Variability in drift ice export from the Arctic Ocean to the North Icelandic Shelf over the last 8,000 years: a multi-proxy evaluation

Patricia Cabedo-Sanz, Simon T. Belt, Anne E Jennings, John T. Andrews, and Áslaug Geirsdóttir

(a) Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK

(b) INSTAAR, University of Colorado, Boulder, CO 80309, USA

(c) Department of Geological Sciences, University of Colorado, Boulder, CO, 80309, USA

(d) Department of Earth Sciences, University of Iceland, IS-101, Reykjavík, Iceland

* Author for correspondence

Professor Simon T Belt
Biogeochemistry Research Centre
Plymouth University
Drake Circus, Plymouth
PL4 8AA
UK

e-mail: sbelt@plymouth.ac.uk
Phone: +44 (0)1752 584959
FAX: +44 (0)1752 584709

Keywords: IP25; sea ice; proxy; Holocene; drift ice; North Icelandic Shelf
Abstract

North Iceland represents a climatically sensitive region, in part, due to its location at the confluence of southward flowing and drift ice-laden polar waters from the Arctic Ocean delivered by the East Greenland Current, and the relatively warm and saline Irminger Current, a northerly flowing branch of the North Atlantic Current. Despite its pivotal location, there is a paucity of high resolution and long-term sea ice records for the region, with some disparities in certain previous investigations. Here, the identification of the biomarker IP\textsubscript{25} as a reliable proxy for drift ice for North Iceland has been confirmed by measuring its abundance in surface sediments from the region and comparison of outcomes with documentary records of sea ice and other proxy data. By analysing IP\textsubscript{25} in a well-dated marine sediment core from the North Icelandic Shelf (NIS) (MD99-2269), we also provide a high resolution (ca. 25 yr) record of drift sea ice for the region and complement this with a lower resolution record (ca. 100 yr) obtained from a second core site, located further east (JR51-GC35). Statistical treatment of equi-spaced time series reveals strong linear correlations between IP\textsubscript{25} and a further drift ice proxy (quartz) in each core. Thus, linear regression analysis between both proxies gave correlation coefficients (R2) of 0.74 and 0.66 for MD99-2269 (25 yr) and JR51-GC35 (100 yr), respectively. Further, the individual proxies were well correlated between the two cores, with R=0.91 and 0.77 for IP\textsubscript{25} and quartz, respectively. The IP\textsubscript{25}-based sea ice record for MD99-2269, combined with other new biomarker and foraminifera data, and previously published proxy data for primary productivity and sea surface temperature, suggest that the paleoceanographic evolution for the NIS over the last 8 ka can be classified into three main intervals. The early mid Holocene (ca 8–6.2 cal ka BP) was characterized by relatively low or absent drift ice, low primary productivity and relatively high SSTs. During the mid-Holocene (ca 6.2–3.3 cal ka BP), drift ice increased concomitant with decreasing SSTs, although primary productivity was
somewhat enhanced during this interval. \(\text{IP}_{25} \) first reached its mean value for the entire record at ca 5 cal ka BP, before increasing, continuously, ca 4.3 cal ka BP, broadly in line with the onset of Neoglacialiation as seen in some other proxy records. Further increases in drift ice were evident during the late Holocene (ca 3.3 cal ka BP to present), culminating in maximum sea ice during the Little Ice Age. In addition, the \(\text{IP}_{25} \) record from MD99-2269 shows some positive regime shifts from the general trend, especially at ca 3.8, 2.7, 1.5, 0.7 and 0.4 cal ka BP, that have analogs in some other paleoceanographic reconstructions influenced by the East Greenland Current. The abrupt increases in \(\text{IP}_{25} \) at ca 1.5 and 0.7 cal ka BP are coincident with rapid cooling identified previously in an Icelandic lacustrine temperature record, suggesting significant coupling between the marine and terrestrial systems. The contribution of sea ice to the broader climate system is further evidenced through the identification of statistically significant periodicities (ca 1000 yr and ca 200–230 yr) in the drift ice proxy data that have counterparts in previous studies concerning atmospheric and oceanic variability and solar forcing mechanisms.
1 – Introduction

Sea ice plays a key role in determining the energy balance at high latitudes by influencing the exchange of heat, gases and moisture between the polar oceans and the atmosphere. By reflecting much of the incoming solar radiation, sea ice also insulates the cold polar atmosphere from the relatively warm ocean in winter. Changes in Arctic Ocean sea ice dimensions have received considerable attention in recent years, largely because of its recent and dramatic decline (e.g., Goosse et al., 2013; Schiermeier, 2012; Serreze et al., 2007). However, due to its strong positive feedback mechanism in controlling global climate, the role of sea ice through the geological record is also of considerable interest. For example, expanded sea ice has been suggested to play an important role in maintaining the unusual duration of mostly cold summers during the little ice age (LIA) (Lehner et al., 2013; Miller et al., 2012; Schleussner and Feulner, 2013), and greatly reduced sea ice is necessary to explain the warmth of the mid-Pliocene (Haywood and Valdes, 2004). However, since only a very few observational records of past sea ice exist (e.g. Bergthorsson, 1969; de la Mare, 1997; Divine and Dick, 2006; Ogilvie and Jónsdóttir, 2000), paleo sea ice reconstructions rely heavily on proxy-based methods, so the development and application of sea ice proxies have also received considerable attention in recent years (de Vernal et al., 2013a; Polyak et al., 2010). Some sea ice proxies have a biological origin and are typically based on species assemblages of diatoms, dinoflagellate cysts (dinocysts), ostracods and foraminifera (e.g., Justwan and Koç, 2008; Cronin et al., 2013; de Vernal et al., 2013b,c; Seidenkrantz, 2013) or the occurrence and distribution of marine mammal remains and driftwood from raised beaches (Dyke et al., 1996; Funder et al., 2011; Furze et al., 2014), while others rely on the identification of material entrained within the ice itself (i.e. ice-rafted debris (IRD)) and deposited in underlying marine sediments following ice melt (Andrews, 2009; Moros et al., 2006). Despite the range of sea ice proxies, however, there is as yet, no strong consensus on
the changing dimensions of Arctic Ocean sea ice over the past 8 ka, although there is growing
evidence for a strong regional dependence (de Vernal et al., 2013c).

In recent years, the analysis of the biomarker IP$_{25}$ (Belt et al., 2007), a C$_{25}$ highly branched
isoprenoid (HBI) lipid made by certain Arctic sea ice diatoms (Brown et al., 2014), has been
suggested to provide a more direct measure of past sea ice when detected in underlying
sediments (a recent review is provided by Belt and Müller, 2013). Significantly, IP$_{25}$ is stable
in sediments for millions of years (Knies et al., 2014) and has a stable isotopic composition
(δ^{13}C) that is highly characteristic of a sea ice origin (Belt et al., 2008). Sedimentary IP$_{25}$ is
generally interpreted as an indication of spring/early summer sea ice conditions due to its
formation by sea ice diatoms during the spring bloom (Brown et al., 2011; Belt et al., 2013).

To date, the main applications of IP$_{25}$ for Holocene sea ice reconstruction have been carried
out for regions such as the Barents Sea (Belt et al., 2015; Berben et al., 2014; Vare et al.,
2010), the Canadian Arctic Archipelago (Belt et al., 2010; Vare et al., 2009), Fram Strait
(Müller et al., 2009, 2012) and the Laptev Sea (Fahl and Stein, 2012). On the other hand,
relatively little attention has been given to the East Greenland shelf and North Iceland,
although a low resolution study conducted for Foster Bugt on the central East Greenland shelf
indicated relatively stable sea ice conditions for most of the Holocene apart from the last ca
1.4 cal ka BP (Müller et al., 2012; Perner et al., 2015). This paucity of research is somewhat
surprising given that the East Greenland shelf is a very sensitive area to changes in sea ice
and freshwater outflow from the Arctic Ocean (e.g. Jennings and Weiner, 1996), while the
East Greenland Current (EGC), which flows adjacent to the East Greenland shelf, is one of
the main sea ice and freshwater export pathways from the Arctic Ocean (Aagaard and
Coachman, 1968) towards the Denmark Strait region (i.e. South-East Greenland and North
Iceland) as evidenced by the Great Salinity Anomaly of 1969 (Belkin et al., 1998; Dickson et al., 1988). However, the first temporal IP$_{25}$-based sea ice reconstruction was carried out on a core from the North Icelandic Shelf (NIS) (Massé et al., 2008) and showed that IP$_{25}$ concentrations were very well correlated with documented records of sea ice around Iceland over the last ca. 1 ka (Ogilvie and Jónsson, 2001). The outcomes from this initial study by Massé et al. (2008) were subsequently reinforced by analysis of three further cores from N, NW and SW Iceland (Andrews et al., 2009a; Axford et al., 2011; Sicre et al., 2013).

Interestingly, the initial IP$_{25}$ record from Massé et al. (2008) also closely matches the reconstructed expansion of the Langjökull ice cap, Iceland (Larsen et al., 2011), and a composite terrestrial record (Haukadalsvatn and Hvítárvatn, Iceland) (Geirsdóttir et al., 2013), suggesting a close link between terrestrial Icelandic summer temperatures and changes in sea ice cover in the adjacent ocean. However, each of these previous IP$_{25}$-based sea ice reconstructions for the East Greenland shelf and North Iceland were either of low resolution, temporally limited, or both. As such, there have been no high-resolution and long-term (e.g. Holocene) IP$_{25}$-based sea ice reconstructions for this climatically sensitive region.

