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Abstract 

It is well established that, following adaptation, cells adjust their sensitivity to 

reflect the global stimulus conditions. Two recent studies in guinea pig inferior colliculus 

(IC. Dean, Harper & McAlpine 20051 and rat barrel cortex (Garcia-I.azaro. Ho, Nair & 

Schnupp 2007) found that neural stimulus-response ftinctions were displaced laterally in a 

manner that was dependent on the mean adapting stimulus. However, the direction of gain 

change, following adaptation to variance, was in contradiction to Information Theory, 

which predicts a decrease in gain with increased stimulus variance. 

On further analysis of the experimental data, presented within this thesis, it was 

revealed that the adaptive gain changes to global stimulus variance were, in fact, in the 

direction predicted b\ Information Theor\. Howexer. following adaptation lo global mean 

amplitude, neural threshold was displaced to centre the SRF on inputs that were located on 

the edge of the stimulus distribution. It was found that adaptation scaled neural output such 

that the rcbiinnship between firing rate and local, as opposed to global, differences in 

stimulus amplitude was mainlained; with the majority- of cells responding to large 

differences in stimulus amplitude, on the 40ms scale. A small majorit) of cells responded 

to step-size differences, in amplitude, of either direction and were classed as novelty 

preferring. 

Adaptation lo global mean was replicated in model neuron with spike-rate 

adaptation and tonic inhibition, which increased with stimulus mean. Adaptation to 

stimulus variance was replicated in three models I: By increasing, in proportion to stimulus 

variance, background, excitatory and inhibitory firing rates in a balanced manner (Chance, 

Abbon & Reyes 2002). 2: A model of asymmetric synaptic depression {Chclaru & Dragoi 

2008) and 3: a model combining non-linear input with synaptic depression. 

The results presented, within this thesis, demonstrate that neurons change their 

coding strategies depending upon the global levels of mean and variance within the sensor> 

input. Under low noise conditions, neurons act as deviation detectors, i.e. are primed to 

respond to large changes in the stimulus on the tens of millisecond: however, under 

conditions of increased noise switch their encoding strategy in order to compute the fill I 

range of the stimulus distribution through adjusting neural gain. 
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Chapter 1: Oveniew of thesis 

The development of Information Theorj (Shannon 1948: Shannon 1949) and, 

eonsequentl) the Efficient Coding Hvpolhesis (Barlow 1961) have had a profound 

influence on the understanding of neural dynamics over the years. 

Information theory is mathematical system developed in the late i 940's as a tool for 

analyzing and understanding communication systems (Shannon 1948; Shannon & Weaver 

1949). Its main purpose was to quantity' compression, rc]iabilit> and transmission of inputs 

to and within systems, Tliis was achieved through formalising concepts such as information 

(e.g. signals arc transmitted in a binary code, i.e. as a series of'O'sand '1 ' , the unit of 

information is the bit) and entropy (a measure of uncertainty about a random variable). 

Nervous systems car also be viewed as biological communication systems, in that 

sensory inputs are transfomied into binary, electrical signals, which are then transmilted 

across the network of neurons. As such, spiking activity can be quantified in terms of 

infomialion. i.e. as the number of bits of information carried by each spike. 

Due to the vast array of environmental information, with which organisms are 

constantly bombarded, signals must be highly compressed to allow for communication 

along finite neural pathways. Compression of any signal can result in loss of information; 

clearly ill is is an undesirable situation when sensory information is the key to survival. 

Horace Barlow (Barlow 1959: Barlow 1962: Barlow 1972) believed thai ner\ous systems 

must have evolved to minimise both data loss due to compression and action potential 

generation (due to the high metabolic cost of spiking activity); however, these are 

obviously conflicting requirements. Using Information theory as its basis, the Efficient 

1 



Coding Hypothesis (ECH) states that nervous systems encode sensory input in as efficient a 

manner as possible through a process of reducing redundancy (e.g. ensuring any signals 

that do not provide additional information arc discarded) and maximising the amount of 

information that single spikes can hold about a stimulus. Thus, the twin requirements of 

lossless compression (or rather low-loss compression!) and energy conservation can be 

acbieved. 

One of the main predictions of the ECH to be supported through experimental 

evidence is that neuronal response proHles reflect the prevailing stimulus levels within the 

environment (e.g. Laughlin 1981). Many neural cell types are not static, in terms of their 

sensitivity, and will adapt to the local stimulus conditions (e.g. Solomon, Peirce. Dhruv & 

T.ennie 2004; Albrechl. Fanar & Hamilton 1984). The ability of cells to flexibb adjust the 

dynamic range of their output is especially important for luminance contrast, a stimulus 

attribute which can span a range of approximately 2 orders of magnitude within the visual 

scene. 

In general, adaptation to low-level stimulus attributes, such as contrast or noise 

amplitude (which tend to have a Gaussian distribution), is believed to centre (he llring 

threshold of a cell onto the global mean level of the predominant stimulus. The dynamic 

range of a cell will expand and contract to reflect the stimulus distribution. Changes that 

affect the overall response profile of a cell are generally classed as a form of gain control, 

the purpose of which is to ensure that the dynamic response range of a neuron encompasses 

the stimulus distribution. Much of the considerable body of work addressing adaptation has 

focused on contrast adaptation and gain control, in the visual system. However, a specific 

form of adapuition. to either the global mean or variance of a rapidly changing stimulus. 



has been unco\ered in the inferior coHiculus of guinea pig auditory system (Dean. Harper 

& Mc Alpine 2005) and barrel cortex of the rat (Garcia-Lazaro. Ho. Nair & Schnupp 2007). 

The amplitude of the stimulus was refreshed ever}' 40ms and drawTi from a highly-skewed 

distribution. Such that a region of .stimulus space (spanning a restricted range of stimuli) 

had an overall selection probability of 80% and ihe remainder of stimulus levels had 20% 

chance of selection. This gave the stimulus an overall global mean value thai was 

determined by w^ere in the stimulus space the high-probability region was located and an 

overall global amount of variance that was determined by the width of the high-probability 

region and increased with the widlh of the area. As such, mean and variance oflhe adapting 

stimulus could be manipulated independently and the adaptive responses to either mean or 

\ariance could be isolated. 

Adaptation 16 stimulus variance was in the opposite direction to that expected by 

the ECH. i.e. the neural response prollle was scaled upwards, thereby reducing the dynamic 

range of the cell, despite the presence of increased stimulus noise. Adaptation to global 

mean amplitude tended lo alTect neural threshold, thus on a superllcial level, it was in line 

with Information theoretical principles. However, neural threshold was displaced, relative 

to the un-adapted response. lo centre on inputs on the edge of the stimulus distribution, in 

contradiction to the expectations of the ECH. As such, the main inspiration for the work 

presented here was to examine the experimental data more thoroughly: with the aim of 

understanding the underlying strategies and mechanisms underpinning the changes in 

neural gain that were outside the predictions of the ECH. 

Jan Schnupp generously provided the experimental data from ihe adaptation 

experiments in the barrel cortex. What was found was rather interesting, adaptation lo 
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stimulus variance resulted in decreased neural gain, fully in line with the expectations of 

the ECH but nevertheless opposite to the findings of the published data. However, 

adaptation to global mean amplitude tended to prime neurons, not for detecting and 

discriminating the most common stimuli with the distribution, but for detecting large 

deviations in the input signal, occurring on ihe lens of millisecond scale. 

Tn order to model the possible mechanisms underpinning adaptation to mean and 

variance, a computer simulation of a single-comparlmental neuron was developed, using an 

implementation of Alain Dcsiexlic's conductance-based integrate and fire computational 

neural model. 

Adaptation to global mean was successfully replicated in the model cell through a 

combination of spike-rate adaptation and tonic inhibition. Adaptation to variance was 

modelled in several ways. Firstly, by implementing a model of gain control through the 

modulation of background firing rates (Chance, Abbott & Reyes 2002). This was achieved 

by increasing firing rates, of stochastic, e\citator\' and inhibitory background conductances. 

in proportion to the increase in stimulus variance. Secondly, via a model of asymmetric 

synaptic depression (Chclani & Dragoi 2008) in which depression levels in both the 

inhibitor) and excilator) populations that provided afferent excitation to the target cell were 

adjusted lo retlect stimulus variance; such that as the amount of noise in the adapting 

stimulus increased depression levels became more balanced. This led lo an increase in the 

amount of afferent excitation and inhibition, thereby reducing gain in the model cell. 

Finally, a model was produced which combined aspects of all the models reviewed in the 

thesis: the experimental data was fully replicated with a model of non-linear input in 

combination with recurrcul synaptic depres.sion. 



The lliesis is organised into six chapters, including this over\iew. Within the 

following chapter, the main concepts of Information lheor>' and the Efficient Coding 

Hypothesis will be introduced. This will be followed by a review of contrast adaptation in 

the visual system. The purpose of this section is demonstrate the evidence for the ECH in 

early sensory processing as well as lo introduce a few key concepts that underpin hovv gain 

control is described and quantified within neural systems, eg . Ihe parameters of the Naka-

Rushlon equation, which are used to tit cellular stimulus-response functions. Some 

extensions to the ECH are also introduced in die chapter, followed by some alternative 

coding strategies, namely noveli> and deviation detection. 

The third chapter will introduce the experimental data, as provided by Jan Schnupp. 

Here, the original and a related study will be reviewed, followed by the re-analysis ofthe 

data. It is in this chapter that the results regarding adaptation to stimulus variance will be 

presented. Namely, that in direct contradiction lo die published results, adaptation, to 

increasing levels of .stimulus variance, resulted in a decrease in gain, across the population. 

There is also a brief section liighligiiting the diftlculiies in analysing temporal information 

from the experimental data. Following on from the initial re-analysi.s. presented in Chapter 

3, the fourth chapter of the thesis focuses on possible encoding strategies. Data is presented 

that suggests that neurons are adapted lo delect large deviations in the ongoing stimulus. 

'̂ fhe initial section presents ihe, equivocal, results of a data analysis that was based 

on the paradigm of stimulus-specific adaptation: with the aim of ascertaining whether 

adaptation to global mean levels improved novelty detection. Wilhin the following sections 

the data is analysed in icnns of stimulus historj- and context. Here, data relating neural 

output to difference in amplitude between the current and preceding .stimulus (the step-size 



function) is presented. Across the population, the adaptive response is scaled such that the 

step-size function, across all mean adapting conditions, is invariant. 

Amongsl both populations (adaplalion to mean or variance) some cells show a 

preference for step-size irre.spective of the direction of amplitude change and are classed as 

novelty-preferring cells. Novelty-preferring cells generally display longer time-to-peak and 

response-dec ay latencies than [he remainder of the population 

The data was analysed in tenns of sensitivit>' to local deviations from the global 

mean, at each time step. Across the population, neurons displayed a preference for positive. 

local deviations-from-the-mean; under conditions of adaptation to global-mean the 

responses were scaled as a function of the global standard deviation of the input signal. 

Tlic overall conclusion of llii.s chapter is that adaptation to stimulus mean acts to 

rescale responses so as to maintain information transmission about local changes in 

stimulus amplitude, irrespective of global mean levels, and represents a distinct encoding 

strategy to that observed under conditions of adaptation to stimulus variance (in wttich 

neural responses adapt to rellect the expanded stimulus distribution). Tlie fifth chapter 

presents results from computer simulation of adaptation to stimulus statistics. The 

introductory' section to the chapter contains an in-depth rc\ iew of some models of gain 

modulation as well as an introduction to spike-rate adaptation. 

It will be demonstrated thai the adaptive shift in the neural-stimulus response 

function and the invariancc of the step size ftjnction can be reproduced by a model 

consi,sting of tonic inhibilioii and spike-rate adaptation. 

Gain modulation is modelled in three ways; 

I. by increasing the tiring rates of background conductances in proportion to 



stimulus variance (Chance et al. 2002) and 

2. Adjusting levels of synaptic depression in recurrent excitatory and inhibitory 

units, such thai the difference between afferent inhibition and excilalion is reduced 

(Chelani & Dragoi 2008). 

3. Gain modulation was elicited by a combination ofthe models above, whereby 

non-linear afferent inputs were used to drive a recurrent population of excitatory and 

inhibitor. I & F cells. The combination of recurrenl depression acting within the network 

and feedforward depression, spike-rate adaptation and tonic inhibition acting on a read-out 

I & F eel! eliciled a decrease in neural gain as global variance increased, under various 

depression configurations. 

All models replicate the adaptation to variance data, ihough the final model 

presenis the mosl robust mechanism; gain modulation 'emerges' from the network and is 

independent of the balance of synaptic depression and other non-linearities acting on the 

membrane of die model read-out cell. 

The final chapter is the discussion, which brings together the results from chapters 

3-5. Tlie main thrust ofthe argument within the discussion is that adaptation to amplitude 

of whisker deflection is an impoilant aspecl of sensorj'processing, even if il is not the most 

relevant feature ofthe stimulus, in terms of neuronal sensitivit\". The results demonstrate 

that neurons change their coding strategies depending upL>n ihe overall levels of mean 

amplitude and variance in the sensory input. In conditions of low or constant stimulus 

variance, i.e. under the regime of adaptalion to global mean, neurons are primed to respond 

10 large and rapid changes in the .^Iimulus; houcver. under condilions of increased noise. 

neural-gain functions broaden such that Ihe cell is able to compute the full range ofthe 



stimulus distribution. 



Chapter 2: Efficient sensor\' coding and adaptation 

2.1: Introduction 

Neuroscience is a discipline ihat is fundamentally concerned with how nervous 

systems receive, analyze and respond to external stimuli. All afferent infomialion. whetlier 

il be carried by liyhL'sound \va\ es. pressure or heal, is converted wiihin the nervous s\'stem 

into electrical impulses. Thus, one of the most pertinent questions within neuroscience is 

how sensory information is encoded into electrical activity. 

During the 1950-60's. Horace Barlow (Barlow 1959. Barlow 1961, Barlow 1972) 

and a number of other scientists (e.g. Attneave 1954; Craik 1948) turned to Information 

Theorv a.s a possible mechanism for understanding neural encoding. Infoniiation Thcoiy is 

a mathematical system for analy7ing communication systems, developed b\ Claude 

Shannon (Shannon 1948: Shannon & Weaver 1949). According to Information Theoiy. 

messages travelling along any communication system can be broken down into basic units 

of information or'bits', quantified by a binary code of Os and Is. Action potentials (spikes) 

can also be considered as binary signals, due lo their all-or-nothing beha\ iour. Barlou 

proposed therefore thai any information conveyed b} spiking behaviour could also he 

quantified as 'bits' of information and ihat sensory input is encoded in such away as to 

minimise the nunilicr of bits needed lo transmit a signal through the neural system. 

According to the Efficient Coding Hypothesis (Barlow 1961). neural response 

proHles should represent the inherent distribution of an) incoming information in a 

maximally efficient manner. For example, if the predominant afferent stimulus has a 

Gaussian disiribuiion. and incoming information is represenied with a firing-rate code, the 

iheorv" predicts thai neural response profiles should be signioidal in nature, with the linear. 



accelerating portion of the neural-response function exactly mapping the region under the 

curve of the stimulus distribution (please see Section 2.2.3, below). In general, most 

neurons have biivphysical limits that prevent the full encoding of external slimuli through a 

firing rate code alone, thus the Efficient Coding Hypothesis also predicts that cellular 

responsiveness is adaptive i.e. it is adjusted in concert with the distribution of incoming 

signals. 

Adaptation, in response to contrast infonnatlon uithin the visual stimulus, has been 

observed and widely studied in the visual system and found to be in line with the 

predictions of tiie efficient coding hypothesis. 

An information theoretic account of sensory coding 

As mentioned above, during liie middle of tiic 20th century there was a move 

towards using information theory as a tool for explaining sensory- encoding. In order to 

understand the context of this trend what follows is a description of the main principles of 

information thcor\. how il can be applied to nervous s\ stems and an account of Barlow's 

efficient coding hypothesis (Barlow 1961), 

Tnfornmtion theory 

Information theor>' is a mathematical theory for analy7ing communication systems 

(Shannon 1948; Shannon & Weaver I ^A9). It was developed lo address the engineering 

problem of transmitting information along a noisy channel and provided a formalized 

framework to quantity the rate, reliability and capacity of message transmission within a 

communication system. A communication system can refer to anything that has a message 

or information source, a method of transmitting the message as a signal and a capacity to 

receive and output the message, see Figure 2.1, below. 



IMFOBMATION SOURCE TTWNSMITTEfi RECIEVER DESTINATIOM 

MESSAGE 

SIGNAL RECEIVED 

SIGNAL 

MESSAGE 

NOISE SOURCE 

Figure 2.1: Schematic of a generalised communication system 
The information source generates a message (e.g. text message to a friend), which is 
encoded into a signal by the transmitter (e.g. a mobile phone) and sent along tlie channel 
(e.g. a satellite or mobile phone transceivers), represented by the smallest bo.\ in the centre. 
where noise could be added. The receiver (e.g. the friend's mobile phone) receives the 
signal, decodes it and finally passes it on to the message destination (e.g. the receiving 
mobile phone's message inbox). Adapted from Shannon (1948). 

In this sense, a communication system refers equally to arcane methods of 

signalling such as hilltop fire-beacons to modem day forms of communication, e.g. text 

messaging on mobile phones, as well as to natural languages in general. One of the motives 

behind developing information theory was to understand the limits of data compression and 

the need for robustness in a signal. Many forms of communication undergo data 

compression to a degree. For example, ancient beacon systems acted to compress messages, 

(such as: 'the Vikings have landed!') into tiie single symbol of a hilltop fire. 

These forms of communication work because natural languages tend to be robust, 

i.e. can be understood even in the presence of a certain level of noise (such as spelling 

irregularities, abbreviations etc.), and are also highly redundant, in that messages can still 

be understood, even with parts of the signal missing (the missing parts are thus considered 
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redundant or unnecessary). For example, the English language has a redundancy ofroughly 

50yo (when assuming a basic vocabular> o f - 850 words (Shannon 1948), such ihai the 

following text should still be legible, despite the fact that all vowels have been removed: 

RD THS MSSG PES. THNKY VRY MCH ' 

An excellent example of both the robustness and redundancy inherent in the 

English language is given in the SMS poem below. The poem was runner-up in a text-

message poetry competition (organised by the company T-Mobile. 2007) to find a so-called 

'txt laureate': 

"O hart tht sorz. My luv adorz, He mAks me liv. He niAks me giv. Myslf 2 him. As 
m\ lu\ porz.' (Eileen Bridge. 2007) 

In natural English, the poem reads: 'oh heart that soars, my love adores, he makes 

me live, he makes me give, myself to him, as my love pours'. Clearly, the English language 

lends itself well to the tj'pe of data compression needed when sending a message along a 

highly restrictive communication channel. 

Obviously, the ideas outlined above are highly qualitative descriplions of some of 

the concepts underpinning Information Theory'; Shannon developed strict mathematical 

methods (Shannon 1948) to quantify exactly the amount of data compression required to 

reliably and efficiently transmit a signal along a noisy channel. 

Several of the key concepts of Information Theory (namely information, entropy, 

mutual information, channel capacity' and redundanc\). and (heir mathematical 

descriplions, are outlined below: with the assumption that one is discussing a noiseless 

communication system with a discrete set of inputs. 

' R\.A\) 1 HIS MI.SSAGl. t'l.RASE. THANKYOU VERY MUCH 
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Informalion 

The concept of information is generally taken to mean facts or knowledge. 

However, the compact Oxford English Dictionary also defines information as 'What is 

conveyed or represented b\ a particular sequence of sjinbols, impulses, etc'. For example. 

words within a given language represent semantic informalion using a specific sequence of 

symbols, i.e. tfie letters of the alphabet: or .spiking behaviour within tlie nervou.s system is 

believed to represent sensory and motor information through either frequency or relative 

timing of action potentials. 

In terms of Information Theor\. it is useful to think of information in relation to 

uncertainty. If one knows exacllj what response a system will generate then it follows that 

no new information is imparted through it: conversely if there is doubt over the output then 

the response of a system will clearly be informative. In any system, once the output has 

been recei\ed and understood, there is no more ambiguit>'. thus infomialiun can be 

considered as a reduction in uncertainty' or an increase in certainty; the amount of 

randomness in a system determines how much information can be transmitted through it 

(.see Section on Entropy, below). 

The unilof inlonnalion is the "bit". One bit measures the information contained in a 

single. binar\' (i.e. 0' or T l event of equal probability, e.g. an unbiased coin toss, A binary 

code can transmit up to t bil/per symbol. 

Finally, in discussing informalion it is important to stress that Shannon was not 

interested in quantifying [he rele\ance or importance of information, but onl\ in data 

compression and reliable transmission, thus, in information theor\, the messages SOS (save 

our souls) and LOL (laugh out loud) are arguably equivalent. 



Entropy 

All communication systems are concerned with sending out and receiving 

messages. Each message is broken down into units of informalion. ready for transmission 

and reconstituted at the receiving end of the system. As described above, information is a 

reduction in uneenaint;; the amount of potential information depends upon the degree of 

variabilitv in the transmission and decoding of messages, which is quantified by the 

entropy of the system. For example, an arbitrary system in which the input and output are 

always the same (i.e. there is no uncertainty- in the message) transmits no new informalion 

and. by extension, has zero entropy. In general, the inputs and outputs of a system arc 

drawn from known distributions and the average or minimum number of bits needed to 

encode and decode messages is dependent upon the variabilit\' within these distributions. 

Entropy is determined by the number of symbols used to represent the input and output of a 

system and the probabilit;' of transmission. 

Where an arbitrary system's signals are drawn from a distribution .V with N 

possible values and all arc equally likely to occur Ihcn the entropy (//) increases 

monolonically with A'(see Figure 2.2. below) and is equal to: 

H = -\og.!\IN) 

2.1 

As an example, one can consider a communication system in which the inputs are 

all drawn from a probabilit\' distribution A'that has 4 possible values; A. B. C & D. If all 

possible values of .̂V had an equal probabilitv- of being transmitted. / / would equal 2 bits and 

any signal. dra\sn from X. could be represented with the following 2-bit binary code (see 

Table 2.1): 
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Table 2.1: Example of a 2-bit binary code 
Symbol Binar\ code 

0 0 

B 

C 

D 

0 1 

I 0 

1 1 

Figure 2.2: Entropy as function of the number of possible input symbols. 
Entropy, H, is plotted as a function of TV, the number of possible values that the signal 
distribution ,Vcan have and where all possible values oi'X(X, i v). have equal probability 
of selection. 
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In the case where the 4 values of Toccur with unequal probability (remembering. 

of course, that all probabilities add up to unily), / / i s given by: 

// = -X/J,log,(A) 

2.2 
Where His the entropy of .V, with a given number, n. of values ; ^ L../; and p, is the 

probability of observing the ilh value of X; b is the base of the logarithm, which in 

Information Theory is always log; as the information content for a binary event with p = 

0.5 is equal to log^CO.S) = I bit. 

For example, in the system outlined above, the p, of the 4 symbols 'A. B. C. D' 

miiiht be as follows: 

I 

2 1 1 _1_ 

12 

Wliich gives: 

/ / -Mfl'-e^A^'i^Miiyi^MTi 
1.4183 

In (liis case, the average number of bits needed to encode each of the four symbols is 

1.4183 bits; however some symbols will use more or less bits depending on how common 

they are, i.e.; 

/ / , = - l o g , ( / ' , ) 

2.3 
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Therefore: 

H, = 0.5850. / /p = 2.585. H, = H,. = .^.5850 

H = 

/ / = 1.4183 

2 1 1 1 

."? 6 12 12 

As can he seen, llie mosl common signal 'A' requires the least number of bits. In this 

system, no symbol is encoded using whole bits, thus it may be necessary to add bits to the 

system, for example: 

/ / • , ,= i . / / '«-3. / / ; .=/ / '„=4 

H 
2 1 1 1 

= 1.8.133 

12 

AccordingK, / / represents the minimum number of biis required for signal 

encoding, e.g. in the example given above, the .signal could not he reliably encoded willi 

less than an average of 1 .-l 183 bits per s> mbol. 

/ / h a s the following properties: 

• H= 0. where there is no uncertainty, e.g. all probabilities, except one, are equal 

to zero, with tlic remaining probabilitv' equal to unity. 

• H is maximal uhen all responses are equally probable (sec Figure 2.3) and 

//,fiy ^ logjW- where n is the number of output possibilities and p^ ,, = \ln. 

Joint Entropy 

One can define the joint entropy of a system in which values are drami from the 
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joint distributions of two random variables. X& Y. with ni An possible values, respectively 

(e.g. a system in which the input is drawn from A'and the outpul is drawn from Y). The 

joint t-niropy.///A'.y). is: 

/ / (A" . r ) - -^^ ( jv , .v , ) log , p(.T,._i,) 

2.4 

Entropy, H, for a system with two outputs, x, & x, 
of probabOity:pfxJ = p 

D.I 0.2 0.3 o< 0 5 as 0.' oa os 
O u t p u t ProbabiSty [p j 

Figure 2.3: Entropy of an arbitrary system with two possible outputs 
Kntropy (H) of an arbilrLiry diitribution p(X). A'has tuo possible values only, with one 
having the probabilit_\ p and the other being /-/>. / / is maxiuial uhen the probabilit> of 
selection for all values of X is equal (e.g./> ^ 0 5). Adapted from Shannon (1948). 



So long as the individual entropies of A* and }'are equal to: 

1,1=1 ' - I 

2.5 
The joint entropy of ^ and y will always be less-than or equal-to the sum of the 

entropy of the individual distributions, uith equality only being observed when .V A Y are 

independent: 

2.6 

Comlifional Entropy 

If the dislrtbutions of .V and } are dependent on each other, il is useful to define 

tlie conditional entropy of Kgiven X. / / , (Y) : 

- . 1 - 1 

2.7 
The conditional probability./7/i-^ ) . that v is the///j value of 7 when J: is the iih 

\alne of .Vis given by: 

2.8 

Tlie conditional probabilitj' has an altemalive notation, which is widely used in the 
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literature: 

2.9 

The conditional entropy, H^{Y), can never be greater than the entropy of I', HlYl. i.e. 

knowledge ofXcan never increase the uncertainty of I 'bul only decrease it: 

2.10 

If the random variables A'and Y are independent. A" contains no information about Y. such 

that (he conditional cntropv must take its maximal value, HfY)- H J is completeK 

dependent upon .Ythen the uncertainty of I'dlsappears once X\s known and all the entropy 

in J' is e.vplained by H/X}; the conditional probability is equal to unitv and log,(I) = 0 . 

Equations 2.4 - 2.8 are derived from Shannon (1948). 

Mutual information 

Conditional and joint entropy could refer to two separate communication s; stems in 

which the signals arc drawn from X and Y. respectiveK. or could refer to a single system 

with an input drawn from ,V and output derived from )'. In this case one is obser\'ing an 

input'output relationship. One can quantif\ the amount of mutual information. UX \ Yl. that 

exists in the relationship between X and )', i.e. how much can I'tell us about X when ]' is 

known. 
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The mutual information of Xand Y is given by: 

2.11 

Mutual information is also equivalent to the entropy of the input minus the 

remaining uncertainly of the input, once the output is observed, i.e. the conditional entropy 

of .V given K H-,^X) (note this is opposite lo the conditional entropy described by Equation 

2.7. in the section above, which defined tlie entropy ol' J', given X)\ the mutual dependence 

of X and )' quantifies the rate of information transmission (see Section on Channel 

capacity, below); 

I<X\Yi-n, -H^fXj 

2.12 
Mutual information is a useful measure of the reliability of information 

transmission when dealing with a noisy channel. Shannon (1948) gives tlie example of a 

noisy channel with an input x that is either 0 or ! and iransmining at a rate of 1000 bits per 

second fW(.v) = \bU I symbol: /J„ ^ p, = 0 .5 ; . Due to noise there is, on average, a 1% 

chance of the output, v. being in error. Thus if v = 0. there is a 99% chance that .v = 0 and 

1 % chance that j : = I. One can calculate ilie conditional entropy of .v given y, or Hyixj, 

and the mutual information of v and v, I<x | \). as; 

/ / , /v ; - - [ /0 .99 logV0.99; /+r0 .0 t log , ( '0 .01 ; j ] 

= 0.081 

21 



And: 

I(x{y) = ]-OM\^0.9\9 

The rate of error is then 81 bils/s and the rate of transmission is 1000-81 = 9 1 9 bits/s. 

In the noiseless case there is no uncertainty, i.e. v is always equal to _i:, thus the 

conditional entropy H\f\) is 7cro and U.x\yl- Hx\ in the case of a truly random system, 

where there is a 50% chance of error, .r and y are wholly independent and hold no mulual 

information about each other. For example, in the case above uhcre llx = I and 

/'O = pi = 0.5. a 50% chance of error in v will give: 

HJ.X) = -[t0.5•\o^.(0.5II i (0.5-\ogJ0.5li] = \ 

And: 

Ifx I .vy - I - 1 = 0 

Channel capacity 

Channel capacity refers to the amount of information it is possible to transmit 

along a channel in a given unit of time and is equal to ihe maximum of the mutual 

information, where you have input Xand output Y: 

2.13 

Reiliindancy 

In terms of information theory, redundancy either represents information that is 

either already known lo the s\5tem or infomiation that's unnecessary for the 

communication, e.g. vowels in natural English, which can often be inferred from the 

context. For example, in the hvpothetical system outlined in the section on Eiiirupy. above, 

it was slated that a useful code may have required the addition of extra bits of information. 
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These extra bits could be regarded as redundant information. Thus redundancy can be 

considered as the difference between the number o f bits used to actually transmit a signal 

and the entropy o f the message distribution,/»/'A'A or as unit> minus the relative entropy. 

Relati\c entropy,/>f/7^V>j ^fAV^ is the ratio o f the true distribution o f .V. piX). to 

the actual distribution used to describe X. qlX). and is often termed tlie Kuliback-Leibler 

Distance (Cover & Thomas 1991). 

The nen'ous system is a communication system 

The nervous system o f any organisni acts to transform external information into an 

iniemal representation o f the outside world and. as such, can be considered as a dense 

network o f communication systems, acting in series and in parallel. For example, within the 

proprioceptive sy.stem, sensorj receptors transduce external stimuli into graded potentials 

(an information source) thai are rapidly converted (via .synaptic interactions) at the soma of 

the somato-sensory relay neuron (the transmitter) into action potentials. These are 

propagated along the axon (the channel) to the spinal chord junct ion where post-synaptic 

neurons receive the sensory information, reconstituted from neurotransmitter release': here 

the signal may be propagated further along into higher regions o f the central nervous 

system using a communication system o f pre-s\naptic activity, somatic action potential 

generation, propagation and neurotransmitter release. 

Barlow {1961} argued then that, as a communication system, the nervous system 

could be described using information theoretic principles, given three simplify ing 

One toi i l i l conjciriurc iliai ihc iransmissiiin iiraciioii piilciitiul:; al ihc axon lerminats. atross the 
syiiapiic clefi. into pist-ssnapiit dendriiic aciivi i j is a separuie. siib-sviieni. rii-'venlidess neural aeiivicj' is 
essentially ciincemed wi i l i tranwiission i>riiironiiati«n anil can thus be rediited inio a com mimical ion system 
as defined b> Sliannim. st-e Figure 2.1. abnvc 



assumptions: 

1. It is a noiseless system with discrete inputs 

2. Action potentials are discrete signals and, due lo their highly stereotyped 

behaviour, can be considered as binar; signals 

3. The capacit) of a channel. C ( channel here refers to a neural pathway, e.g. the 

oplic nerve), depends on the number of fibres, F. within the channel, the number of discrete 

time intervals, per second, R, that an impulse can be sent along C and the average number 

of actual impulses, per second, I. 

Nervous systems are subjecl to the s^me issues of compression as more traditional 

communication systems, in that a large range of possible messages (one could argue that 

the number of potential environmental inputs approai;hes infinity 1) must be converted into a 

smaller number of signals for transmission. Compression is of vital importance for nervous 

systems as there can never be enough receptors lo encode all incoming information: 

furtliennore every spike that is transmitted costs metabolic energy. Barlow proposed thai 

the ner\'ous system acts to transmit information in a max^imally efficient manner as 

possible. Reducing the redundancy in the encoding of .sensory^ stimuli means that afferent 

input can be highly compressed, wilhoui loss of information, thus minimising the number 

of spikes needed to transmit a given signal through the nervous system. In terms of 

Information tlieorj' redundancy reduction is achieved through the maximisation of the 

cntropj' in die system. 

Barlow's efficient coiling hypothesis 

The Efficient Coding I hpothesis ptisits that nervous systems have evolved to 

transmit sensory information with as few spikes as possible, i.e. to map stimulus to 
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response in a maximally efficient manner. To this end, it might be assumed that any 

redundant infonnation must be discarded early on in the s\ stem. However, it is important to 

note that the Efficient Coding Hypothesis is not focused on removing extraneous 

information per se: rather il focuses on recoding incoming slinuih in such a way that the 

full range of sensor>' input can be encoded, but as economically as possible. An efficient 

coding strategy, as envisioned by Barlow, has the advantage of being reversible (as 

information isn't lost): thus redundant information can still be accessed during higher stages 

of cortical processing. 

Redundancy reduction is achieved through maximising the relative entropy of the 

system, which is a function of the average entropy and channel capacit\ of the system, see 

below. 

[f the input to the ner\ou,s system is an ensemble of messages, m. that are of 

\ arinble length (T„) and independent, one can calculate the entropy, / /„ . as for Equation 

2.1: 

2.14 
Where/j„, is the probability of w and h is the base of the logarithm and always equal to 2. 

Therefore the average entropy across all messages ( / / u / ) is (from Equation 2.2): 

2.15 

The rate of information flow is equal to ^ i i j T w h e r e 7" is the weighted sum of all message 

durations: 

/ ' T 
2.16 

The channel capacity (C) is equal to the maximum amount of information, per unit of time. 

which travels along a channel, with constraints outlined in Assumption 3, given above. 
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As siieh C. lor Firing-rate codes, can be calculated as follows (Mackay & McCullough, 

1952): 

/ . i.i. n 
'^-'^-R^'^'-RT-R) 

log, 
/ 

I - -

2.17 

For F. ft and /see Assumption 3. Section: 2.2,3. above. 

Tlic relative entropy (Hmi) of the message ensemble in relation to channel capacity 

is given by the ratio: 

2.18 
The equations 2.14-2.18 are adapted from Barlow (1961). 

Ttius the redundanc> is equal to I-Hnyi. i.e. the maximum rate of infomiaiion 

transfer minus the actual rate of information How across the channel. Clearly then, the ideal 

solution for redundancy reduction is to maximise llmi.. 

HRKL is related to the rate of information How. thus Barlow (1961) intuited that 

neurons encode external stimuli b\ firing rate over time, as the amount of information 

carried by average number of spikes per given unit of time can be quantified in bits due to 

the binary nature of action potentials. .\n example then of an efficient coding strategy 

would be a factorial code {Barlow 1961), wherebv the most common stimuli are encoded 

using the lowest firing rate possible, with firing rate increasing proportionally with inpul 

rarity, given the limits of channel capacity. The typo of encoding found in natural English, 

for example (Shannon 1948). can be considered factorial as there is a clear relationship 

between word length and rarity (i.e. commonly used words, such as "a", "the" etc., tend to 

be very short). 

However, in a system in which stimuli are distinguished on the basis of firing rale 

codes a factorial code may not be practical, in terms of discriminability. For example, an 
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input wi th a Gaussian distribution lias two tails of equal rar i t j ; in a factorial code these 

stimuli would be represented wi th similar, low levels o f activity' despite the large distance 

between. 

Ner\ous systems should idcalK ha\e encoding stralegies that strive to equalise 

output probabilities as this wi l l maximise the entropy o f the system (Shannon 1948; Barlow 

1959; Laughlin & Mardie 1978). For example, when relating the output o f a neuron to a 

single stimulus parameter (e.g. levels o f contrast in a visual scene, see Section: 2.3) with a 

Gaussian distribution, a maximally efTicicnl mapping o f stimulus to response should result 

in a neural rale function that is the iiuegrai o f tlie stimulus distribution, i.e. the cumulative 

probability distribution function o f the input (see Figure 2.4); the cumulative probabilit\ 

distribution function maps equal changes in response ranges with equal shifts in stimulus 

probabil ity. Tlius for rare stimuli, more o f the stimulus space w i l l be mapped onto a given 

unit o f response relative to more common stimuli (compare highlighted areas in Figure 2.4. 

below: tiie stcp-ch;)nge in response is equal for both areas, under the stimulus-probability 

curve, bounded by either the red or green lines but the amount o f stimulus space is 

relatively greater for the area bounded by the red lines, wit l i respect to the green lines), or: 

"...economies could be effected by reducing the space in the sensory representation 

occupied by those familiar stimuli and al lowing more space for the infrequent and 

unexpected .stimuli" (Barlow 1959. pi 1). 

This type o f coding strategy has the advantage, over a pureh factorial code, o f 

uti l ising restricted resources efficiently by amplifying the responses to, and improving 

resolution of. more common stimuli (with respect to infrequent events) whilst minimising 

the number o f possible responses states needed to encode rare st imul i . It is equivalent to 

histogram equalization (Gonzalez & Win lz 1977). a procedure used in digital image 
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processing, see Figure 2,4. 

l.5r 
Histogram Equalization 

0.2 0.4 0.6 0.8 1 1.2 1.4 
Stimulus 

1.6 1.8 

Figure 2.4: Histogram equalization and the neural code 
Top panel is an arbitrar\ stimulus with a Gaussian distribution {fi = I. cr^O.3). bottom panel 
is an idealized neural response function thai is the cumulative probability' distribution of the 
stimulus distribution. Thin lines define the upper/lower limits of a response range (equal to 
1/10 of the maximum response): thick lines define the limits of stimulus representation for 
the associated response range (corresponding colour and line style). Response ranges 
delineated by red (dotted line) and green (dot-dash line) are equal; as are the areas under the 
curve bounded by the corresponding thick lines. However the representation of stimulus 
space is not equal, allouing for a greater resolution of common stimuli and minimising the 
number of responses that encode rare stimuli. 

Accordingly, both information theory and the efTicient coding hypothesis predict 

that the response profile of a sensory neuron will be highly dependent on the prevailing 

stimulus distribution (see Figure 2.5. below). 

For example, given a stimulus with a Gaussian distribution, the cellular stimulus 

threshold (determined by the stimulus thai elicits the half-maximal response or S50) and 

linear region of the response function should be centred on the mean stimulus amplitude 

(Figure 2.5. left column); whilst the linear slope of the response profile is dependent on the 
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width of the stimulus distribution or stimulus variance (Figure 2.5, righi column). 

One would expect then that organisms have evolved with sensory neurons that are 

tuned to the prevailing environmental stimulus distributions and this does aj^ear to be the 

case (see Section: 2.3); however organisms rarely exist in static environments. 

A: Distribution ot 
orbftrarv stimuKis (o = 0.2) 

B: Distrtoutbn of 
•rbitroty sti-nulus (M = 

QO.S 

0 1 2 0 
C: Ideofeed stm-iijlus-fesponse function 

(SRF), in resporse lo ^ 

1 2 

D: SRF, in response 1oB 

1 2 
SIrnulus (no units) 

0 1 2 
Stimulus [no units) 

Figure 2.5: Predictions of the eflicient coding hypothesis 
Top row; Probability distribution functions (PDF) (solid lines) of an arbitrary stimulus 
with a Gaussian distribulion. Bottom row: Response profiles of a hypothetical cell, 
assuming an optimal mapping of stimulus lo response, given the corresponding (colour 
coded) PDF of the stimulus, each panel is an idealized neural response function (normalised 
response with no units) that is the cumulative probability distribution of the stimulus 
distribution. Left column: Dependency of response profile on the mean stimulus, blue 
(control): fi= I: red // = 0.8. crisfl.xed at 0.2. The decrease in fi results m a lateral 
displacement of the stimulus-response function, (green, dashed line) relative to the control 
(blue, solid line). Right column: Dependency of response profile on the standard deviation 
of the stimulus, blue: a- 0.2. green: u= 0.4. fi~\. The increase in cresults in a decrease 
in the stimulus-response function gradient (green. da.shed line) relative to the control (blue, 
solid line). 

Thus the Efficient Coding Hypothesis also predicts that neural responses must be 
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tlexible and that sensory systems will have mechanisms that allow for the adjusting of 

responsiveness to retleci transient changes in the prevailing stimulus statistics. 

Before moving on to discussing experimental evidence for the iifllcient Coding 

H} pothesis. one further poini needs to be raised. The above discussion considers the case of 

single cells or channels of communication. However neurons do not exist in isolation, thus 

the Efficient Coding Hypothesis also holds that, within a population, neuronal responses 

should be independent of each other, such thai the infoniiation tarried by individual 

neurons is not redundanl wiih respect to the information carried by ihc rest of the 

population. 

2.2: Contrast adaptat ioQ in the visual system 

The response of the visual system to contrast has been one of the most widely 

explored aspects of visual processing, Man\ visual cells (in both mammals and insects) 

have been shown to have highly non-linear responses to contrast, that are suggestive of an 

encoding strategy based on spiking efficiency and redundancy reduction, i.e. in line with 

the predictions of the elllcient coding hypothesis, 

2.2.1: Contrast-response function 

Contrast is a ubiquitous property of the visual scene and describes the modulation 

of illumination, around mean intensity, of a given stimulus. It is often calculated using 

Michelson contrast: 

'-.1/1 V ^ \l!\ 

^ l/.l.l ^''StlK 

2.19 
Where Lxux&mi, Z.,i/f,v describe the maximum and minimum luminance, respectively. 
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In order lo cope with the omnipresent nature of contrast It might be expected that 

visual neurons encode contrast information in an efficient manner. I.e. with response 

profiles that reflect the inherent distribution of contrast within natural .scenes. To test 

whethei-contrast encoding is in line with the efficient coding hypothesis, l.aughlin (1981) 

compared the contrast-response of large mono-polar cells (LMC) in the compound eye of 

the blowfly (die arthropod equivalent of the retinal bipolar cell in vertebrates) with the 

distribution of contrasts found in the natural habitats of the blowfly, such as woodland and 

lakesides. LMC responses were recorded to stimuli drawn from the range of contrasts found 

in the wild and compared to the cumulative distribution function of the stimulus, see Figure 

2.6. below. 

One can see that the cellular responses closely matched Ihe cumulative distribution 

fiinction: thus there is a strong case to argue that contrast is encoded, in the blowfly, in the 

manner predicted by the efficient coding h\pothesis. 

Within the primary' visual cortex (V1) of both cats (Ohzawa, Sclar & Freeman 

l9i82;Ohzawa, Sclar& Freeman 1985; Albrecht& Hamilton 1982) and monkeys (Sclar, 

l.ennic & DePricst 1989; Albrechl & Hamilton 1982), the majority of neurons have 

contrast-response functions (the a\ erase firing-rate response as a fimciion of stimulus 

contrast) that are sigmoidal in nature. Figure 2.7. below, gives several examples of contrast-

response function for simple and complex cells in cat or primate VI . Two-thirds of the cells 

in Figure 2.7 have contrast-response functions that increase for a limited subset of 

contrasts, saturate at high contrasts and are best fitted by a hyper-ratio function, when 

plotted on contrast-log coordinates. 
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Figure 2.6: Contrast response in (he eompounJ eye of the bhtwfly 
Comparison of distrihulion of natural contrasts and large mono-polar cells (LMC) contrast 
responses in compound e>e of the hluwll). Solid line plots the cumulative probability 
distribution of contrast in the blowlly's natural environment, circles give the averaged 
contrast-response across LMC in^Ci). with error bars giving tolal scatter of the responses 
across ceils. The responses are nonnalized to set the maximum response, to an increase in 
contrast, at 1 and the maximum response, to a decrease in contrast, at 0. The inset plots the 
membrane response of a cell to a contrast step stimulus (hyperpolarisation to increments 
and depolarisation to decrements of stimulus contrast). Taken from Laughlin (1981). 

The hyper-ratio function or Michael is-Menton/Naka-Rushton equation (Albrecht & 

Hamilton 1982. Maffei & Fiorentini 1973) is given below: 

2.20 
Where, fijiy represents the maximum firing rale/response of the cell and is termed 

the saturation constant: «. the expansive response-exponent (Albrecht & Geisler 1994). 

governs the slope of the d\namic response at low contrasts (the average value, in the 
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cortex, ofthe power fianction is approximately 2.5 (Albrechl & Hamilton 1982) and C50, 

the half-maximal response or semi-saturation constant, describes the contrast sensitivity of 

the cell. 
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Figure 2.7: Contrast response functions in cat and monkey VI 
Lxamples of conlrasl-responsc function in \ ' l of cat and monkey (C and M. respect i \e l \ . 
see the 1st bracketed letter, on each conIrasI-response fund ion plot, for species t\'pc) of 
both simple and complex cells (S and C. respectively. 2nd bracketed letter for ceil type). 
Triangles give the actual percentage respoiise; smooth lines are the best fit to the data 
points, with function t>pe and parameters gi\cn on each plot (Taken from Albrecht & 
Hamilton 1982) 

For primate V1 cells, the contrast-response function is fully developed within the 

first 10-20 ms after response onset (Albrechl, Geisler, Frazor& Crane 2002). Figure 2.9 

A&D, below, shows the post-stimulus time histogram (PSTH) for a monkey VI simple eel 
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in response to flashed (200ms presentation time) grating stimuli of fixed and optimal 

orientation, spatial frequency etc. at different contrasts (Figure 2.9A plots the actual PSTH 

whilst Figure 2.9C plots the shifted PSTH, such that time-to peak latency maiched). 

1 

0.9 C,„= 20% contrast so 

0.8^ ' ^ M ^ = ^ « ' 

0.7-
N 

CD 

2o.6f 
c 

I T 0.5 
X) 
t/i 0.4 

a 
E 
o 0.3 

0.2 

0.1 

n=4 

Stimulus Contrast [%) 
100 

Figure 2.8: Idealized contrast-response function of a bypolhetieal cell 
The idealized contrasc-response function of a hypothetical ceil showing response saturation 
for high contrasts and accelerating non-linear response at low-mid contrasts. Rutx: C-^ii and 
11 are the Naka-Rusliton parameters, see Equation 2.20 and text for details. 

As would be expected, activity inci^ased and latency decreased for higher levels of 

contrast. 
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Figure 2.9: Con Iras I-response function in response to tran.sivnl stimuli 
A: Solid lines and symbols are tlie PSTH of response at dittercnl contrasis (diamonds-
squares, contrasis ranging from 0,0-0.9 in incremcnial steps o f (1.1) for a monkey V I simple 
cell. B: contrast-response function from dilTercnt time bins in A: 58ms (-diamonds). 62 ms 
(-square). 70 ms (-upward triangle). 7S ms (-circle), 86 ms {-downward triangle). 102 ms (-
cross). C: PSTH. from A. but shified laterally to remove latency differences and al low for 
comparison across all contrasts. Smooth lines arc the average I'STH but scaled vertically 
and horizontally to account for contrast dependent amplitude and latencx differences. D: 
contrast-response function at dilTerent time bins in C (symbols as in B). Smooth lines are 
the best III of a Naka-Rushton equation in which only R\i^\ is allowed to vary (C-;,! and n 
are 0.296 and 3.1. respectively). Taken from Albrcchl et al, (2002). 

The responses for a given time bin, as a function o f contrast, are plotted in Figure 

2.9 B & D (Figure 2.9B plots contrast-response functions for the 58.62.70.78.86. & 102ms 

time-bins from the PSTH plotted in Figure 2.9A, whilst Figure 2.9D plots the contrast-

response functions, from ihe same time-bins, as derived from Figure 2.9C). It is clear from 
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Figure 2.9D that the contrast-response function is best fitted b\ a sigmoid function, even at 

the 5Snis time-bin. The short latency o f contrast-response function development indicates 

that this is an extremely rapid form o f gain control, wii ich can act within the space o f a 

single saccadic f ixation. 

Are V I contrast-response functions optimal, in terms o f the distribution o f contrasts 

within ttie environment? The levels o f contrast within images o f natural scenes can be 

measured on a pixel-b\-pixel basis by determining the contrast-response o f a filter, w+iich 

resembles neuronal receptive field structure (e.g. a Gabor fi lter would mimic the receptive 

field of V I simple cells. Brady & Field. 2000). to each pLvel in the scene, thus quantifying 

the distribution o f contrast in the natural world, as 'seen' by sensory neurons (Brady & 

Field. 2000. Tadmor & Tolhursl, 2000). 

The contrast distribution o f natural .scenes was estimated in terms of V I cell 

responses (Brady & Field. 2000). The average contrast o f 46 grey-scale, logarithmically 

transformed, images o f natural scenes (as calculated using Gabor fi lters o fva iy ing spatial 

frequency, orientation and phase to mimic cortical receptive fields) is plotted in Figure 

2.10a in order o f mean contrast (from low-high); the responses o f the sensor> filters were 

calibrated relative to their response to a sine-wave grating o f equal spatial frequency, phase 

and orientalion. There was considerable variety in average contrast levels across the images 

used for analysis, howe\er the distribution o f average contrasts across all scenes was 

approximately normal (Figure 2.1 Ob), 

The histogram o f responses o f the sensor\ filters, as a function o f contrast (in 1 % 

contrast bins) is plotted in Figure 2.1 la , below. 
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Mean tonliast: 1.2i%- IWUlti 
Cocflldiml urvuTialion: 0,89- 1.85 

(a) (b) 

I ' I ' I ' I ' I ' I I 
0.? 2.5 4.? 6.5 B.5 10.5 12.5 

1.5 3.5 5.5 7.5 9.5 11.5 

Figure 2.10: Levek and distribution of the average contrast observed in a series of 46 
images of natural scenes 
Plot (a): The average contrast level for each of the 46 images is plotted in order of 
increasing mean, ranging from 1.21-11.9%; the error bars show±l coefficient of variation. 
Plot (b): The distribution of mean contrasts is approximately normal. The figure is taken 
from Brady & Field (2000). 

The distribution peaks for very low contrasts and has a high kurtosis (or 

•peakyness"). The integral of the distribution of positive contrasts (see Figure 2.1 lb) is 

plotted in Figure 2.1 Ic (solid line) and is best fit by a hyper-ratio function, with values 

similar to that observed in both cat and monkey VI (for example see Table 2.2, in the 

Section: Contrast dependent non-linearities in LGN and retina, below). From this it would 

appear that the hyper-ratio ftmction is optimal in terms of encoding environmental contrast. 

The distribution of semi-saturation contrasts observed in VI (ranging from 1 to = 40% 

contrast (Albrecht & Hamilton, 1982), see also Figure 2.7) could also allow for the efficient 

encoding of the wide range of average contrasts observed in the environment (Brady & 

Field, 2000), though this can also be achieved by shifting the dynamic ranges of response 

fiinctions, depending on the prevailing levels of contrast in the input (see Section: 2.2.2:-

2-2.3:, below). 
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A simitar analysis was performed for retinal ganglion and LGN cells (Tadnior & 

Tolhurst 2000): again the contrast-response functions of thalamic and retinal visual cells 

were found to match the distribution of contrasts encountered in natural scenes. 
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Figure 2.11: Distributioa of contrast as 'seen' by VI simple cells and the optimal 
response profile 
Plot (a) gives the distribution of contrast in natural scenes, by binning the proportion of 
sensor>' filters that responded to each contrast; plot (b) is the distribution in (a) but for 
positive contrasts alone. Tlie sensory filters were averaged across 5 spatial frequencies, and 
4 orientations. Plot (c) is the integral (solid line) of the positive-contrast distribution in (b) 
and the dashed line is the best-fit to data: a hyperbolic-ratio function (R.iiiv = 1:0). The 
figure is taken from Brady & Field (2000), 

It should be noted that not all VI cells display sigmoidal contrast-response 

functions. For example, in Figure 2.7g-h the relationship between contrast and response 

was a logarithmic function. Tlie optimal output distribution, in terms of maximising 

entropy, depends on the constraints placed upon the system. When neural output in both 

feline VI and macaque IT cortex is constrained by either the maintenance of long term. 
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average finng rales or minimising the average response, then Uie response distribution is an 

exponential function (Baddeley. Abbott. Booth. Sengpiel, Freeman. Wakeman & Rolls 

I9')7: Rieke, Warland, de Ru\ter van Steveninck & Biaiek 1996). as opposed to a unilbriTi 

outpul-disfribution when the neuron is constrained by either response saturation or range 

(Laughlin 1981; see Figure 2.A & Figure 2.6). 

2.2.2: Gain control of the contrast-response function 

VI cells' contrast-response liinclions are not fixed, that is they are dynamic and are 

dependent on both stimulus attributes and history. Changes in the output, or gain, of a cell 

can lead to shifts in contrast sensitivity, response amplitude, and alter the dynamic 

signalling range of'a cell. 

Two forms of gain control, response acceleration and saturation, have already been 

outlined, above. However, the contrast-response function, as titled with the Naka-Rushton 

equation, has three free parameters which are often used to quantify gain changes, relative 

to baseline levels (see Figure 2.12, below). For example, if the contrast-response ftinction, 

CRF, is conserved but displaced laterally, compared to the control response (solid line in 

Figure 2.12. below), then only C ĉ is affected (dotted line: Figure 2.12. below); the 

resulting shift in contrast sensitivity is considered to be an example of contrast-gain control. 

Response-gain control is characterized b\ a vortical scaling oflhe conlrasl-response 

fijnciion (dashed line; figure 2.12. below), in which the firing rate threshold that 

determines response saturation is increased or decreased {}isu\' in Naka-Rushton equation); 

Csd and n remain constant. Gain-adjustments that broaden or narrow the dynamic response 

range of the cell, a form of neural-gain control, arc quantified b\ a shift in n (dot-da^h line; 



Figure 2.12, below). It should be noted that gain changes are often evoked dial affect more 

than one o f the parameter outlined above, however gain changes are usually classified by 

the predominant parameter shift. 
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Figure 2.12: Gain control of the contrast-response function 
Parameters o f control response {smooth line) n = 4; Cso = 20yo and R\u\ ^ 0,5. Parameter 
values fol lowing gain changes are given in the inset and are coordinated with line stj le. 
Dotted line shows effect of contrast gain control (only L\(, is affected) on contrast-response 
function (CRF), dashed line plots response gain (f i i / jv) and dot-dash line represents an 
example o f a change in neural-gain (only the gradient, as determined by n. is affected) 
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2.2.3: Contrast adaptation 

[n general, many cells, within the early stages of the visual pathway, show response 

saturation in the presence of high contrasts; with the consequential effect of limiting their 

signalling capacity. However, even without contrast saturation, individual visual neurons, 

due to biophysical firing rate limits, do not generally have the capability to signal the full 

range of contrasts encountered during natural viewing (e.g. conliasts ranging from the 

faintest star in the nigiii sky to dappled sunlight on the skin). In fact, many monkey and cat 

VI neurons display dynamic firing ranges which are restricted to roughlv 10 - 20% of the 

contrast range typically found within the environment (Albrecht &. Hamilton, 19H2: Frazor 

&Gcisler. 2006). 

