University of Plymouth

PEARL https://pearl.plymouth.ac.uk
04 University of Plymouth Research Theses 01 Research Theses Main Collection
2016

Framework for Automated Functional
Tests within Value-Added Service
Environments

Wacht, Patrick

http://hdl.handle.net/10026.1/5335

http://dx.doi.org/10.24382/4717
Plymouth University

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with
publisher policies. Please cite only the published version using the details provided on the item record or
document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

Copyright Statement

This copy of the thesis has been supplied on condition that anyone
who consults it is understood to recognise that its copyright rests
with its author and that no quotation from the thesis and no
information derived from it may be published without the author's
prior consent.

Framework for Automated Functional Tests
within Value-Added Service Environments

by
Patrick Sebastian Wacht

A thesis submitted to Plymouth University
in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Computing and Mathematics

In collaboration with
Darmstadt Node of the Centre for Security,
Communications and Network Research (CSCAN)

December 2015

Acknowledgements

In the first place | wish to express my sincere thanks to my supervisors Prof. Woldemar
Fuhrmann and Dr. Bogdan Ghita for their positive and comprehensive support and

guidance throughout this research.

I would like to further express my special appreciation to my supervisor Prof. Ulrich Trick
who has always been a tremendous mentor for me throughout my time as a member of
the Research Group for Telecommunication Networks at the University of Applied
Sciences Frankfurt. His guidance helped me a lot during the research and writing of this
thesis. Without his encouragement and support, this research probably would have never

been performed.

I would also like to thank all current and former members of the Research Group for
Telecommunication Networks for their friendship, support and the great inspiration that

I could experience during the last years.

Warm thanks go to the members of both the graduate school and the CSCAN Network at
Plymouth University, and special thanks also go to the members of the CSCAN

Darmstadt node for their experienced support especially during PhD seminars.

I wish to thank my family and friends for their encouragement and support offered

throughout the whole time of this research.

Above all, | owe thanks to my loving wife Kathleen for her great support, understanding

and all of the sacrifices that she has made on my behalf.

Author's declaration

At no time during the registration for the degree of Doctor of Philosophy has the author
been registered for any other University award without prior agreement of the Graduate
Sub-Committee.

Work submitted for this research degree at the Plymouth University has not formed part
of any other degree either at Plymouth University or at another establishment.

Relevant scientific seminars and conferences were regularly attended at which work was
often presented, and several papers prepared for publication.

Publications:

Wacht, P.; Lehmann, A.; Eichelmann, T.; Trick, U.; Fischer, M.; Lasch, R.;
Toenjes, R. (2010), “Ein neues Verfahren zum automatisierten Testen von
Mehrwertdiensten” (translated title: “A novel approach to automated testing of
value-added services“), In Proceedings of the 15" VDE/ITG Fachtagung
Mobilkommunikation (Mobilfunktagung 2010), pp. 73-80, 2010.

Wacht, P.; Lehmann, A.; Eichelmann, T.; Fuhrmann, W.; Trick, U.; Ghita, B.
(2010), “Integration of Model-Based Functional Testing Procedures within a
Creation Environment for Value-Added Services”, In Proceedings of the 6%
Collaborative Research Symposium on Security, E-learning, Internet and
Networking (SEIN 2010), pp. 61-74, 2010.

Wacht, P.; Eichelmann, T.; Lehmann, A.; Trick, U. (2011), “A New Approach to
Design Graphically Functional Tests for Communication Services”, In
Proceedings of the 4" IFIP International Conference on New Technologies,
Mobility and Security (NTMS 2011), IEEE, pp. 1-5, 2011.

Wacht, P.; Lehmann, A.; Eichelmann, T.; Trick, U. (2011), “ComGeneration: die
Dienstebeschreibung als Basis fir automatisierte Tests” (translated title:
“ComGeneration: a service description as basis for automated tests“), In
Proceedings of the 16" VDE/ITG Fachtagung Mobilkommunikation
(Mobilfunktagung 2011), pp. 118-123, 2011.

Wacht, P.; Eichelmann, T.; Lehmann, A.; Fuhrmann, W.; Trick, U.; Ghita, B.
(2011), “A new Approach to model a formalised Description of a Communication
Service for the Purpose of Functional Testing”, In Proceedings of the 4%
International Conference on Internet Technologies & Applications (ITA 2011),
pp. 262-269, 2011.

Wacht, P.; Trick, U.; Fuhrmann, W.; Ghita, B. (2013), “A New Service
Description for Communication Services as Basis for Automated Functional
Testing”, In Proceedings of the Second International Conference on Future
Generation Communication Technology (FGCT 2013), IEEE, pp. 59-64, 2013.

Presentations and Conferences attended:

15" ITG Fachtagung Mobilkommunikation (Mobilfunktagung 2010), Osnabriick,
Germany, May 2010

2" International NGN Workshop (ngnlab.eu 2010), Leipzig, Germany,
November 2010

6" Collaborative Research Symposium on Security, E-learning, Internet and
Networking (SEIN 2010), Plymouth, UK, November 2010

4™ |FIP International Conference on New Technologies, Mobility and Security,
Paris, France, February 2011

16" ITG Fachtagung Mobilkommunikation (Mobilfunktagung 2011), Osnabriick,
Germany, May 2011

4™ International Conference on Internet Technologies and Applications (ITA
2011), Wrexham, UK, September 2011

8" Collaborative Research Symposium on Security, E-learning, Internet and
Networking (SEIN 2013), Darmstadt, Germany, November 2013

2" International Conference on Future Generation Communication Technology
(FGCT 2013), London, UK, November 2013

Word count of main body of thesis: 71.004

Framework for Automated Functional Tests within Value-Added
Service Environments

Patrick Sebastian Wacht

Abstract

Recent years have witnessed that standard telecommunication services evolved more and
more to next generation value-added services. This fact is accompanied by a change of
service characteristics as new services are designed to fulfil the customer’s demands
instead of just focussing on technologies and protocols. These demands can be very
specific and, therefore, diverse potential service functionalities have to be considered by
the service providers. To make matters worse for service providers, a fast transition from
concept to market product and low price of a new service is required due to the increasing
competition in the telecommunication industry. Therefore, effective test solutions need
to be developed that can be integrated in current value-added service development life-
cycles. Besides, these solutions should support the involvement of all participating
stakeholders such as the service provider, the test developers as well as the service
developers, and, in order to consider an agile approach, also the service customer.

This thesis proposes a novel framework for functional testing that is based on a new sort
of description language for value-added services (Service Test Description). Based on
instances of the Service Test Description, sets of reusable test components described by
means of an applied Statecharts notation are automatically selected and composed to so-
called behaviour models. From the behaviour models, abstract test cases can be
automatically generated which are then transformed to TTCN-3 test cases and then
assembled to an Executable Test Suite. Within a TTCN-3 test system, the Executable Test
Suite can be executed against the corresponding value-added service referred to as System
Under Test. One benefit of the proposed framework is its application within standard
development life-cycles. Therefore, the thesis presents a methodology that considers both
service development and test development as parallel tasks and foresees procedures to
synchronise the tasks and to allow an agile approach with customer involvement.

The novel framework is validated through a proof-of-concept working prototype.
Example value-added services have been chosen to illustrate the whole process from
compiling instances of the Service Test Description until the execution of automated tests.

Overall, this thesis presents a novel solution for service providers to improve the quality
of their provided value-added services through automated functional testing procedures.
It enables the early involvement of the customers into the service development life-cycle
and also helps test developers and service developers to collaborate.

Contents

(O0] 01 1] o | £SO UR R PPTP vii
[TS o) B T 10 2RSSR IX
LIST OF TADIES ... bbbt Xi
R Y ol [UTox 1 o] o TSP 1
1.1 AIMS and ODJECHIVES......ceiiiiiieie e 2
1.2 TRESIS STFUCTUIE ..ottt bbbt 3

2 Telecommunications Infrastructure and Value-Added Services...........ccecvevennen. 5
2.1 NGN (Next Generation NEtWOIKS)ccveiverurerieiiiereeieseeseeseeseesseeseeseessaeaessens 5
2.2 SIP and its Utilisation in NGNcccccciiiiiiiiii e, 10
2.2.1 SIP Architecture and Basic Functionalitycccccoecvvieeiiiieiiesecenen, 11

2.2.2 The Layered Structure 0f SIP ... 14

2.2.3 SIP-DASEA NGNoiiiiiiiicieceeese e nreas 16

2.2.4 SIP ApPlICatioON SEIVENccviiecectiecte et 18

2.3 Value-Added Services iN NGN......ccooooiiiiiiiiiiseeie e 21
2.3.1 Classifications and DefinitionS............ccoceviiiiiniieiene e 21

2.3.2 Development and Provisioning of Value-Added Services............c.c........ 25

2.4 Stakeholders in Value-Added Service ProvisSioning..........ccccoveveveiennenieseennnn, 29
2.5 CONCIUSION ...ttt bbbt 33

3 The Challenge of Testing Value-Added SErviCes.........ccovvereiieieeriecieeseeie e, 35
3.1 Principles of Functional TeSHINGccevveieiiieiieie e 35
3.1.1 Fundamentals of Testing and TeSt ProCESSEScccoererererirenieieieneen 36

3.1.2 Schematic Approach to Functional Testingcccccvevevieeveeiesiesieieenen, 40

3.1.3 Relevance for Testing of Value-Added Servicescccoeveveivververnennen, 43

3.2 Related Work on Current Testing Methodologies...........cccccevveviiiieieciciieneen, 45
3.2.1 Test-Driven DeVelOpmMENTccvoieiveie et 46

3.2.2 Acceptance Test-Driven Development ..o, 49

3.2.3 Behaviour-Driven Developmentcocviiiriiieieie e 51

3.2.4 Model-Based TeSHINGcceevverieiiiiese e 54

3.3 Related Work on Current Research Projects on Functional Testing 57
3.3.1 UML 2.0 TeSting Profilecccveviiieiieie e 57

3.3.2 TT-Medal Test PIatform.........ccoeiiiiiiiiiiiinieee e 61

vii

3.3.3 Fokus!MBT Test Modelling Environment...........cccooveveeieieenecceeseenn, 64

3.3.4 COMGENEIALION ..vovviieiiiiesiieiee ettt st 68
3.3.5 TelliNg TESESTOMESveiveeieeiiesiieie ettt 73
3.4 Requirements for a New Optimised Solution for Functional Testing of
ValUE-AAUEU SEIVICESocvveriiieiie et 77
KR T O] o 111 o] o ISP 83
Proposed Framework for Testing of Value-Added Services.........cccoccevvvevveieennne 85
4.1 Preconditions and Tasks 0f ROIES.........ccccoviieiiiiiiiee e 85
4.2 Overall Methodology for Testing Value-Added Services..........cccoovevvrvenieennene. 87
4.3 Framework Architecture and COMPONENTES.........ccverieriiriieiieiesee e 93
A4 CONCIUSION ...ttt bbb bbb enes 99
Novel Service Test Specification and Related Specifications............c.c.ccccveuenee. 101
5.1 Existing Specification and Description Languages for Services in the
Telecommunication DOMAINcooiiiiiieieiie e 102
5.1.1 Structured Use Case MOUEIScccoreriiiniinininieieee e 103
5.1.2 Restricted Use Case Modeling (RUCM)........coovviviiienineni i 110
5.1.3 Unified Test Modeling Language (UTML).......cccooovvvvvveieciieneece e 118
5.1.4 Alternative APProaches.......cccccveiieieeieieeie e s se e 124
5.2 Proposed Novel Service Test DeSCIPLIONccveveriereniesieseee e 127
5.2.1 Structure of Service Test DeSCrptionccccevvevviiiivieeie e 129
5.2.2 Architectural PerspectiVeccooeiiiieiieie e 130
5.2.3 Behavioural PErspectiVe..........cccoeieierininiiiseseeeee s 132
5.2.4 Sample Specification with Service Test Descriptionc.cccceeveueenee. 147
5.3 Comparison of Service and Test Specification Languagesccccceevvervennne 151
TR I O o] o 111 o] o ISR 154
Reusable Test Modules and Behaviour Model Generation...........cc.ccoecverveennee. 155
6.1 Notation for Behaviour Modellingccoeiiiiiiiiiiniiiecee e 157
6.1.1 Evaluation of Potential Modelling NOtations............cccoceverineencnenne. 157
6.1.2 Relevant Portions of the Selected Modelling Notation............c.cc.coeue..e. 162
6.1.3 Principles of Modelling Service Behaviour with Statecharts................. 169
6.2 Reusable TeSt MOAUIES..........cccoiiiiiiiiiiee e 175
6.2.1 Test Modules Environment ArchiteCturecocevvverenenesennsenenn 175
6.2.2 Identification of Reusability...........cccccocoviieiiiiiiicc e, 178
6.2.3 Classification of Reusable Test MOdUIES...........ccoovviiieieninnieicce 180
6.2.4 Modelling of Reusable Test MOUIESccevveviviiiiieie e 183
6.3 Test Data INtEQrationccecveiueieeieee e ra e 194
6.4 Generation of Behaviour MOdElS..........c.ooeiiiiiiiiiieee e 201
8.5 CONCIUSION ...oviiiitie bbb b et 218

viii

7 Test Case Generation, Execution and Management.............cccooevveveiieeneccnennn, 221

7.1 Generation of AbStract TeSt SUItE........cccveieeieiieieese e 223
7.1.1 From Behaviour Models to Abstract Test Cases.........cccocvvvververveseennnn, 223

7.1.2 Test Case Derivationccccveveiiieiieie e 226

7.2 TeSt SUITE GENEIALION.........ccieiiiie et re e eneas 236
7.2.1 Motivation for a TTCN-3-based Approach.........cccccevvvevviiiieieciennen, 236

7.2.2 Test Code Generation and Test Suite Buildingc.ccoooeviveiieiinnnnn, 240

7.3 TeSt Case EXECULION.......oiiiiiieiieiie ittt 262
7.4 Test Evaluation and Management..........ccccverveieieereseeneese e e see e ee s 267
7.5 CONCIUSTION ... e e re e 271

8 Framework and Prototype Evaluation............cccoceiieieninninic e 275
8.1 Evaluation of the Defined Framework Requirementscccoocevveneeniniennnn, 275
8.2 Prototype Architecture and Implementation............cccocevveveiiesieeie e, 279
8.3 Proof of Proposed Framework Concept.............ccoviiiiiiiiiciiiicne, 291
8.3.1 Description of Example Service SCenario..........cccoveevveveiieieerieseennnen, 291

8.3.2 SUT Environment and Service Implementationccccoevveieiennenn, 294

8.3.3 Specification of Chat Service with Service Test Description 297

8.3.4 Test Building and Test EXECULIONccccccveiieiiiiieiie e, 301

SIS O Tod [N] o] ISR SPSRS 307

o ©o] (0] 11] o] o S PSPRTSSRRSIS 309
9.1 Achievements of the ReSEArCh..........ccccovveiieiiiic e 309
9.2 Limitations of the RESEArChcceviiiiiiiie e 313
9.3 Suggestions and Scope for Future Workccccoeveiieiieie e 314
RETEIEINCES ... e 317
ApPpPendixX A — ADDFEVIATIONSoiiiieieciere e 331
Appendix B — Own PUBIICAtIONSccooiiiiee e 337

List of Figures

Figure 2.1: Principle structure of an NGN (Trick and Weber, 2009)ccccovevininnnenn. 7
Figure 2.2: NGN architecture in a strata/layer structure (Trick and Weber, 2009) 9
Figure 2.3: Basic principle of SIP cOmmUNICAtIONccoviiiiiiriieiesie s 11
Figure 2.4: Basic establishment of @ SIP SESSION.........ccccceiiiieiiie i 13
Figure 2.5: Layered structure of SIP (Ding and Liu, 2008)cccccevvninninnniinneerieen 14
Figure 2.6: Principle structure of SIP-based NGN (Trick and Weber, 2009)................. 17

Figure 2.7: Modes of operation of a SIP Application Server (Trick and Weber, 2009).19

Figure 2.8: Categorisation of telecommunication SErViCeS.........ccovvervrivereeresieeseeseeanns 23
Figure 2.9: Service life cycle (adapted from (OMA OSPE, 2005)).......cccccvvrvrverrneruenne 26
Figure 2.10: Service Delivery Platform in NGN (Trick and Weber, 2009).................... 28

Figure 2.11: Roles in NGN management (adapted from (ITU-T M.3340, 2009)) 30
Figure 3.1: Dynamic test processes (ISO/IEC/IEEE 29119-2, 2013).......ccccccvevvvvvernenne 37

Figure 3.2: Schematic Approach to Functional Testing (adapted from (Pezzé and Young,
1400)) S PS 41

Figure 3.3: Comparison of TDD and Traditional Development (adapted from
(Abrahamsson et al., 2005)).......ccueiieieeieiieie e 47

Figure 3.4: Relevant activities in Acceptance Test-Driven Development life cycle......49

Figure 3.5: Conceptual Model of Behaviour-Driven Development (Solis and Wang, 2011)

Figure 3.6: Example BDD scenario desCriptionccccceiverenieeseesieseeseesie e sneseeens 53
Figure 3.7: Model-Based Test Development (adapted from (ETSI ES 202 951, 2011))55

Figure 3.8: Example test case specification with U2TP using a UML sequence diagram
(adapted from (OMG, 20138)) ...cuveiveerreeieiieie e et se ettt ra e sreenne s 60

Figure 3.9: TT-Medal test platform (TT-Medal Consortium, 2005)cccceveveiveeennen. 62

Figure 3.10:

Figure 3.11:

Figure 3.12:
Figure 3.13:
Figure 3.14:
Figure 3.15:
Figure 3.16:
Figure 3.17:

Figure 3.18:

Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:

Figure 5.10

Fokus!MBT test modelling environment (Wendland et al., 2013) 65
Architecture and technology stack of Fokus!MBT (Wendland et al., 20152
ComGeneration methodology (Wacht et al., 2011b)cccevvevvivieiiennns 68
Connectivity Editor for Click2IM service (Wacht et al., 2011Db)............... 70
Tree-like Test Data Editor (Wacht et al., 2011b).......cccoevveeiiiiiiieiee, 71
Behaviour Model for Click2IM service (Wacht et al., 2011b) 71
TTS artefacts overview (Felderer et al., 2010)........ccccceevveiiviiicieciecec, 73
Model-driven Testing Process (Felderer et al., 2011)........cccocvvveivriinnnnnne 75
Test story of routing a call (Felderer et al., 2010).........cccccvvvvevviierrennnnn 76
TeamCom service development (adapted from (Eichelmann et al., 2010)). 87
Methodology with both service and test development.............cccccveeeivennnne 88
Proposed overall Methodologycocveiiieiieiiiieee e 91
Use case diagram containing the tasks of the stakeholders............c.c......... 93
Test Creation Framework architeCture ... 94
Interaction between actor and system (Ryndina and Kritzinger, 2005) 104
Structured use case metamodel (Ryndina and Kritzinger, 2005) 105
Use case model of sample chat SErViCeccovveveiieiiesccc e 107
Structured use case model definition of “Add User”ccccccvvnvinnnns 108
Structured use case model definition of “Send Message”........c...ccccvvvenee. 109
RUCM process flow (Yue et al., 2009).........ccoeoeeriiiniiniiiie e 111
Overview of UTML test modelling process (Feudjio, 2009)...........cc..c..... 118
Overview of UTML test models (Feudjio, 2011).......cccccevvveierieneeninnennnn. 120
Test Data View with UTML for SIP MeSSAQgeS.......cuerververieereeeerreereeeeenns 121
: Test Architecture Diagram for sample chat Servicecccooceevevieivenns 122
: Test Behaviour Diagram for Send Message use case of sample chat service

Figure 5.11

... 123

Figure 5.12: Structure of Service Test DeSCriptioN.........cccccvvvreivnirereinieneienesreeeen, 129

Figure 5.13: Dependency of Requirements through Preconditions...............cccceevvennen. 134
Figure 5.14: Relationship between Roles and CISccccovvriiniiincciccneee, 135
Figure 5.15: SIP multimedia communication terminal (ITU-T Q.3948, 2011)............ 136
Figure 5.16: The Role SIP phone with its corresponding CISccccoovvviiiieieniennn, 137
Figure 5.17: Significance of channel for Roles and corresponding Cls 139

Figure 6.1: Generation of Behaviour Models based on STD and reusable test modules

... 155
Figure 6.2: Statecharts basic state example.........ccoviiiiii e 163
Figure 6.3: Hierarchical OR-state eXample..........cccocvviieriiniieere e 164
Figure 6.4: Hierarchical AND-state eXample.........cocooiveiiiiniieiesieeee e 165
Figure 6.5: Labelling Of tranSitioNS..........cccvoveiieieiie e 166
Figure 6.6: Specification of tIMEOULScccoiiiiiiie e 167
Figure 6.7: Light Switch Statechart eXample.........ccccoovveriiiiieere e 168
Figure 6.8: SCXML representation of Light Switch Statechart...............ccoooveiiniennenn. 168
Figure 6.9: Transaction user as mediator between client and server cores................... 171
Figure 6.10: Statechart example with explicit TU involvementcccooevenienenn. 172
Figure 6.11: Simplified Statechart example without explicit TU involvement............. 173
Figure 6.12: Test Modules Environment architeCture.............ccocceveieeiiinieeienee e, 176
Figure 6.13: Classification template for reusable test modulescccccceviveveiienenn. 181

Figure 6.14: Example classification template for SIP UAS non-INVITE reusable test
MOTUIE ... bbbttt ettt b e bbbt e e et 185

Figure 6.15: Behavioural description of SIP UAS non-INVITE reusable test module 186

Figure 6.16: SCXML document of SIP UAS non-INVITE reusable test module......... 188
Figure 6.17: Example classification template for SIP UAC INVITE reusable test module
... 190
Figure 6.18: Behavioural description of SIP UAC INVITE reusable test module........ 191

Xi

Figure 6.19:
Figure 6.20:
Figure 6.21:
Figure 6.22:

Figure 6.23:

Figure 6.24:
Figure 6.25:
Figure 6.26:
Figure 6.27:
Figure 6.28:
Figure 6.29:
Figure 6.30:

Figure 6.31:

Step

Figure 6.32:
Figure 6.33:

Figure 6.34:

SCXML document of SIP UAC INVITE reusable test module............... 193
Structure of abstract data types for test data...........c.cccevviveiieiiiiciienn 195
Conceptual structure of SIP_Request abstract data type...........c.cceevrvenens 196
Predefined copying of message headers...........cccocevviveiieciiicie e, 198
Example XML document of SIP response message “s_Response2xx_6xx”
.. 199
Stored data within Test Data POlccooevieienieiiee e 200
Behaviour models generation process With ACE...........ccccceevevvevecnenne. 202
Conceptual model of Service Test DeSCription..........ccccovcererieieeniennnn 204
Test modules instantiation in behaviour model flow chart 206
Test modules instantiation process examplecccoocevvviiiiinnenienienns 207
Variable reading and parameterisation flow chart.............c...cccocveveiiennn 208
Composition algorithm flow chart for Sender Step.........cccccevvveiiievieenen. 211
Example composition of reusable test module instances with focus on Sender
.. 212
Composition algorithm flow chart for Receiver Step.......c.ccccoevviveivennene. 213
Example parsing with focus on Receiver Step......ccccovvveienienieneieeee, 213
Composition algorithm flow chart for Parallel Step.........c.cccccccvvvvvieennee. 214

Figure 6.35: Example composition of reusable test module instances with focus on

Parallel Step

Figure 6.36: Example composition of reusable test module instances with focus on

(O70] 010 [0 10 (=] o USSR 216
Figure 7.1: Generation, Execution and Evaluation of Test Casesccccccevvrieeriennnene 221
Figure 7.2: Test case derivation from behaviour models...........ccccceveviieiiveiicieneenn, 224

Figure 7.3: Abstract test case generation from behaviour models by Test Case Derivation

Unit

Figure 7.4: Hierarchy of structural coverage criteria (adapted from (Haschemi, 2009))

Xii

Figure 7.5: Behavioural description of SIP UAC non-INVITE (with transition marking)

Figure 7.6: Test case derivation from SIP UAC non-INVITE..........ccccoovviiincnennn,

Figure 7.7: Behavioural description of SIP UAS non-INVITE (with transition marking)

... 232
Figure 7.8: Test case derivation from SIP UAS non-INVITE..........cccccoiveivcveiienenn, 232
Figure 7.9: Conceptual model of a TTCN-3 test system (Willcock et al., 2011).......... 237

Figure 7.10: Generation of executable TTCN-3 test suite based on abstract test cases240
Figure 7.11: Dynamic test configuration with TTCN-3 test system.........cccccevereennenn 242
Figure 7.12: Abstract interface definition in TTCN-3 for SUT and test components ..243
Figure 7.13: Example test configuration with two example PTCSccccvveveieennnn. 244
Figure 7.14: Mapping between XML representation of test data and resultant TTCN-3
LE=] 00 0] L TSP 246
Figure 7.15: Instantiation of test components in TTCN-3 test Case..........cccocververvennenn. 248
Figure 7.16: Example graph-based teSt CASecccuvrieeririe i 249
Figure 7.17: First generated TTCN-3 behaviour function based on abstract test case . 250
Figure 7.18: Second generated TTCN-3 behaviour function based on abstract test case
... 252
Figure 7.19: Starting of behaviour functions on test componentscccoceevervenenn. 253
Figure 7.20: Concurrency example with two test CoOmponents.........c.ccceeevverveseenenn, 254
Figure 7.21: Example test case With CONAItIONS...........cooeiiiiiiienieree e 255
Figure 7.22: Example of conditions within generated TTCN-3 code...........cccccevvvennenn. 256
Figure 7.23: Generation of Executable Test Suite by Test Suite Builder 258
Figure 7.24: Excerpt of test adapter configuration file for compilation process 260
Figure 7.25: Interaction of test system entities during test case execution................... 263
Figure 8.1: Prototype architecture components illustrated as OSGi bundles................ 282
Figure 8.2: Apache Karaf architecture (adapted from (Apache Karaf, 2015)).............. 283

Xiii

Figure 8.3: Screenshot of TFUT web application showing the definition of an STD
(1S Lo =TSRSS 284

Figure 8.4: OSGi service interface provided by the “Test Configuration Unit” bundle

... 285
Figure 8.5: OSGI service interface provided by the “Test Modules Environment” bundle
... 285
Figure 8.6: Simplified UML use case diagram of sample chat servicec.coce...e. 292
Figure 8.7: Basic functionality of login process in sample chat service....................... 292
Figure 8.8: Alternative functionality of login process in sample chat service.............. 293
Figure 8.9: Basic functionality of message exchange in sample chat service 293

Figure 8.10: Components within Mobicents SIP Servlets application server (adapted from

(MODICENTS, 2015)) .. uieieeieeiieiieeie et steese sttt et et esraesteeneesseesaeenaesneeneeenee e 295
Figure 8.11: ChatServiceServlet class of proof of concept sample chat service 296
Figure 8.12: Active OSGi bundles in Apache Karaf environment..............cccccevvenene. 301
Figure 8.13: Logging from "Automatic Composition Engine" bundle........................ 302

Figure 8.14: Created behaviour models by "Automatic Composition Engine” bundle 303
Figure 8.15: Test execution of "Login" process for "[sender]” Role........c..ccccoverrnnene. 305

Figure 8.16: Test report for test execution against sample chat service..........c............ 306

Xiv

List of Tables

Table 3.1: Overview of the UML 2.0 Testing Profile concepts (Zander et al., 2005)....58

Table 3.2: Evaluation of related projects based on derived requirements....................... 82
Table 5.1: RUCM Use Case template (Yue et al., 2009).........ccooeeiiirienieniinninennenn 112
Table 5.2: Restriction rules R1-R16 of RUCM approach (Yue et al., 2013) 115
Table 5.3: Example RUCM use case of "Send Message".........ccooeivrerieniieneeneniennnens 116

Table 5.4: Excerpt of example STD containing two example Participating Roles....... 135

Table 5.5: Example of specifying CIS iN STDcccocciiiiiiiienie e 138
Table 5.6: Parameterisation of an example SIP MESSAGE request........ccccccevvevenen. 140
Table 5.7: Instantiation of timers in Parameters field ..., 142
Table 5.8: STD architectural perspective of simplified sample chat service................ 147

Table 5.9: STD Requirement definition for “Send Message” from sample chat service

... 148
Table 5.10: Comparison of specification 1anguagesccccvverieeieiirieeiesee e 153
Table 6.1: Comparison of potential modelling NOtations...........cccevvvveieeresieeneeeeenn 162

Table 6.2: Potential server types and their corresponding application layer protocols 180
Table 8.1: Architectural perspective of sample chat Service...........cccoecvvveveiieivciennn, 297
Table 8.2: Behavioural perspective for "Login™ use case ("Req01")......cccccerverrvrrnrnnnn 299

Table 8.3: Behavioural perspective for “Message Exchange” use case (“Req02”)......300

Xi

1 Introduction

The demand for advanced telecommunication services, so-called value-added services,
has increased enormously over the last years. This has led to situations in the
telecommunication domain where service providers and network operators have to
provide a fast transition from concept to market product and have to offer a low price for
new value-added services to satisfy their customers. The monopolies in the
telecommunication domain have disappeared and accordingly, the fight for market shares
between the competitors has become more difficult than ever before. Furthermore, the

demand for even more specialised end-user services keeps growing.

In order to face the mentioned challenges, service providers have integrated Service
Creation Environments (SCE) to allow their developers to rapidly create real value-added
services and bring them to the market. However, relying on the quality of the SCEs and
the skills of the developers to create new value-added services is not sufficient in order
to provide the services in best quality. Therefore, thorough methodologies to
consequently test the value-added services before the deployment and provisioning have
to be implemented by the service providers. Then, they are able to assure their customers
of a proper execution of the delivered value-added services and that they perform

according to the specified requirements.

This research work has been dedicated to find and describe a novel methodology for

functional testing of value-added services. It should enable service providers to increase

1.1 Aims and Objectives

the quality of their delivered services and should provide both verification and validation
of the service’s implementation. The detailed aims and objectives of this research work

are presented in section 1.1, followed by an outline of the thesis structure in section 1.2.

1.1 Aims and Objectives

The aim of this research is to propose a framework that allows the functional testing of
value-added telecommunication services involving the concepts of Next Generation
Networks (NGN). It should help test developers during the testing process by means of a
novel sort of specification language and reusability aspects and should allow a better

involvement of the service customer.

The main objectives of this research can be outlined as follows:

1. To analyse the existing approaches in value-added service development and
provisioning and to figure out the possible benefits of the introduction of a novel
test framework and methodology.

2. To analyse existing testing strategies and methodologies and related approaches.
Based on the deficits and assets, the requirements for a novel framework will be
elaborated.

3. To define the architecture and associated methodology of the proposed framework
for the functional testing of value-added services, also including their verification
and validation.

4. To examine diverse service descriptions or rather specifications of services,

resulting in a proposed novel service description language.

1 Introduction

5. To analyse recurring behaviour in value-added services and based on the results,
define reusable test modules by means of a selected modelling notation. The
reusable test modules shall be applied based on the proposed novel service
description language.

6. To specify an adequate algorithm to compose the reusable test modules to
complex behaviour models based on the proposed novel service description
language.

7. To propose and analyse test case derivation and test case generation from the
behaviour models and subsequently the execution of the derived test cases against
the SUT.

8. To implement and evaluate the proposed framework for functional testing of

value-added services by means of a prototype implementation.

The order of objectives declared above corresponds to the general structure of this thesis

as presented within the following sections.

1.2 Thesis Structure

Chapter 2 describes the theoretical background of this thesis by introducing the concept
of NGN and giving an overview of the SIP architecture and basic functionality.
Furthermore, the term “value-added service” is defined as well as the service’s life cycle.
The required environment to provide value-added services is depicted. Finally, the
stakeholders in value-added service provisioning are introduced. Here, an important
aspect is to identify the benefits for each stakeholder from the establishment of a novel

test framework.

1.2 Thesis Structure

The state of the art in testing and the standardised test processes are described in chapter
3. Moreover, current testing methodologies are described and further related research is
discussed. The essential and final part of this chapter is the definition of requirements for

a novel test framework based on the limitations of the given approaches.

In chapter 4, the results of the identified requirements from chapter 3 are used as the
starting point to propose a novel enhanced metholodogy for functional testing of value-
added services. Additionally, an architectural overview of the associated new test

framework is developed and its components are briefly introduced.

Chapter 5 deals with the proposed novel service specification language (so-called Service
Test Description) for value-added services. The relevant components of the Service Test

Description is described as well as its application within the test framework architecture.

Chapter 6 defines the structure and definition of the generic and reusable test modules
and introduces a novel algorithm to compose the modules based on instances of the

Service Test Description in order to generate so-called behaviour models.

Chapter 7 investigates on the test case derivation, generation and execution. The relevant

algorithms are described. Finally, the evaluation of the tests is discussed.

Chapter 8 focuses on both the research prototype for the proof of concept and the

evaluation of the proposed test framework.

Chapter 9 concludes the research work with a summary of its achievements and
limitations. Furthermore, potential areas of future research and development are

proposed.

2 Telecommunications Infrastructure and

Value-Added Services

This chapter provides the theoretical background of the telecommunication infrastructure
this research work is based on. After introducing the Next Generation Networks (NGN)
concept and its general architecture specified by international standardisation bodies
(section 2.1), the SIP protocol, its basic functionality, its relevance for NGN as well as
the concept of SIP Application Servers is described (section 2.2). The third section
outlines the term “value-added service”, gives diverse definitions and introduces the life
cycle of services (section 2.3). Finally, the chapter closes with the identification of the
stakeholders within the telecommunication domain with regard to possible improvements

in the development and provisioning of value-added services (section 2.4).

2.1 NGN (Next Generation Networks)

The concept of NGN was introduced initially in the mid-1990s and has become widely
accepted within the field of both fixed and mobile telecommunication networks. While
telecommunication networks have historically been dominated by a circuit-switched
paradigm, the implementation of NGNs led to a conversion towards packet-switched
networks. Furthermore, the concept of NGN became popular to face the emerging
situation in telecommunications characterised by a lot of different factors (Cochennec,

2002):

2.1 NGN (Next Generation Networks)

e deregulation of the market (followed by the open and international competition
among network operators),

e increase of Internet utilisation and accordingly explosion of data traffic,

e strong demand from users for new multimedia services, and

e increasing demand from users for general mobility.

The ITU-T (International Telecommunication Union - Telecommunication
Standardization Sector) started its standardisation work in the field of NGN in the year

2000. According to (ITU-T Y.2001, 2004), an NGN is defined as follows:

“A packet-based network able to provide telecommunication services and able to make
use of multiple broadband, QoS-enabled transport technologies and in which service-
related functions are independent from underlying transport-related technologies. It
enables unfettered access for users to networks and to competing service providers and/or
services of their choice. It supports generalized mobility which allow consistent and

ubiquitous provision of services to users”.

In addition to this definition, (ITU-T Y.2001, 2004), (ETSI TR 180 000, 2006) and (Trick
and Weber, 2004) indicate that NGN can be characterised by the following key features:
e packet-based data transport,
e Dbroadband capabilities with end-to-end QoS (Quality of Service),
e support for a wide range of arbitrary services,
e separation of control functions among bearer capabilities, call/sessions and
applications/services,
e interworking with legacy networks or other important telecommunication

networks, especially access networks,

6

2 Telecommunications Infrastructure and Value-Added Services

e Application Server support,

e unrestricted access for users to different networks and service providers,

e support for multimedia services,

e overall unified network management,

e mobility support,

e service-appropriate charging,

e scalability, and

e compliance with all regulatory requirements such as lawful interception and

emergency calling features.

Figure 2.1 shows the NGN core consisting of a packet-switched network supporting
security and QoS functionalities. Permission to reproduce Figure 2.1 has been granted by

the authors of the referenced publication.

ISDN, GSM/UMTS

Internet mobile networks
Application
CS = Call Server Server
MGW = Media Gateway SS7
SGW = Signalling Gateway
SS 7 = Signalling System 7 MGW] |SGW
BS = Base Station |
paket-based network with QoS + Security CS

~
< access paket-based
network
channel-based paket-based,
radio
~

YL

Figure 2.1: Principle structure of an NGN (Trick and Weber, 2009)

2.1 NGN (Next Generation Networks)

The displayed end user equipment, such as telephones, mobile phones or personal
computers, can be directly connected to the NGN or via other access technologies, for
instance channel- or packet-oriented, fixed or mobile access networks. The connection to
other access networks requires Media Gateways (MGW) and Signalling Gateways
(SGW). The role of the Call Server (CS) is to handle service requests and to control the
MGWs according to a call control model and signalling handling. Application Servers
(AS) can be involved in order to provide advanced services, so-called value-added
services, which play a very relevant role in this research work and will be further specified
in the upcoming section 2.3. Besides the mentioned servers and gateways, the NGN also
offers access to other networks such as the Internet or to both circuit-switched and packet-

switched telecommunication networks by gateways.

Regarding its functional architecture, a basic reference model for NGN was defined in
(ITU-T Y.2012, 2010), which implies “the most important novelty introduced with NGN
in the telecommunications (i.e. ICT) world — the separation of services and transport in
separate so-called stratums” (Janevski, 2014). The transport stratum is concerned with
the transfer of information or rather data between terminating endpoints. It also includes
further transport functions, such as admission control and mobility management
functions. The service stratum is located above the transport stratum and is responsible
for the control and management of network services to enable end-users services and
applications. Such services may be related to voice, data, or video applications, or
alternatively, in some combination in the case of multimedia applications (Obermann and
Horneffer, 2013). The main reason for the separation of the transport stratum and the

service stratum is “to allow independent evolution of the technologies used in these strata”

2 Telecommunications Infrastructure and Value-Added Services

(Ding, 2010), meaning that certain evolutions, for instance in the service stratum, will not

affect the transport stratum.

According to (ITU-T Y.2012, 2010), applications are outside of the NGN scope. This
might be an inadequate approach as applications are predicted to be “one of the main
revenue streams in future telecommunication networks” (Lehmann, 2014). Hence, other
researches will not leave applications outside the scope of NGN. (Trick and Weber, 2009)
and (Magedanz and de Gouveia, 2006) describe a so-called application stratum (or
application layer) on top of the service stratum and the transport stratum. The following

Figure 2.2 presents the NGN architecture considering all three strata.

Application Stratum
AS
Service Delivery Platform D

-—— SIP

—_———— Service Stratum

=

SIP

~S.-=7

ocation :
Server

SNON Jay30 >

L User Equipment, SIP UA

e.g.

IP Corenet with QoS RTP

Transport Stratum

Figure 2.2: NGN architecture in a strata/layer structure (Trick and Weber, 2009)

Permission to reproduce Figure 2.2 has been granted by the authors of the referenced
publication. The integrated Application Stratum includes a Service Delivery Platform

(SDP) with at least one Application Server in order to provide value-added services. The

9

2.2 SIP and its Utilisation in NGN

SDP concept will be further described in section 2.3.2. Figure 2.2 also illustrates the
relevant communication channels between the three strata including the needed protocols,
such as the Real-Time Transport Protocol (RTP) mostly relevant in the transport stratum
to transfer real-time payload, and the Session Initiation Protocol (SIP) enabling the
controlling of sessions in the service stratum. SIP and its role for NGN will be further

described in the upcoming section 2.2.

2.2 SIP and its Utilisation in NGN

The Session Initiation Protocol (SIP) was initially defined by the Internet Engineering
Task Force (IETF) and specified in (IETF RFC 2543, 1999). In 2002, a new version of
the IETF standard was established (IETF RFC 3261, 2002). Furthermore, diverse
extensions and updates are specified by a number of RFCs (Request for Comments). The
main purpose of SIP is to initiate, coordinate and tear down real-time communication
sessions between endpoints over an IP-based network. While the role of SIP is to set up
communication sessions, the Session Description Protocol (SDP) is used to describe the
session. Furthermore, the communication endpoints can negotiate the codecs to be used
in a VolIP call. Based on the negotiated codecs, the actual media, such as audio, video or
other multimedia content, is then exchanged between the session participants by the use
of an appropriate transport protocol, e.g. RTP (IETF RFC 3550, 2003). SIP also offers
advanced functions, such as instant and presence messaging, and implements several
mechanisms, e.g. handshake, retry or timeout mechanisms. It has gained wide industry
acceptance and has been determined as standard protocol in the Universal Mobile

Telecommunication System (UMTS) Release 5 (ETSI Tdoc RP 030375, 2003).

10

2 Telecommunications Infrastructure and Value-Added Services

Within the proposed framework for automated functional testing of value-added services
resulting from this research work, the concepts of SIP play a major role. On the one hand,
its transactional concept is reused and, on the other hand, most of the value-added services

require SIP signalling.

2.2.1 SIP Architecture and Basic Functionality

According to (IETF RFC 3261, 2002), SIP uses a modular architecture that includes the
following network components: SIP User Agent (UA), SIP Registrar Server, Location

Server and SIP Proxy Server.

A SIP-enabled end user device within a SIP-based telecommunication infrastructure is
called a SIP UA. It acts as an agent on the behalf of a user and sends and receives SIP
messages to establish, modify and terminate sessions. A SIP UA contains both a client
application and a server application. These two parts are designated as User Agent Client
(UAC) and User Agent Server (UAS). The UAC is responsible to create and send requests
whereas the UAS processes incoming requests and generates appropriate responses.
During a session, a SIP UA will operate as both a UAC and a UAS. The concept of UAC

and UAS within a SIP UA is shown in Figure 2.3.

SIP User Agent

SIP User Agent

User Agent ‘Request 1 equest ta User Agent
Client (UAC) » v Client (UAC)
User Agent ol 9 - —~ R ™ user Agent
Server (UAS) |Respon*® ®SPonse 1| Server (UAS)

Figure 2.3: Basic principle of SIP communication

11

2.2 SIP and its Utilisation in NGN

Each end-terminal registers its current contact information (such as the IP address and the
port of the endpoint) at a SIP Registrar Server using a special SIP message, the SIP
REGISTER request. Upon receipt of this message, the SIP Registrar Server transmits the
data to the Location Server which will store it in a database for contact information of
participating SIP UAs within a specific domain. The interface between the Location

Server and other servers is not standardised.

The SIP Proxy Server routes messages between SIP UAs. According to (Trick and Weber,
2015), two different kinds of SIP Proxy Servers exist, so-called “Stateless” Proxy Servers
and “Stateful” Proxy Servers. A Stateless Proxy Server acts as an intermediate that simply
forwards the SIP request it receives. It does not store any information of the call. Contrary
to this, a Stateful Proxy Server keeps track of every request and response it receives by
storing the relevant information. It can act as both UAC and UAS and is therefore able to
create requests (e.g. “CANCEL”) and responses (e.g. “100 Trying”). The Stateful Proxy
Server is also capable of absorbing retransmissions because it knows that it has already

received a specific message.

The basic establishment of a SIP session using the described SIP network components is
illustrated in Figure 2.4. At first, a SIP User Agent A sends an INVITE request containing
the target end-terminals address as SIP URI (e.g., “user@domain.de”) to a locally
predefined SIP Proxy Server (see Figure 2.4, step 1). The INVITE request also includes
a Session Description Protocol (SDP) (IETF RFC 4566, 2006) message with the proposed
streaming media initialisation parameters of SIP User Agent A. After the SIP Proxy
Server received the message, it subsequently checks the location database to lookup the

location of SIP User Agent B. However, if the target’s SIP URI is within another domain,

12

2 Telecommunications Infrastructure and Value-Added Services

a lookup is initialised using the Domain Name System (DNS) (IETF RFC 1034, 1987)
(IETF RFC 1035, 1987) (see Figure 2.4, step 2). Then, the message is forwarded to the
proper SIP Proxy Server of the other domain (see Figure 2.4, step 3). If SIP User Agent
B is located within the same domain, the SIP Proxy Server can locate the target’s current

contact address by requesting the domain-local Location Server (see Figure 2.4, step 4).

DNS
Server

(e

o

SIP Proxy R < (3) SIP (SDP} » = SIP Proxy
Server 3 3 Server
S =
Internet \>(/‘3‘

A
L T
LAN f{\% k..": Location

. 1. Server
-‘S{ o

(6) Media (RTP) » @
SIP User SIP User
Agent A Agent B

Figure 2.4: Basic establishment of a SIP session

Accordingly, the SIP Proxy Server is able to forward the message to SIP User Agent B
(see Figure 2.4, step 5). When SIP User Agent B accepts the call, it sends a message with
a response code of “200” that also contains SIP User Agent B’s codec capabilities and
the port numbers where it wants SIP User Agent A to send the RTP data to. The final part
of the so-called “Three-Way-Handshake” occurs when SIP User Agent A sends an
acknowledgement to SIP User Agent B (so-called “ACK” request). By sending the ACK,
SIP User Agent A confirms to have received the response from SIP User Agent B. Now,

a logical connection-oriented communication state, a so-called SIP dialog, has been

13

2.2 SIP and its Utilisation in NGN

established. The end systems are now ready to exchange media data of arbitrary nature,

such as audio and/or video data flows, by making use of RTP (see Figure 2.4, step 6).

2.2.2 The Layered Structure of SIP

SIP is structured as a layered protocol comprising the syntax and encoding layer, transport
layer, transaction layer and transaction user (TU) layer. The structure allows different
modules within it to function independently with just a loose coupling between each layer
(IETF RFC 3261, 2002). The following Figure 2.5 visualises the layered structure of SIP
in the application layer and also includes the two lower layers, transport layer and network

layer. Permission to reproduce Figure 2.5 has been granted by Springer Publishing.

Application Layer |SIP

Transaction User (TU)

Request 3 Response
A 4

Transaction Layer

A
A 4

Transport Layer

A
A 4

Syntax and Encoding
7y

T rtL
ransport Layer s

| uop || Tcp || sctp |

! 1

Network Layer P

Figure 2.5: Layered structure of SIP (Ding and Liu, 2008)

The lowest layer of SIP is its syntax and encoding specifying the format and structure of

a SIP message by the use of an augmented Backus-Naur Form grammar (BNF) defined

14

2 Telecommunications Infrastructure and Value-Added Services

in (IETF RFC 2234, 1997). Such a SIP message can be either a request from a client to a

server, or a response from a server to a client.

The transport layer as second layer defines the behaviour of SIP entities in sending and
receiving messages over the network. It is responsible for managing persistent
connections for transport protocols like UDP (User Datagram Protocol) or TCP
(Transmission Control Protocol) and SCTP (Stream Control Transmission Protocol) with
or without TLS (Transport Layer Security) over the network. The opened connections are

shared between the client and server transport functions.

On top of the SIP transport layer is the transaction layer. A transaction, a very
fundamental component of SIP, is a request that is sent by a client to a server, along with
all responses to that request sent from the server back to the client. All the SIP messages
of a transaction share a common unique identifier and traverse the same set of hosts
(Toral-Cruz et al.,, 2011). The transaction layer itself handles application-layer
retransmissions, matching of responses to requests by comparing the identifiers, and
application-layer timeouts. It uses the transport layer for sending and receiving requests
and responses. The transaction layer contains four transaction-state machines each having
their own timers, re-transmission rules and termination rules. These state machines are
specified in (IETF RFC 3261, 2002):

1. UAS INVITE state machine

2. UAS non-INVITE state machine

3. UAC INVITE state machine

4. UAC non-INVITE state machine

15

2.2 SIP and its Utilisation in NGN

The fourth and topmost layer of the SIP structure is the transaction user (TU) that actually
creates client and server transactions. When a TU intends to send a SIP request, first it
creates an instance of a client transaction and subsequently, it sends the SIP request along
with the destination information (destination IP address, port number and transport
protocol). Generally, TUs are defined to be both UAC core and UAS core and are part of
all SIP entities except for Stateless Proxy Servers. The UAC part of the TU creates and
sends requests and receives responses using the transaction layer, whereas the UAS part
receives requests and creates and sends responses using the transaction layer. There are
two factors that can affect the behaviour of the TU, the method name in the SIP message
on the one hand and the state of the request with regard to SIP dialogs on the other hand

(Poikselka and Mayer, 2009).

2.2.3 SIP-based NGN

As mentioned in the previous sections, SIP is a powerful protocol for the control and
management of communication sessions between end-users in telecommunication
networks. It also includes various methods to modify existing sessions or even to combine
them. These aspects clarify why SIP has become widely accepted as the protocol of choice
for communication control in NGN. A SIP-based NGN matches the descriptions
accentuated in section 2.1 due to the fact that SIP is used as standard protocol to enable
the controlling of sessions in the service stratum. Figure 2.6 shows the principle structure
of an NGN based on SIP. Permission to reproduce Figure 2.6 has been granted by the

authors of the referenced publication.

16

2 Telecommunications Infrastructure and Value-Added Services

Conference Server Application Server Redirect Server Location Server

SIP Proxy/Registrar Server +

SIP Proxy/Registrar Server MCU
MGC

SIP+RTP SIP SIP

Megaco/H.248

IP-Network with QoS + Security ISUP

Megaco/H.248 + SIP or SIP, SDP+RTP
RTP. ISUP
Mew| [sew]
B2BUA or ALG or SBC — e |
p— T

64 Kkbit/s SIP User Agent SIP User Agent
DSS1 or ISUP
64-kbit/s-Netz eg. ISDN
SIP = Session Initiation Protocol Megaco = Media Gateway Control Protocol
CS = Call Server B2BUA = Back-to-Back User Agent
MGC = Media Gateway Controller ALG = Application Layer Gateway
MGW = Media Gateway SBC = Session Border Controller
SGW = Signalling Gateway RTP = Real-time Transport Protocol

MCU = Multipoint Control Unit
Figure 2.6: Principle structure of SIP-based NGN (Trick and Weber, 2009)

A SIP service provider operates and manages the core infrastructure which includes the
Call Server (CS) as a centralised component, whose functionality is provided by SIP
Proxy and SIP Registrar Servers (Trick and Weber, 2009). The SIP Proxy Server relies
on Location Servers in order to find the matching temporary SIP URIs for given
permanent SIP URIs. The Redirect Server acts as a UAS that generates SIP redirection
responses (SIP responses containing status codes from 300 until 399) to SIP requests it
receives in order to direct the client to contact an alternate set of SIP URIs. MGW and
SGW enable access to traditional circuit-switched networks, such as the Public Switched
Telephone Network (PSTN). The Multipoint Control Unit (MCU) or rather Conference
Server (IETF RFC 4353, 2006) is implemented in the SIP-based NGN in order to let SIP
User Agents take part in conference scenarios. All displayed SIP User Agents consist of

the end user equipment.

17

2.2 SIP and its Utilisation in NGN

As far as (Weber, 2012) is concerned, “SIP signaling and media streams can be forced to
be routed in parallel via intermediate service layer network elements that are trusted by
the SIP service provider”. This aspect might be useful considering particular legal
requirements such as lawful interception, the interconnection with other providers and for
Network Address and Port Translation (NAPT) traversal. To achieve this, SIP Back-to-
Back User Agents (B2BUA) are used. According to (3GPP TR 29.962, 2005), a B2BUA
is permanently inserted at connections between the SIP-based NGN (e.g. IMS) and a
given external network handling all SIP signalling (including session attempts,
subscription, instant messages) including signalling where the flows may forward without
B2BUA interventions. In general, B2BUAs are implemented in network elements such

as Session Border Controllers (SBC) or Application Layer Gateways (ALG).

Finally, the most relevant component of the SIP-based NGN (see Figure 2.6) regarding
this research work, the SIP Application Server, will be introduced in the following

section.

2.2.4 SIP Application Server

In principle, the main task of a SIP AS within a SIP-based NGN is to enable a fast and
cost-efficient provision of value-added services. According to (Trick and Weber, 2015),
the SIP AS is a combination of a SIP UA, and/or a SIP Proxy Server, and/or a SIP Redirect

Server. In particular, it contains a software platform for services.

A SIP AS requires a SIP communication channel to a corresponding CS in order to allow
end users to invoke services that are currently deployed on the SIP AS. The CS routes the

SIP messages to the SIP AS based on configured or currently requested filtering criteria.

18

2 Telecommunications Infrastructure and Value-Added Services

Based on further filtering criteria, the SIP AS chooses the appropriate software and starts

the service execution.

According to (Trick and Weber, 2015), four different modes of operation have been
established regarding the SIP AS. These modes are illustrated in the following Figure 2.7.

Permission to reproduce Figure 2.7 has been granted by the authors of the referenced

publication.
Data Data Data Data
Content Wake up Call For- Click2
warding Dial
- T T 1 T T T 1 T T T 1 - T 1
UA/ 1 I I I
: Redirect ! : UVA ' : Erow ' : ?PCC !
SIP SIP SIP SIP
RTP RTP
SIP Sip SIP SIP SIP SIP
A B A<—»B A<—»B
RTP RTP

Figure 2.7: Modes of operation of a SIP Application Server (Trick and Weber, 2009)

The first mode of operation, the “Content” mode, determines the SIP AS to either act as
SIP UA or SIP Redirect Server. Here, the SIP UA of user A triggers the initiation of the
service and subsequently, user data can be transmitted between the AS and the SIP UA
of user A. Depending on the interfaces the SIP AS has, the data can be of any kind. An
example service can be, for instance, a weather forecast that will be read out to A based

on the content of a web site.

The “Wake up” mode indicates the SIP AS to be the initiator of the service. So, the SIP

AS builds up a SIP session to the SIP UA of B independently. Usually, the initiation of

19

2.2 SIP and its Utilisation in NGN

the call takes place as soon as some specified condition is fulfilled. A typical example

service is the “Wake up” service itself. Here, a call is initialised at a certain time.

In the “Call Forwarding” mode, the SIP AS acts like a standard SIP Proxy Server. First,
the SIP AS receives a request from the SIP UA of A forwarded by the CS because of
some defined filtering criteria (e.g. “user unkown”). Consequently, the SIP AS
determines the relevant data by using its data interface and then provides the CS with the
information. Afterwards, the CS forwards the appropriate message to the SIP UA of B
and finally, both users can exchange data. An example service can be a location-based

search for a restaurant.

In the final “Click 2 Dial” mode of operation, the data interface of the SIP AS or rather
some third party (3PCC = Third Party Call Control) triggers the initialisation of a session
between the UAs of A and B. In this scenario, the SIP AS is acting as a B2BUA. An
example trigger can be, for instance, the clicking of a button on a web site or some other
software application. Based on this event, the call is initiated and finally, the SIP UAs of

A and B can directly communicate via RTP.

The introduced modes of operation of a SIP AS demonstrate the variety of possibilities
regarding the development of value-added services. However, further servers are required
in order to support the diversity of services, such as email servers, media servers, web
servers or database servers. In general, through the data interface of a SIP AS, a value-

added service can make use of any functionality that is provided by the different servers.

The mentioned diversity of services that can be provided by SIP AS gives a further reason

why this research work is so relevant. The more complex a value-added service gets the

20

2 Telecommunications Infrastructure and Value-Added Services

more relevant is the integration of a test framework to support service developers to

program high quality services for the service customers.

2.3 Value-Added Services in NGN

Value-added services are the main object of this research and will be described in the
following. This introduction also requires the knowledge of how services in the

telecommunication domain are classified in general.

2.3.1 Classifications and Definitions

With regard to the definition of the term “telecommunication” itself, the ITU has the
following to say: “Any transmission, emission or reception of signs, signals, writing,
images and sounds or intelligence of any nature by wire, radio, optical or other
electromagnetic systems” (ITU, 2011). To enable this telecommunication capability,
telephone companies provide telecommunication services. To quote (ITU-T T.174,
1996), telecommunication services are “that which is offered by an administration to its
customers in order to satisfy a specific telecommunication requirement”. A more detailed
definition is given in the words of (Calisti, 2003), where a telecommunication service is
“a set of independent functions that are an integral part of one or more business processes.
This functional set consists of the hardware and software components as well as the
underlying communication medium. The customer sees both as an amalgamated unit. A
service can be a service component of another service”. Another quite similar definition

of the term is described by the 3GPP, a service is “a component of the portfolio of choices

21

2.3 Value-Added Services in NGN

offered by service providers to a user, a functionality offered to a user.” (3GPP TR 21.905,

2005).

Besides the provided definitions of the term “telecommunication service” or rather
“service”, many others exist and the words are often used in several different contexts
with somewhat different meanings although they are describing the same, such as in
(Kuhn, 1991), (ETSI TS 122 228, 2011), (ETSI TS 122 105, 2011), (ETSI TS 122 101,

2011) and (ITU-T 1.211, 1993).

In principle, telecommunication services are divided into bearer services, teleservices and

supplementary services.

A bearer service is a type of telecommunication service that provides the “capability of
transmission of signals between access points” (ETSI TS 122 105, 2011). Typically,
bearer services are categorised by their information transfer characteristics, methods of
accessing the service, interworking requirements (also to other networks), and other
general attributes (Harte et al., 1999). Bearer services cover the lower three layers of the

OSI (Open Systems Interconnection) model from physical layer up to the network layer.

A teleservice is a type of telecommunication service that provides the “complete
capability, including terminal equipment functions, for communication between users
according to protocols established by agreement between network operators” (ETSI TS
122 105, 2011). The teleservices are user end-to-end services (e.g. telephone calls) and

cover the full seven layers of the OSI protocol layer model.

Supplementary services modify or supplement basic telecommunication services.

Therefore, they cannot be offered to a customer as a stand-alone service and must be

22

2 Telecommunications Infrastructure and Value-Added Services

offered in combination with a basic bearer service or basic teleservice. The same
supplementary service can be applicable for a number of telecommunication services

(ETSI TS 122 105, 2011).

According to (ETSI TS 122 001, 2011) and (ITU-T 1.210, 1993), Figure 2.8 illustrates

the categorisation of telecommunication services.

telecommunication services

basic teleservice +
supplementary service(s)

teleservice
basic teleservice

basic bearer service +
supplementary service(s)

bearer service

basic bearer service

Figure 2.8: Categorisation of telecommunication services

Besides the already mentioned classes of services in the telecommunication domain, a
further service type, value-added (telecommunication) services, exists. According to
(ETSI TS 122 101, 2011), these value-added services can be based on fully proprietary
protocols or standardised protocols. With regard to this research work, the following
definitions of the term “value-added services” might be suitable. The OMA (Open Mobile
Alliance), for instance, defines in (OMA ORG, 2007) that the term stands for a
“telecommunication/information service that is offered in addition to and/or in
conjunction with a basic telecommunication/data service”. This rather generic definition
indicates that every service can be seen as a value-added service if it extends the

functionality of a pre-existing basic telecommunication service.

23

2.3 Value-Added Services in NGN

(Glitho et al., 2003) agrees with the OMA. In their opinion, value-added services are
“defined as anything that goes beyond two-party voice calls” (Glitho et al., 2003).
Furthermore, “Value-added services are usually grouped under two umbrellas: telephony
services and nontelephony services. Telephony services interact with call control while
nontelephony services do not” (Glitho et al., 2003). The authors also give examples of
telephony services such as conferencing, call diversion or telephone voting.
Nontelephony services can be special instant messaging services, push-to-talk and

multimedia messaging.

A further definition of the term “value-added service” is given by (Guo et al., 2009) who
point out that value-added services “add value to the standard service offering, spurring
the subscribers to use their phone more and allowing the operator to drive up their ARPU
(Average Revenue per User)” (Guo et al., 2009). They also state that “Both the academic
and the industrial communities have paid much attention on the subject how to design
and implement the personalized service and shorten the time to market” (Guo et al.,
2009). Here, the authors denote the potential of value-added services, especially
emphasising the economic benefits for service providers and network operators and the
need for mechanisms in order to provide the services fast, custom-made and in high

quality.

The most appropriate definition of value-added services relating to this research work is
provided in (Lehmann, 2014): “Value-added Services (VAS) are functional properties
which will offer certain comfort to consumers. Consumers will recognise additional
benefit by value-added services”. Regarding the composition of value-added services,

(Lehmann, 2014) discusses that they “are based on a combination of one or more bearer

24

2 Telecommunications Infrastructure and Value-Added Services

services and one or more teleservices, and optionally, one or more supplementary
services.” The author also states that value-added services can be an extension to basic
teleservices and they can sometimes stand-alone (e.g. non-call related services). “VAS
also have a certain time dimension associated with them. A value-added service today
can become a basic service in the future when it becomes sufficiently common place and
widely deployed, and for example, is no longer used as a differentiation feature among
operators” (Lehmann, 2014). The author describes the positioning of value-added
services within the telecommunication domain and predicts that the provisioning of them

will play a major role for the operators in future.

As already mentioned in the sections 2.1 and 2.2.3, unlike basic telecommunication
services being provided in the service stratum of the NGN by Call Servers, the value-
added services are provided by Application Servers. According to (Trick and Weber,
2009), the handover of the service intelligence from the Call Servers to the Application
Servers leads to a significantly low dependency between the network and the value-added
services. This aspect makes it possible to quickly and easily provide new value-added

services.

2.3.2 Development and Provisioning of Value-Added Services

As stated in section 2.2.4, value-added services can be complex because of the diversity
of functionality that can be applied through a SIP AS. As in the development of complex
software systems, the development and provisioning of value-added telecommunication
services requires “expertise on system architecture, software design, communication

protocols, and [possibly] knowledge of legacy systems” (Ling et al., 2009). A major

25

2.3 Value-Added Services in NGN

challenge for service designers is the complexity and heterogeneity of the network

infrastructure which always has to be considered at both system and application levels.

With regard to the traditional service life cycle, the OMA has specified in (OMA OSPE,
2005) the different stages a telecommunication service has to go through. The following

Figure 2.9 illustrates the service life cycle phases.

V. Service
Packaging

~
IV. Service VI. Service
Deployment) Maintenance
A
\ 4
- N
Il1. Service VII. Service Evolution
Development) & Withdrawal
A
s - - N .
Il. Service Planning & | Evolution
. el l
L Definition)
A
Withdrawal
A 4

1. Initial Idea . L
. . Service Termination
Stimulation

Figure 2.9: Service life cycle (adapted from (OMA OSPE, 2005))

Initially, the service life cycle starts with the vague idea of a new service demand. Such
an idea is usually inspired either by the analysis of market needs performed by the service
providers or, in most cases, by a customer’s desire of what a new service is supposed to
do. The idea can also be derived from successful service ideas in other networks initiated
by other service providers. Following the phase of idea generation a feasibility study is
done in the “Service Planning & Definition” phase identifying if the service is found to
be commercially feasible. This phase also includes the capturing of the service’s
requirements in order to establish a service specification which includes a detailed

analysis of the service’s functionality, necessary data and desired output. Among all the

26

2 Telecommunications Infrastructure and Value-Added Services

phases within the service life cycle, the upcoming third phase, “Service Development”,
is the most abstract and general of all phases, since there are diverse approaches on how
to structure the different stages within the phase. Generally, the phase refers to the process
of implementing the service logic and testing its functionality. In the upcoming fourth
phase “Service Deployment”, the implemented and tested service is actually deployed in
the service provider’s environment. This process includes every step from the initial
installation of the service until its activation. Afterwards, the service can be offered to the
customer base by defining commercial packages or bundles in the “Service Packaging”
phase. This phase is followed by the active use of the service by customers who
subscribed the service in advance. The service provider has to maintain the service’s
functionality (“Service Maintenance”) and may find some needs to influence and adjust
the service to changing requirements. This aspect might necessitate the evolution of the
service which leads to an adaptation of the service specification and the phases until phase
six have to be repeated. Alternatively, the service provider decides to withdraw the service

(“Service Termination™) possibly due to its weak technical or commercial performance.

In order to manage the life cycle of services within the service provider’s environment
and especially with respect to the provisioning of value-added services, service providers
use a scalable and standardised platform for the creation, deployment, execution,
orchestration and management of these value-added services, the so-called Service
Delivery Platform (SDP). The SDP is located in the application layer and is connected to
the NGN service and transport layer through abstract interfaces (Trick and Weber, 2009).
It can contain multiple Application Servers and Media Servers and provides interfaces to
an environment, the Service Creation Environment (SCE), in which service developers

can efficiently develop new value-added services by combining the capabilities of

27

2.3 Value-Added Services in NGN

existing basic telecommunication services and other value-added services (Menkens,
2010). This SCE enables the development of a new value-added service either from
scratch or from predefined modules. Generally, the SCE provides graphical tool support
for the service developer in order to simplify and accelerate the service development
process. The already mentioned connection between the SCE and the SDP enables an
immediate provisioning of value-added services (Trick and Weber, 2009). An illustration
of the overall concept of the SDP in NGN is given in Figure 2.10. Permission to reproduce

Figure 2.10 has been granted by the authors of the referenced publication.

. i — web/e-mail/fax server
Service Creation databases

Environment (SCE) SEensors Third-Party

actors, etc. services
)) dat
Service Delivery

Application g pqp Platform GDP)

Layer AS. AS Al
(eg. XCAP HJ E ’

e

E." e.g., 7 —) =]

ué Diameter __—1‘“

g SIP

| | --—< —\—

g‘ - ':_A_A/f;

Se| SIP :
g4\ MS|.

— 1 MS

g i Call Control Layer — __ —7

& REEE I SRl

e.g., RTP

IP-core network with QoS

Transport Layer

BSS =Business Support System

0SS = Operations Support System
access network with QoS

Figure 2.10: Service Delivery Platform in NGN (Trick and Weber, 2009)

To sum up, the relevance of SDPs in combination with SCEs is very high for service
providers in order to provide value-added services to their customers in a standardised
approach and within a short time period. However, there is to date no standardised and
robust Test Execution Environment (TEE) defined specifically within an NGN. To our

knowledge, the major focus of testing in the NGN field is related to the testing of NGN

28

2 Telecommunications Infrastructure and Value-Added Services

protocols, so-called conformance testing (ITU-T Q.3946.2, 2013), and to the testing of
NGN equipment for compatibility and interoperability (ITU-T Q.3948, 2011). Therefore,
the establishment of a TEE in combination with an equivalent environment to SCEs but
focusing on test creation would make an appealing framework, possibly called “Test
Creation Framework” (TCF). Such a TCF would improve the quality of developed value-
added telecommunication services on the one hand and would verify that the customer’s

desire of what a value-added service has to do is fulfilled on the other hand.

2.4 Stakeholders in Value-Added Service Provisioning

In order to identify the benefits of a TCF especially defined for the process of functional
testing of newly developed value-added telecommunication services, the stakeholders in
service development and provisioning have to be introduced. Of course, the proposed
TCF will be part of the service development and provisioning process and is therefore
situated in the service provider environment. Nevertheless, its implementation might have
potential positive effects for each stakeholder. This assumption will be analysed in the

following.

According to (ITU-T M.3340, 2009), the relevant roles (respectively stakeholders) in an
NGN environment are as illustrated in Figure 2.11. Permission to reproduce Figure 2.11

has been granted by ITU.

29

2.4 Stakeholders in Value-Added Service Provisioning

P
. Contracts:
Service Customer) Service Provider
Use management service

Contracts Contracts

Use management service
Use management service \
/
Vs Vs
Authorizes
Service Provider Network Operator

manages

A 4

—
[Service User]iUse NGN service @

Figure 2.11: Roles in NGN management (adapted from (ITU-T M.3340, 2009))

Besides the network operators, service providers and service customers, also the service

users or rather end-users are shown including the relationship between one another.

The network operators are organisations that enable the transport stratum in the NGN
architecture illustrated in Figure 2.2. They operate the network and take responsibility for
providing the required end-to-end connectivity to the service providers using their
network (Salina and Salina, 2007). The establishment of a novel TCF within the service
provider environment would not directly concern the network operators. However, the
erroneous function of a newly deployed value-added service could also be due to some

problems (e.g. lack of performance) within the network.

The service providers offer basic and value-added telecommunication services through
their service provider environment to service customers. As far as (ITU-T M.3340, 2009)
is concerned, the service providers may or may not operate a network themselves and
may or may not be a customer of another service provider. Additionally, the service
providers have to deal with the following tasks (Menkens, 2010), (ITU-T M.3340, 2009),

(Salina and Salina, 2007), (ITU-T M.3050.1, 2007):

30

2 Telecommunications Infrastructure and Value-Added Services

Managing and administrating the SDP and its associated applications, components

and configuration logic.

Automating their customer care, service and network management processes.

Installing and testing new services and supporting functions in the SDP as well as
investigating and resolving service related issues (which may be experienced by

a service user).

Ensuring that newly deployed services do not impact existing services.