In the current study, we quantified IP$_{25}$ in surface sediments and two marine cores (MD99-2269 and JR51-GC35) from the NIS in order to both confirm the suitability of this biomarker as a drift ice proxy and also to gain further insights into the spatial and temporal sea ice evolution throughout the last 8 ka. In the first instance, therefore, we determined the distribution of IP$_{25}$ in surface sediments from the region and compared outcomes with known modern sea ice conditions and a further drift ice proxy (i.e. quartz; Andrews, 2009). We then investigated the IP$_{25}$ content in the giant Calypso core MD99-2269, an exceptionally well-dated high-resolution marine sediment record (Stoner et al., 2007) from ca. 66° N on the NIS (Fig. 1a) and situated at the boundary between major oceanic and atmospheric circulation.
systems (Hopkins, 1991). In some recent IP25-based Arctic sea ice reconstructions, combining
IP25 concentrations with those of certain phytoplankton biomarkers (typically sterols) in the
form of the so-called PIP25 index (Müller et al., 2011) has provided further insights into paleo
sea ice conditions, most notably from a semi-quantitative perspective (e.g., Müller et al.,
2011,2012,2014; Fahl and Stein, 2012; Xiao et al, 2015; Hörner et al., 2016; Smik et al.,
2016). However, since the conceptual model that underpins the PIP25 index (viz. a stable
winter ice margin with ice retreat during spring/summer) is not appropriate for the drift
conditions pertinent to the NIS, we refrained from measuring PIP25 indices within the current
study. We also note that, as yet, there has been no surface sediment-based calibration of the
PIP25 index for North Iceland, although it has been suggested previously that such an
approach may not be especially useful for regions of low sea ice cover (Navarro-Rodriguez et
al., 2013), as is the case for the NIS.

Several other climate proxy datasets are, however, available from MD99-2269 at various
resolutions that span the full 8 ka and beyond (e.g. Andersen et al., 2004b; de Vernal et al.,
2013b; Giraudeau et al., 2004; Justwan et al., 2008; Kristjánsdóttir et al., 2007; Moros et al.,
2006; Solignac et al., 2006) but it remains unclear which (if any) provide a secure record of
changes in sea ice, especially as some show divergence in outcomes (de Vernal et al., 2013b;
Moros et al., 2006; Solignac et al., 2006) and further conflicting evidence of Holocene
climate evolution exists between some of the other proxy datasets, especially after 3 ka BP.
For example, mineralogical-based sea ice (Moros et al., 2006) and microfossil-derived
bottom water temperature proxies indicate continued cooling after ca 3 cal ka BP (e.g.
Giraudeau et al., 2004; Kristjánsdóttir et al., 2007), while diatom transfer functions and
dinocyst distributions suggest late Holocene warming from around 2.5 ka BP (e.g. Justwan et
al., 2008; Solignac et al., 2006). Additionally, none of these records were investigated for
possible step-like responses or regime shifts of the type subsequently reconstructed from terrestrial Iceland records (Geirsdóttir et al., 2013). To produce a more comprehensive account of the changes in Holocene sea ice and surface water mass characteristics for the region, we also compare our IP$_{25}$ record from MD99-2269 with previous mineralogical (quartz) data and new microfossil (planktic foraminifera) and other biomarker data, including those for a tri-unsaturated highly branched isoprenoid (HBI) lipid (hereafter referred to as C$_{25:3}$) produced by certain (as yet unidentified) diatoms, some of which are believed to thrive in polar and sub-polar waters (Belt et al., 2008, 2015; Massé et al., 2011) and may, therefore, provide further insights into phytoplankton productivity in such settings. In addition, we compare our high resolution proxy records from MD99-2269 with further new IP$_{25}$ and previous quartz and alkenone SST records (albeit at lower resolution) obtained from a second core (JR51-GC35) located further east, and with an integrated account of terrestrial Icelandic climate, compiled previously (Andrews et al., 2014; Bendle and Rosell-Melé, 2007; Geirsdóttir et al., 2013).

2 – Regional setting

The two main currents that characterise the Denmark Strait area are the East Greenland Current (EGC) and the Irminger Current (IC) (Fig. 1a). The EGC is a cold, low-salinity polar water current that flows southward along the Greenland margin, carrying sea ice and freshwater from the Arctic Ocean (Aagaard and Coachman, 1968). Similarly, the EGC branches out towards western and northern Iceland as the East Iceland Current (EIC) (Malmberg, 1985). Freshwater and icebergs discharged from the Greenland Ice Sheet are incorporated into the EGC as it flows southwards (Aagaard and Coachman, 1968; Rudels et al., 2002). The IC is a branch of the North Atlantic Current (NAC) and flows northward, carrying warm and saline Atlantic waters from the south (Fig. 1a). The IC splits close to
166 Denmark Strait; one branch flows northwards and clockwise along the West Iceland Shelf as
167 the North Iceland Irminger Current (NIIC), while the other is directed southwards and
counter-clockwise along south-east Greenland, entering the Kangerdlugssuaq Trough as an
169 intermediate layer between the polar water and the Atlantic intermediate water of the EGC
(e.g. Jennings et al., 2011).
170
171 The NIS is located at the boundary between major oceanic and atmospheric circulation
173 systems (Belkin et al., 2009). As such, it encapsulates the oceanographic and atmospheric
174 variability of a much broader region and represents a sensitive area for monitoring North
175 Atlantic climate (Hopkins, 1991), which has made it a target for several previous
176 paleoceanographic studies (e.g. Andersen et al., 2004b; Giraudieu et al., 2004; Knudsen et
177 al., 2004; Solignac et al., 2006).
178
179 The location of the main core here (MD99-2269) sits between two of the routinely surveyed
180 hydrographic sections on the NIS, Siglunes and Hornbanki (Fig. 1b). MD99-2269 lies close
to the North Iceland Marine Front, which separates warm Atlantic waters from cold
182 polar/Arctic water (Belkin et al., 2009). The Arctic water of the EIC is usually too saline to
183 form sea ice in situ, although during times of strong advection of low salinity polar water
184 from the EGC, the EIC surface water both forms and transports sea ice (e.g. Ólafsson, 1999).
185 The historical seasonal limit of Arctic drift ice, carried southward by the EGC, lies close to
186 Iceland (Ogilvie, 1996), making the region extremely suitable area for investigating changes
to drift ice conditions in the past (Berghorsson, 1969; Koch, 1945). MD99-2269 is located
188 <100 km south of the average April AD 1870–1920 sea ice edge position in the northern
189 North Atlantic (Fig. 2a, Divine and Dick, 2006).
190
191 3 – Material and methods
3.1 Field methods and chronology

Surface sediment samples were collected from 30 sites across west and north Iceland during the *Bjarni Saemundsson* B997 cruise in 1997 (Fig. 1 and Supplementary Table 1, Helgadóttir, 1997).

Core MD99-2269 was recovered in Húnaflói on the NIS (66º37.53 N, 20º51.16 W, water depth 365 m, core length 2533 cm; Fig 1a) on board the R/V *Marion Dufresne II* during the summer of 1999 as part of the international IMAGES-V (International Marine Past Global Change Study) campaign. The age model for MD99-2269 was developed by Stoner et al. (2007) and is based on 27 accelerator mass spectrometry (AMS) 14C dates, tephrochronology and a paleomagnetic secular variation record (see Supplementary Figure 1). The uppermost sediment (15 m) spans the past 8 cal ka BP (20 AMS 14C dates) with a near-linear sedimentation rate of 2 m ka$^{-1}$. Core JR51-GC35, located east of MD99-2269 on the NIS (66º59.96N, 17º57.66 W, water depth 420 m; Fig 1a) was collected on board the RRS *James Clark Ross* in 2000. An age model was constructed by Bendle and Rosell-Melé (2007), based on linear interpolation between 10 AMS 14C dates, of which 8 cover the last 8 cal ka BP (see Supplementary Figure 1). In order to minimize the possible impacts of degradation of biomarkers, sediment material was taken from previously unsampled archived cores stored at 4ºC. A recent study by Cabedo-Sanz et al. (2016) suggests that storage of marine sediment cores under such conditions results in little or no degradation of IP$_{25}$ over several years, at least. All sediment samples were freeze-dried and kept in the freezer (-20ºC) prior to extraction.

3.2 Laboratory methods
3.2.1 Biomarker analyses

Biomarker analyses (IP$_{25}$ and C$_{25:3}$) were performed using methods described previously (Belt et al., 2012, 2015). Briefly, an internal standard (9-octylheptadec-8-ene, 9-OHD, 10 μL; 10 μg mL$^{-1}$) was added to each freeze-dried sediment sample (ca. 2-3 g) to permit quantification. Samples were then extracted using dichloromethane/methanol (3 x 3 mL; 2:1 v/v) and ultrasonication. Following removal of the solvent from the combined extracts using nitrogen, the resulting total organic extracts were purified using column chromatography (silica), eluting IP$_{25}$, C$_{25:3}$ and other hydrocarbons with hexane (6 mL). Non-polar lipid fractions were further separated into saturated and unsaturated hydrocarbons using glass pipettes containing silver ion solid phase extraction material (Supelco Discovery® Ag-Ion). Saturated hydrocarbons were eluted with hexane (1 mL), while unsaturated hydrocarbons (including IP$_{25}$ and C$_{25:3}$) were eluted with acetone (2 mL). All fractions were dried under a stream of nitrogen. Analysis of the partially purified unsaturated hydrocarbon fraction was carried out using gas chromatography-mass spectrometry (GC-MS) and operating conditions were as described previously (Belt et al., 2012). Mass spectrometric analyses were carried out either in total ion current (TIC) or single ion monitoring (SIM) mode. The identification of IP$_{25}$ (Belt et al., 2007) and C$_{25:3}$ (Belt et al., 2000) was based on their characteristic GC retention indices and mass spectra. Quantification of lipids was achieved by comparison of mass spectral responses of selected ions (SIM mode, IP$_{25}$, m/z 350; C$_{25:3}$, m/z 346) with those of the internal standard (9-OHD, m/z 350) and normalized according to their respective response factors and sediment masses (Belt et al., 2012). Analytical reproducibility was monitored using a standard sediment with known abundances of biomarkers for every 14–16 sediment samples extracted (analytical error 4 %, n=31).

