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Energy sustainability in Operations: An Optimization Study 
 

Abstract 

In recent years energy sustainability has attracted increasing attention from 

scholars, policy makers and practitioners. However, in practical competitiveness, 

companies also have to maintain flexibility to deliver customer requirements.  

Existing theory has largely seen flexibility and sustainability as separate issues, 

ignoring their relationship.  To address this gap, we attempt to explore energy 

sustainability using flexible operations management practices in India. Following 

a case research methodology, we investigate how flexible operations 

management practices embraced by a leading organization that minimizes 

energy consumption in plants with better resource utilization and better quality of 

work life for staff to meet the future requirements based on market forecast. We 

solve a real time multi-criteria strategic capacity planning problem with multiple 

objectives such as throughput maximization, waste minimization and resource 

utilization maximization by using discrete event simulation technique. Our data 

stems from ongoing research within a car manufacturing company in India, 

located at Pune. Shift timings, setup time, production batch size and differential 

rated capacities of plants are considered as the variables in this study. The 

study found that out of four scenarios. However optimal routing flexibility 

combined with volume flexibility helps to achieve significant reduction in energy 

consumption. Finally, we offer future research questions on flexible operations 

management practices.  

 

Keywords: Flexible Operations Management, Sustainable Operations Management, 

Energy Sustainability, Optimization, Discrete Event Simulation, Genetic Algorithm. 

 

1. Introduction 

In recent years due to intense competition and globalization, countries are 

trying to achieve rapid economic recovery through fast industrialization and 
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liberal policies. Dell and Rand (2001) argued that the quality of life is 

dependent upon access to cheap supply of energy. Hence for a sustainable 

future, the energy should be derived from non-fossil sources; ideally, it should 

also be reliable and safe, flexible in use, affordable, and limitless. According to 

the Industrial Development Report (2013, p. 1), the manufacturing sector 

contributes one in six jobs globally. Energy consumption in the manufacturing 

sector is very high. Nearly 35% of total global production of electricity is only 

used for manufacturing activities. Manufacturing operations are responsible for 

nearly 20% of total global carbon emissions (Graedel et al., 2011). The World 

Bank (2007) reports that there is a 50% increase in carbon gas emission from 

BRIC countries with in last two decades. Thus, there is a pressing need to 

protect our environment since any local environmental degradation will impact 

negatively on other regions of the world (Rosenbloom, 2001; Hoffman, 2001). 

Severo et al. (2015) argue that each company must adopt cleaner production 

which ensures minimum energy usage and maximum resource utilization. 

Uzzone et al. (2012) have argued for energy-aware scheduling (EAS) of 

manufacturing processes to optimally plan energy saving for a given schedule. 

Shojaeipour (2015) argues that environmental factors have a major role in 

selecting an optimal process planning schema. However, the systems that are 

currently available are barely capable of dealing with these environmental 

issues. Beside global energy crisis and highly uncertain environment, there is 

pressing need for flexible operations to overcome large magnitude of global 

challenges. Jayal et al. (2010) have argued that achieving sustainability in 

manufacturing requires a holistic view spanning not just the product and the 

manufacturing processes involved in its fabrication, but also the entire supply 

chain, including the manufacturing systems across multiple product life-

cycles. Mahadevan et al. (2003) attempted to answer sustainability need of the 

manufacturing firms which are operating under uncertain environment. 

However Mahadevan et al. (2003) considered demand as being uncertain and 

also following a Poisson process. The decision problems for the 

remanufacturing facility have to do with when to release returned products to 
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the remanufacturing line and how many new products to manufacture. 

However research has not addressed other dimensions of uncertainty which 

include supply uncertainty, obsolete technology, political uncertainty and 

particularly the energy crisis which have severe impacts on vehicle production. 

King and Lenox (2001) in one of their seminal works have noted that the lean 

and environmental performance may not be directly related. Hence lean 

production, as measured by ISO 9000 adoption and low chemical inventories, 

is complementary to waste reduction and pollution reduction. Though there is 

a sufficient amount of literature eon sustainable manufacturing or sustainable 

operations (see, Gunasekaran et al. 2013), the term flexible operations in 

context to energy sustainability has received less attention. Furthermore, 

literature on sustainable operations has made significant contributions to 

environmental dimension. Researchers have analyzed uncertainties and 

flexibilities of eco-driven or green supply chains (see Mirzapour et al., 2013 and 

Madaan & Mangla, 2015), but however the role of the energy dimension on 

flexible sustainable operations is still underdeveloped. Hence in our study we 

study the impact of flexible operations and in particular the impact of optimum 

production batch size on energy sustainability which is missing link in the 

existing literature. In particular, we optimize the batch size of car bodies and 

routing options.  