Administrating the life cycle management of value-added services.

Aggregating generic service capabilities to create high-value combinational

services that enrich the user experience, e.g. applying an SCE.

Moving to more of an end-to-end process management approach developed from

the service customer’s point of view.

Apparently, the service providers would benefit most from the establishment of a novel

TCF. As they have to face enormous challenges, such as more demanding customers,

increased competition, ever-growing regulatory requirements and time-to-market

pressure, the service providers have to offer value-added telecommunication services in

the best possible quality. This aspect will lead to satisfied service customers.

The third role, the service customer (ITU-T M.3050.1, 2007), can be a person or an

organisation that has a contractual relationship with a service provider. The customer is

responsible for ordering and paying for the products of a service provider. Additionally,

the service customer can act as service user by actually consuming a service provided by

the network. Alternatively, a service customer can act as a wholesale customer that resells

31

2.4 Stakeholders in Value-Added Service Provisioning

the service provided, possibly with some further value. Relating to the establishment of a
TCF in the service provider environment, the service customers will also benefit from
thoroughly tested value-added services as they are either the direct consumers or
alternatively wholesale customers who can provide their service users with high quality

products.

Another relevant entity, not being mentioned in the NGN environment but playing an
important role in the value-added service development, is the group of service developers.
Generally, the service developers are working for service providers and develop the
applications and business logic that allows the service providers to offer their services to
the service customers. The used development platform within the SDP of the service
provider (e.g. SCE) needs to have a lower barrier of entry for the service developers. It
should be easy to use, easy to maintain and self-descriptive (OMA OSPE, 2005).
Additionally, the development platform needs to be state-of-the art with well-known
programming languages and easy to learn Software Development Kits (SDK) and
Application Programming Interfaces (API). Similarly to the service providers, the service
developers would also benefit from the establishment of a proper TCF. During
development and after having developed a new value-added service, a service developer
might receive feedback if the service is correct and if it meets the requirements of the
service customer. Also, the maintenance phase especially after just having deployed a

service in the service provider environment can be shortened.

32

2 Telecommunications Infrastructure and Value-Added Services

2.5 Conclusion

Within this chapter, the general environment of this research work was introduced.
Starting with the discussion of the NGN concept as defined by ITU-T and ETSI in section
2.1, the following section 2.2 focused on the architecture and structure of the SIP protocol
as well as its basic functionality. This section also mentioned the relevance of the SIP
protocol for the NGN environment and also for the research work as one major

component.

The main object of this research work, the value-added telecommunication services, was
introduced in section 2.3. Several definitions of the term *“value-added services” were
mentioned and discussed. A standard life cycle of services was described as well as
approaches for service providers to develop new services and provide them in their
environment in order to be consumed by their customers. Based on the information given,
the lack of a proper test framework for functional testing of services in addition to the

existing concept of SDP for service development and provisioning was identified.

Completing this chapter in section 2.4, the stakeholders in value-added service
development and provisioning were introduced. It was also depicted how they would

benefit from the installation of a novel TCF.

33

3 The Challenge of Testing Value-Added

Services

This chapter introduces the foundations of functional testing and investigates current
testing methodologies and research projects with reference to the research field. Based on
the identified insufficiencies of the related projects, a list of criteria will be defined which

have to be met by the proposed novel test framework.

An introduction into the field of functional testing will be given in section 3.1.
Subsequently, the current state-of-the-art testing methodologies will be described and
evaluated in section 3.2. Related projects as well as technologies are depicted in section
3.3 and the final section 3.4 summarises the requirements for a novel test framework for

value-added services and includes the list of relevant criteria.

3.1 Principles of Functional Testing

The focus on functional testing within this research work requires the understanding of

how testing in general is defined.

35

3.1 Principles of Functional Testing

3.1.1 Fundamentals of Testing and Test Processes

It is widely accepted that it is impossible to implement perfect software, and as value-
added telecommunication services are software-based, it is necessary to do tests in order
to reduce the risk of errors during service development which cause failures when the
service is consumed. According to (IEEE Std 610.12, 1990), testing is defined as “the
process of analyzing a software item to detect the differences between existing and
required conditions (that is, bugs) and to evaluate the features of the software items”.
Other sources, such as (Amman and Offutt, 2008), define testing as the process of
“evaluating a system by observing its execution”. To sum up, testing can be used to detect
failures in the observed system or service, which will be further referred to as
System/Service under Test (SUT). The process is carried out by executing defined test

cases against the SUT in order to check the system’s behaviour.

When it comes to testing, two independent procedures have to be considered, verification
and validation. As far as (IEEE Std 1490, 2011) is concerned, verification is “the
evaluation of whether or not a product, service, or system complies with a regulation,
requirement, specification, or imposed condition. It is often an internal process”. The
definition indicates that “verification” is intended to prove a software (or
telecommunication service) meets a set of functional specifications. This set is usually
part of a document, the System Requirements Specification (SRS), and is derived from
the customer’s demands by members of the development team or a business analyst. In
contrast to verification, validation is “the assurance that a product, service, or system
meets the needs of the customer and other identified stakeholders. It often involves

acceptance and suitability with external customers” (IEEE Std 1490, 2011). The focus of

36

3 The Challenge of Testing Value-Added Services

validation is to confirm that the software (or telecommunication service) will fulfil its
intended use. The tests have to be executed by the customers or end-users because they

have to accept the behaviour of the software.

Historically, testing was mainly used as debugging to verify that the implemented
software performed as intended. There was no separate and well-defined process defined
in the software development life cycle. Today, standards exist in order to describe the
process of testing. The following Figure 3.1 illustrates how dynamic test processes
interact and shows the relationship with the test management process. This methodology
is taken from the standard (ISO/IEC/IEEE 29119-2, 2013), a document published by the
International Organization for Standardization (ISO), the International Electrotechnical

Commission (IEC) and the Institute of Electrical and Electronics Engineering (IEEE).

[Test Management Process]
TestPlan Test .CO nt!'ol
Measures Directives

e R

Dynamic Test Processes

Test Test

Test Design & Specification) Results
O—V 8 . e »{ Test Execution
Implementation

[No Issues Noticed]

[Issue Notices
OR
Retest Result]

Test Eﬂvironment Test Environment * Incident
Requirements | +est Environment | Readiness Report Report
Test Incident
Set-up & Reportin
Maintenance P i
_ J
© 2013 IEEE

Figure 3.1: Dynamic test processes (ISO/IEC/IEEE 29119-2, 2013)

The test management process is an overseeing process that initialises the dynamic test

process by delivering the test plan. This document should be based on the IEEE standard

37

3.1 Principles of Functional Testing

for test plan specification (IEEE Std 829, 2008) and describes the scope of the test, the
testing approach and the resources and schedule of intended testing activities.
Furthermore, it identifies test items to be tested and test items not to be tested. Test items
represent individual elements and can either be a document, a class, a whole program, a
component of a system or even the whole system. Besides the triggering of the dynamic
test processes, the test management process also monitors the progress (through test
measures) and may require further tests (through control directives) to be designed and

run until a specified completion criterion is achieved (ISO/IEC/IEEE 29119-2, 2013).

For any specified test, the dynamic test process will execute in the order presented in
Figure 3.1. The initial phase, the “Test Design & Implementation”, is used to specify the
test specification. Here, the tester as primarily responsible person has to apply one or
more test design techniques to derive test cases and test procedures with the aim of
achieving the test completion criteria which are defined in the test plan. It is possible that
the “Test Design & Implementation” phase is exited and re-entered afterwards, if some
additional test cases are required after the first execution of a test procedure. Besides the
test specification as output of the phase, relevant test data and test environment

requirements are identified by the tester.

A following phase within the dynamic test process, the “Test Environment Set-Up &
Maintenance”, is used to establish and maintain the environment in which the specified
test cases are executed against the SUT. The person responsible for the maintenance of
the test environment may configure a set of parameters that are required for the testing of
the specific SUT. If a test environment based on the Testing and Test Control Notation

(TTCN-3) (ETSI ES 201 873-1, 2015) is used, the responsible person for instance has to

38

3 The Challenge of Testing Value-Added Services

load the appropriate codecs for the protocol communication with the SUT and has to set
the relevant parameters in order to access the SUT. After the setting up of the test
environment is finished, all relevant stakeholders are informed through a so-called test

environment readiness report.

After the test environment is ready, the “Test Execution” follows. This phase contains the
execution of the test procedures generated as a result of the “Test Design &
Implementation” phase on the prepared test environment. Although it is not defined
explicitly in Figure 3.1, it may be required to perform the execution a number of times as
all the available test procedures may not be executed in a single iteration. If an occurred
issue is fixed in the SUT, it should be retested by re-entering the “Test Execution” phase.
As a result of carrying out this phase, the test results and the test execution log are

produced.

The final phase of the dynamic test process is the “Test Incident Reporting” phase that
provides the reporting of test incidents. This phase will be entered if test failures were
identified, unexpected behaviour took place or if retests passed. The main purpose of the

phase is to report the stakeholders emerging incidents which require further action.

With reference to the overall dynamic test process illustrated in Figure 3.1, it should be
noted again that it is shown as a pure sequential process, however, in practice it may be

carried out in iterative steps (ISO/IEC/IEEE 29119-2, 2013).

39

3.1 Principles of Functional Testing

3.1.2 Schematic Approach to Functional Testing

The described concept of dynamic test processes can be applied to any particular phase
of testing (such as unit, integration, system and acceptance testing) or type of testing (such
as performance testing, security testing, usability testing and functional testing)
(ISO/IEC/IEEE 29119-2, 2013). The focus of this research work is the functional testing
of value-added telecommunication services and one of the major objectives is that both
verification and validation are supported by the proposed approach. This section focusses
on black-box or specification-based testing is therefore only related to the verification

process and not to the validation process.

Functional testing is an essential activity in most software development projects and is
also significant during and after the process of developing new value-added services in
service provider environments. The term itself describes the process of verifying the
functions in a system to assure that they meet the specified requirements. Furthermore,
every software system can be seen as a black box, where a tester selects valid and invalid
inputs and determines the correct output. In functional testing, a tester does not need to
know the internals of the SUT as the focus is to evaluate the functional correctness of a

given system, independently of its internal implementation (Pezze and Young, 2009).

(Pezzeé and Young, 2009) describe a schematic approach to functional testing which is
presented in Figure 3.2. Permission to reproduce Figure 3.2 has been granted by the

authors of the referenced publication.

40

3 The Challenge of Testing Value-Added Services

Brute Force-Test

Create Test Case
Specification

Derive Model

Identify testable
features

Instantiate
Tests

Create Test
Cases

Functional
Specification

Test Case
Specification

Independent
testable Features

Test Cases Scaffolding

Identify representative Create Test Case
values Specification

Representative
Values

Figure 3.2: Schematic Approach to Functional Testing (adapted from (Pezze and Young, 2009))

Initially, there is an existing functional specification (see Figure 3.2) describing the
requested behaviour of a system or service. It typically contains what is needed by the
system/service user as well as all the relevant properties of inputs and outputs. Based on
the functional specification, test cases can be directly defined by an experienced test
designer using a Brute Force method (Mathur, 2008). Here, the test cases will be created
without consideration of any criteria and it is nearly impossible to measure the quality of
the test cases. Moreover, the use of the Brute Force method depends only on the expertise
of the test designer and it costs him a lot of time to repeat the process later on. Because

of these limitations, this process is rather inefficient and ineffective.

Alternatively, a systematic approach can be followed. It simplifies the whole process by
separating it into basic automated steps and steps that require intellectual work. The first
step in this approach is the identification of the independent testable features (see Figure
3.2) from the functional specification. These testable features are parts of a system or
service that can be tested separately. In order to group these features, so-called logical
units are defined comprising related use cases. Then, the test designer has to define all

possible input parameters for the specified logical units (Pezze and Young, 2009).

41

3.1 Principles of Functional Testing

After the logical units based on the independent features have been identified, a test
designer can choose two alternative methods to generate a test case specification. Firstly,
he can identify an amount of representative values (see Figure 3.2) for each derived
logical unit. According to (Pezzé and Young, 2009), these representative values should
be inputs for the logical units that are especially valuable. In general, valuable inputs can
be identified by choosing representatives of equivalence classes that are apt to fail often
or not at all. The equivalence classes can be derived by examining the input conditions
from the functional specification. Each input condition induces an equivalence class with
valid and invalid inputs. Of course, inputs can also be generated randomly, but this
approach is less likely to cover all parts of the functional specification (Gutjahr, 1999).
An example application for the representative values approach can be a ZIP code lookup.
A user has to input a ZIP code (e.g. “12345”) into a form and the list of cities in the ZIP
code are listed after actuating a button. Now, the tester first defines the valid inputs,
consequently 5-digit ZIP codes. The representative selected ZIP codes have different
impact on the output. The first group returns O cities, the second just one city and the third
many cities. Afterwards, the invalid ZIP codes are defined, such as empty inputs, ZIP
codes with less than 5 digits, ZIP codes with more than 5 digits or ZIP codes that contain

characters instead of numbers. For each invalid input, one representative value is selected.

A second approach to derive inputs for the logical units is to derive a formal model (see
Figure 3.2) that specifies software behaviour. Such a model can already be a part of a
functional specification, but more commonly, the test designer has to create the model by
himself. Typical models come as finite state machines (FSM) containing already implicit
information of the possible input values. Comparing this method to the alternative

identification and definition of representative values, the definition of a formal model has

42

3 The Challenge of Testing Value-Added Services

several advantages. Although the definition of representative values might be easier to
handle than a complex formal model, the model is generally much more cost-effective in
the long term. It enables flexibility regarding the amount of test cases to be derived and
can easily be adapted to possible changes in the functional specification (Pezze and

Young, 2009).

The test case specification (see Figure 3.2) in the systematic approach can be derived by
enumerating the input values for each logical unit from the previous step. Afterwards, the
input values have to be combined. It must be pointed out that invalid combinations of
values have to be eliminated. Depending on the complexity of the functional
specification, the derived test case specification can become quite comprehensive. If
using the formal model in the previous step, an adequate test selection algorithm has to

be chosen to prevent a test case explosion (Pezzé and Young, 2009).

In the next step, the test case specification is converted to an amount of test cases (see
Figure 3.2). In order to instantiate the test cases, the appropriate drivers and stubs have to
be installed and loaded. This process is called scaffolding (see Figure 3.2). Especially for
effective testing of higher level components, scaffolding is required. Afterwards, the

functional test cases can be executed against the SUT (Pezzé and Young, 2009).

3.1.3 Relevance for Testing of Value-Added Services

The fundamentals of testing processes and functional testing approaches has been
introduced in the previous sections 3.1.1 and 3.1.2. Now, it has to be elaborated why
especially value-added services require a distinct approach to testing. The following

characteristics have been identified:

43

3.1 Principles of Functional Testing

1. The provisioning of value-added services in NGNs or SIP-based IP networks is a
very difficult and also error-prone task. On the one hand, this has to do with the
various service architectures. In principle, a proper consumption of a value-added
services does not depend only on the SIP Application Server where the service is
deployed on. Furthermore, other servers as part of the SDP might be involved in
the service consumption such as web servers, media servers or database servers.
So, the SUT can be characterised as distributed and complex which usually
requires a throurough testing approach to validate its functionality.

2. According to (Fischer et al., 2011), “the complexity of the protocols for NGN
networks poses a vast number of possibilities for mistakes during the development
of new services”. Especially the structure of the SIP protocol can get quite
complex. In fact, over 60 different headers have been defined and standardised for
SIP requests and SIP responses (IETF RFC 3261, 2002). If one of these headers
contains errors or misses required fields, the functionality of a service can be
affected.

3. Another important aspect which makes testing of services relevant is the
heterogeneity of services. Due to the requirements mentioned in chapter 1 of this
thesis, the demand for more specialised and individual services keeps growing
and has to be fulfilled by the service providers. The development and provisioning
of individual services is much more demanding for service developers because
they might have to solve issues they are not facing regularly. This oftentimes leads
to errors in the service logic.

4. The execution of value-added services might produce unwanted side effects in

other service executions. Especially changes in data or state caused by service

44

3 The Challenge of Testing Value-Added Services

invocations can interfere with other service compositions. This produces
unwanted changes.

5. Services are often consumed by end-user terminals (such as VoIP phones,
smartphones) which have implemented standardised protocol behaviour. This
leads to the fact that services have to follow the standards of protocol-specific

communication.

Besides these specific reasons for establishing a testing process especially for value-
added services there are of course general reasons. A distinct approach to testing, for
instance, ensures the quality of the product. To deliver a quality product to customers

helps in gaining their confidence.

3.2 Related Work on Current Testing Methodologies

An important aim of this research work is to define a new framework for functional testing
of value-added services. For the development of software and services, many state-of-
the-art methodologies include the process of testing, such as:

Test-Driven Development (Karleysky et al., 2006) and (Yenduri and Perkins,

2006)

Acceptance Test Driven Development (Adzic, 2011) and (Gértner, 2012)

Behaviour-Driven Development (Solis and Wang, 2011)

Model-Based Testing (ETSI ES 202 951, 2011) and (Utting and Legeard, 2006)

The first three methodologies are typical agile testing approaches. Especially enhanced

agile concepts have been taken into consideration because they involve the customer at

45

3.2 Related Work on Current Testing Methodologies

frequent intervals within the development and test process. This involvement usually has
a good impact on the service quality, because misunderstanding between the service
provider and the customer can be eliminated quickly. Model-Based Testing (MBT),
however, is a standard approach to realise black box testing. One major advantage of
MBT over most other testing approaches is the possibility to generate a lot of tests within
a short amount of time. Furthermore, MBT approaches enable tests to be linked directly

to requirements through the model. So, a traceability of requirements is supported.

All of the approaches will be evaluated in general and regarding their potential to be

applied as methodology for this research.

3.2.1 Test-Driven Development

Test-Driven Development (TDD) is an agile software development technique that relies
on the repetition of a very short development cycle. It prescribes that test cases have to
be programmed before the functional code is implemented that has to pass the tests. The
main objectives of TDD are on the one hand to be able to test the software at any time
under automation (Karleysky et al., 2006) and to achieve immediate input through the
test cases and thereby construct a program (Yenduri and Perkins, 2006) on the other hand.
The process of defining test cases prior to the implementation code is termed as “Test
First” approach. In traditional software development approaches (such as in the waterfall
model), testing is often left “to the end of a project where budget and time constraints
threaten thorough testing. TDD systematically inverts these patterns” (Karlesky et al.,

2006). The following Figure 3.3 demonstrates the differences between traditional

46

3 The Challenge of Testing Value-Added Services

development and TDD. Permission to reproduce Figure 3.3 has been granted by Springer

Publishing.

A

Write a test

Test passes
P A 4

Run the test

Test fails

Complete
implementation

Write code based on
requirements

Test fails, Test passes
Remove errors v

Write all
Run the test automated tests

A

,—> Run the tests
v

Fix errors

Refactor
Lfails @

v passes

N
)
2
E
&

Run the test Done

Test-Driven Development Traditional Development

Figure 3.3: Comparison of TDD and Traditional Development (adapted from (Abrahamsson et al.,

2005))

The traditional development approach (see Figure 3.3, right part) shows that after
completing the implementation phase, all the tests are implemented and executed against
the implementation. If the tests fail, the emerging errors have to be fixed until the test

execution succeeds with no errors.

Compared to the traditional development, a developer in TDD (see Figure 3.3, left part)
initially adds a new test for a piece of system functionality to implement (such as a single
function or a method). As there is no implementation present, a first test invocation should

fail. Afterwards, the developer writes the implementation code for the piece of system

47

3.2 Related Work on Current Testing Methodologies

functionality and restarts the test. The implementation code now has to be reworked until
all the tests pass. In a final step after the tests succeeded, the implementation code has to
be refactored and tested again. Now, the piece of system functionality is implemented and

tested and the developer can continue with other test definitions.

The proponents of TDD claim that it leads to faster development and that the
implementation code is of better quality. Developers are forced to implement modular
software which makes the implementation code easier to maintain and refactor. TDD
makes collaboration between team members easier and more efficient and they can edit
each other’s code with confidence because the predefined tests will inform them if the

changes are making the code behave in unexpected ways.

Some studies come to the conclusion that TDD has several shortcomings or disadvantages
such as lack of design (Pancur et al., 2003), problems with applying unit tests, lack of
documentation (van Deursen, 2001), reliance on refactoring and dependence on the skills
of the developer (or programmer) (George and Williams, 2004). A further limitation of
TDD is that the developer and tester is one and the same person. Although the developer
can be a highly effective tester, he should not be the tester of the features he has
implemented. With a separate tester involved in the process, the tests are much better at
finding expectations the developer did not take into consideration. Another negative
aspect of TDD is that it is not covering the validation of the software. Even if the
functional specification is the amount of test cases constructed by the developer, there is
no validation whether the functional specification meets the requirements mentioned by

the service customer.

48

3 The Challenge of Testing Value-Added Services

3.2.2 Acceptance Test-Driven Development

Acceptance Test-Driven Development (ATDD) is an agile software requirements
specification process that emphasises the automation of acceptance tests as well as the
specification of customer-readable requirements through concrete examples. Hence, this

approach is also referred to as “specification by example” (Adzic, 2011).

The focus of ATDD is to keep all participants of the development process on the goals of
the software project, whether it is the customer, the developers or the testers. During the
project, customer-readable requirements are established as well as relating acceptance
tests in order to improve the communication between the participants. The collaboration
aspect in ATDD is essential in order to produce testable requirements that enable higher

quality software more rapidly (Gértner, 2012).

According to (Gregory and Crispin, 2015), the ATDD life cycle comprises four main
activities which have to be managed by the participants or rather stakeholders. The

following Figure 3.4 illustrates the dependency between these activities.

Discuss :> Distill

Demo <: Develop

Figure 3.4: Relevant activities in Acceptance Test-Driven Development life cycle

In the initial phase “Discuss”, the customer, testers and developers work together and
define tests that outline expected behaviour to a requirement. All possible variants of the

behaviour are specified through user stories, concrete scenarios, with clearly defined

49

3.2 Related Work on Current Testing Methodologies

input and output. It is important that the customer also understands the documented tests,

possibly by using tables of example data (Cohn, 2004).

The participating roles in the second phase “Distill” are the developers and the testers
who will transform the documented tests from the previous phase in a format that can be
applied to the used test framework. Here, also further tests can be added based on the

improved understanding of the project goals.

In the “Develop” phase of ATDD, the concept of TDD is applied. The developer follows
the “Test First” approach and executes the defined test from phase “Distill” while
implementing the code. Potentially, the developer might find new scenarios that have not
been identified before. In that case, the new tests have to be added to the previous set and
shared with the other project participants (testers and customers). The role of the tester in
this phase is to work with developers to automate the tests. Furthermore, the testers

conduct exploratory testing and run acceptance tests.

In the final phase “Demo”, the developers will meet the customer to show them the final
implementation containing all the programmed and tested user stories. The customer is

able to validate the required functionality by running the tests within a live environment.

As illustrated in Figure 3.4, the ATDD process is applied iteratively. Each iteration step
starting from the “Discuss” phase until the “Demo” phase can then contain acceptance

tests for specific requirements.

As with TDD, the tests in ATDD are no longer at the end of the development cycle but at
the beginning. The focus on defining acceptance tests increases the shared understanding

of requirements because they are a product of direct interaction between customers,

50

3 The Challenge of Testing Value-Added Services

developers and testers. Another positive aspect is that the software delivery is now
dependent on all acceptance tests passing which also defines the end of a project.
Simultaneously, the percentage of passed acceptance tests is a clear indicator of the

project progress.

There are also some ATDD drawbacks. First, the process requires the customer to play
an active role which might prove to be difficult due to time constraints. Accordingly, the
project progress might be slower because of the additional effort. Another problem might
be that the developers take part in the process of defining and implementing the
acceptance tests. Their influence in the process might end up with a wrong understanding
of certain requirements or user stories and therefore also a wrong implementation. Here,

the acceptance test will pass but the customer will not get a valid product.

3.2.3 Behaviour-Driven Development

Behaviour-Driven Development (BDD) is an agile software development technique that
is generally regarded as the evolution of TDD and ATDD. It focusses on defining fine-
grained specifications of the behaviour of the system or service, in a way that they can be
developed (Solis and Wang, 2011). BDD has adopted the concept of ubiquitous language
from Domain-Driven Design (DDD) (Evens, 2003) that minimises miscommunication
and ensures that all stakeholders, such as developers, analysts, testers and managers, are

using the same words to describe certain behaviour.

Generally speaking, it is often difficult for developers to find a starting point to
communicate with customers during the gathering of requirements for a system.

Therefore, the communication should be focused on the business value the system

51

3.2 Related Work on Current Testing Methodologies

delivers. However, it is very hard to make business value explicit. In BDD, the initial step
is to identify the expected behaviour of a system. This behaviour can be directly derived
from the business outcomes the system intends to produce (see Figure 3.5). Afterwards,
the business outcomes are specified further and feature sets are defined. These feature

sets contain features each capturing a user story.

1 -achieve -achievedBy

Business Outcome — o1 Feature Set > Feature
.. M
*
-want 1

-sub

i

*

-framedBy

L -definedUsing -get
BDD Ubiquitous User Story
UserSto Benefit
Language 1 1 Template 1 1 v 1 1
1 1
* -as
. Role
Scenario -definedUsing . 1
Scenario o
Template 1 * 1 -composed by
1
0.1 *
Executable
X u R [@— TestMethod Step
Specification 1 * 01 1
JAY
Context Event Action

© 2011 IEEE

Figure 3.5: Conceptual Model of Behaviour-Driven Development (Solis and Wang, 2011)

User stories in BDD provide the context of the features delivered by the system. As the
name indicates, user stories are user-oriented and describe interactions between users and
a system. For one user story, there can be different versions and different contexts. These
variations of a user story are called scenarios. The specific contexts and outcomes a

scenario describes should be provided by the customer. In BDD, the scenarios are used

52

3 The Challenge of Testing Value-Added Services

as acceptance criteria. The described decomposition process should be performed

iteratively.

The implementation of acceptance tests in the process can be done by the tester who can
lean on the scenario specifications. This process can also be automated because the
scenarios are described by means of a ubiquitous language or rather Domain Specific
Language (DSL). Figure 3.6 shows an example description of a scenario to login a user

on a web site implemented with “Given-When-Then” steps.

Scenario: Login Successfully
Given I am on the home page

When 1 enter the username “admin®
AND I enter the password "test-
AND I click "login*®

Then 1 should be logged in

Figure 3.6: Example BDD scenario description

The “Given” part describes the state of the system before the behaviour starts whereas the
“When” section actually contains the behaviour. Finally, the “Then” section describes the
changes that are expected due to the specified behaviour. In between, concatenations can
be realised by using the “And” statement. All in all, the description is quite easy to follow
and possibly understandable for each stakeholder taking part in the process (Solis and

Wang, 2011).

The concept of BDD has many advantages and also a few drawbacks. As BDD forces the
development team to specify the scenarios in collaboration with the customer, it helps to
avoid wasted effort by helping teams focus on features that are aligned with business

goals. The stakeholders have a “living documentation” throughout the project which

53

3.2 Related Work on Current Testing Methodologies

makes it considerably easier to handle changes or extension in the application.
Furthermore, as testers are not required to carry out long manual testing sessions before
each new release of the application, they can use the automated acceptance tests as

starting point. This leads to faster releases and satisfied customers.

A major drawback of BDD is that the process might be very time consuming, especially
for the customer who may be unwilling or unable to engage in conversations and
collaboration. Another aspect can be poorly written tests by the developers and testers.
This drawback is mainly caused by the possible ambiguities that can be specified when
the scenarios are described by means of the ubiquitious language. In the middle term, this

aspect leads to higher test-maintenance costs.

3.2.4 Model-Based Testing

Model-Based Testing (MBT), also known as Model-Driven Testing, means that testing is
based on some form of a formal (computer-readable) model that describes the desired
behaviour of the system to be tested. After the formal model is complete, tests can be

generated from it by means of an automatic or semi-automatic approach.

According to (ETSI ES 202 951, 2011), the methodology in MBT (see Figure 3.7) starts
with a test designer receiving a set of requirements of the system to be tested, generally
given in a specification written in natural language. Then, the test designer authors a
model using a specific modelling notation that fulfils the requirements stated in the
document. The model encodes the requirements and specifies the aspects of the functional

behaviour and the relevant interfaces via which these are tested.

54

3 The Challenge of Testing Value-Added Services

Afterwards, the model is utilised for the purpose of test case generation by adding or
choosing test selection criteria, e.g. coverage goals. It is necessary to specify the test
selection in order to reduce the amount of test cases that will be derived from the model.
Then, an abstract test suite is automatically generated that complies with the chosen test
selection criteria. In order to enable test execution against the SUT, the abstract test suite
may need to be adapted. Permission to reproduce upcoming Figure 3.7 has been granted

by ETSI.

Figure 3.7 has been removed due to Copyright restrictions.

Figure 3.7: Model-Based Test Development (adapted from (ETSI ES 202 951, 2011))

In MBT, two different testing approaches exist, either offline or online testing. In offline
testing, the test generator is not connected to the SUT and the generated test suite can be
executed against the SUT after it has been built completely. There is also the possibility
to optimise the test suite after its creation. In online MBT, the test generator and the SUT
are connected and all commands are executed directly on the SUT. Here, the test cases
are usually generated and executed one after another which does not allow further

optimisations of the test suite (Utting and Legeard, 2006).

55

3.2 Related Work on Current Testing Methodologies

The MBT methodology in Figure 3.7 continuously delivers feedback for the involved
artefacts on multiple levels. Firstly, the process of creating the model provides feedback
for the consistency of the system specification. This can be measured before any test is
executed. Secondly, the examination of generated test cases and feedback from model
analysis can reveal certain issues either in the system specification or the model. Thirdly,
issues can be found in the SUT, in the system specification and in the model when the

tests are finally executed (ETSI ES 202 951, 2011).

Regarding the evaluation of MBT, several advantages and disadvantages exist. One of
the most attracting benefits of MBT is that it automatically generates relevant test cases
from the formal model so a better test coverage is guaranteed. The higher level of
abstraction in the model helps to concentrate on the right things as the irrelevant details
are hidden. Another positive aspect of models is that they can be visualised easier than
code. Several studies such as (Pretschner et al., 2005) and (Baker et al., 2007) show that
MBT works better at detecting faults in SUTs than manually designed tests. However,
this ability depends on the skills and experience of the test designer. A further advantage
of MBT is traceability throughout the whole process. Each test case can be related to the

model, to the test selection criteria and even to the informal system specification.

Besides the advantages of MBT, several limitations have to be faced. Firstly, the concept
of MBT is not an agile method, so it follows the methodology of traditional test
development. It might be difficult for the developer to figure out all the errors in the
system because there has not been an iterative process. Furthermore, as requirements of
customers can change, also the informal requirements the model is based on might

become out of date. In this case, a wrong model will be built and the test case execution

56

3 The Challenge of Testing Value-Added Services

will yield a significant amount of errors (Utting and Legeard, 2006). Another
disadvantage of MBT is that its quality is totally depending on the skills of the test
designer to build models. He must be able to abstract and design the models and has to
be an expert in the application area. This requires training costs and an initial learning
curve when starting to use MBT (Utting and Legeard, 2006). A further well-known issue
of MBT is the state space explosion. Models of any non-trivial system functionality can
grow beyond manageable levels. In this scenario, all tasks within MBT are affected such
as model maintenance, checking, reviewing and non-random test generation (El-Far and

Whittaker, 2001).

3.3 Related Work on Current Research Projects on

Functional Testing

In this section, related testing approaches and current reseach projects in the field of
testing are introduced. It shall be analysed whether the solutions can be applied in order
to verify and validate value-added telecommunication services. Also advantages and

disadvantages of the approaches are discussed.

3.3.1 UML 2.0 Testing Profile

The UML 2.0 Testing Profile (U2TP) defines a modelling language for designing,
visualising, specifying, constructing and documenting artefacts of test systems and is an
Object Management Group (OMG) standard (OMG, 2013a). According to (Zander et al.,

2005), U2TP can be applied to test systems in various applications and can be either used

57

3.3 Related Work on Current Research Projects on Functional Testing

stand alone for the handling of test artefacts or in an integrated manner with UML 2.0
(OMG, 2011a) for handling of both system and test artefacts. In principal, U2TP enhances
UML 2.0 with test-specific concepts such as test architecture, test behaviour, test data and
time concepts (see Table 3.1). Permission to reproduce Table 3.1 has been granted by

Springer Publishing.

Table 3.1: Overview of the UML 2.0 Testing Profile concepts (Zander et al., 2005)

Architecture concepts | Behaviour concepts Data concepts Time concepts
SUT Test objective Wildcards Timer

Test components Test case Data pools Time zone
Test context Defaults Data partitions

Test configuration Verdicts Data selectors

Arbiter Test Control Coding rules

Scheduler

The test architecture group covers the concepts related to test structure and test
configuration such as specifying test components, their interfaces, possible connections
among test components and between test components and SUT. The test behaviour group
embodies dynamic aspects of test procedures and addressing observations and activities
during the test. Test behaviours can be defined by any behavioural diagram of UML 2.0,
e.g. interaction diagrams or state machines. The test data group includes concepts for
specifying test data used in test procedures, such as the structures and meaning of values
to be processed in a test. Finally, the time group covers concepts for a time quantified
definition of test procedures, e.g. the time constraints and time observation for test

execution (Zander et al., 2005) (OMG, 2013a).

Based on the U2TP concepts, a given design model specified in UML notation can be

extended with test-specific information. According to (Dai et al., 2004), a tester first has

58

3 The Challenge of Testing Value-Added Services

to define a new UML package as the test package of the system. Then, he imports the
implementation code, all classes and interfaces, and starts with the specification of the
test architecture and test behaviour. Oftentimes, the test data and time aspects are already
comprised in either the test architecture or test behaviour. In order to define a complete
test model, the following steps within the test architecture have to be performed:

1. Assigning the system components to be tested (SUT).

2. Depending on their functionality, the test components have to be defined. The test

components should be grouped to the system components of the design model.
3. Specifying a test suite class that lists the test attributes and test cases as well as

test control and test configuration.

Besides the test architecture definitions, the test behaviour includes the designing of the
test cases. Here, the given interaction diagrams of the design model can be reused, but the
instances have to be assigned with stereotypes of U2TP according to their functionalities.
At each test case specification, verdicts (such as pass, fail or inconclusive) have to be

assigned.

As soon as the test model is final, the test cases still have to be generated and executed
against the SUT. Actually, U2TP provides two mappings towards test execution
environments or rather technologies, either JUnit (JUnit, 2015) or TTCN-3 (ETSI ES 201
873-1, 2015). Both technologies allow the execution of tests and deliver an evaluation

report.

In the following, an example test case specification using U2TP is demonstrated. The
specific test case concerns the use of a bank Automated Teller Machine (ATM),

especially the verification of an entered pin number. It shall be tested how the ATM reacts

59

3.3 Related Work on Current Research Projects on Functional Testing

if a wrong pin number is entered after a bank card is inserted. In order to test this, a
“hardware emulator” (HW Emulator) is defined as test component as well as an external
component “current” which determines whether the pin number is correct for the given
bank card or not. The test case specification is illustrated as a UML sequence diagram in

the following Figure 3.8. Permission to reproduce Figure 3.8 has been granted by OMG.

sd InvalidPIN

{readOnly} Integer invalidPIN; {current.isPinCorrect(invalidPin) == false}

HW
Emulator

t1
(2.0)

storeCardData(current)}——»,

<<SUT>>
Bank ATM

Current

:{—display(”Enter PIN")—{

t1>H

Tliis PinCorrect(invalidPIN)
|
|

.

[
|
|
: — — — -isPinCorrect: false — — — I

3}

:{—display("lnvalid PIN")
|

isPINCorrect(invalidPIN)

<~ — —isPinCorrect: false— — —

|
1
|

l@——display("Enter PIN again")——
| |

<<validationAction>>

pass

Figure 3.8: Example test case specification with U2TP using a UML sequence diagram (adapted

A significant information within the sequence diagram is defined as soon as the HW
Emulator is terminated, the so-called validation action. If the two messages “Invalid PIN”

and “Enter PIN again” are displayed on the HW Emulator after the pin number has been

from (OMG, 2013a))

checked, the test case passes.

The proponents of U2TP claim that the approach is standardised by the OMG and is based

on standard UML notations. Actually, U2TP has a lot of features, such as the support for

60

3 The Challenge of Testing Value-Added Services

domain-independent test modelling, test case specification and test data specification. The
close connection with UML enables also the combination with other standardised profiles
like the Systems Modeling Language (SysML) (OMG, 2012a) or the Service oriented

architecture Modeling Language (SoaML) (OMG, 2012b).

The negative aspects of U2TP correlate with the negative aspects of Model-Based Testing
(MBT). A lot of training is required for the testers to build adequate U2TP test models
with complete test architecture and test behaviour configurations. As the domain model
and the test model are closely coupled, possible changes triggered by the customer of a
system or service lead to changes in the domain model and in the test model. Another
restriction of U2TP is that many important aspects relevant for testing are not covered,
such as a proper test management, audits and reviews or a thorough test methodology.
Finally, agile concepts cannot be applied easily, as the system model always has to exist

before the test model can be defined.

3.3.2 TT-Medal Test Platform

The Information Technology for European Advancement (ITEA) project TT-Medal (TT-
Medal Consortium, 2005) has focused on developing the methodologies, tools and
industrial experience in order to allow the testing process of software intensive systems
to be made more effective and efficient. Special accentuation has been given to
standardised test technologies and notations, such as TTCN-3 and U2TP. Because of its
high maturity, wide applicability and existing tool support, TTCN-3 became the central

focus of the TT-Medal project.

61

3.3 Related Work on Current Research Projects on Functional Testing

Although TTCN-3 is a powerful testing technology, in isolation it only provides one piece
of a complete testing solution. TT-Medal proposes a tool chain that supports testers during
all phases of the testing process. Its resulting toolset is called TT-Medal test platform and
is illustrated in Figure 3.9. Permission to reproduce Figure 3.9 has been granted by the

copyright owner of the white paper.

kind of test (e.g. functional / stress / performance)

test purposes / test objectives

S—
. test development

test repository
e domain specific

test frameworks TTCN-3 profiles
S——

test patterns |:> test
test

legacy tests test derivation .
gacy / generation

S—— other sources composition (semi fully automati

[abstract test suite
compile
{ test infrastructure l debugging

Figure 3.9: TT-Medal test platform (TT-Medal Consortium, 2005)

simulation /
validation

TT-Medal considers requirements from the automotive, railway, financial and telecom
domains to find and demonstrate test solutions that are all based on one standardised test
notation. Furthermore, it defines a TTCN-3 test infrastructure that focuses on the test
execution phase and which is applicable for all the mentioned industrial domains.
Furthermore, it included approaches for the development of tests within the test
infrastructure. However, these methods are not further specified in the given sources. (TT-

Medal Consortium, 2005) only state that existing test generation tools from external

62

3 The Challenge of Testing Value-Added Services

sources, or imports and mappings from other specification and programming techniques
have been adopted. The resulting toolset is called TT-Medal test platform and is
illustrated in. Permission to reproduce Figure 3.9 has been granted by the copyright owner

of the white paper.

The test platform offers components dedicated to the synthesis, validation and analysis of
tests. First, tests can be developed along different types, such as functional,
interoperability, performance or load tests. Then, specific purposes (or rather test
objectives) are assigned to the testing types. TT-Medal supports tests that are specified in
either TTCN-3 or U2TP. The results of the test development are abstract test suites (ATS)
that need to be compiled into a target programming code (e.g. Java) before the tests can
be performed using a test management tool (TT-Medal ITEA, 2005). In TT-Medal, the
tools for compiling (TTthree) and execution (TTman) are integrated within an Eclipse-
based TTCN-3 toolset, the TTworkbench (TTworkbench, 2015). The results of the test
execution using the test manager are test logs, which are the basis for determining the

final test results. They can be visualised using diverse presentation formats.

The advantages of TT-Medal are the use of standardised tools such as TTCN-3 and U2TP
and the focus on a wide spectrum of support for diverse domains, even for the telecom
domain. However, the main target of TT-Medal is not to deliver thorough methodologies
for all domains to help deriving test cases from requirements specifications, but to support
certain domain-specific protocols. As an example, a SIP protocol codec was implemented
for TTCN-3 in order to realise SIP conformance testing. Furthermore, the project results
of TT-Medal aimed more on delivering a training and experience package. The training

aspect should show project partners and others in European industry how to use new

63

3.3 Related Work on Current Research Projects on Functional Testing

testing technologies (TTCN-3) to effectively test their business process. The experience
aspect in contrast should describe where the technologies should be applied and why.

Finally, as with U2TP, TT-Medal does not support agile testing concepts.

3.3.3 Fokus!MBT Test Modelling Environment

Fokus!MBT (Fokus!MBT, 2015) is an integrated test modelling environment that
supports test model authoring by guiding the tester through methodology-specific support
(Wendland et al., 2013). Fokus!MBT uses U2TP as language for expressing test models.
Its main goal is to provide domain and testing experts with an integrated modelling
environment helping them to perform their work quickly, easily and free of errors.
Especially in the area of MBT, authoring tools are important in order to avoid the domain
experts of getting easily frustrated with the complexity or the granted degree of freedom

a modelling tool might provide.

The Fokus!MBT test modelling environment is illustrated in the following Figure 3.10.

64

3 The Challenge of Testing Value-Added Services

Req. Engineer
System Developer

O

Fokus!MBT

(Fokus!MBT Testing Services)

Test
Model y

External
Model(s)

Diagram

Editor
MP

Editor Test Developer

Artifact|Reuse (optional)

A

|
| |
| |
| |
- L
: |
System Code Derivation | |
Test Code | | Test Log
Generation : | Import
| |
+ |
|
| _ Test Execution _ _ L—
System Test Execution
Implementation System

Figure 3.10: Fokus!MBT test modelling environment (Wendland et al., 2013)

Permission to reproduce Figure 3.10 has been granted by ACM (Association for
Computing Machinery, Inc.). Within the approach, a separate test model is created and
authored independently from the system specification. This separate test model is created
by a test developer by means of a Diagram Editor or a MP Editor. So, the test model can
be either based on a formal model or a document. The compilation process of the test
model can be simplified if an existing system model (Artifact Reuse) is available and
accessible, because Fokus!MBT allows the reusing of certain aspects of the system. This
aspect shows the similarities the approach has to the standard U2TP approach. However,
Fokus!MBT seems to be more flexible as it enables the inclusion of external testing
services, such as test case or test report generators. The test code generation, for instance,
Is a service that is part of the Fokus!MBT (Testing) Services environment. The test

execution system is not specified any further.

65

3.3 Related Work on Current Research Projects on Functional Testing

Generally speaking, Fokus!MBT is designed to be flexible enough to be integrated into
various testing tools and process landscapes. It can be decomposed into a core component
that is framed by three logical layers which is shown in Figure 3.11. Permission to

reproduce Figure 3.11 has been granted by ACM.

(Multi-par.adigmatic Dia.gram Modeling Mo‘deling Modeli‘ng Modeling Rules\
L Editor Views Commands Assistants Composites)

Ul Core Extension Layer

J
4 N\ 2\ 4 N\ 2\
Test Case Pabvrus
Generator py
- — J

Eclipse PDE utp || sysmiL | | EMF Facet
Test Data 5 View/Editors .
Generator E Ul Components GMF %
H P UML2 Profiles 5
b5 (SWT, JFace,...) z
Test Code = OCL] RSA
Generator E bl
e Eclipse Ul UML 2 M2T/M2M S
—
% 5
Test Logs (3 <
| = Eclipse PDE Eclipse Modeling Framework 2

EE—— l
. Eclipse-
T
est Reporting based
& J J & J J

Eclipse Rich Client Platform

Figure 3.11: Architecture and technology stack of Fokus!MBT (Wendland et al., 2013)

It should be mentioned at this point that the authors chose to illustrate two of the three
layers vertically. The core component relies on the key technologies and provides
fundamental capabilities for implementing and registering test-related services, certain
Ul extensions as well as the integration with Eclipse-based modelling environments. The
main task of the core component is to guarantee that both the syntactical and semantical
methodology is respected. The logical layers encapsulate technologies and concepts that
are specific to concrete services and implementations of modelling environments. The

purpose of the three layers is as follows (Wendland et al., 2013):

66

3 The Challenge of Testing Value-Added Services

e Testing Service Layer — Here, testing-related interfaces are provided as services,
such as test case generation or test report generation.

e Ul Core Extension Layer — The main objective of Fokus!MBT is to provide an
authoring system for the test developers and engineers. Here, several service
extension points are defined which realise the idea of multi-paradigmatic test
modelling. Furthermore, the service extension points allow tailoring the Ul for
different purposes and stakeholders.

e Tool Integration Layer — Any modelling environment-specific implementation

can be encapsulated from the core component.

The focus of Fokus!MBT to simplify the test process for test developers and test engineers
is promising. Especially MBT approaches are oftentimes not embraced by the testers
because of the missing support of the modelling tools. The aspect of highest possible
flexibility in order to integrate the platform into a given process landscape can also be
estimated positively, however, this is also fraught with risk. The tools behind important
testing-related interfaces might not be supported or even error-prone. All in all,
Fokus!MBT is currently developed in the third generation and still has to undergo a lot
of changes. The methodology has not yet proven to be feasible as there is no published
case study so far. Another problem of the approach is that is intends to be an overall
solution for any present problem in model-based testing. This flexibility is, however, a
problem as there is no standard approach or case study published demonstrating the

deriving of test cases or the execution of test cases against a SUT.

67

3.3 Related Work on Current Research Projects on Functional Testing

3.3.4 ComGeneration

The ComGeneration approach described in (Wacht et al., 2011a) and (Wacht et al.,
2011b) defines a methodology that can be specifically applied to functional testing of
value-added services. It considers both service implementation and functional testing of
the service (see Figure 3.12). Permission to reproduce Figure 3.12 has been granted by

the copyright owners of the referenced publication.

S S
Modelling Test Case
Modular Sub Behaviour Generator
Finite State Model

Machines

A 4

N Test Cases
¥l |)| |l -
Test Execution

/ Environment

0
Service

Description

)
Service N/‘:>
= \ Creation [
Environment

Service — SIP
% Application

Server

@@

Figure 3.12: ComGeneration methodology (Wacht et al., 2011b)

Initially, a so-called service description is specified. This is a natural language-based
document that can be understood as the requirements specification and is created by the

service provider in consultation with a service customer.

After the service description document has been completed, both service developer and
test developer can start with the development. The service developer can use a Service
Creation Environment (SCE) to develop and subsequently deploy the service on a SIP

Application Server within a Service Delivery Platform (SDP).

68

3 The Challenge of Testing Value-Added Services

Just like the service developer, the test developer has to extract the relevant service
information for the test purpose from the service description. First, he chooses the service-
related characteristics out of a repository of so-called predefined modular extended finite
state machines (EFSM). The EFSMs cover basic service characteristics like protocol
sequences for SIP (IETF RFC 3261, 2002) or HTTP (Hypertext Transfer Protocol) (IETF
RFC 2616, 1999). By composing the chosen predefined modular EFSMs, the test
developer creates a behaviour model describing the behaviour of a value-added service.
Once the behaviour model is created, it is passed to the Test Case Generator which
contains an algorithm to automatically generate the service-specific abstract test cases by
identifying every possible path through the EFSM. Afterwards, the abstract test cases are
converted into TTCN-3 test cases by using a special mapping concept (Wacht et al.,
2011a). Finally, the TTCN-3 test cases are combined to a test suite that can be executed
within a TTCN-3 test execution environment. In the approach, the TTworkbench

(TTworkbench, 2015) was used.

In the following, an example demonstrates how the behaviour model is established. The
service to be tested is a standard Click-to-Instant-Message (Click2IM) service. The input
is a SIP URI and a text message. Both have to be set on a web site. By actuating a “Send”
button, a SIP message will be send to the entity that is reachable through the SIP URI.
The message, of course, contains the specified text message from the web site. In the first
step to establish the behaviour model, the test developer has to configure the test
architecture through the so-called Connectivity Editor (see Figure 3.13). Permission to

reproduce Figure 3.13 has been granted by the copyright owners of the publication.

69

3.3 Related Work on Current Research Projects on Functional Testing

|id] ClickzirM.model_diagramConnectivity &3

<, Port1 (3IP) <, . Port2 (HTTP)

: & g
[E2] sipReqmESSAGE 88§ Component

& gr2
@sipResztmOK
@SipRestx_ﬁxx @HttpReq\c’alid
@SiDREﬂXX @HttpReqlnvalid
HttpResError HttpResNotOK @HttpnesoK

w Palette

heaad-
ﬁ Component
\ ComponentGlobaltimer
\ ComponentPorts
\ ComponentVariables
(;_e Port
(: GlobalTimer
O Action
i Guard
%, GuardVariables
XPrimitive‘u’ariable

Ig‘ IMessageVariable

Figure 3.13: Connectivity Editor for Click2IM service (Wacht et al., 2011b)

The Connectivity Editor contains the protocols that have to be used (SIP, HTTP),

specifies certain timers that have to be integrated and includes all required messages (SIP

requests and responses as well as HTTP requests and responses). The example also

considers certain mistakes a service customer could do while using the service, such as

forgetting to include the SIP URI in the text field. In the approach, such considerations

require to specify long lists of defined possible messages. In the next step, the messages

have to be further specified. In the approach, complex data types have been defined that

represent example protocol messages. By using a so-called Test Data Editor, the test

developer can determine the test data for each defined message. The following Figure

3.14 shows how a SIP request message can be specified through a tree-like view.

Permission to reproduce Figure 3.14 has been granted by the copyright owners of the

referenced publication.

70

3 The Challenge of Testing Value-Added Services

Click2IM.medel_diagramConneckivity . @ ClickziM model 52 -

b

[Resource set

v 4 Connectivity View
w i Componenkt Componenkt
v ©. Port Port1 (5IF)
w 4 Message Type Request

¥ 4 Message Field requestLine

» <4 Message Field requestUri
4 Message Field sipVersion
» 4 Message Field msgHeader
» < Message Field messageBody
» 4 Message Field payload

» < Message Type Response

v . Port Port2 (HTTP) 5
2 masks | r@r = o0
Propertyn o
- Complex Type {% False
Datakype Mekhod
Mame IMESSAGE :
€ <3

Figure 3.14: Tree-like Test Data Editor (Wacht et al., 2011b)

The final step of the modelling process is the design of the behaviour model itself. Here,

an EFSM is applied and the main information is included on the transitions (see Figure

3.15). Permission to reproduce Figure 3.15 has been granted by the copyright owners of

the referenced publication.

Click2im.model_diagramFsiv S
. | % Palette [
@ aaw:
4 TU->HEEpResNotOk/Port 2 HEEpResMot Ol Qe
<4 Port2,HtkpRegValid/HEEpRegValid->TU = modelF5k el
/ Transition
4 HttpReguest_Server 4 TU->HEttpResOK/Port2 HEtpResOK |4 HttpResponse_Server 4 TU-=HEttpResError/Port2.HekpResError "
@ InitialState
(® Endstate

4 TU->5ipRegqMESSAGE/Pork1.5ipReqMESSAGE [SipRegiMessage.text==HttpRegValid texk]
< TU->HttpResOK/Port 2. HEEpResOK
4 Port1.SipRes 2 6xx/SipRes 206 6xx->TU

< SipUAC_neonlinvite_inikt <+ SipUAC_nonlnvite_term

<4 Port1.timerf/timeouk->TU

4 TransportError/Error-=TU

< SipUAC_noninvite_proc
<4 Port1.SipResxTU->SipRes 1t

>

< Port1,5ipRes 2xx-6xx/SipRes 26> TU

£

[Nermalstace

4)

Figure 3.15: Behaviour Model for Click2IM service (Wacht et al., 2011b)

71

3.3 Related Work on Current Research Projects on Functional Testing

The illustrated Behaviour Model in the ComGeneration approach contains five states,
each representing a predefined EFSM, either SIP-based or HTTP-based. The transitions
between the states either describe events that might occur or specify actions that take
place as soon as the events happened. Finally, based on the complete EFSM-based
Behaviour Model, a test generation transition coverage algorithm has been implemented
to derive test cases and execute them against the value-added service running on a SIP

AS.

To the author’s knowledge, the described methodology of the ComGeneration project is
the only test approach that has been specifically applied to the field of NGN or rather SIP-
over-1P-based environments. It can be understood as the foundation of this research. A
few aspects of the ComGeneration project have been adopted in this research, however,
mainly aspects the author has established during the project work. In this connection,
publications have been done, such as (Wacht et al., 2010), (Wacht et al., 2011a), (Wacht

et al., 2011b) and (Wacht et al., 2011c).

Regarding the ComGeneration approach, the separation of the development process and
the test process enables a thorough verification based on the service description.
Unfortunately, the role of the service customer in this approach is only relevant at the
project start. This leads to the question, if the ComGeneration approach also validates the
value-added services. Furthermore, the approach lacks an efficient test case derivation
algorithm from the behaviour model to avoid the well-known combinatorial explosion
issue in EFSMs. Also in the ComGeneration approach, the agile concepts have not been

considered.

72

3 The Challenge of Testing Value-Added Services

3.3.5 Telling TestStories

(Felderer et al., 2010) and (Felderer et al., 2011) describe a tool-based methodology for
model-driven system testing of service-oriented systems called Telling TestStories (TTS).

This methodology is based on a separated system and test model.

Figure 3.16 shows the existing system and testing artefacts of the methodology. The
informal requirements are written or non-written capabilities or rather properties of the
system whereas the SUT provides the services that are callable by the test controller. The

test execution is not discussed in the papers as it is not a focus of the methodology.

Informal
Requirements

l

Traceability Requirements Traceability
Model

Consistency, Integration, Validation
<
>
>
Consistency, Coverage, Generation

System Model Test Model

Adapter Code Generation

Test Code

¢ ————-—-

System under Test <
Test Controller

© 2010 IEEE

Figure 3.16: TTS artefacts overview (Felderer et al., 2010)

The requirements model contains the requirements for both system development and

testing. It provides a way to integrate the textual descriptions of requirements that are

73

3.3 Related Work on Current Research Projects on Functional Testing

needed for communication with non-technicians into a modelling tool. The system model
describes the structure of the system and its behaviour in a platform independent way. Its
static structure is based on the notions of services, components and types. Each service
operation call is assigned to specific use cases, actors correspond to components
providing and requiring services. The domain types also correspond to types. (Felderer et
al., 2011) assume that “each service in the system model corresponds to an executable
service in the running system to guarantee traceability”. The test model in contrast defines
the test data and the test scenarios as so called test stories. The concept of the test stories
mentioned can be compared to user stories in ATDD or BDD. The test stories are
controlled sequences of service operation invocations exemplifying the interaction of
components. Principally, test stories can be modelled by means of UML sequence
diagrams or activity diagrams. To gain traceability between the requirements and the test

model, each test story has to be linked to a requirement (Felderer et al., 2011).

In Figure 3.17, the model-driven testing process of TTS is presented. It consists of a

design, validation, execution and evaluation phase and is processed iteratively.

74

3 The Challenge of Testing Value-Added Services

Requirements
Definition

T

Requirements
Model

———————————————————

———————— e

v Yy

|

|

|

| Test Design
Validation |

|
Coverage :

System Design

|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
)
‘(Test Selection and Test Code J

System Model | Test Model
p| Transformation : Test Requirements
: | Test | | Datapool I
- @@ |
s | — oo S
‘{ System Implementation] VL Generation
\ 4

Adapter
Implementation /
Generation

Adapter

(Test Execution)4-

Test Report Test Analysis Test Log

© 2011 IEEE

3
m
“n
-
[«
o
Q.
M
S

Figure 3.17: Model-driven Testing Process (Felderer et al., 2011)

Initially, from the defined requirements, the system model containing services and the
test model containing tests are designed. The test design includes the data pool definition
as well as the definition of the test requirements. The system model and the test model
can be checked for consistency and coverage based on Object Constraint Language
(OCL) (OMG, 2014) queries. This enables an iterative improvement of both the system
and the test model quality. The methodology does not consider the system development
itself but is based on services offered by the SUT. As soon as adapters are available for
the system services, the process of test code generation can take place. Subsequently, the
generated test code is automatically compiled and executed by a test execution engine

which also logs occurring events into a test log. The test result can be used to validate the

75

3.3 Related Work on Current Research Projects on Functional Testing

system model. Finally, a test analysis tool realises the test evaluation and generates the

relevant test reports (Felderer et al., 2010) (Felderer et al., 2011).

A practical example of a test story can be, for instance, the routing of a call. This test

story is a sequence of activities and is illustrated as an example (see Figure 3.18).

O

A 4

<<Servicecall>>
initiateCall

User

Call Manager

<<Servicecall>> <<Servicecall>>
routeCall hangupCall

v \4
<<Trigger>> <<Trigger>> <<Assertion>> <<Trigger>>
incomingCall routeCallResult Assertionl hangupCallResult

v
<<Assertion>>
Assertion2

© 2010 IEEE

Figure 3.18: Test story of routing a call (Felderer et al., 2010)

After the call is initiated by the user, the service routes the call and terminates it. The
results of these calls are triggered on the test controller. The assertions check whether the

result provided matches the expected one (Felderer et al., 2010).

The authors have defined a methodology that includes a very practical form of
specification, test stories or rather user stories. An advantage of this approach is that
theoretically, the traceability between the test model, the system model and the

requirements model is provided. However, the authors do not mention the test case

76

3 The Challenge of Testing Value-Added Services

derivation and they do not follow a standardised approach to execute tests. In fact, the
technologies RMI (Remote Method Invocation) (RMI, 2015) and CORBA (Common
Object Request Broker Architecture) (OMG, 2012c) have been applied. Unfortunately,
there is no standardised test execution technology used such as JUnit or TTCN-3. This

makes it difficult to maintain the environment or to enhance it.

3.4 Requirements for a New Optimised Solution for

Functional Testing of Value-Added Services

The previous sections 3.2 and 3.3 introduced current testing methodologies as well as
related projects in the field of functional testing. All of these approaches include their
relative strengths and weaknesses that have been mentioned at the end of each section.
The target of this chapter is to derive requirements for a new optimised solution in order
to do functional testing of value-added services. This means that these requirements will
also be the basis for the proposed Test Creation Framework (TCF) which will be

presented in chapter 4.

e Test Execution — The fully automatic execution of tests is one major requirement
that has to be met by any test framework. The test developer does not have to do
any manual actions.

e Test Report — The test execution environment shall deliver a thorough test report

that a test developer can interpret easily.

Regarding the related projects, the TT-Medal Test Platform as well as the ComGeneration

approach use the TTworkbench, a TTCN-3-based test execution environment in order to

77

3.4 Requirements for a New Optimised Solution for Functional Testing of Value-Added Services

execute tests. The TTworkbench also supports the generation of report results. The
Telling TestStories project includes a proprietary approach to execute tests based on
CORBA and RMI. U2TP does not support test execution and Fokus!MBT requires an

external tool that is not specified.

A further criterion which could be derived from agile approaches such as ATDD and
BDD is that the needs of the service customer should always be the centre of attention in
the testing and development process. Based on this aspect, the following requirements

can be determined by means of keywords:

e Collaboration and support for agile principles — An optimised solution is required
to integrate all stakeholders in the test process, such as service developers, test
developers and service customers.

e Comprehension — All stakeholders shall always have the chance to get an
overview of the project progress (both testing and development), especially the

service customer if he is interested.

None of the current related projects directly support the collaboration or comprehension.
The ComGeneration approach lets the service customer participate in the compilation of
the Service Description, a contract document between the service customer and the
service provider. The Telling TestStories project includes the compilation of test stories
which can be compared to approaches in ATDD and BDD. So, a minimal support for

agile principles can de identified.

The next set of requirements refers to the usability of a test framework. Here, the

following keywords have been defined:

78

3 The Challenge of Testing Value-Added Services

e Manageability and time exposure — It is important that the framework concepts
and methodologies do not overburden the stakeholders and are quite easily
manageable in a reasonable timeframe.

e Tool support — The framework shall provide tools especially for the test developer

to maintain the test process.

U2TP is very well documented as it is also a test specification standard and directly
connected to UML. There is also a tool that uses components of U2TP (e.g. Eclipse Test
& Performance Tools Platform Project) (Eclipse TPTP, 2015). For the ComGeneration
approach, an Eclipse Modeling Framework (EMF)-based solution exists, but it lacks
relevant documentation. The use of the tool is manageable, but not straightforward.
Fokus!MBT is very complex, as it involves many types of applications depending on the
functionality to apply (e.g. one tool for test data generation). For test modelling, U2TP is
used. The Telling TestStories approach provides a good documentation and a tool is
shipped as a bundle of Eclipse plugins (Telling TestStories, 2015). It is quite easily
manageable, but the functionality is also very limited. For the TT-Medal project, there is

no existing tool that can be used.

e Traceability of requirements — It shall be possible to detect the specified

requirements throughout the whole testing process.

The traceability of requirements is supported by the Fokus!MBT and Telling TestStories

approaches. The other related projects do not mention the support.

The upcoming set of requirements is directly derived from the aims and objectives of this

research:

79

3.4 Requirements for a New Optimised Solution for Functional Testing of Value-Added Services

e Reusability — It shall be possible to reuse certain aspects or components within
the test process in order to save time in future projects.

e NGN-compliance or support for general SIP-based IP networks — The framework
either shall consider the NGN-related artefacts such as possible SCEs, SDPs and
SIP AS or standard SIP-based IP networks.

e Verification and Validation — The framework shall provide both verification and
validation through test processes. Especially the validation of a value-added

service requires an intense involvement of the service customer in the test process.

Regarding the reusability, the ComGeneration approach defines reusable EFSMs that
describe common behaviour. Fokus!MBT and U2TP specify reusable test patterns which
refer to recurring test architectures, but no recurring behaviour is specified. Regarding the
NGN-compliance or the support for SIP-based IP networks, ComGeneration is the only
project to support this. As all approaches are MBT-based, the verification should also be
supported by them. Because of the missing involvement of the service customer in the

processes of the related projects, the validation is not supported by any mentioned project.

e Effectivity and efficiency of generated test cases — The framework shall generate
an amount of test cases that is feasible. Furthermore, these test cases shall be
sufficient enough to prove that the SUT has been implemented completely

towards the specified requirements.

Fokus!MBT and U2TP both apply the test generation methods mostly based on UML
sequence diagrams. This is a rather efficient method, because the amount of test cases is
manageable. However, it does not prove that the test cases are sufficient enough. The

ComGeneration approach is not efficient as it includes the well-known state explosion

80

3 The Challenge of Testing Value-Added Services

problem, but it covers all possible behaviours that might occur in value-added service
consumption. The authors of Telling TestStories claim that their approach is efficient
because the test can be defined on an abstract visual level with tool support (Felderer et

al., 2011). There is no explicit information given regarding the effectivity.

e Expandability — It shall be possible to expand the functionality of the framework
or rather to widen the support for further technologies (such as further protocols

that can be tested).

U2TP is based on UML and because of the object-oriented concept of modularity and
code reuse, this concept should also be provided by concepts that are based on U2TP (so,
also for Fokus!MBT). Principally, this is also possible for ComGeneration, because for
further support of technologies, new modular finite state machines have to be defined.
Telling TestStories includes expandability through the possibility of automatically

generating adapters for the communication with the SUT.

The following Table 3.2 illustrates a list of the related projects with the evaluation

regarding the derived requirements.

81

3.4 Requirements for a New Optimised Solution for Functional Testing of Value-Added Services

Table 3.2: Evaluation of related projects based on derived requirements

Requirements Current related test projects

U2TP TT-Medal Fokus!MBT | ComGeneration | Telling

TestStories

Test Execution - + 0 + +
Test Report - + 0 + +
Collaboration and
support for agile - - - 0 0
principles
Comprehension - - - - -
Manageablllty and o) } 0 +
time exposure
Tool support + - + 0 0
Traceability of i) +) 4
requirements
Reusability 0 - 0 + -
NGN-compliance or
support for general i) i +)
SIP-based IP
networks
Verification + + + + +
Validation - - - - -
Effectivity and
efficiency of 0 - 0 0 0
generated test cases
Expandability + - + + +

Considering the specified requirements, a novel framework for functional testing of
value-added services will be proposed in chapter 4 and the underlying concept will then

be explained in the upcoming chapters 5, 6 and 7.

82

3 The Challenge of Testing Value-Added Services

3.5 Conclusion

This chapter introduced the fundamentals of testing and functional testing and its
application for value-added telecommunication services. In addition, the difference

between verification and validation of a system (or service) was discussed (section 3.1).

Section 3.2 introduced the state-of-the-art testing methodologies, especially agile
concepts. The advantages and limitations of the approaches were discussed and it was
concluded, that the development and the testing processes have to be performed by
different persons (service developers and test developers). Mentionable is also that most
agile concepts focus on a close collaboration between developers, testers and customers

of a system or service.

Section 3.3 described related testing approaches, tools and methodologies. Most of them
refer to some kind of MBT approach either focussing on enhancing system models with
test-related parameters by using U2TP in order to automatically generate TTCN-3 test
cases or by supporting a tester to create models from which the tests are directly derived.
In principle, the approaches in literature lack the definition of a proper testing
methodology from the definition of the requirements of a value-added service until the

generation and subsequent evaluation of functional tests.

The main outcome of this chapter is the evaluation of the current related projects based
on requirements. The requirements have been derived from the weaknesses and strengths
of the testing methodologies and related projects and represent the major criterion for the
proposed novel framework for testing of value-added services described in the upcoming

chapter.

83

4 Proposed Framework for Testing of

Value-Added Services

This thesis proposes a novel framework that fulfils the requirements stated in section 3.4
and fills the gap of a thorough solution for service providers to provide well-tested value-
added telecommunication services to their service customers. This chapter begins by
defining the preconditions and tasks to be considered when the novel framework is
established (section 4.1), followed by the introduction of the overall novel methodology
to enable a more service customer-centric approach (section 4.2). Subsequently, section

4.3 will describe the framework architecture and its components.

4.1 Preconditions and Tasks of Roles

For service providers, network operators and for their customers, the introduction of a
thorough test process for the provisioning of value-added services in service provider
environments requires a rearrangement of the participating roles. As mentioned in section
2.4, many service providers still try to save costs by letting the developer of a service
figure out himself through manual tests whether a developed value-added service meets
the requirements of a service customer. However, due to the possible increasing
complexity of new value-added services, even an experienced service developer will not

be able to locate possible errors of the services.

85

4.1 Preconditions and Tasks of Roles

Due to the limitations of the current approaches in value-added service provisioning, a
new role is introduced, the service analyst. In general, service analysts work for service
providers and they represent the communication link between service customers on the
one hand and the service developers and test developers on the other. Further tasks of the

service analysts will be discussed later in this section.

Focussing on the test developer, his role is of course derived from the traditional role of
a service tester; however, besides the general requirements testers have to fulfil, further
tasks are imposed on the test developer:

e The test developers have to cope with changes to service customer needs, for
example, if changes in the implementation of the value-added services have to be
done.

e Test developers must improve their social skills. It might be possible that they
need to talk to the service customers in a language that they can understand.

e Test developers have to be able to face new technologies and have to be able to
understand and work with formal models.

e Test developers must be able to help stakeholders to express their requirements,

even if these requirements are rather complex.

Besides the requirements imposed on the service analysts and test developers, also the

service developers and service customers have to reorganise their work.

Just as test developers, the service developers also have to improve their social skills as
they also will get in contact with the service customer more regularly. As service

developers probably implement value-added services by means of a Service Creation

86

4 Proposed Framework for Testing of Value-Added Services

Environment (SCE), they should be able to map specified requirements onto their

implementation.
Service customers need to be open to regularly attending project meetings.

In the following section, an overview of the proposed solution framework is given. Based
on the described preconditions for the framework and tasks the roles have to do, the

functional principle can be performed.

4.2 Overall Methodology for Testing Value-Added Services

The proposed novel methodology assumes that a service provider has an SCE in his
environment to enable the service developers to rapidly create new value-added services
and bring them to market. Figure 4.1 presents an example SCE published by (Eichelmann
et al., 2010) and (Lehmann et al., 2009). Permission to reproduce Figure 4.1 has been

granted by the copyright owners of the referenced publication.