3.2.2 Planktic foraminifera
Planktic foraminiferal assemblages were counted from the >150 µm sieve fraction at the same horizons as for IP25 analysis. We used 2-cm wide subsamples originally prepared for tephra analysis and Mg/Ca stable isotope analyses (Kristjansdottir et al., 2007). In order to achieve a 25-year sampling resolution, we obtained an additional 106 1-cm wide samples from intervening depths. All samples were prepared by wet sieving at 63 µm, 106 µm and 150 µm. The original samples had been air dried at 35°C after sieving and stored dry, while the new sample set was not dried. All samples were analyzed for assemblages in distilled water. We wetted the dried samples prior to wet splitting. We split the samples, where necessary, to achieve a count of at least 200 planktic foraminifers. The planktic counts are expressed as percentages of the total planktic foram assemblages. In this paper, we only show data from the two dominant species, Neogloboquadrina pachyderma, an arctic species, and Turborotalita quinqueloba, a frontal species that is common at the marine arctic front (Johannessen et al., 1994). We do not include any of the rare dextrally coiled aberrant variants of N. pachyderma in counts for N. pachyderma because these cannot be distinguished visually from N. incompta (Darling et al., 2006).

3.2.3 Mineralogical (quartz) data

Quantitative X-ray diffraction (qXRD) of sediment data has been used to track the importation of “foreign” minerals onto the NIS (Moros et al., 2006). Quartz is absent in basalt and thus can be used a robust tracer of importation of sediments carried in either icebergs (from Greenland) or in sea ice (from the Arctic Ocean) (Andrews et al., 2009a,b, 2014; Andrews and Eberl, 2007; Eiríksson et al., 2000; Moros et al., 2006).

3.3 Statistical data treatment
Some downcore (MD99-2269 and JR51-GC35) IP$_{25}$ and quartz data were converted to equi-
 spaced time series using the software package Analyseries (Paillard et al., 1996). To perform
 PCA analysis of all proxy data for MD99-2269, we converted all variables to 50-yr equi-
 spaced time-series (n=153 observations for each proxy) using AnalySeries (Paillard et al.,
 1996), then scaled the data metrics to unit variance, and performed a principal component
 analysis (PCA) using the statistical software R (package “vegan”).

In order to evaluate estimates for trends in our sea ice proxy data from MD99-2269, and to
 ascertain whether residuals from these contained any significant century to millennial-scale
 periodicities, we performed Singular Spectrum Analysis (SSA) and applied the Multi-taper
 Method (MTM), respectively, using the commercial version of the UCLA toolkit (kSpectra)
 (Ghil et al., 2002). Regime shifts are described as statistically significant shifts in the mean of
 a variable over an interval of time (Rodionov, 2004,2006). The Excel™ macro provided at:
 www.bering-climate.noaa.gov/regimes/ was used to examine the mean IP$_{25}$ data in MD99-
 2269. The results will vary depending on the length of the sliding window that is selected to
 compute differences in averages “before” and “after” each time-step.

4 – Results

4.1 B997- surface sediments

30 surface sediments from SW to N Iceland were analysed for the sea ice biomarker IP$_{25}$. IP$_{25}$
 was present in 17 samples and absent (or below the limit of detection) in the remaining 13.
 All of the IP$_{25}$-containing samples were from locations in the N and NW part of the region
 with higher concentrations found in the northern sites (Fig. 2a). In contrast, IP$_{25}$ was not
 detected in sediments from the W and SW locations (Fig 2a), consistent with ice-free
 conditions reported in observational sea ice records (e.g. Ogilvie and Jónsdóttir, 2000).
 Importantly, the quartz weight % data in the same samples (Andrews and Eberl, 2007)
showed a very similar distribution to that of IP$_{25}$ across the sampling region (Fig 2b). Further, the occurrence of the phytoplankton biomarker C$_{25:3}$ also appeared to be confined to the sampling sites in the N and NW regions (Fig. 2c) with a similar distribution to those of IP$_{25}$ and quartz (Fig. 2a,b). In contrast, C$_{25:3}$ was absent, or below the limit of detection, in sediment from the W and SW sampling sites. All surface sediment data can be found in Supplementary Table 1.

4.2 Core MD99-2269

In total, 311 and 242 downcore sediment samples were analysed from core MD99-2269 for biomarker content (IP$_{25}$ and C$_{25:3}$) and planktic foraminifera counts (*N. pachyderma* and *T. quinqueloba*), respectively (Data can be found in Supplementary Tables 2 and 3). IP$_{25}$ was present in 281 samples and absent (or below the limit of detection) in the remaining 30. The absence of IP$_{25}$, however, was mainly limited to the early Holocene part of the record with no IP$_{25}$ detected from ca 8 to 7.4 cal ka BP and only intermittently from ca 7.4 to 6.8 cal ka BP, with very low concentration (Fig. 3a). The first continuous occurrence of IP$_{25}$ began at ca 6.8 cal ka BP, although concentrations remained relatively low until ca 5.5 cal ka BP, after which, IP$_{25}$ abundances rose steadily to reach their mean value for the record ca 5 cal ka BP, and then further, until ca 4 cal ka BP, apart from a small depletion at ca. 4.4 cal ka BP. The first continuous occurrence of IP$_{25}$ above the mean value was observed at ca 4.3 cal ka BP, at which point, its concentration increased slightly, before remaining relatively stable (although with some fluctuations) up to ca 1.5 cal ka BP. Superimposed on this generally increasing trend, progressive regime shifts to higher concentrations were observed at ca 5.0, 4.3, 3.8, 2.7, 1.5, 0.7, 0.4 cal ka BP, although the clearest of these only occurred at ca. 3.8 cal ka BP and afterwards. Highest IP$_{25}$ values occurred at ca 0.1 cal ka BP (Fig. 3), while some slight
negative deviations from the general trend were observed between ca 2.3 to 1.5 cal ka BP and from ca 1.1 to 0.7 cal ka BP.

The quartz profile exhibited the same overall trend as IP₂₅, with a general increase from ca 8.0 cal ka BP to present, interrupted by a number of short-term variations; however, these did not always coincide with those observed for IP₂₅. Further, the 25 yr equi-spaced time-series (n = 308) from 8 to 0.3 cal ka BP exhibited correlations between the original and equi-spaced values of 0.98 and 0.97 for IP₂₅ and quartz, respectively, while a linear regression analysis between both proxies gave a correlation coefficient (R²) of 0.74 (p = 2 x 10⁻⁶), suggesting a strong positive relationship between them.

In contrast to IP₂₅, the concentration of the phytoplankton biomarker C₂₅:₃ showed a different profile (only absent in 7 samples), with relatively low concentration during the early Holocene (ca 8 to 6 cal ka BP), generally higher abundance during the mid-Holocene (up to ca 3.5 cal ka BP) before returning to lower concentration during the late Holocene and towards the present (Fig 7c).

Variations in the percentages of the two most abundant planktonic foraminiferal species, N. pachyderma and T. quinqueloba, covary strongly (Fig. 4). T. quinqueloba is the dominant species in the early Holocene, rising in abundance between 8 to 5.4 cal ka BP before declining between 5.4 and 3.4 cal ka BP (Fig. 4a). Between 3 and 1.5 cal ka BP, T. quinqueloba rises to high and variable percentages, only to decline to very low abundances from 1.5 cal ka BP to modern. N. pachyderma abundances maintain a steady background value of ca 30% at the beginning of the record, before rising ca 4.4 cal ka BP. N. pachyderma strongly dominates the assemblages (70–90%) after 1.4 cal ka BP (Fig. 4b).
4.3. Core JR51-GC35

Compared to that of MD99-2269, a lower resolution IP$_{25}$ record was obtained for core JR51-GC35, with an analysis from 90 downcore sediments covering every ca 4 cm, representing a temporal resolution of ca 100 yr (Data can be found in Supplementary Table 4). IP$_{25}$ could be quantified in 83 out of the 90 samples with all absences occurring prior to ca 6 cal ka BP. The temporal profile for IP$_{25}$ showed the same general trend as observed for MD99-2269 (Fig. 3), with low IP$_{25}$ during the early-mid Holocene, increasing concentrations during the late Holocene and a final decrease towards the present. Interestingly, IP$_{25}$ concentrations in JR51-GC35 were consistently lower than in MD99-2269 throughout the record even though the site is somewhat closer to the average sea ice edge (AD1870-1920). Consistent with the findings for MD99-2269, when the visually similar IP$_{25}$ and quartz profiles were transformed to 100-yr equi-spaced time-series (n = 78; correlation between the original and 100 yr equi-spaced data = 0.98 and 0.96 for IP$_{25}$ and quartz, respectively), a strong coefficient of correlation (R^2 = 0.66; $p = 3 \times 10^{-6}$) was also obtained. Finally, the two drift ice proxies were also strongly correlated between the core sites. Thus, correlations between MD99-2269 and JR51-GC35 of R = 0.91 and R = 0.77 were found for IP$_{25}$ and quartz, respectively.

