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Channel Capacity & Turbo Coding 

This chapter presents some basic communication principles related to channel capacity and 

forward error correction (FEC) codes. The Shannon’s channel capacity theorem and its 

practical implications are also discussed, as well as the ways of getting closer to this limit. It is 

shown that in order to achieve better performance in a communication system, e.g. to get 

closer to the Shannon’s limit, one can use the new state-of-the-art FEC codes. One of the best 

error correcting codes available today are the Turbo codes. A short introduction to Turbo 

codes and their characteristics and performance is also provided in this chapter.  

The watermarking is seen by the information theory perspective and therefore by 

applying this theory and by using Turbo coding, the performance of the watermarking system 

is greatly improved. This conclusion can be easily drawn by analysing the results presented in 

Chapter 5 and Chapter 6.  

 

 

4.1 The Channel’s Capacity 

 

Broadband providers are naturally interested in increasing transmission distance and 

data rates, on the one hand to cut down on the amount of physical plant that must be installed, 

and on the other to increase throughput. To accomplish this, the broadband provider may be 

tempted to extend the antenna length or increase the transmission power, but these are costly 

and oftentimes unacceptable alternatives.  

Chapter 

4 
“Although the rivers and mountains of the world have not 
changed, their ancient and modern names are different.” 

Wen Zhuang, Ming dynasty
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An alternative that is becoming more attractive for providing increased performance is 

the use of powerful FEC. Embedding an FEC codec that implements state-of-the-art coding 

technology in the transceiver can radically increase the transmitted-data rate or transmission 

distance, or alternatively decrease the required antenna size and power.  

FEC is the addition of redundancy (e.g., parity-check symbols) to a transmitted 

message, allowing the receiver to decode the received message, check symbols, and correct 

some limited number of errors in the received-data stream. The ability of FEC to increase the 

signal-to-noise capability of a communications channel depends on the code used and the 

channel characteristics.  

All channels have a theoretical limit for information rate content at a constant signal-

to-noise ratio (SNR) known as the Shannon capacity. The Shannon capacity limit defines the 

maximum information content for any particular channel. Communications systems that do 

not use FEC operate far from this limit, often 10 dB or more. Examples of these systems 

include voice applications and other communications systems where an occasional bit error can 

be tolerated. To achieve the accuracy and data rates required most of the time (wireless 

Internet access for example), the system without FEC would require 10 dB greater SNR than a 

“perfect” system operating at the Shannon capacity.  

The use of traditional FEC codes such as Reed-Solomon (RS) coding substantially 

improves the efficiency of the communications channel allowing operation much closer to the 

Shannon capacity. For a typical channel, the addition of RS coding allows the system to operate 

within approximately 4 dB of the Shannon capacity (depending on channel characteristics). The 

resulting benefit translates into higher data rates, lower bit-error rates (BER), greater 

transmission distance and greater immunity to interference effects. However, this still leaves 

considerable room for improvement. After all, to make up for the 4-dB distance from 

optimum, the system developer must spend valuable resources in terms of transmission power, 

antenna size and bandwidth.   

As an example, a more powerful code that provides a 3-dB coding gain over the RS 

coding can mean a reduction in antenna diameter by 30 percent, a decrease in transmission 

power by a factor of two, a transmission distance increased by 40 percent, or increased data 

throughput by a factor of two. Recent breakthroughs in error-correction coding have led to 

new FEC codes that can provide this 3-dB performance gain over RS coding. The Turbo 

codes are one possible example. In some special circumstances, it is possible to approach the 

Shannon’s capacity limit by 0.27 dB using Hamming codes in a turbo decoding scheme [Nickl 

et al, 1997]. 
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4.1.1 The Noisy Channel Coding Theorem 

 

In 1948, Shannon derived the following formula for the capacity of an additive white 

Gaussian noise channel (AWGN) 

 2log 1 SC W
N

 = + 
 

 (4.1) 

where the capacity is expressed in bits/sec, W represents the bandwidth of the channel, S is the 

average signal power and N is the total average noise power of the channel. 

 Shannon established the noisy channel coding theorem: 

1. For information rate infoR C<  there exists a coding system with arbitrarily low 

block and bit error rates as we let the code length n→∞ . 

