Abstract:

For developing nations the development of sustainable communities has to go hand in hand with the achievement of wider goals, where emphasis has to be given to the importance of lifestyle and social change. This inter-disciplinary research draws understanding from the social, cultural and economic studies to define the values and aspirations of the middle class and its implications on sustainable housing. One of the fastest growing economies in Asia, India, has empowered a large and powerful consumer oriented middle class. Middle class mores are aspirational and aimed at achieving western living standard and moving away from a traditional communitarian social model. This research presents the results of extensive field work in the southern-Indian city of Mysore that defines the values held by the emergent middle-class in respect to the built environment. Common areas and shared spaces have traditionally been very actively used and have played a crucial role in both passive cooling strategies and the maintenance of socially sustainable communities. Field work shows that attitudes to the built environment are polarised between well-maintained and protected housing interiors and poorly organised and maintained external spaces and examines how these transition spaces are used to reflect these values and concerns. The paper reflects on whether earlier traditions in sustainable building design in South Asia (Mysore) have relevance in a contemporary context and the importance of understanding the changing preferences and values of the newly affluent demographic.

Keywords: Sustainable Housing, Indian middle class
Introduction:

Those nations in the developing south inevitably differ in their approaches to sustainable development (Skea, 2008). The imperative to reduce poverty and increase economic activity means that resource use will grow to meet the legitimate aspirations of both government and society and this has to be reconciled with transnational concerns to promote sustainable strategies for the future. As Gay has argued, economic expansion is required before the recognised process of contraction and convergence takes place in concert with the developed world. (Mayer, 2004). Our research engages with sustainable development in its widest sense as formulated through the Bruntland (Brundtland, 1987) definition of interdependence between social, economic and environmental realms.

Our research is based on whether such assumptions still hold true for the design of housing that might appeal to the burgeoning Indian middle class. This has been achieved through two intensive periods of fieldwork to uncover the key drivers to housing development in the middle income demographic. This has been done through mapping activity, structured interviews and questionnaires with key stakeholders. These include architects, builders, developers, planners, householders and potential purchasers. The work was undertaken in Mysore, India (Figure 1). The first published stage of the research clearly reflects a shift away from climate responsive, socially inclusive, community oriented housing to a more individual, exclusive and independent housing typology (Satish et al., 2011). This paper is concerned with the second stage of the fieldwork that market tests with key stakeholders, potential sustainable design strategies that also meet the expectations of the middle income consumer. We describe the methodology for construction of a series of scenario models for market testing as well as using simulation techniques to benchmark the models to a series of quantitative indicators.

The fast growing Indian economy has empowered an emergent middle-class whose new-found economic status and affluence have a critical impact in the process of sustainable development (Fernandes, 2000b, Fernandes, 2000a, Singh, 2009, Wessel, 2004). A former class identity based on simplicity has been transformed by the economic empowerment to one of affordable indulgence (Varma, 1999). Consumerism has become the primary Indian value, fuelled by the influence of the west and a more pervasive media (Fernandes, 2006).

In an Indian context, changes in housing procurement and design are as much a social and cultural phenomenon as a technical one. A recognition of this fact can allow insights into the effective formulation of localised, resilient and relevant sustainable housing strategies that address quantitative issues such as carbon reduction (Skea, 2008). India’s economic growth has also increased the spending power of the middle-class (Fernandes, 2006). Changing lifestyles and consumption patterns have clear impacts on housing (Swarup, 2007, Imtiaz and Helmut, 2001). Although increased affluence and consumption benefit the middle-class, it has also increases carbon emissions (Saavala, 2003). 60% of the emissions originating from construction activities are attributed to the housing sector (Tiwari, 2003).

This increase in energy consumption is not limited to ownership of more consumer goods but can also be attributed to changes in housing typologies resulting from changing expectations of home owners. (Satish and Brennan, 2010). Traditional middle income housing as studied by the authors was communally configured with a looser relationship between external and internal realms. Contemporary dwelling templates now reflect a culture of individuality that feature highly defined boundaries forcing dwelling activities into air conditioned interiors with resource and carbon implications (Satish et al., 2011).
In the case of Mysore (Figure 1), a south Indian city, traditional residential layouts were either linear with a shared party wall, or with houses distributed around an open space (Figure 2). Entry to the house was through a semi open raised platform (Jagali) (Issar, 1991). These Jagalis were shaded for most of the day and used extensively for socializing and actively used as interaction areas (Ikegame, 2007). Jagalis worked as an effective climate mediating transition space and there were no other boundaries to define individual territories. Materials used for construction, thick mud walls (later brick) and terracotta tile roofs were locally sourced and with small openings towards shaded areas, they were climate responsive and exhibited sustainable features in their material choice and construction details.