A similar situation exists for the encoding of briglitne.ss levels. Retinal ganglion 

ceUs can encode around 2-log unit changes in illumination in their firing rate; however, 

cells must have the capacity to encode ~lfl-log unit changes in brightness levels thai are 

encounieied within the visual environmeLii. In terms of lumin:ince, photoreceptors change 

the gain of their responsiveness, a process known as light adaptation, to match the 

prevailing levels of illumination: under dark conditions photoreceptors become 

preferentially sensitive to small changes in light levels, i.e. cells display increased gain to 

low levels of illumination, conversely, at high levels of overall illumination large changes 

in brightness arc emphasised. Light adaptation is a slow process; for example, when 

walking into a darkened room from bright daylight; it takes several seconds for the eyes to 

adjust to the new light levels. 

An analogous mechanism of adaptation to stimulus contrast exists within both cat 

andpnmatcVI (MatTeielal. 197.^; Albrecht et al. 1984; Ohzawa et al. 1985; Sclar etal . 
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1989) and within primate lateral geniculate nucleus, or LGN. (magnocellular cells only, 

Solomon. Peirce, Dhniv & Lennie 2004). Tlie dynamic response range of a cell shitls 

depending on the overall level of contrast. Figure 2.13a-b. belov\. plots the contrast-

response function (solid lines and symbols) of a simple and complex VI cell, respectively, 

after adaptation to stimuli ranging from low-high contrasts (left to right contrast-response 

function). 

The dotted line gives the pre-adapted contrast-response function, whilst the dashed 

line plots the response to the adapting contrast; responses to the adapting contrast roughly 

equate to the Csn. As can be seen, adapting these cells to given contrast level displaces the 

contrast-response function laiei-allj. centring the Ciy on the prevailing level of contrast, as 

predicted b\ the l.tTicient t oding H_\polhesis, Adulat ion to low i;onlrasl lc\cls centres the 

dynamic region of the contrast-response function onto the region of the log-contrast plot 

thai emphasises small changes in contrast, whilst high contrast adaptation allows for the 

discrimination of large changes in contrast. For the cells in Figure 2.13c-d (complex VI eel 

and Y-type LGN cell, respectively), the contrast-response function remains relatively 

unaffected by contrast adaptation. 

Contrast adaptation can take up to 15 seconds to develop fully and the effects are 

long lasting (Ohzawa et al. 1982. 1985); this is in stark contrast to the time course of the 

contrast-respon.se function itself which, in VI al least, is fully developed within the first 

10ms of response-onset (see Figure 2.9 above, Albrechl ci al. 2002). 

Contrast adaptation is generally considered a cortical mechanism as: 

1. The earliest studies only found contrast adaptation in VI {e.g. Movshon & 

Lennie 1979; Ohzawa et al. 1985) 
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Fifiure 2.13: Contrast-response funcliuns ofcat VI simple, complex and LGN Y' cell, 
after cunlrasl-ad^iptaUun 
Contrast-response tiinclions ofcat V! simple (a), complex (b-c) and LGN Y cell (d). after 
contrast-adaptation. Dotted line gives the prc-adapted. or control, response to a range of 
contrasts; solid lines & symbols plot post-adaptation contrast-response function, in 
response to increasing levels ofadaplini: contrast (adapting contrast given by the 
intersection ol'lhe dashed line on the relevant eonlrast-responsc function). Top row. both 
cells display contrast adaptation, Roltom row, neither cells display contrast adaptation: note 
thai whilst the conlriisl-resptin.se function ofall VI cells display sigmoidal contrast-
response function, the LXiN cell's lespon.se is best described by a linear function, thus 
response-profile i.s notaii indicator of propensity for adaptation and not all cells have 
response profiles that exactly match the contrast-distribution (taken from Ohzawa et al. 
1982). 
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2. Many cells within the early visual cortical areas respond strongly to grating 

stimuli and arc preferentially sensitive to such stimulus features as orientation. 

spatial/temporal frequency etc. Contrast adaptation has been shown to reduce or alter 

responsiveness to, the pre-adaplation. preferred oricnialions and spatial frequencies (e.g. 

Ma f f e i e t a l . 1973; Movshon & Lennie, 1979; Mbrecht et al. 1984; Ohzawa el al. I9«5; 

Sclar el al. 1989; Dragoi. Shamia & Sur 2000; Dragoi. Turcu & Sur 2001). 

3. Some cells in V1 and V2 di.splay contrast adaptation that Is not orientation 

sensitive or have varying levels o f adaptation dependent on the orientation o f the stimulus 

(see Figure 2,14. below; Crowder. Price. Hietanen. Dreher, Cl i f ford & Ibbotson 2006). 

These cells were most likely to found in areas where surrounding cells' orientations 

preferences changed rapidl\ (i.e. at ihe piiiw heel centres o f llie orienialion tuning map. 

Dragoi. Rivadulla & Sur 2001), thus ihcir response properties are directly linked to the 

functional organisation o f the cortex. 

As neither contrast adaptation nor orientation tuning were observed in pre-cortical 

areas, such as the L G N , there was a general assumption thai contrast adaptation must arise 

from purely cortical mechanisms. 

However more recent studies have observed contrast adaptation in the retina. 

(Baccus & Meister 2002; Chander &. Chichilnisky 2001; Kim & Rieke 20U1; Rieke 2001) 

and LGN (Solomon el at. 2004), though il is cell lype spccillc and species dependent. 
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Figure 2.14: Kxample of 4 V1/V2 cells displaying different hpes of orienfation-
selerlive contrast adaptation 
Contrast-adapting stimuli were either drifting gratings of the cell's preferred orientation and 
drift direction (preferred, blue line, solid squares), drifting gratings of preferred orientation 
but orthogonal drift (where orthogonal is alwa\s relative to the preferred stimulus 
parameter, anti-preferred. green line, solid triangles) or onhogonal orientation with 
preferred drift (orthogonal, red line, solid diagonals). .Adapting contrast was 0.32: the black 
line and filled circles plot the un-adapted. control, contrast-response function. Symbols are 
the averaged firing rate (error bars give the SF.); smooth lines give best-fit to ilie data. A: 
Example of non-orientation adaptation, the cell's contrast-response function to all adapting 
stimuli (preferred direction/orientation, aiili-preferred direction/preferred orientation: 
orthogonal orienlation) undergoes adaptation. B-C: Two ceils displaying orientation 
selective adaptation, adaptation effects are only apparent for the preferred orientation 
stimuli. D: F.xample of a cell showing intermediate orientation selective adaptation. Taken 
from Crowder et al. (2006). 

2.2.4: Possible mechanisms underpinning contrast gain effects such as 

contrast saturation and adaptation 

Some of the possible mechanisms underpinning contrast gain are outlined below. 
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Divisive normalization model 

The most widely accepted model of contrast gain is that of the divisive 

normalization model (Mecger 1992; Carandini & Heeger 1994; Carandini. Heegcr & 

Movshon 1997: Carandini &Ringach 1997). Heeger (1992) proposed thai the lateral shift 

in the contrast-response function obsen ed (on log-coordinates) during contrast adaptation 

is cquivaleni to the contrast-response ftinction being divided by the adapting contrasL thus 

cells cope uith their limited firing capability by normalising their output vi-ith respect to 

overall stimulus energy. Contrast nomialisation has also been shown to increase the 

infonnalion-carrying capacitj of VI cells {Brady & Field 2000). The normalization model 

extends the standard lineannodel of simple cell dynamics by introducing a divisive stage, 

post linear filtering: division arises from the pooled input of a large number of conical 

cells, the normalization pool. 

Figure 2.15 is a schematic diagram of the different stages of the divisive 

normalization model, applied to a VI . simple cell. Essentially, a cell's selectivity is 

determined by its linear spaliotemporal weighting function (Stage I, 

Figure 2.15); the linear output is then scaled, or divided. (Stage 2) by the 

normalization pool (Stage 3) and then rectified (Slage 4) before finally generating a 

response (Stage 5): as can be seen the cell's own output is fed back into the normalizing 

pool (Stage 6). 

Cells within the normalization pool are tuned across the whole spectrum of stimulus 

paramelers. thus the scaling factor is the overall energy oflhe pooled response, deteniiined 

by stimulus contrast alone. The normalizing pool is believed lo contribute to a gamma-

am inobutvric acid (GAB.-X) mediated shunting inhibitor)' conductance which holds the cell 

membrane close to its resting potential, thereby preventing the cell from firing. Onl\ 
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excitatory' inputs that are potent enough lo counteract the influence of divisive inhibition on 

membrane potential can drive the cell to fire. 

Divisive normalization nnode 

stimulus 

Spatiotempor^l linear weighting 
function Normalization/ 

Division 

H 
Normalization pool 
(broadly tuned 
inhibition) 

Rectification 

Response 

Figure 2.15: Cartoon of divisive normalisation model 
Divisive normalisation model, as proposed by: Heeger (1992); Carandini & Heeger (1994); 
Carandini et al. (1997) and Carandini & Ringach (1997). See text for details. 

How does shunting inhibition work and why is it considered divisive? GABA 

opens up chlorine ion channels which allow negatively charged chlorine ions to enter the 

cell; thus negating the depolarising influence of any voltage dependent inward flow of 

sodium ions. Tlie chlorine-current reversal potential is -70mV and as such is close lo most 

cells resting potential. Shunting inhibition increases overall conductance rather than the 

synaptic cunent, ISYN^ this changes the slope of the inpul-oulpui relationship (in this case, 

membrane potential as a function of synaptic current, which is linear) and is thus 

considered divisive (see Figure 2.16A, below). 
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A. Divisive 0: Subtracfivs 

[flAI 

Figure 2.16: A comparison o f the effect o f dn i s i ^e and sabtract ive inh ib i t ion on the f - I 
cu r \ e 

A : Divisive i i i l i ibit ioi i changes tlie slope o f the/ - I curve. Membrane voltage (V) is 
calculated as V = I s W G . \^here ISYN is the synaptic cuirent and G is the conductance, the 
firing raie (f) was calculated from the linear f u n c t i o n / ^ g(V) and noiTnalised; g can be any 
monotonic ftinctron and in this case was lwi/i(W) (as in Hopfleld. 1984), G ranged f rom 10 
to 70 nS in equal steps, B; Subtractive inhibit ion shifts the curve by subtracting an 
inhibitor;' current 1[SH- IINH ranged from 0.08 to 0,58 in equal steps and G was equal to 
lOnS, Both plots are adapted from Holt & Koch (1997), 

Conversely, inhibition with a reversal potential far from resting potential (i,e, 

potassium mediated inhibition, reversal potential = -100mV) acts as a current source, IINJ, 

and is therefore subtractive: IS^TJ^Is'i'N-IiNJ- The input-output function is shifted along the 

abscissa (see Figure 2,16B, below). 

For low stimulus contrasts, pooled inhibit ion is negligible and there is a fair ly 

linear transduction o f afferent input into posl-s\ naptic firing rates, however, as stimulus 

contrasts increases, so docs the strength o f the shunting inl i ibit ion. thereby making it harder 

for feedforward excitation to drive the ceil across threshold. A threshold mechanism gives 

rise to the response-exponent (or half-squaring, within the normalization model), w i th n 
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determined by how close threshold is to resting potential. A similar model, the contrast-

gain exponent model, has been developed (Albrecht & Geisler 1991). Tliis is a purely 

descriptive model in which input is filtered through ihree stages prior to rectification: a 

contrast gain control mechanism, \\hich generates response saturation to high contrasts, a 

linear spatial summation stage that sets up stimulus selectivit) and finally the output K 

filtered with a response-exponent. 

Issues with the tlivisive normalization model 

There arc serious issues over whether cortical inhibition can be the source of 

divisive normalization. The evidence of the role and tuning of cortical inhibition is highly 

contradictory. For example, whilst several studies have found diversity in the orientation 

tuning profiles of inhibitory inputs (Martinez, Wang, Reid, Piilai, Atonso, Sommer & 

Hirsch 2005: Monier. Chavane. Baudot, Graham & Fregnac 2003), others indicate that 

tuning preference of both excitatory and inhibitoiy conductances share the selectivity of the 

target cell (e.g. Priebe & Fersler 2006: Anderson. Caiandini & Ferster 2000). Also. 

according to Holt & Koch (1997). when translated to a spiking neuron model, shunting 

inhibition becomes subtractive rather than divisi\e. as spiking effecti\eh clamps the 

membrane potential significantly above resting potential. 

Finally, the divisive-normalization model assumes that at low-contrasts the 

transduction of stimulus to response is linear, however as outlined above, the majority of 

VI cells have contrast-response function functions that are best fit with an expansive 

nonlinearity for \o\\ contrasts (e.g. the mean \aluo of the Naka-Rushton parameter ii. in VI . 
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is =2.5) and this has also recently been found to be ilie case in feline LGN (Duong & 

Freeman 2007). 

Spike-rate adaptation can account for contrast adaptation 

Whilst the divisive-normalisation provides a possible model of contrast-gain 

control, it does not necessarily provide a bio-physical mechanism to account for it. One 

possible membrane mechanism that may underpin contrast adaptation is an after-

hyperpolarisation in the membrane potential, post spike generation. Tlic afler-

hypcrpolarisation is believed to be essential for spike-rate adaptation (or spike-frequency 

adaptation; e.g. Madison & Nicoll 1984; Connors & Kriegstein 1986), a property' of 

regular-spiking cells (either pyramidal or spiny stellate cells, Connors & Gutnick 1990) 

whereby, under conditions ofconstanl stinuilation, the inter-spike interval, ISl. increases 

(see Figure 2.17, below). Within regular spiking cells, after-hyperpolarisation and spike 

frequency adaptation (Sanchez-Vives, Nowak & McCormick 2000) has been linked to botb 

sodium and calcium mediated potassium current (iKcNa/lKicaj)-

Synaptic depression 

Synaptic depression has also been implicated as a cortical gain mechanism (Abbott, 

Varela, Sen & Nelson 1997; Tsodyks & Markram 1997; Varela, Sen, (jibson, FosU Abbott 

& Nelson 1997). Synaptic transmission is a dynamic process, that is. s>'napses can often 

display use-dependent short-term plasticity, expressed by enhancement or reduction in 

liynaptic eftlcac>. the effects of which can last for tens of milliseconds lo seconds. The 

essential premise is that for each presynaptic spike, the synaptic resource is depleted by a 

given factor (a utilisation parameter, u) and then recovers back to its base level within a 

given lime, set by the synaptic recovery lime constant (TR). 
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Figure 2.17: Spike-rate adaptation in a hippocampus pyramidal cell 
Tlie top three traces show llie menibiane respon.-^e to an injection o1"stepped, depolarising, 
current (the current profile i.̂  below each trace, the level of injected current increased from 
lop to bottom trace). The bottommost trace is ihe afler-hyperpolarisalion. following current 
offset, for each of the three traces abo\e (the smallest after-hvperpolarisalion followed the 
offset of a currenl that elicited one action potential and isn't shown in the three traces 
above), the depth of the aftcr-hyperpolarisation increased with injecled current. Taken from 
Madison &Nicoll 1984. 

Durins: the time period l-»enveen depletion and recover.' the probabilitv" of synaptic 

transmission (/;) is reduced and thus the synapse can be said to be depressed. Iixperimental 

(e.g. Varela et al. 1997; Varcia, Song, Tunrigiano & Nelson 1999) and modelling studies 
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(Abbott et al. 1997: Tsodyks & Markram 1997: Markram & Tsodyks 1996) indicate that 

cortical synaptic depression enhances the signalling of transient changes in firing rate, 

rather than average firing rate, and may therefore be a rapid and automatic form of cortical 

gain control that is importanl for temporal filtering of afferent input. 

In terms of thalamocortical synapses and contrast-gain control, depression is 

strongest when afferent firing rates are high, thereby leading lo response saturation in the 

post-synaptTc response. Under low contrasl conditions firing rates are stow, therefore the 

amount of synaptic depletion is minimal and synapses have lime to recover fully bervveen 

presynaptic spikes. For high contrasts, the pres\naplic firing rate is too rapid to allow for 

complete synaptic recovery between spikes. Thus the probability of synaptic transmission is 

chronicalh low, leading to response saturation in the afferent input and consequently the 

target cell itself. 

Geniculocortical synaptic depression has been observed in vitro across sensory 

cortices (eg. rat somatosensory cortex [Gil. Connors & Amitai 1999]; cat V1, Layer 4 

excitatory spiny stellate cells (Stratford, Tarczy-Homoch. Martin, Bannister & Jack I996J) 

and in viva within the somatosensory cortex (Chung Li & Nelson 2002); several modelling 

studies have used both tiisl and slow forms of thalamocortical depression to model contrasl 

adaptation and saturation (Chance. Nelson & Abbott 1998; Adorjaru Piepenbrock & 

Obermayer 1999). In conclusion, synaptic depression provides a powerful mechanism for 

describing many of the non-linear, contrast-response dynamics of VJ simple cells that can't 

be fully accounted for bv the long-standing model of intracorlical divisive inhibition. 

Another advantage is that synaptic depression has also been used to successfully model 
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contrast adaplalion (Adorjan el al. 1999), therefore synaptic depression may be a 'uni fy ing' 

mechanism in that it can accouni for both long and short term contrast gain dynamics. 

However, one key issue wi th thalamocortical synaptic depression, as a model for 

contrast gain, is thai depression levels are highly saturated in i n c . Boudreau & Ferster 

(2005) measured the effect o f thalamocortical synaptic depression on post-synaptic 

potentials (PSP). in vivo, to small trains o f spikes elicited in the L G N by electrical 

stimulation Monosynaptic PSP (i.e. thalamocortical PSP) displayed only small levels o f 

depression, especially when compared to those o f polysynaptic PSPs and much less than 

expected given comparable //; vitro data (e.g. Slrallbrd cl al, 1996}. Reducing spontaneous 

activity in the l,GN through increased intraocular pressure led to an increase in amplitude 

o f the 1 St PSP followed by reduction o f subsequent PSPs to similar ampliludes relative lo 

the normal condition, thus suggesting that spontaneous thalamic activity saturates 

thalamocurtical depression in vho (see also Reig, Nowak & Sanchez-Vives, 2006). 

This has al.so been observed in the so[uaiosensory" cortex (Castro-Alamancos 

2004h) in relation lo changes in thalamic activity during quiescent and active stales. 

Increased thalamic f i r ing, during arousal states, resulted in sensory suppression, in the rat 

barrel cortex, due to thalamocortical synaptic saturation (Castro-.Mamancos & Oldford 

2002). This suppression is manifested as a reduction in the RF size o f cells in the inpui 

layer (layer 4) of the bartel cortex, such that cells only respond to principle whisker 

stimulation (Ca,stro-Alamancos 2004b). The saturation o f synaptic depression during active 

states is proposed to focus sensory information transmission onto the strongest, or mosi 

salient, stimulus fealurc. 

This suggests that the thalamocortical synaptic depression model o f contrast gain 
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control may not be readily applied to awake behaving systems, however, synaptic 

depression is not fiilly saturated even in the in vivo condition (Boudreati & Ferster 2005) 

and could thus still have an impact on the transmission of infonnalion from thalamus to 

cortex. Intracoitical synaptic depression ct)uld be an alternative source of synaptic 

plastic ity-mediated gain control (eg, Chelaru & Dragoi 2008). However, it should be noted 

that intracortical depression levels in the VI cortex have also been shown to be highly 

dependent upon ongoing levels ofbackground aciivit>', with post-s\naptic potentials (from 

both intracortical and thalamocortical connections) displaying less depression for cells with 

large amounts of spontaneous synaptic activity (Reig, Gallego, Nowak & Sanchez-Vives 

2006) 

Contrast dependent non-linearities in LGN and retina 

To what degree can contrast-gain effects in the cortex be inherited from 

feedforward inputs? Certainh it has been known for several decades that retinal ganglion 

cells are subject to a rapid t>pe of gain control thai leads to response saturation at high 

contrasts (Shaplcy & Victor 1979). Within the cat. this phenomenon is seen in both classes 

of retinal ganglion cells (X- and Y-t\pc. Viclor& Shaple_\ 1979). However, within primate 

retina the situation is somewhat difterenl. Primate retinal ganglion cells are classified as 

eitlier parvocellular (P) or magnocellular (M) t>pe cells {depending on morpholog; and 

response preference to such stimulus features as temporal and spatial frequenc)). The 

general observation is that onh M-retinal ganglion cells undergo contrast saturation whilst 

P-retinal ganglion cell.s display a linear contrast-response function (For a review see 

Shapley 1986). 
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Retinal ganglion cells provide afl'erents that are selectively connected to 

corresponding tjpc thalamic cells, which inherit the response dynamics of the feedforuard 

relinal input. It should be noted, that within cat retina and thalamus, response saturation is 

not a universal property, and is also not specific to a cell class, as in primate (Ohzawa ct al. 

1985).Within rabbit thalamus (Cano. Be/dudnaya. Swadlow & Alonso 2006). contrast 

saturation is only observed with lransicnt-t>pc cells, whereas sustained cells display highly 

linear contrast-response functions. 

[t would beuseflil to quantit>' to w1iat degree cells in VI share characteristics of 

LGN responses. Wliiisi there isn't a wealth oldata on the subject. Cio values in Vi and 

LGN appear to be relatively similar (average C'id for cat LGN = 20.3 (±12.1) and for cat VI 

=2 L3 (± 1J .5); Sadakane. Ozeki, Naito. Akasaki. Kasamatsu & Sato 2006). However, 

values of« appear to be almost doubled in VI. relative to LGN (Sclar. Maunscll & Lennie 

1990; Contreras & Palmer 2003; Albrechl, Farrar & Hamilton 1984. see Table 2.2). 

Table 2.2: Comparison between the average values of the response exponent, n. iti cat 
and monkey VI and LGN. 
Where n describes the slope of the linear region of the contrast-response function, see 
Equation 2.20 

Species 

Cal 

Monkey 

IGN 

I-'*,,. 

' • 6 , . , 

Vai lie of n: 

VI 
1 Q • 2'> 

2 9 • '' 4 

U): Coiilreras ^ Palmer 2000; i2): Sclar el al. 1990; 13): Albrechl & Hamillon 19H2 

Thus, to what extent are the contrast-dependent dynamics of LGN cells inherited by 
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\ ' l cells? Both complex and simple V I cells display a variety o f contrast-response 

functions (Albrecht et al. 1984). This could arise from the strict segregation o f V I afFerents, 

along ihe lines o f contrast-response function properlies. such that V I cells wi th saturating 

contrast-response function receive inputs only from LON ceils which show similar levels of 

saturation in their contrast-response function. However, whilst there is evidence that that 

Csii values are conserved during thalamocortical transmission, the exponent value (/i) 

governing the slope o f the dynamic contrast response is increased, see Table 2.2. 

In conclusion, the abo\e discussion indicates that response saturation is a feature o f 

manj retinal cell response dvTiamics: and is inherited by connecting cells in the LGN and 

presumabl\ then passed on to V I . However what is not clear is what relationship there is 

between levels of contrast saturation in the cortex and LGN. 

2.3: Other evidence for Efficient Coding Hypothesis 

The above discussion has focused on the response to visual contrast as evidence o f 

cfTicienl sensor\ coding. However, the experimental paradigms used to test the adaptive 

processes outlined above tend to be static and un-naturalistic (i.e. the adapt and probe' 

technique, whereby any shifts in responsiveness, fol lowing adaptation with sustained 

st imul i , is tested using probe st iniul i . post-adaptation). For the Efficient Coding Hypothesis 

to be considered a universal encoding strategy one would expect to find evidence for 

efficienl coding fol lowing adaptation to dynamic, naturalistic stimuli and across a range o f 

parameters and modalities. 

As discussed, Laughlin (Laughlin 1981) studied the contrast response in the early 

f ly visual system by presenting contrast stimuli drawn from a distribution o f contrast levels 

found in the wi ld : however presentation techniques were static and bore litt le relationship 
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10 the temporal distribution of eontrasl one would expeci a blow fly to encounter in the 

wild. More recem studies have explored adaptation to dynamic, motion stimuli in the visual 

system of the blow fly. The fly H1 cell is a direction-sensitive visual cell that conveys 

velocity information about horizontal motion across its receptive field. 111 firing rates 

(Brenner, Strong. Koberle, Bialek & de Ruyter van Steveninck 2000) were shoNMi to track 

slowly-vaiying (time scale of Is) Gaussian velocity stimuli (see Figiu^ 2.18A&B) and also 

underwent adaptive rescaling; in that when the adapting stimulus was scaled by doubling 

the standard deviation, firing rates to both the scaled and non-scaled stimuli displayed 

considerable overlap (Figure 2. i 8C. below). Adaptation to the higher standard-deviation 

stimulus resulted in a sliglit lateral displacement of the velocity-response fiinction (Figure 

2.I8D), however when neiiral rate Ainctions were normalised, with respect to average firing 

rate and standard deviation, there was a high degree of overlap (Figure 2.18E. below) 

bet^veen functions, w ith di\ ergence only obser\ ed for the highest velocity stimuli. A 

similar fomi of rescaling was ohsei'ved when the stimulus varied rapidly (on the time scale 

of = 10ms), thus HI cells normalise their output by adapting to the local statistics of Ihe 

stimulus. The measured rate (unctions were also shown to maximise information transfer, 

relative to ralc-ftinclions that were derived through either stretching or contracting the 

measured stimulus-response functions. 

Adaptation to \ elocity in tly 111 neurons occurs on many time scales, ranging from 

the lOflms to tens of seconds scale (Fairhall, Lewen, Biaick & de Ruyler Van Steveninck 

2001). Using a switching technique, whereby the standard deviation of a white-noise 

velocity signal was switched between two values e\cry 7"seconds, it was observed that, on 

the longest time scale, firing rates adapted to the standard deviation of the stimulus (over 

57 



the lime period T/2), with the length of the adaptation time constant (a measure of the time 

for tiring rates to relax to the steady-state level, from the transient changes in firing rate 

observed following the stimulus switch) dependent on the length of T In terms of rapid 

adaptation, the rescaling of the neural-response function occuired within the first second of 

the stimulus switch, fhis type of rapid rescaling, to a switching, adapting stimulus, is not 

restricted to the fly visual svstem and has also been observed tn the inferior colliculus 

(Dean et ai. 2008): adaptive responses, following a stimulus switch, were elicited to noise 

bursts stimuli drawn from one of two highly skewed distributions (see also Oean ct al. 2005 

and Chapter 3 for a description of the stimulus distribution): ihe rcscaling of neural-

response functions, towards the steady-state level, was observed within 300ms of the 

stimulus switch. 

The stimulus-information transfer rate was found, in the fly HI cell (Fairhall ot al. 

2001), to be relatively constant, at around 1.5 bits per spike, except for a transient dip (with 

a time constant of =40ms) in information rate following a switch to the lower standard 

deviation stimulus. Thus tlie rescaling offering rale and neural response profiles serve to 

maintain a constant flow of infonnation about the external world, in ihe presence of 

transient changes in distribution. 

The above experiments h ighl i^ t the fact thai adaptation acts on many time sciiles; 

in fact adaptation can be considered as a continuous, life-time process, even an 

e\olutionar\ one. Organisms, and sensory systems, evolve wilhin and adapt to the confines 

of their ecological niche: thus if elTiciency is the dn\ ing force behind adaptation, as 

predicted by Ihe Efficient Coding Hypothesis, one would expect that neural codes have 

evolved to represent environmental signals in as economical manner as possible. Laughlin 

58 



(Laugh I in 1981) demonstrated that the response (in the large mono-polar cells of the 

blowfly, at least) to contrast distributions, drawn from a natural environment, follows tlie 

optimum code expected by the Efficient Coding Mypothesis and Information Theory. 

However, visual contrast is a rclalivch simple parameter (i.e. the lluctualion of 

illumination about its mean), especially when compared to more complex sensory input, 

such as auditiiry stimuli. Auditory stimuli are not spatially discrete and have a variety of 

parameters that need to be resolved, e.g. frequency, amplitude and direction. A key 

functional attribute of auditory* stimuli is communication, e.g. speech, mating calls or 

warning sounds. 

Thu-s it could be argued thai the complex nature and communicalive function of 

auditory information pro\ iden the ultimate lest ofthe EtTicient Coding Hypothesis. 

As such, tlieoreiically derived optimal codes (Lewicki 2002: Smith & Lewicki 

2006) for the efficient encoding of human speech, animal vocalizations and environmenlal 

sounds (e.g. leaves rustling, twigs snapping elc) have been found to closely resemble 

experimentally defined features ofaudilory nerve and cochlear processing. Thus, it would 

appeal' [hat human speech evolved to have spectral features that closely match the optimum, 

in terms of auditory processing along information theoretical lines. 

Accordingly, the evidence above reveals that adaptation is a dynamic process, 

acting on many lime scales and serving to reflect the local and global statistics of incoming 

stimuli through the rapid rescaiing of the input/output function as well as transient and 

long-term changes in tiring rales. 
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Figure 2.18: Adapt ive resel l ing in f ly H I ncurun to s lowty-var \ i i ig velocity s t imu l i 
Adapled trom Brenner el al. (2000). .A: Solid line: stimulus (right axis), circles: rectified 
response (left axis). B: Neural-response function, empty circles; f ir ing rale verses velocily, 
f i l led circles: average f i r ing rate as function o f stimulus veloci t j . C : Bottom trace: f i r ing 
rate to two stimuli (sec trace abo\c) wi l l i a = 2.3 (f i l led circles) & a = 4.6 (empty circles). 
Top trace plots normalized stimulus. D: Velocity-response ftinctioiis from stimuli in B. E: 
Velocity-response functions normalised by mean firing rate and a o f the stimulus. 
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2.3.1: Extensions to the Efficient Coding Hypothesis 

The above discussion reveals that there is strong evidence that sensory systems 

encode signals in a manner consistent with the Efficient Coding Hypothesis. However, a 

main weakness of the lifficient Coding Hypothesis is its assumption of no noise {Barlow 

1961). This has been addressed by the principle of information maximisation (or Infomax, 

see below). 

Noise 

Whilst the assumption that sensory systems are essentially noiseless was usefiil for 

h>pothesising about the efficiency of the sensory code. Barlow himself acknowledged 

(Barlow 1961) that it was not a biologically realistic representation of actual neural 

communication. Neuronal interactions arc inherently noisy, with neural stochasticity being 

intrinsic to the neuron (e.g. fluctuations in membrane potential), extrinsic (i.e. background 

or input noise) or synaptic in origin (e.g. due to the slochastic nature of transmitter release). 

In the presence of noise, some redundanc> is necessaiy for resolving ambiguity; as such 

incorporating noise into the hypothesis leads to changes in the expected profile of a 

redundancy reducing code. 

As outlined above, where the input lo a noiseless system is Gaussian, the optimal, 

redundancy-reducing, mapping uf stimulus to response is the cumulative probability 

function (cumulative probabiliw distribution ) of the input as output entropy is maximised 

due to histogram equalization (i.e. all response slates have equal probability). If noise is 

introduced into the system iJien the optimal strategy is to have a response probability 

distribution that is maximal about the signal (as opposed to a unifbmi distribution in the 
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noiseless case), such that response resources are focused on the signal itself ratlier than the 

noise (Zhaoping 2006). However, in this case, due to the unequal response-probability. 

output entropy is not maximal, thus redundancy in the system is increased, relative to the 

high signal-to-noise ratio case. 

For e.\ample, in the case of a low signal-to-noise, stimulus ensemble with a 

Gaussian distribulion, the signal is essentially the average stimulus of the distribution and 

the optimal transfer fimction (from stimulus to response) is one wtiich ensures that 

responses elicited to the signal occur most frequently. An example hypothetical stimulus-

response function and corresponding response probability function is plotted in the bottom 

row of Figure 2.19, below; the slope, or gain, of ihe stimulus-response function is reduced 

for those stimuli that occur most frequently. A noise-dependent adjustment in coding 

strategy has been observed experimentally in the compound-eye of the blowfly {Laughlin, 

H o w a r d * Blakesleel987). 

Understanding and defining the optimal code is a major problem wlien testing the 

validity of Ihe Fftlcient Coding Hypothesis, in that one musl know the full range of signals 

to which a sensor^' system is exposed, their distributions and the levels of intrinsic and 

extrinsic noi.se within a system. 

One method of quantifying the effect of noise on encoding of sensor> input is to 

measure the mutual information between the stimulus and neural response. If one can recall 

from the earlier introduction to information theory^ (see die Section 2.2.2), mutual 

information essentially quantifies the amount of information an input/output relation. {x\ y). 

hold about each other, after taking into accouni transmission noise. Thus it has been 

proposed (Linsker 1990) that noisy systems encode input efficiently by ma.ximising mutual 
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information. 

High signal-to-noise 

1 § 
0.5 0-5 
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Arbitrary Stimulus 
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ProbobBity of response 

0.5 
Arbitrary Stimulus 

o '^ 
0,5 
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Figure 2.19: Hypothetical example of optimal response profiles under conditions of 
low and high noise 
The central plot is an arbitrar> stimulus with a Gaussian probability distribution. Top row 
plots the optimal response profile (left) when the signal-to-noise ratio is high (i.e. low 
noise) and the response probability (right). Tlie response profile is the cumulative 
distribution function of the input where all possible responses have equal frequency and 
the response probability has a uniform distribuiion. Bottom row plots the optimal response 
profile (left) and the response probability (right) when the signal-lo-noise ratio is low. The 
hypothetical stimulus-response ftinction (left) does not follow the cumulative distribution 
function: the response probability ftinction (right) is maximal for responses elicited to 
inputs located close to the mean of the stimulus distribution. 
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Information maximisation principle 

The information maximization {or Infomax) principle is essentially an optimization 

method for neural networks such thai: 

"...network connections develop in such a way as to maximize the amount of 
information that is preserved when signals are transformed at each processing stage, subject 
to certain constraints'" Linsker (1990) 

Here, the information that is preserved is the mutual information between the input 

and output of each layer of in the network and the constraints on the processing units/stages 

are biological in origin, e.g. lateral connectivity, latency or synaptic transmission 

probabilities. 

Tlie Infomax principle can be considered as an extension to the efTicient coding 

hypothesis as. in the absence ofnoi.se. maximising the mutual information between the 

input and output is equivalent to maximising the input entropy (see Section; 2.2.2, above): 

thus Infomax. in the zero-noise case, is equivalent to redundancy reduction. 

Linsker (Linskcr 1990) found that neural networks of units, modelled on sensory 

cells and with Hebbian-type synapses (Hebb 1949; Hebbian here refers to the learning rules 

for synaptic weight adjustment and is easily summarized by the phrase: units that fire 

together, wire together'), self-organized into feature-delecting units with similar properties 

to thai observed in V I . e.g. orientation selectivity, when optimized using an Infomax 

learning algorithm. 

Infomiaiion maximization is concralK taken to be the underlying principle of nian\ 

adaptive processes (e.g. Adorjan et al. 1999; Laughlin et al. 1987; Yu. Potet? & Lee 2005) 

as adaptive shifts in neural rcsponsi\ eness tends to improve information transmission for 

sensoiy inputs within the prevailing stimulus distribution. It has also proved to be a usefiil. 
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and successful, concept for anahsing sensor. s\stems and developing self-organising 

neural-network models (e.g. Okajima 2001). 

Sparse coding 

According to Barlow, sensory s>stems aim [o represent input in as economical and 

efficient manner possible. This is achieved through e\ploitation of [he inherent redundancy 

in sensory input (Barlow 1959; Barlow 1972). For example, contrast adaptation (see 

Section: 2.3) is a cellular mechanism that exploits the fact thai contrast level.s. over a given 

spatial and temporal scale. rarcK fluctuate across the full range of possible contra,sts 

encountered in the visual environment. Thus efficiency can be achieved through encoding 

relative, over absolute, le\e!s of \isual contrast. 

Another major source of sensor\-redundancy is in the form of local temporal and 

spatial conclaiions. For example, in a nalural-scene image, neighbouring pixels are more 

likely to be similar than not (Barlow 1972). As such, sensorv' systems can exploit these 

correlations by ignoring them and only transmitting what is not redundant. 

Thus it is possible for each processing stage to encode more specific features of the 

visual scene without increasing the numbers of cells needed to code for each feature. Tliis is 

tenned sparse coding and Rarlow believed it was crucial to neural encoding (Barlow 1972). 

Sparse coding (Olshausen & Field 2004; Field 1994) represents a trade off between 

the robustness of a high density code and redundancy reduction of a local code. Sparse 

coding is defined b\ ihe ratio of active-to-passive cells for a given input: if significantly 

less than half the cells in a population are active then the input has a sparse representation, 

within the cortex. A schematic comparison between a com press ive-code versus a sparse 
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code is given in Figure 2.20. Both r>pes of encoding elicit the same number of spikes; 

however a sparse code is able to represent the input with the minimum amount of spiking 

activity, without the need to compress the input. 

A, Con;p;essive c o c e 

INPUT 

TRANSFORM 

OUTPUT, minimum number of 
units 

B: Sparse c o d e 

INPUT 

TRANSFORM 

OUTPUT: minimum number of 
octh/e units 

Figure 2.20: Schematic comparison of redundancy reduction by either compressive or 
sparse encoding uf sensors iaput 
See text for details. Adapted fiom Fieid(l994). 

2.4: Criticisms of the efficient coding hypothesis 

According to the elllcient coding hypothesis sensorj systems compress incoming 

information using a strategy of redundancy reduction; compression is a feature of biological 

structure in the early stages of sensors processing (e.g. in the transmission of retinal 

informalion along ihe bottle neck of the optic nerve). However, as one tra\erses the 

processing hierarchy neurons become much more numerous. As such, it can be argued that 
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redundancy may aclualh increase, as more neurons are able to respond lo the compressed 

signal. However, as we have seen in the previous section Ihe representation of sensory 

inputs becomes progressively sparser al each successive cortical stage (e.g. Olshausen & 

Field 2004) and tiring rates are generally very low. Nevertheless, Barlou recently 

acknowledged (Barlow 2001) that redundancy may be important, or even necessarv. for the 

processing of sensory information in the cortex. 

However, it should be remembered thai the fact that redundant information may be 

utilised. p<.ist transmission, is implicit in the efficient coding hypothesis. The purpose of 

information ma.\imi7ation/redund3nc\ reduction is to package information as efllcienlly as 

possible whilst minimising loss of information, as redundant information is not necessarily 

the same as useless information. 

As such the efficient coding hypothesis is not a universal theory and depending on 

tlie constraints placed upon a system and the levels of information processing/transmission 

taking place within a given cortical area information ma.\imisaiion may not always 

represent the optimal strategy for tlie encoding of sensory information. Some examples of 

alternative strategies are outlined below, 

A perfect redundancy reducing code will be iully reversible, i.e. il .should be 

possible to reconstruct the stimulus from the neural response. However in reality this is not 

often ihe case as. firstly, transmission is rarely noiseless and, secondly, many neurons 

respond selectively to stimulation, thus not all stimulus information is encoded. .A good 

example is orientation selectivity in VI. \\here complex cells respond preferentially to the 

orientation of a grating stimulus and the direction of drift. 

As has been discussed above, the efficient coding hypothesis assumes that neural 
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responses adapt to the distribution of inputs, conserving/maximising information. 

Alternatively, neurons that selectively encode sensory inputs, adapt to reflect a particular 

feature/or subset of the stimulus distribution and ignore or suppress the remainder. An 

example of selecti\ e coding is background-suppression in the auditory sj stem of insects, 

whereby responses to a loud stimulus suppress responses to subsequent stimuli, over a 

given time window (Sobel & Tank 1994: Baden & Hedwig 2007) 

A comparison of how both strategies (effective and selective coding) would affect 

stimulus-response curves (stimulus-response function), following adaptation to stimuli with 

multi-modal distributions, is given in Figure 2.21 A&B below. Adaptation that is 

underpinned by a background-suppression mechanism (see Figure 2.2IB. below) would 

result in stimulus-response function that only covers the highest-intensity mode of the 

stimulus distribution: rather than co\ ering the whole distribution (as per adaptation along 

information theoretical principles, see Figure 2.21 A, below). 

A recent study (Wimmer, Hildebrant, I Icnnig & Obermayer 2008) attempted lo 

elucidate the principle mechanism underpinning adaptation to sound stimuli in the auditory 

intemeuron (AN2) of crickets, through a stimulus protocol that involved comparing 

adapliv e stimulus-response fijnctions to stimuli w ith bi- and tri-modal distributions and 

calculating the amount of mutual information the adaptive neural-response functions 

conveyed about the input distribution. Lxample results from three AN2 cells are given in 

Figure 2.2 IC, below. 

The general observation was that, following adaptation to llie iri-modal stimulus, 

the slope of the stimulus-response function tended to become shallower (relative to the bi-

modal condition), as per the expectations of the efticicnt coding hypothesis, however the 
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amount o f gain change in slope was nol as large as expected. 

fWcien' c - .",o/ i> tu'-moaof U' ! • • - . • ! ': ̂ . ••':mjii)i d'anb'Jlior.i 

S^f tx^ l 

1 
A1 ai CI 

Figure 2 .21: Eff icient coding verses selective coding 
Dark- and light grey regions represent adapting stimuli with bi- and tri-modal distributions, 
respectively. A : (expected influence o f adaptation, mediated by an effiicient coding, strategy, 
on stimulus-response curves o f a hypothetical neuron. Red line and circles gives expected 
response fol lowing adaptation to an arbitrary stimulus with a bi-modal distribution; blue 
line and squares give expected adaptive response to a tn-modal distribution. Probability o f 
the distribution is plotted on the sinistral axis and hypothetical response on the dextral axis. 
B: As for A , but for selective coding slrateg}: A & B adapted from Wimmer et al. (2008). 
C : Actual experimental responses from three cricket AN2 neurons showing adaptation 
under the different stimulus distributions (circles: bi-modal; squares: tri-modal). Taken 
from Wimmer e ta l . (2008). 

Lateral displacements o f the stimulus-response function were larger and shifted 

thresholds (the half-maximal point or Ssn) to stimulus intensities that were higher than 

expected according to information theory and resulted in stimulus-response functions that 

didn't ful ly cover the stimulus space: this resulted in a loss o f information fol lowing 
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adaptation. The results were not compatible with a selective coding strategy either; whilst 

some background suppression was observed there was no change in information 

transmission for the higher intensity sounds, under both conditions. 

One possible strategy underpinning adaptation in cricket AN2 neurons is to prime 

the cells for novelty deleclion. In general, the stimulus-response functions were shifted such 

that cells were still able to respond dynamically to stimuli with intensities higher than that 

found within the input distribution. 

Novelty detection, as a result of stimulus-specillc adaptation (SSA), has been 

obser\ed (Ulanovsky. Las & Nelken 2003) in the feline auditor) cortex (Al) . SSA is also 

present in cat visual cortex (e.g. orientation adaptation; Dragoi et al. (2000), see below). 

A standard mechanism for testing nu\elt> detection î  b> using an oddball stimulus 

design (see Figure 2.22A, below), whereby rare/deviant stimuli are randomly inserted into a 

stimulus presentation of a common/standard stimulus. The target cell or cells are thus 

adapted to the standard stimulus. 

Within cat AI. neurons undergo SSA that primes the cell to respond strongly to the 

rare stimulus, relative to the common stimulus, irrespective of the frequency values of the 

standard/deviant stimuli (Ulanovsky et al. {20O.i) see Figure 2.22C abo\c). Here adaptation 

was to one of two possible frequencies of equal amplitude (the two frequency values. / / and 

/ ? , were located well within the boundaries of the RF of the target Al cell, as was the 

amplitude of the stimuli). Tlie strength of the adaptive effect was dependent on botli the 

difference in value (A/" = / ? - / / ) between the standard/deviant stimuli (compare the three 

columns under the 90/10% condition, the effect decreases with the size of A/) and on the 

ratio of presentation (e.g. if one compares the first and second columns in Figure 2.22C. A/" 
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was equal under both conditions but the effect was more pronounced underllie 90/10% 

condition). Novelty detection, in this case, is similar in principle to the phenomenon of 

background suppression, outlined above, with the difference being that it is novelty rather 

than intensity that suppresses (he response to the background (i.e. the standard stimulus). 

Sample sCmukis Mqufnca 
|Dfiifi>aii in boU) 

f 1 ! i n f 1 f1f2 MI2t2 

D. ̂ ^ f 2 C ( 2 f 1 f 1 0 e t 2 

Q P f 2 f 1 l i r 2 f 2 f 2 f l f 1 D r i 

Af = t2 - f 1 

70(3tS 90<I[:N 
i.'=0 37 

"Lto-1 h^. I h^. LL*̂  

^M.) 

Figure 2.22: Stimulus-specific adaption (SSA) results in enhanced novelty detection 
A: Schematic illustration of odd-ball experimental paradigm (adapted from Ulanovsky et 
al. 2003). B: Frequency response curve of an Al neuron before (black line), during 
(magenta) and after SSA (thin black line, recoverj' time of 30s). Adaptive fi^quency was 
3.33 KHz. C: Responses to deviant (red), standard (blue) and control response (black, 
50/50%! presentation) for four stimulus configurations (columns, ratio of presentation and 
frequency difference (A/) given above column). Top row plots responses for a single AI 
neuron when/7 u a s standard, second row plots responses for/?. Tliird row plots the 
average response across/ / and / ? : bars indicate spike counts and asterisk indicates 
significant difference in firing rate of deviant verses standard frequency. Bottom row plots 
averaged responses for another neuron. 

The effect of frequency adaptation on llie frequency tuning-curve of an A1 neuron is 

plotted in Figure 2,22B above. As can be seen adaptation results in a repulsive shift in 
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preferred frequency, away from the control response, and facilitation o f the far-flank o f the 

tuning curve (Condon &Weinberger 1991; Malone & Semple 2001; IJIanovsky 

e ta l . 2003). This is sittiilar to the effect of adaptation on orientation tuning curves in V I 

(Dragoi et al. 2000: Jin. Dragoi. Siir & Seimg 2005. sec Figure 2.23). 

• ^ ^ Control 
Adaptation 1 (-22 5deg) 
Adaptation 2 (45deg) 
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• » - ^ 
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4 ^ 

2 ; 
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Figure 2.23: Or ien la t iun .\t lap1ation in feline V I 
Adapting orientations arc marked with red arrows. Orientation tuning curves o f a 
representative V I neuron. Solid black line is the un-adaplcd response, wi th preferred 
orientation o f Oo; recover\ response is the dashed black line. Light- and dark-gre\ lines plol 
the adaptive orientation tuning curves. Adaptation results in a repulsive shift in preferred 
orientation and facilitation o f the far-flank o f the tuning curve, relative to the control 
response. Taken from Dragoi et al. (2000). 

A recent study (Ringach & Malone 2007) indicates that novelty- detection may not 

be limited to the action o f a subset o f neurons undergoing SSA but may be the basis for 

setting the operating point o f the cortex as a v\1iole. The responses o f monkey V I neurons 

to grating stimuli was modelled using a linear/non-linear model, whereby the linear input to 

the model was the standard deviation (SD) o f the generator potential: 
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'"a variable representing a combinalJon oTthe histor^ o f intracellular variables 
yielding an overall measure o f neuronal d r i \ e " (Ringach & Malone 2007). 

The noil-linearity was a half-reciiHer with parameters: threshold, gain and inpul 

noise, sec Figure 2.24 below for a description o f model parameterisation. 

Stiniukjs InggerM responses 
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Figure 2.24: Est imat ion of the generator potent ial and noD-l inearit \ ' in a l inear/non­
l inear model o f V I 

Plot a: The stimulus-triggered responses (r,) about the mean response ( r ) was calculated 
for each stimulus (5,) in the set (S). Plol h: A linear prediction for a stimulus sequence was 
determined from the responses (r,) and then normalized to have zero mean and unit 
variance. Plol c: A non-parametric estimate of the non-linearit\ (solid line) was found by 
smoothing the output o f the generator polenlial and the actual responses wi th in a given 
window (dashed lines). Plot d : The parameters: threshold {$). gain (.*') and input noise ((T^) 
were determined by t l t t ing a half-rectifier lo the non-parametric estimate in plol c. Taken 
from Ringach & Malone (2007), 

73 



Tlie general obsenation across the cortex was that the non-linearit) threshold was 

roughly 1 SD from the mean of the generator potential and threshold was invariant to levels 

of stimulus contrast (e.g. with contrast levels of 25, 50 and 99%). 

Due to the shape of the non-1 inearit\. once the signal crosses spiking threshold it is 

amplified in a linear manner and there is no response saturation. Overall, spikes were 

generated when the generator potential tluctuations were ==2 SD away from the mean 

activity of the generator potential. Tiius. in monkey V! at least sensory cells appear to act 

as deviation detectors that amplify' large signals at the expense of background noise. 

As mentioned in the beginning of this section, information maximisation ma\ only 

be optima! during early stages of visual processing when the full transmission of the signal 

ia tile priority. In general V1 v\as always considered to be early part of the visual 

processing hierarchy, where only simple tran.sformations of the signal occurred. As such. 

one might have expected thai sensory encoding within VI would be in line with the 

principles of infoimalion theory and the early evidence, from contrast adaptation studies for 

example, were in support of this hypothesis. However, recently a growing consensus has 

emerged that VI is more than just a relay stage: the large immber of feedback connections 

from higher cortices hint at a role in the complex processing of visual information 

(Angelucci, Levin. Wahon. Hupe. BullierA Lund 2002: Angeluccj & Bullier 2003: Bullier 

2001), VI receptive fields are not fixed but exhibit plasticity (e.g. Dragoi el al. 2000; 

Gilbert. Li & Piech 2009; Li, Piech & Gilbert 2004) and even reward signals have been 

observed in rodent VI (Shou. Li. Zhou & Hu 1996). Therefore VI should be distinguished 

from 'lower' areas in the visual processing hierarchy, for which redundancy reduction Is the 
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optimal stralegv. as an area that implements a number of strategies depending on the types 

of processing mechanisms active at any given time (Schwabe & Obermayer2005). 

2.5: Fisher Information 

The above discussion has focused entirely on Shannon's concept of information. 

i.e. that infonnation is a reduction of uncertainty and is quantified by its enlropy. 

Essentially, mutual information is a measure of how certain one can be of the input 

to a system given the observed output, i.e. one is making an estimate of the input 

distribution: the accuracy of the estimate can be quantified b\ Fisher Information (named 

after the statistician and geneticist, R.A. Fisher, who fotmulated the concept of maximum 

likelihood estimation, Fisher 1922). 

Formally, Fisher Information, /(O). is the variance of the score, where the score is 

the first derivative of the negative-log of the likelihood function. LfO\ X'>. which gives the 

likelihood of a parameter. 0. being a certain value, given the set of obser\atLons,.V( where .V 

is dependent on 0). TTie likelihood function is so called as it represents the likelihood, not 

the probability. ofO. given .V(as LfO \ Ay will not always integrate to unity). 

2.5.1: Likelihood Function 

The conditional probability. yifA' \0l, describes how a set of observations. A', may 

%'ar)', for a given parameter, d. However, the likelihood ftinclion. Ud \ X), describes how 0 

may vary, given a fixed set of obser\alions. A'; in essence, Lrt^ j A"/ is the con\erse ot 

p(X\f)}. 

As an example one can consider a coin throw: the coin can only land on "heads', 
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Hd, or 'tails", T, and one is interested in discovering wliether the coin is biased towards 

landing on Hd; in this case the probability of the coin landing on Hd is equal to pf'HcI) and 

the probability of observing T. is equal to plT)= 1 - pfHdf. If one assumes that the coin is 

unbiased, i.e. p(Hd> = 0.5, then the conditional probability of the coin landing on Hd for a 

single tlirow is (see equation 2.8): 

pmii\p(Hd)= 0.5) = 0.5. 

And the likelihood of pfHd) = 0.5 is: 

[.(p/Hd) = 0.5\Hd) = 0.5. 

Consequently, the likelihood ofpif/dj = 0.5 following two coin throws which land 

heads-up is: 

L(plHd/ = 0.51 Hd. Hdl = pfHd. Hd \ p(Hdi = 0.5) = 0.25. 

2.5.2: Maximum-Likelihood 

In the above example, the likelihood for a single parameter value was discussed. If 

one wishes to estimate which parameter (from a set of possible parameter values) is most 

likely to generate a given set of observations, one can take tlie maximum, £in.v- of the 

likelihood (as a function of all the possible parameters values within the set 9, see Figure 

2.25). tube the best (or most likeh) estimate, Â of the true parameter. In the case of/jf/Zt/;, 

fl is a probability and would thus range from 0 (the coin will never land on heads) to I (the 

coin will always land on heads). 

The likelihoods as a function oipfHd). for single trials of different sequences of 
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coin throws (A") are plotted in Figure 2.25. below. 

Each hvpothetical sequence A'comprises H number o f coin throws, such lliai 

X = {v|.,..\-,} and.v, e \Hd.T], The assumption is that A, is independent o f all other coin 

throws in the sequence and that the probability o f scoring c i ther / / t /o r 7" is constant, thus A" 

is an independent and identically distributed ( i i d ) Bernoull i tr ial. The likelihood can 

therefore be calculated using individual conditional probabilities for each coin throw: 

Lio\X)-f\p<x,\ef 

o-(\-e)'" 

2.21 

Where /jf.V I 0) has abinomial distribulitm, /• is the number o f / / ( / pe r sequence o f " trials 

and ;• / . n. 

In ihe top plot o f Figure 2.25. Xi „ = Hd ami the maximum-likel ihood 

estimaie.^',,;; . is al«a_\5 Lmit\: as the sample number, n. increases the slope of 

L<ptHd}\ Xi. about L\,_^\. becomes sleeper. In the middle plot o f Figure 2.25, X contains 

both Hdand T: fl„;, tends towards p(Hdl = 0.5 Finally, in the bottom plot of Figure 2.25. 

the sample size is increased: fc',^;, tends towards p(Hd) = 0.5 and the gradient o f the slope 

L(pfHd)\ Xj. about/,_u.Lv increases, relative to the middle plot o f Figure 2,25 . 

The behaviour of the likelihood function about i^ f^vis an indicator of how close 

d^„p is to the true value o f fl. A flat cune about f.\i-i\ indicates thai a change in 0 would 

not significantly affect the probabilities o f observing .V( as the same observations would 

have a similar l ikelihood o f being observed fora range o f (?) and therefore fl^^^j could be 

highly inaccurate; one would expect the flto he biased, i.e. the difference between f) and 
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the true value of fl would not equal 0 (when 0-0 = 0 the estimate is said to be unbiased) 

and one would also expect that 0 ,̂,̂  • across trials, would be highly variable. 