The guiding research questions of our research are: 

i) What are the minimum changes to be done in the existing facility to 

accommodate two more upcoming models in the existing line without any 

productivity loss?  

To answer our first research question we have adopted case research method. 

There are other alternative methods such as action research (AR) (see, 

Coughlan and Coghlan, 2002; Dey et al. 2014; De Carvalho et al., 2015), 

appreciative inquiry (Hanna et al. 2000), ethnographic (Barnes, 2001) and 

content analyses (Voss et al. 2002). Based on our extensive review of literature 

we found that the literature focusing on energy sustainability and flexible 

operations management practices is underdeveloped. Following Eisenhardt 
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(1989) recommendations we felt that case research method will be highly 

suitable in our study. However the decision involved in-depth analyses of other 

alternative research methods. Initially we thought of AR as one of our members 

was a part of the project. Based on the definition offered by Coughlan and 

Coghlan (2002) we thought AR is highly suitable than case. But AR is about 

updating your understanding, theory, as one proceeds.  This implies that once 

we start, we should have a model. Hence in this case we did not have a guiding 

theoretical model but we thought of carrying simulation using multiple cases to 

address our guiding question. Hence we finally selected case based approach. 

 

ii) What is the optimum production batch size of variants for each product to 

ramp up the production and to minimize energy consumption?  

 

We observed the optimum batch size, which minimizes the total energy 

consumption and maximizes throughput using a case in a car manufacturing 

company in Pune, India. In this study, however, we use a genetic algorithm in 

combination with discrete event simulation to achieve the desired output with 

minimum energy usage and avoiding nightshifts, which ensures better working 

atmosphere and work-life balance for employees (Onwubolu and Mutingi, 2001; 

Omar et al., 2015; Singh and Rajamani, 2012). 

 

iii) What all are the routing and capacity flexibility scenarios that are to be 

explored to finish production within two shifts and to minimize energy 

consumption based on existing constraints? 

 

To address this question we decided to use discrete event simulation in 

combination with genetic algorithms as a tool for the tactical capacity planning 

of a car production facility to deal with a multi objective decision-making 

production scenario, and to achieve better flexibility and sustainability by 

optimizing resources and energy consumption at plant level.  
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The paper is organized as follows. After a brief review of the literature on 

flexible sustainable operations management, the problem and our methods are 

presented. Then follows our results and discussion, and the last section 

concludes the paper and presents limitations and future research directions. 

 

2. Literature Review 

2.1 Flexible Operations Management 

Staying competitive is becoming more and more difficult, in the dynamic era of 

globalization. Bargaining power of consumers is rising due to the competition 

among global players with increasing demands for wide variety, best in class 

quality, better service, better reliability, faster delivery and highly customized 

products. Thus, organizations are forced to reduce the life span of products 

and to concentrate on speed, quality and costs simultaneously (Laugen et al., 

2005). Generally the term ‘flexibility’ in operations management is meant to 

have flexibility in operations, volume and in supply (Duclos et al., 2003). There 

is a rich body of literature available in flexible operations management (see 

Winkler, 2009; Kumar et al. 2008; Barad& Sapir, 2003; Das & Abdel-Malek, 

2003; Wiendahl and Dombrowski, 1987). Flexibility attributes add more 

dynamic capabilities to meet the uncertainties in operations in a better way 

and is a competitive advantage to the firm (Dubey et al. 2015; Fayezi et al., 

2014; Reuter et al., 2010). Scholars (Hyun and Ahn 1992; Gerwin 1993; Beach 

et al. 2000; Seebacher and Winkler, 2014) suggest that manufacturing 

flexibility acts as a firm response to a dynamic business environment. Research 

has underlined the importance of the business environment in enabling 

flexibility to flourish, as well as its influence on business performance (Browne 

et al. 1984; Sethi and Sethi 1990). There are six dimensions of manufacturing 

flexibility: ‘product’, ‘sourcing’, ‘volume’, ‘material-handling’, ‘mix’ and ‘routing’ 

flexibility (Browne et al., 1984; Sethi and Sethi, 1990). They are defined as 

follows: 
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(a) Product Flexibility: Product flexibility of a firm is its capability to 

launch new or improved products quickly into the market. Browne et 

al. (1984) defined this dimension as the potential to profitably and 

rapidly generate new set of products. It represents the capability to 

alter the mix of products in the ongoing manufacturing process.  

