransmitter glutamate. 

3.4 - The Basal Ganglia 

The basal ganglia are a system of subcortical structures that lie beneath the 

neocortex and surround the thalamus, including the caudate nucleus, putamen and globus 
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pallidus, as well as the subthalamic nucleus and the substantia nigra. [Carlson, 1986]. 

Consistent with their anatomical location, the basal ganglia receive topographical 

projections from almost the entire neocortex and parts of the limbic system, and project to 

frontal areas of the cortex (via thalamo-cortical. projections) and the reticular fonnation. It 

has been suggested that the basal ganglia are organised into a number of largely separate 

circuits which appear to unite cortical and thalamic regions dedicated to performing a 

common function [Alexander & Crutcher, 1990]. Some of these circuits have been 

functionally identified, e. g. the "motor" circuit centred on the supplementary motor area 

and motor cortex, and the "oculomotor" circuit centred on the frontal eye fields. Other 

circuits are not so obviously tied to motor functions, e. g. the "limbic", "orbitofrontal" and 

"dorsal prefrontal" circuits. Jackson & Houghton [ 1995] note that the organisation of these 

circuits seems to follow a similar pattern, suggesting that their computational functions 

may be equivalent. The basal ganglia will now be described in terms of their afferent and 

efferent connections. 

3.4.1 - Afferent Connections to the Basal Ganglia 

The striaturn is located in the anterior part of the basal forebrain, and can be 

considered the 'input structure' of the basal ganglia because it receives projections from the 

cortex, thalamus, midbrain and limbic structures. It is composed of two main segments: the 

dorsal striatum consisting of the caudate nucleus and putamen, and the ventral striatum 

consisting of the nucleus accumbens. Groenewegen et al. [1991] state that the cellular 

design of the ventral and dorsal striatum is comparable, but the two striatal regions differ in 

terms of their innervation by the neurotransmitter dopamine. The ventral striaturn is ý 

innervated by doparnine projections from the ventral tegmental area (a nucleus in the 

ventral tegmenturn of the midbrain), and the dorsal striaturn is innervated by doparnine 
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projections from the substantia. nigra, (a darkly stained region also in the tegmentum). Both 

the dorsal and ventral striaturn project to the globus pallidus with inhibitory projections, 

and this inhibition is via two distinct pathways (dorsal and ventral) that use the 

neurotransmitter substance GABA. Under normal conditions these two pathways are 

sensitively balanced, but it has been suggested that they can be chemically modulated by 

the neurotransmitter dopamine [Jackson & Houghton, 1995]. The ventral striatum also has 

GABA projections to the substantia nigra pars compacta, the origin of dopamine 

projections to the dorsal striatum. The substantia nigra is actually part of the tegmentum, 

but it is usually included in the basal ganglia because of its interconnection with the 

striatum and globus pallidus [Carlson, 1986]. The significance of the substantia nigra will 

be discussed later in tenns of doparnine. 

3.4.2 - Efferent Connections from the Basal Ganglia 

The globus pallidus may be considered the 'output structure' of the basal ganglia 

because it projects to the thalamus, which in turn projects to a number of motor output and 

related cortical areas. The ventral pallidum receives projections from the ventral striatum 

and projects to the mediodorsal thalamus, and the dorsal pallidum receives projections 

from the dorsal striatum, and projects to the medial and lateral thalamic nuclei [Brooks, 

1986]. These pathways activate motor actions that are represented as motor programs. 

These programs are complex sequences of cortical infort-nation, and a description of them 

is beyond the scope of this work. It is sufficient to say that these motor programs could 

represent species-typical behaviours (amongst other types of behaviours) that would be 

initiated as a result of detecting changes to reinforcement contingencies. 
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3.5 - Interaction of the Limbic System and Basal Ganglia 

The previous sections have described structures in the limbic system (primarily the 

septo-hippocampal system, amygdaloid complex and associated cortical areas) and the 

motor system (ventral and dorsal striatum, substantia nigra and globus pallidus). A number 

of researchers have proposed theories to explain the interaction between the limbic system 

and motor system, such as the limbic comparator hypothesis [Brooks, 1986] and the 

subicular comparator hypothesis [Gray, 1995]. These hypotheses have strongly influenced 

the model proposed later in this chapter, and are therefore described here. 

3.5.1 - The Limbic Comparator 

Brooks [1986] proposed the limbic comparator hypothesis, suggesting that 

interactions between the limbic system and cortical areas related to motor actions are 

essential for learning what to do in a motor task (motor actions) and how to do it best 

(motor skill). This hypothesis was prompted by studies of motor leaming which showed 

that monkeys develop motor skills after having learned the motor actions, such that 

inappropriate sequences of motor actions produce 'error' signals in the anterior cingulate 

cortex. The limbic system used by Brooks in his hypothesis was defined as a functional 

entity made up of structures that receive inputs from the hypothalamus and midbrain, and 

project to the thalamus and various cortical areas. This therefore includes the amygdala and 

the septo-hippocampal system. Brooks argues that the interaction of the limbic system with 

the basal ganglia can lead to the effects of comparator action being carried to the ventral 

striatum and dorsal striaturn. Figure 3.6 illustrates the interactions of interest. 
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I Thalamic Nuclei I 

Putamen 
("Motor" Loop) Caudate 

("Complex" Loop) 

Substantia Nigra 
Pars Compacta 

A Limbic System 
---------- 

Ventral Striaturn I Hypothalamus 

Figure 3.6 - Limbic-Motor Interactions (Adapted from Brooks [ 19 8 6]) 

The diagram shows that the limbic system receives signals from the hypothalamus, 

which Brooks [1986] suggests is the origin of infonnation about biological drives e. g. 

hunger, thirst etc. The limbic system influences two loops located in the caudate nucleus 

and the putamen. Each loop is composed of several parallel channels reached by limbic 

projections. These loops are not fully illustrated in Figure 3.6 because they would detail the 

various thalamic projections to and from cortical areas, and would overcomplicate the 

diagram. The "motor" loop is reached by connections from the limbic system to the ventral 

striaturn, then through the substantia nigra pars compacta to the putamen. Brooks suggests 

that this loop is responsible for the learning of motor skills through connections via the 

thalamus to supplementary and primary motor areas. The "complex" loop is reached by 

connections from the limbic system to the caudate nucleus. Brooks suggests that this loop 

is responsible for controlling and regulating the assembly and management of behavioural 

actions in appropriate combinations through connections via the thalamus to higher 

association areas of the cortex. The limbic system can therefore influence both motor 
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actions and motor skills through its interaction with the basal ganglia. Brooks [1986] 

argues that the most important limbic structure for encoding the relevance of actions in the 

context of task and environment is the amygdaloid complex because it denotes the 

importance of an event by providing an 'affective bias'. He supports this argument by 

using evidence from lesion studies on monkeys indicating that the amygdaloid complex 

enhances behavioural stability appropriate to the enviromnent, and also enhances the 

learning of the importance of visual and other sensory cues. These capabilities are clearly 

essential for social behaviour and the survival of animals in their natural habitat. An 

affective bias produced by limbic signals is thus also important for motivation because this 

bias reinforces the selective actions of higher-level cortical areas, which have been 

implicated in intelligent behaviour. 

3.5.2 - The Subicular Comparator 

Gray [1991] suggested that a comparator mechanism is an essential part of what he 

called the 'Behavioural Inhibition System', described earlier in this chapter. This was 

formalised as the subicular comparator hypothesis because the heart of the comparator 

function was attributed to the subicular area of the hippocampal fon-nation [Gray, 1995]. 

The operations performed by the subicular comparator can be summarised as a sequence of 

steps as follows :- 

1) Receive sensory infonnation describing the current (perceived) state of the world 

2) Obtain information regarding the current motor program 

3) Compare perceived stimuli with past regularities stored in memory 

4) Obtain information stored in memory that describes past regularities relating stimuli to 

behavioural responses 
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5) Use this infonnation to predict the next expected state of the world 

6) Compare the predicted with the actual next state of the world 

7) Decide if there is a match or mismatch between the predicted and actual state of the 

world 

8) If there is a match, do steps 1) to 7) again, otherwise go to step 9) 

9) Bring the current motor program to a halt 

10) Decide if the predicted state of the world is associated with a negative reward, if yes 

then go to step 11) 

11) Obtain further infonnation to resolve the difficulty that has interrupted the current 

motor program. 

The steps described above are performed primarily by the septo-hippocampal 

system and the Papez Circuit, with comparisons performed in the subiculum. Steps I to 8 

look at the relationship between stimuli and responses, and step 9 essentially provides a 

stop signal to inhibit the current behaviour. It is not until step 10 that the relationship 

between stimuli and rewards is actually considered. The subicular comparator hypothesis 

therefore seems to suggest that one way to activate relearnipg processes is to detect 

changes to perceptual stimuli (e. g. novel stimuli), or changes to the association between 

perceptual stimuli and behavioural. responses. The relationship between stimuli and 

rewards is more consistent with the limbic comparator hypothesis (involving the 

amygdaloid complex), and is another way by which relearning processes could be 

activated. 
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3.6 - Interactions Between Neurochemical Systems 

The previous sections looked at the amygdaloid complex and the hasal ganglia, and 

outlined the main connections to and from these neural structures. Communication between 

neural structures is achieved by means of chemical signals between neurons in a variety of 

brain regions, and this is enabled by the interaction of several neurochemical substances. 

These substances have been implicated in mechanisms of reinforcement learning and 

relearning in the brain. This section will describe the involvement of the main 

neurotransmitters by identifying distinct neurochernical systems, and describing the effect 

these systems have on learning and relearning. Table 3.2 lists some of the neurotransmitter 

substances, and their hypothesised effects according to Carlson [1986] : 

Neurotransmitter Hypothesised Effect 

Doparnine (DA) Inhibitory 

Noradrenaline, (NA) Inhibitory 

Serotonin (5-HT) Inhibitory 

Acetylcholine (ACh) Excitatory 

Ganima-Aminobutyric Acid (GABA) Inhibitory 

Glutarnate (Glu) Excitatory 

Table 3-2 - Neurotransmitter Substances (Adaptcd from [Carlson, 1986]) 

In Table 3.2, the hypothesised effects are given as either inhibitory or excitatory. 

An excitatory neurotransmitter will increase the propensity of a neuron to fire, and an 

inhibitory neurotransmitter will decrease the propensity of a neuron to fire. A 

'neurotransmitter' should be distinguished from a 'neuromodulator', which is a 
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neurochemical substance that acts with secondary messenger systems to directly or 

indirectly modify the effects brought about by other neurotransmitter substances, but does 

not cause these effects by itself [Mogenson & Yim, 1991]. This distinction means that a 

neuromodulator can be either inhibitory or excitatory depending on the neurochernicals 

with which it interacts. 

Hestenes [1992] uses the classification reported by Strange [1988] whereby 

neurotransmitters fall into two general categories according to their rate of receptor 

response: fast receptors and slow receptors. Fast receptors have a response rate on the order 

of milliseconds, whereas slow receptors respond on the order of hundreds of milliseconds 

or slower. Hestenes argues that only the fast receptors are fast enough to deal with the 

observed rate of infonnation processing in the brain, and he therefore concludes that slow 

receptors perform a modulatory function. The fast neurotransmitters are either excitatory 

(e. g. glutamate) or inhibitory (e. g. GABA), but the slow receptors are not so easily 

classified because they display a variety of modulatory effects. The slow neurotransmitters 

include the monoamines (e. g. doparnine, noradrenaline, serotonin, acetylcholine) that 

originate in a few groups of nuclei in the brain stem and midbrain [Hestenes, 1992]. These 

neurotransmitters will now be discussed in more detail. 

3.6.1 - The Dopaminergic System 

Dopamine (DA) has been implicated in several important functions, including 

switching between motor actions, modulation of attention mechanisms, and reward 

learning. Robbins [ 1992] outlines three main dopaminergic systems in the brain :- 

* the mesolimbic DA system projecting from the ventral tegmental area (VTA) to the 

ventral striatum 
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* the mesocortical DA system also projecting from the VTA to the prefrontal cortex, 

anterior cingulate cortex, entorhinal cortex, and olfactory bulb 

* the mesostriatal DA system projecting from the substantia nigra pars compacta to the 

dorsal striaturn. 

Dopamine is also found in the thalamus, locus coeruleus, cerebellum, 

hypothalamus, median eminence, pituitary gland and certain sensory systems, but the 

implications of this will not be discussed here. The three main DA systems are of interest 

because of the different role that dopamine appears to play in each system. Table 3.2 

indicates that DA is an inhibitory neurotransmitter, but there is still no agreement as to 

whether DA is really inhibitory or excitatory. Mogenson & Yim [1991] suggest that DA is 

actually a neuromodulator because it can be either excitatory or inhibitory depending on 

the neurochernicals with which it interacts. However, they cite some empirical evidence 

showing that DA alone can produce direct postsynaptic effects, so it cannot be strictly 

classified as a neuromodulator. Mogenson & Yim [1991] therefore suggest that DA only 

has a neuromodulatory effect in the mesolimbic DA system (which influences the 

'throughput' to the ventral striatum), and exerts a selective influence on limbic inputs in 

order to focus the integration of signals from limbic, to motor systems. Dopamine 

elsewhere is inhibitory, in accordance with the hypothesised effect of this neurotransmitter. 

They suggest that the neuromodulatory effects in the mesolimbic DA system could be due 

to the presence of the neuropeptide cholecystokinin (CCK), which is found in relatively 

high concentrations in both the nucleus accumbens and the mesolimbic DA system. 

The mesolimbic DA system was considered by Koob [1992] who suggested that 

this system (and only this system) is involved in activating the effects of rewards, because 

the results from experiments with rodents show that rewards produce a behavioural 

67 



activation that can only be disrupted by lesions to the mesolimbic DA system. This is 

supported by experiments involving selective destruction of the DA projection to the 

nucleus accumbens, which decreased the locomotor activity nonnally induced by novel 

environments, and the motor activity normally induced by food presentation [Robbins & 

Everitt, 1992]. Koob [1992] has reviewed a number of other studies that suggest that the 

mesolimbic DA system is involved in attention mechanisms. He reports that these studies 

show disruption of the mesolimbic DA system leads to problems with normal attention 

mechanisms, e. g. causing behavioural perseveration, an inability to ignore distractions 

caused by irrelevant information, a decrease in behavioural switching and flexibility, and a 

difficulty in reversing previously learned behaviours. The hypothesis proposed by Koob is 

that the mesolimbic DA system modulates a filtering and gating mechanism in the nucleus 

accumbens for signals received from limbic structures such as the amygdala, hippocampus 

and frontal cortex. These signals carry information about basic biological drives and 

motivation, and are ultimately turned into motor acts by the output circuitry of globus 

pallidus. This is supported by Mogenson & Yim [199 1 ], who quote Willner [ 1983]: 

"... biologically significant stimuli converge on the VTA and influence thefiring of 

the mesolimbic DA system; activity in this system modulates the transfer of information 

through the nucleus accumbens, which acts as a 'limbic-motor interface, receiving inputs 

from the amygdala and other structures traditionally implicated in emotional and 

motivational behaviours, and sending its output to the motor system. " 

The idea that mesolimbic DA provides a switching mechanism in the nucleus 

accumbens is supported by other researchers. Hestenes [1992] suggests that the nucleus 

accumbens is a gate through which the limbic system exerts control over behavioural 
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output from the basal ganglia, such that DA functions as a gain control parameter that 

opens the nucleus accumbens gate when sufficiently present, and closes it when 

sufficiently absent. He argues that the projection from the VTA to the nucleus accumbens 

is an execution pathway, and the projection from the substantia nigra to the dorsal striaturn 

is a selection pathway. The GABAergic projection from the nucleus accumbens to the 

substantia nigra thus provides a means of co-ordinating the gains, and thus influences the 

output through both pathways [Hestenes, 1992]. The idea that dopamine functions as a gain 

control parameter will be revisited in Chapter Four with reference to neuromodulation. 

The switching hypothesis was also supported by Weiner [1990] who investigated 

latent inhibition (LI), which may be defined as a decrement in conditioning to a stimulus as 

a result of preexposure to that stimulus without reinforcement. Latent inhibition allows for 

stimulus selectivity because there is a bias towards potentially important stimuli, and this is 

due to the devaluation of stimuli regarded as inconsequential in the past. This phenomenon 

is considered to be an important reflection of attentional processes, and has been 

extensively studied by neuroscientists interested in the neural substrates of attention. The 

LI paradigm involves exposing an animal to a stimulus under two opposite reinforcement 

contingencies. It may be noted that this is equivalent to changing the reinforcement 

schedule as discussed in Chapter Two. In the preexposure stage, the stimulus is not 

followed by a reward and is considered irrelevant. In the conditioning stage, the stimulus is 

followed by a reward and therefore becomes relevant. Thus, during the conditioning stage, 

the same stimulus carries conflicting signals of relevance and irrelevance. To exhibit LI, 

the animal must continue to respond to the stimulus as irrelevant even though it comes to 

signal a reward, and animals are normally under the control of their previous learning of 

irrelevance rather than the new, changed reinforcement contingency. Weiner [1990] cites 

empirical evidence to suggest that disruption of the mesolimbic DA system interferes with 
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Ll such that there is a rapid 'switching' of responding upon the introduction of the reward 

in the conditioning stage. Disruption of other DA systems has no effect on Ll. Weiner 

therefore suggests that switching is mediated by the ventral striatum, such that increased 

DA in the nucleus accumbens promotes switching, and decreased DA in the nucleus 

accumbens eliminates switching and gives rise to perseverative behaviour. In contrast, 

decreased DA in the caudate gives rise to increased switching. These data suggest that the 

dorsal striaturn is responsible for the continued execution of behavioural sequences, and 

that the ventral striaturn is only responsible for switching between different or conflicting 

behavioural sequences. This is important to relearning because when a change in 

reinforcement contingencies is detected, there should be an expected increase in switching 

between responses. This suggests that relearning will cause an increase of DA in the. 

ventral striatum, and a decrease of DA in the dorsal striaturn. 

3.6.2 - The Noradrenergic System 

The noradrenergic, system originates in the locus cocruleus and lateral tegmental 

group, and projects through the dorsal noradrenergic bundle to the septal nuclei, 

hippocampal fonnation and the amygdala [Robbins et al., 1985]. Noradrenaline is thought 

to modulate selective attention and long-term memory storage by pattern enhancement 

[Hestenes, 1992]. The involvement of noradrenaline in attentional processing is suggested 

because the locus coeruleus (LQ also projects to widespread areas of the cortex, and this 

anatomical arrangement is more consistent with a general modulatory influence than the 

conveyance of specific infonnation [Bunsey & Strupp, 1995]. Table 3.2 shows that 

noradrenaline (NA) is inhibitory. Segal [1985] argues that NA of LC origin can suppress 

the spontaneous activity of many neurons in the brain and therefore focus their reactivity to 

certain stimuli. This is part of the Selective Attention hypothesis, supported by Robbins et 
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al. [1985] who show that the firing rates of neurons in the LC are highest when an animal 

is most vigilant to environmental events (e. g. when orienting to a startling stimulus) but 

lowest when the animal is least attentive to the external environment (e. g. during eating or 

sleeping). Posner & Peterson [1990] describe three functionally distinct neural systems 

believed to be involved in the regulation of selective attention, :- 

* an anterior attention system (anterior cingulate and supplementary motor areas) related 

to volitional control and awareness 

*a posterior attention system (posterior parietal cortex, pulvinar and superior colliculus) 

which controls spatial orientation 

,*a vigilance system (locus coeruleus) which functions to place the anterior and posterior 

systems into an alert state, thereby enhancing attentional processing in these systems. 

The LC is therefore implicated in attentional mechanisms when vigilance is 

required, such that noradrenaline increases the signal/noise ratio of signals arriving at a 

number of brain regions [Oades, 1985]. The LC has reciprocal connections with the raphe 

dorsalis (RD), the origin of inhibitory serotonergic projections to both the nucleus 

accumbens and the dorsal striaturn, and Hestenes [1992] describes how this causes RD 

output to track how the LC responds to significant stimuli. Indeed, there is evidence to 

suggest that the regulation of noradrenergic activity in the LC is under the control of 

serotonergic afferents [McCrae-Degueurce et al., 1985]. This observation is of passing 

significance given that serotonin is inhibitory. The projection from the RD to both ventral 

and dorsal striaturn may serve to inhibit DA output, and Hestenes [1992] describes a 

mechanism by which the ventral and dorsal striatum may be disinhibited by the LC 

(through the RD) in preparation for a More vigorous response. He suggests that this 

71 



mechanism could explain why lesions of RD projections to the ventral and dorsal striaturn 

eliminate DA responses to certain stimuli. The connection from the RD to the LC could be 

a means by which neurons in the LC are accessed by other brain regions connected to the 

RD. This needs to be investigated, and may lead to an explanation of how and when the LC 

is aware of the need for vigilance. The RD does in fact also project to the septo- 

hippocampal system, and Weiner [1990] suggests that this provides an interrupt or 'stop' 

signal in response to negatively or non-reinforced stimuli. This therefore suggests a 

possible role for serotonin in behavioural inhibition, and a link between the LC and the 

septo-hippocampal system. 

Sara [1985] suggests that LC neurons not only fire during situations requiring 

vigilance, but also in response to specific stimuli that have a biological significance by 

virtue of their previous association with reinforcement. This, is useful in developing a 

model to explain how an animal is able to detect changes in reinforcement in the 

environment. More recently, Sara et al. [1995] investigated the effect of phannacological 

manipulation of the noradrenergic system, and suggested that the LC is responsible for 

responding to changes in the environment and detecting novelty. Using recordings from 

single neurons in the noradrenergic nucleus of the LC, they found that these cells fire in 

burst when novel objects are first encountered by rats exploring the hole-board apparatus. 

It was observed that rats spend significantly more time investigating holes containing 

objects than empty holes in this apparatus. They then blocked the activation of the LC 

(using clonidine) which inhibited the release of NA within the LC and at noradrenergic 

terminals. This inhibition abolished the recognition of novelty in the rats, as shown by the 

elimination of a preference for holes with objects in them, but having no effect on the total 

time rats spend investigating holes. Sara et al. [1995] thus postulate that LC neurons 

respond robustly to the presentation of novel or significant stimuli enhancing attention to 
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these stimuli by the release of NA into target forebrain and other areas, which includes the 

amygdala. Information about stimuli that may or may not have been encountered before is 

therefore available to the amygdala at the same time as information regarding rewards. A 

thorough review of the underlying physiology of the LC and the mechanisms of selective 

attention is not provided in this work, but the NA projection from the LC to the amygdala 

is of interest. The LC could provide the amygdala with infon-nation that enables it to detect 

when the properties of stimuli have changed, and may be part of the process by which 

relearning mechanisms are activated. This can be related to reinforcement contingencies by 

evidence provided by [Sara, 1988] which showed experimentally that LC neurons during 

classical conditioning increase their firing rate whenever a stimulus-response contingency 

is first presented, but decrease their firing rate once the response is expressed 

behaviourally. Thus when novelty is detected in terms of a change in the reinforcement 

contingency, the LC may be able to signal this change to the amygdala. The importance of 

this signal will be considered when the neurotransmitter glutarnate is discussed. 