Shared facilities and the efficient use of semi-open outdoor spaces for much of the day also resulted in a compact building footprint. Such climatically responsive layouts and construction using locally available material are good example of efficient sustainable development (Vandana, 2008). These houses were thermally comfortable due to planning techniques which reduced solar gain and due to the use of local materials and construction details which were climate responsive and had low ecological footprints (Satish et al., 2011).

Housing design and residential layout both changed drastically after independence in 1947. It can be argued that a move from communal provision predates contemporary economic expansion and its attendant societal changes, a sense of the communal being replaced by a priority to preserve privacy. Contemporary housing designs feature large openings, a defined and fenced plot boundary (Figure 3) making each building self-contained and introspective (MUDA, 2005). Roads, independent of houses, have pedestrian ways and are clearly segregated from the property of private individuals by fencing into compounds. This is supported by local planning legislation (MUDA, 1996). It is an embedded expectation that buildings no longer enclose and define the open spaces and encourage outdoor activities (Satish et al., 2011, CITB, 1987).
Altered social and cultural values have played a crucial role in the adoption of new housing typologies. Changed social conditions mean that people have started to associate the strengths of community living with weaknesses. For instance, shared facilities are interpreted as leading to a lack of privacy (Satish et al., 2011).

A new housing typology has been inadvertently implemented that does not reflect local climatic conditions and this has led to increased consumption of operational energy (Figure 3). As an executive engineer responsible for urban housing development recollects, until 1970 people were careful to stay close to the city centre (Fort and Palace) (respondent no.12, interviewed on 23 July 2009). To encourage residents to move away from city centre, the City Improvement Trust Board (CITB) built houses in plots and allotted some sites free of cost for those who bought houses away from the city centre (CITB, 1987). This has had a direct impact on the land footprint (figure 4). Whereas in the earlier Jagali typology, nearly thirteen square meter of land is used per person this has increased to 27 square meters per person (CITB, 1987). Now, middle class people prefer the plot typology and the land footprint have increased up to 43 square meters per person (MUDA, 1996, MUDA, 2005). Emphasis on privacy has resulted in use of further resources to protect property. Improved financial resources coupled with changing aspirations have contributed to building bigger houses and the choice of imported materials to reflect their owners’ aspirations. These have clearly increased the embodied energy of houses (figure 4). Changing social and cultural needs have resulted in climate responsive spaces like Jagalis becoming redundant. Social activities have moved indoors coupled with large windows, increasing conductive heat gain and increased comfort expectations have resulted in use of more lighting and spot cooling, all of which has increased operational energy requirements (figure 4).

Unsustainable development can be identified at every level. The first published stage of the research clearly reflected and summed up the unsustainable features of community living, siting, entrances, house planning, finishes and facades. Reflecting on the earlier work, the second stage of the research focuses on a particular sections of the house to investigate the specific rationale for the changes, people’s preferences and their implications for sustainable housing.

Housing is thereby identified as a social and cultural phenomena and this research looks at built environment sustainability from a more bottom-up perspective. Earlier research clearly indicated changes at all levels but more so at the entrance point, the transition from street to main door. This area clearly demonstrates people’s preferences, aspirations and changed attitudes and their impact on housing form. It is also impacted on by reconfigured layouts, preferences and requirements of home owners.
The research focuses on this boundary condition and the second stage of the field work engages with key stakeholders in examining sustainable design strategies that could also meet the expectations of the middle income consumer.

Boundary condition and its implication on sustainable housing:

It has been argued that the pre-industrial architecture of India served the physical and spiritual needs of the populace well. At a physical level, it demonstrated an understanding of the local climate, available materials and construction techniques. Doshi has argued that “at the spiritual level, the built-form conveyed total harmony with the regional lifestyle in all its daily as well as seasonal rituals, unifying the socio-cultural and religious aspirations of the individual and the community” (Ameen, 1997).

Closer inspection reveals that the key change has been the way the house boundary is defined and the values and changes taking place at this interface. As Correa(1991) has argued, the climatic conditions of most Indian cities all owls for the use of open and semi open spaces for interaction, gatherings and other social activities (Correa, 1991). Correa identified specific Indian conditions, which aid sustainability. They use natural light for most part of the day and very minimally construction, which reduces embodied energy. He has identified (Correa, 1991) four major elements as:

1. Internal private spaces
2. Area of inmate contact (the front door step)
3. Neighbourhood meeting places
4. Principal urban area

In a traditional Indian context, these spaces will always have very high usability coefficients due to the nature and way these spaces are used (Correa, 1983). Though the notion of threshold is a theoretical construct used in sociology, anthropology, and architecture, primarily in a western context. It is none the less relevant in interrogating modern urban conditions in India.