5 – Discussion

5.1 IP$_{25}$ as a robust proxy for drift ice

Earlier palaeoenvironmental investigations on the NIS have focused on a variety of proxy-based sea ice (de Vernal et al., 2013b; Moros et al., 2006; Solignac et al., 2006), sea surface temperature (SST) (Andersen et al., 2004b; de Vernal et al., 2013b; Justwan et al., 2008; Solignac et al., 2006; Bendle and Rosell-Melé, 2007; Sicre et al., 2008) and bottom water temperature reconstructions (Giraudeau et al., 2004; Kristjánsdóttir et al., 2007); however, a
number of disparities exist between them. For example, other than divergence in some SST
records (Justwan et al., 2008; Kristjansdottir et al., in press), a monotonic increase in sea ice
diagnostic diatoms, as well as other Arctic- and Greenland-diagnostic diatoms from 5 ka BP
to at least 1900 AD (Justwan et al., 2008), suggest increased export of Arctic Ocean water
and sea ice, particularly over the last ca 2 ka BP, which is supported by the irregular increase
in quartz IRD after ca 5 ka BP (Moros et al., 2006). In contrast, a very different sea ice
scenario, based on modern analogue treatment (MAT) of dinocyst distributions in MD99-
2269/B997-327, reconstructs enhanced sea ice during the early Holocene compared to the
late Holocene (de Vernal et al., 2013b; Solignac et al., 2006). Such disparities between
dinocyst and other sea ice proxies may reflect, in part, the challenges of establishing robust
proxy-sea ice relationships (de Vernal et al., 2013c).

Previous IP25-based sea ice studies for Iceland only span the last two millennia (Andrews et
al., 2009a; Axford et al., 2011; Massé et al., 2008; Sicre et al., 2013), with interpretations
reliant on the original comparisons by Massé et al. (2008) between IP25 abundances in marine
core MD99-2275 (NIS) and documentary sea ice records. In order to further establish the use
of IP25 as a drift ice proxy for N and W Iceland, therefore, we first assessed the spatial
distribution of IP25 in surface sediments from the region for the first time, and also compared
the last millennium components of our new IP25 records in MD99-2269 and JR51-GC35 with
previous IP25 studies covering the past ca 1.2 ka BP, together with documentary sea ice
records for the last ca 0.9 cal ka BP.

The suite of modern surface sediments (B997 cruise) showed that IP25 was absent in
sediments from W and S Iceland (Fig. 2a), which represent locations that are dominated by
ice-free Atlantic waters (Fig. 1), but was common in surface sediment on the NIS, where ice-
bearing Arctic water masses infringe on surface waters (Fig. 1). Furthermore, since sea ice does not generally form \textit{in situ} around Iceland, the presence of IP$_{25}$ in modern sediments strongly implies that this biomarker represents a signature of drift sea ice and, therefore, a means of tracking sea ice export from the Arctic Ocean. It is also significant that the distribution pattern of IP$_{25}$ closely resembles that of quartz (Fig. 2b), whose presence in sediments around Iceland has also been proposed as a drift ice proxy (e.g. Andrews and Eberl, 2007; Andrews et al., 2009b; Eiríksson et al., 2000; Moros et al., 2006). In addition, the observation of the phytoplankton lipid C$_{25:3}$ in surface sediments from regions experiencing periodic drift ice cover, lends further support to previous suggestions that this biomarker, when identified in polar and sub-polar settings, provides proxy evidence for open water conditions proximal to melting sea ice (Belt et al., 2008, 2015; Massé et al., 2011).

Next, we compared the IP$_{25}$ profiles spanning the last ca 1.2 cal ka BP in MD99-2269 and JR51-GC35 to previously published IP$_{25}$ records and historical reports of sea ice conditions. Historical records of varying reliability of sea ice conditions from Iceland extend to ca 1 ka BP (Björnsson, 1969; Koch, 1945) and several studies have attempted to demonstrate the relationship between climate and sea ice in the last few centuries (Ogilvie et al., 2000; Ogilvie and Jónsdóttir, 2000; Ogilvie and Jónsson, 2001). Further, the Koch index represents the sea ice extent observed near to the Iceland coasts (Koch, 1945) and a revised version of the Koch index of sea ice cover has been published by Wallevik and Sigurjónsson (1998) (Fig. 5e). From an IP$_{25}$ perspective, Massé et al. (2008) demonstrated that IP$_{25}$ abundances in core MD99-2275 (Fig. 5d), 135 km east of MD99-2269 (Fig. 1a), were very well correlated to these documented sea ice records during the last ca 1 ka (Fig. 5e) and a subsequent study by Andrews et al. (2009a), carried out on a core from the NW Icelandic Shelf (MD99-2263; Fig. 1a), showed a similar IP$_{25}$ profile (Fig. 5c). The current study complements these
existing data with IP$_{25}$ profiles from two additional locations on the NIS, both of which show generally good agreement with the previous studies (Fig. 5), especially on a multi-centennial scale. As such, the Little Ice Age (LIA), a widespread cooling period that lasted ca AD 1300–1900 (Jones and Mann, 2004), is clearly recorded in all records across the NIS, suggesting periods of high Arctic Ocean sea ice export and colder summers. In contrast, during the preceding Medieval Warm Period (MWP, ca 1 to 0.7 cal ka BP/AD 900 to 1200), IP$_{25}$ abundances were lower than during the LIA in all cores (Fig. 5). At higher resolution, increased sea ice observed in the Koch index, especially ca AD 1200 to 1300 are less evident in the IP$_{25}$ records, possibly as a consequence of some mis-matches in temporal sampling (the Koch index is not continuous) or differences between the observational and core locations. However, on a centennial scale, Massé et al. (2008) demonstrated a coherent relationship between IP$_{25}$ abundances, the observational sea ice record and mean northern hemisphere temperatures.

In summary, the close agreement between IP$_{25}$ (and quartz) content in surface sediments from regions around Iceland reflecting contrasting modern sea ice cover, together with the consistent alignment between IP$_{25}$ profiles in four downcore records and the documented sea ice record during the last ca. 1 ka, provides a convincing case for the use of the IP$_{25}$ biomarker to record changes in drift ice on the NIS in relatively modern and older (e.g. Holocene) sediments.

5.2 Reconstruction of palaeoenvironmental conditions during the Holocene

This study represents the first comparison between IP$_{25}$ and quartz from a high-resolution Holocene record on the NIS. Visual inspection and statistical treatment of equi-spaced time series of the IP$_{25}$ and quartz profiles for the MD99-2269 and JR51-GC35 cores (Fig. 3) both
suggest a similar trend between the two proxies, with low values during the early mid
Holocene (ca 8–5.5 cal ka BP) and a mainly unidirectional, but irregular, increase towards the
late Holocene (ca 5.5–0 cal ka BP). However, the IP\textsubscript{25} and quartz concentrations were
consistently higher in MD99-2269 compared to those in JR51-GC35, indicative of more drift
ice having been delivered to the western region of the NIS (i.e. MD99-2269 area) compared
to the eastern part (i.e. JR51-GC35). Although some quartz may also have been deposited
from icebergs originating from E/NE Greenland (e.g. Andrews and Eberl, 2007), the close
correlation between IP\textsubscript{25} and quartz in MD99-2269 and JR51-GC35 might indicate that the
quartz is mainly derived from sea ice originating on the shallow Arctic Ocean shelves. On the
other hand, the potential for some quartz to be delivered as ice-rafted debris from melting
icebergs (Andrews et al., 2014) provides a potential explanation for some of the out-of-phase
behavior between the quartz and IP\textsubscript{25} records, most notably between ca 7.0 and 5.0 cal ka BP.
In general, however, deviations in the overall IP\textsubscript{25} profile are reflected in the quartz data.

In order to better interpret the IP\textsubscript{25} and quartz data, and to provide further context to the
changing environmental conditions on the NIS throughout the Holocene, we expand the
Kristjansdottir et al. (in press) analysis of proxy data from MD99-2269 to include the
biomarkers IP\textsubscript{25} and C\textsubscript{25:3} and planktic foraminifera assemblages (\textit{N. pachyderma} and \textit{T. quinqueloba}). Also from MD99-2269, we include two SST reconstructions based on diatoms
(Justwan et al., 2008) and the alkenone index \textit{U}^{K}_{37} (Kristjansdottir et al., in press), biogenic
carbonate (Giraudeau et al., 2004), and quartz data (Moros et al., 2006). PCA of the
normalized scores indicated that the first PCA explained 51 % of the variance and the second
PCA added a further 24 %. Three main groupings are evident from this analysis (Fig. 6). Not
surprisingly, given the good positive correlation between the IP\textsubscript{25} and quartz profiles, both
sea ice proxies were closely grouped in the PCA, while the cold polar water species \textit{N}.
Disclaimer: This is a pre-publication version. Readers are recommended to consult the full published version for accuracy and citation.

pachyderma also falls within this category, consistent with a strong association with polar surface waters proximal to sea ice (Bé and Tolderlund, 1971; Johannessen et al., 1994). In addition, the loadings of SST proxies fall within a further well-defined cluster (Fig. 6), while biogenic carbonate and the biomarker C$_{25:3}$ are grouped into a third category, probably related to surface water productivity. Indeed, biogenic carbonate produced by coccoliths likely represents a signal of nutrient-rich Atlantic water, although the highest values in this region are normally associated with the IC submerged beneath a shallow layer of fresh and cold polar water (Giraudeau et al., 2004). In this setting, the biomarker C$_{25:3}$ is probably biosynthesized by certain planktic diatoms within the genera *Rhizosolenia* and *Pleurosigma* (Belt et al., 2000; Rowland et al., 2001) residing in surface or near-surface waters. Certainly, this biomarker, when identified in Arctic and Antarctic sediments, has a stable isotopic signature (δ^{13}C ca -35 to -40‰) consistent with a polar phytoplanktonic origin and has recently been identified in elevated abundances in Barents Sea sediments underlying seasonal sea ice cover, and in surface waters off East Antarctica proximal to the marginal ice zone (Belt et al., 2008, 2015; Belt and Müller, 2013; Massé et al., 2011; Smik et al., 2015).

