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ABSTRACT

Petrological and δ13C analyses were under­
taken on contiguous specimens of coal and 
intercalated minor organic-rich clastic sedi­
ments collected from coal seams spanning 
the Cretaceous-Paleogene boundary in the 
Alberta and Saskatchewan portions of the 
Western Interior Basin. The generally high 
smectite content of the coal suggests that the 
original mires were largely small, discon­
nected, and rheotrophic, readily receiving 
abundant waterborne detrital clastic mate­
rial of largely volcanic origin. Nevertheless, 
using the distinctive claystone that marks 
the Cretaceous-Paleogene boundary as a 
regional datum, it is possible to correlate 
cycles in the vitrinite and inertinite compo­
sition of the coals over >500 km. Estimates 
of peat accumulation rates suggest that the 
cycles in vitrinite and inertinite composi­
tion represent regional, cyclic fluctuations in 
wildfire and oxidation of the peatlands and 
overlying canopy at a frequency of hundreds 
to thousands of years. The likely causes of 
these fluctuations were cyclic, regional-scale 
changes in temperature. The Cretaceous-
Paleogene boundary event occurred early 
during a phase of gradually increasing tem­
perature and/or decreasing rainfall, but peak 
wildfire and desiccation of peat occurred 
up to 14,000  yr later than the Cretaceous-
Paleogene boundary, and the mires did not 
experience significant water stress in the im­
mediate aftermath of the extinction event. A 
persistent, 1.5‰–3.0‰ negative δ13C excur­
sion occurs across the Cretaceous-Paleogene 
boundary, but it cannot be readily separated 
from four, further negative excursions later 
in the earliest Danian. The negative carbon 

isotope excursion linked to the Cretaceous-
Paleogene boundary began a few hundred 
years before the event itself, and recovery 
occurred within 21 k.y., and possibly in as 
little as just a few thousand years, consistent 
with recently calibrated shallow-marine δ13C 
records. Hence, the atmospheric and surface 
ocean carbon pools were coupled at this time. 
The absence of evidence for catastrophic 
change in the climatic regime at the time of 
the Cretaceous-Paleogene extinction in these 
mires supports the notion that the negative 
shift in atmospheric δ13C was brought about 
by changes in the δ13C composition of the sur­
face ocean. This is consistent with the greater 
magnitude of extinction experienced by ma­
rine fauna relative to the terrestrial realm.

INTRODUCTION

The Cretaceous-Paleogene boundary extinc-
tion is considered the second most severe in 
Earth history in terms of its ecological impact, 
and the fifth most severe in terms of familial 
diversity loss (McGhee et  al., 2004), and it 
affected both terrestrial and marine ecosystems 
(e.g., MacLeod et al., 1997; Nichols and John-
son, 2008; Archibald et  al., 2010; Mitchell 
et al., 2012). Numerous hypotheses have been 
advanced as to the cause of the mass extinc-
tion, including the impact of a single, large 
extraterrestrial body (e.g., Alvarez et al., 1980; 
Smit, 1990; Hildebrand et  al., 1991; Schulte 
et al., 2010), extensive volcanism for ~1 m.y. 
across the Cretaceous-Paleogene boundary 
(Courtillot et  al., 1986; Duncan and Pyle, 
1988; Courtillot and Fluteau, 2010; Gertsch 
et  al., 2011), or the surpassing of biological 
thresholds brought about by the culmination 
of multiple nonindividually catastrophic fac-
tors (e.g., Archibald, 1996; MacLeod et  al., 
1997; Keller et  al., 2003; Miller et  al., 2010; 

Archibald et  al., 2010; Mitchell et  al., 2012; 
Tobin et al., 2014).

A transient 1‰–3‰ negative shift in the car-
bon isotope composition (d13C) of planktonic 
carbonate across the Cretaceous-Paleogene 
boundary has been extensively documented in 
marine sections around the world (e.g., Thier-
stein and Berger, 1978; Hsü and McKenzie, 
1985; Zachos et al., 1992; D’Hondt et al., 1998; 
Hart et  al., 2004; Keller et  al., 2003; Schulte 
et  al., 2010). The fact that the shift is absent 
or lesser in magnitude in the contemporane-
ous benthos has been interpreted as evidence 
for the global reduction or shutdown of marine 
surface primary productivity (the so-called 
“Strangelove Ocean”; Hsü and McKenzie, 
1985; Zachos et al., 1992) and/or a decrease in 
the flux of organic material from the surface to 
deep sea (D’Hondt et al., 1998; Alegret et al., 
2012) at that time, resulting in the homogeni-
zation of the normal surface-to-depth positive-
to-negative d13C gradient. A similar 1‰–3‰ 
negative shift in the d13C has also been identi-
fied across the Cretaceous-Paleogene boundary 
in organic carbon deposited in marine settings 
(e.g., Gilmour et  al., 1987; Woolbach et  al., 
1990; Meyers and Simoneit, 1990; Hollander 
et  al., 1993; Arinobu et  al., 1999; Yamamoto 
et al., 2010) and fully terrestrial environments 
(Schimmelmann and DeNiro, 1984; Arens 
and Jahren, 2000; Beerling et al., 2001; Gard-
ner and Gilmour, 2002; Maruoka et al., 2007; 
Therrien et  al., 2007; Grandpre et  al., 2013). 
Because preserved organic carbon of terres-
trial origin records the isotopic composition 
of the paleoatmosphere (Marino and McElroy, 
1991; Arens et al., 2000; Jahren et al., 2008), 
the similarity of the terrestrial and marine d13C 
records has been used to argue for coupling of 
the atmospheric and shallow-marine carbon 
reservoirs through the mass extinction event 
(Beerling et al., 2001).
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Grandpre et al. (2013), however, highlighted 
the occurrence of numerous other negative and 
positive shifts in d13C immediately before and 
after the Cretaceous-Paleogene boundary in 
their data and that of previous studies spanning 
the Cretaceous-Paleogene boundary in terres-
trial successions in North America (i.e., Arens 
and Jahren, 2000; Maruoka et al., 2007; Therrien 
et al., 2007), and some of these excursions can 
be greater in magnitude than the shift associated 
with the Cretaceous-Paleogene boundary itself. 
Additionally, sampling resolution has been typi-
cally biased toward an ~1-m-thick zone imme-
diately bracketing the Cretaceous-Paleogene 
boundary and decreases away from it. Outside 
this narrow zone, sampling spacing is often 
greater than the stratigraphic thickness that typi-
cally records the transient d13C excursion at the 
Cretaceous-Paleogene boundary, leading to the 
distinct possibility that other excursions of equal 
magnitude may have been missed in earlier 
studies. Altogether, the importance of the nega-
tive d13C excursion at the Cretaceous-Paleogene 
boundary in the terrestrial realm is likely to 
have been overstressed in the geological lit-
erature (Grandpre et  al., 2013). Furthermore, 
Therrien et al. (2007) and Grandpre et al. (2013) 
concluded that it is difficult to correlate trends 
across multiple sections, and extract meaningful 
regional or global paleoatmospheric d13C time 
series from the terrestrial record because local, 
episodic deposition, incision, and reworking are 
characteristic of alluvial and fluvial sediments 
(MacLeod and Keller, 1991; Ager, 1993; Collin
son, 1996).