The research is thus focussed to these boundary conditions as they may reflect fundamental changes since Correa’s writing about threshold. Although relevant in 1990, such has been the change in society that a virtuous link between building form, bioclimatic response and social structures in the household may be broken. We therefore examine whether contemporary expectations regarding security and privacy have anything to offer sustainable design strategies and if any of the more traditional approaches to threshold and form can be incorporated in the design of new housing.

Models and simulation analysis:

We aim to use the observations and conclusions of the earlier research and field work to identify the needs and wants of middle class home owners. Structured interviews and surveys clearly indicated the concerns for security and notions of protecting one’s boundary, coupled with the need for privacy, and the use of form and façade to provide visual cues in expressing wealth and aspiration (Satish et al., 2011, Glendinning, 2011).

The understanding of the field work is triangulated with literature studies and the outcomes related to boundary conditions are used to produce different computer models, representing alternatives for major elements, a sustainability agenda and middle class aspirations. Feedback
from architect, builder, and home owner is used to define these models that are then related to sustainable values.

The field work was combined with intensive literature reviews of both contemporary Indian building typologies (MUDA, 2008, Shirley, 2008, Annapurna, 1999, Tiwari, 2001) and research on boundary, threshold and border that help explain contemporary preoccupations with security and defensible space (Blaisse, 2009, Georges, 2005, Georges, 2008, Rashid, 1998, Suzanne and Lennard, 1977). From this a series of four test models were generated for study in respect to both predictive quantitative performance and as a basis for revisiting the fieldwork. The models were organised to test housing market stakeholders’ responses to a range of sustainable criteria. At one extent a traditional bioclimatic solution that reflects past models of communal living and at the other extent, a model representative of current private sector middle class housing were constructed. A further two models between these extremes were designed primarily to get a finer understanding of the exact levels of privacy and social interaction that might be embraced by potential stakeholders (Figure 4).
Figure 4. Analysis of different model typologies

<table>
<thead>
<tr>
<th>Typologies</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boundary condition</td>
<td>Lagal Typology</td>
<td>Lagal + Plot</td>
<td>Lagal + Gate</td>
<td>Lagal + High Gate</td>
</tr>
<tr>
<td>Physical</td>
<td>A traditional bioclimatic solution that reflects past models of communal living</td>
<td>A representative model of combination of traditional and current middle class housing. Demarcation of boundary with very low wall. Combination of lagal and plot system.</td>
<td>A representative model of current private sector middle class housing</td>
<td>A representative model of aspirations and high end / upper middle class housing</td>
</tr>
<tr>
<td>Spatial</td>
<td>Sharing party wall either in a row or arranged around the open space.</td>
<td>The plot is defined more as a very low hedge to retain the permeability of the lagal typology.</td>
<td>About four feet high compound, clear definition of one’s territory.</td>
<td>Very high compound. Min 6 feet high. Totally cut off from the external world.</td>
</tr>
<tr>
<td>Visual</td>
<td>Use of semi open space for most part of the time.</td>
<td>Opportunity to use open space for informal activity.</td>
<td>Clear demarcation of territory. Presently, the space is not used for much of the activities.</td>
<td>Wall defined barrier segregating the inside and outside. Open space and landscape areas for personal consumption.</td>
</tr>
<tr>
<td>Communal / Social</td>
<td>Community oriented. Common open space and other than the rear utility area, there is no individual house open space.</td>
<td>Scope to use open space for most part of the day.</td>
<td>Scope for informal interaction with the neighbours and street. Not much importance for the exterior open spaces and community activities.</td>
<td>Totally cut off from the neighbours. Introvert, independent and more importance for privacy.</td>
</tr>
<tr>
<td>Security</td>
<td>Social Security, compact community and new owners are identified by people.</td>
<td>More importance for social security.</td>
<td>Compound used as a psychological barrier, main door with steel shutter.</td>
<td></td>
</tr>
<tr>
<td>Land footprint</td>
<td>13 Smt /person</td>
<td>17 Smt /person</td>
<td>17 Smt /person</td>
<td>15 Smt /person</td>
</tr>
<tr>
<td>Embodied energy</td>
<td>Use of least embodied energy and lifecycle energy.</td>
<td>Less embodied energy.</td>
<td>Relatively high lifecycle energy.</td>
<td>Use of very high embodied energy and lifecycle energy.</td>
</tr>
<tr>
<td>Embodied energy</td>
<td>0.47 MWh / SQM</td>
<td>0.57 MWh / SQM</td>
<td>0.65 MWh / SQM</td>
<td>0.76 MWh / SQM</td>
</tr>
<tr>
<td>Carbon emission</td>
<td>0.24 t CO2 / SQM</td>
<td>0.29 t CO2 / SQM</td>
<td>0.33 t CO2 / SQM</td>
<td>0.40 t CO2 / SQM</td>
</tr>
<tr>
<td>Openings</td>
<td>Very small, just enough light inside.</td>
<td>Narrow openings, enough light for the interiors.</td>
<td>Wide openings, no relation to direction and requirements.</td>
<td>Very wide openings. Spanning most part of the wall</td>
</tr>
<tr>
<td>Climate responsive features</td>
<td>Climate responsive, roof, wall, construction and materials were reflective of local climate.</td>
<td>Lagal area is shaded and could be used for most part of the day.</td>
<td>Design is independent of climate.</td>
<td>Highly sensitive to the climatic condition.</td>
</tr>
<tr>
<td>Source of material</td>
<td>Use of locally sourced materials.</td>
<td>Emphasis on use of locally sourced materials.</td>
<td>Combination of local and imported materials.</td>
<td>Use of imported materials.</td>
</tr>
<tr>
<td>Security</td>
<td>No least materials used for security other than the regular wooden door.</td>
<td>Steel door as additional security to the main and rear door.</td>
<td>Steel grill for the portico area.</td>
<td>Entire plot or most part is covered by grill.</td>
</tr>
</tbody>
</table>