Service
Developer

O o
w @ Service Creation Environment

Build BPEL Generate .
. Deploy service
process service code

Service Customer

Informal
Requirements

Application
Server

Figure 4.1: TeamCom service development (adapted from (Eichelmann et al., 2010))

First, the service customer writes a non-technical, informal and natural language-based
description of the service. The description should contain the idea of what the service

should deliver. Based on this information, the service developer creates a formal service

87

4.2 Overall Methodology for Testing Value-Added Services

description (here a Business Process Execution Language (BPEL) process) (OASIS,
2007) which is used as basis to generate the service implementation code. Finally, the

service is deployed on an Application Server.

In order to integrate functional testing on top of the described service development

methodology, a separate test development path is proposed (see Figure 4.2).

Test Developer

O

U

Test Creation
O Framework

Informal
Requirements Service <:> <:>
Developer

©)

w Application Server
Service Creation /

Environment

Service Customer

Test Execution Environment

Figure 4.2: Methodology with both service and test development

The service development path in this approach was abstracted. Here, the methodology
assumes that any given SCE applied by a service developer can be integrated in the
process if it deploys the service on the Application Server at the end. The new test
development path includes a so-called Test Creation Framework (TCF) which has to be
used by the test developer. Just as the service developer, the test developer also initially
receives an informal description of a value-added service’s functionality. Based on this

information, he can use the tools provided in the TCF in order to create tests that can be

88

4 Proposed Framework for Testing of Value-Added Services

delivered to the Test Execution Environment (TEE) where they can be executed against

the SUT, the deployed service running on the Application Server.

Independent of the TCF functionality, which will be introduced in section 4.3 and
thoroughly described in the upcoming chapters 5, 6 and 7, the methodology illustrated in
Figure 4.2 has some major drawbacks. First, the interpretation of the informal
requirements by both the service developer and the test developer will definitely show a
high probability to be different. This leads to the fact that the generated tests will most
likely never pass because they will not match with the deployed service. Furthermore, the
methodology is strictly based on a test-last approach. The testing of the service can only
be done when the service is completely developed by the service developer. Hereby, a lot
of project time is wasted because the test developer can only start with the test case

execution at the end of the project.

In order to solve these issues, the methodology requires another new role, the service
analyst. As mentioned before in section 4.1, the service analyst is the communication link
between the service customer, the service developers and test developers. When a service
customer commissions a service provider to develop a new value-added service for him,
he will first get in contact with the service analyst who is working for the service provider.
The service customer will tell the service analyst about his service idea and the
requirements. Based on the informal information, the service analyst will create a
document that contains all the relevant requirements in a structured way. In the best case,
the document will consist of textual use cases. Throughout this thesis, this document will

be referred to as “Structured Requirements”. Intentionally, no example guideline will be

89

4.2 Overall Methodology for Testing Value-Added Services

specified for the compilation of the “Structured Requirements” document, however, it has

to fulfil the following requirements:

1. Each use case specified in the “Structured Requirements” document shall have a
unique identifier or name. Additionally, all use cases shall be numbered (such as
“Req01” for the initial specified use case).

2. If there are any dependencies between use cases they shall be specified.

3. For each use case, the actors shall be named and it shall be clear how the actors
interact with the service to be specified.

4. The use case specification shall include successful scenarios as well as exceptions

or alternative courses of actions.

An example specification language that fulfils all of these requirements is discussed in
5.1.2 and an example is illustrated in Table 5.3. There are many other possible related
approaches that can be applied. A well-known and recognised approach is documented in

(Cockburn, 2000).

Coming back to the methodology, as soon as the service analyst finalised the “Structured
Requirements” document, it has to be accepted by the service customer and subsequently
distributed to the service developer and to the test developer. Based on the specified use
cases, both developers can start defining either the test process or the service process. A
further positive aspect of the “Structured Requirements” document is that all stakeholders
can rely on this document. It also enables an agile approach. Based on the requirements,
both test developer and service developer can, for example, develop the service and test

in order to fulfill the requirements for “Req01”. They should have an opportunity (e.g.

90

4 Proposed Framework for Testing of Value-Added Services

tool support) to notice each other’s progress based on the defined requirements. So, they

are able to test parts of a service even if it has not been implemented completely.

In section 4.3, it will be discussed that due to the structure of the tools and components
in the TCF, it is indeed possible to actually “synchronise” the processes of both service
developer and test developer. In Figure 4.3, the proposed methodology is illustrated

incorporating the “Structured Requirements” and the so-called “Service Quality Group”

(SQG).

Service Quality Group

Test Developer

®)
L
— | Test
j Report
Test Creation

Framework \
Test Execution Environment
Informal —>
Requirements l
Structured Developer

Service
O
Application Server

Requirements w

Service Creation /

Environment

Test Developer Service Developer
o

Service Analyst

Service Customer

@/

Figure 4.3: Proposed overall methodology

The concept behind the SQG is to handle the occurrence of errors due to the testing
process. Of course, the members of the SQG are informed about the results (“Test
Report”) of the testing process by the TEE as soon as the test case execution has
terminated. Theoretically, occurring errors within the “Test Report” can have many
reasons. The first possibility is that the test developer and the service developer have a
different understanding of a certain aspect of the “Structured Requirements” document.

This might need clarification. As the service analyst, the test developer and the service

91

4.2 Overall Methodology for Testing Value-Added Services

developer are members of the SQG, especially the service analyst can discover the
misunderstanding. If even he is not capable of clarifying the problem, the service
customer has to be consulted. Minor misunderstanding can be clarified by direct contact
(for instance by Email or telephone call). More serious issues have to be solved during a
project meeting with the participating members of the SQG and the service customer.
Actually, consulting the customer to clarify issues is a positive aspect of the methodology.
Although there is an accepted requirements document still misunderstandings can arise.
In a case like this, it is very important that the problems are discussed in an early stage
and that the service customer is involved. Another reason for an occurring error can be
that either the test developer or the service developer did something wrong in their
development or missed a step during the process. This can also easily be clarified by the
SQG. Obviously, it is not always required to arrange meetings where every member of
the SQG is present, but agreements between two parties at least have to be documented

in short. This also complies with methods of agile development.

The tasks the stakeholders have to perform were discussed. The following UML use case
diagram (see Figure 4.4) illustrates the relevant activities they have to perform, either on
their own or together with the other stakeholders. As shown in the use case diagram, the
final project meeting is defined as a separate meeting where the project is validated. The
service customer will have the change to attend a demonstration of the functionality of
the service performed by the service developer as well as a demonstration of the test case

execution and the results of the tests performed by the test developer.

92

4 Proposed Framework for Testing of VValue-Added Services

Test and Development Methodology

Define informal Structure
requirements requirements

O Discuss minor

@ misunderstandings 7 w
Validate project Service Analyst

1
<<include>>

Service Customer

Attend project
meetings

Attend SQG
meetings

Maintain project
status

Service Developer

Figure 4.4: Use case diagram containing the tasks of the stakeholders

s

Test Developer -
Define and

perform tests

To sum up, the demonstrated methodology and concepts are oriented towards agile
development. One of the highest priorities is that the service customer is satisfied, e.g. by
continuously and early provisioning of usable services. Theoretically, the presented
approach supports rapid prototyping. Such a prototype can claim to just support a
selection of requirements specified in the “Structured Requirements” document. As the
test developer and the service developer can synchronise their processes, the provided

prototype can even be tested before. This aspect will be further analysed in section 7.4.

4.3 Framework Architecture and Components

Up to now, the Test Creation Framework (TCF) was treated as a black box that is applied

by the test developer in order to derive tests for a specific service based on the “Structured

93

4.3 Framework Architecture and Components

Requirements” document compiled by the service analyst in cooperation with the service

customer. The proposed TCF is based on an architecture that is presented in the following

Figure 4.5.

Test Data Pool

(TDP)

Test Developer
[e]

b

|

Test Framework User

Terminal (TFUT)

Test Report

rrrrr

Service Test
Description

A

.| Test Configuration

Test Modules
Repository
(TMR)

Automatic
- ————-»{ Composition Engine
| (ACE)

y v : Behaviour
Test Modules Lol Models
Environment r

(TME) Test Case
: Derivation Unit (TCDU)
|
| [T o
v y

Unit (TCU)

Test Suite Generator (TSG)

| Test Code Generator (TCG) |

| Test Suite Builder (TSB) I:

Executable
Test Suite

Test Execution Environment (TEE)

The workflow of the methodology within the TCF architecture is started by the test

developer who has access to the Test Framework User Terminal (TFUT) and to the Test

Figure 4.5: Test Creation Framework architecture

Modules Environment (TME).

Test Framework User Terminal

With the help of the TFUT (see Figure 4.5), the test developer can actually plan the testing

process. By using the terminal website, the test developer can manage all of the projects

94

4 Proposed Framework for Testing of Value-Added Services

he is currently working on. He also sees the current progress of the service developer and
can compare the outcomes. Basically, the TFUT is the entrance point for the testing where
he is also able to define instances of the so-called Service Test Description (STD) based
on the “Structured Requirements” document. As soon as an instance is established, the

test developer is able to start the testing process.

Test Modules Environment

The TME (see Figure 4.5) enables a test developer to create, modify or erase so-called
reusable test modules through a graphical user interface. Furthermore, it allows the test
developer to get access to the relating test data templates and data structures that are
connected to the appropriate reusable test modules. To store the relevant data, the TME
uses two different databases, the Test Modules Repository (TMR) (see Figure 4.5) as well
as the Test Data Pool (TDP) (see Figure 4.5). The reusable test modules including further
related metadata is stored within the TMR, whereas the test data templates that are related
to the reusable test modules and instances of these are stored within the TDP. When a test
developer defines new reusable test modules, it is important to define the metadata which
is needed to specify the test module so that a process can automatically select the test
module. In this approach, the reusable test modules are modelled by means of a
Statecharts-based notation and cover typical service characteristics such as sequences of
multimedia protocols like SIP or RTP (Real-Time Transport Protocol) and other
important protocols, such as HTTP. The test modules usually define a protocol-specific
behaviour of a certain use case, e.g. the sending of an instant message by using the SIP

protocol, and cover both standard behaviour as well as possible alternative behaviour like

95

4.3 Framework Architecture and Components

timeouts. To sum it up, the test modules define the standard compliant behaviour of a

certain use case.

Service Test Description

The STD (see Figure 4.5) is a novel type of specification or rather service description
language that comprises elements of test specifications and service specifications.
Furthermore, it contains architectural definitions describing the participating roles
involved in the consumption of a value-added telecommunication service and their
relationships as well as dynamic behavioural definitions specifying use-case related
requirements. In the compilation phase, the test developer has to follow a guideline to
define a STD for a service. The specification of the behaviour definitions will be done
with an applied pi-calculus approach. Within the methodology, this is the only task being
carried out by a human, the subsequent process performs automatically. One positive
aspect of the STD besides others mentioned in section 5.3 is that the specified
requirements within the STD can be directly mapped to the definitions in the “Structured

Requirements” document.

Automatic Composition Engine

The Automatic Composition Engine (ACE) (see Figure 4.5) gets as input the STD after
the test developer has defined it completely. The main task of the ACE is the generation
of behaviour models, which are complete formal models based on Statecharts notation
which describe the desired possible behaviour of the specified value-added
telecommunication service. As a first step, the ACE parses the architectural definitions

from the STD and forwards them to the Test Configuration Unit (TCU) (see Figure 4.5).

96

4 Proposed Framework for Testing of Value-Added Services

Afterwards, the ACE continues parsing the behavioural perspective of the STD and
identifies the participating entities (or roles) (see section 5.2.2) within the specified
requirements to select the suitable reusable test modules from the Test Modules
Repository (TMR) via the service interface of the TME. Afterwards, the ACE connects
to the Test Data Pool (TDP) in order to read the corresponding variables that are related
to the selected reusable test modules. Then, new variables are instantiated and created for
the instances of the reusable test modules and these are parameterised from the inputs of
the STD. In the next step, the ACE starts with the composition of the reusable test module
instances. Each reusable test module has interfaces which are linked to the existing states
within the underlying Statecharts notation of a reusable test module. If two reusable test
module instances have to be combined, the originating reusable test module instance and
the destination reusable test module instance are connected with a new transition between

them. The whole process is thoroughly described in section 6.4.

Test Configuration Unit

The TCU (see Figure 4.5) receives the architectural definitions from the ACE and
thereupon extracts the relevant information for the Test Code Generator. Relevant
information is for instance the SUT addressability and the participating test components.
It is relevant for the TCU to identify which protocol is applied in order to deliver a test

adapter configuration to the Test Suite Builder.

Test Case Derivation Unit

The behaviour model delivered from the ACE is the input for the Test Case Derivation

Unit (TCDU) (see Figure 4.5). It contains a test case finder which uses an algorithm and

97

4.3 Framework Architecture and Components

follows selected coverage criteria to enable the derivation of abstract test cases from the
behaviour model. Depending on the coverage criteria, the amount of derived test cases
differs significantly. The output of the TCDU is an abstract test suite which includes

abstract test cases for each behaviour model.

Test Suite Generator

The Test Suite Generator (TSG) (see Figure 4.5) creates a valid TTCN-3 test suite that
can be imported into a TTCN-3 test execution environment. To achieve this, the abstract
test cases have to be translated into TTCN-3 test cases by means of the Test Code
Generator. The Test Suite Builder will enhance the TTCN-3 code with specific test
modules and includes also the configuration of TTCN-3 codecs and adapters.
Furthermore, the Test Suite Builder includes the TTCN-3 compilation as well as the Java

compilation process in order to generate an Executable Test Suite (ETS).

Test Execution Environment

The final step of the framework’s underlying methodology takes place within the Test
Execution Environment (TEE). The generated ETS can be executed due to the control
part of the main TTCN-3 module. Of course, the TEE has to be installed into the service

provider’s test environment in advance in order to be able to address the deployed service.

Test Report

The test report (see Figure 4.5) is the document the test developer and all the other
members of the SQG receive after the test execution took place. Based on the results, the
test developer has to maintain the project status according to the evaluation of the

specified requirements.

98

4 Proposed Framework for Testing of Value-Added Services

The framework components will be further described and introduced in the following
chapters. Chapter 5 discusses the structure of the Service Test Description (STD) as well
as the underlying concepts. The concept of the test modules, the Automatic Composition
Engine (ACE) algorithms to compose them based on the STD as well as the generation
of the behaviour model will be described in chapter 6. The other test-specific aspects,
such as test case derivation from the behaviour model, the transformation from abstract
test cases to TTCN-3 test cases and the test execution itself against the SUT will be part

of chapter 7.

4.4 Conclusion

This chapter has introduced a novel methodology for functional testing of value-added

services considering current development life cycles in service provider environments.

First, several preconditions have been introduced as well as the new tasks of the roles
participating in the service development and service testing process. Both the test
developer and the service developer have to improve their social skills in order to get in
contact with the service customer and support him during the development and testing
phases. Finally, a new role has been defined, the service analyst, who is acting as the
communication link between the service customer and the service and test developers

(see section 4.1).

Furthermore, section 4.2 has proposed an overall methodology that allows a better
involvement of the service customer within the development and testing process. Here,

also the establishment of the novel Service Quality Group (SQG) with all the tasks for

99

4.4 Conclusion

the participating roles (service analyst, test developer and service developer) has been

discussed.

Finally, section 4.3 has described one of the most relevant aspects of this research, the

architecture of the proposed Test Creation Framework (TFC) with all its components.

The following chapter deals with the introduced STD and will include related work done
in the field of specifying the functionality of services, especially telecommunication

services.

100

5 Novel Service Test Specification and

Related Specifications

A well-defined specification of a value-added service is the basis from which functional
tests can be derived. In literature, a number of service description languages and
specification languages are presented and developed, mainly with the endeavour to
automatically build the source code of the services and deploy them within service
provider environments. To our knowledge, there is no existing service description for the
purpose of functional testing that has been specifically defined for value-added
communication services. To close this gap, this chapter will introduce a new kind of
service description language, the Service Test Description. Firstly, section 5.1 will
introduce existing service description languages and specification languages that can be
applied to specify the functionality of value-added services. In section 5.2, the
requirements on a service description language for the TCF described in chapter 4 will be
documented and the Service Test Description will be presented. The existing specification
and description languages and the new Service Test Description will be compared against

each other in section 5.3.

101

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

5.1 Existing Specification and Description Languages for

Services in the Telecommunication Domain

This section describes a selection of service description languages and service
specifications in order to derive specifications for services. All of these approaches have
the ability to describe the behaviour especially for value-added services in the
telecommunication domain. A major requirement the specifications and descriptions have
to fulfil is the possibility to apply them for automatic test case generation, even if they
have not been considered for this purpose in the first place. Furthermore, the
specifications should support the traceability of requirements. As the “Structured
Requirements” document is based on standard UML use cases, it would be good to have
a mapping to some use case-specific description in the specification languages. For this

reason, mainly use case-based specifications have been taken into consideration.

The following specifications and methodologies will be discussed:
e Structured Use Case Models (Ryndina and Kritzinger, 2005)
e Restricted Use Case Modeling (Yue et al., 2009)

e Unified Test Modeling Language (Feudjio, 2011) and (Feudjio, 2009)

The properties and also drawbacks of the specifications and descriptions will lead to a
novel Service Test Description Language which is used for implementation within the

proposed framework.

102

5 Novel Service Test Specification and Related Specifications

5.1.1 Structured Use Case Models

The research work of (Ryndina and Kritzinger, 2004) and (Ryndina and Kritzinger, 2005)
provide an enhanced requirements specification methodology especially for complex
systems and communication services by improving standard use case modelling
(Jacobson et al., 1992). The authors point out that “use case models lack structure and
exact semantics, which makes rigorous analysis of such models impossible” (Ryndina
and Kritzinger, 2005). Consequently, they suggest supplementing traditional use case
models with a formal structure and semantics such that the use cases are suitable for
automated formal analysis. This procedure allows one to discover logical errors and
missing requirements early in the development cycle and provides developers with a
better understanding of the defined models (Ryndina and Kritzinger, 2004). The authors

declare their enhanced use case approach as “structured use case models”.

In general, use case models specify functional requirements for a system or rather service
by defining scenarios of interaction between the service and its environment. The main
elements used in the models are actors and use cases. The actors represent entities that
actually interact with the service whereas use cases define the functionality the service
has to provide. Similar to the standard use case modelling, the approach described in
(Ryndina and Kritzinger, 2005) focusses on treating the system (or service) under

consideration as a “black box”.

The following Figure 5.1 illustrates the perspective on actor-system interaction, which is
fundamental to the technique. Permission to reproduce Figure 5.1 has been granted by the

authors of the referenced publication.

103

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

o) Main Flow

(1) Activate . (2) Do these hold?
User System . Pre-conditions ——M @M >

I i (3) No

" Post-conditions

O
State

Actor w Alternative Flow
(4) Do these hold?
.- Pre-conditions —mmm >

i > (5) Yes

< |

i
L »
g

- (6) Change state
" Post-conditions

Figure 5.1: Interaction between actor and system (Ryndina and Kritzinger, 2005)

Initially, the actor can call upon the system by activating the defined use cases. The
system itself is described by the system state. This system state holds a set of conditions
and can change throughout the model execution. Each defined use case within the
specification is associated with a main flow and an unspecified number of alternative
flows. Every type of flow has pre- and post-conditions. As soon as a use case is activated
by an actor (1), the pre-conditions of the use case’s main flow are queried against the
current system state (2). If the pre-conditions do not hold (3), the alternative flow of the
use case is considered. Analogous to step 2, the pre-conditions of the alternative flow are
queried (4) and in the example shown in Figure 5.1, they are satisfied in the system state
(5). This leads to the post-conditions of the alternative flow changing the system state (6).
The activation of a use case is said to be successful when the pre-conditions for one of

the defined flows hold.

In order to define the structured use case models for systems or rather communication
services, a metamodel was defined by the authors (see Figure 5.2). Permission to

reproduce Figure 5.2 has been granted by the authors of the referenced publication.

104

5 Novel Service Test Specification and Related Specifications

ModelElement

name: String

[
VariableType InitialCondition

values: List

condition

type
parameters | Condition

0.*

Variable

isTrue: Boolean

value : String

re-conditions| 0..* 0..*| post-conditions
attributes | 0..* parameters [0..* P P

| Actor I 4' UseCase l—

1.* | actors use_cases | 1.*

Figure 5.2: Structured use case metamodel (Ryndina and Kritzinger, 2005)

The displayed metamodel shows that a structured use case model contains four different
types of elements: actors, use cases, conditions and variable types. Each element
comprises a number of properties that capture information related to that element. With
reference to the definition of the metamodel elements, actors and use cases as well as their
associations are depicted in a graphical representation (see Figure 5.1). For each actor and
use case in the diagram, the textual properties can be defined in addition. The other
elements, conditions and variable types, are completely textual and do not have graphical

representations.

The actor element in the metamodel has two properties, a name and a list of attributes.
The attributes include important information about an actor. In order to deliver services
to the actor represented by use cases, a system has to be able to access these particulars.
For example, an actor willing to setup a call to a system has an attribute called Username
that he needs to provide to the system in order to consume the service. Due to the

metamodel in Figure 5.2, each attribute is regarded as a variable, and each variable has

105

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

an associated variable type. A variable type is associated with a number of symbolic
values, which are mainly string literals that can only be compared for equivalence
(Ryndina and Kritzinger, 2004). Two defined variables are declared as equal if their

values are set to identical string literals.

A further important element of the metamodel, the condition, is used to either describe
the global state of the system or to declare use case pre- and post-conditions. The
condition element has three properties: a name, a list of parameters and a truth-value
(“isTrue™). A condition becomes a condition instance, as soon as values are assigned to
all its parameters. The condition instance is either “true” or “false”. A special type of
condition is the InitialCondition which is used to describe the state of the system before

any interaction between actors and the system occurs (Ryndina and Kritzinger, 2005).

The final element in the metamodel, the use case, has five properties: a name, the list of
actors playing a role in the use case, a parameter list, a list of pre-conditions and a list of
post-conditions. The use case parameters describe information that is required to provide
the corresponding service. As soon as a use case is activated, a value for each of its
parameters needs to be passed to the system. The list of pre-conditions specifies that
certain aspects about the system state must hold so that a use case activation can be
successful. On the contrary, the post-conditions describe the change of the system state

after a successful activation of the use case.

Based on the introduced metamodel for structured use case models, a simple chat service,
will be described and specified as an example by means of the methodology. Initially, the

general functions the simple chat service provides will be documented in a standard use

106

5 Novel Service Test Specification and Related Specifications

case diagram which also includes the participating actors. Figure 5.3 illustrates the sample

use case diagram.

Chat Service

Add User

Logout
Remove User
Enter Room %
Service User Leave Room Administrator

Create Room

o
I

Send Message

Delete Room

Figure 5.3: Use case model of sample chat service

The service chat usage includes two involved actors, an Administrator and a Service User.
The Administrator can register new Service Users (“Add User”) and deregister existing
ones (“Remove User”). He is also able to create new chat rooms for the Service Users
(“Create Room”) or to erase old rooms that might not be used anymore (“Delete Room”).
The other actor, the Service User, initially has to log in (“Login”) to use the provided
functions, such as entering a new chat room (“Enter Room”), leaving the chat room after
having entered (“Leave Room”) and sending messages to users in the same room (“Send

Message”). Finally, the Service User can log out (“Logout”).

Each use case illustrated in Figure 5.3 can be defined by means of a special language
presented in (Ryndina and Kritzinger, 2005). Exemplarily, the use case “Add User” of

the actor Administrator is shown in the following Figure 5.4.

10

~

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

USE CASE 1

name: Add User

actors: Administrator

parameters: Username of type UserlLogin
pre-conditions: UserExists (#uc Username) is false
post-conditions: UserExists (#uc Username) is true

VARIABLE TYPE 1
name: UserLogin
values: chatUserl

CONDITION 1
name: UserExists
parameters: Username of type UserlLogin

Figure 5.4: Structured use case model definition of “Add User”

The definition of the “Add User” use case is quite straightforward and indicates that the
Administrator is the only actor that can activate this use case. Furthermore, the Username
of the Service User to be added needs to be provided to the system as a use case parameter.
Each use case parameter has an associated variable type which defines a finite set of
symbolic values. Here, the variable type UserLogin holds the value “chatUser1”. The pre-
condition for the “Add User” use case states that the activation is successful if the user
with the provided Username does not exist. In addition, the post-condition indicates that
after successful activation of the use case, a Service User with the given Username exists.
It is required that the pre- and post-condition defined within a use case correspond to a
condition declaration within the model, where the name and the type of condition
parameters are determined. In this example, the UserExists condition is declared. It
indicates that the condition has one parameter of variable type UserLogin. The #uc prefix
in the pre- and post-conditions states that at the time of activation, the value of the use

case parameter Username should be used for the evaluation of this condition.

Most of the other use cases in Figure 5.3 can be defined similarly to the “Add User” use
case. There is usually one action performed by an actor that causes a change of the system

state, such as logging in and out or creating a new chat room. Through the pre- and post-

108

5 Novel Service Test Specification and Related Specifications

conditions it can be easily verified if the action had the desired effect. The sending of a
chat message is more complex because more parameters and conditions have to be

checked. The following Figure 5.5 shows the definition of the “Send Message” use case.

USE CASE 2
name: Send Message
actors: Service User
parameters: Username of type UserLogin, Message of type MessageContent
pre-conditions: LoggedIn (#forall UserLogin) is true,

RoomEntered (#forall UserlLogin, #rooml) is true
post-conditions: MessageReceived (#uc Username, #uc Message) is true

ACTOR 1

name: Service User

attributes: Username of type UserLogin
VARIABLE TYPE 2

name: MessageContent

values: Hello, how are you?

VARIABLE TYPE 3

name: RoomDeclaration

values: rooml

CONDITION 2

name: Loggedin

parameters: Username of type UserLogin
CONDITION 3

name: RoomEntered

parameters: Username of type UserLogin, Room of type RoomDeclaration
CONDITION 4

name: MessageReceived
parameters: Username of type UserLogin, Message of type MessageContent

Figure 5.5: Structured use case model definition of “Send Message”

In the use case model definition of “Send Message”, the actor role of the Service User is
explicitly specified and enhanced by an attribute Username of the type UserLogin. Two
parameters are required to activate the use case, the Username of the user who is about
to receive the message and the Message itself. There are two pre-conditions that have to
hold in order to activate the use case. On the one hand, all participating users have to be
logged in; on the other hand, all users also have to have entered the chat room #room1.
In order to verify both cases, the conditions Loggedin and RoomEntered have been
defined in the use case model definition. Besides, the #forall option allows checking that

the conditions hold for all values of a particular variable type. Finally, the post-condition

109

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

of the “Send Message” use case states that the user with the Username of the use case

receives the Message. Therefore, an additional condition MessageReceived is defined.

To sum up, the solution to structure standard use case models by applying the well-
defined metamodel enables models that are far more consistent and correct. Nevertheless,
important properties are missing, for instance the actions that actually take place within
the use cases are not precisely specified. Tests cannot be generated from use cases if it is
not defined how to trigger the system or rather service. Only the states of the system
before the action and after the action are determined. It is also very hard to imagine how
the conditions can be applied to the testing process. This can only be done if the conditions
are predefined as reusable test components that have to be parameterised by the inputs
defined within the use case models. This aspect would limit the possibilities to specify
diverse types of services. It is possible that for each condition occurring in structured use
case models for specified services, a proper test component first has to be developed by

a test developer.

5.1.2 Restricted Use Case Modeling (RUCM)

Restricted Use Case Modeling (RUCM) is a use case modelling approach developed by
(Yue et al., 2009). In general, standard use case modelling includes use case diagrams
and use case textual specification and is commonly applied to structure and document
requirements (Jacobson et al., 1992). However, it is well-known and also stated by the
developers of RUCM that standard use case modelling based on textual descriptions
inevitably contains ambiguities and tends to be imprecise and incomplete. To overcome

this obstacle, RUCM is composed of a use case template to structure the use case

110

5 Novel Service Test Specification and Related Specifications

specifications and a well-defined set of restriction rules to restrict the way users write use
case specifications. The developers of RUCM conducted a controlled experiment with
human subjects and results indicate that RUCM, although it enforces a use case template
and restriction rules, “has enough expressive power, is easy to use, and helps improve the

understandability of use cases” (Yue et al., 2011).

The RUCM approach can be applied during the requirements elicitation phase of the
software or rather service development. The following activity diagram in Figure 5.6

illustrates the process flow.

Use Case Diagram |

Restriction Rules |

Define Use
Case Model
A4

Use Case Model | Manually / Automatically

Derive Analysis Model |
Analysis Model y

© 2009 IEEE

INNI

Use Case Template |

Figure 5.6: RUCM process flow (Yue et al., 2009)

In order to define a use case model, the approach requires the input of a use case diagram
of the service to be specified, the restriction rules as well as the use case template. After
the use case model is documented complying with the rules and structure, an analysis
model can be derived either manually performed by system analysts or automatically if

the inputted use case models are less ambiguous and automated analysis can be facilitated.

In the following Table 5.1, the structure of the RUCM use case template presented in

(Yue et al., 2009) and (Zhang et al., 2013) is illustrated.

111

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

Table 5.1: RUCM Use Case template (Yue et al., 2009)

Use Case Name

The name of the use case. It usually starts with a verb.

Brief Description

Summarises the use case in a short paragraph.

Precondition

\What should be true before the use case is executed.

Primary Actor

'The actor which initiates the use case.

Secondary Actor

Other actors the system relies on to accomplish the services of the use case.

Dependency

Include and extend relationships to other use cases.

Generalization

Generalisation relationships on other use cases.

Basic Flow

Specifies the main successful path, also called “happy path”.

Steps (numbered) [Flow of events.

Postcondition \What should be true after the basic flow executes.

Specific Alternative
Flows

Applies to one specific step of the basic flow.

RFS /A reference flow step number where flow branches
from.

Steps (numbered) [Flow of events.

Postcondition \What should be true after the alternative flow
executes.

Global Alternative
Flows

Applies to all the steps of the basic flow.

Steps (numbered) [Flow of events.

The use case template contains eleven so-called first-level fields (first column of Table
5.1) from which the last four fields are decomposed into second-level fields. The first
seven fields contain general information about the use case (use case name, brief
description), its state before activation (precondition), the actors who are participating in
the use case (primary actor, secondary actor) and relations to other use cases
(dependency, generalization). Additionally, the use case template contains one basic flow

and can have one or more types of alternative flows: specific, global, and bounded

alternative flows.

Postcondition \What should be true after the alternative flow
executes.
Bounded Alternative |Applies to more than one step of the basic flow, but not all of them.
Flows RFS A list of reference flow steps where flow branches
from.
Steps (numbered) Flow of events.
Postcondition \What should be true after the alternative flow
executes.
© 2009 IEEE

112

5 Novel Service Test Specification and Related Specifications

The basic flow describes the main successful path in the use case and is composed of a
sequence of steps and a postcondition. In the approach, five different types of interactions
have been reused from (Cockburn, 2000) for each defined step:
e Primary actor - system: the primary actor sends a request including data to the
system.
e System - system: the system validates a request and data.
e System - system: the system alters its internal state, for instance by recording or
modifying something.
e System -> primary actor: the system replies to the request of the primary actor
with a specific result

e System —> secondary actor: the system sends a request to a secondary actor.

Furthermore, the steps are numbered sequentially so that each step is completed before
the next one is started. Conditions, iterations and concurrency can be defined within the
steps by specific keywords that are included in the RUCM restriction rules (Yue et al.,

2009).

In contrast to the basic flow describing the main successful part, the alternative flows
describe scenarios, both success and failure. According to (Yue et al., 2009), an
“alternative flow always depends on a condition occurring in a specific step in a flow of
reference, referred to as reference flow, and that reference flow is either the basic flow or
an alternative flow itself”. The classification of the alternative flows has been taken from
(Bittner and Spence, 2002). A specific alternative flow is an alternative flow referring to
a specific step in the reference flow. An alternative flow that refers to more than only one

step in the reference flow is called bounded alternative flow. Finally, the global

113

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

alternative flow refers to any step in the reference flow. It is important to mention that
each flow, both basic and alternative, must have a defined postcondition which describes

a constraint that must be true when the use case terminates.

In order to define the use cases complying with the RUCM use case template, the usage
of the set of restriction rules is important. Basically, the restriction rules are classified into
two groups: restrictions on the use of natural language, and restrictions enforcing the use

of determined keywords for specifying control structures.

The first group of restrictions contains sixteen rules from which the first seven apply only
to action steps (see Table 5.2) and not to steps that contain conditions or preconditions
and postconditions. The rules R8-R16, however, apply to all sentences in a use case
specification, also including the brief description. Mainly, the focus of the sixteen rules
is to reduce ambiguity and also to facilitate automated generation of analysis models. It
IS meant to be a guideline for writing clear and concise use case specifications, for
instance by using the appropriate grammatical tense (present tense), avoiding negative
adverbs, negative adjectives, and participle phrases that are very difficult to parse by

natural language parsers (Yue et al., 2013).

114

5 Novel Service Test Specification and Related Specifications

Table 5.2: Restriction rules R1-R16 of RUCM approach (Yue et al., 2013)

Description Explanation

R1 [The subject of a sentence in basic and alternative [Enforce describing flows of events
flows should be the system or an actor. correctly. These rules conform to the

R2 |Describe the flow of events sequentially. RUCM use case template (five

- - interactions).
R3 |Actor-to-actor interactions are not allowed. teractions)

R4 |Describe one action per sentence. Otherwise it is hard to decide the sequence
of multiple actions in a sentence.

R5 |[Use present tense only. Enforce describing what the system does,
rather than what it will do or what it has
done.

R6 |Use active voice rather than passive voice. Enforce explicitly showing the subject

R7 [Clearly describe the interaction between the system andfor object(s) of a sentence.

and actors without omitting its sender and receiver.

R8 |Use declarative sentence only. Commonly required for writing UCSs.
R9 |Use words in a consistent way. Keep one term to describe one thing.
R10 [Don’t use modal verbs (e.g., might) Modal verbs and adverbs usually indicate

uncertainty.

R11 |Avoid adverbs (e.g., very)

R12 |Use simple sentences only. Facilitate automated NL parsing and
reduce ambiguity.

R13 [Don’t use negative adverb and adjective (e.g.
hardly, never), but not or no is allowed.
R14 [Don’t use pronouns (e.g. he, this)

R15 [Don’t use participle phrases as adverbial modifier.

R16 |Use “the system” to refer to the system under design |[Keep one term to describe the system;
consistently. therefore reduce ambiguity.

© 2013 IEEE

The second group of restrictions contains rules constraining the use of control structures
by keyword. These keywords are applied within steps of basic or alternative flows. The
most important keywords specify conditional sentences (IF-THEN-ELSE-ELSEIF-
ENDIF), concurrency sentences (MEANWHILE), condition checking sentences
(VALIDATES THAT), and iteration sentences (DO-UNTIL). Further rules specify that
alternative flows end with a step either using the keyword ABORT or RESUME STEP.

The later signifies that the flow returns back to the reference flow.

115

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

The important parts of RUCM, the use case template as well as the restriction rules, have
been explained briefly. In the following, the example use case “Send Message” of the

sample chat service (see Figure 5.3) will be described by applying the RUCM method.

Table 5.3 illustrates the “Send Message” RUCM use case.

Table 5.3: Example RUCM use case of "*Send Message"

Use Case Name Send Message

Brief Description |{User sends a text message to an Endpoint participating in a chat room.

Precondition User and Endpoint are logged into the system and have both entered a chat room.

Primary Actor User Secondary Actor [Endpoint

Dependency None Generalization |None

Basic Flow 1) User sends a text message to the system including the name of the Endpoint as
target.
2) The system VALIDATES THAT User and Endpoint are in the same chat
room.

3) The system forwards the text message to the Endpoint.

4) The system VALIDATES THAT it receives an acknowledgment response
form the Endpoint.

5) The system sends an “OK” text message to the User.

Postcondition: The system is idle.

Specific Alternative[l) The system sends the message “The user is not in the chat room.” to the User.
Flow 2) ABORT
(RFS Basic Flow 2) [Postcondition: The system is idle.

Specific Alternative|l) The system sends the message “Message not received.” to the User.
Flow 2) ABORT
(RFS Basic Flow 4) |Postcondition: The system is idle.

The most relevant information apart from the flow definitions in the shown example use
case is the precondition determining the current state before the use case can be activated
(both the User and Endpoint should be logged in and should have entered the chat room)
and the mentioning of the participating actors (here: User and Endpoint). Only these
actors as well as the system can be mentioned as subjects within the steps of the flow
definitions. The basic flow contains the sending of the text message from the User to the
system (step 1) as well as the forwarding of the message to the Endpoint (step 3). In

addition, a notification is sent to the User that the message transmission was successful

116

5 Novel Service Test Specification and Related Specifications

(step 5). In between, the system inspected if both User and Endpoint are in the same chat
room (step 2) and if the system received an acknowledgement message from the Endpoint
after sending the message (step 4). The inspections are detected by means of the keyword
VALIDATES THAT and automatically lead to the defined specific alternative flows. If the
validation process of the system fails, then the relevant specific alternative flow is

activated.

In summary, the RUCM method allows the definition of well-structured use cases. In the
shown example, the interaction between the system (or rather service) and the
participating actors is described clearly. This is very important when it comes to testing
because the role of the participating actors will be performed by test components in the
test execution process. These test components have to know how to trigger the SUT
(System under Test) and what kinds of messages or notifications to expect from it.
Although the interactions are thoroughly described in the RUCM method and the use of
language is strictly regulated by restriction rules, still natural language might lead to
problems as the processing and parsing of it is still very error-prone. A general issue of
natural language is its ambiguity. To solve this issue, the authors of (Yue et al., 2011)
present a solution to transform the RUCM use cases to UML state machine diagrams by
means of natural language parsers. Nevertheless, the method has not been proven to be
applied to more complex systems or rather communication services. It is also
questionable how reusability of tests can be integrated into the concept. For every system
or service, the flow definitions and functionality has to be performed from scratch. The
approach also lacks a possibility to define parameters (e.g. text message properties such

as text message content, sender and target) explicitly.

117

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

5.1.3 Unified Test Modeling Language (UTML)

(Feudjio, 2011) and (Feudjio, 2009) propose a language dedicated to Model-Driven Test
Engineering (MDTE) that reuses and extends concepts of U2TP (see chapter 3.3.1). This
language is called Unified Test Modeling Language (UTML) and its compilation is
carried out during a specified test modelling process. The design of test automation in
UTML is based on various principles of abstraction which guide the whole test modelling
process to ensure that the resulting model remains concise. The process including the

various phases it implies is illustrated in Figure 5.7.

| Test Objectives Modelling

@
.

| Test Procedures Modelling

@

| Test Data Modelling

CLO

@

| Test Architecture Modelling

@
O

| Test Behaviour Modelling

Figure 5.7: Overview of UTML test modelling process (Feudjio, 2009)

The initial phase, Test Objectives Modelling, includes the identification of relevant test
objectives. These test objectives can be grouped into diverse categories such as functional
correctness or usability. They have to be defined manually by design experts or can be
generated automatically if the requirements on the system are expressed in a machine-
processable notation. (Feudjio, 2011) does not mention an example notation that can be

applied.

118

5 Novel Service Test Specification and Related Specifications

Within the Test Procedure Modelling phase, test procedures are modelled as sequences
of test steps. Each test step represents an action or an observation to be performed on one
or more elements in the test setup. The test steps can be described by using natural
language. The grade of formality increases during the test modelling process (Feudjio,

2011).

The upcoming Test Data Modelling phase, for instance, requires the formal description
of data that will be exchanged between elements of the test environment and the SUT.
The identification of the relevant data results from the designed test procedures from the
previous phase. Possible data can be stimuli (e.g. protocol messages that will be sent to
the SUT) or potential protocol responses from the SUT. As the description of the
messages is depending on the used protocol, a static description of the protocol is required
so that the modeller knows how to add data templates to the UTML test model. The
protocol descriptions can be available either as a plain document (e.g. IETF RFC), an
XML Schema Descriptor (XSD) (W3C, 2012) file or other data description mechanisms
such as Abstract Syntax Notation One (ASN.1) (ITU-T X.680, 2015) or Interface

Description Language (IDL) (OMG, 2002).

Within the Test Architecture Modelling phase, the topology of the test system as well as
a collection of test configurations is defined by means of a formal model. This includes
the setup of the test system consisting of parallel test and system components
interconnected with each other via ports. These ports are used to communicate between
the components either synchronously (request/reply) or asynchronously (message-based)

and to exchange messages.

119

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

In the final Test Behaviour Modelling phase, the semantic requirements on the system (or
service) can be expressed by means of UTML test behaviour models. These test behaviour
models have a graphical representation, the UTML test behaviour diagrams, which are
built upon the test architecture configuration from the previous phase. The diagrams are
similar to standard UML sequence diagrams and describe how each of the defined test

procedures can be illustrated in terms of actions on and between the entities being part of

the test configuration.

From each of the described phases, a specific model is generated. The sum of all these
models provides the foundation for the UTML test model that is illustrated as TestModel

in the following UML class diagram in Figure 5.8. Permission to reproduce Figure 5.8

has been granted by the author of the referenced publication.

1

1

BasicTestModel 1

*’| TestBehaviourModel

[5N

A

1

/

*’| TestProceduresModel

7

The models from the diverse phases deal with specific aspects of test design and extend

the abstract BasicTestModel class. The relations between the categories of test models are

T

\

\

* | TestArchitectureModel | *

)

TestDat:

i

aModel

1

TestObjectivesModel | *

-version : EString

< TestModel

Figure 5.8: Overview of UTML test models (Feudjio, 2011)

120

5 Novel Service Test Specification and Related Specifications

also depicted in the class diagram. In order to define complete and deliberate UTML test
models, the author proposes in (Feudjio, 2009) to use the tool set MDTester (UTML,

2015), which guides test modellers in defining the different categories of test models.

In the following, the UTML test model approach will be applied to the “Send Message”
use case from the sample chat service (see Figure 5.3). UTML is, however, not based on
standard use case descriptions and a mapping concept is not provided. The requirements
stated in the “Send Message” use case (see Table 5.3) have to be broken down to several
test procedures in UTML covering the successful path (e.g. “message was received
successfully”) as well as the exceptional paths (e.g. “both users are not in the same chat
room”). The test objective will be to evaluate the “functionality” of the “Send Message”
use case. Afterwards, the test procedure will contain the documentation of the test steps
to describe the successful path in natural language. Then, the definition of the test data
will be done in the corresponding phase. The tool set MDTester provides a “Data View”
that enables the test modeller to create test data templates from predefined data models.
Here, every message being exchanged between entities of the test system and the SUT
can be defined. The following Figure 5.9 shows a tree view of MDTester that allows the

definition of templates of request types for the SIP protocol.

+*

¢ Test Data Group SipDataTypes
% Message Test Data Type SIP RequestType

% Data Type Field reqg type
% Data Type Field to header
% Data Type Field from header
% Data Type Field callID header

» Data Type Field via header

Data Type Field body

o

-
0.0

Figure 5.9: Test Data View with UTML for SIP messages

121

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

In the shown example, the test modeller has the possibility to create instances (templates)
of SIP requests and set the underlying header fields of the SIP message according to the
information described within the test procedure model. Additionally, SIP responses can

be defined.

After having identified and set all the relevant messages, the topology and test
configuration for the test procedure has to be determined. The following test configuration
(see Figure 5.10) shows two involved so-called Parallel Test Components (PTCs) and the

SUT specifying the chat service deployed on an application server.

User EndPoint
:Componentl :Component2

sipPort

sipPort_1 sipPort_2

SUT

Figure 5.10: Test Architecture Diagram for sample chat service

The PTCs are called User and Endpoint and have the same role as the actors described in
the RUCM use case from Table 5.3. Both are connected to the SUT via their SIP ports so

that SIP messages can be exchanged between the corresponding entities.

The specification of the message exchange is part of the Test Behaviour Model. The
following UTML Test Behaviour Diagram (see Figure 5.11) shows the involving entities
(both PTCs and the SUT) and their expected message exchange regarding to the
successful path of the “Send Message” use case. First, the User PTC sends a SIP message

request containing the chat message that it is about to send to the Endpoint PTC. This

122

5 Novel Service Test Specification and Related Specifications

chat message is embodied within a SIP request template called initChatMessage that has
already been defined in the Test Data Model. After sending the chat message, the SUT
should then acknowledge the receipt of the SIP message by first sending a SIP response
message (recvResponse_OK) to the User PTC and then initiate the transmission of the

SIP message chatMessage to the Endpoint PTC.

User SuT EndPoint
:Componentl :Component2

SIP_RequestType: initChatMessage

SIP_ResponseType: recvResponse_OK
e T TR SIP_RequestType: chatMessage

SIP_ResponseType: sendResponse_0K2

I
I
I
I
|
I
I
I
I
I

I
I
I
I
|.
| SIP_ResponseType: sendResponse_OK
I
I
I
I
I

I

I

I

I

I

I

I
e
N
I

I

I
I
I
I
:<. o P RequestType: confirmMessage
|
I
I

Figure 5.11: Test Behaviour Diagram for Send Message use case of sample chat service

The successful receipt will now be acknowledged by the Endpoint PTC and the SUT can
accordingly send the “OK” message confirmMessage to the User PTC to confirm that the
initial chat message transmission has been successful. Finally, the SUT will receive an

acknowledgement that the message was received by the User PTC.

To sum up, the UTML test modelling process structures and simplifies the derivation of
a test specification for a given system and can be applied to value-added communication
services. According to (Feudjio, 2011), there is already a defined methodology to generate
TTCN-3 test cases on the basis of UTML test models. In spite of the positive aspects
mentioned, UTML still lacks some properties in order to be an appropriate language for

the proposed test framework in this research work (see Figure 4.5). First, UTML does not

123

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

specifically refer to use cases. This makes the transition harder for the test developer who
would have to build the UTML test models based on the “Structured Requirements”
document. Second, a synchronisation of the service development process and the test
development process is also not possible or very hard to manage. Third, it is also
questionable how reusability of tests can be integrated into the UTML approach. In fact,
the test developer has to spend a lot of time to build the test models, especially the Test
Behaviour Diagrams. For each alternative behaviour within one use case, a new diagram
has to be created. Finally, the author of (Feudjio, 2009) states himself that although first
results indicated that the development cycle shortened significantly by applying the
UTML methodology, there is still a problem in the context of model consistency between

the inter-dependent test models.

5.1.4 Alternative Approaches

Besides the precisely described approaches presented above, there are also other

approaches.
Requirements Acquisition and Specification for Telecommunication Services

The first approach is described in (Eberlein, 1997), (Eberlein et al., 1997) and (Eberlein
and Halsall, 1997) and is named Requirements Acquisition and specification for
Telecommunication Services (RATS). The underlying methodology introduces three
different types of scenario representations, textual (natural language-based), structured
(textual, but also with preconditions, postconditions and flow conditions) and formalised
(structured text and component-centered). The idea behind these representations is to

allow a smooth and straight transition from a service description based on natural

124

5 Novel Service Test Specification and Related Specifications

language to a formal specification described in the Specification and Description
Language (SDL) (ITU-T Z.100, 2007). In the scenarios, different aspects of behaviour is
described, such as normal, alternative, and exceptional behaviour. These groupings
support the developers to first focus on the common behaviour and afterwards concentrate
on the less common service functionality. Most of the scenarios are abstract and linear,
but there also so-called overall scenarios capturing multiple scenarios, with a causal
ordering. Overall, the RATS methodology is an interesting approach to requirements
elicitation, but it is significantly depending on its implementation, the RATS tool. This
expert system contains a large knowledge database that has to be updated all the time.
Besides, the publications mentioned do not go in depth into the construction of the SDL
models, but focus more on the acquisition and the specification of requirements. This
leads to the fact that RATS does not provide an output that can be applied to generate test

cases because the grade of formality is not sufficient enough.

Telecommunication Modelling Library

Another alternative approach is called Telecommunication Modelling Library (TelcoML)
(OMG, 2013b). This language is built on top of SoaML (OMG, 2012b), a standard
extension to UML 2.0 that focuses on modelling of services following the Service-
Oriented Architecture (SOA) paradigm. TelcoML itself defines a UML profile for
advanced and integrated services and provides “a common abstraction to all existing
communication services standards so that tools can be built” (OMG, 2013b) for service
providers to be able to model service variations in a consistent manner. TelcoML is
composed of the TelcoML Enabler Library and the TelcoML Service Composition

Profile. The TelcoML Enabler Library is a set of service interfaces representing telecom-

125

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

specific facilities such as “Generic Messaging”, “Click-to-Call”, “Synchronisation”,
“Voice Recognition and Text-to-Speech” and “Privacy”. On the other hand, the TelcoML
Service Composition Profile enables the specification of composite services based on the
predefined service interfaces. A UML state machine-based approach can be applied to
define the compositions. To sum up, TelcoML includes a very specific way of describing
communication services based on a very small number of reusable service interfaces. Due
to this limitation only a few services can be modelled based on TelcoML. Although it is
based on UML class diagrams and state machines, it does not contain any relation to UML
use cases. This makes it more difficult for the test developer to derive a TelcoML
specification based on the “Structured Requirements” document. Additionally, test-
specific parameters (such as wild cards for data sent from the SUT to the test components)

are not part of the language.

AGEDIS Modeling Language

Finally, the AGEDIS Modeling Language (AML) is introduced which is based upon the
UML meta-model. Within the AGEDIS methodology presented in (Hartman and Nagin,
2004) and (Craggs et al., 2003), AML serves as behavioural modelling language. Initially,
AML includes the structure of the SUT by means of UML class diagrams with their
associations. Here, the approach bears resemblance to other methodologies, such as U2TP
(see section 3.3.1) and UTML (see section 5.1.3). These methodologies also initially
include the definition of the structure or rather architecture of the SUT. The behaviour of
each class within the diagrams is defined in corresponding state diagrams. The actions
within the state diagrams are individually specified by means of the IF language (Bozga

et al., 1999), a specification language that is based on timed automata and extended with

126

5 Novel Service Test Specification and Related Specifications

discrete data variables, various communication primitives and dynamic process creation.
After the class diagrams and state machines are described, an instance of AML is created.
This creation process requires a very deep knowledge in the modelling of UML class
diagrams and state diagrams and, additionally, the specification of the actions within the
state diagrams requires the use of the IF language which bears resemblance to
programming languages. Another missing aspect of AML is the absence of useful

concepts that test teams may need, especially if they want to apply agile principles.

5.2 Proposed Novel Service Test Description

As described in the sections 5.1.1, 5.1.2, 5.1.3 and also 5.1.4, the introduced service
description languages, service specifications and test specifications are not sufficient
enough to be used within the proposed Test Creation Framework for value-added services
(see section 4.3). Therefore, a novel description language has been developed within this

research that fulfils all the relevant requirements, which are listed below:

e Machine readable and parsable — the output of the novel language is parsable for
the Automatic Composition Engine (ACE) to enable the building of the formal
behaviour model.

e Usability — the definition of instances of the novel description language is
manageable and relatively easy to understand for the test developer.

e Traceability of use cases — to support the agile aspects (such as the possibilities of
rapid prototyping and a better involvement of the service customer) of the overall
methodology (see Figure 4.3), a mapping to the use cases specified in the

“Structured Requirements” document is provided.

127

5.2 Proposed Novel Service Test Description

Preciseness — the behaviour, such as potential actions and events that might occur,
is determinable in a precise manner.

Functional specification — within the use case-based specifications, a complete
description of possible behaviours exists (both basic and alternative flows).
Reusability aspects — the description language contains components that can be
applied to various scenarios and are reusable for different kinds of value-added
services in order to fasten and simplify the definition process.

Test data integration and parameterisation — the description language supports the
usage of appropriate test data and allows parameterisations of reusable test data
templates.

SUT interface description — the execution of test cases within a test execution
environment requires knowledge about the SUT (e.g. Service Access Point
(SAP)). This information is included within the novel description language.
Extension support — the description language shall support later enhancements
(such as including new reusable components).

Compliant to value-added communication services — the description language
contains typical value-added service-related aspects (e.g. integration of

multimedia protocols).

The upcoming section introduces the proposed novel description language called Service

Test Description.

128

5 Novel Service Test Specification and Related Specifications

5.2.1 Structure of Service Test Description

This research work led to the definition of a new description language, the “Service Test
Description”, which is abbreviated as STD in the following. The term itself implies that
the description language contains both service-specific (“Service”) and test-specific
(“Test”) properties. In fact, the STD can be regarded as being a combination of a service
specification defining service-related information and behaviour, and a test specification

including the determination of test components and test data.

The general overview of the structure of the STD is displayed in the following Figure

5.12.

Architectural perspective

Service Test
Description

Behavioural perspective

Requirement

Roles

Requirement List Communication

Interfaces

-
Service ID X
Requirement ID

-

(\ Reguirement

Prose Description Goal
-
—
Roles

Parameters

Basic Flow

Non-functional

. Alternative
Properties

Flows

S/
System Meta
Information

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ——
| Participating
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 5.12: Structure of Service Test Description

129

5.2 Proposed Novel Service Test Description

On the basis of the illustration, also the differentiation between the architectural
perspective and the behavioural perspective within the STD becomes evident. This
principle has been derived from both UTML (see section 5.1.3) and U2TP (see section
3.3.1). However, the focus of what is part of the two perspectives and how these parts are
described differs from the proposed STD. Also, UTML and U2TP are typical approaches
to define test specifications or rather test models whereas STD, besides including test-
specific parameters, also contains information that are usually related to service

specifications such as, for instance, the description of requirements.

5.2.2 Architectural Perspective

The architectural perspective of the STD illustrated in the treelike Figure 5.12 contains at
first the Service Test Description element, which is the root for every instance of an STD.
Underneath this element, there are the five fields Service ID, Prose Description, Roles,

System Meta Information and Non-functional Properties.

The Service ID is an identifier for the value-added service that is about to be tested and is
a term containing a series of alphanumeric characters. It should already be defined within
the “Structured Requirements” document by the service analyst. The test developer can
just reuse the given term and select it as Service ID in the STD. This is important because
the service developer will also use the term as code name for his development project.
Using the same identifier, the test and development processes can be easier matched. This
allows an easy test management throughout the development phase. The Service ID will
also be used for further processing regarding the naming of the derived behaviour models,

test cases and the test suite.

130

5 Novel Service Test Specification and Related Specifications

The Prose Description documents the value-added service’s functionality from the
potential user’s point of view. The description is written by the test developer and should
serve him as a reminder of the service’s characteristics and main functionality. It also
helps him to distinguish between diverse projects that he might have to deal with. There
is no defined guideline how to write the Prose Description, but it should be brief and
concise and it should not contain any pronouns to avoid misunderstandings. The Prose

Description does not play a role in the further formal processing of the STD.

The most important part within the architectural perspective of the STD is the Roles field.
It stands for a list of participating entities that communicate with the value-added service
by exchanging signals and data on the one hand and that are external to the service
environment (e.g. application server) on the other. The Roles most likely bear a
resemblance to actor elements known from traditional use case modelling (Jacobson et
al., 1992), “Structured Use Case Models” (see section 5.1.1), RUCM (see section 5.1.2)
and other use case-based approaches. Like actors in the UML context, the Roles in STD
define a potential behaviour that has to be further specified. However, there is a difference
between actors and Roles. According to (OMG, 2011a), actors “may represent human
users, external hardware, or other subjects”. This is a very general statement and allows
diverse assumptions. Contrary to the view on actors in UML, the Roles in STD represent
only specific external hardware or software that can interact with the value-added service
via communication protocols such as HTTP, RTP or SIP. The importance of the Roles
for the STD lies in the fact that based on the chosen Roles for a value-added service, sets
of predefined test modules for the test execution environment can be automatically
derived and afterwards instantiated. This is one major aspect of reusability in the proposed

approach and will be further described in the upcoming section. Examples for Roles

131

5.2 Proposed Novel Service Test Description

applied in the STD can be, for instance, a SIP phone (or rather VVoIP phone) or a web
browser. A SIP phone can either be existent as hardware or software whereas the web
browser is, of course, software-based. Both example Roles are able to communicate via
their applied communication protocols (SIP for SIP phone and HTTP for web browser)

with value-added services.

The next field within the architectural perspective, the System Meta Information, contains
properties for the configuration of the SUT. This information is relevant for the TTCN-3
test suite that will be automatically generated based on the STD input. Each TTCN-3 test
suite requires a test configuration containing parameters of the addressability of a service,
such as the service URI, IP addresses, port numbers and the transport protocol (such as

UDP, TCP or SCTP) used for the message transfer.

The final field determined in the architectural perspective of the STD is the Non-
functional Properties. Analogous to the Prose Description, this information does not have
a direct influence on the formal processing. It allows the test developer to capture
information that is important for the service customer (such as quality of service

experience, performance and usability) but does not describe specific functions.

5.2.3 Behavioural Perspective

As illustrated in Figure 5.12, the behavioural perspective of the STD comprises a list of
requirements (Requirement List) to specify the functionality a value-added service has to
accomplish. One Requirement as part of the STD defines one function of a service and

generally includes a set of inputs, the relevant behaviour as well as expected outputs.

132

5 Novel Service Test Specification and Related Specifications

Requirement ID

In the specification of a Requirement, well-defined fields have to be determined. First, a
Requirement needs a unique identifier. The naming, which is subjected to a special
naming convention, can be done in the field Requirement ID. Starting from the first
specified Requirement, the first unique identifier will be named “Req0l1”. Further
requirements will be named by the prefix “Req” followed by the incremented number of

Requirement.

Requirement Goal

The next field is called Requirement Goal and is comparable to the Prose Description
field within the architectural perspective of the STD. Here, the test developer can specify
in a very short natural language-based prose text the main objective of the corresponding

Requirement.

Precondition

The Precondition field in the STD is comparable to the preconditions known from
traditional use case specifications, but the notation applied here formally defines the
statement as it is not based on natural language. In general, precondition statements
indicate what has to have happened before the current function (or Requirement) is
activated. In the context of STD, the Precondition enables the establishment of
dependencies between Requirements. Figure 5.13 demonstrates how this can be

visualised.

133

5.2 Proposed Novel Service Test Description

Req02
Req03

Figure 5.13: Dependency of Requirements through Preconditions

A Requirement in the STD contains flows of behaviour, exactly one Basic Flow (BF) and
at least one Alternative Flow (AF). This is exemplified in Figure 5.13 with three
Requirements, “Req01”, “Req02” and “Req03”. The connection originating from the BF
of “Req01” to the target “Req02” determines that “Req02” actually depends on the BF of
“Req01”. Similarly, the second connection in the figure determines that “Req03” depends
on the AF of “Reqg01”. In the STD, these dependencies are stated through the
Precondition field. In the definition of “Req02”, the field would contain the value
“Req01”. This would set the BF of “Req01” to have happened before “Req02” can be
activated. For “Req03”, the value of the Precondition field is “Req01.AF”. So, regarding
AFs, the id of the Requirement has to be set followed by a full stop and the id of the AF
itself. Theoretically, a Requirement can have more than one Precondition. This is

specified by an ordered comma-separated list of the values.

Participating Roles

In the next field within a Requirement definition, the Participating Roles are selected.
The Roles field within the architectural perspective already specified all the participating
entities that shall interact with the value-added service. The Participating Roles only

contains selected Roles from the architectural perspective that are specifically playing a

134

5 Novel Service Test Specification and Related Specifications

role in the current Requirement. The following table shows an excerpt of a STD

determining two different Participating Roles, “SIP phone” and “Web browser”.

Table 5.4: Excerpt of example STD containing two example Participating Roles

Participating Roles e SIP phone: [s]
e Web browser: [w]

Besides the mentioning of the concrete names of the Participating Roles, the test
developer also has to define aliases for them (*“[s]” for SIP phone and “[w]” for Web

browser). They can be used within the complete STD as identifier for the relevant Role.

Communication Interfaces

The Communication Interfaces (Cl) field contains the most relevant information
regarding the aspect of reusability. In STD, the Cls are defined as part of the SUT. In fact,
they represent the points of interaction between the currently specified value-added
service, also referred to as SUT, and the participating entities defined as the Participating

Roles. The following Figure 5.14 illustrates the relationship between Roles and Cls.

Participating Entities System Under Test

_—— e —————

Figure 5.14: Relationship between Roles and Cls

One Role provides a potential functionality (or rather behaviour) that can be applied by
the SUT when it communicates with the specific Role. The complete scope of potential

functionality is represented by all Cls that are assigned to that Role. In Figure 5.14, there

135

5.2 Proposed Novel Service Test Description

are three different Cls (Cl1, C12, CI3) defined for Role B that can be applied by the SUT.
By selecting one specific CI, for instance “CI2”, one aspect of the complete scope of

functionality Role B provides is selected.

To show the relevance of Cls in the STD and how they are identified for Roles, “SIP
phone” is used as an example Role. According to (ITU-T Q.3948, 2011) and (ITU-T
Q.3949, 2012), a SIP entity can be described as a so-called SIP multimedia
communication terminal that comprises all the functionality displayed in Figure 5.15.

Permission to reproduce Figure 5.15 has been granted by ITU.

Video I/0 element Video codec
RTP/RTCP
[RFC 3550]
Audio 1/0 element Audio codec
Local Area
System control Network
SIP
System control [RFC 3261]
user interface
SDP
[RFC 4566]

Figure 5.15: SIP multimedia communication terminal (ITU-T Q.3948, 2011)

Following the specification of a SIP multimedia communication terminal, a SIP phone as
a SIP entity can be seen as an instance of the terminal. Correspondingly, a SIP phone, as
well as any other SIP entity, has to be able to instantiate and terminate SIP sessions using
the SIP protocol (IETF RFC 3261, 2002) and also the SDP protocol (IETF RFC 4566,
2006). Additionally, it has to be able to exchange multimedia data, either audio and/or

video, via RTP (IETF RFC 3550, 2003). Based on these diverse aspects of functionality

136

5 Novel Service Test Specification and Related Specifications

provided by a SIP phone, the Cls can be derived. This is illustrated in the following Figure

5.16.

Participating Entity System Under Test

—————————— N
,f |
| I
| I
| I
| SIP phone }
| I
| I
| I
[I
N — — — — — — — — — /

Figure 5.16: The Role SIP phone with its corresponding Cls

Here, six corresponding Cls have been identified for the Role SIP phone on the side of
the SUT. The RTP Cls either represent the sending of RTP streams from the SUT to the
SIP phone (RTP Source), or alternatively, from the SIP phone to the SUT (RTP Sink).
The SIP Cls have been derived from the transaction state machines described in section
2.2.2. They define the handling of messages being initially sent from the SUT to the SIP
phone (either SIP UAC INVITE for sending INVITE requests or SIP UAC non-INVITE
for sending any type of SIP request different from INVITE requests) or from the SIP
phone to the SUT (either SIP UAS INVITE for receiving INVITE requests or SIP UAS
non-INVITE for receiving any type of SIP request different from INVITE requests). For
the SDP protocol, no separate Cl has been identified because SDP is usually embedded
into SIP messages, for instance within INVITE or ACK requests or within 200 OK

responses.

Overall, the determined Cls represent standard behaviour of the Role SIP phone. Of

course, this aspect can be generalised. A set consisting at least of one ClI is assigned to

137

5.2 Proposed Novel Service Test Description

each definable Role within the STD. Regarding the aspect of reusability in the novel
approach, it is important to mention that the predefined test modules as part of the Test
Modules Repository within the proposed Test Creation Framework will be automatically
selected based on the determined Cls. So, for every determined CI, a corresponding test

module has to exist in order to run the process.

The specification of Cls within a Requirement in the STD will be exemplified by means

of the following Table 5.5.

Table 5.5: Example of specifying Cls in STD

Communication e SIP UAS non-INVITE: [sl] - channel a
Interfaces e SIP UAC non-INVITE: [s2] — channel b

The Cls SIP UAS non-INVITE and SIP UAC non-INVITE are selected for the example
Requirement. Similar to the specification of Participating Roles in Table 5.4, aliases are
assigned to the Cls. Here, a naming convention has to be followed to easily figure out
which Cl is assigned to which Role. Therefore, the Cls contain the same identifier as the
corresponding Role followed by a number that increases with every further added CI. If
the alias of SIP phone is “[s]”, the alias of the first mentioned CI will be “[s1]”. Besides
the name of the CI and its alias, also a corresponding so-called channel is set. The
significance of the channel will become apparent in the Flow Definition, but the following

Figure 5.17 demonstrates the meaning of it.

138

5 Novel Service Test Specification and Related Specifications

SUT
Role [s] [s1] | [_Is2]
44— channel a——p
> channel b >

Figure 5.17: Significance of channel for Roles and corresponding Cls

As shown above, a channel represents the communication channel between a Role as

participating entity and one of its corresponding Cls which is part of the SUT.

Parameters

The relevance of Parameters within a Requirement definition is very significant as they
enable a great variability, especially regarding the Cls. As mentioned before, each Cl in
the STD can be assigned to a predefined test module within the framework. A detailed
structure of a test module is explained in section 6.2, but it is worth mentioning that it
describes behaviour that is common to the CI. The test modules also include variables
that are instantiated from abstract data types which represent a communication protocol
message (e.g. SIP request or SIP response). In the approach, each request-response
protocol contains an abstract data type for its request and its response messages (see
section 6.3). The variables within the test modules can be modified (or parameterised) by
the STD through the Parameters field. Here, STD variables are instantiated and assigned
the variables of a corresponding test module. The way how to do the assignment and the
following modification is discussed in the following. In general, a communication
protocol message as part of a Cl (or rather test module) is a collection of data fields that
build a compound domain. In STD, the compound domain concept has been derived from

(Xiaoping and Maag, 2013) and can be defined as follows:

139

5.2 Proposed Novel Service Test Description

Definition: A compound value v of length n > 0 is defined by the set of pairs {(l;,v;) | l; €
Lav; €D; U{e},i =1..n}, where L ={l,, ..., 1} is a predefined set of labels and D;
are data domains. Based on this, the compound domain is the set of all values with the

identical set of labels and domains defined as (L, Dy, ..., Dy).

(Xiaoping and Maag, 2013) discuss that for any given network protocol P it is possible
to define a compound domain M, by the set of labels and data domains that are defined
in the underlying protocol specification. Accordingly, a message of a protocol P,

independent of whether it is a request or a response type, is any element m € Mp.

In the following Table 5.6, an example parameterisation of a SIP MESSAGE request is

demonstrated.

Table 5.6: Parameterisation of an example SIP MESSAGE request

Parameters var m = [s2]-s_Request;

m = {(Method, “MESSAGE’), (FromURI, “service@sip.de™),
(ToURI, “bob@sip.de™), (Text, “Hello Bob!)}

First, a local STD variable m using a syntax derived from well-known scripting languages
(such as JavaScript) is initialised. Now, m is assigned the variable “s_Request” from the
Cl “[s2]” which refers to the corresponding test module. In the syntax, this assignment is
performed by the arrow symbol. The real parameterisation of the variable takes place
subsequently and is based on the key-value pairs defined by the compound domain.
Conveniently, only the labels Method, FromURI, ToURI and Text and the corresponding
values were used to specify the SIP MESSAGE. Of course, a typical SIP request can be
specified in more detail (see Figure 6.21). Regarding the value determination it is

mentionable that quotation marks have to be used irrespective of whether the values are

140

5 Novel Service Test Specification and Related Specifications

alphanumeric or all kinds of numbers such as integers and floating point numbers. The
example in Table 5.6 also shows how the Parameters field in STD allows differentiations
within the Cls. In general, the SIP UAC non-INVITE CI describes the initiation of a
request from the SUT to a SIP phone that is different from an INVITE request. In the
example, the SIP MESSAGE (IETF RFC 3428, 2002) was used, but through

parameterisation, also the following request types could be defined:

e ACK, BYE, CANCEL, OPTIONS and REGISTER (IETF RFC 3261, 2002)
e PRACK (IETF RFC 3262, 2002)

e SUBSCRIBE and NOTIFY (IETF RFC 6665, 2012)

e PUBLISH (IETF RFC 3903, 2004)

e INFO (IETF RFC 6086, 2011)

e REFER (IETF RFC 3515, 2003)

e UPDATE (IETF RFC 3311, 2002)

Besides the possibility to parameterise variables within the Parameters field, it is also
possible to access the values that were set. Like in many programming languages, such
as Java or C#, fields or rather attributes of variables instantiated from complex data types
can be accessed by applying the dot operator (“.”). This concept is reused here. For the

local variable m defined in Table 5.6, accessing for example the field method would be

written as follows:

m.method

The accessing of fields can be done within the Parameters field on the one hand, or

alternatively, within the Basic Flow and Alternative Flow definitions. The return value of

141

5.2 Proposed Novel Service Test Description

this operation will be the currently stored value (e.g. “MESSAGE” referring to the

definitions made in Table 5.6).