This study documents systematic regional 
changes in the petrological and d13C compo-
sition of mire sediments (coal seams) at eight 
Cretaceous-Paleogene boundary sections from 
the Canadian portion of the Western Interior 
Basin. Only coal is targeted, because peatlands 
are considered to represent more continuous 
and in situ records of accumulation compared 
to terrestrial clastic-dominated sedimentary suc-
cessions (Davies et al., 2006; Wadsworth et al., 
2010), and the surface that separates the bases 
of some coals and their underlying sediment 
have been interpreted as hiatal (e.g., Aitken and 
Flint, 1996; Jerrett et  al., 2011b) and likely to 
have been subject to postdepositional subaerial 
exposure, truncation, and diagenetic alteration 
(Gardner et  al., 1988; Aitken and Flint, 1996; 
Driese and Ober, 2005) and postcompaction 
penetration by the roots of significantly later 
plants. The purpose of this study is to dem-
onstrate that a regional record of paleoatmo-
spheric d13C can be extracted from the terrestrial 
sedimentary record and to compare the record 
of terrestrial d13C with that from extensively 
described time-equivalent marine sections. 

The petrology of the coals is used to assess the 
degree to which selective degradation of plant 
material before and during peat formation could 
have influenced the d13C record, and as a proxy 
for the record of terrestrial wildfire and climate 
changes at the time of peat accumulation, by 
analogy with studies of Holocene peat (Black-
ford, 2000; Marlon et al., 2012).

GEOLOGICAL SETTING

The Late Jurassic to Eocene Western Inte-
rior Basin was an enormous composite foreland 
basin that, at its climax, spanned an east-west 
distance of >1000 km and a north-south dis-
tance of >5000 km from the Canadian Arctic to 
the Gulf of Mexico (Williams and Stelck, 1975; 
DeCelles, 2004). Until late Campanian times, 
subsidence of the basin was primarily caused 
by lithospheric flexure and dynamic subsidence 
adjacent and parallel to a zone of predominantly 
thin-skinned folding and thrusting, associated 
with the eastward subduction of the oceanic 
Farallon plate beneath the North American con-
tinent (the Sevier orogeny; Jordan, 1981; Beau-
mont, 1981; Porter et al., 1982; DeCelles, 2004). 
Late Jurassic to Late Cretaceous high eustatic sea 
levels (Vail et al., 1977; Haq et al., 1987) caused 
inundation of much of the Western Interior Basin 
by marine waters of the Western Interior Seaway, 
and connected the Arctic Ocean to the Gulf of 
Mexico (Kauffman and Caldwell, 1993; Robin-
son Roberts and Kirschbaum, 1995). From the 
late Campanian onwards, the Laramide orog-
eny (sensu Dickinson et al., 1988) sequentially 
segmented the contiguous foreland basin east of 
the Sevier deformation front into a succession 
of smaller structural basins flanked by base-
ment-cored uplifts across a zone that comprises 
present-day northern New Mexico to southern 
Montana (Dickinson et  al., 1988; DeCelles, 
2004). The resulting decrease in accommoda-
tion space and increase in sediment supply in the 
Western Interior Basin, coupled with late Meso-
zoic eustatic sea-level fall (e.g., Haq et al., 1987), 
led to the sporadic and then permanent with-
drawal of the seaway from the Western Interior 
Basin, from the Maastrichtian onward (Williams 
and Stelck, 1975; Tweto, 1980).

From central Montana northward, the fore-
land basin was not disrupted by basement-cored 
Laramide-style deformation and remained 
intact. In this area, preserved sedimentary rocks 
indicate that at the time of the Cretaceous-Paleo-
gene transition, depositional environments were 
wholly terrestrial (Fig. 1), although eastward, 
where late Mesozoic to early Cenozoic rocks 
may have subsequently been removed (e.g., Izett, 
1975; Swinehart et al., 1985), a coeval remnant 
of the Western Interior Seaway is conjectured 

(Johnson et al., 2002; Fig. 1). Lithostratigraphic 
formations that bracket the Cretaceous-Paleo-
gene boundary in this area are the Coalspur 
Formation (west-central Alberta), Willow Creek 
Formation (southwestern Alberta), Scollard For-
mation (east-central Alberta), the Frenchman 
and Ravenscrag Formations (Saskatchewan), 
and the Hell Creek and Fort Union formations 
(Montana and the Dakotas; Fig. 1). The forma-
tions form an eastward-thinning wedge (Daw-
son et al., 1994; Fuentes et al., 2011) of largely 
high-sinuosity fluvial channel sediments and 
associated floodplain, lacustrine, paleosol, and 
mire (coal) facies (Fastovsky and Dott, 1986; 
Jerzykiewicz and Sweet, 1988; McIver and 
Basinger, 1993; Eberth and O’Connell, 1995; 
Murphy et  al., 2002; Figs. 1 and 2; Table 1). 
To the west, nearer the positive topography and 
high sediment fluxes associated with the active 
Sevier deformation front, deposition may also 
have occurred in low-sinuosity channels and 
associated alluvial plains (Fig. 1; Jerzykiewicz 
and Sweet, 1988; DeCelles et al., 1987; Eberth 
and O’Connell, 1995).

The base of the Coalspur, Willow Creek, 
Scollard, Frenchman, and Hell Creek Forma-
tions is marked by an unconformity (Kupsch, 
1957; Johnson et  al., 2002), which occurs in 
the paleomagnetic polarity subchron C30n 
(68.2–66.2 Ma; Fig. 3; Gradstein et al., 2012). 
Up to 60 m of paleotopography is recognized 
on this surface (Kupsch, 1957), and it is over-
lain by a late Maastrichtian to Danian succes-
sion (Lerbekmo and Sweet, 2008; Peppe et al., 
2011) characterized by an upward transition 
from coarser, more amalgamated fluvial chan-
nel sandstones to finer-grained, better preserved 
floodplain clastics and coal (Fig. 3; Eberth and 
O’Connell, 1995; Murphy et  al., 2002). This 
transition is characteristic of the late lowstand 
systems tracts (LST) to transgressive systems 
tracts (TST) of fluvial sedimentary sequences 
(Shanley and McCabe, 1994; Ethridge et  al., 
1998). This succession is unconformably over-
lain by the latest Danian to Thanetian fluvial 
Paskapoo Formation and time-equivalent strata 
(Lerbekmo and Sweet, 2008; Peppe et  al., 
2011). Thus, in the study area, the Cretaceous-
Paleogene boundary occurs within the late LST 
to TST of an ~3–6-m.y.-duration (third order; cf. 
Mitchum and Van Wagoner, 1991) stratigraphic 
sequence (Hamblin, 2004). Within this trans-
gressive context, macrofloral, microfaunal, and 
stable isotope studies indicate that the climate 
in this part of the Western Interior Basin at this 
time varied from warm subtropical, subhumid 
to semiarid, and cooled by up to 8 °C through 
the latest Maastrichtian (Wolfe and Upchurch, 
1986; Jerzykiewicz and Sweet, 1988; Johnson 
et al., 2002; Wilf et al., 2003; Tobin et al., 2014).
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Figure 1. (A). Paleogeographic reconstruction of west-central North America at the time of the Cretaceous-Paleogene (K-Pg) boundary 
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“Complete” Cretaceous-Paleogene boundary 
successions, which record active accumulation 
and subsequent nonerosion of sediment during 
the Cretaceous-Paleogene “event,” are marked 
by the occurrence of a composite light brown-
to-buff or pink claystone <5 cm thick, contain-
ing shock-metamorphosed minerals and/or 
an Ir anomaly and/or a “spike” in fern pollen 
abundance (Sweet et al., 1999; Nichols, 2007). 
Throughout the northern Western Interior Basin, 
the Cretaceous-Paleogene claystone usually 
underlies, but also overlies or occurs as a clas-
tic parting within, a coal (Fig. 3G; Bohor et al., 
1984; Smit and Van der Kaars, 1984; Tschudy 
et  al., 1984; Nichols et  al., 1986; Lerbekmo 
et al., 1987; Johnson et al., 1989; Sweet et al., 
1990, 1999; Sweet and Braman, 1992, 2001; 
Hotton, 2002; Nichols and Johnson, 2002). The 
coal is known variously as the Mynheer (cen-
tral Alberta), Nevis (southern Alberta), Ferris 
(southern Saskatchewan) or “Z” (Montana 
and North Dakota) coal, and it is the focus of 
this study.