Summary
- Most sustainable typology
- Some of the features are sustainable
- Some of the features are unsustainable
- Least sustainable typology
<table>
<thead>
<tr>
<th>General Description</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>Jagali Typology</td>
<td>Jagali + Plot</td>
<td>Plot + Gate</td>
<td>Plot + High Gate</td>
</tr>
<tr>
<td>Different activities and their features are highlighted. Each typologies represent most decided to most prevailing and also vernacular typology.</td>
<td>There is no demarcation of private spaces and public areas. Sharing party wall either in a row or arranged around the open space.</td>
<td>The plot is defined more as a very low hedge to retain the permeability of the Jagali typology. A representative model of combination of traditional and current middle class housing.</td>
<td>This most prevailing model has physical barrier between street and inside plot. The height of the wall is about four feet, where the homeowners can still retain some connection with street and neighbours. Portico defines the main entrance and also acts as informal reception area of guests.</td>
<td>This most aspiring model has clear definition of internal and external part of individuals space. High wall, gate and elaborate portico emphasis the status of the person.</td>
</tr>
<tr>
<td>Entrance</td>
<td>Main relation of street and entrance door. Different activities between the two are explored.</td>
<td>There is a smooth transition from street to main door through semi open raised area (Jagali). Jagali is used for most part of the day.</td>
<td>Similar to Jagali typology entrance with additional space in the front with hedge to define one plot area.</td>
<td>Main door is recessed inside the individual property and not visible from the street. There is no relation between street and main door.</td>
</tr>
<tr>
<td>Opening</td>
<td>Larger openings will increase conduction gain and increase cooling load. Different alternatives are worked out based on the window size and two more models are developed to examine peoples preference of overlooking shared spaces.</td>
<td>Very small, just enough light inside.</td>
<td>Narrow openings, enough light for the interiors.</td>
<td>Very wide openings. Spanning most part of the wall.</td>
</tr>
<tr>
<td>Security</td>
<td>Concerns of safety and both perceived and real threat are reflected the way the boundary and openings are protected. Different level of security are represented in each model.</td>
<td>Social Security: compact community and new members are identified by people. Local materials used for security other than the regular wooden door.</td>
<td>Emphasis on social security. Steel door as additional security to the main and rear door.</td>
<td>Compound used as a psychological barrier and main door with steel shutter. Most of the cases steel grill for the portico area.</td>
</tr>
<tr>
<td>Interaction</td>
<td>Interaction among neighbours and home owners is the crucial part of the boundary condition. Different typologies represent degree of interaction among community.</td>
<td>Community oriented. Common open space. Visually connected with each other. Kids can play around and people can use the Jagali for various activity.</td>
<td>Scope to use open space for most part of the day. Develops more to suit the prevailing plot typology. Scope for interaction among neighbours.</td>
<td>Scope for interaction with the neighbours and street. There is a clear physical barrier and visual connection. Owners have the option to interact with the neighbours.</td>
</tr>
<tr>
<td>Skin</td>
<td>Skin used for elevation. It either construction material used as masonry or cladding for the entrance and front side of the building. The choice of material is independent of building typology. However, peoples preference of each typology is listed.</td>
<td>Use of locally sourced materials. Use of Mud blocks</td>
<td>Emphasis on use of locally sourced materials. Use of brick and mud blocks</td>
<td>Combination of local and imported materials. Mostly plastered with entrance area and street side clad with stones or Tiles.</td>
</tr>
</tbody>
</table>