The Parameters field, besides defining and parameterising variables, also enables the

definition of timers. The following Table 5.7 shows how this is realised.

Table 5.7: Instantiation of timers in Parameters field

Parameters timer tl = [s2]-timerF;

The test module referring to the CI SIP UAC non-INVITE contains a list of timers (e.g.
“Timer E”, “Timer F”, “Timer G”). In this example, “Timer F” was chosen and bound to
to the name “t1”. Within the Basic Flow and the Alternative Flow, the state of this timer

can be verified within specified constructs (if-then-else).

Basic Flow and Alternative Flows

The concept of the Basic Flow and the Alternative Flows within the Requirement of an
instance of the STD is derived from the RUCM method (see section 5.1.2). Besides the
determination of the Cls and the parameterisation, the Basic Flow is the most significant
part of a Requirement. In principle, it contains the descriptions of steps that have to be
taken to achieve the main target (or goal as it is described in the Requirement Goal field)
of the Requirement. Within the steps of the Basic Flow, possible alternative behaviour
can occur. The effects of the alternative behaviour can be specified by means of the
Alternative Flows. Theoretically, a Requirement can contain an infinite number of

Alternative Flows, but it will always contain only one Basic Flow.

In order to define the steps within the Basic Flow, many documented approaches have

been considered, for instance the RUCM method. However, textual use case design might

142

5 Novel Service Test Specification and Related Specifications

also be error-prone even if restriction rules are established to reduce the major problems
of natural language-based descriptions, namely imprecision and incompleteness. Based
on the requirements on the STD drawn up at the beginning of this section, it should be
machine-readable so that it can be parsed by the Automatic Composition Engine (ACE)
within the TCF. Also, the description has to take the reusability aspect into consideration.
To sum up, a new language is required which enables the precise description of behaviour
flows on the one hand and realises the reference to the reusable test modules within the

TMR on the other.

As appropriate foundation of a language being able to meet the mentioned requirements,
a process algebra notation has been found, the pi-calculus (Milner, 1992), (Milner et al.,
1992). In principle, the pi-calculus is a model “of communication systems in which one
can naturally express processes which have changing structure” (Milner et al., 1992). It
belongs to the family of process calculi, which are mathematical formalisms for
describing and subsequentially analysing properties of concurrent computation, and is an
extension of the Calculus of Communication Systems (CCS) (Milner, 1989). One major
benefit of pi-calculus is the simple language it is based on to specify interactive message-
passing programs. The language is also very expressive. However, the original pi-calculus
notation defined by (Milner, 1992) does not contain primitives such as numbers,

booleans, variables, conditions or terms.

Through the syntax of pi-calculus, processes and channels can be represented. A process
is an abstraction of an independent thread of control whereas a channel is an abstraction

of the communication link between two processes. Interaction between processes is

143

5.2 Proposed Novel Service Test Description

enabled by sending and receiving messages over channels. The grammar for processes in

pi-calculus is specified as follows.

Assume that there exists a countable infinite set of names N. Let X, y,... range over N and

let P and Q denote processes. Then:

P | Q denotes a process composed of P and Q running in parallel (an example of

this is illustrated in Figure 6.35).

e a(x).P describes a process that receives an input over channel a, binds the result
to x and then proceeds with P.

e a(y). P describes a process that sends out y over the channel a and then proceeds
with P.

e | P denotes that an infinite number of copies of P runs in parallel.

e 0 denotes that the current process is terminated.

Generally, the stated constructs for pi-calculus are sufficient to determine concurrent
behaviour. Regarding the Basic Flow of the STD, however, some limitations of the pi-
calculus concept have to be reconciled by means of minor enhancements. Firstly, the
names being sent and received over the channels have to be substituted by terms. Such
terms are placeholders for simple names, variables or even functions that expect input
parameters (e.g. (x)) and of course return a value to be either sent or received. The
concept of terms has been derived from (Abadi and Fournet, 2001) and (Abadi and
Fournet, 2004). Another limitation of the standard pi-calculus is the syntax lacking the
definition of conditional constructs such as if-then-else. In applied pi-calculus approaches

such as in (Ryan and Smyth, 2011), the concept of including if-then-else constructs has

144

5 Novel Service Test Specification and Related Specifications

already been discussed. However, the checking of values of complex variables has not

been considered in this approach. An example usage of the construct can be as follows:

if (x>5)thenP elseQ

The expression states that if a number stored in a variable x is higher than the value of

“5”, the current process proceeds with P, otherwise with Q.

Applying the pi-calculus with the proposed enhancements, the Basic Flow and also the
Alternative Flows can now be determined. However, the way the pi-calculus is applied in
the STD may differ minimally from its original application. The pi-calculus is used in the

following way:

e Basic Flows and Alternative Flows within Requirements are generally described
by means of enhanced pi-calculus descriptions.

e The Basic Flow contains possible transitions to existing Alternative Flows within
the Requirement.

e Each Alternative Flow has to be specified with a unique identifier (e.g. “AF1”).

e A Basic Flow and each additional Alternative Flow within a defined Requirement
are specified by their own processes P, Q,R, ... € p. Basic Flow processes and
Alternative Flow processes are always running sequentially and not concurrently.
So, if a step within a Basic Flow leads to an Alternative Flow (possibly because
of an if-else-then construct), the process of the Basic Flow terminates
automatically and is substituted with the process of the Alternative Flow.

e The pi-calculus description focuses on the potential behaviour of the considered

value-added service (SUT), not on the external system (such as the participating

145

5.2 Proposed Novel Service Test Description

entities). So, the test is not in the focus of the pi-calculus description, but the
service.

e Potential behaviour is described through channels and not through concurrent
processes. In fact, the Basic Flow (and also the Alternative Flows) will always
include the major process P and an implicit process Q representing the test
environment.

e A process defined in one Basic Flow describes a period of time within the lifetime
of the SUT (or rather value-added service). The sum of all channels represents the
possible communication channels of the SUT to the test environment.

e The pi-calculus channels are directly mapped to the communication channels
which describe the message exchange between the Cls (as part of the SUT) and
the Participating Roles (see Figure 5.17).

e The variables that are about to be sent and received along the channels are defined
within the Parameters field.

e Within the if-else-then constructs, fields of variables can be accessed through the
dot operator (“.”) as well as states of defined timers can be verified (e.g.

“timeout”).

In order to illustrate the approach with the pi-calculus-based Basic Flow and Alternative
Flow definitions, a sample specification by means of the STD will be discussed in the

following section.

146

5 Novel Service Test Specification and Related Specifications

5.2.4 Sample Specification with Service Test Description

The sample chat service introduced in section 5.1.1 will be applied. The service will be
reused in a simplified form for the prototype validation in section 8.3, and a specification
of the “Send Message” use case is given here for illustration. As discussed in the previous

sections, first the architectural perspective has to be specified (see Table 5.8).

Table 5.8: STD architectural perspective of simplified sample chat service

Service ID Chat Service

Prose Description A chat communication should be provided. The service
users are able to log in to the system and log out
again. While being logged in, the service user can
enter chat rooms and leave the chat rooms again. The
service user can also send textual chat messages. The
Administrator of the chat service can add new users
to the system and is also capabale of erasing existing
users from the system. The Administrator can also
create new chat rooms and erase old chat rooms.

Roles e SIP phone: [admin]
e SIP phone: [sender]
e SIP phone: [recipient]

System Meta ServiceURI: sip:chatservice@vas.de
Information Protocol: UDP

Non-functional None

Properties

As described in the section 5.2.2, within the architectural perspective of the STD, the
Service ID has to be set at first (“Chat Service”). The Prose Description describes the
main functionality the sample chat service has to deliver as precise as possible. Three
different Roles have been identified for the service and all are acting as SIP phones. The
“[sender]” and the “[recipient]” are Service Users (see Figure 5.3) whereas the “[admin]”
is, of course, the Administrator. A further information regarding the service addressability
is given through the service URI. Non-functional Properties are not specified for the

sample chat service.

147

5.2 Proposed Novel Service Test Description

After the architectural perspective is defined, the behaviour has to be specified. To specify
the “Send Message” use case, a Requirement is defined within the sample chat service

STD instance (see Table 5.9).

Table 5.9: STD Requirement definition for “Send Message” from sample chat service

Requirement ID Req03

Requirement Goal Service User [sender] sends a text message to another
Service User [recipient] and gets informed whether
the transmission was successful.

Precondition Req02
Participating Roles e SIP phone: [sender]

e SIP phone: [recipient]
Communication e SIP UAS non-INVITE: [senderl] — channel a
Interfaces e SIP UAC non-INVITE: [sender2] - channel b

e SIP UAC non-INVITE: [recipientl] - channel c
Parameters var initMessage = [senderl] - r_Request;

var forwMessage = [recipientl] - s _Request;
var okMessage = [sender2] - s_Request;

var errorMessage = [sender2] - s_Request;
timer tl = [recipientl] - timerF;

initMessage =

{(Method, “MESSAGE”), (Text, “Hello Bob!)}
forwMessage =

{(Method, “MESSAGE™™), (Text, initMessage.Text)}
okMessage =

{(Method, “MESSAGE”), (Text, “ok™)}
errorMessage =

{(Method, “MESSAGE™™), (Text, “Message not

received”)}

Basic Flow P &

a(initMessage).
c(forwMessage).

if (tl.timeout) then Q else.
b(okMessage).

0

IAlternative Flow Q &f

(AF1) b{errorMessage).

0

Initially, the Requirement ID has to be set and a Requirement Goal is specified. The
Precondition field contains the value “Req02”. Although this Requirement is not
determined here, the specified behaviour within its respective Basic Flow has to happen

before the Basic Flow of “Req03” begins. In this example, “Req02” indicates the entering

148

5 Novel Service Test Specification and Related Specifications

of both Service Users into a chat room. Notice that “Req02” itself includes a
Precondition, namely “Req01”, which describes the login process of both Service Users.
So, the Service Users have to be logged in to enter a chat room (“Req01” - “Req02”)
and they have to have entered a chat room before sending messages (“Req02” ->
“Req03”). In the Participating Roles field, both Service Users “[sender]” and
“[recipient]” are included. The Administrator does not participate within the “Send
Message” Requirement. Three different Cls have been identified. The SUT requires two
channels a and b to communicate with the initial sender of the text message. In channel
a, the SUT is acting as SIP UAS whereas in channel b, it is acting as SIP UAC. Regarding
the recipient of the text message, the SUT only requires one channel ¢ where it is acting
as SIP UAC. The Parameter field includes the definition of several variables all
representing SIP MESSAGEs, either being sent from the sender to the SUT
(“initMessage”), from the SUT to the sender (“okMessage”, “errorMessage”) or from the
SUT to the recipient (“forwMessage™). Additionally, the timer F of the SIP UAC non-
INVITE Cl is defined. Subsequently, the Basic Flow is defined. First, it denotes the SUT
to receive the SIP MESSAGE “initMessage” over channel a and then consequently sends
the SIP MESSAGE “forwMessage” over channel c. In the next step, the state of the timer
“t1” is checked. If it has not timed out, the SUT sends out the SIP MESSAGE
“okMessage” over channel b and the Basic Flow terminates afterwards. Otherwise, if the
timer has timed out, the Alternative Flow “AF1” is activated. Here, a different SIP
MESSAGE “errorMessage” is sent by the SUT over channel b. Then, also the Alternative

Flow terminates.

To sum up, this section introduced the novel STD, a description language containing

aspects of typical requirements specifications as well as relevant information of the test

149

5.2 Proposed Novel Service Test Description

environment. In contrast to the introduced specification languages in section 5.1, the STD
fulfils all the relevant requirements stated in section 5.2. At first, the relevant data
specified in both the architectural and behavioural perspective can be read and interpreted
by a machine as it is existing either in a structured or formal manner. Although formality
in languages usually means that the compilation of the language is difficult for the
modeller or creator, the pi-calculus-based descriptions to specify the Basic Flows and
Alternative Flows are straightforward and can be defined in a very compact and intuitive
way. At the same time, the descriptions have a very precise meaning and do not allow
any ambiguities. A further requirement mentioned was the possibility to trace the
requirements within the language. This aspect is supported by the STD, as it is indeed
possible to map the use cases defined in the “Structured Requirement” document to the
Requirements within the STD. Moreover, the STD itself supports tracing within an
instance through the Precondition field. Requirements that are based on each other can
easily be specified. Another important aspect, the possibility to reuse certain aspects of
behaviour, is also a very important part of the STD. Through Roles in combination with
the Cls that are belonging to the SUT, sorts of reusable components can be derived. This
concept is discussed in more detail in section 6.4. Of course, the concept will clarify as
soon as the concept behind the reusable test modules is described in section 6.2. Further
specified requirements are covered, such as the test data integration and parameterisation.
This is a very relevant part of the STD and can be realised through the Parameters field
within a specific Requirement. The SUT interface description, which is also specified as
a major requirement, can be defined through the System Meta Information within the
architectural perspective of an STD instance. If demanded, further fields can be added

here. In general, the STD allows extensions without having to change the specification

150

5 Novel Service Test Specification and Related Specifications

language. For example, new Roles besides the already mentioned SIP phone and Web
browser can be added. Of course, this also requires the identification of the corresponding
Cls and regarding the Test Creation Framework, the definition of the reusable test
modules. Finally, the compliance to value-added services is given as standard

communication protocols are supported, such as SIP and RTP and also HTTP.

5.3 Comparison of Service and Test Specification

Languages

As predicted in the introduction, this section compares the service and test specification
languages from section 5.1 and the proposed novel STD from section 5.2 to demonstrate
their relative assets and weaknesses. Considering that, diverse requirements have been
stated. To evaluate the specification languages with regard to the requirements, a rating
will be applied to them in the upcoming Table 5.10 by using a three-level scale. The scale

contains the following ratings:

e (+): the specification language fulfils the requirement completley.
¢ (0): the specification language fulfils only basic aspects of the requirement.

e (-): the specification language does not fulfil the requirement.

The requirements on a novel specification language have been derived based on their
potential application within the proposed TCF (see section 4.3). A major advantage of the
TCF is that only an instance of the specification language has to be created manually.
Based on this instance, a behaviour model is automatically built, test cases are

automatically derived and generated and subsequently executed against the SUT.

151

5.3 Comparison of Service and Test Specification Languages

Therefore, high demands are placed on the specification language as it presents the

foundation of the quality of testing.

The requirements stated in section 5.2 are as follows:

e Machine-readable and parsable by a machine.

e Usability by test developers who specify the considered value-added services.

e Traceability of use cases to enable an easy transition from standard use case
description.

e Preciseness to avoid ambiguity within the specification.

e Support for functional specification (e.g. flow descriptions or rather use case
descriptions).

e Reusability aspects to simplify and fasten the definition process.

e Test Data integration and parameterisation (e.g. parameterise variables).

e SUT interface description to already specify the addressability of the value-added
service in order to achieve a fully automated process.

e Extension support to allow further changes and enhancements.

e Compliance to value-added telecommunication services.

152

5 Novel Service Test Specification and Related Specifications

Table 5.10: Comparison of specification languages

Characteristics Specification Language

Structured Use | RUCM UTML Proposed STD

Case Models
Readability/Parsability + - + +
Usability 0 + + +
Traceability of use cases + + - +
Preciseness 0 0 + +
Functional specification + + + +
Reusability aspects - - - +
Test Data - - + +
SUT interface description - - + +
Support for extensions - 0 0 +
Compliance to services - - + +

Readability and parability of the specification language is best supported by UTML, the
Structured Use Case Models and the proposed STD as they rely on formal models,
descriptions or metamodels. RUCM is natural-language-based and therefore not easily
parsable. The aspect of Usability is fulfiled by RUCM, UTML and the proposed STD
because the procedure within the compilation phase is well-defined. The Traceability of
use cases is supported by all approaches that are actually based on use case design. This
Is the case in Structured Use Case Models, RUCM and the proposed STD. Regarding the
Preciseness, the Structured Use Case Models and RUCM have weaknesses as they are
either natural language-based or allow loose determinations. Every specification language
is meant to provide a Functional specification and therefore this requirement is fulfilled
by all four languages. A unique position feature of the proposed STD emerges regarding
the aspect of Reusability, which is not supported by any other specification language. The
Test Data integration is supported by UTML as it is a typical test specification language.

Like in the proposed STD, abstract data types and variables exist that can be

153

5.4 Conclusion

parameterised within the approach. The same argument can be emphasised regarding the
SUT interface description which is also not supported by the Structured Use Case Models
approach and RUCM. The Support for extensions is not specified by RUCM and UTML,
but it should be possible. The Structured Use Case Model is based on a defined
metamodel and does not allow any further extensions. Finally, the Compliance to
services, especially value-added telecommunication services, is fulfilled by UTML and

the proposed STD. Both support the integration of SIP.

5.4 Conclusion

Different specification languages have been presented within this chapter in order to
compare them against the proposed novel STD. The STD has been described with all its
features, starting from the simple way it is compiled, its ability to be parsed and
interpreted, its integration of reusable modules (Cls) and of course, its property to allow
traceability of use cases. The language has been compared to other specification
languages by means of stated requirements. It has been identified that all requirements

are fulfilled by the novel STD.

Up to now, a solid basis has been defined to implement the TCF. However, new essential
questions arise, for instance, regarding the structure and definition of the reusable test
modules. Also the relationships between the Cls within an STD instance and the reusable
test modules has to be clarified. Furthermore, an algorithm needs to be introduced which
builds the formal behaviour models based on an STD instance. All of these questions will

be discussed in the upcoming chapter.

154

6 Reusable Test Modules and Behaviour

Model Generation

“In most engineering disciplines, systems are designed by composing already existing
components that might have been used in other systems” (Sommerville, 2012). In this
chapter, this statement will be taken up for testing, or to put it more precisely, a novel
concept of reusable test modules will be introduced. These reusable test modules are part
of the proposed TCF and are used together with the STD in order to build behaviour
models from which test cases can be derived later on (see section 4.3). The following
Figure 6.1 illustrates a simplified flow chart based on the proposed TCF (see Figure 4.5)

showing the generation of behaviour models based on STD instances.

< > Test Modules
Start .
Repository

\ 4
Service Test Automatic Behaviour
Description Compositon Engine Models
v
T
est Data End
Pool

Figure 6.1: Generation of Behaviour Models based on STD and reusable test modules

2

B ;

The main concern of this chapter is the introduction of the composition algorithm in the
Automatic Composition Engine (ACE) which combines instances of the reusable test

modules and generates behaviour models. The application of such an algorithm, however,

155

6 Reusable Test Modules and Behaviour Model Generation

requires a deep knowledge of its inputs (see Figure 6.1) such as the Service Test
Description (STD) instance, a selection of reusable test modules from the Test Modules
Repository (TMR) as well as test data from the Test Data Pool (TDP). Whereas the
structure of the STD has already been discussed in chapter 5, the upcoming sections 6.1
and 6.2 deal with the reusable test modules. First, an appropriate modelling notation is
selected in section 6.1 based on general requirements for model-based notations and
specific requirements which take the concept behind the proposed TCF (see Figure 4.5)
and the properties of value-added services into consideration. Furthermore, the section
introduces the TU concept which allows a view on client- and server-based cores and in
parallel enables the underlying semantics used in the selected modelling notation. Section
6.2 introduces the architecture component within the proposed TCF, the Test Modelling
Environment (TME), which enables the modelling and definition of new reusable test
modules. The test data integration is discussed in section 6.3 and illustrates how the
abstract data types and concrete test templates for request and response messages of the
given protocol SIP are stored. This concept can be reused for further applicaton layer
protocols (such as HTTP). The main process and the major outcome of this chapter will
be explained in section 6.4. The main task of this ACE algorithm is to produce a well-
defined output, the behaviour models, based on the previously defined input, the STD
instance. The STD instance has to exist in a parsable form to be interpreted by the ACE
algorithm. After the algorithm has read the STD instance, the next step is to identify the
appropriate reusable test module instances by parsing the specified
Communicationinterfaces within the STD instance. Then, the parameterisation of the
reusable test module instances is performed by reading the Parameter field. Finally, the

ACE algorithm realises the composition of the reusable test modules according to the

156

6 Reusable Test Modules and Behaviour Model Generation

content specified in the Requirements of the STD instance. The different steps that have
to be taken by the algorithm during the composition phase can be derived from the
different categories of steps existing in the pi-calculus-based behavioural description. The
result at the end is a list of behaviour models. Each behaviour model within this list is

related to a specified Requirement within the STD instance.

6.1 Notation for Behaviour Modelling

To generate appropriate functional test cases and execute them against a System Under
Test (SIP AS with deployed value-added services), a formal modelling notation needs to
be selected that enables a behavioural description of the service. However, regarding the
proposed framework (TCF), a number of requirements has to be fulfilled by such a
modelling notation. The upcoming section gives an overview of the essential
requirements, presents possible modelling notations and gives reasons for the selection

of one specific modelling notation.

6.1.1 Evaluation of Potential Modelling Notations

With regard to “Model-Based Testing” described in section 3.2.4, behavioural aspects of
a system or service can be specified by means of modelling notations. According to (ETSI
ES 202 951, 2011), such a modelling notation has to provide basic means for algorithmic
design and data manipulation. The ETSI standard lists further general requirements that
have to be fulfilled by potential modelling notations. The most relevant aspects are

mentioned in the following (ETSI ES 202 951, 2011):

157

6.1 Notation for Behaviour Modelling

e The notation shall be based on unambiguous operational semantics.

e The notation shall support diverse simple data types such as boolean, integer and
character strings.

e The notation shall support user-defined abstract data types.

e The notation shall support basic control structures like variables, assignment and
conditional statements.

e The notation shall support advanced control constructs such as loops.

Considering these general requirements, the authors of (ETSI ES 202 951, 2011) point
out that modelling notations for the specification of behaviour are limited to rule-based
notations, process-oriented notations and Statecharts (Harel and Politi, 1998). Whereas
Statecharts are clearly defined as a special presentation form for finite-state machines,
rule-based notations and process-oriented notations each represent a group of more or less
well-known modelling notations. Rule-based notations are “textual modelling notations
where state transition rules describe the behaviour of the system” (ETSI ES 202 951,
2011). They can be referred to as extended finite state machines (EFSM) (Cheng and
Krishakumar, 1993) or abstract state machines (ASM) (Boérger and Stéark, 2003). In
contrast, process-oriented notations focus on describing the activity of a system as a
sequential process (or thread). During its lifetime, the process listens to inputs from its
environment and also produces outputs. A well-known representative is the Business

Process Execution Language (BPEL) (OASIS, 2007).

In order to find the appropriate modelling notations, further specific requirements have
been determined. These requirements take the general requirements on the TCF (see

section 3.4) as well as the properties of value-added services into consideration:

158

6 Reusable Test Modules and Behaviour Model Generation

e The notation shall allow the definition of reusable test modules.
e The notation shall enable the composition of reusable test modules.
e The notation shall support the description of concurrent behaviour.

e The notation shall support temporal logic (e.g. timer integration).

The notation shall deliver a standardised formal description.

First of all, the aspect of reusability is a major requirement a modelling notation has to
fulfil. Reusability shall be provided by so-called reusable test modules. The
characteristics of these reusable test modules and further information regarding their
identification is discussed in section 6.2. As part of the modelling notation, a reusable test
module shall exist in the form of a formal model which describes recurring behaviour.
With regard to value-added services in the telecommunication domain, recurring
behaviour can be for instance the sending or receiving of instant messages or the initiation
and termination of audio or video calls. Such behaviour has to be specified in a
generalised manner within a reusable test module. As soon as such a behaviour becomes
relevant within a value-added service, the appropriate reusable test modules can be chosen
and adapted to the given scenario, e.g. through parameterisation. All of the mentioned
types of modelling notations enable the definition of reusable test modules although not
all support the principle from scratch. In a rule-based approach with EFSMs, for instance,
the concept of reusability has not been considered. However, behaviour of a test module
can be defined within one state machine. This state machine can be stored and be reused
as part of another state machine later on. As the EFSM-based state machines include
variables, parameterisations at a given point can be performed. BPEL as representative
for process-oriented notations also includes a concept of reusability (through so-called

Partner Links). Within a BPEL process, the behaviour of a reusable test module can be

159

6.1 Notation for Behaviour Modelling

specified and be reused in any other BPEL process. The final notation, Statecharts,
explicitly supports modularity through the defined concept of hierarchical states. Within

such a hierarchical state, the behaviour of one reusable test module can be specified.

The next requirement is directly connected with the previous one, however, it refers to
the composability of reusable test modules. It has to be clarified, if a modelling notation
allows the integration of a test module at any given point within the overall model. It
might also be relevant to modify the internal behaviour of a test module. In principle,
EFSM-based approaches support the composability of test modules. Every state and every
transition within a formal EFSM model describing the behaviour of a test module is
visible and accessible. Therefore, any new transition can be included and a composition
is supported. Although the BPEL process supports reusability in principle, a reused
module in form of BPEL processes is treated like a black box. Only the input parameters
of the test modules can be specified, no changes can be done within the behaviour
definition of a reusable test module based on BPEL. As the syntax of Statecharts is very

similar to EFSMs, the composability of test modules is also supported.

The next requirement is highly relevant for the implementation and test of value-added
services, because especially message flows (e.g. SIP messages) are usually not exchanged
in a fixed sequential order. For instance, if a value-added service sends two SIP INVITE
requests directly one after the other to two different participants in order to instantiate a
Third party call control (3PCC) call (IETF RFC 3725, 2004), the sequence of received
messages such as “200 OK” response and ACK request cannot be determined. In fact, the
sequence of messages can differ from one execution to the other. This aspect requires a

modelling notation that supports the definition of concurrent behaviour. EFSM-based

160

6 Reusable Test Modules and Behaviour Model Generation

approaches do not support concurrency. BPEL contains a special “Flow” element that
enables the definition of parallel processes. Statecharts support concurrency through so-
called concurrent hierarchical states. Within such a concurrent hierarchical state, it can

be more than one state executing simultaneously.

The next requirement concerns the integration of timers. Within the specified behaviour,
it shall be possible to determine that a timer has started or that a timeout occurred.
Originally, EFSMs do not support timer integration. However, some EFSM-based
approaches included the starting of timers within states and the timeouts as events on
transitions (Wacht et al., 2011a) or both as transition actions (Ernits et al., 2006). BPEL
supports timers through a special “onAlarm” element that corresponds to a timer-based
alarm. Finally, Statecharts support timers the same way it has been described for the
EFSM-based approach in (Wacht et al., 2011a). As soon as a state is reached, a specific

timer can be started. The timeout is then specified on a transition as an event.

Modelling notations such as EFSM, BPEL and Statecharts are mainly described
graphically. For further processing of the underlying models, a formal description is
required. This requirement on a modelling notation is essential for the proposed TCF and
has to be fulfilled because of two reasons. Firstly, the reusable test modules have to be
stored persistently in order to be selectable from the Test Module Repository. This can be
done if a formal and textual representation of the modelling notation exists. Secondly, the
generation of the behaviour models also requires a formal and parsable representation.
Particularly the EFSM-based approaches lack standardised formal descriptions as there
are many different notations. In contrast, BPEL processes can be serialised in a

standardised XML-based language (OASIS, 2007). There is also a grammar-based

161

6.1 Notation for Behaviour Modelling

scheme defined which specifies the exact structure of the XML presentation. For the
Statecharts approach, there is also a formal language called State Chart extensible Markup
Language (SCXML) (W3C, 2015) exists which has been defined as World Wide Web

Consortium (W3C) recommendation.

The analysis of the diverse modelling notations resulted in the following Table 6.1. It

demonstrates an evaluation based on a rating scale that has been applied in Table 5.10.

Table 6.1: Comparison of potential modelling notations

Requirements Modelling notations
EFSM (Rule-based BPEL (Process- Statecharts
notation) oriented notation)
Definition of reusable test
0 + +
modules
Composition of reusable
+ - +
test modules
Support for concurrency - + +
Support for timer o + +
integration
Existing standardised
- . - + +
formal description

To sum up, Statecharts are the modelling notation of choice regarding the formal

description of the reusable test modules and the behaviour models.

6.1.2 Relevant Portions of the Selected Modelling Notation

As elaborated in the previous section, Statecharts fulfil the requirements as modelling
notation for the reusable test modules and behaviour models. However, not all aspects of

the notation are required to create formal models in order to specify the behaviour of a

162

6 Reusable Test Modules and Behaviour Model Generation

value-added service. The relevant components and aspects of Statecharts are described in

the following.

Similar to other state machine-based notations, a Statechart is a finite set of states and
transitions. According to (Harel, 1996) and (Harel and Kugler, 2004), there are two

different types of states in a Statechart definition, basic states and hierarchical states.
Basic States

Basic states are not composed of other states and are therefore the lowest in the state
hierarchy. Each state contains a set of transitions that define how the state reacts to events.
In contrast to other state machine notations (such as EFSM-based approaches), a
Statecharts basic state includes different action types, so-called entry and exit actions.
They can appear associated with the entrance to or exit from a state. Figure 6.2 illustrates
an initial state that is connected to a basic state (“State A”) by means of a default
transition. The basic state itself is then connected to an end state, again through a default
transition. Default transitions differ from standard transitions (which are connecting basic
states and hierarchical states) in a way that they do not contain any information, such as

events, actions or conditions (Chattopadhyay, 2013).

. x

| Basic state L
_____ [— -
| B | | o
| Initial state I | End state

|____,____I I |____‘___I

) |
| default_transition default_transition |

entry: id = x+y;
exit: timeout();

Figure 6.2: Statecharts basic state example

163

6.1 Notation for Behaviour Modelling

Figure 6.2 also shows what kinds of actions can be defined within a basic state. These can
either be arithmetic operations of given variables known in the model (e.g. “id=x+y”) or

the invocation of known functions (e.g. “timeout()”).

Hierarchical States

Statecharts also allow the modelling of hierarchical states. In principle, hierarchical states
are states that are able to contain other states. The Statecharts definition according to
(Harel, 1996) makes a distinction between hierarchical OR-states and hierarchical AND-
states. OR-states have substates related to each other by “exclusive or”. So, if an OR-state
is active, only one of the internal substates will be active. The following Figure 6.3

illustrates the concept of OR-states.

/ OR-State \

SR
4 State D
State A tl State B i
o " —
A
SR
t3 TN © t5 | StateE
State C >

. J

Figure 6.3: Hierarchical OR-state example

The example Statechart shows two initial states. The rule regarding initial states is that
every Statechart model contains at least one initial state. Each hierarchical state within
the Statechart has its own initial state to determine the initial entry point. The hierarchical
OR-state contains a finite number of substates that are connected through transitions. In
order to leave the OR-state, both standard transitions (e.g. “t4”) as well as inter-level
transitions (e.g. “t5”) can be used. The standard outgoing transitions of a hierarchical state

signify that the outer state can be reached from every substate within the hierarchical

164

6 Reusable Test Modules and Behaviour Model Generation

state. In the example, “State D” is reachable from “State A”, “State B” and “State C”
through transition “t4”. In contrast, the inter-level transitions to an outer state can only be
reached from the originating substate within the hierarchical state. So, only if “State B”

is active, the hierarchical state can be left through “t5” to “State E”.

The second type of hierarchical states, the AND-states, enable the specification of

concurrent behaviour (Chattopadhyay, 2013). Figure 6.4 displays an example illustration.

/ AND-State \

OR1

A 4

t1
A 4
State B State D

Figure 6.4: Hierarchical AND-state example

OR2

I
|
|
|
|
|
| t3 State E
|

| t2

|

|

|

|

|

|

|

A 4

The hierarchical “AND-State” encompasses two substates, each of which is a hierarchical
OR-state (“OR1” and “OR2”). Thus, the system can be simultaneously in one of the basic
states {State A, State B} for the first subsystem, and in one of {State C, State D} for the
second subsystem. The concurrent substates are left as soon as an event occurs that leads
to an outer state of the hierarchical AND-state. In this example, the occurrence of an event

specified in the transition “t3” leads to the outer basic state “State E”.

Transitions

The most important part of Statecharts besides basic states and hierarchical states are the

connectors of states, the so-called transitions. In principle, transitions define the

165

6.1 Notation for Behaviour Modelling

conditions under which Statecharts can move between states. Figure 6.5 shows the

labelling of transitions.

State A State B
Event [condition] / Action

\ 4

Figure 6.5: Labelling of transitions

The two states related by the transition are called source (“State A”) and destination
(“State B”) states. The Event indicates the trigger that forces the transition to be activated.
The condition, also known as Guard, is a boolean expression which decides whether the
state transition actually occurs. Finally, the Action is executed if and when the transition
is taken. A special form of transition is the so-called “self transition”. It implies that

source and destination state of a transition is identical (Harel, 1996).

Timers

The integration of time within behaviour modelling is very relevant. In Statecharts, time
contraints are expressed by using implicit timers and timeouts. The implicit timer
generates the timeout event after a specified number of time units has elapsed. Timers are
associated with states and transitions through events (Chattopadhyay, 2013). The

corresponding Statecharts notation to define a timeout is illustrated in Figure 6.6.

166

6 Reusable Test Modules and Behaviour Model Generation

State A State B
timeout
»
<3sec i
_ —
State C
Event_A
— g
—

Figure 6.6: Specification of timeouts

The shown example states that if an event “Event_A” does not occur within the next three
seconds, a timeout will take place and “State B” will be reached. This standard description
is vague as there is no information given about the origin of the timer. Regarding the final

notation, some enhancements will be done and presented in section 6.2.4.

Formal description (SCXML)

As mentioned in the previous section, SCXML can be applied to describe Statecharts in
a formal structure. It is a “general-purpose event-based state machine language that
combines concepts from Call Control eXtensible Markup Language (CCXML) and Harel
State Tables.” (W3C, 2015) and its main goal is to “combine Harel semantics with an
XML syntax” (W3C, 2015). In September 2015, SCXML became a W3C
recommendation (W3C, 2015). All introduced features within this section are supported
by SCXML. In the following, an example Statechart will be demonstrated in order to
show how the components of a Statechart are described with SCXML language (see

Figure 6.7).

167

6.1 Notation for Behaviour Modelling

device.error / errorCount := errorCount+1

o
Error devicereset OFF device.turnOn ON

device.turnOff

- /

Figure 6.7: Light Switch Statechart example

The shown example contains a hierarchical OR-state (“OK™) which represents the
possible states a light switch can have when it works properly (“OFF” and “ON”). If an
error occurs, the light switch will be moved into the “Error” mode (“device.error”) and
the number of error occurences are counted (“errorCount”). After a reset (“device.reset”),
the light switch should work properly again. The corresponding SCXML description for

this example Statechart is illustrated in the following Figure 6.8.

<?xml version="1.0" encoding="UTF-8"?>

<scxml
xmIns="http://www.w3.0rg/2005/07/scxml" version="1.0" name="LightSwitch"
datamodel="ecmascript” initial="0K">

<datamodel>

</datamodel>

<state id=""0K">
<initial>
<transition target="OFF"/>
</initial>
<transition event="device.error" target="Error'>
<assign location="errorCount" expr="errorCount + 1"/>
</transition>
<state id="OFF'">
<transition event="device.turnOn" target="ON"/>
</state>
<state id=""ON'>
<transition event="device.turnOff" target="OFF"/>
</state>
</state>

<state id="Error">

<transition event="device.reset" target="0K"/>
</state>

</scxml>

Figure 6.8: SCXML representation of Light Switch Statechart

168

6 Reusable Test Modules and Behaviour Model Generation

The main element in Figure 6.8 is the root element <scxml> which encompasses all
elements of the description. Within the <datamodel> element, possible used variables
within the Statechart descriptions are initialised (here: “errorCount”). The other elements
are either <state> or <transition> elements. An important aspect is that every outgoing
transition from a source state is represented as a state’s child within the XML-based
structure. The destination state of the transition is then determined by the target attribute
of the <transition> element. A hierarchical state, both OR-state and AND-state, is
represented as a parent-child relationship in SCXML. The <initial> element refers to the
initial state and its default transition. Figure 6.7 also determines the starting point of the
overall Statechart example, the “OK” state. In the SCXML representation, this is set

through the attribute initial of the <scxml> element.

To sum up, the Statecharts notation is a powerful modelling notation in order to specify
behaviour and also includes features such as timer integration, concurrency and an
underlying formal description. In the following section, it has to be specified how the
Statecharts notation can be applied to describe the behaviour of value-added

telecommunication services.

6.1.3 Principles of Modelling Service Behaviour with Statecharts

As described in (ETSI ES 202 951, 2011), a behavioural description or rather a formal
model of a SUT has to be specified by means of the modelling notation. The primary use
of such a formal model is to automatically create abstract specifications of the tests. Test
cases can than directly be derived from the formal model by a specific test derivation

algorithm.

169

6.1 Notation for Behaviour Modelling

A very relevant aspect regarding the definition of the formal model is the viewpoint of
modelling the behaviour. According to (Malik et al., 2010), this viewpoint can be either
internal or external with regard to the interfaces of the SUT. In the case of internal
modelling, the formal model is a kind of system model. In general, system models are in
a passive role and describe how the SUT responds to given stimulus. They include the
partial or the complete behaviour of the SUT. In contrast to system models, there are also
test models which define behavioural aspects of the SUT from an external point of view.
(Malik et al., 2010) state that a test model determines what kinds of events the SUT should
accept at a certain moment and which not. In summary, test models provide stimuli and
examine the reactions of the SUT whereas system models expect the stimuli and perform

reactions.

This research work suggests a different point of view regarding the modelling of
behaviour as the formal model includes both system-specific and test-specific artefacts.
This novel concept was derived from the transaction user (TU) which is the fourth and
topmost layer of the SIP structure (see section 2.2.2). In the context of the SIP protocol
specified in (IETF RFC 3261, 2002), the TU contains both UAC and UAS core.
According to (IETF RFC 3261, 2002), a “core designates the functions specific to a
particular type of SIP entity”. So, the TU is either able to send requests and receive
responses through UAC or receive requests and send responses through UAS. In the
context of this research work, the TU is part of the SUT and it is enhanced by further
client-based and server-based cores. Although the TU concept has been taken from the
standard of the SIP protocol, also cores of other protocols that are dedicated to the OSI
application layer can be applied. Having access to a set of client-based and server-based

cores, the TU can act as a mediator between available client and server cores. Although

170

6 Reusable Test Modules and Behaviour Model Generation

the TU does not have any information about the internal implementation of a value-added
service, it can control the service logic through the mediator role. It is notified as soon as
a server core received a request message or a client core received a response message.
The TU can also initiate request messages through the accessible client cores or response
messages through the accessible server cores. A generalised example of the TU acting as
mediator between a server core of a not specified “Protocol A” and a client core of a not

specified “Protocol B” is illustrated in the following Figure 6.9.

Protocol A SuUT Protocol B

L.Jser Protocol A Protocol B l.Jser
Equipment Server TU Client Equipment

I
Request (Protocol A) I

»

», Request :
|

|
| Response |

Response (Protocol A)

Request (Protocol B)

A 4

I I
! !
| !
| |
! !
e !
| !
! !
! !
! !
| |

I

I I

| | I Response (Protocol B)
| | Response [¥

I I

Figure 6.9: Transaction user as mediator between client and server cores

The shown scenario starts with a “Request” message that is received by the server core
of “Protocol A”. The TU is informed about the receipt of the request and subsequently
initiates the sending of a response message to the “Protocol A User Equipment” through
the server core. Afterwards, the TU initiates a request message through the client core of
“Protocol B” in order to send it to the “Protocol B User Equipment”. At the end of the
scenario, the client core of “Protocol B” informs the TU about the receipt of a response
message. Although the illustration is theoretical and based on generic protocols, real
protocols can be used with this concept. To realise this, the displayed generic cores just
have to be substituted with existing cores. If a “HTTP Server” core substitutes “Protocol

A Server” and a “SIP UAC” core substitutes “Protocol B Client”, a real inter-protocol

171

6.1 Notation for Behaviour Modelling

communication can be described. A well-known value-added service representative of
this compilation of cores (HTTP Server and SIP UAC) can be a “Click-to-Instant
Message” service. By actuating a button on a web site, a SIP MESSAGE is sent to a

specific SIP User Agent.

Now, the relevance of the TU concept for the Statecharts notation has to be examined. To
clarify this aspect, the following Figure 6.10 is shown which describes the behaviour

specified in Figure 6.9 by means of a Statechart.

S1 sS4 Response (B) / Reponse->TU S5
@ >
A
Request (A) /

TU->Request /

Request->TU Request (B)

A

4
S2 TU->Response / Response (A) [s3]

Figure 6.10: Statechart example with explicit TU involvement

The example Statechart includes an initial state, an end state as well as five basic states
in between. The information regarding the behaviour is included in the transitions
between the prevailing states, either through their specified events or actions. The sum of
events and actions (eight) matches the number of messages (or message informing with
regard to the TU) being exchanged between the different parties in Figure 6.9. This leads
to the fact that events as well as actions in this novel Statecharts notation are represented
by protocol messages (both requests and responses). The focus of interest regarding the
notation are the participating cores and the transactions they manage. An event within the
Statecharts notation means that a certain core, which is part of the SUT, receives a

message. If it is a server-based core, the received message from the external equipment

172

6 Reusable Test Modules and Behaviour Model Generation

is always a request type. Otherwise, if it is a client-based core, the externally received
message is always a response type. So, an event in the Statecharts notations always refers
to an input the SUT has to process. In contrast, the actions defined in the Statecharts
notation refer to the reactions of the SUT through the corresponding cores. If the action
within a transition is a request type it is always handled by a client-based core whereas
response types are handled by server-based cores. The view on actions and events that
involve the TU as initiator or receiver of messages differs from the externally specified
messages. However, the TU does not really transmit real messages such as requests or
responses to its cores. It just triggers the cores to initiate messages or to react on incoming
messages by sending further messages. In fact, the messages with TU involvement and
the corresponding messages that are handled by the cores contain redundancies.
Therefore, the Statecharts notation can be simplified by erasing all the events and actions
the TU is involved in. This does not mean that the concept of the TU is also erased, the
meaning is only described implicitly through the cores. An advantage of the simplified
illustratation is the saving of states in the Statecharts models. The following Figure 6.11

shows the simplified Statechart example.

Request (A) /
I S1 Response (A)
-/

Request (B)

Response (B)

__

Figure 6.11: Simplified Statechart example without explicit TU involvement

173

6.1 Notation for Behaviour Modelling

Figure 6.11 shows that not every transition requires both events and actions to be
determined. Now, only the messages between the cores and the external equipments are

specified. The messages within the SUT between the TU and the cores are erased.

At the beginning of this section, two different types of models have been discussed,
system models and test models. In fact, the applied Statecharts notation includes both
system-specific as well as test-specific aspects. The system-specific aspect relates to the
way a Statechart model is designed. Specified events on transitions can directly be
mapped to events the SUT (or system) receives and specified actions can directly be
mapped to the reactions the SUT performs. So, a Statechart model directly describes the
behaviour on the part of the SUT. The test-specific aspect mainly refers to the definition
of the test data. As mentioned before, events on transitions are events the SUT receives.
These events, which can be either SIP requests and responses or HTTP requests or
messages of any other kind of application layer protocol, have to be set with proper data
so that they can be processed by the SUT. The same can be applied to the actions, where
the SUT actually sends messages. Although the SUT sets the values of the actions, they
have to be verified by the test. So, the definition of test data regardless of whether it was
received by the SUT or sent by the SUT has to be specified in the model (see section 6.3).

This is a typical test-specific aspect.

Besides the meaning of events and actions in the presented Statecharts notation, of course
all other components of standard Statecharts (see section 6.1.2) are used (such as
conditions on transitions, hierarchical AND- and OR-states, timers and timeouts and

variables). There will be examples where these components are used in the upcoming

174

6 Reusable Test Modules and Behaviour Model Generation

sections. The next section deals with the reusable test modules and how they can be

designed within the Test Modules Environment.

6.2 Reusable Test Modules

This section deals with one major feature the proposed TCF provides, the reusable test
modules. First, the following section introduces the concept and architecture of the Test

Modules Environment (TME), a significant part of the TCF.

6.2.1 Test Modules Environment Architecture

It is the task of the test developer to create new reusable test modules for the proposed
TCF as soon as the potential functionality of value-added services is extended, possibly
through enhancements within the service provider infrastructure. The proposed TCF (see
Figure 4.5) provides a special environment for the design and definition of new reusable
test modules, the TME. The following Figure 6.12 illustrates a multi-layered software

architecture of the TME.

175

6.2 Reusable Test Modules

Test Developer

@
(Web Browser)
S— T S— .
4 N\

Presentation Layer

|
|
|
|
|

_ J Automatic
Vs - ~ Composition
Service Layer 4/:/' Engine
| Service Interface | :
)VI\A Test Suite
Generator

(N
Business Layer
| Application Logic |

Data Layer }

| Data Access Components |

Figure 6.12: Test Modules Environment architecture

The lowest layer of the architecture, the Data Layer, provides access to the databases Test
Modules Repository (TMR) and Test Data Pool (TDP). In the TMR, each defined
reusable test module is stored by two XML-based documents. The first XML document
contains the classification template for the reusable test module. Section 6.2.3 describes
the structure of the classification template in detail. The second XML document contains
the formalisation, the SCXML document (see section 6.2.4). The other database, the TDP,
includes the potential data structures for all supported application layer protocols. In
addition, this database contains all parameterised variables that have been instantiated
during the behaviour models generation (see section 6.3). The Data Layer itself provides
so-called Data Access Components that provide functionality for accessing the stored

data.

176

6 Reusable Test Modules and Behaviour Model Generation

The Business Layer of the TME architecture contains the Application Logic. Generally
speaking, the main target of this component is to handle the data objects it receives and
to modify them. Therefore, it has to move and process data between the Data Layer and

the upper layers.

The Service Layer is integrated within the TME architecture, because the TMR and the
Test Data Pool have to be accessibly by other applications, such as the Automatic
Composition Engine (ACE) and the Test Suite Generator (TSG). Through the Service
Interfaces, the ACE can select, read and write from and to both databases. The TSG just
requires access to the Test Data Pool in order to read the parameterised variables that

have to be transformed into TTCN-3 templates.

The Presentation Layer provides a web-based graphical user interface (GUI) that can be
accessed through a web browser by the test developer. The Controller and the View are
typical elements of the well-known data/view/controller pattern for web-based
applications. The website enables the test developer to create new reusable test modules
and to add new abstract data types and variables. First, the test developer has to define
the metadata for the specific reusable test module through the classification template.
Then, he models the corresponding behavioural description by means of the Statecharts

notation and saves the new reusable test modules to the TMR.

Before the steps for the definition of a reusable test module will be described in detail,
the next section deals with the aspect of reusability and how it can especially be identified

with respect to value-added telecommunication services.

177

6.2 Reusable Test Modules

6.2.2 Identification of Reusability

In the field of computer science and software engineering, the term reusability often refers
to the “use of existing assets within the software product development process” (Lombard
Hill Group, 2015). Assets are, for instance, software components, test suites, designs and
documentation. In the case of this research, assets represent the description of potential
recurring behaviour. The term “behaviour” in this context stands for a typical black box
approach as it is described in section 3.1.2. The behaviour describes how a system (or
value-added service) behaves (output) if it is stimulated by a specified input. No internal
aspects regarding the implementation of the underlying system are known. Focussing on
value-added telecommunication services, the behaviour can be described through
potential protocol (such as SIP or HTTP) messages that are exchanged between the
service (SUT) and the service consumers. If the potential behaviour of a consumed service
can be categorised and classified, reusability can be derived. In fact, the reusability aspect
regarding value-added services depends very much on the network element that provides

services, the SIP Application Server (AS) (see section 2.2.4).

Considering SIP as an example, the SIP AS contains SIP-based components such as a SIP
Proxy, a Redirect Server, a SIP User Agent and a B2BUA.. The functionality of the basic
components can be used by a service in order to provide an added value to consumers.
So, SIP protocol messages (requests and responses) are the key inputs and outputs for a
value-added service that is deployed on a SIP AS. Of course, the service can act in
different roles, either as server or client. The IETF standard of the SIP protocol (IETF
RFC 3261, 2002) specifies potential behaviour regarding SIP transactions by means of

formal descriptions based on finite state machines. Four basic types of formal descriptions

178

6 Reusable Test Modules and Behaviour Model Generation

exist, the “INVITE client transaction”, “non-INVITE client transaction”, “INVITE server
transaction” as well as the “non-INVITE server transaction”. They distinguish between
INVITE requests and all other possible SIP requests (such as “MESSAGE” or “BYE”),
once focused on the server-side (UAS) and once on the client-side (UAC). Besides the
basic protocol message flows (e.g. “MESSAGE - 200 OK” or “INVITE - 200 OK -
ACK?), the formal descriptions also need to consider specific non-conventional message
flows, for example server errors through “500” responses. The formal descriptions can be
reused in this approach as their combination enables the modelling of behaviour for any

kind of SIP communication.

It is important to mention that this research deals with SIP as an example protocol to
demonstrate the principles of modelling recurring behaviour. In fact, a value-added
service can provide far more functionality besides SIP communication. For example, this
aspect relates to the data interface of the SIP AS. Through its data interface, the SIP AS
can include other servers such as web servers, email servers, directory servers and media
servers (Trick and Weber, 2015). The integration of these servers leads to a broader range
of functionality of potential value-added services which again leads to a broader range of
potential behaviour that needs to be specified. As mentioned before in section 6.1.3, the
behaviour of any other OSI application layer protocol can be specified because of the
integration of the TU concept into the applied Statecharts notation. Theoretically, only

new cores for the protocols (both client-based and server-based) need to be included.

The following Table 6.2 illustrates a list of potential server types and the relevant

protocols to use the functionality the servers provide.

179

6.2 Reusable Test Modules

Table 6.2: Potential server types and their corresponding application layer protocols

Server type Relevant protocols

e Hypertext Transfer Protocol (HTTP) (IETF RFC 2616, 1999) to
Web server transfer files on the WWW.

e Simple Mail Transfer Protocol (SMTP) (IETF RFC 5321, 2008) to
Email server store and forward emails.

e Post Office Protocol (POP) (IETF RFC 1939, 1996) to download
emails.

e Lightweight Directory Access Protocol (LDAP) (IETF RFC 4511,

Directory server - AT
ectory serve 2006) to locate resources such as files and devices in a network.

e Real-Time Transport Protocol (IETF RFC 3550, 2003) to deliver

Media server . .
audio and video over IP networks.

It should be mentioned that principally, a media server also uses the SIP protocol to be
controlled by the SIP AS. However, because of the black box focus of the functional
testing approach, this communication is not relevant. It does not directly involve the

service consumers and therefore also not the test environment.

6.2.3 Classification of Reusable Test Modules

In this research work, a reusable test module is a formal description of recurring behaviour
based on the applied Statecharts notation (see sections 6.1.2 and 6.1.3). The behaviour
refers to a given application layer protocol and to a specific core, either server or client-

based.

The ACE as part of the proposed TCF automatically selects appropriate test modules from
a database of predefined reusable test modules (TMR) based on the parsing of a given
STD. Additionally, the ACE realises the composition or rather combination of the
selected test modules and adds data to them. These aspects make it necessary to add some

further information, so-called metadata, to each reusable test module that is stored in the

180

6 Reusable Test Modules and Behaviour Model Generation

TMR. This is particularly important as the reusable test modules are part of a completely

automated process.

The following Figure 6.13 contains a classification template for reusable test modules

that is described by means of an XSD document and is illustrated graphically.

ReusableTestModule I:'l]—@—

= 1
SubModules [== 1=SubModule :i

- ™
Protocols [=] == I=Protocol ||
4

i b
VariableSet [-] == | Variable ::
I]

I K]
S
4

TFormalisation

Figure 6.13: Classification template for reusable test modules

The classification template comprises the list of properties that have to be specified
whenever a new reusable test module is defined. One of the most important properties is
the TestModuleName, because it is the identifier of the reusable test module. While

parsing an STD instance and especially the determined Cls mentioned within the

181

6.2 Reusable Test Modules

Requirements, the ACE will select the reusable test modules based on the identifers of
the Cls. As discussed before, the potential behaviour of a Cl is described by the reusable
test modules. The next property, AlsoKnownAs, contains possible aliases of the reusable
test module. A prose description of the major test objective of the reusable test module is
part of the Intent property. The Core property specifies to which core (either client or
server core) the reusable test module refers to. Afterwards, the involved Role is specified.
The Role as part of the STD is identical to the Role specified in the classification template
of the reusable test module. As depicted in section 5.2.2, a Role (e.g. “SIP phone”, “Web
browser”) is an external hardware that interacts in different ways with the SUT. These
different ways are specified through all reusable test modules that determine the same
Role in the classification template. As these reusable test modules relate to the same Role,
they are also called “related test modules”. Reusable test modules can be composed of
other reusable test modules that exist in the TMR. They can then be determined in the
SubModules property. The next property Protocols contains all application layer
protocols that are used in the behaviour described in the reusable test modules. The
VariableSet includes all variables that can be set within a reusable test module. Although
the attributes are not shown in Figure 6.13, each Variable contains a name and a type
attribute. The name attribute refers to the name that is part of the Statechart description
of the reusable test module. The type specifies the underlying abstract data type of the
Variable which should be also present in the Test Data Pool (see section 6.3). Just as with
the Variables, every specified Timer within a reusable test module has to be included in
the Statechart description through its attribute timerID (not shown in Figure 6.13). There
is another attribute defined, the value attribute, which determines the default time interval.

Finally, the classification template contains the property Formalisation. It includes the

182

6 Reusable Test Modules and Behaviour Model Generation

link to the behavioural Statechart description which is stored as SCXML file within the

TMR.

To sum up, a classification template holds all the relevant metadata of a reusable test
module. It is the task of the test developer to carry out the definition of the classification

template as well as the modelling of the behaviour of the reusable test module.

6.2.4 Modelling of Reusable Test Modules

As mentioned in the sections 6.1.2 and 6.1.3, reusable test modules are modelled by
means of the applied Statecharts notation. Of course, the test modules have to be defined
in a generalised way so that they can be specified in detail through the parameterisations

that are included within the STD.

When a test developer starts modelling the behavioural description for a new reusable test

module, he has to observe the following rules:

1. The behavioural description of a reusable test module is defined within one
hierarchical OR-state.

2. The hierarchical OR-state has to include one initial state with a default transition
(transition without events and actions or conditions) to the first relevant state
(“start” state) of the behavioural description.

3. The transition (so called “initial transition”) from the “start” state to the second
state contains the input parameter (either event or action) of the whole reusable

test module.

183

6.2 Reusable Test Modules

4.

If the reusable test module refers to a server core (“SUT receives initial request”),
the input parameter within the initial transition contains an event and optionally a
further action. In contrast, a client core (“SUT sends initial request”) must only
contain an action.

Every variable within the behavioural description has to be specified in the
classification template. This is necessary, because the classification template also
contains the abstract data type the variable is based on.

Every defined timer within the behavioural description has to be included in the
classification template. There, the default timer value is set.

For every timer started within a state of the behavioural description, there has to
be a corresponding “timeout” event.

Every transition apart from the default transition within the behavioural
description has to include either event or action, or both.

The behavioural description does not contain a specific end state, but a final state

that is always called “Terminated”.

The modelling process will be demonstrated in the following using a server core (“SIP

UAS non-INVITE” and a client core (“SIP UAC INVITE”) reusable test module.

SIP UAS non-INVITE reusable test module

First, the server core-based “SIP UAS non-INVITE” reusable test module is introduced.

It describes the potential behaviour of a SUT (or rather service) that receives a SIP request

from a participating external entity (such as a SIP phone). The request type is described

as a generic type that can be further specified through paramterisation (by the STD).

When developing the reusable test module, the test developer first has to define the

184

6 Reusable Test Modules and Behaviour Model Generation

classification template. The example classification template for the SIP UAS non-

INVITE module is shown in the following Figure 6.14.

<ReusableTestModule>

<TestModuleName>SIP UAS non-INVITE</TestModuleName>

<AlsoKnownAs>non-INVITE server transaction</AlsoKnownAs>

<Intent>This test module specifies the potential behaviour of
a SIP UAS core that receives a request of any SIP request
type different from INVITE.

</Intent>

<Core>server</Core>

<Role>SIP phone</Role>

<SubModules />

<Protocols>
<Protocol>SIP</Protocol>

</Protocols>

<VariableSet>
<Variable name="r_Request" type="SIP_Request" />
<Variable name="'s_ResponseAlxx" type="SIP_Response" />
<Variable name="s_ResponseBlxx" type="SIP_Response" />
<Variable name="s_Response2xx_6xx" type="SIP_Response" />

</VariableSet>

<Timers>
<Timer timerlID="globalTimer" value="30000" />
<Timer timerID="timerJ" value="0" />

</Timers>

<Formalisation>SIP_UAS non-INVITE.scxml</Formalisation>

</ReusableTestModule>

Figure 6.14: Example classification template for SIP UAS non-INVITE reusable test module

Besides general information such as the naming, the Core (“server”), the participating
Role (“SIP phone”), the application layer protocol (“SIP”) and the used variables
including their names and types are defined. The relevance of the variables will be
discussed in the upcoming section 6.3. The classification template also includes two
timers, a “globalTimer” and a “timerJ”. The global timer is started as soon as the
behaviour within the reusable test module is started, in other words, if the request is
received by the SUT. The timeout of the global timer is not explicitly defined. It can take
place within any state of the behavioural description. As a consequence of a timeout of
the global timer, a derived test case will definetly fail. The “timerJ” refers to a protocol-
specific transaction timer and is initialised with the value “0”. The setting of the value
depends on the underlying transport protocol. According to (IETF RFC 3261, 2002), the

timer should be set to a value of T1*64 (where T1 stands for a value of 500 milliseconds),

185

6.2 Reusable Test Modules

if an unreliable protocol such as UDP is used. If a reliable protocol such as TCP is used,
the timer can be set to “0”. After the definition of the classification template, the test
developer can model the behavioural description of the SIP UAS non-INVITE reusable

test module. The result is displayed in Figure 6.15.

/ SIP UAS non-INVITE \

-/ s_ResponseB1xx

(. \ .
r_Request Trying -/s_ResponseAlxxk Proceeding r_Request/
4 s_ResponseAlxx
N—— —
m -/ s_Response2xx_6xx -/'s_Response2xx_6xx

A 4 A 4

N . .
r_Request / Completed timerJ.timeout > Terminated
s_Response2xx_6xx entry: timerlJ.start

Figure 6.15: Behavioural description of SIP UAS non-INVITE reusable test module

The illustrated behavioural Statechart description is derived from (IETF RFC 3261,
2002), the protocol specification of SIP. It includes the initial transition as entry point into
the reusable test module. There, the “r_Request” event is expected by the SUT. The “r”
prefix is a help for the test developer to orientate himself within the reusable test module.
It is an abbreviation for “received” and refers to the SUT that actually “receives” a
message. As soon as the event “r_Request” takes place, the state “Trying” is reached.
From this state, there are two valid optional paths that can be taken, either to the
“Proceeding” state with the *“s_ResponseAlxx” action or to the “Completed” state with
the “s_Response2xx_6xx”. Both actions also have a prefix within the names, the “s”
(abbreviation for “send”), which states that the SUT actually “sends” the message back

to the initiator of the “r_Request”. The alternative paths that are determined here describe

186

6 Reusable Test Modules and Behaviour Model Generation

the potential behaviour of the SUT (the value-added service). It could happen that based
on the “r_Request” (e.g. a SIP MESSAGE), the SUT directly acknowledges with a “200
OK” response by performing the action “s_Response2xx_6xx". Here, the range of status
codes from 200 until 699 can be selected. Alternatively, the SUT first sends a provisional
response “s_ResponseAlxx” (status codes from 100 until 199) and afterwards sends a
“s_Response2xx_6xx", which is also the action determined in the transition that has
“Proceeding” as source and “Completed” as destination state. As soon as the
“Completed” state is reached, the “timerJ” is started and its timeout is expected (either
immediately when TCP is used or after T1*64 milliseconds when UDP is used). The
reaching of the state “Terminated” after the timeout denotes the end of the transaction.
Besides the straight paths within the behaviour description, there are also three self-

transitions defined that describe specific recurring behaviour that could take place.

Based on this specified behaviour, test cases can be later on derived by means of a specific
test case derivation algorithm (see section 7.1.2). Of course, this algorithm will be
performed on the resulting behaviour models, which are compositions of several reusable

test modules.

The formalisation of the reusable test module is based on SCXML and is illustrated in the

following:

187

6.2 Reusable Test Modules

<scxml
xmlns="http://www.w3.0rg/2005/07/scxml" version="1.0" name="SIP UAS non-INVITE"
datamodel=""ecmascript'>

<datamodel>
<data id="'r_Request'/>
<data id="'s_ResponseAlxx"/>
<data id="'s_ResponseB1xx"/>
<data i1d="'s_Response2xx_6xx"/>
</datamodel>

<state i1d="SIP UAS non-INVITE">
<initial>
<transition target="Start'/>
</initial>
<state id="'Start'>
<transition event='"'r_Request" target="Trying" />
</state>
<state id="Trying">
<transition target="Proceeding">
<send event="'s_ResponseAlxx" />
</transition>
<transition target="Completed">
<send event="'s_Response2xx_6xx" />
</transition>
</state>
<state id="Proceeding'>
<transition target="Proceeding">
<send event="'s_ResponseBlxx' />
</transition>
<transition event="r_Request" target="Proceeding">
<send event="'s_ResponseAlxx" />
</transition>
<transition target="Completed">
<send event="'s_Response2xx_6xx" />
</transition>
</state>
<state id=""Completed'>
<onentry>
<send event=""timerJ" delay="0"/>
</onentry>
<transition event="r_Request' target="Completed'>
<send event="'s_Response2xx_6xx" />

</transition>
<transition event="timerJ.timeout" target="Terminated'/>
</state>
<state id="Terminated"/>
</state>
</scxml>

Figure 6.16: SCXML document of SIP UAS non-INVITE reusable test module

The <datamodel> element in Figure 6.16 states the possible variables that are used in the
behavioural description. The hierarchical OR-state “SIP UAS non-INVITE” comprises
all sub states. As specified in Figure 6.15, each state has transitions to other states or self-
transitions. An important aspect regarding the formal description is how events and
actions are determined. An event is defined as direct attribute event within a <transition>

element whereas an action is specified within the attribute event of the element <send>

188

6 Reusable Test Modules and Behaviour Model Generation

which is a child element of <transition>. The syntax looks ambiguous because of the
similar name event for both events and actions. However, it is explicitly expressed
through the <send> element that the message is “sent”. A timer within the SCXML
description can also be specified. Within the <onentry> element of the “Completed”
state, the timer event of “timerJ” is specified and the value is set as attributes of the
<send> element. Then, a <transition> element is defined within the “Completed” state
which specifies the occurance of the timer event. This is synonymous with a timeout of

the timer.

SIP UAC INVITE reusable test module

The SIP UAC INVITE reusable test module differs from the SIP UAS non-INVITE in
two major aspects. First, the SIP UAC INVITE is client core-based, so the SUT is the
inititator or sender of the initial request. Second, it deals with a special SIP message, the
INVITE request, which is generally sent to set-up a VoIP call. As it includes the Three-
Way-Handshake, the behaviour definitely differs from the non-INVITE behaviour. As
demonstrated before, initially the classification template for the SIP UAC INVITE

reusable test module has to be defined. It is shown in Figure 6.17.

189

6.2 Reusable Test Modules

<ReusableTestModule>

<TestModuleName>SIP UAC INVITE</TestModuleName>

<AlsoKnownAs>INVITE client transaction</AlsoKnownAs>

<Intent>This test module specifies the potential behaviour of
a SIP UAC core that initiates a SIP INVITE to initiate a call.

</Intent>

<Core>client</Core>

<Role>SIP phone</Role>

<SubModules />

<Protocols>
<Protocol>SIP</Protocol>

</Protocols>

<VariableSet>
<Variable name="s_Invite" type="SIP_Request" />
<Variable name="r_ResponseAlxx" type="SIP_Response' />
<Variable name="r_ResponseBlxx" type="SIP_Response' />
<Variable name='"r_Response2xx" type="SIP_Response" />
<Variable name="r_Response3xx_6xx" type='"'SIP_Response" />
<Variable name="'s_Ack" type="SIP_Request" />

</VariableSet>

<Timers>
<Timer timerlID="globalTimer" value="30000" />
<Timer timerlID=""timerA" value="500" />
<Timer timerID="timerD" value="0" />

</Timers>

<Formalisation>SIP_UAC_INVITE.scxml</Formalisation>

</ReusableTestModule>

Figure 6.17: Example classification template for SIP UAC INVITE reusable test module

There is no significant difference to the classification template of the SIP UAS non-
INVITE test module. Of course, a different Core is stated (“client”) and a different set of
variables. Additionally, the further Timers “timerA” with a default value of “500”
milliseconds and a “timerD” with a default value of “0” milliseconds. Just as “timerJ” in
the “SIP UAS non-INVITE” behavioural description, the value of “timerD” depends on
the reliability of the underlying transport protocol. The following Figure 6.18 shows the

behavioural description of the SIP UAC INVITE.

190

6 Reusable Test Modules and Behaviour Model Generation

/ SIP UACINVITE \

timerA.timeout / s_Invite

Start -/ s_Invite

entry: timerA.start
r_ResponseAlxx

r_Response3xx_6xx/
s_Ack

Calling

A 4

r_Response2xx / s_Ack

A 4
(\ . ’
r_Response3xx_6xx / s_Ack Completed timerD.timeout
>

P
\ entry: timerD.start

r_Response3xx_6xx/ s_Ack

A 4 vV V

) 4 .
Proceeding r_Response2xx / s_Ack .| Terminated

& r_ResponseBl1xx /

Figure 6.18: Behavioural description of SIP UAC INVITE reusable test module

A

One major difference to the SIP UAS non-INVITE behavioural description is directly
visible regarding the events and actions. In the behavioural description of the server core-
based SIP UAS non-INVITE module, every request message was determined as event
and every response message as action. Figure 6.18 describing the behavioural description
of SIP UAC INVITE illustrates the opposite. Now, every response message is determined
as event and every request message as action. This opposite view is up to the different
cores. The general specification of the behaviour starts with the SUT sending a “s_Invite”
request. As soon as the state “Calling” is reached, “timerA” is started. Now, the
participating entity has to respond to the initial INVITE request, for instance, by sending
a provisional response “r_ResponseAlxx”. Then, the state “Proceeding” of the reusable
test module will be reached. Alternatively, a successful response “r_Response2xx” can
be sent by the participating entity, which is directly acknowledged by the SUT sending

back an “s_Ack” request (state “Terminated” is reached). The Three-Way-Handshake

191

6.2 Reusable Test Modules

(see section 2.2.1) is then successfully established. Finally, the participating entity can
also respond to the initial INVITE request with a redirection or failure response
“r_Response3xx_6xx" which leads to reaching the “Completed” state after the “s_Ack”
request is sent by the SUT. It can also happen that the participating entity does not send
a response within 500 milliseconds. Accordingly, a timeout of “timerA” takes place and
the “s_Invite” request will be sent once again by the SUT. The further behaviour is quite
evident. It should be mentioned that the successful Three-Way-Handshake creates a SIP

dialog through which further message processing can be performed.

In the following, the formalisation of the SIP UAC INVITE reusable test module is

defined. Figure 6.19 shows the example SCXML document.

