
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

01 University of Plymouth Research Outputs University of Plymouth Research Outputs

2017-01-19

Progress in modeling through distributed

collaboration: Concepts, tools, and

category-learning examples

Wills, Andy

http://hdl.handle.net/10026.1/5443

10.1016/bs.plm.2016.11.007

Psychology of Learning and Motivation

Elsevier

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

Progress in modeling through distributed collaboration:
Concepts, tools, and category-learning examples

Andy J. Willsa, Garret O’Connella, C.E.R. Edmundsa, Angus B. Inkstera

aSchool of Psychology, Plymouth University, UK

Abstract

Formal modeling in psychology is failing to live up to its potential due to a lack of effective collaboration.
As a first step towards solving this problem, we have produced a set of freely-available tools for distributed
collaboration. This article describes those tools, and the conceptual framework behind them. We also
provide concrete examples of how these tools can be used. The approach we propose enhances, rather than
supplants, more traditional forms of publication. All the resources for this project are freely available from
the catlearn website http://catlearn.r-forge.r-project.org/

Contents

1 Introduction 2

2 Concepts 2
2.1 The Grid . 3
2.2 Canonical Independently Replicated Phenomena (CIRP) . 4
2.3 CIRP registration . 5
2.4 Free, open-source model implementations . 6
2.5 Simulation publication . 8
2.6 Summary . 8

3 Introduction to catlearn 8
3.1 Why R? . 9
3.2 Stateful list processors . 9

4 Examples 9
4.1 ALCOVE model implementation . 10
4.2 proto-ALCOVE model implementation . 15
4.3 Derivation of a CIRP . 15
4.4 CIRP registration . 16
4.5 Input representation archive . 16
4.6 Simulation archive . 17
4.7 Ordinal adequacy test . 18
4.8 The Grid . 19
4.9 Other examples . 19

5 Overview and conclusion 19
5.1 Contributing to catlearn . 20
5.2 Conclusion . 20

Email address: andy@willslab.co.uk (Andy J. Wills)

Preprint submitted to Psychology of Learning and Motivation September 12, 2016

1 2 3

4 5 6 0.0

0.1

0.2

0.3

0.4

0.5

Type 6
Type 5
Type 4

Type 3
Type 2
Type 1

Learning Block
Pr

ob
ab

ili
ty

 o
f E

rr
or

A. B.

Figure 1: A. Six different ways to classify eight stimuli into two different groups; the stimuli take one of two values on each
of three dimensions (color, size, shape). B. Mean errors in learning these category structures from feedback, as a function of
amount of feedback (learning block). Reproduced from “On the Adequacy of Current Empirical Evaluations of Formal Models
of Categorization” by A.J. Wills & E.M. Pothos, 2012, Psychological Bulletin, 138, 102–125. Copyright 2012 by American
Psychological Association.

1. Introduction

A formal psychological model is one that unambiguously specifies transformations from independent vari-
ables to dependent variables (Wills & Pothos, 2012). For example, in category learning, category structure
might be one independent variable and classification accuracy one dependent variable (see Figure 1). Wills
& Pothos (2012) argued that: (1) formal models are important because they allow unambiguous comparison
of the relative adequacy of theories, but that (2) little progress had been made because the comparisons had
been too narrow. For example, Smith & Minda (2000) compared the performance of two models on variants
of just one experiment.

The route to faster progress in formal modeling, according to Wills & Pothos (2012), is to compare models
across a much broader set of phenomena. Over the last few years, we’ve been trying to put that idea into
action. We’ve concluded that the goal is not achievable by any individual or small group within a reasonable
amount of time (e.g. one career). Collaboration would solve this problem, but a suitable framework for
efficient collaboration has been lacking until now. In the sections that follow, we introduce a conceptual
framework, and a set of practical, freely-available tools, to support efficient distributed collaboration through
technological means. We illustrate our ideas with examples from the field we know best, category learning,
but the ideas are general purpose, and can be applied to any situation where formal models are evaluated
against known phenomena. In providing this framework and these tools, we have lowered the “cost of entry”
for collaboration. Our hope is that, by so doing, we will encourage others to adopt distributed collaboration
as a central research methodology in the formal modeling of psychological processes.

The form of distributed collaboration we envisage would be a cultural shift for psychology. Such a shift
would be desirable, as evidenced by how well distributed collaboration works in other fields (e.g. software
development). However, the shift will only happen if distributed collaboration is compatible with the
traditional metrics by which researchers gain employment, promotion, and esteem—an issue we return to
throughout the article. Our central point, though, is that the formal modeling of mental processes is simply
too large a project for any one person or lab. The choice is between collaboration or failure.

2. Concepts

We propose, and have initiated, an open archive of formal psychological models, plus independently-
replicated data sets against which to test them, and archival records of those simulations. The structure

2

M & S (1978)

S, H & J (1961)

A
LC

O
VE

C
O

VI
S

1 1

1 NT

p
ro

to
-A

LC
O

VE

0

0
...

...

... ...

.

.

. .

. .

Figure 2: Illustration of a small part of the “Grid”. Columns represent formal models, rows represent empirical phenomena.
The cell contents indicate: ordinal success of model (1), ordinal failure of model (0), model not tested (NT). The examples in
this figure are drawn from category learning, but the concept of the Grid applies across the formal modeling of psychological
processes. S, H & J (1961) = Shepard et al. (1961), M & S (1978) = Medin & Schaffer (1978), ALCOVE (Attention Learning
COVEring map, Kruschke, 1992), proto-ALCOVE (e.g. Johansen & Palmeri, 2002), COVIS (COmpetition between Verbal and
Implicit Systems, Ashby et al., 1998). Image author: Andy J. Wills. CC BY 4.0.

and content of this open archive is based around five central concepts, which we discuss below: the “Grid”
(Section 2.1), Canonical Independently Replicated Phenomena (CIRP, pronounced “syrup”1, Section 2.2),
open CIRP registration (Section 2.3), open-source model implementations (Section 2.4), and open simulation
publication (Section 2.5), analogous to open data publication (e.g. Morey et al., 2016).

2.1. The Grid

The Grid is a way of representing the goal of broad comparisons of model adequacy, and progress toward
that goal. It is also an archival record of the success or failure of simulations of empirical phenomena. Figure
2 illustrates one small part of the Grid.

Each column of the Grid represents a distinct formal model. The number of these columns, at least
within the published literature, is knowable but large. The central problem, as we will cover in more detail
in Section 2.4, is that software to implement these models is either not publicly available, or available but
incompatible with implementations of other models.

Each row of the Grid represents an empirical phenomenon within the explanatory scope of at least one
of the models. Determining what these rows should be is a more difficult task than it might first appear, as
we will discuss in Section 2.2.

The matrix of cells that is defined by the rows (phenomena) and columns (models) of the Grid poses
a challenge in terms of sheer scale. Even with ten models and ten empirical phenomena, the Grid makes
explicit the need to run up to 10 models × 10 phenomena = 100 different simulations. Each journal article
reporting work on a formal model has, perhaps, on average, 2–4 such simulations. Even if the 25 or more
journal articles that would, at this rate, be needed to fill this grid2 actually existed (and they most likely do
not as yet), discovering what has already been done is laborious, as no search engine indexes journals in this
way. For example, if one wanted to search for simulations of Medin & Schaffer (1978) with the ALCOVE
model (Kruschke, 1992), one might use Web of Science to retrieve all papers that cite both those articles.
As of 2016-07-14, this is 316 articles. So, at a minimum, one would have to read 316 abstracts to determine
what simulations had been performed. In practice, the abstracts probably would not be conclusive in some
cases, and one would have to retrieve the full text as well—and all this for one cell of the Grid.

1As the singular of phenomena is phenomenon, the acronym CIRP is correct for both singular and plural forms, cf. sheep.
2100 simulations / 4 simulations per paper = 25 papers.

3

In summary, the Grid highlights the extent of the problem facing the formal modeling of psychological
processes. The columns of the Grid (formal models) are not publicly available (or have other problems, see
Section 2.4). Determining the rows of the grid (the phenomena) is not straightforward, as we discuss in
Section 2.2. The cells of the Grid (simulations of phenomena) are a hurdle in terms of both numerosity and
lack of an appropriate record system, as we have just discussed.

2.2. Canonical Independently Replicated Phenomena (CIRP)

We propose that each row of the Grid should be a Canonical Independently Replicated Phenomenon
(CIRP). In this sub-section, we first justify and discuss the criterion of independent replication, and then
explain what, by our definition, makes an independently-replicated phenomenon canonical. We also consider
some consequences of adopting the CIRP approach.

We propose that each row of the Grid should be an independently-replicated phenomenon because
modeling non-real results wastes time. The waste of effort increases as the number of models increases—10
models equals up to 10 wasted simulations for each non-real result. Non-real results also potentially lead to
an inaccurate assessment of relative adequacy—a model should not be penalized for failing to accommodate
a non-real result, yet inclusion of non-real results means this may happen. Thus, to guard against the
wasted effort and potentially misleading conclusions that come from simulating non-real results, we propose
a minimum standard that relative adequacy assessments of formal models be restricted to independently
replicated phenomena.