Figure 5. Description of Elements of different model typologies.
The model prepared reflecting the prevailing typology (model 3): has an approximately 4 feet high compound between neighbouring plots. The front and rear of the plot has a minimum set back of 1 meter or as required by the BDA regulations. The aspiring one (model 4): has a very high compound that insulates it from external world and extensive use of imported material and ostentatious finishes and very wide openings. The earlier Agrahara typologies (model 1): is the early typology with a raised platform in the front with small openings and use of locally available material, overlooking the street. Finally based on the feedback from the first field work, a combination of climate responsive and aspirational typology (model 2) was developed (Figure 5).

The models were generated with similar configuration in terms of built up area, number of rooms, size of the plot and provision for minimum light and ventilation. To focus the research more on the boundary conditions, all other components such as constructional systems and spatial planning were kept as constants. Each option was then modelled first in Google Sketch Up then exported into environmental simulation package, Integrated Environmental Systems (IES), to predict energy consumption and carbon emissions. Longitude and latitude were specified for Mysore using hourly climate data from Bangalore, the nearest city to the study area.

Before testing stakeholders’ responses to the models for, the models were validated for their predictive quantitative performance by simulating them using environmental design software. An advanced simulation package, Integrated Environmental Solutions (IES), was used in this research. IES uses climatic data and supports a range of analytical tools for lighting, thermal comfort and resultant energy consumption and carbon emission. To predict energy consumption and carbon emissions, longitude and latitude were specified for Mysore using climate data from Bangalore, the nearest city to the study area.

The results of the simulation for each of the four models are shown in Figures 6, 7 and 8 in respect of conductive heat gain, cooling load, peak energy demand and carbon emissions for a representative day; May 19, one of the hottest days chosen to analyse the heat gain and energy consumption due to cooling. The focus of this research is to access the implication of varied boundary condition in terms of change in energy consumption and resultant carbon emission. For the simulation purpose, only these boundary conditions of different typologies are altered while providing input in IES. For instance, the internal parameters like number of rooms, number of occupants, comfort condition expected inside the house, minimum light, and ventilation desired is kept constant across all the models. Details like size of the openings and their location are altered among the models. Similarly, the construction materials and internal partitions are kept constant, whereas the external finish either the cladding or plastering or use of construction material as external fabric, are altered as defined in each typology. Finally, the boundary condition as shared party wall, independent plot system, four feet compound and very high compound with high gate details are constructed and fed to IES.

IES allows altering the input of each typology while retaining some of the features as constant across all typologies. Further, it allows comparison of specific parameter across typologies during output. For instance we can run the models to simulate only the conductive heat gain, where the internal temperature rise is due only to heat gain by conduction. Similarly, the energy consumption due to cooling load, resultant of bringing down the internal temperature to set comfort condition is assessed (Figure 6, 7 and 8).
The outcome clearly indicates higher conduction gain, cooling load, energy consumption and resultant carbon emission in plot and high gate typologies and consistently lowest energy consumption and carbon emission in the Jagali typology.

A key finding is one of increased energy consumption in model 4 representing the aspirational model. It uses nearly 65% more energy than model 1 (the Jagali typology). Similarly, there are differences in the performance of other models; for instance, in the case of energy consumption, the high compound typology (model 4) requires nearly 300% of more cooling load compared to a Jagali house typology (model 1). And even this will increase the conduction gain by nearly 90%. All the results are tabulated and compared in Figure 9.
IES Simulation Result