Likelihood functions for probabil i ty 
of co in landing on heads in a sequence of throws. 

X 

§ 0 . 5 

a 

. . . 
n = 
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Figure 2.25: Likelihoods as a function of p(Hd) 
Likelihoods as a function of the probability of a coin landing on 'heads'./;^ Hd). given a 
hypothetical data set, X. For each X. the number of trials, n. and number of 'heads', #//rf, 
can be found m the corresponding legends. The number of "tails', UT, in .V is equivalent to 
«-#//(/and plT}^\- p(Hd). In the top plot, all values of A* were set to//i:^. In the middle 
plol, n ^ 5 (same number of trials as the green, dotted line in the top plot) but the #//</was 
sel to 3. For the boitom plot, n = 30 and UHd =• 16. 
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The variance of 0 depends upon the number of trials and/or sample size of X For 

example, the top and middle plots of Figure 2.25 display the likelihood functions of two 

hypothetical cases o f X in which /; = 5 but llic number of Hd (URd) was either 5 (Figure 

2.25: top plot, green dotted line only) or 3 (Figure 2.25; middle plot). Iniuitively. one could 

argue thai both cases of A" could be easily elicited from the tlirows of an unbiased coin; 

however, both samples ga \e rise to different estimates of 6 (UHd - 5. 6^,^^ = I; MHd = i, 

As trial and/or sample size increases one would expect 0 to converge upon its true 

value and that the variance of 0 would decrease, i.e. the estimate would become more 

accurate. A low \ariance estimator is said to be efficient and an optimal estimator is one in 

which the bias and \ariance of the estimate is minimised: Fisher Infomiation provides a 

measure of quantilying how reliable and eflficienl the likelihood function is. as an estimate 

of tJie parameter set. 

2.5.3: Fisher Information from the log-Iihetihood 

Fisher information,/(f?), is defined as the variance of ihe score. Under mild 

conditions, .ii also equals the 2nd derivative of the negative, log-likelihood function: 

i<e IX) - \aL(e 1X) 

1.11 

E is the expectation operator over the observations ofji: witli respect to the likelihood 

distribution iff) \ x), as a function of :i:. 
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As equation 2 22 shows, the amount of Fisher information is directly related to the 

curvature of the averaged log-likelihood function about L\n\ A sharp maximum in the log-

hkehhood has a large second order derivative and corresponds \\ith high Fisher 

information. A flat maximum, converseis has low information. As discussed above, a steep 

curvature of the likelihood function aboui L\ii.\ indicates that the bias and variance of the 

estimate of 0 are low: thus, there exists an inverse relationship between the variance of the 

score (the Fisher intbnnation) and the variance of the estimate ol'O. 

2,5.4: Cramer-Rao Bound 

Tlie inverse of the Fisher information is called the Cramer-Rao bound. The Cramer-

Rao inequality (named after the mathematicians who derived it: ! larald Cramer and 

Calyampudi Radhakrishna Rao) defines the lower bound of the variance of the maximum-

likelihood estimate, MT,.E. of fl, vwfOun.l- such that var/6,\ii,[_f can never be less than the 

inverse of the Fisher Information: 

v a r r f l . W ^ ^ 

And the standard error (SE) of the estimator is: 
2.23 

An optimal estimator is one which saturates this bound and i.s unbiased. 
2.24 

2.5.5: Fisher Information and the neural code 

Generally, neuronal responses to single, simple features of environmental input (i.e. 
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contrast, orientation) can be quanlilled b> plotting the average response as a funelion of the 

stimulus (i.e. can be quanlificd by the rate-fijnction). However, neural responses tend to 

varj' from trial-to trial. Therefore the ability of other neurons to decode or estimate the 

input from the average (Iring rate will be highh' dependent upon the levels of variance in 

the response. Fisher information provides a measure of how well one can estimate the 

stimulus feature from the average firing-rate response by means of the Cramer-Rao bound. 

As stated above, there are two main factors that determine how accurate and 

et^cient an estimator is. namely the bias (the difference between the estimated and true 

\alue of the parameter) and the variance. Tlie tuning curve is the mean response over many 

trials. One can assume that the tuning curve is. on average, an unbiased estimate 

(i.e. E[0 — Oj — 0, where \'. is the expectation, across trials) of die input: the quality of the 

estimate is therefore dependent only upon the amount of output variability, observed in 

response to a given stimulus. 

Neuronal noise is often assumed to be independent and normally di.stributed: wiih 

the experimental evidence (e.g. TolhursL Moshvon. Dean 1983; Gershon, Weiner, Latham. 

Richmond !998) indicating that response variance is either equal lo or proportional lo mean 

levels of activity. 

The probability,/(fr 10), of observing a response, r, for a stimulus parameter. 0, can 

be captured by the Gaussian distribution given in equation 2.25, where n~ is either fixed or 

equal to the mean firing rate, f(0): 

r, 
p(r I 0) = pfr = r\Ol = , exp 

V2srrT- V 
2;rff" 

2.25 
However, if one is counting spikes, then p(r \ 0) is often best described by the 
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Poisson distribution: 

pfr\d) = p(T-k\e)-^^ 

2.26 

where r is the response of a neuron, f̂  is the stimulus, k is the number of spikes per time 

window and/(ff/ is the average response over all trials. 

The Fisher information can be calculated, in terms of the noise distribution as: 

} = - \crP(r OA , — ^ 

2.27 
The Fisher Information can be also approximated if one knows the noise 

distribution, such thai for Gaussian noise, the Fisher Information is; 

2.2S 

Where f (ii) is the derivative of the stimulus-response liinction, / / f l ) ,and a' is 

the variance (which is either fixed or proportional/equal to the mean response). For Poisson 

noise, the Fisher Information can be approximated by {Seung & Sompolinsky 1993): 

m 
2.29 

Forlhc Poisson distribution, the variance is equivalent to the mean and the 

denominator, in equation 2.29. is the average response, fli)). The population Fisher 

Information, //vi/'. is calculated b\ summing \(0i. for each neuron in the population, under 

the assumption of independence: 

2.30 
Where ,V is the total number of neurons in the population and UO) is the Fisher Information 
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for the )V/i neuron {/= I,..A'). 

From equations 2.28-2.29, it is clear that Fisher Information is greatest when Ihe 

gradient of the tuning fimction is high and variance of the response, as a function of 6, is 

low. For those neurons ihal display bell-shaped tuning curves in response lo stimulus 

features (e.g. orientation sensitive cells in VI) . Fisher Information will peak on the slopes 

of Ihe tuning cur\e (assuming that variance is equal or proportional to mean activil\'. see 

Figure 2.26 below). 

Responses are therefore most infomiative (in terms of estimating the stimulus), for 

tho.se slimuh which elicit intermediate responses, cither side of the peak response, and not 

(as may be intuiti\ely expected) for those stimuli which elicit the strongest response, e.g. 

the preferred orientation. 

l"isherInforniaiion. then, is a measure of how well a neuron is able to discriminate 

between stimuli. As already outlined within this chapter, small changes in stimuli located 

on the steepest regions of the rate-function slope will result in relatively large changes in 

the response, with respect lo stimuli located on the saturated region of the function. The 

ability of a neuron to discriminate between luo stimuli, 6 and 6+JO. can be quantified by a 

discriminability index, </ . which is related to the Fisher Information by the equation (see 

Seung& Sompolinsky. 1993): 

d = JOyfnOl 

2.31 

Equation 2.31 demonstrates that the ability of a neuron lo resolve a stimulus 

increases with increasing Fisher Information. 
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______NormalJsed, hypothetical 

tuning curue 

^ ^ Fisher Information 

-2 -1 0 1 
Arb i t rary St imulus 

Figure 2.26: Fisher Inrormation for a hypothetical single neuron with a Gaossian 
tuning profile 
Blue, dashed lines plot the normalised response of a hypothetical neuron to an arbitrary 
stimulus (no units). Red solid lines plot the Fisher Information calculated as for Equation 
2.28 and assuming that variance is equivalent to the mean firing rale. Fisher Information is 
peaked on the slopes of the tuning curve, not on the preferred stimulus, and does not reflect 
the direction of the slope of the function but its gradient. 

The inverse of the square-root of the Fisher Information quantifies the 

discrimination threshold, or Just-noticeable-difference in response, for the stimuli, 0 and 

0-^ Ad; which if one refers back to equation 2.24 is the lower-bound for the standard error 

oiO. 
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For sigmoidal tuning-curves (e.g. in response to stimulus eonlrasi), the Fisher 

Information \\ould be expected to peak on the hnear. accelerating region of the curve (see 

Figure 2.27): if the slope is centred on the mean of the stimulus distribulion. as predicted by 

the efficient coding hypolhesis. then neural output will be most informative, in terms of 

estimating and discriminating stimuli, for inputs that lie within the higher probability 

regions of the stimulus space. 

2.5.6: CorrelaiedActivity 

The population Fi.sher Information, thai is the sum of all individual Fisher functions 

across the population, is cnlculaied under the assumption of independence (see Equations 

2,28 - 2.30, abo\e). Independence implies additivit>. i.e. tlie joint noise distribulion ofiwo 

arbilran. neurons./i,.^r|/7v. will be equal to the sum of the individual disiributions: 

p,Jr\0} = p,<r\Oi + pjr\0l 

However, if the noise distributions p,ir\Oj & p^fr] ^^are correlated then the joint noise 

distribution will be leî s than the sum of ihc individual noise distributions: 

/7, / / • 10> < p/r 16j + p/r 10) 

Clearly, if correlations between neural outputs are present, then calculating the 

population Fisher Information under an assumption of independence can lead to its over-

estimation. 
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___ Normalised, hypothetical 
tuning curve 

^ ^ Fisher Information 

-1 0 1 
Arbitrary Stimulus 

Figure 2.27: Fisher Information for a hypothetical neuron with a sigmoidal tuning 
cur\e 
Blue, dashed lines plot the normalised response of a hypothetical neuron to an arbitrary 
stimulus (no units). Red solid lines plot tiie Fisher Information calculated as for Equation 
2.28 and assuming that variance is equivalent to the mean firing rate. 

In the case of correlations. Fisher Information can be calculated by taking into 

account the covariance matrix, ^I'fl), of the neural noise; for example (Abbott & Dayan, 

1999): 

I 
/f0yQ~'(0)/(0) + ^Jr[Qf9)Q-'(0)Qf0)gr'm] 

2 J 2 

Where Tr is the trace operation and QfO) is the derivative of the covariance matrix. 
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The effects o f noise correlations on Fisher Information appear to be varied. For 

example, in a population with a large number o f neurons, positive correlations can have ihc 

effect o f decreasing Fisher Information whilst negative coirelations have the opposite effect 

(Sompolinsky. Yoon. Kang & Shamir200l ) , 

The sharpening o f tuning curves, for single sltmulus parameters only, has been 

shown to increase the amount o f Fisher Information contained in the population code (for a 

review, see Dayan & Abbott 2002): for example, sharpening o f stimulus-response 

functions, within V I , can be achieved by nairowing the width (essentially increasing tlic 

slope) o f the bell-shaped luning-cur%es tvpically obser\'ed in response to stimulus 

orientation. However, a recent modelling stud\ (Series. Latham & Pouget. 2004) has 

demonstrated that the introduction of local correlations (through lateral connectivity) into a 

V I model o f tuning curve sharpening actually decreased the amount o f Fisher Information 

contained with the population. 

There is certainly experimental evidence to suggest that neural response variabil ity 

is strongly correlated (e.g. Zohar j . Shadlen & Newsome, 1994). thus it would appear to be 

important to consider the correlations inherent in the population activit\- when calculating 

the amount o f Fisher Information contained within it. 

2,5.7: Comparison to Shamton Information 

Both Shannon (in the form of Mutual Information) and Fisher Information provide 

quantitative measures o f the encoding o f stimulus into response. However, these measures 

belong to distinct theoretical fields and, as such, tell us different things about the 

relationship between input and output. Fisher Information is a form o f statistical estimation 

analysis that describes the accuracy and eftlciency with which an estimate o f a parameter, 
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0, describes the true value of (̂ , where the estimate is derived from a set of observations that 

are dependent upon (9. Mutual Information is derived from Informalion Theorj' and is an 

entropy, or uncertaintv. measure that describes the mutual dependency between the 

stimulus and response distributions. 

Mutual Information is bounded by the entropy of the stimulus ensemble, see 

Equation 2.11. It is often considered too difficult to assess for a large number of neurons 

(Kang & Sompolinsk7. 2001). In general, williin studies looking at populations of neurons, 

Fisher Information is often calculated as an alternative to Shannon Information (despite the 

differences in «hat each information measure says about the relationship between input and 

output) as it is relatively easier to quantify, especially under the as-sumption of 

independence, for example see Fquations 2.28 to 2.30 . 

However, a quantitative relationship between Mutual and Fislier Information has 

now been derived for certain neural systems (Brunei & Nadal. 1998: Kang & Sonipolinsky. 

2001), Building on earlier work (Clarke & Barron, 1990 & Rissanen. 1996), Brunei & 

Nadal's theoretical study (Brunei & Nadal. 1998) found that for low-dimensional stimuli in 

large populations the Mutual Informalion between the population activiiy and the stimulus 

becomes equal to the mutual infonnalion of an efficient Gaussian cslimator and the input. 

As described above, an efficient estimator is one which reaches or saturates the Cramer-

Rao bound, thus the Mutual Informalion can be calculated from ihe inverse of the Fisher 

Information: Mutual Information for continuous-valued inputs is also related to the log of 

the Fisher Information for large populations of neurons (Kang& Sompolinsk'j', 2001). 

A relationship beiween Fisher Information and stimulus-specific information (Butts 

& Goldman 2006) has also been found for populations containing at least 50 neurons 
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(depending on the lime window of inlegralion used to calculate the information measures, 

(Challis. Yarrow & Scries 2008). The Stimulus-Specific Information is an entropy measure 

(derived from Information theory) of a particular stimulus value, averaged over all 

responses: whereas Mutual Information is essentially the uncertainty of the whole stimulus 

ensemble minus its uncertainty once the responses are known, averaged over all stimuli and 

responses. 

The above theoretical work implies that Shannon and Fisher Information are 

related, for large groups of neurons at least, and it is legitimate to calculate the information 

that any obseived neural activit\' holds about the stimulus using Fisher Infoitnation. 

2 . 6 : C o n c l u s i o n 

In conclusion. Barlow's efficient coding h>pothesis suggests thai neural systems 

have evolved to encode sensory information in such a way as to encode incoming 

information with the minimum amount of resources (e.g. spiking activity) and redundancy: 

where reducing redundancy refers to the packaging' of infomiation along neural pathways 

in such a manner ihai sensory stimuli can be encoded efllcieniiy without necessarily losing 

information. This is achieved through scnsorj neurons having response profiles tiiat reflect 

the inherent di.siri but ions of the parameters which they encode; with the optimal example 

being response profiles following the integral of the input distribution However, sensorj 

systems nmst be flexible and as such the Efficient Coding Hypothesis predicts that rather 

than responses being hard-wired there must be a mechanism for responding dynamically to 

changes in stimulus distribution. Adaptation, at the very least adaptation to visual contrast, 

has been shown to be one of these mechanisms. As such, adaptation is not simply a case of 
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neural fatigue but reflects the dynamic nature of sensory systems tliat must be flexible in 

order to cope with an ever changing world. 

Whilst there is a wealth of evidence lo support the FfFicient Coding Hypothesis, it is 

clear that other coding strategies may be more 'cfUcienl' depending on the processing stage 

within the cortex and the overall stimulating regime (cf. the brief review of stimulus-

specific adaptation in Section 2.6.8, atiove). The rest of this thesis examines an example of 

adaptation to stimulus statistics that, superficially at least, provides fiirther evidence for the 

Efficient Coding Hypothesis: however, following a more robust analysis of the data it is 

clear ihat the adaptation serves lo encode local changes in the stimulus, irrespective of the 

global mean, 
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Chapter 3: Adaptation to stimulus statistics 

Tlie previous chapter focused mainly on adaptation to contrast, within the visual 

system, as to date this remains one of the most widely studied aspects of gain control in the 

cortex. However, recent evidence has emerged that indicates that adaptation to intensity is 

present in other sensorj s\stems (see below). fhe adapli\e responses are in line with the 

principles of the Efficient Coding Hypothesis - but only to certain degree. In fact adaptation 

tends lo centre the responsiveness of neurons onto features within the stimulus space thai 

have a higher intensity" than global mean levels. 

3.1: Adaptation to stimulus statistics: Introduction 

In a receiil study. Dean and colleagues (Dean et al. 2005) developed a novel 

method for investigating adaptation using a dynamic stimulus (to mimic nalnral stimuli 

more accurately) that allowed for rate-functions to be calculated during ihe adaptation 

process. The main advantage of the stimulus configuration was that levels of variance, 

within the adapting stimulus, could be manipulated independently of the mean (see below), 

thus the purpose of the study was to measure the effects of adaptation to stimulus statistics 

on mid-brain neurons within guinea-pig inferior coliiculus (IC). 

3.U: Adaptation of Inferior Colliculus neurons to noise burst stimuli 

The IC is an important nucleus in the sub-cortical audiicip. s\stcm. Cells were 

adapted using noise burst stimuli, in which only llie amplitude (in decibels) of the noise 

burst was varied. Decibel levels vvere refreshed everj' 50ms and drawn randomly from a 

pre-determincd set of possible values (along the inter\'al 21 -96dB in 1 dB steps) with a 

highly skewed selection-probability distribution, such that for a restricted range of noise 
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amplitudes the probability of selection was 0.8 (the high probability region), and 0.2 for the 

rest (the low probability region). This gave the stimulus both a dynamic profile (in that 

decibel levels tluclualed rapidly) and a global-mean amplitude that was both centred- and 

dependent-on the location of the high-probabilit>' region in the stimulus space (see Figure 

3.la-c). Furthermore, by increasing the width of the high-probabilitj' region, while holding 

its location constant, it was possible to increase stimulus variance independently of tlie 

stimulus mean (please compare Figure 3.1c and Figure 3.2a). 
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Figure 3.1: Adaptation to the global mean amplitude of noise bursts in inferior 
colliculus. 
Plot (a): a 5s sample showing the variation in an adapting stimulus with an overall mean 
value of =60 decibels, (b): an actual. 200ms, example of the noise burst stimuli, (c): 
uneven stimulus distribution with the high-probability region centred on 63 decibels, (d-g): 
examples of rate-level functions in 4 neurons following adaptation to stimuli with a mean 
values of 39 (green), 51 (blue).63 (red) and 75 (cyan) decibels, (h): population Fisher 
functions. Filled circles and lines on the abscissa are the corresponding high-probabili^ 
region regions. Taken from Figures I & 2. Dean et al. (2005). 
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Stimulus-response functions were calculated b\' taking the mean number o f spikes 

fired (recorded extracellularly) during each 50ms epoch (with a 8ms response latency), that 

corresponded to a given decibel level. Cells were adapted at four different global mean 

amplitudes or high-probability regions (with width, and thus stimulus variance, held 

constant) and. for those cells that displayed adaptation, the stimulus-response functions 

were displaced laterally along the abscissa (sec Figure 3.ld-g). Tli is was in line with earlier 

single-cell contrasl-adaptalion studies in the visual system (e.g. OhTawa el al. (1982); for 

further information see Chapter 2), wl i ich also observed a contrast-dependent lateral shift in 

stimulus response functions, fol lowing adaptation. 

However, fol lowing adaptation in the IC, the slopes o f stimulus-response functions 

were often centred on stimulus le\els that were sl ighth liigher in amplitude than the global 

mean o f the adapting stimulus; this eftecl was most pronounced fol lowing adaptation to the 

lower amplitude, higli-probabil it j region conditions. Further, adaptation only occurred 

when the adapting high-probabilily regions were higher in amplitude than the region o f the 

stimulus space covered by the pre-adapted response (c.f. Figure 3. I f ) . 

In order to explore more accurately what the rate-level fiinciions were encoding, 

Fisher information cui^es were calculated from each individual neuron and then for the 

population as a whole (by taking the sum o f the individual Fisher-functions). 

As discussed in the previous chapier, Fisher information is essentially a measure o f 

how much information a set o f obser\ations. .V. holds about the parameter set. 8. In terms 

o f neural rate-level functions, the Fisher Information can be used to quantify how 

accurately one can estimate the value o f the stimulus, given the average neural response. In 

general terms, one would e.\pect Fisher Information to be highest when variance in the 
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spfke count data, used to generate the mean response, is low (i.e. the response is reliable) 

and the cur\e of the stimulus response ftinction is steepest, as small changes in the stimulus 

will elicil notably different responses. Fisher InfoiTnation functions from individual neurons 

can be calculated when the distribuiion of the response noise. P{r \ s) is known (see 

Equation 3.1); the population response can then be estimated by summing the individual 

Fisher Information functions, across the whole population, but only under an assumption of 

independence, i e. neuronal output, across the population, is uncorrected. 

For die IC adaplation data (Dean et al. 2005), the Fisher Information function, 

/„(.v), of an individual neuron was calculated by taking the sum of the probability for each 

response elicited lo a stimulus (1^' tenn, equation 3.1). weighted by the cuiTature of the log-

probability of the response, r. as function of the stimulus, .v (2" term, equation 3.1). 

3.1 

Where P^{r\s) is the probability (/") of neuron ti firing/-spikes for stimulus A (see Chapter 

2. also). 

Correlations in spiking activity between pairs of neighbouring neurons were low 

(with an average correlation coefficient of 0.056 [STD of ±0.13] across all neuron pairs and 

stimulus conditions), thus independence in neural output was assumed and the population 

Fisher Information was estimated b> taking the sum of the individual l'i.sher functions: 

3.2 
The population Fisher Information was greatest (peak Fisher Information) for 

stimulus levels that were slightly higher than the global mean (see Figure 3, Ih) of the 
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adapting stijnulus. 

The most intriguing f inding o f ihe study was a novel form o f adaptation. obser\ed 

in response lo increasing stimulus variance only (the widih o f the high-probability region 

was widened but the stimulus level on which it was centred was held constant); the rate-

level function was scaled upwards or increased in gain, i.e. the slope o f the linear region 

became sleeper and maximum responses increased (Figure 3.2a-b}. 

Why was this result intriguing? Following on from the discussion in the preceding 

chapter, it is clear from Information Theory that one would expect to see tlie stimulus 

response function slope become shallower, fol lowing adaptation to stimuli of increased 

variance, and not steeper as was actually observed. 

However, it should be noted that this increase in gain was a rare response, the 

majority.' o f cells showed either no adaptation (see Figure 3.2c) or a decrease in gain 

(resulting in a population Fisher cur\e (Figure 3.2d) that was slightly wider at ihe tails o f 

the function, relative to the control). 

Nevertheless, it can be argued that these results do present a challenge, albeit a 

small one, to the orthodoxy o f Barlow's Efficient Coding Hypothesis. The authors o f the 

study (Dean ct al, 2005) conjectured ihemselves that the adaptive response to changes in 

the global mean o f the stimulus may serve to prime the cell to act as a novelty detector, 

over faithfully encoding stimulus intbrmalion. 

I t has been suggested (Dean ei al. 2005) that the observed adaptive responses to 

stimulus statistics might be due in pan to intrinsic mechanisms within the auditoty 

paihwa\: therefore a more recent stud\ Garcia-Lazaro ei al. (2007) used a similar 

experimental design, this t ime in rat barrel cortex, to test whether adaptation to stimulus 
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statistics was a universal phenomenon or restricted to the auditory modality only. Here, the 

adapting stimulus was the deflection amplimde of the primary whisker; all other stimulus 

variables (e.g. direction, deflection frequency) were held constant. 

3.1.2: Adaptation of rodent, cortical somatosensory cells to whisker 

deflection amplitude 

A full description of the stimulus conditions is given in Garcia-Lazaro et al. (2007). 
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Figure 3.2: Adaptation to increa.sed stimulus variance in inferior cnlliculus 
Plot (a): stimulus distribution. high-probabilit\" region is centred on 63 decibels but wider 
than stimulus distribution in Figure 3.ic. thereby increasing stimulus variance 
independently of llie stimulus mean, (b): example of a neurtm showing adaptation, (c): 
example of a neuron showing no adaptation, (d): Population Fisher ftinction. For plots b-d. 
the filled circles and lines on abscis.sa plot the extent of high-probability region; light and 
dark grey lines represent low- and high-variance, respectively. Taken from Figure 3 in 
(Deanetal. 2005) 
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In brief, each adapting stimulus sequence lasted 30s, whilst the amplitude of 

whisker deflection was selected randomly from a predetermined set of 25 amplitude values 

(equal, integer intervals of between 25-500|im for the first animal and 30-750nm for the 

rest) and refreshed every 40ms. 
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Figure 3.3: Stimulus dislributions, under adaptation to mean and variance. 
Plot (A): Adaptation lo mean stimulus amplitude; mean stimulus amplitude is dependent on 
the high-probabilitv region (high-probabilit\" region) which is shifted along the stimulus 
axis (green - 90|im, blue-2IOfim, red-330j im cyan -450nm) . (B): Adaptation to 
stimulus variance; the high-probabilit> region is wider under each condition, increasing the 
number of amplitudes most likely to be selected and this increasing noise within the 
stimulus (red - 210-270pm/Low variance, green - l5O-330|jm/Mid variance, black - 90-
390nm/High variance 

As in the study outlined above (Dean et al 2005), the probability distribution of 

amplitude selection was highly non-uniform (see Figure 3.3) and consisted of a high-
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probability region (high-probability region) where the probability ofselection equalled 0.8 

and a low-probability region (low-probability region) wliere selection probability was 0.2. 

Thus, the global mean and variance of the stimulus could be manipulated independently by 

var> ing the location (mean. Figure 3.3A) or the width of the high-probabilitj' region 

{variance. Figure 3.3B). The data used to calculate the rate-functions was collected during, 

rather than post, adaptation. For every given stimulus amplitude, the adaptive neural-

response was taken to be the average number of spikes elicited by the input, within the 

40ms time bin following stimulus onset (given a response latency of 20ms). 

Figure 3.4A shows how the responsiveness of a representative barrel cortex neuron 

was affected h\ adaptation to the different high-probability region levels. Following 

adaptation, the rate-function was shifted laleralK (relative to the un-adapted response; black 

line and circles in Figure 3.-1A). with the degree of displacement dependent on the global, 

averaged amplitude of whisker deflection. However, the adaptive neural-response litnelions 

and thresholds (stimulus amplitude at die half-maximal response, Sjn) were not centred on 

the prevailing stimulus levels but onto regions In the stimulus space that were of higher 

amplitude than the global mean of the adapting stimulus. Tlic Fisher Information of the 

response was calculated for each neuron and across the population as whole (for the method 

ofcalculation see Section on data analysis, below j.Tlie peak of the Fisher function (Figure 

3.4B) was also displaced, relative to the global mean of the adapting stimulus, such that the 

cell was most sensitive to stimuli just outside the adapting higli-probability region 

(assuming that Fisher Information is a measure of neural sensitivity). This type of adaptive 

response was typical, as can be observed from the population Fisher Information (Figure 

3.4C) and the lateral displacement ofS;,i values across the population (Figure 3.4D-E). In 
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general the relationship between slope and firing rate was roughly linear and remained 

fairly constant for all adapting high-probabilily region regions (Figure 3,4F). 
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FJgare 3.4: Adaptation (o the global mean level of whisker deflection. 
A: The rate-fund ions of a single neuron to 40ms bursts of whisker vibration presented in 
isolation (black line'circles. 200Hz frequency, presented at 1 s intervals) and following 
adaptation lo four high-probability region levels (green, blue, red and cyan lines/circles. 
colour coding as for stimuli in Figure 3.3 A); empty circles plot actual spike counts for each 
amplitude, whilst smooth lines plot best-fil to the data, filled circles are the .S'juconstant. B; 
Corresponding Fisher functions for the neuron in A. C: Population Fisher function, pooled 
across all neurons. D: Scatter plot of relationship between stimulus amplitude and firing-
rate at 5i,i for all units in the population. E: Magnitude of shitl in amplitude at Sj„ between 
the 1st (red) and 3rd (green) high-probability region condition, for all units. F : Scatter plot 
of relationship between slope and firing rale at Sm. across population. Taken from Garcia-
Lazaroetal. (2007). 

In terms of adaptation to stimulus variance, the results from a single neuron are 
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given in Figure 3.5A-B. For this cell, as stimulus variance increased (Figure 3.5A; red 

lines/circles give the adaptive response to the low-variance stimulus, green = mid-variance 

and black = high-variance), the slope of the rate-function became steeper and the maximum 

response increased; the stimulus amplitude at the Ŝ n also decreased. 
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Figure 3.5: Adaptation to stimulus variance in rat barrel cortex (taken from Garcia-
Lazaro et al. 2007) 
A: Neural rate-function for a single neuron following adaptation to stimuli of increased 
variance, but constant mean: colour-coding: red. green and black are low-, mid- and high-
variance, respectively, circles are the actual spike-counts and smooth lines are the best-fil to 
the data B: Corresponding Fisher Information for the neuron in A. C: Scatter plot showing 
relationship (circles, colour coding as for A) between 8511 and firing rate for all cells tested 
(n = 131), black lines connect up Sju values for each celt, under the three variance 
conditions. D: Scatter plot of slope at Ŝ u (or neural-response gain), for all cells tested, 
under each level of stimulus variance (colour coding as in A. black lines are connecting the 
slope values for each neuron). 

This cell clearly underwent an adaptive increase in gain, in response to increased 

variance within the adapting stimulus. The bandwidth of the corresponding Fisher function 
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(see I'igure !! 5B) became progressively narrower as stimulus variance increased, impi) ing 

that (for this cell al least) the adaptive response to increased levels of stimulus variance 

tends to improve stimulus resolution for whisker deflection amplitudes around the global 

mean, relative to lower variance conditions. 

Using the change in stimulus amplitude and gradient of the stimulus response 

function at the S^u point as a measure of gain change, it would appear that an increase in 

gain (decrease in Sinampliiiide and increase in slope) was the typical adaptive response to 

increases in stimulus \ ariance (see Figure 3.5C-D). The general trend was for S50 

amplitudes to be displaced leftwards (i.e. to lower Ŝ n amplitudes, see Figure 3.5C) and 

stimulus response function gradients to become steeper (Figure 3.5D). 

Thus, these results are broadly in line with adaptation to stimulus statistics in the IC 

(Dean ct al. 2005). witli t^vo important exceptions: 

1. Increased gain, following adaptation to stimulus variance, was apparently 

more common in the barrel cortex than the IC and 

2. Adaptation to (he stimulus mean displaced the stimulus response function 

fijrlherthan observed in IC. 

These two studies reveal that adaptation to stimulus statistics is an amodal 

phenomenon, as it is elicited b% both auditor) and somatic stimuli. However, this type of 

adaptation is more pronounced in the barrel cortex. Whether this is due to differences in 

cortical and sub-cortical adaptation or the niodality of stimulus presentation cannot be 

answered here: what can be slated is that these adaptive responses conflict v\ ith the 

principles of Barlow's Efficient Coding Hypothesis. 
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3.2: Re-analysis of experimental data showing adaptation to stimulus 

statistics in rodent barrel-cortex 

In order to explore this more thoroughly, Jan Schnupp and colleagues kindly 

provided published experimental data (from Garcia-Lazaro el al. 2007) to allow for further 

analysis of the population rate codes under the two tjpcs of adaptation regimes. 

3.2.1: Experimental details, metltodology & stimulus parameters 

The experinienlal details of the data collection are taken from Garcia-T.azaro et al. 

(2007) and given below; 

Experimental details 

The results from Garcia-Lazaiu et al. (2007), outlined above, were derived from the 

pooled results taken from two mature l-Ong Evans rats: however, for the purpose of this 

analysis, only data from the single animal (I,F270705) that was used in both experimental 

set-ups (i.e. adaptation to stimulus mean and variance) was anaKsed. 

The animals were anaesthetised using halothane. during initial surgery, and 

ketamine. during recording (for full details of the experimental set-up. such as surgical 

procedures etc, please see Garcia-Lazaro et al. 2007). A 4x4 silicon "Michigan probe" 

2.5Mii electrode array was used to record neural responses from the right barrel cortex. 

Signals from the array were band-pass tillered (between 0.5-3 kHz), amplitled and digitized 

(25 kHz) using specialist software (Brainware, Tucker Davis Technologies, Alachua, FL) 

and analysed using MalLab (The MathWorks. Inc.. Natick. MA. USA). 

Layer 4 neurons of the rat somatosensory cortex are organised into distinct 

aiialomical and functional areas, which resemble barreU (in terms of their shape) when 
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stained wilh c\lochrome oxidase. Neurons within these areas respond preferential!) to a 

given vibrissa, or principle whisker, of the mystacial pad. Potential principle whiskers 

where identified iniiially by the location of the electrode, within the cortex, and then 

confirmed by the response of neurons to stimulation of the suspected principle whisker and 

its neighbours. Stimuli of varying amplitudes (see below for a description of stimulus 

paramelers) were presented in isolated. 40ms, bursts. The vibrissa that elicited the strongest 

response was deemed the principle whisker. This method of stimulation {i.e. presenting 

stimuli in isolation) was also used to determine the latency of the onset response (which 

was found to be, on average across the population, ZOms) and ihe un-adapled stimulus-

response function for each individual neuron. Units with less than I Hz firing rate were 

excluded from ihe analysis. 

Whiskers were stimulated by attaching them, via a pair of glass capillaries, to a 

loud-speaker diaphragm which \ibrated sinusoidall> at 200Hz. The amplilude of oscillation 

was refreshed cvcr^,' 40ms and transitions were smoothed b\ a 3ms wide, running average, 

filter. A[np!itudes were drawn from a selection of 25 possible values ranging from 0-

720[tm. in 30|im steps. 

As outlined earlier, the probability distribution of amplitude selection was highly 

non-uniform and consisted of a high-probability region (high-probabilit>' region) where the 

probabilit)' of selection equalled 0.8 and a low-probability region {low-probabiiitj- region) 

where selection probability- was 0,2. Tlius. the global mean and variance of the stimulus 

could be manipiilaied independently by varying the location (mean) or the width of the 

high-probabilit> region (variance). 
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Stimulus parameters 

The stimulus parameters were as follows; 

In terms of adaptation to the mean, each high-probabilit>- region spanned 5 stimulus 

amplitudes and was centred on 90, 210, 330 or450|im (Figure 3.3A), actual mean 

amplitudes were 161 pm (standard deviation or SD: I70nm"), 252pm (SD: I36nm"). 

343(im (SD: 116pm") & 433nm (SD: I I7pm") respectively. Differences in standard 

deviations were due to the skewed nature of the stimulus distribution wtien the high-

probability region was centred on the lower stimulus amplitudes (see below for a turther 

discussion). For adaptation to stimulus variance the high-probability region was fixed at 

240pm and spanned amplitude ranges (with 30pm increments): 2I0-270pm (Low-variance 

condition). I?0-330^im (Mid-variance condition) and 9U-3y0pm (High-variance 

condition); with mean amplitudes of 272,279 & 290pm, respectively. 

The experimental data, provided by Jan Schnupp and colleagues, consisted of spike 

times, from individual cells, elicited during JOS long stimulus presentations. Each trial 

consisted ofa continuous series of 750, 40ms, amplitude presentations. For every high-

probability region condition (under a given adaptation regime), there were three stimulus 

sequences and these were repealed at least five times. The order of prcsenlation for a given 

sequence was randomly predetermined and distinct from the stimulus order of the 

remaining two sequences. Trials within and between high-probability region conditions 

were randomly interleaved with a 2s latency between the 30s presentations. 

Data analysis 
for each amplitude presentation, all spikes elicited within a 40ms time-window 

(located 20ms after stimulus-onset to account for response latency) were summed into 
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40ms lime-bins and used to calculate the response to the given whisker stimulus. Stimulus-

response functions (stimulus response function) for each high-probabilit\ ' region condition 

were determined by taking the average f i r ing rate for a given whisker deflection amplitude, 

calculated across stimulus sequences and their repeats. 

The half-maximal (S^u) amplitudes, gradient and f i r ing rates were taken from the 

best-fits to the stimulus response fi inction. The best-fit to the data was calculated by fitting 

a fifth-order polynomial to ihe data, using Poisson regression wi th an exponential link 

function {this was achieved by using the MatLab function glmfii and MatLab code 

generously provided by Jan Schnupp and colleagues). 

Population Fisher functions were calculated using the methodologs o f Garcia-

Lujtaro et al. (2007). The estimated Fisher in format ion . / for a given cell , a, and stimulus, s 

(see Equation 3.3 below), was taken to be the differential, v'. o f the best-fl l to Ihe rate 

function d i \ ided b\ the best-fit to the spike-count variance, o (see Figure 3.6, below). As 

mentioned above and discussed fu lh in Chaplcr 2 (see Section: 2.6), Fisher Infomiation is 

dependent upon both the slope o f the neural stimulus response fiinction and variance in the 

response. For Gaussian noise, variance is assumed to be cither fixed or proportional/equal 

to mean actlvit j ' ; thus Equation 3.3 gives the approximalion o f the Fisher Information when 

assuming Gaussian noise. 

3.3 

An example o f the besl-fit to spike count \ariancc, from a single neuron, can be 

seen in Figure 3.6. below. Response noise increa.sed in proportion to mean activity, which 

was the typical response across the population, f he proportional increase was seen for all 

high-probability region levels, thus was irrespective o f the variance in the stimulus 
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distribution (variance tended to decrease as global mean amplitude increased, due to the 

stimuliLs configuration: see Section on Stimulus Parameters, above). The bcst-fit lo the 

spike-couiU variance was calculated by f i t t ing a fifth-order polynomial to the data (this was 

achieved by using the MatLab functions/70/v/?/ andpolna!). 

The population Fisher information (F) was taken to be the mean o f the Fisher 

Information functions across all cells (A^ tested: 

3.4 

One can only calculate the population Fislier information by Equation 3.4 under the 

assumption of independence, i.e. one must assume that the activity' o f all neurons in the 

population is uncorrelated. In order to test this assumption the spike-count data was 

analysed by plotting cross-correlation histograms for all possible neuron pairs in the 

population. Cross-correlograms were constructed for all spike-trains elicited in response to 

llie same !50s stimulus presentation, across all neurons in the population, in a pair-wise 

manner. For each neuron pair (one was arbitrarily assigned as the target neuron and the 

other as the reference neuron), cross-correlograms were constructed f rom corresponding 

target and reference spike-trains elicited to a given 30s stimulus sequence and trial. The 

cross- correlograms were normalised, such thai a perlecl. posi l i \e. corretalion at the zero 

time lag would be equal to 1: a time delay of up to ± 100ms was used. This was achieved by 

using the MatLab function xvov (with the normalisation parameter set to 'coeff'. which 

returns correlation coefficients for each time delay by normalising the data such that a 

perfecl, positive correlation at the zero time-lag is equal to unity): the function xcov first 

subtracts the mean from the inputs vectors (i.e. the reference and test spike-trains of the 
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neuron pairs) and then calls the Mall.ab function xcorr, which calculates the cross-

correlation function of the spike-trains. 

The cross-correlation function counts the number of times in which spikes from the 

target and reference trains occur within a given time-lag of each other (in this case time 

delays where assessed from 0 lo ± 100ms) with a strong peak indicating that firing rates are 

correlated. On average, the correlation-coefficient at the zero time-lag, across all spike 

trains, high-probability region conditions and neuron pairs was 0.0137, with a standard 

deviation (SD) of ±0.0226; the peak correlation-coefficient was, on average. 0.0200 

±0.0242 SD. FA'en with the relatively large deviations in coefllcients observed across the 

population, the correlation coefficients were low enough to assume independence. 

Adaplalion lo global mean stimulus amplitude 

As mentioned, only experimental data from a single animal was used in this 

analysis. Thus, it seemed prudent to first confirm that die adaptive response lo increases in 

mean amplitude was broadly in line with the pooled, population response outlined in 

Section 3.1.2 above (see Figure 3.4). 

Following adaptation, there was a rightward shift in the population rale-function as 

the mean of the adapting stimulus was increased (Figure 3.7A). This was in line with the 

general obser\'ed trend as reported in Garcia-Lazaro et al. (2007). Rate-functions were 

displaced lalerally to centre on stimulus amplitudes that were stronger than those within the 

high probability region of the stimulus space. 
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Figure 3.6: Best-fit to the spike-rate variance oTa single cell 
This figure plots the \ariance in the spike-count response, as a function of stimulus 
amplitude, of a single cell to all 4 adapting high-probabilit\' region conditions. Solid lines 
give the best fit to the actual spike-count variance data (symbols); with green line/circles 
plotting spike-count variance as a function of the stimulus for the 90jim condition, blue 
line/squares: 2IO^lm. red line/triangles: 330jim & cyan line/diamonds: 450nm adapting 
stimulus condition. For comparison, the corresponding colour-coded dotted lines plot the 
corresponding best-fits to the average spike-count data (see Figure 3.7). as a function of 
stimulus (i.e the stimulus response tiinction). 
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Tlie population Fisher function (Figure 3.7B) was bimodal for the lowest mean 

amplitude condition (90jam: green line), in that there were two peaks: a broad peak centred 

on the mean adapting stimulus and a main peak, with a narrower bandwidth, centred on 

570^im. This amplitude was .stronger than the stimulus thai elicited peak Fisher information 

under the 210fim condition (blue line). Distribution was unimodal for all the other stimulus 

levels and bandwidth narrowed with increased mean stimulus amplitude. 

Under the 90jim mean amplitude condition, ihe low-probabilitv 'tail' covering 

amplitudes greater in strength than the high-probabilitv region was longer than the other tail 

(see Figure 3.3), resulting in a strongly asj'mmetric stimulus distribution. Thus, under this 

condition, the adapting stimulus, relative to Ihe higher mean amplitude conditions, had 

more inherent variance and this could account, in part, for the bimodal nature of ihe Fisher 

curve. The high slopes al the extremes of the Fisher Information functions are an artefact of 

ihe decrease in slope observed in the corresponding stimulus-response functions once 

maximum firing rate is reached. 

3.2.2: Adaptive population stimulus-response function and Fisher 

Information function in response to increased levels of stimulus 

variance 

The experimental evidence, as presented in Garcia-Lazaro ct al. (2007). implied that 

increased gain was the typical respon,se to increased stimulus variance: however this was 

nol explicitly stated, i.e. no averaged, population data was shown. 
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Figure 3.7: Adaptive population stimulus response function and Fisher function from 
animal LE270705 (number of cells in population = 81) 
Top: Adaptive stimulus response function under four different high-probability region 
levels (colour-coding and amplitude at tiigh-probabilit>' region centre is given in inset); 
symbols are actual, mean spike-counts whilst smooth lines give the best fit to the data. 
Bottom: Pooled Fisher Information calculated from the best-fit to the data in the top plot 

The population rdte-function was taken as the average of the individual stimulus 

response function, pooled across the whole population of cells tested [n = 132]. 

Following adaptation to stimuli of increasing variance, the population stimulus 

response function decreased in gain (see Figure j .8A) . Under the high-variance condition 

(Figure 3.8A, black line), both the maximum response and the gradient of the stimulus 
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response function decreased, whilst tiie amplitude at the S511 increased, relative [o ihe low-

variance stimulus response function (Figure 3.8A. red line). 

In terms of the population Fisher infoimation, there was little difference in 

bandwidth between the mid- and high-variance conditions, and only slight increases in 

amplitude for the mid-variance condition (Figure .v8B), Both .stimulus conditions yielded 

Fisher functions that could be described as binomial, with the strongest peak located at a 

stimulus amplitude of 570(im and 600^lm (for the mid- and high- variance conditions, 

respectively), and a second smaller, broader peak between 270-330nm. 

Under Ihe low-variance condition, the Fisher function had a single peak located at 

330Mm and a narrower bandwidth, relative to the two lower variance conditions. 

The relative broadening of the Fisher fiinclion was not unexpected given the 

difference in slope bet\veen the population rate functions under the three conditions (Fisher 

information is strongest when the stimulus response ftinction slope is steep and spike-count 

\ariabilit\ is low). 

All conditions elicited Fisher functions with peaks near the stimulus mean (272. 279 

and 290nm, low-, mid- and high- variance, respectively) and the bmomial nature and broad 

bandwidth of the Fisher functions under the higher variance conditions implies that the 

population response was able lo effeciiveh encode ihe v\ ider stimulus distributions. 

Il \sas found Iha! the majority of cells in the population displayed an adaptive 

decrease in stinmlus response ftinction gain. Cherall, following adaptation to stimuli of 

high-variance, a decrease in stimulus response function Sso gradient was observed for 

93,18% of adapted neurons, relative to the low- variance condition (control). Under the 

high-variance condition, an increase in stimulus amplitude at ihc S5U was observed in 
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87.12%) of cells, relative to control: 80.30% displayed a concomitant decrease in slope and 

increase in Ŝ o amplitude. 
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Figure 3.8: The population response to increases in variance within the stimulus 
distribution. 
Top: the mean, pooled rate functions for all cells tested (n = 132) under the three variance 
regimes (low — red line/circles, medium ~ green line/squares, high — black line-'triangles), 
llie smooth curves are the besl-tlts to the data. Bottom: The population Fisher Information, 
calculated from the population stimulus response function in the uppermost plot 

The mean decrease in slope between the low and high variance conditions was 

0.0515±0.004 standard error (SE) and highly significant, at the 5%. level, withp < 0.001 

using a one-tailed paired t-test (MatLab function Ilest2\ The average increase in amplitudes 

eliciting the Ssn was 51.73pm ± 2.25SE and was also highly significant, at the 5% level 

(one-tailed t-test. p <0.00l). 
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Figure 3.9: Example stimulus-response functions (stimulus response function) from 
three cells thai displayed cither an adaptive increase in gain (stimulus response 
function gradient) or decrease in amplitude at the 850 
Adaptation regime: Low-variance: red line/circles; Mid-variance: green line/squares; High-
variance: blacii line/triangles. Smooth lines plot best-fit to the actual spike counts: stars 
indicate Ŝ u point, all other symbols plot actual spike counts. 

Overall, the results, from the re-analysis of the experimental data, indicate that the 
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population response was in line with Information Theory-, in thai increased stimulus 

variance resulted in an adaptive decrease in gain across the population. However, what was 

surpri.'iing was [he degree of agreement with current theor>' given (he results published in 

Garcia-Lazaro et al. (2007). If one examines the relationship between S50 slope and 

stimulus variance in the published data (Figure j .5D). the overall trend was for neural gain 

(as measured by the steepness of stimulus response ftinction slope at the S51O to increase 

with levels of adapting variance. 

In fact, during this analysis, no cells were found that displayed an adaptive increase 

in stimulus response function gain (as in Figure 3 5A). 

Due to the differences in the results presented here and the published findings, it 

was decided lo re-examine the relationship between the individual stimulus response 

function S^, ampliliides and slopes for all cells in the population and compare the results 

from the re-analysis with the published data of Garcia-I.azaro et al. (2007). Scatter plots are 

presented in Figure 3.10. 

In comparing the scatter plots in the left column (re-analysis) of Figure 3.10 with 

the right column (published data) it is immediatel; apparent thai the results from this re-

analysis, in terms of adaptation to variance only (Figure j . lOA-D). are exactly opposite to 

those of the published data; vvhilst the results relating to adaptation to the mean are in 

agreement with the published findings (Figure 3.10E-F), 

Following an in-depth analysis of the methods used, by the authors of the published 

data, to read the experimental spike-count data it was concluded that the published data was 

in fact presented back-to-front, i.e. the high-variance data was mistakenh presented as the 

low-variance data and vice-versa. 
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Figure 3.10: Comparison of results from this re-analysis of the variance and mean 
adaptation data and the published results in Garcia-Lazaro et al. (2007) 
All plots in the left hand-side column (A, C & E) result from tlie re-analysis of the 
experimental data performed here: all plots in the right hand-side column (B. D & F) are 
taken from the published data (Garcia-La7.aro et al 2007). Top row; Comparison of 
relationship between Si., amplitudes and firing rates under conditions of adaptation to 
variance: red circles = Low-, green = Mid-, black = High-variance: black (B)/ grey (A) 
lines connect the Ssu points for an individual cell. Middle row: Comparison of neural gain 
(stimulus response function gradient at Ssn) as a function of stimulus variance; colour 
coding as for tlie top row. Bottom row: Comparison of relationship between 850 amplitudes 
and firing rates under conditions of adaptation to stimulus mean; green circles = high-
probability region centred on 90nm. blue = 2IO(im. red= 330pm.cyan = 450|im: black (F)/ 
grey (E) lines connect the Sso points for an individual cell. 
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This has been confiniied by the authors of the published data (personal 

communicaiion, Jan Schnupp, 2008). As such the results presented here reflect the actual 

effects of adaptation to increasing levels of stimulus variance in the rodent barrel cortex 

3.3: Research looking at time course of adaptation 

Adaptation can occur on many time scales, e.g. there can be a rapid reorganisation 

of neural output (100s of ms scale) following stimulus onset, suppression of firing rate 

during adaptation (time scale of stimulation - 100s of ms to seconds) and adaptive 

responses can be observed some time (order of seconds to minutes) post adapting stimulus 

ofTset (e.g. Dean et al. 2008; Ulanovsky. Las. Farkas & Netken. 2004). 
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Figure 3.11: .\a example of the switching stimulus used in to assess the time course of 
adaptation to global mean in Dean et al. (2008) 
A; The distribution of the adapting stimuli with high-probabilit\" region (high-probabiiit>* 
region) centred at 51 dB SPL. B: Example of a stimulus sequence over two 10 s switch 
periods, drawn from distributions shown to the right (high-probability region centred on 51 
and 75dB). The high-probability region switched evcr\ 5 s between the 75 and 51 dB 
stimuli. The bars on abscissa indicate sampling periods (repeated throughout stimulus) that 
were used for plotting rate level functions from the final 3 s of each high-probability region 
condition 
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In a more recent study (Dean et al. 2008) the time scales inherent in adaptation to 

stimulus statistics were explored. Adaptation fo noise burst stimuli, in the inferior 

colliculus. was elicited through a switching stimulus in which the overall mean sound level 

was switched from 51 ± 6 db to 7 5 ± 6 db e\er> 5s (over a period of lOmins. sec Figure ,i.l 1 

for an example of one transition between global mean levels); the amplitude of the noise 

burst was refreshed e% ery 50ms and drawn from a highly skewed distribution comprising a 

high probability region (high-probability region) and two low probability' tails. 

The study found that the median time constant of adaptation (across the population) 

was = I60ms, following an increase in the mean sound level, and =:330ms, following a 

reduction in mean sound le\el. Reorganisation of stimulus-response functions (stimulus 

response function) was apparent in the I st 300ms following the switch to 75db stimulus 

and for some neurons the stimulus response function reached its steady state {a\'eraged 

from last 3s of each 5s section) within this time window, see Figure 3.12. 

Some neurons also sho\\ed n slow, long fonii of adaptation that had a time constant 

of = 17s and suppressed tiring rates during the I Omins of recording time. 

3.3.1: Time cou r se of adaptation in Ihe barrel cortex 

V^ilhin the study, highlighted abuve. there \v̂ :̂̂  no attempt to measure the time 

course of adaptation to variance, given that very few cells displayed variance adaptation in 

the !C. Thus it was decided to attempt to analyse the barrel cortex data to compare and 

contrast the adaptive time constants under the different conditions, of adaptation to mean 

and variance, as v^ell as to determine if there are dilVerences across modality and processing 

stage. The firing rale as function of stimulus amplitude was averaged over the T' and 2" 

400ms of the stimulus presentation and compared with the steady-state response, averaged 
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over the final I Os. In general, across the population, no differences in responsiveness could 

be found, between the fir^t 400m5 epoch and any successive time bins, under either 

adaptation to global-mean or adaptation to global-variance. 
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Figure 3.12: Time course of adaptation, during transition between high-probability 
region levels 
Time course of adaptation to mean decibel level of noise bursts, for four representative 
neurons in IC. The stimulus response functions for amplitudes within the high-probability 
region are plotted as a function of the first 3, jOOins time bins, following the switch 
between mean adapting levels, and the final 3s. Different shades of blue represent the 
response to the 75dB stimulus and red plots the response to the 51 dB level. Taken from 
Dean et al (2008) 
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Ttie results from a sample single cell in the population (adaptation to mean) are 

plotted in Figure 3.13; only the responses tohigh-probabil i lv stimuli were analysed. Tlie 

black dashed line represents the average response (across and within trials) during the last 

lOs of the each ?0s adaptation trial, for a given high-probabilit> region level. Fhe red line 

gives the averaged response during the 1st 400ms o f adaptation and the blue line plot.s the 

response for the next 400ms epoch. As can be seen, there is very litt le difference in the 

responses during all three time bins. 

Thus one could argue that adaptation is happening rapidly (with a time constant o f 

<400ms) as per the inferior colliculus. However, due lo (he constraints of the data this 

cannot be stated unequivocalh. In terms o f measuring the adapti\'e time course, the 

switching stimulus (as applied in the inferior coiliculus. Dean et al. 2008) has two 

advantages over tho method used to collect the barrel cortex data. Firstly there are only two 

global mean adapting levels and many repeats, therefore it's possible lo gel a statistically 

\ alid average o f adaptation for each 5s section. Secondly, there were no gaps between 

switches, thus making it possible to compare rapid changes in responsiveiicss fol lowing a 

mean level transition, i.e. jOOms before and after the switch. 

In terms o f the barrel cortex data, it was collected in the fol lowing manner 

responses to a given high-probabilil> region (high-probabilitv' region) was recorded for 30s 

with a 2s break in stimulation bet\veen trials. For each high-probabil i t j region, 3 random 

sequences were generated and each sequence was run at Ica.st 5 times. Therefore for each 

high-probability region, only a minimum o f 15 presentation times, per neuron, could be 

used to determine the time constant o f adaptation onset (compared to 60 limes in Dean el 

al. 2008); also there could be no comparison between previous f i r ing rates and those 
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fo l lowing stimulus onset. Unfonunately then, due to the constraints o f the data, it was 

impossible to determine the t ime course o f the development o f the adaptive response with 

any certainty. 
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Figure 3.13: The time course of adaptation. 
Example o f time-course analysts from a single, example neuron for all four adapting 
conditions. Black dashed line/squares: the average steady-state response o f the neuron to 
high-probabilit\ stimuli. Red line/circles: The: response averaged over T' 400ms o f 
stimulus presentation. Blue lines/circles: The response averaged over the 2nd 400ms o f 
stimulus presentation. 
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As trials testing adaptation to each high-probahilily region were not presented 

successively, it was not possible lo determine the time course of adaptation over any longer 

lime scales. Therefore to elucidaie Lhe actual time course of adaptation to stimulus statistics 

in the barrel cortex will require further experimentation. 