(b) Sourcing Flexibility: Sourcing flexibility can be defined from two 

viewpoints. From the first view, it is the capability of a system to 

change the supplier base as per the company's requirement while, the 

second viewpoint focuses on the ability of a supplier to fulfill the 

changing demands of a focal firm. It refers to the firm’s ability to 

maintain a multiple supplier base for any particular product or raw 

material.  

(c) Volume Flexibility: Volume flexibility represents the ability of the 

manufacturing system to manage the production volume based on the 

changing market demand where the firms need an excessive 

coordination mechanism between the supply chain partners.  

(d) Material-Handling Flexibility: Material-handling flexibility is the 

capability of a system to expeditiously shift various parts for right 

placing and processing within the manufacturing facility (Sethi and 

Sethi, 1990).  

(e) Mix Flexibility: It refers to the capability of a firm to changeover the 

process rapidly and smoothly (Sethi and Sethi 1990). 

(f) Routing Flexibility: Routing flexibility is the ability to produce the 

same product-mix by using different production routes available 

within the firm (Sethi and Sethi 1990). 

 However in our study we focus on volume and routing flexibility and its impact 

on energy sustainability as we have argued in our initial discussions. 

 

2.2 Sustainable Operations Management 

Sustainable Operations Management is the set of skills and concepts that allow 

an organization to control and align its business processes to obtain 
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competitive returns on its capital assets without sacrificing the genuine needs 

of internal and external stakeholders and by ensuring zero negative impacts of 

its operations on people and the environment (Kleindorfer et al. 2005). 

According to Duque Ciceri et al. (2009), sustainability is the quality that allows 

something to be preserved, maintained and kept for tomorrow. Environmental, 

economic, social and technological are considered as the major dimensions of 

sustainability (Baud, 2008). Manufacturing includes all activities that are 

connected to each other from the production plant to the end customer 

intended to fulfill various human needs. There is a rich literature body in 

sustainable manufacturing and operations (see Garbie, 2013; Gunasekaran & 

Spalanzani, 2012; Gimenez et al., 2012; Dubey et al. 2015). However, there is 

limited literature that has attempted to highlight the differentiating factors for 

achieving sustainable operations using alternative research methods. 

 

2.3 Energy Sustainability and Flexible Operations Management 

Researchers have rarely attempted to explore impacts of flexible operations on 

energy sustainability. It is becoming a complex task for organizations as they 

have to maintain flexibility attributes without sacrificing the sustainability 

principles. In particular, scholars have rarely attempted to explore the 

possibility of combining flexibility and sustainability by using operations 

research techniques. Many researchers attempted to analyze and optimize 

energy consumption in manufacturing systems by using simulation (see 

Herrmann et al., 2011; Thiede et al., 2011). However the literature focusing on 

flexible manufacturing and sustainable operations is extensive. Hence, we wish 

to explore the concept of flexible sustainable operations management in which 

the principles of flexible operations management need to be integrated with 

energy sustainability. 

 

3. Case study 

We have decided to use a company which we will refer to as XYZ Automotive 

Ltd.  which is located at Pune, Maharashtra, India. The particular company is 
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one of the leading companies in India that is interested in sustainable 

practices, including energy consumption and resource allocation. XYZ 

currently produces five models coded as: XA, XB, XO, XZ and YI. XB, XZ, and 

YI are existing products and the company is planning to add two more 

products, XA and XO to its production line within two years. The assembly 

process contains power train shop, press shop, weld shop, paint shop, and 

assembly shop (known as TCF). In our study we have considered the 

production flow starting from the weld shop only. Hence, the body flow starting 

from weld shop to final assembly shop via paint shop is the focus of our study. 

There is a six meter height buffer zone which can occupy 80 power and free 

carriers with car bodies in between weld shop and paint shop called weld body 

storage (WBS). There is one more buffer zone which can occupy 320 power and 

free carriers with car bodies in between the paint shop and the assembly shop. 

The firm has differential rate of production and different working hours for 

each shop. The company has another facility at Nashik, in which only paint 

shop and assembly shop can be utilized. It is a joint investment with another 

automotive manufacturer that helps to have capacity and routing flexibility.  

The car bodies are sent to Nashik Plant after completing welding at Pune.  

Approximate values of average energy consumption per vehicle for different 

shops in the plant are given in Table 1. Projected requirements of the cars are 

shown in Table 2. 

