2016-09-21

Comment on: Resistance gene naming and numbering: is it a new gene or not?

Warburton, Philip

http://hdl.handle.net/10026.1/5551

10.1093/jac/dkw407
Journal of Antimicrobial Chemotherapy
Oxford University Press (OUP)

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Comment on: Resistance gene naming and numbering: is it a new gene or not?

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Journal of Antimicrobial Chemotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>Draft</td>
</tr>
<tr>
<td>Manuscript Type</td>
<td>Correspondence</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Warburton, Philip; Plymouth University, School of Biomedical and Healthcare Science Roberts, Adam; UCL Eastman Dental Institute, Division of Microbial Diseases</td>
</tr>
<tr>
<td>Keywords:</td>
<td>antibiotic, Resistance, nomenclature</td>
</tr>
</tbody>
</table>
Comment on: Resistance gene naming and numbering: is it a new gene or not?

Philip J. Warburton1 and Adam P. Roberts2*

1School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, School of Biomedical and Healthcare Sciences, Plymouth, United Kingdom

2Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, United Kingdom

*Corresponding author.
Sir,

Recently, Hall and Schwarz\(^1\) have suggested the need for a universally consistent antibiotic resistance gene nomenclature system in order to replace the current multiple and incompatible systems which exist. They arbitrarily proposed a threshold value of >2% difference of either the nucleotide or amino acid sequence, or both, as the cut-off for assigning a new gene in order to stimulate debate within the field.

We welcome this suggestion and subsequent discussions, and agree that resistance gene nomenclature systems need updating and aligning in order to address the increasing availability of genetic data and our understanding of the molecular evolution of resistance genes. We would, however, like to add a note of caution that the arbitrary ≥2% cut-off may not be universally appropriate.

In the case of the tetracycline resistance genes, covering the three known mechanistic classes of protein (ATP-dependant efflux, ribosomal protection and enzymatic inactivation), the nomenclature system is based on amino acid identity. A new determinant must show <80% amino acid identity to known determinants to be designated a new class.\(^2\)

While Hall and Schwartz\(^3\) suggest a cut-off of ≥2% will reduce the number of gene designations for those encoding OXA β-lactamases, the opposite will in fact be true for the tetracycline resistance genes, as indicated by Jacoby \(et\,al.\)\(^4\). Taking \(tet(M)\) as an example, there are well over 100 sequences within the NCBI database under this gene class. To implement a ≥2% cut-off for new gene designations would dramatically increase the number of tetracycline resistance genes which once
belonged to the \textit{tet}(M) class. Additionally this increase in new gene designations
would be compounded by the fact that there are at least 59 other tetracycline
resistance gene classes currently assigned,5 many with multiple examples showing
\textit{\textgreater}2\% sequence divergence.

Furthermore, such a cut-off would also cause confusion and complications in the
identification of a subclass of the ribosomal protection protein encoding genes known
as the mosaic tetracycline resistance genes, which have an atypical evolutionary
path involving naturally occurring recombination between two or more progenitor
genes.6 These currently have their own version of a nomenclature system indicating
their mosaic ancestry and this would disappear if a \textit{\textgreater}2\% divergence rule was
implemented.

We propose here to contact all investigators involved in the historical and current
discovery, annotation, naming and curation of tetracycline resistance genes, and will
facilitate a discussion in order to determine if there is a consensus on any proposed
change to the current nomenclature system. We urge stakeholders to contact the
authors of this comment in order to indicate their interest in participation. Following
this process, we will report any agreement or hurdles perceived within the field. We
suggest other investigators involved in the nomenclature of other resistance genes
do the same and it is possible that these subgroups could form the basis of a larger
committee as proposed by Evans.7
Transparency declarations

None to declare.

References