3.6.3 - The Cholinergic System 

Gallagher & Holland [1994] postulate that attention is not mediated by a single 

system, but by several attentional systems consistent with the selective attention 

hypothesis. They suggest that the central nucleus of the amygdala regulates various 

attention mechanisms when important stimuli are first noticed or altered. Therefore, 

damage to this system interferes with the normal attention mechanisms engaged when an 

expectation about the occurrence of stimuli is violated [Holland & Gallagher, 1993]. This 

is consistent with the work of Hasselmo [19941, who suggests that acetylcholine is 

primarily released during the learning of new or unexpected stimuli, and not during the 

recall of previously learned infonnation. Acetylcholine is excitatory, and innervates a 
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number of cortical systems in the basal forebrain, hypothalamus and brain stem. The basal 

forebrain influences various perceptual systems in the cortex, the hypothalamus activates 

autonomic responses, and the brain stem directly influences motor systems. The role of 

acetylcholine is also considered by Introini-Collison et al. [1996], who suggest that 

memory storage is regulated by acetylcholine release from the central nucleus of the 

amygdala. This is supported by the work of Kapp et al. [1994], who demonstrate that 

stimulation of the central amygdaloid nucleus leads to cortical arousal. It is likely that 

inputs from the central amygdaloid nucleus to the cortex indicate when stimuli are novel or 

unexpected, thereby influencing memory consolidation, and perhaps explaining why 

unexpected events are more strongly consolidated into memory. 

3.6.4 - The Glutamatergic System 

Glutamate is the primary excitatory neurotransmitter in the brain [Hestenes, 1992], 

released by some neurons to excite other neurons to a higher level of activity [Barinaga, 

1990]. It has been implicated in Huntingdon's disease, a neurodegenerative condition 

where an abnormal glutamate metabolism is thought to be responsible for the death of large 

numbers of neurons, and it is known that a build-up of glutamate causes brain damage due 

to stroke, trauma and seizure. Glutamate projections to the ventral striaturn have been 

identified from the hippocarnpus, amygdala, cingulate gyrus and insular cortex [Swerdlow 

& Koob, 1987]. These projections are of interest because it has been suggested that the 

mechanisms of switching in the nucleus accumbens are under the control of the glutamate 

projection from the subiculum to the ventral striaturn [Cador et al., 1989]. The main 

excitatory chemical in the hippocampus is glutarnate, which is also thought to play a role in 

the mechanisms of long-term potentiation and memory formation [Carlson, 1986]. 

Therefore, the subicular glutamate projection provides a pathway through which the 
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hippocampus can affect striatal processing, and is consistent with the subicular comparator 

hypothesis described by Gray [1995]. The glutarnate projection from the basolateral 

amygdaloid nucleus to the nucleus accumbens is also of significance, because it provides 

another pathway through which the switching mechanisms in the nucleus accumbens can 

be influenced. The difference in the information provided by these two glutamatergic 

projections will be discussed later in the chapter. 

Groves et al. [1995] cite evidence suggesting that glutamate release results in 

greater activation of glutamate receptors on dopamine terminals, and thus increases the 

release of doparnine. This is important because the interaction between glutamate and 

dopamine may have an influence on the functions normally attributed solely to the 

dopaminergic system described earlier. Glutamate projections should therefore be 

considered in any conceptual model that would account for reward learning and attention 

mechanisms in the brain. 

3.7 -A Biological Model of the Amygdaloid Complex and Relearning 

This chapter has discussed the widely accepted idea that the limbic system is 

involved in the leaming and control of motor behaviour in response to reinforcement 

signals. It is now possible to develop a conceptual model to explain how limbic and basal 

ganglia structures are involved in the biological processes of learning and relearning, based 

on the evidence presented in the previous sections. The influence of the amygdaloid 

complex in activating specific biological systems during the processes of learning and 

relearning (such as perceptual, reward and motor systems) is central to this model, and is 

emphasised in terms of the involvement of specific amygdaloid nuclei and their 

connections to the neural centres that activate these systems. The model is based on the 
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hypothesis that the amygdaloid complex is involved in learning about rewards, and can 

detect when an expected reward is not received thus indicating that relearning is required. 

The amygdaloid complex is therefore able to affect a number of structures when relearning 

is required, which could be a means of focusing attention on these structures. The model 

draws upon elements from the subicular comparator hypothesis [Gray, 1995], limbic 

comparator [Brooks, 1986], the switching model (e. g. Weiner [1990]) and the selective 

attention hypothesis (e. g. Robbins et al. [1985]). The model is divided into three sections 

based on the main amygdaloid nuclei, each of which has a distinct role to play in the 

processes of reinforcement learning and relearning. A number of diagrams will be used to 

help explain the model. In each diagram, dotted arrows indicate excitatory connections, and 

labelled solid arrows indicate inhibitory connections. Thinner solid arrows are used to 

show other non-specific connections relevant to the model, and these connections are non- 

specific because they may involve pathways of different neurotransmitters and are left 

unlabelled. 

3.7.1 - The Lateral Amygdaloid Nucleus as an Interface to Sensory Systems 

The lateral amygdaloid nucleus (LA) can be considered an interface to sensory 

systems as shown in Figure 3.7 on the next page. The figure shows that the LA receives 

projections from a number of neural structures, in particular the septo-hippocampal system 

and the locus coerulcus. The LA is therefore a site of convergence for neurochernical 

signals that convey distinctive qualitative information to the. amygdala, e. g. novel stimuli 

are signalled by noradrenaline projections from the LC, and mismatch between stimuli are 

signalled by glutamate projections from the septo-hippocampal system (from stimulus 

comparisons occurring in the subiculum). 
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Figure LZ - Lateral Amygdaloid Nucleus as Interface to Sensory Systems 

The model postulates that the LA is the sensory interface to the rest of the 

amygdaloid complex, which is consistent with the work of Bordi & LeDoux [1992] who 

found that neurons in the LA displayed sensory tuning (receptive field) properties as a 

result of direct association with various sensory areas. The LA receives most its direct 

sensory inputs from sensory processing areas in the cortex and thalamus, and therefore 

receives information about stimuli from many sensory modalities. Earlier investigation into 

auditory processing areas by LeDoux et al. [1990] suggested that the LA has an 

architecture designed to respond to acoustic events over a specific range of frequencies. 

Certain neurons in the LA responded selectively to "loud" events, but were insensitive to 

low levels of auditory stimulation. It is possible that this is a hard-wired property, but more 

likely that neural plasticity and a teaming mechanism is in operation [LeDoux et al., 1990]. 

The potentiation of neurons in this nucleus could be influenced by increasing the 
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propensity to fire of neurons associated with threatening (conditioned) stimuli, and 

decreasing the propensity to fire of neurons associated with non-threatening 

(unconditioned) stimuli. This requires that the amygdaloid complex is aware of what 

constitutes a threatening stimulus, i. e. that reward information is reýeived at the same time. 

The model postulates that rewards are the function of the basolateral amygdaloid nucleus, 

which is described in the next section. 

3.7.2 - The Basolateral Amygdaloid Nucleus and the Reward System 

The basolateral amygdaloid nucleus (BLA) can be considered as the neural centre 

for the reward system in this part of the brain as shown in Figure 3.8 on the next page. The 

model postulates that the BLA is responsible for forming associations between sensory 

stimuli that arrive at the lateral nucleus, and reward information that is available to the 

BLA. This assumes there is a connection between the lateral and basolateral nuclei, and is 

supported by evidence showing that particularly high concentrations of noradrenaline have 

been found in the basolateral arnygdaloid nucleus [Sarter & Markowitsch, 1985]. The 

connection between the orbital prefrontal cortex and BLA is significant because Rolls 

[1990] argues that the orbital prefrontal cortex is involved in rapid adjustments of 

behavioural responses made to stimuli when their reinforcement value changes, such as in 

reversal tasks. He describes experiments that show single neurons in the orbital prefrontal 

cortex respond to non-rewards after reversal because of their previous association with 

rewards, and suggests that this response reflects the situation where expected rewards no 

longer correlate with actual rewards. This information is necessary for adapting 

behavioural responses when reinforcement contingencies are changed, as shown by the fact 

that monkeys with lesions to the orbital prefrontal cortex are unable to change their 

responses and show perseverative behaviour [Rolls, 1990]. Similar results have been drawn 
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from studies with rats [Kesner, 1992]. The model suggests that the connections between 

the orbital prefrontal cortex and the BLA hold information about actual rewards, and this 

inforniation would be useful in the tasks described above. 
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Cools et al. [ 1991 ] suggest that noradrenaline has a 'gating' action on information 

reaching the vcntral striaturn, and selectively modulates the inputs from the BLA and 

hippocampus to the nucleus accumbens. Dopamine projections from the ventral tegmental 

area convey information about rewards directly to the BLA (as well as to the ventral 

striatum). The BLA therefore knows about actual reinforcements, and is able to compare 

this to prcvious rcward information available from the orbital prefrontal cortex. The stimuli 

to which thcsc rcwards relate would be provided by the LC through the LA, and knowledge 
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of these stimuli would be enhanced by the presence of noradrenaline at the BLA when 

situations requiring vigilance (perhaps the result of a change to the stimulus and 

reinforccrticnt conthigency) are encountered. When relearning is required, this would lead 

to the BLA exerting an influence on processing in the ventral striatum by releasing 

glutamatc, which increases the release of cloparnine at the ventral and dorsal striaturn. 

Tile ventral striatum (specifically nucleus accumbens) acts as a 'switch', and can 

activate motor behaviours; using either GABA projections to the thalamus, or by indirect 

GABA projections to the dorsal striaturn via the substantia nigra pars compacta. It has been 

suggested that this mechanism is provided by means of the 'selective disinhibition' of 

projcctions to the dorsal striaturn from the nucleus accumbens [Chevalier & Deniau, 1990]. 

The model therefore suggests that relearning processes can be influenced in the ventral 

striatum by two di ffcrent pathways :- 

* Noradrenaline signals indicating novelty into the BLA will release glutarnate and 

increase the postsynaptic activity of doparnine neurons in the ventral striaturn. This 

novelty represents a change to the association between stimuli and rewards, and perhaps 

indicates that there is a mismatch between a stimulus and an expected reward. This 

signal would also be present the first time a stimulus and reward contingency is 

detectcd. 

* The subicular glutarnatergic projection to the ventral striatum will indicate when 

sensory mismatch has been detected in the subiculum. This is also a form of novelty, but 

represents the mismatch between stimuli and their relationship with other stimuli. 
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Both of these pathways increase the activity of dopamine neurons in the ventral 

striaturn by increasing the activity of glutarnate projections to the ventral striaturn. This is 

supported by the work of Bums et al. [1996], who demonstrate increased aversive 

responses to novelty and greater exploration, and suggest that these are modulated by the 

interaction of glutarnate and doparnine in the nucleus accumbens. This interaction is 

between dopamine originating from the ventral tegmental. area, and glutamate from the 

BLA, subiculum and prefrontal cortex. Learning in the ventral striatum is therefore 

amplified by the involvement of the amygdala, and this feature is useful when relearning 

processes are required. This aspect of the model has implications for the relearning 

problem because the amygdaloid complex is aware of novel and unexpected features of 

situations it has encountered, and can relate this to the expectation of reinforcement. 

Attention can therefore be focused when these situations arise, rather than initiating a 

strategy of total relearning. The switching mechanism provides an opportunity to use 

previously learned motor patterns in the dorsal striaturn by terminating the current 

behaviour, and perhaps initiating exploratory behaviours. 

3.7.3 - The Central Amygdaloid Nucleus and Motor Activity 

The model postulates that at the same time as glutamate is released to influence the 

activity in the ventral striaturn, acetylcholine is released to affect the activity in a number 

of other systems. This assumes that the BLA has some way of passing this information to 

the central amygdaloid nucleus (CeA), and glutamatergic projections from the CeA to the 

mediodorsal thalamus suggest that there are indeed glutamatergic projections between the 

BLA and CeA [Amaral et al., 1992]. At the same time as relearning processes are initiated, 

the CeA exerts an influence over perceptual and autonomic systems to inhibit behaviour 

(e. g. freezing) and increase attention and arousal (e. g. increase heart rate) as described by 
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Gray [1995]. Memory consolidation can also be influenced by the connections through the 

thalamus to the cortex, and to the entorhinal cortex. The influence of the central 

amygdaloid nucleus on motor systems is summarised in Figure 3.9. 
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Figure 1.2 - Central Amygdaloid Nucleus and Motor Activity 

This aspect of the model is useftil because it provides a means by which learning 

can be enhanced in a number of brain areas when relearning is required. This would mean 

that an affective bias is added to the infonnation content in those areas, and this is 

important in the context of intelligent behaviour as described earlier in the chapter. 
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3.8 - Summary 

This chapter looked at reinforcement learning and relearning from a biological 

perspective, and discussed how the amygdaloid complex is involved. A conceptual model 

was proposed that describes how the nuclei of the amygdaloid complex receive information 

about stimuli and rewards, and project this information to structures in the basal ganglia. 

Other structures (e. g. the septo-hippocampal system) have access to information about the 

relationships between stimuli, and project to the same areas of the basal ganglia. The fact 

that two systems have access to the same information is important, and allows either 

system to influence the learning of motor behaviour in the basal ganglia. In particular, the 

two systems can detect novelty in terms of a sensory mismatch (the septo-hippocampal 

system) and in terrns of expected rewards (the amygdaloid complex and its connection with 

the prefrontal cortex, locus coeruleus, ventral tegmental area). A 'switching' mechanism 

was described that allows the learning of motor skills in the ventral striatum to select 

between previously learned patterns of motor behaviour held in the dorsal striaturn, and 

may be achieved by selective disinhibition of required connections. The model proposes 

that this is the role of glutarnate projections to the ventral striaturn, which then influences 

the dorsal striaturn via the substantia nigra. The model also proposes that the amygdaloid 

complex can influence a number of other systems when relearning is required, thus 

providing a means of initiating various attentional mechanisms. 

It needs to be emphasised that the conceptual model proposed in this chapter is 

speculative in nature, and is based on the evidence presented from a number of 

experimental studies and critical reviews. This is the knowledge currently available, and 

the processes described are still not fully understood. The role suggested for the 

neurochemicals doparnine and glutamate is only hypothetical, and any proposals made by 

the model have to be taken as tentative. As more knowledge is acquired and the 
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fundamental processes better understood, it is likely that the model will need to be revised 

and further developed. However, the model is useful because it may provide inspiration for 

finding mechanisms to address the relearning problem. The next chapter looks at how such 

inspiration can suggest modifications to the adaptive critic system by simple abstraction of 

some of the biological mechanisms described in this chapter. 
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Chapter Four 

Biological Inspiration Applied to the 
0 Adaptive Critic System 

4.1 - Introduction 

Chapter Three presented a conceptual model to account for reinforcement learning 

and relearning processes in the brain. The conceptual model is based on the hypothesis that 

two neural structures are able to influence learning and relearning in the basal ganglia: the 

septo-hippocampal system and the amygdaloid complex. According to the model, the 

septo-hippocampal system exerts its influence on the basis of observed differences between 

sensory stimuli and can thus detect when relearning is necessary. Similarly, the amygdaloid 

complex exerts its influence on the basis of observed differences to reward information, 

and can thus detect when reinforcement contingencies have changed and relearning is 

required. The amygdaloid complex receives information from the ventral tegmental area 

about external reinforcement, and from the locus coeruleus indicating novel stimuli. 

Figure 4.1 summarises the reinforcement aspects of the conceptual model in terms 

of the neurochemical substances involved, and indicates in very crude functional terms the 

interaction between the amygdaloid complex, the orbital prefrontal cortex, the locus 

coeruleus and structures of the basal ganglia. The amygdaloid complex is shown as a single 

structure even though in Chapter Three it was argued that its functionality is provided by 

individual nuclei within the amygdaloid complex. The intrinsic connections of the 

amygdaloid complex are still under investigation, and so for the biological inspiration 

purposes of this thesis, only the functional role of the amygdaloid complex will be 
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considered. It is therefore shown as a single structure. The influence of the septo- 

hippocampal system is omitted from the diagram because (according to the conceptual 

model) it is not directly involved in generating and using reinforcement signals which are 

the basis for reinforcement learning in the adaptive critic system described in Chapter Two. 
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Figure 4.1 shows that external reinforcement information arrives at the amygdaloid 

complex by means of dopamine signals originating in the ventral tegmental area. The 

conceptual model suggests that this external reinforcement information is stored as actual 

reward by means of reciprocal connections that exist between the amygdaloid complex and 

the orbital prefrontal cortex. In addition, the locus coeruieus provides the amygdaloid 
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signals. This information may be part of a much more complex novelty detection and 

exploratory mechanism involving the LC and its connecting structures as suggested in 

Chapter Three. The significance of the pathway from the LC to the amygdaloid complex is 

that it provides a means by which the signal/noise ratio can be 'tuned' for sensory stimuli 

arriving at the amygdaloid complex [Oades, 1985]. Knowledge about novel or unexpected 

stimuli is therefore available at the amygdaloid complex. The amygdaloid complex is thus 

able to 'affect' learning in the basal ganglia by increasing the doparnine activity in both the 

ventral and dorsal striatum, enabled by glutamate projections from the amygdaloid 

complex to both these structures. As described in Chapter Three, this would lead to 

increased 'switching' between motor programs in the ventral striatum, and the facilitation 

of motor action selection in the dorsal striatum. The diagram does not detail all the 

projections to the basal ganglia that enable this to be achieved, but it does detail the 

projections from the amygdaloid complex that are of interest. These projections are marked 

as neuromodulatory, although glutarnate, is known to be excitatory [Hestenes, 1992]. The 

reason for this is that the effect on basal ganglia structures could be to either increase or 

decrease their activity depending on their activity at that particular time. In situations 

requiring relearning, this effect would be to enhance the learning of particular motor 

actions (dorsal striatum) and increase switching between sequences of these actions 

(ventral striatum). At the same time, attention mechanisms would be triggered in structures 

efferent to the amygdaloid complex by means of acetylcholine projections as described in 

Chapter Three. This activity would be triggered by the amygdaloid complex becoming 

aware of a change to the reinforcement schedule, and this could be as a result of :- 

9a novel stimulus receives an external reinforcement 
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*a stimulus that previously received a reinforcement no longer receives that 

reinforcement 

*a stimulus that previously did not receive a reinforcement now receives a reinforcement. 

It can thus be seen that the apparent role of the amygdaloid complex (according to 

the conceptual model) is to enhance the activity in the basal ganglia when the above 

situations occur. This would help to solve part of the relearning problem because situations 

requiring relearning on the basis of a change to the reinforcement schedule can be detected 

and acted upon, and this may provide inspiration for developing intelligent control 

mechanisms. This thesis has concentrated on the adaptive critic system, and the purpose of 

this chapter is to describe how this inspiration can be applied to the adaptive critic system 

to enable it to better address the relearning problem. This requires that the adaptive critic 

system is related to the neurophysiological. mechanisms on which many researchers (e. g. 

Werbos [1995], Barto, [1995]) argue that it has been derived. This was the essence of the 

work conducted by Houk et al. [1 995b] which will now be described. 

4.2 - The Houk et al. Model 

Houk et al. [1995b] developed a model to explain how structures in the basal 

ganglia are able to generate and use signals that predict reinforcement by means of 

tstriosome' compartments in the striaturn, and the signalling properties of dopamine (DA) 

neurons. Houk et al. attempted to relate the architecture of their model to the original 

adaptive critic system that Barto et aL [1983] used to solve reinforcement learning 

problems. There appears to be a correlation between the discharge properties of DA 

neurons in the Houk et al. model, and the effective reinforcement signal generated by the 

adaptive critic when learning with terminal primary reinforcement [Houk et al., 1995b]. 
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Barto [1995] discussed the similarity between the adaptive critic system and the basal 

ganglia in detail, describing the adaptive critic as "a device that learns to anticipate 

reinforcing events". A correspondence has therefore been established between the adaptive 

critic system and basal ganglia models of reinforcement learning. 

The Houk at al [1995b] model proposes that dopamine (DA) neurons in the basal 

ganglia acquire the ability to predict reinforcement, and describes how outputs from these 

neurons are used to reinforce behaviours that lead to primary reinforcement. The DA 

neurons have reciprocal connections with spiny neurons in the striatum, and these fonn 

modules called 'striosomes. The same DA neurons are also connected to other spiny 

neurons in the striaturn, and these form modules called 'matrisomes'. Houk et al. proposed 

that striosome modules use DA inputs to learn how to detect contexts that precede 

reinforcement by a short time interval, and these acquired responses are then used to 

control their own DA input. Through this recursive mechanism, DA neurons are able to 

learn to detect earlier and earlier predictors of reinforcement. The same DA signals also 

reinforce the spiny neurons in the matrisomes such that they learn to detect and register 

regular contexts useful in the planning and control of motor behaviour. 

The following sections describe the organisation of striosome and matrisome 

modules, and relate this to the adaptive critic system. Striosome modules are able to 

recursively generate signals that predict future reinforcement, and this will be explained in 

terms of how these signals correspond to the effective reinforcement signal (or TD error 

from Chapter Two) produced by the 'critic' in the adaptive critic system. 

4.2.1 - Organisation of Striosomes and Matrisomes 

The striatum is made up of medium-sized spiny neurons, each receiving cortical 

input and sending this outward to the pallidurn and substantia nigra [Goldman-Rakic & 
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Selemon, 1990]. The striosomes and matrisomes are composed of these spiny neurons, but 

the targets to which these neurons project is very different [Graybiel & Kimura, 1995]. 

Spiny neurons in striosomes project to DA neurons in the substantia nigra and ventral 

tegmental area, whereas spiny neurons in matrisomes only project to output neurons in the 

globus pallidus and substantia nigra. pars reticulata. The organisation of striosome and 

matrisome modules is illustrated in Figure 4.2, which shows how each of these modules 

may be connected with neurons in the cortex, various thalamic nuclei, and other basal 

ganglia structures. 
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The diagram shows two out of thousands of neurons located in different areas of 

the cortex that function as context detectors. These neurons send convergent inputs to spiny 

neurons in both striosome and matrisome modules, which means that spiny neurons in both 

modules receive organised, convergent input from widespread areas of the cerebral cortex 

[Graybiel & Kimura, 19951. The Houk et al. [1995b] model suggests that this makes the 

striaturn ideally suited for the recognition of complex patterns stored by cortical neurons. 

According to Houk et al., the DA neuron in the striosome module (the DA neuron itself is 

actually in the substantia nigra) receives three input projections :- 

9 The first projection is from the spiny neuron in the striosome. This projection is 

GABAergic and thus inhibitory. 

e The second projection is also from the spiny neuron in the striosome, but projects 

indirectly through the subthalamic nucleus to the DA neuron. This projection has a net 

disinhibitory action as the subthalamic nucleus projections are also GABAergic 

[Chevalier & Deniau, 1990]. 

* The third projection is labelled 'Primary Reinforcement'. Houk et al. suggest that this is 

likely to be an excitatory projection from the lateral hypothalamus which relates to 

primary reinforcement of an appetitive nature. 

Figure 4.2 also shows that the DA neuron in the striosome module projects back to 

the same spiny neuron that sends it input, and Houk et al. [1995b] suggest that this enables 

the DA neuron to make progressively earlier predictions of reinforcement. There is 

substantial evidence to suggest that DA neurons located in the ventral tegmental area and 

the substantia nigra pars compacta play an essential role in the primary reinforcement of 

behaviour, and in guiding preparatory behaviour on the basis of the likelihood of receiving 
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subsequent reinforcements [Houk et al., 1995b]. The work of Schultz et al. [1995] provides 

such evidence by demonstrating that DA neurons selectively respond to only a limited 

range of stimuli, the major stimuli being reward-related stimuli that indicate primary 

reinforcement. Schultz et al. report that novel or unexpected stimuli can also trigger DA 

neuron responses, perhaps because these stimuli are potential rewards or reward predictors 

that can be included as a class of reward-related events. The DA neurons eventually lose 

their ability to respond to reward stimuli once the stimuli have become valid predictors of 

reward. A precise neurophysiological explanation for why these responses disappear is still 

unclear, but Schultz et al. [1995] suggest that this is because the responsibility for 

signalling reward is taken over by neurons located elsewhere, possibly in the amygdala. 