Although the drift ice conditions on the NIS are somewhat different to either of these settings, increased production of C$_{25:3}$ appears to be associated with nutrient-fed cold surface waters experiencing periodic drift ice (Fig. 2c). The subpolar foraminifera species *T. quinqueloba*, used as an indicator for the presence of warm Atlantic water in proximity to the marine Arctic Front, is also clustered within the productivity grouping (Fig. 6). In combination, therefore, biogenic carbonate, C$_{25:3}$ and *T. quinqueloba* proxies should provide an indication of open water conditions and related surface/sub-surface water productivity on the NIS. Finally, Kristjansdottir et al. (in press) applied a statistical treatment to a suite of SST (alkenone and Mg/Ca), mineralogical and stable light isotope (planktic and benthic forams) data for MD99-2269 to show that the Holocene paleoceanographic evolution on the NIS could be classified.
according to three temporal divisions (viz. ca 8.0–6.3 ka BP, 6.3–4.0 ka BP and 4.0 ka BP–present). These boundaries reflect regional climate and are offset from the suggested global boundaries (Walker et al., 2012) and we use these regionally defined intervals as the basis for our interpretations, albeit with a slight shift in the later boundary (to ca. 3.3 ka BP) to accommodate the new biomarker and foraminifera data. The interpretations of our new proxy data are, therefore, as follows:

5.2.1 Early mid Holocene (8–6.2 cal ka BP)

The early mid Holocene (ca 8–6.2 cal ka BP) is characterized as an interval of ice-free (or nearly ice-free) conditions as shown by absent (or very low) IP$_{25}$ concentration (Fig. 7h) and low quartz content in MD99-2269 (Fig. 7g, Moros et al., 2006). A similar conclusion can be reached from the corresponding IP$_{25}$ and quartz records in core JR51-GC35 (Fig. 3b). In addition, the percentages of the cold polar water foraminifera species *N. pachyderma* were also very low during this period (Fig. 7f), whereas the Atlantic water/sub-polar species *T. quinqueloba* was relatively abundant (Fig. 7d), reflecting the greater influence of the warm IC compared to cold polar waters from the EGC on the NIS. Summer SSTs, obtained by diatom transfer functions (Justwan et al., 2008), and alkenone-based (U$^{K-37}$) SST reconstructions (Fig. 3,7e) (Kristjansdottir et al., in press), were also at their highest during this interval, coincident with higher summer insolation (Fig. 7a). This interval likely represents the end of the NIS Holocene Thermal Maximum (HTM) or a relatively warm phase following peak warmth during the HTM; a conclusion consistent with other palaeoclimate reconstructions across the Northern Hemisphere and the study region (e.g. Andersen et al., 2004a; Andrews et al., 2003; Geirsdóttir et al., 2009,2013; Kaufman et al., 2004; Ólafsdóttir et al., 2010). The occurrence of absent/low sea ice conditions during the early mid Holocene in our NIS records has also been observed in several previous studies.
from other Arctic and sub-Arctic regions including the Canadian Arctic Archipelago (Belt et al., 2010; Vare et al., 2009), the Fram Strait (Müller et al., 2009, 2012), the East Greenland Shelf (Müller et al., 2012) and the Barents Sea (Belt et al., 2015; Berben et al., 2014). In contrast, a dinocyst-based sea ice reconstruction for the NIS indicated longer sea ice extent prior to ca 6.2 cal ka BP (Solignac et al., 2006) even after revision of the modern dinocyst-assemblage transfer function using an updated database (de Vernal et al., 2013b,c). The reason for this difference between the IP$_{25}$ (and quartz) data and the dinocyst-based reconstruction is still not clear at this point and remains a topic of debate. In the meantime, Polyak et al. (2016) and Cabedo-Sanz et al. (2016) have suggested that such differences are likely due to the precise nature of the respective proxy signatures. Thus, Cabedo-Sanz et al. (2016), in particular, point out that dinocyst-based reconstructions yield information regarding sea ice duration – specifically, the number of months of >50% sea ice cover – while IP$_{25}$ provides a more sensitive indicator of spring sea ice conditions. Such nuances may be particularly important for regions of relatively low sea ice cover and less extreme seasonality, as is the case for north Iceland and the west Svalbard margin (Cabedo-Sanz et al., 2016). Finally, biogenic carbonate was also very low during this period (Fig. 7b, Giraudeau et al., 2004), indicating low coccolithophore productivity at this time, while the consistently low C$_{25:3}$ concentration during this interval (Fig. 7c), also suggests a period of reduced phytoplankton productivity, despite higher SSTs (Fig. 7e), likely due to the low/absent sea ice conditions during this interval.

5.2.2 Mid-Holocene (6.2–3.3 cal ka BP)

The mid-Holocene was characterised by a gradual increase in drift ice, as indicated by generally parallel enhancements in IP$_{25}$ and quartz in both MD99-2269 and JR51-GC35 (Fig. 3; 7g,h). At ca 6.2 cal ka BP, *N. pachyderma* values (Fig. 7f) remained quite low, although
an increasing trend was observed beginning ca 5 cal ka BP, with an opposing profile for *T. quinqueloba* (Fig. 7d). These observations indicate a gradual cooling of surface waters on the NIS during this interval and are further corroborated by decreasing reconstructed SSTs after ca 5 cal ka BP (Fig. 3,7e). Such outcomes are also consistent with observations made previously for the western side of Denmark Strait (Jennings et al., 2011). Despite this cooling, however, Giraudieu et al. (2004) demonstrated enhanced biogenic carbonate in MD99-2269 beginning at ca. 6.5 cal ka BP (Fig. 7b) and attributed this to increased productivity related to strengthening of the water column stratification via increased advection of EGC freshwater to the NIS, which resulted in optimized conditions for blooms of the coccolithophore species *Coccolithus pelagicus*. We also note a sharp increase in the \(C_{25:3} \) concentration in MD99-2269 at ca. 6.2 cal ka BP, and generally higher \(C_{25:3} \) concentrations are evident until ca 3.3 cal ka BP (Fig. 7c). Termination of this interval of elevated \(C_{25:3} \) coincides with a further increase in IP\(_{25} \) concentration and quartz content. We propose a scenario whereby some drift ice reached the area during (still) relatively warm (SST) conditions, resulting in enhanced primary productivity in the upper water column. Interestingly, this observation of highest productivity during the mid-Holocene is in accordance with recent findings from the East Greenland shelf based on planktic and benthic foraminifera (Perner et al., 2015).

5.2.3 Late Holocene (3.3 cal ka BP–present)

Our proxy data indicate that the late Holocene can be divided into two sub-intervals. During the first sub-interval (ca 3.3–1.5 cal ka BP), IP\(_{25} \) values were more variable than during the mid-Holocene (Fig. 7h), and a similar trend was also observed in the quartz wt% data (Fig. 7g), suggesting that increasing, but more variable, drift ice conditions prevailed. Significant short-term temporal variability is also observed in the planktic foraminifera *N. pachyderma*
and *T. quinqueloba* (Fig. 7d,f). We ascribe this strong co-variance to frequent changes in the influence of polar waters compared to Atlantic waters in proximity to the marine polar front.

SSTs also showed some variability, but were at their lowest values for the entire record, especially from ca 3.3 to 2.5 cal ka BP (Fig. 7e). Low alkenone-based SSTs were also evident around this time in JR51-GC35 (Fig. 3). A particularly abrupt transition in the IP₂₅ record was recorded in the second half of the record at ca 1.5 cal ka BP, and this was also evident in the other proxies, although to a lesser extent. During this second sub-interval of the late Holocene (ca 1.5–0 cal ka BP), the IP₂₅ record exhibited notable increases in concentration towards the present (e.g. ca 0.7 and 0.4 cal ka BP, Fig. 7h, 8e), with highest values for the entire profile recorded during the LIA (ca 0.1–0.6 ka BP). Parallel observations were also evident in the quartz data for MD99-2269 and in the IP₂₅ profile for JR51-GC35 (Fig. 3b).

Together with highest *N. pachyderma* %, our combined proxy data point to a progressively cooler interval, with increasing influences from cold polar water and drift ice delivered by the EGC, and the EIC, in particular. Interestingly, the identification of step-wise shifts towards colder states aligns well with a recent study off East Greenland, whereby Perner et al. (2105) identified a southward shift of the Subpolar Front (Moros et al., 2012) during the late Holocene, that may have restricted deep convection in the Nordic Seas (e.g. Renssen et al., 2005; Telesiński et al., 2014).