In the study area (Fig. 1), burial of the Creta-
ceous-Paleogene boundary horizon by 0.5–4 km 
of younger sediments, from east-to-west (Beau-
mont, 1981; Bustin, 1991; Cameron, 1991), 
resulted in a first-order variation in present-day 
coal rank from lignite to subbituminous in the 
same direction (Bustin, 1991; Cameron, 1991; 
Smith et al., 1994). Uplift and erosion from the 
mid Eocene resulted in removal of much of this 
overburden, and rocks spanning the Cretaceous-
Paleogene boundary are now exposed along the 
walls of canyons incised into the uplifted pla-
teau and on the eroded flanks of nunataks that 
resisted the advance of Pleistocene glaciation.

METHODS

Field Sampling

Eight exposures of the Ferris-Nevis coal in 
south-central Alberta and southwestern Sas-
katchewan were selected for analysis in this 
study (Fig. 1; Table 2). All the localities have 
been previously described, and at six of these 
(Frenchman Valley, Knudsen’s Coulee, Knud-
sen’s Farm, Rock Creek East, Rock Creek 
West, and Wood Mountain Creek), a conform-
able Cretaceous-Paleogene boundary has been 
documented by the occurrence of the bound-
ary claystone associated with an Ir anomaly 
(Table 2). However, at the time of field work for 
this study (July 2011), previous sample collec-
tion had resulted in total removal of the formerly 
described boundary claystone at the Knud-
sen’s Farm locality. Bentonitic carbonaceous 
mudrock of volcanic origin is also interbed-
ded with the coal, locally providing additional 
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correlation tie lines (e.g., tuff “SC-19” sensu 
Eberth and Deino, 2005).

At each locality, centimeter-scale sedimen-
tary logging of the encasing strata was car-
ried out (Fig. 3), recording the full range of 
grain sizes, sedimentary structures, and body 
and trace fossils observed. It was necessary to 
excavate the coal surface by up to 1 m before 
sampling in order to limit the effects of weath-
ering on subsequent analyses. A coal lithotype 
log, using the classification scheme of Diessel 
(1992), was produced to ensure that impor-

tant lithological surfaces were identified prior 
to sampling. In total, 184 contiguous samples 
of coal and associated clastic sediment were 
recovered, representing the whole coal seam 
thickness of nine coals at the eight localities 
(one coal at each locality, but two coals at 
Griffith’s Farm; Figs. 4 and 5). Whenever pos-
sible, the specimens were removed intact, and 
their younging direction was recorded, such 
that their internal stratigraphy could be pre-
served. The average stratigraphic thickness of 
each specimen was ~3 cm.

Petrological Analysis

The land plants that accumulated in mires in 
the Cretaceous and early Paleocene all utilized 
the C3 photosynthetic pathway (Osborne and 
Beerling, 2006), in which atmospheric CO2 
is taken up and fractionated in a quantifiable 
way during the fixation of carbon into biomass 
(Farquhar et al., 1989). Thus, whole plant aver-
age isotopic composition of the plants grow-
ing in Cretaceous-Paleogene mires recorded 
changes in the isotopic composition of the atmo-
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Figure 4 (on this and following page). Schematic correlation panel showing the petrological properties of the Nevis/Ferris coal at all eight 
sampled localities. Datum is the base of the Cretaceous-Paleogene (K-Pg) claystone layer. Correlation lines are for interpretational purposes 
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sphere at the time at which it was fixed (Lloyd 
and Farquhar, 1994), with a minor, quantifiable 
(0.08‰) error due to fluctuations in ecological 
conditions (including light, nutrient, and water 
availability and salinity), and variations in plant 
physiology (Ahrens et  al., 2000). However, 
within C3 plants, d13C values range between 
–23‰ and –24‰ (e.g., Marino and McElroy, 
1991; Arens et al., 2000), and the formation of 
peat involves the selective degradation of the 
least-resistant plant tissues, followed by minor 
reorganization of the bipolymers that remain 
(Hatcher and Clifford, 1997). It is therefore 

possible that changes in the isotopic composi-
tion of the preserved plant material in coal could 
represent changes in the type and degree of 
chemical alteration experienced by plant matter 
after death, before and during the lifetime of the 
accumulating mire (Benner et al., 1987; Bechtel 
et al., 2007). During the accumulation of peat, 
the selective and variable degradation of con-
tributing plant material results in a predictable 
suite of macroscopic to microscopic organic 
materials with a distinctive chemistry and physi
cal structure (Frenzel, 1983; Diessel, 1992; 
Scott, 2002). During the diagenetic conversion 

of peat to coal, the distinct chemistry and mor-
phology of these grains are maintained, except 
at high ranks of coal (i.e., anthracite); these 
distinct grains can be recognized optically and 
are known as macerals (Stopes, 1935; Diessel, 
1992). It is therefore possible to use coal petrol-
ogy to quantify the type and degree of chemi-
cal alteration experienced by the components of 
peat before conversion to coal, and to assess the 
potential impact on the resulting d13C record.

Hence, of the 184 collected samples, 179 were 
cured whole in epoxy resin, cut perpendicular 
to depositional layering, and polished in accor-

Figure 4 (continued). (C) Liptinite content (mineral free). (D) Total mineral content. Abbreviations: D1—decreasing-up trend 1; I1—
increasing-up trend 1; D2—decreasing-up trend 2; I2—increasing-up trend 2; D3—decreasing-up trend 3; I3—increasing-up trend 3; 
D4—decreasing-up trend 4; I4—increasing-up trend 4; D5—decreasing-up trend 5.
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dance with standard methods for oil-immersion 
incident light microscopy (e.g., Australian Stan-
dard AS 2061–1989, 1989). The five remaining 
samples were too brittle to be collected intact 
and were therefore crushed to a maximum 
grain size of 2 mm, and a representative grain 
mount was produced instead. The maceral and 

mineral composition of 166 samples was deter-
mined by counting 300 points per sample using 
a manual point counter with a stepping distance 
of 0.5 mm, in accordance with standard guide-
lines (Australian Standard AS 2856.2–1998 
1998), except the macerals semifusinite and 
fusinite were defined as >0.02 mm. The petro-

logical composition of the remaining 18 coaly 
mudrock samples could not be determined due 
to their inherently high smectite content, which 
prohibited adequate polishing for incident light 
microscopy. A summary of the origin and sig-
nificance of the different maceral and mineral 
components of peat is shown in Table 3.
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Figure 5. Correlation panel of δ13C values of all 319 subsamples of coal and intervening clastic sediment associated with the Nevis/Ferris 
coal at all eight sampled localities. Vertical bars indicate the stratigraphic range of the samples, and horizontal bars indicate the δ13C range 
where multiple readings from the same sample were taken. A moving mean curve of every three samples is superimposed upon the data. 
Datum is the base of the Cretaceous-Paleogene (K-Pg) claystone layer. Correlation lines are for interpretational purposes only and do not 
represent the interpreted stratigraphic architecture of the Nevis/Ferris coal. VPDB—Vienna Peedee belemnite.