This is consistent with the conceptual model in Chapter Three because actual rewards are 

recorded by the amygdala, and such information is only of significance in the basal ganglia 

when something changes and relearning is required. The thesis has argued that this is the 

responsibility of the amygdaloid complex. 

4.2.2 - Relating the Model to Temporal Difference Methods 

Thus far the Houk et al. [1995b] model has established that the adaptive critic and 

basal ganglia are similar in terms of structure. The underlying functionality of basal ganglia 

mechanisms needs to be related to the computational operations performed by the adaptive 

critic system. Houk et al. have described how the DA neuron in the striosome module 

learns to fire in response to one context predictive of reinforcement, and then uses the 

pathway back to the spiny neuron to reinforce itself for firing to an even earlier context that 

predicts reinforcement. This mechanism is essentially the same as learning to predict 

reinforcement described as Temporal Difference Methods in Chapter Two. A detailed 

neurochernical explanation of this mechanism is beyond the scope of this work, and the 
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reader is referred to Houk et al. [1995b] for more detail. The important point is that Houk 

et al. refer to a neurochemical mechanism that enables DA neurons to respond to 

predictions of reinforcement without having to rely on primary reinforcement signals. The 

striosome module can thus ftinction as a secondary reinforcer, and is analogous to the 

ability of the adaptive critic to predict reinforcement using successive predictions. The 

basic idea is to let the predictions of reinforcement generated by the 'critic' serve as 

surrogate (or secondary) reinforcers for controlling the 'actor', which generates the control 

actions. Houk et al. [1995b] have thus suggested that the critic is functionally equivalent to 

the striosome module, and that the actor is functionally equivalent to the matrisome 

module. The critic provides the actor with an effective reinforcement signal (P, ) which 

influences how the actor learns control actions. This is shown in Equation (7) repeated 

from Chapter Two, where P, is the prediction at time t, and P, 
-, 

is the prediction at the 

previous time step. These predictions are defined in equations (5) and (6) of Chapter Two. 

P, =r(x, )+r P, -P, -, (7) 

The Houk et al model [1995b] suggests that P, is carried by the DA projection from 

the DA neuron in the striosome module to the spiny neuron in the matrisome module. This 

doparninergic projection 'neuromodulates' spiny neurons in the matrisome. The Houk et al. 

model also suggests that r(x, ) corresponds to the primary reinforcement signal of an 

appetitive nature from the lateral hypothalamus. The predictions P, and P, 
-, are generated 

by the spiny neuron in the striosome module and carried by GABAergic projections to the 
I 

DA neuron in the striosome module. The correspondence between the Houk et al. [1995b] 

model (using striosomes and matrisornes) and the critic and actor of the adaptive critic 
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system has thus been related to Equation (7). The learning coefficient 'y' has not yet been 

discussed, and will be considered later in this chapter. 

4.3 - An Alternative Biological Basis for the Adaptive Critic System 

It is at this point that the conceptual model described in Chapter Three can be 

considered. There is a similarity between the Houk et al. [1995b] model and the adaptive 

critic system as described in the previous section. There are also similarities between the 

conceptual model described in Chapter Three and the Houk et al. model [1995b], which 

can be summari sed as follows: - 

9 Both the Houk et al. [1995b] model and the conceptual model suggest the striatum is the 

place where motor actions are related to reinforcements 

* The predictions generated by the basal ganglia are used for learning sequences of motor 

actions, and both models suggest that this learning occurs in the striatum 

Both models implicate dopamine as a neuromodulator which affects the leaming of 

motor action sequences. 

There are, however, some important differences between the two models -. - 

9 The Houk et al model suggests that matrisome modules are used for motor leaming, 

whereas the conceptual model suggests that motor leaming occurs in the dorsal striaturn 

* The Houk et al. model suggests that striosome modules are responsible for generating 

and storing predictions of reinforcement, whereas the conceptual model suggests that 

the ventral striaturn enables 'switching' between motor action sequences 
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e The origin of the primary reinforcement signal in the Houk et al. model is the lateral 

hypothalamus, whereas the conceptual model suggests this signal originates in the 

ventral tegmental area 

* The Houk et al. model only considers reinforcement learning, whereas the conceptual 

model also considers relearning 

* The involvement of the amygdaloid complex is central to the conceptual model, but is 

not considered at all by the Houk et al. model. 

It is possible to use the basal ganglia aspects of the conceptual model to provide an 

altemative biological basis for the adaptive critic system. This may be achieved by 

relocating the components of the adaptive critic in the ventral and dorsal striaturn such that 

the ventral striatum may be considered as the critic, and the dorsal striatum may be 

considered as the actor. This does not detract from the functionality of the Houk et al. 

[1995b] model, but simply locates this functionality in a different part of the basal ganglia. 

The ventral and dorsal striaturn may well be neurophysiologically different to the 

matrisomes and striosomes described by Houk et al., and this would require further 

investigation, but this does not diminish the argument presented in this thesis. The 

conceptual model argues that the interaction between neurochemical systems is the basis 

for selective attentional mechanisms influencing a number of brain areas when relearning 

is required. This interaction is enabled by glutarnatergic projections from the amygdaloid 

complex to both the ventral and dorsal striaturn, which was not considered by Houk et al. 

[I 995b] in their model. The conceptual model suggests that learning in the ventral striatum 

(critic) and dorsal striatum. (actor) is affected by glutamate projections from the 

amygdaloid complex, which leads to increased doparnine activity in these structures. These 

effects should also be reflected in the adaptive critic system. This is the justification for 
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introducing the amygdaloid complex as an additional 'amygdala component' in a modified 

version of the adaptive critic system, as shown in Figure 4.3. The figure shows that the 

postulated effects of the neurochemical projections from the 'amygdala component' 

identified by the conceptual model are equivalent to neuromodulatory affects in the 

modified adaptive critic system. 

AMYGDALA 
COMPONENT 

Affect 
Signal 

Affect CRITIC Signal 

I 

Effective 
Reinforcement 

- 
Signal 

A Reinforcement Signal 
ACTOR (Observed Plant Outputs) 

Control 
Inputs 

------------- 

PLANT Plant 
Outputs 

Environment Inputs 
L ----------------- 

ENVIRONMENT 

Figurg-43- - Modified Adaptive Critic System 

When novel or unexpected situations are detected (e. g. reinforcing stimuli that have 

not been encountered before, or reinforcements that do not match predictions), the 

amygdala component provides a signal to both the actor and critic that will 'affect' the 

leaming of appropriate behaviour. In the adaptive critic system, behaviour is expressed as 

the control actions determined by the actor. These control actions are influenced by the 

96 



effective reinforcement signal which is determined by the critic. Both actor and critic are 

represented by a system of equations. If the amygdala component affects the leaming 

processes in the actor and critic when relearning is required, then it is argued that this 

influence will be reflected in the equations that make up the adaptive critic system. These 

equations represent the computations of the actor and critic, and include a number of 

learning coefficients (such as '7' in Equation (7) above) that influence different aspects of 

learning. It is suggested that if the amygdala component has a 'neuromodulatory' affect, 

then this will be manifested by an influence on the learning coefficients. Other researchers 

have used the modulation of learning coefficients as a method for providing exploration 

mechanisms, e. g. the gain parameter used for selective attention [Thrun, 1992] described in 

Chapter Two. Cohen & Servan-Schreiber [1992] described how a simple gain parameter 

can be used to simulate different neuromodulatory effects at both the biological and 

behavioural level. They related these effects to the neuromodulatory effects of doparnine in 

schizophrenia, and argued that these effects could be reproduced by simply changing the 

gain equally for all units influenced by the neuromodulator. Their focus was on dopamine 

in the prefrontal cortex, and they showed that increasing the gain in their simulations 

produced the same cognitive deficits associated with increased doparnine activity in the 

prefrontal cortex, and decreasing the gain produced the same deficits associated with a 

decrease in doparnine activity in the prefrontal cortex. The computational modelling of 

neuromodulation has received much recent interest, and various proposals have been made 

(e. g. Bower [19931, Myers et al. [19961, Rumelhart [1997], and various papers presented at 

a special session on neuromodulation held at NIPS'96). 

In neurophysiological terms, the effect of neuromodulation canbe simplified to an 

increase (or decrease) in the learning activity at all areas affected by the neuromodulator 

substance or substances. This obviously depends on whether the effect of these 
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neurochemical substances is predominantly excitatory or inhibitory. Equation (10) suggests 

how a learning coefficient can be modulated: 

coeffici . ent,,, =ic * coefficient, + co (10) 

In Equation (10), the value of the learning coefficient at time t+I will be the value 

of that coefficient at time t plus an increment (co) that represents an increase or decrease in 

learning activity. If the neurochernical effect is predominantly excitatory, then the 

increment will be positive and the value of the coefficient will increase when the amygdala 

component detects that reinforcement contingencies have changed . If the neurochemical 

effect is predominantly inhibitory, then the increment will be negative (the same as a 

decrement) and the value of the learning coefficient will decrease when the amygdala 

component detects that reinforcement contingencies have changed. It must also be 

remembered that the effects on learning activity caused by the neuromodulator will decay 

with time if not maintained, and hence a decay term Khas been included. It is assumed that 

every leaming coefficient will have a minimum and maximum activity, and this may be 

represented as minimum and maximum threshold values for that coefficient. For example, 

if the neurotransmitter is excitatory (such as with glutarnate and acetylcholine), then the 

increment will be positive and the coefficient will be expected to increase when modulated 

and decay with time. If the neurotransmitter is inhibitory (such as with GABA), then the 

increment will be negative and the coefficient will be expected to decrease when 

modulated and return to its original activity threshold value with time. The following 

section looks at how neuromodulation might be achieved in the adaptive critic system. 

98 



4.4 - Modulation of Learning Coefficients 

There are a number of learning coefficients in the equations that make up the 

adaptive critic system that are candidates for modulation by the amygdala component in 

the modified adaptive critic system, and this is because the amygdala component 

influences both the actor and the critic. If the leaming coefficients are to be modulated, the 

question is then how and when should they be modulated so as to appropriately influence 

learning? These coefficients would nonnally be constants fixed before learning. A few 

studies have investigated how these coefficients affect learning perfonnance, such as Geva 

& Sitte [1992] who looked at the effect of optimising coefficients in the adaptive critic 

system for the pole balancing problem. They tried different combinations of fixed 

constants to see if they could characterise learning performance, the aim being to optimise 

these constants and achieve the fastest possible learning times. They described this 

endeavour as a laborious process, and could only conclude from their data that the adaptive . 

critic system is not very sensitive to coefficient setting. This would therefore seem to 

suggest that modulation of learning coefficients will have little effect. This needs to be 

questioned, because intuitively, certain coefficients would be expected to have an effect 

else why would they be included? For example, the value of the 'y' discount factor affects 

how successive predictions of reinforcement are discounted by the critic, and hence 

influences the effective reinforcement signal given in Equation (7): 

P, =r(x, )+r P, -P, -, 
(7) 

Barto [1995] describes the discount factor as determining how strongly predictions 

of future primary reinforcement should influence current actions. Any amount of primary 
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reinforcement that is delayed by one time step is worth a fraction (y) of that same amount 

of undelayed primary reinforcement. When y=0, the current prediction of future 

reinforcement P, is not taken into account, and learning depends more on the actual 

reinforcement r(xt) and the short-term consequence of an action. This may be considered a 

'tactical' learning objective. As 'y' increases towards 1, the current prediction of future 

reinforcement becomes more significant because the delay is taken into account. This may 

be considered a 'strategic' learning objective because actions are reinforced by both their 

long-term and short-term consequences. In the relearning problem (where the 

reinforcement contingency has changed), the delayed consequence of an action should be 

less important because this may no longer be applicable. It is argued that the learning 

objective becomes more tactical and less strategic when relearning is required. This means 

that the value of the discount factor should tend towards zero when relearning is required. 

It is therefore suggested that modulating the 'y' learning coefficient in this way may prove 

beneficial when addressing the relearning problem. 

Another example is the W coefficient, which is used in TD(, %) as given by 

Equation (9) repeated from Chapter Two: 

ZT(xj,, )= kzT(xt) +(I-?, ) (9) 

The value of the W coefficient was investigated by Sutton & Barto [1995] whose 

work addressed the question of whether reinforcement learning methods are better when 

they learn on the basis of actual outcomes (i. e. X= 1) or on the basis of interim estimates 

(i. e. when 2, < 1). They argued that the former are better when function approximators are 

used, but the latter are thought to achieve better learning rates. This question had not been 

put to an empirical test using function approximators, and so Sutton & Barto [1995] 
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presented preliminary results from such a test on a variety of different problems including 

the pole balancing problem. They plotted '?, ' against performance for each test, i. e. 'X' 

versus 'Failures per 100,000 time steps' for the pole balancing problem. Their results show 

that for the pole balancing problem (and on other problems not reported here) the 

performance was an inverted U-shaped function of 'V, with performance rapidly degrading 

as 'V approaches 1 where the worst performance is obtained. These results are based on 

the 'V coefficient being fixed before a test, and remaining constant (i. e. not modulated) for 

the duration of that test. This is illustrated by Figure 4.4, which qualitatively shows the 

unpublished data described by Sutton & Barto [1995]: 

300 

Pole Balancing 
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C, 

. 
100 
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Figure 4.4 - 'X' in Pole Balancing (Adapted from Sutton & Barto [ 19951) 

There are no results for modulating the 'V coefficient during learning. It is 

therefore suggested that modulating 'V may prove beneficial for addressing the relearning 

problem because this coefficient does appear to have an important influence on 
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performance. The next chapter will consider how this can be achieved experimentally in 

the context of relearning by modulating '?, ' and '7', as well as other coefficients. 

4.5 - Summary 

This chapter described the Houk et al. [1 995b] model which suggests that striosome 

and matrisome modules in the basal ganglia are able to generate signals that predict 

reinforcement. The similarity between the Houk et al. [1995b] model and the adaptive 

critic system presented in Chapter Two was discussed, showing that. striosome and 

matrisome modules appear to perform the same functions as the critic and actor 

respectively. The conceptual model presented in Chapter Three suggests that basal ganglia 

structures (the ventral and dorsal striatum) are involved in learning motor actions on the 

basis of reinforcement, and it was argued that these structures may be considered 

functionally analogous to the striosomes and matrisomes described in the Houk et al. 

[1 995b] model. This may be seen as a relocation of the adaptive critic system in a different 

part of the basal ganglia, whilst still retaining the functionality of the Houk at al. [1995b] 

model. The conceptual model considers the involvement of the amygdaloid complex and 

relearning, aspects not included in the Houk et al. [1995b] model. It was therefore 

suggested that the adaptive critic system can be modified to include an 'amygdala 

component' in accordance with the conceptual model, thereby capturing the hypothesised 

involvement of the amygdaloid complex in relearning. The additional amygdala 

component records actual reinforcements, and is thus able to detect when reinforcement 

contingencies have changed, The amygdaloid component thus exerts an influence over 

both the actor and critic when relearning is necessary, achieved by modulating the learning 

coefficients in the equations that make up the adaptive critic system. The biological 
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evidence that supports the conceptual model suggests that modulation by the amygdala 

component occurs when specific situations are detected, i. e. when novel situations are 

encountered, or when changes to the reinforcement contingency are detected. This alters 

the value of the learning coefficients in accordance with the information provided by the 

amygdala component, i. e. where these situations were detected. The next chapter uses 

experimental simulation to investigate this, and looks at the effects of modulated learning 

coefficients on relearning when applied to the pole balancing problem. 

103 



Chapter Five 

Modulated Coefficients and Relearning: 

A Pole Balancing Example 

5.1 - Introduction 

The previous chapter suggested that learning coefficients in the equations that make 

up the adaptive critic system can be modulated to have an influence that is functionally 

equivalent to the hypothesised influence of certain brain regions. This may lead to an 

improvement in the performance of the adaptive critic system on the relearning problem, 

i. e. the problem of detecting that reinforcement schedules have changed, and then using 

this knowledge to beneficially influence learning processes. This chapter provides an 

experimental framework within which the modified adaptive critic system can be tested on 

an established reinforcement learning control problem. The hypothesis is that the learning 

coefficients in the adaptive critic equations may be modulated in accordance with the 

memory of previous reinforcements, which is likely to be of benefit to the performance of 

the system when reinforcement contingencies change and relearning is required. 

It is widely accepted that the pole balancing (or inverted pendulum) problem is a 

difficult non-linear control task [Geva & Sitte, 1992]. This problem has been extensively 

studied as an easily understood physical system that readily lends itself to the testing of 

control algorithms at many different levels of complexity [Larcombe, 1996]. The pole 

balancing problem can be defined in terms of specified parameters and system components 

given by Geva & Sitte [1993] that provides an experimental benchmark for computer 

simulation of the problem. The benchmark does not include the relearning problem, and 
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therefore this chapter will suggest how the benchmark may be extended to accommodate 

the relearning problem, i. e. how to change reinforcement contingencies to provide an 

appropriate problem for the modified adaptive critic system. Barto et al. [1983] showed 

that the pole balancing problem can be addressed using two neuron-like elements called the 

Adaptive Search Element (ASE) and the Adaptive Critic Element (ACE). This chapter 

provides a detailed description of the ASE/ACE implementation, which is the original level 

one adaptive critic system referred to in Chapter Two. The performance of the ASE/ACE 

system on the benchmark relearning problem is shown using experimental simulation 

results. Similar experiments were conducted to investigate_ the effect of modulating 

learning coefficients with a modified adaptive critic system on the benchmark relearning 

problem. Each simulation experiment is described, and the results presented and analysed. 

5.2 - Derinition of the Problem 

The pole balancing problem involves balancing a pole attached vertically to a 

moveable cart placed on a finite length of track, and this will be referred to as the cart-pole 

system. Control actions are achieved by applying a one-dimensional force of constant 

magnitude to the base of the cart, the direction of the force being influenced by the 

controller. This is known as bang-bang control. The general problem is to discover a 

sequence of binary (left or right) control forces that can keep the system balanced for long 

periods of time. The only external information available to the control system is a negative 

reward signal given when the system fails, and this is consistent with the reinforcement 

learning scheme described in Chapter Two. 

The state of the cart-pole system at a given time depends on four variables: the 

position of the cart (x), the linear velocity of the cart (k), the angle of inclination of the 
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pole (0), and the angular velocity of the pole (ý). A representation of the cart-pole system 

showing x, 0, and the control force F is given in Figure S. 1. 

Figuirej. 1 - The Cart-Pole System (From Bapi et al. [1997]) 

5.2.1 - Dynamics of the System 

The dynamics of the system are calculated with equations based on the following 

parameters: the mass of the pole (mp), the mass of the cart (m, ), the length of the pole (1), 

the control force (F), and the acceleration due to gravity (g). These equations are given in 

Figure 5.2. 
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Figure - Dynamical Equations of the System (From Bapi et al. [ 1997]) 
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The equations are integrated numerically using Euler's method with a time step of 

0.02 s, and are the revised equations used by Bapi et al. [ 1997] to omit friction as specified 

by Geva & Sitte [1993]. The omission of friction is discussed in Section 5.4. 

5.2.2 - The Reward Signal 

The pole balancing system is said to have failed if pre-specified limits for either the 

, 'ailure angle (the angle of the pendulum from the upward vertical about the centre of the p't 

track) or the failure length (the position of the cart on the track) is exceeded. When this 

situation occurs, the learning control system receives a negative reward signal set to -1 

which is used for learning. The parameters of the controller are only updated when this 

signal is received, which means that the controller must evaluate its intermediate actions in 

the absence of continuous reinforcement. 

5.3 - The ASE/ACE System 

The ASE/ACE system was originally developed by Barto et al. [1983] to show how 

single neurons can be used to solve complex leaming control problems. This system is the 

same as the level one adaptive critic where the ASE is the actor, and the ACE is the critic. 

The Barto et al. implementation combines a number of different techniques to achieve the 

goal of learning to balance the pole using reinforcement learning, and these techniques 

include state space quantisation and temporal difference prediction. 

5.3.1 - State Space Quantisation 

The state space quantisation scheme used in the ASE/ACE system is designed to 

divide the problem space into 162 regions (states) based on the quantisation of the four 
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system variables: the position of the cart (x), the linear velocity of the cart (, ý), the angle 

of inclination of the pole (0), and the angular velocity of the pole (ý). The regions 

produced by this state quantisation scheme are shown in Table 5.1. Square brackets 

indicate that the value is included in a region, parentheses indicate that the value is not 

included in that region 

Variable Range Region 

[-2.4, -0.8) 1 

x (M) [-0.8,0.8] 2 

(0.8,2.4] 3 

(-oc, -0.5) 1 

L-0.5,0.5] 2 

(0.5, +-c) 3 

L-1.57, -0.21) 1 

[-0.21, -0.02) 2 

0 (rad) [-0.02,0.00) 3 

[0.00,0.02] 4 

(0.02,0.21] 5 

(0.21,1.57] 6 

(-oc, -0.87) 1 

(rad/s) [-0.87,0.87] 2 

(0.87, +cc) 3 

Table 5.1 - State Space Quantisation Scheme (From Bapi et al. [ 1997]) 
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The ASE/ACE system uses a decoder to convert the input state vector (made up of 

the regions corresponding to each of the four system variables) into a 162-bit binary 

number (d) that denotes which state the system is currently in. This binary number has a 

unit value for the state that the input vector belongs to, and a zero for the remaining bits. 

Each of the decoder states is connected to the ASE and the ACE by a set of weights, u, and 

v, respectively. In other words, each of the 162 system states has its own ASE and ACE 

weights, u, and v, respectively. These weights are set to zero initially. The configuration of 

the ASE/ACE system is shown in Figure 5.3. 

r 
vi ( ACE 0 .................. 

r 
,\ Cart-Pole 

ecoder D __K 
-U' 

ýASE 
ýý System 

Figure5. -The ASEACE System (From Bapi et al., [1997]) 

5.3.2 - The Associative Search Element (ASE) 

The ASE is responsible for generating a binary control action (y) that designates the 

direction of a control force (F) to be applied to the left or right of the base of the cart. The 

force is of constant magnitude (10.0 N), and influences the next state of the system in 

accordance with the equations of motion shown in Figure 5.2. Equation (11) shows how 

the control force (F) at time t is calculated: 

Y(t) * 10 (11) 
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The ASE control action (y) is calculated according to Equation (12): 

y(t)=g[z, ui(t)d(t)+noise(t)]; 
i 

g[w] = +1, when w>0 

g[w] = -1, when w<0 

(right control force) 

(left control force) 

(12) 

The control action (y) is simply an indication of the direction of the force, and 

depends on the weight uft), and the state of the system at time t, given by d, (t). Initial 

control actions from the ASE are random because of the noise term (noise(t)), which is a 

Gaussian noise term with zero mean and standard deviation of 0.01. This small term 

enables the controller to explore the state space in the absence of a known control action. 