3 .4 : D i s c u s s i o n 

The main findings of the re-analysis of the experimental data from Garcia-Lazaro et 

al, (2007) were tliat: 

1. The mean neural-response function, averaged over the whole population of 

cells tested, displayed a decrease in gain, i.e. was scaled dowTiwards, following adaptation 

to increasing levels of stimulus variance. 

2. These findings are in line with the expectations of Barlow's L'fficient Coding 

Hypothesis. 

3. In terms of Fisher information, the bandwidth of the population Fisher-

function, under the low-variance condition, was unimodal, narrowly tuned and maximal at 

or close-to the mean adapting stimulus amplitude. 

4. Under ihe mid/high-variance adapting conditions, the shape of the Fisher 

Information functions \\cre veiy similar: coding efficacy was broadly tuned and bimodal. 

5. In terms of adaptation to stimulus variance, the findings presented within this 

Chapter directly contradicted the published data. This arose due to issues in the published 

analysis of the data that assigned llie output from llie low-variance experiments to the high 

variance condition 

6. Following personal communication with the authors of the published data the 

consensus was reached Ihal ihe results reported in this chapter reflect Ihe actual 
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experimental findings. 

These results present turther confirmation of Barlow's theorj of sensorv coding, in 

that adaptation (in rat barrel cortex and at the population level, al least) serves to adjust the 

sensitivit)' of a celL or even a population of ceils, in a manner that is dependent upon the 

prevailing stimulus levels. This re-analysis of the experi menial data revealed that 

independently increasing stimulus variance led to a decrease In gain of the population 

response and that this was contrary to the published reporting of the experimental data. 

It was previously established that, under conditions where there is adaptation to 

mean amplitude of whisker defiection, sensitivity is greatest forstitnuli outside the high-

probability region Garcia-Lazaro et al. (2007). Dean et al. (2005) suggested that the slight 

displacement of neural rate-functions, from their expected location, meant that adapted 

cells were primed for novelty detection. Within somatosenson.' cortex, stimulus response 

function displacements were more extreme than observed in the IC (Garcia-I.azaro et al. 

2007), implying tliat cells here were primed to respond to stimuli far outside the expected 

range of stimulus amplitudes. As such, the next phase of the analysis was to explore other 

possible coding strategics and to sec which best describes the adaptive response to global 

mean. 

Tn conclusion, adaptation to variance results in a decrease in gain and not an 

increase, as previously published (Gareia-Lazaro et al. 2007). Overall, this suggests thai 

adaptation to stimulus statistics, within the barrel cortex, is in line with the principles of the 

Efficient Coding Hypothesis. However, adaptation to variance within the Inferior coliiculus 

(IC) was of course rarer and in the opposite direction (Dean et al. 2005 and see Figure 3.2). 

This raises the question of whether the opposite effects of adaptation on neural output 



between the IC and the barrel cortex is a reflection of the differences in adaptation to 

variance between sub-cortical and conical regions generally or is specific lo sensory 

modalit\'. or even species. Another question to raise also is whether the experimental data 

from the IC (Dean et al. 2005) was subject to the same issues of analysis as the data from 

the barrel cortex (Garcia-Lazaro et al. 2007): in which case adaptation to variance in the IC 

would result in decrease in gain, as per the expectations of the Efficient Coding Hypothesis. 

Further experimentation is required to answer these questions. 

The displacement of the neural-rale function, within the barrel cortex, places the 

sensitivity' of the cell in a region of ihe stimulus space that is higher than the global mean of 

the input levels. It could be argued that this adaptive shift reduces firing rates overall and is 

an energy-saving strategy (as the most common stimuli elicit low firing rates), however, it 

also has the added affect of reducing Ihe cel ls ability to discriminate (with a rate-code) 

between those stimuli which are presented most frequently. Tlius it was decided to analyse 

the data further in order to asses the optimal encoding strategy underpinning adaptation to 

stimulus statistics: the results are presented in the next chapter and suggest that the lateral 

displacement of the stimulus response liinction following adaptation to the global mean 

input optimizes the encoding of relative changes in stimulus amplitude on the 40ms time 

scale, rather than the stimulus distribution. 
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Chapter 4: Adaptive strategies 

One of the aims of the iast chapter was to ascertain whether adaptation to stimulus 

statistics in the barrel cortex was in line with the predictions of information theory. Whilst 

some of the effects of adaptation on neural output were within expectations (specitlcally the 

mean-amplilude-dependenl lateral displacement of the stimulus-response fimctions, see 

Figure 4.1A below, and the decrease in neural-gain as a result of increased variance in the 

adapting stimulus) there was one feature of the adaptive response thai did not fit the 

predicted neural-output: the lateral displacement of the stimulus-response function tended 

to place its dynamic region outside the high-probabilit) stimulus space, thus resulting in 

Fisher infonnation functions thai peaked outside the high-probability region (see Figure 

4.1 B. bcinu). Both the (nfomas principle and ihe efllcient coding hypothesis would predict 

that information transfer should be maximised around the high-probabilit> region (see 

Figure 4.1 A, below). Tlie aim of this chapter, then, is to explore different possible coding 

strategies that may underpin the experimental data. 

4.1: Is information maximisation the strateg>' underpinning adaptation in 
the barrel eorlex? 

As one can recall from Chapter 2. the adapii\e responses to velocity and 

acceleration, in the fly HI neuron, were scaled vvhen nonnalised by the standard deviation 

of the adapting stimulus (Brenner el al. 2000). 

However, the normalised responses, plotted in Figure 4.1, arc clearly not scaled 

versions of each other. 

124 



A: Expected response ond Fisher Infomafion 

0.2 0.2 

c 
O 

0.5 S 

I 
D J o 

01 

200 400 600 200 400 600 
Jo 

B: Comparison of expeded and actual responses across all HPR levels 

eoo 

1 

0.8 

0.6 

0.4 

0.2 

n 

f — 7.—»:_^^y^ 
* •* _X» • 

1 / ^ • 

. i:̂"̂  
200 400 600 

200 4DD 600 

Stimulus AmpFitude |;im) 

1 

0.8 

0.6 

°-\ 
0.2 • 

^7i 
jJ^ 

^ 3 ^ 
r^ 

^ 

0 200 400 600 

StffTiuhjs Ampfriude (nm) 

Figu re 4.1: Expected versus actual adaptive respouse. 
A; Predicted output according to the information ma.\imisation principle. Solid green lines 
plot the stimulus probability distribution and dotted lines describe the expected stimulus-
response function (SRF, left plot) and Fisher information (right plot, calculated 

a s : / ' ( s ) " la', where/W is the predicted response, see left-hand plot, as a flinction of the 
stimulus, ,v, and under the assumption that the variance, (f. is equal lo/(sl: see Chapter 2, 
Equation: 2.28). B: Comparison of actual versus predicied response; shaded areas co\er the 
high-probabilitj regions (HPR) in the stimulus space: Green: HPR centred on 90tim, blue: 
210pm. red: 3 10pm. cyan: 450pm. Correspondingly coloured dashed lines plot the 
predicted SRF; the corresponding solid lines and circles plot the best-fit and actual 
average, population stimulus-response function, respectively. Black dashed-lines give the 
actual, population, mean Fisher function: both the population SRF and Fisher Information 
curves were normalised to give a maximum response of unity. 

In fact, normalising the data by any method (dividing by either the mean or standard 
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deviation of the stimulus or normalising the data to have 7ero mean and a standard 

deviation of unity) did not result in a scaling-up of the normalised stimulus-response 

functions such that the responses were invariant with respect to the global mean of the 

adapting stimulus (data not shown, but please refer to Figure 4.1). TTierc is therefore an 

argument to say that the degree of lateral displacement was not only influenced by the 

global mean of the adapting stimulus but by other aspects of the stimulus, such as rarit>' or 

deviation. 

Within Chapter 2, the predicted effects on neural output of an information encoding 

strategy based on the principles of background suppression.. was discussed for a multi­

modal stimulus distribution (Wimmer et al. 2008). Under a mechanism of background 

suppression, whereby responses to the weakest intensity inputs are suppressed, an adapted 

stimulus-response function would only cover the highest-intensity mode of a multi-modal 

stimulus distribution {see Figure 4.2, right plot, below), rather than covering the whole 

distribution (as per adaptation along information theoretical principles, see Figure 4.2. left 

plot, below). This is similar to the actual adaptive response, within the barrel cortex, 

observed in response to increases in global mean whisker deflection amplitude; the 

stimulus-response function is displaced to centre on stimuli that are ^ea ter in intensity than 

the global mean stimulus amplitude (see Figure 4.1B. above). 

However, in the example of background suppression just discussed (see Figure 4.2). 

the .stimulus-response function was displaced to centre on the stimuli of greatest intensity 

but also of high presentation-probability. In the case of adaptation in the barrel cortex, the 

stimulu.s-responsc functions were displaced to centre on the strongest but low-probability 

inputs: this suggests that barrel cortex neurons were adapting to respond selectively to rare. 
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but high amplitude stimuli (see also Figure 4.3, bottom row). 

Efficient coding verses background suppression 
for b\-modal and tri-modal stimulus distributions 
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Figurv 4.2: lorormation Maximisation versus Background Suppression as encoding 
strategies 
Dark- and light grey regions represent adapting stimuli with bi- and Iri-modal distributions, 
respectively. Left: Expected intluence of adaptation, mediated by an Information 
Maximisation strategy, on stimulus-response curves of a hypothetical neuron. Red line and 
circles gives expected response following adaptation to an arbitrary stimulus with a bi-
modal distribution: blue line and squares give expected adaptive response to a tri-niodal 
distribution. Right: As for A. but for a strategy of Background Suppression. Left and right 
plots both adapted from Winimer et al. (2008). 

Novelty detection, whereby adaptation serves to ready a cell for deviant stimuli, is 

another possible strategy for the encoding of sensory input. This type of adaptive process 

would result in higher firing rates for novel stimuli: as, for example, the study described in 
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Chapter 2 which found that cells in the primary auditory cortex fired most strongly to rare 

(or oddball) stimuli (Ulanovsky et al. 2003). irrespective of the relative rclaiionship in 

value between [he common and rare inputs and [heir presentation probabilit\' (see Chapter 2 

and below). 

AH optimal adaptive response for a sensor>' cell primed not onl\ to detect but also 

to discriminate between novel stimuli, would be for die regions of greatest slope, in the 

neural-response ftinction. lo be centred on tlie tails, rather than die peak, of the stimulus 

distribution (see Figure 4.3, middle row. below) This would ensure that the discrimination 

threshold, as determined by ihe inverse of the Fisher Information, would be lowest for less 

common stimuli, irrespective of intensity. There is an argument to sa> that ihc tails of the 

stimulus di.stribiition is where ihe Fisher information of the input signal itself would be 

strongest; thus, there would be a direct correspondence between the strength of Fisher 

Information in both the input distribution and the response to it. 

With reference to the adaptive response to global-mean wliisker-de fleet ion 

amplitude, one could argue that the slope of the stimulus-response function tends to begin 

accelerating in a linear manner (see Figure 4.1B), on the edge of the high-probability region 

of the stimulus. Thus, the barrel cortex cells could be adapting to reflect the region of 

highest Fisher Information within the stimulus distribution. Flowever. it should be noted 

that the slope of the rate-function was centred only on stimuli greater than global-mean and 

both neural threshold and peak Fisher Infonnation. as a ftinction of neural response, were 

displaced to regions of low stimulus-information. Tlierefore a different strategy, e.g. 

background suppression or deviation detection, may be underpinning adaptation lo 

intensitv, in the barrel-cortex. 
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Figure 4.3: Novelt\' detection as an encoding strategy' 
Left Column: Idealised stimulus-resporise functions under three encoding strategies: 
Information Maximisation (top row). Novelty detection (Middle row) and Asymmetric 
Novelt) detection (or a form of background suppression, bottom row): the stimulus-
distribuiion is shaded in grey, stimulus-response functions are plotted in blue solid lines 
and the empty circle is the half-maximal point. Right Colnmn: Idealised levels of Fisher 
Information from the stimulus-response functions plolled in the corresponding row of the 
lefi column: stimulus-distribulion is shaded in grey. Fisher Information functions plotted 
with magenta dotted lines. 

As one can recall from Chapter 2, the study comparing the possible underlying 

strategies for the encoding of information in the cricket auditory system (Wimmer et al. 
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2008J could nol conclusively state whether infoniiation maximisation or background 

suppression was the underlying strategy. It would appear that the same can be said about 

the adaptation data from ihe barrel cortex (as described in Chapter 3 and highlighted in 

Figure 4.1): Infomiation maximisation cannot ftilly account for adaptation to stimulus 

statistics in the barrel cortex. Thus a pertinent question to ask at this point is can 

background suppression or novelty detection (or a combination thereof) be tlie strategy or 

mechanism underpinning adaptation to stimulus statistics in the barrel cortex? 

The experimental set-up in the barrel corte\ data certainly contained, what could be 

considered, novel stimuli. One could \ ievv ail amplitudes outside the high-probability 

region to be oddball stimuli as the> were only presented on average 7 times, within each 

trial, whereas amplitudes within the high-probability region were presented approximately 

lOO limes. 

If improving novelty detection was the driving force behind adaptation one might 

have expected to see responses increase in both low-probability tails of the stimulus space. 

Overall, across the population, a monotonic increase in the stimulus-response function was 

only observed for amplitudes within and greater than the high-probabilily region. Thus it 

«ould seem at first glance that novell\ detection is nor the primary fimclion of adaptation 

to stimulus statistics. However, individuat cells may have displayed novelty detecting traits, 

following adaptation, that were lost in the population analysis. 

In order to explore this fiirther, the data was re-analysed (sec Section 4.2: Novelty 

detection, below) using a methodology inspired by the experimental paradigm of the study 

thai observed novelty detection in the auditory conex (Ulanovsky ei al. 2003: described 

fully in Chapter 2), 
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4.2: Noveltj' detection 

In order to explore whether adaptation to stimulus statistics primes the barrel cortex 

for no\elt\ detection, one must llrst ask whether the experimental data can be anahsed in 

terms of noveltj detection. 

An earlier chapter (see Chapter 2) described a form of stimulus-specillc adaptation 

(SSA) in the auditor)' cortex that resulted in auditory cells preferring novel, over common, 

stimuli (Ulanovsky et al. 2003). In brief adaptation was achieved by presenting two 

auditory stimuli of equal amplitude but separate frequency. One frequency was assigned as 

the standard (and was thus the most commonly presented stimulus) and the other the 

deviant, or oddball, stimulus. The strength of the adaptive effect was dependent on both the 

difference in frequencv value betw-een the stimulus pairs and on the ratio of presentation. 

Under all conditions, the oddball stimulus elicited the greater response (please see Figure 

4.4 and the relevant Figure in Chapter 2). 

In comparing SSA (lllanovsk-y et al. 2003) with adaptation to stimulus statistics 

(Dean el al. 2005; Garcia-Lazaro ci ai. 2007) one must tlriit acknowledge the key 

differences in experimental paradigm, as the barrel cortex experiments were not designed 

with novelty detection in mind. For example, in the case of the barrel cortex data, amplitude 

was varied and frequency fixed and the adapting stimulus did not strictly have an oddball 

design. In general, an oddball experiment will have one 'common' and one "rare' stimulus; 

in the case of the experiments looking at adaptation to stimulus statistics all 20 amplitudes 

wilhin the low-probabilit\' region could be considered as rare' (each amplitude is presented 

on average 7 times) and all 5 amplitudes within the high-probability region could be the 

'common' stimulus (presented on average 100 times, per trial). Thus, the adapting regime 

131 



can be considered as a more general form of the SSA paradigm. 
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Figure 4.4: Adaptation to novel and standard auditor> stimuli. 
Top: Schematic illustration of odd-ball experimental paradigm; red indicates the oddball 
frequency-stimulus and blue the standard input. Bottom: The mean response, averaged 
across// andjl. to the deviant (red), standard (blue) and control stimuli (black. 50/50% 
presentation) for four stimulus configurations (ratio of presentation and difference in 
frequency between the stimulus pairs (/I/) given above each plot); bars indicate spike 
counts and asterisk indicates a significant difference between the firing rate-response to 
deviant versus standard frequency-stimulus (all plots taken from Ulanovsky et al. (2003)). 

In the experiments outlined above, testing adaptation to the stimulus mean in the 

barrel cortex, there were four high-probability region regions, centred on the amplitudes 

90nm, 2l0nm, 330jim & 450iim. Thus each of the amplitudes v\ithin the four high-
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probability region could be classed as either common or rare depending on the mean 

adapting level and the responses could be compared to ascertain whether cells respond mosi 

strongly when a stimulus is rare, irrespective of its amplitude value. 

Of course the response to amplitude, in the barrel cortex, is a monotonicalK 

increasing function and distinct from the Gaussian t\pe response that is typical of 

frequeucy preference in the auditory system (e.g. Ulanovsky et al. 2003), Thus, in order to 

facilitate comparison between the rare and common response it was decided to restrict the 

analysis to amplitudes that were within one of the four high-probability region only and. 

further, to select the amplitudes al the centre of each high-probabilit\ region. If one recalls 

from the previous chapter, responses to high-probabilitv region amplitudes were generally 

located at the low end of the firing- response spectrum, thus any preference for deviant 

stimuli may override the general tendency for firing-rates to increase with stimulus 

intensity. 

Tlie responses of individual cells to the four sets of amplitude pairs were compared, 

across trials where one stimulus in the pairwas rare (i.e. located in the low-probability 

region), the other common (i.e. within the high-probability region) and vice versa. The 

stimulus pairs were as follows: 90/21 O^m. 90/330nm. 90/450Mm. 210/330(im. 210/450fim 

and 330/450pm. Responses to the oddball/common stimuli were averaged over both 

amplitudes in the stimulus pair to give the overall response as a function of presentation 

frequency. If a cell's adaptive strategy' was based on novelty detection then one would 

expect de^ iant amplitudes to elicit significantly stronger firing rates than common stimuli. 

Figure 4.5, below, presents a graphical representation of ihc analysis of 90/21 Ofim 

pairing from a sample cell. The mean response to both amplitudes, across all instances and 
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all Irails where 90|im was the common stimulus and 2IO|ini the rare, was calculated (top 

row. Figure 4.5). For this ceil, and under this configuration, the strongest response was 

elicited to the rare amplitude; as the deviant was the higher amplitude in the pair, one 

would expect the response to be greater. Howe\er. in the opposite configuration the 

strongest response was also elicited by ihe oddball stimulus, which was the lower value 

amplitude of the pair (see middle row of Figure 4.5). Tlie responses were then averaged as a 

function of commonality and rarity (i.e. the responses to the amplitudes 90|,im and IlOjim, 

across all trials where they were the common stimulus, were averaged together and vice 

versa for the rare stimuli). Any significant difference between the common and rare 

responses \vas tested Tor b> either the non-parametric W'ilcoxon ranked sum test (MatLab 

function: rankstim; test for significant difference in median response at 5% significance 

level), if the distribution of responses was not normal and a paired t-test otherwise (MatLab 

function: lle.st2\ test for significant ditference between mean responses to rare or common 

stimulus at 5% level). For this ceil, the response to the rare stimulus was not significantly 

greater (p-value — 0.861. non-parametric test), for the90/2IO^m stimulus pair (see Figure 

4.5: bottom row, below) 

Tile common and rare responses for this ceil, across alt six stimulus pairs are plotted 

in Figure 4.6. The overall rare response was on average greater than the common response 

for all stimulus pairs (Figure 4.6, bottom row); however in terms of the individual 

presentations (see Figure 4,6. top/middle rows), the response to Ihe deviant was always 

greater for three out of the six stimulus conditions only. 
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Figure 4.5: Novelty detection for a single stimulus pair (single cell example). 
Red: rare stimulus, black: common. Top and middle row, Left: Probability of selection 
for the 90/210(im stimulus pair, when the 90pm stimulus is common (top) and rare 
(bottom) and vice verso for the 21 O^m stimulus. Top and middle row. Right: Firing 
response of the cell to the two stimulus amplitudes as a tiinction of their relative rarity (as 
given in the corresponding left-hand plots). Bottom row: Firing rate response of the cell. 
averaged across both stimulus amplitudes within the pair, as a function stimulus 
presentation levels; the response to the rare (red) stimulus was on average stronger than the 
response to the common (black) one. 

The relative increase in the rare response was significant for two stimulus pairs 
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only (90/330pm and 210/330pm [indicated by the asterisk above the plots in Figure 4.6, 

bottom row], non-parametric test,/? = 0.015 & <0.001, respectively). 
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Figure 4.6: Novelt>' detection fur all stimulus pairs (single cell example). 
Red = r^^ stimulus, black = common, error bars give the standard error in the average 
firing rate for a given amplitude Top and middle roM': Firing rate response of the cell in 
Figure 4.5 to all pairs of stimuli, as a function of their relative rarity. For the top row, the 
weakest amplitude in the pair was always the common stimulus in the top row and vice 
versa for the middle row) Bottom row: The average tiring rate response of the cell in 
Figure 4.5, for all stimulus pairs, as a function of stimulus presentation levels, rather than 
inlensitj: where die response to the rare (red) stimulus was significantly stronger dian the 
response to the common (black) one is highlighted with an asterisk. 

Across the population (Figure 4.7), the response was similar to thai of the single 

cell case, highlighted above (c.f. Figure 4.6 ), Whilst [he overall response to rare stimuli 

was greater, for all pairs bar the 330/450jim combination, the response was only significant 

for the 90/210pm and 2]0/330jim stimulus pairs (non-parametric test,/? < 0,001, for both 

cases). 
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FigDre 4.7: Novelt>' detection for all stimulus pairs, across the population (n=81). 
Red = rare slimulus. black = common, error bars give the standard error in the average 
firing rate for a given amplitude. Top and middle row: Fir ing rate response o f the 
population to all pairs of st imuli, as a function of their relative rarity. For the top row. the 
weakest amplitude in the pair was always the common stimulus in the top row and vice 
versa tor the middle row). Bot tom row: The average f i r ing rate response o f the population. 
for all stimulus pairs, as a function o f stimulus presentation levels, rather than intensity; 
where the response to the rare (red) slimulus was significantly stronger than the response to 
the common (black) one is highlighted with an asterisk. 

Both the s i ^ i f i can t pairs were composed of the 210pm stimulus and the amplitude 

level from either the preceding or successive high-probability region. Thus it could be 

argued that for amplitude relationships o f ± I lOf im. adaptation acts to elicit a preference for 

deviant st imuli, irrespective o f the relationship between amplitudes. However for tiiis to 

hold true one would have expected there to be a significant preference for the oddball 

stimulus in the 330/450|jm pairing: instead, the response to the high amplitude (450pm) 

was always greater. This then could reflect the emergence o f the dominant tendency for 

firing-rates to increase with stimulus amplitude. 
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h would appear, from the above analysis, there is a degree of novelty detection 

underpinning adaptation to stimulus statistics in the barrel cortex, but no definite pattern as 

to its behaviour emerges. A tentative suggestion is thai ihe distance between paired 

amplitudes can influence the development of novelt> detection, but it is easily overridden 

by Ihe tendency of cells to increase firing rates with increased amplitude, irrespective of 

presentation frequency. 

4.3: Stimulus Context 

The results above, relating novelty detection and adaptation, were equivocal, thus il 

was decided to apply an aUemative approach to assessing the underlying encoding strategy; 

specifically, that of exploring the etfect of context on adaptive responses, in terms of the 

relationship between output and recent stimulus history. Adaptation is not a static process 

and can act on several time scales ranging from the 10ms to 10s scale; therefore it is useful 

to consider what's happening on a local, as well as at the global, scale. The dependency of 

firing rate on stimulus histor>- can be quantified by plotting the spike-triggered average or 

STA (de Boer & Kuyper 1968); the STA is essentially the average stimulus over time, 

which elicits a spike. 

4.3.1: The spike-triggered average stimulus 

The STA can be quantified as: 

STA=-J^s,x, 

4.1 

Here n is the total number of spikes in the spike train, s is the stimulus vector preceding the 
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spike in the ilh lime-bin and .v is the number of spikes within the illi time bin. 

In calculating the STA, spikes were sorted into 40ms time-bins in a manner 

identical to that employed to calculate the firing rate response (see Chapler3). For each cell 

in the population (n =- SI), stimultis vectors (from 0- 320ms [equivalent to 8 time-bin.s] 

prior to each time-bin), for even,' spike in each time-bin. were summed and then averaged 

across all trials of ag i \en mean adapting level. The population response was the average 

STA across all cells. 

The population STA following adaptation to all four mean amplitude levels is 

plotted in Figure 4.8 . Overall, across all mean adapting conditions, spikes were elicited 

when there was a i^lativeh large difference between the stimulating and preceding 

amplitude (with respect to step-wise dilTerences between the average stimuli al times of < -

40ms). With the exception of the 90^m adapting condition, all the amplitudes preceding the 

stimulating amplimdc v\ere \\ithin the high-probability region. 

The overall trend, for all conditions, was for stimulus amplitudes to decrease from 

the global stimulus mean to reach a minimum level al - i20ms prior to the spike, and then 

increase in small step-sizes until the amplitude preceding the spike (-40ms time-bin) was 

reached. The average stimulus amplitude that elicited the spike (in Figure 4.8 the average 

stimulating amplitude was plotted at lime > 0) was always greater than the amplitudes 

located within the current high-probability region level. 

A similar trend was also found for the variance data (Figure 4.9). though the 

steady-state amplitudes (latency of <-240ms) were generally higher than llie global mean 

amplitude of the stimulus and the difference between the stimulating and preceding 

amplitude was greater than observed under adaptation to stimulus mean. 
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Figure 4.8: Spike-triggered average (STA) during adaptation to global mean, across 
the population {n=Kl). 
Error-bars give the standard error, solid lines plot the STA. dashed line indicates global 
mean of the stimulus (the central amplitude |iii fim) of the high probability region, is given 
above each plot). Tlie amplitude al time from 0-40ms indicates the average stimulus 
amplitude that elicited each spike: the input that followed the spike-eliciting stimulus is 
plotted from 40-80ms. 
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Figure 4.9: Spike-triggered average (STA) during adaptation to global variance, 
across the population (n=81). 
Error-hars give the standard error, solid lines plot the STA. dashed line indicates global 
mean of the stimulus (the le\el of adapting variance is given above each plot). The stimulus 
amplitude at time from 0-40ms indicates the average stimulus amplitude that elicited each 
spike; the average input that followed the spike-eliciting stimulus is plotted from 40-80ms. 

In contrast with other studies looking at the relationship between a stimulus feature 
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and neural response, within the barrel cortex (e.g. Maravall. Petersen, Fairhall, Arabzadeh 

& Diamond 2007 (see below and Section 4.5:. this ChaplerJ; de Kock & Sakmann 2009) 

the spike-triggered average revealed a clear dependence, of spiking behaviour, on stimulus 

histor\'. The most interesting trend in the STA was the apparent dependence of spiking 

output on a general decrease in stimulus amplitudes prior to firing and the large, positive 

difference in step-size between the preceding and stimulating amplitude. 

It was thus decided to explore wliether the adaptive response was actually a function 

of step-size between the current amplitude and the one preceding it. rather than the global 

stimulus statistics. This question has already been addressed in the Inferior coiliculus (Dean 

et al. 2005). where adaptation to stimulus statistics was not found to be linked to step-size 

(see Figure 4.10). 

[n Figure 4.10. the step-size functions of three sample cells, from the inferior 

colliculus. were plotted. As a brief reminder, these cells were adapted using noise burst 

amplitudes drawn from a highly skewed distribution in which the overall adapting mean 

level was determined by the location of the high-probability region in the stimulus space 

(Dean et al. 2005). Neuron I (Figure 4.10a) showed a clear preference for positive stimulus 

steps (i.e. tlie cell onl\ fired when the stimulus in the current epoch was greater than that of 

the preceding stimulus epoch), across all conditions whilst the step-size functions of 

Neuron 3 (Figure 4.1 Oc) were almost flat with a slight bias for positive step-sizes; Neuron 2 

(Figure 4 1 Ob) responded nniink to step-sizes above a threshold le\ el that was dependent 

on the global mean of the stimulating condition. 

The constant feature of all the cells in Figure 4.10 is that adaptive step-size 

functions were not invariant, with respect to mean adapting amplitude, thus adaptation to 
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stimulus-mean, in the inferior colliculus, was not a function of the stimulus step-size. One 

might expect then, that as there are parallels between adaptation to stimulus mean in both 

the barrel cortex (Garcia-Lazaro et al. 2007) and inferior colliculus (Dean et al. 2005), thai 

a similar non-dependence on step-size would be observed in the barrel cortex. 

Neuron 3 

-20 0 20 
St^size(dB) 

-20 0 20 40 -40 -20 0 20 40 
Step Size (tJBl Step size (dB) 

Figure 4.10: Firing-rate as a function of ihe step-si/e difference between the current 
and immediately preceding slimulas epoch for three example neurons from Ihe 
inferior colliculus. 
Firing rale as a function of the step-size difference in noise burst amplitudes (between the 
stimulating decibel level and the preceding stimulus) for three example Inferior Coliiculus 
cells. Cells were adapted to shifts in the high-probabilit\ region of the stimulus space and 
each coloured line represents the results following adaptation to a given high-probabilitv' 
region level; green - high-probabilit\ region centred on 39dB, blue - 5ldB. red - 63dB & 
75dB. See text in this Chapter and Chapter 3 for full details; Figure 4.10 taken from Dean 
el al. (2005). 

However, it could be argued that the step-size difference in amplitude, from one 

time-bin to Ihe next is a measure of stimulus velocity, in that one is describing the 

relationship between neural output and the direction (either positive or negative) and 

magnitude of change in intensity levels. A recent study (Maravall et al. 2007) has 
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demonstrated adaptation to whisker deflection \elocil\' (as a function of stimulus variance) 

in rat barrel-cortex and found that adaptive neuronal stimulus-response functions were 

scaled in proportion to clianges in the stimulus distribution. Wliiskers were deHecIed along 

a single dimension, with the position randomly assigned using a Gaussian distribution and 

refreshed every Sms; the global variance, rather than mean, of the distribution was varied 

every 55 in a switching stimulus paradigm. Thus barrel cortex cells were adapted to two 

levels of variance only (high and low). The experimental paradigm differed from the 

adaptation to stimulus statistics study {Garcia-Lazaro el al. 2007) in several key aspects: 

1. The stimulus distribution was truly Gaussian 

2. The adapting stimulus feature was velocity and not amplitude 

3. The nature oftlie stimulus meant that the variance and mean were dependent on 

each other, thus adaptation to one, i.e. variance, implied adaptation to the 

stimulus mean. 

The spike-triggered average did not reveal any .stimulus'response correlations (due 

to the rapidly fluctuating and nois> stimulus) thus spike-triggered covariance analysis was 

preformed on the data. Overall, the study (Maravall et al. 2007) found that the majoritv of 

barrel cortex cells displayed adaptation to stimulus velocity (with a time course of 280ms 

± 180ms). An example from two cells is given below in Figure 4.11. The normalized firing 

rate as a function of the stimulus projection onto the significant feature (velocity), extracted 

from the covariance matrix, is plotted in the top row. with blue representing low variance 

and red the high variance condilion. In the bottom row (Figure 4.1 I). the adapted rate 

functions (plotted in the top row of Figure 4.11) were plotted as a funclion of normalised 

input units (stimuli were normalised by the corresponding standard deviation of the 

stimulus distribution) and almost perfectly overlapped each other. 
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Figure 4.11: Adaptation to velocity in the barrel cortex. 
Top row: The nonlinear, stimulus-response function for low-variance (blue) and high-
variance (red) stimuli. Bottom row: Plots the same functions as above, with inputs 
normalized by their corresponding standard deviation. Error bars are the standard deviation 
from 30 repetitions of the estimation procedure. 

Accordingly, if one considers the step-size changes, evcr> 40ms, in whisker-

deflection amplitude (Garcia-Lazaro et al. 2007), to be a velocity measure, then one might 

expect to see the step-size functions, in response to adaptation to global variance, to be 

scaled in proportion to levels of stimulus variance. 

4.3.2: Response as a function of step-size 

The average firing rate, as a function of the difference in stimulus amplitudes 
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between the stimulating and preceding 40ms stimulus epoch (for each high-probability 

region stimulus, across trials and everj' presentation wi th in a trial) was calculated for each 

individual cell and across the population as whole. 

For every 40ms time-bin (r,=2 ,\. where N is the total number of stimuli presented 

during a 30s stimulus sequence), the spikes elicited (by a given neuron) during T, were re­

sorted into bins according to the difference in amplitude between the stimulus being 

presented during T, (given a 20ms latency, see Chapter 3) and the stimulus presented in the 

preceding time-bin (7",./). As there were only ever 25 possible stimulating amplitudes (0-

720nm, in 30|im steps) that could be presented during T,, the step-size difference in 

amplitude could only be one o f 49 possible values {-720 to 720^im, in 30|im steps). The 

response to the step-size was taken to be the average spike count across all instances in 

which the difference between the stimuli presented at T, and T,.j was equal to the given 

step-size difference in stimulus amplitudes. 

As in the inferior colliculus. responses across the barrel cortex population were 

varied. In Figure 4.12 the step-size functions o f four sample cells are plotted. For the two 

neurons in the lop row o f Figure 4.12. f i r ing rates increased monotonically for step-sizes 

greater than = Ojim: in general, responses were roughK' in\ariant with respect to the 

adapting mean amplitude (except for the cell in right-hand plot which was roughly invariant 

with respect to the three highest mean adapting amplitudes onh) . Both neurons in the 

bottom row o f Figure 4.12 displayed a preference for step-sizes in either direction away 

from 0|.im, with the L'ell in the right-hand plot showing a bias towards positive step-sizes 

and the left-hand cell having an almost symmetrical function. 
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Figure 4.12: Step-size Tunctioos under conditions of adaptation to global mean, for 
four sample cells. 
Green lines/circles plot the data for the 90pm high-probability region level, blue 
lines/squares: 210|im. red lines/diamonds: j-lOjim and cyan lines/iriangles: 450(im; the 
solid lines are the best fit to the data using a 6ih order polynomial and s>Tiibols plot die 
actual data. 

The response across the population as a whole is plotted in Figure 4.13. The best-fit 

to the population response, as a function of stimulus step-size, was roughly invariant across 
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all adapting mean-amplitude conditions: the closest overlap between step-size functions 

was observed between the two middle high-probabilit\ region conditions (red and blue 

solid lines. Figure 4.13). 

Population response 

-150 0 150 
Step size (Mm) 

450 750 

Figure 4.13: Step-size functions under conditions of adaptation to global mean, 
averaged across the population {n=8l). 
Green lines/circles plot the data for the QOfim high-probability region level, blue 
lines/squares: 2IO|.im. red lines/diamonds; 330|im and cyan lines/triangles: 450Mm: the 
solid lines are the best fit to the data using a 6th order polynomial and symbols plot the 
actual data. 

The only significant difference [p^O.004, using a Kruskal-Wallis, one-way 

ANOVA. MalLab function kruskalwallis) was found between the population step-size 
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fijnclion fo r i l i e highesi mean amplitude condition (c\an lines. Figure 4.l_i) and the middle 

two high-probability region conditions (red and blue solid lines. Figure 4.13). Firing rates 

tended to increase as a function of distance from the 0|im step size (up to approximately 

±600f im): with a strong response-bias for positive step-sizes (i.e. where stimulus-amplitude 

at T, was greater than that presented during T,.i). 

The selection probabilit\ o f individual amplitude transitions (Figure 4.14, top) and 

their associated f ir ing rates (Figure 4.14, bottom), across the whole population of cells (n = 

81) are plotted in Figure 4.14, below, for two o f the four mean adapting levels. Rows 

represent the amplitude level o f the current epoch (Ihe stimulating amplitude), whilst 

columns represent amplitude levels in the preceding stimulus epoch. The two uppermost 

plots show the average number o f times, in a t r ia l , stimuli were presented concurrently. The 

l ikelihood o f presentation clearly depends on the location o f the stimuli, relative to the 

high-probability region: the most numerous amplitude interactions were restricted to 

amplitudes within the high-probabilitx' region. 

The bottom row plots the average firing rate across the population for each 

interaction. For the lowest high-probability region level (90|im condition. Figure 4.14, left, 

top & bottom), the strongest firing-rates were found only when the stimulating amplitude 

(i.e. the amplitude o f the current stimulus epoch) was greater than the high-probability 

region. This is unsurprising given the fact that, under this condition, the lowest amplitude 

levels were vvithin the high-probabilitv- region. However, this trend is also apparent for the 

high-probability region level wiUi the strongest intensity (450jim condition. Figure 4.14. 

right, top & bottom). Tlius. over the population as a whole, tlie response bias is for positive 

step-sizes where the stimulating amplitude is greater than the amplitudes located within the 
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high-probability region of the stimulus space. 
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Figure 4.14: Relationship between presenUtion frequency of amplitude steps and 
neural output, across the population (n=81). 
Average number of presentations, per trial (top), and firing-rate (bottom) as a function of 
the current (time T, rows) and preceding (lime T-1, columns) stimulus amplitude. Colour 
bat^ to the side of each plot indicate the number of presentations (top) and firing-rate in Hz 
(bottom). White indicates that there was no interaction between amplitudes 

The first major point of interest is the rough invariance of the population step-size 

function across all global mean levels. From ttiis result. iL would seem thai adaptation acts 
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priinarily to maintain the relationship between firing-rate and step-size, rather than to 

transmit stimulus distribution information. 

Before exploring this issue funher, there was one other interesting facet of adaptive 

behaviour that emerged from the analysis of the step-size functions, namely that some cells 

(and enough cells overall to intluence the population response, see below) appeared to be 

behaving as no\elly detectors, or at the very least - novelty-preferring cells (c.f. step-size 

fiinciions plotted in Figure 4. i 2, bottom row). For these neurons, firing rate was dependent 

on the absolute difference between successive amplitudes and not the direction of 

amplitude transition. Due to the experimental paradigm, step-sizes near to Ojim were most 

likely lo be derived from amplitudes that were drawn from the high-probability region of 

the stimulus space, uilh a maximum difference in step-size of only ±120nrn. 0\eral l . 

within each trial, consecutive pairs of high-probability region amplitudes were presented 

64.75% of the time; concurrent high-probability region and low-probabilily region 

amplitudes made up .i 1.2% of the stimulus presentation, with the remaining 4.05% 

composed of successive pairs of low-probabilily amplitudes, 'fhus cells displaying a 

preference (in tenns of firing rates) for step-sizes away from ±i 20|im are not only 

responding to large amplitude transitions but al.so the presence (either as the stimulating or 

preceding amplitude) of a stimulus from the low-probability region of the stimulus space. 

Across the population of cells tested (H = 81). roughK a quarter of all cells (22/81 neurons) 

displayed some preference for step-sizes away from 0pm. Preference was assessed by 

taking the average gradient of the best-fit to the data, from the 0\im point to the local 

maximum, in either direction. A cell was assigned as having novelty preference if the 

average gradient (for all adapting conditions) of the besi-tlt to the data had a value less than 
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-0.1, in tlie negative, amplitude-step, direction, and a value > 0.1, in the positive direction. 

Of those cells displaying novelty preference, only 4/22 neurons displayed roughly 

sjmmetrical step-size functions (these are plotted in Figure 4.15 (top row), along with their 

corresponding rate-functions. Figure 4.15, bottom row). 
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30 80 30 
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Figure 4.15: The step-size functions for four symmetrical. novelt>' delecting cells and 
corresponding rate functions. 
Top row: Siep-si/e functions for four sjinmetrical novelty type cells. Bottom row: 
Corresponding rate-functions for the cells in the top row. Solid lines; best til (8 and 5 
order polynomial were used to fit step-size and rate function data, respectively), symbols: 
actual data (green: 90fim. blue 210fim; red: 330|im;cyan: 450pm). 
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One can observe a tendency towards novelt\ detection in all the •symmelrical" cells 

(Figure 4.15, bottom row); rate-fiinctions tend to increase away from a minimal point 

located close to the global-mean of the stimulus. This trend is also evident in the rate-

functions o f non-s\TnmetricaI cells that show a preference for novel stimuli (see Figure 

4.16). 
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Figure 4.16: The step-size funct ions for four 'asymmetr ica l novelty detecting cells' 
and the i r corresponding rate funct ions. 
Top row: The siep-size functions for four asymmetrical novelty type cells. Bot tom row : 
Corresponding rate-functions for the cells in the top row. Solid lines: best fit (8"^ and 5'" 
order polynomial were used to f it step-size and rate function data, respectively), symbols: 
actual data (green: 90(im. blue 2 IO^m; red: 330j im; cyan: 450nm). 

Conversely, the rate-functions of cells wi t l i little or no novelty detecting traits (see 

153 



Figure 4.17) displayed the sigmoidal shape that was tjpical of die population response, i.e. 

the function is flat until the amplitude space reaches the high-probabilitv' region; firing rates 

then increase in a linear, accelerating manner, until the maximum response is reached. 
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Figure 4.17: The step-size functions for four eiample non-novelty delecting cells and 
their corresponding rate functions. 
Top row: Slep-size functions for four sample non-novelt>' type uells. Bottom row: 
Corresponding rate-functions tor the cells in the lop row. Solid lines: best fit (S"' and 5* 
order polynomial were used to fii step-size and rate ftinction data, respectively), sjmbols: 
actual data (green: 90nm, blue 2IOnm; red; jjO^m; cyan: 450|ini) 

Step-size functions under conditions of adaptation to global-variance 

The same analysis was performed on neurons that were adapted only to stimulus 
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variance. The population response is plotted in Figure 4.18, below. Interestingly, the 

population response was not invariant with respect to step-size, thus adaptation to variance 

was not dependent on local stimulus histoiy. 

Population response 
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Figure 4.18: Step-size functions under conditions of adaptation to global variance, 
averaged across the population {n=I32). 
Red lines/circles plot the data for the low variance level, green lines/squares: mid-variance 
.black lines/triangles: high-variance: the solid lines are the best fit to the data using a 6th 
order polynomial and symbols plot tlie actual data. 

A variety of responses were observed across the population. Neurons typically had 

step-size functions that either displayed a monotonic increase in firing rale from a threshold 
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amplitude-step (in general, located at=Ojam, see Figure 4.19, leftmost plot for an example) 

or firing rates increased eitlier direction from a local minimum (==Onm) up to amplitudes 

steps of between ±500-600[im (see Figure 4.19, middle and right). 
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Figure 4.19: The slep-size ranctions for the three example cells, under conditions of 
adaptation to variance. 
Top, middle and bottom row; Step-size ftinctions of three sample cells. Solid lines (red 
lines: low-variance, green lines: mid, black lines: high-variance) plot best-fit to the data 
(8lh order polynomial): colour coordinated symbols: actual data (circles: low-; squares: 
mid-; triangles: high-variance adaptation). 

Out of the population, rouglily 11% of cells (14/132) displayed a preference for 

large step-sizes in either direction. Of these thirteen only three neurons displayed a degree 
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of symmetry in the step-size function, i.e. held no particular bias for positive or negative 

stimulus steps. The 'symmetrical' cells arc plotted in Figure 4.20, along with their 

corresponding rate functions. 
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Figure 4.20: The step-size functions for the three, identified, 'symmetrical novelty 
detecting cells' and their corresponding rale functions, under conditions of adaptation 
to variance. 
Left column: The step-size functions for the three identified, symmetrical novelty t>pe 
cells. Right column: Corresponding rate-functions for the cells in left column. Solid lines 
{red: low-, green: mid, black: high-variance) plot the best-fit to the data (8 and 5' order 
polynomial were used to fit step-size and rate function data, respectively) 

Tlie first observation to note is thai the rate-functions, for these 'symmetricar cells, 

display some preference for novel stimuli (Figure 4.20. right column), especially for the 
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lower variance conditions, in that responses lend to increase, in either direction, away from 

a local minimum (located between 90- l50nm). 

In comparison, the rate-functions o f neurons, wi th no sensitivity for negative step-

sizes, displayed litt le tendency for novelty preference (Figure 4.21, right column). 
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Figure 4.21 : The step-size functions for three example non-novelty detecting cells and 
their corresponding rate functions, under conditions of increasing stimulus variance. 
Left column: The step-size functions for three non-novelt> type cells. Right column: 
Corresponding rate-functions for the cells in left column. Solid lines {red: low-, green: mid. 
black: high-variance) plot the best-fit to the data (8' and 5 order polynomial were used to 
fit step-size and rate function data, respectively). 

In general, responses to amplitudes below the higli-probability region were faiHy 

flat and constant across all conditions. 
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The step-size ftinctions plotted in Figure 4.21 (left column) were typical of those 

observed across the population of cells that only responded to positive step-sizes, in that 

firing rale increased for slep-sizes greater than Onm until slep-sizes ofrouglily 600|im. 

Across the population. Ihe step-size function showed some dependence on the width of the 

high-probability region. For example, the curve around the Ofim point, for novelty-

preferring cells (Figure 4.20, left column), was narrowest under the low-variance condition 

and broadened with stimulus variance (especially with reference to the left-most and middle 

plots in Figure 4.20. left colunm). For the majority of cells willi no preference for novel 

stimuli, ihe maximum firing rate tended lo decrease as adapting variance increa.sed and 

there was also a decrease in step-size fiinction slope. 

If one considers the stimulus configuration, the range of likely amplitude 

interactions increased with each successive increase in the width of the high-prohability 

region (see Figure 4.22, top row). Slep-sizes from Onm to ± 60nm, under low-variance, to 

+ 300(im, under high-variance conditions were most likely to be derived from concurrent 

presentations of amplitudes with in the high-probability region. This type of interaction 

tended to elicit relatively low firing rates (Figure 4.22, bottom row) thus pos-sibly resulting 

in the lateral displacement of the sicp-sizc fiinciion. obser\ed in the population response 

(see Figure 4,18). with increasing stimulus variance. 

As well as increasing the range of high probability lo high-probability amplitude 

interactions, the number of likely low-probability and high-probability amplitude 

transitions also increased (these type of interactions occurred =30% of llie time), with 

stimulus \ariance. Likely step-size values ranged from ±90-51 Ojim under the low-variance 

condition, to ±330-630fini. under the high-variance environment. 
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Figure 4.22: Relationship between presentation frequency of amplitude steps and 
neural output, across the population (n=8l), under conditions of increasing stimulus 
variance. 
Plots of the average number of presentations, per trial (top), and firing-rate (bottom) as a 
function of the stimulating (T,. columns) and preceding (/",_;. rows) amplitude levels, for 
each \ ariance condition. Colour bars to the side of each plot indicate either the number of 
presentations (top) or firing-rate in Hz (bottom). White indicates that there was no 
interaction between amplitudes 

The broadening of the step-size functions (and the adaptive decrease in the 

maximum response) could be a reflection of the increased diversit>' in amplitude 
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interactions. 

Sp ik ing behaviour, on the ms scale, d u r i n g ampl i tude t ransi t ion 

The evidence above implies that adaptation is not dependent on the global mean 

level o f whisker deflection but on local changes (on the 40ms scale) in stimulus amplitude. 

"Neural responses can be classified into two groups, relative to the step-size ftinction: 

neurons that only respond to posit i \e changes in amplitude transitions (tlie majority o f 

cells) and neurons that respond to the step-size irrespective o f die direction o f transition. 

Cells that fall « i l h in the latter classification, which were termed novelty-preferring, can be 

subdi\ ided into two further groups according to the degree o f symmetry in the step-size 

functions. Novelty-preferring cells could also be classified by their stimulus-response 

functions which tended to show an increase in f ir ing away from a local minimum response, 

in both directions: the local minimum was located at or near the mean adapting amplitude. 

It was decided to analy.se the relationship between step-size and tiring-rate t~urther, 

by plott ing the frequency o f amplitude interactions and the corresponding response (see 

Figure 4.23). (J\ t ra i l , the strongest tiring-rates were found for positive step-sizes where the 

stimulating amplitude (Figure 4.23. bottom, all rows) was greater than the maximum high-

probability amplitude and for negative step-sizes where the stimulating and preceding 

amplitudes were within and higher than the high-probability region, respectively. 

It was decided, therefore, to perfonn an analysis o f the f ir ing rate, as a function o f 

time, during the actual transition between amplitudes to see how the direction and distance 

o f the step-size affected responsiveness in both no\elty-preferring cells and the majority o f 

the neural population. 
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Figure 4.23: Relationship between presentation frequency of amplitude steps and 
neural output, averaged over the four symmetrical, novelty cells, under adaptation to 
global mean values of 9U^m and 450|im. 
Average number of presentations, per trial (top), and firing-rale (bottom) as a ftinction of 
the stimulating (T,. columns) and preceding (7",,. rows) amplitude levels. Colour bars to the 
side of each plot indicate the number of presentations (lop) and firing-rate in Hz (bottom). 
White indicates that there was no interaction between amplitudes 

In deciding which amplitudes to compare, it was fett that the best method of 
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maximising spike count infonnation would be to compare the transilion between all 

amplimdcs within the high-probability region (and treat them ostensibly as a single 

amplimde) and all ampliludes within one o f the low-probability region (LPR) ' tai ls ' , i.e. 

either the low-probability tail in the stimulus space where stimuli were stronger in intensity 

than the high-probabil it; region (now termed LPR-high) or the tail where stimulus 

amplitudes were lower in intensity than the high-probability region (now termed LPR-low). 

As the response-onset lalenc) was assumed to be 20ms and response-decay lalencj 

assumed to be 40ms (in Garcia-Lazaro el al. (2007), and all previous analyses, presented 

wi th in this thesis, spikes were counted during ihe 20-60ms t ime-window from stimulus 

onset), the spike trains across 120ms o f stimulus presentation (starting from the 

presentation o f the pre-lransition stimulus amplitude at 0ms) were collated so that the 

response to both the pre- (0-40ms into spike train) and post-transition stimuli (40-80ms into 

spike train) would have time to both develop and decay. The spike counts for each 

presentation, and across all trials o f the rele\'ani adapting condition, were sorted into I ms 

time bins (with the onset time o f the pre-transition amplitude being set to 0ms), and then 

averaged across trials and all cells used in the analysis. Only the first two amplitudes (pre-

and post-transition stimulus amplitudes) o f the 120ms epoch were pre-selccted. i.e. were set 

to be either from the high-probabil i t j region or I.PR-high/LPR-low. Responses were then 

normalised, and the maxinmm response, across all conditions, was set to unity. 

Figure 4.24 plots the average f i r ing rate plotted over 120ms, for a transition from 

LPR-high to the high-probability region (negative step-size), for all mean adaptation levels 

and across all the cells within the population that did not display any preference for no\c l 

stimuli. 
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Fignre 4.24: Transition from a low-probability stimulus, of strong intensity, to a high-
probabilit) stimulus, adaptation to mean. 
Firing rate over lime, averaged over all transitions between amplitudes dravvTi from the high 
end of the low-probabi I it>' region and amplitudes drawn from the high-probability region. 
Green circles: 90(im mean adapting level, blue squares: 210|im. red diamonds: .)30(im, 
c> an triangles: 450nm. Colour coordinated solid lines plot the best-fit to the data 

The firing rate, over time, followed a similar pattern across ail adaptmg conditions. 

The response to the LPR-high. pre-transition stimulus started approximateK I Os after 

stimulus onset, then peaked at 35-40ms (=42ms for highest mean adapting amplitude 

[cyan], see Table 4.1, below); the response then began to decay and was fully extinguished 
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roughly 80ms after stimulus onset. The average latency \'alues, across the population, for 

time-to peak and decay of the response to the preceding amplitude are given in Tabic 4,1, 

below. 

Tabli; 4.1: Average lati'iicy limes for Ihc high amplilucle/low-probabilit> stimulus 

Lalency ( 4 ) 
from stimulus 

onset 

APeak(ms) 

A Decay (ms) 

90pm 

Mean Amplitude Le>'el 

210pm 330pni 450 nm 

35,81 + 0,91 37,15 ± 0.85 38,03 ± 0.97 42.53 + 0.83 

73 .76±l .86 71.64 + 2.23 7 0 , I 7 ± : J 6 68.42+2.02 

The latency of llie peak-response to the pre-transmission stimulus was determined 

by calculating the time taken from stimulus onset {at T - Oiiis) to the first 'localised" peak 

response. The peak was defined as the point at which the curve of best fit to the data 

slopped increasing from its \ alue at T= 20ms (assuming an onset-response latency of 

20nis. see above). The latency of the decay response was taken to be the time from stimulus 

onset next local minimum response following the peak response described above, i.e, where 

the curve of the best fit to the data .stopped decreasing from the value of the peak-response 

and either began increasing or attained the value of the steady state response for the post-

iransilion stimuli (taken to be the average response to the last 80-l20ms of stimulus 

presentation). 

The response to the high-probabilit>. post-transition stimulus (from ^60ms into the 

spike train) is difficult to extract from the decay response to the pre-transition stimulus. 

However, the firing rate reached a local minimum value =70ms into the spike train and 
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either readied a plateau (330fini & 450jim mean adapting level) or increased slightly 

(QO îm & 2IOfim condition). The average pre- and post- transition stimuli levels are 

displayed in the bottommost plot of Figure 4.24. The increase in firing rates from the local 

minimum was only obser\ed when the following stimulus transition was. on a\erage. 

higher in amplitude. 

The overall, relative, response levels decreased with each successive increase in the 

mean of the adapting stimulus. As global mean increased, the step-size difference between 

the high-probability and lou-probability amplitudes (Figure 4,24. bottom) became smaller 

as the number of amplitudes within the low-probability 'tail' decreased (due lo the highly-

skewed nature of the stimulus distribution: c.f. Chapter 3). Thus a decrease in response, as a 

function of step-size, is to be expected. However it should be noted thai the decrease in 

available amplitudes would also aflcci Ihe number of preseniaiiiMi times, thereby reducing 

the number of data points available for analysis. 

k further example of a negative step-size was examined (Figure 4.25), tliistinie Ihe 

amplitude transition was from a higli-probability to a low-probability stimulus, of lower 

amplitude. 

Overall, response levcLs were fairly flat until =90ms. across all mean-adapting 

levels except for the 450pm condition: il was not possible to get any data for the 90pm 

condition as no post-transition siimuli were of lower amplitude than the pre-transition, 

high-probabilit\' stimulus. 

Tile quantitative anaksis. below, is based on the adapti\e output for the 450fim 

condition only (Figure 4,25. cyan triangles and solid line). The average peak response 

latency was 41.75ms (±1,98 Standard Error or SE). and the average decay response latency 

166 



w^mm 

was 96.41 ins (±4.34 SE) from stimulus onset at 0ms (bearing in mind that the decay 

response was a relaxation of the firing-rate response to the amplitude transition). 