TABLE 3. ORIGINS OF THE MACERAL AND MINERAL COMPONENTS OF COAL

fiingiSnigirOlarecaMpuorG  cance

Vitrinite 
Telovitrinite Humifi ed stem, root, bark, and leaf tissue, which has survived 

intact and displays remnants of cellular structure High vitrinite content, especially the structured telovitrinite, 
indicates rapid preservation under anaerobic conditions

Detrovitrinite Stem, root, bark, and leaf tissue deposited as fi ne-grained 
attritus prior to humifi cation

Liptinite

Sporinite Resins, fats, waxes, and oils Increased content of the mechanically resistant liptinites 
indicates loss of vascular biomass associated with poor 
preservation conditions

Cutinite Cuticles of needles, shoots, stalks, leaves, roots, and stems

Resinite Resins, fats, waxes, and oils

Inertinite 

Fusinite Partially combusted (pyrolyzed) vascular plant material that 
has survived intact and shows remnants of cellular structure

High fusinite and semifusinite content is indicative of rapid 
preservation via pyrolysis or partial oxidation at elevated 
temperatures; high inertodetrinite and the unstructured 
macrinite and micrinite content indicate poor preservation 
under relatively aerobic conditions

Semifusinite
Weakly humifi ed vascular plant material that has also undergone 

partial microbial oxidation, dehydration, and/or combustion, 
has survived intact, and shows remnants of cellular structure

Inertodetrinite Fragmented semifusinite and fusinite

Macrinite 
(Partially) microbially oxidized plant material that has lost visible 

physical structure through gelifi cation, or (partially) microbially 
oxidized lipids

Micrinite Product of disproportionation reactions, or any other inertinite 
detritus

Inorganic 
minerals

Detrital minerals Allochthonous clastic sedimentation
High detrital mineral content is indicative of (periods of) 

standing water, but may be concentrated by biomass loss 
associated with poor preservation conditions; syngenetic 
pyrite is indicative of the bacterial reduction of sulfates in 
the presence of iron in anaerobic conditions

Syngenetic pyrite Framboidal and concentric forms of pyrite that crystallized 
syngenetically with peat

Note: Compiled from Berner (1970); Lyons et al. (1986); Cohen et al. (1987); Teichmüller (1989); Diessel (1992, 2010); Scott and Jones (1994); Guo and Bustin (1998); 
Petersen et al. (1998); Taylor et al. (1998); Diessel et al. (2000); Sýkorová et al. (2005); Scott and Glasspool (2007).
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δ13C Analysis

The 184 samples were further subdivided into 
319 subsamples for d13C analysis. Whole-rock 
samples were oven dried (30 °C, 24 h), crushed 
using a granite pestle and mortar, and decarbon-
ated using excess hydrochloric acid (10% v/v) 
until any visible reaction had ceased. The sam-
ples were then repeatedly washed with deion-
ized water until a neutral solution was obtained, 
and samples were oven dried (30  °C, 24 h). 
Carbon isotope analyses were conducted using 
the Plymouth University Isoprime isotope ratio 
mass spectrometer connected to an Isoprime 
Microcube elemental analyzer. Carbon isotope 
ratios are expressed using the internationally 
accepted per mil (‰) standard notation rela-
tive to the Vienna Peedee belemnite (VPDB) 
standard. Instrument calibration was achieved 
using three international standards, USGS 40 
(l-glutamic acid, d13C = –26.389‰), USGS 24 
(graphite, d13C = –16.049‰), and IAEA CH-7 
(polyethylene, d13C = –32.151‰). The standard 
deviation on replicates in run analyses of the 
USGS 40 standard was ±0.12‰.

RESULTS

The results of all petrological and d13C analy-
ses performed on the 184 collected samples 
and 319 subsamples are provided in GSA Data 
Repository Table S1.1

Petrological Analysis

The average composition of all 166 petrologi-
cal analyses from the eight sampling localities is 
46.2% vitrinite, 8.2% liptinite, 23.6% inertinite, 
21.9% detrital minerals, and less than 0.1% 
syngenetic pyrite. Total vitrinite composition 
varies from 24.7% at Knudsen’s Farm to 55.5% 
at Ravenscrag Butte; total liptinite composition 
varies from 4.0% at Frenchman Valley to 15.6% 
at Knudsen’s Farm; total inertinite composition 
varies from 8.4% at Rock Creek East to 37.1% at 
Knudsen’s Farm; and total detrital mineral con-
tent varies from 17.9% at Ravenscrag Butte to 
32.9% at Rock Creek East. Individual measure-
ments of maceral and mineral groups vary from 
0.7% to 93.0% for vitrinite, 0% to 31.7% for 
liptinite, 0% to 94.0% for inertinite, and 0% to 
90.3% for mineral material (GSA Data Reposi-
tory Table S1 [see footnote 1]). Although indi-
vidual measurements in this study fall within the 
usual range expected for coals (Diessel, 1992), 

the large range of values, particularly between 
individual samples, but also between the aver-
age composition of the eight sections, could be 
suggestive of significant variation in the source 
of organic matter and degree of organic matter 
degradation before and during peat accumula-
tion, which could have altered the inherent 
atmospheric d13C record.

Vertical profiles of the vitrinite, inertinite, 
liptinite, and detrital mineral content for each of 
the eight sampled sections are shown in Figures 
4A–4D. Maceral percentages were calculated on 
a mineral-free basis. The Cretaceous-Paleogene 
boundary claystone was used as a datum, and two 
other tuffs beds were used as independent cor-
relation tie points. By subdividing the coal into 
time-equivalent depositional units that broadly 
display either increasing-up (I) or decreasing-
up (D) trends in vitrinite, inertinite, and detrital 
mineral composition, regional sinusoidal trends 
in these indices could be determined. Up to 
three complete cycles in vitrinite and inertinite 
composition are recognizable, starting with a 
decreasing-upward trend in vitrinite, and an 
increasing-upward trend in inertinite at the base 
of the coal beneath and through the Cretaceous-
Paleogene boundary itself. Up to four cycles are 
recognized in detrital mineral composition, start-
ing with a decreasing-up trend at the base of the 
coal (Figs. 4 and 6). For the vitrinite, inertinite, 
and detrital mineral contents, the cycles are most 
convincingly correlated between the Cretaceous-
Paleogene claystone and the upper SC-19 tuff 
bed, where data from all eight sampled sections 
can be filtered visually to eliminate noise and 
more minor, high-frequency cycles developed 
in some, but not all, the sections. Liptinite com-
position is more difficult to correlate between 
the sampled sections. This may be an analytical 
artifact: When coals contain large volumes of 
detrital minerals, they can be difficult to distin-
guish from liptinites in the absence of a fluores-
cent reflected light source.