Learning results from updating the ASE weights (u) so that eventually the weight is able to 

overcome the random noise term and is therefore able to generate a known (non-random) 

control action. Equation (13) shows how the ASE weights are updated: 

ui(t +1)= ui(t) + cci(t)ei(t) (13) 

in Equation (13), 'a' is a positive learning constant, and P(t) represents the internal 

reinforcement signal provided to the ASE. The term ei(t) represents the ASE eligibility 

trace which keeps track of time elapsed since the last visit to a particular state, and every 

state has an ASE trace associated with it. This trace mechanism therefore helps to solve the 

temporal credit assignment problem because any state that has not been visited for a long 

time will have a low ei(t) value, and its contribution will be almost negligible. The 

calculation of the ASE trace is given in Equation (14): 
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e, (t +1) = 8ei(t)+(1-6)y(t)d, (t) (14) 

The trace mechanism in Equation (14) uses the coefficient '8 ' as the ASE trace 

decay rate, which ensures that only the most recently visited states are eligible when 

updating the ASE weights. 

5.3.3 - The Adaptive Critic Element (ACE) 

The internal reinforcement signal (P) is provided by the ACE, and is used to 

modify control actions and state evaluations continuously without having to wait until an 

external failure signal occurs. This is achieved on the basis of the negative reward signal 

(r) provided to the ACE. The reward signal is set to zero until a failure occurs, at which 

point it is set to -1. The ACE evaluates the performance of the cart-pole system and 

maintains its own set of evaluation weights (vi). These are used to generate the internal 

reinforcement signal, which is then used to update the control weights (u) in the ASE. 

Additionally, the internal reinforcement signal is used by the ACE to update its own 

evaluation weights (v, ). Equation (15) shows how the internal reinforcement signal is 

calculated: 

P(t)=r(t)+y p(t)-p(t-1) (15) 

The ý signal is effectively the temporal difference error (TD error) described in 

Chapter Two, and is calculated by comparing the prediction of failure in the current state 

with the prediction of failure in the previous state. This error will be positive if the system 

moves from an "unsafe" to a "safe" state, and negative if it is the other way round. In 
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Equation (15), 'y' is the discount factor, and p(t) is the current prediction of expected 

failure. The discount factor determines how strongly predictions of failure are able to 

influence current actions, so that when 7=0, then only the external reward signal r(t) and 

the previous prediction p(t -1) are taken into account. When y is close to 1, actions are 

strongly influenced by the current prediction of failure. A more thorough explanation of the 

theory can be found in [Sutton, 1988]. Essentially, the prediction is the ACE weight (vj) 

associated with the current state, given by Equation (16): 

p(t) = vi(t)d(t) (16) 

It is clear that since the negative reward signal (r) is either negative or zero, then the 

prediction of failure p(t) will always be negative, and the ACE weight in Equation (16) will 

also be negative. A strong negative value for the weight (vi) indicates that after visiting this 

state, the cart-pole system often failed. A value close to zero indicates that the state is 

associated with prolonged balancing periods. Hence Barto et al. [1983] described the 

weights as reflecting a prediction of failure, and called p(t) the prediction signal. The 

external reward signal leads to punishment of all recent control actions leading to the 

failure, hence increases the prediction of failure in all recently entered states. 

The ACE weights are updated continuously in accordance with the internal 

reinforcement signal (P), and this is shown in Equation (17): 

v. (t+1) =v(t)+P(t)i(t) (17) 

in Equation (17), '0' is a positive learning constant, and U, (t) is the eligibility trace for the 

ACE weights. This trace is calculated according to Equation (18): 
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ZT, (t + 1) = ), U, (t) +(I - k)d, (t) (18) 

The trace mechanism in Equation (18) uses the coefficient ', %' similar to TD(k) 

described in Chapter Two. It is a method by which only the most recently visited states are 

eligible for update, and works in the same way as the ASE trace. This trace, however, has 

an effect on the predictions of future reinforcement produced by the ACE. 

To summarise the performance of the ASE/ACE system, the ASE leams how to 

balance the pole in the absence of continuous reinforcement due to the internal 

reinforcement signal (P) provided by the ACE. The internal reinforcement signal is 

computed by comparing the expectation of predicted failure (p) in current and previous 

states, and is used to update the ACE weights (vi) in accordance with the recency 

information provided by the eligibility traces. The internal reinforcement signal is also 

used to update the ASE weights (u), which reflect appropriate control actions for every 

state such that the pole remains balanced for long periods of time. 

5.4 - Simulated Pole Balancing: A Benchmark 

The ASE/ACE system for the pole balancing problem has been simulated 

extensively by a number of researchers (e. g. Barto et al. [1983], Geva & Sitte [1992, 

1993]). These simulations have shown that the ASE/ACE system is very robust on the pole 

balancing problem, but very slow on more complicated problems with large numbers of 

variables to be controlled [Barto et al., 1983]. In all simulations, the cart-pole system is 

always started from the centre of the track with the system variables initially set to zero. 

The small random noise term used in Equation (12) is sufficient for the control system to 

produce an initial action, and then the dynamical equations take over. The period that the 
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control system is able keep the pole balanced is called a 'trial'. A number of such trials 

(typically 100) constitutes a 'run'. Pole balancing experiments usually consist of a number 

of these runs, with the results averaged across runs. 

An experimental benchmark specification to allow comparison between various 

approaches to solving the pole balancing problem was presented by Geva & Sitte [1993]. 

This followed their review of the literature on learning methods for cart-pole controllers 

which found that published results were difficult to compare because researchers did not 

keep to a uniform specification of the learning task, which also meant that there was no 

clear evidence that any one method was better than another. The benchmark proposed a set 

of standardised parameters to be used in pole balancing simulations so that all researchers 

could work on an equivalent problem. The benchmark parameters are given in Table 5.2. 

System parameter Value 

Length of the track ± 2.4 rn 

Failure angles ± n/2 rad 

Gravity (g) -9.81 m/s, 

Length of the pole (21) 1.0 rn 

Mass of the cart (m. ) 1.0 kg 

Mass of the pole (rn, ) 0.1 kg 

Control force (F) 10.0 N 

[I-ntegration time step 

Table 5.2 - Benchmark System Parameters (Adapted from Geva & Sitte [ 1993]) 

The values of the leaiming coefficients used in the equations that make up -the 

ASE/ACE system were also standardised, and these are given in Table 5.3. 
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Coefficient Description Value 

Cc ASE learning rate 1000.0 

5 ASE trace decay rate 0.9 

Discount factor 0.95 

ACE learning rate 0.5 

ACE trace decay rate 0.8 

Table 5.3 - Benchmark Coefficients (From Geva, & Sitte [1993]) 

Geva & Sitte [1993] argued that the ability to balance the pole and centre the cart 

was not sufficient proof that effective learning had taken place, and that most learning 

methods designed to deal with the pole balancing problem were little better than a random 

search in parameter (weight) space. The benchmark specification therefore tries to make it 

very unlikely to find good controllers by chance, and proposes that simulations of the pole 

balancing problem should have a number of key features. These features are -- 

1. Demonstrate gradual improvements in system performance as individual learning 

sessions progress 

2. Produce controllers that are able to centre the cart even when started away from the 

centre of the track with thepole already balanced 

3. Use the standardised parameters specified by the benchmark 

4. Use an unbounded track length and afailure angle of 90 degrees 

5. Do not use friction because friction is difficult to determine, and so the performance of 

a simulated controller should not be affected by parameters hard to control in practice. 
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Bapi et al. [1997] implemented the benchmark features described in experimental 

simulations of the pole balancing problem. Their work used a Neuro-Resistive Grid (NRG) 

as a replacement for the ACE, and their NRG simulation results were compared to 

simulations of the original ASE/ACE implementation. This work merits discussion 

because results from the NRG implementation have raised important questions regarding 

the relearning problem, and can be related to biological systems. Bapi et al. included all of 

the benchmark features described. Some changes to the original ASE/ACE representation 

scheme were made to allow states to have connections with their 'neighbours', and details 

of this change can be found in [Bapi et al., 1997]. The result is a grid of 162 nodes, where 

every node is connected to all its possible neighbours as shown in Figure 5.4. 
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Fi, gure-5,4 - The Neuro-Resistive Grid as ACE (From Bapi et al. [ 1997]) 
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The NRG works like the ACE in that it receives a negative reward signal on failure, 

and is able to provide the ASE with an internal reinforcement signal (P) by comparing the 

NRG value of the present state to the previous state. The NRG system is composed of two 

layers. The 'Failure Memory' layer records when a failure occurs in a particular state. This 

is equivalent to the role of the amygdala component as described in Chapter Four. The 

'NRG' layer takes this information, and uses it to propagate failure infon-nation to 

neighbouring states in the grid. This means that the NRG learns more rapidly and with 

fewer computations than the original ASE/ACE system [Bapi et al., 1997]. With the NRG 

method however, if a failure occurs in a particular state then that state remains clamped as 

failed for the duration of a run. This is obviously not desirable if reinforcement 

contingencies change unexpectedly and relearning is required. The system will be unable to 

alter the value of a state even if it becomes part of a viable sequence of control actions in 

the future. Bapi et al. suggest that this problem deserves further analysis, and the work 

presented in this thesis contributes towards a better understanding of the problem. 

5.5 - Relearning in the Pole Balancing Problem 

The benefits of a simulation benchmark for pole balancing experiments have been 

described above. Unfortunately, the benchmark does not consider the relearning problem. 

For existing and future research to be compared, relearning needs to be introduced into the 

benchmark framework with a minimal disruption to the specifications that already exist. 

When investigating relearning, the objective is to change something in the system and then 

observe what happens to the performance of the system. A few studies have addressed 

related issues (such as robustness), but it is difficult to compare their work with this or any 

other work because of differences in the experiments conducted. These studies include :- 
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9 Lin & Lin [1996] who used an ART-based fuzzy adaptive network called RFALCON to 

replace the ASE and ACE, and compared this to the original ASE/ACE system. Their 

experiments tested the disturbance rejection capability of the 'trained' system following 

a change to the system, e. g. changing the pole length or the cart mass. Their results 

suggested that the original ASE/ACE system needs additional trials to relearn. They did 

not use the benchmark so results cannot be directly compared. 

* Santiago & Werbos [1995] changed the dimensions of the pole in its environment, and 

argued that this provides a challenging problem for many different types of controller. 

They also did not use the benchmark so results cannot be directly compared. 

Both the above studies look at the robustness of the control system, and are thus 

different to relearning on the basis of reinforcement as defined in this work. The relearning 

problem in this work involves allowing the control system to learn about its environment, 

and then changing the reinforcement contingency rather than simply changing a system 

parameter. From Chapter Three, it is likely that the problem of dealing with relearning as a 

result of changes to system parameters will be the responsibility of the septo-hippocampal 

system. The amygdaloid complex is involved in dealing with relearning on the basis of 

changes to reinforcement, and how to achieve this with the simulation benchmark for pole 

balancing is the main objective of this chapter. This work therefore represents a 

contribution towards establishing a relearning benchmark for the pole balancing problem 

on the basis of changes to the reinforcement contingency. This involves specifying the 

experiments that could be conducted in order to investigate this particular relearning 

problem. A relearning benchmark must consider -- 
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4, How can 'success' be defined in the pole balancing problem, i. e. when can it be said 

that the system has adequately learned or relearned to balance the pole? 

9 What experiments should be conducted so that the effect of changing the reinforcement 

contingency may be investigated using different approaches? 

The standardised parameters specified in the original benchmark proposed by Geva 

and Sitte [1993] will be kept because these are not affected by extending the benchmark, 

and continue to allow comparison between new and existing control system designs. 

However, the criteria by which the system may be considered to have successfully learned 

to balance the pole needs to be established. Santiago & Werbos [1995] defined success as 

being able to balance the pole for 30 minutes. They stated that each "cycle" (time step) 

represented one second, therefore 30 minutes would equate to 1800 time steps. Simulation 

time depends on how long the computer takes to process each time step. The pole 

balancing benchmark specifies that 0.02 seconds represents each time step, therefore 30 

minutes would represent 90,000 time steps in the benchmark. The availability of 

simulation time restricts the use of this criterion, and it is therefore proposed that 5000 

successive time steps in any trial without failure is an adequate criterion to indicate 

4success' has occurred. This criterion is better than the Santiago & Werbos [1995] 

criterion, and will allow performance to be compared over a specified number of time 

steps. However, because the criterion is used for comparison purposes only, then there is 

no guarantee that the system will not fail again after success. The aim is to observe the 

effect of changing the reinforcement contingency, i. e. the number of further trials and time 

steps it takes for the system to achieve success rather than to sustain success. Further trials 

would require additional reinforcements, and this could be considered as raising the costs 
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associated with relearning. Further time steps would extend the learning time, which is 

potentially a computational expense and again raises the costs associated with relearning. 

The time to relearn (in terms of the number of trials) starts from the trial immediately after 

a particular change is made, and thus the number of trials that it takes to initially achieve 

success is important. A number of experimental simulations were conducted to investigate 

the effect on learning and relearning in the original ASE/ACE system using the following 

features specified by the benchmark :- 

e ftictionless dynamical equations and standardised parameters 

ea failure angle of 90 degrees and a failure length of 2.4m. 

The remaining benchmark features were not included because these were designed 

to evaluate the quality of the eventual controller produced by the system once it has 

"learned" to balance the pole. Given that the criterion of 5000 time steps is not enough for 

the system to fully converge to a solution (Barto & Sutton [1983] used 100,000 time steps, 

and Geva & Sitte [1993] do not specify a criterion), then the rest of the benchmark is not 

appropriate to this work. The experimental method can be described as follows : -, 

The experiments were simulated using Cortex-Pro, a DOS-based network simulation 

package with a BASIC-like language that provides many built-in functions for the 

simulation of nodes, networks, learning rules, transfer functions, etc., as well as a 

graphical user interface that allows access to all the network variables. 

* Each experiment consisted of ten simulated runs, and the results from each run were 

tabulated. Each run is identified in the column headed 'Run'. Although only the results 

from ten runs have been tabulated, these runs can be considered a sample from an 
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infinite number of potential runs. Ten runs provide sufficient data to allow an analysis 

of the performance of the ASE/ACE system in each of the relearning experiments, and 

this analysis is presented later in the chapter. 

9 Each run had a maximum of 200 trials for successful learning and relearning to occur. 

This was because the original Barto, & Sutton [1983] simulations allowed one hundred 

trials for the system to 'learn' how to balance the pole, therefore an additional one 

hundred trials should provide sufficient opportunity for the system to 'releam'. 

e The system was allowed to achieve success, and the trial in which success occurred (i. e. 

the system managed to balance the pole for 5000 time steps without failure) was 

recorded, given in the column headed 'Learn'. The cumulative time steps in all trials 

prior to the trial in which success occurred was recorded, given in the column headed 

'Cum LTS'. This was then averaged over all trials prior to the trial in which success 

occurred, given in the column headed 'Ave LTS'. These measurements allowed the 

results to be averaged across all ten runs, thus giving an indicator of system 

performance for each experiment. 

* After success, a change was made to the system taking effect in the trial immediately 

after the trial in which success was achieved. The system was again allowed to achieve 

success and the next trial in which success occurred was recorded, given in the column 

headed 'R-Trial'. 

* The column 'Relearn' gives the difference between the first successful trial and the next 

successful trial, i. e. the number of intervening trials where the system was unsuccessful 

and needed additional negative reinforcement signals to enable it to relearn how to 

balance the pole. 

* The cumulative time steps in all trials required to relearn was recorded, given in the 

column headed 'Cum RTS'. This was then averaged over all relearn trials, given in the 
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column headed 'Ave RTS'. These measurements were then averaged across all ten runs, 

thus giving an indicator of relearning performance for each experiment. 

* Gaps in the column 'R-Trial' indicate that the system did not achieve success after the 

change, never managing to releam before the 200 trials limit was reached. 

* Gaps in the 'Relearn' column indicates that the system managed to achieve success in 

the very next trial so additional reinforcements were not required and this information is 

not appropriate. The justification for this is that additional reinforcement signals can be 

equated with extra costs, and therefore including runs with zero additional trials biases 

the overall evaluation of relearning performance. 

* The row 'Mean' gives the mean for each column, calculated by summing all the 

observed values in a column and then dividing this sum by the number of observations. 

9 The row 'St Dev' gives the standard deviation for each column, calculated by taking the 

square root of the of the average of the squared distances of the observations from the 

mean. This gives a measure of the dispersion in the data. 

e The row 'St Err' gives the standard error of the mean for each column, calculated by 

dividing the standard deviation by the square root of the number of observations. This 

gives a measure of the precision in the data. 

* Each run was terminated when the system managed to achieve success for a second 

time, or the number of trials exceeded 200. 

* At the end of each run, all system variables and traces were reset. The traces were also 

reset at the end of each trial because this allowed the fastest learning speed for the 

adaptive critic system (see Bapi et al. [1997] for discussion). 
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5.6 - Performance of the ASE/ACE System on Relearning 

The experimental results presented in the following sections consider the 

performance of the ASE/ACE system on the benchmark pole balancing problem extended 

to include relearning. In order to investigate relearning perfonnance, we need to consider 

the performance of the system when something changes. The following experiments 

consider the effect of changing the pole length, the cart mass, and changing the failure 

length. There are numerous other experiments that would also have been appropriate (such 

as changing the failure angle), but these were not investigated. 

5.6.1 - Changing the Pole Length 

In this experiment, the benchmark ASE/ACE system was allowed to achieve 

success and then the length of the pole was changed by reducing it from 0.5m to 0.25m. 

This experiment is identical to the robustness test conducted by Lin & Lin [1996]. The 

results from ten runs (ASE/ACE and changing the pole length) are shown in Table 5.4. 

Run Learn Cum TSTF AveTSTF R-Trial Relearn Cum TSTF Ave TSTF 

1 12 10614 964.9 14 1 4871 4871.0 
2 8 900 128.6 11 2 4703 2351.5 
3 201 13359 703.1 21 
4 ill 3274 327.4 29 17 13887 816.9 
5 45 14591 331.6 73 27 33606 1244.7 
6 11 5709 570.9 12 
7 11 4751 475.1 13 1 599 599.0 
8 18 4252 250.1 19 
9 22 1 19266 917.4 23 

10 23 14066 639.4 24 

Mean 18.1 9078.2 530.9 9.6 11533.2 1976.6 
St Dev 108 6089.0 280.0 11.9 13260.3 1753.3 
StE 1925.5 88.6 5.3 1 5930.2 784.1 

Table 5.4 - Time to Relearn: Change Pole Length (0.5m 4 0.25m) 
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The results show that it took an average of 18.1 trials to learn to balance the pole, 

i. e. to balance the pole for 5000 time steps without failure. This gave a mean of 530.9 time 

steps per trial prior to success. The column 'Learn' shows the trial in which success was 

first achieved, and the length of the pole was changed at the start of the very next trial. It 

can be seen that five runs required additional trials (and therefore additional 

reinforcements) in order to 'relearn' to successfully balance the pole. This gives a mean of 

9.6 trials and 1976.6 time steps per trial without success for these five runs. 

5.6.2 - Changing the Cart Mass 

In this experiment, the benchmark ASE/ACE system was allowed to achieve 

success and then the mass of the cart was changed by increasing it from I. Okg to 2. Okg. 

This experiment is the same as the robustness test conducted by Lin & Lin [1996]. The 

results from ten runs (ASE/ACE and changing the cart mass) are shown in Table 5.5. 

Run Learn Cum TSTF AveTSTF R-Trial Relearn Cum TSTF Ave TSTF 

1 12 2104 191.3 13 
2 19 3995 221.9 20 
3 141 12447 957.5 15 
4 181 3475 204.4 19 
5 121 8921 811.0 19 61 2188 364.7 
6 161 2854 190.3 47 48876 1039.9 
7 131 4059 338.3 14 
8 17 1 6809 425.6 18 
9 8 1 916 130.9 16 7 8932 1276.0' 

10 51 1 44829 896.6 53 1 1 4284 4284.0 

Mean 18.0 9040.9 436.8 15.3 16070.0 1741.1 
St Dev 12.1 13042.9 324.4 21.3 22051.5 1738.7 
St Err 3.8 4124.5 102.6 10.7 11025.7 869.3 

Table 5.5 - Time to Relearn: Change Cart Mass (I. Okg 4 2. Okg) 
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The results show that it took a mean of 18.0 trials for the system to initially achieve 

success, which is consistent with the previous experiment. A mean of 436.8 time steps per 

trial were required. Four runs required trials to 'relearn', with a mean of 15.3 additional 

trials and 1741.1 time steps per trial for these runs. Figure 5.5 shows a screen dump taken 

during Run I of this simulation experiment. The screen is included to illustrate the 

simulation environment. The modulation graph shows that the W coefficient was a 

constant set to 0.8 throughout the experiment. The other coefficients were also set to 

benchmark values. It can be seen that the system first achieved success in trial 12, and the 

cart mass was changed at the start of the next trial. Success was achieved immediately after 

the change in trial 13 (the releam trial), but the system failed again in trial 15. However, 

only the relearn trial is shown in Table 5.5 given the success criterion described earlier. 
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The first two experiments concur with the work of Lin & Lin [ 19961, and have been 

included because they do indeed suggest that the ASE/ACE system needs additional trials 

to 'relearn' once a change has been made to the system. These results also support the 

notion that balancing the pole for 5000 time steps is adequate for measuring learning 

perfon-nance because in all runs, the system managed to achieve this criterion in both 

learning and relearning phases despite a change to the system. This criterion will therefore 

allow comparison of relearning performance in subsequent experiments. 

5.6.3 - Changing the Failure Length 

Changing reinforcement contingencies is different from the previous experiments 

because the relationship between the state space and reinforcement signals remains the 

same, the only thing affected is how the controller directs the system into these states. The 

effect of changing reinforcement schedules needs to be investigated experimentally, and 

then related to the relearning problem. The next three experiments consider the effect of 

changing the failure length because this alters the position at which the system receives a 

negative reward signal. Changing the failure angle would also have been appropriate, but 

was not investigated. In the first experiment, the benchmark ASE/ACE system was allowed 

to achieve success, and then the failure length was changed from 2.4m to 1.5m. The results 

from ten runs are shown in Table 5.6. 
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Run Learn Cum TSTF Ave TSTF R-Trial Relearn Cum TSTF Ave TSTF 

1 10 1641 182.3 11 
2 12 11821 1074.6 23 10 12065 1206.5 
3 8 2709 387.01 9 
4 47 33810 735.0 58 10 20096 2009. 
5 16 5606 373.7 19 2 6226 3113.0 
6 29 10460 373.6 35 5 1691 338.2 
7 1 12 5241 476.5 19 6 2538 423.0 
8 1 
9 141 94863 677.6 146 4 6288 1572.0 

10 12 2704 245.8 20 7 9983 1426.1 

Mean 31.9 18761.7 1 502.9 6.3 8412.4 1441.2 
St Dev 42.8 30206.6 1 280.1 3.0 6341.6 952.5 
St Err 14.3 10068.9 1 93.4 1.1 2396.9 360.0 

Table 5.6 - Time to Releam: Change Failure Length (2.4m -> 1.5m) 

The results show that it took a mean of 31.9 trials and 502.9 time steps per trial 

prior to success to learn how to balance the pole. This is inconsistent with the previous 

experiments, but it is likely that this mean reflects the result in Run 8 where the system 

never achieved success, and Run 9 where the system needed 141 time steps to initially 

achieve success. These runs could have been replaced by more successful runs, but this 

would give a false interpretation on the results in these experiments. There will always be 

extreme outliers, and it is the role of the standard error and similar statistics to identify 

their influence and thus reduce their significance in the interpretation of results. In this 

case, the standard error is low for relearning thus suggesting that relearning was not greatly 

affected. Seven runs actually required additional trials to creleam', with a mean of 6.3 trials 

and 1441.2 time steps per trial. 