Independent replication is beginning to become accepted as a data quality standard in psychology (e.g.
Ledgerwood, 2014; Pashler & Wagenmakers, 2012). However, a criterion of independent replication (no
shared authors) is not always applied when choosing phenomena against which to evaluate formal models.
For example, when the Generalized Context Model (GCM, Nosofsky, 1984) was introduced, it was evaluated
against a single experiment which, at that time, had not been replicated (Shepard et al., 1961). More
recently, in a review of experiments supportive of the COVIS model (Ashby et al., 1998), none of the
attempted independent replications were cited (Ashby & Maddox, 2011). The intention here is not to single
out these authors for criticism, but to illustrate a general issue. We are aware of relatively few cases in
formal cognitive modeling where independent replication is applied as a data-quality criterion and, even in
those cases, it is only applied to a subset of the phenomena examined (e.g. Love et al., 2004).

There are a couple of objections that might be raised against independent replication as a minimum data-
quality standard for model evaluation. The first is that attempts to replicate are rare in psychology (Makel
et al., 2012) and, where replications are attempted, they are often unsuccessful (Open Science Collaboration,
2015).3 Thus, one fear is that applying a criterion of independent replication would leave no phenomena
to examine within a particular domain. The rational response to such a fear is to determine whether one’s
fear is justified and, if it is, suspend formal modeling of that domain until such time as demonstrably real
phenomena become available. Some domains of psychology contain independently replicated phenomena,
as illustrated later in this section, and also in Section 4.3.

A second objection to using independent replication as a minimum data-quality standard is that it’s
hard to define what counts as a replication. Pashler & Harris (2012) make a distinction between direct and
conceptual replications, and are critical of the latter. We agree with their central point but note that, in
practice, there are some problems in distinguishing between a direct replication and a conceptual one. For
example, if a direct replication is a study that is the same as the original study in every respect, then no
replications are direct (for example, they test different participants). Defining a direct replication as one
identical in every respect except that they sample different members of the same tightly-defined population
(e.g. US undergraduates) is also likely to be prohibitively restrictive.

The concept of a CIRP is a pragmatic response to the perhaps inevitable uncertainty about what counts
as a replication. The search for CIRP should, we argue, favor independent replications that are as close
to being direct as the published literature will allow. The determination of CIRP is an area in which the
concept of ordinal success (Wills & Pothos, 2012) is useful. No two studies in psychology have ever produced

3For an more extended discussion of this latter claim, see also Anderson et al. (2016) and Gilbert et al. (2016).

4

literally the same results at a quantitative level. In the CIRP approach, a replication is considered to be
successful if the key results are statistically significant, and in the same direction as the original study.

Another important aspect of defining a CIRP is to accept that some changes to stimuli or procedure
may lawfully affect otherwise robust results. For example, Medin & Schaffer (1978) is one of the most
highly cited publications in the history of categorization research.4 The Experiment 2 data set of that
paper has been independently replicated a number of times (Blair & Homa, 2003; Minda & Smith, 2002;
Nosofsky et al., 1992, 1994; Rehder & Hoffman, 2005). Although there is debate about the generality of
the ordinal result across different stimulus sets and procedures (e.g. Nosofsky, 2000; Smith & Minda, 2000),
there is consensus that the ordinal result is robust within the experimental conditions employed by Medin
and Schaffer (e.g. Minda & Smith, 2002). Experiment 2 of Medin & Schaffer (1978) is thus an independently
replicated phenomenon in category learning. It may have boundary conditions (it’s likely most psychological
phenomena do) but, when you run the experiment the way the original authors did, you can expect to get
the results they did. This is a solid basis for the relative adequacy assessment of formal models. Note that,
in the CIRP approach, the emphasis is on real effects, rather than effects that are both real and important.
In a relative-adequacy assessment (Wills & Pothos, 2012), an effect is important if at least one current or
future model cannot accommodate it. Therefore, it is seldom possible to know in advance whether an effect
is important in this sense.

The CIRP approach has a couple of necessary consequences for model evaluation. First, it places relative
adequacy assessments of formal models slightly behind the empirical front line; “off the razor’s edge”, as
Medin (2011) put it. The necessary lag this introduces is probably a good thing—this kind of broad model
comparison is time consuming and one needs to ensure it is signal, rather than noise, that is being fitted to
the models.

The second necessary consequence of the CIRP approach is that there will always be more published
experiments than CIRP. Unless the original experiment and its replication(s) are literally identical, this raises
an issue—to which of the replications does one fit a model? One possibility is to fit each replication separately.
Although such an approach has obvious advantages in terms of completeness, it has disadvantages in terms
of clarity and efficiency. The CIRP approach involves identifying a replication that is representative of what
is known empirically, and is sufficiently well specified in terms of psychological stimulus representation,
and empirical results, to allow meaningful modeling. This is one sense in which a CIRP is a Canonical
Phenomenon. Deciding which experiment among replications is canonical is a matter of judgment, and a
judgment that is unlikely to receive consensual approval in every case. The CIRP approach does not solve
this problem, but does require that the introduction of a CIRP is accompanied by an explanation of the
choices made (so that the choices are transparent and open to rational challenge).

One strength of the CIRP approach is that it separates empirical phenomena from the interpretation
placed upon those phenomena. A replication that is successful but whose authors favor a different expla-
nation to the original study is still a successful replication. The theoretical legwork comes in the form of
comparing formal models to phenomena. Separating phenomena from formal models should make it easier
for groups with different theoretical approaches to work in a distributed-collaborative manner.

2.3. CIRP registration

In Section 2.2, we proposed that each row of the Grid should comprise a Canonical Independently
Replicated Phenomenon (CIRP). The concept discussed in the current sub-section is that CIRP should be
recorded in a freely available store of target data sets that is open not only for inspection, but also for
addition and improvement by the community.5

The existence of such a store is important for distributed collaboration on the formal modeling of psy-
chological processes. This is because relative-adequacy assessments of models require that the models have
been assessed against a commonly-defined set of phenomena. If this is not apparent, imagine the alternative

4Web of Science reports 1457 citations as of 2016-06-15.
5One must also accept the possibility that a CIRP might be deprecated in the event a phenomenon turns out to be a false

positive despite being independently replicated.

5

situation where model A is assessed against phenomena 1–3, and is found to accommodate 1 and 2 but not
3. Model B is assessed against phenomena 4–6, and is found to accommodate all three phenomena. Which
is the more adequate model, A or B? The answer is one cannot tell, because model B has not been assessed
against phenomena 1–3 and model A has not been assessed against phenomena 4–6.

We further propose that this freely-available store of CIRP should have a standard format, not only
for the recording of target data, but also for concise documentation of each data set. Such documentation
would need to specify, at a minimum, (1) the source of the data set, (2) references that establish independent
replication of the phenomenon, and (3) reasons for choosing this particular data set as the CIRP from among
the set of replications. We provide a more detailed specification of our proposed documentation format in
Section 4.4. Such documentation is brief, and is not intended as a replacement for more fulsome publications
in traditional outlets. Rather, our expectation is that CIRP registrations would be one tangible product of
synthetic review articles published in high-quality journals. In the same way that data publication increases
the citation rate of empirical reports (Piwowar et al., 2007), CIRP registration could act to increase the
citation rate of review articles, as the review, not the CIRP documentation, would be the definitive reference
for the means by which the CIRP had been determined.

2.4. Free, open-source model implementations

One of the main sources of inefficiency in formal modeling is the lack of publicly-available model imple-
mentations. For example, at the time of writing, the majority of the formal models of category learning had
no publicly-available implementation.6 The amount of effort this wastes is large. For example, most of the
work involved in writing Edmunds & Wills (2016), which established that COVIS could accommodate the
result shown in Figure 1, came from having to implement the COVIS model. The lack of a publicly-available
implementation increases the entry cost to using a formal model and hence disincentivizes the exploration
of models by those outside the research group that created them.

We thus propose that another key resource for distributed collaboration is a freely accessible store of
model implementations. Below, we introduce and discuss the three attributes we consider essential in such
an archive: open-source software (Section 2.4.1), archival storage (Section 2.4.2), and cross-compatibility
(Section 2.4.3).

2.4.1. Open-source software

It is important for distributed collaboration that model implementations be open source. Open-source
software can be examined by others, so they can understand how it works. The fact they can do this also
increases the chances that bugs are detected. Just as important, the free availability of source code means
others can build upon and improve what the author has provided, either in terms of improving the efficiency
or flexibility of the implementation, or by using components of the code in their own development of other
formal models. This approach to software development is often known as “free software”, where “free” refers
to freedom rather than cost; it reflects the freedom of users to do what they wish with the code (Stallman,
2015; Williams, 2002). The ALCOVE model (Attention Learning COVEring map, Kruschke, 1992) is an
example of good practice in this regard because its source code is publicly available (Kruschke, 1991).

The source code provided by Kruschke is an example of good practice for another reason, too — it requires
only open-source tools (e.g. Stallman & the GCC team, 2016) to turn the source code into a working model
implementation. The importance and strength of this open-tools approach can be illustrated by comparison
to the alternative—use of proprietary tools. For example, MATLAB (MathWorks, 2016) is a proprietary
tool used by some modelers. Its source code is not available, so researchers cannot see for themselves how
MATLAB works. They cannot modify or improve it, and they have to take on trust that it is error free.
The vendor can change the way a proprietary tool operates such that things you’ve written no longer work,
and decline to sell or support the older versions of the tool for which your code did work.7 In contrast, with

6Examples include: COVIS (Ashby et al., 1998), ATRIUM (Erickson & Kruschke, 1998), KRES (Rehder & Murphy, 2003).
7This really happens. SPSS (IBM, 2016) will not open its own output files if they were generated before 2007 (U. Mass., n.d.).