δ13C Analysis

The average d13C of all coal samples is 
–24.6‰, varying from –25.4‰ at Rock Creek 
East to –24.1‰ at Griffith’s Farm, with indi-
vidual measurements varying from –27.3‰ to 
–21.0‰ (GSA Data Repository Table S1 [see 
footnote 1]), consistent with the composition of 
C3 plants (O’Leary, 1988). Regression of d13C 
measurements against the maceral and mineral 
composition of all samples shows that there is 
no correlation between the maceral composi-
tion and the d13C measurement of individual 
samples (GSA Data Repository Table S2 [see 
footnote 1]). Hence, the style of chemical altera-
tion experienced by plant material during con-

version to peat does not appear to have impacted 
the d13C composition of the preserved organic 
material in coal. Thus, the measured d13C values 
from the coal samples are representative of the 
composition of the vegetation that contributed 
to the original peat, which in turn, reflect paleo-
atmospheric CO2 values.

The d13C values of all 319 subsamples of coal 
and intercalated clastic sediment associated with 
the Nevis/Ferris coal at all eight sampled sections 
are shown in Figures 5 and 6. By subdividing the 
coal into time-equivalent depositional units that 
display positive (P) and negative (N) d13C trends, 
regionally developed trends are evident. The cor-
relation of d13C trends is consistent with that of 
the petrological trends, in that the d13C correlation 
lines are broadly parallel to and do not cross the 
petrological correlation lines (cf. Fig. 4). From 
the base of the coal at Wood Mountain Creek to 
the top at Griffith’s Farm, at least five positive-
negative excursion cycles are readily determined. 
Two complete cycles occur between the Creta-
ceous-Paleogene claystone and the SC-19 tuff 
bed. Determining a “background” d13C value 
against which the magnitude of carbon isotope 
excursions can be measured is difficult, due to 
the inherent sinuosity displayed though the sec-
tions. However, following Grandpre et al. (2013), 
a two-sample Kolmogorov-Smirnov (K-S; Ham-
mer and Harper, 2006) test was used to determine 
the statistical significance of the observed Cre-
taceous-Paleogene carbon isotope shifts in the 
context of observed isotopic variations immedi-
ately above and below the Cretaceous-Paleogene 
boundary at Rock Creek West and Wood Moun-
tain Creek. The boundary sample size (n = 3) for 
each section consists of the d13C values of the 
proposed Cretaceous-Paleogene negative shift 
and n = 17 for the comparison sample for each 
section. The results of the K-S tests for both sec-
tions indicate that a difference could be demon-
strated (at the 0.05 level of significance) between 
the boundary excursion and variations above and 
below the extinctions. However, when the entire 
data set for each section is included as the com-
parison sample, a statistical difference cannot be 
seen. This undoubtedly relates to the observation 
that at Rock Creek West and Wood Mountain 
Creek, the Cretaceous-Paleogene d13C minimum 
is followed by up to four more positive-negative 
excursions (see following).

DISCUSSION

Petrology of the Cretaceous-
Paleogene Coals

The petrology of coal seams has been widely 
used to reconstruct the paleoenvironmental con-
ditions in ancient mires and the surrounding 

1GSA Data Repository item 2015170, details of 
how Figure 1 was compiled, and all petrographic and 
d13C analyses, is available at http://​www​.geosociety​
.org​/pubs​/ft2015​.htm or by request to editing@​
geosociety​.org.

 as doi:10.1130/B31166.1Geological Society of America Bulletin, published online on 7 May 2015

http://www.geosociety.org/pubs/ft2015.htm
http://www.geosociety.org/pubs/ft2015.htm


Jerrett et al.

12	 Geological Society of America Bulletin, v. 1XX, no. XX/XX

environment (e.g., Cohen et  al., 1987; Spears, 
1987; Diessel, 1992; Scott et al., 2000; Belcher 
et al., 2003; Davies et al., 2006; Collinson et al., 
2007; Hudspith et al., 2012). The three maceral 
groups recognized petrologically in coals are 
vitrinites, inertinites, and liptinites (Table  3). 
Vitrinites are largely derived from vascular 
plant material (cell walls) that has undergone 
humification in the absence of oxygen. Lipti-
nites are the products of H-rich plant organs 
such as spores, cuticles, waxes, and resins. The 
origin of inertinites is the same as vitrinites and 
liptinites, but they have usually undergone char-
ring (pyrolysis) prior to anaerobic humification 
(Table 3; Scott and Glasspool, 2007). Because 
individual macerals within the maceral groups 
are classified according to their size and mor-
phology, numerous studies (e.g., Scott et  al., 
2000; Belcher et  al., 2003; Collinson et  al., 
2007; Hudspith et  al., 2012) have utilized the 
distribution of different-sized inertinite macer-
als through coal to reconstruct distant (wind-
blown), canopy, surface, and ground fire events, 
the frequency of which, by analogy with studies 
of Holocene charcoal records, may be related to 
climate change on geologically short time scales 
(Power et al., 2008; Marlon et al., 2012).

Published petrological studies of Creta-
ceous-Paleogene boundary coals (i.e., Sweet 
and Cameron, 1991; Belcher et  al., 2003) do 
not tabulate coal composition, but on a mineral-
free basis, the bulk composition of the Creta-
ceous-Paleogene boundary coals in this study 
is enriched in inertinite and liptinite relative 
to slightly younger Paleocene coals from the 
Frenchman Formation in the same study area 
(Beaton et al., 1991; Potter et al., 1991; Frank 
and Bend, 2004) as well as relative to Mesozoic 
to Cenozoic coals and Quaternary peats more 
generally (Diessel, 2010; Glasspool and Scott, 
2010). This suggests that the frequency of wild-
fires in the interval bracketing the Cretaceous-
Paleogene boundary was relatively high, super-
ficially supporting the hypothesis that bolide 
impact at the Cretaceous-Paleogene boundary 
would have ignited regional-to-global-scale 
wildfires (Melosh et al., 1990; Woolbach et al., 
1990; Morgan et al., 2013). In detail, however, 
within the sampled Cretaceous-Paleogene coal, 
total inertinite (charred material) and vitrinite 
(noncharred material) fluctuate cyclically, and 
up to three full cycles can be readily deter-
mined from the base to the top of the coals. 
In the interval immediately bracketing the 
Cretaceous-Paleogene boundary, total inertinite 
composition is low (<10%), and vitrinite com-
position is high (>50%; Figs. 4 and 6). Inerti-
nite composition gradually increases to a peak 
of >60% at the top of unit I1, and vitrinite com-
position gradually falls to <15% at the top of 
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Figure 6. All (A) vitrinite, (B) inertinite, and (C) δ13C data points measured in this study 
(K‑Pg—Cretaceous-Paleogene boundary). The median stratigraphic range of each data 
point is indicated, as well as a moving average line of every 10 points. Correlated units dis­
cussed in the text are indicated. (A) The stratigraphic positions of vitrinite data have been 
stretched or collapsed to fit the thickness of unit D1 at Wood Mountain Creek, and units I1 
to D4 at Griffith’s Farm (cf. Fig. 4A). (B) The stratigraphic positions of inertinite data have 
been stretched or collapsed to fit the thickness of unit I1 at Wood Mountain Creek, and units 
D1 to I4 at Griffith’s Farm (cf. Fig. 4B). (C) The stratigraphic positions of δ13C data have been 
stretched or collapsed to fit the thickness of units P1 to P2 at Wood Mountain Creek, and units 
N2 to N5 at Griffith’s Farm (cf. Fig. 5). VPDB—Vienna Peedee belemnite. The data are super­
imposed on a summary of the range of stratal and stratigraphic relationships observed in this 
study that influence the preservation of the petrological and δ13C record of coal. (a) Loss of 
the lower part of the record due to onlap against inherited topography. (b) Expansion of the 
record due to rapid sedimentation associated with avulsion into the mire and/or deposition of 
volcaniclastics. (c) Contraction of the record due to differential compaction and/or reduced 
rates of peat accumulation. (d) Loss and/or expansion of the upper part of the record through 
progressive interfingering with overlying clastic sediments. (e) Loss of the upper part of the 
record through removal by channel incision. See Figures 4 and 5 for key to other symbols.
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unit I1, some 20–30 cm above the Cretaceous-
Paleogene boundary claystone. This result is 
precisely in accordance with the observations 
of Belcher et  al. (2003), who proposed, on 
the basis of petrological evidence from North 
American coals, that there was no evidence 
from the peat record to support the Cretaceous-
Paleogene global wildfire hypothesis (cf. Mor-
gan et al., 2013). These cycles in the inertinite 
and vitrinite composition of the coals can be 
correlated over distances of over 500 km (Figs. 
4 and 6), strongly indicative of some regional-
scale control on the stratigraphic distributions 
of these indices of wildfire. Moreover, the 
quantities of microscopic inertinite, indicative 
of distant, windblown soot, soot washed-in by 
rivers, or fires in the vegetation canopy, and 
macroscopic inertinite, indicative of surface 
or ground fires in the peat itself, increase and 
decrease in tandem (Figs. 4 and 6). This sug-
gests a regional, most likely climatic, control on 
the occurrence of wildfires, both in the canopy 
of growing vegetation and within the peat itself. 
At individual locations, wildfire occurrence is 
typically promoted by increased temperature 
and limited rainfall, although an ignition mech-
anism such as lightning, wind as a spreading 
mechanism, and fuel are also required (e.g., 
McKenzie et al., 2004; Daniau et al., 2012).