In the next experiment, the benchmark ASE/ACE system was allowed to achieve 

success, and then the failure length was changed from 2.4m to 1.0m. The results from ten 

runs are shown in Table 5.7. 
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Run Learn Cum TSTF Ave TSTF R-Trial Relearn Cum TSTF Ave TSTF 

1 12 10614 964.9 42 29 17055 588.1 
2 16 4577 305.1 100 83 70570 850.2 
31 9 2364 295.51 52 42 38118 907.6 
4 16 6344 422.9 30 13 2827 217.5 
5 50 28693 585.6 62 11 10785 980.5 
6 12 2415 219.5 43 30 11176 372.5 
7 201 3373 177.5 36 151 5933 395.5 
8 23 5560 252.7 1 40 16 7375 460.9 
9 8 880 125.7 9 

10 11 4836 483.6 31 19 3077 161.9 

Mean 17.7 6965.6 383.3 28.7 18546.2 548.3 
St Dev 12.3 8095.4 248.8 1 22.7 22295.1 301.9 
St Err 3.9 2560.0 78.7 1 7.6 7431.7 100.6 

Table 5.7 - Time to Relearn: Change Failure Length (2.4m 4 1.0m) 

The results show that it took a mean of 17.7 trials and 383.3 time steps per trial 

prior to success to learn how to successfully balance the pole. All but one run required 

additional trials to 'releam' to successfully balance the pole, with a mean of 28.7 trials and 

548.3 time steps per trial. 

In the third experiment, the benchmark ASE/ACE system was allowed to achieve 

success, and then the failure length was changed from 2.4m to 0.5m. The results from ten 

runs are shown in Table 5.8. 
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Run Learn Cum TSTF AveTSTF R-Trial Relearn Cum TSTF Ave TSTF 

1 12 10614 964.9 
2 14 7832 602.5 
3 211 9092 454.6 178 1561 71203 456.4 
4 91 3968 496.0 37 27 6048 224.0 
5 101 1426 158.4 11 
6 81 1083 154.7 
7 13 3116 259.7 
8 14 2389 183.8 15 
9 27 6817 262.2 

10 13 2965 247.1 74 60 1 11633 193.9 

Mean 14.1 4930.2 378.4 81.0 29628.0 291.4 
St Dev 5.8 3386.6 257.1 67.0 36113.1 143.7 
St Err 1.8 1070.9 81.3 38.7 20849.9 83.0 

Table 5.8 - Time to Relearn: Change Failure Length (2.4m -> 0.5m) 

The results show that it took a mean of 14.1 trials and 378.4 time steps per trial 

prior to success to learn how to successfully balance the pole. Only five runs managed to 

6releam' to successfully balance the pole. Only three of these five runs required additional 

trials, with a mean of 81.0 trials and 291.4 time steps per trial. These results taken 

collectively suggest that the system had great difficulty in relearning. 

All of the previous experiments considered the benchmark ASE/ACE system, and it 

would now be useful to compare the performance of the modified adaptive critic system 

(with amygdala component and modulated coefficients) with the results that have already 

been described. However, it is not possible to repeat all of the previous experiments using 

the modified adaptive critic system because of the simulation time that would be 

necessitated. Therefore, only one of these experiments will be selected as a suitable 

relearning experiment to allow comparisons between the benchmark ASE/ACE system and 
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the modified adaptive critic system. The mean number of trials and steps to learn and 

relearn for the benchmark ASE/ACE experiments is surnmarised in Table 5.9. 

Exp. Trials (L) St Err Steps (L) St Err N Trials (R) St Err Steps (R) St Err 

Pole 18.11 3.4 530.9 88.6 5 9.6 5.3 1976.6 784.1 
Mass 18.0 1 3.8 436.8 102.6 4 15.3 10.7 1741.1 869.3 

I I I 
Length = 1.5 31.9 14.3 502.9 93.4 7 6.3 1.1 1441.2 360.0 
Length = 1.0 17.7 3.9 383.3 78.7 9 28.7 7.6 548.3 100.6 

1 

Length = 0.5 14.1 1.8 378.4 81.3 3 81.0 38.7 291.4 83.0 

Table 5-9 - Summary of Results (Benchmark ASE/ACE System) 

Table 5.9 shows the following information transposed from the results of the 

previous five experiments using the benchmark ASE/ACE system :- 

'Trials (L)' - the mean number of trials to achieve success in the learning phase 

'Steps (L)' - the mean number of steps required to achieve success in the leaming phase 

'N' - the number of runs that required additional trials in the relearning phase 

'Trials (R)' - the mean number of additional trials required to achieve success in the 

releaming phase 

'Trials (R)' - the mean number of steps per additional trial required in the relearning phase 

'St Err' - the standard error for the value given in the preceding column 

The results given in Table 5.9 suggest that changing the failure length from 2.4m 

to 1.0m is a suitable and challenging experiment for relearning. The change from 2.4m to 

0.5m is clearly too difficult because in half of the runs relearning did not occur, and so this 

experiment is not suitable. The change from 2.4m to 1.5m could be used, but the change 
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from 2.4m to 1.0m is better because more runs show trials needing additional 

reinforcements to achieve relearning. This experiment is therefore a more challenging 

problem for relearning. It is now possible to investigate the modulation of coefficients in 

the modified adaptive critic system, and the effect that this has on relearning in the pole 

balancing problem. 

5.7 - Performance of the Modified Adaptive Critic System on Relearning 

It was suggested in Chapter Four that the adaptive critic system can be modified to 

include an 'amygdala component', and that the learning coefficients in the equations of the 

adaptive critic system can be modulaied in accordance with information provided by the 

amygdala component. The modified adaptive critic system is shown again in Figure 5.6. 

AMYGDALA 
COMPONENT 

Affect 
Signal 

Affect CRITIC Signal 

Effective 
Rr einforcement 

Signal 
Reinforcement Signal 

ACTOR (Observed Plant Outputs) 

Control 
Inputs 

------------- 

PLANT Plant 
Outputs 

Environment Inputs L 
----------------- 

ENVIRONMENT 

Figjme-5, ý - Modified Adaptive Critic System 
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There are a number of possible experiments that can be conducted in order to 

investigate the effect of modulating coefficients in the learning and relearning phase of 

each experiment, as summarised in Table 5.10. 

Learn Relearn Experiment 

No Modulate No Modulate N/N 

No Modulate Modulate N/M 

Modulate No Modulate M/N 

Modulate Modulate MIM 

Table S. 10 - Modified Adaptive Critic Experiments 

Table 5.10 shows that four possible experiments can be conducted to investigate the 

effect of modulating coefficients in the leaming and relearning phase of each experiment. 

The first experiment (i. e. no modulation in either the learning or relearning phase) is 

equivalent to the experiments already conducted with the benchmark ASE/ACE system. 

The remaining three experiments will be conducted for each coefficient that is modulated, 

and the column 'Experiment' gives the legend that will be used when referring to these 

experiments. 

It was also suggested in Chapter Four that the coefficients most likely to have an 

effect on relearning are the discount factor 'y', and the temporal difference learning 

coefficient 'X'. There are other coefficients in the adaptive critic system equations that 

affect learning which are also likely to influence relearning. The coefficient '(x' affects the 

learning rate of the actor (ASE) and the coefficient 'P' affects the leaming rate of the critic 

(ACE). The hypothesis is that when a change in the reinforcement contingency is detected 

by the amygdala component, an affect signal will be provided that will enhance the effect 

132 



of a particular leaming coefficient. The following sections will investigate this hypothesis 

experimentally using the modified adaptive critic system. Each experiment will use the 

relearning benchmark simulation parameters described previously, i. e. changing the failure 

length from 2.4m to 1.0m. The purpose of the amygdala component is to record when a 

reinforcement is received in a particular state, i. e. when the system fails in a particular state 

and the negative reward signal (r = -1) is provided. This was achieved by setting up an 

array of 162 elements, A, where each element corresponds to a system state. All elements 

in the array are initially set to zero. Whenever modulation of coefficients was required, the 

following rules were observed :- 

If the system enters state xfor thefirst time [A(x) = 0], 

modulate coefficient because novelty (a new state) has been detected 

let A (x) = -1 if the negative reward signal is received, 

otherwise let, 4(x) = 1. 

Else if the system enters a 'safe'state that it has previously encountered [A (x) = 1], 

let A (x) = -1 if the negative reward signal is received, modulate coefficient, 

else do not modulate coefficient, but allow it to decay. 

Else if the system enters an 'unsafe'state that it has previously encountered [A (x) = -1] 

let A (x) =I if the negative reward signal is not received, modulate coefficient 

else do not modulate coefficient, but allow it to decay. 

When the reinforcement contingency is changed as a result of changing the failure 

length from 2.4m to 1.0m, the above rules will allow any discrepancy between the 

expected reinforcement and the actual reinforcement to be detected. This discrepancy may 

be considered an 'unexpected reinforcement'. Note that this includes both situations 
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whereby a failure was expected in a state and not received, or a failure was received in a 

state but was not expected. In the benchmark relearning experiment defined here, only the 

latter could ever be true. This is because as the failure length is reduced, the number of 

states over which reinforcement signals can be received is increased, thus the system will 

never expect a reinforcement and not receive it. If the failure length was increased, then the 

former could be true and would also be considered an 'unexpected reinforcement'. This is 

therefore the basis for modulating the coefficients of interest. The coefficients c7 9, CV, W, 

and 'P' are modulated at the end of each trial by substituting them for coefficient in 

Equation (10): 

coefficient, i�, =K* coefficienttrial-, + co 

The term 'K' represents the decay rate, and the term 'co' is an increment or 

decrement that will be described in each of the experiments. Every coefficient has a 

maximum and minimum value that has been arbitrarily set, and this provides a range 

between which each coefficient is modulated as described in the following experiments. 

5.7.1 - Modulating the 'cc' Learning Coefficient 

The 'a' coefficient is the ASE learning coefficient given in Equation (13), and was 

a constant set to 1000.0 in the benchmark ASE/ACE system. The original Barto et al. 

simulations set the 'a' coefficient to a high value so that large changes would be reflected 

in the weights upon reinforcement [Barto et al., 1983]. This caused the probability of a 

rewarded action to become nearly one, and the probability of a punished action to become 

nearly zero. This was their attempt to make the system choose the same action each time its 

state was entered in any given trial, but Barto et al. conceded that this may be inappropriate 
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for problems where a particular state can receive conflicting reinforcement signals during 

trials. The relearning experiment used here is such a problem because states may receive 

different reinforcement signals when the failure length is changed. For the sake of 

comparison with the original ASE/ACE system, the 'a' coefficient will be modulated over 

a similar range of values in these experiments. The 'cc' coefficient was initially set to a 

maximum value of 1000.0, and allowed to decay at the end of each trial to a minimum 

value of 500.0 with a decay rate of ic = 0.8. The increment co = 200.0 was added to the 

coefficient if the system failed in a state for the first time, or the system received an 

'unexpected reinforcement'. The 'a' coefficient was thus modulated within the range 500.0 

< (x :! ý 1000.0 during each ran. The system was allowed to achieve success, and then the 

failure length was changed from 2.4m to 1.0m. The results from ten runs in all three 'ot' 

coefficient modulation experiments (N/M, M/N and M/M) are shown in tables 5.11 to 5.13. 

Run Learn Cum TSTF Ave TSTF R-Trial Relearn Cum TSTF Ave TSTF 

1 15 2725 194.6 38 22 16333 441.4 
2 8 1136 162.3 27 18 10686 411.0 
3 231 8318 378.1 36 121 4589 131.1 
4 23 7737 351.7 49 25 13428 279.8 
5 57 21603 385.8 63 5 5934 95.7 
6 11 7543 754.3 32 20 14440 465.8 
7 32 11151 359.7 35 2 808 23.8 
8 29 , 6959 248.5 45 15, 10974 249.4 
9 15 1 8496 606.9 27 11 11622 447.0 

10 15 1 3696 264.0 16 

Mean 22.8 7936.4 370.6 14.4 9868.2 282.8 
St Dev 14.3 5677.5 183.9 1 7.7 1 5071.6 168.9 
St Err 4.5 1795.4 58.2 1 2.6 1 1690.5 56.3 

Table-5-1 1- Modulating the 'a' Coefficient, N/M 
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The results for the N/M experiment (Table 5.11) show that it took a mean of 22.8 

trials and 370.6 time steps per trial to learn how to successfully balance the pole. Nine runs 

needed additional trials to 'relearn' with a mean of 14.4 trials and 282.8 time steps per trial. 

Run Learn Cum TSTF Ave TSTF R-Trial Relearn Cum TSTF Ave TSTF 

1 17 6998 437.4 47 29 9979 216.9 
21 13 2340 195.0 40 26 11632 298.3 
31 20 6479 341.0 211 
41 15 2585 184.6 45 29 9197 209.0 
51 12 3008 273.5 18 5 6346 373.3 
61 12 3633 330.3 36 23 8796 251.3 
71 13 3744 312.0 15 1 3170 226.4 
8 15 4068 290.6 16 
9 13 6881 573.4 31 17 14892 496.4 

10 13 3186 265.5 30 16 7308 252.0 

Mean 14.3 4292.2 320.3 18.3 8915.0 290.5 
St Dev 2.5 1800.9 114.8 10.6 3515.7 98.9 
St Err 0.8 569.5 36.3 3.8 1243.0 35.0 

Table 5.12 - Modulating the 'a' Coefficient, M/N 

The results for the M/N experiment (Table 5.12) show that it took a mean of 14.3 

trials and 320.3 time steps per trial to learn how to successfully balance the pole. Eight runs 

needed additional trials to 'relearn' with a mean of 18.3 trials and 290.5 time steps per trial. 

136 



Run Learn Cum TSTF Ave TSTF R-Trial Relearn Cum TSTF Ave TSTF 

1 42 23971 584.7 53 10 4491 449.1 
2 16 3269 217.9 17 
31 30 6814 235.01 38 7 6814 973.4 
41 16 6137 409.1 29 12 7779 648.3 
51 49 41887 872.6 67 17 14581 857.7 
6 1 37 17711 492.0 53 15 10061 670.7 
7 1 11 3769 376.9 43 31 13101 422.6 
8 1 12 2078 188.9 13 
9 1 19 4020 223.3 21 1 594 594.0 

10 1 14 3018 232.2 15 

Mean 24.6 11267.4 1 383.3 1 13.3 8203.0 659.4 
St Dev 13.8 12960.8 1 218.1 1 9.4 4863.2 201.1 
St Err 4.4 4098.6 1 69.0 1 3.6 1838.1 76.0 

Table 5.13 - Modulating the 'a' Coefficient, M/M 

The results for the M/M experiment (Table 5.13) show that it took a mean of 24.6 

trials and 383.3 time steps per trial to learn how to successfully balance the pole. Seven 

runs needed additional trials to 'relearn' with a mean of 13.3 trials and 659.4 time steps per 

tri al. 

5.7.2 - Modulating the 'P' Learning Coefficient 

The T' coefficient is the ACE learning coefficient given in Equation (16), and was 

a constant set to 0.5 in the benchmark ASEACE system. In this experiment, the 'P' 

coefficient was initially set to 0.8, and allowed to decay at the end of each trial to a 

minimum value of 0.2 with a decay rate of ic = 0.8. The increment co = 0.2 was added to the 

coefficient each time the system encountered an unexpected reinforcement. The 'P' 

coefficient was thus modulated within the range 0.2 :! ý P :50.8 as each run progressed. The 

results from ten runs in all three 'P' coefficient modulation experiments (N/M, M/N and 

M/M) are shown in tables 5.14 to 5.16. 
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Run Learn Cum TSTF Ave TSTF R-Trial Relearn Cum TSTF Ave TSTF 

1 11 1333 133.3 16 4 3154 788.5 
2 29 17001 607.2 44 14 3822 273.0 
3 161 3208 213.9 18 11 4608 4608.0 
4 21 8533 426.7 53 31 42341 1365.8 
5 37 11426 317.4 39 1 53 53.0 
6 13 2839 236.6 14 
7 17 3418 213.6 25 7 8343 1191.9 
8 11 1 1675 167.5 28 16 , 16282 1017.6 
9 56 14418 262.1 77 20 15123 756.2 

10 10 1285 142.8 11 

Mean 22.1 6513.6 272.1 11.8 11715.8 1256.7 
I St Dev 14.8 1 890.4 146.6 1 10.5 1 13648.1 1423.8 
1 St Err 4.7 1 1862.7 46.3 1 3.7 1 4825.3 503.4 

Table 5.14 - Modulating the 'D' Coefficient, N/M 

The results for the NIM experiment (Table 5.14) show that it took a mean of 22.1 

trials and 272.1 time steps per trial to learn how to successfully balance the pole. Eight runs 

needed additional trials to 'releam' with a mean of 11.8 trials and 1256.7 time steps per 

tri al. 

Run Learn Cum TSTF AveTSTF R-Trial Relearn Cum TSTF AveTSTF 

1 35 8777 258.1 40 4 2043 510.8 
2 99 39940 407.6 120 20 7568 378.4 
31 10 1544 171.61 33 22 11698 531.7 
4 13 3973 331.1 14 
5 10 1592 176.9 31 20 7436 371.8 
6 13 4618 384.8 40 26 12490 480.4 
7 121 4769 433.5 19 61 1906 317.7 
8 36 10537 301.1 45 81 1859 232.4 
9 25 7615 317.3 33 71 11206 1600.9 

10 18 3474 204.4 19 

Mean 27.1 1 8683.9 298.6 14.1 7025.8 553.0 
St Dev 27.1 11372.5 94.5 8.7 4588.2 435.4 
St Err 8.6 1 3596.3 29.9 3.1 1622.2 153.9 

Table 5-15 - Modulating the 'P' Coefficient, M/N 
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The results for the M/N experiment (Table 5.15) show that it took a mean of 27.1 

trials and 298.6 time steps per trial to learn how to successfully balance the pole. Eight runs 

needed additional trials to 'releam' with a mean of 14.1 trials and 553.0 time steps per trial. 

Run Learn Cum TSTF Ave TSTF R-Trial Relearn Cum TSTF Ave TSTF 

1 29 10890 388.9 32 2 376 188.0 
2 55 59137 1095.1 75 19 9257 487.2 
3 131 4042 336.8 43 291 29836 1028.8 
4 191 5579 309.9 24 41 6815 1703.8 
5 121 2376 216.0 14 1 634 634.0 
6 121 1516 137.8 13 
7 il l 1813 181.3 14 2 297 148.5 
8 25 3286 136.9 39 13 8720 670.8 
9 7 799 133.2 8 

lo 8 1427 203.9 20 il l 6942 631.1 

Mean 19.1 1 9086.5 314.0 10.1 7859.6 686.5 
St Dev 14.5 1 17833.5 288.8 10.0 9658.4 498.0 
St Err 4.6 1 5639.4 91.3 3.5 3414.8 176.1 

TaWe 5J-6 - Modulating the 'P' Coefficient, M/M 

The results for the M/M experiment. (Table 5.16) show that it took a mean of 19.1 

trials and 314.0 time steps per trial to learn how to successfully balance the pole. Eight runs 

needed additional trials to 'relearn' with a mean of 10.1 trials and 686.5 time steps per trial. 

Figure 5.7 shows a simulation screen taken during Run 2 of the M/M experiment. 
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The screen shows that the 'P' coefficient was modulated between 0.2 and 0.8. All 

other coefficients were set to benchmark values. The system first achieved success in trial 

55, and then the failure length was changed. Success was next achieved in trial 75. 

5.7.3 - Modulating the ly' Discount Factor 

The 'y' coefficient is the discount factor given in Equation (15), and was a constant 

set to 0.95 in the benchmark ASE/ACE system. The closer the value of 17' is to one, the 

less the discount and hence the delayed consequence of the current prediction becomes 

more significant. For relearning, it is argued that unexpected reinforcements should 

enhance the learning of more recent reinforcements (described as a tactical objective in 
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Chapter Four), and hence 'y' should be reduced to discount the effect of the current 

prediction in preference for the most recent reinforcement. The '7' coefficient was initially 

set to 0.5, and allowed to increase towards its maximum value of 0.95 at the end of each 

trial with a growth rate ic = 1.25. When an unexpected reinforcement occurred, the 

decrement co = -0.5 was added. This allowed the 'y' coefficient to be modulated within the 

range 0.5 :: ý 7:! ý 0.95 as each run progressed. Each time an unexpected reinforcement was 

detected, the value of 'y' would go down thus increasing the discount of the current 

prediction, making this prediction less significant. The results from ten runs in all three 'y' 

coefficient modulation experiments (N/N4, M/N and M/M) are shown in tables 5.17 to 5.19. 

Run Learn Cum TSTF Ave TSTF R-Trial Relearn Cum TSTF Ave TSTF 

1 12 10614 964.9 35 22 15799 718.1 
2 18 10041 590.6 47 28 16646 594.5 
3 151 7586 541.9 20 41 4478 1119.5 
4 131 3007 250.6 25 ill 17433 1584.8 
5 141 2416 185.8 25 10 13259 1325.9 
6 13 3008 250.7 14 
7 10 1643 182.6 13 2 3108 1554.0 
8 21 6180 309.0 26 4 3126 781.5 

- 9 17 3827 239.2 71 53 1 39349 742.4 
10 18 1 5074 298.5 31 12 1 3191 265.9 

1 
Mean 15.1 5339.6 381.4 16.2 12932.1 965.2 

St Dev 3.3 3181.9 248.2 16.2 11722.1 454.9 
St Err 1.1 1006.2 78.5 5.4 3907.4 151.6 

Table 5.17 - Modulating the 'y' Discount Factor, N/M 

The results for the N/M experiment (Table 5.17) show that it took a mean of 15.1 

trials and 381.4 time steps per trial to learn how to successfully balance the pole. Nine runs 

needed additional trials to 'relearn' with a mean of 16.2 trials and 965.2 time steps per trial. 
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Run Learn Cum TSTF AveTSTF R-Trial Relearn Cum TSTF Ave TSTF 

1 125 42421 342.1 187 61 19054 312.4 
2 124 89328 726.2 139 14 5924 423.1 
3 133 115768 877.0 174 40 14397 359.9 
4 177 72499 411.9 195 17 5009 294.6 
5 26 13538 541.5 36 9 5817 646.3 
6 74 14706 201.5 90 15 8990 599.3 
7 72 1 72199 1016.9 81 81 5499 687.4 
8 96 46351 487.9 130 33 19771 599.1 
9 38 15908 429.9 62 23 8464 368.0 

10 35 22946 674.9 60 24 8297 345.7 

Mean 90.0 1 50566.4 571.0 24.4 10122.2 463.6 
St Dev 49.7 1 35602.7 251.5 16.4 5599.5 151.7 
St Err 15.7 1 11258.6 79.5 5.2 1770.7 48.0 

Table 5.18 - Modulating the 'y' Discount Factor, M/N 

The results for the M/N experiment (Table 5.18) show that it took a mean of 90.0 

trials and 571.0 time steps per trial to learn how to successfully balance the pole. The large 

mean number of trials to learn is interesting because the discount factor helps solve the 

temporal credit assignment problem by reducing the contribution of the current prediction, 

and therefore increases the contribution of previous predictions or actual reinforcements. 