Hypercard programs cannot be run on modern hardware (Oren, 2004). Visual Basic 6 support was withdrawn (Microsoft, 2008),
despite a long public campaign (Ramel, 2016). In contrast, ALCOVE was written on a discontinued computer architecture
and operating system (Markoff, 1989; Wikipedia, 2016b), yet compiles with minimal modification on modern machines.

6

open-source tools, if the developers choose to change the tool in a way that causes you a problem, you can
choose to continue to use the old version (the old version remains freely available indefinitely). Incidentally,
users of MATLAB may wish to consider OCTAVE (Eaton, 2014), an open-source tool that runs MATLAB
code with little to no modification.

In summary, we propose that a publicly-accessible archive of model simulations should be open source,
both in terms of the model code itself, and in terms of requiring only open-source tools to turn the source
code into a working model implementation.

2.4.2. Archival storage

Although Kruschke’s ALCOVE implementation is commendable for being open source and based on
open tools, there are other respects in which it could be improved. For example, Kruschke’s ALCOVE
implementation is only available on his personal website (Kruschke, 1991). Contrast this to research article
publication. Few authors or readers of research articles would be satisfied with a publication approach that
involved posting only on a personal website. One central reason for the existence of journals, and other
archival systems (e.g. arXiv; Ginsparg, 1999), is the security others gain from knowing that the material
upon which they base their own research cannot disappear at the whim (or demise) of the original author.
Computer code should be accorded no lesser status. Specifically, our proposal is that model implementations
should be stored in a way that could reasonably be considered archival.

We further propose that the storage should not only be archival, but also have version control (e.g.
Collins-Sussman et al., 2011). Version control means that any changes to the code since publication are
recorded, that each update is assigned a unique version number, and that all versions remain publicly
available. This means that researchers are able to say that their simulation was based on a particular
numbered version of a model implementation, and be confident that this version will continue to be publicly
available, even if superseded by a more recent version. This is essential for the reproducibility of published
simulations.

In summary, our proposal is that model implementations should be stored in a system that could reason-
ably be considered to be archival, and which has effective version control. One example of good practice in
this regard is the SUSTAIN model (Supervised and Unsupervised STratified Adaptive Incremental Network;
Love et al., 2004), as archived by Gureckis (2014). Another is the DIVA model (Kurtz, 2007), as archived
by Conaway (2016).

2.4.3. Cross-compatibility

Two model implementations, even those written in the same language, can operate in a sufficiently
different way that their operation cannot be easily combined in a study of relative model adequacy. For
example, Kruschke’s ALCOVE code (Kruschke, 1991) reads parameters and stimulus inputs from a text
file, working through the presented stimuli in order, and outputting each response to another text file. In
contrast, the code for a different model used by O’Connell et al. (2016) generates the stimulus representations
as part of the main code. Thus, in the former case, the model and data sets are separated while, in the
latter, they are integrated. These kinds of differences substantially increase the effortfulness of assessing
different models against a common set of phenomena. The solution is for different models to have, as far as
is possible, a common structure for inputs and outputs. This is what we mean by cross-compatibility, and
we propose that model implementations should be cross-compatible.

2.4.4. Summary

Distributed collaboration on the determination of relative model adequacy would be facilitated by the
existence of a free, publicly-available, open-source, version-controlled archive of cross-compatible model im-
plementations. As in the case of CIRP registration, such an approach can only get traction if it supplements
rather than supplants traditional measures of academic esteem. It seems to us that such an archive meets
that goal. In particular, it benefits those who have created these models by assisting the widespread adop-
tion of the models by the community. This should in turn boost citations of the journal articles introducing
and investigating those models. So, like CIRP registration, publicly-available model implementations are
intended to enhance, rather than supplant, traditional publication routes.

7

2.5. Simulation publication

If the rows (CIRP) and columns (models) of the Grid (Figure 2) were freely available, there would still
be a need for some mechanism by which the results of individual simulations (cells) could be archived.
Given the already-discussed need for an archive of CIRP and model implementations, it seems efficient to
locate a reproducible account of simulations in the same location. As in these other cases, it is important
that this archive of simulations enhances rather than supplants traditional publication routes. We envisage
that researchers will generate simulations in pursuit of some broader goals. For example, they may wish to
compare the relative adequacy of a few models across a range of replicated phenomena. The results of this
investigation would, one assumes, be the subject of peer-reviewed journal article publication in the normal
way. What the archive of simulations would provide is the code necessary to reproduce the conclusion
recorded in the Grid. The Grid, through the mechanism of registering simulations, also becomes a central
searchable database of all relevant simulations. This should further enhance distributed collaboration and,
by so doing, improve citation metrics.

2.5.1. A technical note about stimulus representations

This sub-section is a discussion of a technical issue that the casual reader can safely skim. The technical
issue concerns the that fact that formal models of cognitive processes seldom start with a retinal represen-
tation of stimuli. Rather, they assume the presence of certain perceptual processes prior to the input of
the model, and provide a somewhat more abstract representation of the experimental stimuli. For example,
one common approach in the modeling of category learning is to represent each stimulus as a point in a
multidimensional psychological stimulus space (Shepard, 1957, 1987). The input representations chosen by
a modeler when simulating a given experiment are an essential component of the model specification. The
simulation cannot be reproduced without the stimulus representations, and different stimulus representations
could lead to different conclusions.

The technical question that arises is how one handles stimulus representations within an archive of
simulations. One approach is to include stimulus representations in each of the individual simulation archives.
However, we advocate a slightly different approach. Although different models sometimes use different input
representations, it is also the case that some models are input compatible. For example, some versions of
exemplar and prototype models use the same input representations and differ only in how that input is
subsequently processed (e.g. Nosofsky, 1987). It therefore makes sense to publish stimulus representations
separately from simulations, as simulations are specific to one model–CIRP combination (i.e. they concern
one cell of the Grid), while stimulus representations can be common to multiple cells in a given row.

Separate publication of stimulus representations also provides a convenient location for brief documen-
tation and justification of the choices made in constructing these stimulus representations. Documentation
of a stimulus-representation archive would briefly explain the way in which the representation was deter-
mined, citing (where appropriate) the empirical data used in the construction of the representations (e.g. a
multidimensional scaling solution).

2.6. Summary

We have outlined what we see as the necessary components for distributed collaboration on formal
modeling in psychology. In summary, what is needed is a free, open, documented, version-controlled archive
of (1) CIRP (Canonical Independently Replicated Phenomena), (2) cross-compatible model implementations,
and (3) simulations.

3. Introduction to catlearn

In this section we introduce catlearn, the framework we have written to support distributed collab-
oration on formal modeling in psychology. catlearn is a free and open-source extension (“package”) of
the R language (R Core Team, 2016). Like R itself, catlearn is made available under the GPL (General
Public License; Free Software Foundation, 2007), which ensures the software is, and will remain, free and
open source. The project title, catlearn, was once an acronym (CATegory LEARNing), but the goals of

8

the framework have outgrown the acronym, and the word catlearn should now be treated as an arbitrary
proper noun.

3.1. Why R?

Why is catlearn based around R? R is perhaps best known to psychologists as software for statistical
analysis. It provides similar functionality to other statistical analysis software used by psychologists, but
also many other features.8 Of particular relevance to formal modeling, R supports non-linear optimization
(the process by which formal models are typically fitted to data). Due to R’s increasing popularity as an
analysis tool for psychologists, situating catlearn within R brings the advantage of a familiar environment
that contains many of the tools needed to inspect and analyze the output of model simulations. R is also
easy to learn, relative to more low-level languages such as C.

Another strength of R is that it provides a simple system for documentation to be incorporated within
catlearn. Preceding a command by a question mark, e.g. ?t.test brings up documentation relevant to
that command. This in-built documentation system provides an ideal means to document the rows (CIRP),
columns (model implementations), and cells (simulations) of the Grid (Figure 2), and also to document
the commands that generate input representations. R packages can also include datasets, which are loaded
using the data command, e.g. data(USArrests). This means that, when combined with the documentation
system, R packages are well suited to CIRP registration.

A further strength of R is that it has dedicated version-controlled archival systems. Those wishing to
contribute to catlearn can do so at any time using the version-controlled archive provided by R-Forge
(Theußl & Zeileis, 2009). Users interested in the daily-updated development version of catlearn (the
“unstable” version) can also download it from R-Forge. Users who prefer a slightly older but more fully
tested version (the “stable” version) can download it from the Comprehensive R Archive Network (CRAN).
CRAN is a robust version-controlled archive hosted simultaneously in over 120 different locations worldwide.

One possible objection to situating catlearn within R is that R code doesn’t always run as fast as code
written in some other languages. In many cases, this is not an issue from the user’s perspective as code
written in R still runs instantaneously. However, model implementations may, in some cases, benefit from
being written in a compiled language. This can be achieved within R in a number of ways—for example,
through use of the Rcpp package (Eddelbuettel & Francois, 2011; Eddelbuettel, 2013). Rcpp allows one to
write time-critical pieces of code in C++, and integrate them seamlessly into R. R also links to a number of
other languages, including FORTRAN, Java, Python, and MATLAB (via OCTAVE, Gaujoux, 2015).