Population response (n = 59} 

120 

40 60 80 
Time(nns) 

120 

Figure 4.25: Transition from a higb-probabilit>' stimulus to a low-probability stimulus 
of lower intensity' (adaptation to mean). 
Firing rale over time, averaged over all transitions between amplitudes drawn from the 
high-probability region and amplitudes drawn from the low end of the low-probability 
region. Green circles: 90pm mean adapting level, blue squares: 210(im. red diamonds: 
330(im, cyan triangles: 450pni. Colour coordinated solid lines plot the best-fit to the data 

The response to the post-transition stimulus either didn't reach or remained ai a 

steady-state level, however the response to the following amplitude transition (from 80ms 

into tlie stimulus presentation) was characterised by a sharp increase in firing-rate that 

reached a peak at or close to the 120ms time-bin. 
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I f one examines the plot o f the average stimulus levels for each transition, it is clear 

that the sharp increase in f i r ing rate was in response to the positive step-size change in 

stimulus amplitude at the 8Ums point (in general, due to the stimulus configuration, it is 

most l ikely that the stimulus to be selected, fol lowing the transition to a low amplitude and 

low probabililv- stimulus, would be of a higher intensity). 

The response to this class of transition, i.e. from a low-probabilit\ ', low amplitude 

stimulus to high-probabilitv stimulus, is plotted in Figure 4.26; the average time-to-peak 

response ranged from 34-42ms from the onset o f tlie amplitude transition (average 

responses, across conditions are given in Table 4,2, below, ihe ± \ alues gives the standard 

error). Thus the time-to-peak latency, for positive amplitude transitions, increased with 

step-size. 

Tubic 4.2: Average latency t imes, f rom ampl i tude I ransi t iun at the 40nis t ime-bin tu 
peak response. Tor Ihe s t imula l ing. high-pri)bahilit i> ampl i tude, across all neurons 
vviih no noveltv-preference 

Latency ( A ) f r o m 
st imulus onset 

Mean Amplitude Level 

QOMm 2!0^im 330^m 450nm 

Timc-to-pcak(ms) N/A 34.86 ±1 .71 41.17 + 1-38 41.66 ±1.09 

A similar analvsis was performed on only those cells in Ihe population that 

displayed a novelty preference and had ei ihera svinnietrical (Figure 4.27, population = 4) 

or a non-symmetrical function step si/e function (Figure 4.28, population = 18) 
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Figure 4.26: Transition from a iow-probabilit>' stimulus, of lower intensity', to a high-
probability stimulus; adaptation to mean. 
Firing rate over time, averaged over all Iransitions between amplitudes drawn from Ihe low 
end of the low-probability region and amplitudes drawn from the high-probabiiity region. 
Green circles; 90pm mean adapting level, blue squares: 210|.im. red diamonds: 330nm, 
cyan triangles: 450fim. Colour coordinated solid lines plot the besl-fit to the data 

The latency of time-to peak and decay for the pre-Iransition amplitude is given in 

Table 4.3, below. 
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Table 4 3 : Latency times for the low-probabiIit>-/high amplitude stimulus for all four 
noveltj-preferring ceils with symmetrical step-size functions 

Latency ( i ) 
from stimulus 

onset 
90nm 

Mean Amplitude Level 

210Mm 330Mm 450nni 

A Peak(ms) 
A Decay (ms) 

56.00 ±4.65 
94.00± 13.0 

60 50±5.S0 

84.25 ±9.37 

57.25 ±4.05 

101.0±2.48 

56-00±4.50 

81.75±13.0 

Population response (n = 4j 
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Figure 4.27: Transition from a low-probability stimulus, of strnng intensity, to a high-
probabilitv stimulus, adaptation to mean, for tbc four symmetrical novelty-t; pe cells. 
Firing rate over lime, averaged over all transitions between amplitudes drawn from the high 
end oTthe lovv-probabilit\ region and amplitudes drawn from the high-probability region. 
Green circles: 90(im mean adapting level, blue squares: 2IO^m. red diamonds: 330nm, 
cyan triangles: 450|im. Colour coordinated solid lines plot the best-fit to the data 
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Population response (n = ]8) 
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Figure 4.28: Transition from a low-probabilil^- stimulus, of strong in(ensit>', to a high-
probability stimulus, for all asymmetrical novelty-typc cells. 
i'iring rate over time, averaged over all transilioiiM between amplitudes drawn from the high 
end of the low-probability region and amplitudes drawn from the high-probability region. 
Symbols/lines as for previous Figure. 

The average latencies, across the population of non-symmetrical novelty-preferring 

cells, are given in Table 4.4. below. 

Table 4.4; Latency times for the pre-transition stimulus (low-probability but high 
amplitude) for all asymmetrical novelty-preferring cells 

Latency (A) 
from stimulus 

onset 

A Peak{ms) 
A Decay (ins) 

'>ô lm 

Mean Amplitude Level 

2IOnm 330nm 450 Mm 

_18.50±3.00 4I.33±3.14 4I.6I±2.79 44.I6±2.64 
7'>.I7±4.2I 80.89±4.IO 76.22±5.27 71.50±5.40 
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Al l the populalinns analysed shared some comnimi (caliiies in the pattern o f firing 

rate over time. Namely thai the overall level of response was relatively lower with each 

increase in global mean and that the response to the pre-traiisition stimulus appeared to 

dominate the response within the first 80ms or so after stimnUis onset (at 0ms). However, it 

should be noted that the decay of the pre-lransition stimuhi^ included the relaxation of the 

t ir ing rale back to levels typical ot'thc response to post-transilion stimulus (as, i f one 

recalls, these were always lower in amplitude than the pre-transitiiin stimulus). 

Nevertheless, it was vi i tual ly impossible to deteniiine where the response to high-

probability, posl-transilion stimulus began from the f ir ing rate patterns above; instead one 

could say that the response to the post-transition stimulus reached its steady state level at 

the deca\ latency for the liigli-ain|>lilude. pre-tiansition sliiniilus. 

Within the population of novelty-type cells, those cells with symmetrical step-size 

functions showed the clearest divergence from the general trend in tiring-rate patterns (see 

Figure 4.27), in that their response to the pre-transition stiinnkis was relatively broad. The 

latency ditTerences were also most pronounced for this group o f cells with latencies for 

time-lo-pcak (see Table 4.3) being roughly 15-20ms longer ilian the remaining population. 

Novclty-lype cells with non-symmetrical step-size funetion.s did display longer latencies 

than the general population, but these differences were not significant (as can be seen from 

standard errors, i f one compares Table 4.1 & Table 4.4). The quantitative analysis o f 

latency ditTerences between the three putative groups of cells, of course, should be viewed 

with some caution due to the small sample si/e of both type^ orni i \e l t>-piefening cells. 

The time to decay was longer for both groups o f novelty-preferring cells, relative to 

the remainder o f the population. Thus, this could account for the strong response to step-
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sizes thai were comprised (in eilher direction) tif a high-probaliilit\ amplitude and an 

amplitude drawn from the high-end oftlie low-probability stimulus space. For example, 

with negative step-sizes the response to the stimulating amplitude would be amplified by 

the residual response to the preceding amplitude. 

Are these longer decay times a function of ihe step-size or an inherent pan of the 

responsiveness of these cells? In urdcr to explore this question further, the time course of 

llic response for stimulus sequences in which both the pre- and posi-transilion stimuli were 

drawn from the high-amplitude but low-probabilil\ region of the stimulus space was 

analysed, for both novelty-preferring cells and the remainder of the population (novelty-

preferring cells, irrespective of the shape of the step-size function, were grouped togetlier in 

order lo provide a reasonable number t)f data points). This stimulus sequence was chosen as 

iinipliludc levels were high, and would elicit a clear response to the onset of the preceding 

stimulus, but the step-size changes in amplitude during the transition would be vei-y low, 

thus one would expect to see response reduclion as a funciion of the small difference in 

amplitude levels. If latencies are a funciion of step-size, one would expect to see an elTcci 

on response decay of the preceding amplitude, lit order for llic response to fully develop 

and deca)' the spike train tollowing Ififlms from stimulus onset were collated. The stimulus 

sequence is similar to that used in the initial analysis of the response time-course (see 

Figure 4.24, Figure 4.27 & Figure 4.28) with the "addition'of an extra stimulus at Ihe 

beginning of tlie sequence. 

The lime-course of the responses across conditions, for the majority population of 

cells with preference for positive step-sizes only, are plotted in Figure 4.29 and in Figure 

4.30 for the novelty-preferring neurons. The effect of stimulus context on the response. 
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across holh populations, was twofold: 

1. The response lo the second high-amplitude, low-probability stimulus was 

reduced, relative to the response to the llrst pre-lransilion stimulus; thus both 

populations underwent an adaptive and rapid response reduction as a function of 

the small step-size. 

2. The decay latency for the response lo reach the steady-state level of the third 

amplitude in the sequence (of a weaker amptiUide than the pre-transition 

slimulus and most likely drawn from the lilgli-pinbability region) was longer, 

relative lo the lime taken in ihe previous analysis of a similar stimulus sequence 

(please compare the main plot and inset of Figure 4.29). 

Overall responses, for both groups, did nol reach a steady-stale until = I40m.s into 

the spike train (i.e. 60ms following stimulus onset of the third, lower amplitude). At least, 

this was the case for the three lowest mean adapting levels (green, blue and red lines and 

symbols. Figure 4.29 & Figure 4.30); responses lo the higliest mean adapting condition 

were relatively flat, with respect lo all other conditions and the response elicited in ihe 

earlier analysis (see insets. Figure 4.29 & I'lgure 4..10). 

If one compares these decay latencies with that observed for the similar stimulus 

sequence (see Table 4.1. Table 4.3-4.4, Figure 4.24, Figure 4.27-4.28) one can clearly see 

the contextual elTects of having two strong-amplitudes, from outside the high-probability 

region presented successively. 

l'"or the novelty preferring cells, the lime-to decay response, recorded previously, 

ranged from -71-81ms (equivalent to -111-I2lms in the new analysis) for the non­

symmetrical cells to =̂ 81-1 Olms (equivalent to-121-141ms) for the symmetrical neurons. 
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For the remainder of the population the previously recorded decay latencies ranged from 

=68-74ms (equivalent to -108-114ms in the new analysis) 

0.9 

0.6 

Population response ( n = 59 ] 

f\ 

60 60 100 
Time (ms) 

120 140 

Figure 4.29: FfTect of st imulus inlcnsity on the transi t ion rcspon.sc. 
Tiring rate over time, averaged over all iransilions between aiiipliludes drawn from the high 
end of the low-probability region. Green circles; 90|ini mean adapting level, blue squares; 
2IO|im, red diamonds; 330tim, eyan triangles; 450nm. Colour coordinated solid lines plot 
the best-fit to the data. Insel is the initial, similar analysis performed using amplitudes 
drawn from the high end of the low-probability region and amplitudes drawn from the high-
probabilily region, sec Figure 4.24 
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Figure 4.30: Effect of stimulus intensity on the transition response for all cells showing 
novelty-preference (both symmetric and asymmetric). 
Firing rate over lime, averaged over all transitions between amplitudes drawn from Ihe high 
end ol i l ie lovv-probiihilit>' region. Green lines/circles: 90|.ini mean adapting level, blue 
lines/squares: 210pm. red lines/diamonds: 330jim, cyan lines/triangles; 450(1111. Colour 
coordinated solid lines plot the besl-flt to Ihe data. Insets are the initial, similar analysis 
performed using amplitudes drawn from the high end of the low-probability region and 
amplitudes drawn from the high-probabilit> region for the symmelrical/asymmetrical 
noveliy-type cells; see Figure 4.27 & Figure 4.28. 

4.4: Deviation detection 

The analysis presented above indicates that barrel cortex neurons are preferentially 

sensitive to the local, rather than global, stimulus context and respond to how far the 

stimulus, at any given moment, deviates from the previou.sly presented input. The majority 

of neurons responded strongly to large step-size changes in stimulus amplitude and could 

therefore be considered as "variance detectors'. There is e\ idcnce to suggest that VI 

neurons respond most strongly to signals that are at least 2 standard deviations away from 
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the mean input and arc tlicrclorc acting as de^•tati^n detectors (Ringacli & Maloiie 2007, 

see Chiipler 2 lor I'uller description o f l l ie study). It was decided, therefore, to explore the 

adaptive output o f all neurons as a function o f local stimulus \ariance, i.e. the squared 

difference between slinuil i presented at each time-bin and the global mean o f the stimulus 

sequence. 

The average firing rale (for each high-probability region stimulus, across trials and 

every presentation within a trial) was calculated, as a function o f the ditTerence in whisker-

deflection amplitude between the stimulus and the mean input level, for each individual cell 

and across the population as whole. Tor every 40ms time-bin (T, / \, where N is the total 

number o f stimuli presented during a 30s stimulus-sequence), the spikes elicited (by a given 

neuron) during T, were re-sorted into bins according to the squared difference in amplitude 

between the stimulus (X,) presented during T, (given a 20ms latency, see Chapter 3) and the 

average stimulus presented across the 30s stimulus-sequence, as a whole (X). 

The response to local variance was taken to be the average spike count across all 

instances in which the variance of the stimulus (the difference between A', and X ) w a s 

equal l o ( . V - . V ) ^ where .V was one o f the 25 possible whisker deflection amplitudes 

(0:720fim, in equal steps of 30jini). On average, the global mean stimulus amplitude (and 

global variance) for each 30s adapting stimulus .sequence was 161 ;im (variance: 

28^00^11)-). 252pm (variance: I Ii4y6pm-). 343jmi (variance: 13456^nr) & 433pm 

(variance: 13684pm') for the 40. 210, 330 & 450j.ini high-probabilit\-region conditions, 

respecliveh. 

The results o f the population analysis, under the condition o f adaptation to global-

mean, are presented in Figure 4.3 I, below, with the lop plot showing the actual adaptive 
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response lo local variance-lRirii-tlie-niean and tlic hiUom plot giving the adaptive response 

as a fuiiclion of the normalised sliniulus (where the input was normalised by dividing 

(X, - Xf with the inherent global varianceof the 30s slimuiiis-sequence)- the abscissa 

was plotted on a logarithmic scale for ease of viewing. 

The responses to Ihe I" three hiyh-probabilily-region conditions (90, 210 and 

330nm; green lines/circles, blue lines/squares and red line/lrtangles, respectively, in Fignre 

4,31) were broadly similar; firing rales tended lo remain al roughly I GHz then began to 

increase monotonieally (al {X - X)'~ U)''(inr ) up lo a maximum firing rate of 

approximately 30H7 (30.47Hz [±2.3292 Standard Error or SE], 30.60H7 |i2,3758 SE], 

29.491 Iz [±2.2343 SE] for llie 90, 210 and 330tmi conditron.s. respectively). In general 

responses displayed considerable overlap cxccpl al ihe extremes of the funetions, especially 

with reference to the highest levels of local variance-from-mean. where the functions 

diverged (this can be seen most clearly in ihe best-fit to the data, solid lines. Figure 4.31); 

this is a reflection of the distribution of (X, -~ X)' values which decreased as the global 

mean amplitude increased (due to increasing symmetry in low-probabilit>- tails of stimulus 

distribution). 

Fur ihc 4"' condition (cyan lines/diamonds. Figure 4.3 I), firing-rate responses lo 

levels of (.V, - X)' < =10''nm'were fairly constant at approximately lOHz: for levels of 

(A", - A ' ) ' greater than lO^pm" the responses oscillated between the base response (of 

= 10Hz) and higher firing rates. 
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Figure 4.31: Firing rate as a function of local variance-from-the-mean, under 
conililions of adaptation to global mean nhisker deflection amplitude 
Top plot; Firing rate as a function of local-variance, (A", ~X)'., plotted on a log-axis for 
ease of viewing. Bottom plot: The functions in the lop plot, dravMi with local variance 
normalised, with respect to global stimulus variance Green lines/circles, blue lines/squares, 
red lines/triangles and cyan lines/diamonds plot the 90, 210, 330 & 450(ini high-probability-
region conditions, respectively. 

The oscillatory behaviour olthe response-fundi on could be a relleclion of the 
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balanced slinuilus distribution and llic stimulus \'alues thai set the local variance: the 

selection probability ot"amplitude values both below and above the global-mean amplitude 

had a roughly equal (though low) chance of presentation, relative to the 3 lower global-

mean conditions. Firing rates to stimulus amplitudes below global mean were always 

suppressed relative lo higher amplitude stimuli, thus accounting for the apparent oscillation 

in firing rates. Following normalisation, (achieved by dividing (X, - X)~ by the global 

stimulus variance. Figure 4.3 I. botlom plot), adaptive neural output, as a function of local 

variance, did not displa\ invariance; thus suggesting that adaptive responses did nol fully 

scale with stimulus variance. 

As the analysis presented earlier in this Chapter has shown, the majority ofneurons 

in the barrel cortex tend to respond preferentially to positive excursions in stimulus 

amplitude, i.e. are sensitive lo tlie direction of change in the stimulus. Thus it was decided 

lo anabsc Ihe data as ;i function of local slandard deviation a\\a\ from global-mean. The 

analysis was as for variance-froni-the-mcan. above, excepi that deviation was defined as 

{X,-X) rather than ( , V , - X ) ' . 

Responses for all adapting conditions (see Figure 4.32) increased monotonically for 

local slandard deviations of >0|.im. and diverged for positive deviations-from-lhe-mean of > 

200|.iin. This was due lo the distribution of the stimulus; deviations ranged from -126.08 to 

5')3.92pm forthe90nni condition (green lines/circles. Figure 4,32).-217.68 lo502.32|im 

for Ihc 21(lMm condition (blue lines/squares. Figure 4,32). -310,24 io409.76(im for ihe 

330nni condition (red lines/triangles. Figure 4,32) and from -401.60 to 318.40pm for the 

450pm condition (c\an lines/diamonds. l-"igure 4,32). 
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Figure 4.32: Firing rute as function oriucul deviations-from-the-mean under 
condilions ol'udaptation to global-mean. 
Top plol: Firing rale as a function of local-deviation, (A*̂  - -V). Bollom plot: The 

functions in the lop plot, drawn wiib local deviation normalised, with respecl to standard 
deviation of tlie global stimulus- Green lines/circles, blue lines/squares, red Iines/iriangles 
and cyan lines/diamonds plot ihc 90, 210, 330 & 450 îm high-probabilily-region conditions, 
respeciively. 
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However, once inputs were normalised by the global standard deviation (for each 

30s :siimuUis sequence) responses were sealed such that the functions displayed 

considerable degree of overlap; this was most strongly observed for the three lower global 

mean adapting conditions. 

The response to the standard deviation for those cells displaying novelty preference 

{// = 22: both symmetrical and as\nnnelrical nii\elt>-preferring cells, see Section 4.3.2) 

was also similar to that outlined, for the population response, above, except that the 

responses also increased slightly for deviations <0^m; this can be seen most cleai'ly in the 

best-fit to the data (solid lines, Figure 4.33), for all conditions, in the actual response (top 

plot. Figure 4.33) and for the 330 and 450tuii higli-prohabilit\ c()ndilions in the normalised 

response (red and c\an lines; bottom ploi, l"igiire 4.33). Thus these cells clearly display 

some sensitivity to deviation, irrespective of the direction of change; however, the novelty 

respi,)nse as a function of deviation-froni-the-mean is much weaker than the response to 

no\'elty observed as a function of step-size changes in amplitude (please see Figure 4.12. 

bottom row). 

4.4.1: Adaptation to variance 

The data derived under conditions of adaptation to increased levels of global 

variance was analysed in a similar manner to that outlined above (see Figure 4.34 and 

Figure 4.35, below). 
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Figure 4.33: Detection oflocal deviations-from-lhe-mcan fur novelty-preferring cells 

Top plot: Firing rate as a function of local-deviation, (A", -X), for all cells (» ^22) in the 
population that displayed noveltv-preference to step-si'/e changes in stimulus amplitude. 
Bottom plot: The functions in the top plot, drawii with local-deviation normalised, with 
respect to standard deviation of the global stimulus. Green lines/circles, blue lines/squares, 
red lines/triangles and cyan lines/diamonds plot the 90. 210, 330 & 450(mi high-probability-
region conditions, respectively. 
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In tcnns of variance-from-the-mean (Figure 4.34; red lines/circles, green 

lines/squares and black lines/diainonds for the low-, mid- ;ind high-variance conditions, 

respectively), firing rate, â  a function oflocal variance, showed a general trend to increase 

fromvaluesof (AT, - J ) ' > 1.2*10^0 a maximum level ai (X^-X)^ values of ^I.65*10^ 

maximum firing decreased with every increase in global-variance. The shape of the best-fit 

to the data (solid lines, Figure 4,34, lop plot) was generally preserved bul tended to be 

scaled downwards with each successive increase in global-variance. Normalising the inpul 

(Figure 4.34, bottom plot), wiih respect to global-variance, did not result in a perfecl 

scaling up ofthe response-functions; inslead the values ol (A', - A')~ that elicited maximum 

firing rale decreased inversely with global-variance. 

Under this adaptation regime, the central whisker-deflection amplitude ofthe high-

probability region was fixed, thus the overall symmetry oflhe stimulus distribution did not 

change as global-variance increased (in that the reduction in span of the low-probability 

tails was matched either side of the high-probabilitv' region). As one can recall from 

Chapter 3. increasing global variance resulted in a decrease in the gain ol'slope ofthe 

stimulus-response function and therefore a decrease in the firing rate-response, these two 

factors (levels of symmetry and reduced firing rates) could account for the preservation and 

downward scaling ofthe response, as a function of local-variance. 

Increasing the width of the high-piobabilit) region had the affect of increasing 

glohal-mean slightly, (272 [global variance: 14.640(1111-], 279 [ I9.600(inr] and 290̂ 111 

1269,001 urn'] for the low-, mid- and high-variance conditions, respectively), thus the 

distribution of values of (X\ - A')Mecreascd in range with each successive increase in 
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global variance (from 73984 to 200704pm-, 77841 to 194481 t i i i i ' and 84100 to 184900pm-

for ibe low-, mid- and high-variance conditions, respectively); tliis reduction in range can 

be observed in the normalised response (Figure 4.34, bottom plot), where local-variance 

levels that elicited maximum firing rates were reduced. 
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Fif^urc 4.34: local variance under condition of adaptation lo global variance 
Top plot: Firing rale as a function of local-variance. (A', - .V) ' " ; plolted on a log-axis for 

ea.se of viewing. Bottom plot: The functions in the top plot. drawTi with local-variance 
normalised, with respect lo global stimuUrs-variance. Red lines/circles, green lines/squares, 
black lines/diamonds plot the low-, mid-& high-variance conditions, respectively. 

185 

http://ea.se


The relationship between f i r ing rale and local-variance displayed considerable 

variabilitv within each adapting condition. It was therefore decided to examine deviation-

from-the-niean (Figure 4.35, below). 
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Figure 4.35: Re-sponse to deviatiDn-from-mean under conditions of adaptation to 
global variance 

Top plot: Firing rale as a function of locttl-devialion,(A', - X). Bottom plot: The 

functions in the top plot, drawn with local-deviation normalised, with respect to the 
standard deviation of the global stimulus. Red lines/circles, green lines/squares, black 
lines/diamonds plol the low-. mid-& high-variance conditions, respectively. 
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The relationship between oiilpul and local deviation (I'igure 4.35) was much more 

clearly defined than that observed for local variance (see Figure 4.34, above). There was a 

clear preference across the population for positive deviations away from global mean, 'f he 

response functions tended to decrease in slope-gain and maximum firing rate levels in an 

inverse manner to stimulus variance. Nonnalising the firing-rate functions resulted in a 

considerable degree of overlap for ilie mid- to high-variance conditions (green and black 

lines/symbols, respectively; Figure 4.35, bottom plot), except for at the positive-deviation 

tail of the functions. Under the low-variance condition (red line/circles; Figure 4.35, bottom 

plot), there was a clear divergence in the firing rate as a function of devialion-from-lhe-

niean from the two-higher variance conditions. The decrease in the slope of the function 

from the low- to mid-variance was greater than the decrease between the mid- to high-

\anancc conditions; this could be a reflection of the sharp increase in the width of the high-

probability region from a span of three amplitudes to seven, in the change in stimulus 

configuration from the tow- to mid-variance conditions. 

4.5: Discussion 

There are several key findings from the above analysis: 

1. Across the population, the step-size function was roughly invariant, with respect to 

the global mean of the adapting stimulus 

2. However, for those cells adapted only to different levels of global stimulus variance, 

the step-size function was not invariant. 

3. .Amongst both populations (neurons adapted to either mean amplitude or adapted lo 

variance only), some cells showed a preference for step-sizes away from 0pm, inespeclive 

of the direction of ampliuidc cliange and were classed as novelty-preferring cells. 
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4. The majority of novelly-preferrhig cells had a response bias for positive slep-

changes; however a small proponion of these neurons displayed synimclrical functions. 

5. Novelty-preferring cells llial displayed symmetry had longer time-to-peak and 

response-decay latencies than the remainder of the popnlaiion. 

6. Novelty-preferring cells (with symmetry) that were only adapted to stimulus 

variance had siep-.size functions that showed some dependence on the width ofhigh-

probability region in the stimulus space. 

7. As well as being sensitive to local stimulus history, all neurons displayed sensitivity 

to local deviations from global mean, with a preference for positive deviations. 

8. Under conditions of adaptation to global mean, responses, as a function of 

deviaiion-from-global-mean, showed scaling, when plotted agaiiist norinaliscd input levels. 

9. Under conditions of adaptation to global variance, nonnalised deviation-from-the -

mean functions were not invariant, suggesting that the decrease in gain, observed as 

adapting stimulus-variance increa.sed, were not scaled as a function of local deviation. 

The presence of these novelty-preferring cells leads one instantly to the question of 

uheiher these are a dislincl cell type, in terms of iheir responsiveness al least (neither 

morphology nor electrophysiology can addressed here). The clearest difference between the 

two groups, of novelty-preferring neurons and cells which respond only to positive step-

sizes, can be found in the response-decay latency. The influence of response decay is most 

apparent during negative amplitude transitions, where the preceding stimtilus is always 

greater than the stimulating amplitude. The steady-state response (as measured by counting 

all spikes witliin 20-60ms of stimulus onset), if one is present, is thus overshadowed by the 

decomposition of the preceding amplitude response. Fiom this one could argue that the 
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sensitivity to negative, as well as positive, step-sizes is simply the result of an artillcial 

intlatinn of the response. However, this could well be the mechanism by which the cell 

'detects' novelty. The speed and shape of Ihe decay response is heavily influenced, not just 

by the inmiediale stimulus context, biii b\ the .stimuli presented 8l)ms prior to the current 

epoch (see Figure 4.2') & Figure 4.30). Of course, from the spike-triggered average data 

(Figure 4,8) it could Iw argued that interactions up to 320ms preceding the current stimulus 

epoch can influence firing rate. Thus a cell's responsiveness to stimulus context obviously 

extends well beyond the immediate changes in amplitude levels. 

Uiiforlunaiely. from the prese»l d;ita. it is not possible to stale. iinequi\ocali\, 

whether these neurons represent ;i distinct population of cells that encode step-size 

differences through adjustments in lime-to-decay latency, or whether novelty-preference is 

an artefact of the longer response-decay latencies displayed by this group of cells. 

The unifying factor between all the groups of cells identified, however, is the 

invariancc of the response to step-size, as a function ctf the global mean. 

The invariance of the step-size function, following adaptation to the mean, .suggests 

that the lateral displacement of the stimulus-response function acts to preserve the 

relationship between firing-rate and step-size and not necessarily to encode the stimulus 

distribution as a whole (as predicled bj Information theorv' and the efficient-coding 

hypothesis). Thus one can argue thai adaptation senes to encode relative changes in 

intensity, witli a temporal resolution on the order of lens of milliseconds. 

For the general population, and across mean-adaptation levels, the highest firing-

rates were found only for those positive step-sizes in which the stimulating amplitude was 

drawn from the high-amplitude, low-probabiliiy tail of the stimulus distribution (see Figure 
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4.14, Ixntoin row). Thus Ihe reiationsliip hetweeii step-si/e and tiring-rate was inaiiuained 

by tlie lateral displacement of the stimulus-response function; as tlie lowest tiring rales 

were always found for amplitudes within and below the higli-probabilily region. 

In the absence of any adaptive shift in .slimukis-re.sponse fiinction, one would 

observe, with each successive increase in the high-prubabilily region level, a tiring-rate 

increase for step-sizes of Ojim to ±120pm, as if one recalK. slep-sizes ranging frnni t)nni to 

±120nm are most likely to be derived front interactions between amplitudes within the 

high-probability region (Figure 4.14, top row). 

The amount of stimulus-response function displacement must also pla\ a role in 

maintaining the step-size function. If one looks closely at the population stimulus-response 

function (SR]\ Figure 4.1, above), one can see that the sliniuliis amplitude thai elicits the 

maximum population res|Hinse (~600fmi) i.s fairly constant across all adapting conditions. 

Thus the stimulus-response function is displaced such thai Ihe dynamic region of the 

response always covers the stimulus-space thai spans from the high-prohabilily region until 

~600^Lm; stimulus amplitudes of ±(iOl)piii represent the extent of the firing-rale increase 

seen in ihe population step-size function. 

If one recalls from Chapter 3. the maximum response of the stimulus-response 

function was reduced for each successive increase in the global mean adapting level (see 

Chapter 3). The average step-size difference under each adapting condition also decreased 

as the mean adapting amplitude increased. The number of possible .stimuli located within 

the high-end tail of the low-probability stimulus space decreases as the centre of the high-

probability region shifts to higher amplitudes. For example, ihe average step-size difference 

for iransilions between the high-amplitude. low-probabilii\ .stimuli and amplitudes within 
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the high-probiihilily region dccreiised with ihe udapling mean level (see Figure 4.24, Figure 

4.27 & Figure 4.28 and Table 4.5). Tiius the reduction in maximum response in the 

stimulus-response function can also be accounted for by the relationship between firing-rate 

and step-size. 

Tabic 4.5: Average step-si/c (in fiiu) under eueh mean iidapliiig level, for transitions 
between amplitudes drawn from hi}i;h-end of the hiw prohiibilily luil (LPR-higli) iind 
Ihe high-prubiihilily region (IIPR) 

90̂ m^ 210 [̂m 330 ̂ Lm 450 pm 

LI'R(high) 
to HPR 

365.46±2(1.14 302.071 17,27 239.701 15.64 179.18+13.53 

Whilst there is a strong case for stating that the displacement of the stimulus-

response function acts to maintain the relationship betucen output and step-size, the same 

argument does not apply to the decrease in neural gain, ob.served following adaptation to 

increased levels of stinuilus variiuice. The step-size function was not scaled with respect to 

the levels of stimuhis variance; thus giving further credence to the notion that adaptation to 

global variance and global mean are underpinned by separate mechanisms. 

Of course, the populaiion step-size function did show some dependence on global 

variance levels, the slope of the luncLion tended to decrease, under conditions of increased 

variance, arguably as a reflection of the increased range of interactions between stimuli 

within the high-probability region. As such, neurons may not be encoding novelty (in the 

strictest sense) through their .step-size functions, but rather the range of diversity in highly 

probable stimulus aniplitnde interactions. 

Overall, the clear result from this analysis is that local stimulus context plays a 

major role in delemiiningdie output of a cell. This level of interaction has been found 

191 



across cortical systems and species, Ibr example in ihe lly visual system (Fairhall el al. 

2001), and more recently in (he barrel cortex (Maravall cl al. 2007), Whiskers were 

deflected along a single dimension, with the position randomly assigned using a Gaussian 

distribution and refreshed every 5ms; the variance of the distribution was varied every 5s in 

a switching stimulus paradigm. Thus barrel cortex cells were adapted to two levels of 

variance only (high and low), with the majority of cells displaying levels of adaptation to 

whisker-deflection velocity, in proportion to stimulus variance. 

As stated earlier (see Section: 4,3.1) it could be argued that plotting the response as 

a function of the ditTerence in amplitude, from one tittie-slep to the next, is a form of 

velocitj measure, in that one is describing the relationship between neural output and the 

direction and distance ofchange in intensity levels. Thus, iConc takes the aryiimeni that the 

step-size function is comparable to a velocity-response function, there is clearly a 

contradiction between the cellular response to stimulus velocity {Maravall el ai. 2007) and 

the adaptive response to stimulus intensity', as the adaptive response to increased levels of 

stimulus variance did not scale. 

However, an adaptive rescaling, such that responses were roughly invariant, was 

only observed following adaptation lo different levels of the stimulus mean. As menlioned. 

within the study exploring adaptation to whisker dellection velocity (Maravall et al. 2007) 

the stimulus mean and variance were co-dependent, thus the suggestion here is that the 

rescaling observed in response to increased variance, in tlie velocity feature of the stimulus. 

may have been inlluenced by levels ofslimulus mean rather than only global variance. 

Overall, it would appear thai adaptation acts to rescate responses so as to maintain 

information transmission, about the local changes in stimulus amplitude, across the 
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ditTerent global mean levels, encountered during adaptation process. Kor the majority of 

neurons within the population, most showed distinct response bias for large, positive step-

sizes. As we have seen, the majority of these step-size responses are elicited to strong 

amplitudes, generally located outside the high-probabili ly region. Thus these cells can be 

said to be responding predominately to largo deviations in the input signal. essenlialK in a 

manner .similar to thai observed in ihe visual cortex (Ringach & Malone 2007). 

The analysis presented within this Chapter demonstrates that barrel cortex neurons 

are sensitive to positive deviations away from global mean on the 40ins scale, kingach and 

Malone (2007) suggested that deviation detection sets the operating point of the visual 

coitex, such that spiking threshold is. on average, one standard deviation from the mean o f 

any ongoing activit>, irrespei:li\o o f eonlrast levels; thereby enhancing the detection o f 

signals in background noise over maximising information transmission 

It would appear thai barrel cortex neurons, under conditions of adaptation to global 

mean, are also adapting to maintain respnn.se sensitivity to positive deviations from Mie 

mean o f the input. However, it should be noted that neurons show a base firing-rate level to 

all standard deviations (normalised units) which increases monotonically from deviations 

greater than Ojim; thus the threshold for firing-rates to exceed the base-level is lower than 

the spike-threshold obsei-ved in V I (Ringach and Malone 2007) and close to global-mean. 

This suggests thai the operating regime serves to enhance detection o f all signals that 

exceed the average intensity o f the input and that adaptation to global mean is undcqiinned 

by a mechanism oT asymmetric deviation detection, or background suppression, in which 

signals o f lower intensity than global-mean are suppressed. 

The same degree o f in variance in the deviation-response functions was not observed 
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to l kming adaptation lo global variance, even though the general response-trends were 

similar under both adaptation regimes (i.e. responses increased monotonicaily from a base­

line level for deviations greater than the threshold, which was roughly equal lo the mean o f 

the stimulus distribution). This again lends credence lo the notion that adaptation to 

variance may be underpinned by a diflerent mechanism, such that when ihe signal becomes 

increasingly noisy it may be oplinuil lo encode die stinuilus distributit)n and ma\imise 

information transmission. 

In conclusion, the experimental adapting regime was designed to mimic natural 

conditions, more closely, in that stimulus amplitude fluctuated rapidly about a mean level 

and rate functions were calculated on the l ly. Many adaptation experiments lend to present 

static .stimuli and assess responsiveness follovving stimulus otTsel. I f these findings are 

applicable to a real-world setting, then this suggests a change in coding strategy as the 

stimulus environment becomes noisier'. It may be that under normal conditions cells are 

primed to detect novel/deviant stimuli o f stronger intensity than the global mean, however 

in a noisy environment it may be more functionally advantageous to have cells primed for 

delecting the overall distribution o f interactions between stimulus intensity. 
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Chapter 5: Mechanisms of adaptation: a modelling study 

5.1: Introduction 

The previous two chapters have shown thai adaptation lo the global variance and 

mean ofan adapting stimulus are distinct processes, which underpin computation not only 

of the stimulus distribution but relative, short term changes in stimulus amplitude too. 

A useful question lo pose at this juncture, then, is what are the mechanisms that 

underpin both forms ofadaplalion? In order to address this issue, computer simulations of 

various models of gain control were developed and compared to the experimental data. 

Simulations were performed using an implementation of the conduciance-based, integrate 

and fire cell developed by Alain Destexhc (Destexhe 1996). 

It was found thai whilst spike-rate adaptation could generate the lateral shift 

associated with adaptation to global mean (as suggested by a recent modelling .study 

(Garcia-I.azaro et al. 2007) and other experimental work in the visual cortex (e.g. Sanchez-

Vives et al. 2000) it did not elicit the expected, invariant, tuning of the model cell to local 

changes in stimulus amplitude (see Chapter 4). In order to generate the appropriate step-

size functions, a neural model with spike-rale adaptation was augmented through the 

inclusion of a tonic inltibiioiA' conductance (Murpin & Miller 2003), whose strength was 

determined by the global mean adapting amplitude. 

The mechanism underpinning adaptation lo variance is more elusive. Several 

nnxlels have been developed thai rely on extrinsic mechanisms to generate gain 

modulation, but only to steady state stimuli; thus none have directly addressed adaptation to 

stimulus statistics. 
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The key feainre ol'all the models reviewed was ihui neural gain (i.e. llie slope of 

the stimulus-response function) was dependent \s\ion the relative balance of inhibition and 

excitation impinging upon the target cell, either in terms of modulatory background llring 

rates (Chance el al. 2002) or afferent aetivil\' (e.g. Rothman. Cathala. Steube. & Silver 

2009. Murphy &, Miller 2003 & C'helaru & Dragoi 2008). As such two models were 

developed, one based on background tiring rales (as proposed by Frances Chance [Chance 

et al. 2002]) and the other based primarily on a recent model of asymmetric synaptic 

depression (Chelaru & Dragoi 2008) within V I , in which the decrease in neural gain, 

following adaptation to variance, arose through a change in the relative levels of afTcrent 

inhibition and excitation. 

5. /. / : Spike frequency adaptation 

In order to explore the intrinsic mechanisms thai underpinned the adaptive 

displacement of the stimulus-response fuiiction in response to increased stimulus mean. Jan 

Schnupp and colleagues (Garcia-I.azaro el al, 2007) built realistic neural models of four 

reconsimcted cells (taken from the model NEURON datalnise. Mainen & Sejnowski 1996), 

using the NEURON programming language (Hines & Carnvale 1997). The cells were 

adapted through the sinuilated injection of a continuous ciUTent, whose amplitude was 

refreshed every 40ms and drawn from a highly skewed distribution (see Figure 5.1. below), 

as per the experimental slimuhi.s outlined in Chapter 3. 

Of the four model cells only two (the layer 3 pyramid cell model. Figure 5. IB, and 

the layer 4 stellate cell model. Figure 5.1 D) displayed an adaptive lateral displacement of 

the stimulus-response function, in response to increasing the global mean of the stimulus. 
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The adaptive shift, in the stimulus-response ftinclion of ilic layer 3 pyiamid cell 

model, was aboli.shed (sec Figure 5,2A and B. below) when the conductance of ihe 

calcium-dependent, polussinm based current, gKca, was reduced (o below 0.5pS/)im". 

Increasing gKfa above the base le\cl of .IpS/jmr (at which the responses plotted in Figure 

5.1. were generated, sec Figure 5.2C), heightened Ihe degree of rate-function displacement, 

especially for tiie tina! higli-probabilily-region tested (Figure 5.2C &. D, cyan lines), but the 

level ofdisplacemenl was not as pronounced as that obsei-ved when gKcu was increased 

from 0.5-3 pS/nm". 

Thus, (here is a strong indication tlia( ^Y.^-^ is the source of adaptation to mean 

sliniulus amplitude, in the model neurons al least, but that the amount of lateral shift in the 

stimulus-response function is roughly independenlof the strength of the current (as 

increasing gKc^ doesn't lead to a proportional shift in neural firing threshold). This is in 

line with the experimental daia as, if one recalls, the population stiniukis-response function 

(stimulus-response ftmction) for each high-probability region was displaced 1o lie outside 

of the high-probabiliiy region but the maximum of the cuî ve was centred at = 6l)0pm. 

irrespective of the global mean of the stimulus (see Figure 4,1, Chapter 4). 

The gKoi generates an after-hyperpolarisation. Al IP, in the membrane potential, 

post spike generation. As discussed in Chapter 2. the AHP is believed to underpin spike 

frequency adaptation, whereby, tinder constant, continuous stimulation, the inler-spike 

interval. (SI, increases {e.g. Madison & Nicoll 1984). 

Spike frequency adaptation is most commonly associated with regular spiking cells 

(Connors & Guinick 1940) and, interestingly, one of the model cells that displayed 

adaptation was a reconstructed regular-spiking, layer-4 spiny cell (Figure 5.1 D). 
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Figure 5.1: Adaptalinn to globul mean in four reconstructed model neurons 
A: 5s sample of the adapting stimulus; from left to right the high-probabiiity regions (high-
probability region) spanned 0,019 to O.OOCmA (green). 0.1 15 to 0.191 nA (blue), 0.210 to 
0.287nA (red), and 0-306 to 0.383nA (cyan). B: Reconstructed NEURON model of a layer 
3 pyramidal cell. C: Layer 3 aspiny cell. U: A layer 4 stellate cell. E: Layer 5 pyramidal 
cell model. Only B and D displayed adaptation. The insets in B to E illustrate the 
morphologies of each reconstructed cell. Taken from Garcia-Lazaro et al. (2007) 

However. AMP is not restricted to this class of cell and can influence spike or burst 

generation in non-regular spiking type cells; the other model that displayed adaptation was 

the burst firing. Layer 3, pyramidal ceil (Figure 5.IB). 
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Figure 5.2: Spike-rate adnptatian in a model neuron 
Adaptation in the layer 3 pyramidal ceil model was dependent on the strength of the gKca-
A: gKfu = OpS/nm'. B: 0.5pS/jim^. C: 3pS/^tm^. D: 6pS/|im'. E: l2pS/nm'. Taken from 
(Garcia-I.azaro et al. 2007) 

5J.2: Adaptation to variance 

As discus.sed, two out of the four model cells tested displayed adaptation to global 

mean; however neither of these two model neurons adapted to increases in the variance of 

the stimulus (see figure 5.3). Thus, it can be argued, from the results of the modelling 
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study above at least, thai tlie AHP cuirent does not generate adaptation lo variance. 
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Figure S.3: Adaptation to variance in two reconstructed neural models that displayed 
adaptation lo mean 
Siinmlus-response functions, in response to adaptation with stimuli of increasing variance 
A: The layer 3 pyramidal cell. B: The layer 4 stellate cell (see Figure 5,1 B and D, 
respectively). Taken from Garcia-Lazaro et al. (2007) 

In fact some of the most compelling evidence to dale suggests that gain 

modulation, i.e. changes in neural output that afTect the slope of the slim ill us-response 

function, is dependent, to a lesser or greater degree, on the interplay between excitation and 

inhibition, across the network as a whole. As such, the focus of this chapter wil l be on 

extrinsic mechanisms, namely; 

• Levels of background noise {Chance et al. 2002) 

• A combination of the levels of background inhibition and synaptic depression 

(Murphy & Miller 2003; Rothman et al, 2009) 

• The overall balance of synaptic depression acting on excitatory and inhibitory 

inputs (Chelaru & Dragoi 2008) 
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Gain modulat ion f rom buekground synaptic input 

III vivo, neurons arc subjcclcd lo continuous barrages o f either driving (i.e. afferent 

excitation) or noisy synapiii: i i ipul. Stochastic inputs can be both excitatory' and inhibitor)' 

and are generally considered as background noise, in that whilst the level o f noise affects 

response variability it does not, strictly, drive the cell to respond. However it has been 

demonsliated, in vilriK that, w ithin rat somatosensory cortex, (he amount o f background 

noise can influence neural-gain (Chance el al. 2002). The details o f the evperinicnl are 

reviewed briefly below. 

Using a dynamic clamp technique, in a slice preparation, it was found that ihe gain 

o f target neurons decreased, relative to a control condition (see Figure 5.4) when f ir ing 

rates o f both background excitation and inhibition were increased by the same amount; gain 

mixlutation was qiianiified as a change in the slope of the f-l curve (Hiing rate verses 

driving current). Excitatory and inhibitory pre-synaplie spikes were generated using 

inhomogeneous Poisson processes, with basic f i rmg rates o f 7000Hz and 30001 Iz (to 

represent the summed input ofmauN synapses) for excitation and inhibition, respectively. 

For each presynaptic action potential (AP) a unitaiy conductance was added to running 

talh' o f conductances. Conductances were calculated using a difrerence-of-exponenlials 

equation and were introduced lo cell in vitro as synaptic currents, using the d\ namic clamp 

method, along with a constant driving current. Both inhibitory and excitatory background 

conductances were balanced, such that their net synaptic current was kept approximately at 

zero. By increasing the l lr ing rates of both inhibition and excitation in a balanced manner 

(e.g. from the control condition of 7000 & 300()Hz | IX condition], to 14000H7 .»;: 6000Hz 

[2X| for excitation and inhibition, respectively) there was an increase only in inpui noise 

and not net synaptic current. The increased input noise resulted in a decrease in neural gain 
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(see Figure 5.4). 
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Figure 5.4: Gain modulat ion in rat somatosensory corti-x, in v i l r o 
Increasing background input (b j X amouni) resullcd in a decrease in (he neural gain ol'the 
neuron tested, niamonds: OX condition; circles; I X; squares; 2X; triangles: 3X. Taken 
from Chance el al. (2002) 

Inl i ib i t ion-medi iKed gain change 

The background noise model o f gain modulation (Chance ci al. (2002), see section 

above) assumes that neural gain is dependent on stochastic, background t i r ing rates. 

however an alternative approach is to assume that gain-control is instead mediated via Ionic 

inhibition. A modelling study by Murpi iy & Mi l ler (Mi i r i i ln & M i l k r 2003) explored the 

relationship between the iniroduclion o f constant, background synaptic input and gain 
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inoduiulion o f a mode] V I cell. The study concluded that it was possible lo elicit 

nniltiplicative scaling in a model cell (i.e. an increase or decrease in the slope of the neural-

response function such thai the rate-lunction could be scaled up or down to fit the base-

level response, see Figtire 5.5). fol lowing the introduction o f either a Ionic excitatory or 

inhibitory conductance into the model. However, gain modulation was only observed when 

the relationship between the exteniiil stimulus parameter and input ciirieni was non-linear 

(e.g. i f the relationship between stimulus and driving current was siginoidal, as per the 

contrast-response observed in the visual cortex) and there was also a non-linear relationship 

between membrane potenliiil and f ir ing rate (e.g. a spike-threshold mechanism). 

The modelling study simulated the iontophoretic application o f pharmacological 

agents, which increased either nuidulato|-> excitation or inhibition, by introducing a 

constant conductance for the relevant receptor. Modiilatoiy input was small compared to 

driving current but sudlcient to generate a change in gain, when the other non-linearities 

were present. The simulated introduotinii o f a constant conductance resulted in 

multiplicative scaling of ihc model cell's contrast-response function (see Figure 5.5A&B); 

with the direction of gain change determined by whether the conductance was excitatory 

(i.e. modulated by either a-aniino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) or 

N-methyl-D-aspartic acid ( N M D A ) conductance) or inhibitoiy (gamma-aminobutyric acid-

A or H ( G A B A A or GABAn) conductance). The introduction o f GABA-medialed 

conductances resulted in a decrease in gain, with the effect most pronounced for the 

simulated G A B A B conductance. 

A potential source o f non-linearity, within sensory cortices in general, is synaptic 

depression. As discussed in Chapter 2, the evidence that thalamocortical .synaptic 
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depression underpins some of the more liigli-level features of conlrasl-gaiii control in llie 

visual cortex, such as cross-orientation suppression and contrast-invariance of the 

orientation tuning cuwe, is mixed (e.g. C'arandini. Heeger & Senn 2002; Freeman, Durand, 

Kiper & Carandini 2002; Boudreau & Ferster 2005, Li. Thompson, Duong, I'eterson & 

1-reeman 2006). 
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Fij^ui'c 5.5: Tunic inhihilion/i'xt.-ilaliun nieiliiiU-il ^am modulatioii in ii model cell 
A: Plol of contrast versus I'lring rale for a model neuron under conditions of simulated 
iontophoreiic application of NMDA (open sL|uarcs)̂  AMPA (open triangles), ( I A B A A 
(closed squares), or G A B A R (closed triangles); control condition was represented by open 
circles. Solid lines are fits of the data to a hyperbolic ratio function. B: Cur\cs Crom A 
scaled to optimally (least squares) 111 the Base curve, Taken from Muqili\ & Miller (2003) 

However, in terms of simple features, such as saturation of the neural response 

function, synaptic depression remains a strong candidate mechanism (Adorjan ct al,, 1999, 

Kayser, Preibe & Miller 2001); as when presynuptii; tiring rates become loo last, to allow 

for a full recovery from depression between spiking inputs, post-synaptic responses tend to 

saturate (Abbott et al„ 1997; Tsodjks & Markram 1997 ), 
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Recently, an experimental (in vitro, see Fiî iire 5.6, Top row ) and modelling study 

(Figure 5.6, Bottom row) has found diat, within ihc cerebellum at least, synapiie depression 

enhances and alters inhibition-mediated gain-control (Kothman et al. 2009); gain is 

multiplicative (i.e. affects slope of the ,stimulLis response function only) in the presence of 

synaptic depression and additive (affects stimulus-response function threshold) in the 

absence of depression. 

Symmetty iif excitiitory and •iihiliilory synaptic ilepressiun 

Synaptic depression is not restricted solely to excitatory inputs; in fact shifting the 

balance between levels of excitatory and inhibitor. s\naplii; depression can be a powerful 

mechanism for controlling overall levels of excitability wiihin the cortical network (see the 

following text). In general, cortical circuits have recurrent, as well as feedforward and 

feedback, connections. Weak feedforward signals can be amplified by recurrent excitation; 

however, to prevent runaway activation, recurrent inhibition is believed to act as a form of 

brake ((ialarreta &. Hestrin I'>98). 

Synaptic depression has been shown to have boih a fast (order of 100s ms) and slow 

(seconds) component (Varela ei al. 1997). Boih the fast (Varela et al. 1999) and slow 

components (Galarreta & Hestriii 1998) are sensitive lo frequency of stimulation and 

asymmeU'ic, in that excitatory synapses depress more strongly than inhibitory synapses. 11 

has been generalK assumed thai asymmetric synaptic depression acts lo shift the dynamics 

of the network towards iniiibition ((ialarreta & Heslrin 1998. Varela el al. 1999). howe\er 

it has recently been argued (Chehiru &. Dragoi 2008) that if pre-synaplic inhibition is the 

major contributor lo the cortical circuit, suppression of the excitatory drive acting on 

inhibition (resulting from strong depression of excitatory synapses) could shiH the bias of 
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the system towards excitation, thus responses would be facilitated as a consequence of 

asymmetric synaptic depression; under the same conditions, balanced synaptic depression 

would result in a decrease in neural-gain (see Figure 5.7). 
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Figure 5.6: Tonic inhibition-mediutcd gain modulation in the cerebellum 
Top left: Sample excitatory conductnnce with (blue) and wiihoiit (red) synaptic depression 
(STD) used to stimulate a cerebellar granule cell, during a dynamic clamp experiment; 
black lines plot the tonic inhibitoi^ conductance (Gmii). Top right: Average response of a 
granular cell, during the dynamic clamp experiment, to stimulation with and without STD 
(blue aiid red symbols, respectively) and ionic inhibition (open .symbols/dashed lines and 
filled symbols/solid lines, respectively); lines plot the best-lit to the data. Bottom left: 
Input/output relationship of a model cell without STD; solid symbols/lines gives the control 
response, empty symbols/dashed lines plot the response as a function of inhibitory input 
rate (moving from left to right). Bottom right: Input/outpul relationship of a model cell 
with STD; solid symbols/lines gives the control response, empty symbols/dashed lines plot 
the response as a function of inhibitory input rate (moving from lop to bottom).Taken from 
Rothman eta), (2009). 
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Gain control lliroiigli adjiisinieiils in tiie balance between synaptic inhibition and 

excitation has also been Ibiind under conditions of spike-timing dependent plasticity 

(STDP), a well explored cortical and bippocampal phenomenon in which synapses are 

strengthened (long-term potentiation! uhcn a pre-synaptic spike precedes a post-synaptic 

action potential and weakened (long-term depression) by the reverse sequence of spiking 

events (e.g. Bliss & Lomo 1973; Markram. L.iibkc, Frotselicr & Sakmann 1997; Zhang, 

Tao. Holl, Harris & Poo 1998, Bi & Poo 1998. Feldman 2000)- l.ong-temi potentiation and 

depression has been observed in both excitatory and inhibitory synapses via a di-synaptic 

mechanism: in whicb inhibition can either be potentiated or depressed through the 

strengthening or weakening ofexcitalon, inputs at the first synapse in the circuit (Lamsa. 

Heeroma & Kullman 2005), 
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Figure S.7: Asymmetric :in(l symmetric synaptic depression. 
The response of an arbitrary, model, cell (see Section 3.3, below) to feedfoiAvard excitatory 
inpnt {\' ) under conditions oCno depression (black line), balanced depression (grey, 
dashed line) and asjmmclrical depression (grey, solid line) Fakeri iVoiii Clieiarii &. Dragoi, 
(2008). 
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A recent experimental and modelling sluil> (Canalho & Buonomano 2009) looking 

at STDP in the hippocampus found that the full range of adaptive gain changes (i.e. lateral 

shifts and/or an increase/decrease in the slope of the neural rate function) were eliciled (and 

simulated in a computational model) by modulating the levels of long-term plasticity in 

both excitatory and inhibitory inputs (see Figure 5.S), 

Laleral displacement of the input/oulput function arose due to cither excitatory 

long-temi poteminlion (dark-green line: Figure 5,8, Top)or long-term depression (light-

green line; Figure 5.8, Top) alone (see also dashed, black lines in Figure 5.8, Bottom). 

Inhibitory long-term depression induced a reduction in stimulus threshold, whilst 

increasing gain (red line; Figure 5.8. Top): whilst ijihibiloiy long-term potentiation induced 

the opposite elTccI (magenta line; I'igure 5,8, fop). 