<table>
<thead>
<tr>
<th>Parameters</th>
<th>General Description</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Consumption SMT</td>
<td>Energy consumed by electrical appliance are considered. To bring in uniformity, it is converted to SMT and all the models are compared to the base results of Jagali typology as 0.</td>
<td>Bench mark</td>
<td>20% of Jagali Typology</td>
<td>35% of Jagali Typology</td>
<td>55% of Jagali Typology</td>
</tr>
<tr>
<td>Cooling load</td>
<td>This simulation result accounts for the energy consumed to cool the internal spaces to comfort temperature of 22 degrees.</td>
<td>Bench mark</td>
<td>100% of Jagali Typology</td>
<td>200% of Jagali Typology</td>
<td>300% of Jagali Typology</td>
</tr>
<tr>
<td>Conduction gain</td>
<td>Window size is altered in each typology and with other construction materials being constant, the simulation result reflects the conduction heat gain due to size of the opening.</td>
<td>Bench mark</td>
<td>58% of Jagali Typology</td>
<td>65% of Jagali Typology</td>
<td>60% of Jagali Typology</td>
</tr>
<tr>
<td>Embodied Energy</td>
<td>Source of the material, energy consumed for the processing and transportation are considered to qualify the other simulation results.</td>
<td>Locally sourced material and construction system.</td>
<td>Most of the materials locally sourced and few materials imported from beyond 10 miles.</td>
<td>Some of the materials locally sourced and few materials imported from beyond 100 miles.</td>
<td>Least of the materials locally sourced and most of the materials imported from far distance.</td>
</tr>
<tr>
<td>Total energy consumption</td>
<td>It includes energy consumed due to electrical appliance, maintenance and cooling load.</td>
<td>Bench mark</td>
<td>138% of Jagali Typology</td>
<td>175% of Jagali Typology</td>
<td>275% of Jagali Typology</td>
</tr>
<tr>
<td>Carbon emission SMT</td>
<td>Total carbon emission due to energy consumed due to maintenance and cooling energy. To bring in uniformity, it is converted to SMT and all the models are compared to the base results of Jagali typology as 0.</td>
<td>Bench mark</td>
<td>20% of Jagali Typology</td>
<td>35% of Jagali Typology</td>
<td>65% of Jagali Typology</td>
</tr>
<tr>
<td>Summary</td>
<td>Most sustainable typology some of the features are sustainable some of the features are unsustainable Least sustainable typology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 9. IES simulation output
The simulation output demonstrates that changed boundary conditions have implications for energy consumption and resultant carbon emission. They also validate the hypothesis while developing models that explore different boundary conditions (Figure 4 and 5). It also clearly points to a direct relation between peoples’ changed preferences and aspirations and their implications for energy consumption and carbon emission.

Field Work

The main objective of achieving sustainable strategies within the existing middle class paradigm is achieved by contextualising the broad term of sustainability to Mysore condition on one hand and reflecting the acceptability of middle class home owners’ preferences and acceptability on the other. The models prepared and simulations carried out reflect the local sustainability agenda and different levels of sustainability with specific reference to boundary condition. Further field work looked the aspirations of the middle class people and their willingness to align towards more sustainable features.

With the series of scenario models complete, a second series of field work was carried out during Feb – April 2011. Here the research is more focused on testing the acceptability and preferences of home owners by drawing on their feedback to these pre-defined models. The models were tested with home owners by semi-structured interview and with key stakeholders in the design and procurement process. To analyse the issues reflected in transition spaces, elements representing middle class aspirations and the sustainability agenda were identified, namely: Volume, Entrance, Opening, Security, Interaction and Skin.

To elicit preferences and log the choices of people, architects and builders, a ‘multi sorting task’ methodology was followed. As Groat (1982) has argued, it is possible for the participants either to sort representations of buildings they had experienced directly or pictures that functioned as simulations of the real environments. The models are deconstructed to highlight the element of investigation; for instance, while asking people about their priorities about openings / window size and location, views showing different window conditions were derived from the basic models and prepared so that the participants could reflect purely on the concerned issue and not be distracted by other elements in the images.

This technique is very helpful in this type of study as respondents are asked to place the cards from most acceptable to least acceptable. Once noted, they are given a briefing about sustainable issues in housing and how each model and typology reflects different energy and carbon footprints. Stakeholders are asked to place the cards again in the light of their understanding of the sustainable implications of their choices. Their preferences are noted and the implications of any change in the respondents’ choices are ascertained.

This multi sorting process was validated through a semi-structured interview. Apart from noting their preferences, the process was recorded and interviewees were informally questioned as to their decisions.

Field work analysis, Discussion

The outcome of this second stage of field work addresses issues including social and cultural values and perception of key stakeholders towards middle income sustainable housing. The study can be broadly addressed at two levels; firstly, it deconstructs how various stakeholders perceive boundary and threshold in housing. The interview and survey assesses the choices and preference of a particular topology based on issues like, security, material, interaction etc. their choice of...
most preferred and least preferred are further triangulated with the discussion during the process about the rationale behind their choices and why they think their choice is appropriate.