3.2. Stateful list processors

The catlearn package, as described so far, provides the framework for a free, open, documented, version-
controlled archive of CIRP, model implementations, input representations and simulations. One thing that
the above discussion did not consider was cross-compatibility of models. In order to facilitate model com-
parisons, each model implementation should, as far as is possible, require similar inputs and provide similar
outputs. Of course, this correspondence cannot be complete, as formal models differ in their assumptions
about input representations, and have different parameters. While some differences are perhaps inevitable,
it makes sense to eliminate unnecessary differences in implementation. In pursuit of that goal, model imple-
mentations within catlearn employ the stateful list processor schema. This schema is most easily described
with the aid of a concrete example, which is provided in Section 4.

4. Examples

In the current section, we provide some specific examples of how catlearn can be used as an archive of
model implementations, CIRP, and simulations. The examples are written from a user perspective, rather
than a developer perspective. In other words, they assume a situation where you are using content already

8The Comprehensive R Archive Network (R Foundation, 2016) lists 8993 packages that extend the base functions of R
(2016-08-20).

9

X

h1

h2

h3

A B

α1α2

Figure 3: Architecture of the ALCOVE model (Kruschke, 1992). The gray quadrilateral is a three-dimensional depiction of
a two-dimensional plane, representing a psychological stimulus space. Points h1, h2, and h3 represent the location of radial-
basis (“exemplar”) units within that space. Point x represents the presented stimulus. The lettered circles are category
representations, and the arrows connecting to them are variable-strength connection weights from the radial-basis units. α1

and α2 represent the attention allocated to each of the two dimensions of the space; the arrows beside these α illustrate that
dimensional allocation acts to stretch and squash psychological space in ALCOVE. Image author: Andy J. Wills. CC BY 4.0.

present in the catlearn package, rather than adding new content yourself. Adding content to catlearn is
discussed in Section 5.1.

Readers may find the following examples below easier to follow if they have a working version of R and the
catlearn package in front of them. A guide on how to install both can be found at the catlearn project web-
site (Catlearn Research Group, 2016). Once you have installed R and catlearn, type library(catlearn)

in R to make catlearn available in your current session. Typing ?catlearn then provides a brief help
screen, with instructions of how to get a list of available commands. Each command then has its own help
file (e.g. ?shin92).

The examples that follow are drawn from category learning but—to reiterate—catlearn is a general-
purpose framework for the formal modeling of psychological processes. Our examples come from category
learning simply because that is the area with which we are most familiar. Our examples concern one of
the central unresolved questions of category learning—are categories represented by prototypes (e.g. Reed,
1972) or by the storage of specific examples (e.g. Medin & Schaffer, 1978), or something else (e.g. Nosofsky
et al., 1994)?

We start by describing the implementation of an exemplar model (Section 4.1), and a prototype model
(Section 4.2), within catlearn. We then derive a CIRP (Section 4.3), and discuss its documentation within
catlearn (Section 4.4). Next, we discuss an input-representation archive (Section 4.5), which is used by an
archived simulation of our example CIRP with a formal model (Section 4.6). After that, we introduce the use
of an Ordinal Adequacy Test to automatically evaluate whether the simulation successfully accommodates
the CIRP (Section 4.7), and show how the Grid acts as a central record of simulation results (Section 4.8).
Finally, we invite the reader to explore some of the other content of the catlearn package (Section 4.9).

4.1. ALCOVE model implementation

In this section, we describe the implementation of the ALCOVE model (Kruschke, 1992) within the
slpALCOVE command of the catlearn package. The first sub-section is a mathematical description of
ALCOVE, as some understanding of how ALCOVE works is required to understand how the slpALCOVE

command works. This section can be skimmed by those already familiar with ALCOVE. For the mathe-
matically unconfident, it should be sufficient to get the gist of this mathematical sub-section. The second
sub-section describes the implementation of ALCOVE within catlearn.

4.1.1. Description of ALCOVE

ALCOVE (Kruschke, 1992) is one of the most influential models of category learning.9 Figure 3 sum-
marizes its architecture. ALCOVE is a connectionist model that assumes stimuli are represented as points

9Web of Science reports 814 citations as of 2016-06-16.

10

in a multidimensional psychological stimulus space (Figure 4A). Thus, each stimulus is represented by a
vector, which we will denote here as x. For example, for stimuli varying in size and angle, one might write
x =

(
0.4 0.5

)
, where the two values represent the psychological size and angle of the presented stimulus.

Presentation of a stimulus leads to the activation of radial-basis nodes (Cheney, 1966). Radial-basis
nodes, like stimulus representations, can be considered as points in stimulus space (Figure 3). In virtually all
applications of ALCOVE there is exactly one radial-basis node for each unique training stimulus. Although
these radial-basis nodes are often called “exemplar” nodes, this description is something of a misnomer as,
in most applications, all the nodes exist before training begins. It is perhaps better to think of these radial-
basis nodes as a simplification of the abstract concept behind ALCOVE, which is that there are radial-basis
nodes randomly scattered across stimulus space (the “COVEring map” of ALCOVE).

However one prefers to think about it, the architecture of the radial-basis layer of ALCOVE is fully
specified by the matrix h, which has the same number of columns as there are radial-basis units (j columns),
and the same number of rows (i rows) as there are psychological stimulus dimensions. For example, in a
simple size-angle experiment with four stimuli, the architecture of the radial-basis layer might be described
as

h =

(
0.4 0.8 0.8 0.4
0.4 0.4 0.8 0.8

)
where each column represents the location of one training exemplar in stimulus space.
ALCOVE computes the activations of each of the radial basis nodes with the following equation:

ahj = exp[−c(
∑
i

αi|hji − xi|r)q/r] (1)

This equation specifies that the activation of each radial-basis node is a decreasing function of its distance
from the presented stimulus. Where r = 2, that distance is Euclidean (Figure 4B); where r = 1, the distance
is city-block (Figure 4C). Euclidean distance is typically used for integral stimuli, city-block for separable
stimuli (see Garner, 1976). Where q = 1, the decreasing function is exponential (Figure 4D); where q = 2,
it is Gaussian. Exponential decay is typically used (Shepard, 1987); occasionally Gaussian decay is used
where stimuli are highly confusable (Ennis, 1988).

Stimulus space can be uniformly contracted or expanded using c (see Figure 5C). c is largely treated
as an arbitrarily variable parameter (Wills & Pothos, 2012), although psychologically it is intended to
represent cognitive discriminability or memorability of stimuli, so if information about this could be derived
independently for a set of stimuli then it would constrain model fitting somewhat (minimally, c would need
to be a non-decreasing function of discriminability/memorability). In related models, application to amnesic
data takes this form (e.g. Nosofsky & Zaki, 1998).

In Equation 1, αi represents dimensional attention on dimension i. Dimensional attention acts as a
multiplier to distance, stretching psychological space uniformly across one axis (see Figure 5B). The model

A. B. C. D.

distance

sim
ilarity

1

2

3

1

2

3

Figure 4: A. Representing the similarity structure of stimuli 1, 2, and 3 in a two-dimensional geometric space; in this example,
the dimensions of this space are readily interpretable as size and angle. B. Euclidean distance (distance2 = x2 + y2). C.
City-block distance (distance = x+ y). D. An exponential decay relationship between similarity and distance in psychological
space. Reproduced from “On the Adequacy of Current Empirical Evaluations of Formal Models of Categorization” by A.J.
Wills & E.M. Pothos, 2012, Psychological Bulletin, 138, 102–125. Copyright 2012 by American Psychological Association.

11

is typically initialised with equal attention to all dimensions, conventionally summing to unity, e.g. α =(
0.5 0.5

)
.

The activation process represented by Equation 1 results in a vector of radial-basis node activations, e.g.
ah =

(
0.4 0.8 0.4 0.8

)
. Radial-basis node activation propagates forward to a set of output (category)

nodes, which then have activation ao. There is one output node for each category, and each radial-basis
node has one variable weight connection to each output node. The weight-state of the model is thus a matrix
of the form:

w =

(
0 0 0 0
0 0 0 0

)
which has k rows (one for each ouput node) and j columns (one for each hidden node). Activation of

the output nodes is calculated with the standard connectionist equation

aok =
∑
j

wkja
h
j (2)

The forward propagation of activation ends with a standard exponential ratio rule to convert activation
to response probability

P (K) =
exp(φaoK)∑
k

exp(φok)
(3)

where φ is a non-negative response-scaling parameter. Low values of φ lead to approximately probability-
matching behavior (category selection probability is proportional to the ratio of output node activations).
High values of φ lead to approximately winner-take-all behavior (the category with the highest activation is
always selected). We note in passing that this exponential ratio rule is probably a poor model of categorical
decisions (Wills et al., 2000).

A. B. C.

Figure 5: A. Geometric representation of two categories, each of four stimuli (category membership denoted by color of dot).
B. Stretching along the x axis and compression along the y axis, thereby increasing within-category similarity and decreasing
between-category similarity. C. Overall expansion of psychological similarity space. Reproduced from “On the Adequacy of
Current Empirical Evaluations of Formal Models of Categorization” by A.J. Wills & E.M. Pothos, 2012, Psychological Bulletin,
138, 102–125. Copyright 2012 by American Psychological Association.