2. For information rate infoR C>  the bit and block error rates are strictly bounded 

away from zero for any coding system. 

The noisy channel coding theorem therefore establishes rigid limits on the maximal 

supportable transmission rate of an AWGN channel in terms of power and bandwidth.  

To characterise how efficiently a system uses its allotted bandwidth, one can define the 

bandwidth efficiency as 

 C
W

η =  (4.2) 

The Shannon limit can be calculated as 

 max 2log 1 S
N

η  = + 
 

 (4.3) 

Taking into account that 

 b
b

kES RE
T

= =  (4.4) 

where bE  represents the energy per bit, k  is the number of bits transmitted per symbol, T  is 

the duration of a symbol and R  is the transmission rate (code rate) of the system. Now the 

Shannon limit can be obtained in terms of the bit energy and noise power spectral density 

 max 2
0

log 1 bRE
WN

η
 

= + 
 

 (4.5) 

where 0N WN=  represents the total noise power and 0N  is the one-sided noise power 

spectral density.  



Channel Capacity & Turbo Coding 4.1 The Channel’s Capacity 

 
 52

The equation (4.5) can be resolved in order to obtain the minimum bit energy required 

for reliable transmission, e.g. the Shannon bound 

 
max

0 max

2 1bE
N

η

η
−

≥  (4.6) 

From equation (4.6) it is possible to establish the fundamental limit for reliable communication. 

This can be obtained by considering an infinite amount of bandwidth, i.e. max 0η →  

 ( )
max

max 0
0 max

2 1lim ln 2 1.59bE dB
N

η

η η→

−
≥ = = −  (4.7) 

This represents the absolute minimum signal energy to noise power spectral density ratio 

required to reliably transmit one bit of information, even for unlimited bandwidth or bit rate 

tending to zero. 

The dependence on the arbitrary definition of the bandwidth W is usually not 

satisfactory. The answer is to normalise these formulas per signal dimension [Wozencraft et al, 

1965]. This is useful when the question of waveforms and pulse shaping is not a central issue, 

since it allows one to eliminate these considerations by treating signal dimensions. In this case 

Shannon’s capacity and the corresponding bound are 
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−

≥

 (4.8) 

 The dependence of Shannon’s capacity limit of the code rate is illustrated in Table 4-1, 

for an AWGN channel with QPSK (Quadrature Phase Shift Keying) modulation [Dolinar et al, 

1998]. 

 

Code rate, 
R  

Capacity limit, 
[ ]0/bE N dB  

1/2 0 
1/3 -0.55 
1/4 -0.82 
1/6 -1.08 
0 -1.59 

Table 4-1 Shannon limit for different code rates 
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4.1.2 Hardware and Software Decoding 

 

A typical communication system can be represented as in [Barbulescu et al, 1996]. 

Regardless of its source, the information to be transmitted must be translated into a set of 

signals optimised for the channel over which we want to send it. As Figure 4-1 shows, the first 

step is to use a source encoder block for eliminating the redundant part of the signal in order to 

maximise the information transmission rate. To ensure the secrecy of the transmitted 

information one could use an encryption scheme.  The most important part of the system in 

the case analysed here, is to protect the signal against the perturbations introduced by the 

communication channel, which could lead to errors in the transmitted message at the receiving 

end. This protection is achieved by FEC, using error correction codes that are able to correct 

the errors at the receiving end. Finally the modulator block generates a signal suitable for the 

transmission channel.  

The importance of using powerful error correction and the economical and practical 

benefits of such codes was already underlined in the introduction. From coding theory it is 

known that either by reducing the data rate or increasing the codeword length or the encoding 

memory, greater protection or coding gain, can be achieved. Unfortunately at the same time 

the complexity of typical decoding algorithm such as the maximum likelihood decoding 

algorithms increases exponentially with the encoder memory and the algorithms become 

difficult to implement. Therefore the increased error correction capability of long codes 

requires a very high computational effort at the decoder.  