 

Table 1: Average energy consumption per vehicle 

Production Shop Average Power 

Consumption/Vehicle 

while working 

Average Power 

Consumption/Vehi

cle while setting-

up 

Standby 

energy 

Pune Weld Shop X Line 76 Kw 65Kw 40Kw 

Pune Weld Shop Y Line 68 Kw 60 Kw 40Kw 

Pune Paint shop 212 Kw 190Kw 100Kw 
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Pune TCF 49 Kw 43Kw 30Kw 

Nashik Plant Paint 212 Kw 190Kw 100Kw 

Nashik Plant TCF 49 Kw 43Kw 30Kw 

 

Table 2: Projected requirement of car variants 

Variants  
Avg. 

requirement 

per day for  

FY 15-16  

Avg. 

requirement 

per day for  

FY 16-17  

Avg. 

requirement 

per day for  

FY 17-18  

Avg. 

requirement 

per day for  

FY 18-19  

XO  No Production  152  186  220  

XA  No Production  No Production  143  273  

XB  152  187  168  127  

XZ  170  203  152  118  

YI 158 118 0 0  

 

 

4. Case scenarios 

Four different options are available for the company to improve the total 

throughput of the system, which are treated as four different cases in our 

study:  

Case 1: Existing scenario  

Since the requirement is very much lower than the available capacity, 

production batch size was not considered as a critical parameter. The company 

would like to avoid adding a third shift and to utilize the plant at Nashik, the 

plant was run at 15 JPH (job per hour) without optimizing the batch size. There 

was only one unloading device at Nashik, with a capacity of 15 jobs per hour. 

Hence, currently XZ and YI car bodies are routed to Nashik Plant after 

completing the welding process from Pune plant.  

 



 10 

Case 2: Nashik Plant at 15 JPH with optimized batch size  

Optimization of batch size helps reduce congestion occurring in the route, 

reduce set-up time and minimize energy utilization. Optimization of batch size 

will help to get improved throughput, which must be checked against the 

projected requirement for new models.  

 

Case 3: Nashik Plant at 25 JPH with optimized batch size  

The bottleneck at the cab unloading process at Nashik Plant can be overcome 

by installing one more lift with a substantial investment. In this case, the JPH 

will get improved from 15 to 25.  

 

Case 4: Routing all XO variants to Pune Plant itself & Nashik Plant at 15JPH  

XO and XZ can be produced either in Pune or Nashik plant after finishing 

welding process from Pune plant. Hence, instead of investing for a new 

unloading device at Nashik plant, routing option of XO to existing Pune plant is 

to be checked with throughput and energy utilization. 

 

Table 3: Manufacturing scheme 

 

 

Variant specific production scheme is to be followed in the production system. 

That is, YI variant can only be produced in Nashik shop and cannot be routed 
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to Pune paint or TCF shop. Similarly, XZ can be produced in both the plants 

but in the worst case only the variant will be taken to the Pune paint and TCF 

shops. The details of the manufacturing scheme are shown in Table3. Shift 

timings and break schedule are different for each shop. The details of shift 

schedules are given in Table 4, which are incorporated in the model.  

 

Table 4: Differential Shift breaks details 

Differ Pune / Nashik Plant: Shift Pauses 

Model Shift Break Details  

 Weld  Paint TCF 

Shift 1     (6:30-

15:00) 

8:15-8:30;  

11:30-12:00; 

13:20-13:30 

8:15-8:30;  

12:00-

12:30; 

13:20-

13:30 

8:15-8:30;  

11:30-12:00; 

13:20-13:30 

Shift 2   (15:00-

23:30) 

17:15-17:30;  

19:30-20:00; 

21:00-21:10 

17:15-

17:30;  

20:00-

20:30; 

21:00-

21:10 

17:15-17:30; 19:30-

20:00; 

21:00-21:10 

Shift 3   (23:30-

6:30) 

No third Shift for Weld 

shop 

 2:00-2:20 No third Shift for TCF 

shop 

 

Model specific setup time for each shop is different. Different set-up time 

matrices are incorporated for different shops and an example of such setup 

time matrix is shown in Figure 1 (Screenshot). 
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Figure 1 (Screenshot): Setup time data 

The Pune weld shop contains two lines, X line and Y line. Each line contains 

separate metal finish lines (MFLs) on which assembly of closure such as doors, 

fender, and hood are taking place. X line can accommodate models such as XB 

and XZ and Y line produces YI model. In near future, model XA and XO will be 

getting added to the X line, and XO models will be getting transferred to Y 

metal finish line instead of transferring to X metal finish line to balance the 

capacity. 