Not all inertinite is universally believed to 
have been formed by charring, and some is 
considered the result of microbial and fungal 
oxidation after burial (O’Keefe et  al., 2013; 
Table  3). Such oxidation of plant material is 
promoted by long residency of plant material in 
the upper 0.5 m of the peat profile (the acrotelm; 
sensu Ingram, 1982), in response to a relatively 
slowly rising water table to generate accom-
modation for the permanent accumulation of 
peat (Clymo, 1984; Diessel, 1992). Whether 
the product of charring or biogenically medi-
ated oxidation, the regional-scale, cyclic nature 
of inertinite and vitrinite distribution within the 
Cretaceous-Paleogene coals in western Canada 
is suggestive of regional-scale cyclic fluctua-
tions in temperature and/or rainfall during the 
lifetime of the mires. There is no suggestion 
from the petrological data of an increase in 
wildfire occurrence, or any significant change 
in the climatic regime at or immediately follow-
ing the Cretaceous-Paleogene boundary event, 
which is surprising given the scale of local and 
global ecological devastation at this time.

The mineral content of coals has also been 
used in paleoenvironmental studies (e.g., Cohen 
et al., 1987; Spears, 1987; Davies et al., 2006). 
Detrital mineral matter is transported into peat 
largely via fluvial or marine inundation. Coal 
containing low quantities of detrital minerals 
(typically <10% by volume) has therefore been 

interpreted as the product of peat accumula-
tion in raised, ombrotrophic mires, where peat 
accumulation utilizes excess rainfall-derived 
moisture to dome above the regional water table 
and level of regional flooding (Staub, 1991; 
Diessel et  al., 2000). Coals with significant 
detrital mineral volumes have been interpreted 
as representing peat that accumulated in low-
lying, rheotrophic mires, which typically in-fill 
topographic hollows and are readily subjected 
to flood events. However, oxidative biomass 
loss from peat can concentrate inorganic min-
eral material into discrete layers (McCabe 1984; 
Jerrett et  al., 2011a). The high mean detrital 
mineral content of the Cretaceous-Paleogene 
coals is indicative of significant primary clastic 
input into the mires (Petersen and Andsbjerg, 
1996; Staub, 2002), even between the events that 
formed the clastic partings that are a feature of 
the Cretaceous-Paleogene boundary coals (Fig. 
4D). This supports the notion that the mires were 
largely rheotrophic and were limited in spatial 
extent (the sampled coals represent a series of 
coeval, disconnected mires), close to a source 
for the clastic material. The concentration of 
detrital minerals may also have been enhanced 
by oxidative degradation and organic biomass 
loss, consistent with the relatively high inertinite 
and liptinite content of the coal (McCabe, 1984; 
Diessel, 1992; Jerrett et  al., 2011c). The four 
complete cycles in the volume of detrital min-
eral contained within the Cretaceous-Paleogene 
coals (Fig. 4D) may represent cyclic, simultane-
ous transitions from rheotrophy to ombrotrohpy 
and back again within the Cretaceous-Paleo-
gene mires. Neither modern nor ancient mires 
are usually interpreted as wholly rheotrophic 
or ombrotrophic in their structure (e.g., Greb 
et  al., 2002), and the contemporaneous switch 
from rheotrophy to ombrotrophy in numerous 
Holocene northwest European mires (termed 
the “fen-bog-transition”) is well documented as 
a response to regional increases in effective rain-
fall (Walker, 1970; Blackford and Chambers, 
1991). Hence, regional fluctuations in detrital 
mineral content of the Cretaceous-Paleogene 
coals could reflect changes from rheotrophy 
to ombrotrophy and vice versa, in turn reflect-
ing basin-scale changes in rainfall patterns. 
Although Cretaceous-Paleogene mires have, in 
part, been interpreted as ombrotrophic in ori-
gin (Sweet and Cameron, 1991), there is little 
evidence to further support the hypothesis that 
cycles in detrital mineral content reflect transi-
tions from rheotrophy to ombrotrophy. Cycles 
in detrital mineral content are not in phase with 
the cyclicity in vitrinite and inertinite composi-
tion of the coal. Additionally, comparison of the 
detrital mineral composition of the Cretaceous-
Paleogene coals with previous palynological 

studies (Table 2) does not show any correla-
tion with monotaxic or stunted flora indicative 
of singularly ombrotrophic conditions, such as 
Sphagnum. The absence of clastic material in 
portions of the coal is not necessarily evidence 
for ombrotrophy in mires, since studies of 
modern rheotrophic mire systems indicate that 
flocculation of clays by low-pH standing mire 
waters and baffling by vegetation can signifi-
cantly inhibit the transport of clastic material by 
currents into the mire center (Staub and Cohen, 
1979). Given that much of the clastic material 
is smectitic, and likely of volcanic origin, the 
regional-scale trends in detrital mineral content 
most likely reflect several basin-scale pulses of 
airborne delivery and/or fluvial redistribution 
of volcanic material ultimately derived from 
the adjacent Sevier orogeny: a similar process 
envisaged for the deposition of the Cretaceous-
Paleogene boundary claystone (Hildebrand, 
1993; Nichols et  al., 1992) and volcanic sedi-
ments preserved in coals elsewhere (e.g., Greb 
et al., 1999).