In simple systems, the demodulator block from Figure 4-1 makes a hard decision of 

the received symbol and passes it to the error control decoder block. In other words, the 

demodulator decides which of two logical values 0 or 1 was transmitted. No information is 

Information
Source 

Source 
Encoder Encrypter FEC 

Encoder Modulator 

Information
Destination

Source 
Decoder Decrypter FEC 

Decoder 
De-

modulator

CHANNEL

Figure 4-1 The block diagram of a communication system 
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passed to the FEC decoder about how reliable the hard decision was. Better results can be 

obtained by using soft input decoding algorithms, e.g. when the quantised analogue received 

signal is passed directly to the decoder. The same consideration holds for the outputs of the 

constituent decoders of concatenated codes. By using soft-input-soft-output (SISO) decoders, 

this information can be passed from one decoder to the next in an iterative fashion. Soft 

output decision algorithms provide as an output a real number which is a measure of the 

probability of error in decoding a particular bit. This can be also interpreted as a measure of the 

reliability of the decoder’s hard decision.  

It can be shown that the channel capacity of a discrete-input real-output (soft output) 

memoryless channel ( softC ) is greater than that for a discrete-input discrete-output (hard 

output) memoryless channel ( hardC ). For a binary symmetric channel with an AWGN 

distribution and mean value zero this can be proven as follows.  

 

Soft decoding 

If the input alphabet is { }0 1 2 1, , ,..., qX x x x x −= and the output alphabet is 

{ },Y = −∞ ∞ then we can define the channel capacity for the soft decoding case as the mutual 

information between the channel’s input and output maximised over all possible channel input 

distributions ( )jP x  

 

( )

( )
( ) ( )

( )
( ) ( )

( ) ( ) ( ) ( )
( )

1

0

max ( ; )

max |

max |

|
max | log

P x j

P x j

P x j

P x j

q
j

j j
j

C I X Y

H X H X Y

H Y H Y X

p y x
P x p y x dy

p y

∞−

= −∞

=

= −  

= −  

= ∑ ∫

 (4.9) 

Considering the input alphabet restricted to { }1, 1X = − + and a binary symmetric 

channel, where ( ) ( )1 1 0.5P P− = + =  then equation (4.9) becomes  

 ( ) ( )
( ) ( ) ( )

( )2 2

| 1 | 11 1| 1 log | 1 log
2 2soft

p y p y
C p y dy p y dy

p y p y

∞ ∞

−∞ −∞

+ −
= + + −∫ ∫  (4.10) 

Taking into account that ( ) ( ) ( )0.5 | 1 0.5 | 1p y p y p y= + + − and that for symmetry 

( ) ( )| 1 | 1p y p y− + = − then equation (4.10) can be further simplified 
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 ( ) ( )
( )2

| 1
| 1 logsoft

p y
C p y dy

p y

∞

−∞

+
= +∫  (4.11) 

For an AWGN channel with zero mean and variance 2σ the probability density 

function ( )| , / 1p y x m m= = + − can be defined as follows 

 ( ) ( )2

2

1| exp
22
y m

p y x m
σπσ

 −
= = − 

 
 

 (4.12) 

and the variance 2σ is 

 2 2 EbR
No

σ  =  
 

 (4.13) 

where R represents the code rate and Eb
No

is expressed in dB. 

Hard decoding 

For a hard decoder the output alphabet is finite too so in this case the input and 

respectively the output alphabets can be defined as { }0 1 2 1, , ,..., qX x x x x −= and 

{ }0 1 2 1, , ,..., rY y y y y −= . The channel capacity for this case is 

 
( )

( )
( ) ( )

( ) ( ) ( ) ( )
( )

1 1

0 0

max ( ; )

max |

|
max | log

P x j

P x j

P x j
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i j

j i j
j i i

C I X Y

H Y H Y X

P y x
P x P y x dy

P y

− −

= =

=

= −  

= ∑∑

 (4.14) 

Restricting the input and output alphabets to { }1, 1X = − + and respectively 

{ }1, 1Y = − + and taking into account that ( ) ( )1 1 0.5P P− = + = , for a binary symmetric 

channel we can define 

 
( ) ( )

( ) ( )

0

0

ˆ1| 1 | 1

ˆ1| 1 | 1

P p y dy P

P p y dy P

−∞

∞

− + = + =

+ − = − =

∫

∫
 (4.15) 

Then we can obtain the channel’s capacity for the hard decoding case as 

 ( ) ( )2 2
ˆ ˆ ˆ ˆ1 log 1 log 1hardC P P P P= + + − −  (4.16) 