 

 

Figure 2: Body flow scheme 
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There is flexibility to send XZ, XO and YI models to Nashik plant, to maintain 

capacity and routing flexibility. Differential production capacity and cycle time 

details of the shops in the system under study are shown in Figure 2. 

 

4.1 Discrete event simulation 

Discrete event simulation is a widely accepted tool for analyzing complex 

manufacturing, logistics and inventory optimization problems. It is one of the 

most popular and widely accepted methodologies used to analyze the dynamic 

complex production level energy analysis (Omar et al., 2015; Johansson et al., 

2009; Wohlgemuth et al., 2006; Joseph & Sridharan, 2011) and to optimize 

manufacturing facilities to achieve sustainable production.  

 

4.2 Genetic algorithms in combination with discrete event simulation  

Genetic Algorithm (GA) is a non-traditional optimization method. A GA is a 

structured and randomized search strategy in which weak solutions are 

replaced by combining strong and fittest individuals in successive iterations 

(Singh and Rajamani, 2012). There is a rich body of research using GA in 

manufacturing and production optimization problems (see Onwubolu and 

Mutingi, 2001; Joines et al., 1996; Moon and Kim, 1999). The base of any 

genetic algorithm search tools is on genetic reproduction processes and 

“survival of the fittest” strategies. The use of GA in combination with discrete 

event simulation helps organizations to optimize complex scheduling problems 

prevailing in a dynamic flow production system (Azzaro-Pantel et al., 1998). 

Lins & Droguett (2009, 2011) and solve multi-objective production problems 

effectively. Lins & Droguett (2011) further argue that using a combination of 

search methodologies with discrete event simulation helps improve the 

reliability of the analysis. Oyarbide-Zubillaga (2008) and Azadivar & Wang 

(2000) are examples of research that uses a combination of search algorithms 

with discrete event simulation. 
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4.2.1 Problem statement 

Equivalent energy per vehicle per shop is an input as the sum of “plant level” 

consumption and “process level” consumption. Energy spent for maintaining 

the working environment of the plant is referred to as the “plant” level 

consumption (Galitsky, 2008; Boyd, 2005) and energy spent for actual 

production, which is referred as “process” level consumption (Rahimifard et al., 

2010). We further develop our methodology in the next subsections. 

 

4.2.2 The mathematical model 

A mathematical model has been formulated with an objective function followed 

by constraints. A mixed-integer formulation of the flexible sustainable 

production planning system design approach is presented below. The following 

notations are used to develop the mathematical representation of the objective 

function and design constraints. 

Indexing set 

i : Car variant index i=1,2,....I 

j : Plant index j=1,2....J 

m:  Time period counted in days m=1,2,...M 

System parameters  

STj: Shift timing available for plant j, excluding shift breaks  

PRie: equivalent projected requirement of variant i 

Cij: Rated capacity of plant j for variant i 

Qijm: Quantity of car variant i produced in plant j during time period m 

WPij:  Average power consumption per vehicle type i in plant j during 

working time 

SPij: Average power consumption per vehicle type i in plant j during 

setting up period 

BPij:  Average power consumption per vehicle type i in plant j during 

blockage or waiting or standby time period 
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Decision variables 

rij: Routing of variant i in plant j (Binary routing variable, 1 if yes, 0 if 

no) 

fij: Working time of model  i in plant j  

gij : Production setup time period for i in plant j 

lij : Waiting time period of model i at any work station in plant j 

Objective function is to minimize the total energy consumption: 

Minimize  

TEC=∑ ∑ ∑ 𝑄𝑖𝑗 ∗ 𝑓𝑖𝑗 ∗ 𝑊𝑃𝑖𝑗 ∗ 𝑟𝑖𝑗𝐼
𝑖=0 +

𝐽
𝑗=0

𝑀
𝑚=0 ∑ ∑ ∑ 𝑄𝑖𝑗 ∗ 𝑔𝑖𝑗 ∗ 𝑆𝑃𝑖𝑗 ∗𝐼

𝑖=0
𝐽
𝑗=0

𝑀
𝑚=0

𝑟𝑖𝑗 + ∑ ∑ ∑ 𝑄𝑖𝑗 ∗ 𝑙𝑖𝑗 ∗ 𝐵𝑃𝑖𝑗 ∗ 𝑟𝑖𝑗𝐼
𝑖=0

𝐽
𝑗=0

𝑀
𝑚=0        (1) 