Modulating the discount factor in the early stages of learning greatly decreases the 

contribution of the current prediction, and may therefore be detrimental to the initial 

learning process because the system loses the opportunity to acquire the necessary 

information in order to predict reinforcement. This may explain the high value for the 

mean number of trials to learn when using the modified adaptive critic system. All ten runs 

in this experiment needed additional trials to 'releam' with a mean of 24.4 trials and 463.6 

time steps per trial. 
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Run Learn Cum TSTF Ave TSTF R-Trial Relearn Cum TSTF Ave TSTF 

1 85 25418 302.6 93 7 6921 988.7 
2 7 426 71.0 8 
3 691 44117 648.8 81 Ill 8784 798.5 
4 541 9022 170.2 63 

- 
8 6923 865.4 

5 521 18004 353.0 ý 1 8 12025 1503.1 
6 1151 33467 293.6 160 44 25248 573.8 
7 118 43442 371.3 159 40 34266 856.7 
8 54 16639 313.9 73 18 5093 282.9 
9 91 3166 35.2 135 43 13217 307.4 

10 18 10519 618.8 20 1 476 476.0 

1 
Mean 66.3 20422.0 317.8 20.0 1 12550.3 739.2 

St Dev 37.1 15749.1 202.1 17.3 10679.8 382.5 
St Err 11.7 4980.3 63.9 5.8 

1 
3559.9 127.5 

Table 5.19 - Modulating the 'y' Discount Factor, M/M 

The results for the M/M experiment (Table 5.19) show that it took a mean of 66.3 

trials and 317.8 time steps per trial without success to learn how to successfully balance the 

pole. Table 5.19 also shows that nine runs needed additional trials to 'releam' with an 

average of 20.0 trials and 739.2 time steps per trial. Figure 5.8 shows a simulation screen 

taken during Run 7 of the M/M experiment. 
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Figure_, 5,, 8 - Simulation Screen: Modulating 'y' 

Figure 5.8 shows that the system first achieved success in trial 118 of Run 7, and 

then the failure length was changed. Success was next achieved in trial 159 (not shown in 

the figure). 

5.7.4 - Modulating the I?, ' Coefficient 

The W coefficient is the coefficient used in the ACE eligibility trace given in 

Equation (17), and was a constant set to 0.8 in the benchmark ASE/ACE system. The 

closer the value of W is to one, the greater the number of past steps that will be considered 

and hence the greater the number of states that will eligible for update. For relearning, it 

may be argued that unexpected reinforcements should increase number of steps that are 
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considered, and hence W should also be increased when relearning is required. The 'X' 

coefficient was initially set to 0.8 and allowed to decrease towards its minimum value of 

0.2 at the end of each trial with a decay rate ,c=0.8. When an unexpected reinforcement 

occurred, the increment co = 0.5 was added. This allowed the ', %' coefficient to be 

modulated within the range 0.2 :! ý % :! ý 0.8 as each run progressed. The results from ten runs 

in all three '), ' coefficient modulation experiments (N/M, M/N and M/M) are shown in 

tables 5.20 to 5.22. 

Run Learn Cum TSTF AveTSTF R-Trial Relearn Cum TSTF Ave TSTF 

1 12 10614 964.9 34 21 16604 790.7 
2 8 3277 468.1 28 19 10069 529.9 
31 18 7743 455.51 40 21 22341 1063.9 
4 14 6947 534.41 15 
5 15 2605 186.1 35 19 21672 1140.6 
6 23 7051 320.5 39 15 9127 608.5 
7 43 32019 762.4 55, 11 17368 1578.9 
8 11 3963 396.3 12 
9 54 11090 205.2 55 

10 44 9249 215.1 56 11 7359 669.0 

Mean 24.2 9455.8 451.2 16.7 14934.3 911.6 
St Dev 16.5 8455.4 252.2 4.4 6106.7 372.4 
St Err 5.2 2673.8 79.8 1.7 2308.1 140.7 

Table 5.20 - Modulating the'V Coefficient, N/M 

The results for the N/M experiment (Table 5.20) show that it took a mean of 24.2 

trials and 451.2 time steps per trial to learn how to successfully balance the pole. Seven 

runs needed additional trials to 'releam' with a mean of 16.7 trials and 911.6 time steps per 

trial 
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Run Learn Cum TSTF Ave TSTF I R-Trial Relearn Cum TSTF Ave TSTF 

21 10614 530.7 47 25 15526 621.0 
21 10 3277 364.1 11 
31 31 7743 258.1 44 12 11682 973.5 
41 10 6947 771.91 11 
51 37 2605 72.4 72 34 25837 759.9 
61 12 7051 641.0 14 1 1958 1958.0 
71 19 32019 1778.8 371 17 7039 414.1 
8 1 26 3963 158.5 27 
9 1 10 11090 1232.2 12 1 2887 288 

, 
7.0 

10 1 23 9249 420.4 59 35 11999 342.8 
1 

Mean 19.9 9455.8 622.8 17.9 10989.7 1136.6 
St Dev 9.6 8455.4 1 526.9 

- 
14.2 8219.4 

'942.1 St Err 3.0 2673.8 1 166.6 5.4 3106.6 356.1 

Table 5.21 - Modulating the ', %' Coefficient, M/N 

The results for the M/N experiment (Table 5.21) show that it took a mean of 19.9 

trials and 622.8 time steps per trial to learn how to successfully balance the pole. Seven 

runs needed additional trials to 'relearn' with a mean of 17.9 trials and 1136.6 time steps 

per trial. 

Run Learn Cum TSTF Ave TSTF R-Trial Relearn Cum TSTF Ave TSTF 

1 12 10614 964.9 25 12 7301 608.4 
2 15 3730 266.4 27 11 7005 636.8 
31 22 14583 694.41 32 9 11920 1324.4 
41 20 8899 468.41 26 5 4648 929.6 
5 20 10794 568.1 44 23 997 43.3 
6 7 828 138.0 50 42 18969 451.6 
7 28 10523 389.7 49 1 20 19595 979.8 
8 17 4826 301.6 30 1 12 5369 447.4 
9 1 14 6140 472.3 38 23 17411 757.0 

10 1 18 12274 722.0 24 5 5538 1107.6 
1 

Mean 17.3 8321.1 498.6 16.2 9875.3 728.6 
St Dev 5.8 4289.4 246.5 1 11.2 6652.2 372.9 
St Err 1.8 1356.4 77.9 1 2103.6 117.9 

Table 5.22 - Modulating the W Coefficient, M/M 
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The results for the M/M experiment show that it took a mean of 17.3 trials and 

498.6 time steps per trial to learn how to successfully balance the pole. All ten runs 

required additional trials to 'relearn' with a mean of 16.2 trials and 728.6 time steps per 

trial. Figure 5.9 shows a simulation screen from Run 6 of the M/M experiment. The system 

first achieved success in trial 7, and then the failure length was changed. Success was next 

achieved in trial 50. 
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5.8 - Analysis of Results 

The previous section outlined a number of simulation experiments that were 

conducted to investigate the performance of the modified adaptive critic system with an 

amygdala component used as the basis for modulating coefficients. It is now appropriate to 

investigate the significance of the results from these experiments using statistical analysis. 

The results of the modified critic experiments, as well as the benchmark ASE/ACE system 

without modulation, are surnmarised in Table 5.23. 

Exp. Trials (L) St Err Steps (L) St Err n Trials (R) St Err Steps (R) St Err 

No Mod 17.7 3.9 38 .3 78.71 9 28.7 7.6 548.3 100.6 

Alpha NIM 22.81 4.5 370.6 58.2 9 14.41 2.6 282.8 56.31 
Alpha MIN 14.31 0.8 320.3 36.3 8 18.3 3.8 290.5 35.01 
Alpha M/M 24.6 4.4 383.3 69.0 7 13.3 3.6 659.4 76.0 

1 
Beta N/M 22.1 4.7 272.1 46.31 8 11.8 3.7 1256.7 503.4 
Beta MIN 27.1 8.6 298.6 29.9 81 14.1 3.1 553.0 153.9 
Beta MIM 19.1 4.6 314.0 91.3 81 10.1 3.5 686.5 176.1 

Gamma N/M 15.1 1.1 381.4 78.5 9 16.2 5.4 965.2 151.6 
Gamma MIN 90.0 15.7 571.0 79.5 1 10 24.4 1 5.2 463.6 48.0 
Gamma M/M 66.3 11.7 317.8 63.9 9 20.0 5.8 739.2 127.5 

Lamda NIM 24.2 5.2 451.2 79.8 7 16.7 1.7 911 .6 140.7 
Lamda MIN 19.9 3.0 622.8 1 .6 7 17.9 5.4 1136.6 356.1 

, Lamda M/M 1 17.3 1-1.8 498.6 1 77.9 1 10 1 16.2 1 3.6 728.6 117.9 

Table-5-2-3 - Summary of Results (Modified Adaptive Critic System) 

The following information has been transposed to Table 5.23 :- 

'Trials (L)' - the mean number of trials to achieve success in the learning phase 

'Steps (L)' - the mean number of steps required to achieve success in the leaming phase 

' gn' - the number of runs that required additional trials in the relearning phase 
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'Trials (R)' - the mean number of additional trials required to achieve success in the 

releaming phase 

'Trials (R)' - the mean number of steps per additional trial required in the relearning phase 

'St Err' - the standard error for the value given in the preceding column 

Each row in Table 5.23 represents an estimate of the mean trials and steps for 

learning and relearning (in each experiment) derived by taking a sample from the 

population as a whole. It is important to evaluate just how good these estimates are in case 

they are biased in some way. The most efficient estimates have the smallest standard errors 

and least variation in the data [Levin & Rubin, 1990]. As the sample size is less than 30 

and the population standard deviation is unknown, we can use the t distribution to estimate 

the mean within a given confidence interval, which assumes that the population 

distribution is approximately normal. Table 5.24 gives the results for the learning phase. 

Exp. Trials (L) St Err Limits Steps (L) St Err Limits 

No Mod 17.7 3.9 8.8 383.3 78.7 178.0 

Alpha N 22.8 4.5 10.2 370.6 58.2 131.6 
Alpha M 14.3 0.8 1.8 320.3 36.3 82.1 
Alpha M 24.6 4.4 10.0 383.3 69.0 156.1 

Beta N 22.1 4.7 10.61 272.1 46.3 104.71 
Ne-ta M 27.1 8.6 19.5 298.6 29.9 67.6 
Beta M 19.1 4.6 10.4 314.0 91.3 206.5 

Gamma N 1.1 2.5 381.4 78.5 177.6 
5amma M 90.0 15.7 35.5 1 571.0 79.5 179.8-1 
Gamma M 11.7 26.5 317.8 63.9 144.5 

Lamda N 24.2 1 5.2 11.8 451.2 79.8 180.5 
Camda M 19.9 1 3.0 1 6.8 622.8 166.6 1 376.8 

ll-amda M 17.3 1 1.8 1 4.1 1 498.6 77.9 1 176.21 

Table 5.24 - Interval Estimates for Learn Phase (95% Confidence, t=2.262) 
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In Table 5.24, the column 'Limits' determines the interval for the estimates at 95% 

confidence, and is calculated by multiplying the standard error by the t value (with 9 

degrees of freedom). Each experiment indicates where modulation did (M) or did not (N) 

take place in the learning phase. For the benchmark ASE/ACE system (no modulation), the 

mean number of trials in the learning phase is in the interval 17.7 ± 8.8, and the mean 

number of steps in the learning phase is in the interval 383.3 ± 178.0, with 95% 

confidence. A similar interval can be calculated for all trials and steps using the formula 

'Mean ± Limits'. The grey boxes indicate the mean results with the lowest standard errors 

used for hypothesis testing in Section 5.8.1. At the 95% confidence level, the results for the 

relearningphase are given in Table 5.25. 

Exp. n tI Trials (R) St Err Limits I Steps (R) St Err Limits 

No Mod 9 2.306 28.7 7.6 17.5 .,, 
**..., *.. *..,. *,... 
ý. 
'.,...........,. "..................: - 100.6 1765-. 1 

Alpha M 9 2.306 '. '., ', *., "., -'.... -. '-.. -.. -.........................,..,..,.,.,.. '. -'., -. ". '-..... '.. -.. '-. '... 1'.. "'.. '4'-.. '. '-, -,. '4"'.. -. 2.6 6.0 282.8 56.3 337.6 
Alpha N 8 2.365 3.8 9.0 290.5 35.0 314,5 
Alpha M 7 2.447 13.3 3.6 8.8 659.4 76.0 ý69.5 

Beta M 81 2.365 11.8 3.71 8.8 1256.71 503.4 4405.0 
Beta N 8 2.365 

,. 
':.,, - 31 7.3 553.0 153.9 1128.3 

Beta M 8 2.365 3.5 8.3 686.5 176.1 1457.7 

Gamma M 9 2.306 5.4 12.5 965.2 151.6 1 1887.8 
Gamma N 10 2.262 5.2 

...................... 
48.0 564.6 

Gamma M 9 2.306 20.0 5.8 13.4 127.5 1705.3 

Lamda M 7 2.7 - .7 4.2 911.6 140.7 585.3 

, Lamda 
! 
N:: 

ý 
7 2.447 5.4 13.2 1136. ý =6.1 

1 4705.4 
11-amda M 10 2.263 16.2 3.6 1 8.1 117.9 1 960.5 

Table "2 - Interval Estimates for Relearn Phase (95% Confidence, t values shown) 

In Table 5.25, the sample size varies between experiments and is given in the 

column headed W. The column 'Limits' determines the interval for the estimates at 95% 
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confidence, and is calculated by multiplying the standard error by the t value (with n-1 

degrees of freedom). Each experiment shows whether modulation did, M, or did not, N, 

take place in the relearning phase. For the benchmark ASE/ACE system (no modulation), 

the mean number of trials in the relearning phase is 28.7 ± 17.5, and the mean number of 

steps in the relearning phase is 548.3 ± 1763.1, with 95% confidence. A similar interval 

can be calculated for all trials and steps using the formula 'Mean ± Limits'. The grey boxes 

indicate the mean results with the lowest standard errors used for hypothesis testing in 

Section 5.8.1. 

5.8.1 - Hypothesis Tests 

The interpretation of these results is difficult given the relatively large interval 

observed for the benchmark ASE/ACE experiment, and the inconsistent nature of some of 

the results. There are some consistencies though, for example, the data suggests that 

modulating 'y' leads to a greater number of trials in the learning phase, and thus a greater 

number of reinforcements are required. The data also suggests that modulating any of the 

coefficients investigated leads to a reduced number of trials in the relearning phase, and 

hence less reinforcements are required. This is accompanied by an increased number of 

steps when 'P' and '7' are modulated in the releaming phase. These findings can be tested 

statistically with one-tailed hypothesis tests for the difference between means. The null 

hypothesis is that there is no difference between means, the alternative hypotheses are :- 

e that modulating Y gives a higher mean number of trials in the learning phase than the 

mean without modulation (Test 1) 

* that modulating the coefficients gives a lower mean number of trials in the relearning 

phase than the mean without modulation (Tests 2- 5) 
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* that modulating the 'P' and Y coefficients gives a greater number of steps in the 

relearning phase than the mean without modulation (Tests 6 and 7). 

The alternative hypotheses are based on the difference between the two means, and 

thus these hypothesis tests will calculate the upper limit for acceptance of the null 

hypothesis for a given level of significance. Any result that falls outside this upper limit 

will cause the null hypothesis to be rejected in favour of the alternative hypothesis, which 

means that this result is statistically significant at given level of significance. This 

information is highlighted by the grey boxes in Table 5.26 which summarises all 

hypothesis tests, column headings are indicated below. The significance level will be set to 

80% (the 95% limits are considered too restrictive). 

Test Meanl Mean2j Diff St Devl St Dev2 n1 n2 Pool Var Sigma tgO%, 
nl+n2 

Limit 

1 66.3 15.1 37.11 3.3 10 10 693.7 11.8 0.861 :: 1: f 
X 

2 18.3 14.4 MID 10.61 7.7 8 9. 84.1 4.5 0.863 ::. ý ý. a 
3 14.1 10.1 1M 8.7 10 8 8 87.8 4.7 0.865 4.1 
4 24.4 16.4 16.2 10 9 265.9 7.5 0.861 6.3 

739. ý 463.6 :::.: -7 :::: 2... 382.5 151.7 9 10 81033.3 130.8 0.861 
6 17.9 16.7 '.. -'. J' 1 .2 

4.4 7 7 110.5 5.6 0.868 :;!::!:::;:; `::;:: 4::: 9 
7 728.6 548.3 372.9 1 301. ý [0 9 1 116508.2 1 156.8 0.861 R. 

Table 5.26 - Hypothesis Tests (80% Significance, t values shown) 

o 'Test' - the test number 

9 'Meanl', 'Mean2' - the two means tested (note that means selected are the ones with 

the lowest standard error) 

9 'Difr - the difference between the means 

* 'St Devl', 'St Dev2' - the respective standard deviation of the two means 
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* 'nl', 'n2' - the size of sample from which the means are taken 

is 'Pool Var' -a pooled estimate of the population variance 

e 'Sigma' - the standard error of the difference between the two means 

* 't$O%, 
nl+n2' - the t value at 80% significance, and n1 + n2 degrees of freedom 

* 'Limit' - the upper limit for acceptance of the null hypothesis. 

From these results it can be seen that at 80% significance levels, only Test 3 and 

Test 6 lead to accepting the null hypothesis i. e. may be interpreted as there being no 

difference between the means in these experiments. These results suggest that at 80% 

significance levels, there is no statistical evidence that modulating 'P' gives a lower mean 

number of trials in the relearning phase than the mean without modulation, nor that 

modulating '?, ' gives a lower mean number of trials in the relearning phase than the mean 

without modulation. The inference that can be drawn from this statistical analysis is that at 

80% significance levels, there is a difference between the means in the other experiments 

conducted. This suggests the need for more detailed investigation of the modulation 

technique, and a greater understanding of the factors that have contributed to these 

findings. This is left to future research. 

5.9 - Summary 

This chapter described a benchmark pole balancing problem with standardised 

parameters. This benchmark was extended to allow consideration of the relearning 

problem, and a number of experimental simulations conducted to investigate the 

performance of the benchmark ACE/ASE system on relearning using the extended 

benchmark. The performance of the modified adaptive critic system using an amygdala 
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component and modulated coefficients on relearning was also investigated by experimental 

simulation, and the results from these simulations were presented in this chapter. Based on 

these experiments, there appear to be statistically significant results as regards the effect on 

relearning performance when using the modified adaptive critic system. This may be 

considered an opportunity for future work as discussed in the next chapter. 
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Chapter Six 

Summary and Future Work 

6.1 - Summary of the Thesis 

The research conducted for this thesis looked at reinforcement learning and 

relearning in intelligent control, and considered how biological systems can provide 

inspiration for dealing with the relearning problem. This chapter will summarise the thesis, 

and outline the main contributions that it makes to knowledge. The limitations in this work 

will be considered, and the opportunities for future work discussed. 

Chapter One provided a general introduction to the thesis, and described the 

various problems and requirements that have led to the need for this research. Intelligent 

control was described as a recent approach that aims to meet the demands of complex 

control problems. The relearning problem was described as one such problem that has 

resulted from the increasing demands made on control systems, such as the need for 

autonomous behaviour. It was argued that intelligent control attempts to address these 

problems by emulating the capabilities found in biological systems. These biological 

systems can be considered a useful source of inspiration for finding mechanisms that may 

perhaps be incorporated in intelligent control systems, and this is the rationale behind this 

research. The objectives of this work were therefore to investigate the reinforcement 

learning and relearning processes that occur in biological systems because these processes 

are likely to be involved in autonomous behaviour and other intelligent functions. This 

thesis specifically addressed releaming to see how biological systems deal with this 

problem. The aim was to see if there are any inherent mechanisms for dealing with 

155 



relearning found in biological systems that may provide inspiration for developing similar 

mechanisms in intelligent control systems. 

Chapter Two provided a detailed look at learning control systems, and described 

how they are able to learn about their environment and adapt to changes in that 

environment. Reinforcement learning was presented as a framework within which learning 

control problems can be formulated, and the computational mechanisms behind 

reinforcement learning were discussed. These mechanisms can deal with many problems 

including the temporal credit assignment problem. The adaptive critic system was 

described as an approach that uses the reinforcement learning framework, and consists of 

five levels of adaptive critic design leading towards more "brain-like" control. These may 

ultimately meet the demands of intelligent control. The level one adaptive critic system 

uses a computational architecture that relies on a fixed schedule of reinforcement, and has 

been designed to learn about its environment with the assumption that the environment 

does not change. It does not possess the ability to detect changes in reinforce"Ient 

schedules, although it can slowly deal with these changes (from results in Chapter Five). 

, tected, The relearning problem looks at how changes to reinforcement schedules can be de 

and how relearning can be achieved effectively, i. e. how to acquire new infonnatiorl at the 

same time as exploiting previous information that is still relevant. The thesis argued that 

C the adaptive critic system can benefit from a different approach to address these issu S, and 

needs to possess a mechanism that can more effectively deal with the relearning problem. 

This research therefore makes a contribution to knowledge by placing the rele3rjling 

problem into the context of reinforcement learning, and considering how the adaptive critic 

system may be able to address this problem. 

Chapter Three looked at reinforcement learning and relearning from a biOI05 
ical 

perspective, and proposed a conceptual model that describes how the amygdaloid cOolplex 
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needs to possess a mechanism that can more effectively deal with the relearning problem. 

This research therefore makes a contribution to knowledge by placing the relearning 

problem into the context of reinforcement learning, and considering how the adaptive critic 

system may be able to address this problem. 

Chapter Three looked at reinforcement learning and relearning from a biological 

perspective, and proposed a conceptual model that describes how the amygdaloid complex 
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is involved in the processes of learning and relearning. The model proposes that the 

amygdaloid. complex can influence a number of other systems when it detects that 

relearning is required, and this is achieved on the basis of detecting changes to the 

reinforcement contingencies. The model is based on the actions of various neurochemical 

substances that influence the amygdaloid complex and other structures. This conceptual 

model was an attempt to bring together evidence from many neurophysiological studies 

into a coherent model of how the amygdaloid complex is involved in reinforcement 

learning and relearning, and is thus a contribution to an understanding of the biological 

mechanisms involved. The model is speculative, but the development of such a model is a 

worthwhile endeavour consistent with the rationale behind this work, i. e. that biological 

mechanisms may provide inspiration for finding mechanisms to better address the 

releaming problem. 

Chapter Four described the Houk et al. [1995b] model which proposes that 

structures in the basal ganglia are able to generate signals that predict reinforcement. This 

model has considerable structural overlap with the conceptual model from Chapter Three, 

as well as functional aspects that are remarkably similar to the adaptive critic system 

described in Chapter Two. The Houk et al. model does not consider the involvement of the 

amygdaloid complex as suggested by the conceptual model, and the chapter described how 

the adaptive critic system could be modified using the conceptual model to include an 

camygdala component'. This component records actual reinforcements, and is thus able to 

detect changes in the reinforcement contingency thereby influencing learning in both the 

actor and critic. These components are represented by the equations of the adaptive critic 

system. It was suggested that the influence of the amygdala component should be most 

significant when relearning is required (i. e. novelty or unexpected reinforcement), and that 

the learning coefficients in the adaptive critic equations can be modulated on this basis. 
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The thesis therefore makes a contribution to the computational modelling of biological 

mechanisms with regard to the amygdaloid complex and its involvement in relearning. 