In ALCOVE, learning is driven by “teacher” (t) values. The presence of a category label is represented
by a teacher signal of 1; absence of a category label is typically represented by -1. The teacher is typically
considered to be “humble”. This means that if the output activation is more extreme than the +1/-1
teaching value, then the ouput activation is used as the teaching signal.

Learning of connection weights from radial-basis nodes to output nodes uses a standard summed-error
term:10

∆wkj = λw(tk − aok)ahj (4)

where λw is the associative learning-rate parameter, which can range from 0 to 1. This equation acts to
change connection weights in the direction that most rapidly reduces error.

10See Le Pelley (2004) for a discussion of summed- and separate- error term equations.

12

Attentional weights are also learned. This is achieved by the backpropagation of error (Rumelhart et al.,
1986; Werbos, 1974) to the radial-basis nodes in the standard manner:

bj = ahj
∑
k

(tk − aok)wkj (5)

This back-propagated error is then used to change the attentional weight for each dimension:

∆αi = −λα
∑
j

bjc|hji − xi| (6)

where λα is the attention learning-rate parameter, which again can range from zero to one. Implementa-
tions of ALCOVE constrain attentional weights to be non-negative. ALCOVE’s attentional learning system
acts to stretch and squash psychological stimulus space (Figure 5B) in the directions that most rapidly
reduce error.

4.1.2. Implementation of ALCOVE

The function slpALCOVE in the catlearn package implements ALCOVE as a stateful list processor.11

In this section, we explain how slpALCOVE works and, by so doing, also introduce the more general concept
of a stateful list processor—a structure that is well suited to many formal models of cognitive processes.

As with all R commands, the ? query returns help documentation for slpALCOVE (type ?slpALCOVE

to see it). Although complete, such documentation is typically concise rather than tutorial in nature.
Where possible, one should cite, within the help documentation, another tutorial publication. In the case
of slpALCOVE, the current article serves that purpose.

out <- slpALCOVE(st,tr)

ctrl cond block trial x1 x2 t1 t2 m1 m2
 1 1 1 1 0.8 0.4 -1 1 0 0
 0 1 1 2 0.4 0.8 1 -1 0 0
 .
 2 1 9 1 0.3 0.9 1 -1 0 0
 .

w = 0.1 .7 0.1 -.8
 0.1 -.7 0.1 .8

 alpha = (.8 .2)

p1 p2
.5 .5
.6 .4
.
.9 .1
.

()

 c = 2.3
 phi = 4.4
 lw = 0.2
 la = 0.1
 r = 1
 q = 1

h = .4 .8 .8 .4
 .4 .4 .8 .8

w = 0 0 0 0
 0 0 0 0

 alpha = (.5 .5)

 colskip = 4

()
()

tr st

out

catlearn: slpALCOVE

Figure 6: ALCOVE implemented as a stateful list processor in catlearn. Image author: Andy J. Wills. CC BY 4.0.

Figure 6 provides an illustration of the basic operating principles of the slpALCOVE stateful list processor.
The slpALCOVE function takes two primary inputs from the user: st and tr. Input st (“state”) is a list
containing the model parameters and the model’s initial state. For slpALCOVE, the parameters are c, r, q,
phi (φ), lw (λw), la (λα), and h. These parameters were defined above. List st also contains the model’s
initial state: w contains the initial connection weights, and alpha (α) contains the initial attentional weights.
These model states were defined above. The only other entry in st is colskip, which is an instruction to the
model implementation to ignore the first N columns in the training matrix.

11The slp in slpAlCOVE stands for Stateful List Processor

13

Object tr (“training”) is a matrix, where each row is one trial that is presented to the network. The
nature of a list-processor architecture is that the model processes all of these trials, and in the order they
are presented. The ordering of trials (e.g. through randomization) is undertaken by other functions that
generate tr, not by the list processor.

The first column of tr, ctrl (“control”), is normally zero, but can be set to other values to change the
mode of operation of the model mid-list. The options currently implemented in slpALCOVE are: 1 = reset
the model to its initial state, 2 = freeze learning on the current trial. The latter option allows no-feedback
test phases to be implemented in the standard way (i.e. by running the model with learning rates set to
zero). The former option allows the list processor to run the same model with the same parameters on
multiple runs of the experiment. This can be useful for averaging out order effects.

After ctrl, there are a variable number of optional columns that can contain any numerical information
the user wishes. Typically, these will be used to contain information such as experimental condition, block,
and trial. These columns are ignored by the list processor, it just needs to be told how many columns there
are to ignore, using the colskip parameter; colskip should be set to equal the number of optional columns,
plus one. Setting colskip incorrectly can lead to unpredictable behavior.

After these optional columns, the next set of columns contain the input representation, x, and then
the teaching signals, t, both of which were defined above. The final set of columns, m, should in most
circumstances be set to zero. Setting an m column to 1 indicates that, on that trial, that stimulus dimension
was not presented. This is useful in some cases where stimuli have multiple components, not all of which
are presented on every trial.

In addition to st and tr, the slpALCOVE function takes a number of other optional input arguments.
These set the operating mode for the model. Most models have a number of different variants, and ALCOVE
is no exception. If these options are not set (as in the example in Figure 6), slpALCOVE runs the version of
ALCOVE specified in the previous section. For the sake of brevity, the alternative options are not discussed
here, but are documented in ?slpALCOVE.

So, slpALCOVE takes tr and st as input. The simulation is run by creating tr and st, and then entering
the command slpALCOVE(st,tr). A concrete example follows later in this article. When the simulation
completes it returns a list, as illustrated in Figure 6. The list has three components: p, w, and alpha.
Component p is a matrix that has one column for each category unit of the model, and one row for each
trial of the simulation. The numbers in the matrix are the predicted probability of each category response
on each trial. Matrix p can easily be recombined with the training matrix, tr, for easier interpretation of
the model’s predictions.12 This combined matrix can then be analyzed using the same techniques as used
to analyze participant data in R (e.g. through the use of the aggregate command).

The other two parts of the output list are w and alpha, which give the values of the connection and
attentional weights at the end of the simulation. This information can be used to explore how the model
has learned the category structure with which it was presented.13 The returning of final w and alpha is the
property of slpALCOVE that leads us to describe it as a stateful list processor. In other words, it returns
not only the model’s predictions but also its (final) state. The stateful property of the implementation is
important because it avoids an otherwise serious limitation of the list-processor architecture. Specifically,
in non-stateful list processors, the input to a model cannot be made contingent on its previous output.

In category learning, the most common example in which input needs to be contingent on output is in
training to criterion. In modeling training to criterion, one might run the model until the probability of a
correct response exceeds some threshold (e.g. 0.99). A list processor cannot do this because the number of
training items has to be specified from the outset (it’s the number of rows in the tr matrix). A stateful list
processor can handle training to criterion because it returns its final state. For example, to model training
to criterion where the criterion is checked once per block of trials, one presents a single block of trials to
slpALCOVE, and checks whether the returned probabilities exceed the criterion. If they do not, one sets the
initial state of the model (w, alpha) to the values returned by slpALCOVE, and runs another block of trials.

12out <- slpALCOVE(st, tr); prob <- out$p; out2 <- cbind(tr,prob)
13For more detailed exploration, the xtdo option can be used to output the model’s state on every trial, see ?slpALCOVE.

14

Thus, the model can “pick up where it left off” because it can be returned to the state it was in at the end
of the last block.

4.2. proto-ALCOVE model implementation

Although ALCOVE is typically considered as an exemplar-like model, it is also possible to use it as
a prototype model (e.g. Johansen & Palmeri, 2002) The change is straightforward, one simply uses the
category prototypes as the locations for the radial-basis units. Specifically, each category unit is connected
to exactly one radial-basis unit, with that radial-basis unit located at the average position of the category
examples in psychological stimulus space. Thus, slpALCOVE can be used as a model implementation for both
ALCOVE and proto-ALCOVE; all that differs is the contents of the h matrix passed to the model.

4.3. Derivation of a CIRP

In this section, we provide an example of a segment of a review article that uses catlearn as an archival
source. The review segment does not contain the introductory information typically expected of a full
review article, nor does it explore future avenues for research. A full review article would of course contain
such information, which is why we describe what follows merely as a “segment”. Although the information
provided is correct and complete to the best of our knowledge, the primary purpose for showing it here is to
provide a concrete context for our later examples of how to use the catlearn package. Note that catlearn
permits very concise referencing of archival material; this is important because space in high-profile journals
is scarce. Indeed, in this review segment, all archival information is provided in the caption of Figure 7. In
the sections following this review segment, we describe the registration of the CIRP, the input representation,
and the simulations, within the catlearn package.

4.3.1. Category size

Category size is the number of examples of a category that have been presented to the participant. The
category-size effect (e.g. Homa et al., 1973, 2008) is the phenomenon that, as category size increases, the
accuracy of generalization to new members of that category also increases. The category-size effect has
been previously argued to support prototype theory (e.g. Homa et al., 1973), while others have argued that
exemplar theories can also accommodate this effect (Shin & Nosofsky, 1992).

Evidence for the category-size effect comes from two different, independently-replicated, procedures. In
the first, within-subjects, procedure (e.g. Breen & Schvaneveldt, 1986; Homa et al., 1973; Shin & Nosofsky,
1992) participants learn to categorize members of categories of different sizes. For example, category A
might have 3 members, category B 6 members, and category C 9 members. In a subsequent test phase,
participants are asked to classify novel members of these categories. The central result is that test-phase
performance is better for novel members of the larger categories.