Increased sea ice delivery to the MD99-2269 site, especially during the second half of the late Holocene is accompanied by decreasing biogenic carbonate (Fig. 7b) and generally very low C_{25:3} concentration (Fig. 7c), with both productivity proxies reaching their lowest values during the LIA (Fig. 7b,c). We interpret these changes as further support for a combination of colder surface temperatures and increased influence of polar waters and drift ice. Indeed, alkenone-based SST reconstructions from the eastern part of the NIS (e.g., JR51-GC35) show...
cooling during the last ca 2 cal ka BP (Bendale and Rosell-Melé, 2007) and, therefore,

consistency with the IP_{25} records in JR51-GC35 (Fig. 3b) and the last ca 1 ka in MD99-2275
(Fig. 4) (Massé et al., 2008). In contrast, however, SST records reconstructed for MD99-2269
based on diatoms (Justwan et al., 2008) and alkenones (Kristjansdottir et al., in press) both
show a slight warming trend during the late Holocene (Fig. 7e), as does a more recent
alkenone-based SST record for a fjordic setting from NW Iceland (Moossen et al., 2015), all
of which appear to be inconsistent with other SST records and with the IP_{25} and quartz sea ice
record in MD99-2269 (Fig. 7h) and other North Atlantic regions (e.g. Calvo et al., 2002;
Müller et al., 2012; Rasmussen et al., 2012; Risebrobakken et al., 2009; Sarnthein et al.,
2003b; Telesiński et al., 2014; Werner et al., 2013) and further afield (McGregor et al., 2015).

Moossen et al. (2015) attributed the late Holocene upturn in SSTs seen in a fjord record from
NW Iceland to a dominant influence of the North Atlantic Oscillation (NAO) in its positive
phase during this time, and the same explanation may also be pertinent for MD99-2269.
However, this would require that such influences of NAO+ are substantially reduced for the
sites further east (JR51-GC35 and the MD99-2275) since these both show long-term cooling.
Regardless of the forcing mechanism(s), increased SSTs of the upper 1–2 m of the water
column may have been driven by the presence of a thin freshwater lid which restricted
mixing with deeper colder water and the supply of nutrients. Potentially, this may have been
more important for the MD99-2269 site, compared to JR51-GC35 further east, since our IP_{25}
and quartz records both show consistently higher sea ice extent for the former throughout the
respective records (Fig. 3). Alternatively, greater seasonal decoupling between sea ice and
SST may have been especially relevant during the late Holocene, with colder winters and
warmer summers in the western part of the NIS (i.e. MD99-2269) compared to the eastern
study sites (i.e. MD99-2275 and JR51-GC35), possibly resulting from a greater influence of
the IC for the former. Related to this, there may have been a shift in the season(s) that the
SST proxies reflect, especially during higher sea ice conditions. Indeed, warmer alkenone
SSTs compared to instrumental data were observed for certain cold periods in core MD99-2275 (Sicre et al., 2011), possibly associated with sea ice occurrence. Further, late Holocene
alkenone-derived SSTs for NE and SE Newfoundland showed higher SST for the former,
despite near year-round cooler temperatures in the instrumental record, an anomaly explained
by the presence of drift ice for the NE Newfoundland site which likely caused a delay in the
algal bloom to later (and warmer) months compared to the early (cooler) spring bloom for the
SE Newfoundland site (Sicre et al., 2014).

Finally, some SST anomalies may exist in some of the records especially if, for example, the
transfer function used for the diatom-derived SST record (Justwan et al., 2008) is too heavily
weighted on the North Atlantic taxa and, in any case, there is a clear and consistent (ca 2 °C)
offset between the diatom and alkenone SSTs records for MD99-2269, with both methods
providing significant overestimates of SSTs for the modern setting (ca 5 °C; Fig. 1).

5.4 Broader significance

The determination of a long-term and high-resolution sea ice record for the NIS (MD99-2269), which is also consistent with a further sea ice record from further east (JR51-GC35)
and with other proxy data, suggest that our outcomes are representative of a broad geographic
area. As such, the new findings presented here enable us to add to the understanding of the
role of sea ice in Northern Hemisphere Holocene climate evolution, including identification
of key climatic events (e.g. onset of Neoglacial and the LIA) and the coupling between the
marine and terrestrial environments.
5.4.1 Holocene cooling and sea ice expansion at the onset of Neoglacial

Previous comparisons between terrestrial and marine proxy records, combined with those from modeling studies, have indicated that Neoglacial cooling began during the mid-Holocene (ca 5 ka). There is, however, no agreed consensus date for the onset of Neoglacial conditions. For example, within the terrestrial realm, a recent regional compilation of 14C dates performed on ice-edge rooted plants collected from Baffin Island, West Greenland and Svalbard strongly suggests that the onset of Neoglacial cooling occurred shortly after 5 ka (Miller et al., 2013a,b). In the marine environment, previous studies have reported a decrease in Atlantic water inflow after ca 5.5 cal ka BP in Arctic regions influenced by the EGC such as eastern Fram Strait and fjord/shelf areas of Spitsbergen (e.g. Aagaard-Sørensen et al., 2014; Hald et al., 2007; Werner et al., 2013) while, most recently, Perner et al. (2015) identified significant strengthening of the EGC on the central East Greenland shelf at ca 4.5 cal ka BP, with an inference of enhanced sea ice export. Climate modelling also suggests that sea ice is an important amplifier of summer cooling and contributes to persistent cold conditions (Schleussner and Feulner, 2013). Consistent with these studies, recent proxy-based reconstructions of sea ice in the northern North Atlantic have demonstrated strong associations between enhanced sea ice conditions and Holocene cooling (e.g. Fahl and Stein, 2012; Koç et al., 1993; Müller et al., 2012; Werner et al., 2013). Thus, based on IP$_{25}$ and IRD data, Müller et al. (2012) showed that a significant expansion of sea ice and icebergs occurred during the Neoglacial in the Fram Strait and their findings were supported by the analysis of the polar planktic foraminifer species *N. pachyderma* in the same record (Werner et al., 2013). Further, analysis of remnant diatoms in a N to S core transect in the Greenland, Iceland and Norwegian seas showed a cooling trend and a southeastward spread of the sea ice margin in polar surface waters and of the polar and arctic fronts after ca 5.5 cal ka BP (Koç et al., 1993).
In addition to these long-term trends, intermittent advances of Northern Hemisphere ice sheets and glaciers have also been recorded, of which the LIA was the most extreme multi-centennial departure (Geirsdóttir et al., 2013; Miller et al., 2010). As such, regional feedbacks such as volcanic eruptions likely modulate climatic signatures, such as sea ice, that reflect primary insolation forcing (Geirsdóttir et al., 2013; Miller et al., 2012). Indeed, relatively small changes in insolation during the last ca 1.5 ka compared to the early and mid Holocene (Fig. 7a), likely requires the influence of additional forcing mechanisms such as explosive volcanism (McGregor et al., 2015) to explain the late Holocene cooling trend. Climate modelling experiments also suggest that persistent summer cold could be explained by a series of paced eruptions that initiated a shelf-sustaining expansion of Arctic Ocean sea ice that persisted for centuries after the volcanic aerosols were removed from the atmosphere (Miller et al., 2012; Zhong et al., 2011), while Sicre et al. (2013) recently demonstrated the likely coupling between volcanic eruptions and nearby sea ice on the NIS, albeit on a fairly reduced timescale (AD 1000–1400 yr).

Turning our attention to the MD99-2269 record, the increase in IP_{25} to it mean value ca 5 cal ka BP and continually above this after ca 4.3 cal ka BP (Fig. 8d), marks a significant change in sea ice export, although more abrupt increases are clearer in the later part of the record. A sustained period of elevated IP_{25} and a generally increasing trend throughout the remainder of the Holocene, with highest concentrations reached ca 0.1 cal ka BP, point to overall enhanced sea ice export after ca. 5 cal ka BP, which culminated during the LIA. This general trend of increasing sea ice found in both records (MD99-2269 and JR51-GC35) aligns well with other IP_{25}-based sea ice reconstructions for the Fram Strait and central East Greenland (Fig. 8b, 8c) (Müller et al., 2012) and other inferences of sea ice change in the northern North Atlantic.
(Koç et al., 1993; Telesiński et al., 2014; Werner et al., 2013) and northern Greenland
(Funder et al., 2011). In addition, maximum IP$_{25}$ concentrations during the LIA have been
observed previously in other north Atlantic marine records from Fram Strait and the East
Greenland shelf (Müller et al., 2012) and from other sites around N Iceland (Andrews et al.,
2009a; Massé et al., 2008). Our biomarker observations are also supported by the quartz data
from MD99-2269 (Fig. 8b, Moros et al., 2006) and confirm suggestions made previously by
Perner et al. (2015) based on analysis of sediment core PS2641-4 from the central East
Greenland shelf, whereby a southeasterly shift in the position of the polar front, reflecting an
increase in the EGC, was accompanied by enhanced sea ice export during the Neoglaciation
after ca 4.5 cal ka BP. In addition, IRD records for East Greenland are also enhanced during
the Holocene, and especially in the last ca 5 cal ka BP (Andrews et al., 1997). On the other
hand, although Müller et al. (2012) identified IP$_{25}$ in PS2641-4 throughout the Holocene (Fig.
8c), increased abundances were only observed during the last ca 1 ka, which was attributed to
a possible easterly broadening of the EGC as a result of enhanced ice export, without
necessarily impacting on conditions proximal to the East Greenland coast.