For an AWGN channel, P̂ can be defined as 
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 2ˆ EbP Q
No

 
=   

 
 (4.17) 

where the Q function is defined as 

 ( )
21
22x

tQ x dt
π

∞  
= − 

 
∫  (4.18) 

 
Conclusion 

The comparison between the soft and hard decoding is illustrated for the binary 

symmetric channel case in Figure 4-2. It can be seen that at low signal to noise ratios softC is 

greater than hardC by approximately 2dB. This shows very well the advantage of using soft 

decision decoding rather then the classical hard decision approach. 

 

 

4.2 Turbo Codes 

 

Starting with early 1990’s concepts like iterative decoding, soft output decision 

algorithms, special encoding techniques and information transfer techniques were combined in 

order to create more powerful error correction codes. The combination of these concepts led 

to appearance of a new class of powerful error correcting codes: the Turbo codes, which made 

possible communications very close to Shannon’s limit. For example, the first Turbo code 
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proposed in the literature achieved a bit error rate lower than 510− within 0.7dB of Shannon’s 

limit. 

The Turbo codes were introduced in [Berrou et al, 1993]. They represent a particular 

class of parallel concatenation of two recursive systematic convolutional codes. In other words, 

strictly speaking a Turbo code is a 2PCCC (Parallel Concatenated Convolutional Code). Today 

the term has a more general connotation.  

  

4.2.1 The Structure of a Turbo Code (2PCCC) 

 

The encoder 

The block scheme of the encoder is presented in Figure 4-3. Since we are dealing with 

a convolutional code the input sequence is organised in blocks of length N. The first block of 

data is encoded by the ENC1 block which is a half rate recursive systematic encoder. The same 

block of data is interleaved by the interleaver block INT and then encoded by the second 

encoder ENC2. Like the first encoder, ENC2 is a half rate recursive systematic encoder.  

The role of the interleaver is to rearrange the order of the information bits from the 

input. In this way the interleaver increases the minimum distance of the Turbo code and 

therefore its error correction capability. The design of the interleaver is a key factor which 

determines the good performance of a Turbo code. 

The result is a rate 1/3 turbo code, with the output given by the triplet (v1i, v2i, v3i). 

Since the code is systematic ui = v1i is the input data at time i and v2i and v3i are the two 

parity bits at time i. Sometimes the parity bits can be “punctured” using a multiplexing switch 

in order to obtain higher coding rates. 

   

The decoder 

By encoding the same information twice but in different order, the Turbo codes have 

the advantage of exchanging information between the two constituent decoders. The more 

“scrambled” the information sequence is for the second encoder the more “uncorrelated” 

(independent) the information exchange is. This is in fact one of the keys that allows 

continuous improvement in correction capability when the decoding process is iterated.  

As already stated, the Turbo codes use soft output decision algorithms. There are two 

important categories of soft output decision algorithms. The first category includes the 

maximum likelihood decoding algorithms which minimise the probability of bit error, such as 

the maximum a posteriori (MAP) algorithm. The second category includes the maximum 
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likelihood decoding algorithms which minimise the probability of word or sequence error, such 

as the Soft Output Viterbi Algorithm (SOVA). Although the SOVA algorithm has a soft 

output, it is sub optimal. The decoder described in this section uses the MAP algorithm and it 

is presented in Figure 4-4. 

The decoding principle is briefly described below. First, the MAP2 decoder which 

corresponds to the encoder ENC2 decodes the information present at its input and initialises 

the probability Pw20i(r2) with the value 0.5. The decoder MAP2 also calculates the new 

extrinsic probability Pow20i(r3) using the Pw20i(r2) probability and the Gaussian probabilities 

of r3i and respectively the interleaved version of r1i, Px20i(r1).   

The extrinsic information computed at this step Pow20i(r3), gives a more precise 

information about the bit w2i. Since w2i is the common information between the two encoders 

ENC1 and ENC2, the extrinsic information refers to this particular bit. The extrinsic 

information is then deinterleaved and passed to the first decoder MAP1.  