One potential shortcoming of the within-subjects procedure is that this observed accuracy-size relation-
ship could be due to a bias to classify new items into the category that was most likely to occur during
training. Some within-subject demonstrations of the category-size effect provide evidence against a response
bias explanation (e.g. Homa & Chambliss, 1975), but this aspect of the within-subjects procedure has not
been independently replicated.

The second, between-subjects, procedure provides an alternative solution to the response-bias issue (e.g.
DiNardo & Toppino, 1984; Homa et al., 1987; Shin & Nosofsky, 1992). In this procedure some participants
are trained on small categories, while others are trained on larger categories. For example, one group might
experience two categories, each of size 3, while another group experiences two categories, each of size 10.
In a subsequent test phase, the size-10 group is more accurate in their classification of novel stimuli. Both
prototype and exemplar theories can accommodate this ordinal pattern, as illustrated in Figure 7. Shin
& Nosofsky (1992) was registered in catlearn as a CIRP due to the availability of a multi-dimensional
scaling solution in that paper (data that is useful in the generation of input representations for some formal
models).

15

old proto new

P
(c

or
re

ct
)

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

3 10 3 10 3 10

●

●
●

●

●

●

Figure 7: Effects of category size on response accuracy in category learning. Gray bars are the size-3 condition, white bars
are the size-10 condition. The pairs of bars show the effect of category size on classification accuracy at test on: (a) the
items seen during training (“old”), (b) the prototypes from which those training items were generated (“proto”), and (c)
novel stimuli generated from the same prototypes (“new”). Circles are proto-ALCOVE’s predictions; triangles are ALCOVE’s
predictions. Empirical data are from Shin & Nosofsky (1992, Table 10), where “old” is the mean across all old stimuli, etc. In
this experiment, participants classified nine-vertex polygon stimuli. catlearn archive IDs: 1, 2. Image author: Andy J. Wills.
CC BY 4.0.

4.4. CIRP registration

The CIRP derived in the above review segment has been archived in the catlearn package as shin92.
Typing

data(shin92)

will load the relevant empirical results, which can be viewed in the normal ways (e.g. through the
RStudio interface). Typing

?shin92

brings up the CIRP registration document, which has the following principal sections: Description,
Format, Details, Author, Source, and References. Description contains a brief (one-paragraph) summary of
the CIRP. Format describes the content of each of the columns of the dataset. Details briefly summarizes
how the CIRP was derived, and provides a reference for a more detailed derivation (in this case, the current
article). Details also briefly summarizes the structure of the experiment, although for fuller details the
reader is expected to read the original journal article, Shin & Nosofsky (1992) in this case. Source gives the
reference from which the data were drawn, while References contains any other references used in this CIRP
registration document. Author provides the name and email address of the person registering the CIRP in
catlearn. Sometimes, as in the present case, the registrant will be unconnected with the authors of the
original experiment.

4.5. Input representation archive

The catlearn package also contains a command that generates input representations for the shin92

CIRP. Typing

shin92train()

16

produces its default output, which is eight blocks of training and three blocks of test for the size-3 con-
dition of the CIRP. This is the same number of blocks as in the experiment. Trial order is randomized. The
output is in a format directly compatible with slpALCOVE, and uses multidimensional scaling co-ordinates
from a similarity-scaling study reported in the same paper as the CIRP. Typing

?shin92train

calls up a help file that concisely documents the function. The format is similar to that of the CIRP
registration document: Description, Usage, Arguments, Details, Author, and References. Description is a
single-paragraph summary of the command’s purpose. Usage shows the arguments taken by the command,
and their default values. For example, one part of the Usage entry is condition = "equal3". This states
that one argument of the command is condition, which has a default value of equal3. As described in the
Arguments section, the condition argument sets which experimental condition to simulate. The Arguments
section concisely describes every argument specified in Usage. Details is used to document the meaning of
the columns of the matrix produced by the command. Author and References serve the same functions as
in the CIRP registration document.

4.6. Simulation archive

The catlearn package contains the two simulation archives used to generate Figure 7: shin92exalcove
and shin92protoalcove. Here, we’ll only look at shin92exalcove, but they both operate in a similar way.
Simulation archives are intended to run automatically without any interaction from the user. Hence, typing

out <- shin92exalcove()

will run the simulation and store the results. It may take a second or two to run, as the simulation
involves 100 simulated participants per condition, which are averaged to produce the output. Type

out

to display the results. The output of simulation archives produce predictions in the same format and order
as the CIRP that is the subject of the simulation. Thus, assuming you have the CIRP data loaded—type
data(shin92)— it is a simple matter compare the predictions with the observations. For example,

plot(shin92$c2acc,out$c2p); abline(0,1)

will produce a standard scatterplot of predictions against observations. Quantitative measures of fit can
also be easily obtained. For example,

cor(shin92$c2acc,out$c2p)^2

reports r2 for the fit (0.97), and

ssecl(shin92$c2acc,out$c2p)

reports the sum of squared errors (0.27). Typing

?shin92exalcove

produces a help file, with the normal sections: Description, Usage, Arguments, Details, Author, Refer-
ences. The meaning of these sections should be clear from the description of corresponding help files for
CIRPs and input representations.

Simulation archive functions always have default model parameters, but it is easy to run the simulation
with different parameters. For example, try

17

out2 <- shin92exalcove(params = c(0.1,0.6,0.1,0.8))

In this simulation, the c parameter has been much reduced, making the stimuli more confusable. Typing

cor(shin92$c2acc,out2$c2p)^2

shows that the correlation between model and data is now also reduced (0.86). The fact that these
parameters are available to the user makes it possible to use a simulation archive function as the subject of
a model-fitting procedure, such as non-linear optimization using the optim command, or other interesting
approaches such as parameter space partitioning (Pitt et al., 2006). However, such procedures are outside
the scope of the current paper.

The open-source nature of catlearn means that the precise decisions made by the researcher archiving
the simulation are available for inspection. The code for the shin92exalcove simulation is quite short (26
statements) and can been seen by typing shin92exalcove.14 The brevity of this simulation archive is due
both to the compactness of R, and the fact that the CIRP, input representations, and model implementations
are contained within their own documented functions.

4.7. Ordinal adequacy test

Wills & Pothos (2012) proposed the relative adequacy evaluation of multiple formal models against a
broad range of known phenomena. Such a comparison is rendered more straightforward by employing the
principle of ordinal adequacy (i.e. does the model reproduce the ordinal effects defined by the CIRP?).
One of the chief advantages of ordinal adequacy over more quantitative measures is that it provides a clear,
binary, answer to the question of whether model X accommodates phenomenon Y. When the phenomenon
is defined ordinally, the model either can, or cannot accommodate it. This contrasts with more continuous
measures of it, such as r2, where it is not possible to say what specific level of r2 represents a meaningful
failure to accommodate a phenomenon, or whether a model with an r2 of .98 is in any meaningful sense
providing a more adequate account than a model with an r2 of .95 (or whether it is, for example, better at
fitting noise).

Wills & Pothos (2012) discuss this point at length, and we will not cover the detail of the argument
again here. Rather, the current article is concerned with the practical issue of how one defines ordinal
adequacy. In a rich data set such as shin92, there are many ordinal relationships; which of these should a
model be evaluated against? Fortunately, the CIRP documentation provides an answer to this question—the
independently replicated result is that performance on the novel stimuli from the 10-item category is more
accurate than performance on the novel stimuli from the 3-item category. Such a test for ordinal adequacy
can be defined algorithmically, and hence tested automatically. This is what OAT (Ordinal Adequacy Test)
commands within catlearn do.

For the shin92 CIRP, the OAT is provided by shin92oat, with the usual documentation available via
?shin92oat. OAT work in the same way as other evaluations of model fit. For example, recall that in an
earlier section we calculated the r2 between the model’s output and the CIRP. OAT work in the same way,
except that they already include within them a definition of the critical ordinal properties of the empirical
data set, and hence only take the model output as an argument. As previoulsy specified, the model output
must have the same format and be in the same order as the CIRP data set. Thus, assuming the output of
one’s chosen model is contained in the variable out (see earlier example), the command

shin92oat(out)

returns TRUE indicating the model, with the default parameters, passes the ordinal adequacy test. Refer-
ring to our previous example, we can see that making the stimuli more confusable leads to the model failing
the ordinal adequacy test

shin92oat(out2)

14Viewing the source code like this removes comments; the comments can be viewed on R-Forge.

18

Hence, the model’s ordinal adequacy is parameter dependent.
OAT functions also provide a convenient place to locate the calculation of summary results, and the

xtdo (eXTenDed Output) parameter provides a standard way of doing this. For example, the output of
simulation shin92exalcove runs to 46 lines, which does not aid visualization of the main patterns. The
review segment presented earlier in the article summarized the model’s output with six figures (see Figure
7). The calculation of these figures can be reproduced thus

shin92oat(out,xtdo=TRUE)

Finally, note that the central conclusion of the review segment—that both ALCOVE and proto-ALCOVE
accommodate the observed results—can now be reproduced by two, very brief commands that run in a few
seconds:

shin92oat(shin92exalcove()); shin92oat(shin92protoalcove())

4.8. The Grid

The Grid (Figure 2) is included as stored data within the catlearn package. It is loaded by the command

data(thegrid)

and can be viewed in the normal way. The documentation can be read by typing ?thegrid. The columns
of thegrid record, in turn, a unique ID number for the simulation, the CIRP simulated (e.g. shin92), a
descriptive name for the model tested (e.g. “protoALCOVE”), the result of the ordinal adequacy test
(1,0), the command for the simulation archive (e.g. shin92exalcove) and the command for the OAT (e.g.
shin92oat). The structure of the catlearn package means that the results of these simulations can be
automatically verified by running the listed simulation command through the listed OAT command. This
provides a mechanism by which the accuracy of the Grid can be automatically maintained; these checks will
be performed prior to each stable release of catlearn.