Superimposed on the longer-term trend seen during the mid-late Holocene, we also observed
pronounced millennial-scale positive IP$_{25}$ regime shifts (cold-phases) in MD99-2269 mainly
at ca 3.8, 2.7, 1.5, 0.7 and 0.4 cal ka BP (LIA) (Fig. 3,8e) which have been recorded in other
EGC-influenced regions (Moros et al., 2012; Perner et al., 2015) and in the same record at ca
3.0 and 0.2–0.6 cal ka BP (LIA) (Giraudeau et al., 2004). In addition, a pronounced negative
IP$_{25}$ deviation is seen from ca 2.3 to 1.5 cal ka BP which coincides with an interval of relative
warming seen in many records from the northern North Atlantic (Giraudeau et al., 2004;
Jennings et al., 2002; Moros et al., 2012; Risebrobakken et al., 2003; Sarnthein et al., 2003a)
and previously ascribed to the Roman Warm Period (Perner et al., 2015), during which there was likely a temporary strengthening of the North Atlantic Drift and NAC.

A previous study by Ólafsdóttir et al. (2013) showed that Icelandic climate has also been sensitive to the state of both the North Atlantic Oscillation and Atlantic Meridional Overturning (Andrews and Jennings, 2014) through the past 3 ka, at least, while Miller et al. (2012) suggested that it was also likely strongly impacted by sea ice export from the Arctic Ocean, so the latter is also supported by our IP25-derived sea ice data (Fig. 8e). Certainly, for increased sea ice to be recorded as far south as the NIS requires a substantial expansion of the entire Arctic Ocean pack, a weakening of the NAC, and altered surface water characteristics in the Atlantic subpolar gyre, with potential further impacts, downstream. The coherence between the MD99-2269 record for the NIS and those presented previously for Fram Strait and the East Greenland shelf (Müller et al., 2012) certainly endorses this view.

5.4.2. Marine and terrestrial coupling

From a local perspective, the proximity of the study site to Iceland and the existence of a composite terrestrial record (Geirsdóttir et al., 2013) provide an additional opportunity to examine the coupling between marine and terrestrial settings during the Holocene. Previously, Larsen et al. (2011) showed that the ca 1 ka IP25 record from MD99-2275 (Massé et al., 2008) aligned closely with the reconstructed dimensions of the Langjökull ice cap, suggesting a close link between terrestrial summer temperatures and changes in sea ice cover in the nearby ocean. Sicre et al. (2013) demonstrated a (lagged) coupling between volcanic eruptions, SSTs and nearby sea ice from a site slightly further north (MD99-2273; Fig. 1a), during the interval AD 1000–1400 yr. In this study, we extend these previous investigations by comparison of the Holocene IP25 and quartz data from the MD99-2269 marine record with
a terrestrial record based on a composite multiproxy (e.g., biogenic silica, TOC, δ¹³C, C/N, sediment density, magnetic susceptibility) summer climate reconstruction from two Icelandic lakes (Hvitarvatn/Haukadalsvatn) (Geirsdóttir et al., 2013). Interestingly, both the marine (sea ice) and terrestrial records follow the regional decrease in summer insolation (Fig. 8a) as a first-order trend towards cooler summers, with a threshold change in the terrestrial record ca 5.5 cal ka BP, previously ascribed to the onset of the Neoglacial period (Fig. 8e) (Geirsdóttir et al., 2013), aligning well with the first sustained increase in the IP25 record (ca 5 cal ka BP). In addition, after ca 4 cal ka BP, virtually all IP25, quartz and terrestrial record values were above, and increased beyond, their mean Holocene values (Fig. 8), suggesting progressively cooler summers, increased sea ice, and thus a likely synergy between them. In addition to these general (insolation-driven) changes, an abrupt cooling at ca 5.0 cal ka BP, followed by further regime shifts (step coolings) at ca. 4.2, 3.0, 1.5 and 0.7 cal ka BP were observed previously in the lacustrine composite (Fig. 8f) some of which might be ascribed to the impacts of local volcanic activity (Geirsdóttir et al., 2013). Although the magnitude of the respective changes in the terrestrial and marine records may not be the same, it is important to note that paleomagnetic secular variation data confirm that the Icelandic lake (Hvitarvatn/Haukadalsvatn) (Geirsdóttir et al., 2013) and marine (MD99-2269) records are highly synchronized (Geirsdóttir et al., 2013) so are temporally comparable. In any case, some clear and positive departures from the generally trend in the IP25 record are observed at ca 4.2 and 2.6 cal ka BP, and most notably at ca 1.5 cal ka BP and during the LIA (ca 0.4 cal ka BP), supporting the notion of significant coupling between the marine and terrestrial systems.

5.4.3. Drift ice periodicity
The high resolution of our data for MD99-2269 over the last ca 8 ka BP has enabled us to identify certain periodicities in the drift ice proxy data using spectral analysis. In the first instance, SSA of the 30-yr equi-spaced data indicated that statistically significant trends (first SSA component) in both IP$_{25}$ and quartz data existed, with 76 % and 82 % of the variance explained by each component, respectively. Significant periodicities in the detrended time-series were detected using the MTM, with confidence levels of 95 and 99% relative to estimated red-noise background (Mann and Lees, 1996). The spectral features for both drift ice proxies are shown in Fig. 9. MTM analysis of the detrended IP$_{25}$ series produced significant periods (95–99 % confidence interval) of 213, 275, and 1024 yr (Fig. 9a), while the corresponding quartz series showed three significant periodicities at 156, 208 and 334 yr (Fig. 9b; 95 % confidence interval). Interestingly, the 1024 yr period recorded in the IP$_{25}$ record (Fig. 9a) compares well with a similar periodicity (ca 1000 yr) from the Holocene δ^{18}O GISP2 ice core record (Stuiver et al., 1995), while Chapman and Shackleton (2000) provided further evidence for a ca 1000 yr cyclicity based on a lightness profile in a sediment core record from Gardar Drift (SW Iceland), and suggested an interconnection between atmospheric and oceanic variability. As such, our IP$_{25}$ data provide further evidence for coupling between the atmosphere and marine environment. In addition, the MTM coherence analysis performed on the IP$_{25}$ and quartz detrended series indicated shared periodicities between these drift ice proxies of 205 and 232 yr (significance = 95 %). Thus, spectral analysis performed on the individual and combined drift ice proxies provide strong evidence for at least one periodicity of ca 200–230 yr. Interestingly, a similar ca 200 yr period oscillation in magnetic properties in MD99-2269 was previously identified by Andrews et al. (2003) and was consistent with the ‘Suess’ wiggles in Δ^{14}C that have been detected at a 208 yr period in previous analyses of Δ^{14}C Holocene records (Thomson, 1990). A 200 yr period
has also been detected in dust measurements from the GISP2 record and was associated with solar variability (Ram and Stolz, 1999).

6 – Conclusions

The identification of IP$_{25}$ as a reliable proxy for drift ice for North Iceland has been confirmed based on the analysis of surface sediments from the region and comparison of outcomes with documentary records and other (mineralogical) proxy data. A high-resolution reconstruction of sea ice, productivity, SST and water masses based on new (IP$_{25}$, C$_{25:3}$, planktic foraminifera) and existing (quartz, alkenone and diatom SST, productivity (biogenic carbonate)) proxy data from marine sediment core MD99-2269 indicates a three-interval Holocene climate record consistent with a previous study (Kristjansdottir et al., in press). Thus, the early mid Holocene (ca 8–6.2 cal ka BP) was characterized by relatively low drift ice, low primary productivity and relatively high SSTs. During the mid-Holocene (ca 6.2–3.3 cal ka BP) drift ice increased progressively as SSTs decreased, and primary productivity was also enhanced during this period. A period of sustained increase in drift ice began ca 5.0–4.4 cal ka BP, coincident with the onset of Neoglaciation, with further increases into the late Holocene (ca 3.3 cal ka BP to present), culminating in maximum sea ice during the LIA. In addition to these general trends, the IP$_{25}$ record shows some step shifts towards enhanced drift ice conditions ca 3.8, 2.7, 1.5, 0.7 and 0.4 cal ka BP that have been also recorded in other EGC-influenced regions. Some of these positive departures, especially those at ca 1.5 and 0.7 cal ka BP, coincide with abrupt cooling recorded in an Icelandic lacustrine temperature composite, suggesting significant coupling between the marine and terrestrial systems. The association of sea ice to the broader climate system is further evidenced by the identification of statistically significant periodicities in the drift ice data (MD99-2269) of ca 1000 yr (IP$_{25}$) and ca 200–230 yr (IP$_{25}$ and quartz), which have counterparts in previous
studies concerning atmospheric and oceanic variability (Chapman and Shackleton, 2000; Stuiver et al., 1995) and solar forcing (Ram and Stolz, 1999). Overall, therefore, our combined proxy data suggest that the NIS experienced a sustained increase in sea ice during the Holocene, especially after ca 5 ka BP, but with some overprinting due to shorter-term enhancements/reductions, possibly attributed to a combination of volcanic and solar cycle forcings.