192

6 Reusable Test Modules and Behaviour Model Generation

<scxml
xmlns="http://www.w3.0rg/2005/07/scxml" version="1.0" name="SIP UAC INVITE"
datamodel=""ecmascript'>
<datamodel>
<data id="'s_Invite'/>
<data id="'r_ResponseAlxx"/>
<data id="r_ResponseBl1xx"/>
<data id="'r_Response2xx"/>
<data i1d="r_Response3xx_6xx"/>
<data id="s_Ack"/>
</datamodel>
<state id="SIP UAC INVITE">
<initial>
<transition target="Start"'/>
</initial>
<state id="'Start'>
<transition target="Calling">
<send event="s_Invite" />
</transition>
</state>
<state id="Calling">
<onentry>
<send event=""timerA" delay="500"/>
</onentry>
<transition event="timerA._timeout" target="Calling">
<send event="s_lInvite" />
</transition>
<transition event="r_ResponseAlxx" target="Proceeding" />
<transition event="'r_Response2xx' target="Terminated'>
<send event="s_Ack" />
</transition>
<transition event="r_Response3xx_6xx" target="Completed'>
<send event="'s_Ack" />
</transition>
</state>
<state id=""Proceeding'>
<transition event="r_ResponseBlxx" target="Proceeding" />
<transition event="'r_Response2xx' target="Terminated" />
<send event="'s_Ack" />
</transition>
<transition event="r_Response3xx_6xx" target="Completed" />
<send event="s_Ack" />
</transition>
</state>
<state id="Completed'>
<onentry>
<send event="timerD" delay="0"/>
</onentry>
<transition event="timerD.timeout" target="Terminated" />
<transition event="r_Response3xx_6xx" target="Completed">
<send event="s_Ack" />
</transition>
</state>
<state id="Terminated" />
</state>
</scxml>

Figure 6.19: SCXML document of SIP UAC INVITE reusable test module

This section described the relevant steps to specify the behavioural part of the reusable
test modules. Of course, one important aspect is still missing, the definition of the test

data. Additionally, the relationships between test data templates within one reusable test

193

6.3 Test Data Integration

module have to be specified. This is the final task the test developer has to do before the

reusable test modules can be processed within the TCF.

6.3 Test Data Integration

The main objective of the previous section was to show how reusable test modules are
designed. Based on a classification template and the behavioural Statecharts-based
description, an abstract definition of potential behaviour is introduced. However, as it is
abstract, there is no real data defined. In principle, every determined event or action within
a behavioural description, irrespective of which underlying protocol is specified,
represents an identifier for a real protocol message. Depending on the protocol, one
message may contain a lot of content and may also comprise a considerably high amount
of headers. In the TCF approach, the content of protocol messages is the test data

described below.

According to the U2TP approach (OMG, 2013a), test data is the data that is transmitted
between the SUT and the test execution environment. In general, two different groups of
test data exist, test data for stimuli and test data for observations. The test data for stimuli
relates to data that is sent from the test execution environment to the SUT whereas the
test data for observations describes the opposite, consequently the sending of data from
the SUT to the test execution environment. The term “observations” states that something
is observed. In fact, the test data the SUT sends to the test execution environment is
observed. When protocol messages such as SIP requests or responses are received by the
test execution environment, its observer component verifies that the incoming message

matches the predefined conditions. Otherwise, if the test execution is the sender of a

194

6 Reusable Test Modules and Behaviour Model Generation

protocol message (“stimuli”), every mandatory header has to be set with appropriate
content. Within the reusable test modules, the names of the variables also indicate whether
they are referring to stimuli messages or observing messages. Variables with the prefix
“r” describe messages the SUT expects and simultaneously, they are describing test data
for stimuli. Contrary to this, variables with the “s” prefix describe messages the SUT

sends and they are also test data for observations.

Every variable specified within the reusable test modules are instances of abstract data
types. For each request-response application layer protocol described within the reusable
test modules, two different abstract data types are defined, one for the request messages
and one for the response messages. For other protocols that do not distinguish between
requests and responses, such as RTP, there is only one abstract data type defined. The
following Figure 6.20 demonstrates an example class structure that includes messages for

the protocols SIP, HTTP and RTP.

Message <<enumeration>>
Type
+type: Type
send
receive
Request Response

TQ

‘F_‘

,_4

‘F_\

RTP_Packet

SIP_Request

HTTP_Request

SIP_Response

HTTP_Response

Figure 6.20: Structure of abstract data types for test data

The base class Message contains an attribute Type specifying whether the underlying

message is a “send” (prefix “s”) or a “receive” (prefix “r’) message. Of course, the

195

6.3 Test Data Integration

displayed protocol messages are just examples. Further protocols could be integrated into
the class structure. The specific classes for the displayed protocols, such as
“SIP_Request” and “SIP_Response for the SIP protocol, “HTTP_Request” and
“HTTP_Response” for the HTTP protocol, and “RTP_Packet” for RTP, are far more
complex than illustrated in Figure 6.20. Of course, the complexity depends on the
principle structure of the protocol messages. The core specification of the SIP protocol
(IETF RFC 3261, 2002), for instance, utilises actually almost 50 header fields, but there
are even more defined within various extensions of the protocol. The following Figure

6.21 illustrates the supported header types within the “SIP_Request” abstract data type.

SIP_Request
e E—
~game { MessageBody Ib_' SDP [
I——=-—-== , e e — —
| RequestlLine
______ |
SIPURI | Text | | Codec

a —— ————=

<@ MessageHeader -—

YXXXXA

r——L—=

| " “Content- |

Generic Content- |
e Length L _Type _ _!
MediaType | ViaURIs

Generic
Field

Generic
Value

| FromURI | | FromTag |

=

| ContactURI | | ToURI

ToTag

T T Max- T r__{__I
Callid CSeq | Contact | To Allow
L Forwards L L __

CSegNumber | | Method

Figure 6.21: Conceptual structure of SIP_Request abstract data type

The shown structure of the abstract data type for “SIP_Request” is based on a XSD
structure and illustrates header fields of a SIP request. The elements are either marked
with solid lines or broken lines. The difference between these two element categories is

that the values of the solid line elements can be modified through STD variables whereas

196

6 Reusable Test Modules and Behaviour Model Generation

the broken line elements can not. An example of setting values of a SIP request (SIP
MESSAGE) is shown in Table 5.6. It is important that exactly the identifiers of the
elements are used, such as Text, which represents a text within a SIP MESSAGE. Besides
the mandatory headers, it is possible to add further headers that are optional. Here, the
Generic Field and the Generic Value elements can be used. Of course, the test developer
has to know the exact syntax of such an optional header. Besides the “SIP_Request”
structure, the *“SIP_Response” structure has to be defined. In contrast to the
“SIP_Request”, the “SIP_Response” does not include a Text element. Furthermore, the
RequestLine as part of the “SIP_Request” is substituted by the StatusLine in the
“SIP_Response” structure. Besides the mentioned SIP-specific requests and responses, it
is of course possible to also define requests and responses of other protocols. As with the

SIP messages, it is necessary to define XSD structures for the protocol messages.

The introduced conceptual structure (exemplified for the “SIP_Request”) of request and
response messages defines which elements the corresponding message contains.
However, until now, there is no real data stored. Therefore, it should be possible to create
instances of the specified abstract data types. In fact, every reusable test module that is
stored within the TMR contains a set of variables which are further specified in the
corresponding classification templates. For the “SIP UAS non-INVITE” reusable test
module, the “r_Request” is an instance of the abstract data type “SIP_Request” whereas
the other specified variables *s ResponseAlxx”, *s ResponseBlxx” and
“s_Response2xx_6xx" are instances of the abstract data type “SIP_Response”. When a
test developer defines a new reusable test module, he can already predefine certain copies

of header fields within the description. The following Figure 6.22 shows, what the test

197

6.3 Test Data Integration

developer can prepare in the “SIP UAS non-INVITE” reusable test module regarding the

test data.

Type: SIP_Request
Variable: r_Request Type: SIP_Response
Variable: s_Response2xx_6xx

RequestLine
Statusline

Via
\> Via

Max-Forwards

w From
From

usive toTag— ¥ To

To ——incl

w CalllD
CalllD

w CSeq
CSeq

Content-Length

Content-Length

Figure 6.22: Predefined copying of message headers

The mandatory fields of a SIP response message (here: “s_Response2xx_6xx"), the
headers Via, From, CalllD and CSeq, can be directly copied from the originating SIP
request (here: “r_Request”). The To header field of the originating SIP request does not
contain a toTag, this needs to be added within the SIP response. The Content-Length
header usually contains the value “0” as there is no data transmitted in the message body
of the response message. The only aspect of the response that is variable is the StatusLine.
In general, the StatusLine is expected to include the “200” for StatusCode and “OK” for
ReasonPhrase. Of course, the predefinition illustrated in Figure 6.22 can be applied to
every defined “SIP_Response” in the “SIP UAS non-INVITE” reusable test module. At
this point, the principles of stimuli messages and observing messages have to be
emphasised again. The “r_Request” is a SIP request message the SUT receives and
therefore, it is a stimuli message. Contrary to this, the “s_Response2xx_6xx is a message

that the SUT sends which means that it is an observing message. As a matter of fact, some

198

6 Reusable Test Modules and Behaviour Model Generation

data of an observing message cannot be predefined because it is simply unknown before
the test execution. Of course, this does not apply to the whole message, but to certain
aspects that are generated by the sender (SUT) of the message. Referring back to the
observing *“s_Response2xx_6xx” message, this aspect can be exemplified. The
StatusCode as well as the ReasonPhrase contain data of a fixed set of possible values so
they can also be specified exactly. The value of the toTag, however, cannot be foreseen.
In this approach, special symbols, so-called wildcards, have been included from the

TTCN-3 notation that can be used instead of exact values (ETSI ES 201 873-1, 2015):

“?” is a wildcard for any value.

“*” is a wildcard for any value or no value at all.

In the case of the toTag, the “?” has to be chosen, because it is a mandatory field that has
to be set by the SUT. The following Figure 6.23 illustrates the “s_Response2xx_6xx”

message in the form of an XML document.

<SIP_Response name="s_Response2xx_6xx">
<StatusLine>
<StatusCode>200</StatusCode>
<ReasonPhrase>0K</ReasonPhrase>
</StatusLine>
<MessageHeader>
<Via>
<ViaURIs>r_Request.ViaURIs</ViaURIs>
</Via>
<From>
<FromURI>r_Request.FromURI</FromURI>
<FromTag>r_Request.FromTag</FromTag>
</From>
<To>
<ToURI>r_Request.ToURI</ToURI>
<ToTag>7?7</ToTag>
</To>
<CalllD>r_Request._CalllD</CalllD>
<CSeq>
<CSegNumber>r_Request.CSegNumber</CSeqNumber>
<Method>r_Request.Method</Method>
</CSeq>
<Content-Length>0</Content-Length>
</MessageHeader>
<MessageBody />
</SI1P_Response>

(1]

Figure 6.23: Example XML document of SIP response message “s_Response2xx_6xx

199

6.3 Test Data Integration

The simplified example document shows that most data is directly copied from the
originating request, the “.” operator syntax is used to copy the values into the response
message. The other values are explicitly defined (StatusCode and ReasonPhrase) or a

wildcard is used (toTag).

Just as the abstract data types for the protocol messages, every variable defined within a
reusable test module is stored within a database, the so-called Test Data Pool. The
abstract data types are stored as XSD structures whereas the variables are stored as XML
documents (such as in Figure 6.23). However, there is another group, the variables of
instances of reusable test modules that have been parameterised within the STD instance
and that are integrated within the generated behaviour models. The following Figure 6.24
illustrates the connection between the three data groups that are stored within the Test

Data Pool.

Abstract data types (XSD) Variables of reusable test Variables of instances of
P modules (XML) reusable test modules (XML)
SIP_Request [[r_Request | s_ResponseAlxx |

CI1: SIP UAS
non-Invite
s_Response2xx_6xx

s_ResponseAlxx

SIP UAS non-INVITE

s_ResponseB1xx
s_Response2xx_6xx

— — — -instantiate— — >

SIP_Response o
HTTP_Request e e

[r_Request | [s_ResponseAlxx |

CI2: SIP UAS
non-Invite

s_ResponseBlxx

s_Response2xx_6xx

— — —parameterise- — 9

ACE

Algorithm

HTTP_Response

[r_Request | [s_ResponseAlxx |

CI3: SIP UAS
non-Invite
s_ResponseB1xx

RTP_Packet

Figure 6.24: Stored data within Test Data Pool

The transition from abstract data types to variables of reusable test modules has been

demonstrated by means of examples in this section. The modelling of the reusable test

200

6 Reusable Test Modules and Behaviour Model Generation

modules and the definition of the corresponding variables is done by the test developer
within the TME. Then, the behavioural description in form of a Statecharts notation is
stored in the TMR, wheareas the variables are stored in the Test Data Pool. As soon as a
new STD instance is created, the behavioural models for the described value-added
service will be automatically generated by the ACE through a specific algorithm. During
the generation, the ACE selects reusable test modules and creates instances of them. Each
instance is assigned a set of variables that are parameterised through the Parameters field
of the STD. Theoretically, it is possible that one instance of a reusable test module
contains diverse sets of variables. So, the test coverage at the end can be modified or even

improved.

The next section will describe the behaviour models generation through the ACE

algorithm.

6.4 Generation of Behaviour Models

The main concern of this section is the Automatic Composition Engine (ACE), a
component within the proposed TCF. Its main task is to process a well-defined input and
produce a specified output. In this case, the well-defined input are instances of the STD
that have been established by test developers for given value-added telecommunication
services. The output, in contrast, are so-called behaviour models that describe the
potential behaviour of a service based on a formal Statecharts notation. The ACE requires
further information to be able to generate the behaviour model. On the one hand, it has to
be able to access the predefined reusable test modules that describe recurring behaviour

(see section 6.2). So, it can actually reuse the test modules, instantiate them within the

201

6.4 Generation of Behaviour Models

behavioural models, and compose them according to the specifications within the STD.
On the other hand, the ACE also requires access to the specified test data that is used
within the reusable test modules (see section 6.3) in order to parameterise instantiated test
modules. The following Figure 6.25 demonstrates the input and output as well as the

relevant processes that take place within the ACE.

(o . L A e N
Service Test Description Instance Automatic Composition Engine Behaviour Models
hi |)
Architectural Part o Reading of Read next)
"\ _STD Instance Requirement J
Compose
Rol
Test Modules
A
System Meta Information
A 4
Instantiate Read Parameterise
... Test Modules Variables Variables
Behavioural Part . 1
Req01 Req03 (: : TME Service Interface :)
RS ™2
e
Req02 ™1
T:Set 'Z:S;Ies Test Data Pool N -

N J P

Figure 6.25: Behaviour models generation process with ACE

On the left side of Figure 6.25, an STD instance is shown as input of the ACE. As
described before, it contains an Architectural Perspective as well as a Behavioural
Perspective. Both perspectives contain information that are relevant for the ACE. The
ServicelD within the Architectural Perspective determines the name of the value-added
service and simultaneously, the name for the whole project. So, the name will be defined
within the STD instance and will be within the namings of the behaviour models and
within the tests that are generated on the basis of the behaviour models. The System Meta
Information might contain information that are relevant for the test data parameterisation.
A very important parameter is the service URI which can be resolved as soon as the value-
added service running on a SIP AS is registered in the location database of a call server.

This service URI is very relevant for participating entities (or rather test components)

202

6 Reusable Test Modules and Behaviour Model Generation

when they are about to, for instance, send INVITE requests to the SUT. The request line
of the INVITE request will contain this service URI. Consequently, the request line value
of the SIP request variable “r_Invite” as part of the SIP UAS INVITE reusable test module
instance will contain the service URI. Besides the service URI, there are, of course, other
relevant parameters, such as the permanent SIP URIs of registered participating entities
that are involved in the service consumption. The last parameter, the Roles, is not relevant
for the ACE process itself, however, it delivers the Roles and the System Meta Information
as well as the ServicelD directly to the Test Configuration Unit. This is not illustrated in

Figure 6.25 but will be further discussed in section 7.2.

The Behavioural Perspective contains all the Requirements and of course, within the
Requirements, dependencies are set through the Precondition field. This is exemplified
in Figure 6.25 (“Req03” depends on “Req02”), because it has an effect on the resulting
behaviour models. A Requirement that does not contain another Requirement in its
Precondition field and that is not determined as Precondition within any other specified
Requirement itself, is exactly specified through one behavioural model. If a dependency
between two Requirements exists, there will also be two generated behaviour models.
However, the generated behaviour model of the dependent Requirement will reuse the
behaviour model of the Requirement it depends on. In the example illustrated in Figure
6.27, a behaviour model for “Req02” is generated which is also reused as part of the
behaviour model that is generated for “Req03”. The relationship between Requirements
defined in the STD and the behaviour models is very important regarding the aspect of
traceability of requirements throughout the test generation, execution and evaluation

process.

203

6.4 Generation of Behaviour Models

In the following, the processes taking place within the ACE will be further analysed.

Reading the STD Instance

First, the reading of the current STD instance is performed within the ACE. Therefore, a
conceptual model for the STD has to be established. The following Figure 6.26 illustrates

this conceptual model by means of a UML class diagram.

ServiceTestDescription
1 1| SystemMetalnformation
1 - servicelD: String
- proseDescription: String metaVariables: Map<String, String>
- non-functional Properties: String
1
1 | RequirementSet
Role
- name: String 1
- protocolType: String
- alias: String
*
s
Requirement
1
* . Step - identifier: String
- goal: String
)) # position: int - precondition: List<String>
Communicationinterface

% # expression: String
A 1 1
- classification: String
- alias: String Sender Receiver AlternativeFlow *

- channellD: String

1

1
BasicFlow
N
Condition Parallel
Parameter 10 Flow

process|D: String

- name: String
- type: String
- values: Map<String, String> Null

Figure 6.26: Conceptual model of Service Test Description

The UML class diagram shows all the relevant components (or classes) including their
attributes that have to be readable for the ACE. The main class, of course, is the
ServiceTestDescription, which is specified through its attributes servicelD,
proseDescription and non-functionalProperties. Furthermore, the class has a reference to
the SystemMetalnformation and to one or many Roles and contains one RequirementSet.

The SystemMetalnformation class includes all possible key-value pairs (e.g.

204

6 Reusable Test Modules and Behaviour Model Generation

“serviceURI” as key and “chatservice@sip.de” as value). The Role class is described
through its attributes name (e.g. “SIP phone”), protocolType (e.g. “SIP”) and alias (e.g.
“[s]). It has a reference to one or many Communicationinterface objects. Of course, this
depends on the Role type (SIP phone for instance contains four different Cls). A
Communicationinterface class includes the attributes classification, alias (e.g.
“[sender1]”) and channellD (e.g. “channel a”). The classification attribute refers to the
type of Cl and also directly to the reusable test module (e.g. “SIP UAS non-INVITE”).
Each Communicationinterface has a set of Parameters from which each can be specified
through its name (here, any kind of name can be determined), type (e.g. “r_Request”) and
values. The RequirementSet as part of the ServiceTestDescription contains an unspecified
number of Requirement objects. A Requirement has an identifier (e.g. “Req02”), a goal
as well as one or many precondition items (e.g. “Req01”). A Requirement has a one or
many Role objects that are participating within the Requirement and it contains one
BasicFlow and one or many AlternativeFlow objects. Each Flow, irrespective of whether
it is a BasicFlow or AlternativeFlow, has a processiD (e.g. “P”) and includes a list of
Steps. There can be five different types of Step objects: Sender, Receiver, Condition,
Parallel and Null. The Sender object refers to a Step where a message is sent through a
channel (e.g. “b(okMessage)”) whereas Receiver refers to the opposite (e.g.
“a(initMessage)”). A Condition obviously specifies an if-then-else construct and the
Parallel class the specification of concurrent behaviour. Finally, the Null class refers to

the end of a process.

Based on the illustrated conceptual model of the STD, each instance can be completely
specified. Another advantage is that instances can be persistently stored, e.g. in a

relational database.

205

6.4 Generation of Behaviour Models

Read Requirement and instantiate Test Modules

Now that STD instances can be read, the parsing is processed. The key components of a
behaviour model are the reusable test module instances. Based on the conceptual model
of an STD instance, the ACE algorithm can parse the relevant information to create
instances of the reusable test modules and integrate them into new behaviour models. The
following flow chart describes the algorithm how the test module instantiation is

performed (see Figure 6.27).

Read STD instance

|
! Create Test
Module Instance
in behaviour
model /
: f
yes

n
Requirements
left? |
Read next

Requirement no Create instance of
Test Module

Create new no [
behaviour model yes
no
l Y
yes

Read next Q Test Modules

ead nex -
Repositor

(Communication P Y

Interface)

Get Get Test Read next Step in
classification N Module with P
. Flows of
attribute name == Requirements
fromd dassification 9

Figure 6.27: Test modules instantiation in behaviour model flow chart

Step specifies entry
pointinto CI?

First, the initial Requirement within the ServiceTestDescription is parsed by the algorithm
and a new behaviour model is created. Then, for each CommunicationInterface specified
within the Requirement, the algorithm compares the classification attribute with the
entries in the TMR. If there is a match, the stored reusable test module is read in (both

classification template as well as SCXML description). Afterwards, the algorithm parses

206

6 Reusable Test Modules and Behaviour Model Generation

the flow descriptions (both BasicFlow and AlternativeFlow) and detects the Step objects
where the corresponding Communicationlnterface is involved. For every Step object that
describes an entry point into the channel of the Communicationinterface (a new
transaction, for instance an “r_Request” for the “SIP UAS non-INVITE” test module), a
new instance of the reusable test module is created and added to the behaviour model.

The following Figure 6.28 exemplifies the process.

Excerpt of STD Requirement

Communication Interfaces:

- SIP UAS non-INVITE: [s1] = channel a
- SIP UAC non-INVITE: [s2] = channel b

Behaviour Model

Basic Flow (P):

a(r_message). [s1]_1: [s2]_1:
a<s_200Response>. N Automatic o SIP UAS non-INVITE SIP UAC non-INVITE
if(r_message.Text != "bob") then Q else. » Composition Engine »

b<s_messageBob>.

a(r_ackMessage). [s1]_2: [s2] 2:

0 [SIP UAS non-INVITEJ [SIP UAC non—INVITEJ

Alternative Flow (Q):
b<s_message_non>.

0\/_\

Figure 6.28: Test modules instantiation process example

The excerpt of the example STD instance defines two different Cls and the behavioural
description contains one BasicFlow and one AlternativeFlow. Within the Steps defined in
the Flows, there are two entry points for “[s1]” (“r_message” as well as “r_ackMessage”)
and also two for “[s2]” (“s_messageBob” and “s_message_non”). The sending of the
“s_200Response” does not describe an entry point because it specifies behaviour within
the test module. So, the resulting behaviour model for the specific Requirement contains

four reusable test module instances.

207

6.4 Generation of Behaviour Models

Read and parameterise variables

The next two processes within the ACE deal with the handling of test data (see Figure
6.25). As the reusable test module instances have already been identified and integrated
in the resulting behaviour model, the variables can now be read. Figure 6.24 already
illustrated how variables of reusable test modules are stored within the Test Data Pool.
Now, they need to be integrated into the behaviour models. The following flow chart (see

Figure 6.29) illustrates the process.

Start End

no

Test module
{nstances left?
yes
Addtest data T
Read next reusable €5t data from Store
Parameters to test . Test Data
test module . parameterised
N module instance . Pool
instance : variables
variables
v
Test Data Get variable Read Parameter list
Pool set for test of corresponding Cl
module P g

Figure 6.29: Variable reading and parameterisation flow chart

Read behaviour
model

To each instance of a reusable test module within the behaviour model, the adequate sets
of variables are assigned in the first step. Then the relevant information within the STD
instance is parsed, namely the Parameter objects as part of the CI that relates to the
reusable test module. Then, the test data specified in the Parameter objects is integrated
into the variable instances of the reusable test module instance. Finally, the parameterised

variables are stored within the Test Data Pool.

208

6 Reusable Test Modules and Behaviour Model Generation

Compose test modules

The final task the ACE algorithm has to perform for a given Requirement within an STD
instance is the composition of the reusable test module instances into a valid behaviour
model. Regarding the previous steps, the behaviour model consists of a set of reusable
test module instances that contain parameterised variables according to the specifications
in the STD description. Now, the composition algorithm as part of the ACE has to parse
the defined Step objects within the BasicFlow and AlternativeFlow sequentially. For
every parsed Step, the composition algorithm has to decide what effect its definition has
on the behaviour model. As illustrated in the conceptual model of the STD (see Figure
6.26), there are five different categories of Steps: Sender, Receiver, Parallel, Condition
and Null. Each of the Steps have a different impact on the composition algorithm. Besides,
both Sender and Receiver need to have knowledge about the prior Step, wheareas the
Condition and Parallel can involve both the direct prior Step as well as the next Step. The

Null Step is the exception, because it is actually the final Step within any Flow.

In general, the sum of all Steps within the Flows specify the behaviour of the value-added
service following the Requirement. The change from one Step A to a next Step B can
cause different changes in the static behaviour model that only includes instances of
reusable test modules so far. First, a Step change can lead to a change of the current active
reusable test module instance if B refers to a different channel than A. Secondly, if both
Steps refer to the same instance of a reusable test module, the behaviour is restrictively
determined. An example can be, for instance, that A specifies the SUT to send an INVITE
request and B specifies in the same channel that a “200 OK” response is expected. In this

case, the specified “path” is determined as the success path. Only if the messaging is

209

6.4 Generation of Behaviour Models

performed in this sequence, the test cases that are derived later on will pass. On every
transition within an instance of a reusable test module, a flag “pass” can be set, either to
“false” (wrong path, which leads to an error) or to “true” (correct path). Theoretically, the
“pass” flag can be determined for every transition within a reusable test module. This
makes sense for SIP messaging when for instance only provisional or successful response

messages are expected.

In the following, the different Step types will be discussed with regard to the composition
algorithm. The Sender refers to a Step where any kind of message (either request or
response message) is sent from the SUT. If the message is a request type (e.g.
“b(okMessage)”), the Step definitely describes an entry point into a reusable test module.
This means that a new transition is established that does not include an event but the
request message as action. The target of the transition is the first state after the “start”
state of an instance of the reusable test module that refers to the corresponding CI. It has
to be specified which instance is taken as there can be a number of instances for one CI
(e.g. “[s2]_1" and “[s2]_2” illustrated in Figure 6.28). Therefore, the algorithm counts
how many transactions have been initiated and terminated before the current Step within
the Flows regarding the specific channel. If the number is for instance “1”, then the second
instance of the reusable test module will be selected as target. Of course, a transition also
requires a source state. This is derived through the direct prior Step of the current one.
Based on the channel and specified message, the source state can be detected within the
corresponding reusable test module instance. The whole process is different if the
message is a response type (e.g. “b{okResponse)”). If the prior Step determines a request
type to be received over the same channel than the Step does not effect a change of

reusable test module instance. In that case, a restricted path has been determined and the

210

6 Reusable Test Modules and Behaviour Model Generation

“pass” flag will be set to “true”. Alternatively, if the prior Step determines a message sent
or received over a different channel, a new transition will be created which also includes

the message response as action.

The flow chart displayed in Figure 6.30 illustrates the composition algorithm focusing on

the Sender Step.
Start End no
Steps left in
v Flow?
Read Flow :;:v(;ﬁi Establish restricted
r W RTM path through pass - —
no) flag on transition Realise composition
instance by including
transition

Establish new

yes—) transition with Get source
response as action state from
prior Step
%=
. Find out Get target
Establish new ! B
transition with relevant / state of
. RTM selected
request as action .)
instance instance

Prior Step
different
channel?

Read next Step [¢——

Figure 6.30: Composition algorithm flow chart for Sender Step

The main decisions that have to be made regarding the parsing of a Sender Step depend
on the type of message that is sent. If it is a request message, it is obvious that a new
reusable test module instance will be connected with a transition. Contrary to this, every
response message leads either to a staying within the current reusable test module instance
(if the prior Step contains the identical channel) or an establishing of a new transition (if
the prior Step contains a different channel). The flow chart also contains a reference to

another flow chart (*2”) which will describe the Receiver Step. Before focusing on the

211

6.4 Generation of Behaviour Models

next Step, an example composition using a Sender Step will be shown in the following

Figure 6.31.

Behaviour Model

Excerpt of STD Requirement

Communication Interfaces: 1 [s1]_1: SIP UAS non-Invite h 1 [s2]_1: SIP UAC non-Invite

r_Request -/ s_Request

- SIP UAS non-INVITE: [s1] = channel a
-SIP UAC non-INVITE: [s2] = channel b

-/ s_ResponseAlxx r_ResponseAlxx

r_Response2xx
r_Response2xx
timerK.timeout

Completed

Basic Flow (P):
a(r_message).
b<s_messageBob>.

\

- / s_Response2xx_6xx

-/ s_Response2xx_6xx

timerJ.timeout

J

-/ s_Request

Figure 6.31: Example composition of reusable test module instances with focus on Sender Step

The displayed example composition includes simplified reusable test module instances
of “SIP UAS non-INVITE” and “SIP UAC non-INVITE”. The second Step in the
BasicFlow specifies the Sender Step. Here, the channel “b” of the CI “[s2]” is used to
send a request message after a message request was received over channel “a”. The
composition algorithm then generates a new transition from the “Terminated” state of the
“[s1]_1" reusable test module instance to the “Trying” state of the “[s2]_1" reusable test

module instance with the specified request message defined as action.

The Receiver Step is very similar to the Sender Step, because the consequence is the same.
A message request leads to a new transition which targets a new instance of a reusable
test module. The only difference is that the new transition in comparison to the Sender
Step only contains an event but no action. The same aspect is valid if a response message
is specified. The following flow chart (see Figure 6.32) enhances the previous flow chart

displayed in Figure 6.30 but focusing on the Receiver Step.

212

6 Reusable Test Modules and Behaviour Model Generation

Realise composition
by including
transition

Find out
relevant
RTM
instance

Establish restricted
path through pass
flag on transition

Get source
state from
prior Step

Establish new
yes—¥ transition with
response as event

v
Establish new rler:evzs;
yes— transition with RTM
request as event .
instance

Figure 6.32: Composition algorithm flow chart for Receiver Step

tep is instance
of Receiver?

et target
state of
selected
instance

Step contains
Request?

The main difference between the two different flow charts for Sender and Receiver Step
can be identified on the created transitions. Here, the transitions include events instead of
actions. Besides, the flow chart also contains two references (“1”) and (“3”). The
reference (“1”) targets back to the Sender Step flow chart, specifically to the decision
module “Steps left in Flow?”. This is relevant because the flow charts describe the parsing

process as a loop. The reference (“3”) targets to the next possible Step to be analysed.

An example illustration is also given for the Receiver Step in the following Figure 6.33.

Behaviour Model

Excerpt of STD Requirement

Communication Interfaces: [s1]_1: SIP UAC non-Invite

- SIP UAC non-INVITE: [s1] = channel a

Basic Flow (P): ACE
a<s_message>. r_Response2xx
a(r_200_ok). r_Response2xx

timerK.timeout

Completed

0_/\

Figure 6.33: Example parsing with focus on Receiver Step

213

6.4 Generation of Behaviour Models

This example does not specify a composition between reusable test module instances, but
the determination of a restricted path through a Receiver Step. The second Step within the
BasicFlow of the Requirement states that a response message is expected on channel “a”
after a request was sent over the identical channel. This leads to a restricted path within

the “[s1]_1" reusable test module instance.

The next Step specifies concurrent behaviour, the Parallel Step. It describes a behaviour
where transactions, either server-based or client-based, are opened in a short time interval.
The problem with this is that the order of the potential incoming messages cannot be
specifically determined. Even if a request within a transaction A is for instance sent before
the request within a transaction B, still it is possible that response messages relating to B
will be received earlier than the response messages that relate to A. The following flow

chart (see Figure 6.34) describes what the composition algorithm has to do.

Establish default ind out
transition between RTM
instance and AND- instance of

State prior Step

Establish default Include RTM
transition to AND- ¢——n Prior Step exists? instances within
State AND-State
tep is instance
of Parallel?
yes
ind out
. Establish new
no Identify parallel relevant . ;
channels RTM hierarchical AND-

State

instances

Figure 6.34: Composition algorithm flow chart for Parallel Step

First, all relevant parallel channels are identified and the corresponding reusable test
module instances are detected. Then, a new hierarchical AND-state is established, which

enables to describe concurrency in Statecharts notation (see section 6.1.2). The detected

214

6 Reusable Test Modules and Behaviour Model Generation

reusable test module instances are then included into the hierarchical AND-state. It is
important to mention that incoming and outgoing transitions on AND-states are always
default transitions that do not contain any events or actions. However, it has to be analysed
which reusable test module instance contains the originating state. If there is a prior Step
before the Parallel Step, the corresponding reusable test module instances will be found
and a transition can be established. Otherwise, a new default transition from the start state

of the behaviour model to the AND-state will be generated.

The following Figure 6.35 demonstrates an example where the Parallel Step is used.

Behaviour Model

Excerpt of STD Requirement Ve ~N
Communication Interfaces: AND-State
T
- " X p |
SIP UAC non-INVITE: [s1] > channel a PN [s1]_1: SIP UAC non-Invite | [s2]_1: SIP UAC non-Invite
- SIP UAC non-INVITE: [s2] = channel b
'
Basic Flow (P): ACE -/ s_Request : -/ s_Request
a<s_messageA> | b<s_messageB>. r_ResponseAlxx | r_ResponseAlxx
0 Trying Proceeding | | [Trying
r_Response2xx | r_Response2xx
\—/—\ r_Response2xx | r_Response2xx
L 2 timerK.timeout | timerK.timeout
Completed Terminated | Completed
\ J | \ J
& L J

Figure 6.35: Example composition of reusable test module instances with focus on Parallel Step

The simple example STD shows a Requirement with two “SIP UAC non-INVITE” Cls.
Within the BasicFlow, the parallel sending of request messages through the channels “a”
and “b” is determined through the Parallel Step (by means of the “|” statement in pi-
calculus). Based on the given notation, the ACE creates a new instance of a hierarchical
AND-state. Within the AND-state, the two corresponding reusable test module instances
are included. Then, a default transition from the start state is included that has the AND-

state as target.

215

6.4 Generation of Behaviour Models

The Condition Step does not contain any message sending or receiving, but it can use
content of messages from prior Steps. The Condition Step itself describes a distinction of
cases and is comparable to a standard if-then-else structure. In the following, an example
STD specification is illustrated that contains one Condition Step. The result of the

composition algorithm is also shown in Figure 6.36.

Behaviour Model

[s2]_1: SIP UAC non-Invite

Excerpt of STD Requirement
Communication Interfaces: -/s_Request
T r_ResponseAlxx _
- SIP UAS non-INVITE: [s1] = channel a |_"YEER_. 2 P_Proceedin,
r n XX

- SIP UAC non-INVITE: [s2] = channel b —nesponse | Responsezux

[s1]_1: SIP UAS non-Invite —— =
Basic Flow (P): 2 timerK.timeout _

Completed

a(r_loginMsg). o
if(r_loginMsg.Text I= "Login" then Q else. ACE —heques \ J
b -/s_R Al
(l;<s_okMessage>A g SResponse roceeding [r_Request.Text =="Login"] - / s_Request

- / s_Response2xx_6xx

(.

Alternative Flow 1 (Q): -/ s_Response2xx_6xx [s2]_2: SIP UAC non-Invite
b<s_errorMessage>. ~ timerJ.timeout
0 Completed — ~/s_Request

AN J
\/_\ L =
[r_Request.Text != "Login"] - / s_Request r_Response2xx
r_Response2xx

Proceeding

i

timerK.timeout

Completed

Figure 6.36: Example composition of reusable test module instances with focus on Condition Step

A request message is received over channel “a”, specifically a SIP MESSAGE. It contains
a text that is checked in the following Condition Step. If the message does not contain the
value “Login”, the AlternativeFlow is invoked and a new request message
“s_errorMessage” is sent over the “b” channel. Alternatively, the “Login” is part of the
incoming SIP MESSAGE and the request message “s_okMessage” is sent. Alltogether,
the Flow specification contains three entry points, so three reusable test module instances
have to be established within the behaviour model. The “[s1] 1" reusable test module
instance deals with the receiving of the initial message. As soon as it terminates, two new

outgoing transitions are created because of the Condition Step definition. Both contain a

216

6 Reusable Test Modules and Behaviour Model Generation

transition guard and determine the specified conditions and lead to different instances of

the “SIP UAC non-INVITE” reusable test module.

The final Null Step refers to the end states of each defined Flow (both BasicFlow and
AlternativeFlow). A behaviour model specifying the behaviour of a given Requirement
contains as many ends as it contains Flows. The end states can be seen as connection
points between Requirements that are depending on one another. If Requirement “Req02”
depends on “Req01”, the end point of the BasicFlow in the behaviour model of “Req01”
can be eliminated and the loose connection can be linked to the start state of “Req02”.

This principle allows the connection of diverse Requirements.

This section demonstrated the role of the ACE, the automatic building of the behaviour

models. The whole process can be summarised as follows:

1. The ACE reads the instance of the STD by means of the conceptual model (see
Figure 6.26).

2. For each Requirement within the STD instance, the ACE creates a new behaviour
model instance. Based on the participating Roles and Cls within the Requirement,
the ACE also creates new instances of reusable test modules and assigns them to
the behaviour model instance.

3. Based on the Parameters specified within each Requirement, the ACE creates new
sets of variables for each reusable test module instance and stores them in the Test
Data Pool.

4. Finally, the BasicFlow and the Alternative Flows of each Requirement is parsed.

Depending on the category of the parsed steps within the flows (either Sender,

217

6.5 Conclusion

Receiver, Condition, Concurrency or Null Step), a different composition of the
reusable test module instances is performed by the ACE.

5. The result at the end is a set of behaviour model instances.

6.5 Conclusion

Within this chapter, the concept of the reusable test modules has been introduced as well
as the generation of the behaviour models based on the content of STD instances. First, a
suitable modelling notation had to be found in order to specify the occurring behaviour
within the reusable test modules. Taking into consideration relevant criteria such as the
possibility to integrate concurrency, reusability, temporal logic as well as having an
underlying formal specification, the Statecharts notation has been chosen. A new way of

defining Statecharts has been introduced by means of the TU concept (see section 6.1).

Furthermore, the chapter has introduced in section 6.2 how the reusable test modules are
created by the test developer by means of the Test Modelling Environment (TME). It has
been discussed how reusability can be detected specifically for value-added
telecommunication services and how the resolving reusable test modules can be classified

(e.g. classification template) and modelled.

Then, the aspect of handling test data has been shown in section 6.3. As a result, each
defined reusable test module contains a set of variables that can be parameterised by

Parameters that are defined within the Requirements of STD instances.

Finally, the behaviour model generation has been described in section 6.4. The focus of

the chapter is the ACE, an important component of the proposed TCF, which realises the

218

6 Reusable Test Modules and Behaviour Model Generation

parsing of STD instances and simultaneously generates behaviour models for given

value-added telecommunication services.

The behaviour model concept also has a significant meaning for the upcoming chapter,
as all generated behaviour models that are assigned to a value-added service build the
foundation for the generation of test cases. An algorithm has to be developed which
realises the test case derivation and also the test case generation of TTCN-3 test cases.
Furthermore, the upcoming chapter gives answers regarding the test case execution and

evaluation.

219

7 Test Case Generation, Execution and

Management

The chapter comprises three very relevant processes within the TCF architecture, the
generation of test cases, their execution against the SUT as well as the subsequent analysis
and management of the upcoming test results. Based on the output of the ACE algorithm
discussed in the previous chapter, these processes can apply. Figure 7.1 illustrates the

processes as well as their inputs and outputs.

Start

A 4

Behaviour Test Case Abstract
Models Derivation Test Cases
A 4

Executable Test Suite

Test Execution |« < .
Generation

Test Suite

A 4

Test Results Test Evaluation

Figure 7.1: Generation, Execution and Evaluation of Test Cases

This chapter is structured based on the illustrated processes in Figure 7.1. Initially, section
7.1 (see Figure 7.1, Test Case Derivation) deals with the derivation of test cases from the

behaviour models generated by the ACE algorithm. The relevant steps are performed by

221

7 Test Case Generation, Execution and Management

the Test Case Derivation Unit (TCDU) which is part of the TCF architecture (see Figure
4.5). For each behaviour model, the TCDU derives a reasonable amount of abstract test
cases by applying a specific structural coverage criterion. Advantages and disadvantages
of existing coverage criteria will also be discussed in section 7.1. Section 7.2 (see Figure
7.1, Test Suite Generation) introduces the Test Suite Generator (TSG) as architecture
component of the TCF (see Figure 4.5). It comprises a Test Code Generator (TCG) as
well as a Test Suite Builder (TSB). The main task of the TCG is to read the abstract test
cases derived from the TCDU and to subsequently generate the appropriate TTCN-3 code.

The TTCN-3 code generation is separated into three different parts:

1. Generation of test code for test configuration.
2. Generation of required test data templates.

3. Generation of test behaviour by means of TTCN-3 test cases.

In the final step, the TCG generates collections of test cases which can be directly mapped
to the Requirements specified within the corresponding STD instance. Now, the TSB
performs a compilation of the generated TTCN-3 code and generates an Executable Test
Suite (ETS). The final step includes a transmission of the ETS to the TTCN-3 test
execution environment. The third process described in this chapter is the execution of the
tests against the SUT (see Figure 7.1, Test Execution) in section 7.3. Here, the principles
of executions within TTCN-3-based environments is discussed. An example test case
invocation is shown as well as its impact on the components of a TTCN-3 system. The
final process in section 7.4 (see Figure 7.1, Test Evaluation) introduced in this chapter
refers to the management and evaluation of test results. It has to be specified how a valid

product can be achieved which involves all stakeholders within the service development

222

7 Test Case Generation, Execution and Management

process. In principle, the test developer analyses the tests. If test case errors eccour, the
test developer first has to figure out if he made a mistake in the STD definition. If this is
not the case, the test management requires the involvement of the Service Quality Group

(SQG) (see section 4.2) and the service customer.

7.1 Generation of Abstract Test Suite

Regarding the TCF architecture, this section deals with the Test Case Derivation Unit
(TCDU), a component which derives abstract test cases and builds an abstract test suite

from the generated behaviour models.

7.1.1 From Behaviour Models to Abstract Test Cases

As described in section 6.4, the behaviour models, just as as the reusable test modules,
are based on the applied Statecharts notation. If there are n Requirements defined for a
value-added service within an STD instance, there will also be n different behaviour
models from which test cases have to be derived. The following Figure 7.2 is based on
the example behaviour models illustrated in Figure 6.25 and shows the test case derivation

from behaviour models.

223

7.1 Generation of Abstract Test Suite

Figure 7.2: Test case derivation from behaviour models

For each behaviour model, irrespective of whether or not it includes a dependency to
another behaviour model, test cases are derived. If there is a dependency included
between two Requirements (such as between “Req02” and “Req03”), the test case
derivation of “Req03” needs to consider the behaviour model of “Req02” while deriving
the test cases. Each test case for “Req03” will then start at the beginning of the description
of the behaviour model of “Req02” and will end within the behaviour model of “Req03”.
Theoretically, it would then be sufficient to just generate test cases from independent
behaviour models (such as “Req01”) and from composed behaviour models (such as
“Req03”) because it also includes the test cases that are relevant for the Requirement it
depends on (here, it is “Req02”). However, the proposed approach in this research enables
a thorough traceability of requirements, especially to be able to do a “rapid protoyping”-
alike procedure where both service developer and test developer can focus on
implementing or rather testing the requirements step by step. Following this approach,

“Req02” can be tested even if “Req03” is not yet specified.

224

7 Test Case Generation, Execution and Management

Focusing on the task of the TCDU, the TCF component needs to analyse the diverse
behaviour models that it gets as input and produce one abstract test suite as output. An
abstract test suite contains collections of abstract test cases that are sorted according to
the behaviour models (and therefore also according to the Requirements) that they have
been derived from. In offline Model-based testing approaches, abstract test cases are quite
commonly derived from models (see section 3.2.4). According to (Devroey et al., 2014),
an abstract test case is defined as a trace atc = (a4, ..., @,) within a model that specifies
behaviour and can therefore be understood as a finite sequence of actions « that might
occur according to the model description. In the case of this research, the concept of
abstract test cases differs a little bit. The concept will be explained in the next section
7.1.2. The following Figure 7.3 presents the main task of the TCDU showing the

necessary inputs and outputs.

Abstract Test Suite

N
Behaviour Models Req01

Req01 Test Case Derivation Unit {D S § [\;’ E
TM ™3 (~ Readnext Create Abstract)
™2 "\ Behaviour Model Test Suite _J v * * *
Req02

Derive abstract Create
test cases collection

Req03

(XA

AN J

Figure 7.3: Abstract test case generation from behaviour models by Test Case Derivation Unit

As soon as the TCDU gets the behaviour models as input, it successively reads them and
derives the abstract test cases. For every set of abstract test cases belonging to a specific
behaviour model, a collection is created. After all behaviour models have been processed,
the TCDU creates the abstract test suite exemplified on the right side of Figure 7.3. It has

to be noticed that each of the three collections illustrated within the abstract test suite

225

7.1 Generation of Abstract Test Suite

includes abstract test cases as test paths. In principle, this is comparable to the definition
of (Devroey et al., 2014), however, Figure 7.3 also shows some test paths that contain
loops or alternative paths. The reason for this will be described in the following section

which includes the description of the underlying abstract test case derivation algorithm.

7.1.2 Test Case Derivation

For the derivation of test cases from formal models, the literature discusses several
approaches and algorithms that can be applied, such as in (Ammann and Offut, 2008),
(Utting and Legeard, 2006), (Binder, 1999) and (Tahat et al., 2001). In general, the
approaches are referred to as so-called structural coverage criteria. Especially for
transition-based models such as Statecharts, there are many different structural coverage
criteria that can be used to manage test case derivation. Depending on the selected
structural coverage criteria, a test case generator automatically generates a set of test paths
within the model from an initial state to the end state. A selection of possible structural
coverage criteria is illustrated in the following Figure 7.4. Permission to reproduce Figure

7.4 has been granted by ACM.

/ e \
All-k-Loops-Paths All-Transition-Pairs
/ 4 v v

All-Loop-Free-Paths All-Round-Trips All-Configurations All-Transitions

. /
All-States

Figure 7.4: Hierarchy of structural coverage criteria (adapted from (Haschemi, 2009))

226

7 Test Case Generation, Execution and Management

According to (Haschemi, 2009), the diagram shows the strongest structural coverage
criterion at the top and weaker ones in a lower level. The arrow between the criteria
illustrates that every test suite satisfying a criterion c1 (arrow source) subsumes another
criterion c2 (arrow destination). The meaning of the diverse structural coverage criteria is

as described in (Binder, 1999), (Ammann and Offut, 2008) and (Haschemi, 2009):

e All-States — Every defined state within a given model is visited at least once.

e All-Transitions — Every transition of the model must be traversed at least once.

e All-Transition-Pairs — Every pair of adjacent transitions in the model must be
traversed at least once.

e All-Configurations — A configuration is a set of concurrently active states. This
criterion requires that all configurations of the model’s states are visited.

e All-Round-Trips — This criterion requires a test case for each loop in the model and
that it only has to iterate once around the loop.

e All-k-Loops-Paths — Every path that contains at most two repetitions of one
configuration has to be traversed at least once. This requires all the loop-free paths
within the model to be visited at least once and additionally, all the paths that loop
once.

e All-Loop-Free-Paths — Every path free of loops has to be traversed at least once. A
path is loop-free if it does not contain any repetitions.

e All-Paths — This coverage is satisfied as soon as all paths of the model are traversed
at least once. This criterion is usually not practical because models typically contain

an infinite number of paths, especially if they contain loops.

227

7.1 Generation of Abstract Test Suite

For this research, the existing structural coverage criteria have been evaluated, however,
none of them could be directly applied for the given behaviour models. Of course, it
would be possible to apply each of the mentioned structural coverage criteria on the
Statechart-based notation, but most of the derived abstract test cases will run result in an
inconclusive verdict as soon as they have been made executable. This has to do with the
fact that resulting from all these coverage criteria, linear test cases are derived consisting
of a linear sequence of events and actions. In principle, this aspect is not well suited for
testing of a value-added service that is supposed to operate within a reactive environment.
It might be possible that a value-added service responds to a stimuli triggered by the test
execution environment in a valid but unexpected way. To exemplify the issue, a standard
Three-Way-Handshake for SIP (IETF RFC 3261, 2002) is considered. The test execution
environment sends an INVITE request in order to establish a session to the value-added
service. The linear test cases that this behaviour relies on, first expects a provisional
message (e.g. “100 Trying”) from the SUT and afterwards a successful “200 OK”
response. Now the SUT, after having sent the expected “100 Trying” message
(incidentally, this message will always be sent by a Stateful Proxy Server that is included
within the NGN environment), sends another provisional message (e.g. “180 Ringing”).
Although this behaviour is allowed as an option, the test system compares the incoming
“180 Ringing” with the expected “200 OK” message and will come to the conclusion that
the response does not match. Accordingly, the test case will fail or will be evaluated as
inconclusive. The problem of this test case derivation strategy is that the linear test cases
do not describe multiple expected output states. However, the concept of the applied
Statecharts notation (see section 6.1.3), having the messages that the SUT expects as

events and the ones it potentially sends as actions, allows a different representation of test

228

7 Test Case Generation, Execution and Management

cases than in the standard linear form. In fact, a test case derived from a behaviour model
can also be presented as a directed graph G = (V, E), where V is a set of vertices and E is
a set of edges and where each edge is a pair of vertices. Especially in a directed graph, an
edge is an ordered pair of two vertices (u, v) with the edge pointing from u to v. Contrary
to linear representations of test cases, a graph is able to determine branches. So, any given
vertex v; € V can theoretically have an inifinite number of outgoing edges. However,
according to the test case representation, there is a restriction defined. A vertex v; € V

can only have more than one outgoing edge if it specifies an action and not an event.

In order to exemplify the novel principle of the test case representation with graphs, two
example Statechart descriptions will be analysed. But before, an appropriate structural
coverage criterion has to be selected. Even though the general output of the mentioned
coverage criteria is a linear test sequence, still the concept behind the criteria can be
applied for the graph-based test sequences. For this research, the structural coverage
criterion All-Round-Trips has been selected. According to (Binder, 1999) and (Utting and
Legeard, 2006), this structural coverage criterion can be satisfied with a linear number of
test cases whereas the All-Paths-based criteria (such as All-Paths itself, All-k-Loops-
Paths and All-Loop-Free-Paths) require an exponential number of test cases if the model
contains many alternative branches. This is important, because all of the specified SIP-
based example Statecharts contain a few branches and also loops. In comparison to
standard structural coverage criteria such as All-Transitions and All-States, the All-
Round-Trips is able to detect faults more thoroughly (Antoniol et al., 2002), as the tests
are more extensive. Additionally, (Binder, 1999) explicitly recommends this coverage

criterion for model-based approaches.

229

7.1 Generation of Abstract Test Suite

In the following illustration (see Figure 7.5), the “SIP UAC non-INVITE” behavioural

description is illustrated with a special identification of the transitions (e.g. “{al1}”).

-

SIP UAC non-INVITE

~

N

timerE.timeout / s_Request {e1/a2}

-/ s_Request {al}

Trying

r_Responselxx {e2}
»

timerE.timeout / s_Request {e4/a3}

Proceeding

y

\ entry: timerE.start

>

r_Response2xx_6xx {e3}

\ entry: timerE.start

r_Response_2xx_6xx

{e6}

A 4

~
Completed
entry: timerK.start

timerK.timeout {e7}
»

»

Terminated

r_Responselxx

{e5}

/

Figure 7.5: Behavioural description of SIP UAC non-INVITE (with transition marking)

The test derivation based on the behavioural description will be realised as follows. In

principle, the All-Round-Trips algorithm includes the All-Transitions algorithm without

loops and adds one further test case for each occurring loop within the model. Based on

the behavioural description of “SIP UAC non-INVITE”, five test cases can be derived.

They are illustrated in the following Figure 7.6.

TC1

(s a1 y—e3>(—er—>(Te)

TC2

© i it Sl O

TC3

@—al—»@—el/a})@—ﬁ—)@—eﬂ

TC4

@—a1—>®—e2—>®—e4/a3>®—e6—»@—e7

TC5

(s a1 y—e2—((p)—es—(p y—e6—>(c)—er—>(Te)

Figure 7.6: Test case derivation from SIP UAC non-INVITE

230

7 Test Case Generation, Execution and Management

The state names within Figure 7.5 have been abbreviated, “Start” to “S”, “Trying” to
“Tr”, “Proceeding” to “P”, “Completed” to C” and finally, “Terminated” to “Te”. The
first two test cases “TC1” and “TC2” shown in Figure 7.6 are based on the All Transitions
without loops. Both describe a standard behaviour of a SIP request being sent from the
SUT to the participating entities (or rather the test execution environment). The difference
is that “TC2” includes a further provisional message that is sent before the terminating
response is sent. The other three test cases “TC3”, “TC4” and “TC5” refer back to the
three loops or rather self-transitions that are part of the behavioural description of the
“SIP UAC non-INVITE” reusable test module. “TC3” specifies the first timeout of
“timerE” that could happen in the “Trying” state, “TC4” correspondingly describes the
next timeout of “timerE” in the “Proceeding” state and finally, “TC5” specifies that a
further provisional response is sent before the final terminating response. Of course, the
loops could be visited more than once and it could also be possible that multiple loops
occur within one test case. However, this is not relevant in the “SIP UAC non-INVITE”
reusable test module because of the perspective. As it is a client core-based reusable test
module, the SUT acts as a trigger by sending the initial request. The test execution
environment will react based on the request and sent the appropriate responses the SUT
has to deal with. The perspective changes if a server core-based reusable test module is
applied. Then, the graph-based test case descriptions with branches become relevant. In

the “SIP UAC non-INVITE”, there have not been any branches.

The following Figure 7.7 illustrates the “SIP UAS non-INVITE” behavioural description.
It specifies the SUT to receive a SIP request from a participating entity or rather test
execution environment. Also within this description, the transitions have identifiers

included in order to represent the test case graphs.

231

7.1 Generation of Abstract Test Suite

/ SIP UAS non-INVITE \

-/ s_ResponseBlxx {a3}

(. \ -/s_ResponseAlxx -
r_Request {el1} Trying (a1} Proceeding r_Request /
g s_ResponseAlxx

{e2/a4}

—— —
m -/ s_Respor;se 2xx_6xx -/ s_Response2xx_6xx
_— e <as>
A A 4

A -
r_Request / Completed timerl.timeout {e4} [Terminated
s_Response2xx_6xx | ld
{e3/a6} entry: timerlJ.start

Figure 7.7: Behavioural description of SIP UAS non-INVITE (with transition marking)

From the “SIP UAS non-INVITE” reusable test module (see Figure 7.7), three test cases
can be derived by the TCDU. In the following Figure 7.8, they are represented as directed

graphs.

QeZ/M)@\
DD @®
TC3 0;3@%
@—el—bﬁg—cﬁ—)@fes’/a&)@—ﬂ

TC1

TC2

Figure 7.8: Test case derivation from SIP UAS non-INVITE

All three test cases start the same way describing an event “el” received by the SUT.

Afterwards, the SUT can act in two different ways either by first sending a provisional

232

7 Test Case Generation, Execution and Management

response (action “al”) or a terminating response (action “a2). This branch illustrates why
a graph-based test case description is required. It cannot be predicted whether the SUT
responds with “al” or “a2”, but it is obvious that both responses represent valid
behaviour. If “al” is sent by the SUT, the state “Proceeding” is reached. In the graph-
based description of “TC1”, the vertex “P” contains a self-loop “a3”. As mentioned
before, loops in the All-Round-Trips algorithm lead to a new test case and should there
only be iterated once. This was a valid approach in the “SIP UAC non-INVITE” reusable
test module, because the iteration can be controlled. This cannot be done in the “SIP UAS
non-INVITE” case because the SUT is actually allowed to send provisional messages as
long as the global timer times out. So, every self-transition within a behavioural
description leads to a self-loop within a resulting test case if it only contains an action.
Contrary to this, an event specified in a self-transition leads to a new test case that will
iterate once in that specific self-transition. The test case will also not contain a self-loop,
but a new edge to the corresponding vertex. It symbolises that the state of the SUT
actually changed. For instance, “TC2” evolves from the self-transition containing an
event in the “Proceeding” state. As soon as the state is reached, the SUT will receive a
retransmitted request event (“e2”) and has to respond to this correspondingly (*a4”). This
example shows that event-based self-transitions and action-based self-transitions are
treated differently. “TC3” evolved from another self-transition containing an event “e3”

in the “Completed” state of the behavioural description of “SIP UAS non-INVITE”.

Besides the evident information shown in the test case graphs, there is further information
that needs to be included in the edges and vertices. For the later generation of real
executable test cases based on the abstract test cases, it is necessary to know to which

reusable test module instance the events or actions belong to. Therefore, identifiers of the

233

7.1 Generation of Abstract Test Suite

instances (e.g. “[s1]_1") are stored within the edges. Furthermore, the pass flags that the
test developer might have set can be included, too. In the vertices, it is relevant to store
the starting of timers if it has been determined within the corresponding states of the

Statechart description.

The two examples illustrated the principle test case derivation by the TCDU and depicted
that there is a difference between test case derivation of reusable test module instances
which are server core-based or client-core-based. There are a few questions left regarding
the test case derivation. The first one focusses on the composition of two reusable test
modules. It is quite obvious what would happen if, for example, two instances of the
reusable test modules “SIP UAS non-INVITE” and the “SIP UAC non-INVITE” are
composed. The amount of test cases will be the product of the derived test case for each
reusable test module instance (in this case 15, because 3 are derived from “SIP UAS non-
INVITE” and 5 from “SIP UAC non-INVITE”). Of course, depending on the number of
reusable test module instances, the number of test cases can increase quite fast. A
possibility to decrease this amout can be the use of a different structural coverage criteria,
such as the All-Transitions strategy. For both reusable test module instances, applying
All-Transitions will lead to 2 test cases each. This is an enormous reduction, especially if
many instances of reusable test modules are used within one Requirement or between
depending Requirements. Besides changing the coverage criteria, the test developer can
also make use of the characteristics and the resultant flexibility of reusable test modules.
In fact, each reusable test module within the TMR can be modified according to the
present circumstances. For instance, the test developer could load the “SIP UAS non-
INVITE” reusable test module, erase the state “Proceeding” within the behavioural

description as well as the variables from the classification template (here:

234

7 Test Case Generation, Execution and Management

“s_ResponseAlxx” and “s_ResponseB1xx”) and store the whole reusable test module
under a new name, such as “SIP UAS non-INVITE without Proceeding”. This would
minimise the behavioural description, but of course, maybe relevant test cases to verify
the value-added service’s functionality will also be erased. However, for certain
behaviour, such as for instance instant messaging with SIP MESSAGEs, this would make
sense. In fact, although it is allowed according to (IETF RFC 3261, 2002) to send
provisional responses on receipt of a SIP MESSAGE request, it is not very common and

does not have to be specifically required for a value-added service.

Regarding the test case derivation, there are still some peculiarities that need to be
mentioned. The first concerns possible conditions that are defined in the STD instance
and are therefore part of the behavioural description. A condition will always compare
some variable with a given value. If for example there is a condition that compares a text
to a given value (for instance through if(message.Text == ““Login’’) then within the STD
instance, exactly this value will be specified in order to test that it works properly.
However, also the “else” part of a condition needs to be verified. This is performed
through the establishment of a new data set for the reusable test module instance. All
variables that are belonging to the current test module instance will be copied and stored
as another set of test data. However, the field message. Text will be automatically modified
through some generated value. The establishment of a new data set does not affect the
description within the STD instance. There is the rule that test cases for a given reusable
test module instance need to be invoked for every defined data set that is stored in the

Test Data Pool and that exactly belongs to the reusable test module instance.

235

7.2 Test Suite Generation

A further peculariarity regarding the test case derivations concerns the concurrent
behaviour. Here, it has been determined that the test cases for the reusable test module
instances within an AND-state are fixed and will be invoked step by step for each
concurrent behaviour specified through the reusable test module instances. A test case

graph contains a special vertex to describe that the upcoming behaviour is concurrent.

Now that the abstract test cases have been derived, the TCDU can generate the abstract
test suite that contains the collections sorted by the Requirements. In the following
section, the Test Suite Generator as part of the TCF architecture transforms the abstract
test cases into executable TTCN-3 test cases and creates a complete TTCN-3 test suite

for the value-added service that is about to be tested.

7.2 Test Suite Generation

Before the automatic generation of executable TTCN-3 test cases is presented, a short
introduction of the TTCN-3 technology is given in the following section together with

the reasons why it has been selected in this research.

7.2.1 Motivation for a TTCN-3-based Approach

According to (Willcock et al., 2011), the Testing and Test Control Notation Version 3
(TTCN-3) is an “internationally standardised language for defining test specifications for
a wide range of computer and telecommunication systems. It allows the concise
description of test behaviour by unambiguously defining the meaning of a test case pass

or fail”. There are a lot of ETSI standards specifying TTCN-3, such as (ETSI ES 201 873-

236

7 Test Case Generation, Execution and Management

3, 2015) describing the core language. Furthermore, there are ETSI standards for the
existing presentational formats, either tabular-based (ETSI ES 201 873-2, 2007) or
graphical-based (ETSI ES 201 873-3, 2007). Further important interfaces that are usually
part of a TTCN-3 test system are the TTCN-3 Control Interface (TCI) (ETSI ES 201 873-
6, 2015) and the TTCN-3 Runtime Interface (TRI) (ETSI ES 201 873-5, 2015). Based on
the following Figure 7.9 illustrating the conceptual model of a TTCN-3 test system, the
interfaces of such a system as well as the components are explained. Permission to

reproduce Figure 7.9 has been granted by the publisher John Wiley and Sons.

(N\
s == N
Test Management & Control (TMC)

External Codecs Test Management Component
(CD) (TM) Handling (CH)
(& _— J
L R e ke e i el e | ke
s == N
TTCN-3 Executable (TE)
(. J
TRI-——=———mmdfmmmmm e e
4 I
SUT Adapter (SA)] [Platform Adapter (PA)
(& J
[System Under Test (SUT)]

Figure 7.9: Conceptual model of a TTCN-3 test system (Willcock et al., 2011)

(Willcock et al., 2011) describes a TTCN-3 test system as a collection of entities that
interact with each other while the test suite execution is performed. The central layer of
the TTCN-3 test system, the TTCN-3 Executable (TE), deals with the execution of
TTCN-3 statements. The TE itself depends on several services provided by the Test

Management (TM), External Codecs (CD) and Component Handling (CH) entities that

237

7.2 Test Suite Generation

are accessible via the standardised TCI. The entities are part of the Test Management &
Control (TMC) layer. The TM is responsible for the overall management of the test
system by providing a test system user interface to analyse the executed tests and to set
relevant test parameters. The CD enables the encoding and decoding of data that is
associated with message-based communication within the TE. Finally, the CH provides
means in order to realise a communication between parallel test components (TTCN-3,
2015). Through the TRI, the TE is able to use services provided by the two adapters SUT
Adapter (SA) and Platform Adapter (PA). The SA adapts message-based communication
(or procedure-based alternatively) to and from the SUT wheareas the PA is responsible
for the TTCN-3 external functions and timers. Finally, on the top of Figure 7.9, the test

system user is able to coordinate the testing through the TMC.

Based on the explanation of a TTCN-3 test system, the main arguments for usinga TTCN-

3-based specification of test cases are as follows:

e TTCN-3: ETSI standard — First of all, the language is a respected standard for the
specification of tests by both academia and industry.

e Hiding of the underlying complexity — The TTCN-3 language allows to quite
easily implement test sequences without complex steps. This has to do with the
fact that the underlying complexity, for instance the memory allocation, network
communication or the representation of data is hidden behind so-called abstract
artefacts (e.g. test components, test behaviours, test templates). This aspect also
allows a quite straightforward generation of TTCN-3 test code.

e Programming language — TTCN-3 itself is an abstract language that can only be

executed by means of the SA and PA within a special TTCN-3 test system.

238

7 Test Case Generation, Execution and Management

However, it contains constructs that are are known from programming languages,
such as variables and control structures (if-else and loops). These aspects are
relevant in order to compare values and act accordingly.

e Parallel Test Components — This aspect of TTCN-3 is one of the most relevant
factors for its usage in this research. A TTCN-3-based test system can create
multiple test components to perform behaviours in parallel. Within an STD
instance, several Roles can participate in a value-added service consumption
through their Cls. These Roles or participating entities can be mapped to the
parallel test components of the TTCN-3 test system. So, each Role defined in the
STD is represented by one test component in the TTCN-3 test system and
execution environment.

e Concurrent behaviour — Behaviours can be specified for the parallel test
components. In TTCN-3, so-called behaviour functions are defined which can be
bound to the test components. If the behaviour is then explicitly started for several
test components, concurrent behaviour is possible. This aspect is a solution for the
hierarchical AND-state and its representation of concurrency. For each Role that
is addressed to a specific behaviour within the AND-state, the behaviour can be
started.

e Codecs — The reusable test modules describe recurring behaviour that is
specifying protocol messaging. The codec concept of TTCN-3 allows to enhance
the test systems if for instance new reusable test modules are defined. Of course,

the codecs have to be implemented once by a developer.

To sum up, TTCN-3 provides a lot of features that are required within this research and

has therefore been chosen as notation of the executable test cases. The following section

239

7.2 Test Suite Generation

describes how TTCN-3 test cases can be generated based on the derived abstract test

cases.

7.2.2 Test Code Generation and Test Suite Building

The TCF architecture integrates the component Test Suite Generator (TSG) in order to
build executable test suites for specified value-added services. The TSG itself comprises
two components, a Test Code Generator (TCG) and a Test Suite Builder (TSB). The main

tasks of these two elements are presented in the following Figure 7.10.

Abstract Test Suite

Req01

1
1
i i i Test Code Generator (TCG) |
M M M 1
Lo <
C{D ﬁ ow%} o Read Abstract Create Test 1 Test Data
" TestSuite Data Definition i Pool
Req02

1
1
b
1
:
1
1
1
1
1
1
1
1
1
|
- - i
M M — 1
| v \ 4
i | of Generate Test Create Test
| "\ Configuration Behaviour
1
1
1
1
1
1
|
1
1
|
1
1
1
1
1
1
1
1
1
1
1

Req03

[E5n]

Test Configuration Unit (TCU)

Test Suite Builder (TSB)

> . o
| TTCN-3 compi Iatlon)
>

Executable

Test Suite
-

Figure 7.10: Generation of executable TTCN-3 test suite based on abstract test cases

The input of the executable test suite generation process is the output of the test derivation
process of the last section (the abstract test suite containing graph-based test cases). First,
the TCG will read the abstract test suite. Afterwards, it will generate a test configuration
based on the parameters it retrieves from the Test Configuration Unit (TCU) and will then
continue with the generation of test data definitions. This requires a connection to the

Test Data Pool database, because all variables of instances of the reusable test modules

240

7 Test Case Generation, Execution and Management

being consumed have to be generated as so-called TTCN-3 data templates. In the
following, the test behaviour has to be created. For every requirement-based collection
within the abstract test suite, a new TTCN-3 module is created which will contain the set
of test cases that are generated from the graph-based test cases. Of course, this is an
iterative process, because the test cases will be analysed sequentially and according to the
inputs, the relevant TTCN-3 code is generated. The test behaviour creation process
includes all particularities that are integrated within the graph-based tests, such as the
sending of messages initiated by the test system, the subsequent receiving and evaluation
of messages from the SUT, the handling of conditions and timers as well as the
description of concurrency between the defined test components. The final step of the
TCG is to deliver the generated TTCN-3 code to the TSB component within the Test
Suite Generator. The TSB then compiles the code by means of a special TTCN-3 compiler
which generates Java code. The subsequent Java compilation process generates
executable Java bytecode which can be run within a Java VM (Java Virtual Machine).
The Java bytecode is represented as the “Executable Test Suite” which now can
automatically be executed within a TTCN-3 test execution environment. The described

steps will now be analysed in detail.

Generate test configuration

The test configuration is the responsible part for the communication between the SUT on
the one side and the test system (or test execution environment) on the other. However,
the real physical connection is not directly supported via TTCN-3 but through appropriate
SUT Adapters (see Figure 7.9). Instead, TTCN-3 provides well-defined abstract

definitions of test system interfaces that shall be associated with the generated test cases.

241

7.2 Test Suite Generation

Generally speaking, a complex test configuration can contain several test components that

are able to communicate with each other and with the SUT.