Given we have been visualizing The Grid as a matrix throughout the article, it may be slightly surprising
to see that it is represented as a list. There are two reasons for this. First, large matrices quickly become
unweildy. Second, and more subsantively, a list permits more than one entry per cell. This is likely to
become important in future as, for example, increasing data quality leads to more detailed OAT or as more
ambitious multi-CIRP simulations are run to minimize the problem of arbitrarily variable parameters.15

4.9. Other examples

We only had space to discuss one CIRP, one model, and one simulation archive in this article, but the
current content of catlearn is more extensive than this. As an exercise, use thegrid and the help functions
within catlearn to investigate the rest of the content.

5. Overview and conclusion

In this section we summarize how the concepts and framework of catlearn covered in the previous
sections work in practice. The perspective is slightly different to that taken in the Examples section. In
that section, we focused on the user’s perspective—how to use content already available in catlearn. In
the current section, we briefly focus on how to achieve specific goals through contributing new content to
the catlearn project; for further details, see Catlearn Research Group (2016). We then finish with some
conclusions and speculations.

15The problem of arbitrarily variable parameters is a serious one, but a discussion is beyond the scope of the current article;
see Wills & Pothos (2012)

19

5.1. Contributing to catlearn

Here are the primary ways of contributing content to catlearn:

I’ve conducted an independent replication. If this phenomenon is not yet documented in catlearn, write a
CIRP for it (see Sections 2.3, 4.4). Cite the unique CIRP ID you have created (e.g. jones2017) in your
article, and use the mailing list (Catlearn Research Group, 2016) to encourage others to simulate it. If you
have conducted a replication of a CIRP already in catlearn, update the CIRP documentation to include a
citation of your manuscript, and cite the existing CIRP ID in your manuscript.

I’m writing a review article. If you have identified one or more Canonical Independently Replicated Phe-
nomena (CIRP), register or update CIRP entries within catlearn (see above).

I’m writing a modeling paper. Use catlearn as an archive for your simulations. More specifically: (1) If
your paper identifies one or more CIRP, register or update them within catlearn (see above). (2) Use
the models already within catlearn to run your simulations (if the model does not exist in catlearn, see
below). (3) Archive each simulation of a CIRP in catlearn (see Section 2.5, 4.6). (4) Archive each input
representation (see Section 2.5.1, 4.5). (5) Provide OAT functions to automatically test each model for
ordinal adequacy against a CIRP registered within catlearn (see Section 4.7). (6) Register each simulation
in the Grid (see Section 2.1, 4.8). Cite the unique simulation IDs from the Grid in your article.

I’m developing a formal model. Make your model available within catlearn. When you publish your model,
cite your catlearn model ID (e.g. “slpNewModel”) in your manuscript. Bear in mind that models within
catlearn are implemented as stateful list processors (see Sections 3.2, 4.1.2).

I want to use an existing model not included in catlearn. Implement the model within catlearn yourself
(see above), or encourage the original authors to do so, or use the mailing list (Catlearn Research Group,
2016) to request that someone else in the catlearn project does the development work.

5.2. Conclusion

We have argued that making efficient progress in the formal modeling of psychological processes requires
a technological mechanism that supports distributed collaboration. Indeed, we believe the scope of the task
before the formal modeling community is so large that the choice is between collaboration or failure. We
have provided a viable technological mechanism for distributed collaboration in the catlearn package, and
we have illustrated its use through an example from the modeling of category learning. The catlearn

package is free, open source, and publicly available.
We’re aware that the approach we are proposing might be seen as controversial. Psychologists, one might

argue, don’t work together in this way. To the extent this is true, we hope that, by taking on the initial
work ourselves, we can catalyze a change in our culture. The success of the kind of approach we advocate
has clear precedents in other fields. Perhaps the most striking example is the development of Linux.

The development of Linux started with the GNU project (Stallman, 1983). Later, Linus Torvalds started
to write a kernel (Torvalds, 1991), which ultimately meant that Linux could become a free-standing computer
operating system. Linux is now the most used operating system in the world—it runs all Android smart
phones, it’s behind around half of all internet servers, and dominates the embedded systems market. The
development of Linux happened through the distributed collaboration of thousands of programmers, taking
the freely available code, improving it, and sharing their improvements back to the community. The Linux
kernel, from around 10,000 lines of code in 1991, has reached, as of June 2015, almost 20 million lines of
code, contributed by around 14,000 programmers (Wikipedia, 2016a).

Linux demonstrates that competition and collaboration need not be mutually exclusive—many of the
programmers contributing to Linux are employed by commercial organizations, who presumably feel that
supporting Linux is to their competitive advantage. If we can convince psychologists that distributed
collaboration is the best way to overcome the limited progress of the last four decades, perhaps formal
theories of cognitive processes will see an explosion of development over next 30 years comparable to the
explosion seen by Linux in the last 30. Let’s start working together.

20

Acknowledgments

The authors thank Eric S. Raymond and Richard Stallman for their inspirational work on the philosophy
and practice of free and open source software.

References

Anderson, C., Bahnik, S., Barnett-Cowan, M., Bosco, F., Chandler, J., . . . , & Zuni, K. (2016). Response to comment on
“Estimating the reproducibility of psychological science”. Science, 351 , 1037.3.

Ashby, F. G., Alfonso-Reese, L., Turken, A., & Waldron, E. (1998). A neuropsychological theory of multiple systems in category
learning. Psychological Review , 105 , 442–481.

Ashby, F. G., & Maddox, W. T. (2011). Human category learning 2.0. Annals of the New York Academy of Sciences, 1224 ,
147–61.

Blair, M. R., & Homa, D. (2003). As easy to memorize as they are to classify: The 5–4 categories and the category advantage.
Memory and Cognition, 31 , 1293–1301.

Breen, N., & Schvaneveldt, R. W. (1986). Classification of empirically derived prototypes as a function of category experience.
Memory and Cognition, 14 , 313–320.

Catlearn Research Group (2016). The catlearn project. http://catlearn.r-forge.r-project.org/.
Cheney, E. (1966). Introduction to approximation theory. New York: McGraw-Hill.
Collins-Sussman, B., Fitzpatrick, B. W., & Pilato, C. M. (2011). Version control with subversion. http://svnbook.red-bean.

com/. Accessed: 2016-06-15.
Conaway, N. (2016). MATLAB scripts to run DIVA simulations. https://github.com/nolanbconaway/DIVA.
DiNardo, M. J., & Toppino, T. C. (1984). Formation of ill-defined concepts as a function of category size and category exposure.

Bulletin of the Psychonomic Society, 22 , 317–320.
Eaton, J. (2014). GNU Octave. https://www.gnu.org/software/octave/.
Eddelbuettel, D. (2013). Seamless R and C++ integration with Rcpp. New York: Springer.
Eddelbuettel, D., & Francois, R. (2011). Rcpp: Seamless R and C++ integration. Journal of Statistical Software, 40 , 1–18.
Edmunds, C. E. R., & Wills, A. J. (2016). Modeling category learning using a dual-system approach: A simulation of Shepard,

Hovland and Jenkins (1961) by COVIS. In Proceedings of the 38th Annual Conference of the Cognitive Science Society.
Cognitive Science Society.

Ennis, D. M. (1988). Confusable and discriminable stimuli: Comment on Nosofsky (1986) and Shepard (1986). Journal of
Experimental Psychology: General , 117 , 408–411.

Erickson, M. A., & Kruschke, J. K. (1998). Rules and exemplars in category learning. Journal of Experimental Psychology:
General , 127 , 107–140.

Free Software Foundation (2007). GNU general public license. https://www.gnu.org/licenses/gpl.html. Accessed: 2016-06-
15.

Garner, W. R. (1976). Interaction of stimulus dimensions in concept and choice processes. Cognitive Psychology, 123 , 98–123.
Gaujoux, R. (2015). RcppOctave: Seamless Interface to Octave – And Matlab. https://cran.r-project.org/web/packages/

RcppOctave/index.html.
Gilbert, D. T., King, G., Pettigrew, S., & Wilson, T. D. (2016). Comment on “Estimating the reproducibility of psychological

science”. Science, 351 , 1037.2.
Ginsparg, P. (1999). arXiv.org. http://arxiv.org/. Accessed: 2016-06-15.
Gureckis, T. M. (2014). sustain python. https://github.com/NYUCCL/sustain_python. Accessed: 2016-06-15.
Homa, D., Burruel, L., & Field, D. (1987). The changing composition of abstracted categories under manipulatiosns of decisional

change, choice difficulty, and category size. Journal of Experimental Psychology: Learning, Memory and Cognition, 13 ,
401–412.