7 – Acknowledgements

This is a contribution to the ANATILS project (Abrupt North Atlantic Transitions: Ice, Lakes and Sea) supported by the Icelandic Research Council (RANNIS) Grant of Excellence #141573-051 to Á. Geirsdottir and G. Miller. We thank all members of the ANATILS project team for fruitful discussions and to staff at the Oregon State University Marine Geology Repository for sampling core MD99-2269 (grant number OCE-0962077). S.T.B and P.C.S. also thank the British Ocean Sediment Core Research Facility (BOSCORF) for sampling core JR51-GC35. We thank the anonymous reviewers for their supportive comments that helped refine the quality of this manuscript.
830 Aagaard-Sørensen, S., Husum, K., Hald, M., Marchitto, T., Godtliebsen, F., 2014. Sub sea
831 surface temperatures in the Polar North Atlantic during the Holocene: Planktic foraminiferal
832 Mg/Ca temperature reconstructions. The Holocene 24, 93–103.
833
834 Aagaard, K., Coachman, L.K., 1968. The East Greenland Current north of Denmark Strait:
836
838 major surface currents in the Nordic Seas to insolation forcing: Implications for the Holocene
840
841 Andersen, C., Koç, N., Moros, M., 2004b. A highly unstable Holocene climate in the
842 subpolar North Atlantic: evidence from diatoms. Quaternary Science Reviews 23, 2155–
843 2166.
844
845 Andrews, J.T., Smith, L.M., Preston, R., Cooper, T., Jennings, A.E., 1997. Spatial and
846 temporal patterns of iceberg rafting (IRD) along the East Greenland margin, ca. 68˚N, over
848
850 Decadal to millennial-scale periodicities in North Iceland shelf sediments over the last 12 000
851 cal yr: long-term North Atlantic oceanographic variability and solar forcing. Earth and
853
855 Iceland shelf, and application to down-core studies of Holocene ice-rafted sediments. Journal
856 of Sedimentary Research 77, 469–479.
857
858 Andrews, J.T., 2009. Seeking a Holocene drift ice proxy: non-clay mineral variations from
859 the SW to N-central Iceland shelf: trends, regime shifts, and periodicities. Journal of
860 Quaternary Science 24, 664–676.
861
862 Andrews, J.T., Belt, S.T., Olafsdottir, S., Massé, G., Vare, L.L., 2009a. Sea ice and marine
863 climate variability for NW Iceland/Denmark Strait over the last 2000 cal. yr BP. The
864 Holocene 19, 775–784.
865
868
870 from the glaciated margin of east Greenland (67–70° N) to the N Iceland shelves: detecting
871 and modelling changing sediment sources. Quaternary Science Reviews 91, 204–217.

Belt, S.T., Vare, L.L., Massé, G., Manners, H.R., Price, J.C., MacLachlan, S.E., Andrews, J.T., Schmidt, S., 2010. Striking similarities in temporal changes to spring sea ice occurrence across the central Canadian Arctic Archipelago over the last 7000 years. Quaternary Science Reviews 29, 3489–3504.

Cabedo-Sanz, P., Belt, S.T., 2016. Seasonal sea ice variability in eastern Fram Strait over the last 2,000 years. Arktos (in press).

9 – Figure Legends

Figure 1: (a) Location map showing the B997 surface sediments (black dots) and cores under study (purple diamonds): MD99-2269 and JR51-GC35. Other cores mentioned in this paper (green squares) are: MD99-2263 (2263, Andrews et al., 2009a), MD99-2275 (2275, Massé et al., 2008) and MD99-2273 (2273, Sicre et al., 2013). Main surface water currents are the cold East Greenland Current (EGC) carried southwards along the east coast of Greenland, and the relatively warm Irminger Current (IC), a branch of the North Atlantic Current that flows northward carrying Atlantic waters. The cold East Iceland Current (EIC) and the warm North Iceland Irminger Current (NIIC), together with Denmark Strait (DS) are also indicated; (b) Map showing mean annual sea surface temperatures (0–10 m; bar units are in degrees Celsius) from 1955–2012 obtained from the World Ocean Atlas database. Dotted vertical lines show the location of two routinely surveyed sections, Hornbanki and Siglunes.

Figure 2: Surface sediments from W/N Iceland shelves scaled (red dots) to the abundance of (a) IP$_{25}$; (b) quartz and (c) C$_{25:3}$. Black dots represent locations where proxies were absent (below limit of detection). Blue and black dashed lines indicate the average April location of the sea ice margin AD 1870–1920 and AD 1989–2002, respectively (http://nsidc.org/data.gis/data.html).

Figure 3: Temporal concentration profiles of the sea ice proxies IP$_{25}$ and quartz (Andrews et al., 2014) in (a) MD99-2269 and (b) JR51-GC35. Regime shifts in the IP$_{25}$ data for MD99-2269 are indicated with a black line. Linear regression analyses between IP$_{25}$ and quartz gave correlation coefficients (R^2) of 0.74 and 0.66 for MD99-2269 (25 yr equi-spaced time series) and JR51-GC35 (100 yr equi-spaced time series), respectively. The alkenone-based SST
estimates for MD99-2269 (Kristjansdottir et al., in press) and JR51-GC35 (Bendle and Rosell-Melé, 2007) are also shown.

Figure 4: Temporal percentage profiles and trends of (a) *T. quinqueloba* and (b) *N. pachyderma* in MD99-2269.

Figure 5: Temporal concentration profiles of IP$_{25}$ in (a) JR51-GC35; (b) MD99-2269; (c) MD99-2263 (Andrews et al., 2009a) and (d) MD99-2275 (Massé et al., 2008). (e) Historical Koch sea ice index (Wallevik and Sigurjonsson, 1998).

Figure 6: PCA of the various proxies used in the current study. IP$_{25}$, C$_{25:3}$, *T. quinqueloba* and *N. pachyderma* data are from the current investigation; Quartz (Moros et al., 2006), CaCO$_3$ (Giraudeau et al., 2004) and SST (Bendle and Rosell-Melé, 2007; Kristjansdottir et al., in press) data are from previously published studies.

Figure 7: Compilation of summer insolation and proxy data for MD99-2269. (a) Summer insolation at 65 °N (Berger and Loutre, 1991); Temporal palaeoclimate profiles and trends for the MD99-2269 core: (b) Biogenic CaCO$_3$ (%) (Giraudeau et al., 2004); (c) C$_{25:3}$ concentrations; (d) *T. quinqueloba* (%); (e) estimated SST (°C) derived from diatoms (Justwan et al., 2008) and alkenones (Kristjansdottir et al., in press); (f) *N. pachyderma* (%); (g) Quartz (%) (Moros et al., 2006); (h) IP$_{25}$ concentrations. The vertical dotted lines at ca 6.2 cal ka BP and ca 3.3 cal ka BP indicate the division between the early-mid Holocene and mid-late Holocene transitions, respectively. The vertical dotted line at ca 1.5 cal ka BP shows the sub-division during the late Holocene.
Figure 8: Compilation of sea ice proxy records for various regions together with a combined terrestrial record for Iceland. (a) Summer insolation at 65 °N (Berger and Loutre, 1991); (b) IP$_{25}$ concentrations in MSM5/5-723-2 (Müller et al., 2012); (c) IP$_{25}$ concentrations in PS2641-4 (Müller et al., 2012); (d) Quartz (%) in MD99-2269 (Moros et al., 2006); (e) IP$_{25}$ concentrations in MD99-2269 and regime shifts trend (black line); (f) Composite multiproxy Hvitarvatn/Haukadalsvatn summer reconstruction from Icelandic lakes (Geirsdóttir et al., 2013). Vertical blue lines represent periods of abrupt change as recorded by the lake composite record. Horizontal dotted lines indicate mean values for quartz, IP$_{25}$ and normalized values for the lake composite record.

Fig. 9: MTM spectra (Mann and Lees, 1996) of the drift ice proxies (resolved at 30 years per sample using Analyseries) in core MD99-2269 over the last ca 8 ka BP: (a) IP$_{25}$; (b) quartz. Prior to performing the spectral analysis, both time series were detrended by subtracting the first SSA component from the time series.

Supplementary Table 1. Summary of station numbers, locations, water depths, biomarker concentrations and quartz percentage for the surface sediments described in the current study.

Supplementary Table 2: Summary of chronology and biomarker data for MD99-2269

Supplementary Table 3: Summary of chronology and foraminifera data for MD99-2269.

Supplementary Table 4: Summary of chronology and IP$_{25}$ data for JR51-GC35.

Supplementary Figure 1. 14C-based age models for MD99-2269 (Stoner et al., 2007) and JR51-GC35 (Bendle and Rosell-Melé, 2007).
Figure 1_revised

(a) Greenland

(b) Iceland

 Disclaimer: This is a pre-publication version. Readers are recommended to consult the full published version for accuracy and citation.
Figure 2_revised

(a) IP_{25}

(b) Quartz

(c) $C_{25,3}$
Figure 3_revised

(a) MD99-2269

(b) JR51-GC35

Disclaimer: This is a pre-publication version. Readers are recommended to consult the full published version for accuracy and citation.
Figure 4_revised

(a)

(b)

$N. pachyderma (s)$

$T. quinqueloba$

Age (yr BP)

$0 1000 2000 3000 4000 5000 6000 7000 8000$

0 20 40 60 80 100

0 20 40 60 80 100

Disclaimer: This is a pre-publication version. Readers are recommended to consult the full published version for accuracy and citation.
Figure 5_revised

Disclaimer: This is a pre-publication version. Readers are recommended to consult the full published version for accuracy and citation.
Figure 8_revised
Figure 9_revised

(a) IP$_{25}$

(b) Quartz

Disclaimer: This is a pre-publication version. Readers are recommended to consult the full published version for accuracy and citation.