At second level, the study analyses how the peoples’ perception changes with awareness. The house owners are asked first to prioritise their preferences. Later after being given information on issues relating to climate change and sustainable housing, they are asked to again place their preferences. Feedback from stakeholders; architects, builders, contractors and home owners are analysed for each element identified namely; Volume, Entrance, Opening, Security, Interaction and Materials. Though there is a clear departure from the sustainable boundary condition, the outcome clearly reflects varied preferences among different elements identified. To summaries the field work results; two representative outcomes, Volume and Opening, are discussed below.

Volume

In the case of different Volume options, stakeholders strongly feel that the prevailing plot typology is most desirable followed by high gate typology preferred by more than 65% of home owners. The most sustainable, Jagali typology is the least preferred option (Figure 10). According to an architect interviewed, “Privacy, dust, vibrations due to vehicle movement, forces people to build house away from road” (respondent no.111, interviewed on 11 March 2011). One builder felt that privacy is a major concern and people would not prefer to build “their house on the street without privacy” (respondent no.109, interviewed on 10 March 2011). When their attention was drawn to well established Jagali typology, they feel there is clear deficit of trust among neighbours which is crucial for social / community living (respondent no.98, interviewed on 19 March 2011). Their strong preferences are evident while analysing their preferences after providing the information regarding sustainable concerns. Home owners’ revised preferences clearly reflect marginal decrease in the high gate typology, which is reflective of many unsustainable features and less than 10 % increase in the preferences for Jagali typology (Figure 10). Similar trend can be observed among other elements like, Entrance, and Security.

![Figure 10. Volume](chart.png)

Opening

In the case of different opening options, stakeholders are divided among the wide, small and inward openings. Less than 10% of home owners prefer opening towards shared areas (Figure 11). According to one architect, changed social network and priorities makes this a least feasible typology (respondent no.76, interviewed on 09 March 2011). One builder posed a more practical
concern of flexible design and spatial organization means these two or four owners will have their own plans and may not match, unless built together and all buy into it (respondent no.115, interviewed on 13 March 2011). The concern and acceptability of the home owners are evident, while their preference for the wide openings are reduced to less than 5%, their preference for small opening is increased by 20% (Figure 11). Similar trends can be found in case of Material choices as well.

Analysis of these representative elements reflects the concerns and aspirations of the middle class home owners and also demonstrates variation in their preferences among different elements. The understanding of home owners’ perceptions and expectations enables one to produce sustainable strategies which work within an existing middle class paradigm. The outcome of the field work could be summarised based on the level of acceptance of sustainable models and probability of aligning towards Sustainable Housing (Table 1).

<table>
<thead>
<tr>
<th>Field Work Reflections</th>
<th>level of acceptance of sustainable models</th>
<th>probability of aligning towards Sustainable Housing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>Least</td>
<td>Negative</td>
</tr>
<tr>
<td>Entrance</td>
<td>Least</td>
<td>Negative</td>
</tr>
<tr>
<td>Openings</td>
<td>Most</td>
<td>Positive</td>
</tr>
<tr>
<td>Interaction</td>
<td>Moderate</td>
<td>Perhaps</td>
</tr>
<tr>
<td>Security</td>
<td>Least</td>
<td>Negative</td>
</tr>
<tr>
<td>Skin</td>
<td>Most</td>
<td>Positive</td>
</tr>
</tbody>
</table>

Table 1. Summary of field work outcome

Choices and preferences clearly represent the area in which we can expect people to support and adapt to sustainable features. The feedback can be classified into three types. First the elements which people are ready to change their preferences for the cause of sustainability, in this we can easily find the materials, skin and openings as two aspects which people are ready to align towards a sustainable agenda. There are certain elements for which they do not have very strong
preferences and to some extent are ready to align themselves. In this case people might consider some adjustment but are not ready to forthrightly support a sustainability agenda.

However when it comes to issues like security; people are not ready to compromise and would not be interested in sustainability issues and would not compromise on their perception of what is safe and secured for them. This study has been very useful in disentangling one area, the boundary condition and look at each element separately so as to identify people’s choices and preferences resulting in the housing typology and hence resultant sustainable concerns rather than broadly summing up the boundary conditions as unsustainable in present context.

This study is also helpful in identifying the areas and elements where it is easier to achieve higher sustainable goals compared to areas where there will be higher resistance to change. Revising the model to suit both peoples’ choices and sustainable agenda further tests this. Peoples’ choices and preferences, collected by social methods, are fed into the IES simulation model to analyse the difference in the process of sustainable housing. To test this one model is altered to have optimum size windows which people would be ready to align with to achieve more sustainable housing.