As illustrated in Figure 7.10, the TCU provides the TCG with parameters from the STD
instance, especially the ServicelD and the Roles are relevant. Wheareas the ServicelD is
just used for the further naming of test cases and files, the Roles have a very significant
meaning. In fact, each Role specified in an STD instance defined for a given value-added
service is represented by one so-called parallel test component (PTC) in TTCN-3.
According to (Willcock et al., 2011), a PTC is not a test component on which statements
are executed, it is just a set of ports. A message-based TTCN-3 port defines which
messages or message types are allowed to transfer through a specific port. In the following

Figure 7.11, an example illustration of the test configuration is shown.

Test System

Figure 7.11: Dynamic test configuration with TTCN-3 test system

The test configuration shows two example PTCs that are directly connected to the SUT
interfaces and are also connected to another element, the so-called MTC (Main Test
Component). The major role of the MTC is to coordinate the creation and execution of
the PTCs and usually, it does not interact with the SUT. It is also responsible for the

logging of the verdict for every test step. The question is now how the illustrated

242

7 Test Case Generation, Execution and Management

configuration can be generated by the TCG. However, before the MTC and the PTCs can
be initialised, the kinds of interfaces of the test components and the SUT have to be
determined. The following TTCN-3 statements (see Figure 7.12) specify the abstract SUT

interfaces as well as the interfaces for the test components (PTCs).

group Interfaces {

type component SUTInterface {
port UdpPort UDP1, UDP2, UDP3;
port TcpPort TCP1, TCP2, TCP3;
port RTPPort RTP1, RTP2, RTP3;
port HttpPort http;

3

type component SipComponent {
timer globalTimer := 30.0;
port SipPort SIPP;
port RTPPort RTP1;
port Coordination cpA;
port Coordination cpB;

port Coordination cbC;

Figure 7.12: Abstract interface definition in TTCN-3 for SUT and test components

The component “SUTInterface” represents the SUT component containing abstract
interfaces for the procotols UDP, TCP, RTP and HTTP. There is no specified SIP port
defined, because SIP can be transported via diverse transport protocols (such as UDP and
TCP). The “SUTInterface” as it is defined represents the interfaces provided by the SIP
AS on which the value-added service is deployed. Additionally, the “SipComponent”
refers to a test component that represents the Role “SIP phone”. In contrast to the
“SUTInterface”, the test component has a timer “globalTimer” which is also defined

within the classification templates of reusable test modules. Furthermore, the

243

7.2 Test Suite Generation

SipComponent has a SIP port defined as well as an RTP port. Besides, the defined
coordination ports are used for the coordination of the MTC and the synchronisation of

the PTC.

In the following, the TTCN-3 syntax of the test configuration illustrated in Figure 7.11 is
shown. An example test scenario could require the involvement of two Roles, both of the

type “SIP phone”.

function createTestConfiguration(SipComponent mtcComp, SipComponent compl,
SipComponent comp2, SUTInterface sut) {
map(compl: SIPP, sut: UDP1);
map(comp2: SIPP, sut: UDP2);
connect(mtcComp:cpA, compl: cpA);

connect(mtcComp:cpB, comp2: cpB);

Figure 7.13: Example test configuration with two example PTCs

The illustrated TTCN-3 function could be generated by the TCG. The “map” function
actually maps the ports between the PTCs and the SUTInterface whereas the “connect”
function is only possible between MTC/PTCs in order to coordinate and synchronise. For
every test case that is generated later on in the process, the test configuration function

needs to be invoked.

Create Test Data Definition

One of the major benefits of TTCN-3 in comparison to other test specification methods
is the ability to send and receive complex messages over the communication ports that
have been defined by the test configuration. Besides predefined basic data types such as

charstrings and integers, the syntax also provides a special language element called

244

7 Test Case Generation, Execution and Management

template. According to (Willock et al., 2011), TTCN-3 templates are used to either
transmit a set of specific values (so-called send template) or to test whether received
values are contained in a set of expected messages, which are again represented by a

specification template (so-called receive template).

The task of the TCG in the test data definition process is to take all the relevant data sets
(instantiated variables) from the Test Data Pool and to automatically generate either send
or receive templates. Both send and receive templates are based on the same abstract data
type. In TTCN-3, these abstract data types are called records, so there is no significant
difference between the two. However, in contrast to send templates which have to contain
explicit values, receive templates can either include explicit values or alternatively,
wildcards (see section 6.3). In the Test Data Pool, send and receive templates can be
distinguished through their names. A variable within a reusable test module instance
containing a prefix “s” signifies that the SUT sends this message to the test system. So,
as the test system actually receives this message, every “s” prefix message is a TTCN-3
receive template. Contrary to this, every “r” prefix message is a message that the SUT

receives and accordingly a TTCN-3 send template.

In the following Figure 7.14, an excerpt of an example mapping is demonstrated between
the XML-based structure of a variable within the Test Data Pool and the resultant TTCN-
3 code. As an example, a SIP MESSAGE is specified that is sent by the SUT to the test
system (prefix “s”). In the example, the request line as well as the text body of the SIP

message are specified.

245

7.2 Test Suite Generation

<SIP_Request name="s_Request“> /
<RequestLine>
<Method>MESSAGE</Method>
<SIPURI>sip:chatservice@192.168.0.10</SIPURI>
</RequestLine>
<MessageBody>
<Text>Login</Text>

template Request s_Request_Cl_senderl_2:={
requestline := {
method := MESSAGE_E
requestUri := {
scheme := “sip“,
userinfo := {
userOrTelephoneSubscriber = “chatservice”
2
hostPort :={
host :=“192.168.0.10“,
port := omit
}
2
sipVersion := “SIP/2.0”
2
msgHeader :={
accept := ¥,
allow := *,
contentlength:=?,
contentType :={
fieldName := CONTENT_TYPE_E,
mediaType := “plain/text”

</MessageBody> }

</SIP_Request> \ flromFie Id:="?,

toField :=?,

callld :=?,

cSeq:={
fieldName := CSEQ_E,
seqNumber :=?,

method := “MESSAGE”

2
contact := *,
//...

)

messageBody := {

—[messBody := addCRLF(“Login”)
}

}

Figure 7.14: Mapping between XML representation of test data and resultant TTCN-3 template

The example shows how specific the definition of an example SIP request template is.
On the one hand side, this has to do with the complexity of the protocol itself with all the
possible headers that can be used. On the other side, the complexity in TTCN-3 templates
is caused by the underlying TTCN-3 codec implementation. For this approach, the
TTsuite-SIP is applied (TTsuite-SIP, 2015). Figure 7.14 also demonstrates the steps the
TCG has to perform within the test data definition process. Every element of the XML-
based structure has to be parsed and depending on the element name (e.g.
“<RequestLine>"), the generation of a complete block of TTCN-3 code will be generated
and integrated within a predefined TTCN-3 template. If a SIP URI is specified within the
XML-based definition, the pieces of it will be splitted by “scheme”, “user info” and *“host
port”. This enables a precise analysis when a test case fails because of a wrong SIP URI.

It is noted that the resultant TTCN-3 template includes message header definitions besides

246

7 Test Case Generation, Execution and Management

the relevant fields request line and message body. This is required, because every template
has to include all the fields of the record type it is based on. This does not mean that the
fields have to be part of the real SIP protocol message. If they are not required at all,
TTCN-3 provides the wildcard “*” for receive templates and the “omit” statement for
send templates. As described in section 6.3, the wildcard “?” for receive templates is a
little bit different from the “*” wildcard as it requires that at least a value is provided. In
the example shown in Figure 7.14, this is valid for the mandatory headers of a SIP request
(such as the “FROM” header). Of course, the example does not show all the headers

included as it is just an excerpt.

As soon as the TCG has generated all the relevant TTCN-3 templates, they will be
included in a separate TTCN-3 module. This module will then be integrated in the
requirement-based modules which are generated in the following process, the creation of

the test behaviour.

Create Test Behaviour

The test behaviour is a specification of what has to be tested by means of given inputs,
results and conditions. The TTCN-3 syntax provides diverse constructs for describing the
functionality of a test system and it also allows an efficient description of behaviour by

means of sequences, alternatives and loops.

The TCG performs the test behaviour generation sequentially considering the
requirements-based collections of abstract test cases. Then, each graph-based

representation of an abstract test case is analysed. In the first step, all the edges are parsed

247

7.2 Test Suite Generation

in order to find out which Roles are participating in the test case. Based on the result, the

following initialisation of the test case can be done (see Figure 7.15):

testcase reqO0l_tcl() runs on SipComponent system SUTInterface {
var SipComponent v_sender := SipComponent.create alive;
var SipComponent v_recipient := SipComponent.create alive;

createTestConfiguration(mtc, v_sender, v_recipient, system);

Figure 7.15: Instantiation of test components in TTCN-3 test case

First, the TTCN-3 test case “req01_tc1” for the currently analysed abstract test case is
established. The “runs on” clause signifies on which component type the described
behaviour is to be executed and through the “system” clause, the SUT abstract interface
specification is determined. In the following two lines, two test components of the type
“SipComponent” are created and are then accessible through the variables “v_sender”
and *“v_recipient”. The “alive” statement used within the creation process signifies that
the components can execute so-called behaviour functions more than once before they
terminate. The concept behind the behaviour functions will be introduced later in this
section. Regarding the defined test components, everything indicates that the parsing of
edges of the current graph-based test case resulted in two Roles that are now represented
as test components. In the final step of the initialisation process, the test configuration is
established by invoking the function illustrated in Figure 7.13. The first parameter refers

to the MTC where the behaviour is currently executed in.

In the next step, the graph-based abstract test cases are converted to test behaviour. The
tree-like structure of a graph is advantageous because the concept of the “alt” statement
in TTCN-3 is also a tree-based representation. So, the TCG algorithm has to traverse the

tree and has to act according to the information stored on the edges (events, actions,

248

7 Test Case Generation, Execution and Management

reusable test module instances and the “pass” flag) and the vertices (starting of timers).
To exemplify the following steps, the code generation is shown by means of a graph-

based test case in the following Figure 7.16.

a3

O,
@—el»@o—az—:&)fea/as@w

Figure 7.16: Example graph-based test case

TC1

As described in section 6.2.4, the behaviour models are focusing on the SUT. An event is
referred to an actual event message that the SUT receives. For the test system, an event
is a message that has to be sent and correspondingly, each defined action has to be
received by the test system. This aspect has to be considered by the test code generation

algorithm.

The illustrative graph-based test case example (see Figure 7.16) has been taken from
Figure 7.8 and describes a SIP request being received by the SUT (standard “SIP UAS
non-INVITE” behaviour). Then, the SUT either sends provisional messages back to the
test system or an immediate terminating response. The test case also includes a possible
retransmission of the initial SIP request after the terminating response has already been

received by the test system.

The TTCN-3 code to specify this test case will be split into two parts. The first part
specifies the test case from vertex “S” until the first vertex of “C”, the second part from

the first vertex “C” to “Te”. The separation demonstrates how behaviour descriptions can

249

7.2 Test Suite Generation

be modularised through so-called behaviour functions. Then, the algorithm also enables

an efficient code generation.

1 function behaviour_tcl_1() runs on SipComponent {

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

globalTimer.start;

SIPP._send(r_Request_senderl_1);

alt {
[1 SIPP.receive(s_ResponseAlxx_senderl_1) {
alt {
[1 SIPP.receive(s_ResponseBlxx_senderl_1) {
repeat;
¥
[1 SIPP.receive(s_Response2xx_6xx_senderl_1) {
globalTimer.stop;
setverdict(pass);
3
[1 SIPP.receive { setverdict (inconc); }
[1 globalTimer.timeout { setverdict (fail); }
T
3
[1 SIPP.receive(s_Response2xx_6xx_senderl_1) {
globalTimer.stop;
setverdict(pass);
3
[1 SIPP.receive { setverdict (inconc); }
[1 globalTimer.timeout { setverdict (fail); }
}

Figure 7.17: First generated TTCN-3 behaviour function based on abstract test case

The behaviour function “behaviour_tcl_1” begins with the starting of the timer

“globalTimer” which is part of the “SipComponent” test component. The timer is

accessible because the behaviour code can only run on a “SipComponent”. Upon the timer

has been started, the template “r_Request_senderl 1” representing the SIP request is sent

250

7 Test Case Generation, Execution and Management

via the “SIPP” port of the “SipComponent”. As a consequence, alternative behaviour is
specified through a so-called “alt” statement which enables to specify several different
alternative behaviour that can take place at a given point. Here (see Figure 7.17, line 4),
four different kinds of alternatives are defined. The first option is a valid one (see Figure
7.16, action “al”, and correspondingly, see Figure 7.17, line 5), the receipt of the
provisional SIP response “s_ResponseAlxx_senderl 1”. If there is a match, further SIP
responses are received (see Figure 7.17, line 7 and line 10). If there are further provisional
responses, the “repeat” statement (see Figure 7.17, line 8) determines that the current “alt”
construct is still active. If a terminating response (for instance a successful “200 OK”
response) is received (see Figure 7.17, line 10), the “globalTimer” will be stopped
immediately, the test case will be considered as “pass” and the behaviour function is done.
However, there are also two further alternative steps defined that always have to be
integrated besides the explicit ones defined in the graph-based test case. Firstly, it is
possible that the test system receives a message on the port “SIPP” that is not recognised
as one of the specified messages (see Figure 7.17, line 14). In this case, the test case will
be “inconclusive”. This verdict describes a situation where neither a pass nor a fail can
be assigned. Secondly, the “globalTimer” can time out (see Figure 7.17, line 15), because
the SUT does not respond to the initial SIP request at all. Accordingly, the test case fails.
It is also possible that the SUT does not respond with a provisional message in the first
place, but directly sends back a terminating response (see Figure 7.17, line 18). Of course,
the test case passes, too. The other two alternatives (see Figure 7.17, line 22 and 23) again

specify timeouts or wrong messaging.

As mentioned before, there is a second behaviour function required to process the

complete test case shown in Figure 7.16. The trigger or reason for establishing a new

251

7.2 Test Suite Generation

behaviour function is the junction of two or more paths into one identical vertex.
Furthermore, the following outgoing edge of the vertex has to be an event and not an
action. The first “C” vertex in the graph-based illustration is an example as it has two

incoming edges “a5” and “a2” and an outgoing edge with an event “e3".

1 function behaviour_tcl_2() runs on SipComponent {

2 globalTimer.start;

3 SIPP._send(r_Request_senderl_1);

4 alt {

5 [1 SIPP.receive(s_Response2xx_6xx_senderl_1) {

6 timer timerJ := 0.0;

7 timerJ.start;

8 alt {

9 [1 timerJd.timeout (

10 globalTimer._stop;

11 setverdict (pass);

12 ¥

13 [1 SIPP.receive { setverdict (inconc); }
14 [1 globalTimer.timeout { setverdict (fail); }
15 3}

16 }

17 [1 SIPP.receive { setverdict (inconc); }

18 [1 globalTimer.timeout { setverdict (fail); }

19 3}

20 }

Figure 7.18: Second generated TTCN-3 behaviour function based on abstract test case

The second behaviour function “behaviour_tcl 2” specifies exactly the behaviour that
takes place if the verdict of the behaviour specified in “behaviour_tcl 1" passed.
Consequently, the “globalTimer” was stopped which now has to be restarted again (see
Figure 7.18, line 2). Then, the retransmission of the initial request is initialised (see Figure

7.18, line 3) and the retransmission of the terminating response is expected (see Figure

252

7 Test Case Generation, Execution and Management

7.18, line 5). If that does not take place, then the usual two alternatives might occur (see
Figure 7.18, lines 17 and 18). Otherwise, the timer “timerJ” is started and the test waits

for the timer to time out. If that occurs, the complete test case passes.

Now, the specified behaviour functions have to be explicitly invoked by the test
component. In the following Figure 7.19, the TTCN-3 test case “req01_tcl” (see Figure

7.15) is enriched with the test behaviour.

1 testcase req0l_tcl() runs on SipComponent system SUTInterface {

2 var SipComponent v_sender := SipComponent.create alive;

3 var SipComponent v_recipient := SipComponent.create alive;

4 createTestConfiguration(mtc, v_sender, v_recipient, system);
5

6 v_sender .start(behaviour_tcl_1Q));

7 v_sender.done;

8 v_sender .start(behaviour_tcl_2());

9 v_sender.done;

10 all component_kill;

11 }

Figure 7.19: Starting of behaviour functions on test components

After the test case configuration, the first behaviour function (“behaviour_tcl 1) is
invoked by the test component “v_sender” with the statement “start” (see Figure 7.19,
line 6). In the next line, the statement “done” is used on the same test component. This
signifies that the test system waits until the behaviour invoked by the test component is
terminated. As soon as this takes place, the second behaviour function
(“behaviour_tcl_2”) can be invoked by the test component. After the behaviour for all
test components has terminated, the statement “kill” has to be executed on the existing
test components. This is relevant, because the test components have been created with the

additional “alive” property.

253

7.2 Test Suite Generation

The previously described example already illustrates how concurrent behaviours can be
defined in TTCN-3. An example value-added service where this is relevant includes the
functionality to setup a call between two participating entities. This would mean that the
SUT (the value-added service) has to send two INVITE requests to the participating
entities and has to handle the upcoming concurrent behaviour (“Three-Way-Handshake™).
In TTCN-3, the code would look very similar to the example illustrated in Figure 7.19.
However, the test case would not wait until the termination of a specified behaviour but
directly invoke the two behaviours on the existing test components. A short excerpt of

the TTCN-3 code is illustrated in the following Figure 7.20.

1 testcase req02_tc2() runs on SipComponent system SUTInterface {

2 //Test Configuration

3 V_recipientl.start(behaviour_tc2_1(0));
4 v_recipient2.start(behaviour_tc2 2(0));
5 all component.done;

6 }

Figure 7.20: Concurrency example with two test components

The example does not show the test configuration and the creation of the test component,
but this does not differ much from the previous example (see Figure 7.19). The starting
of the concurrent behaviour functions is performed by the two test components
“v_recipientl” and “v_recipient2”. Then, the test waits until the concurrent behaviour is

terminated. Therefore, the “done” statement is used for all existing test components.

A further aspect the TCG has to take into consideration is the occurrence of conditions.
The following Figure 7.21 is a simplified illustration of a test case derived from the

composed behaviour model in Figure 6.36.

254

7 Test Case Generation, Execution and Management

[s2]_1: SIP UAC non-INVITE
(T T T T T T \
| |
[s1)_1:SIP UAS non-INVITE. ______ ae/'® !
I/ ‘ 1 Text=="|-ogln]\/ /I
| a3 | [Request>-" tm oo oo oo
| _
- (O, @,
.
| yoox § o ey
| P 276, [5212: SIP UAC non-INVITE
| | og//‘)'// N
|
|
) | |
T N o J

Figure 7.21: Example test case with conditions

The displayed test case excerpt involves one instance of the “SIP UAS non-INVITE”
reusable test module and two instances of the “SIP UAC non-INIVTE” reusable test
module. The test case specifies a typical behaviour that might take place when some
action should occur based on a specific test data value. Here, the value is the content of
an instant message that has been sent from the test system to the SUT in order to “Login”
into a specific service and consume further functions (such as the chat room service). In
order to login successfully, the content of the message should be “Login”. All the message
flows that take place within the behavioural part of the “SIP UAS non-INVITE” describe
the receipt of the initial instant message on the part of the SUT until the transaction is
terminated in the “Te” vertex. From here, there are two edges which lead to vertices of
different “SIP UAC non-INVITE” behavioural descriptions. Both edges contain
conditions which check whether the value of the “Text” attribute (see Figure 6.21) of the
initial instant message “r_Request” contains the text “Login” or some different value.
Therefore, two alternative edges are included here. This branching is valid, because the
edges only contain actions and no events. Independent of the content of the “Text”

attribute of “r_Request”, a response from the SUT is expected based on the initial instant

255

7.2 Test Suite Generation

message. In fact, it will send an instant message which informs the user (or the test system

in this case) whether the “Login” process was successful or not.

Based on the graph-based test case excerpt illustrated in Figure 7.21, the corresponding
TTCN-3 code has to be generated by the TCG. Basically, the TTCN-3 code generated
from “SIP UAS non-INVITE” has already been shown in Figure 7.17 and Figure 7.18.
So, the following Figure 7.22 includes a behaviour function that it started as soon as the

“SIP UAS non-INVITE” behaviour is terminated in the vertex “Te” (see Figure 7.21).

1 function behaviour_tcl_3() runs on SipComponent {

2 globalTimer.start;

3 var Request v_r_Request_sl1_1 := valueof(r_Request_sl 1);
4 alt {

5 [v_r_Request_sl1_1.messageBody.messBody == “Login’]
6 SIPP._receive(s_Request_s2_1) {

7 //..

8 3

9 [v_r_Request_sl1_1.messsageBody.messBody != *“Login’]
10 SIPP._receive(s_Request_s2 2) {

11 //..

12 3}

13 [1 SIPP.receive { setverdict (inconc) }

14 [1 globalTimer.timeout { setverdict (fail) }

15 3}

16 3}

Figure 7.22: Example of conditions within generated TTCN-3 code

The behaviour function “behaviour_tcl_3” initially restarts the “global Timer” in order to
verify that the test case fails if no event occurs after a given amount of time. Then, a
temporary variable “v_r_Request_s1 1" is initialised based on the initial instant message

which is contained in the TTCN-3 template “r_Request_s1_1” (see Figure 7.22, line 3).

256

7 Test Case Generation, Execution and Management

The *“valueof” operation used here allows the value specified within a template to be
assigned to the fields of a variable. This step is always included in the generated TTCN-
3 code as soon as values within templates have to be accessed. The name of the variable
is always identical to the corresponding template’s name including a “v_" prefix. In the
test case illustrated in Figure 7.22, the variable is needed, because it is relevant for the
conditions. After the variable is created, alternative behaviour is specified within the test
case through the “alt” statement (see Figure 7.22, line 4). The first two alternative steps
within the “alt” statement refer to the two possible conditions (see Figure 7.22, lines 5
and 9), whereas the other two are the common alternative steps that are always included
in “alt” statements (see Figure 7.22, lines 13 and 14). Both conditions are included within
the brackets “[]” symbolising alternative steps and within each of them, the field
“messBody” of the Request attribute “messageBody” is accessed and compared to either
the value “Login” or not “Login”. This field refers to the “Text” attribute that is used in
the graph-based test case description. The difference in the syntax has to do with the
mapping concept between the XML representation of test data within the Test Data Pool
and the resultant TTCN-3 code (see Figure 7.14). The main reason behind this is to
simplify the definition of test data for the test developer without loosing the possibility to
check any given field within a SIP message. The XML representation is a more abstract
representation of the underlying TTCN-3 templates that specify SIP requests and
responses. To take up the issue of conditions again, the process is as follows. For each
alternative step that includes a condition, the behaviour specified within it can only take
place if the condition is true and if the test system verifies that the incoming message and

the defined template match. In the case of the first conditions (“=="), the template

257

7.2 Test Suite Generation

matching will be done with the SIP request template “s_Request_s2_1” (see Figure 7.22,

line 6).

Test Suite Builder

After the abstract test cases have been translated into TTCN-3 test cases by the TCG, the
Test Suite Builder (TSB) as part of the Test Suite Generator (TSG) builds the “Executable

Test Suite” (ETS). This process is illustrated in the following Figure 7.23.

(N\
Generated TTCN-3 Source Files
Test Suite Builder (TSB) P <
Test Configuration Executable Test Suite (ETS) TCl
g o —
;I\'I'I'CN-B compilation | 3
Test Data Templates ¢ »| TTCN-3 Executable (TE) | g
) L
(Java compilation J M- — — —
Test Cases | System ” Platform
........................... Adapter (5A) || Adapter (PA)
Module Module N\ J
(Req01) (Req02)
Module
(Req03) Test Configuration Unit (TCU)
. J

Figure 7.23: Generation of Executable Test Suite by Test Suite Builder

The input of the TSB is the collection of TTCN-3 files, such as the “Test Configuration”
(see Figure 7.12), the generated TTCN-3 test data templates as well as the generated
TTCN-3 test cases. As shown in Figure 7.23, the test cases are separately included within
TTCN-3 test modules. For every specified Requirement in the STD, a separate TTCN-3
module exists which includes all TTCN-3 test cases that are required to verify that the

Requirement is fulfilled by the value-added service.

As soon as the TSB receives the collection of TTCN-3 files, it invokes the TTCN-3
compilation process. Here, a specific TTCN-3 compiler reads the module definitions of

the TTCN-3 files and compiles them into Java-based sources. Most commercial TTCN-

258

7 Test Case Generation, Execution and Management

3 execution environments also include TTCN-3 compilers which enable the compilation
into other programming languages (e.g. C, C++ and C#), such as Elvior (Elvior, 2015)
and OpenTTCN (OpenTTCN, 2015). In this research, the TTworkbench (TTworkbench,
2015) has been applied which also includes a TTCN-3 compiler called “TTthree”. Figure
7.23 also shows a second input into the TTCN-3 compilation process from the Test
Configuration Unit (TCU). In principle, this input is a so-called test adapter configuration
file (“taconfig” file), an XML-based document the TTCN-3 compiler has to know during
the compilation process. The “taconfig” file is generated by the TCU based on the
information it holds from the STD instance, such as the SUT addressability and the
information about the participating test components. Within the file, the TCU specifies
the required TTCN-3 Codecs (CD) as well as the real ports that are used to communicate
with the SUT. The following Figure 7.24 shows a simplified excerpt of an example

“taconfig” file.

259

7.2 Test Suite Generation

<testadapter>
<codec encode="SipNist’>
<plugin id="com.testingtech.ttworkbench.tt3rt.sip.codec.SipCodecPlugin’>
<parameter id="class”
value=""com.testingtech.ttworkbench.tt3rt._sip.codec.SipCodecProvider”/>
</plugin>
</codec>
<port>
<plugin id="com.testingtech.ttcn.tri.udp.UDPPortPlugin>
<parameter id="class” value="com.testingtech.ttcn.tri.UDPPortProvider”/>
</plugin>
<parameter id=""UDP1”>
<parameter id=""UDP_LOCAL_PORT” value="${PX_ETS PORT}”/>
<parameter id="UDP_LOCAL_ADDRESS” value="${PX_ETS_IPADDR}"/>
<parameter id=""UDP_REMOTE_PORT” value="${PX_IUT_PORT}”/>
<parameter id="UDP_REMOTE_ADDRESS” value="${PX_IUT_IPADDR}"/>
</parameter>
</port>

</testadapter>

Figure 7.24: Excerpt of test adapter configuration file for compilation process

The <testadapter> element is the root element of the “taconfig” file and specifies all the

required CDs and ports that are required within the execution process of the ETS. The

<codec> element comprises the relevant information of an existing CD that can be

applied within the test execution environment (here, a CD has been chosen which is part

of the TTworkbench). For each determined CD, a so-called provider has to be determined,

a Java class which handles the CD processing. In Figure 7.24, the selected CD is a codec

for the SIP protocol. Furthermore, the “taconfig” file includes the specification of the

communication endpoints of the ETS. Here, a <parameter> with the id “UDP1” is

specified, which contains four specific variables, the IP address and port number of the

test component running within the test execution environment as well as the IP address

260

7 Test Case Generation, Execution and Management

and the port number of the SUT. The example in Figure 7.24 just includes placeholders
(suchas “${PX_IUT_PORT?}”). A valid “taconfig” file contains real values, such as 5060
as the SIP standard port number. With the help of the port specification within the
“taconfig” file, the loading of the appropriate System Adapters (SAs) and CDs are
realised. Now, the communication between the test components of the test system and the

SUT can be established.

As discussed before, the TTCN-3 compilation process generates Java-based sources.
Additionally, a so-called “Campaign Loader File” (CLF) is generated. The CLF file
contains the test adapter configuration (“taconfig” file) as well as a list of all test cases

within the ETS. The CLF file is also based on XML and is therefore machine-readable.

In the second step, the TSB (see Figure 7.23) compiles the Java sources into byte code
class files. Furthermore, they are combined into a Java Archive (JAR). The JAR actually
represents the TTCN-3 Executable (TE) within the ETS. Through the CLF file as part of
the ETS, the services of the relevant SA and the Platform Adapter (PA) are activated and
can be used by the TE through the TRI (TTCN-3 Runtime Interface). Furthermore, the

CD is accessible by the TCI (TTCN-3 Control Interface).

Now, the ETS including all the relevant test cases has been generated in order to verify
the functionality of a value-added service. In the following section, the principles of the

test case execution within TTCN-3 based test execution environments is discussed.

261

7.3 Test Case Execution

7.3 Test Case Execution

As introduced in the previous section, the part of the TTCN-3 conceptual model or rather
system architecture (see Figure 7.9) which executes the TTCN-3 test cases is the TE
entity. However, according to (Willcock et al., 2011), not all relevant functions for the
test case execution are integrated within the executable Java bytecode produced by the
TTCN-3 and Java compilers. Some functions deal with aspects that cannot be extracted
from information included within the TTCN-3-based tests. An example for such a
function is the mapping of the “send” statement. Of course, the TE does not include any
information on how to send data to the SUT. To achieve this, the TE needs to call an
operation which is provided by the SA through the TRI. In general, the following
functionality is not included in the TE but is supported through the entities running within

a TTCN-3 test system:

e The communication with the SUT is provided by the System Adapter (SA)
through the TRI.

e The timer functionality is provided by the Platform Adapter (PA) through the TRI.

e The data encoding functionality is provided by the External Codecs (CD) through

the TCI.

The following Figure 7.25 is a modified illustration taken from (Willcock et al., 2011)
and exemplifies the execution of a test case which involves all the relevant entities of a

TTCN-3 test system and the SUT.

262

7 Test Case Generation, Execution and Management

SUT

! triEnqueueMes sage—
D_{—tciDecode

&

(encoded) SIP re quest———————p»
@——(encoded)

SIP response————

Figure 7.25: Interaction of test system entities during test case execution

The displayed test case execution performs the sending of a SIP request (for instance a

SIP MESSAGE) to the SUT and subsequently expects a SIP response from the SUT. The

process starts with the TE invoking the “triSAReset” and the “triPAReset” operations

which are provided by the SA and the PA. According to (ETSI ES 201 873-5, 2015) and

(Willcock et al., 2011), the “triSAReset” operation resets all communications means the

SA is currently maintaining, such as static connections to the SUT. Dynamic connections

to the SUT are closed and pending messages are discarded. If the operation has been

performed successfully, it returns a status which indicates the local success (e.g.

“TRI_OK?”) or failure (“TRI_Error”) of the operation. This status is sent by all the

upcoming operations that are related to the TRI. The second operation, “triPAReset”,

263

7.3 Test Case Execution

concerns the PA. Here, all timing activities the PA is currently performing shall be

resetted. A typical example is the stopping of all running timers.

As soon as both SA and PA are resetted, the TE calls the “triExecute TestCase” operation
on the SA immediately before the execution of a test case. The operation includes two
further parameters, the test case name and a list of ports that have been declared in the
definition of the system component for the test case (see the system component

“SUT Interface” in Figure 7.12).

In the next step, the “triMap” operation (see Figure 7.25) is called by the TE upon
executing a “map” statement in a TTCN-3 test suite (an example is illustrated in Figure
7.13). According to the TRI standard (ETSI ES 201 873-5, 2015), the operation is used
to prepare a SUT communication interface (also defined as test system interface port) for
the interaction with the SUT. A successful completion of the “triMap” operation enables
a test component within a test case to communicate with the SUT. For a test case that
includes SIP communication, the invocation of the “triMap” operation could trigger the
allocation of a UDP socket (or alternatively, a TCP socket) and port through which SIP
messages can be sent and received. Although an unmapping is not included in Figure
7.25, there is also an operation “triUnmap” defined in the TRI standard which can be
invoked immediately after the termination of a test case. The main task of the operation

is to close a dynamic connection to the SUT for a specific test system interface port.

The next operation invoked by the TE, “triStartTimer”, is implemented by the PA (see
Figure 7.25). Of course, its invocation depends on the definition of the current test case.
If a timer is started by means of a TTCN-3 statement, the operation is invoked. The call

itself specifies the duration of the timer and includes an identifier for the timer in future

264

7 Test Case Generation, Execution and Management

communication between the TE and PA. Although it is not included within Figure 7.25,
it is possible that the timer expires before it is explicitly stopped again. The PA indicates
a timeout by calling the “triTimeout” operation (Willcock et al., 2011). As soon as the
“triStartTimer” operation has been invoked and the timer has been started successfully,

the execution of the test case continues with the sending of a SIP request message.

The sending of a message on the part of the test system requires to first encode it into a
message the SUT accepts. Encoding as well as decoding services are provided by the CD
entity which can be accessed by the TE via the TCI. The operation “tciEncode” (see
Figure 7.25) encodes a requested TTCN-3 message value and subsequently passes it back
to the TE as a binary string. According to (ETSI ES 201 873-5, 2015), the binary string
is then one of the input parameters of the following “triSend” (see Figure 7.25) operation.
Another parameter “componentld” identifies the test component that is acutally sending
the message and a further parameter “tsiPortld” specifies the test system interface port
via which the message is sent. As soon as the operation has been invoked, it is the task of

the SA to transmit the message to the SUT.

If the SUT accepts the SIP request, it answers back with a SIP response to the UDP port
(or TCP port) from where the corresponding message originated. The SIP response is
received by the SA which forwards it to the responsible test component within the TE by
invoking the “triEnqueueMsg” (see Figure 7.25) operation. The message is passed in an
encoded form. According to (Willcock et al., 2011), the arrival of any incoming message
(here, the SIP response) triggers a new evaluation of the “alt” statement which contains
different alternatives to deal with the different possible reactions from the SUT. The “alt”

statement blocks until one of its determined alternatives matches. However, the matching

265

7.3 Test Case Execution

process requires the encoded message to be decoded into a structured TTCN-3 value. The
CD entity provides the decoding service which is implemented in the “tciDecode”
operation. Besides the encoded message, the “tciDecode” operation needs to know the
assumed type of the message, the so-called decoding hypothesis. The CD can then select
the appropriate decoding mechanism. In the case of the SIP response, the decoder would
check if the received message is a correctly encoded SIP response message. A successful
check automatically creates a TTCN-3 “SIP_Response” value of the message and returns

it to the TE.

If the received SIP response matches, the execution of the test case proceeds with the
explicit stopping of the timer. Here, the TE invokes the “triStopTimer” operation
implemented by the PA. This operation succeeds, even if the timer has already stopped

or timed-out. It allows the PA to discard the timer.

As soon as the timer has stopped, finally, a test case verdict has to be determined. In the
example test case execution illustrated in Figure 7.25, the test case is judged as “pass”,
because the message flow (including the checking of the test data) has taken place as

specified in the TTCN-3 test case definition.

For each generated test case within an ETS which has been built by the TSB, the described
interaction of test system entities within the test execution environment, the
TTworkbench, is performed. The execution results of the test cases are documented in an
incident report which includes any event that occurs during the testing process that
requires further investigation. Then, the stakeholders have to figure out where the issue
originates. The following section discusses these issues and introduces methods

supported by the TCF to simplify the test evaluation process.

266

7 Test Case Generation, Execution and Management

7.4 Test Evaluation and Management

In the chapters 5 and 6 as well as in the previous sections of chapter 7, the concept of the
TCF and its components have been introduced thoroughly. The integration of the
proposed TCF within a service provider environment would change the tasks of the roles
participating in the service development and testing process. Especially test developers
benefit from the proposed TCF as they are also involved in the requirements elicitation
process due to their participance in the so-called Service Quality Group (SQG). The SQG
is a novel concept developed in this research and has been introduced in section 4.2.
Besides test developers, also service analysts and service developers participate in the
SQG. The SQG has been established to build a foundation for successful functional test
integration and to deliver products (value-added services) to service customers that have
been verified and validated. Most of the related work (such as related frameworks for
functional testing, see section 3.3) that has been done in the field of automated functional
testing of services focus only on developing efficient methods to build test models from
which test cases can be derived. The emerging agile concepts are not considered in these
approaches. In order to achieve a valid product, this research considers the agile concept
through the establishment of the SQG, which enables a “Whole Team” approach in the
methodology. In agile principles, the “Whole Team” approach (also called team-based
approach) describes a style in project management in which all project members are
equally responsible for the quality and success of a project (Gregory and Crisping, 2015).

The benefits of the SQG supporting the “Whole Team” approach are as follows:

e It helps the team in building a strong working relationship through effective

cooperation, communication and teamwork.

267

7.4 Test Evaluation and Management

o It enables the team members to learn from each other and share knowledge.

e Every member of the SQG is responsible for the outcome.

Especially the enforcing of service developers and test developers to intensify their
collaboration is a very important aspect of the SQG. In this section, the statements
regarding the SQG will be clarified. As discussed in section 4.2, both development (for
instance by means of a Service Creation Environment (SCE)) and testing (by means of
the proposed TCF) can start as soon as the service analyst hands out the “Structured
Requirements” document which contains the informal textual use cases specifying the
functionality of the value-added service. Both developers can rely on the described use
cases within the “Structured Requirements”. The service developer can implement the
service logic, possibly by means of reusable building blocks that are integrated within the
applied SCE, whereas the test developer can define an instance of the Service Test
Description by applying the TCF accordingly. It is important to emphasise once again
that every use case specified in the “Structured Requirements” document can be mapped
to a Requirement defined within an STD instance. This aspect allows an iterative testing
approach because a generated Executable Test Suite (ETS) does not have to contain all
test cases for a given value-added service. It is also possible to successively enhance the
STD instance and allow test iterations. The first test iteration might include just the initial
Requirement (e.g. “Req01”), whereas the last test iteration includes all the Requirements
specified within the final STD instance. The aspect of establishing test iterations has many
advantages. First, the test development process and the service development process can
be synchronised. If a service developer implemented the service partly so that it fulfils
the initial use case specified in the “Structured Requirements” document, it can be

automatically tested by means of the first test iteration. Further iterations can be

268

7 Test Case Generation, Execution and Management

established so that throughout the duration of the value-added service development, tested
so-called prototypes shall be demonstrably even if they just fulfil a range of use cases. In
principle, this approach can be called “rapid prototyping”. A second advantage of the
approach refers to the collaboration with the service customer. As soon as a prototype
exists as well as the corresponding ETS for this stage of development (test iteration), the
test cases will be executed against the prototype. If all test cases within the ETS pass, the
prototype can be declared as a verified prototype. In order to validate the prototype, the
service customer can be involved. So, each successfully tested (all test cases passed)
prototype can be demonstrated to the service customer. If the prototype meets the
requirements of the service customer, the prototype can be declared as a validated
prototype. If it does not meet the requirements of the service customer, possibly the
“Structured Requirements” document is not complete or includes misunderstandings or
errors. It is possible that the service analyst made a mistake while creating the document
or the service customer did not have a clear vision of the value-added service at the
beginning. In both cases, the “Structured Requirements” document needs to be updated
as well as the corresponding steps within the test and service development. The whole
process continues until the prototype fulfils all use cases specified in the *“Structured

Requirements” document. This prototype is then the final value-added service.

The previously described process assumed that all test cases within an ETS passed during
their execution against a prototype. However, test cases can also fail. Inpedendent of the
underlying category of occurred error, such as “timer expired” or “other message received

than expected”, the following reasons can be stated:

269

7.4 Test Evaluation and Management

1. While defining the Requirements within the STD instance, the test developer
made a syntactical error (e.g. error in the parameterisation of variables).

2. The test developer did not understand the description of a use case properly
(maybe because it has not been described precisely enough) and defined a
different corresponding Requirement in the STD instance.

3. The service developer did not understand the description of a use case properly
(maybe because it has not been described precisely enough) and implemented a
different service logic.

4. The service developer made mistakes during the implementation of the service

logic.

Besides the mentioned reasons, there are of course alternative flaws that might occur. The
handling of errors in the test execution is always the same. First, the test developer has to
analyse the test cases that failed. If he made mistakes on his own (See reason 1), an
experienced test developer will find them quite fast and will be able to fix them.
Otherwise, for the reasons 2, 3 and 4, the test developer needs to first get in contact with
the service developer to discuss the issues. If both cannot fix the issue or have different
understandings of the matter, the service analyst is consulted and the SQG meets
officially. Generally, the service analyst should be able to solve the issues by clarifying
the possible misunderstandings or ambiguities in the “Structured Requirements”
document. However, it might also be necessary to contact the service customer for further

clarification.

In principle, the SQG requires a separate framework to control and monitor the testing

and development process and to simplify the communication with one another. Each role

270

7 Test Case Generation, Execution and Management

within the group and also the service customer could get access to a personalised
graphical user interface (GUI). The test developer and the service developer get an
overview of their current projects. For each project, they get information regarding the
included use cases and whether there are already existing prototypes for the use cases.
Furthermore, the developers can see the status of the prototype (“verified”, “validated”
or “final”). Over the GUI, the developers can get in contact with each other (e.g. via
instant chat message, audio/video calls or even via audio/video conferences) and are able
to request for a meeting of the SQG. The service analyst can also retrieve information
regarding the projects he is currently participating in. He sees the status of the projects
and is able to arrange SQG meetings with the service and test developers. If a prototype
is declared as verified, the service analyst can personally contact the service customer.
Finally, the service customer gets informed as soon as a prototype has been verified. The
next step for the service customer would be to test the verified prototype in order to

validate it.

The proposal regarding a separate framework for the SQG and the collaboration with the
service customer is not within the scope of this research, but it can be analysed for further

research.

7.5 Conclusion

This chapter has introduced the test case generation based on behaviour models.
Furthermore, it has dealt with the execution of the generated test cases and the subsequent

evaluation of test results.

271

7.5 Conclusion

First, an appropriate algorithm had to be found to derive test cases from the generated
behaviour models. Although the finding of traces within the Statechart-based behaviour
models seemed to be the only choice, linear sequences of events and actions have not
been identified to suite well for testing of value-added services. Therefore, a graph-based
representation of derived test cases has been chosen which fits best to the structure and
properties of the bahaviour models. Furthermore, several structural coverage criteria have
been discussed and analysed. In order to reduce the number of generated test cases and
taking literature into consideration, the structural coverage criteria All-Round-Trips has
been selected. Finally, the properties of the graph-based test cases have been introduced

and examples have been discussed.

The generation of TTCN-3 test cases from the graph-based test cases has been described
in section 7.2. First, the reason for selecting the TTCN-3 language have been discussed.
The result has shown that the technology is a respected ETSI standard, supports
concurrency, is similar to programming languages and provides a lot of further features
that are required in this research. In the following, the test code generation of TTCN-3
test cases has been introduced, mainly the generation of the test configuration, the test
data definitions as well as the test behaviour. Finally, the building process of an
Executable Test Suite (ETS) has been described by means of the Test Suite Builder

(TSB).

The next section 7.3 has illustrated the execution of test cases within a TTCN-3 test

system and has emphasised the relevance of the several entities.

The evaluation and handling of test results has been discussed in section 7.4. Here, the

relevance of the Service Quality Group (SQG) in order to enable the validation of a value-

272

7 Test Case Generation, Execution and Management

added service has been identified. Finally, the section gives guidelines for the test
developer how to deal with the test results. If all test cases of an ETS pass, the prototype

can be declared as verified whereas a fail requires further analysis.

The concept of the TCF has been introduced completely in the chapters 5, 6 and 7. The
upcoming chapter 8 investigates whether the requirements that have been established in
section 3.4 can be met by the described solution. Furthermore, the prototypical
implementation of the TCF is described as well as the evaluation of the prototype by

means of an example value-added service.

273

8 Framework and Prototype Evaluation

This chapter deals with the prototype implementation as proof of concept evaluation to
demonstrate that the proposed framework for automated functional testing of value-added
services meets the requirements that have been derived from the deficits and assets of
related projects. In section 8.1, each of the defined requirements is analysed and it is
explained how it is fulfilled by the proposed framework. The upcoming section 8.2
depicts the architecture of the protoype implementation of the framework, its utilised
components and their functionality. Section 8.3 discusses the use of the prototype
implementation by means of an example value-added service in order to evaluate the

application of the prototype and framework.

8.1 Evaluation of the Defined Framework Requirements

This section evaluates the proposed TCF with regard to the derived requirements listed
in section 3.4. Each requirements is evaluated in the following regarding its fulfilment

within the proposed framework (TCF).

e Test Execution and Test Report — The ability to execute tests is provided by the
framework through the connection to an external TTCN-3-based test execution
environment (in the case of the provided prototype, a connection to the
TTworkbench was established, an example TTCN-3 test execution environment).

After a test suite for a given value-added service is generated by the Test Code

275

8.1 Evaluation of the Defined Framework Requirements

Generator and built by the Test Suite Builder, the suite can be executed against
the SUT (see section 7.3). Fortunately, the TTCN-3-based test execution
environment already provides a test report for test executions that have been
performed.

e Collaboration and support for agile principles — This agile aspect of the proposed
framework and methodology is supported through the initiated Service Quality
Group (SQG), which involves the service customer, the service developer and test
developer as well as a new role, the service analyst. The service analyst realises
the coordination and acts as a mediator between the developers on the one side
and the service customer on the other side. A thorough methodology of the tasks
that can be initiated by the diverse roles within the SQG is defined in chapter 4
and some further information is given in section 7.4. Here, some agile principles
are highlighted such as the support for rapid prototyping.

e Comprehension — This aspect depends on the collaboration requirement. The
major concern of the comprehension requirement is the strict involvement of the
service customer within the process and that he is always able to see the current
progress of the project. The collaboration web site concept that has been
mentioned in section 7.4 is an example solution to let the service customer
participate in the development and test process.

e Manageability and time exposure — This requirement refers directly to the test
developer who is actually applying the functionality of the proposed TCF.
Manageability and time exposure refers to the difficulty level of the application

on the one hand and to the time that is required to achieve the goals. Regarding

276

8 Framework and Prototype Evaluation

the proposed framework, the test developer gets a straightforward service and test
specification language (STD) in order to create individual instances for the value-
added services that have to be tested (see section 5.2). In comparison to related
projects that involve the manual modelling of formal behaviour models based on
EFSMs, a lot of time can be saved. Besides the straightforward foundation of the
STD, also the concept of the reusable test modules and their instances fastens the
process, because the behaviour only has to be specified once (see section 6.2).
Tool support — A prototype implementation of the major components of the
proposed TCF is described in section 8.2. The test developer is able to create
instances of the STD on a web page and can then trigger the whole automated
process which will start from the automated building of the behaviour models,
will then derive and subsequently generate the test cases (an ETS) and finally, the
test execution against the SUT is performed. As a feedback, of course, the test
developer will get a test report.

Traceability of requirements — Requirements are playing a major part within the
proposed TCF and within the whole process, of course. The initial and informal
requirements are initially specified by the service customer in collaboration with
the service analyst. The result will be the “Structured Requirements” document,
which can be, for instance, a standardised UML use case specification. The next
trace of the requirements is performed by the test developer who creates an STD
instance containing Requirements. The approach intends to have a direct mapping
between the informal requirements specified in the “Structure Requirements”
document and the Requirements specified in the STD instance. The next trace of

requirements occurs in the building of behaviour models. For each Requirement

277

8.1 Evaluation of the Defined Framework Requirements

specified in the STD instance, a behaviour model is built. The requirements-based
behaviour models are the input of the TCDU which generates an abstract test suite
that contains a sorted list of abstract test cases. Of course, every generated abstract
test case is assigned to a specific requirement. The Test Code Generator considers
the abstract test cases belonging to a requirement and includes all generated
TTCN-3 test cases based on the abstract test cases within one TTCN-3 module. If
the “Structured Requirements” document contains five different requirements (in
UML notation, the requirements are called use cases), the resulting TTCN-3 test
suite will also contain five TTCN-3 modules for each specified requirement. The
test execution can then be differentiated by means of the TTCN-3 control part.

¢ Reusability — This requirement is obviously fulfilled by the proposed TCF through
the reusable test modules (see section 6.2).

e NGN-compliance or support for general SIP-based IP networks — The proposed
TCF has been initially developed for the purpose of testing NGN-based value-
added services. In fact, the framework is intended to be integrated into a service
provider test environment and can be seen as a counterpart to the Service Creation
Environments for service development. The prototype validation described in
section 8.3 illustrates an example value-added service that requires the existence
of typical components from a SIP-based NGN, such as a SIP AS.

e Verification and Validation — Verification is supported, because the test cases are
directly derived from the requirements specification and are traceable troughout
the whole process. In contrast, validation requires especially the involvement of
the service customer. He needs to confirm that the value-added service meets his

requirements. Through the establishment of the SQG, validation is supported.

278

8 Framework and Prototype Evaluation

o Effectivity and efficiency of test generation — The amount of test cases to be
generated depends either on the selected coverage criteria (for instace All-
Transitions or All-Round-Trips) or on the construction of a reusable test module
itself. Regarding both aspects, the test developer is given flexibility by the test
framework to achieve efficiency in the test case generation (See section 7.1.2). As
the test cases are based on standard protocol behaviour that can be applied by any
given value-added service, they have to be highly effective.

e Expandability — The proposed TCF supports further enhancements, for instance
by defining new reusable test modules. New protocols can be specified and added
to the TMR, however, this also requires an enhancement of the test execution
environment. In order to exchange messages of a given protocol, the TTCN-3-

based test execution environment needs implemented codecs.

Besides the mentioned requirements, the framework also supports a rapid prototyping-
alike approach. Theoretically, the service developer and test developer could manage to

implement a value-added service iteratively based on the specified requirements.

For the proof of concept of the framework, major parts of it have been implemented. The

architecture of the prototype implementation is introduced in the following section.

8.2 Prototype Architecture and Implementation

To demonstrate the essential functionalities of the Test Creation Framework (TCF), a
research prototype was developed. Most components of the TCF architecture were

implemented, but not all functionality of each component has been implemented for the

279

8.2 Prototype Architecture and Implementation

proof of concept (see section 8.3). Besides the simplified version of the graphical user
interface Test Framework User Terminal (TFUT), further trimmed versions of the
Automatic Composition Engine (ACE), the Test Case Derivation Unit (TCDU), the Test
Code Generator (TCG) and the Test Suite Builder (TSB) as well as the service interface
of the Test Modules Environment (TME) to access the two databases Test Modules
Repository (TMR) and Test Data Pool (TDP) have been implemented. The Test Suite
Generator (TSG) has not been considered as a separate component as its only task is to
comprise the TCG and the TSB. Furthermore, the graphical user interface of the TME
has not been implemented because it is also not required for the proof of concept.
Actually, it is not needed because a modelling environment is not required to add new
reusable test modules to the TCF. To define a new reusable test module, three files have
to be added: an SCXML description specifying the behaviour, a classification template
containing the metadata of the reusable test module (both stored within the TMR) and,
finally, a set of variables described by means of XML (stored within the TDP). The final
component considered in the implementation is the Test Execution Environment (TEE).
As mentioned before in chapter 7, the selected TEE is the TTworkbench (TTworkbench,
2015), a commercial TTCN-3 test system which enables the execution of tests and the
generation of test reports. For the proof of concept of the research prototype and proposed
TCF, an example value-added service has been selected and described by means of the
STD (see section 8.3). Based on the STD instance, the whole process will be demonstrated

for proof of concept until the test execution against the SUT has terminated.

The research prototype was implemented using the Java programming language because
it is known to be platform independent. Furthermore, Java is required for the usage of

OSGi (OSGi Alliance R5, 2012), formerly known as the Open Services Gateway

280

8 Framework and Prototype Evaluation

initiative. OSGi is a framework for Java which enables to install units of resources which
are called bundles. These bundles can export services or run processes, and have their
dependencies to other bundles or libraries managed by an OSGi container. It is also
possible that each bundle has its own internal classpath so that it serves as an independent
unit. In general, bundles are loosely coupled and interact either by service interfaces or
by OSGi events. All of these features are standardised in order to verify that any valid
OSGi bundle can theoretically be installed in any valid OSGi container. The OSGi
platform has been chosen as development framework for the research prototype because
of the architecture of the application. The TCF architecture (see Figure 4.5) contains many
components that are loosely coupled. Within the research prototype, each of the loosely
coupled components are implemented as OSGi bundle. The following Figure 8.1

illustrates the architecture of the research prototype.

281

8.2 Prototype Architecture and Implementation

TFUT Web Application
Bundle

de fuoas.research.tfut

(1) Event [STD instance]

(3) getRTMs s " —
Automatic Composition
Engine (2) storeConfig
(4) deliver [RTM list]
’ gl L de.fuoas.research.ace
v
Test Modules W _
Environment <Service> | (S)storeVariable
J (6) Event [Behaviour Models]
de.fuoas.research.tme
(8) getConfig e Y
1 3 . .
Test Case Derivation Unit Test Configuration Unit
<Service>
_ de.fuoas.research.tcdu L de fuoas.researchta
(10) getVariables 7y

(9) deliver [ServicelD, Roles, SMI]
(7) Event [Abstract Test Suite]

Test Code Generator

(11) deliver [variables]

de fuoas.research.tcg) (13) getTestAdapterConfig

(12) Event [compile]

~
Test Execution i i
Ervi « Bundl (15) Event [execute] Test Suite Builder
nvironment Bundie (14) deliver [testAdapterConfig]
de.fuoas.research.tee de.fuoas.research.tsb JQ—J

Figure 8.1: Prototype architecture components illustrated as OSGi bundles

The architecture illustration (see Figure 8.1) shows how the OSGi bundles communicate
with one another. Each bundle is classified by its name and by a specific Java package
name. The name of the “Automatic Composition Engine” OSGi bundle, for instance, also
contains the Java package name “de.fuoas.research.ace”. Correspondingly, the source
code for the implementation of the ACE is also included in this Java package.
Furthermore, Figure 8.1 includes six processing bundles (such as “TFUT Web
Application Bundle”, “Automatic Composition Engine”, “Test Case Derivation Unit”,
“Test Code Generator”, “Test Suite Builder” and “Test Execution Environment Bundle”)
as well as two service bundles (such as “Test Modules Environment” and “Test
Configuration Bundle”). In the prototype implementation, each of these bundles were

implemented and installed within an OSGi framework implementation. There are many

282

8 Framework and Prototype Evaluation

OSGi framework implementations available such as Apache Felix (Apache Felix, 2015)
or Apache Karaf (Apache Karaf, 2015) and many others. The main difference between
these available OSGi framework implementations is the set of features they support.
Apache Felix just provides a basic set of features whereas Apache Karaf, although
declared as lightweight, is still a powerful and enterprise ready OSGi framework
implementation. Because of its useful features and easy handling, the Apache Karaf
implementation has been chosen for the prototype implementation. The Karaf

architecture is demonstrated in the following Figure 8.2.

4 N\

[Console] [Logging] [Deployer] [Provisioning] [Admin] [Blueprint]
[OSGi]

. J

Karaf

Figure 8.2: Apache Karaf architecture (adapted from (Apache Karaf, 2015))

The provided features of Apache Karaf enable a thorough monitoring and configuration
of the platform (“Console”, “Logging” and “Admin”). Furthermore, the handling of
bundles such as the deployment (“Deployer”) and the integration of external libraries
(“Provisioning”) is supported. The “Blueprint” feature is required in order to classify
developed bundles as services and to include their implemented functionality in other

bundles.

Coming back to Figure 8.1, the Apache Karaf requires a further feature, an integrated
Java web server. In fact, Apache Karaf can act as complete WebContainer powered by
Jetty (Jetty, 2015) with fully support of the JavaServer Pages (JSP) and Java servlets. This
is required to publish the web application that is included in the “TFUT Web Application

Bundle” (see Figure 8.3).

283

8.2 Prototype Architecture and Implementation

Architecture

Service ID SendMessage

Prose A message is sent to a service user.
Roles SIP phone: [sender]

System Meta Info SenviceURI" sip messenger@192 168 50 27

Non-functional none
properties

Requirement
Requirement ID Req01

Requirement Goal Service send message o user

Precondition

Communication SIP UAC non-INVITE A
Interface

SIP UAC non-INVITE [sendert] a n

Parameter Definition var initMessage = [senderl] -» s Request

initMessage = { (Method, "Message"). (Text, "Hello World!") }

Basic Flow P=
a<initMessage>.
0

Alternative Flow

Figure 8.3: Screenshot of TFUT web application showing the definition of an STD instance

The web page shows a form which enables a test developer to create an STD instance.
All the required fields of the architectural and behavioural perspective (see section 5.2)
are included on the web page. As soon as the STD instance has been completely defined,
the form can be sent to the web server. Here, a Java servlet “STDWebServlet” is
implemented which reads all the delivered parameters and creates a Java object of the
“ServiceTestDescription” class, the STD instance. In the prototype implementation, the
class structure of the conceptual model was realised (see Figure 6.26). As soon as the
STD instance exists, it is automatically sent to the “Automatic Composition Engine”
bundle via an OSGi event. An OSGi event can include any kind of data and can be
transferred between bundles that acquire the “EventAdmin” service provided by the OSGi

framework implementation (Apache Karaf).

284

8 Framework and Prototype Evaluation

When the “Automatic Composition Engine” bundle receives the STD instance it first
acquires the service of the “Test Configuration Unit”. If a service within OSGi is
established a Java interface is required in order to determine the offered functions. The

Java interface for the “Test Configuration Unit” is as follows (see Figure 8.4):

<<Interface>>

TestConfigurationService

+ storeConfig (String ServicelD, List<Role> roles, SystemMetalnformation SMI): void
+ getConfig(): ConfigData
+ getTestAdapterConfig(String servicelD): TestAdapterConfig

Figure 8.4: OSGi service interface provided by the “Test Configuration Unit” bundle

The “Automatic Composition Engine” bundle invokes the method “storeConfig” to store
the metadata of the SUT (such as “ServicelD”, “Roles” and “SystemMetalnformation™)
for further processing during the test case generation and execution. This is the illustrated
step 2 of Figure 8.1. While parsing the Requirements of the STD instance, the “Automatic
Composition Engine” bundle identifies the reusable test modules that are involved. Based
on the information, the bundle consumes another service which is now provided by the
“Test Modules Environment” bundle. Again, a Java interface is required in order to

specify the OSGi service functionality. This is illustrated in the following Figure 8.5.

<<Interface>>

RepositoryService

+ getRTMs (List<Role> roles): List<SCXM L>

+ storeVariable (Message message, String classification, String instancelD): void
+ getVariables(String instanceld): List<Message>

+ addNewRTM(SCXML notation, ClassificationTemplate template): boolean

+ addVariables(List<Message> variables, String testModuleName): boolean

Figure 8.5: OSGI service interface provided by the “Test Modules Environment” bundle

285

8.2 Prototype Architecture and Implementation

First, the “Automatic Composition Engine” bundle invokes the “getRTMs” method (see
Figure 8.5). The Roles (list of roles) need to be added as parameter because they include
the selected Cls within the STD instance and accordingly, the information about the
reusable test modules to be selected. The method returns a list of objects of the class
“SCXML” which has not been further specified yet. In fact, this class refers to a Java
library being applied to handle the SCXML-based descriptions of the reusable test module
instances and the behaviour models. This Java library is called “Apache Commons
SCXML” (Commons SCXML, 2015) and enables a complete representation of the XML-
based Statecharts notation by means of Java classes. After the invocation of “getRTMs”,
the reusable test modules are initialised within the behaviour models. As soon as the
Parameters within the STD instance have been parsed, the “Automatic Composition
Engine” invokes the “storeVariable” method (see Figure 8.5). Here, the variables of the
reusable test module instances need to be stored in the Test Modules Repository (TMR)
database via the service interface of the “Test Modules Environment” bundle. To store
data, a NoSQL database has been applied for both TMR and Test Data Pool (TDP) which
is called MongoDB (MongoDB, 2015). Coming back to the “storeVariable” method,
three input parameters are required: the message itself, the type of reusable test module
the variable refers to and the id of the reusable test module instance the variable is
assigned to. For the class “Message” any kind of request or response type can be added
due to the specific class structure (see Figure 6.20). The “storeVariable” method has to
be invoked as often as a variable within the Parameters of the STD instance has been

initialised and parameterised.

The following step 6 in Figure 8.1 describes the sending of a further OSGi event which

already includes the behaviour models. So, the “Automatic Compositon Engine” bundle

286

8 Framework and Prototype Evaluation

has already performed the formal processing and composition of reusable test module
instances (see section 6.4). The bundle which receives the behaviour model is the “Test
Case Derivation Unit” bundle which includes algorithms to derive the graph-based test
cases applying the All-Round-Trips coverage criteria (see section 7.1). As a result, the
abstract test suite is generated which is also sent within an OSGi event from the “Test
Case Derivation Unit” bundle to the “Test Code Generator” bundle (see Figure 8.1, step

7).

In order to generate the TTCN-3 test configuration, the “Test Code Generator” bundle
needs the meta information of the SUT (see Figure 8.1, steps 8 and 9). Therefore, the
“getConfig” method (see Figure 8.4) provided by the “Test Configuration Unit” bundle
is invoked. The return type “ConfigData” comprises the “ServicelD”, “Roles” and
“SystemMetalnformation”. Besides the generation of the test configuration, the “Test
Code Generator” creates TTCN-3 templates for the test data. To get the relevant data, the
“Test Code Generator” needs to invoke the “getVariables” method (see Figure 8.1, steps
10 and 11). As input, the “getVariables” method requires the reusable test module
instance id. The return type is a list of “Message” objects which can be processed and
generated into TTCN-3 templates. Finally, the “Test Code Generator” needs to internally
process the generation of the TTCN-3 test cases based on the graph-based test cases (see
section 7.2.2). The generation of actual TTCN-3 text-based files is performed by means
of a special test generating utility “Texen” which is part of the Apache Velocity Project
(Apache Velocity, 2015). After all TTCN-3 source files have been generated, the “Test
Code Generator” bundle sends a command OSGi event (see Figure 8.1, step 12) to the

“Test Suite Builder” bundle.

287

8.2 Prototype Architecture and Implementation

Before the “Test Suite Builder” initiates the TTCN-3 compilation process, it requires the
test adapter configuration file. As the “Test Configuration Unit” bundle holds the
necessary meta information about the SUT, it can also generate the appropriate XML-
based test adapter configuration. By invoking the “getTestAdapterConfig” method
provided by the “Test Configuration Unit” bundle service (see Figure 8.4), the file can be
fetched (see Figure 8.1, steps 13 and 14). Of course, it is important to add the correct
“ServicelD” as input parameter of the method. As soon as the test adapter file is added to
the TTCN-3 source files, the Executable Test Suite (ETS) can be generated. Therefore,
the execution of the command line tool (or rather script) “Ttthree” is required which is
provided by the TTworkbench in order to compile the sources. The “Test Suite Builder”
bundle includes a specific Java class “ProcessBuilder” which invokes the “Ttthree” script.
For a proper execution, the following options have to be added to the “Ttthree” script

(TTworkbench UserGuide, 2015):

e --clf-name: Through this option, the name of the test campaign can be specified.
It is advisible to include the “ServicelD” here so that the existing ETS for specific
SUTs can be differentiated.

e --clf-taconfig-file: The presence of the test adapter configuration has already been
discussed and an example of it is illustrated in Figure 7.24. Here, the project
relative path to the file including its filename has to be specified.

e --destination-path: This option specifies the path where the compiled TTCN-3
modules will be placed in the file system. As the “Test Execution Environment
Bundle” performs the execution of the test cases the complete ETS is copied to a

location of the bundle scope.

288

8 Framework and Prototype Evaluation

e moduleld: Here, all the modules that have to be generated are specified. As
discussed in 7.2.2, every module is assigned to a Requirement specified in the

STD instance.

After the compilation has been performed, the generated Java classes that represent the
ETS are automatically copied to the specified destination path. Furthermore, a campaign

loader file (*.clf) is generated which includes the order of the test cases to be executed.

The final step 15 in Figure 8.1 is initiated by the “Test Suite Builder”. As soon as the
compilation process has terminated the bundle sends an OSGi event including a command
(“execute”) to the “Test Execution Environment Bundle”. Subsequently, this bundle uses
a further command line tool or rather script, the “TTman”. This script also includes

specific options that can be configured (T Tworkbench User Guide, 2015):

e --error: If this option is set, the test execution stops in the case of an error.
Otherwise, the execution continues.

e --log: This option defines a destination folder where the log file shall be stored
after the test case execution. If this option is not used, the file is stored in the same
directory where the ETS is stored.

e --loop: This option defines how many times all test cases within the ETS shall be
executed.

e --report: Based on the test case execution, the output format of the results can be
specified, either as HTML, PDF, Excel or Word document.

e --wait: This option allows to define a delay (in milliseconds) between the
execution of two test cases. This might be useful for services where certain data

has to be reset.

289

8.2 Prototype Architecture and Implementation

o loader_file: The loader file (*.cIf) has been generated during the compilation

phase. It is required to specify this file for a proper test execution.

As soon as the script is started, all test cases included in the ETS are executed against the
SUT. The results are presented in the specified format and additionally included in a

generated log file (*.tlz).

Before continuing with the prototype-based framework evaluation in the next section, two
further methods the TME service interface provides are described which have not been
used in the process (see Figure 8.5). First, the method “addRTM” enables the adding of
new reusable test modules to the TMR database. There are two input parameters required,
the formalised underlying Statecharts notation as SCXML type (used from the Apache
Commons SCXML library) as well as the XML-based classification template which
includes all the required metadata of the reusable test module. The second method
“addVariables” also refers to the definition of new reusable test modules. Here, a new set
of variables can be added to a stored reusable test module. Therefore, the variables have
to be specified as input parameter (“variables”) as well as the unique identifier of the
reusable test module (“testModuleName”). Both of the specified methods are not used in
the process, but they are required for the extensibility of the prototype implementation.
To support the inclusion of further reusable test modules, a test bundle has been
implemented besides the specified ones in Figure 8.1. This test bundle consumes the
service provided by the “Test Modules Environment” bundle and allows to add new

reusable test modules to the TCF implementation.

290

8 Framework and Prototype Evaluation

8.3 Proof of Proposed Framework Concept

The implementation and architecture of the research prototype based on the proposed
novel TCF concept has been briefly introduced in the previous section. This section deals
with the proof of concept and evaluation of the underlying concept this research proposes.

Therefore, the following steps have to be performed:

1. An example service has to be specified for proof of concept and has to be
described shortly.

2. A System Under Test (SUT) environment (SIP Application Server) has to be set
up. The example service has to be developed and deployed on the SIP AS.

3. The example service has to be defined for proof of concept and has to be specified
by means of the Service Test Description (STD).

4. The automatic TCF process needs to be started until the test case execution against

the deployed service has terminated. The test case results can then be evaluated.

In general, it has to be shown that new value-added services can be tested by applying the

novel concept of the TCF.

8.3.1 Description of Example Service Scenario

As mentioned before in section 5.2.4, a simplified form of the sample chat service
introduced in section 5.1.1 will be applied as proof of concept for the proposed framework
and prototype implementation. The following UML use case diagram shows the reduced

functionality (see Figure 8.6).

291

8.3 Proof of Proposed Framework Concept

Sample Chat Service

Message Exchange

I

Service User

Figure 8.6: Simplified UML use case diagram of sample chat service

The sample chat service includes two major functionalities, the login of two service users

as well as the exchange of instant chat messages between both service users.

The functionality of the “Login” process is illustrated by means of the following message

sequence chart (see Figure 8.7).

. SUT .
Service User A e G Service User B

I I
| SIP MESSAGE: "login=user1" |
| |

SIP 200 OK

|
|
|
b 20200 90K | |
|
|
|

SIP MESSAGE: "userl logged in"

[
| SIP 200 OK |
L SIP MESSAGE: "login=user2"

SIP 200 OK
| .. >

SIP MESSAGE: "user2 logged in"

SIP 200 OK

Figure 8.7: Basic functionality of login process in sample chat service

Both service users involved in the example login process send SIP MESSAGE requests

to the SUT (SIP AS with deployed chat service) which contain a character string “login="

292

8 Framework and Prototype Evaluation

followed by a specific user name (either “user1” or “user2”). If the login was successful,
this is acknowledged by the SUT through a SIP MESSAGE request with the text “userl
logged in” or “user2 logged in”. Otherwise, if the user to be logged in by a service user
is unknown (see Figure 8.8), the SUT responds with SIP MESSAGE containing the text

“Unknown user! Login failed!”.

SUT

service User A (Chat Service)

I I
| SIP MESSAGE: "login=user123" |
| |

SIP 200 OK

|< .. |

SIP MESSAGE: "Unkown user! Login failed!"