The balanced potentiation of both excitation and inhibition resulted in adecrease in 

neural gain only, i.e. threshold remained constant: balanced long-term depression induced 

the opposite effect (see dashed, grey lines in Figure 5.8, Bottom), 

Whilst there is no suggestion that STDP is the mechanism underpinning adaptation 

to stimulus statistics, the effects of STDP on neural output has parallels with the other 

mechanisms highlighted in this chapter Long-term depression of excitation causes a 

rightward displacement in the neural function, much as spike-rale adaptation does; both 

long-temi depression and spike-rate adaptation work by increasing the stimulus strength 

required to elicit a given respon.se (e,g, the half maximal response). A change in neural gain 

was achieved through adjusting the non-linear relationship between excitation and 

inhibition, as a function of stimulus intensity. This is of course, similar to the inhibition-

mediated gain control model (Muiphy & Miller 2003) highlighted earlier, but is much 
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closer, in its mode of action, to ilie model of asymmetric depression (Cheiaru & Dragoi 

2008) outlined above. For all models, however, decreased neural gain arises due to 

increases in both excitation and inhibition. 

15 
EPSP slope 

Stimulus Intensity 

Figure 5.8: Long term depression (LTD) and potentiation (LTP) of excitation and 
inhibition 
The response of an arbitrary, model, cell to LTP and LTD of excitatory and inhibitory 
inputs. Top; Response as a function of spiking probability verses slope of the posl-synaptic 
potential; blue line plots the control response. LTP of excitation (dark-grccn line) would 
result in a leftward shift in stimulus-response function of the model cell whilst LTD of 
excitation (iighl-green) would elicit a rightward shift. LTP oflred line) and LTD (magenta 
line) would results in a decrea,se and increase in gain, respectively with lateral displacement 
in the opposite direction of excitation. Bolloni: Balanced LTP/LTD of both excitation and 
inhibition (grey dashed lines) result in a decrease and increase in gain (i.e. the slope of 
firing probability plotted as a function of stimulus intensity), respectively, whilst threshold 
is unchanged; black, dashed lines plot LTP/1.TD of excitation only; the diagram to the left 
is a hypothetical di-synaptic unit. Taken from Carvalho & Buonomano (2009) 
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5.1.3: Relating models of gain modulation to adaptation to variance 

In general, the models described above are focused on the sleady-stale response to 

isolated stimuli, rather than the adaptive response lo tiinc-\ar>ing stimuli. The question 

addressed below is how can these nu>dels he related to the adaptation data, which has been 

the focus of this thesis? 

M<)ilul»tiiif> levels of buekground noise 

If one refers back to the results highlighted in Figure 5,4, it is cleai- that the model 

of gain modulation via increased background noise only accounts for the //) yiiro condition 

and represents the steady-state response to pulses of current injection. I low then can this 

model of gain niodulalion be reconciled with the decrease in gain, observed hi vivo, during 

adaptation to stinmlus variance (Garcia-Lazaro el al. (2007) and Chapter 3, tliis thesis)? For 

the model to represent accurately the adaptive mechanisms present in vivo, two important 

assumptions must be made: firstly, that background firing rates are dependent, to some 

degree, on the stimulus itself and. secondly, that background input rates only increase in 

line with the variance ol the stimulus. 

The caveat that background rales must be dependent on the input is not without 

ju.stillcation; the somalotopology of the barrel coilex is such that neighbouring cells, within 

a column, arc gencralh tuned to the same principle whiskL'r (.Armstrong-James & Fox 

1987: Simons 1978 ), especially within the barrel regions of Iayer4 {Woolsey & der Loos 

1970). If driving input can be considered as that which is derived directly from thalamic 

input (or in the case of layer 2/3 cells, from feedforward alferents from layer 4 or layer 5. 

Shepherd. Stepanyanls, Bureau, Chklovskii & Svoboda 2005), then noisy, background 

inputs arise lioni the remainder of the synaptic input: connections of inler-columnar. inCer-
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areal and, signil lcaniK, local and/or recunent origin. Tor example, layer 4 stellate cells 

synapse with at least 30% of surrounding neurons, within the barrel region of die cortex 

(I'cldiucyer. Egger, Lubke & Sakmanii l^W), whilst layer 3 pyramid cells have been found 

to connect extensively, within the coilieal a i lumn. bolh intra- and inter-laniinarly 

(l"cldmeyer, Lubke & Sakmann 2006). Whilst recent evidence suggests that there is a large 

degree o f heterogeneity, within columns, in the strength of principle whisker selectivity 

(Sato. Gray, Mainen & Svoboda 2007) it nevertheless remains true that stimulation o f a 

neuron's principle whisker w i l l elicit respon.scs in both the neuron and its neighbouring 

cells, "thus it can be argued that the levels of backjiround input can be influenced by the 

stimulus. 

The second assumption, that background Ining rates increase only with stimulus 

variance and not, as one might intuitively expect, with stimulus mean, is also valid when 

one considers how adaptation affects the output o f a cell. Consider that adaptation to global 

mean tends to shift the linear ponion o f the stimulus-respon.se function to regions in the 

stimulus space that are generally of larger amplitude than that covered by the high-

probability region. Therefore, rcsponsos to the stimuli wit i i i i i liic high-probahilit) region 

are generally suppressed and. importantly, similar across all mean adapting levels. Thus, as 

the high-probability region stimuli are presented most frequently, it can be argued that 

overall background Uring rates wouldn't increase in proportion to any increase in the mean 

o f the adapting .stimulus, especially i f adaptation occurred rapidly. 

In the case o f adaptation to variance, as the width o f the high-probability region 

increases there is a downward scaling of the stimulus-response function, thus intuitively 

one might expect to see a decrease in background f ir ing rates. However, as there is no or 
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little laleral displacement of the neural rale Junction (as the adapting stimulus variance 

increases), there is less suppression of the response to the sirongest stimuli within the high-

probability region, relative to lower variance conditions. Thus one can argue thai, overall, 

background firing rates would increase with stimulus variance. 

Tanic inhiliitinn 

In terms of inhibition-mediated gain modulation the observed decrease in neural-

gain, following adaptation to increased levels of variance, could be geueraied by a process 

of increasing tonic inhibition in proportion to the amount of noise within the adapting 

stimulus. The excilaloiy drive acting on the target cell would also have to be transformed 

IVoni a linear to non-linear signal, either sub-cortically or during thalamocortical 

transmission. 

As slated, one potential source of non-linearity in the cortex is synaptic depression. 

U.se-dependent synaptic depression has been obsciAcd in both thalamocortical and cortico-

cortical connections within the barrel cortex (e.g. Petersen 2002) and modulatoiy tonic 

inhibition is present in all layers of the somatosensory cortex (but strongest in Layer V 

lYamada. Furukawa, Ueno. Yamamoio & Fukuda 2007; Kvriazi. Carvell. Brumberg & 

Simons 1998|) where it is mediated mainly via GABAA-type receptors (Salin & Prince 

19%; Kyriazi, Carvcll. Brumberg & Simons l'>96). Thus the conditions necessary to 

generate gain modulation, within the constraints of either approach, are present in the barrel 

cortex. 

Balance of synaptic depression 

Adaptation to variance could be achieved through a process of adjusting the overal 
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i i i l l i ience o f in l i ib i l ion on llie cortical nemork. D i is i;oulc! be acliieved by ntanipulalin^ ilie 

relalivc levels o f inl i ib i lor j and excitatory depression in a manner ihal is dependent on 

stimulus noise; i.e. excitatory and inhibitory depression would become progressively more 

balitnccd as .stimulus variance increa.sed. 

The nature o f the adapting stimulus itseli'means that some relative relief from 

depression sliould occur as stimulus variance incrca.scs. As the width oMhc high-

probability region widens, the number o f possible inputs both above and below the central 

stimulus increases thereby increasing the probability of presentation of stimuli that do not 

elicit an afferent response and allowing for the synaplic resource to be replenished. Thus, i f 

one assumes th;tt excit;tlor>' depression levels are more sensitive to stimulus noise, one 

ctiiild argue that as variance increases, net e\cilator\ depression is weakened, driving it 

closer lo inhibitorj' levels o f depression. 

What evidence is there that llie balance between excitatory and inhibitory synaptic 

depression is adjusted, within the barrel cortex, in a .stimulus-dependent manner? 

Il is well establislied that the strength and time course ofdepression is sensitive to 

stimulus frequency {e.g. Varcla et al. 1997, Varela et al. 1999, Ciatarrcta & l lestrin, 1998). 

however, it is less clear how stimulus frequency affects the balance between afferent 

excitation and inhibition. Within layer IV o f the rat barrel cortex, periodic whisker 

deflection, has been shown lo adapt incoming excitation and inhibition to an equal degree 

( I l ig lcy & Conlreras 2006). However, for longer periods of stimulation, inii ibit ion tends to 

adapt much more strongly than excitation, resulting in disinhibilioil within the circuit 

( l lciss ci al, 2008)- W'hilst none of the two studies (Higlcy & Contrera.s, 2006: Heiss el al. 

2008) addressed the mechanisms o f adaptation directly, one could argue that differences in 
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the strength ol" inhibition rellect a change in the balance ol" synaptic depression, i.e. for long 

periods of slimuliition excitatory depression becomes stronger, thus reducing the overall 

levels of inhibition; ofcourse, sustained stimulation resembles most strongly the low-

variance stinnikis regime. 

Key features nf the inoilels 

From the review above it would seem that the crucial factor underpinning gain 

control is the balance between inhibition and excitation. 1 lowcvcr, the tonic inhibition 

model also relies heavily on a transfonnalion of the relationship between stimulus and 

driving input to elicit a change in either neural threshold or gain. If synaptic plasticity is the 

source of non-linearity, then it would have to be 'switched on and ofV depending on the 

adapting regime. 

Ofcoursc, there is evidence to suggest that thalamocortical depression, both in the 

barrel (Castro-Alamancos 2004a; Castro-Alamancos 2004b) and visual cortex (Boudieau 

& I'crstcr 2005), is highly saturated due levels of tonic activity in the Ihalanuis, Therelbre, 

it is pcssihlc that under conditions of adaptation to global mean and low-variance, 

thalamocortical transmission of afferent excitatory input would be highly suppressed (due 

to the sustained presentation of a small number of stimulus intensities). In these 

circumstances increased tonic inhibition could lead to lateral displacement of the neural-

rate function. Kor higher-variance adapting conditions, there would be a corresponding 

release from saturation in levels of thalamocortical depression. However, viewed in 

isolation, release from depression in afferent excitation could be expected to increase gain, 

as firing rates would be increased. Conversely, when viewed within the constraints of the 
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asymmetric model ordepression, outlined above (Chelarn & Dragoi 2008). release from 

synaptic depression is iiclually a necessary condition for generating gain modulation. 

In conclusion, the mechanism of adjusting the relative balance between the 

influence of excitation and inhibition (Chelani & Dragoi 2008) ofVers the most tlexibility ot" 

all the models outlined here. However, as there is a clear mechanism by which changes in 

the balance ofsynaplic depression can be achieved, it is argued that this represents a 

biologically valid model. 

As such a model of asymmetric depression was developed, based largely on the 

model developed by Chelaru and colleagues {Chelaru & Dragoi 2008). and tested under 

conditions of adaptation to variance and mean. This was compared to a model of gain 

modulation through increasing the Uring rates of background noise as suggested by Frances 

Chance and colleagues (Chance et al. 2002). 

5.2: Model cell: pulse based model 

It was decided to de\'elop a simple neural model, i.e. a single-comparimeni 

llodgkin-Huxley type model, to assess the validity of the putative mechanisms of gain 

modulation outlined in the introduction above. 

As the primai-y interest was in exploring extrinsic cellular mechanisms it was felt 

that a single-comparlmetital model would be more useful than re-implementing the 

NIAJRON model outlined in Section: 5.1, above (Garcia-I.a/aro el al. 2007). 

NEURON models have the advantage of being biologically realistic; however their 

complexity can be a disadvantage when one is interested in general mechanisms only as 

one must untangle the affects of dendritic structure on the passive properties of the cell. 
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The equations governing the llodgkin-Huxley ( I l l l ) eiiuaiions (Hodgkin & Huxley 

1990), for a stngle-conipartnienlal neural model are given liclow; 

t-'""' = -.«,... ('• - £,,., ) - g^. '" ' / ' (^' - A \ „ ) - ^ ' .H^ f - £ . ) 
fit- -a^(y)l\-n,)-fljy)m 

5.1 

Where Cm is the membrane capacitance, F is the membrane potential, ^'t,,*, J;,VU and gK are 

the leak, sodium and potassium conductances, respectively, Ei,,,^ E.\;, & EL are the 

corresponding reversal potentials and ni. Ii and n are the gaiing-particle variables, governed 

by the rale constants a and /I 

One issue with the HH model is that it is compiiiaiionally expensive; the galing-

particle variables must he differentiated at each time step. Integrate and Urc neurons (I & F) 

olTcr (he simplest model of a spiking cell, however they generally ignore the complexity of 

possible currents/conductance's acting on the cell's membrane potential. As a compromise 

between both models, Alain Deslexhe developed a conductance-based integrate and fire 

neuron (Destexhe 1997) that assumed that gating dynamics, during llrinp, can be 

approximated as 'pulses' and as such don't need to be ditTercniiatcd at every step. The 

values oflhe voltage-dependent parameters (« and fl, see equation 5,1) were Hxed al their 

value when the membrane potential was 20mV or-70mV. depending on the firing/non 

firing stale of cell (based on the Traub-Miles model [Traub & Miles 1991]). A comparison 

between the HH model and the pulse-based (PB) model is shown in Figure 5.9. Both the 

PB and IIH models respond in almost identical manner to a current injection of 20nA; 

however the PB model is ihe most elllcienl in terms of compulation power, as there are 

fewer calculations per time step. 
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5.2.}: Single-comparlntent, pulse-hused, Inte};rate & Fire, neural model 

with ionic conductances 

The pulse-based model (PB model) uses the Ilodgkin-Huxtey (IIH) equations as 

ils basis. The galing-parlicle variables, in. Ii and ii depend un the evolution, over time, of 

the voltage-dependent rate constants: «„,. /f„« «/,, /*/» tx„. /f„. These exhibit sharp transitions 

during spiking and as such caji be approximated by determining their value at two extremes 

or membrane voltage (20 and-7(1 mV), 

The rate constants are thus assigned as constants, whose values depends on whether 

the cell is ilring or not (see "fable 5.1. below). 

Tiihle 5.1; VHIUCS of the vollu^c dc pen Jen I rate consliinis under fiiinji/iiot n i i i i ; ' 
I'unclilions 
Using the Traub-Miles formiilalion (Traub &. Miles 1991) 

Rate constant (niV) 
a„,(20j 

/U-70/ 

a,.l-7l)j 

(ih.(20) 

a„(20) 

^,.1-m 

Firing 

22ms-' 

0 

0 

4ms-' 

2-2ms-' 

0 

Not firing 
0 

I3ms-' 

0.5ms-' 

0 

0 

0.76ms-' 

Within the PB model, action potentials are ofa fixed duration (0 6ms). thus, once 

the membrane potential crosses a given threshold, a spike or pulse is generated. 
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Figure 5.9: C«mpui-i.siin nl ' the EMI model w i t h (lie pulse-based (I 'B) model 
For parameters, please see llie lexl. Taken from Desicxhe (1W7). 
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During llring, iii. ii. and h are given by: 

m{t) = I + (HI, - I )exp[-ff„(/ -/„)] 

/;(/) = /;„ exp[-/?„(/-^,)] 

M/)= l + (" „ -nexpi- t i ' „ ( / - / „ ) 

Wlicre Iti is the time at which tlu" pulse started. 

\A'hen llic cell is nol ("ii inu. m. ii. ami /; are t!i\'cn bv: 

5.2 

5 J 

m(0 = '«„CM'|-/ t( ' - ' i , ) l 
A(/)- l + (/ ;„-l)expf-a„(/-/„) 

;?(/) = "„ exp[-A,(/-^,)| 

Where /„ is the time at vsliich llic la.st pulse ended. 

The membrane polential at each time step is calculated as: 

r(f + i) = r(/) + di(/,,,^-«,,jr-f,,,j-^,,,,«Vi(K-i\.„)-g.n'(r-f,)/L/») 
5.4 

The PB cell model, was implemented in Mall-ab (release 2009a). using the same 

parameters as in Destexhe (1997), see Table 5.2. A comparison betueen the implemented 

PH model and a l iH model is pIcHicd in Pigure 5.10. For the l l l l model, the rale con.stants 

were derived (at each lime step) using the Traub-Miles formulas (Traub & Miles 1991). as 

derived by F.rmentrout ((•.rinentroiit, Pascal i t Gulkin 2001). sec F^quation 5.5: 

ani(l') = 0.32(r + 54)/(l - exp( - ( r + 54)/4)) 

/int{V) - 0.28(r + 27)/exp((F + 27)/5)- I) 

a'/i(n^().l28exp(-(K + 27)/l«) 

m n =4/(12 + exp(-(r + 27)/5)) 

an(V) = 0.032(1' + 52)/( 1 - exp(-(f + 52)/5)) 

/>J(F) = 0.5 * exp(-(('' + 57)/40) 

5.5 
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HH model PB Model 
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"iiau 

h 0.5 
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Time (ms) 
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Figure S.IO: Comparison of (he pulse-based and Hodgkin Huxley model 
implemenlalions 
Bolh cell models were stimulated with a depolarising 2nA current. The parameters for the 
models are in Table 5.2 

Both implementations of the HH model and the PB model compare well 

with each other (and compare favourably with the implementation of Destexhe (1997), see 

Figure 5.9 & Figure 5.10, for comparison), thus it was decided to use this implementation 

of the PB model to lest the various models of adaptation. 
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Table 5.2; List iif (lulse-bused madel cell parameter values (taken from Destexhe IW7) 

Parameter 

Absolute Threshold 

£^/,-.(A 

£.v„ 

EK 

Cm 

gkiii 

^ , V . ; 

SK 

Al 

Spike duration 

RelVactoiy period 

Value 

-54.3m V 

-70niV 

50mV 

-77mV 

1 fjYIcm' 

0.3mS/cm-

120mS/enr 

.i6mS/cTn" 

0.0 Ims 

O.eOnis 

:.00ms 

5.2.2: Adapting firing threshohl 

As staled within the ialroductioii, the IKICJI cuixenl, is believed lo underpin, in pari 

at least, spike frequency adaptation and has been shown lo be responsible for ;idapli\'c 

shifts in the stimulus-response function in two reconstructed model cells (see Seelion 

5.1.1). However a simpler method of generating spike frequency adaptation is lo introduce 

a dynamie Hring threshold (Liu & Wang 2001). liach lime a spike is llred the adaptive 

threshold, 0. is increased by a constant weight b and then decays back lo the absolute 

threshold, thu with time conslanl, T i,!,,^,. 

Under this regime both membrane potential and threshold are ailificially inllated 

above typical physiological levels (e.g. between -50-40inV). Under a regime of IKIOJ 

cuncnt-based spike-rate adaptation, membrane threshold is constant: the iKiLin current 

increases hypcrpolarisalion, Ihereb) alTecting the temporal dynamics of ihe membrane 

potential are affected (as it takes relati\'cly longer lo reach threshold from rcsling potential 
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levels). 

For dynamic changes in membrane threshold to occur in vivo, the sensitivity of the 

vottagc-gated sodium and potassium membrane channek would have to adjust every time a 

spike was fired. The iKuai current represents the most biologically valid mechanism of 

spike-rate adaptation. However, the introduction of a hypeipolarising iKHiO current into the 

model cell would impact on maintaining the balance between background inhibition and 

excitation. Thus it was decided to incorporate the less realistic, but computationally more 

efficient, dynamic llring threshold mechanism into the model cell. 

The threshold at each lime step, 0 fl). is governed by Equations 5.6-5.8. 

5.6 
If a spike is fired at time-step = /, then the threshold. 0, at time-step = / + I is given 

by: 

&(/+•!) = 9{l)(I - (rf// r,^^„)) + {(OJr „,̂ „ )cli) i h 

Otherwise; 
5.7 

S.8 

The threshold and output of the model cell, over time, for various levels of the 

weight constant, h. arc plotted in I-igure 5.11. 

Including a dynamic threshold, within the PB model, generated spike frequency 

adaptation (the inler-spike Jnlerva! i.s increased with each successive spike), the strength of 
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which was deiermined by the parameter b. 

-100 

.0 ' 
SC 40 U AQ 130 1 ^ HS ICQ 190 Ml 

Time (ms 

Figure 5.11: Spike-rate adaplalioii in the model cell 
Sluiwinji etTect of the parameter b on tlrinj! threshold and membrane potential of a model 
cell, in response to a simulated current step injection of2nA; duration: 180ms. Top: The 
dynamic threshold of the cell as a funclion of h. Bottom: Membrane poiential of the model 
cell. 

5.2.3: Stimulus 

The stimulus for the model cells were always one of the following (unless 

explicitly stated otherwise in the text): 
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• Cuirent steps - cells were injected with siiiiulaled current steps ranging from 0 to 

0.4nA (in either 0.1 or 0.05 steps). In general, each current step was presented tor 500ms; 

the response, for a given cutrent step, was taken to be the sum of the spike count during the 

cuirenl pulse, divided by the pulse duration. 

• Adaptation to global mean - the stimulus dislribntion ranged from 0 to 

0.401 lii.A (in 0.0191 nA step^). The higli-probaliilil) regions (high-probability region) were 

0.0955nA wide (i.e. spanning 5 amplitudes) and were centred on 0.0573nA, 0.l337nA, 

0.2101 nA & 0.265nA. As per the experiiiiental paradigm, the model cell was stimulated for 

30s. under each high-probability region condition, and amplitudes were refreshed every 

40ms. An example of the stimulus, under each high-probability region eondilion is plotted 

in figure 5.12), 

• Adaptation to variance - the stimulus paradigm was as for adaptation to the mean 

except the distribution ranged from 0 to 0.456nA (in 0.019nA steps) and the high-

probability region were all centred on 0. l.'>2nA and ranged in size from 0.1330-0.1710nA 

(spanning 3 amplitudes, low-variance condition), 0.0950-0.2()90nA (spanning 7 amplitudes, 

mid-variance) & 0.0570-0.2470nA (spanning 1 I amplitudes, high-variance). A sample 

stimulus, of 5OO1TIS duration, is plotted in Figure 5.13. 

In some simulations the stimulus was not an injected current but rather an 

excitatory conduclance: under the.se circumstances, the driving current was converted into a 

tiring rate (Hz) and fed into a Poisson spike generator, from which the conductance was 

calculated. The conversion from currciil injecLion into tiring rate was achieved by 

multiplying the stimulus (in nA) with a conversion constant, c (in this case c- = 40); f was 

determined by finding which value resulted in an average synaptic current (as a function of 
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tlie conductance and membrane voltage) that was as close as possible to the original driving 

current. 

HPR:0.0573nA 
0.4 

0.2 

0 

< 

"c 

b 

u 
"O 

t3 
0) 
'c 

0.4 

0.2 [ 

0 

0.4 

0.2^ L 

0 

0.4-

0.2 f 

0 
0.1 

n=i i: 

HPR:0.1337nA 

-T r 

HPR;0.2101nA 

HPR:0.265nA 

0.2 0.3 
Time [s] 

1 r 

0.4 0.5 

Figure 5.12: Sample of the stimulus to the model cell: Adaptation to mean 
Please see text for details 

Synaptic conductances were calculated using a dilTerence-of-exponenlials 

function, with a rise time of O.lms; decay time was 10ms for the inhihiloiy conductance 

and 5ms for excitatory. 
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0.4 
Injected current: Low Variance 

< 

0 

Mid Variance 
0.4 

< 
c 

0 

0.4 
< 
c 

High Variance 

S 0.1 0.2 0.3 
Time (s) 

0.4 0.5 

Figure 5.13: Siimple of the stimulus to the model ceil: Atlaptation to vflriance 
Please see text for details 

Peak conductance was set to 0.4 and 1,6 times the resting conductance for 

excitatorj' and inhibitor}' conductances, respectively, and the lime step, ̂ 1, was 0,01 ms; the 

parameters were taken from Chance et al. (2002). Each pre-synaptic spike generated a 

unitary conductance (calculated for a 100ms following spike generation), which was added 

to the running total of the .synaptic conductance. The excitatory and inhibiloiy reversal 

potentials were OniV and -90mV, respectively. 
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5.2.4: Tuning of the model cell 

The average luning of the model cell to injected current steps of 500ms duration is 

plotted in Figure 5.14, below. The response increased monotonically, with stimulus current. 

5.2.5: Synaptic depression as a non-linearity 

As suggested earlier, synaptic depression may generate the necessary conditions 

for gain modulation, thus a description of synaptic depression, within the model, is given 

below. In order to replicate this in ihe model cell, the driving current was replaced by an 

excitatory conductance that underwent synaptic depression. Pre-synaplic spikes were 

generated by an inhoniogeneous Poisson process, with the tiring rate detemiined by ihe 

input cun'cnl (the driving current was multiplied by the constant, c (f = 40), to convert to 

Hz). 

400 

D.4 O.fi 

Input (nA) 

Figure 5.14: Tuning cune of Ihc mudel evil to injccled current steps of amplitudes 
OnA-lnA 
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Ihc paramelcrs ofthe synaptic conductance were as lor Section: 5.2.3 above. 

however, the conduciance for each spike was multiplied by the fraction of synaptic resource 

available, USH, at the lime of firing. For each action potential. Usu was muliiplied by a given 

depression fraction D and rose exponentially, in between spikes, back to the resting level of 

unity with a lime con.slanl of 3()()ms (T.sodyks & Markrani 1^97). Under a condition of no 

synaptic depression, /) was equal to unity; olhenvisc D was sel to be vvilhin die range of: 

0 , 3 < D < 1 
5.»» 

The closer D was to unity, the weaker the depression acting on the conductance. 

An example of the excitatory conduciance under the depressed and non-depressed 

condition Is plotted in Figure 5.15, along with the available synaptic resource at each time 

step; the input rate was 30Hz {equivalent to a current injection of 0.75nA}. 

The average excitatory synaptic conductance (over 1 (10 trials), at each time step, as 

a function of stimulus aniplitude (0 to In A. in 0.1 nA steps) and under both conditions 

(depression and no depression) is plotted in Figure 5.16. Without synaptic depression the 

average driving conduciance was approximately a linear function of ihc input rale. 

However, in the presence of synaptic depression, the mean, excitatory, conductance 

diverged from the undepressed conductance almost immediately; the average depressing 

conductance also saturated rapidly. 

S.2.6: Integrate & Fire units 

Synaptic depression is highly dependent on the variation in the stimulus at each 

time-step, as this will affect recovery of the synaptic resource. Thus, in order to examine 

liow ihe lime varying siimulus affected output, simulaiiom were also iun. in which the 
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stiniLtlus was used to drive a small network of Integrate & Fire (I & F) units with Poisson 

spiking statistics. A circuit was developed with 4 recurrently connected excitatory I & F 

neurons that had reciprocal connections to a single inhibitory I & F unit, that was also 

recurrently connected to itself; all five units provided afferent input to a target neuron that 

was used to measure the response to the stimulus. 

0.25r 

^ 0.2 

^ 0.15^ 
o 
1 0.1 
•o 

(J 0.05 

• D = l 

0 = 0.8 

0.1 0.2 0.3 
Time (Seconds) 

0.4 0.5 

Figure 5.15: C'on)pari.son of a depressed and undepressed synaptic conductance, 
generated in response tn Ihe same spike train 
Top: The anunnit of synaptic resource (solid lines) available at each time step, in Ihe 
presence of .synaptic depression (red lines, bottom figure), the circles indicate the spike 
time and the amount of synaptic resource available for each spike-generated conductance. 
Bottom: The actual synaptic conductance, in response to a given spike train, in Ihc 
depressed (red, solid line) and undepressed (blue, dashed line) case, see tevt for details of 
parameters and spike-train generation (please see Section; 5,3.1 & 5.2.S) 
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0.04 

10 15 20 25 30 
Input rate (Hz) 

35 40 

Figure 5.16: Comparison oTthe mciin depressed and undcprt-sstd synaptic 
conduclunce, as a function of input rate 
The average conductance was calculated, for each stimulus presentation and across len 
trials, for each stimulus amplitude (0 - I n A, converted into Hz), by taking the average of 
the sleady-slate (>200ms) conductance used to drive the model cell under both depressed 
(red line) and undepressed {b'ue line) conditions; the error bars give the standard error, 
across the ten trials. 

Tbe parameters for the I & F units were as follows (parameters for peak 

conductances were derived from Chelam & Dragoi [2008|): 

• Membrane resistance (Rm): 10000 Ohms: 

• Membrane time constant ( r„): 10ms; 
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• Leak reversal potential (E, ): -75mV; 

• Reset voltage (V^̂ ,,,̂ ,,}:-8()mV 

• Threshold: -54niV 

• Rcrraclory period: 2ms; 

• Peak conductance oCi-eciirrent excitatory conductaiice:0. liiS 

• Peak conductance of recurrent inhibiting conduclance:O.AnS 

• Peak conductance of recurrent cxcitaion to inhibition conductancc:U.44nS 

• Peak conductance of recurrent inhibition to excitatory conductance:0.49nS 

• Peak conductance of feedforward inhibition/excitation on target cell was 

0.375/0.350nS respectively. 

All other piirametcrs, for generating synaptic conductances, were as for Section 

5.2.3 above. 

The membrane potential at each time step (/). for the time-dependent current (/). 

was calculated as: 

K„; -E,+R,n{/u)-it^ u-\){Vi'-\)-y,))-(s,j'-\)(yu-i)-K))) 
I I 

n O = I '„ ,+<I ' ( / - l ) - f„„)exp(-^/ / r„) 
5.10 

Where m is the polarity of the I & F unit,;' <t c represent the inhibitory/excitatory recurrent 

and reciprocal conductances.;/ is the number oCexcitalory units-

5.3: Replicating models of gain modulation in a puLse-bascd neural 

model. 

As stated earlier, the aim of Chapter 5 was to explore which of the various models 
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of gain modulation, highligiued in llie inlioduclion, can best account I'or the decrease in 

neural-gain observed following adaptation lo stimulus variance. The tlrst stage of analysis 

was to replicate the general results from each model, using the conductance-based neural 

cell model described above. The first model replicated was the background noise model, as 

proposed by Chance and colleagues (Chance el al. 2002). 

5.3.1: Increased hackeroimd noise decreases neural gain 

In order to replicate the results from Chance et al. (2002), simulated current pulses 

were injected into the model cell (see Figure 5.17). 

. The stimulus was a square-wave current pulse (duration: 500ms) and increased in 

increments of O.OSnA with each presentation (from a starting value of OnA and a final value 

of 0.4nA). In addition Lo ihe driving current, background excitatory and in iiihibitO[->' 

conductances were injected into the model cell. Pre-synapiic spikes were generated using 

an inhomogeneous Poisson process, with the base firing rate (IX condition), for both 

inhibition and excitation, set to 50Hz. The conductances were calculated using a diflerence-

of-e\ponentials function, with a rise lime of 0.1ms; deca\ lime was 10ms for the inhibitory 

conductance and 5ms for excitatory. For parameters see Section 2.3. above. The 

background conductance elicited average sub-threshold membrane llucluations with a 

standard deviation of±5mV. An example of the conductances under the 1-3X conditions is 

given in Figure 5.17. 

The inpiit/outpiil (I/O) curve was taken lo be the a\ crage number of spikes fired 

once the model cell had reached the .steady slate (taken to be from 200ms into stimulus 

prcsenlalion) as a function of the amplitude of the cuiTent-slep. The I/O curve of the model 

cell under the 1-3X conditions are plotted in Figure 5.18. As can be seen, increasing 
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background llring rales resulted in a decrease in gain, thus the model cell fully replicaled 

the in vitro data (Chance et a!. 2002), 

Background excitatory conductance: 1X 
0.04 

< 
^=0,02 

0 
kl\K>KkMvMM.MK(.l.̂  ^kk^^^kU 

Background inhiibitorY conductance:IX 
0,2r 

c 0 

% 

0.1 r 

!̂l/̂ M,̂ AA>V f̂̂ K^̂ . ,̂/̂ , 
0-1 0 2 0 3 0.4 0.5 

Excitatory: 2X 

Intiibitory: 2X 
0.4 

0.2 

% 0.1 0.2 0.3 0.4 0.5 

Excitatory: 3X 
0.1 r 

0.05 

0 
Intiibitory: 3X 

0.5r 

% 

y*AA/^^A^^^WV^^^ 
0.1 0.2 0.3 0.4 0.5 

Time (5) 
Figure 5.17: Rxampic of background conductance »t SOHz 
A sample of the background conductance levels under the I -3X conditions (see text for 
details) are plotted from top ( IX) to bottom (3X) axes; red plots the inhibitory and green 
the excitatory conductances 

On average the half-maximal amplitudes, or threshold (Sju). were 0.3504nA, 

0.4092nA & 0.4362nA, whilst slope, at the S50, was 0.0407Hz/nA-, 0.0292Hz/nA^& 
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0.028lH7ynA-forLlie IX, 2Xand 3X conditions, respectively. 

5.3.2:1nhibitlon-medialed changes in gain 

TTie scaling of the stimulus-response function through increasing levels of tonic 

inhibition (Muiphy & Miller 2003) was replicated in tlie model cell. 

400 
Model cell: Increase in background noise 

0.1 0.2 0.3 0.4 
Injected current (nA) 

0.5 

Figure S.IS: Increased backgrounri firing rates elicit dt-crease in neural gain 
tiackgi-nurid firing rales (1X (5011/) -blue lines/symbol. 2X (lOOHz) - magenta, 3X 
(150Hz) - green) were increased in a balanced manner and neural gain decreased. Solid 
lines plot the best-fit to the data (symbols). 

The background conductances were as for the model above in the IX configuration 
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(i.e. 5011/. parameiers as in Section 5.3,1, above). Tonic inliibiioi-> conductances were 

mimicked by introducing a constant conductance of 0.25-0.75nS (llie reversal potential for 

tonic inhibition was -SOmV). The stimulus was the amplilnde oFllie injected current in nA 

(from 0-lnA. in steps of 0.05nAi. Under the non-linear condition the actual injected current 

into the model cell was a sigmoidal function of the stimulus: 

; ( 'I I n , II \ 

5.11 

Relationship between stimulus 
and injecled current 

0.2 0.4 0.6 

Stimulus [nA) 

Fi};uri- 5.1*): Relationship bi-t\>een stimulus und injectuil current, under linear/non­
linear conditions 
Solid line/circles yives llic actual injccicd cun*cnt under llie non-linear condition (calculated 
by equation 5.11) and dashed line/empty circles plots the linear condition. 

Where ,v/„, is the injecled current, l,\n\ is the niaxinium cuncnt injection and vva.s set 
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to 1 nA, 5 is the stimulus, ii governs the slope of the function and was set to i ,2 and Sjo is 

the half-maximal constant and was set to 13% of/^ij^ (the equations and parameter values 

were derived from Murphy & Miller [2003]). The relation,sliip between the stimulus aiid the 

current injected into the model cell, under both linear and non-linear conditions, is plotted 

in Figure 5.19, 

Model cell: Inhibition/ Non-lineor input 
300 r 

0.1 0,2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Injected current (nA) 

Figure 5.20: Res|>onse of the model cell to non-tinear stimulus, with tonic Inhibition 
Blue linL's/circlcs plot the response in the presence of toniu inhibition of 0.25nS, magenta 
line/squares plot the 0.5nS condition and green line/triangles plots the response for the 
0.75nS condition. Solid lines give the best-fit to the data (symbols). 

The mean output of the model cell (averaged over 100 trials) under conditions of 
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increasing tonic inhibition for both non-linear and linear input are plotted in Figure 5,20 & 

Figure 5,21, respectively. 

300 r 
Model cell: Inhibition/ Linear input 

^ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
Injected current (nA) 

0.8 0.9 1 

Figure 5.21: Response of the model cell lo a linear stimulus, with tonic inhibition 
Blue lines/circles plot the response in the presence of Ionic inhibition of 0.25nS, magenia 
line/squares plot ihe 0,5nS condition and green line/lriaiigles plots the response for ilie 
0.75nS condition. Solid lines ploi the best-fit to the data (symbols). 
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Tabk- fiJ: Amplitude und slope oT model slimulus-respuiisc funclion. Tor linear and 
nun-lineur input, with tunic inhibition 

fnhihilion (iiS) 

Ss,i (iiA) 

C±SE) 

Slope (Hz/nA> 

(±SB) 

0.25 

fl.ino 

(0.003) 

0.0391 

(0.017) 

Non-linear 

0.5 

0.1464 

(0.003) 

0.0242 

(0.009) 

(J. 7.1 

0.1 S68 

(0.003) 

0.0144 

(0,005) 

0.0 

0.46.-6 

(0,007) 

0.0149 

(0.004) 

Linear 

0.25 

0,5386 

(0.007) 

0.0104 

(0.004) 

0.5 

0,6154 

(0.009) 

0,0077 

(0.004) 

Oveiiill, ihe gain ofthe model cell, under both linear and non-linear conditions, 

decreased as ionic inhibition was strengthened. However, under the linear condition (Figure 

5.21) the model neural rale-tunction also underwent a lateral displacement, as evinced by 

the increase in stimulus amplitude, at the lia If-maximal point, from 0,46nA-0.62nA, 

following an increase in Ionic inhibition from 0.25nS to 0.75nS. respectively. This is 

similar to Ihe adaptive response observed during adaptation to stimulus mean 

5.3.3: Balance of synaptic depression 

In order to explore how asymmetric synaptic depression affects response gain, a 

recent modelling study (Chelaru & Dragoi 200S) developed a simple population model in 

uhich two populations olexcitalory [E) and inl5ibilor} (/) neurons were recurrently 

connected (Figure 5.22, populations within dashed box). Holh populations received 

feedforward input {FE. FI, respectively), with the inhibitory population receiving 

feedforward input that was proportional to excitatory inputs (governed by the constant k. 

see equations 5,12-5.13). 
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F. 

Figure 5.22: Sclieniiitic diagram ctl'a recurrenlly coii i if ik-d pdpulalidn dl'excitaldry 
and inhihit(ir>' cells. 
Dashed line and conncclors wiUi empty symbols rt-proscnl the recurrent population and 
con nee lions, rcspeciively. whilst Mlk'd connector s\nibol.s represent aflerenl, teed t'orw ard 
conneclions. Adapted from Chelani & Dragoi (2008). 

The output of each population is the product of the gain and the feedforward input: 

f-G,F, 

/•; = kF 

+ W.. - kU' I i u 
u^ = D D 

t ; _ l + t ^ „ . - ^ (H ; , . . - l ) _ / i + A 

kD kD 

a = W„ - kiV 

b - W,^ - kW 

•̂j = » ; . , " ; . - ( f ^ ' . . , - ' ) ( " • . + 1 ) 

5.12 
Where i^and /are the responses of the excitatoiy and inhibitoiy populations, respectively. 
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lo the feedforuiird input /•"; G is the gain uf llie population, c and i indicate the polarity of 

the population (with the 1̂ ' letter indicating ihc polarity of the post-synaptic population) 

and W gives the synaptic weight of the recurrent connections. 

In the presence of synaptic depression the responses oflhc rccnri'ent populations are 

given by (where the strength of depression between excitaloiy and inhibitory connections is 

determined by the constants a and /i respectively): 

0.3<a</}<] 

I-G,F, 

F. - kF 

G=a — - — — - = a — 

aW,-k{aW,..-\) ah + k 
G. - a = a-

/ . - H ; -Air,, 

5.13 
Where: 

a ^ P = Asymmetric depression 

a-P- Symmetric depression 

a ^ P -\~ No depression 

The feedfoi-ward inputs. F^ and /•',. were also depressed by the same amount, a, Bolli 

recurrent populations provided input to an output cell, £ ' (cijuation 5.13 taken Irom 

Clielaru& Dragoi 2008), 

In order to implement ihc population dynamics (described in equations 5.12-5,13) 
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in llie mode! ceil, the teedlbrward input. F,, was set cqua! lo the stimulating ciirrenl iinil the 

driving input acting on the model cell was the weighted dil'fcrence of the excitatory 

population response', F(i . minus the inhibitory response, F^G^: 

5.14 
Using the parameters from Chelaru & Dragoi (2008): 

Wo =J,- W, -3:75: W,, =3: W„ =6: W,, =4:8: W„ = 4:4: k = 0:45: F, - kF, 

Figure 5.23 plots the relationship between the output of the equations and Ihe 

alTereiil inpiil lo Ihe model cell as a function ofslinuiltis amplitude, for different \ahics of 

alpha. Within the model, the important factors for determining the net population response 

(see equations 5.12, 5.13 & 5.H) is the overall levels of the population excitation and 

inhibition (doited and dashed lines in Figure 5.23, respectively) and the relative gain of the 

responses. For example, in the asymmetric case in which excitation depressed more 

slrongK' than inhibition (green tines'circles. Figure 5.23), excitation is relatively lower than 

in the non-depressed case, however inhibition is also relatively weaker and has a lower 

gain, thus the overall output is stronger than the undepressed case (and the other two 

depressed conditions). 

The average output of the model cell (across 10 traits, stochaslicity is introduced 

via balanced excilaloiy and inhibiioiy conducianccs. as for Section 3.1, above), under 

different ratios of excitalorj' to inhibitor;' depression, is plotted in Figure 5.24. One can see 

thai the neural gain of the model cell is strongest under ihe asymmetric depression 

condition (excitatory synapses depress more than inhibitory synapses) and decreases as 

depression becomes more lialanced: only the balanced condition elicits a response that is 

weaker than the no depression case. 
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Control (no depression) Dep. ratio: a; 0.5/P: 0.7 

20 
Dep. ratio: «: 0.7/ p: 0.7 Dep. ratio: «: 0.8/P: 0.7 

g15 

0 
2 10 
0) 

* 

* 

0.15 0.3 0.45 
Injected current (nA) 

0.15 0.3 0.45 
Injected current (nA) 

Figure 5.23: Comparison ofpupulation responses lo different ratios of synaptic 
depression 
The res|.Kjnse as a function of current strength (see equations 5.12-5.14 for the excitalor>' 
populalion (dotted lines), inhibitory population (dashed lines) and the weighted difference 
of both populations (solid lines and symbols) is plotted under conditions of no depression 
(black lines, star symbol), balanced depression(red lines, squares) and two cases of 
asymmetric depression (excitatory depression > inhibitory: green lines/circles; excitatory 
depression < inhibitory: blue lines/triangles) 
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•Exc. dep; 0.7 
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Figure 5.24: Output of the model cell under different ratios of synaptic deprcNsion 
Steady state firiiiy rate response of the model cell as a riiiiclion of initial stimulus amplitude 
(nA) under conditions of no depression (black lines, star symbol), balanced depression(blue 
lines, triangles) and two cases of asyinmelric depression (excitaloiy depression > 
>inliibitory; jireen lines/circles: excitatory depression >inliibilory; red lines/squares). The 
actual stimuli were cuiTenl steps, presented for 500ms, whose amplitudes were derived 
from the weighted dilTercnce of tbe population excitatory and inhibitory .steady-stale 
responses (see equations 5.12 & 5.13) to the initial stimulus amplitude. 

5.4: Modelling adaptation to stimulus statistics 

As outlined in the introduction, the aim of the tlnal part of the analysis was to 
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relate the models discussed in the sections above to the aclii;il adaplalion data. In general, 

the previous model descriptions focused on the steady-state response, to a single stimulus. 

presented in isolation. Here, the interest was in how the staiistics of a dynamic, adapting 

stimulus affected the responsiveness of the model neuron and which of the experimental 

models best described the spike-count data. 

Input to Ihc model cell was a lime varying s în1ulu^ whose amplitude was refreshed 

every 40ms and drawn from a highly skewed distribution either in the form of direct current 

injection or by converting the cun'ent into firing rale with which to drive a Poisson spike 

generaiing mechanism, 

5.4.1: Adaptation to stimulus statistics: Spike-rate adaptation 

A reminder of the experimental data is presented in Figure 5.25, which plots the 

population firing-rate response as a function of stimulus amplitude (|-"ignre 5.25. top lelt). 

step-size (Figure 5.25, top right) and deviation from the mean (Figure 5.25, bottom). 

The pulse-based model cell was tested for adaptation to global mean without (fixed 

threshold, see Figure 5.26) spike-rate adaptation (SRA) and with (dynamic threshold, see 

Figure 5.27). To introduce some stochasticity into the simulation, stimulus presentation 

order was refreshed for each high-probability region trial (thus minimising presentation 

effects) and a small amount of noise (standard deviation ol'iO.Ol In A) was added to the 

inpul current, at each time-step. For each high-probability region trial of the simulation, the 

model cell was adapted for 30s: resulting in 750 stimulus presentations per irtal. 
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Figure 5.25: Population response lo global mean; experimenlal data. 
Top Right: Populiilion stimulus-response liinciion; average response plolled as « function 
ofstimulus amplitude. Top Left: Step-size function; average response plotted as a function 
of step-size change in stimulus amplitude Bottom: Deviation function; average response 
plotted as function of deviation of the stimulus from global mean. Green lines/circles: 
90nm condition, blue lines/squares: 210pm condition, red lines/triangles: 330|im condition, 
cyan lines/circles: 450pm condition. 

In the absence of SRA, the model cell displayed no adaptation to the global mean of 

the stimulus (Figure 5.26). The non-monotonic nature of the stimulus-response ftmction, 

for stimuli greater than ^.2nA, was due to the limits on firing rate imposed on the model. 

Each spike-pulse was 0,6ms in length, and the refractory period was set to 2ms, thus 

limiting maximum firing rate to =400Hz. 
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Model cell: Adaptation to mean 
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0.1 0.2 
Injected current (nA) 

Step-size function 

-0.1 0.1 
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Deviation function 
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Figure 5.26: The model cell's firing rate, ittep-size and (Icvialion-from-lhe-mean 
functions following adaptation lo four global mean levels, with no spike-rate 
adaptation 
Top: Stimulus-response function. Coloured, horizontal lines at the upper limits of the axis 
span the extent of the high-probabilitv' region, for each mean adapting level, whilst vertical, 
dashed lines plot the central amplitude of the corresponding high-probability region. 
Middle: Step-size function. Bottom: Deviation-from-mean functions (witli input 
nofDialised with respect lo the standard deviation ofthe global mean). For all plots, solid 
lines represent the best-fit to the data (5lh-order polynomial) and symbols represent the 
actual data. Green line/circles: high-probability region centred on 0.0573nA; blue 
line/squares: O.I337nA; red line/triangles: 0.2l01nA; cyan line/diamonds; 0.265nA, 
(Threshold was -48mV lo allow for comparison when spike-rate adaptation was present, [as 
the average, dynamic, threshold for the lowest mean amplitude condition, with spike-rate 
adaptation, was 45mV, see below)} 
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However in llie presence ofa dynamic ihresliold ihe model cell displayed the 

cliaracleristic shifi in the ralo-liinclion observed experimenlally (Figure 5,27). The average 

(across 100 trials) half-maximal amplitudes, or threshold (Ssii). increased from 0.13! nA at 

the lowest mean amplitude (equivalent to the QOfim condition) lo 0.191n.\ ai the highest 

mean amplitude condition (equivalent to 450^lm) whilst the slope of the stimulus-response 

function, al the S;o, ranged from 0.fl39Hz/nA" to 0.0j2 Ilz/nA" across the four mean levels 

tested (thus slope decreased slightly as global mean increased): tlie values are given in 

Tabic 5.4. 

Incorporating an adap î̂  e threshold into the model generated a shift in .sliniukis-

response function thai \va.s dependent on the overall- mean injected current amplitude, and 

was in agreement with the findings of Garcia-Lazaro and colleagues (Garcia-Lazaro et al. 

2007). However, the lateral displacement ofthe stimulus-response function was not 

sufllcient to generate an invariant step-size or deviation-from-the-mean function (when 

normalised b\ dividing the input b\ the global standard dc\ia(ion of ihc stinuilus), as 

observed experimentally (see Figure 5.25. Chapter 4 and Dean el al. 2005). I f one examines 

the model cell's rate-function (see Figure 5.27, top) one can see that the high-probability 

region ofthe stimulus space was covered by the linear region ofthe corresponding 

stimulus-response function, with the exception ofllie lowest mean amplitude condition (see 

Figure 5.27. top: green lines/symbols). Tlius the displacement ofthe stimulus-response, due 

to spike-rate adaptation, was not sufficient lo account for all features of adaptation to global 

mean. 
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Figure S.27: The model cell's firing rafe, step-size and deviation functions following 
adaptation to four global mean levels, in (he presence of spike-rate adaptation 
(adaptation constan I, b, was set to 1) 
Top: The stimulus-response riinclion ofthe model cell. Coloured, horizontal lines at the 
upper limits ofthe axis span the extent of the high-probability region, for each mean 
adapting level, whilst vertical, dashed lines plot the central amplitude ofthe coiresponding 
high-probabilit>' region. Middle: Step-si^e function ofthe model cell. Bottom: Deviation-
from-niean function (normalised). For both plots, solid lines represent the best-fit data (5th-
ordcr polynomial) and symbols represent the actual data. Co lours/symbols as for Figure 
5.26, above 
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As discussed in Chiiplcr 4, the rough invariance of the step-size function, observed 

//; vivo, arises due the displacement of the rate-function onto stimulus intensity levels 

outside the high-probability region of the stimulus distribution. However, whilst increasing 

the amount of spike rate-adaptation (by increasing the adaptation constant from 1 to 4) did 

increase threshold (relative to the original simulation, above, compare Table 5.4 & Table 

5.5) it was not sufficient to render the response to both reliiti\'c amplitude (see Figure 5.28. 

middle) and normalised devialion-from-lhe-mean invariant (see i-'igure 5.28. bottom). 

Table 5.4: Slope and current amplitude at the half-maximsil pniiit folluwing 
adaptation lu mean 

Mean Stimulus (i 

.S'ju fiiA) 

(±SK) 

Slope <Hz/nA) 

( + SE) 

A) 0.0573 

0.131 

(0.0094) 

0.0387 

(0.00')3) 

0.1337 

0.160 

(0.0053) 

0.0332 

(0.0024) 

0.2101 

0.180 

(0.0046) 

0.0330 

(0.0036) 

0.2650 

0.191 

(0.0084) 

0.0321 

(0.0077) 

Tahle 5.5: Sinpe and current amplitude at the hair-maximul point following 
adaptatiim to mean, with SKA (b = 4) 

Mean Stimulus (i 

Sw (tiA) 

(±SE) 

Slope (H:/nA) 

(±SE) 

lA) 0.0573 

0.200 

(0,0041) 

0.0215 

(0.0046) 

0.1337 

0.217 

(0.0018) 

0.02 ly 

(0.0042) 

0.2 HM 

0.250 

(0.0013) 

0.0203 

(0,0051) 

0.2650 

0.272 

(0.0041) 

0.0227 

(0.0027) 
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Model cell: Adaptation to mean 
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0.2 0.3 
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Figure 5.28: The model celt's firing rate, step-size and deviation Tunctions folloning 
iidapliiliflti to four globul mean levels, in llie presence ol' spike-rate adaptation 
(adaptation constant, b, was set to 4 
Left: Stimulus-response function ol'lhe model cell. Coloured, horizontal lines at the upper 
limits of the axis span the extent of the high-probability region, for each mean adapting 
level, whilst vertical, dashed lines plot the central amplitude of the corresponding high-
probability' region. Middle: Step-size function of the model cell. Bottom: Dcvialion-froni-
mean function (normalised). For both plots, .solid lines represent the best-fit dain (5lh-order 
polynomial) and symbols represent the actual data. Colours/symbols as for Figure 5.26, 
above 
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Thus it was decided to incorporate tonic inhihition into the model (Murphy & Miller 

200^1). Tonic inhibition, in this case, would act as form oThigh-pass illtcr on the stimulus, 

as only those stimuli strong enougli to counteract afferent inhibition would elicit a response 

in the model cell, thereby etTeclively increasing threshold Tonic inhihition was simulated 

by introdiiciny a constant conductance into the cell, whose amplitude was deleimined by 

the global mean of the stimulus, al each trial ii.e. on average, across 100 trials, the 

inhibitory conductance (nS) was set to: 0.0920 (±0.0008 Standard Error or SE), 0.1515 

(±0.0007SE). 0.2085 (±0.0006SE). 0.2652 (±0.0011SE), for the four mean adapting high-

probability region). 

Tile introduction of tonic inhihilion into the model cell, in the presence of spike-rale 

adaptation, resulted in rate-functions that were displaced rightwards, in a stimulus-mean 

dependent manner (see Figure 5.29. top plot). The stimulus amplitude that elicited the half-

maximal response ranged, on average, from 0.169nA (±0.0015SE) to 0.297nA 

(±0.0008SE). Ironi the lowest to highest mean-stimulus adapting condition; slopes at the 

hall-maximal point ranged from 0.043 (±0.001 ISR) lo0.046H77nA (±0.0057SR). Both the 

step-size and normaliscd-deviation functions displayed similar levels of invaiiance to that 

observed experimentally (see Figure 5.29, middle and bottom plots, respectively). The 

model cell was also simulated under a condition oftonic inhibition but no spike-rate 

adaptation (see Figure 530). Tonic inhibition alone did not elicit the level ofstimulus-

response function displacement required to generate the invariant step-size and deviation 

functions plotted in Figure 5.29 above. 
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Figure 5.29: The model cell's firing rate and step-size functions following adaptation 
l» four gloliul mean levels, in the presence of spike-rale adaptation and Ionic 
inhibition. 
Left: Stimulus-response function of the model cell. Coloured, horizontal lines at the upper 
limits of the axis span the extern of the high-probability region, for each mean adapiing 
level, whilst vertical, dashed lines plot the centra! amplitude of the concsponding high-
probability region. Middle: Step-size function of the model cell. Bottom: Deviation-from-
mean function (normalised). For both plots, solid lines represent the besl-fit data (5lh-order 
polynomial) and symbols represent the actual data. Colours/symbols as for Figure 5.26. 
above. 
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Figure 5.30: The model cell's f i r ing rale and step-size I'unctions fo l lowing adaptat ion 
to four global mean levels, in the presence o f tonic inh ib i t ion , alone. 
Le f t : Stimulus-response function of the model cell. Coloured, horizontal lines at the upper 
limits of the axis span the extent of the high-probability region, for each mean adapting 
level, whilst vertical, dashed lines plot the central amplitude of the corresponding high-
probability region. M i d d l e : Step-size function o f the model cell. Bot tom: Deviation-from-
mean function (normalised). For both plots, solid lines represent the best-Hl data (5lh-order 
polynomial) and symbols represent the actual data. Colours/symbols as lor Figure 5.26, 
above 

Thus, within the model cell at least, a combination o f global-mean dependent tonic 
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inhibition and spike-rate adaptation was necessary to replicate the experimental data. As 

mentioned above, tonic inhibition acts by effectively increasing the spike-threshold. As 

stimulus-mean (and therefore ionic inhibition) increased, there was a concomitant increase 

in the intensity of stimulus required to elicit a spike. Spike-rate adaptation was therefore 

only affecting the dynamic membrane spike-threshoid for increasingly higher stimulus 

amplitudes, thereby resulting in a reduction in firing rate and further displacement of the 

stimulus-response function. 