![Figure 12. Post-field work: Energy consumption](image1)

![Figure 13. Post-field work: Carbon emission](image2)

The new IES simulation chart clearly shows a drop in the energy consumption of 40 % and thus a reduction in carbon emission. The changed window parameter has also reduced the conductive heat gain by 20 %. The results clearly show that, by changing the elements which people are ready to alter, we can reduce carbon emission by a fifth. This is significant because it is useful to know where we can really target and reduce emissions.

Conclusion

The study using survey field work and model simulations has highlighted the relatively recent shift in attitudes and cultural values relating to housing; from an inherently sustainable approach which valued shared spaces, local materials and communal activities, to one which reflects a move towards a twentieth century western approach; of individualism, nuclear families and consumer driven values. The study also clearly demonstrates that there are elements like materials and openings, which people are willing to align themselves with and that there are elements like security, which they would not compromise. Their immediate concerns would be of greater importance than the greater issues of carbon emission and sustainable housing.
The particular points are as follows:

This study has explored the people’s attitudes and their implication for housing in India, particularly the people of Mysore. There are however specific factors which are unique to Mysore. For instance, for although aspiration to own a house is an Indian phenomena, middle class home owners in Mysore are particularly desirous of owning a plot and identifying their own territory.

Though there is a clear move away from sustainable living, the values of people can be recognised as being more than 40% ready to change their life style to align themselves towards more sustainable housing.

In the process of achieving more sustainable housing there are factors like security where the perception of the owners plays a crucial role. Though home owners are sympathetic to sustainable concerns, their fear and psychological concerns with regard to security and other issues like unorganised exterior spaces, stray animals and perceived lack of moral values in society has prompted the middle class home owners to define, identify their territory, and protect and insulate their boundaries.

Finally the revised IES simulations demonstrates that nearly 40% energy savings and carbon reduction could be achieved without altering peoples’ preferences. Further reduction requires intervention at higher level; for instance to change the entrance and setbacks now prevalent. To achieve this regulations and legislation will have to be reworked. On the other hand concerns about security can only be addressed at regional and policy levels.

We have to acknowledge the need for people to express and accommodate their desire for upward mobility against a backdrop of complex class and caste structure on one hand and consumerist driven influences of the media and the west.

India has identified Housing as one of the eight national missions to reduce carbon emission as part of its commitment to reduce the vulnerability of the people to the impacts of climate change (NAPCC, 2008), this bottom-up approach to identify the sustainable strategies acknowledging people’s needs and aspirations should be a useful contribution to achieving carbon reduction and sustainable housing.

References

FERNANDES, L. 2000b. Restructuring the new middle class in Liberalizing India. *Comparative studies of South Asia, Africa and Middle east, 20*, 88-104.

IMTIAZ, A. & HELMUT, R. 2001. *Middle class values in India & Western Europe*, New Delhi, Social Science Press.

2012 Upcoming Events

October 24-28 2012
ACE2012 - The Fourth Asian Conference on Education

November 2-4 2012
MediAsia2012 - The Third Asian Conference on Media & Mass Communication Click Here
FilmAsia2012 - The First Asian Conference on Film and Documentary

November 16-18 2012
ABMC2012 - The Third Asian Business & Management Conference Click Here

2013 Upcoming Events

Thursday March 28 - Sunday March 31, 2013
ACP2013 - The Third Asian Conference on Psychology and the Behavioral Sciences
ACERP2013 - The Third Asian Conference on Ethics, Religion and Philosophy

Thursday April 4 - Sunday, April 7, 2013
ACAH2013 - The Fourth Asian Conference on Arts and Humanities
LibrAsia2012 - The Third Asian Conference on Literature and Librarianship

Thursday April 25 - Sunday April 28, 2013
ACLL2013 - The Third Asian Conference on Language Learning
ACTC2013 - The Third Asian Conference on Technology in the Classroom

Friday May 24 - Sunday May 26, 2013
ACAS2013 - The Third Asian Conference on Asian Studies
ACCS2013 - The Third Asian Conference on Cultural Studies

Thursday June 6 - Sunday June 9, 2013
ACSS2013 - The Fourth Asian Conference on the Social Sciences
ACCS2013 - The Third Asian Conference on Sustainability, Energy and the Environment

Wednesday October 23 - Sunday October 27, 2013
ACE2013 - The Fifth Asian Conference on Education
ACETS2012 - The First Asian Conference on Education, Technology & Society

Friday November 8 - Sunday November 10, 2013
MediAsia2013 - The Fourth Asian Conference on Media & Mass Communication
FilmAsia2013 - The Second Asian Conference on Film and Documentary

Friday November 22 - Sunday November 24 2012
ABMC2013 - The Fourth Asian Business & Management Conference

For more information please visit The International Academic Forum at www.iafor.org