SIP 200 OK

Figure 8.8: Alternative functionality of login process in sample chat service

Regarding the “Message Exchange” use case, the following message sequence chart

illustrates the basic functionality.

. SUT .
Service User A (@ Sariag) Service User B

I I
| SIP MESSAGE: "Hello user2!" |
I I

SIP 200 OK
|< ...

I SIP MESSAGE: "Message was received!"

SIP MESSAGE: "Hello user2!"

I

| L seamok
I I

I I

I SIP 200 OK J |
I

I
I
I
I
i
SIP 200 OK |
I
I
I
I

Figure 8.9: Basic functionality of message exchange in sample chat service

293

8.3 Proof of Proposed Framework Concept

Based on a SIP MESSAGE sent from service user A, the service forwards the message to
the user who is also currently logged in, service user B. During the login process, the
service assigns the permanent SIP URIs of the service users to the user names that they
selected. This enables the service to forward the messages to all users who are logged in
except for the originator of the message. Finally, the service also informs the originator

that the transmission was successful.

The main functionality has been specified. In the following section, the characteristics of

the SUT environment will be introduced.

8.3.2 SUT Environment and Service Implementation

As described in section 2.2.4, value-added services running within SIP-based NGN
environments are generally deployed on SIP Application Servers. The SIP AS enable a
fast and cost-efficient provision of these services. For the proof of concept, a SIP AS
implementation has been chosen that is based on SIP servlets. According to (Oracle,
2010), a SIP servlet “is a Java programming language server-side component that
performs SIP signalling. SIP servlets are managed by a SIP servlet container, which
typically are part of a SIP-enabled application server”. The specific SIP-enabled
application server is called “Mobicents SIP Servlets” which “delivers a consistent, open
platform on which to develop and deploy portable and distributable SIP and Converged
JEE services.” (Mobicents, 2015). It implements the SIP Servlet v.1.1 (JSR 289 Spec,
2008) on top of Tomcat (Tomcat, 2015) and JBoss (JBoss, 2015) containers. In the
following Figure 8.10, the components of the Mobicents SIP Servlets application server

(AS) are illustrated.

294

8 Framework and Prototype Evaluation

Mobicents
SIP Servlets

N

HTML5 WebRTC Client

N

N [

N

JBoss 7 [Tomcat 7

'd N\
Java EE 6] [HTTP + SIP Servlets]

Mobicents
Media Server

wrre | [SIP siP [sIPOver
uDP TCP/TLS) WebSockets

Figure 8.10: Components within Mobicents SIP Servlets application server (adapted from

(Mobicents, 2015))

Besides the mentioned SIP servlets, the Mobicents SIP Servlet AS also enables the
provision of HTTP servlets. Furthermore, a “Mobicents Media Server” (MMS) can be
installed which provides functions a standard media server (see sections 2.3.2 and 6.2.2)
provides, such as Interactive Voice Response (IVR) as well as generation and detection
of tone including DTMF (Dual-tone multi-frequency signaling). The MMS can also act

as a conference access point or an announcement access point (Mobicents, 2015).

For the proof of concept, the Mobicents SIP Servlets AS was installed on a Linux-based
virtual machine and was integrated into the local IP network with the TTCN-3-based test
execution environment (TTworkbench) and the prototype (Apache Karaf with deployed
bundles). In the following, the implementation of the Java-based sample chat service was

performed. The class diagram is shown in the following Figure 8.11.

295

8.3 Proof of Proposed Framework Concept

ChatServiceServlet

- USER_LIST: Map<String, String>
- serverAddress: String
- factory: SipFactory

+ init(ServletConfig servletConfig): void

+ destroy(): void

+ doMessage(SipServletRequest request): void

+ doErrorResponse(SipServletResponse response): void

+ doSuccessResponse(SipServletResponse response): void
- sendToUsers(Object message): void

- containsUser(String from): void

- addUser(String from): void

- removeUser(String from): void

Figure 8.11: ChatServiceServlet class of proof of concept sample chat service

The “ChatServiceServlet” class contains as attribute a USER_LIST which holds all the
users that are allowed to log in and that already have logged in. The serverAddress
attribute holds the current IP address of the application server (here: “192.168.110.10)
whereas the factory enables the establishment of new SIP requests and responses within
the “ChatServiceServlet”. The “ChatServiceServlet” inherits from a base class called
“SipServlet” from which it takes over the methods “init” and “destroy”. Both methods
are used to either set the relevant parameters at the beginning (*“init”) or to be prepared as
soon as the server shuts down (“destroy”). The further public (*+) methods are referring
to the message handling. The method “doMessage”, for instance, deals with incoming
SIP MESSAGE requests and processes the content in the following. This method is
invoked as soon as login messages are sent to the SUT or messages that have to be
forwarded to other users. The methods “doErrorResponse” and “doSuccessResponse”
refer to provisional messages the servlet receives. Furthermore, the private methods (*-*)
perform internal processing, such as the sending of the messages to be forwarded to the

users that are logged in (“sendToUsers”). The method “containsUser” checks if a “Login”

296

8 Framework and Prototype Evaluation

SIP MESSAGE contains a user that is allowed to be logged in. Finally, the methods

“addUser” and “removeUser” manage the USER_LIST attribute.

In this section, the SUT environment has been set up and the example service (SUT) itself
has been developed. The next section deals with the first task the test developer has to do,

the definition of an STD instance for the sample chat service.

8.3.3 Specification of Chat Service with Service Test Description

The compilation of an STD instance with all the required components has been described
thoroughly in this thesis (see section 5.2). Also for the selected proof of concept example
service, first the architectural perspective has to be defined. The definitions are shown in

the following Table 8.1.

Table 8.1: Architectural perspective of sample chat service

Service ID ChatService

Prose Description A chat communication should be provided. The service
users are able to log into the system by sending a
text message that contains predefined user names. IT
the login process was successful the service
responses accordingly. A message exchange can be
performed between two users if they are both logged
in. If the message exchange was successful the
service responses accordingly.

Roles e SIP phone: [sender]
e SIP phone: [recipient]
System Meta ServiceURI: sip:chatservice@®192.168.110.10:5060
Information Protocol: UDP
Non-functional None
Properties

The specification of the architectural perspective in Table 8.1 is very similar to the one
defined in Table 5.8, however, a few aspects changed. The ID of the service, the Service
ID, is very relevant as it will be reused throughout the process. Furthermore, the most

important information is included in the Roles field and in the System Meta Information

297

8.3 Proof of Proposed Framework Concept

field. For the “ChatService”, two Roles have been specified and both are acting as SIP
phones. The “[sender]” and the “[recipient]” both can be mapped to the service users
specified in section 8.3.1. The System Meta Information includes the service URI, which
includes the addressability of the implemented “ChatServiceServlet”. The specified IP
address “192.168.110.10 is the IP address of the Mobicents SIP Servlet AS. As transport

protocol, UDP has been selected.

In the following the behavioural perspective of the STD instance has to be determined.
The UML use case illustration (see Figure 8.6) of the sample chat service includes two
use cases which have to be defined as Requirements within the STD instance. In the
following Table 8.2, the “Login” process (see Figure 8.7 and Figure 8.8) is specified as

“Req01”.

298

8 Framework and Prototype Evaluation

Table 8.2: Behavioural perspective for ""Login" use case (*'"Req01")

Requirement ID ReqO1

Requirement Goal Service User A [sender] sends a login message to the
service and receives a confirmation message. Service
User B [recipient] sends a login message to the
service and receives a confirmation message.

Precondition None

Participating Roles e SIP phone: [sender]

e SIP phone: [recipient]
Communication e SIP UAS non-INVITE: [senderl] - channel a
Interfaces e SIP UAC non-INVITE: [sender2] - channel b

e SIP UAS non-INVITE: [recipientl] - channel c
e SIP UAC non-INVITE: [recipient2] - channel d
Parameters var loginA = [senderl] - r_Request;

var loginB = [recipientl] - r_Request;

var okLoginA = [sender2] - s _Request;

var okLoginB = [recipient2] - s _Request;

var errorLoginA = [sender2] - s _Request;

var errorLoginB = [recipient2] - s_Request;

loginA =
{(Method, “MESSAGE™), (Text, “login=userl’)}
loginB =
{(Method, “MESSAGE”), (Text, “login=user2”)}
okLoginA =
{(Method, “MESSAGE”), (Text, “userl logged in”)}
okLoginB =
{(Method, “MESSAGE™), (Text, “user2 logged in”)}
errorLoginA =
{(Method, “MESSAGE”}, {Text, “Unknown User!
Login failed!”)}
errorLoginB =
{(Method, “MESSAGE”}, {Text, “Unknown User!
Login failed!”)}
Basic Flow P &
a(loginA).
if (loginA.Text ! = "login=user1") then Q else.
b{okLoginA).
c(loginB).
if (loginB.Text ! = "login=user2") then R else.
d{okLoginB).
0
Alternative Flow Q &
(AF1) b{errorLoginA).
0
Alternative Flow R &
(AF2) d{errorLoginB).
0

Both Roles “[sender]” and “[recipient]” are participating within Requirement “Req01”

through both of their Cls “SIP UAS non-INVITE” and “SIP UAC non-INVITE”. Within

299

8.3 Proof of Proposed Framework Concept

the Parameters field, six potentially used SIP MESSAGE requests are parameterised. The
Basic Flow describes the straightforward case by including the appropriate SIP
MESSAGEs in order to log in both participating Roles. Two if-then-else structures are
included in order to handle wrong login messages. The further actions are specified
through both Alternative Flows. In the following Table 8.3, the second Requirement

specifying the “Message Exchange” use case is described.

Table 8.3: Behavioural perspective for “Message Exchange” use case (“Req02”)

Requirement ID Req02

Requirement Goal Service User A [sender] sends a message to the service
which is then forwarded to the service users that are
currently logged in (except for the originator of the
message). Service User A [sender] receives &
confirmation message.

Precondition ReqO1
Participating Roles e SIP phone: [sender]

e SIP phone: [recipient]
Communication e SIP UAS non-INVITE: [senderl] - channel a
Interfaces e SIP UAC non-INVITE: [sender2] - channel b

e SIP UAC non-INVITE: [recipient2] - channel d
Parameters var msgA = [senderl] - r_Request;

var forwMsgB = [recipient2] - s Request;
var okMsgA = [sender2] - s _Request;

MSgA =

{(Method, “MESSAGE’"), (Text, “Hello user2!”)}
forwMsgB =

{(Method, “MESSAGE™™), (Text, “Hello user2!”)}
okMsgA =

{(Method, “MESSAGE™), (Text, “Message was
received!”)}
Basic Flow P &
a(msgA).
d{forwMsgB).
b(okMsgA).
0

Requirement “Req02” includes “Req01” in the Precondition field, in particular the Basic
Flow of “Req01”. Furthermore, “Req02” also specifies the two participating Roles from
the architectural perspective and selects both Cls for the “[sender]” Role and the “SIP

UAC non-INVITE” CI for the “[recipient]” Role. The Parameters field includes the

300

8 Framework and Prototype Evaluation

parameterisation of both the initiated and the forwarded SIP MESSAGE as well as the
confirmation SIP MESSAGE the service sends to the originator, the “[sender]”. The Basic

Flow illustrates the steps to be taken. “Req02” does not contain any Alternative Flows.

8.3.4 Test Building and Test Execution

The STD instance from the previous section can be processed as soon as the test developer
has defined it in the graphical user interface (see Figure 8.3) provided by the “TFUT Web
Application Bundle”. First, it has to be verified that the prototype implementation is
running within the Apache Karaf. The OSGi implementation provides a console which
can be used for specific commands and also for logging. The following Figure 8.12 shows
the list of the currently active OSGi bundles within Apache Karaf.

= Karaf = B

carat@root()= Tist A
START LEVEL 100 , List Threshold: 50
ID | State | Lvl | Version | Name

218 | Actiwe | B0 | 1.0.0.SNAPSHOT | de.fuoas.research.tcu (Test Configuration Unit)

Z19 | Active | B0 | 1.0.0.3NAPSHOT | de.fuoas.research.tfut (TFUT wWeb Application Bundle)
220 | Actiwe | BO | 1.0.0.SNAPSHOT | de.fuoas.research.tcg (Test Code Generator)

221 | Active | B0 | 1.0.0.3NAPSHOT | de.fuoas.research.tcdu (Test Case Derivation Unit)
222 | Active | 80 | 1.0.0.5NAPSHOT | de.fuoas.research.util (Utilities Bundle)

223 | Active | B0 | 1.0.0.3NAPSHOT | de.fuoas.research.tee (Test Execution Environment)
224 | Active | B0 | 1.0.0.5NAPSHOT | de.fuoas.research.tsb (Test Suite Builder)

225 | Actiwe | B0 | 1.0.0.3NAPSHOT | de.fuoas.research.tme (Test Modules Environment)

226 | Active | B0 | 1.0.0.SNAPSHOT | de.fuoas.research.ace (Automatic Composition Engine)
carat@root (> _ W
£ >

Figure 8.12: Active OSGi bundles in Apache Karaf environment

All the specified OSGi bundles of the prototype implementation are listed and can be
identified by their name which includes both the Java package name and the standard
name already known from Figure 8.1. Besides the specified bundles there is also a further
“Utilities Bundle”. Here, so-called helper classes are included to support other bundles

for recurring processing, such as string operations. All bundles are stated as “active”, so

301

8.3 Proof of Proposed Framework Concept

the processing can start. As soon as the test developer has submitted the STD instance on
the web site, the “Automatic Composition Engine” bundle receives the instance and starts

processing (see Figure 8.13).

c:1] Karaf = = “

2015-12-28 11:04:36,046 | INFO | gtp2l8044038-119 | ServicelestDescriptionParser

search.ace - 1.0.0.5NAPSHOT | Received STD instance: ChatSerwice from TFUT

2015-12-28 11:04:36,047 | INFO | gqtp218044038-119 | ServiceTestDescriptionParser

search.ace - 1.0.0.5NAPSHOT | Instantiated test modules (BM1): {[senderl]_1; [sender2]_1; [sender2]_2; [r

ecipientl]_1; [recipient2]_1; [recipient2]_2 }

2015-12-28 11:04:36,048 | INFO | gtp2l8044038-119 | ServiceTestDescriptionParser 226 - de.fuoas.re
_3;

| 226 - de.fuoas.re ,
|
zearch.ace - 1.0.0,5NAPSHOT | Instantiated test modules (BM1): {[senderl]_2; [recipient2] [senderz]_3
|
|
|

226 - de.fuoas.re

2015-12-28 11:04:36,048 | INFO | qtp21l8044038-119 | ServiceTestDescriptionParser 226 - de.fuoas.re
search.ace - 1.0.0.5NAPSHOT | Generated parameters and added to Test Data Pool.
2015-12-28 11:04:36,048 | INFO | gtp218044038-119 | ServiceTestDescriptionParser
zearch.ace - 1.0.0.5NAPSHOT | Start composition phase.

2015-12-28 11:04:38,900 | INFO | gtp2l8044038-119 | ServiceTestDescriptionParser
search.ace - 1.0.0.5NAPSHOT | Added new test data to [senderl]_1 test module instance be

226 - de.fuoas.re
226 - de.fuoas.re
cause of conditio

n.
2015-12-28 11:04:38,900 | INFO | gqtp2l8044038-119 | ServiceTestDescriptionParser | 226 - de.fuoas.re
search.ace - 1.0.0.5NAPSHOT | Added new test data to [recipientl] 1 test module instance because of condi
tion.

2015-12-28 11:04:38,900 | INFO | gtp2l8044038-119 | ServiceTestDescriptionParser

search.ace - 1.0.0.5NAPSHOT | Created behaviour model for: Reg0l.

2015-12-28 11:04:38,901 | INFO | qtp218044038-119 | ServiceTestDescriptionParser | 226 - de.fuoas.re
search.ace - 1.0.0.5NAPSHOT | Created behaviour model for: Req02. w

226 - de.fuoas.re

Figure 8.13: Logging from **Automatic Composition Engine* bundle

The logging displayed in Figure 8.13 shows that as soon as the ACE receives the STD
instance, it instantiates the reusable test modules, six for the behaviour model of “Req01”
and three for the behaviour model of “Req02”. Then, the processing continues with the
instantiation of the test data and the composition of the reusable test module instances. A
logging message also considers that a new test data set is included for a specific reusable
test module instance as soon as a condition has been detected which includes test data
from the specific reusable test module instance. Finally, the behaviour models for both
“Req01” and “Req02” have been generated in the process. In the following Figure 8.14,
the representation of the composed reusable test module instances within the ACE is

illustrated.

302

8 Framework and Prototype Evaluation

4 Req01 BM)

UAC non Invite

[recipient1]_1

UAS non-Invite

[recipient2]_2

UAC non-Invite

[senderl]_1

UAS non-Invite

[sender2]_2

UAC non-Invite

Req02 BM)

x

[sender1]_2 [recipient2]_3 [sender2]_3

-
%

UAS non-Invite UAC non-Invite UAC non-Invite

Figure 8.14: Created behaviour models by ""Automatic Composition Engine' bundle

The behaviour model above refers to “Req01” with six instances of reusable test modules
whereas the lower refers to “Req02” with three instances. In “Req01”, the Alternative

Flows are labelled as “AF1” and “AF2”.

As soon as the behaviour models exist, they are automatically delivered to the “Test Case
Derivation Unit” bundle which derives the test cases. As mentioned in section 7.1.2, the
selection of an appropriate structure of the reusable test modules as well as the chosen
coverage criterion is important with regard to the test coverage and the number of test
cases. Before the test developer created the STD instance, a modified version of both
standard “SIP UAC non-INVITE” and “SIP UAS non-INVITE” reusable test modules
has been chosen. In fact, the “Proceeding” state which includes the handling of
provisional SIP responses has been removed for both reusable test modules because it is
not relevant for the handling of SIP MESSAGE requests. This possibility has already
been discussed in section 7.1.2 (e.g. “SIP UAS non-INVITE without Proceeding”). As

coverage criterion, the recommended All-Round-Trip algorithm has been applied. From

303

8.3 Proof of Proposed Framework Concept

every reusable test module instance within Figure 8.14, two test cases will be derived.
Regarding “Req01”, the amount of test cases for the Basic Flow is 16 (2*2*2*2) as there
are four reusable test module instances visited one after the other. For each Alternative
Flow path, two further test cases are added with the generated and modified test data sets.
So, the sum of all test cases for “Req01” is 20. As “Req02” is based on “Req01”, the
number of test cases now increases significantly. For each further reusable test module
instance within “Req02”, the current number of test cases is multiplied by 2. In total, this
leads to a number of 128 test cases for “Req02”. In total, the ETS generated for the sample
chat service includes 148 test cases. Although they have not been implemented within the
prototype implementation, there are a possibilities to reduce this seemingly high number

of test cases. The concepts are as follows:

1. As soon as all test cases for a Cl have been tested by traversing through one
reusable test module instance, the following reusable test modules using the
identical CI can derive a reduced set of tests (e.g. All-Transitions algorithm).

2. If Requirements are based on each other through the Precondition field (such as
“Req02” depends on “Req01”), it is not necessarily required to execute all test
cases for “Req01” once again before the test cases derived from “Req02” are
executed. In fact, only one test case for the Basic Flow of “Req01” would be
sufficient as basis to verify the functionality of “Req02”. This concept has a
significant impact on the number of test cases. For the sample chat service, the
total number of test cases for both “Reg01” and “Req02” would be 28 (20 for

“Req01” and 8 for “Req02”).

304

8 Framework and Prototype Evaluation

As soon as the test cases have been derived and afterwards generated by the “Test Code
Generator” and “Test Suite Builder” bundles, the test execution can be fulfilled. The
following test execution sample in Figure 8.15 (generated by the TTworkbench after test

case execution) illustrates the “Login” process of “[sender]”.

TTCN-3 Graphical Logging 22

MTC SYSTEM v_sender v_recipient
m 5IP_T3i'pes... 5IP_T3i'pes... m
20:39:54.397 UDP1 ¢ 3&nd Request | sipp
20:39:54.404 UDP1 | S -.=| SIPP
20:39:54.405 UDP1 | RN -.=| SIPP
20:39:54.580 UDP1 |:.- — = | SIPP
20:39:54.588 pess >
20:39:55.600 { pass_»

Figure 8.15: Test execution of "'Login"* process for "[sender]" Role

As discussed in section 7.2, every Role specified in the STD is represented as a test
component in TTCN-3 and therefore also in the test execution process. In Figure 8.15,
besides the SUT (“SYSTEM?”), the Roles “[sender]” (“v_sender”) and “[recipient]”
(“v_recipient”) are included. Between the test components and the SUT, the messaging
is illustrated. Every message that is received by a test components will be highlighted
either by green color (“match”) or red color (“fail”). The example test case (see Figure
8.15) is judged as “pass” at the end of the test component “v_sender”, however, the final

judgement is done by the main test component (MTC).

305

8.3 Proof of Proposed Framework Concept

After all 148 test cases have been executed against the SUT, a test report is generated (see

Figure 8.16).
Report Number 1
Report Date 2015-12-18
Company Name FUDAS
Test Lab Tk |aboratory
System Under Test (SUT) | ChatSenice
Release 1.0
Number of Test Cases 148 y h
Pass 148 @ pace
Fail 0 | ! Eal
Inconclusive 0 100% |)
Error 0 ﬁ Inconclusive
Hone] Error
ﬁ None

Figure 8.16: Test report for test execution against sample chat service

Besides the verdicts with regard to all 148 test cases, the test report contains
documentation of the complete test case execution for each test case (like illustrated in
Figure 8.15). This makes it easy for the test developer to figure out which test case failed

and why it failed. The steps he has to take afterwards are described in section 7.4.

To sum up, the framework and prototype implementation could be evaluated by testing a
sample value-added service. There is potential for improvement regarding the derivation
of test cases within the prototype implementation. With respect to this matter,

recommendations have been stated in this section.

306

8 Framework and Prototype Evaluation

8.4 Conclusion

This chapter has started with the evaluation of the proposed TCF (see section 8.1) with
regard to the requirements stated in section 3.4. It has been analysed whether or not the
requirements have been fulfilled by the proposed TCF. In fact, the framework meets all

the given requirements successfully.

Furthermore, the research prototype (see section 8.2) within this project has been
introduced. The prototype’s architecture with the relevant developed TCF components
and their interactions has been outlined as well as the used underlying Java-based modular
system and service platform OSGi. The research prototype has been successfully adopted
for a proof of concept evaluation of the proposed framework which demonstrates its major

functionalities as well as its general applicability.

To demonstrate the applicability of the novel concept and to evaluate the framework in
general, a typical value-added service has been considered as SUT, a simplified chat
service. Of course, the chat service had to be specified in detail and an implementation
had to be provided. Finally, the TCF process could be exemplified starting from the
specification of the STD instance until the generation of the test report. The test report

includes the results of the test case executions against the SUT.

307

O Conclusions

This chapter concludes the thesis by summarising the main achievements of the research
work (section 9.1). Additionally, limitations of the research are discussed (section 9.2)

and scopes and ideas for further research are suggested (section 9.3).

9.1 Achievements of the Research

This research was dedicated to the development of a novel approach for functional testing
of value-added services within NGN-based environments or SIP-based IP networks. A
novel framework has been defined, which supports the test developer by means of a
straightforward new service and test specification language. It includes all phases of
testing starting from the reading of the STD instance compiled by the test developer and
followed by the automated building of Statecharts-based behaviour models considering
the information retrieved from the STD instance. Furthermore, the process includes an
automated derivation of abstract test cases and the subsequent transformation into
executable TTCN-3 test cases. Finally, it also performs automated testing of the test cases
against the value-added service, the SUT. Because of its support for the whole testing
life-cycle, the framework can be applied as a complete solution for functional value-added

service testing.

309

9.1 Achievements of the Research

The analysis of existing current methodologies in the field of agile testing and Model-

based testing has been illustrated as well as related projects for functional testing (see

section 3.2 and 3.3). Based on the deficits of the related projects, but also on a few assets
they provide, a requirements catalogue on a novel framework for functional testing of
value-added services has been established. It has been analysed whether one of the related
projects could fulfil these requirements, however, an ideal solution could not be found.
Besides, only one related project specifically was referred to the testing of NGN-based

value-added services.

Applying the requirements that evolved from the deficits and assets of related projects, a
novel framework has been developed (see chapter 4). The underlying framework
architecture contains several components such as databases (Test Modules Repository
and Test Data Pool) for data which are used within the tests, graphical user interfaces for
the test developer to either create so-called reusable test modules which specify recurring
behaviour or, alternatively, to define service and test specifications of value-added
services by applying the proposed and novel STD. Furthermore, the framework includes
process components for model constructions, test case derivation and test case generation.
The framework can be instantiated within traditional service development life-cycles and
by applying it, a path of testing is established besides the development path. As it is based
on the informal requirements from which a service developer also retrieves his ideas for
developing a value-added service, it enables requirements-based testing that is similar to
rapid prototyping. This ability of the framework led to a novel concept that has also been
established in this research, the Service Quality Group with a new role introduced in the

process, the service analyst. The idea for this new integration within the process came up,

310

9 Conclusions

because in current solutions, the service customer is not as involved during the

development and testing phase as he could be.

The basis for establishing a requirements-based testing approach lies in one of the key
novelties of this research, the service and test specification language STD (see chapter 5).
Here, the test developer can describe the potential behaviour of a value-added service by
means of reusable behaviour which is determined through Roles in combination with their
Communicationinterfaces. In further related work, traditional test specifications are
applied for this step, but the focus of the STD is different, as it puts the accent on the
SUT. In fact, a Communicationinterface is always part of the SUT and not part of the test
system. A further novel aspect of the STD is its underlying behavioural notation that is
based on the pi-calcus, a simple but very expressive process calculus in order to specify
communication channels. There is no existing related work where a pi-calculus-based

notation has been applied to functional testing.

A further novelty within the research has been discussed with the introduction of the
reusable test modules (see chapter 6). The Statechart-based notation enables a novel view
on specifying behaviour through the differentiation of server cores and client cores. This
TU concept which has been taken from the SIP specification, can be applied to any
application layer protocol. Based on standard SIP-related behaviour, example reusable
test modules have been introduced and it has been demonstrated how they can be
classified through so-called classification templates and formally stored through an XML-
based notation called SCXML. Furthermore, a composition algorithm of reusable test

modules based on STD instances is introduced which leads to the generation of behaviour

311

9.1 Achievements of the Research

models. Another important aspect is the support of concurrency through so-called

hierarchical AND-states which are part of Statechart-based notations.

The derivation of abstract test cases from the behaviour models introduces a new graph-
based illustration of them (see chapter 7). In related works, abstract test cases which are
generally derived from formal models, are represented as sequences within the model.
Here, diverse coverage criteria have been taken into consideration to derive the abstract
test cases. For thorough testing, the All-Round-Trip algorithm has been applied whereas
All-Transitions does not lead to such a high amount of test cases if many reusable test
module instances are involved. An important characteristic of the reusable test modules
has been mentioned, the possibility to easily modify the behavioural description by
removing states that lead to provisional behaviour. Furthermore, the generation of TTCN-

3 test cases based on the abstract test cases is shown by means of a mapping.

In the final chapter 8, the proposed framework has been evaluated regarding the defined
requirements (see section 3.4). Besides, for the verification of the overall framework
functionalities, a research prototype has been developed. This research prototype has been
successfully adopted for a proof of concept of the proposed framework by demonstrating

the process by means of an example value-added service.

Several papers referring to diverse aspects of the results achieved during this research
have been presented at refereed conferences and have received positive comments from

delegates and reviewers.

312

9 Conclusions

9.2 Limitations of the Research

Even though the overall objectives of the research have been met, still some decisions
had to be taken that resulted in limitations imposed on the work. In principle, those
decisions were caused by practical reasons, or to limit the effort spent in areas where no

new insights could be expected. The limitations are summarised below.

1. The research prototype was restricted to only implement as much functionality as
required to prove that the approach taken for functional testing of value-added
services was viable and that the methods developed were actually manageable.
Therefore, the prototype only supports the specification of SIP-based value-added
services. For instance, also the protocols HTTP and RTP could have been taken
into consideration in order to check whether multimedia or web-based data could
be received by a test component, but the value of knowledge would be limited.

2. Although a lot of research has been done in the field of test case derivation, the
selection of an appropriate coverage criteria cannot be finally evaluated.
Generally speaking, this field of research can be expanded.

3. Although it is a component of the TCF architecture, the TME has not been
developed by the research prototype. However, the relevance would have been
low, because new reusable test modules can of course be installed by defining a
classification template and a SCXML description of the corresponding reusable
test module.

4. There is no specific methodology defined within the proposed TCF to reset the
state of the SUT so that a test case execution can be performed properly. It is the

task of the test developer to take this into consideration.

313

9.3 Suggestions and Scope for Future Work

5. The approach only supports specified functional tests or rather positive tests.

Negative tests such as ruggedness tests are not supported.

Despite these limitations, the research has made valid contributions to knowledge and

provided sufficient proof of concept for the proposed approaches.

9.3 Suggestions and Scope for Future Work

This research has advanced the field of automated functional testing of value-added
services in the field of NGN and SIP-based IP networks. However, there are numbers of
areas for future work that can be identified upon the results of this project. Some of these

have already been mentioned, however they are summarised in the following.

1. Further research may address how easily further protocols can be included into
the approach and if every protocol can be described by the reusable test module
concept.

2. The aspect of reusability can be further investigated. Maybe recurring behaviour
can also be detected within the combination of protocols, such as SIP and HTTP.

3. The framework can be applied to different technologies and environments. For
instance, functional testing of diverse software can be performed as soon as the
underlying software models exist. Futher different types of applications can be
analysed (such as Machine-to-Machine applications).

4. Possibly, the TCF can be used for the analysis of protocols.

314

9 Conclusions

5. The ideas regarding the collaboration of service customers, service developers,
service analysts as well as test developers can be further developed, e.g. by means

of an interactive web interface for graphical monitoring and managing.

315

References

10.

11.

12.

13.

3GPP TR 21.905 V7.0.0 (2005), Technical Report, “Vocabulary for 3GPP
Specifications (Release 7)”, 3GPP

3GPP TR 29.962 V6.1.1 (2005), Technical Report, “Signalling interworking
between the 3GPP profile of the Session Initiation Protocol (SIP) and non-3GPP
SIP usage”, 3GPP

Abadi, M.; Fournet, C. (2001), “Mobile values, new names, and secure
communication”, Proceedings of the 28" ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pp. 104-115, ACM

Abadi, M.; Fournet, C. (2004), “Private authentication”, Theoretical Computer
Science, Vol. 322, Issue 3, pp. 427-476, Elsevier

Abrahamsson, P.; Hanhineva, A.; Jaalinoja, J. (2005), “Improving Business Agility
Through Technical Solutions: A Case Study on Test-Driven Development in
Mobile Software Development”, Proceedings of the IFIP TC8 WG 8.6
International Working Conference, pp. 227-243, Springer

Adzic, G. (2011), “Specification by Example: How successful Teams deliver the
right Software”, Manning Publications, Shelter Island, USA, ISBN: 978-1-617-
29008-4

Ammann, P. and Offutt, J. (2008), “Introduction to Software Testing”, Cambridge
University Press, Cambridge, UK, ISBN: 978-0-521-88038-1

Antoniol, G.; Briand, L.C.; Di Penta, M.; Labiche, Y. (2002), “A case study using
the round-trip strategy for state-based class testing”, Proceedings of the 13™
International Symposium on Software Reliability Engineering (ISSRE 2002), pp.
269-279, IEEE

Apache Felix (2015), “Apache Felix Website”, Available at:
http://felix.apache.org, [accessed 2" November 2015]

Apache Karaf (2015), “Apache Karaf”, Available at:
http://karaf.apache.org/index.html, [accessed 2" November 2015]

Apache Tomcat (2015), “Apache Tomcat”, Available at: http://tomcat.apache.org/,
[accessed 30" November 2015]

Apache Velocity (2015), “The Apache Velocity Project”, Awvailable at:
http://velocity.apache.org/texen/devel/, [accessed 3™ November 2015]

Baker, P.; Ru Dai, Z.; Grabowski, J.; Schieferdecker, I.; Williams, C. (2007),
“Model-Driven Testing: Using the UML Testing Profile”, Springer, Berlin,
Germany, ISBN: 978-3-540-72562-6

317

References

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

Binder, R. (1999), “Testing Object-Oriented Systems: Models, Patterns, and
Tools”, Addison-Wesley, Boston USA, ISBN: 0-201-80938-9

Bittner, K. and Spence, I. (2002), “Use Case Modeling”, Addison Wesley, Boston,
USA, ISBN: 978-0-201-70913-1

Borger, E. and Stérk, R. (2003), “Abstract State Machines”, Springer, Heidelberg,
Germany, ISBN: 978-3-642-62116-1

Bozga, M.; Fernandez, J.CI.; Ghirvu, L.; Graf, S.; Krimm, J.P. and Mounier, L.
(1999), “IF: An Intermediate Representation and Validation Environment for
Timed Asynchronous Systems”, Proceedings of the World Congress on Formal
Methods in the Development of Computing Systems, pp. 307-327, Springer

Calisti, M. (2003), “An Agent-Based Approach for Coordinated Multi-Provider
Service Provisioning”, Birkhduser Verlag, Basel, Switzerland, ISBN: 3-7643-
6922-1

Chattopadhyay, S. (2013), “Embedded System Design”, PHI Learning Private
Limited, Delhi, India, ISBN: 978-8-120-34730-4

Cheng, K.-T. and Krishnakumar, A.S. (1993), “Automatic Functional Test
Generation Using The Extended Finite State Machine Model”, Proceedings of the
30™ Conference on Design Automation, pp. 86-91, IEEE

Cochennec, J.-Y. (2002), “Activities on next-generation networks under Global
Information Infrastructure in ITU-T”, Communication Magazine, Vol. 40, Issue 7,
pp. 98-101, IEEE

Cockburn, A. (2000), “Writing Effective Use Cases (Crystal Series for Software
Development)”, Addison Wesley, Boston, USA, ISBN: 978-0-201-70225-5

Cohn, M. (2004), “User Stories Applied: For Agile Software Development”,
Addison-Wesley, Boston USA, ISBN: 0-321-20568-5

Commons SCXML (2015), “Apache Commons SCXML”, Available at:
http://commons.apache.org/proper/commons-scxml/, [accessed 3™ November
2015]

Craggs, |.; Sardis, M.; Heuillard, T. (2003), “AGEDIS Case Studies: Model-based
testing in industry”, Proceedings of the 15t European Conference on Model Driven
Software Engineering, pp. 106-117

Dai, Z.R.; Grabowski, J.; Neukirchen, H.; Pals, H. (2004), “From Design to Test
with UML - Applied to a Roaming Algorithm for Bluetooth Devices”,
Proceedings of the 16" International Conference on Testing of Communication
Systems (TestCom 2004), pp. 33-49, Springer

Devroey, X.; Perrouin, G.; Schobbens, P.-Y. (2014), “Abstract Test Case
Generation for Behavioural Testing of Software Product Lines”, Proceedings of
the 18" International Software Product Line Conference (Companion Volume for
Workshops, Demonstrations and Tools), pp. 86-93, ACM

Ding, J. (2010), “Advances in Network Management”, CRC Press, Boca Raton,
USA, ISBN: 978-1-4200-6455-1

318

References

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Ding, L. and Liu, L. (2008), “Modelling and Analysis of the INVITE Transaction
of the Session Initiation Protocol Using Coloured Petri Nets”, Proceedings of the
29™ International Conference on Application and Theory of Petri Nets and Other
Models of Concurrency (PETRI NETS 2008), pp. 132-151, Springer

Eberlein, A. (1997), “Requirements Acquisition and Specification for
Telecommunication Services”, PhD thesis, Department of Electical & Electronic
Engineering, University of Wales, Swansea, United Kingdom

Eberlein, A.; Crowther, M.; Halsall, F. (1997), “Development Of New
Telecommunications Services Using An Expert System”, BT Technology Journal,
Vol. 15, Issue 1, pp. 217-222, ACM

Eberlein, A. and Halsall, F. (1997), “Telecommunications service development: A
design methodology and its intelligent support”, Engineering Applications of
Artificial Intelligence, Vol. 10, Issue 6, pp. 647-663, Elsevier

Eclipse TPTP (2015), “Eclipse Test & Performance Tools Platform Project”,
Available at: https://eclipse.org/tptp, [accessed at 24" April 2015]

Eichelmann, T.; Fuhrmann, W.; Trick, U.; Ghita, B. (2010), “Enhanced concept of
the TeamCom SCE for automated generated services based on JSLEE®,
Proceedings of the 8" International Network Conference (INC 2010), pp. 75-84,
Heidelberg, Germany, ISBN: 978-1-84102-259-8

El-Far, I.LK. and Whittaker, J.A. (2001), “Model-Based Software Testing”,
Encyclopedia on Software Engineering, VVol. 2, Wiley

Elvior (2015), “TestCast TTCN-3 Professional”, Available at:
http://www.elvior.com, [accessed 30" October 2015]

Ernits, J.; Kull, A.; Raiend, K.; Vain, J. (2006), “Generating TTCN-3 Test Cases
from EFSM Models of Reactive Software Using Model Checking”, Gl
Jahrestagung (2), VVol. 94, pp. 241-248, Gl

ETSI ES 201 873-1 V4.7.1 (2015), ETSI Standard, “Methods for Testing and
Specification (MTS); The Testing and Test Control Notation version 3; Part 1:
TTCN-3 Core Language”, ETSI

ETSI ES 201 873-2 V3.2.1 (2007), ETSI Standard, “Methods for Testing and
Specification (MTS); The Testing and Test Control Notation version 3; Part 2:
TTCN-3 Tabular presentation Format (TFT)”, ETSI

ETSI ES 201 873-3 V3.2.1 (2007), ETSI Standard, “Methods for Testing and
Specification (MTS); The Testing and Test Control Notation version 3; Part 3:
TTCN-3 Graphical presentation Format (GFT)”, ETSI

ETSI ES 201 873-5 V4.7.1 (2015), ETSI Standard, “Methods for Testing and
Specification (MTS); The Testing and Test Control Notation version 3, Part 5:
TTCN-3 Runtime Interface (TRI1)”, ETSI

ETSI ES 201 873-6 V4.7.1 (2015), ETSI Standard, “Methods for Testing and
Specification (MTS); The Testing and Test Control Notation version 3, Part 6:
TTCN-3 Control Interface (TCI)”, ETSI

319

References

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

ETSI ES 202 951 V1.1.1 (2011), ETSI Standard, “Methods for Testing and
Specification (MTS); Model-Based Testing (MBT); Requirements for Modelling
Notations”, ETSI

ETSI Tdoc RP 030375 V0.10 (2003), Technical Document, “Overview of 3GPP
Release 5”, ETSI Mobile Competence Centre

ETSI TR 180 000 V1.1.1 (2006), Technical Report, “NGN Terminology”, ETSI
TISPAN

ETSI TS 122 001 V10.0.0 (2011), Technical Specification, “Principles of circuit
telecommunication services supported by a Public Land Mobile Network
(PLMN)”, ETSI

ETSI TS 122 101 V10.7.0 (2011), Technical Specification, “Service aspects;
Service principles”, ETSI

ETSI TS 122 105 V10.0.0 (2011), Technical Specification, “Services and service
capabilities”, ETSI

ETSI TS 122 228 V10.4.1 (2011), Technical Specification, “Service requirements
for the Internet Protocol (IP) multimedia core network subsystem (IMS)”, ETSI

Evans, E. J. (2003), “Domain-Driven Design: Tackling Complexity in the Heart of
Software”, Addison-Wesley, Boston, USA, ISBN: 0-321-12521-5

Felderer, M.; Zech, P.; Fiedler, F.; Breu, R. (2010), “A Tool-Based Methodology
for System Testing of Service-Oriented Systems“, Proceedings of the 2
International Conference on Advances in System Testing and Validation Lifecycle
(VALID 2010), pp. 108-113, IEEE

Felderer, M.; Chimiak-Opoka, J.; Zech, P.; Haisjackl, C.; Fiedler, F.; Breu R.
(2011), “Model Validation in a Tool-Based Methodology for System Testing of
Service-Oriented Systems”, Advances in Software, Vol. 4 no 1 & 2, pp. 129-143,
IARIA

Fischer, M; Toenjes, R.; Lasch, R. (2011), “A New Approach For Automatic
Generation of Tests for Next Generation Network Communication Services®,
Processings of the 16" Conference on Emerging Technologies & Factory
Automation (ETFA 2011), pp. 1-6, IEEE

Feudjio, A.-G.V. (2009), “Model-Driven Functional Test Engineering for Service
Centric Systems”, Proceedings of the 5™ International Conference on Testbeds and
Research Infrastructures for the Development of Networks & Communities and
Workshops (TridentCom 2009), pp. 1-7, IEEE

Feudjio, A.-G.V. (2011), “A Methodology For Pattern-Oriented Model-Driven
Testing of Reactive Software Systems”, Doctor of Engineering Dissertation,
Faculty of Electrical Engineering and Computer Science, Technical University of
Berlin, Germany

Fokus!MBT (2015), “Fokus!MBT”, Available at: http://www.fokusmbt.com/
key features/index.html, [accessed 24" April 2015]

320

References

S7.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Gartner, M. (2012), “ATDD by Example: A Practical Guide to Acceptance Test-
Driven Development”, Addison-Wesley, Upper Saddle River, USA, ISBN: 978-0-
321-78415-5

George, E. and Williams, L. (2004), “A structured experiment of test-driven
development”, Information and Software Technology, Vol. 46, Issue 5, pp. 337-
342, ACM

Glitho, R. H.; Khendek, F.; De Marco, A. (2003), “Creating Value Added Services
in Internet Telephony: An Overview and a Case Study on a High-Level Service
Creation Environment”, IEEE Transactions on Systems, Man, and Cybernetics —
Part C: Applications and Reviews, Vol. 33, No. 4, pp. 446-457, IEEE

Glover, A. (2009), “Agile testing: a whole team approach”, Available at:
http://www.javaworld.com/article/2072867/agile-testing--a-whole-team-
approach.html, [accessed 30" October 2015]

Gregory, J. and Crispin, L. (2015), “More Agile Testing”, Addison-Wesley, Upper
Saddle River, USA, ISBN: 978-0-321-96705-3

Guo, J; Chen, J.; Cheng, B.; Liu, D. (2009), “A Choreography Approach for Value-
Added Services Creation”, Proceedings of the 5" International Conference on
Wireless Communications, Networks and Mobile Computing (WiCom 2009), pp.
1-4, IEEE

Gutjahr, W.J. (1999), “Partition Testing vs. Random Testing: The Influence of
Uncertainty”, IEEE Transactions on Software Engineering, Vol. 25, Issue 5, pp.
661-674, IEEE

Hartmann, A. and Nagin, K. (2004), “The AGEDIS tools for model based testing”,
Proceedings of the 2004 ACM SIGSOFT International Symposium on Software
testing and analysis (ISSTA 2004), pp. 129-132, ACM

Harel, D. (1996), “The STATEMATE Semantics of Statecharts”, Transactions on
Software Engineering and Methodology (TOSEM), Vol. 5, Issue 4, pp. 293-333,
ACM

Harel, D. and Kugler, H. (2004), “The RHAPSODY Semantics of Statecharts (or,
On the Executable Core of the UML)”, Integration of Software Specification
Techniques for Applications in Engineering, VVol. 3147, pp. 325-354, Springer

Harel, D. and Politi, M. (1998), “Modeling Reactive Systems with Statecharts: The
Statemate Approach (Software Development)”, McGraw-Hill Inc., New York
City, USA, ISBN: 978-0-070-26205-8

Harte, L.; Hoenig, M.; McLaughlin, D.; Kikta, R. (1999), “CDMA 1S-95 for
Cellular and PCS: Technology, Applications, and Resource Guide (1% edition)”,
McGraw-Hill Professional, New York City, USA, ISBN: 978-0-0702-7070-1

Haschemi, S. (2009), “Model Transformations to Satisfy All-Configurations-
Transitions on Statecharts”, Proceedings of the 6™ International Workshop on
Model-Driven Engineering (MoDeVVa 2009), ACM

321

References

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

IEEE Std 610.12 (1990), IEEE Standard, “IEEE Standard Glossary of Software
Engineering Terminology”, IEEE

IEEE Std 829 (2008), IEEE Standard, “IEEE Standard for Software and System
Test Documentation”, IEEE

IEEE Std 1490 (2011), IEEE Standard, “IEEE Guide — A Guide to the Project
Management Body of Knoledge (PMBOK® Guide) — Fourth Edition”, IEEE

IETF RFC 1034 (1987), Request For Comments, “Domain Names — Concepts and
Facilities”, IETF

IETF RFC 1035 (1987), Request For Comments, “Domain Names -
Implementation and Specification”, IETF

IETF RFC 1939 (1996), Request For Comments, “Post Office Protocol — Version
37, IETF

IETF RFC 2234 (1997), Request For Comments, “Augmented BNF for Syntax
Specifications: ABNF”, IETF

IETF RFC 2543 (1999), Request For Comments, “SIP: Session Initiation Protocol
(Version 1.0)”, IETF

IETF RFC 2616 (1999), Request For Comments, “Hypertext Transfer Protocol —
HTTP/1.1”, IETF

IETF RFC 3261 (2002), Request For Comments, “SIP: Session Initiation
Protocol”, IETF

IETF RFC 3262 (2002), Request For Comments, “Reliability of Provisional
Responses in the Session Initiation Protocol (SIP)”, IETF

IETF RFC 3311 (2002), Request For Comments, “The Session Initiation Protocol
(SIP) UPDATE Method”, IETF

IETF RFC 3428 (2002), Request For Comments, “Session Initiation Protocol (SIP)
Extension for Instant Messaging”, IETF

IETF RFC 3515 (2003), Request For Comments, “The Session Initiation Protocol
(SIP) Refer Method”, IETF

IETF RFC 3550 (2003), Request For Comments, “RTP: A Transport Protocol for
Real-Time Applications”, IETF

IETF RFC 3725 (2004), Request For Comments, “Best Current Practices for Third
Party Call Control (3pcc) in the Session Initiation Protocol (SIP)”, IETF

IETF RFC 3903 (2004), Request For Comments, “Session Initiation Protocol (SIP)
Extension for Event State Publication”, IETF

IETF RFC 4353 (2006), Request For Comments, “A Framework for Conferencing
with the Session Initiation Protocol (SIP)”, IETF

IETF RFC 4511 (2006), Request For Comments, “Lightweight Directory Access
Protocol (LDAP): The Protocol”, IETF

322

References

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.
105.

106.

IETF RFC 4566 (2006), Request For Comments, “SDP: Session Description
Protocol”, IETF

IETF RFC 5321 (2008), Request For Comments, “Simple Mail Transfer Protocol”,
IETF

IETF RFC 6086 (2011), Request For Comments, “Session Initiation Protocol (SIP)
INFO Method and Package Framework”, IETF

IETF RFC 6665 (2012), Request For Comments, “SIP-Specific Event
Notification”, IETF

ISO/IEC/IEEE 29119-2 (2013), International Standard, “Software and systems
engineering — Software testing — Part 2: Test processes”, ISO/IEC/IEEE

ITU (2011), Constitution and Convention, “Collection of the basic texts of the
International Telecommunication Union adopted by the Plenipotentiary
Conference”, ITU

ITU-T 1.210 (1993), Recommendation, “Principles of Telecommunication
Services supported by an ISDN and the means to describe them”, ITU-T

ITU-T 1.211 (1993), Recommendation, “B-ISDN Service aspects”, ITU-T

ITU-T M.3340 (2009), Recommendation, “Framework for NGN service fulfilment
and assurance management across the business to business and customer to
business interfaces”, ITU-T

ITU-T M.3050.1 (2007), Recommendation, “Enhanced Telecom Operations Map
(eTOM) — The business process framework”, ITU-T

ITU-T Q.3946.1 (2013), Recommendation, “Conformance tests specification for
the session initiation protocol — Part 2: Test suite structure and test purposes”, ITU-
T

ITU-T Q.3948 (2011), Recommendation, “Service testing framework for VVoIP at
the user-to-network interface of next generation networks”, ITU-T

ITU-T Q.3949 (2012), Recommendation, “Real-time multimedia service testing
framework at the user-to-network interface of next generation networks”, ITU-T

ITU-T T.174 (1996), Recommendation, “Application Programming Interface
(API) for MHEG-1", ITU-T

ITU-T X.680 (2015), Recommendation, “Abstract Syntax Notation One (ASN.1):
Specification of basic notation”, ITU-T

ITU-T Y.2001 (2004), Recommendation, “General overview of NGN”, ITU-T

ITU-T Y.2012 (2010), Recommendation, “Functional requirements and
architecture of next generation networks”, ITU-T

ITU-T Z.100 (2007), Recommendation, “Specification and Description Language
(SDL)”, ITU-T

323

References

107.

108.

109.

110.

111.
112.
113.

114.

115.

116.

117.

118.

119.

120.

121.

Jacobson, 1.; Christerson, M.; Jonsson, P. (1992), “Object-Oriented Software
Engineering: A Use CASE Approach (ACM Press)”, Addison-Wesley, ISBN: 978-
0-201-54435-0

Janevski, T. (2014), “NGN Architectures, Protocols and Services”, John Wiley &
Sons Inc, Hoboken, USA, ISBN: 978-1-118-60720-6

JBoss (2015), “JBoss Developer”, Available at: http://www.jboss.org/, [accessed
30" November 2015]

Jetty (2015), “Jetty — Servlet Engine and Http Server”, Available at:
http://www.eclipse.org/jetty/, [accessed 5" November 2015]

JSR 289 Spec (2008), “JSR 289: SIP Servlet v1.1”, Java Specification Request
JUnit (2015), “JUnit”, Available at: http:/junit.org, [accessed 10" May 2015]

Karlesky, M.J.; Bereza, W.I.; Erickson, C.B. (2006), “Effective Test Driven
Development for Embedded Software”, Proceedings of the IEEE International
Conference on Electro/information Technology, pp. 382-287, IEEE

Kihn, P. (1991), “Vorlesungsskript Nachrichtenvermittlung 1 und 11" (translated
title: “Lecture notes message switching | and I1”), University Stuttgart, Institut fur
Nachrichtenvermittlung und Datenverarbeitung

Lehmann, A.; Eichelmann, T.; Trick, U.; Lasch, R.; Ricks, B.; Tonjes, R. (2009),
“TeamCom: A Service Creation Platform for Next Generation Networks®,
Proceedings of the 4" International Conference on Internet and Web Applications
and Services (ICIW 2009), pp. 12-17, IEEE

Lehmann, A. (2014), “Service composition based on SIP peer-to-peer networks”,
PhD thesis, School of Computing and Mathematics, Plymouth University, United
Kingdom

Ling, J.; Ping, P.; Chun, Y.; Jinhua, L.; Qiming, T. (2009), “Rapid Service Creation
Environment for Service Delivery Platform based on Service Templates”,
Proceedings of the International Symposium on Integrated Network Management
(IM 2009), pp. 117-120, IEEE

Lombard Hill Group (2015), “Software Reuse 101: What Is Software Reuse?”,
Available at: http://lombardhill.com/articles/software-reuse-101-what-is-
software-reuse/, [accessed 20" July 2015]

Magedanz, T. and de Gouveia, F.C. (2006), “IMS - the IP Multimedia System as
NGN Service Delivery Platform”, Elektrotechnik & Informationstechnik, Vol. 123,
Issue 7-8, pp. 271-276, Springer

Malik, Q.A.; Jaéskeldinen, A.; Virtanen, H.; Katara, M. (2010), “Model-Based
Testing using System vs. Test Models — What is the Difference?”, Proceedings of
the 17" IEEE International Conference and Workshops on Engineering of
Computer-Based Systems (ECBS 2010), pp. 291-299, IEEE

Mathur, A.P. (2008), “Foundations of Software Testing”, Pearson Education India,
New Delhi, India, ISBN: 978-8-1317-0795-1

324

References

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.
133.
134.
135.

136.

137.
138.

139.
140.

Menkens, C. (2010), “From service delivery to application delivery in the
telecommunication industry”, Proceedings of the IEEE GLOBECOM Workshops
(GC Wkshps 2010), pp. 1339-1344, IEEE

Milner, R. (1989), “Communication and Concurrency”, Prentice Hall, Upper
Saddle River, New Jersey, USA, ISBN: 0-13-115007-3

Milner, R. (1992), “Functions as processes”, Mathematical Structures in Computer
Science, Vol. 2, Issue 2, pp. 119-141, Cambridge University Press

Milner, R.; Parrow, J.; Walker, D. (1992), “A calculus for mobile processes”,
Information and Computation, Vol. 100, Issue 1, pp. 1-40, Elsevier

Mobicents (2015), “Mobicents — The Open Source Cloud Communications
Platform”, Awvailable at: http://www.mobicents.org/, [accessed 30" November
2015]

MongoDB (2015), “MongoDB”, Available at: https://www.mongodb.org/,
[accessed 3" November 2015]

OASIS (2007), OASIS Standard, “Web Services Business Process Execution
Language Version 2.0”, OASIS

Obermann, K. and Horneffer, M. (2013), “Datennetztechnologien fiir Next
Generation Networks (2" edition)” (translated title: “Data network technologies
for Next Generation Networks (2" edition)”), Springer Vieweg, Wiesbaden,
Germany, ISBN: 978-3-8348-2098-3

OMA OSPE (2005), “OMA Service Provider Environment Requirements
(Candidate Version 1.0)”, OMA

OMA ORG (2007), “Dictionary for OMA Specifications (Approved Version 2.6)”,
OMA

OMG (2002), “CORBA 3.0 —- OMG IDL Syntax and Semantics”, Version 3.0
OMG (2011a), “Unified Modeling Language (UML)”, Version 2.4.1
OMG (2012a), “OMG System Modeling Language (SysML)”, Version 1.3

OMG (2012Db), “Service oriented architecture Modeling Language (SoaML)”,
Version 1.0.1

OMG (2012c), “Common Object Request Broker Architecture (CORBA/IIOP)”,
Version 3.3

OMG (2013a), “UML Testing Profile (UTP)”, Version 1.2

OMG (2013b), “UML Profile for Advanced and Integrated Telecommunication
Services (TelcoML)”, Version 1.0

OMG (2014), “Object Contraint Language (OCL)”, Version 2.4

OpenTTCN (2015), “OpenTTCN Tester 20127, Available at:
http://www.openttcn.com, [accessed 30" October 2015]

325

References

141.

142.

143.

144,

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

Oracle (2010), “The SIP Servlet Tutorial”, Available at:
https://docs.oracle.com/cd/E19355-01/820-3007/gfmpa/index.html, [accessed 30"
of November 2015]

OSGi Alliance R5 (2012), “OSGi Core Release 57, OSGi specification, Version
5.0.0

Pancur, M.; Ciglaric, M.; Trampus, M.; Vidmar, T. (2003), “Towards Empirical
Evaluation of Test-Driven Development in a University Environment”,
EUROCON 2003 Computer as a Tool, Vol. 2, pp. 83-86, IEEE

Pezzeé, M. and Young, M. (2009), “Software testen und analysieren” (translated
title: “Testing and analysing software”), Oldenbourg, Munich, Germany, ISBN: 3-
486-58521-6

Poikselkd, M. and Mayer, G. (2009), “The IMS: IP Multimedia Concepts and
Services (3" edition)”, John Wiley & Sons Inc, Hoboken, USA, ISBN: 978-0-
4707-2196-4

Pretschner, A.; Prenninger, W.; Wagner, S.; Kihnel, C.; Baumgartner, M.;
Sostawa, B.; Zdlch, R.; Stauner, T. (2005), “One Evaluation of Model-Based
Testing and its Automation”, Proceedings of the 27" International Conference on
Software Engineering (ICSE 2005), pp. 392-401, ACM

RMI (2015), “Remote Method Invocation”, Available at:
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html,
[accessed 12" of May 2015]

Ryan, M.D. and Smyth, B. (2011), “Applied pi calculus”, Formel Models and
Techniques for Analyzing Security Protocols, V. Cortier and S. Kremer

Ryndina, O.; Kritzinger, P. (2004), “Improving Requirements Specification for
Communication Services with Formalised Use Case Models”, Proceedings of the
Southern African Telecommunication Networks and Applications Conference
(SATNAC), Spier Wine Estate, South Africa

Ryndina, O.; Kritzinger, P. (2005), “Analysis of Structured Use Case Models
through Model Checking”, South African Computer Journal, Vol. 35, pp. 84-96,
South African Computer Society

Salina, J.L. and Salina, P. (2007), “Next Generation Networks — Perspectives and
Potentials”, John Wiley & Sons Inc, Hoboken, USA, ISBN: 978-0-470-51649-2

Solis, C. and Wang, X. (2011), “A Study of the Characteristics of Behaviour
Driven Development”, Proceedings of the 37" EUROMICRO Conference on
Software Engineering and Advanced Applications (SEAA 2011), pp. 383-387,
IEEE

Sommerville, lan (2012), “Software Engineering (9" edition)”, Pearson
Deutschland GmbH, Munich, Germany, ISBN: 978-3-8689-4099-2

Tahat, L.H.; Vaysbury, B.; Korel, B.; Bader, A.J. (2001), “Requirement-based
automated black-box test generation”, Proceedings of the 25" Annual

326

References

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

International Computer Software and Applications Conference (COMPSAC
2001), pp. 489-495, IEEE

Telling TestStories (2015), “Telling TestStories”, Awvailable at:
http://teststories.info, [accessed 25" April 2015]

Toral-Cruz, H.; Argaez-Xool, J.; Estrada-Vargas, L.; Torres-Roman, D. (2011),
“An Introduction to VolP: End-to-End Elements and QoS Parameters”, VolP
Technologies, Vol. 1, Issue 4, pp. 79-94, InTech

Trick, U. and Weber, F. (2004), “SIP, TCP/IP und Telekommunikationsnetze (1%
edition)” (translated title: “SIP, TCP/IP and Telecommunication Networks (1%
edition)”), Oldenbourg, Munich, Germany, ISBN: 3-486-27529-1

Trick, U. and Weber, F. (2009), “SIP, TCP/IP und Telekommunikationsnetze (4"
edition)” (translated title: “SIP, TCP/IP and Telecommunication Networks (4"
edition)”), Oldenbourg, Munich, Germany, ISBN: 3-486-59000-5

Trick, U. and Weber, F. (2015), “SIP und Telekommunikationsnetze (5" edition)”
(translated title: “SIP and Telecommunication Networks (5" edition)”), De Gruyter
Oldenbourg, Berlin, Germany, ISBN: 3-486-77853-3

TT-Medal Consortium (2005), “A Vision for Automated Testing [White Paper]”,
Available at: http://www.testingtech.com/download/publications/
TTmedalWhitePaper.pdf, [accessed 14" June 2014]

TT-Medal ITEA (2005), “Advanced Test Processes using TTCN-3”, Available at:
https://itea3.org/project/result/download/5565/TT-Medal%20Innovation%
20Report.pdf, [accessed 14" June 2014]

TTCN-3 (2015), “TTCN-3 Test System Reference Architecture”, Available at:
http://www.ttcn-3.org/index.php/about/referrence-architecture, [accessed 10%
October 2015]

TTsuite-SIP (2015), “TTsuite-SIP — Analyzing Internet System Components,
Voice-over-IP, and SIP, the 3G Signaling Protocol”, Available at:
http://www.testingtech.com/solutions/ttsuite-sip.php, [accessed 12" October
2015]

TTworkbench (2015), “TTworkbench — The Reliable Test Automation Platform”,
Available at: http://www.testingtech.com/products/ ttworkbench.php, [accessed
10" May 2015]

TTworkbench User Guide (2015), “TTworkbench 20 User’s Guide”, Available at:
http://www.testingtech.com/download/users_guides/T Tworkbench_UserGuide.pd
f, [accessed 5" November 2015]

UTML (2015), “Die UTML Notation fur Musterbasierte Modelgetriebene
Entwicklung von Tests” (translated title: “The UML notation for pattern-based
model-driven development of tests”), Technology Article, Available at:
http://wwwold.fokus.fraunhofer.de/de/sqc/wir_bieten/technologien/utml/index.ht
ml, [accessed 13" July, 2015], Fraunhofer FOKUS

327

References

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

Utting, M. and Legeard, B. (2006), “Practical Model-Based Testing: A Tools
Approach”, Morgan Kaufmann Publishers Inc., San Francisco, USA, ISBN: 978-
0-1237-2501-1

Van Deursen, A. (2001), “Program Comprehension Risks and Opportunities in
Extreme Programming”, Proceedings of the 8" Working Conference on Reverse
Engineering (WCRE 2001), pp. 176-185, IEEE

W3C (2012), Recommendation, “W3C XML Schema Definition Language (XSD)
1.1 Part 1: Structures”, W3C

W3C (2015), Recommendation, “State Chart XML (SCXML): State Machine
Notation for Control Abstraction”, W3C

Wacht, P.; Lehmann, A.; Eichelmann, T.; Trick, U.; Fischer, F.; Lasch, R.; Toenjes,
R. (2010), “Ein neues Verfahren zum automatisierten Testen wvon
Mehrwertdiensten“ (translated title: “A new method to automated testing of value-
added services”), Proceedings of the Fifteenth VDE/ITG Mobilfunktagung, pp. 73-
79, VDE

Wacht, P.; Eichelmann, T.; Lehmann, A.; Trick, U. (2011a), “A New Approach to
Design Graphically Functional Tests for Communication Services®, Proceedings
of the 4" IFIP International Conference on New Technologies, Mobility and
Security (NTMS 2011), pp. 1-5, IEEE

Wacht, P.; Eichelmann, T.; Lehmann, A.; Fuhrmann, W.; Trick, U.; Ghita, B.
(2011b), “A New Approach to model a formalised Description of a
Communication Service for the Purpose of Functional Testing", Proceedings of the
4™ International Conference on Internet Technologies & Applications (ITA 2011),
Wrexham, UK, ISBN: 978-0-946881-68-0

Wacht, P.; Lehmann, A.; Eichelmann, T.; Trick, U. (2011c), “ComGeneration: die
Dienstebeschreibung als Basis fir automatisierte Tests* (translated title:
“ComGeneration: a service description as basis for automated tests”), Proceedings
of the Fifteenth VDE/ITG Mobilfunktagung, pp. 118-123, VDE

Weber, F. (2012), “Quality of Service optimization framework for Next Generation
Networks”, PhD thesis, School of Computing and Mathematics, Plymouth
University, UK

Wendland, M.-F.; Hoffmann, A.; Schieferdecker, 1. (2013), “Fokus!MBT - A
Multi-Paradigmatic Test Modeling Environment”, Proceedings of the Workshop
on ACadeMics Tooling with Eclipse (ACME 2013), ACM

Willcock, C.; Deil3, T.; Tobies, S.; Keil, S.; Engler, F.; Schulz, S. (2011), “An
Introduction to TTCN (2" edition)”, Wiley Publishing, Chichester, West Sussex
PO19 8SQ, England

Yenduri, S. and Perkins, L. (2006), “Impact of Using Test-Driven Development:
A Case Study”, Proceedings of the International Conference on Software
Engineering Research and Practice (SERP 2006), pp.126-129, CSREA Press

Yue, T.; Briand, L.C.; Labiche, Y. (2009), “A Use Case Modeling Approach to
Facilitate the Transition Towards Analysis Models: Concepts and Empirical

328

References

180.

181.

182.

183.

Evaluation”, Proceedings of the 12™" International Conference on Model Driven
Engineering Languages and Systems (MODELS 2009), pp. 484-498, ACM/IEEE

Yue, T.; Ali, S.; Briand, L.C. (2011), “Automated Transition from Use Cases to
UML State Machines to Support State-based Testing”, Technical Report 2011-05,
University of Oslo, Norway

Zander, J.; Dai, Z.R.; Schieferdecker, I.; Din, G. (2005), “From U2TP Models to
Executable Tests with TTCN-3 — An Approach to Model Driven Testing”,
Proceedings of the 17" International Conference on Testing of Communication
Systems (TestCom 2005), pp. 289-303, Springer

Zhang, G.; Yue, T.; Ali, S. (2013), “Modeling Crisis Management Systems with
the Restricted Use Case Modeling Approach”, Proceedings of the 16™
International Conference on Model Driven Engineering Languages and Systems
(MODELS 2013), ACM/IEEE

Xiaoping, C. and Maag, S. (2013), “Passive Testing on Performance Requirements
of Network Protocols”, Proceedings of the 27" International Conference on
Advanced Information Networking and Applications Workshop (WAINA 2013), pp.
1439-1444, |IEEE

329

Appendix A — Abbreviations

3GPP

A
ACE
ACM
ALG
AML
API
AS
ASN.1
ASM
ATDD
ATS

B2BUA
BDD
BPEL

CCS
CCXML
CD

CH

CLF

CS

Third Generation Partnership Project

Automatic Composition Engine
Association for Computing Machinery, Inc.
Application Layer Gateway

AGEDIS Modeling Language

Application Programming Interface
Application Server

Abstract Syntax Notation One

Abstract State Machines

Acceptance Test-Driven Development
Abstract Test Suite

Back-to-Back User Agent
Behaviour-Driven Development

Business Process Execution Language

Calculus of Communication Systems

Call Control eXtensible Markup Language
Codec

Component Handling

Campaign Loader File

Call Server

331

Appendix A — Abbreviations

D

DNS Domain Name System

DTMF Dual-tone multi-frequency signaling

E

ETSI European Telecommunications Standards Institute
EFSM Extended Finite State Machine

EMF Eclipse Modeling Framework

ETS Executable Test Suite

F

FSM Finite State Machine

G

GUI Graphical user interface

H

HTTP Hypertext Transfer Protocol

I

IDL Interactive Data Language

IEEE Institute of Electrical and Electronics Engineering
IEC International Electrotechnical Commission

ICT Information and Communications Technology
IETF Internet Engineering Task Force

IMS IP Multimedia Subsystem

IP Internet Protocol

ISO International Organization for Standardization
ITEA Information Technology for European Advancement
ITU International Telecommunication Union

IVR Interactive Voice Response

332

Appendix A — Abbreviations

JAR
JSR

MBT
MDTE
MGW
MMS
MOF
MTC

NGN

OASIS
OMA
OMG
O8]

PA
PSTN
PTC

QoS

Java Archive

Java Specification Request

Model-Based Testing
Model-Driven Test Engineering
Media Gateway

Mobicents Media Server

Meta Object Facility

Main Test Component

Next Generation Networks

Organization for the Advancement of Structured Information Standards
Open Mobile Alliance
Object Management Group

Open Systems Interconnection

Platform Adapter
Public Switched Telephone Network
Parallel Test Component

Quality of Service

333

Appendix A — Abbreviations

R

RATS Requirements Acquisition and specification of Telecommunication
Services

RFC Request for Comments

RTP Real-Time Transport Protocol

RUCM Restricted Use Case Modeling

S

SA SUT Adapter

SAP Service Access Point

SBC Session Border Controller

SCXML State Chart extensible Markup Language

SDK Software Development Kit

SDL Specification and Description Language
SDP Service Delivery Platform

SEE Service Execution Environment

SGW Signalling Gateway

SIP Session Initiation Protocol

SCTP Stream Control Transmission Protocol
SOA Service-Oriented Architecture

SoAML Service oriented architecture Modeling Language
SQG Service Quality Group

STD Service Test Description

SUT System/Service under Test

SysML Systems Modeling Language

T

TelcoML Telecommunication Modeling Library
TCF Test Creation Framework

TCI TTCN-3 Control Interface

TRI TTCN-3 Runtime Interface

TCP Transmission Control Protocol

334

Appendix A — Abbreviations

TCU
TCDU
TE
TEE
TFUT
TDD
TLS
™
TMC
TME
TMR
TPTP
TSB
TTCN

u2TP
UA
UAC
UAS
UDP
UMTS
URI
UTML

W3C

Test Configuration Unit

Test Case Derivation Unit
TTCN-3 Executable

Test Execution Environment
Test Framework User Terminal
Test-Driven Development
Transport Layer Security

Test Management

Test Management & Control
Test Modules Environment
Test Modules Repository

Test and Performance Tools Platform
Test Suite Builder

Testing and Test Control Notation

UML 2.0 Testing Profile

User Agent

User Agent Client

User Agent Server

User Datagram Protocol

Universal Mobile Telecommunication System
Uniform Ressource Identifier

Unified Test Modeling Language

World Wide Web Consortium

335

Appendix A — Abbreviations

X
XML eXtensible Markup Language
XSD XML Schema Descriptor

336

Appendix B — Own Publications

337

Appendix B — Own Publications

Published in ITG-Fachbericht Mobilfunk (Mobilfunktagung 2010), pp. 73-80, University
of Applied Sciences Osnabriick, Germany, ISBN: 978-3-8007-3269-3

Ein neues Verfahren zum automatisierten Testen von Mehrwert-
diensten

Patrick Wacht', Armin Lehmann', Thomas Eichelmann', Ulrich Trick', Marten Fischer?, Rolf Lasch?,
Ralf Toenjes

'Forschungsgruppe und Labor fiir Telekommunikationsnetze, Fachhochschule Frankfurt/Main
2Labor fiir Hochfrequenztechnik und Mobilkommunikation, Fachhochschule Osnabriick

Kurzfassung

Um eine gute Qualitit entwickelter Mehrwertdienste zu erreichen, ist sorgfiltiges Testen erforderlich. Dies kann
je nach Vorgehensweise sehr hohe Kosten verursachen. In diesem Aufsatz wird daher ein Ansatz fiir ein Testver-
fahren beschrieben, das ein systematisches und effektives Testen von Diensten mit relativ geringem Aufwand
ermoglicht. Dabei beruht das Verfahren darauf, dass ausgehend von einem Zustandsautomaten, welcher den zu
testenden Dienst beschreibt, automatisch eine Testfallmenge generiert wird und mit Hilfe dieser Testfallmenge

der Dienst automatisch getestet und das Ergebnis des Tests analysiert werden kann.