350 
Model cell: Adaptation to variance 

0.15 0.3 
Injected current [nA] 

0.45 

Figure 5.31: Adaptation to variance, in the model cell, with SKA and tonic inhibition 
Solid lines represent the best-fil data (5th-order polynomial) and symbols represent the 
actual data. Red line/circles represent the response to the low variance stimulus, green 
line/squares plots the mid-variance response and black line/triangle is the high-variance 
condition. 
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A further question to ask was whether the combination of spike-rale adaptation 

and Ionic inhibition could generate the gain modulation obser\'ed in response to increased 

stimulus variance, bul this was found not to be the case (see figure 5,3 I), instead the 

stimulus response function was displaced slightly. Tonic inhibition increased in line with 

the mean of the stimulus and had an average value of O.I548nS. for the low-variance 

condition, 0, l595nS for the mid- and 0. l()6')iiS for the liigh-\ariance condilinn. 

Fisher Infornrntion 

The Fisher Infomialion functions of the stimulus-response functions plotted in 

Figure 5.29 were calculated and plotted in Figure 5.32. 

Fisher Information for ihc Hr.st 3 adapting condition.s (green, blue and red lines. 

Figure 5.32) corresponded well with the experimental data in thai the Fisher functions 

tended to peak at stimulus ampliiudes that were of greater intensity than the corresponding 

high probability regions of the stimulus space. For the final adapting condition (cyan line. 

Figure 5.32 ). the peak oCihe Fisher Information was located within the high-probability 

region. Clearly the degree of displacement ol llic stimulus-response function under this 

condition was not as strong as thai observed experimentally, and could account for why the 

step-size function does not match up more closely with step-si/e functions for the lower, 

global-mean adapting conditions (see middle plot. Figure 5.29). 

5.4.2: Adaptation to variance can he siniiilatetf by increasing background 

input in proportion with levels of stimulus variance 

In order to replicate the experimental data it was decided to simulate the 

background-noise model of gain control as proposed by Fiances Chance and colleagues 

(Chance el al. 2002). 
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Figure 5.32: Fishtr Information fund ions from Ihe sifmului-rcspDnsc function of the adapted model 
cell 
Coloured, horizontal lines at the upper limits ofthe axis span the extent of the high-
probability region, for each nicaii adapting level. Solid lines plot Fisher Information (!) for 
each stimulus {s) as a ftinction of the firing-rate function of the model cell (J'(s)), assuming a 
Gaussian noise dislribution: /(.v) = / ' (*)" /<T'. Green line/circles: high-probabiliiy region 
centred on 0.0573nA; blue line/squares: 0.1337nA; red line/triangles: 0.2IOhiA; cyan 
line/diamonds: 0.265nA. 
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Tlie experimental population response to increased stimulus-variance is re-plotted in 

Figure 5.33, below. 
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Figure 5.33: Population responses from adaptalion to variance experiments 
Top Left: Population stimulus-response function (SRF) in response to increasing levels o f 
adapting stimulus variance: the slope, or gain, of the SRF decreased with every increase in 
global variance. Top Right: Population step-size function; increasing variance resulted in 
slight lateral displacement o f lhe function. Bottom: Population, normalised, deviation 
function; the response as a function of local deviation-liom-thc-inean was not ful ly 
invariant (especially with reference to tlic tails of the functions), for all global stimulus-
variance levels. Red lines/circles plot the low-variance condition, green lines/squares plot 
mid-variance and black lines/diamonds plot the high-variance condition. 
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As mentioned earlier (see Seciiftn 5.1.3), the sim[lll.•̂ I method of reialing the 

background-noise model to the adaptation data is to assume that as variance increases the 

background firing rates also increase. This was simulated b> incorporating random, 

background, excitatory and inhibitory modulatory inputs into the pulse-based neural model 

whose firing rales increased in proportion to stimulus variance (see Figure 5.34 for a 

schematic description of the model). 

The driving input inlo the model cell was as for Section 5.2.3, above, in thai the 

stimulus was an injected, constant current, with an amplituile that was refreshed evciy 

40ms and drawn from a non-uniform di.^tribulion, centred on a high-probability region. For 

each successive increase in the width of the high-probabilily region the firing rales for both 

stochastic inhibilion ami c.vcitalion were also increased, sin.h thai for tlie low-variance 

condition, background firing rates were fixed at the base level of 50Ilz(lX condition), but 

for the mid- to high-variance stimulus configurations, background firing rales were doubled 

(2X) and tripled (3X), respectively. 

The average results acrass 100 trials are plotted in figure 5.35, below. The I/O 

cuî ves show a decrease in gain for each increase in high-probability region widtli and the 

step-size function of the model cell is not invariant with respect to stimulus variance: both 

these results are in line with the experimental data {see Chapter 3-4 in this thesis). 

The average value (across 100 trials) of the stimulus-reiiponsc function slope at the 

half-maximal current amplitude was 0.140nA (±0.01 1SE). i).W InA (-t O.OOSSH) and 

0.084nA (±0,004SE) for the low, mid and high variance conditions respectively; the 

average value of the half-maximal amplitude, or threshold, was 0.255 {±0,007SF). 0.286 

(±0.006SE) and 0.2901 Iz/nA (±Q,006SE). 
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Figure S.34: Schematic of background noise inndel 
Driving input, represented by the thick, solid, black arrow, was a lime-varying current 
injection (3s sample of the stimulus under the high-variance condition), where the 
amplitude was refreshed every 40iiis. The base level of background firing rale, multiplied 
by ihe factor H (which increased wilh stimulus variance) was used to drive a Poisson spike-
generating mechanism, from which llic background (dashed arrows) conductance was 
derived. Green and red lines represent excitatory and inhibitory conductance, respectively. 
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Model cell: Adaptation to variance 

X 300 

0.2 0,3 
Injected current (nA) 

Step-size function 

-0,06 
Step size (nA) 

Deviation function 

0 0,1 0.2 
Devlation-from-mean (nA) 

0.4 

Figure ^.55: Adaptation (o variance, in the model cell: background flring rates 
increase with stimulus variance 
Left: The stimulus response function of the model cell; tlie widths of the high probabilit> 
regions are plotted in vertical lines at the uppermost limit o( the axis. Right: Step-size 
function of model cell. Solid lines represent ihc best-fit dal;i (5lh-order polynomial) and 
symbols represent the actual data; bars represent I standard enor. Red line/circles represent 
the response lo the low variance stimulus/lX firing rate condition, green line/squares gives 
the mid-variance/2X response and black line/triangle is the high-variance/.'iX condition. 

The step-size and normalised, deviation-from-mean functions were not invariant, 

with respect to stimulus variance, and were in line with tlie experimental data (see Figure 

5.35 and Chapter 4). 
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For the model to represcnl accurately llic adaptixc incclianisnis present in vivo, two 

important assumptions were made (see Section 5.1.3): firstly, that background Tiring rates 

are dependent, lu some degree, on the stimulus itself and, secondly, that background input 

rates increase in direct proportion to stimulus variance. Experimentally, variance levels, 

under the adaptation to variance paradigm, were 14.640pm'. I9,600fi i i i ' and 26,^0()^lm" 

under the low-, mid- and high variance conditions, respectively. Under the terms o f the 

background noise model laid out above (and assuming that Ihe low-variance condition was 

the base level), this would be represented by an increase in background noise 1.34 and 1.84 

times the base firing rate of 50Hz, for llie mid- lo high-variance adapting regime, 

respectively. In terms of the model cell, \ariaiice levels were, on average (across 100 trials), 

0.6O71nA-(±O.O()55SF.), 0,K068nA'(:H).UO()4Si:)& 1.09S4nA'(±0.0063SE). respectively. 

Therefore fuil l icr .simulations were pcrfomied in u l i ich background rates were increased in 

proportion to levels o f variance within the stimulus, at each trial, relative lo the low 

variance condition; on average f ir ing rates increased by 1.33 and 1.81 limes the base rate o f 

5 0 H / (knv-variance) for the mid- to high-variance conditions. These rates were sufficient to 

generate decreases in the gain of the model cell ihai were comparable lo that ohscived 

experimentally (see Figure 5.36). 

The average value (across 100 trials) o f the stimulus-response function slope al the 

half-maximal current amplitude was 0.1422 (±0.010 standard error [SF]). 0.1398 

(±0.005SE) and 0.1191 Iz/nA (±0.006SE) for the low (1X), mid (1.33X) and high (1.81X) 

variance conditions respectively (see Figure 5.36); the a\erage \alue o f the half-maximal 

amplitude, or threshold, was 0.247nA (±0.004SE). n.260nA ( + H.007SE) and 0,278nA 

(±0.007SE). The step-size function was not invariant, with respect to stimulus variance, and 
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was in line with the experimental data (see Figure 5.35 and Chapters 3-4). 

N 
X 300 

400 r 

400 r 

Model cell: Adaptation to variance 

0.2 0.3 
Injected currenl (nA) 

Step-size function 

step size [nA) 

Deviation function 

0 0-1 0.2 0.3 
Deviation-from-meon (nA) 

0.4 0-5 

Figure 5J6: Adaptation to variance, in the model cell: liackground firing rates 
increase in exact proportion to stimulus variance 
Solid lines represent the bcsl-fit data (5th-ordcr polynomial) and symbols represent the 
actual data. Red line/circles represent the response to the low variance stimulus/IX firing 
rate condition, green line/squares gives the mid-variance/1.33X response and black 
line/triangle is the high-variance/I.81X condition. 

The next question to address was whether background firing rates would only 

increase with stimulus variance? The average output oftlic model cell, across all stimulus 

levels and trials for a given adapting condition, was calcul;ited for all four mean (see Figure 
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5.37) and three variance (Figure 5.38) adapting levels. The model cell was either adapted or 

unadapted. 
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Figure S.37: Average firing rates across all stimuli, as a runction oTthe mean adapting 
level, for an adapted and unadaplcd model cell 
Magenta diamonds plots llie average firing rale for each trial (100 trials), of a given high-
probability region (high-probability region), under adapting conditions (see text for details). 
Black asterisks plot the average firing rate of an unadaptcd model cell. Error bars plot I 
standard deviation from the mean. 

Ill the case of adaptation to global mean, the average firing rate of the cell was 

fairly constant (Figure 5.37, magenla diamonds) across all conditions when the model cell 

was adapted {i.e. with a dynamic threshold and tonic inhibition). However, firing rates 

increased in the unadapied condition (Figure 5.37, black stars). 
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In tlie case of adaptaiion to global variance, tlie average firing rate of the cell 

increased when the model cell was unadapled (i.e. background firing rales were fixed at 

50Hz, Figure 5.38, magenta circles). However, under adaplaiion, through doubling and 

tripling background firing rates with each successive increase In variance, overall firing 

rales decreased (Figure 5.38, blue squares). 
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Figure 5.3H: Average firing rales across all stimuli, as a function of the adapting levels 
of stimulus variance, for:in adapted and unadaplcd model cell 
Blue squares plot the average firing rate for each trial (100 trials), of a given variance level, 
under adapting conditions (see lexl for details). Magenta circles plot Ihe average firing rate 
uf an unadapted model cell. Error bars plot ! standard deviation from ihe mean. 

Assuming that the output of the mode! cell represents the typical levels of average 

firing rates for adapting and unadapling cells encountered in vivo, one can argue that to 

create the conditions necessary for adaptation to variance, background input to the target 

cell would have to arise from neurons that adapted only to global mean and not variance. 
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Extension to (lie background-noise nmclcl 

It was decided to test this hypothesis by providing modulatory input to a pulse-

based neuron model derived from the activity of such a population o f cells. Background 

fn ing rales were approxirnaied by i i inninj ; the driving stimulus, at each lime step, through a 

population {/i = 100) ofpi i ral lel , non-linear lillers. l-̂ ach non-linear ( l i te r . / was a perfect 

rectifier of the stimulus current, /, with an absolute threshold, 6 and gain, ,-1; threshold was 

set to be slightly higher than the average amplitude o f the stimulus, lo approximate 

adaptation to global-mean: 

5.15 

Parameters values for threshold and g;iin ranged from 0.162 to 0.226nA (mean 

value: 0.18 InA. iO.I)22 standard deviation, or SD) and 1,39 to 2,88 (mean: 2.06±0.57 SD). 

respectively. 

The relationship between the output o f the tillers, as a function o f the stimulus, and 

the stimulus di,sirihulion is plotted in Figure 5,39 (lop plot). A l l fi lter thresholds were 

slightly higher than llic CL'iilral amplitude o f the high-probability region. The output of 3 

example [liters, to a 0.5s sample o f the input stimulus is plotted in Figure 5.39 (bottom 

plot). Under the low variance regime (Figure 5,39, bottom plot, left column), the output o f 

all three filters rarely rises above the base rate. 

The output o f each filter was converted to a t ir ing rate (} lz) by mult iplying it with a 

conversion constant, c. set to 40 (see Section 5,2.3, above): an exlr;i icrni of 5 l\v was also 

added to the output, al each time step, to generaie a source of stimulus-independent noise. 

This firing-rale was used to drive a Poisson spike-generator, from which the background 

conductance (both cxcitaloiy and inhibitory) was derived (for parameters o f the background 
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conductance, please see Section 5.3.1 and 5.4.2). 

Relationship between 
non-linear filters and stimulus distribution 

10 

5 

0 

0.45 

Stimulus (nA) 

Low variance High variance 

n 

Figure 5.39: Rclatiunship bet^vccn non-linear fillers of the input stimulus and (he 
stimulus distribution 
Top plot: Histogram is a frequency count of tlie inputs presented during a 30s stimulus 
sequence. Red, green and dark-grey bars show the dislribiilion of tlie low-, mid- and high 
variance stimulus distribution, respectively. Blue lines phil the input-oulpul relationsliip of 
10 sample filters. All the filters have thresholds greater than the central amplitude of the 
high-probability region of llie slimulus distribution. Botlnm plot, left column: 0.5s sample 
of the time-dependenl, low-variance, input (red line) and tlic corresponding outputs of three 
filters (blue lines). Bottom plo(, left column: As for ihe left column (same ihrec example 
filters), but for a high-variance slimulus. 
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Samples of excilatnn, conductances derived from the 3 filters in Figure 5.39 

(boltoni plot) are plotted in Figure 5.40. 

Low variance 

0.02 

f 0.01 

0,5 
H^h variance 

0.04 

0 02 

0.1 0.2 0,3 0.4 0.5 
Time (s) 

0 k i^_L A 
D 0,1 0,2 0.3 0,4 0.5 

Time |s) 

Figure 5.40: Sample excitatory* conductances derived from the output of 3 non-linear, 
rectified .stimulus fillers 
Left column: Uppermost plol gives a 0.5s sample of tow-variance stimulus (red line) and 
the three lower plols show 3 sample conductances (derived from the fillers in Figure 5.39) 
generated in response lo Uic input. Right column: As for left column, bul for a high-
variance stimulus (black line) 

The summed conduclance, from alt tillers in the population, was used to provide 

background, modutatorv input to a single, pulse-based model neuron, which was also 

driven by the stimulus current, A schematic description of the model is given in Figure 

5.41. 
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Figure 5.41: Schematic drscnptiun of the hackground-ctinductance model, with 
modulatory noise derived from non-linear inputs 
Driving input, represenled by Ihc thick, solid, black arrow, was a time-varving current 
injection (3s sample oflhc stimulus under ihe high-variance condition). The input was also 
fed into a bank of parallel non-linear filters, wliose output was converted to a firing rate and 
used lo drive a Poisson spike-generaling mechanism, from which the background (dashed 
arrows) conductance was derived. Green and red lines represent excitatory and inhibitorv' 
conductance, respectively. 

The response of the model neuron, averaged over 100 trials, is plotted in Figure 
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5.42. The slope of the stimulus-response function (Figure 5.42. lop plot) displayed a 

significant (one-factor ANOVA test, with a significance level, p<ft W)/) decrease in gain as 

stimulus variance increased. The average value of the slope at the half maximal point (S50) 

was O.0353Hz/nA- (±0.00053 SB). 0.0314Hz/nA- (±0.00058 SE) and 0.0268Hz/nA-

(±0.00037 SE) and the stimulus amplitude thai elicited the S.su was 0.1812nA (±0.0012 SE), 

0.1897nA (±0.0013 SE)and 0.1984nA (±0,0012 SE) for the low-, mid- and high-variance 

conditions, respectively. 

The step size function (Figure 5.42, middle plot) was displaced slightly, as a 

function of stimulus-variance and the normalised deviation-from-mean function (Figure 

5.42. bottom plot) did iioi scale-up, at the tails of the function (especially for positive 

devialions-from-lhe-mean); they were (herelbre also in line with the experimental data. 

The average strength of the excitatory and inhibitoiy conductance, as a function of 

the stimulus, is plotted in Figure 5.43 and did not show any significant increase with 

stimulu.s-variance. However, the average value of the excitatory conductance, during each 

30s simulation, increased steadily from 0.0077nS (±0,0199 SD) to 0,0088nS (±0,0204 SD) 

and 0.0115nS (±0,0223 SD) and the overall, mean inhibitory conductance increased from 

0.0594nS (±0,1208 SD) to 0.0688nS (±0.1302 SD) and O,087OnS (±0.1405 SD) for the 

low-, mid- and high-variance conditions. The overall average increase in background 

conductance was sufficient to generate a decrease in the gain of the model neuron, however 

this was observed only when combined with spike-rale adaptation (implemented as a 

dynamic membrane thresliolii) and the addition of a tonic inhibition that was proportional 

in strength to stimulus mean. 
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Model cell: Adaptation to variance 
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Figure 5.42: Adaptation to variance, in the model ceil: bacliground firing rates 
derived from a banlt of non-linear filters of the input 
Solid lines represeni the best-fit data (5th-order polynomial) and symbols represent tlie 
actual data. Red line/circles represent the response to the low variance stimulus, green 
line/squares gives the mid-variance response and black line/triangle is the high-variance 
condition. 
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Figure 5.43: Average background .synaptic conductance as function of the stimulus 
Red, green and black lines plot llic average value of the background synaptic conductance 
(derived rn)ni the non-linear fillers of the slinuilus). Solid and dashed lines plot the 
excitatory and inhibitory conductances, respectively. The initial, un-tltlered. input is plotted 
on the abscissa. 

Does the introduction of balanced, noisy background conductances arfccl adaptation 

to stimulus mean, in the model cell? 

As argued in the introduction to this Cluipter (see Section 5.1.2, above), one can 

assume that under conditions of adaptation to mean the background firing rales remain 
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fairly constant. 'I'hus in order lo clicck thai tlie lateral, iidaplive. shift (observed in response 

lo adaptation to stimulus mean) in llie model neural response-profile was not abolished by 

the introduction of noisy, balanced, background excitatory and InhibJloiy conductances 

(50Hz, for all conditions), the model cell was tested again nnder conditions of adaptation to 

global mean. The levels of tonic inhibition, current noise and spike-rale adaptation were as 

for Section 5.4.1 wilh the only difference being the itilrodutlion of stochastic background 

conductances. 

As can l>e seen in Figure 5,44, the lateral shift in the stimulus-response function was 

not abolished by the introduction of stocha.stic background excitation and inhibition. 

Thresholds (stimulus amplitudes that elicited the half-maximal response) increased on 

average (between the lowest and highesl nican adapting levels) from 0.202nA to 0.302nA 

(compared to a threshold increase of O.I69nA-0.297nA in the absence of background noise, 

see Section 5.4.1 and Figure 5.29), thus the introduction of background stochastic 

conductances into the model increased the displacement of ihe neural rale-function due to 

tonic inhibition and spike-rale adaptation; the roughly invariant relaiionship between output 

and local differences in stimiilii.s amplitude was also retained and replicated the 

experimental data (please see Figure 5.25). 

5.4.3: Balance of inhibitory and excitatoty synaptic depression dependent on 

levels of variance in adaptin^i stimulus 

Within the introduction lo ihis Chapter (Section 5.1.3) it was staled that neural gain 

can be influenced by both the balance between aiTerenl excitatory and inhibitory levels of 

steady-state depression and the ratio of the initial excitatory to inhibiloiy firing rates. Thus 

the question to be addressed here is whether the adaptive decrease in gain, as a function of 
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increased stimulus-variance, can be replicating through adjusting the balance between 

excitaiory and inhibitory depression in a population of neurons, in which inhibition has a 

greater influence than excitation. 
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Model cell: Adaptation to mean 
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Figure 5.44: Adaptat ion to mean, in the model cell, w i th noisy background 
conduclanccs, as in Chance et a l . (2002) 
Solid lines represent the btst-f lt data (5lli-order polynomial) and symbols represent the 
actual data. Tup : Stimulus-response function. Midd le : Step-size function. Bot tom: 
Deviation-from-mean function. Colours/symbols as for Figure 5.26, above 

As for Section 5.3.3. above, the stimulating current was used as input to two sets 
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of population equations (see equations 5.12-5.14) which gave the excitatory and inhibitory 

responses to the stimulus: the weighted difference of which was then used to stimulate the 

model cell. Of course, it should be noted that in this case the stimulus was not a single 

current step but a time varying current injection with a change in amplitude every 40ms. 

o.Sr Input 

Figure 5.45: Schematic description of the .synaptic depression model 
The input is time varying current (sample is from high-variance condition); the inhibitory 
( I , represented by red circle) population receives less driving current that Ihe excitatory {E, 
represented by blue circle) population (governed by constant k, which was set to 0.4 in the 
simulalions below). Dashed lines indicate inhibition, whilst solid lines represent excitation: 
red arrows indicate recurrent inhibition, blue arrows: recurrent excitation and black arrows: 
feedforward connections. 
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The popiilalion equations only return the s(eady-state response to the eurieni step, 

in-espective of stimulus histoiy, thus they act as a type of linear filter on the stimulus, with 

(he output dependenl on the relative strength of synaptic depression. 

The inhibitory depression factory? was llxed at 0.8 for all variance conditions. For 

excitation, p was set to 0.5, 0.7 and 0,8 for the low-, mid- and hijih-variance conditions, 

respectively; wilh llie assumption thai as \ arianoe in ihc stimulus increases, excitatory 

depression becomes weaker and approaches the level of inhibitory depression. The output 

of the model cell is plotted in Figure 5.46. The effect of reducing excitatory depression, as 

variance increased, was to reduce the gradient orihc model stimulus-response function and 

overall firing rate. .Slope at the S,„ decreased, on average, from 0.0!39l[z/nA" 

(±0,0016SE). under the low-variance condition tu 0OnOMz/nA" (±0,001OSE) and 

0.0112\\7JnA- (±0.00()8SE) for the mid- to high-va riance conditions, respectively. There 

was also a slight increase in threshold from 0,2871iiA {low-variance; ±0.0055S!;) to 

0.2902nA (±0,0064SE)and 0,3l38nA (±0,0060SE), for the mid- to high-variance trials 

To see how changing (he balance of depression affects the afferent input to the 

model cell, the individual populalion afferents were used to drive the cell, as opposed to the 

weighted difference between the two population used in the simulation above. The 

responses were plnlted for the excitatory and inhibilory inputs in figure 5.47. As 

depression levels approached symmetry, afferent inhibition increased dramatically more 

than the relevant increase in afferent excitation, thus responses were decreased, relative to 

rlie base response (low-variance/ excifatoiy/J = 0,5. red lines in Figure 5,47), Overall, the 

steepness of the slope of the inhibilory rate-function also increased more than the rclc\ant 

excitatory response; thereby accounting for the tlecrcase in gain .seen in the simulation 
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above (see Figure 5.46). 
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Figure 5.46: Gain modulation through asymmetric depression 
Steady-state model of asymmetric depression, see text for details 

The output of the model cell, following adaptation to mean and with a fixed ratio of 

depression is plotted in Figure 5.48. Excitatory depression levels were assumed to be fairly 

strong to reflect the saturation ofdepression due to the susUiined nature of the stimulus; 
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excitatory and inhibitory depression levels were tlxed at/? = 0.4/0.8, respectively. 
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Figure S.47: Relationship between excitation and inhibition, under conditions of 
weakening depression 
Solid lines plot the excitatory input, dashtd, the inhibitory input to produce the model 
output in Fiyure 5.46. Colours represent the different variance/excitatory depression levels 
and are given in the inset. 

The model cell undergoes a lateral shif\ in the stimulus-response function, as 

expectated, and with the addition of a tonic inhibition the step-size function was relatively 
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invariant (bar some variance for the highest high-probability region condition). Therefore 

(he model of gain modukilion by asymmeiric synaptic depression does not abolish the 

change in threshold associated with adaptation to stimulus mean. 

350 Model cell: Adaptation to Mean; 
Inhbitory depression strength:0.8 

0.45 
Injected current (nA) 

Figure 5.48: Adapliition to mean, Asymmetric depression 
Excitatory depression was fixed at;j = 0.4 for all conditions 
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Figure 5.49: The step-size function following adaptation to mean, with asymmetric 
{Icprcssion 
Step-size ftinclion for the rate function plotied in Kigure 5 48 

As previously stated, these results are derived from a steady-slate response to ilie 

stimulus. Of course, synaptic depression is highly dependent on stinnilus history and. as 

stimuli amplitudes change too rapidly to allow for full recovery of synaptic dynamics 

during each, successive, 40ms presentation, it's important to lest how the model cell 

responds to a time-varying input, under the different depression conditions. The adapting 
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stimuli were used to drive ii recurrently connected circuit ol four excila lory/one inhibitory I 

& F units, which provided afferent input lo a read-out cell, I'or a description of the 

parameters see Section 5.2.6. 

The output neuron was a pulse-based neural model, with a dynamic threshold (the 

spike-rale adaptation constant, h. was set to unity). Synaptic depression of the afferents 

targeting ihe output cell were the same for both inhibition and excitation (depression factor, 

/) ^ 0.8, across all conditions), whilst recurrent inhibitory depression levels were fixed at p 

= 0.85 and excitatory depression was inversely proportional to stimulus variance (i.e./» 

increased from a base level of/> ^ 0..?, under the low-variance condition, lop = 0.45 ct 0.6 

for the mid- and high-variance conditions, respectively); the results are plotted in I'igure 

5-50. 

The value of the model cell's slope and S50 stimulus amplitude are plotted in Table 

5.6. Overall the stimulus-response function was scaled downward as a function of stimulus 

variance, however, there was no successive decrease in the gradient of the cunc. at the 

hatf-maximal point; thus the model generated a downward scaling ofthe response, bul not a 

pure change in gain modulation. 

What contribution do the excitatory and inhibitory cells make to the output ofthe 

model cell? The average firing rale respon,se, as a function of stimulus intensity, ofthe four 

excitatory inpul neurons and ihe single inhibitory unit are plotted in l-igure 5.5 I. Tor 

stimulus amplitudes of less than (roughly) O.I3nA. the firing rates ofthe excitatory units 

(Figure 5.5 I, solid lines) were similar under all adapting conditions; however, for stronger 

stimulus intensities, the responses diverged; excitatory firing rates decreased in line with 

the concurrent increase in stimulus variance and decrease in excitatory depression strength. 
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Figure 5.50: Adaptation to variance, in the model cell: Asymmetric synaptic 
depression 
Inhibiloiy depression levels were fixed at 0.85 whilst excitatory depression was set to;j = 
0.3 lor llic low-variance stimulus (Red line/circles), p - 0.45 for the mid-variance condilion 
(green line/squares) and finally/? = 0.6 under high-variance stimulation (black 
line/triangles). Solid lines represent the best-lit to the data (5th-order polynomial) and 
symbols represent the actual data. 

Conversely, inhibitory firing rates (Figure 5.51. dashed lines) increased with 

stimulus variance, thus the mechanism of gain modulation was subtly different from the 

steady-state simulations, described above, especially with reference to atTerent excitation. 
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Figure 5.51: Average excitatory and iiiiiibitory firing rules in the model circuit, for 
diffcreiil ratios of excitatory and iiiiiibilury depression levels 
Inhibiion,' depression levels were fixed at 0.85 whilst excitatory depression was set top ^ 
0.3 for the low-variance stimulus (Red line/circles)7> = 0.-15 for the mid-variance condition 
(green line/squares ) and finally/P ^ 0.6 under high-variance stimulation (black 
line/triangles). Inhibitory inputs were represented by dashed lines and empty symbols, 
whilst the average firing rate, across all four excitatory units, was plotted with .sold lines 
and symbols. Lines represented the best-fit to the data (5th-order polynomial) and symbols 
ploned the actual data. 
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Table 5.6: Amplitude iind slope ofmoJel stimulus-response function, under different 
ratios of excJ(nlor'>' and inhibitor}' depression (inhibition:/? = 0.8) 

Variance Level 

Excitatory depression 

SsH (nA) 

C±SF.) 

Slope iHz/iiA) 

(±SE) 

(P) 

Low 

(1.3 

0.1662 

(0.0016) 

0.042O 

(0.0014) 

Mid 

0.45 

0.2228 

(0.0023) 

0.0243 

(0.0015J 

Il iKl ' 

0.6 

0.1240 

(0.0004) 

0.0502 

(0.0004) 

Extension to the model ofiisymmetnc synaiilic depression 

Within the asymmetric depression model, the balance between levels of excitaloiy 

and inhibitor) depression was manipulated in nnki to generate gain modulation Ihc 

depression-factor. /?. for both excitation and inhibition was fixed, depending on the level of 

stimulu.s variance. I luwever. in general, one would not expect the depression factor to vary 

as function of slinuihis input: thus it could be argued that the model above does not 

represent a truly biologically valid mechanism of cortical adaptation. 

The primaty cfTecl of reducing levels of excitatory depression, as stimulus \ariance 

increased, was to strengthen the excitaloiy drive acting on inhibition (please see Tigure 

5.47 and Figure 5.5 1) within the model; inhibition was dominant within the network and 

the gain of the read-oul cell was thus reduced. One possible mechanism by which a shift in 

the overall balance between excitation and inhibition would emerge, without the need for 

explicit hand-tuning of parameters, could be Ihrnn^h relati\e changes in overall le\els of 

release from excitatory depression, as a fimclion of stimulus-variance. The hypothesis 

2R.T 

file:///ariance


being that, as the hijih-probabilily region ol'the stiituilus dislribulioii widens (thereby 

increasing global variance), there is a relative increase in the presentation of stimulus 

amplitudes that only elicit sub-threshold responses; this should, theoretically at least, allow 

for relatively more recovery from depression as stimulus-variance increases. 

Gain change through release from depression 

In order to lest whelher increased diversily in the .slimulus was sufficient to 

generate the necessary release from excitatory depression, simulations were run, using an I 

& F model (similaito that described in Section: 5.4.3), in which depression levels were 

fixed for all three stimulus-variance conditions. In brief, the model contained 1 inhibitory 

and 4 excitatory, self-connected, I & F cells, that were also reciprocally connected to each 

other. The population ofl & 1" cells provided the sole, feed-forward, depressing input to an 

excitator>' I & F model neuron that acted as the read-oul cell 'i'he read-out cell was 

implemented with spike-rate adaptation (i.e. a dynamic membrane threshold) and a tonic 

inhihiion,' conductance that was proportional, in strength, to the global-mean amplitude of 

the adapting stimulus. All parameters were as for the 1 ik I model in Section 5,2.6 and 

5,4.3. above. 

For the 1" simulation the ratio of excitatorj' to inhibitory reeuixcnt depression was 

set to/» = 0.3 for excitation and p = 0.8 for inhibitory depression (ASEXC conllguralion). In 

the 2 simulation depression levels were balanced, i.e. /) ~ 0.8 for both excitatory and 

inhibitory depression and for the 3' simulation depression was asymmetric with inhibitory 

depression set to be stronger than excitation {ASINH. /) = f/-S' for excitatory synapses and p 

= 0.3 for inhibition). Feedforward depression was set to; ' = 0.8, for both feedforward 

inhibition and excitation. A simulation was also performed in which there was no recurrent 
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depression acting within the network; the results for all 4 simulations {across 100 trials) are 

plotted in Figure 5,52. 

No depression 
Asyminetric 
(Ex:0.3/lnh:0.8) 

. 20 
N 

X 
•— 15 

LJ_ (J 

Balanced 
(Ex:0.8/lnh:0.8) 

Mb 

Stimulus (nA) 

10 

B 

6 

4 

2 

Asymmetric 
(Ex:0.8/lnh:0.3) 

^L Jn 

^ ^ ^ ^ ^ ^ ^ ^ a ! r 0.4 
stimulus (nA) 

Figure S.52; Stimulus-response functions, under all stimulus configurations 
Red, green and black lines/symbols plot the low-, mid- and high-variance conditions 
respeclively. Top left: No recurrent depression. Top Right: Asymmetric depression: 
0.3:0.8 (Excitatory : Inhibitory). Bottom Left: Balanced: 0.8:0.8, Bottom Right: 
Asymmetric depression: 0.8:0,3. 

Increasing adapting variance only affected the output of the model cell, in the 

presence of recurrent depression. There was a slight decrease in neural gain for the AS^xc 
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(top riglu) conllguralion but it was not significant (p >0.I, non-parametric Kruskal-Wallis 

test). Overall, no significant decrease in gain or shift in stimulus amplitude at the half-

maximal point (S50) was observed during any of the simulations. 

As described in the introduction, the combination of tonic inhibition and synaptic 

depression has been shown, experimentally, to elicit multiplicative changes in gain 

(Rothman et al, 2009). Within the model, tonic inhibition is proportional to the global-mean 

of the input. However, as global stimulus-mean increases slightly with stimulus variance 

(due to the skewed nature of the stimulus distribution) there is a concomitant increase 

(albeit insignificanf) in tonic inhibition acting on the read-oiil cell. Thus [he combination of 

feedforward depression and tonic inhibition within the model could result in the slight 

multiplicative downward scaling of the stimulus-response function. 

In order to test whether the changes in the model output (as a ftmction of stimulus 

variance) were dependent on the membrane dynamics of the read-out cell, the simulations 

were re-implemented without spike-rate adaptation and tonic inhibition (see Figure 5.53). 

In the absence of spike-rate adaptation and tonic inhibition, none of the simulations 

generated a decrease in the gain of the model output cell, as a ftinction of stimulus-variance 

(Figure 5.53). Thus it would appear that the increased diversity in the stimulus was not 

sufllcient to shift the overall balance of synaptic activity to favour inhibition. Within the 

model, the temporal dynamics of synaptic recovery from depression were on the order of 

100s of milliseconds and therefore did not capture the rapid changes in stimulus amplitude, 

on the 4flms scale. Manipulating either (or a combination ol) the presentation time for each 

stimulus {e.g. increasing the time-window of presentation from 40ms to lOOms) or the time 

constant of recovery from depression (e.g. decreasing TKEC from 300ms to 100ms ) did not 
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elicit a decrease in gain (data not shown). 

Asymmetric 
No depression (Ex: 0.3/ Inh: 0.8) 

50 Q 70 

0 0.1 0.2 0.3 0.4 

Balanced 
[Ex: 0.8/Inh: 0.8) 

0 0 1 0.2 0.3 0.4 

Asymmetric 
(Ex: 0.8/Inh: 0.3) 

0.1 0.2 03 0,4 

Stimulus (nA) 
' 0 0,1 0.2 0.3 0.4 

Stimulus (nA) 

Figure 5.53: Stimulus-response Tunetions, under ail stimulus cuntigurutions, in (he 
absence of spike-rate adaptation 
Red. green and black lines.'symho[s plot the low-, mid- and high-variance conditions 
respectively. Top left: No recurrenl depression Top Right: Asymmetric depression; 
0.3:0.8 (Excitatory : Inhibitor)), Bottom Left: Balanced: 0.8:0.8. Bottom Right: 
Asymmetric depression: 0.8:0.3, 

Synaptic FacHilation 

Within the hand-tuned asymmetric depression model outlined above, the main 

effect of reducing excitatory depression was to increase the excitatory drive acting on 
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recurrent inhibition. In order to implement this, it was decided to incorporate synaptic 

facilitation into ilic I & F model. There is evidence thai many cortical synapses display both 

facitilation and depression (e.g. Thomson 1997; Varela el al. 1997; Markram, Wiiiig, 

Tsodyks 1998), Under conditions of iacililation. each lime a pre-synaplic spike is fired, 

subsequent responses (within a given time-window) are enlianced. relative to the initial 

response. Within VI, facilitation has been observed to have faster temporal dynamics than 

depression (Varcla el al. 1997) and thus only influences the initial synaptic response to 

supra-threshold slinniii. 

Under conditions of increasing variance, the frequency of high-intensity stimuli also 

increases, thus it could be argued that facilitation would act to boost the otherwise 

suppressed synaptic response. Incorporating facilitation into the recurrent excitalory-lo-

inhibitoty* synapses, within the model network, could generate the relative increase in 

inhibitory drive necessar>' to elicit a decrease in gain. Facilitation has been observed in 

excitatory' synapses impinging onto (iAIJAcrgic inler-ncurons (e.g. Thompson 1997). 

Facilitation was implemented as for Varela et al. (I '197), For each spike the 

probability of vesicle release was increased (in an additive fashion) by a given facililatoiy 

factor, which was set to 0.6 (Varela et al. 1997); the use-dependent strength of the synapse 

decayed exponentially back to the base level of unity, with a time constant of 0.1s. 

Facilitation was restricted to recurrent excilatoi-\-lo-iiihibilory synapses onl\, thus 

enhancing excitatory drive acting on inhibition within the network. In the presence of 

spike-rate adaptation and tonic inhibition, facilitation resulted in a significant decrease in 

response gain, but only under the ASnxc configuration (lesulls plotted in Figure 5.54). 
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No depression 
Asymmetric 

(Ex:0.3/lnh:0.8) 

Balanced 
(Ex:0.8/lnh:0.8) 

Asymmetric 
[Ex;0.8/lnh:0.3) 

Stimulus (nA) Stimulus [nA) 

Fif>ure 5.M: Stimulus-response functions in presence of inliil>it»ry-to-excltatory 
facililiilion, willi spikc-riite uilaplation 
Red, green and black lines/symbols plot the low-, mid- and high-variance conditions 
respectively Top left: No recurrent depression Top Right: Asymmetric depression: 
0.3:0,8 (Excitalor) ; inhihilor>). Bottom Left: Balanced: 0.8:0.8. Bottom Right: 
Asymmetric depression: 0.8:0.3 

For the ASHXC conllguralion (Figure 5.54. lop right), ihe average value of the slope 

at the Ss[| decreased steadily (low to high-variance condition) from 0.0024 (±0.00022 SE) to 

0.0013 (±0.0001! Sli) with a significance level ot'p = 0.0(772 (using a non-parametric 

Kruskal-Wallistest). 
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In order lo examine theeflect of facilitation on the network the reciprocal excitatory 

and inhibitory recurrent connections are plotted in for the both the AS^xc and balanced 

configurations 

0.04S 
Asymmelric (Ex: 0.3/ Inh: 0,8) 

0.25 

0.2 

0.16 

0.1 

0.05 

n 

Balanced (Ex: 0.8/Inh; 0.8] 

M 

J 

/ • • • • • • 

' • 1 • 

0.4 0 0,1 0,2 0,3 0.4 

Stimulus (nA) 

Figure 5.5S; Recurrent, reciprocal conductances in the presence of balh facilitation and depression. 

Solid lines plot the excitatory-to-inhibitory conductance and dashed lines plot the 
inhibitory-to-excilatory conductance. Red. green and black lines/symbols plot the low-, 
mid- and high-variance conditions respectively 

Under the AS|:x(.- conHgiiralion. recurrent excitation (solid lines, left plot, Figure 

5.61) is generally suppressed (relative to balanced depression), due to the high levels of 

depression. I lowever, the influence of facilitation has a much stronger effect than that 
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observed in Ihe balanced configuration (solid lines, right plot, Figure 5.61). Excitatory drive 

acting on inhibition was increased for the higher variance stimulus conditions, as predicted, 

thus generating a relative increase in the amount of inhibition in ihe network and enhancing 

the small decrease in gain observed in the absence of facilitation (see Figure 5.52). 

The average response, in ihe absence of spike-rate adaptation and tonic inhibition, 

and across all depression configurations, is plotted in Figure 5.56 below. 

50 
No depression 

70 

Asymmetric 
(Ex:0.3/lnh:0.8) 

0 D.1 02 0.3 0.4 

Balanced 
[Ex:0.8/lnh:0.8) 

0 0.1 0.2 0.3 0.4 

Asymmetric 
(Ex:0.8/lnh:0.3} 

60 A 60 

g 30 ^ ^ 30 ^ ^ ^ 

0)20 j i ^ ^° _ ^ ^ 

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 

Stimulus (nA) Stimulus [nA) 

Figure 5.56: Stimulus-response ruiu'tions in presence »f inhibitor>--to-excitsitory 
facilitation 
Red, green and black lines/symbols plot the low-, mid- and high-variance conditions 
respectively. Top left: No recurrent depression. Top Right: Asymmetric depression: 
0.3:0.8 (Excitatory : Inhibitory). Bottom Left: Balanced: O.K:0.8. Bottom Right: 
Asymmetric depression: 0.8:0.3. 
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Facilitation alone did not elicit any .significant change in oulpul. There was however 

a slight decrease in firing rales for the ASi-xt- configuration, as variance increased. In 

combination with tonic inhibition, this was siifllcicnt to generate a significant 

multiplicative decrease in gain, as presented in Figure 5.54 (top right). 

5.4.4: !\'ofi-{inear relationship between stimulus and response 

Whilst the addition of facilitation into the model did elicit small, significant, 

changes in gain, Ihe model could not be considered robust. The decrease in gain was not 

onl> reliant on the ratio of depression between the escitaton and inhibitor) units but also 

on the presence of spike-rate adaptation and tonic inhibition. Adaptation to variance 

appears to be relatively common within the barrel cortex {tiarcia-Lazaro et al. 2007), 

therefore a more robust model would belter account for the experimental data. 

It was considered earlier, within this chapter, that background noise might increase 

i f derived predominantly from cells thai arc adapted lo stimiiliis mean but not to siinuilus 

variance. As demon.strated, the non-linear transformation of Ihe input signal elicited a 

decrease in gain when used lo generate noisy, balanced, background conductances {see the 

extended model in Section 5.4.2, above). 

It was decided to use this non-linear input to drive the 1 & F model directly. The 

stimulus current was Ultered through a bank of parallel non-linear recliHed filters, prior lo 

injecting it into the model (for detailed description of fillers and parameters see Seciion 

5.4,2. above). It was hoped that the increase in overall levels of firing rates, for the higher 

variance adapting conditions, would be slrong enough to shift the bias of the network 

towards inhibition. 

293 



The stimulus-filters were as for tlie background noise model above, except thai their 

outputs were used as a cuirent injection into the model (i.e. without conversion into a 

synaptic conductance). A graphical descriplion of the relationship between ihe average, 

summed driving current and slimulus distribution is plotted in Figure 5.57 and a schematic 

outline of the model and inputs i.s plotted in Figure 5.58 

Relationship between 
current and stimulus distribution 

^ . 

0 15 D.30 

Stimulus (nA) 
0.4S 

Figure S.57: Relationship between stimulus distribution and summed filtered input 
current, plotted as a function of stimulus. 
Histogram of number of times an input amplitude is presented during 30s stimulus 
sequence. Solid (excitatory' inpui) and dashed (inhibitory) lines plot Ihe relationship 
between the rectified non-linear filter of llie input, as a function of slimulus variance. Red, 
green and black (dark-grey on histogram) plot ihe low-, mid- and high variance conditions 
respectively. 

The results of the simulalion. across all depression configurations, are plotted in 

Figure 5.59. There was a signiMcanl decrease in slope (see Table 5.7). under all depression 

configurations (significance level/j - O.CW^forthe no depression model and/)- 0.000! for 

the remaining configurations). 
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Figure 5.58: Schematic description of model 
The input is fed to parallel non linear, rectillers to generate a filtered stimulus. I, which 
drives recurrently connected I & F neurons {E and I). These provide feedforward input 
{black arrows) to the read-out cell; inhibiloiy stimulus is scaled by k (k - 0.4). (ireen and red 
solid arrows show excitatory and inhibitory stimulus, solid blue and dashed red arrows 
show recurrent excitatory and inhibitor)' connections, respectively. 
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No depression 
140 

Asymmetric 
(Ex:0.3/lnh:0.8) 

Balanced (Ex: 0.8/ Inh: 0.8) 
120 100 

0 0.1 0.2 0-3 0.4 

Stimulus [nA) 

Asymmetric 
[Ex: 0.8/Inh; 0.3) 

12 0-3 0.4 

Stimulus (nA) 

Figure S.59: Stimulus-response functions for non-linear stimulus input, under all 
synaptic configurations 
Red, green and black lines/symbols plot the low-, mid- and high-variance conditions 
respectively. Top left: No recurrenl depression Top Right: Asynimetric depression: 
0.3:0.8 ([Excitatory : Inhibitoiy). Bottom Left: Balanced; 0.8:0.8, Bottom Right: 
Asymmetric depression: 0.8:0.3, 

There was no significant change in the stimulus amplitude that elicited the SMJ under 

any condition. The effect of the stimulus on recurrent excitatory and inhibitory synaptic 

conductances are plotted in Figure 5.60 

295 



Excltatoiy cell recurrent conductances 

(/I 
c^ 
CD 
U 

c 
D 

t3 
D 
c 
O 
U 

0.4 

0.2 

No depression 

0^ • * -

0.2 

0.1 

0 

0 0.1 0.2 0.3 0.4 

Balanced (Ex: 0.8/ Inh: 0.8) 

0,1 

0.05 

0 

Asymmetric (Ex: 0.3/ Inh: 0.8] 

^ = = -

0.06 

0 0.1 0.2 0.3 0.4 

Asymmetric [Ex: 0 .8 / Inh : 0.3} 

0.04 

y;;': iri""' 002 

0 0.1 0 2 0.3 0.4 

Stimulus (nA) 
0 0.1 0.2 0.3 0,4 

Stimulus (nA) 

Intilbltory cell recurrent conductances 

No depression 

<D 
U 
c 

O 
D 
•o 
c 
o 
u 

0 0.1 0,2 0.3 0,4 

Balanced (Ex: 0 .8 / Inh : 0.8) 

0.2 

0,1 

0 

Asymmetric (Ex: 0,3/ Inh: 0.8) 

* • J * j ^ * • • • * 

0 0.1 0,2 0,3 0.4 

Asymmetric (Ex: 0.8/ Inh: 0.3) 

0.1 0.2 0.3 0.4 

Stimulus [nA) 
0.1 0.2 0.3 0.4 

Stimulus (nA) 

Figure 5.60: Recurrent excitation and inhibition 
Each axis, plots the average, recurrent conductances impinging upon either an excitatory 
(uppermost plots) or inhibitorj' model cell (lowennosl plots), as a function of stimulus 
input. Red, green and black lines plot the low-, mid- and high-variance conditions 
respectively. Top left: No recurrent depression. Top Right: Asymmetric depression: 
0.3:0,8 (Excitatory : Inhibitory). Bottom Left: Balanced: 0 8:0.8. Bottom Right: 
Asymmetric depression: 0.8:0.3. Solid and dashed lines plot the excitatory and inhibitory 
conductances, respectively 

296 



In the absence of recurrent depression (Figure 5.60, lop left), the synaptic 

conductances were, essentially, linear transformations of the driving current, however in the 

presence of depression the synaptic conductances tended to saturate. For high intensity 

stimuli (above the average, non-linear inpiii threshold), the conductance, ploticd as a 

function of stimulus, scaled downwards as adapting variance increased; this is due to 

greater levels of depression suppressing the synaptic response. As stimulus variance 

increased the presenlalion frequency of high-intensity stimuli (above the input filter 

threshold) also increa.scd. Thus, the synapses became more depressed, relalive to lower 

variance conditions, Î 'or the filtered inputs, the low variance stimuli are extremely 'sparse' 

in nature, thus the synapses had ample lime lo recover from depression between spikes 

Tublc 5.7: The slope and slimuiiis umjililude at the hiiir-tuiiximul point, iiiider all 
udaplinj; variunce ctindilions (columns) und synaptic cunfijiuration (rows) 
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The adaptive response was not abolished by the removal of spike-rate 

adaplalion and Ionic inhibilion (see l-"igurc 5.61 below); overall, the decrease in slope was 

î cduccd but still significant at the 5% level (p<0.02) for all depression configurations. 
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Figure 5.61: Stimulus-response runction.s for non-IJnear stimulus input, under alt 
synaptic conTigurations; no spike-rate adaptation or tonic inhibition 
Red, green and black lines/symbols plot the low-, mid- and higji-variaiice conditions 
respectively. Top left: No recurrent depression. Top Right: Asymnielric depression: 
0.3:0.8 (Rxcitatoiy : Inhibitory). Bottom Left: Balanced: 0.8:0.8. Bottom Right: 
Asymmetric depression: 0.8:0.3. 

In the absence of spike-rale adaptation (Figure 5.61). the read-out cells' output 

reflects die feedforward input from the recurrent I & F cells wilhin Ihe network. Rssentially, 

the feedforward drive, acting on the read-out cell, is the weighted difTerence of the 

excitatory and inhibitory feedforward conductance and is plotted in Figure 5.62. The 

decrease in inhibition, for each variance condition was proportional tu Ihe decrease in 
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excitation, thus the relative reduction in responsiveness was maintained. 
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Figure 5.62: Net fccdfomard synaptic conductance for all depression configurations 

Red, green and black lines/symbols plot tlic low-, mid- and high-variance conditions 

respectively. Top left: No recurrent depression. Top Kighl: Asymmetric depression; 

0.3:0.8 (Excitatory : Inhibitory). Bottom Left: Balanced: 0.8:0.8. Bottom Right: 

Asymmetric depression: 0.8:0.3, 

Adaptation to mean 

The model was tested under conditions of adaptation to stimulus mean, in order to 

confirm whether driving the model cell witli the illlered input would elicit an adaptive 
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lateral displacemenl of the stimulus-response function. The relationship between the 

stimulus distributions and the summed, filtered input is plotted in Figure 5.63 

Relationship between stimulus 
distribution and input current 

Stimulus (nA) 

Figure 5.63: Rclation.ship between non-linear input and stimulus distribution under 
conditions of adaptation to global-mean 
The histogram plots frequency of stimulus presentation under the model equivalent of 
adaptation to global mean. The lines represent the stimulus-current functions, i.e. plot the 
relationship hetween driving input and its non-linear transformation. Green bars/lines: high-
probability region centred on 0,0573nA; blue bars/lines: f). l337nA; red bars/lines: 
0.2101 nA; cyan bars/lines: 0.265nA. Solid and dashed lines plot the excitatory and 
inhibitory cun^ent. respectively. 

The response of the model cell, across all deprcssioji configurations is plotted in 

Figure 5.64. The model cell's stimulus- response function was displaced laterally, as a 
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Tunction oi'stimulus-mean and was in line with the experimental data. The functions were 

displaced to centre neural threshold (i.e. the half-maximal poinl) outside the high-

probability regions of the stimulus space. 

No depression 
Asymmetric 
(Ex:0.3/lnh:0.8) 

Asymmetric 
Balanced [Ex: 0.8/ Inh: 0.8) [Ex: 0.8/ Inh: 0.3) 

Stimulus (nA) 
0.3 

Stimulus (nA) 

Figure 5.64: Stimulus-response functions, for non-linear input und for all synaptic 
configurations, under conditions adaplution (o global mean. 
Green lines/symbol: high-probahilit> region centred on 0.057.1nA: blue lines/symbol: 
0, l337nA; red lines/symbol; 0,2101 n A; cyan lines/symbol; 0.265nA. respectively. Lines 
plot iht; best tit to the data (symbols). Top left: No recurrent depression. Top Right: 
Asymmetric depression: 0.3:0.8 (Excitatory : Inbibitory). Bottom Left: Balanced: 0.8:0.8. 
Bottom Right: Asymmetric depression: 0.8:0,3. 
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The model slep-size and devialion-from-lhe-niean runctions were also calculated. 

Botli the model step-size functions (see Figure 5.65) and noimalised deviation functions 

(see Figure 5.66), across all depression configurations, displayed levels of invariance that 

were consistent with experimental data. 
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Figure 5.65: Model slep-size funclions, across all depression conflguralions; 
adaptation (o mean 
Green liries/.symbol: high-probability region centred on 0.0573nA; blue lines/symbol: 
0.1337nA; red lines/symbol: 0.210lnA; cyan lines/symbol: 0.265nA. respectively. Lines 
plot the best fit lo the data (symbols). Top left: No recurrent depression. Top Right: 
Asymmclric depression: 0.3:0.8 (Fxcilatory ; Inhibiloiy). Bottom Lefl: Balanced: 0.8:0.8. 
Botlom Right: Asymmetric depression: 0.8:0.3. 
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Figure S.66: Model deviulion-from-mean, across all depression configurations; 
adaptation to stimulus-mean 
Green lines/symbol: higli-probabilit>' region centred on 0.0573nA; blue lines/symbol: 
0.l337nA; red lines/symbol: 0.210!nA; cyan lines/symbol: 0.265nA, respectively. Lines 
plot the best fit to the data (symbols). Top left: No recurrent depression. Top Riglit: 
Asymmetric depression: 0.3:0.8 (Excitatory ; Inhibitory) Boltum Left: Balanced: 0.8:0.8. 
Bottom Right: Asymmetric depression: 0.8:0.3. 

The adaptive response was not abolished by running the simulation without spike-

rate adaptation and tonic inhibilion (see Figure 5.67). However, the successive increases in 

degree of stimulus-response function displacement were less pronounced for all depression 

configurations; especially with reference to the no depression and ASEXC models. 
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Figure 5.(tl: Stimulus-response functions, for non-linear input und for all synaptic 
conHgurations, under conditions of adaptation to global mean, without SKA and tunic 
inhibition. 
Green lines/symbol: high-probability region centred on 0.0573nA; blue lines/s>mbol: 
O.I337nA; red lines/symbol: 0.2!0lnA; cyan lines/symbol: 0.265nA, respecliveiy. Lines 
plot the best fit to the data (symbols). Top left: No recurrent depression. Top Right: 
Asymmetric depression: 0.3:0.8 (Lxcilatorj ; Inhibilon.'). Bottom Left: Balanced: 0,8:0.8, 
Bottom Right: Asymmetric depression: 0.8:0.3. 