 This decoder will start decoding the information from its input, taking into account 

the extrinsic information supplied by the MAP2 decoder. Therefore when MAP1 decoder 

ENC 1

ENC 2INT

ui 

w2i v3i 

v2i 

v1i 

Figure 4-3 The Turbo encoder

INT 

MAP 2 DINT MAP 1 

INT

 
Pox20i(r3)Pow20i(r3)

Px20i(r1) 

Pv20i(r2)Pw20i(r2)

Λ(dk) 
ũi

r1i 

r3i 

r2i 

Figure 4-4 The iterative Turbo decoder 
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begins its operation it already has a better knowledge about the w2i bit since it uses the 

extrinsic information supplied by MAP2 rather than the start value equal with 0.5. The MAP1 

decoder corresponds to the encoder ENC1.  

The MAP1 decoder computes the new extrinsic information Pv20i(r2) which is then 

interleaved and passed back to the MAP2 decoder for a new iteration. The MAP1 decoder also 

calculates the a posteriori probability Λ(dk) by using the extrinsic information Pox20i(r3) and 

the Gaussian probabilities corresponding to r2i and respectively r3i. When the desired number 

of iteration was completed, this information is passed to the hardware decision block who 

gives at its output the error corrected sequence ũi corresponding to the originally encoded data 

sequence ui. 

 

4.2.2 Several Particularities of the Turbo Codes  

 

It is well known that the performance of the convolutional codes improves with 

increasing constraint length. This is not the case for Turbo codes. In fact, the best constituent 

codes of a Turbo code have a very small constraint length. 

The performance of convolutional codes does not improve significantly with the 

decreasing of the code rate; in fact the difference between rate 1/3 and rate 1/128 is of the 

order of a few tenths of a dB in the case of convolutional codes [Barbulescu et al, 1996]. The 

Turbo codes instead achieve a very significant coding gain for lower coding rates. For practical 

code rates between 1/2 and 1/6, Figure 4-5 illustrates the Eb/No required to achieve a BER 

of 10-6 as a function of coding rate, for both convolutional codes and Turbo codes [Barbulescu 

et al, 1996]. Analysing the difference in Eb/No between the 1/2 and 1/6 cases for both 
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Figure 4-5 Eb/No required to achieve a BER=10-6 
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convolutional codes and Turbo codes it can be seen that this difference is twice as much for 

the Turbo codes. So it can be concluded that lower rate Turbo codes provide significantly 

more coding gain (twice as much) than lower rate convolutional codes.  

The PCCC are the best choice when the 610BER −≥ , but however for much lower bit 

rate requirements other codes could be better (SCCC for example). This is because for the 

PCCC usually a change in the slope of the BER curve appears for 710BER −< depending of 

the interleaver size and design. At low Eb/No the PCCC performs better than SCCC but 

increasing the Eb/No the SCCC schemes outperform PCCC schemes. The crossover point 

depends again of the interleaver size and design. 

Referring strictly to the PCCC it was proven [Divsalar et al, 1995] that the interleaver 

gain term depends on the number of codes in the concatenated system, and the probability of 

error is 

 1

1
mBER

N −∼  (4.19) 

where N is the interleaver length and m  is the number of component codes. 

 

 

4.3 Turbo Codes in Watermarking 

 

 If we regard the watermark channel as a communications system with input X  (the 

watermark data) and output Y , the channel capacity is formally defined as the maximum 

mutual information (section 4.1.2),  

 [ ] [ ]
( ) ( ) ( )

max ( ; ) max ( ) ( | ) max ( ) ( | )
p x p x p xchanC I X Y H X H X Y H Y H Y X= = − = −  (4.20) 

where the maximum is taken over all possible distributions )(xp . Term ( | )H X Y  represents 

information loss due to channel noise, which will be a combination of the host video and signal 

processing (compression or other forms of attack). If the loss is modelled as the addition of an 

independent Gaussian noise source, ),0(~ 2
zNZ σ , i.e. iii ZXY += , where Z  is a 

continuous random variable, then equation (4.20) reduces to 

 [ ]
2

2 2

1 log 1 bits/symbol  
2

x
chan

z

C σ
σ

 
= + 

 
 (4.21) 

providing ),0(~ 2
xNX σ .  
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In this thesis the HVS models are employed in order to maximize the signal power. 