Chapter Five described pole balancing as a useful problem for investigating the 

behaviour of learning control systems, and presented a standardised benchmark problem 

specification. This benchmark was extended to allow consideration of the relearning 

problem by specifying possible experiments and parameters for investigating the relearning 

problem. A number of simulations were conducted to investigate the performance of the 

level one adaptive critic system on relearning using the extended benchmark. The 

performance of the modified adaptive critic system (with modulated coefficients) on the 

relearning problem was also investigated, and the results suggested statistically significant 

improvement in relearning performance with the modified adaptive critic system when 

compared to the performance of the level one adaptive critic system. This work represents 

a contribution to knowledge because it provides empirical results that can be used as the 

basis for future work on the relearning problem, and this may lead to further developments 

that may lead to addressing the relearning problem. 

6.2 - Limitations and Future Work 

The work in this thesis has a number of limitations. The discussion of the adaptive 

critic system in Chapter Two concentrates on the level one design, and is justified by the 

argument that biological mechanisms need to be understood on terms of the lower level 

designs before they can be applied to higher levels. A further justification is that some of 

the mechanisms used by the higher levels (such as backpropagation) are not biologically 

plausible given our current knowledge about the brain. It has been argued that higher level 

designs can already deal with some of the demands of complex control problems, such as 

158 



with Heuristic Dynamic Programming and its derivatives [Prokhorov & Wunsch 11,1996]. 

However, the higher level designs have no biological grounding, and do not look at the 

relearning problem explicitly. These higher level designs may benefit from looking at the 

problems of intelligent control (such as the relearning problem) from a biological 

perspective, and this is an opportunity for future work 

The conceptual model presented in Chapter Three primarily considers the 

interaction between the amygdaloid complex and the basal ganglia, and does not account 

for the other structures and neurochemical systems involved in the same learning processes 

(although these are implicated). The role of other structures and neurochernical systems 

needs to be better understood and put into the context of relearning, such as the 

involvement of the septo-hippocampal system (e. g. Denham & McCabe [1996]) and 

neuropeptides (e. g. Gallagher [1984], Graybiel [1990]). This is an area that will gradually 

be addressed by ongoing and future research. Similarly, the conceptual model of the 

amygdaloid complex proposed by this thesis accounts for individual amygdaloid nuclei and 

their external connections to other structures. It does not consider the internal connections 

between the amygdaloid nuclei because these are not yet fully understood. The model is 

therefore based on assumption, and there is a need for future research to clarify how the 

intrinsic connections of the amygdaloid complex are involved in the processes of 

reinforcement learning and relearning, thus leading to a more complete model. 

The modified adaptive critic system in Chapter Four is limited by the level of 

sophistication of the amygdala component, which is the basis for the modulation of 

learning coefficients. Modulation using the amygdala component needs to be refined so as 

to lead improved experimental results, and this is an area for future work. The modified 

adaptive critic system does not consider other biologically-inspired capabilities suggested 

by the conceptual model in Chapter Three. This includes the ability to switch between a 
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number of different control behaviours which may be potentially hard-wired into the 

system. This limitation arises from the fact that the experimental framework used is the 

benchmark pole balancing problem, which has only two possible control actions. Using a 

more difficult problem with a number of possible control actions or variable control 

strategies would enable the viability of a switching mechanism to be investigated, and is an 

excellent opportunity for future work. 

The relearning experiments conducted in Chapter Five look at the effect of 

modulating individual coefficients on relearning. Based on simulation results, there appears 

to be an improvement in relearning performance in terms of the average number of trials 

needed to relearn with modulated learning coefficients. This modulation is equivalent to 

the interaction of neurochemical substances in biological systems, and is consistent with 

the activity in a number of different neural structures at the same time. This suggests that a 

number of learning coefficients will need to be modulated at the same time, and this needs 

to be investigated. This is an opportunity for future work and may lead to significant 

improvements in the performance of the system on relearning. The considerable activity 

that is now taking place towards understanding the underlying neurochernical systems will 

provide new knowledge, and this is likely to lead to a clearer understanding of which 

coefficients need to be modulated, when, and how. This is particularly useful for 

algorithms like TD(k), where the value of the learning coefficient is specifically designed 

to influence the performance of the learning system. It would be interesting to investigate 

whether the coefficients have a detrimental influence on relearning performance when their 

modulation is counter to what would be expected, such as with '7' and 'V that have a 

strong theoretical basis. This aspect was not investigated, and represents an opportunity for 

future work. 
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It is important that the results presented in Chapter Five are placed into a wider 

context, as there has been very little work on the relearning problem from the perspective 

of changing reinforcement contingencies. The blocking and shortcut experiments with 

Dyna-Q [Sutton, 1990] use the changing worlds scenario which is similar, but integrates a 

number of approaches into a single algorithm. The objective is the same, i. e. how to exploit 

existing knowledge in order to reduce the costs of learning. Modulation of coefficients is 

equivalent to providing a 'boost' when relearning is necessary, very much in line with the 

exploration bonuses described by Dayan & Sejnowski [ 1996]. There are clearly advantages 

to using this technique, and what is now required is a better understanding of how to go 

about using parameter or coefficient modulation. The work in this thesis follows on from 

the work of Bapi et al. [1997], and the effect of modulated coefficients on relearning in the 

NRG system is an opportunity for future work. It is hoped that future research on the 

relearning problem will consider a variety of problems, and consider the modulation of 

coefficients in other reinforcement methods such as Q-Learning and advanced DP 

techniques. This will allow the results of this work to be put into a much broader context, 

which is necessary if the ideas presented by this thesis are to be realised in intelligent 

control systems. 
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A new neural network approach is descrihed fior 

the task of'pole-balancing, considered a benchmark 

leal-ning control problem. This approach combines 
Lj, (II-to, Sutton and Anderson's [11 Associative Search 

Element (ASE) with a Neuro-Resistive Grid (NRG) 

[21 acting as Adaptive Critic Element (ACE). The 

Ilovel feature in NRG is that it provides evaluation 

01 state based on propagation of the failure 

i, 
ýfOa, 

IIatiOII to the neighbours in the grid. NRG is 

111.7dated onl 
,v 

on a fidlure, and provides ASE with 

a contimms intemal reinfQrcement signal bY com- 

paring the value of the present state to the previous 

state. The resulting system learns more rapidl 
*v 

and 

with ftiver computations than that oj' Barto et al. 
f1j. To establish a uniform basis of comparison of' 

algol-ithins for pole balancing, both the s* vstems are 
* parameters and tests vinjillated using benchmai 

s1,7ecified in Geva and Sitte [3]. 

Keywords: Inverted pendulum problem; Reinforce- 

ment learning, Learning control; Nonlinear control; 
Neural networks; Neuro-resistive -rid method-, L, 

Value rnap 

1. Introduction 

pole-balancing or balancing-an-inverted-penduluilI 

has been identified as a benchmark problem for 

trainable controllers [3). The task consists of balanc- 
ing a pole, attached vertically to a movable cart. by 

applYinc" one dimensional forces of constant magni- 
tude to the base of the cart. The controller does not 
have access to the equations of motion (it' the sys- 

Ce and o whii rcqttestv io: R. Bapi, NcuroLk 
t . 

/fi YM11111C. " 
rý Group. School of Col"Pulill_ Ulliver"ily of Plylimildl, 

ply.,, ()Ijtli PL48AA. UK. enutil: C, , 

tem. The general problem here is to discover a Z4 
sequence of binary (right or left) control forces that 
call keep the system balanced for long periods of 
time. To enable this discovery, tile only information 
available to the learnina control sv. steni is a ric-ative 4- ztý reinforcement signal given when the system col- 
lapses. Hence, the controller faces the problem of 
evaluating its intermediate actions in the absence of 
any continuous external information. The strategy in 
these delayed reinforcement problems is to select 
the actions at every step that would reduce tile 
possibility of eventual failure. 

The system state space is determined by four 
variables, namely, the position of the cart oil the 
rail (measured with reference to the centro: of* tile 
railing), linear velocity of the cart, the angle of 
inclination of the pole (measured with reference to 
the vertical line), and the angular velocity of tile 
pole. To discover a sequence of correct control 
actions over this four dimensional space. it is easier 
if the space is quantised so that the problem remain,, 
tractable. The quantisation call be fixed a priori or 
learnt from the system behaviour [41. In tile Solution 
proposed in this paper, as was the case in III also. 
we will assume that the qUantisation is determined 
a priori. The effects of such a fixed quantisation 
scheme on the performance of' both tile algorithms 
are discussed at tile end of Sect. 4. Tile system 
equations, parameters, and the state space quanti-s- 
ation scheme are shown in Table 1. Tile controller 
is deerned to have failed if the pole angle exceeds 
the specified firnit or the cart reaches cither end 
point of the one dimensional railing. Based oil the 
failure signal the system needs 10 adjUSt its dCCiSiOllS 
and internal mechanisms that give rise to these 
decisions such that the future performance is 
improved. 

Several algorithnis have been proposed for solvill. 1, 
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Table 1. (a) System parameters. (b) state space quaritis- 
ation scheme. (c) polecart system equations (a minor error 
in the system equations given in Geva and Sitte [31 has L- 

been corrected): (d) diagram of' thc polecart system. 

Polecarl parameter Value 

L Ih of [lie track civ- 2.4 in 
Failure an. -Ics (0) ± 7T/2 rad 
Gravity (g) -9.81 nj/S2 

Len-th of the pole (21) L- 
1 ni 

Mass of' the cart (ni, ) I kg 
Mass of the pole (m, J 0.1 kg 
Control force (F) 10 N 
Integration time step 0.02 s 

a 

Variable Range Region 

[-2.4, -0.8) 1 
(III) [ -0.8,0.81 2 

(0.8,2.4] 3 

[-1.57, -0.21) 1 
[-0.21, -0.02) 2 
[-0.02,0.00) 3 

0 (rad) [0.00,0.021 4 
(0.02.0.21] 5 
(0.21.1.571 6 

(-, -0.5) 1 
(in/s) [-0.5,0.51 2 

(O. S. + X) 3 

(-7-. -0.87) 
0 (rad/. s) f -0.87,0.871 2 

(0.87. + oc) 3 

b 

this problem (see Geva and Sitte [31 for a good 
review), but ASE/ACE method appears the most 
general method of all these. The adaptive critic 
approach belongs to the famil of Temporal Differ- L- y 
ence (TD) learning algorithms wherein system states 
are evaluated based on a delayed reinforcement 
signal [51. The work presented here reports sirnul- 
ation results ot' tile ASE/ACE system of Barto et 
al. [11 oil benchmark parameters, and compares this 
approach with the new method using the neuro- 
resistive grid. 

In the adaptive critic method, Barto et al. [11 
introduced a way of coping with delayed reinforce- 
ment information. Each system state is associated 
with ail action and its evaluation. The action associa- 
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ted with a state is stored in the value of the weight 
connecting the decoder and the Associative Search 
Element (ASE). The evaluation of a state is stored 
in the value of the weight connecting the decoder 
and the Adaptive Critic Element (ACE). Value 
attached to a state indicates how often that state 
was part of a sequence of actions that led to system 
collapse. The system has to enter a state before its 
evaluation can be initiated. So it takes a long time 
to build the value map over the state space, and 
thereby leads to long learning times with this algor- 
ithm. In the work reported here, the basic architec- 
ture of Barto et al. [11 has been retained except For 
replacing the Adaptive Critic Element (ACE) with 
the Neuro-Resistive Grid (NRG). 

The design of the NRG technique was inspired 
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by the shape of the evaluation maps produced by 
the Temporal Difference (TD) learning methods in Cý 

a maze solving task [6]. The potential distribution 
in the resistive grid results from the flow of current 
away frorn the goal state. It does not exactly have 
the same shape as the evaluation map, and hence it 
does not produce exactly the same sequence of 
actions as in the TD learning method. However, 
qualitatively the resistive arid technique captures the 
essence of TD methods, assigning higher values to 
points close to the goal and proposing realisable 
paths that avoid obstacles. Due to the lateral connec- 
tions in the resistive grid, evaluations spread rapidly 
which improves generalisation, which is a weak 
point of TD learning methods [6]. TD learning 
methods are part of dynamic programming methods 
such as Q-1earning which evaluate state-action pairs 
instead of states alone [7]. For Q-1earning also, it 
was observed that lateral spread of evaluations leads 
to better generalisation [8]. Lateral communication 
also reduces exploration time and accelerates learn- 
ing. as will be outlined in later sections. 

A detailed description of the adaptive critic 
approach is given in the next section. Neuro-resistive 

grid method is outlined in Sect. 3, and its application 
to the pole-balancing problem is given in Sect. 4. 
Simulation results of these two systems (adaptive 

critic approach and the neuro-resistive grid method) 
are presented with a comparative discussion in 
Sect. 5. We will conclude with a summary and an 
outline of future directions in Sect. 6. 

2. Adaptive Critic Approach 

Since the new method proposed here is a variation 
of the adaptive critic approach of Barto et al. [1], 

the latter will be described in detail below. The 

control system configuration of Barto et al. [1] is 

shown in Table 2(a) and the equations for the system 
components are shown in Table 2(b). In the control- 
ler proposed by them, input to the controller is a 
vector of four variables specifying current values of 
the cart position (x), its velocity (, t), angle of the 
pole (0), and its angular velocity (b). This four 
dimensional space is then quantised (the quantisation 
parameters are given in Table 1) into 162 regions 
by the decoder. The decoder converts the input state 
vector into a 162-bit binary number (di) that has a 
unit value for the bit corresponding to the region 
that the input vector belongs to and a zero value 
for the remaining bits. Each of the regions (boxes) 
of the decoder is connected to both the Associative 
Search Element (ASE) and the Adaptive Critic 
Element (ACE) by a weight, ui and vj, respectively. 
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In other words, each of tile 162 system states has 
its own ASE and ACE weights, it, and vi, respect- 
ively. Based on the sign of' tile weight 0(j), ASE 
generates a binary control action 0, ), which in turn 
is transformed into a control force (F) to be applied 
to the right or left of the base of the cart. The 
weights (vi) attached to the Adaptive Critic Element 
(ACE) reflect the evaluation of states of the systern. 
The ACE receives an external reinforcement signal 
(r) when the pole cart system fails. The ternporal 
traces, ej and di, in ASE and ACE, respectively, 
help keep track of the time elapsed from the last 
visit to the state. This trace mechanism helps 
apportioning the blame for failure of the system to 
various states. As there is no intermediate reinforce- 
ment signal available to evaluate the actions of the 
ASE, an internal reinforcement signal Q) is gener- 
ated using the ACE weights (vj). The P signal is 
used to train the ASE weights. 

The weights to ASE and ACE are set to zero 
initially. The pole cart system always starts from 
the centre of the railing with zero initial condition 
on all the variables. Initial control actions from the 
ASE are random because of the noise term (noise(t)) 
in the ASE output equation in Table 2(b). This is a 
Gaussian noise term with zero mean and a standard 
deviation of 0.01. This small random term enables 
the controller to explore the space in the absence 
of a known control action. The learning in ASE 
results in enhancing the weights, so that eventually 
the weight value can overcome the randorn noise 
term, thereby generating a known (non-randorn) con- 
trol action. The control action amounts merely to 
applying a constant control force (F) on either the 
left or the right of the base of the cart. The system 
equations (in Table I(c)) are updated using this con- 
trol force. The equations are integrated numerically 
using Euler's method with a time step of 0.02 s. 
The decoder determines the next box that the system 
enters by decoding the new systern state vector. The 
above process is continued until the system fails. 
The time period that the system keeps the pole 
balanced is called a 'trial'. In our simulations, one 
hundred such trials constitute a 'run'. A run is 
terminated before 100 trials if the total tirne of 
balance exceeds 500000 time steps. as in Barto et 
al. [1]. This leads to unequal number of trials in 
different runs. To compare the performance across 
'runs', the data has to be adapted suitably. These 
details are discussed in Sect. 5. 

On the very first trial in each run. there is no 
evaluation (1)(t)) from ACE as the initial ACE 
weights (vi) are set to zero. The external failure 
signal (0 is always set to zero and made equal to 
-1 only when the system fails. So when a failure 
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Table 2. (a) ASE/ACE system configuration. Based oil tile state parameters from tile polecart system, decoder determines 
the box (t1j) that the system entered. This information is used to determine the control action (y) and update all tile 
weic, hts Oti and vi) (See text for more details. ), (b) equations for the adaptive critic systern. L- 
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ACE EQUATIONS: 
Prediction from ACE: 

ACE weights: 

ACE eligibility traces: 

p(t) = vl(I)di(l); di(t) is the decoded system state 

vi(t + 1) ý I'M) + ig P is a positive leaming constant 

di(I + 1) ý Aai(t) + (I - AX(t); A is trace decay rate constant 
Internal reinforcement signal: 

P(t) = r(t) + -yp(t) - p(t - 1); -y is discount factor, r is external failure signal 

ASE EQUATIONS: 
ASE output (control action fea to the polecart system): 

ASE weights: 

Y(t) = g[uj(I)dj(I) + noise(t)]; g[w] 
+ 1. if vi, ýý: 0 (right control force) 

- 1, if vv <0 (left control force) 

uj(t + 1) = ui(t) +a AI)ej(t); a is leaming rate 

ASE eligibility traces: 

b 

e, (t + I) = Se, (I) +0- S)y(I)di(l); 8 is trace decay rate constant 

occurs, the ACE weights of the boxes that the 
system visited will be updated as per the *equation 
in Table2(b). It is clear that, since the external 
reinforcement signal (r) is -1, the ACE weights 
will always be negative. A strong negative value 
for ACE weight (vi) indicates that after visiting this 
state, the pole cart system often failed. Whereas a 

value close to 0 for ACE weight, indicates that the 
state is associated with prolonged balancing epi- 
sodes. Barto et at. [1] termed the weights as 
reflecting prediction of failure. Hence they call p(t), 
the prediction signal. Alternatively, it can also be 
seen as the evaluation of a state and the resulting 
set of values over the state space, as a value map 

j 
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(for a general discussion of the idea of value map 
in neuro-resistive grid, see [21). According to Barto 
et al. [11, the failure signal leads to punishment of 
all the recent control actions of ASE that were 
preceding the failure and results in increasing the 
prediction of failure in all the recent boxes in ACE. 
To keep track of the visitations, a trace variable is 
turned on in each box whenever the system enters 
that box. The trace in ASE keeps track of both the 
nature of the action (rightlleft), and the length of 
time since that action took place. The trace in the 
ACE, however, does not have a sign component. 
ASE traces are reset on every trial but ACE traces 
are reset only at the beginning of a run. The effect 
of resetting the ACE traces every trial on the learn- 
ing speed is discussed in Sect. 5. The learning of 
the ASE weights is accomplished by an internal 

reinforcement signal provided by the adaptive critic 
element (ACE). ACE computes the internal 

reinforcement signal Q) by comparing the value of 
the current state and that of the previous state. 
1jsing this internal reinforcement signal, evaluations 
of all the visited states (i. e. the weights between 

decoder boxes and ACE) and actions performed (i. e. 

, weights between decoder boxes and ASE) are the 
adjusted 

in proportion to the recency information 

given by the ASE and ACE traces, ej and ai, 

respectively. 
As shown in the equations for weights 

in Table2(b), the updated weights are used for 

calculating prediction, p(t) and control action y in 

tile next time step and are updated continuously 

throughout the learning period. When the leaming is 

complete an ASE weight reflects appropriate control 

action for that box such that the pole remains bal- 

anced for long time periods. 
The internal reinforcement signal (P) is positive 

if the system moves from an 'unsafe' box to a 'safe 

bo%' and is negative if it is the other way round. 
VVith this signal the controller can modify both its 

actions and its state-evaluations continuously, and 
does not have to wait until the actual failure to 

occur before any modification can take place. 
Another notable feature in the evaluations made by 

ACE is that every move by the system will have 

consequences on the predictions of all the previously 

visited boxes in that run with the help of traces in 

ACE, For example, if the system moves from a 
to an 'unsafe' box, all the 'live' (whose traces 

arc turned on) ACE boxes are punished, that is, the 

prediction of failure is increased as a result of 
this move. Thus traces in ACE enable a form of 

generalisation across boxes. It needs to be empha- 

sised here that each box (state) must have been 

sited at least once before its evaluation can be Vi, - 
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assigned. This sole fact implies a lengthy training 
procedure for the ASE/ACE system. 

In the neuro-resistive grid approach, generalisation 
is achieved through lateral connections to the neigh- 
bouring states in the grid. Thus the structure of 
the grid itself makes the propagation of the value- 
information across boxes without resorting to traces 
in ACE. This mechanism reduces the number of 
computations dramatically as will be demonstrated 
in Sect. 5. 

3. Neuro-Resistive Grid (NRG) 
Approach 

3.1. Laplacian Methods 

In this section, Laplacian methods which are the 
precursors to the neuro-resistive grid approach, are 
discussed. Laplacian function methods were intro- 
duced for robot path-planning problems (see Ref. [2) 
for review). Connolly et al. [9] proposed the use of 
harmonic solutions of Laplace's equation as the path 
lines for a robot moving from a start point to a 
goal point. They considered obstacles as current 
sources and the goal as a sink (potential fixed at 
zero). These conditions amount to defining Dirichlet 
boundary conditions for solving Laplace's equation. 
Using this solution a potential field distribution can 
be calculated. Given a starting point the path to the 
goal can be easily constructed by following current 
lines, which amounts to performing a steepest 
descent on this potential field (that is, finding a 
succession of points with lower potentials that lead 
to the lowest potential in the domain which happens 
to be at the goal point). It has been demonstrated 
by Connolly et al. [91 that the path constructed by 
using gradient descent guarantees a path to the goal 
without encountering local minima and successfully 
avoiding any obstacles. If the positions of the goals 
and obstacles are fixed, then the potential field has 
to be calculated just once and can be used for any 
starting point. 

Tarassenko and Blake [10] modelled obstacles as 
non-conducting solids in a conducting medium, the 
starting point as a current source and the goal as 
an equal and opposite current sink. These conditions 
arnount to specifying Neumann boundary conditions 
for solving Laplace's equation. As the normal 
derivative is fixed at the boundaries (Neumann 
conditions) of the domain, the range of values of 
the potential gradients will be bounded and the 
gradients will not decay with distance as is the 
case with Dirichlet conditions. Once solutions of 
Laplace's equation are found under these boundary 

-gdm 
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conditions, a potential field can be computed. A 
gradient descent on this potential field determines 
the path from starting point to the goal. Tarassenko 
and Blake [101 asserted that a resistive grid 
implernentation of this method overcomes the com- 
putational problems inherent in this method. 

3.2. Neural Network Implementation of 
Laplacian Methods 

Bugmann et al. [21 proposed a neural implemen- 
tation of the resistive grid method, the Neuro- 
Resistive Grid (NRG) method. The domain is 
discretised and mapped into the nodes of a grid of 
neurons connected by weights. The information of 
the positions of the starting point, goal and obstacles 
are kept in a 'memory' layer which has the same 
number of nodes as the neuron-grid. The neuron- 
grid and the memory layer are connected in a one- 
to-one fashion. Thus, the activation of some of the 
nodes in the neuron-grid can be held fixed from the 
memory layer. Thus each neuron i calculates its 
activation or potential z; as follows: 

zi =f( 

wii. zi + 
where Wýj is the weight of the input from neuron j 
to neuron i, Ii is the input from the memory and 
J(. ) is the activation transfer function, which is a 
linear saturating function such as: 

0 if ý -:: ý 0 
flo C if 0<ý<I 

I if C> I 
By using Wij = l1n, where n is the number of 
neighbours; (= 2m where in is the dimension of a 
square grid), the neurons set their potentials to the 
average potential of all the ýeighbours. Bugmann el 
al. [2] have shown that this formulation leads to a 
Poisson equation and the solution of this Poisson 
equation determines the activation (potential) distri- 
bution of the neurons in the NRG. The shape of 
the potential distribution in NRG depends on the 
encoding scheme of the forbidden states (obstacles), 
whether the corresponding nodes are current sinks 
(Dirichlet condition) or are disconnected from the 
grid (Neumann condition) [2]. 