5.5: Discussion 

The main results derived from the computer simulations of various models of gain 

control are outlined below: 
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1. The lateral displacenienl olllie neural rate runction is best explained by a 

mechanism that iiicor(>orates both tonic inhibition and spike-rate adaptation 

2. Gain modulation can be generated by several tnechanisms: 

- Increasing the firing rates of balanced, noisy, baekgronnd conductances 

acting on the cell {Chance et al. 2002} 

- M;mipul;uing the relationship between afferent inhibition and excitation - this 

was modelled through adjusting the balance of synaptic depression (Chelaru & Dragoi 

20O8J, 

-A Combination of recurrent and feedforward synaptic depression acting on a 

non-linear transformation of the driving current 

In terms ol adaplalion t() global mean. IIK' conipuliT simulations replicated the 

experimental data by incorporating tonic inhibition and spike rate adaptation into the 

model. Both tonic inhibition and spike-rate adaptation act as high pass llllers on the 

incoming stimulus. Efferent excitation must be strong enough to counteract inhibition, 

(which increases with global mean stimulus levels) and drive the cell over threshold to 

elicit llring; as the average inlensiiy of the adapting stimulus strengthens, membrane 

threshold is also increasingly elevated. 1 lowever, there are differences between the two 

actions these processes have on the cell; tonic inhibition is essentially a hard-threshold as it 

is detenuined by the global mean amplitude of the stimulus, at each trial, and doesn't 

change during ibc adaptation process. Conversely, levels of spike-rate adaptation are 

dependent on the stimulus in a time-dependent manner, as well as the overall global mean 

of the stimulus. Spike-rate adaptation, through the process of increasing the dynamic 

threshold, is a self-limiting process. For high intensity stimuli, the dynamic membrane 

305 



ihresliold will increase to such a level Lhal relatively lewer spikes will be elicited to a given 

stimulus ampliiudc; thereby allowing for threshold to decay back to its base level. Thus the 

relative suppressive effects of the dynamic membrane thresliold are reduced; spike-rate 

adaptation atone will not elicit the requisite displacement of the stimulus-response function 

necessary to generate the invariance of the both the slep-si7e and deviance functions. The 

introduction of a ionic inhibilion increases ihc stimulus-dependent threshold at which 

spikes can be elicited: thus the model cell only responds to stimuli of a relatively high 

intensity, which then initiates the process of spike-rate adaptation. As to the biological 

validily of the model, there is certainly a wealth of evidence that tonic inhibition is present 

in the barrel cortex (e.g. Yamada et al, 2007; Kyiw.i et al. 1998: Salin & Prince 1996; 

Kvriazi et al. 1996; S wad low 200.1; Krouk-Magnuson, Li. Paluszkiewicz & Huntsman 

2008: Krook-Magnuson & i hintsman 2005) and that, within layer 4, it acts to prevent firing 

to all but the most potent inputs (Swadlow 2002). 

In terms of modelling the adaptive response lo increases in siimuhis variance, three 

different models were implemented. The drsl was that of gain modulation through 

increased background Uring rates, as proposed by Frances Chance (Chance ct al. 2002). 

The experimental resuhs were replicated in this model, i.e. gain was decreased, by 

increasing the llring rates of e.\citaloiy and inhibitory background conductances in 

proportion to stimulus variance. Incorporating Ionic inhibilion into the model did not affect 

gain modulation and introducing background conductances into the tonic inhibilion model 

did not adversely etTect the lateral displacement of the neural rate-function, as a function of 

stimulus mean. 

The model was not truly adapting in the sense that background llring rates were 
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explicitly hand-tuned to increase with stimulus variance. The argument was presented that, 

due to adaptation in the local population o f cells providing modulatory inputs, background 

firing rales would be constant with respect to global mean (due to the relative suppression 

of output for the high-probability stimuli), but increase with global variance. In order to test 

this hypolhesis. background firing rates were delermiiied by a population o f stimulus fillers, 

with parameters set to mimic a population adapted to global mean but not global variance. 

The overall increase in background noise (averaged over the 30s stimulus presentaliun 

time) was sufficient to generate a decrease in gain as a function o f variance. Therefore, it 

can be argued that the model is robust and may represent the mechanism underpinning 

adaptation to global variance in vivo, as well as gain niodulalion in vitro. 

A cogent argument for the case lluit background firing rates could increase with 

stimulus variance was presented within the introduction to this Chapter (i.e. that 

background firing rates increase with variance due to the increased number o f high-

amplitude stimuli presented more frequently), The hypothesis relied on the premise that all 

cells, providing moduJatoiy input to the target neuron, would be adapting to and correlated 

with the stimulus. It was found thai the average f ir ing rate o f the model cell only increased 

in line with variance when the model cell was unadapted to the stimulus (see Figure 5.38). 

Numerous cell types can be found within the barrel cortex and not all are prone lo gain 

modulation, e.g. fast-spiking inhibitory inlcrncurons (McComiick, Connors, Lighthall & 

Prince 1985; Swadlow2003), thus it is feasible that modulatoiy inputs could be derived 

from unadapting sources. The oUier point of the argument was that background firing rates 

would remain constant in the face o f increasing global mean amplitudes. Tli is implies that 

modulatory sources would be adapted lo global mean levels, thus firing rates to high-
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probaliility siiiiuili would be suppressed. If one recalls from Chapter 3, adaptation to 

variance was practically non-existent in the Inferior ColHculus, whilst adaptation to global 

mean was a common feature of neuronal output, fhe Inferior Colliculus provides much of 

the sub-coi1ical input into the primai-y audilory coilex. thus if levels of thalamic and 

cortical adaptation are similar in the somatosensory pathway, one could argue that a 

possible source of niodulatoiy input, thai only adapts lo stimulus mean, is derived from 

ceils that inherit their adaptive properties directly from thalamic input. 

Another point is that random input by its very nature is not supposed to be 

correlated with any stimulus, thus it is arguable whelher one can consider the background 

conductances as purely stochastic! Instead one can argue that the (Iring rates of spike trains, 

with I'oisson statistics, must increase in a balanced manner for both modulatory excitation 

and inhibition, and that firing rates must be dependent on the overall variance in the 

adapting stimulus and not global mean. 

Whilst the model described above relied on increasing the levels of modulatory 

excitation and inhibition in a balanced manner, the second model relied on the relative 

balance between inhibition and excitation to elicit gain modulation (Chelam & Dragoi 

2008). The evidence for asymmetry in both synaptic dynamics (i.e. Varela et al. 1999, 

Galarreta & Hestrin, 1998) and overall inlluence of inhibition (e.g. McCorniickl985) was 

highlighted in Ihe introduction. Changes in the rclalionship between afferent inputs was 

achieved by manipulating levels of synaptic depression, such that excitatory levels of 

depression became weaker as stimulus variance strengthened, thereby becoming closer lo 

inhibilorv' depression, Whilst it seems counterintuitive lo elicit a reduction in neural 

responsiveness by increasing the amount of excitation in the network, the increased 
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excitalory drive aeted on recurrent inhiliiiion, resulting in increased levels of inhibition 

within the network, relative to the low-variance case, and thereby decreasing gain. 

Adaptation to variance was successfully simulated in the steady-state case (as was 

adaptation to stimulus mean), and less successfully in the time-dependent ease, in that the 

model cell displayed reduced responsiveness as a function ofincreased variance, but there 

was no steady decrease in slope values, at the S50. However this could be due to the 

limitations in the implementation oPlhe model: as it did noi strictly elicit gain change in the 

same manner as the steady-slate model. Inhibition levels increased in the same manner for 

both implementations of the model but vvilhin the time-dependenl version excitation was 

highest under the low-variance condilion. ihis could account for lack of clear decrease in 

neural slope. 

Gain modulation was achieved through explicit hand-tuning of the depression 

factor, p. l l was decided to see whether increased variance in the stimulus would be 

sufficient to elicit a release from depression and thus a change in gain. Experimentally, the 

amount of synaptic resource available is highly dependent on presynaptic firing rates (e.g. 

thalamocortical depression is often saturated due lo tonic aclivily in the llialamus, Castro-

Alamancos & Oldford 2002), thus a weakening of depression could be linked directly to the 

stimulus conllguralion; as the high-probabilily region widens, the number of low intensity 

current amplitudes presented increases, thereby allowing for more recovery from 

depression. 

The model cell was tested under .several distinct synaptic arrangements (and, for one 

simulation, the addition of facilitalion on recurrent excitatoiy-to-inhibitoiy synapses) but no 

significant change in gain was observed. Synaptic dynamics were too slow to capture the 
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local changes in stimulus amplitude. 

Decrease in gain was only oKserved following the introduction of tonic inhibition 

and spike-rate adaptation into the model read-out cell and only for the asymmetric 

depression configuration (where excitatory depression was stronger than inhibition) vvilb 

facilitation. Tonic inhibition has been shown to elicit multiplicative changes in neural gain 

in the presence of synaptic depression (Murphy & Miller 201)3, Rothman et al. 2009). 

Under the ASEXC configuration, facilitation increased excitatory-to-inhibitory 

conductances, in proportion with stimulus variance; thus eliciting a significant decrease in 

neural gain. Therefore, only under very strict conditions, could the inherent diversity in the 

adapting stimulus elicit the requisite change in synaptic dynamics to iniluence neural gain. 

Tor the lliial model, it was decided to drive [he depressing I & I-' model (as 

described above) using a non-linear traiisfomiation of the stimulus, with the aim of 

approximating feedforward input from cells that were already displaying adaptation to 

global mean. The nature of the non-linear uiput meant that under the low-variance adapting 

condition, only a few stimulus inputs would be strong enough to elicit a response in the 

model cells. As adapting variance increased, the number of synaptic events also increased 

thereby generating greater levels of depression and reducing the overall synaptic response 

to a given stimulus. The effect was obseiTed in both recurrent inhibitory and excitatory 

model cells. However the relative decreases in excitation and inhibition were proportional, 

thus the overall net effect on the model read-out cell was a reduction in driving input as 

stimulus variance increased. 

The decrease in gain was more pronounced in the presence of spike-rate-adaptation 

and Ionic inhibition. Spike-rate adaptation acts to displace the stimulus-response function 

310 



rightwards in the presence oriiipher amplitude stimuli and, as discussed, tonic inhibition 

has a multiplicative effect on the stimulus-response funccion. These mechanisms enhance 

the gain changes induced by depression in [he recurrent circuit and initiate gain changes for 

lower-intensitv' slimuti ihari thai observed under depression alone. 

The model above assumes that, in vivo, the majority of the driving input v\ ill be 

both tuned to the stimulus and adapted to global mean. As already stated, within the 

auditor>'system, this closely matches the response profile of inferior colliciilus cells, thus, 

if levels of adaptation to inlensitj' are the same in the subcortical afferent pathway of the 

somatosensory system, this is a valid assumption. The model also requires synaptic 

depression, however again this is common feature of synaptic d\namics within the 

somatosensory system and other primary cortical areas-

Unlike the extended models of background noi.se and asymmetric depression, gain 

changes were initiated in the absence of spike-rate adaptation and Ionic inhibition; thus 

under this mechanism neuron types which don't display llring-rale adaptation would still be 

sensitive to changes in stimulus-variance. Multiplicative gain modulation emerges from the 

model archileclure and dynamics without the need for any other complex processes. 

Stimulus intensitj' or contrast is a relatively tow-level feature of environmental input, hence 

the argument for it being encoded as efficiently as possible (Barlow 1961). The evidence 

presented in Chapter 4 indicates that neurons arc adapting to encode local changes in the 

stimulus input, thus a model of gain change that emerges simply from synaptic dynamics 

represents a robust and economical mechanism to account for gain change in the cortex 

(Borst, Flanagin & Sompolinsky. 2005) 

The model is of course similar in many features to mechanisms of gain modulation 
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proposed liy Murplij' & Miller (2003) and Rotliman and colleagues (2009), where the 

combination of increased tonic inhibilion, a non-linear inpul and synaptic depression leads 

to a decrease in neural gain. In the model outlined above. Ihcre is no increase in Ionic 

inhibition instead the driving inputs become saturated for hitiher intensity siimnli and 

become relatively more suppressed as variance increases. 

Finally, tlie model above suggests that adaptation to stimulus statistics in llie barrel 

cortex is inherited primarily from llie thalamic inputs arriving in layer 4, thus one would 

expect thai the adaptive response would emerge rapidly, within the cortex. In Chapter 3, die 

analysis of the adaptalion time course was inconclusive. However, il may be that adaptive 

responses to stimulus statistics are developing on too rapid a ttmescale to be observed 

within the experimental data presented wiihin this thesis. 
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Chapter 6: Discussion 

6.1: Summary of findings 

In order to summarise the main conclusion of this thesis, the main points from 

each relevant chapter are presented below. 

6.1.1: Chapter 2: Information theory and contrast adaptation 

Within this chapter the main ideas underpinning Inlbniialion Theory were 

introduced followed by a description of Barlow's EtTicicnl Coding Hypothesis (Barlow 

1959; Barlow 1962; Barlow 1972). Barlow saw that nervous systems operate under 

similar constraints to communication systems, in thai environmental information is not 

only transformed into a binary signalling code (i.e. the all-or-nothing action potential) but 

is transmitted lliroughoul llic iici"V()us system along finite channels and must therefore 

undergo an enormous amount of compression. Barlow devised llie theory of redundancy 

reduction as a tool by which sensory information can be compressed as efficiently as 

possible, with minimal loss of information; sensory input can therefore be received 

further up in the neura! hierarchy. 

The Efficient Coding H\poihcsis predicts that cells should have a dvnamic 

response to the environment and adjust their output depending on the prevailing stimulus 

levels. Luminance contrast is ii measiu'e of the standard deviation of light intensity from 

mean luminance. There is strong evidence to suggest that neurons within the visual 

systems, across many species, adapt to centre their range of responsiveness onto the 

adapting contrast. As such, the contrast-response w itiiiii the \ isiuil system was used to 

highlight some of the key features of gain control, e.g. the stimulus-response function and 
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the parameters used lo describe it, as well as some putative mechanisms. 

Extensions to the Kftk ient Coding Hypothesis were also inlmduced (albeit 

briefly), e.g. Infomax principle by which individual neural output i^ adjusted, in a 

stimiihis-dependenl manner fand/or neural systems a'; a whole are organised) to maximise 

the nuiiual information between input and output (where mutual information. A .v | .v ) . 

refers lo the amount of information an output y can provide about an input v). Some 

alternatives to the Rftleient Coding Hypothesis, as a .^tinmlus encoding strategy, were 

also introduced, namely novelty and deviation detection. 

Finally, Fisher Infomialion was described. Formally, Fisher Information is 

deHned as the variance o f the score (the negative, log-likelihood o f obsci^ving ,t, given the 

parameter set. 0. on which v is dependent), The inxcrse o f the Fisher hiformacion is ihe 

Cramer-Rao inequality, which defmes the lower-bound o f Ihe variance of an unbiased 

maximum-likelihood estimator of 0; the inverse o f the square-root of the Fisher 

Information defines Ihe lower bound of the standard error of an unbiased maximum-

likelihood estimator o f 0. 'I'hc Fisher Information of the neural, .stimulus-response 

function quantifies the accuracj' with which a cell is able lo encode the .siimulus. Fisher 

Information is highest on the slopes, rather than peaks, o f the stimulus-response function 

and the inverse o f the Fisher Information defines the discriminability threshold, i.e. where 

the cell is able to signal the just-noticeable-difference between 0 and 0+A6. 

6.1.2: Chapter 3: Adaptiilion to stimulus statistics in barrel cortex 

Within this chapter the experimental adaplnlion data, f ioii i ihc barrel corle.v was 

introduced. 
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Recenl evidence was presenlcd llial adaptation to inlensily (i.e. adaptation to 

stimuli analogous to contrast in the visual system) is present in sensory modaUties other 

than vision. Two studies were higlilighied, in which sensory neurons were adapted using 

stimuli that allowed for dissociation between global mean and variance levels, thus 

adaptation lo distinct measures of stimulus statistics could be recorded. Adaptation was 

observed in ihc rodent inferior colliculus (IC, Dean ci al. 2U05) and the ban*cl coitex 

(Garcia-Lazaro el al, 201)7) 

Whilst adaptation to global mean elicited a shift in stimulus threshold, as 

predicted by the Efficient Coding Hypothesis, adaptation lo variance, elicited little 

adaptation in the IC. l-'or those cells that did adapt, neural gain tended to increase with 

stimulus variance, in direct coiilradiclion of llic [^fllcienl Coding Hypothesis. Conversely. 

increased adaptive gain, in response lo relatively noisier adapting .stimuli, was highly 

pronounced in the barrel cortex. 

Jan Schnupp generously provided the experimental data, from the barrel cortex, 

which formed the basis of the analyses in this and the following chapter. The reanalysis 

of the experimental data revealed that indcpondontly increasing stimulus variance led to a 

decrease in gain of the population response, in direct contradiction to the published 

reporting of the experimental data. These results have been accepted by the authors of 

published dala (Garcia-l.a/aro ei al. 2007). A further analysis of Ihe data did not re\eal 

any information about the time course of adaptation, suggesting that either the data was 

not suitable for this type of anal\sis or lli;it adaptation lo iiilensily. wilhin ihe barrel 

cortex, developed very rapidly (with a latency of <400ms). 
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6. J.3: Chapter 4: Encoding strategy urtderpinning adaptation 

Under conditions oi'iidapiation to the global-mean amplitude of whisker 

deflection, sensitivity was greatest for stimuli outside the high-probability region (Garcia-

Lazaro et al. 2007. Dean et al. 2005), This led to the suggestion that the adapted cells 

were primed lor novelty detection (Dean et al. 2005). 

Within somatosensory coitex (Garcia-Lazaro el al. 2007), stimulus-response 

function displacements were more extreme than those obsei-ved in the inferior colliculus 

(IC); it was therefore decided to lest the hypothesis of novelty detection and other 

passible coding strategics, with the purpose of discovering which, if any. best described 

the adaptive response to global mean. Certainly, the adaptive response, within the barrel 

cortex, did not fall entirely witliin the expected bounds of the Information Maximisation 

principle. 

The analysis bu.sed on slimulus-specille adaptation was inconclusive. Instead, it 

was found that there was a clear dependency of spiking activity on stimulus histoiy. In 

general, neurons tended to fire in response to large positive difti."i-ences between the 

stimulus amplitude at the time olTiring and the one directly preceding it. However, the 

dependence on stimulus history could be found from approximately 280ms prior to spike 

llring. "file general stimulus pallem preceding a spike was best described as a continuous 

decrease in stimulus intensity to below global mean .Tniplitude until ~120-80ms prior to 

spike-firing; followed by a slight incrca.se in intensity, before the final, large step-size 

difference in amplitude thai elicited the spike. 

The average firing rate response, as a function of the relative difference in 

amplitudes between the stimuli presented within a given 40iiis epoch of time and the one 
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preceding i l (referred to as (lie slep-si/e function), were plotted for all cells in tlie 

population, Tlie population anaiysis revealed that adaptation to global mean acted to scale 

the neural-response function such that Ihey were always invariant, with respect lo step 

size. However, for those cells adapted only to stimulus variance, the step-size ftinction 

was not in\arianl. The overall conclusion was thai for those celts ihal were only adapted 

lo stimulus variance, the slep-si/c functions showed some dependence on the width o f 

high-prohability region in the stinuihis space. 

Amongst both populations (adaptation to mean or variance) some cells showed a 

preference for step-size irrespective o f the direction of amplitude change and were 

classed as novelty-preferring cells, fhe majoritv of novelly-preferring cells had a 

response bias for positive slep-changes; however a small propoilion ol'these neurons 

displayed symmetrical lunclions. Novelty-preferring cells that displayed symmetry had 

longer lime-to-peak and response-decay latencies than the remainder o f the population. 

Tlie data was also analysed with respect to local, rather than filolial. variance. Ttie 

average response was calculated, as either a funciion o f the difTerence (de\ ialion-from-

ihc-mcan) or the squared difference (variaiice-lroni-the-mean) behveen ihe i i ipul. al each 

time step and global-mean o f the stimulus (averaged over Ihe 30s presentation time). The 

populaiion response showed a clear preference for positive deviations-from-the-mean. 

Under conditions o f adaptation lo global-mean, the deviation-from-lhe-mean funcfions 

for all 4 adapting conditions increased monotonically from local standard deviations of 

>Opm, and diverged for posilivc devialions-from-lhe-mean o f > 200|im. The divergence 

was due to the skewed nature of the stimulus distribution: global standard-deviation 

decreased as global mean increased and local deviations ranged from -126,08 lo 
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593.92fini for the yOfim condition, -217.68 to 5():.32tini for llie 2IO|.mi condition, -

310.24 to 409.76nm for the 330|.im condition and from -401,60 to 318.40nm for llic 

450nni condition. Normalising the functions, revealed that they were scaled according lo 

levels of global standard deviation 

Under conditions of adaptation to global-variance, neurons also displayed a 

preference for positive deviations-from-the-mean. The response functions tended to 

decrease in both slope-gain and maxitnum firing rales inversely with global-variance 

levels. Normalising the dcviation-from-mean functions resulted in a considerable degree 

of overlap for tlie mid- to high-variance condition^;. except for Ihe positive tails of llic 

functions, but not for the low-variance condition. 

In conclusion llieii. adaptation to stimulus mean acts to rescale responses so as to 

maintain information transmission, about the local changes in .stimulus amplitude, 

irrespective of global mean values. Adaptation lo variance may act to allow for the 

encoding of the width of the high-probabilit\' region of ihc slinuilus di.slribution; as 

suggested by the adaptive decrease in neural gain (as a function of either local stimulus 

intcnsitj- or deviation from global-mean) and ihe slight widening of the step-size 

functions. 

6.1.4: Chapter 5: Mechanisms underpiuniiif^ adaptation 

The aim of Ihis chapter was to explore some of the mechanisms undeipinning 

adaptation, through the use of compuler simulations, fhe majorily of simulations were 

implemented using a conductance-based. Integrate & Fire, neuron developed by Alain 

Destexhe(l997). 

Adaptation lo global mean and variance were foxmd lo be distinct in lerms of 
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tlieir elTects on neural output, llius, it was argued, tlic)' may be underpinned bv distinct 

mechanisms; wit l i liie caveat that both mechanisms must he able to coexist, as stimulus 

modality was unchanged. 

The adaptive shift in the neiirnl-stimulus response function and the invnriance of 

the step size function was best approximated by a model consisting o f tonic inhibition 

and spike-rate adaptation; spike-rale adaptation was executed as a dynamic l l r ing 

threshold mechanism. 

Gain modulation was implemented in several models: increasing the t ir ing rates 

o f background conductances in proportion to stimulus variance (Chance et al, 2002). 

adjusting levels of synaptic depression in recurrent excitatory and inhibitory units, such 

that the difference between afferent inhibition and excitation was reduced (Chelaru & 

Dragoi, 2008) and by driving depressing, recuirent excitatory and inhibitory units with a 

non-linear Iransiormation o f the stimulus. 

By increasing background firing rates in propurlion to .stimulus varianee, it was 

possible to simulate the adaptive decrease in gain in the model cell. The simulations 

performed here indicate that this model of gain modulation can be applied to the in vivo 

case, with the fol lowing caveats; noisy, background f ir ing rales can only increase with 

stimulus variance, therefore the presynaptic inputs, which generate background Poisson 

activity, must show dependence on the stimulus. 

Within the introduction to Chapter 5, several models were reviewed in which the 

gain modulation was dependent on the presence of synaptic plasticity and the relative 

relationship between excitation and inhibition. A model o f asymmetric synaptic 

depression was implemented, in order to generate these relative changes in inhibition and 
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excitation. 

The model was tested in the both a steady-stale and time-varying case. Excitatory 

depression was weakened as stimulus variance increased, thereby increasing the 

excitatory drive acting on aft'crcnt inhibition and reducing gain in the model cell. The 

output olthe asymmetric depression model ofgain modulation was not as robust as for 

ihc Frances Chance model, highlighted above. 

It was hypothesised that the stimulus configuration itself would allow for release 

from depression, under the higher-variance conditions; thus depression levels would 

become increasingly balanced. However, the inhercui variance in llie stimulus was not 

sutlieient to generate the relative relief from depression necessary to inilialc a 

multiplicative decrease in neural-gain. It was argued that the temporal dynamics of 

depression were too slow to fully capture the changes in input signal on the 40ms scale. 

The addition of fast-facilitation (the time constant ot recovery was 100ms. compared to 

jOOnis for depression) onto the excitatory-to-inhibilni-y recurrent synapses did elicit a 

slight increase in recurrent excitatory drive as stimulus-variance increased, thus shifting 

the balance of the network towards inhibition, but only when recunent excitatory 

connections were relatively more depressed than the inhibitory synapses . In the presence 

of spike-rale adaptation and tonic inhibition, acting on the read-out cell of the model, 

facilitation was sufficient to generate a significant decrease in neural gain, inversely to 

stimulus-variance levels. 

The combination of tonic inhibition and synaptic depression has been shown to 

elicit multiplicative gain changes in the cerebellum (Rnthman et al. 2009). The effects of 

facilitation (an overall reduction in (Iriug-rates as a 1 unction of input signal) were 
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therefore enhanced by the non-hncLir interaction oflonic inhiliition and feedforward 

synaptic depression. 

It was decided to use a non-linear input to drive tiic I & F model directly. The 

stimulus current was filtered through a bank of parallel non-linear rectified llllers. prior to 

injecting it into the model (the filters were identical to those used lo drive the background 

modulaloiy conductances in the earlier model of gain inodulaiion; the crucial feature was 

that the absolute threshold ofeach filter was set lo be slightly higher than the global-mean 

value of the stimulus). It was hoped that the increa.se in overall levels of afferent input. 

for the higher variance adapting conditions, would be strong enough to shift the bias of 

the recurrent network towards inhibition. 

There was a signillcanl decrease in the slope ol'lhe read-out cell under all 

synaptic configurations (no recurrent depression, asymmetric depression with either 

excitatory depression stronger or weaker than inhibition and balanced depression 

configuration). There was no significani change in the stinnikis amplitude that elicited the 

Ssi) under any condition. The presence of spike-rate adaptation and tonic inhibition, acting 

on the read-out cell, slrengthened gain nioduJalion. 

6.2: General Discussion 

6.2.1: Itifoinuition theory and Efficient Codinfi Hypothesis 

Information 'f heoiy arose as a method for quantifying information transfer along 

ailillcial communication systems {Shannon 1948). Horace Barlow, along with several 

other scientists (e.g. Altneave 1954: Craik 1948), made the important link between 

Information Theoiy and biological nervous systems, which are essentially faced with 
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many of the same issues as conuiuinicalion systems. Nervous systems must translbrm and 

Lompress vast amounts o f information along highly restricted cliannels for receiving and 

processing of sensor>' input, further-up the neural hierarchy. 

Accordini- to llie principles of Efficient Coding Mypolhesis (Barlow 1961). cells 

wi l l adjust their responsiveness, in a stimulus-distribution dependent manner, such that 

information about llie most conmion stimulus feature can he encoded vvith the minimum 

luimber o f spikes; the main principle o f Information maximisation holds that the 

underlying encoding strategy is to maximise ihc amount o f mutual information a spike 

carries about the input that elicited i l . thereby minimising the number o f action potentials 

needed Eo encode sensory input accurately. Spikes can carry inforniation about the 

stimulus in their average Uring rale, over lime; thus, the opliiual solution (whether the 

underlying principle is mtixiniising either mutual information or redundancy reduction) is 

for neural rate-functions to be centred on the global mean and broad enough to encode the 

ful l stimulus distribution. An example of a stimulus feature that must he encoded as 

simply and efficiently as possible is visual contrast, as i l is a universal componeiU o f the 

visual scene. 

As highlighted in Chapter 2, there is wealth o f evidence to suggest that the 

encoding of contrast is based on Information Theoretical principles. For example contrast 

adaptation, shifts the neural contrast-response funeliiMi such that cellular threshold (as 

determined hy the half-maximal point on the tuning (unction) is set to the adapting 

contrast (Ohzawa et al. 1985), The contrast-response function itself is sigmoidal in 

nature, and reflects the Gaussian distribution of stimulus contrast within the environment 

(Laughlin 1981). 
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Of course, as been elucidated within this tJiesis, encoding of wJiisker dellection 

amplitude (a stimulus fealure analogous to visual contrast, as it is also a measure of 

fluctuation about a global mean) is not strictly within the bounds of inlonnalion theory. 

Certainly, adaptalion to variance was in line with the principle of Ffficieni Coding 

Hypothesis in that the slope (or neural gain) of the neural rale function, for the majority 

of neurons within the population, decreased (as measured at the half-maximal point) as 

stimulus variance increased. The decrease in gain resulted in a much broader slope thus 

allowing for adapted neurons to respond, in a dynamic manner, to amplitudes within the 

high-probabilily distribution, 

In terms of adaptalion lo stimulus mean, adaptation centred the population 

stimulus-response function lo a location in ihc stimulus-space that was always jusl 

outside the high-probability region. The Fisher function also peaked Just outside the high-

probability region. 

The Fisher function is essentially a measure of how well one can estimate the 

stimulus parameters from the neuronal response; thus, it was clear that, over the 

population, adaptalion sened lo improve the transmission of sensory inpul that was of a 

higher intensity than the prevailing stimulus levels. 

6.2.2: Encoi/hig strategies 

The localiim of adaplixe neural threshold and peak I'isher Information tends lo 

suggest that as well as encoding general stimulus levels, neurons may be primed for 

novelty detection (Dean el al. 2005). f lowever, it was found that novelty detection was 

not necessarily the underpinning encoding slrateg\'. Instead neuronal output was scaled, 
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across the dilVerent mean adapting levels, to maintain the relationship between t i r ing rate 

and changes in the stimulus amplitude between one 40ms stimulus step and ihc next. For 

llie majority oi'cells within the population, this relationship was biased towards positive 

step-sizes only. i.e. adapted neurons did not respond lo differences in amplitude steps that 

were less than zero and the tiring rate increased alnidsl linearly as the gap between 

concurrent stimulus-step amplitudes widened. 

Due to the stimulus configuration, the majori ly o f step sizes encountered were in 

the range of ±150nm. The strongest f ir ing rale responses were found for step-size 

dilTerenees outside this range. This was also reflected in the average spike-iriggered 

stimulus which revealed that a f i r ing event was most likely to occur when the preceding 

blimulus intensity was much weaker than the stimulus that elicited the spike (and that 

spike-triggered input was generally stronger than the global mean o f the adapting 

stimulus). 

Barrel coilex neurons were also scnsiti\e lu how far the stimulus, ai each time 

step, deviated from global-mean levels. The response functions scaled up to each other 

when normalised by global levels o f standard deviation, thus it would appear that neurons 

were not interested in the amplitude o f sinusoidal whisker deflection, per se. but in the 

changes in dellection intensity' ever>' 40ms. 

This has parallels with a recent paper by Riiigach and Maloiic (2007) in which it 

was found, in monkey V I at least, that sensor>' cells appear to act as deviation detectors, 

which amplify large signals at the expense of background noise. I l ie discovery that the 

majority o f neurons, wi l l i in the barrel cortex population, had adaptive step-size and 

devialion-from-the-mean functions that were invariant, with respect to stimulus mean. 
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builds on a slowly growing body of evidence (e.g. Ringacli & Malone 2007; Wiinnier et 

al. 2008) that information maximisation may not be tlie only strategy underpinning the 

encoding of simple stimulus features, such as contrast or whisker deHeclion amplitude. 

There was some evidence thai a small number of cells were acting as novelty 

detectors, in that the step-size functions increased away from a local niinimiim value 

(close to zero) in both directions. Of this subsample, only four cells had symmetrical 

functions, implying that these neurons responded to the absolute value of the step-size 

difference in amplitude: responses were still invariant with respect to .stimulus mean. 

However il could not be ruled out thai the responses were due io laleiic\ differences 

between these cells and the majority of the populalion. fhe decay response to large step-

size dilTerenees in amplitudes tended to be longer in the novelty-type cells, thus it could 

be argued that the apparent equal preference for negative step-sizes could be due to the 

response being inherited from the decay of the response to the preceding amplitude 

(which of course winiM be of stronger intensitj). 

The other interesting facet of adaptive behaviour to be revealed from this analysis 

was that the step-size functions of neurons, adapted to stimulus variance, were not 

invariant. The nomialised deviation-from-mean functions also tended to diverge for 

strongest, positive deviations. 

This implies that two dilfercnl strategies underpin the encoding of sliniLilns 

variance and deviations-from-the-mean. Neurons encode the stimulus distribution 

through adjustments in neural gain and local deviations-from-mean by neural threshold. 

One can argue that neurons are able to adjust their encoding strategy depending on the 

adapting conditions. Under adaptation to increasingly noisy stimuli, neurons shift from a 
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regime o f encoding deviation to one o f encoding the stimulus distribution. 

6.2.3: Mechanisms of adaplalion 

Adaptation to stimulus mean was modelled by incorporating a spike-rate 

adaptation mechanism and increased levels of to i i ic inhibition irilo Ihe model. Spike-rale 

adaptation has been implicated as a possible mechanism for conlrasl adaptation (Sanchez-

Vives et al. 2000) where it is mediated via sodium- and/or calcium-dependent, 

hyperpolarising, potassium current. The current is strongest after spiking and prevents 

repolarisation (it is termed the aRer-liyperpolarising current, or IAII I ' ) . thereby rcdticing 

the abil ity o f the cell to Hie, with the .same rate, to a tiivcn stimulus. 

Within the model, spike-rate adaptation was implemented as a dynamic f ir ing 

threshold that increased with evei-y spike and decayed exponentially back to the absolute 

firing threshold between spikes. Thus for every spike llred. the threshold for the next 

spike (within a given time window) would have increased, thereby suppressing firing. 

Spike-rate adaptation generated a lateral displacemcni in die model cell's stimulus-

response function (as per Garcia-Lazaro el al. 2007). hut not invariance o f the step-size 

function. 

Spike-rate adaptation, via a mechanism o f dynamic threshold, is essentially self-

l imit ing process and is dependent on the stimulus in a time-dependent manner. As 

membrane threshuld increases, the ability of the cell to l"ire is reduced thus allowing for 

membrane threshold to begin recovering back to base level. As slimuUis variance 

becomes greater, the number of sub-threshold, as well as supra-llireshold, stimuli 

increases, also al lowing for recovery o f the membrane threshold. 
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It was thus decided to incorporate tonic inhibition into the model cell. This was 

inspired parth' through replicating a model developed by Murphy & Mi l ter (2003). in 

which lateral displacement ol'the model stinudiis-response function was achieved by 

increasing lunic inhibition and having a linear relationship between stiniulu!s and driving 

current. The amount o f tonic inhibition was directly related to the global mean amplitude 

o f the stinuilus and was therefore independent of local changes in stimulus intensity. 

In the presence o f both tonic inhihii ion and spike-rate adaptation, the degree o f 

stimulus-response function displacement in the model cell, was comparable to that 

observed eNperimenlally, especially with reference to the first three adapting global-mean 

conditions. Both model slep-si/e and normalised deviation functions displayed invariance 

and the peak Fisher Information functions were centred on amplitudes outside and greater 

than the high-probability region. 

Correspondence with die experimental data was less pronounced for the final 

mean adapting cuiKlilion. In the experimental data, the step-sii^e function for the strongest 

global-mean level was signillcantly different from the middle two li igh-probabil i ly 

conditions; however the degree o f ditTerence in the simulated data was greater than that 

observed experimentally. The model cell, peak i'isher function was located within the 

high probability region o f the stiniidus space, ihns suggests the degree o f displacement in 

the slinudus-respoiise functions uas not comparable to thai observed experimenlally. 

It could he that the range of stimuli used to test the model cell was not wide 

enough. The rate-functions o f all barrel cortex cells, fol lowing adaptation, were displaced 

to lie outside the high-probability region and reached response maximum at =600| im; this 

possibly represents the biophysical response limits within the barrel cortex. The model 
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cell is nut subject to the same constraints as biological neurons, therefore the stimulus 

range may iiol have been extensive enough In drive ihe model cell to reach its firing 

limits. 

As to the biological validity of ihc model, there is strong e\idence to suggest ihat 

spike-rate adaptation is involved in the suppression ofresponses observed in response to 

sustained stimulation, within VI (Sanchez-VIves et al. 20tlOj. Certainly there is evidence 

that a tonic hyperpolarisalion can elicit contrast adapialion (Carandini & Ferster 1997), 

however diere is also evidence that blocking ( iABA inhibition has no etTect on adaptation 

(e.g. Vidyasagar 1990; McLean & Palmer 1996). The important factor is how the 

mechanism operates: it is essentially a high pass filter, thus only those stimuli strong 

enough to counteract inhibition will elicit a response in the model cell. As inhibition 

increases with global mean, only relatively higher intensity stimuli will pass tbe 

inhibitory filter, thereby initiating an increase in firing threshold via spike-rate adaptation. 

The conibinalion nf the two factors (tonic inhibition and spike-rate adaptation) scales Ilic 

output of the cell to be invariant with respect to stimulus step-size. 

Adapialion to variance was also simulated by several different models. All the 

experimental results were replicated by a model of increasing the firing rates of 

background excitatorj' and inhibitor)', stochastic conductances in a balanced manner 

(Chance el ai. 2002). in proportion to stiniukis variance. The mode! replicated the 

experimental data even in the presence of ionic inhibition and incorporating random 

background conductances into the model of adaptation to stimulus mean did not affect 

output adversely. 

Therefore this model represents a universal mechanism for generating gain 
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control following bolli adaptation to either mean or variance. The model relies on 

background firing rales increasing with stimulus variance only. If one considers the 

stimulus conilguration. it is fair to assume that firing rales would inerease with stimulus 

variance as the nimibernf high intensity stimuli presented frequently increases, especially 

i f the sources of background noise are already adapted to global mean amplitude. 

However, this caveat only holds if one assumes that background activity is derived from 

cells thai are also un-adapted to variance. In order lo test ibis hypothesis, background 

firing rales were derived from a bank of non-linear filters, which approximated the 

activity of background noise sources that were adapted to global mean. Non-linear tillers 

were set lo have thresholds that were greater than the global-mean of the stimulus and the 

outputs were used to create Poisson-generated background conductances. There was no 

difference in the average level of either excilatoiy or inhibitoiy background conductance, 

as a function of stimulus amplitude; however, averaged over the stimulus presentation as 

a whole, conductance levels did increase overall with stimulus variance. The model 

replicaled gain modulation, but only with tonic inhibition and spike-rate adaptation. 

Within the Frances Chance model (Chance cl al. 2002), gain modulation arose 

through a combination of shunting inhibition eliciting a lateral shift in response function 

and increased noise enhancing llring rates for lower amplitude .stimuli (see Figiu-e 6.1). 

Within (he model of gain modulation presented above, the small increase in global-mean 

levels, due to increased stimulus-variance, elicited a slight lateral displacement in the 

stimulus-response function; this combined with slightly elevated firing rates, as a 

function of adapting variance levels, was sufficient to generate the decrease in gain. 
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K i g u r e 6 . l : Effects o f shunting inh ib i t ion »n<l nnise on neural respon.'te 
A : Inpul-oulpul functions for a neuron without (circles), and with (squares) 32 nS o f 
aildiliniii i l constant conductance in llie absence o f i in\ additional noise troiii baijkground 
sjuaptic input. The input-oulpiil tuncliun is displaced laterally. B; Inpul-uulpul junctions 
for a different neuron in the I X condition (circles) and with the same level o f 
Conductance but input noise equivalent to the .IX condition (squares). The effect is a 
relative increase in Uring rates for the lowest inpnts. resulting in a change in the slope o f 
the (Iring-rate curve, C: The firing-rate function for another neuron under tJie !X (circles) 
and .IX (squares) conditions. The combination of latcral displacement and enhanced 
l lr ing rates for lower intensity inputs generates a decrease in gain, faken from Chance el 
al, (2002J 

Adaptation was also modelled by adjusting the relative strength o f both afferent 

inhibition and excitation within a population of recurrently connected inhibitor and 

excitatory neurons, which provided feedfonvard input to a read-out ceil. The mechanism 

of gain modulation was achieved by network inhibition becoming progressively stronger, 

as variance increased; thereby suppressing the overall responsiveness of the cell. Because 

afferent excitation was also increasing there was an overall decrease in neural gain rather 

than threshold in the cellular response profile. The change in output was brotighl about by 

weakening excitatoty depression and thereby increasing the drive acting on inhibition. 

The model was tested with a steady-state model, in which the output of the cell for a 

given stimulus was dependent on the levels o f depression between the two populations 

and was, therefore, fixed, as a function o f the relative balance o f depression between the 
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two populations ofcxcitatory and inliibiiory neurons. Tlie results iVoni this simulation 

replicated the experimental data well. 

The model was also tested under a lime-dependenl condition, which could 

accurately model the temporal dynamics oTlhe rccunent synapses. A small nclwoik of 4 

excitatory and 1 inliibitoiy I & F cells were recurrently connected to each other and 

provided feedlorward input to a read-out cell. Recurrent excitatory depression was fixed, 

such that ii weakened with every increase in stimulus variance and approached levels of 

inhibitory depression. The model displayed overall decrease in firing rates; however this 

was not accompanied by a decrease in gain. Thus the model didn't replicate the 

experimental data as robustly as the steady-stale model. 

One ke> leainte ol'the adapting stimulus is that the presentation l'rei.|uency of sub­

threshold intensity levels increases in line with .stimulus-variance. In theory, this could 

result in an overall release from excitaloiy depression (as synapses would h:i\e more 

opportunity to recover) and the stimulus condilions necessary to generate a decrease in 

gain would arise. The model was tested under several dilTerent depressing configurations 

to lest whether the inhereni diversitj' within ihe stimulus would elicit the requisite relief 

from excitatory depression. 

It was only achieved with both facilitalion and depression acling on the recurrent 

excitatory-to-inhihilory synapse and under the asymmetric depression configuration with 

strongly depressing cxeitalion. Facilitation was modelled to be faster (Varela el al. 1997) 

than depression (100ms recovery time) and was addilive, and acted to boost the initial 

synaptic response to supra-threshold stimuli. Under the asymmetric synaptic depression 

configuration, excitatory synapses were relatively suppressed (as compared to the 
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balanced conllguralion) and the addition facilitation had an obsei^vable effect on the 

levels of recuiTcnl excitatory drive acing on inhibition. Facilitation resulted in an overall, 

slight decrease in firing rates in the read-oui cell. It has been demonstrated 

experimentall\ (Rolhnian ct al, 2009) that the combination of tonic inhibition and 

synaptic depression elicits multiplicative changes in neural gain; thus the small decrease 

in overall llring rates due to facilitalion of inhibition was enhanced by the multiplicative 

decrease in neural gain elicited by the slight increase in tonic inhibition (in combination 

with feedforward depression). 

Facilitation is a feature of synaptic activity within the neocottcx and can be highly 

synapse specific (e.g. 'fhompson 19')7; Markram, Wang & Tsodyks \W^, Rcye.s. Lujan, 

Rozov. Bumushcv, Soniogyi & Sakmann 1998) thus it is entirely feasible (hai gain 

modulation could arise through such a mechanism, I lowever. ihc eflbcls were not robust. 

i.e. were only present for the asymmetric depression configuration and required the 

presence of tonic inhibition, feedforward depression and spike-rate adaption acting on the 

lead-oul cell. 

It was decided to use aspects of all the models highlighted above to generate a 

final model of gain modulation. A network of 4 excitatory and 1 inhibitory I & F neurons 

were reciin-enily connected to each other and provided feedforward input to a read-out I 

& F cell, with tonic inhibition and spike-ralc adaption acting on it. Feedlbi-ward 

depression was fixed to have a value of 0.8 and recurrent depression was non-existent, 

balanced or asymmetric. The non-linear input, as described in the background noise 

model above, was u.sed to drive the I & F model directly, rather than via a background 

conductance. The slinnilus current was filtered through a bank orparallel non-linear 
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rectified filters, with thresholds set to be higher tJian the global mean of the input. 

The stimulus under the kiw variance condilion rarely crossed ihc input-filter 

threshold thereby resulting in large intervals between llie recuiren[-network being driven 

to respond. A.s varinncc increased, the presentation ofsupra-thrcNhold stimuli also 

increased, therefore the network responded more frequently and overall synaptic aelivity 

was increasingly snppres.sed. This led to a decrease in neurai-gain as a function of 

stimulus-variance, in both excitatoiy and inhibitory feedlbrward signals. Gain modulation 

was enhanced by both tonic inhibition and spike-rate adaption, but did not dependenl on 

it entirely. 

Under conditions o f adaptation to global-mean, the read-out cell displayed a 

lateral displacemeni that was dependent on global-incaTi levels: the .step-size and 

normalised devialion-froni -mean functions also displayed invarianec and thus matched 

the experimental data. 

The advantage of the background f ir ing rate model o f gain modulation (Chance el 

al, 201)2) is that it is relatively simple, i.e. there is no direct reliance on synaptic dynamics 

to generate gain modulation. However it does recjuirc ihal background l lr i i ig rales arc 

correlated somehow v\ith the stimulus and must also be derived from a non-adapting 

source. This leads to the suggestion that i f this is the mechanism by which gain 

modulation is generated, the strenglh o f adaptation, in a given cell, would be strongly 

dependent on levels o f adaptation in surrounding neurons, assuming of course thai much 

o f ihe modulatory drive acting on a cell is local in origin. One possible suggestion is that, 

i f adaptation to stimulus statistics in the inferior colticulus (Dean et al. 2005) is 

representative of the thalamic response both across stimulus modalities and rodent 
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species, modulaloiy sources are derived from neurons that inherii their response prullles 

from their tlialamie afferents. An even simpler proposition, however, is that barrel cortex 

neurons receive iKeir primary source ofaffereni inpul directly from adapted ihatamic 

cells and gain modulation emerges through the interaction between the non-linear input 

and synaptic depression. This would allow for adapiaiion to simple stimulus features such 

as noise and inlensilj le\els to emerge from the ncluork wilhoiit (he need for extensive 

compulations. 

6.2.4: Functional significance 

In tenns of the functional significance ol" these results, it should be noted that 

inlcnsity is not the most impoitani feature of the stimulus, for example barrel neurons are 

higlily sensitive lo velociiy of whisker deflection (e.g. Maravail ei al, 2007). However, as 

with contrast-j^aiii in the visual .'iyslcm. amplitude fluctuations about the mean are such a 

universal feature of sensor;' input, across all modalilies, that encoding this information 

represenls a fundamenlal feature of neural compulation. By adjusting the relationship 

between firing rale and stimulus in response to global and local levels of intensity 

llucluaiions, this allows for other, higher level features of the siiniulus space to be 

encoded by other more complex mechanism, such as spike-timing for example. The 

argument here is that amplitude of whisker deflection is analogous to contrast in the 

visual system, therefore understanding lis functioning and hov̂  it is encoded can only add 

to understanding about brain function in general. Visual contrast is known to have 

profound effects on responsiveness of simple cells within V I (e.g, on spatial summation, 

Sccniak. Ringach, I iauken & Shapley 1999), ihereftire it is possible thai whisker 

deflection amplitude may have similar effects on responsiveness to higher stimulus 
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features, uii l i i i i liie harrcl cortex. 

Rats eonstantly use theirwhiskers. to convey informalion about texture within the 

environ men I. The analysis of the experimental results, reveal that during conditions of 

relatively low noise, barrel cortex neurons iirc primed to deled deviant signals, It is 

useful lo consider what is nu)st efficient in the low-noise case. There is clearly an 

advantage in beiny primed lo signal rapid changes in inpiil ulicn the environment is 

rarely changing, Informalion theory was of course developed to account for 

communication systems, which are different from neural systems in one important facet -

they have been designed! Nervous systems have evolved and thus, in engineering terms, 

are not perfect. Clearly ihere is evidence that encoding of conlrasl in V1 is in line wiih 

Informalioii ihcoiy, therefore one can assume thai il is advantageous lo have conirast 

encoded in a manner that maximises information with the minimum number of spikes. 

Within barrel cortex the situation is somewhat dilTerenl: whisker deflection amplitude can 

not cover the same order of magnitude Ihal visual conlrasl does. Therefore, it may well be 

advantageous lo have a trade off between elTiciency and being ready to respond to large, 

novel stimuli. Clearly, in noisy eiivirunmenis the encoding .strategy switches to one in 

which the distribution is encoded along information theoretical principles. 

Finally, a recent study (von Heiineiidahl, Itskov, Arab/addi & Diamond 2007) 

looking at the eorreliitioii between barrel cortex firing rales and lexture idenlitlcalion. in 

rats trained in a texture discrimination task, found that the spike trains in the 75ms before 

a task was performed contained the most information about the stimulus. U was 

concluded Ihal the animal's perceptual judgmeni of texture is highly dependent on firing 

rates within this time window. This suggests thai the invariance of the step-size function 
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is a nccessar) coniponcnl oftcxture-discriminatioii. 

6.2.5: Future work 

In teniis of future work, there are a few questions that remain unanswered from 

this analysis of the data. For example, the time course of adaptalion to the global statistics 

ofthe stimulus could not be assessed with any certainly IVoiu the data provided. An 

optimal experimental design lo analyse the lime course of adaptation would be a 

switching stimulus, such as that performed by (Dean et al. 2008) in the inferior colticulus 

(IC). It was found that adaptation to global mean in the IC was fairly rapid {<300ms); no 

experiments were performed exploring the lime course of variance. It would be 

interesting to see whether a) there are any differences in the time course of adaptation 

between the thalamus and the barrel cortex and b) to see if the time course of adaptation 

[o variance and mean are distinct from each other. Ifadaptation is predominantly 

•inherited" from sub-cortical afferent input, one would expect that the development of the 

cortical adaptive response would occur within a time window only slightly longer (to 

allow for signal transmission) than that ohsci-ved in ilic thalamus. This would lend weight 

lo the model of adaptalion thai combined non-linear afferent input and synaptic 

dynamics; it would be expected that adaptation, within this model, would be reliant on 

transmission latency only, as it emerges without the need for complex processing or net 

changes in the balance between inhibiiion and excilaiion lo develop. 

It would also be useful to compare llie adaptive response ofthe thalamic region 

that provides afferent input to the barrel cortex, with the experimental data presented here 

and in Garcia-Lazaro ci al. (2007). The adaptive responses in the inferior collicuius (IC) 

were distincl from the barrel cortex data in 3 key areas: 
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1. ihai adaptation to variance was relatively uncommon in the IC, 

2- that neural gain increased uith stimulus variance and 

3. that the step-size functions follow ing adaptation to stimulus mean were 

not invariant with respect to adapting global mean levels. 

These key features uould be unique to the auditory system or. as the IC is 

subcortical, they could represent a transformation of adaptive strategies between thalamus 

and cortex. 

In terms of the increase in gain observed within the IC, in response to increased 

stimulus variance, there is a possibilit\ that the analysis ofthe data may have been 

subject to a similar error as was found for the experimental data presented wiihin Chapler 

3. In which case, adaptation to variance, within the IC. uould result in a decrease in gain, 

as per the expectations of the Eftleient Coding Hypothesis. 

As Barlow himselt'noted, the Efficient Coding Hypothesis is focused on how 

infoniiation is packaged for processing of sensory inlurmalion. Iftherc is a dift'crencc in 

thalamus/corlical adapting strategies it could represent the tact that primary sensory areas 

are not simply relay station.s but active processing areas, which can inlluence perception. 

When Barlow initially worked on his hypothesis the prevailing view of neural processing 

was hierarchical; for example simple visual features such as orientation, spatial frequency 

etc are detected in VI then more complex processing is performed in \'2 and further up 

the conical hierarchy. This view is now falling out favour with the greater understanding 

of the role and function of feedback and feedforward connectivity in VI (e.g. Angelucci 

& Buliier 2003; Angelucci el al. 2002 & Bullier 2001). Any differences between 

thalamic and cortical adaptation to stimulus mean could be an indication that thalamic 
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areas are more focused on transmitting sensory input, whilst the barrel cortex is 

performing more complex computations on the environmenlal data 

6.3: Conclusion 

In conclusion, the main findings of this thesis are that: 

1. Adiiplalioii to vari^ince results in a decrease in neural g;iin, in line with the 

principles of the lifllcienl Coding Hypothesis, as proposed by Horace Barlow. 

2. The lateral displacement observed following adaptation to global mean serves to 

maintain the relationship between firing rale and local changes in the stimulus, 

3. The lateral displacement and invariance of the step-si/e and normalised 

dcvialion-tVom-mean fimclion.s were repliciilcti by iniroducing spike-raic 

adaptation and a tonic inhibition (whose strength was dependent on the global 

mean stimulating amplitude) into a model, conducntaiice based, I & F, cell, 

4. Gain modulation was modelled by increasing, in proportion to stimulus variance, 

the firing rales of Poisson-driven excitatory and inhibitory conductances in a 

balanced manner, lluis confirming llial the in vilro model of gain modulation 

though background noise {Chance et al, 2002) can be applied to in vivo data. 

This was also achieved by having background firing rates derived from a bank of 

non-linear fillers of the stimulus (to approximate background noise arising from 

sources already adapted to global-mean); overall background firing rates 

inLTcased. with stimulus variance. sulllcicnll> lo generate gain modulation, but 

only in the presence of spike-rate adaptation and tonic inhibition, 

5. There is evidence to suggest that it is llie changing relationship between afferent 

excitation and inhibition that generates changes in neural gain: this was 
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simuialed in :i nunlel ofi isyninietric syiuiplic depression (Chelaru & Driigoi, 

2008) but less succcssiuliy, Tlie model hesl approximated the experimenlal data 

by incoi*porating both facilitation and depression onto recurrent excitatory-to-

inhibi ton' synapses, when recurrent excitatory s\ napses were more strongly 

depressing than inhibitoiy synapses. 

6. Gain moduliition was elicited by a coinbiniilion ol ' lhc models above, whereby 

non-linear alTerenl inputs (derived Irom a bank of non-linear, rectified llIters o f 

die stimulus whose threshold was set to be slightly higher than the global mean 

amplitude ol'the stimulus) were used to drive the recurrent population o f 

excitatory and inhibitory I & F cells. The combination ofrecurrenl depression 

acting within the network and feedfoi'ward depression, spike-rale adaptation and 

tonic inhibition acting on the read-out I & F cell elicited a decrease in neural 

gain as global variance increased, under various depression configurations. The 

decrease in gain was diminished hut not abolished in the absence o f Ionic 

i i ihihi i ion and spike-rate adaptation. 

Adaptation to amplitude of whisker deflection is clearly an important part o f 

processing o f sensor)' input. While it is not the most relevant feature o f the stimulus, the 

results presented here demonstrate that neurons change Iheir coding strategics depending 

upon the overall levels o f mean amplitude and variance in the sensory input. The 

argument presented here, based on reanalysis o f experimental data (Garcia-La/aro et al. 

2007), is thai under Inw-noise conditions, neurons act as deviation detectors, primed to 

respond to large and rapid changes in the stimulus; however, under conditions o f 
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increased noise tlieir nuiin runclion is to coitiputc the lull range of (lie stimulus 

distribution through an adjustment in neural gain. 
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