δ13C Record of the Cretaceous-
Paleogene Coals

The sampling at Knudsen’s Coulee and Knud-
sen’s Farm replicates the work of Therrien et al. 
(2007), and the d13C profiles at those localities 
largely corroborate both in terms of their shape 
and magnitude of excursions. The results of this 
study are also coarsely consistent with previous 
studies from terrestrial sediments elsewhere in 
the western interior of America that show d13C 
maxima immediately at, or some centimeters 
below, the Cretaceous-Paleogene claystone, and 
a negative excursion of 1.5‰–2.5‰ culminat-
ing in d13C minima above the Cretaceous-Paleo-
gene claystone (Schimmelmann and DeNiro, 
1984; Arens and Jahren, 2000; Beerling et al., 
2001; Arens and Jahren, 2002; Gardner and 
Gilmour, 2002; Maruoka et  al., 2007; Ther-
rien et al., 2007; Grandpre et al., 2013). In this 
study, the position of the d13C minimum occurs 
within the Cretaceous-Paleogene claystone 
at Frenchman Valley, to 5–10 cm above the 
Cretaceous-Paleogene claystone at Knudsen’s 
Coulee (Fig. 5). In those studies where sampling 
resolution is comparable to this study, the d13C 
minimum typically also occurs in the first 10 
cm above the Cretaceous-Paleogene claystone 
(Beerling et  al., 2001; Maruoka et  al., 2007; 
Grandpre et  al., 2013). In the sampled locali-
ties of this study, the d13C minimum above the 
Cretaceous-Paleogene claystone is followed by 
up to four more positive-negative excursions of 
lesser magnitude (P2–N2 to P5–N5; Fig. 5), which 
are not recognized or described in previous pub-
lished studies. The magnitude of each excursion 
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is variable between sampling localities, and the 
Wood Mountain Creek locality notably contains 
an additional positive-negative excursion within 
unit N2 (Fig. 5).

Grandpre et  al. (2013) questioned the use 
of terrestrial d13C curves alone as chemostrati-
graphic markers, as proposed by Arens and 
Jahren (2002). The successful correlation of 
these five positive-negative d13C cycles between 
the sampled sections over a distance of more 
than 500 km, between contemporaneous mires 
that were most likely disconnected, demon-
strates that it is possible to resolve an intricate 
time series of atmospheric d13C from the terres-
trial sedimentary record (Figs. 5 and 6). How-
ever, in this case, this is achievable by maintain-
ing a high sampling resolution (~1 cm), and 
collecting contiguous samples from vertical 
sections through coal seams alone (and minor 
intercalated clastic sediments), as suggested by 
Therrien et al. (2007). It is proposed that such 
a detailed, regional-scale record of atmospheric 
d13C could not be produced from analysis of dis-
seminated organic material from time-equiva-
lent clastic floodplain deposits, where sediment 
deposition was more intermittent, and the total 
time represented by sedimentation may be rela-
tively small, compared to the more continuous 
in situ accumulation of plant material in mires.

Peat Accumulation Rates and the Regional 
Record of Climate and Carbon Cycling

By estimating peat accumulation rates, it 
is possible to speculate upon the frequency of 
cyclicity in the petrological and stable isotopic 
record of the Cretaceous-Paleogene coals. The 
Cretaceous-Paleogene claystone horizon that 
occurs at five of the sampling localities (Figs. 
4 and 5) has been shown through detailed 
palynological studies to mark the extinction of 
numerous Cretaceous flora (Sweet et al., 1999). 
The claystone representing the Cretaceous-
Paleogene boundary was originally dated at ca. 
65.16 Ma by Swisher et al. (1993), in the Hell 
Creek Formation (eastern Montana), while the 
SC-19 tuff at Knudsen’s Farm and the pro-
posed correlative smectitic mudstone (Figs. 4 
and 5) were dated at 64.72 ± 0.17 Ma (Baads-
gaard et al., 1988) and 64.90 ± 0.31 Ma (Eberth 
and Deino, 2005). More recently, Kuiper et al. 
(2008) recalculated these Cretaceous-Paleogene 
boundary ages by calibrating the 40Ar/39Ar dat-
ing method to astronomical tuning and redated 
the boundary to 65.84 ± 0.12 Ma and 65.99 ± 
0.12 Ma. These new dates suggest the dates of 
Baadsgaard et al. (1988) and Eberth and Deino 
(2005) also require recalibration. Indeed, apply-
ing typical vertical compaction ratios from sur-
face peat to coal (i.e., 1.2:1 to as much as 30:1; 

Ryer and Langer 1980) and the earlier radio-
genic dates yields peat accumulation rates in 
the Cretaceous-Paleogene coals of up to 0.08 
mm/yr. This rates appears unrealistic because it 
is orders of magnitude lower than the range of 
Holocene peat accumulation rates of 1–5 mm/yr 
compiled by Diessel et al. (2000).

Renne et  al. (2013) more recently redated 
the Cretaceous-Paleogene boundary claystone, 
and two tuffs within the correlative IrZ and Z 
coal further south in the basin at Hell Creek, 
Montana (Fig. 1). These authors determined an 
age of 66.043 +0.011/–0.043 Ma for the Creta-
ceous-Paleogene boundary, broadly consistent 
with the age published by Kuiper et al. (2008) 
and Gradstein et al. (2012). The tuffs (“Z2” and 
“Z1”; sensu Renne et al., 2013), located 80 and 
120 cm above the Cretaceous-Paleogene bound-
ary, yielded ages of 66.019 +0.021/–0.046 Ma 
and 66.003 +0.033/–0.053 Ma, respectively. 
Although Renne et  al.’s (2013) ages for these 
tuffs are consistent with stratigraphic order, they 
are indistinguishable statistically. However, tak-
ing into account the full range of peat-to-coal 
compaction ratios provided by Ryer and Langer 
(1980), and the maximum difference derived 
from the radiometric ages of Renne et  al. 
(2013), peat accumulation rates could be up to 
~0.4 mm/yr, consistent with the lower measured 
Holocene peat accumulation rates compiled by 
Diessel et al. (2000). The ages of Renne et al. 
(2013) therefore provide the most realistic esti-
mate of peat accumulation rates at the time of 
the Cretaceous-Paleogene boundary and again 
suggest that the dates of Baadsgaard et al. (1988) 
and Eberth and Deino (2005) require revision.