4. Application of NRG to the Pole- 
Balancing Problem 

In the work reported here the ACE is replaced by 
an NRG. As described in Sect. 2, ACE develops a 
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value map of the system states. The rationale for 
replacement is that by propagating the failure infor- 
mation across the grid (especially to the immediate 
neighbours), in the future if the system enters this 
neighbourhood, the NRG will send a failure predic- 
tion signal that enables the ASE to adjust the recent 
control actions performed. This in turn prevents the 
system from performing a similar sequence of 
actions in the future. Thus, even if some states are 
not visited in the previous trials, the NRG systern 
deems them as safe if they are away from 'bad' 
boxes and unsafe if they are near a 'bad' box. 
Whereas in ACE, if a particular box is not visited 
so far in a run, there is no prediction available for 
that box. Thus in the NRG system it is possible to 
build up a value surface relatively quickly. 

As shown in Fig. 1, a four-dimensional resistive 
grid is constructed for the four variables, position 
(x), angle (0), velocity (i) and angular velocity (b). 
In Fig. 1, the neighbourhood for one cell is shown 
schematically. The control system set-up that 
includes the NRG, is shown in Fig. 2. Apart from 
the external input (Ii) from the memory layer, a 
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Fig. 1.3 X3 grid showing the arrangement of' the 162 boxes 
that constitute the pole cart system state space. The convention 
for the variables is shown on the sides of the grid and the 
numbers represent the indices ol' the quantiscd regions for each 
variable. An example of' connectivity for one node is illustrated. 
The node here has eight neighbours. The nodes on the edges 
have less number (it' neighhours. The connection strength is fixed 
so that the edge afiects are balanced. 
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jFig. 2. (a) The NRG/ASE system configuration showing the 
replacement of the Adaptive Critic Element (ACE) by the Ncuro- 
F, Csistive Grid (NRG) (compare from the adaptive critic system 
in Table 2(a)). The internal reinforcement signal is 1ed to the 
Adaptive Search Element (ASE) which in turn generates a control 
action; (b) (able indicates the interpretation of the internal 

reinforcement signal. The reinforcement signal is set equal to the 
difilerence between the values of the new and the old boxes that 
the system entered and Tj is a constant equal to 0.95. 

si-nall bias voltage (0.01) is fed to all the nodes in 

the grid. Incorporation of the bias voltage is a novel 
modification of the original NRG technique [21 to 

adapt it to pole balancing application, as discussed 
below. 

In the application of NRG to path planning, there 
is a goal state, which is a node with the highest 

potential that the system is asked to attain. However, 
the formulation of the pole balancing problem does 

not define a goal state for the pole. It is only 
specified that failing should be avoided. Therefore, 
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we have assigned ail initial goal Value to each state 
of the pole-cart system by providing each node in 
the grid with a small current source produced by 
the bias voltage in the memory layer. States where 
the pole falls during training are transformed into 
current sinks. This progressively leads to a potential 
distribution with highest values for states where (he 
pole is close to a vertical and centred position, as 
in the ACE evaluation function. 

The weights between neighbours are set to 
Wýi = (I - bias)/n where n is the number of neivii- 
bours and bias is set to 0.01. This bias term in tile 
weights prevents saturation of node voltages. At tile 
beginning of every run the grid is updated (i. e. 
every node activation is replaced by the average 
activation over its neighbourhood) until the potential 
field stabilises. In our simulations we observed that 
30 cycles of updating achieves a stable potential 
field. The grid is not updated again until a failure 

occurs. On failure, the node corresponding to the 
failure is set to a potential of -I in the memory 
(shown as 'failure memory' in Fig. 2) layer and the 
grid is cycled for 30 times. A run is terminated if 

the system reaches a cumulative time count of 
500000 time steps or if there are 100 failures 
(trials), whichever happens first (the same scheme 
was used in Barto et al. [1]). This amounts to a 
total simulation time of balancing approximately 
equal to 2.8 hours. The actual simulation, performed 
on Cortex-Pro neural network simulation package t: l 

running on a PC-486 DX2-50, took approximately 
eight hours for the NRG algorithm. It is interesting 
to note that the adaptive critic algorithm took on an 
average about 18 hours to complete a run. 

At each time step, internal reinforcement Q) is 
computed by taking the difference between acti- 
vation (in the resistive grid) of the present and 
Previous nodes (boxes) that the system entered. This 
signal in tum adjusts all those ASE weights whose 
eligibility traces are active. In the adaptive critic 
approach the ACE predictions are also adjusted 
every time step, whereas the potential field in NRG 
is updated again only after a failure. Thus the NRG 
approach is computationally more economical than 
the adaptive critic approach. The number of updates 
of NRG is a constant proportional to the number of 
failures whereas the number of updates in ACE is 
proportional to the number of time steps of balance 
(which can grow exponentially once the system 
stays balanced). When the system fails in the NRG 
approach, the node that the system entered iminedi- 
ately before the failure is noted. This information is 
made available to the failure memory layer. where 
this node is clamped to -I for the rest of' the 
simulation. During the grid cycling period, this L_ 
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information gets propagated to the neighbouring 
nodes. Hence, a potential surface reflecting the rela- 
tive goodness of a state (value map) evolves in the 
NRG. As in the system of Barto et al. [11, the NRG 
system also produces a reinforcement signal with 
the same interpretation. If the system transition is 
from a 'good' to a 'bad' state the reinforcement 
signal is negative indicating a punishment signal to 
all the recent actions of ASE. Whereas, if the tran- 
sition is from a 'bad' to a 'good' state, the reinforce- 
ment signal is positive indicating a reward signal to 
all the recent actions of the ASE. The NRG system 
sends a neutral signal to other transitions (see 
Fig. 2(b)). 

The quantisation of the state space is prefixed in 
both the adaptive critic and the neuro-resistive grid 
algorithms. Performance improvements have been 
reported with adaptive quantisation schemes (for 
example, see Ref. [4]). In these schemes the bound- 
aries of regions that make up system states are made 
elastic so that they contract or expand based on the 
behaviour of the system. At the end of training 
and stabilisation, important regions will have been 
quantised with a finer resolution and others with a 
coarse resolution. Thus, performance of the adaptive 
critic algorithm can be enhanced by using an optimal 
partitioning scheme of the state space. Since the 
basic mechanism of the NRG algorithm, namely the 
propagation of information to neighbouring nodes 
to enable faster generalisation, does not depend on 
the particular quantisation scheme used, all the 
advantages of using an optimal quantisation scheme 
discussed above are transferable to the neuro- 
resistive grid algorithm. Hence, the relative improve- 

ments over the adaptive critic algorithm reported in 
the next section still hold true with a different 
partitioning scheme. 

In the next section simulation results are pre- 
sented. We are aware of many other approaches to 
pole balancing (reviewed in Ref. (31). However, 
since the efforts in this work are aimed at introduc- 
ing new ways of evaluating states as described 

above, all the comparisons of performance in the 
next section, will be made with reference to the 
system of Barto et al. M. 

5. Results and Discussion 

Both the systems are run with the benchmark para- 
meters (note especially the increased angle of 
failure) and the system equations as advised in 
Ref. [3) (indicated in Table 1). Geva and Sitte [31 
felt that the previous failure angle of 12' is too 
restrictive, and advised for a 90' failure angle for 
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the benchmark experiment. Both the systems are 
simulated for 10 runs. All the trials start from the 
zero initial conditions on the variables. In all of the 
runs, the system learnt successfully before complet- 
ing 100 trials (failures). Hence all the runs were 
terminated before 100 trials. To avoid having runs 
of different lengths, all the remaining trials in a run 
are assigned a value equal to the higher of the two 
immediately preceding times of balance [1]. For 
each run a data point is plotted by averaging the 
number of time steps to failure in five successive 
trials (see Figs 3(a), (b)). Then these results are 
averaged over all the 10 runs (see Fig. 4). 

Figures 3(a) and (b) depict the results for the 
adaptive critic and NRG, respectively, for each of 
the 10 runs. Figure 4 shows the rate of learning for 
the two systems. The graphs clearly show that NRG 
is able to learn a successful controller quickly. For 
example, by about 15 trials an average adaptive 
critic controller is capable of balancing for about 
120000 time steps whereas an average NRG control- 
ler can balance for about 250000 time steps. Also, 
the rate of learning is faster for NRG compared to 
that of the adaptive critic. NRG starts learning very 
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Fig. 3. Results of the training phase of the adaptive critic and 
the NRG algorithms. Time steps to failure for each of the 10 
runs with the (a) adaptive critic approach, and (b) the Ncuro- 
Resistive Grid (NRG) method are shown. Each data point is 
obtained by taking an average of time steps of balance over 
live trials. 
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Fig. 4. Learning curves comparing the speed of learning in the 
adaptive critic method versus the NRG method. Each data point 
is obtained by taking average over the 10 runs shown in Fig. 3. 
The graphs clearly show that NRG is able to learn a successful 
controller quickly. Two graphs are shown for the adaptive critic 
algorithm, one with the ACE traces reset at the end of every 
run, and the other with these traces reset at the end of every 
trial. The former learns faster than the latter and both of these 
are slower than the NRG algorithm. '7: adaptive critic (reset end 
of run); X: adoptive critic (reset end of trial); 0: NRG. 

rapidly due to the availability of the failure infor- 
rnation through lateral connectivity in the grid. In 
the original Barto et al. [1] algorithm, the temporal 
traces in ACE are reset only at the end of each 
run. To investigate the role of the traces in the 
ACE, we ran the simulations of the adaptive critic 
algorithm wherein the ACE traces are reset at the 

end of every trial. From Fig. 4 it is clear that the 
learning speed is the lowest if the ACE traces are 
reset at the end of every trial. By waiting to reset 
the traces only at the end of a run, the states that 
were visited in the previous trials will remain active 
in the subsequent trials. It appears that this facility 

enables a continuous adjustment of the evaluations, 
and thus leads to faster learning in the adaptive 
critic algorithm, as demonstrated by the learning 

curves in Fig. 4. In the NRG algorithm, this process 
i. s improved further in that the states do not have 
to be necessarily visited before their evaluation is 

, certained. Due to the lateral connectivity, every a 
will have an evaluation based on the neigh 

bourhood. We suspect that this lateral diffusion of 
information is critical to NRG's success. 

To characterise the performance of both the con- 
trollers, two benchmark tests [3] are conducted. The 
first test determines the capability of the controller 
to balance the pole from a different starting position 
other than that of the training period and also 
characterises the amount of deviation of the angle 
of the pole from the vertical and that of the cart 
position from the centre of the railing. The new 
initial conditions are: x=-1,0 = -0.1, -t =-1, 
b= -0.2. The values of the cart position and the 
pole angle over the first 1000 time steps are shown 
in Figs 5(a) and 6(a) and the values for the rest of 
the 50000 time steps are shown in Figs 5(b)-(c) for 
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Fig. 5. Results of' the first benchmark test on the adaptive critic- 
controller. (a) Graph shows the cart position (-) and the pole 
angle (-) over the first 1000 time steps. The Root Mean Squared 
(RMS) value and the Standard Deviation (SD) for the cart 
position are 0.76 m and 0.49, respectively. The RMS and SD 
values for the pole angle arc 0.27 radians and 0.27. respectively, 
(b) graph shows the deviation in (he cart position flor the remain- 
ing time steps till 50000. The RMS and SD values for the cart 
position are 0.76 in and 0.49, respectively; (c) graph shows the 
deviation in the pole angle lor the remaining time steps till 
50000. The RMS and SD values for the pole angle are 0.28 
radians and 0.28, respectively. 

the adaptive critic system and in Figs 6(b)-(c) for 
the NRG system. The controller trained by NRG 
has smaller deviation in both the position and the 
angle throughout the test period. However the con- 
troller trained by the adaptive critic method has 
larger deviation in these values. This indicates that 
the AC-controller allows big oscillations both in 
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Fig. 6. Results of the first benchmark test on the NRG-controller. 
(a) Graph shows the cart position (-) and the pole angle (-) 
over the first 1000 time steps. The Root Mean Squared (RMS) 
value and the Standard Deviation (SD) for the cart position are 
0.81 m and 0.18, respectively. The RMS and SD values for the 
pole angle are 0.17 radians and 0.17, respectively. 

1.9 

1.4 
E 

0.9 
0 ,; I- 15 0.4 0 
V_ -0.1 - ----- CO 

-0.6 

-1.10,00 13500 26000 38500 
Time Steps 
(b) 

(b) graph shows the deviation in the cart position for the remain- 
ing time steps till 50000. The RMS and SD values for the cart 
position are 0.8 m and 0.16, respectively. 
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(c) graph shows the deviation in the pole angle for the remaining 
time steps Oll 50000. The RMS and SID values for the pole 
angle are OA7 radians and 0.17, respectively. 

R. S. Rapi er aL 

position and angle whereas the NRG-controller does 
not. Both the systems have residual oscillations 
because of the bang-bang nature of the control force. 

The second test characterises the dynamic range 
of the controller. The pole cart system is released 
from various initial angles and angular velocities, 
with the cart at the centre of the track. If the system 
remains balanced for 15000 time steps, a data point 
corresponding to the pole angle and the angular 
velocity is plotted on the graph. Thus a plot of all 
such points reflects the range of initial conditions 
from which the pole can be balanced successfully 
for long time. This range is termed as the dynamic- 
range and it reflects a form of generalisation over 
the set of initial conditions. We have noticed that 
not all the trained controllers were successful on 
the first benchmark test. So we chose the successful 
controller on the first test that possesses the largest 
dynamic range as the best controller for each of the 
adaptive critic and the NRG systems, for comparison 
in Fig. 7. It is evident from the graph that the NRG- 
controller has less dynamic range compared to the 
adaptive critic-controller. 

In summary, the first test demonstrates that the 
NRG-controller allows less deviation in position and 
angle. The second test reveals that the range of 
initial conditions over which an NRG-controller can 
successfully balance is smaller than that of the 
adaptive critic-controller. Although the NRG system 
leams a controller faster than the adaptive critic 
system, the dynamic range is more limited. A com- 
parative summary of performance characteristics of 
the two algorithms is compiled in Table 3. 

These results suggest a possible trade-off between 
the learning speed (computational expense) versus 
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Fig. 7. Results ofthe second benchmark test on both the control- 
lers. The pole cart systern is released from the centre of the 
track each time and the initial angle and angular velocity of the 
pole are varied. For each angle of the pole, the minimum and 
maximum angular velocities at which the controller can success- 
fully balance for 15000 time steps are plotted. Thus the dynamic 

range for the adaptive critic (0) versus NRG (0) controllers is 

characterised. The NRG controller has lower dynamic range than 
the adaptive critic controller (see text for discussion). 
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Table 3. Comparison of the NRG and the -, tdaptive critic algorithins for control. 

Property 

Learning speed 
Number of computations 
Quality of control 
Dynamic range 
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NRG AC 

Fast 
Less 
Less angular/position deviation 
Medium 

the dynamic range (generalisation over the set of 
initial conditions). We observed in our simulations 
of NRG that some of the ASE weights are either 
not modified at all (because the system never visited 
these states) or they are very small, of value compa- 
rable to the noise term, the latter being due to 
successive small positive and negative weight 
changes which cancel each other. These small or 
unset weights are a probable cause of lack of 
dynamic range which we discuss below as due to 
a 'lack of experience' and due to 'rigidity of value 
map'. Another possible reason for limited dynamic 

range is a non-optimal encoding of sequences of 
visited states in the weights. This is discussed below 

as the 'relearning problem'. 

5.1. Lack of Experience 

The NRG converges very rapidly to an almost cor- 
rect evaluation of states and thus provides correct 
feedback very early to the ASE. Thereby, for each 
visited state the ASE learns a correct action and as 
soon as a sequence of actions leads to a cyclic 
pattern of visited states, learning stops as no new 
states are visited. Thus, although ASE is being 

sticcessful quickly, it has less knowledge of control 
actions over the state space. 

While NRG learns faster than ACE due to lateral 

propagation of values, the ASE still relies on the 

technique used by Barto et al. [11, wherein learning 

takes place only for the states that are actually 
visited. This suggests the need for matching conver- 
gence speeds of ACE/NRG and ASE systems. We 

have observed in our simulations that the weights 
of ASE have similar values in neighbouring regions 
of the state space. Hence, it may be possible to 
increase the learning speed in ASE also by virtue of 
lateral propagation of information. Thus, achieving 
generalisation over actions may probably call for a 

new way of representing actions in the ASE system. 
in this context, we wish to alert the reader that 

incorporation of prior knowledge must be considered 
, ith caution. Prior knowledge can be incorporated 
in ACE/NRG by prefixing the evaluations of the 

ecige -states where we know failures occur. However, 

Slow 
More 
More angular/position deviation 
Large 

by doing this, ACE/NRG learning may be further 
accelerated and as a result the dynamic range may 
be reduced even more because by learning faster 
the system may not have had opportunity to visit 
many states. 

5.2. Rigidity of Value Map 

In the NRG the values of states are not modified 
within a trial, i. e. until failure occurs. On the one 
hand, this reduces computational expense, but on 
the other hand, it also leads to a rigid value map 
during a trial which may contribute to cancellation 
of positive and negative weight changes. In contrast. 
in the ACE valuations of states are modified at each 
step so that returning to a previous state will not, 
in general, result in an internal reinforcernent signal 
(P) of the same value but opposite sign leading to 
similar cancellations as in the NRG. It remains to 
be verified how important this effect is. 

5.3. Relearning Problem (of Evaluations for 
Failed States) 

In the NRG method, a failed state remains clamped 
as failed for the rest of the run. It must be noted 
that the quantised states used here cover a large 
portion of the system state space. Depending on 
how a state is entered, a given action may lead to 
a successful sequence of movements, while another 
action may lead to a failure. Thereby a too early 
definitive evaluation of a state may prevent a number 
of potentially successful sequences of states to 
become part of the dynamics encoded in the ASE 
weights. In contrast, the adaptive critic approach 
allows a failed state to alter its value if it becomes 
part of a viable sequence of balancing forces in the 
future. This appears to be a subtle problem which 
deserves further analysis. 

6. Conclusions and Future Directions 

In summary, an NRG algorithm is presented for the 
pole-balancing problem and compared to the ACE 
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algorithm. Both the systems are simulated using the 
same benchmark parameters. Results from the train- 
ing phase show that the NRG algorithm learns faster 
and with fewer updates than the adaptive critic 
algorithm. This is due to the propagation of failure 
information to the neighbouring nodes in the NRG. 
Benchmark tests are conducted to compare the per- 
formance of the controllers trained with both the 
algorithms. Firstly, it is observed that the controller 
discovered by NRG keeps the angle and position of 
the pole in a narrow range, whereas that learnt by 
the adaptive critic method allows more variation in 
both these variables. Secondly, the dynamic range 
(range of initial conditions for which the controller 
can balance the pole for long periods of time) of 
the NRG-controller is relatively less than that of the 
adaptive critic -controller. 

Directions for future investigation have been out- 
lined that lead toward a better understanding of the 
reasons for the differences and improvements of the 
NRG controller. There are two potential causes for 
the reduced dynamic range of the NRG controller. 
Firstly, it may be that the NRG-controller lacks 
sufficient experience as the system learns success- 
fully before the occurrence of many failures. This 
may be compensated for by training the system with 
a wide range of initial conditions rather than training 
from a fixed initial position. Alternatively, it may 
be possible to reduce the mismatch between conver- 
gence speeds of the evaluations in the NRG and the 
action policy in the ASE by using a lateral propa- 
gation scheme in the ASE as well. Secondly, it may 
be due to the absence of flexibility in the evaluation 
of the states. In the current system when once failure 
occurs in a state, that state is fixed as 'failed' 
throughout the run. One way to improve on this is 
to allow flexibility in the memory layer so that a 
failed state can become 'good' in future trials if 
there is sufficient evidence from the behaviour of 
the system. 

In recent times, temporal difference methods have 
been successfully applied to many interesting control 
problems such as the mountain car problem [12], 
backgammon [13], automatic aircraft landing [141, 
etc. Exploring the application of NRG to these 
problems may help gain insight into both the NRG 
and TD methods. 

On the theory side, unified view of dynamic 
programming, reinforcement learning and heuristic 

R. S. Bapi et al. 

search has been proposed [7]. Most of these 
advances are in the area of estimation of optimal 
value function. The formal link between TD learning 
and resistive grid method remains to be investigated. 

Acknowledgements. Grant (GR/J4215 1) support 
from the Engineering and Physical Sciences 
Research Council (EPSRC), UK to RSB (post doc- 
toral research fellowship) and BDC (research 
studentship) is gratefully acknowledged. 

References 
1. Barto AG, Sutton RS, Anderson CW. Neuronlike 

adaptive elements that can solve difficult learning 
control problems. IEEE Trans Syst, Man & Cybern 
1983; 13: 834-846 

2. Bugmann G, Taylor JG, Denham MJ. Route finding 
by neural nets. In: Taylor JG (ed), Neural Networks, 
Unicorn & Alfred Waller, UK, 1995,217-231 

3. Geva S, Sitte J. A Cartpole experiment benchmark for 
trainable controllers. IEEE Control Systems Magazine 
1993; 13: 40-51 

4. Rosen BE, Goodwin JM, Vidal JJ. Process control 
with adaptive range coding. Biol Cybem 1992; 66: 
419-428 

5. Sutton RS. Learning to predict by the method of 
temporal differences. Machine Learning 1988; 3: 9-44 

6. Barto AG, Sutton RS, Watkins CJCH. Learning and 
sequential decision making. In: Gabriel M, Moore 
J. (ed. ), Leaming and Computational Neuroscience: 
Foundation of Adaptive Networks, MIT Press, Cam- 
bridge, MA, 1990,539-602 

7. Barto AG, Bradtke SJ, Singh SP. Learning to act using 
real-time dynamic programming. Artificial Intelligence 
1995; 72: 81-138 

8. Ribeiro CHC. Attentional mechanism as a strategy 
for generalisation in the Q-Ieaming algorithm. In: 
Fogelman-Souli6 F, Gallinari P. (ed. ), Proc. ICANN 
'95, Paris, 1995; 1: 455-460 

9. Connolly CI, Bums JB, Weiss R. Path planning using 
Laplace's equation. Proc IEEE Int Conf Robotics & 
Automation 1990; 2102-2106 

10. Tarassenko L, Blake A. Analogue computation of 
collision-free paths. Proc IEEE Int Conf on Robot- 
ics & Automation, Sacramento, CA, 1991,540-545 

11. Sutton RS, Pinette B. The learning of world models 
by jonnectionist networks. Proc Seventh Ann Conf of 
the Cog Sci Soc, Lawrence Erlbaum, 1985,54--64 

12. Moore AW. Efficient memory-based learning for robot 
control. PhD thesis, University of Cambridge, 1990 

13. Tesauro G. Temporal difference learning and TD- 
Gammon. Comm ACM 1995,38(3): 58--68 

14. Prokhorov DV, Santiago RA, Wunsch 11 DC. Adaptive 
critic designs: A case study for neurocontrol. Neural 
Networks 1995; 8(9): 1367-1372 