Subjected to: 

∑ ∑ 𝑄𝑖𝑗 ∗ 𝑟𝑖𝑗 ≥ 𝑃𝑅𝑖𝑒𝐽
𝑗=0

𝐼
𝑖=0          (2) 

PRie= =
𝑃𝑅𝑖1+ 𝑃𝑅𝑖2+ ………..𝑃𝑅𝑖𝑀

𝑀
        (3) 

∑ ∑ 𝑓𝑖𝑗 ∗ 𝑟𝑖𝑗𝐽
𝑗=0

𝐼
𝑖=0  +∑ ∑ 𝑔𝑖𝑗 ∗ 𝑟𝑖𝑗 𝐽

𝑗=0
𝐼
𝑖=0 +∑ ∑ 𝑙𝑖𝑗 ∗ 𝑟𝑖𝑗𝐽

𝑗=0
𝐼
𝑖=0 ≤ STj    (4) 

∑ ∑ 𝑄𝑖𝑗 ∗ 𝑟𝑖𝑗𝐽
𝑗=0

𝐼
𝑖=0 ≤∑ ∑ 𝐶𝑖𝑗𝐽

𝑗=0
𝐼
𝑖=0         (5) 

Non-negativity constraints:  

PRim≥0        ∀i    (6) 

STj≥0         ∀ j    (7) 

Cjm≥0        ∀ j,m    (8) 

Qijm≥0        ∀ i, j, m   (9) 

 

As mentioned above, this paper aims at minimizing the total plant level energy 

consumption. Energy consumption has three different components: energy 

consumption during working, during waiting period of machines, and setting 

up time period. These three different components are represented by three 

different parts of the objective function shown in equation 1. However, 

maximization functions are usually used as fitness functions with genetic 

algorithms. The minimization objective function value is transformed into 
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maximization fitness function value. Thus the fitness function is the 

maximization of throughput in the pre-specified fixed shift time available, 

which in effect will be the minimization of total energy consumption by 

minimizing non-value adding setting up time and waiting time. Constraint 2 

shows that the sum of quantities of each variant produced in plants must be 

greater than or equal to the equivalent requirement of variant i. Equation 3 is 

used to calculate the equivalent demand of variant i, which is the average of 

demand over the time period m. Constraint 4 is used to indicate that the total 

time consumed for working, waiting and setting up must be less than or equal 

to the total shift time available. Constraint 5 is used to represent that the total 

quantity produced in any plant must be less than or equal to the rated capacity 

of that particular plant. Equations 6 to 9 represents non-negativity constraints, 

such that the values of variables such as projected requirement, shift timing 

available, rated capacity of plants and quantity produced in plants must be 

non-negative. 

 

4.3 Determination of GA parameters 

Before starting with the simulation runs, different parameters of GA were fixed 

based on initial experimentation. The parameters included population size, 

number of generations, termination criteria, input parameters and fitness 

function. We have come across two different well-known termination criteria 

from literature (Pillai & Subbarao, 2008). The first one checks the improvement 

from generation to generation. As per the first criteria, the algorithm stops if 

there is no improvement in the best solution obtained from a pre-specified 

number of generations. As per the second criteria, the algorithm stops when 

the maximum number of generation specified is reached. We have used a mix 

of these two criteria for the simulation runs and checked for a steady state by 

changing the number of generations and size of generations randomly. We 

found that, with a population size of 150, and 20 numbers of generations there 

will be a total of 3000 simulation iterations, which would give a near steady 

state condition. These parameters are kept constant for all cases analyzed in 



 17 

this study. Since the quality of solution obtained using genetic algorithm is 

depended on population size and the number of generations (Gupta et al., 

1996), further experimentation is to be used to find out the optimum 

population size and number of generations. 

 

4.4 Fitness Function  

A GA mimics the survival-of-the-fittest principle of nature to make a search 

process (Goldberg, 1989). Therefore, GAs is naturally suitable for solving 

maximization problems. The operation of GAs begins with a population of 

strings representing design or decision variables. A chromosome’s potential as 

a solution is determined by its fitness function, which evaluates a chromosome 

with respect to the objective function of the optimization problem. Fitness 

function is first derived from objective function and used in successive genetic 

operations. For maximization problems, the fitness function can be considered 

to be the same as the objective function. Table 5 shows the genetic algorithm 

search strategy adopted in this problem, and Figure 3 extrapolates the 

distribution of offspring based on fitness values. 