Homa, D., & Chambliss, D. (1975). The relative contributions of common and distinctive information on the abstraction from
ill-defined categories. Journal of Experimental Psychology: Human Learning and Memory, 104 , 351–359.

Homa, D., Cross, J., Cornell, D., Goldman, D., & Shwartz, S. (1973). Prototype abstraction and classification of new instances
as a function of number of instances defining the prototype. Journal of Experimental Psychology, 101 , 116–122.

Homa, D., Proulx, M. J., & Blair, M. R. (2008). The modulating influence of category size on the classification of exception
patterns. Quarterly Journal of Experimental Psychology, 61 , 425–443.

IBM (2016). SPSS v. 24. http://www.ibm.com/analytics/us/en/technology/spss/.
Johansen, M. K., & Palmeri, T. J. (2002). Are there representational shifts during category learning? Cognitive Psychology,

45 , 482–553.
Kruschke, J. K. (1991). ALCOVE.c. www.indiana.edu/~kruschke/articles/ALCOVE.c. Accessed: 2016-06-15.
Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category learning. Psychological Review , 99 ,

22–44.
Kurtz, K. J. (2007). The divergent autoencoder (DIVA) model of category learning. Psychonomic Bulletin and Review , 14 ,

560–576.
Le Pelley, M. E. (2004). The role of associative history in models of associative learning: A selective review and a hybrid model.

Quarterly Journal of Experimental Psychology, 57B , 193–243.
Ledgerwood, A. (2014). Introduction to the special section on advancing our methods and practices. Perspectives on Psycho-

logical Science, 9 , 275–277.

21

Love, B. C., Medin, D. L., & Gureckis, T. M. (2004). SUSTAIN: a network model of category learning. Psychological Review ,
111 , 309–332.

Makel, M., Plucker, J., & Hegarty, B. (2012). Replications in psychology research: How often do they really occur? Perspectives
on Psychological Science, 7 , 537–542.

Markoff, J. (1989). Eight desktop computers introduced by Digital. http://www.nytimes.com/1989/01/11/business/

company-news-8-desktop-computers-introduced-by-digital.html. Accessed: 2016-06-15.
MathWorks (2016). MATLAB R2016a. http://mathworks.com/products/matlab. Accessed: 2016-06-15.
Medin, D. L. (2011). Comments on models and categorization theories: the razor’s edge. In E. M. Pothos, & A. J. Wills (Eds.),

Formal Approaches in Categorization (pp. 325–331). Cambridge, UK: Cambridge University Press.
Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review , 85 , 207–238.
Microsoft (2008). Microsoft product lifecycle: Visual Basic 6. https://support.microsoft.com/en-us/lifecycle/search.
Minda, J. P., & Smith, J. D. (2002). Comparing prototype-based and exemplar-based accounts of category learning and

attentional allocation. Journal of Experimental Psychology: Learning, Memory and Cognition, 28 , 275–292.
Morey, R. D., Chambers, C. D., Etchells, P. J., Harris, C., Hoekstra, R., Lakens, D., Lewandowsky, S., Morey, C. C., Newman,

D. P., Schonbrodt, F. D., Vanpaemel, W., Wagenmakers, E.-J., & Zwaan, R. A. (2016). The peer reviewers’ openness
initiative: incentivizing open research practices through peer review. Royal Society Open Science, 3 , 150547.

Nosofsky, R. M. (1984). Choice, similarity, and the context theory of classification. Journal of Experimental Psychology:
Learning, Memory and Cognition, 10 , 104–114.

Nosofsky, R. M. (1987). Attention and learning processes in the identification and categorization of integral stimuli. Journal
of Experimental Psychology: Learning, Memory and Cognition, 13 , 87–108.

Nosofsky, R. M. (2000). Exemplar representation without generalization? Comment on Smith and Minda’s (2000) Thirty
categorization results in search of a model. Journal of Experimental Psychology: Learning, Memory and Cognition, 26 ,
1735–1743.

Nosofsky, R. M., Kruschke, J. K., & McKinley, S. C. (1992). Combining exemplar-based category representations and connec-
tionist learning rules. Journal of Experimental Psychology: Learning, Memory and Cognition, 18 , 211–233.

Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994). Rule-plus-exception model of classification learning. Psychological
Review , 101 , 53–79.

Nosofsky, R. M., & Zaki, S. R. (1998). Dissociation between categorization and recognition in amnesic and normal individuals:
An exemplar-based interpretation. Psychological Science, 9 , 247–255.

O’Connell, G., Myers, C., Hopkins, R., McLaren, R. P., Gluck, M. A., & Wills, A. J. (2016). Amnesic patients show superior
generalization in category learning. Neuropsychology, in press.

Open Science Collaboration (2015). Estimating the reproducibility of psychological science. Science, 349 , aac4716.
Oren, T. (2004). A eulogy for Hypercard. http://due-diligence.typepad.com/blog/2004/03/a_eulogy_for_hy.html.
Pashler, H., & Harris, C. (2012). Is the replicability crisis overblown? Three arguments examined. Perspectives on Psychological

Science, 7 , 531–536.
Pashler, H., & Wagenmakers, E.-J. (2012). Editors’ introduction to the special section on replicability in psychological science:

A crisis of confidence? Perspectives on Psychological Science, 7 , 528–530.
Pitt, M. A., Kim, W., Navarro, D. J., & Myung, J. I. (2006). Global model analysis by parameter space partitioning.

Psychological Review , 113 , 57–83.
Piwowar, H. A., Day, R. S., & Fridsma, D. B. (2007). Sharing detailed research data is associated with increased citation rate.

PLOS One, 2 , e308.
R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing

Vienna, Austria. URL: https://www.R-project.org/.
R Foundation (2016). CRAN: The Comprehensive R Archive Network. https://cran.r-project.org/.
Ramel, D. (2016). Microsoft doesn’t budge on classic Visual Basic. https://adtmag.com/articles/2016/05/24/

microsoft-visual-basic.aspx. Accessed: 2016-06-15.
Reed, S. K. (1972). Pattern recognition and categorization. Cognitive Psychology, 3 , 382–407.
Rehder, B., & Hoffman, A. B. (2005). Thirty-something categorization results explained: Selective attention, eyetracking, and

models of category learning. Journal of Experimental Psychology: Learning, Memory and Cognition, 31 , 811–829.
Rehder, B., & Murphy, G. (2003). A knowledge-resonance (KRES) model of category learning. Psychonomic Bulletin and

Review , 10 , 759–784.
Rumelhart, D. E., Hinton, G., & Williams, R. (1986). Learning internal representations by error propagation. In D. E.

Rumelhart, & J. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition, vol. 1
(pp. 318–362). Cambridge, MA: MIT Press.

Shepard, R. N. (1957). Stimulus and response generalization: a stochastic model relating generalization to distance in psycho-
logical space. Psychometrika, 22 , 325–345.

Shepard, R. N. (1987). Toward a universal law of generalization for psychological science. Science, 237 , 1317–1323.
Shepard, R. N., Hovland, C. L., & Jenkins, H. M. (1961). Learning and memorization of classifications. Psychological

Monographs, 75 , Whole No. 517.
Shin, H. J., & Nosofsky, R. M. (1992). Similarity-scaling studies of dot-pattern classification and recognition. Journal of

Experimental Psychology: General , 121 , 278–304.
Smith, J. D., & Minda, J. P. (2000). Thirty categorization results in search of a model. Journal of Experimental Psychology:

Learning, Memory and Cognition, 24 , 1411–1436.
Stallman, R. M. (1983). https://groups.google.com/forum/#!msg/net.unix-wizards/8twfRPM79u0/1xlglzrWrU0J. Accessed:

2016-06-16.

22

Stallman, R. M. (2015). Free software, Free society: Selected essays of Richard M. Stallman. Boston, MA: Free Software
Foundation.

Stallman, R. M., & the GCC team (2016). GCC, the GNU compiler collection. https://gcc.gnu.org/index.html. Accessed:
2016-06-15.

Theußl, S., & Zeileis, A. (2009). Collaborative software development using R-Forge. The R Journal , 1 , 9–14.
Torvalds, L. (1991). https://groups.google.com/forum/#!topic/comp.os.minix/dlNtH7RRrGA[1-25].
U. Mass. (n.d.). SPSS legacy viewer for Windows. http://www.umass.edu/statdata/software/downloads/SPSSLegacy/. Ac-

cessed: 2016-06-15.
Werbos, P. J. (1974). Beyond regression: New tools for prediction and analysis in the behavioral sciences. Ph.D. thesis Harvard

University.
Wikipedia (2016a). Linux. https://en.wikipedia.org/wiki/Linux. Accessed: 2016-06-16.
Wikipedia (2016b). Ultrix. https://en.wikipedia.org/wiki/Ultrix. Accessed: 2016-06-15.
Williams, S. (2002). Free as in freedom – Richard Stallman’s crusade for free software. http://www.jus.uio.no/sisu/free_

as_in_freedom.richard_stallman_crusade_for_free_software.sam_williams/sisu_manifest.html.
Wills, A. J., & Pothos, E. M. (2012). On the adequacy of current empirical evaluations of formal models of categorization.

Psychological Bulletin, 138 , 102–125.
Wills, A. J., Reimers, S., Stewart, N., Suret, M. B., & McLaren, I. P. L. (2000). Tests of the ratio rule in categorization.

Quarterly Journal of Experimental Psychology, 53A, 983–1011.

23