The watermarking channel is illustrated in Figure 4-6 and can be modelled as a gain factor 

cascaded with a Gaussian noise source ),0(~ 2
zNZ σ  (the gain and variance depending upon 

the host media, MPEG compression, geometric attack, etc.).  

For example, one could estimate a basic operational capacity as follows. Suppose that 

all pN  pixels ( 576720×=pN ) in the frame are transformed via the DCT or DWT, and that 

the channel noise is simply that of the host video. Assuming iC  is i.i.d. for simplicity, the noise 

power per video frame is 2CN p , where 2C is the mean coefficient power for a particular 

video sequence. If only one data bit is embedded per video frame (corresponding to a spread 

spectrum chip rate pr Nc = ), and there is no FEC, the SNR is 

 
( )2

2p p

HVS
SNR N N SNR

C

α
= =  (4.22) 

where SNR  is a measured mean SNR for the video sequence and HVS  is the mean 

embedding strength given by the HVS model for the sequence.  

If bN  data bits are embedded into a frame (using all the coefficients) the signal to 

noise ratio per uncoded data bit reduces to bu NSNRSNR /= , and the data rate or capacity for 

an uncoded system of frame rate rF  is 
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 p r
r b r

u

N SNR F
D N F

SNR
= =  (4.23) 

For a coded system of rate R, with /c bN N R=  bits embedded over fN  video frames, 

we have 

 c
r r

f

N RD F
N

 ⋅
=   
 

 (4.24) 

The operational capacity can be defined as the maximum value of rD  for which the 

BER does not exceed a tolerable level (typically 810− ). 

The SNR can be defined as in Figure 4-6. Since the cross-correlator performs a 

sequence of correlation sums, it follows from the Central Limit theorem that the cross-

correlation peaks have a normal distribution [Ambroze et al, 2001]. This is very convenient for 

the iterative Turbo decoder, which generally assumes a Gaussian input. Thus, for any particular 

system, the distribution meanµ , and variance 2σ  define a SNR of the channel 

 
2

SNR µ
σ
 =  
 

 (4.25) 

and the corresponding BER for an uncoded system is simply 

 [ ]/u uBER Q Q SNRµ σ  = =    (4.26) 

For a coded system, µ and σ  define a signal to noise ratio cSNR  at the decoder input, 

Figure 4-7 The performance of the 3PCCC Turbo code for 
different block lengths 
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and the decoded bit error rate is )( cc SNRfBER =  where f is a known function for a 

particular iterative decoder.  

The FEC code used in this thesis is a rate 1/4 multiple parallel concatenated 

convolutional code (3PCCC) [Ambroze, 2000] rather than the basic turbo code (2PCCC) in 

order to improve performance [Ambroze et al, 2001]. The performance of this code is 

presented in Figure 4-7. The structure of the 3PCCC Turbo encoder and decoder is presented 

in Appendix 1.  

The use of FEC reduces the chip rate by a factor R due to the fact that now we have to 

embed c bN N R=  coded bits instead of bN . This increases the variance of the channel 

distribution, resulting in increased BER, and the FEC decoder must more than compensate for 

this increase in order to provide coding gain. As it will be shown in the next chapters, the 

Turbo code improves the performance of the watermarking system in a significant manner. 

 

 

4.4 Conclusions 

 

The watermarking channel is a very difficult channel characterised by high levels of 

noise (the video sequence itself represents the noise) and low power of the watermark signal 

(due to the visibility constraints). The situation is even worse when taking into account various 

attacks which increase even further the noise from the system. This translates to a relatively low 

SNR at the input of the FEC decoder.  

This fully justifies the use of soft decision based FEC codes, particularly the use of 

Turbo codes which are known for their very good performance under difficult conditions (very 

low SNR). Using other error correction codes like the BCH codes (used by some authors in 

their watermarking systems) which have a hard decision algorithm, automatically leads to a 2dB 

drop in performance when compared with Turbo codes, or other soft decision based 

algorithms. This is a very significant loss in a watermarking system, which cannot be afforded.  

Digital watermarking seems to be yet another successful application area for Turbo 

codes, joining many other already consecrated application areas like deep space applications, 

satellite communications, speech and image transmission and many others.   

 
 