 

Table 5: Multi-objective GA parameters 

Parameter Value 

Population size 150 

Number of generations 20 

Optimization parameter 
Batch sizes of Cab 

variants 

Type Maximization 

Fitness function System throughput 
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Figure 3: Offspring distribution based on fitness values 

 

 

 

5. Procedure 

Our study started by modeling the existing production and routing system by 

incorporating cycle times, energy consumption, set-up time and routing 

options for existing variants. Four different cases were to be checked to find out 

the best feasible option. Steps involved in the analysis include:  

Step 1: Model the existing production system.  

Step 2: Check the throughput and validating the system with shift timings, 

energy consumption and routing constraints.  

Step 3: Check for the required throughput by adding upcoming models in the 

existing lines by using a fixed batch size of ten for all models.  

Step 4: Check throughput by running Nashik Plant at existing capacity of 

15JPH but with optimized batch size of car variants with the help of genetic 

algorithm tool in the simulation tool.  
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Step 5: Check throughput by running Nashik Plant at an improved capacity of 

25JPH but with a fixed batch size of ten for all models.  

Step6: Check throughput by running Nashik Plant at existing capacity of 

25JPH but with optimized batch size of car variants with the help of genetic 

algorithm tool in the simulation tool.  

Step 7: Check throughput by routing all XO variants to Pune Plant itself and 

running Nashik Plant at 15JPH. 

Step 8: Select the cases where the required throughput is met for further 

energy consumption analysis by using energy analyzer tool, with an optimized 

batch size by using genetic algorithm optimizer.  

Step 9: Find out the best feasible option in which required throughput is met 

by running the factory for minimum time within two shifts at minimum energy 

consumption level.  

 

5.1 Results 

The GA optimization shows that the maximum achievable throughput per day 

is 800, with an optimized batch size and specified sequence. The search 

algorithm shows the progress of fitness function value for different batch size 

combinations of cab variants and is shown in Figure 4. The batch size that 

corresponds to the best throughput is used for energy analysis and the 

graphical representation of energy analysis is shown in Figure 5. 
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Figure 4: Genetic algorithm fitness value analysis output 

 

Figure 5: Energy analysis output 
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The four different cases have been simulated to check whether the requirement 

is being met with the existing differential shift schedules and rated production. 

It appeared that in the first two cases it is not possible to meet the projected 

requirement. Hence, they were dropped without further analyses. But the 

requirements were met within the scheduled production time in the remaining 

two cases. The next question is, which one must be taken ahead as the final 

proposal. The answer was clear that the case in which energy consumption is 

minimal must be taken ahead. Table 6 extrapolates the summary of results for 

the different cases analyzed.  

Table 6: Summary of results in first phase 

Cases Description Requirement  

Case1 Case 1 Nashik Plant15 JPH 

without optimizing the batch 

size  

NOT MET 

Case 2  NASHIK PLANT15 Nashik 

Plant by optimizing the batch 

size 

NOT MET 

Case 3  NASHIK PLANT25 JPH and by 

optimizing the batch size 

MET 

Case 4  All XO Pune Plant itself 

(Route1) 

MET 

Further analysis of the case 3 and case 4 by using the energy analyzer tool in 

the plant simulation module gave a clear picture of total energy consumption 

for each plant per day. Since there is a predefined setup time for each plant, 

energy consumption depended on the batch size of variants and the routing 

options adopted. Since the routing and batch sizes were different for each case, 

there was a significant difference in the energy consumption levels for plants. A 

summary of plant-level energy consumption for case 3 and case 4 is shown in 

table6. Analysis showed that there will be a savings of 92 KW per day,  
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Table 7: Proposed batch size which ensures minimum energy consumption 