Lateral variability in the thicknesses of units 
correlated between time lines in Figures 4 and 
5 naturally implies that peat accumulation rates 
varied from locality to locality, and most likely 
with time. Assuming peat accumulation rates of 
0.4 mm/yr (i.e., similar to the Hell Creek area 
of northeastern Montana) and peat to coal com-
paction ratios of 1.2:1–30:1, calculations imply 
that the Cretaceous-Paleogene coal at Ravens
crag Butte, where it is most thickly developed, 
may represent ~75 k.y. of peat accumulation. 
Thus, the three complete regionally developed 
vitrinite and inertinite cycles (Fig. 6) represent 
regional fluctuations in wildfire occurrence and 
oxidation in the peat at a centennial to millen-
nial scale, similar to that recorded in the Pleisto
cene and Holocene (e.g., Marlon et al., 2012). 
Peak occurrence of wildfire or desiccation, as 
evidenced by peak inertinite content, occurs at 
the top of unit I1 (Figs. 4B and 6B), more than 
0.2 m above the Cretaceous-Paleogene bound-
ary, which equates to ~14,000 yr later than 
the boundary event. The cause of long-term, 
regional changes in the inertinite composition 

of peat, if considered to be purely the product 
of charring (e.g., Scott et  al., 2000; Scott and 
Glasspool, 2007), may be temperature, since 
studies of global pre-anthropogenic Pleistocene 
and Holocene charcoal abundance in sediment 
have been shown to vary with this parameter 
(Power et al., 2008; Marlon et al., 2012). Hence, 
the Cretaceous-Paleogene boundary event may 
have occurred in the early phases of a more than 
14,000 k.y. regional warming event (unit  I1; 
Figs. 4B and 6B). This, and other short-dura-
tion warming and cooling events of the same 
order identified within the Ferris/Nevis coal 
(units I1 to I4; Fig. 4B) would be superimposed 
upon, or have quickly followed, the longer-term 
(~100–300 k.y. duration) cooling event that is 
considered to have characterized the latest Cre-
taceous (Wilf et  al., 2003; Tobin et  al., 2014). 
The interpretation that the inertinite record of 
the coal represents a proxy for relative tem-
perature should be strongly tempered by the 
fact that (1) fire frequency is also controlled 
by rainfall patterns, amongst other parameters 
(McKenzie et  al., 2004; Daniau et  al., 2012), 
and (2) much inertinite may not be the product 
of charring, but may instead be the product of 
microbial and fungal activity associated with 
desiccation in the mire acrotelm (e.g., Diessel 
et al., 1992; O’Keefe et al., 2013). Hence, the 
inertinite record of coal may represent a proxy 
for rainfall in mires accumulating in nonparalic 
environments (for discussion, see Wadsworth 
et  al., 2002). Whether inertinite is a proxy for 
temperature or rainfall, it should be noted that 
the trend of decreasing vitrinite composition 
and increasing inertinite composition begins 
before the Cretaceous-Paleogene boundary 
in the latest Maastrichtian, and other, similar 
cycles of vitrinite and inertinite content occur 
later in the Danian.

Similarly, the five positive-negative d13C 
excursions represent rapid cycles in atmo-
spheric carbon budget, also at a centennial to 
millennial scale. The data from Rock Creek 
West and Wood Mountain Creek show the 
incipience of the first negative d13C excursion 
(unit N1; Fig. 5) ~5 cm below the Cretaceous-
Paleogene claystone, which predates the Creta-
ceous-Paleogene boundary by a maximum of a 
few thousand years. At the same two localities, 
organic d13C recovers to higher values within 
0.3 m of the Cretaceous-Paleogene boundary 
(unit P2; Fig. 5), or a maximum of ~21,000 yr 
after the event. Thus, the d13C anomaly at the 
Cretaceous-Paleogene boundary is consistent 
in magnitude, timing, and rapidity of onset and 
recovery with the existing terrestrial records of 
Renne et  al. (2013) and with the recalibrated 
data of Arens and Jahren (2000), as well as 
some recent marine carbonate records (e.g., 
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Schulte et  al., 2010). The result is markedly 
similar to the terrestrial organic d13C record of 
Smit (1990), indicating negative excursion and 
partial recovery over just 3–5 k.y. Marine car-
bonate d13C records do typically show rapid ini-
tial negative excursion, but they typically have 
longer recovery intervals of ~300 k.y. to 3 m.y. 
(e.g., D’Hondt et al., 1998; Alegret et al., 2012), 
although D’Hondt et  al. (1998) identified an 
early phase of recovery marked by the return of 
planktic-to-benthic d13C differences to low but 
relatively stable levels within the first several 
hundred thousand years after the extinction. The 
study therefore supports the notion that the sur-
face ocean and atmosphere behaved as coupled 
reservoirs at this time, similar to other times in 
the Cretaceous (Gröcke et al., 2005), as opposed 
to a decoupled system (cf. Fang et al., 2013).

SYNTHESIS AND CONCLUSIONS

The Cretaceous-Paleogene boundary in the 
Canadian portion of the Western Interior basin 
occurred during the late lowstand to transgres-
sive systems tract of a third-order (~3–6 m.y.) 
depositional sequence, and followed a 100–
300 k.y. episode of regional cooling in tempera-
tures at the end of the Maastrichtian. At the time 
of the Cretaceous-Paleogene boundary, peat 
accumulated in small, disconnected, rheotrophic 
mires, subject to ready influx of waterborne 
detrital clastic material of largely volcanic ori-
gin. The peatlands and overlying canopy were 
subject to cyclic fluctuations in wildfire and 
oxidation at a frequency of hundreds to thou-
sands of years, in accord with observations of 
Holocene peatlands. The likely causes of these 
fluctuations were cyclic, regional-scale changes 
in temperature and/or rainfall. The Cretaceous-
Paleogene boundary event occurred during 
a phase of gradually increasing temperature 
and/or decreasing rainfall, but peak wildfire and 
desiccation of peat occurred up to ~14,000  yr 
later than the Cretaceous-Paleogene boundary, 
and the mires did not experience significant 
wildfire activity or water stress in the immediate 
aftermath of the extinction event.

This study demonstrates that a meaningful, 
regional record of paleoatmospheric d13C can 
be extracted from the terrestrial sedimentary 
record. Although a persistent, 1.5‰–3.0‰ 
d13C excursion occurs across the Cretaceous-
Paleogene boundary, it cannot be readily sepa-
rated from four, further excursions later in the 
earliest Danian. Additionally, the level of micro
sampling required (at a resolution of less than 
perhaps 3 cm), the requirement for a demonstra-
bly relatively continuous sedimentation rate, and 
the existence of other, lesser-magnitude isotopic 
excursions at the Cretaceous-Paleogene bound-

ary suggest that the stable isotope record alone 
should be used with care as a chemostratigraphic 
tool in terrestrial settings (cf. Therrien et  al., 
2007; Grandpre et al., 2013). The negative car-
bon isotope excursion linked to the Cretaceous-
Paleogene boundary preempts the event by a 
few hundred years, suggesting that the negative 
excursion at the Cretaceous-Paleogene bound-
ary may have been overemphasized in terms 
of its relationship to whichever catastrophe led 
to mass extinction at this time. Recovery from 
the immediate negative excursion in d13C at the 
Cretaceous-Paleogene boundary was rapid (less 
than 21 k.y.), but the atmospheric carbon budget 
was subject to continued, cyclic fluctuations in 
isotopic composition at frequencies on the cen-
tennial to millennial scale. This confirms that 
the earliest Danian was also a period of major, 
cyclic transfer of carbon from one reservoir 
to another.

The similarity in magnitude of the d13C excur-
sions and time scale of recovery between the 
terrestrial and shallow-marine realm suggest the 
two behaved as coupled reservoirs at this time. 
The absence of evidence for catastrophic change 
in the climatic regime at the time of the Creta-
ceous-Paleogene extinction, in the mires of the 
north-central Western Interior Basin, supports 
the notion that the negative shift in atmospheric 
d13C was driven by changes in the d13C composi-
tion of the surface ocean. This is consistent with 
the greater magnitude of extinction experienced 
by marine fauna relative to the terrestrial realm.
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