Variants 
Batch size for 

FY 15-16 

Batch size for 

FY 16-17 

Batch size for 

FY 17-18 

Batch size for 

FY 18-19 

XO No Production 90 60 50 

XA No Production No Production 60 100 

XB 60 50 60 30 

XZ 30 70 40 40 

YI 10 10 No Production No Production 

Table 8: Plant level energy consumption 

Case 3: Nashik Plant 25 JPH able to meet all XZ XO YI to route 2 

Year 1 Year 2 Year 3 Year 4 

Paint 

Shop 
1674.08 

Paint 

Shop 
1843.67 

Paint 

Shop 
1855.17 

Paint 

Shop 
2131.58 

Y_MFL 630.89 Y_MFL 839.43 Y_MFL 604.54 Y_MFL 739.8 

X_MFL 782.87 X_MFL 873.33 X_MFL 1037.6 X_MFL 1061.47 

Nashik 

Paint 
2576.93 

Nashik 

Paint 
2862.43 

Nashik 

Paint 
2793.27 

Nashik 

Paint 
3162.47 

Nashik 

TCF 
810.53 

Nashik 

TCF 
876.52 

Nashik 

TCF 
850.03 

Nashik 

TCF 
931.17 

TCF_1 563.42 TCF_1 596.71 TCF_1 594.67 TCF_1 637.29 

Case 4: Nashik Plant at 15 JPH & all XO routed to Pune 

Year 1 Year 2 Year 3 Year 4 

Paint 

Shop 
1674.08 

Paint 

Shop 
2531.75 

Paint 

Shop 
2654.5 

Paint 

Shop 
3135 

Y_MFL 630.89 Y_MFL 560.62 Y_MFL 353.33 Y_MFL 353.33 

X_MFL 782.87 X_MFL 1074.53 X_MFL 1231.73 X_MFL 1357.47 

Nashik 

Paint 
2576.93 

Nashik 

Paint 
2520.4 

Nashik 

Paint 
2068.13 

Nashik 

Paint 
1884.4 

Nashik 

TCF 
810.53 

Nashik 

TCF 
797.47 

Nashik 

TCF 
692.93 

Nashik 

TCF 
650.46 

TCF_1 563.42 TCF_1 735.32 TCF_1 751.05 TCF_1 846.81 
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if we go for case 3 instead of case 4. Table 7 shows the proposed batch size 

allocation that ensures maximum energy utilization, whereas Table 8 shows 

the energy consumption data for the two alternative cases analyzed. 

 

5.2 Discussion 

Our interest in investigating the role of flexible operations management on 

energy sustainability was triggered by two facets of vehicle manufacturers. 

Firstly, due to uncertainty. As we argued uncertainty stems from demand 

fluctuations, supply constraints, obsolete technology, political instability, and 

energy crisis. However studies focusing on role of flexible operations 

management on energy sustainability have attracted less attention in 

comparison to demand uncertainty, supply uncertainty and technology 

uncertainty. Secondly, prior models have focused on waste reduction and cost 

minimization. However, the optimum batch size and its impact on energy 

sustainability have received less attention. Under these circumstances we 

argue that multiple case based approach to investigate the role of flexible 

operations on sustainable operations is equally, if not more relevant for 

understanding energy sustainability. Hence our current findings support the 

prior findings (King and Lenox, 2001) and further extend previous research (see 

Mahadevan et al. 2003) that has only considered demand uncertainty. Previous 

research (see Mirzapour et al., 2013 and Madaan & Mangla, 2015) has 

recognized the need for flexible operations. However these studies have ignored 

energy sustainability. Thus by investigating energy sustainability using volume 

and routing flexibility we have made significant contribution to energy 

sustainability literature and operations flexibility. 

 

5.2.1 Theoretical Implications 

Flexible operations and energy sustainability are well discussed in the 

operations management literature. What is less understood is how flexible 

operations impact energy sustainability. The two key aspects of this study 

signify our contributions to theory. Firstly, the integration of two independent 
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concepts (i.e. flexible operations management and energy sustainability); and 

secondly, the case based approach to study the impact of optimum batch size 

on energy sustainability. Hence the study findings suggest that the routing 

flexibility combined with volume flexibility have implications on TCE.  

 

5.2.2 Practice Implications 

The findings of the study suggest that energy consumption can be significantly 

reduced if routing and volume flexibility are both considered in the objective 

function. The findings provide further insights to those organizations need to 

decide whether to consider routing flexibility or volume flexibility or both. If 

volume and routing flexibility with energy consideration model can be used by 

organizations then much debated issues such as overtime or night shift can be 

resolved. However this further requires empirical investigation. 

 

6. Conclusions  

Drawing broadly on flexible operations principles we have attempted to 

investigate the impact of volume and routing flexibility on energy sustainability. 

We have used case based research to analyze various scenarios using 

simulation techniques. Though we believe that our study offers multiple 

insights, we enumerate several limitations. Firstly, we have considered only 

volume and routing flexibility. However, if we had included the other four 

flexibility dimensions then our findings could have been different. Secondly, 

our study findings are based on case based approach. Hence the theoretical 

findings where we have observed that volume and routing flexibility have no 

significant impacts on energy sustainability need to be further investigated 

using large sample size. Thirdly, other dimensions of sustainability such as 

social sustainability which we have not included in our present study can be 

explored in future. 
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