1 Einleitung

1.1 Motivation und Uberblick

In naher Zukunft besteht bei den Netzbetreibern und
Diensteanbietern ein groBer Bedarf, schnell, einfach
und kostenoptimiert neue Dienste, sogenannte Mehr-
wertdienste, anbieten zu konnen. Hauptgrund hierfiir
ist, dass mit normalen Telefongesprichen kaum noch
Einnahmen erzielt werden konnen und daher auf Ba-
sis der durch NGN (Next Generation Networks) ge-
gebenen neuen Dienstemdglichkeiten neue Einnah-
mequellen erschlossen werden miissen. Zudem ent-
stehen bei den Kunden durch die zukiinftig in diesem
Bereich prinzipiell unbegrenzten technischen Mog-
lichkeiten auch neue Kommunikationsbediirfnisse.
Daher ist es fiir Netzbetreiber und Dienste-Provider
auflerordentlich wichtig, leistungsfihige Diensteplatt-
formen, sogenannte Service Creation and Delivery-
Plattformen, zur Verfiigung zu haben, mit denen in
kiirzester Zeit mit geringstem Aufwand neue Anwen-
dungen entwickelt und im Markt eingefiihrt werden
konnen.

Ein groBes Problem bei der Entwicklung von Diens-
ten bleibt aber das Testen der neu entwickelten Diens-
te, zumal es aufgrund wachsender Komplexitit und
geringerer Entwicklungszeit bis zur Einfiihrung eines
Dienstes zunechmend an Bedeutung gewinnt. Es ist
jedoch noch nicht geklért, wie Testverfahren in die
Dienstentwicklung, und insbesondere in eine Dienst-
entwicklungsumgebung, systematisch integriert wer-
den konnen. Im BMBF-Projekt ComGeneration (Test-
gesteuerte Evolution und automatisierte Bereitstellung
von Kommunikationsdiensten) [1] soll daher eine
durchgéngige Losung erarbeitet werden, die den gan-
zen Lebenszyklus eines Dienstes unterstiitzt, indem
sie die Entwicklung, den Test und die Bereitstellung

von Multimedia-Kommunikationsdiensten vereinfacht
und damit Zeit- und Kostenaufwand reduziert.

1.2 Stand der Technik

Von diesen Anforderungen ausgehend wurde im
Rahmen des BMBF-Forschungsprojekts TeamCom
(IMS- oder P2P-basierte Dienstebereitstellung und —
entwicklung fiir kundenspezifische Kommunikations-
prozesse) [2] ein neues Verfahren zur automatisierten
Entwicklung von Mehrwertdiensten entwickelt und
praktisch verifiziert. Hier wurden in einem ersten
Schritt aus realistischen Kommunikationsabldufen
einzelne, hidufig wiederkehrende Kommunikations-
bausteine abgeleitet. Diese Kommunikationsbausteine
werden nun bei der Erstellung von neuen und kom-
plexen Mehrwertdiensten immer wieder verwendet
und konnen maBgeblich zu einer schnellen und kos-
tengiinstigen Diensteentwicklung beitragen. In der
Folge war es das Ziel, ausgehend von einer einfachen
textuellen Beschreibung teilautomatisiert den ge-
wiinschten Mehrwertdienst auf einem JAIN SLEE AS
(Java API for Integrated Networks Service Logic E-
xecution Environment Application Server) im Netz
bereitzustellen. Dabei wird — wie im unteren Teil von
Bild 1 dargestellt — die genannte Dienstskizze mittels
BPEL (Business Process Execution Language) [3]
formal beschrieben, wobei u.a. auf die oben genann-
ten Kommunikationsbausteine zuriickgegriffen wird.

Ein Compiler erzeugt aus der BPEL-basierten Dienst-
beschreibung den auf dem JSLEE Application Server
ausfiihrbaren Java-Code. Hierzu werden die aus dem
BPEL-Prozess resultierenden XML-Dateien mit Hilfe
eines Codegenerators in Java-Klassen und XML-
Beschreibungsdateien (Deskriptoren) transformiert.
Der Dienst besteht aus den Java-Klassen, die den zu-
gehorigen JSLEE Service Building Block (SBB) rep-

338

Appendix B — Own Publications

riasentieren, und aus dazugehorigen Deskriptoren. In
der Folge werden die Java-Klassen mittels Codegene-
rator kompiliert, die resultierende Software ist auf ei-
nem JAIN SLEE Application Server lauffihig und re-
alisiert den neuen Mehrwertdienst.

In einem weiteren Schritt geht es nun darum, durch
Qualititssicherung in Form von automatisierten Soft-
waretests zu gewihrleisten, dass die realisierten
Dienste den Anforderungen geniigen. Um diese Au-
tomatisierung zu gewihrleisten, wird dieser Ansatz
mit TTCN-3 (Testing and Test Control Notation Ver-
sion 3) [4] realisiert. Hierbei handelt es sich um eine
abstrakte Testbeschreibungssprache, welche von der
ETSI [5] und der ITU-T [6] normiert wurde. In der
aktuellen Version unterstiitzt sie die modularisierte
Erstellung von Testszenarien fiir nachrichtenbasierte
oder prozedurale Systeme. Der Standard gibt dabei
nicht nur die Notation vor, in der Tests geschrieben
werden, sondern beschreibt auch Schnittstellen, mit
denen die Tests nach aulen kommunizieren.

1.3 Gliederung

Das folgende Kapitel 2 behandelt das Konzept des
Projektes und geht naher darauf ein, wie automatisiert
Testfille aus Zustandsautomaten gewonnen werden
konnen. Kapitel 3 geht ndher auf die Struktur der
entwickelten modularen Teilzustandsautomaten ein
und in Kapitel 4 wird der komplette Ansatz beispiel-
haft an einem Dienst veranschaulicht.

2 Modellbasiertes Testen

2.1 Konzept

Zustands-
automaten-
bausteine

TTCN-3-
Codegenerator

Dienste-
modellicrung
mit Zustands-

automat

Testfiille
(TTCN-3)

MSCs fiir
Testfiille Test Framework

Dienste- -
beschreibung

Dienste- Java-
modellierung Codegenerator
mit BPEL

SIPAS

Kommuni-
Kations-
bausteine

(Java-SBBs)

i b

g

Bild 1 Verfahren zum automatisierten Entwickeln
und Testen von Kommunikationsmehrwertdiensten

Das Ziel ist es, ein neues Verfahren zum automatisier-
ten Testen der auf einem SIP AS (Session Initiation

Protocol) bereitgestellten Mehrwertdienste zu entwi-
ckeln. Hierbei wird Wert darauf gelegt, dass auch das
BPEL-Design verifiziert wird, daher wird gemaf Bild
1 ebenfalls von der urspriinglichen, vom zukiinftigen
Dienstenutzer gelieferten Dienstebeschreibung ausge-
gangen. In der Folge erstellt der Testentwickler, wie
im oberen Teil des Bildes 1 dargestellt, aus verfligba-
ren, zuvor erarbeiteten wiederverwendbaren Zu-
standsautomatenbausteinen (z.B. fiir bestimmte Kate-
gorien und Protokolle wie SIP, TCP, HTTP oder Da-
tenbanken) einen den Dienst aus Testsicht
beschreibenden Zustandsautomaten. Alle moglichen
zu durchlaufenden Zustinde und Zustandsiibergidnge
inkl. der diese hervorrufenden Events (Eingangssigna-
le) und resultierenden Ausgangssignale vom Starten
bis zum Beenden des Zustandsautomaten beschreiben
die zu testenden Nachrichtenabliufe, die z.B. in Form
von MSCs (Message Sequence Charts) beschrieben
werden kénnen. Da jedoch die resultierenden Testfil-
le innerhalb eines realen Test Frameworks auf den
Dienst und damit den SIP AS angewandt werden sol-
len, wird auf Basis der parametrisierten Zustandsau-
tomaten mittels eines entsprechenden Codegenerators
TTCN-3-Code generiert.

Der grundlegende Ablauf beim modellbasierten Tes-
ten, der auch beim ComGeneration-Ansatz zum Tra-
gen kommt, wird anhand des Bildes 2 verdeutlicht
und wird in den folgenden Abschnitten niher be-
schrieben.

S [D srhatn

Tamtargebnas

Bild 2 Vorgehensweise beim modellbasierten Testen

2.2 Entwicklung des Verhaltensmodells

Um einen Dienst testen zu konnen, muss der Tester
wissen, wie der Dienst sich den Anforderungen nach
verhalten sollte. Um das Verhalten des Dienstes zu
verstehen, sollte der Tester auf alle verfiigbaren
Hilfsmittel zuriickgreifen. Dazu zihlen beispielsweise
Dokumente, wie die Anforderungsbeschreibung, Use
Cases, die Spezifikation der Software und weitere
Entwurfsdokumente. Aus den gegebenen Informatio-
nen tiber den Dienst erfdhrt der Tester, welche Einga-
ben unter welchen Bedingungen moglich sind, welche
Protokolle bei der Implementierung verwendet wer-

339

Appendix B — Own Publications

den und wie die entsprechende Ausgabe bzw. Reakti-
on des Dienstes aussehen sollte. Auf der Grundlage
seines Wissens iiber den Dienst kann der Tester dann
ein entsprechendes Verhaltensmodell erzeugen.

Zunidchst besteht die Aufgabe des Testers darin, sich
zu entscheiden, welches Verhaltensmodell er fiir seine
Zwecke nutzen mochte. Fiir das ComGeneration-
Projekt wurden mehrere Modelle evaluiert, z.B. zahl-
reiche UML-Diagramme sowie Zustandsautomaten.
Die Kriterien fiir den Einsatz von Zustandsautomaten
haben iiberwogen, da aus diesen beispielsweise be-
reits Algorithmen zur Verfiigung stehen, um automati-
siert Testfdlle ableiten zu konnen. AuBerdem existie-
ren fiir zahlreiche standardisierte Protokollabléufe be-
reits Zustandsautomaten.

Im Allgemeinen handelt es sich bei Zustandsautoma-
ten um ein verbreitetes Beschreibungsmittel fiir ge-
dichtnisbehaftetes Dienstverhalten. Ein typischer Ver-
treter der Zustandsautomaten sind die deterministi-
schen, endlichen Zustandsautomaten. Sie haben eine
endliche Anzahl von Zustinden. Determinismus be-
deutet, dass in jedem Zustand fiir jede giiltige Eingabe
aus dem Eingabealphabet eindeutig eine Transition
bestimmt wird, die diesen Zustand verldsst. Im Com-
Generation-Projekt wurden ferner erweiterte Zu-
standsautomaten verwendet, welche die Mdoglichkeit
bieten, Bedingungen beziiglich Variablen zum Schal-
ten von Transitionen zu definieren. Diese liegen meist
in Form von Boole’schen Ausdriicken vor.

Wie bereits erwithnt, ist ein weiterer positiver Aspekt
von Zustandsautomaten, dass fiir zahlreiche Protokol-
le, die von einem Dienst genutzt werden, bereits stan-
dardisierte Abldufe in Form von Zustandsautomaten
existieren. Diese Ablidufe dienen im ComGeneration-
Projekt als Grundlage fiir die Definition von modula-
ren wiederverwendbaren Teilzustandsautomaten, wel-
che dem Tester in einem Repository zur Verfiigung
gestellt werden. Der Tester kann nun das Verhaltens-
modell erzeugen, indem er die relevanten Teilzu-
standsautomaten auf Basis des von ihm angenomme-
nen Dienstverhaltens komponiert. Das entstandene
Verhaltensmodell ist dann je nach Komplexitit des
Dienstes ein mehr oder weniger umfangreicher Zu-
standsautomat.

2.3 Generierung der Testfallmenge

Da nun das Verhaltensmodell in Form eines Zustands-
automaten vorliegt, konnen die relevanten Testfille
abgeleitet werden. Ein Testfall ist spezifiziert durch
den Anfangszustand des Systems und der Umgebung,
die Werte aller Eingabedaten, die notwendigen Bedin-
gungen und die erwarteten Ausgaben [7]. Im Kontext
von Zustandsautomaten entsprechen Testfille den
Pfaden durch einen Automaten. Eine Testfallmenge ist

eine endliche Menge solcher Testfille. Diese Test-
fallmenge sollte anhand von festgelegten Kriterien
generiert werden, um einerseits anhand einer festge-
legten Systematik testen zu konnen und andererseits
eine Abschitzung machen zu konnen, was getestet
wurde und wo noch Fehlerpotential vorhanden ist. Im
Folgenden werden Kriterien beschrieben, die bei der
Ermittlung der Testfallmenge verwendet werden
konnten [8] [9].

Das einfachste Abdeckungskriterium fiir endliche Zu-
standsautomaten ist die Zustandsiiberdeckung. Die
Zustandsiiberdeckung hat das Ziel, dass jeder Zu-
stand, in dem sich ein zu testendes System (der
Dienst) befinden kann, mindestens einmal besucht
wird.

Um ein etwas umfangreicheres Abdeckungskriterium
handelt es sich bei der Ereignisiiberdeckung. Hierbei
sollte fiir jeden Zustand, in dem sich das System be-
findet, jedes in diesem Zustand ausfiihrbare Ereignis
mindestens einmal durchgefiihrt werden. Fiir einen
endlichen Zustandsautomaten entspricht dieses Krite-
rium einer Kanteniiberdeckung, d.h., da jede Kante
des Automaten einem Ereignis entspricht, sollte jedes
Ereignis mindestens einmal eintreten.

Ein noch michtigeres Kriterium als die Ereignisiiber-
deckung ist die Uberdeckung der Kombination von
Ereignissen [8]. Dieses Kriterium ist erfiillt, wenn je-
de eingehende Kante eines Zustands in Kombination
mit jeder ausgehenden Kante ausgefiithrt wird. Dies
bedeutet fiir einen Zustand z mit x eingehenden Kan-
ten und y ausgehenden Kanten, dass jede mogliche
Sequenz (eingehende Sequenz, ausgehende Kante)
mindestens einmal ausgefiihrt wird, also der Zustand
z genau x*y Mal innerhalb eines Tests entsprechend
einer solchen Testfallmenge durchlaufen wird.

Das stirkste Uberdeckungskriterium ist die Pfadiiber-
deckung, bei der jede mogliche Abfolge von Ereignis-
sen mindestens einmal durchgefiihrt wird. Eine derar-
tige Uberdeckung ist in der Regel bei etwas komple-
xeren Systemen nicht mehr durchfiihrbar. Ein System
ist fiir das Kriterium der Pfadiiberdeckung schon dann
zu komplex, wenn es dynamische Schleifen enthilt.
Weitere komplexe Systeme sind nebenldufige und
nicht-deterministische Systeme. Ebenso konnen zu
viele Zustinde und Kanten eine zu grofle Testfallmen-
ge erzeugen und so den zeitlichen Rahmen, in dem
die Tests durchgefiihrt werden sollen, sprengen.

Unabhingig davon, welches der hier aufgefiihrten
Uberdeckungskrilerien verwendet wird, entsteht dar-
aus eine Menge an Testfillen. Aus jedem ermittelten
Testfall kann anhand der Nachrichtenfolge auch ein
Message Sequence Chart abgeleitet werden.

340

Appendix B — Own Publications

Wenn die Testfallmenge vollstindig ist, wird der ei-
gentliche Test durchgefiihrt. Dieser Schritt beinhaltet
beim ComGeneration-Ansatz zunichst eine Umset-
zung der identifizierten Testfille in TTCN-3-
Quellcode iiber einen Codegenerator. Wenn die Um-
setzung erfolgt ist, wird der erzeugte TTCN-3-Code in
eine Testumgebung eingebunden, das "System under
Test" wird iiberpriift, und ein Testergebnis wird aus-
gegeben. Bei der Analyse der Testergebnisse wird das
tatsidchliche mit dem erwarteten Systemverhalten ver-
glichen. Weicht das tatséchliche Verhalten vom erwar-
teten ab, muss berpriift werden, ob das Verhaltens-
modell korrekt ist. Gegebenfalls muss dies verdndert
werden. Andernfalls ist das abweichende tatsichliche
Verhalten als Fehler des "Systems under Test" zu wer-
ten.

3 Modulare Teilzustandsauto-
maten

Im vorigen Kapitel wurde bereits erwihnt, dass das
vom Tester zu entwickelnde Verhaltensmodell des
Dienstes ein Zustandsautomat ist, der durch die Kom-
position von modularen Teilzustandsautomaten ent-
steht. Diese Teilzustandsautomaten entstammen be-
stimmten Kategorien bzw. Protokollen (z.B. SIP, TCP,
Datenbanken etc.).

Die Verkniipfung der Teilzustandsautomaten stellt bei
der Modellierung eines Verhaltensmodells durch ei-
nen Tester die einzige verdnderliche Komponente dar,
die internen Abldufe der Teilzustandsautomaten sind
unverinderlich. Um zu gewihrleisten, dass aus der
Verkniipfung der Teilzustandsautomaten ein Gesamt-
zustandsautomat entsteht, wurde der so genannte
Transaction User (TU) eingefiihrt. Der TU versteht
sich als die Vermittlungseinheit zwischen den Rollen
eines Application Servers als User Agent Server und
User Agent Client (bzw. als Client und Server bei-
spielsweise bei TCP-Verbindungen) und gleichzeitig
als Bindeglied zwischen den Kkleinteiligen Teilzu-
standsautomaten. Nur mittels des TUs kann ein Test-
entwickler die Logik eines bestimmten Dienstes ab-
bilden.

Nachfolgend sind in Bild 3 beispielhaft drei Teilzu-
standsautomaten dargestellt, welche aus dem SIP-
Repository entnommen und vom SIP-Standard abge-
leitet sind (RFC3261 [10]). Bei diesen Teilzustandsau-
tomaten handelt es sich im engeren Sinn um Templa-
tes, bei denen abstrakt die moglichen Nachrichtenver-
laufe dargestellt sind. Konkretisiert werden die
Templates erst, wenn sie von Testern eingesetzt wer-
den, um aus den Automaten Vorgehensmodelle fiir
Dienste zu erzeugen.

Insgesamt sind zum aktuellen Zeitpunkt insgesamt 13
Teilzustandsautomaten fiir das SIP-Protokoll definiert

worden. Die in Bild 3 dargestellten Teilzustandsauto-
maten beschreiben die Nachrichten-folgen beim User
Agent Server fiir die SIP-Methode INVITE.

e nI 1} Tumarnlivira s

S S
3]

N T

- TU-> B0 -0

[§]

TrreprEmorEma->1
>

- dctniaral e

Tarnrttner BT

]

i}

Tiver b tmaout: 3T,

]

{3 Tusmhim vt i@ s

-
(§] [$]

Bild 3 Modulare Teilzustandsautomaten zu SIP-
INVITE fiir den User Agent Server

Die jeweiligen internen Zustandsiiberginge sind fest
und werden bei der Nutzung des jeweiligen Teilzu-
standsautomaten immer verwendet. Die Schnittstellen
der Teilzustandsautomaten nach aufien miissen vom
Tester bearbeitet werden. Protokollinterne Uberginge
(z.B. die Statusnachrichten 2xx oder 3xx-6xx) konnen
verwendet werden, um Teilzustandsautomaten aus ei-
nem Repository miteinander zu verkniipfen. Eine sol-
che Statusnachricht (z.B. TU->3xx-6xx) ist z.B. ein
Ausgang des onCall-Teilzustandsautomaten und
gleichzeitig Eingang des doHandleCall-Teilzustands-
automaten. Uber diese identische Schnittstelle konnen
die beiden Teilzustandsautomaten verbunden werden,
wenn ein solches Verhalten vom Dienst erwartet wird.
Genauso verhilt es sich mit weiteren Nachrichten.

Bei der Testentwicklung kann es zwischenzeitlich von
entscheidender Bedeutung sein, dass fiir einen Dienst
konkrete Statusmeldungen angegeben werden kdnnen,
um den korrekten Dienstablauf in dem Zustandsauto-
maten darstellen zu konnen. Dies wird in den Teilzu-

341

Appendix B — Own Publications

standsautomaten iiber die []-Klammern realisiert. Bei
einem zusammengefassten Ereignis wie 3xx-6xx kann
hier beispielsweise konkret die Angabe ,,[303]* erfol-
gen. Die Angabe definiert somit den Fall, den der Tes-
ter fiir den Dienst erwartet. In den Klammern konnen
auch mehrere Parameter angegeben werden.

Eine weitere Erginzung zu den Standardautomaten
stellen bei Ereignissen in den Teilzustandsautomaten
die { }-Klammern dar, welche in der Schreibweise
immer vor dem relevanten Ereignis stehen. Durch
diese Klammern werden Bedingungen festgehalten,
die erfiillt sein miissen, damit dieses Ereignis eintre-
ten kann. Als Beispiel konnte hierfiir eine Uberprii-
fung definiert werden, ob es sich bei einer bestimmten
SIP-URI um eine erlaubte URI handelt. Hier kann
sich der Tester Boole’scher Ausdriicke bedienen (z.B.
inviteURI == (alice | bob)).

Neben den aus dem SIP-Standard bekannten Nach-
richten und Statusmeldungen gibt es fiir jeden Teilzu-
standsautomaten ein Ausgangssignal, welches als
AnyEvent gekennzeichnet ist. Dieses Ereignis ist
stellvertretend fiir alle moglichen Ereignisse, die ei-
nen Zustandsiibergang zu einem weiteren Teilzu-
standsautomaten erwirken konnen. Derartige Ereig-
nisse werden fiir jeden Teilzustandsautomaten von
dem TU initiiert, also kann hiermit die eigentliche
Logik des Dienstes abgebildet werden. AuBerdem
konnen nur durch das AnyEvent doméneniibergrei-
fende Zustandsiiberginge erfolgen (also von einem
SIP-Teilzustandsautomat zu Teilzustandsautomaten
von z.B. TCP oder HTTP). Es ist zu beachten, dass es
fiir jeden Zustandsautomat beliebig viele AnyEvents
geben kann.

Im folgenden Kapitel soll nun anhand eines Beispiel-
dienstes gezeigt werden, wie eine Testentwicklung
durch Komposition der relevanten Teilzustandsauto-
maten realisiert werden kann.

4 Beispiel: '"Redirect Service"

Der ,,Redirect Service* ist ein Dienst, welcher eine
Rufumleitung realisiert. Eine praktische Verwendung
des Dienstes konnte so aussehen, dass ein Konsumen-
tenanruf zu einem Pizza-Dienst auf einen konkreten
Pizza-Lieferanten umgeleitet wird, damit der Konsu-
ment dort eine Essensbestellung aufgeben kann.

Der Dienst funktioniert wie folgt: Zunichst ruft der
Konsument iiber seinen SIP User Agent beim Dienst
unter der SIP-URI sip:pizza@Diensteanbieter.de an.
Dieser tiberpriift, ob der Anrufer iiberhaupt fiir den
Dienst registriert ist. Ist dies der Fall, wird tiber eine
Datenbankabfrage der Pizza-Lieferant ermittelt. Wenn
der Pizza-Lieferant gefunden werden konnte, wird der

Anrufer beispielsweise zu
antonio @pizzaservice.de umgeleitet.

sip:pizzeria-

Um einen Test fiir diesen Dienst zu entwickeln, miis-
sen zundchst die relevanten Teilzustandsautomaten
identifiziert werden. Da der Dienst auf eine SIP-
INVITE-Nachricht des User Agents wartet, werden
auf jeden Fall die Teilzustandsautomaten onCall und
doHandleCall vom User Agent Server (INVITE) ver-
wendet. Auflerdem erfolgt dienstseitig eine Daten-
bankabfrage. Hierfiir werden die Teilzustandsautoma-
ten TCP_Connect (Client_SYN), TCP_Disconnect
(Client_FIN) und DB_Request benétigt.

In Bild 4 wird der fertige Gesamtzustandsautomat
bzw. das Verhaltensmodell dargestellt. Es konnen die
fiinf Teilzustandsautomaten erkannt werden, die im
Vorfeld identifiziert worden sind.

TS b g

T (ot |52

Bild 4
ce

Gesamtzustandsautomat zum Redirect Servi-

Initiiert wird der Dienst iiber ein eingehendes SIP-
INVITE vom Dienstkonsumenten, somit ist onCall
von UAS_INVITE der erste relevante Teilzustandsau-
tomat. Beim eingehenden INVITE ist eine Parameter-
liste mit Namen beigefiigt. Hierbei handelt es sich um
eine Liste mit URIs, die fiir den Dienst registriert
sind. Aus dem onCall-Teilzustandsautomat konnen

342

Appendix B — Own Publications

nun vom Testentwickler die drei folgenden moglichen
Ausginge definiert werden:

1. Es kommt direkt zu einem Transportfehler,
weil keine Nachricht empfangen wurde. Der
TU wird benachrichtigt, der Ubergang er-
folgt in den terminate-Zustand des Teilzu-
standsautomaten UAS_INVITE (doHandle-
Call).

2. Mboglicherweise ist die URI des Konsumen-
ten nicht registriert, sodass er den Dienst
nicht nutzen darf. Dies fiihrt dazu, dass durch
den TU eine 400er-Statusmeldung initiiert
wird. Der Zustandsiibergang erfolgt in den
complete-Zustand des Teilzustandsautomaten
doHandleCall.

3. Der letzte Fall spiegelt den Erfolgsfall wie-
der. Hier ist die URI registriert und ein
Transportfehler bleibt aus. Als Folge initiiert
der TU einen TCP-Verbindungsaufbau zur
Datenbank, es kommt zu einem Wechsel in
den Teilzustandsautomaten TCP_Connect.

Sobald das SYN-Ereignis erfolgt ist, beginnt der Ab-
lauf innerhalb von TCP_Connect. Nun wird eigentlich
nur unterschieden, ob der Verbindungsaufbau erfolg-
reich ist oder nicht. Falls er nicht erfolgreich ist, wird
der TU entsprechend informiert, dass es zu einem ti-
meout gekommen ist. In diesem Fall intiiert der TU
eine 500er-Statusmeldung, der Ubergang erfolgt in
den complete-Zustand des UAS_Invite (doHandle-
Call). Der Erfolgsfall wird erreicht, sobald der TU das
ACK vom DB-Client erhalten hat, welcher fiir den
Aufbau der Verbindung zur Datenbank zustindig ist.
Daraufhin erzeugt der TU ein Query-Statement und
schickt dieses an den DB-Client, dann erfolgt ein Zu-
standswechsel zum Teilzustandsautomaten DB_Re-
quest.

Im Teilzustandsautomat DB_Request fiihrt ein Trans-
portfehler fiihrt dazu, dass der TU wiederum eine
500er-Statusmeldung initiiert, welche dann iiber den
UAS an den User Agent des Konsumenten herausge-
schickt wird. Sowohl ein Timeout bei der Datenbank-
abfrage als auch das korrekte Erhalten einer Antwort
auf das Query Statement fithren dazu, dass durch den
TU der TCP-Verbindungsabbau zur Datenbank durch
ein FIN-Ereignis eingeleitet wird. Dieser Ubergang
fithrt zu dem entsprechenden Teilzustandsautomaten
TCP_Disconnect.

Auch bei diesem Teilzustandsautomaten konnen die
bekannten Fille des TransportError und timeout auf-
treten. Allerdings hat ein Verbindungsabbau grund-
sitzlich keinen Einfluss darauf, ob der Dienst korrekt
funktioniert, weil der Abbau nicht relevant ist. So fin-
det sich beim letzten Ubergang vom TCP_Disconnect
zu doHandleCall nur eine Verbindung. Bei diesem
Ubergang, welcher in den complete-Zustand von do-

HandleCall miindet, initiiert der TU entweder eine
500er-Statusmeldung, wenn kein Eintrag in der Da-
tenbank gefunden wurde oder im anderen Fall eine
302er-Statusmeldung. Durch diese Statusmeldung
wird die Rufumleitung eingeleitet, dies représentiert
den Erfolgsfall.

Die Verkniipfung der Teilzustandsautomaten ist been-
det und das Verhaltensmodell in Form eines Gesamt-
zustandsautomaten fiir den Redirect Service liegt vor.
Das folgende Bild 5 zeigt nun, wie der Erfolgsfall als
Testfall in einem Message Sequence Chart dargestellt
werden kann.

User Agant J—
& = - =
INVITE
L
o 10Trving b s
fakaweolig SYN
¥, Pact) -
o EYNeACK
ACK
-
| ack
setect |
[r— SELECT .
|, Response
|, Response
Fineack |
(Raseerisel FivAGH
-
L ACK
L FRIACK
Ak o
|, ok
0z
32 Maved ™ o
ly Termparsry ponrme
ACK .

Bild 5 Message Sequence Chart zum Erfolgsfall des
Redirect Service

Je nachdem, welche Teilzustandsautomaten im Ver-
haltensmodell verwendet wurden, werden die zugeho-
rigen Rollen des Application Servers in dem MSC in-
tegriert. Da zwei UAS_INVITE-Teilzustands-
automaten verwendet wurden, wird die Rolle
SIP_UAS bendtigt. AuBerdem wird die Rolle DB
Client benétigt, welche fiir die datenbankspezifischen
Nachrichtenabliufe gebraucht wird (TCP-
Verbindungsauf- und abbau sowie Datenbankabfrage).

Sobald alle Testfille aus einem Verhaltensmodell ab-
geleitet sind, miissen diese mittels eines Codegenera-
tors automatisiert in TTCN-3-Code umgesetzt wer-
den. Der folgende Quellcode zeigt einen kleinen Aus-
zug aus dem Erfolgsfall des Redirect Services,
welcher hier prototypisch als Testfall in TTCN-3-
Code spezifiziert wurde.

module Redirect {
type record SIPInvite {
charstring sipAdress,

343

Appendix B — Own Publications

template SIPInvite t_invite(charstring address)
:= { address };
mponent

testcase tc Erfolg() runs on UAA
RedirectService {

system

var Database DBComp;

DBComp := Database.create;

map (mtc:sipPort, system:sipPort);
map (DBComp:dbPort, system:dbPort);
de"));

sipPort.send (t_invite("al
alt {
[1 sipPort.receive (t_SIPMessage (100)) f{
DBComp.start(tc_ConnectDBBehaviour());
}
[] sipPort.receive {
setverdict (fail) ;
)
}
)

function
Database {

tc_ConnectDBBehaviour () runs on

5 Fazit und Ausblick

Die Betrachtung der Teilzustandsautomaten aus Kapi-
tel 3 und dem Beispieldienst aus Kapitel 4 mag den
Eindruck erwecken, dass die Testentwicklung auf-
grund der komplexen Gebilde sehr schwierig werden
konnte, je umfangreicher ein Dienst wird. Allerdings
hat der Testentwickler eine andere Sicht auf die Teil-
zustandsautomaten als in Bild 3 dargestellt. Er kennt
die Teilzustandsautomaten lediglich als Black Boxes,
die er per Drag-and-Drop in einem Tool fiir sein Vor-
gehensmodell aktiviert. Auferdem unterstiitzt das
Tool den Tester dabei, die Schnittstellen der Black
Boxen nach auBlen zu behandeln.

Bei der Modellierung mehrerer Dienste hat sich erge-
ben, dass bestimmte Black-Boxen bei Standard-
Protokollabldufen immer identisch miteinander ver-
kniipft werden. Somit lassen sich vereinzelte Black-
Boxen zu Gruppen zusammenfassen, die dem Tester
wiederum als komplexere Black-Boxen zur Verfii-
gung gestellt werden konnen. Dies vereinfacht eben-
falls die Modellierung des Verhaltensmodells durch
den Tester.

In naher Zukunft werden die bestehenden Teilzu-
standsautomaten weiter optimiert und um weitere er-
ginzt. Auflerdem muss ein effizienter Algorithmus
gefunden werden, der die MSCs und damit die Test-
fille aus den Gesamtzustandsautomaten bzw. Verhal-
tensmodellen ableitet. Zuvor muss allerdings analy-
siert werden, welches Uberdeckungskriterium fiir die
Testumgebung verwendet wird.

Ein weiterer Aspekt ist die Implementierung eines
Codegenerators, welcher die aus den Zustandsauto-
maten abgeleiteten Testfille in passenden TTCN-3-
Code umwandelt. Eine korrekte und lauffihige Um-
setzung in TTCN-3-Code setzt voraus, dass die Ver-
haltensmodelle und die Testfall-Beschreibungen in
einer Form vorliegen (z.B. XML), die durch einen
Parser interpretiert werden konnen.

6 Literatur

[1] http://www.ecs.fh-osnabrueck.de/27619.html

[2] http://www.ecs.th-osnabrueck.de/teamcom.html

[3] http://www.ibm.com/developerworks/library/spe
cification/ws-bpel

[4] http://www.ttcn-3.0rg

[5] http://www.etsi.org/WebSite/technologies/ttcn3.a

Spx

[6] http://www.itu.int/ITU-T/studygroups/com07/
tten.html

[7] El-Far, 1K.; Whittaker, A.: Model-Based

Software Testing . Encyclopedia of Software
Engineering (edited by J.J. Marciniak) . Wiley,
2001

[8] Liggesmeyer, P.: Software Qualitit — Testen, A-
nalysieren und Verifizieren von Software
Spektrum Akademischer Verlag Heidelberg,
2009

[9] Hartmann, A.: AGEDIS - Final Project Report .
http://www.agedis.de/downloads.shtml, Feb.
2004

[10] Rosenberg, J.; Schulzrinne, H.; Camarillo, G.;
Johnston, A.; Peterson, J.; Sparks, R.; Handley,
M.; Schooler, E.: RFC 3261 — SIP: Session
Initiation Protocol . IETF, June 2002

344

Appendix B — Own Publications

Published in Proceedings for the Sixth Collaborative Research Symposium on Security,
E-learning, Internet and Networking (SEIN 2010), pp. 61-74, University of Plymouth,
Plymouth, UK, ISBN: 978-1-84102-269-7

I ntegration of M odel-Based Functional Testing
Procedures within a Creation Environment for Value
Added Services

P. Wacht'?, A. Lehmann'?, T. Eichelmann'?, W. Fuhrmann®, U. Trick' and B.
Ghita®

'Research Group for Telecommunication Networks, University of Applied Sciences
Frankfurt/M., Frankfurt/M., Germany
*Centre for Security, Communications and Network Research,
University of Plymouth, Plymouth, United Kingdom
*University of Applied Sciences Darmstadt, Darmstadt, Germany
email: wacht@e-technik.org

Abstract

Actual Service Creation Environments (SCE) do not support functional testing of
automatically created value added services. This leads to a problem as there is no verification
that the service is created properly according to the requirement’s specification. This paper
presents an approach to integrate a testing framework into an existing SCE, which enables
systematic and effective functional testing of value added services. The procedure is based on
the idea that a behaviour model is created from which the amount of test cases for a specific
service can be derived. The identified test cases are transferred to TTCN-3 (Testing and Test
Control Notation 3) code and executed on the created service, which is the SUT (System under
Test).

Keywords

SCE (Service Creation Environment); finite state machines; functional test
automation; TTCN-3 (Testing and Test Control Notation 3)

1. Introduction

In the near future, network operators and service providers aim for Service Creation
Environments (SCE) that enable fast, easy and cost efficient provisioning of value
added services. Currently, the building of such SCEs has been done in several
research projects, as in the TeamCom project (TeamCom, 2009; Lehmann et al.,
2009). The TeamCom SCE offers a possibility for developers to design value added
services with the help of a graphical user interface and the executable language
BPEL (Business Process Execution Language). After the design is fulfilled it is
analysed by a code generator and translated into the specific service code.
Subsequently, the service can be deployed on an Application Server.

The TeamCom approach proved to work properly for several services. However, a
very important aspect is not yet supported by the SCE: the integration of automated

345

Appendix B — Own Publications

functional tests to validate and verify the created value added services. This
enhancement of the SCE will have to be done, because functional tests are derived
from the service’s specification, which contains the customer’s requirements and
wishes for the service. So the integration of testing procedures enables a service
provider to check if the built service meets the demands of a customer.

The aim of this paper is to show how testing procedures can be integrated within
SCEs systematically. For this purpose, the ComGeneration (ComGeneration, 2010)
project has been established that should provide a consistent solution to support the
life cycle of a service by simplifying development, testing and provisioning of
multimedia communication services. This approach reduces the expenditure of time
and cost.

A similar approach to ComGeneration was accomplished in the project TT-Medal
(TT-Medal, 2010), which has proven the advantages of using UML to generate
TTCN-3 tests. Also, the firm Conformiq (Conformiq, 2010) implemented a test suite
(Conformiq Tool Suite) which automates the design of functional tests for software
and systems. However, the handling of the suite requires deep knowledge in UML
and in several programming languages.

The content of this paper is structured as follows: In section 2 the consistent concept
of the service and test platform is described. The 3rd section is concerned with the
actual approach to describe customer’s requirements within a “Service Description”.
Section 4 describes the relevant parts of the “Test Development” process and in
section 5 the execution of test cases is introduced. Finally, section 6 offers a
conclusion.

2. Service Creation and Testing Environment

Before looking at the detailed issues about how functional testing of value added
services looks like, it is worthwhile having a look at the concept of the
ComGeneration approach. Figure 1 gives an abstract overview.

346

Appendix B — Own Publications

- Test Development

Predefined
Modular Finite
State Machines

Test Case
Generation
(TTCN-3)

~
Behaviour Model

Service
Deployment &
Test Execution

Requirements
Catalogue

Service Development

Service
Generation
(Java)

BPEL Service
Model

Predefined
Communication
Building Blocks

Figure 1: Service and test development for value added services

The shown architecture can be divided into two main layers: The Service
Development and the Test Development. In between there are tasks that are relevant
to both layers. The kinds of shapes illustrated in the picture have a special meaning,
for instance, the container-like shapes generally represent predefined data which a
person being involved in the process can choose from. This is shown by the dashed
arrow in Figure 1. The circle shapes define actions where a human has to be
involved. In contrast, the rectangle shapes only represent tasks that are fulfilled
automatically without human interaction.

The initial task that concerns both Service and Test Development is the definition of
a “Service Description”. This is a document that can be understood as a requirements
specification and is created by the service provider in consultation with a customer. It
contains all possible demands a customer might have for a specific value added
service. To simplify the creation process of the “Service Description”, the service
provider provides the customer with a so-called “Requirements Catalogue”. This
catalogue contains predefined standards, restrictions and requirements. The selection
of these predefined aspects for a specific value added service results in a form of
service description. Furthermore, the relevant roles for the usage of a service are
identified within this document.

After the “Service Description” is defined, both the “Service Development” and the
“Test Development” are triggered in parallel. The “Service Development” part
already exists in the TeamCom Service Creation Environment (Eichelmann et al.,
2008). The service creation within TeamCom works as follows: a service designer
describes the business process of the corresponding value added service through a
formal control logic based on BPEL. So that the modelling of the business process
can be done correctly, it requires the usage of predefined communication building
blocks which cover the functionality of typical service aspects. This concept of using
elementary communication service components is a key advantage of the approach

347

Appendix B — Own Publications

because it hides the underlying heterogeneous communication networks. Thus, the
service designer does not need any detailed knowledge of certain communication
protocols and is able to focus on the application logic instead. As BPEL has not been
developed for control of real time communication services in heterogeneous
networks, a code generator respectively “Service Generator” has been implemented
to translate the business process description into Java code. The generated code is
based on the JAIN SLEE (Sun and Open Cloud, 2008) architecture, as this
technology fulfils the necessity of communication services. The final step of the
approach is the deployment of the code on a specific JAIN SLEE Application Server
such as Mobicents (Mobicents, 2010).

In parallel with the “Service Development” process, the “Test Development” process
is initiated by a test developer. First of all, the test developer has to interpret the
“Service Description” properly and also has to extract the relevant service
information for the test purpose. Afterwards, he has to choose the service related
characteristics out of a repository of predefined modular finite state machines. These
state machines cover typical service characteristics like protocol sequences for TCP
(Transmission Control Protocol), SIP (Session Initiation Protocol) or HTTP
(Hypertext Transfer Protocol). By composing the chosen predefined modular finite
state machines, the test developer creates a behaviour model, which describes the
possible behaviour of a value added service. Depending on the service’s complexity,
the behaviour model itself is also a more or less complex finite state machine. If the
behaviour model is complete, an algorithm generates the service specific test cases
by identifying every possible path through the finite state machine. A behaviour
model can be seen as complete, if all the requirements specified in the “Service
Description” are covered within the model.

After the generation is done, every identified test case is converted to TTCN-3
(Testing and Test Control Notation Version 3) (TTCN-3, 2010) within the “Test
Case Generation” process. TTCN-3 is an abstract test scripting language which was
standardized by ETSI (ETSI, 2010) and ITU-T (ITU-T, 2010) and supports the
modularized creation of test scenarios for message and procedure based systems. In
the ComGeneration approach, the execution of the generated TTCN-3 test cases on
the deployed service is done within a TTCN-3 test framework.

3. Service Description

Defining the “Service Description” for a specific value added service is maybe the
most important aspect within the process of creating a service, because it can be seen
as a kind of contract between a customer and a service provider. It enables the
customer to communicate his requirements for a service to the service developer so
that the service can be realized properly. For the ComGeneration project, a specific
way of defining a “Service Description” has been developed. It has been derived
from a standardized object oriented method and includes the following steps:

1. Short description

2. Identification of the roles (without the system)

348

Appendix B — Own Publications

3. Requirements specification (with customer)
4. Enhanced requirements specification (without customer)
5. Identification of the communication interfaces

The initial step is to write a very short description about the service’s functionality.
Exemplarily, this is shown for the Web2IM (Web-to-Instant-Message) service:

A website should deliver two input masks. The first input mask should contain the
address or telephone number (SIP URI) of any participant and the second one should
carry any kind of text. A button should be integrated on the web site. When
submitting it, the text included in the second input mask should be transferred to the
address that was filled in the first input mask. If the SIP URI is not reachable or the
text couldn’t be transferred an error should occur on the web site. If the transfer
worked, a success message should occur.

This short description of the service is followed by the second step, the identification
of the roles respectively participants. For the Web2IM example, this would be on the
one hand a web browser ([B]) and on the other hand a text display unit. As SIP is
used to transfer the text, the display unit could be a SIP softphone ([S]).

The third step to define a “Service Description” requires the cooperation of the
customer and the service developer. Both define significant cases that may occur
when using the service. The table illustrates a possible case for the Web2IM service.

Role
Preconditions | Website available [B]
SIP URI entered [B]
Text entered [B]
Entry approved [B]
Target Softphone reachable [S]
Postcondition Softphone gets text [S]
Approval is displayed [B]
Description After accessing the website, SIP URI and text are
entered. Entries are approved and text is delivered to the
softphone with the SIP URI. The receipt is approved on
the website.

Table 1: Standard case for requirements specification of Web2IM service

Depending on the kind of service, a few of such cases may have to be identified.
Afterwards, some enhanced requirements are defined without the customer in step 4
of the “Service Description” process. Here, some specific information is defined
such as the maximal length of the SIP URI or the input text.

349

Appendix B — Own Publications

In the last step, the communication interfaces for the service are identified. This is
very helpful information for the test developer, because he will then be able to
choose the relevant modular finite state machines from the repository to build a
behaviour model. For the Web2IM service, the communication interfaces are the
following two: HTTP Client and SIP UAC nonlnvite.

4. Test Development

The most significant aspect of this paper is the generation and execution process of
test cases for specific value added services to verify that they meet the demands of
the customer’s requirements. For this purpose, Figure 2 shows the relevant steps for
“Test Development” in detail.

Predefined test Database with

data records test data
Parameters

Behaviour TTCN-3 Code

Extraction——p
/ Model Generator ~—TTCN-3 Templates——————
Parameters \
Generated
N -
Service < " Templates
- amposition -
Description P TTCN-3 test cases
Choice ‘
\ Test Environment.

Predefined
I— -
Templates

Finite Modular

State Machines Test Execution

Environment

N —

A Service d—p

Figure 2: Test Development process

As already shown in Figure 1 and now also in Figure 2, the first condition to start the
process is an existing “Service Description”. On the basis of the description, the
relevant finite modular state machines are chosen and composed to a behaviour
model. It was already mentioned in the previous section that some important service
related parameters can be specified within the “Service Description” that also have to
be integrated into the behaviour model. In TTCN-3, parameters and their values are
defined as TTCN-3 templates. This leads to the fact that every parameter within the
behaviour model has to be transformed to a TTCN-3 template. An example for a
relevant parameter within the behaviour model could be the name of a SIP instant
message (e.g. “MESSAGE”). This could mean that during the service flow such a
message is expected to be sent, e.g. to a specific SIP User Agent. The information of
possible message structures used within the behaviour model has to be available
during the “Test Development” process. So, a database with test data is required. In
this database, many possible test data records are predefined as TTCN-3 templates.

350

Appendix B — Own Publications

These templates can be enhanced by the data from the behaviour model. One has to
distinguish between predefined and generated templates. Predefined templates
already exist in the database, even before the behaviour model was created.
Depending on which finite modular state machines are used within the model, the
predefined templates are activated and integrated within the test framework. The
generated templates are completely new. They are associated to the parameter inputs
made by the test developer.

The last step of the “Test Development” process is the testing of the service itself
within the test framework. This can only be done if all the extracted test cases exist
as TTCN-3 test cases and all the relevant TTCN-3 templates were activated
respectively generated and integrated into the test environment.

4.1. Modular finite state machines

Before the structure of the behaviour model is introduced, first the components, the
modular finite state machines, are described. The finite state machines are predefined
and reusable components which are usually based on specific protocols (SIP, TCP,
HTTP) or categories (databases). The structure of the finite state machines for the
protocols is derived from the particular protocol specification. Depending on the
specification, each finite state machine can have several inputs and outputs. These
interfaces are used to compose more finite state machines with each other and to
enable the building of the behaviour model.

Figure 3 shows exemplarily the structure of the finite state machines with the help of
the two components SIP UAS _INVITE and TCP Client SYN.

351

Appendix B — Own Publications

<<S|P>>
UAS_INVITE {} TU->AnyEvent/AnyEvent

INVITE/1xx [
TU->3xx-6xx/3xx-Bxx

INVITE/INVITE->TU, 100 \(i [l
proceeding
[l “ TU->2xx/2xK

[l
TU->1xx/1xx TransportError/Error->TU

[l

<<TCP>>
Client SYN

timeout/timeout->TU timeout/timeout->TU
Port_closed
TransportError/Error->TU
TU->SYN/SYN
—_— SYN_sent
[
{ } TU->AnyEvent/AnyEvent
[l
established SYN+ACK/ACK, ACK->TU
SYN+ACK/ACK, ACK->TU ' i

Figure 3: Structure of the finite state machines SIP UAS_Invite and TCP Client_SYN

The finite state machine SIP UAS INVITE describes the handling of an incoming
SIP INVITE message for a User Agent Server (UAS). Every incoming and outgoing
transition represents a message that either is received or sent by the UAS. The
possible responses, which can be initiated by the User Agent Server, are defined as
outputs. Besides the relevant protocol specific outputs like the SIP status codes (2xx,
3xx-6xx) and occurring transport errors, there is also a so-called “AnyEvent”
defined. This output can be understood as a placeholder for any kind of message
from any protocol. This technique enables the composing of all available finite state
machines.

The structure of the finite state machine TCP Client SYN is a little bit different from
the SIP UAS INVITE, as there are three existent states within the finite state
machine. The internal transitions between these states are fixed and always used in
the same manner. The TCP Client SYN represents a TCP connection establishment.
The meaning of the “TU” statement within the transitions is discussed in the
following section 4.2.

A test developer only knows about the available finite state machines from specific
protocols. His main task to build a behaviour model is to handle the interfaces of the
finite state machines.

352

Appendix B — Own Publications

4.2. Behaviour model

In order to do functional testing of a value added service, a test developer has to
know, how the service should behave according to the specification, if, for instance,
certain messages occur. This knowledge can be retrieved from the “Service
Description”. If the understanding of the service is fulfilled, the test developer
chooses the relevant modular finite state machines and composes them to get the
behaviour model. The composition of finite state machines is the only changing
component, the internal transitions, however, are unchangeable. In order to assure,
that a behaviour model can be established, a new concept, the Transaction User
(TU), was installed. The TU perceives itself as a switching unit between the possible
roles of an Application Server (AS) as User Agent Server and User Agent Client.
Concurrently, the TU is a connector between modular finite state machines. It
enables the test developer to reproduce the service logic for test purposes.

An example of composing the finite state machines from different protocols (Figure
3) is shown in Figure 4. This service logic could be interpreted as follows: the
service expects calls from a selection of User Agents (alice, bob). Only if these User
Agents call the service, a TCP connection to a specific socket (IP, Port), e.g. to an
external database, is established. Here, the SIP INVITE is a sort of trigger.

INVITE/INVITE->TU, 100

[alice, bob, ...]

<<TCP>>
Client_SYN
<<S|P>>
UAS_INVITE timeouttimeout->TU -
aPoﬂ_closed
INVITE/1xx
{INVITE == (alice|bobl...)} TU-> SYN/SYN (
proceeding SYN_sent
[IP;Port] k

established
SYN+ACK/ACK, ACK->TU

Figure 4: Exemplary role of the TU as a connector of finite state machines

The composition of the two finite state machines is done by using the input message
from the TCP Client SYN as the AnyEvent output message of the SIP
UAS INVITE. Figure 5 clarifies the whole concept of the TU.

353

Appendix B — Own Publications

User Agent SIP Application Server
3
SIP UAS TU DB Client

INVITE
100 Trvi INVITE
ying bob@prov.de o SYN o
(allowedURI, SYN
IP, Port)

Figure 5: Equivalent message flow by traversing the behaviour model

The demonstrated message flow in Figure 5 reflects the transition path within the
finite state machine shown in Figure 4.

When the test developer creates a behaviour model for a value added service he does
not need to have any information about the insides of a finite state machine, because
he only has to handle the interfaces and has to set relevant parameters. Figure 6
demonstrates a simplified but complete behaviour model of the Web2IM service
which was introduced in section 3. The two HTTP modular finite state machines,
Server Req and Server Resp, represent the initiation of the POST request and the
expected responses from the server. In contrast, the three SIP modular finite state
machines describe the behaviour of the SIP Message being sent by the service. As
the service is the sender of the SIP Message, only the UAC finite state machines are

considered.
]
SIP SIP
“> UAC_nonlnvite 7 “> UAC_noninvite |
’ (init) (terminate) J/
i VoV
HTTP HTTP
Server_Req sip Server_Resp
v UAC_nonlnvite
r (proceeding)

Figure 6: Behaviour model for the value added service Web2I M

4.3. Test Case Generation

The main argument for using finite state machines as behaviour models is that the
transition paths within a state machine represent test cases for a value added service.

354

Appendix B — Own Publications

Therefore, an algorithm has to be defined that identifies all the possible paths. Such
an algorithm has not yet been realized as the implementation phase of the
ComGeneration project has started recently.

The path finding within the behaviour model can be associated to the following
criteria:

e state coverage: every state has to be visited once
e transition coverage: every transition has to be passed once
e cvent coverage: every possible event has to occur once

For every above-mentioned criterion, the identification of paths respectively the
generation of test cases is fulfilled. Afterwards, when the test cases are available,
they are transferred to real TTCN-3 test cases by a TTCN-3 code generator.

5. Test Execution

After the generation of the TTCN-3 test cases for a specific value added service has
been done, the test cases have to be executed on the service respectively the System
under Test (SUT). For this purpose, a TTCN-3 test execution environment is
required. Within the ComGeneration project, the integrated test development and
execution environment TTworkbench is used, which was developed by Testing
Technologies (Testing Technologies, 2010). In order to connect the test execution
environment to the SUT, a system adapter is required. Such a system adapter
contains adapters that are relevant to enable the communication with the SUT.

Using the example of the Web2IM service, which has been introduced in the
previous section, the system adapter would possibly contain a UDP adapter and a
HTTP adapter. The UDP adapter is responsible for transferring SIP messages and it
is configured to map the TTCN-3 ports to the UDP ports. As in TTCN-3 messages
are defined as data structures, the test case executives will use the SIP codec for
encoding the data structures to real SIP text messages and vice versa. For the usage
of HTTP requests and responses that are used to trigger the service, there is also an
adapter required.

Before the test cases can be executed, PTCs (Parallel Test Component) have to be
configured that represent the relevant endpoints. For the Web2IM service, two
different PTCs have to be defined. The first PTC sends the initial HTTP request to
the SUT which contains the text message and the SIP URI and receives the HTTP
response with the failure or success message. In contrast, the second PTC receives
the SIP MESSAGE from the SUT and answers with a specific SIP status code.

Figure 7 illustrates the structure of the TTCN-3 testing environment for the Web2IM
service.

355

Appendix B — Own Publications

TTCN-3 Test Execution Environment

HTTP SIP
PTC1 PTC2

SIP Application Server with
deployed Web2IM service (SUT)

Figure 7: Test Execution Environment for Web2IM service
6. Conclusion

In this paper, we have introduced an approach to integrate functional testing within
an existing SCE to validate that a created value added service meets the requirements
of the customer who ordered the service. For the testing purpose, a test developer has
to get a deep knowledge about the service requirements from the “Service
Description” and then has to build an abstract model in the form of a finite state
machine, the behaviour model. Although the creation of such a behaviour model
tends to be complicated, the advantages dominate, because the extraction of test
cases from the model can be done easily with an adequate algorithm.

Once the behaviour model has been developed, it takes very little time until the
execution of the generated test cases on the SUT can be done. With the support of
quite a lot of communication protocols like SIP, TCP or HTTP, many sorts of value
added services can be tested. Besides these positive effects of such an
implementation, the test developer who uses the tool has to have a deep knowledge
of every used protocol.

As soon as the ComGeneration development environment is implemented, which
enables the creation of a behaviour model, an evaluation of the approach is required.
To prove the reduction of time and costs in comparison with manual testing, both
procedures have to be accomplished for a couple of exemplary value added services.

7. Acknowledgment

The research project ComGeneration providing the basis for this publication was
partially funded by the Federal Ministry of Education and Research (BMBF) of the
Federal Republic of Germany under grand number 1724B09. The authors of this
publication are in charge of its content.

356

Appendix B — Own Publications

8. References

ComGeneration Project Web Site (2010): http://www.ecs.th-osnabrueck.de/27619.html.
(Accessed 15 August 2010)

Conformiq (2010): http://www.conformiq.com . (Accessed 20 August 2010)

Eichelmann, T., Fuhrmann, W., Trick, U. and Ghita, B. (2008), “Creation of value added
services in NGN with BPEL”, SEIN, Wrexham, 2008

ETSI Testing and Test Control Notation (TTCN-3) (2010):
http://www.etsi.org/WebSite/technologies/ttcn3.aspx. (Accessed 14 August 2010)

ITU-T - The Evolution of TTCN (2010): http://www.itu.int/ITU-
T/studygroups/com07/ttcn.html (Accessed 14 August 2010)

Lehmann, A., Eichelmann, T., Trick, U., Lasch, R., Ricks, B. and Tonjes, R. (2009),
“TeamCom: A Service Creation Environment for Next Generation Networks®, ICIW, Venice,
2009

Mobicents Open Source JAIN SLEE Server Project Web Site (2010):
http://www.mobicents.org. (Accessed 14 August 2010)

Sun Microsystems, Open Cloud (2008), JSR-000240 Specification, Final Release, “JAIN
SLEE (JSLEE) 1.1”, Sun.

TeamCom Project Web Site (2009): http://www.ecs.fh-osnabrueck.de/teamcom.html.
(Accessed 14 August 2010)

TTMedal (2010): http://www.tt-medal.org, (Accessed 20 August 2010)
Testing Technologies (2010): http://www.testingtech.com. (Accessed 15 August 2010)

TTCN-3 application areas (2010): http://www.ttcn-3.org/ApplicationAreas.htm. (Accessed 14
August 2010)

357

Appendix B — Own Publications

Published in Proceedings for the Fourth IFIP International Conference on New
Technologies, Mobility and Security (NTMS 2011), pp. 1-5, Paris, France, IEEE, ISBN:
978-1-4244-8704-2

A New Approach to Design Graphically Functional
Tests for Communication Services

Patrick Wacht, Thomas Eichelmann, Armin Lehmann, Ulrich Trick

Research Group for Telecommunication Networks, University of Applied Sciences
Frankfurt/Main, Germany

{wacht, eichelmann,

Abstract—T his paper presents a new concept of how a service
provider using any kind of Service Creation Environment (SCE)
can verify that a generated service meets the requirements of a
customer. Thisrequiresfunctional tests which are derived froma
finite state machine-based behaviour model being composed
from so-called modular finite state machines by a new
composition method. The derivation of the tests is fulfilled by the
usage of an adequate path finding algorithm. The following
execution of the generated tests is done automatically within a
Testing and Test Control Notation (TTCN-3) test framework.

Key words: Functional Testing; TTCN-3; Behaviour Model; Finite
State Machine

1. INTRODUCTION

In the near future, network operators and service providers
aim for Service Creation Environments (SCE) that enable fast,
easy and cost efficient provisioning of value added services.
Currently, the building of such SCEs has been done in several
research projects, as for instance in the TeamCom project [1;
2]. The TeamCom SCE offers a possibility for developers to
design value added services with the help of a graphical user
interface and the executable language BPEL (Business
Process Execution Language). After the design is fulfilled it is
analysed by a code generator and translated into the specific
service code. Subsequently, the service can be deployed on an
Application Server.

Current SCEs like the TeamCom SCE proved to work
properly. However, a very important aspect is usually
disregarded by SCEs: the integration of automated functional
tests to validate and verify the created value added services.

The enhancement of integrating functional tests will have
to be done, because the provider has to assure that the services
are executed properly and do not affect other running services
within the provider’s service environment. Also the
integration of testing procedures enables a service provider to
check if the built service meets the demands of a customer.

The aim of this paper is to show how testing procedures can
be automated. For this purpose, the ComGeneration [3]
project has been established that should provide a consistent
solution to support the life cycle of a service by simplifying
development, testing and provisioning of multimedia
communication services. This approach reduces the
expenditure of time and cost.

The paper is structured as follows: Section II presents the
overall concept of ComGeneration whereas Section III is
concerned with the current approach to describe customer’s

lehmann, trick}@e-technik.org

requirements and how to derive the behaviour model from the
requirements. Section IV gives an overview of the needed
components and mappings to TTCN-3 (Testing and Test
Control Notation) [4] for the planned tool chain. Section V
discusses the related concepts and works and Section VI
concludes the paper.

II. COMGENERATION CONCEPT

Before looking at the detailed issues about how functional
testing of value added services looks like, it is worthwhile
having a look at the concept of the ComGeneration approach.
Figure 1 gives an abstract overview.

Module wb Modeling Vet Came
Falte St Be hadour Modd Gene raar
Machines >
S rvice
Do wription
Serviee Creation
e
| N
{.] L J
(-]

Figure 1. ComGeneration Architecture

The shown architecture can be divided into two main paths:
The Service Development and the Test Development. In
between there are tasks that are relevant to both paths.

The initial task, which concerns both Service and Test
Development, is the definition of a “Service Description”.
This is a document that can be understood as a requirements
specification and is created by the service provider in
consultation with a customer. It contains all possible demands
a customer might have for a specific value added service.

After the “Service Description” is defined, both the
“Service Development” and the “Test Development” are
triggered in parallel. The “Service Development” part is
fulfilled by a certain SCE. For the ComGeneration project,
any SCE can be used to create a service automatically. An
exemplary SCE is the TeamCom Service Creation
Environment [2; 5]. The service creation within this SCE
works as follows: a service designer describes the business

358

Appendix B — Own Publications

process of the corresponding value added service through a
formal control logic based on BPEL. So that the modelling of
the business process can be done correctly, it requires the
usage of predefined communication building blocks which
cover the functionality of typical service aspects. This concept
of using elementary communication service components is a
key advantage of the approach because it hides the underlying
heterogeneous communication networks. Thus, the service
designer does not need any detailed knowledge of certain
communication protocols and is able to focus on the
application logic instead. As BPEL has not been developed for
control of real time communication services in heterogeneous
networks, a code generator respectively “Service Generator”
has been implemented to translate the business process
description into Java code. The generated code is based on the
Java APIs for Integrated Networks Service Logic Execution
Environment (JAIN SLEE) [6] architecture, as this technology
fulfils the necessity of communication services. The final step
of the approach is the deployment of the code on a specific
JAIN SLEE Application Server such as Mobicents [7].

In parallel with the “Service Development” process, the
“Test Development” process is initiated by a test developer.
First of all, the test developer has to interpret the “Service
Description” properly and also has to extract the relevant
service information for the test purpose. Afterwards, he has to
choose the service related characteristics out of a repository of
predefined modular finite state machines. These state
machines cover typical service characteristics like protocol
sequences for TCP (Transmission Control Protocol), SIP
(Session Initiation Protocol) or HTTP (Hypertext Transfer
Protocol). By composing the chosen predefined modular finite
state machines, the test developer creates a so-called
behaviour model, which describes the possible behaviour of a
value added service. Depending on the service’s complexity,
the behaviour model itself is also a more or less complex
finite state machine. If the behaviour model is complete, an
algorithm generates the service specific test cases by
identifying every possible path through the finite state
machine. After the generation is done, every identified test
case is converted to TTCN-3 [4] within the “Test Case
Generation” process. TTCN-3 is an abstract test scripting
language which was standardized by ETSI [8; 9; 10] and ITU-
T [11; 12] and supports the modularized creation of test
scenarios for message and procedure based systems. In the
ComGeneration approach, the execution of the generated
TTCN-3 test cases on the deployed service is done within a
TTCN-3 test framework.

One very significant aspect of this paper is on the one hand
side the way how the behaviour model is modelled by a test
developer from the content of the “Service Description”. On
the other hand side, the automatic generation of test cases
from the behaviour model and the following execution on the
System under Test (SUT) is the main focus. The mentioned
aspects should verify that a communication service meets the
requirements of a customer. The following Figure 2 shows the
relevant steps for the “Test Development” in detail.

Figure 2. Test Development Process

On the basis of the description, the behaviour model is
described by a finite state machine. Some important service
related parameters can be specified within the “Service
Description”. These parameters have to be integrated into the
behaviour model. In TTCN-3, parameters and their values are
defined as so-called TTCN-3 templates. This leads to the fact
that every parameter within the behaviour model has to be
transformed to a TTCN-3 template. An example for a relevant
parameter within the behaviour model could be the name of a
SIP instant message (e.g. “MESSAGE”). This could mean that
during the service flow such a message is expected to be sent,
maybe to a specific SIP User Agent. The information of
possible message structures used within the behaviour model
has to be available during the “Test Development” process. So,
a database with test data is required. In this database, many
possible test data records are predefined as TTCN-3 templates.
Predefined templates already exist in the database, even
before the behaviour model was created. Depending on which
finite modular state machines are used within the model, the
predefined templates are activated and integrated within the
test framework. The generated templates are completely new.
They are associated to the parameter inputs made by the test
developer. The last step of the “Test Development” process is
the testing of the service itself within the test framework.

III. SERVICE DESCRIPTION AND BEHAVIOUR MODEL

As depicted in the last section, the test developer has to
design a behaviour model based on the information he could
retrieve from the service description. Both the service
description and the model will be explained in the following.

A. Service Description

The aim of the service description is to deliver a complete
set of requirements from the view of a user which has to be
fulfilled by the communication service. A user can on the one
hand be a person or on the other hand be an external system.

For the ComGeneration project, a specific way of defining
a service description has been developed. It has been derived
from a standardised object oriented method and includes the
following steps:

1. Short description
2. Identification of the roles
3. Requirements specification

359

Appendix B — Own Publications

4. Enhanced requirements specification
5. ldentification of the communication interfaces

The initial task 15 about writing a very short description of
the service's functionality which mentions the elementary
usage of'the service.

The short deseription is followed by the sccond step, the
identification of the roles or rather participants. Such roles,
where users are able to communicate with the service, can he
defined as views on the serviee. Regarding often used
protocols in communication services like 1ITTP or S1P, roles
which refer 10 these protocols could be a web browser lor
HTTP and a softphone for ST

After the roles lave been defined, the requirements
specilication has Lo be established. Such o specilicalion
conlains signilicant cases that may oceur when using the
communication service. Usually, the definition of these cases
requires the coeperation of the customer and the service
provider. A description of a case usvally containg the
[ollowing compenents: user role, precondilions, largel, posl
conditions.

The relevant user role for the case [z scleeted trom the
identificd sorvice roles. The preconditions deseribe the
situation (e.g. "SIF URL entered’), which leads o the
designated upcoming situation. The target always relates 10
the status of the role which has w show a reaction (e.g.
‘Softphone reachable’). Finally, the post conditions should
[orecast the possible siluations which can oeeur.

Once the requirements specilication hay been [nalized,
some enhanced requirements are defined without the custemer
in step fowr. Here, some specific information can be defined
such as the maximal length of SIP URI cte.

In the last step, the commumnication mterfaces for the
service are defIned which relate to the specified roles.

As the service description is created by human hand, it
might be ambiguous and error-prone. To reduce oceuring
problems, the whole crealion process 1s simplified and
standardized by providing the service provider and the
custemer with a so-called “Requirements Catalogue™. Such a
catalogue contains predefined standards, restrictions,
requitements and pessible roles. The selection of these
predetined aspects within the described five steps results in a
service description.

B. Behaviour Model

In order o do functional testing of a communication service,

a test developer has to know, how the service should behave
gecording 1o the specification. In the ComGenstation
approach, this knowledge can be retrieved from the service
description to build a behaviour model.

The short deseription within the service description delivers
the test developer the abstracl overview of the service. The
tdentitication of the roles and commumication mterfaces
enables him to choose the service-relevant modular finite state
machines frem a repository. Lventually, the reguiremients
specifications and the cnhanced requirements specification
represent the service behaviour. From these specitications, the
test developer Tearns how to compose the chosen maedular

finite statc machines © a more complex finite state machine,
the behaviour model. The composition of two or more
medular finite state machines s realised by a new concept
called the Transaction User (TU). The TU always acts as a
mediator between possible client and server roles. Hence,
every predefined modular finite state machine has interfaces
where the TU acls us a sender or receiver. The TU does not
contaim any inlormatien about the implementation ol the
service, but it allows the description of a service from the
view of the SUT. The following Figure 3 gives an example of
a composition of a two modular finite slate machines,

HTTT Server and STP UAC nlnvite.
SRk
B UNE, ritveda l

Vit itk it

.

Web Client User Agen]

Tigure 3, Compositien of modular finite state machings with TU

The composition describes a HTTP POST Request, which
contains a SIF URI ("bi@provider.de™) and a wxt {*Helle B7).
When the POST Request is reccived by the IITTP Server of
the SIF Application Server, the TU is informed and the TU
ingtruets the STP TAC (User Agent Clent) with respeet 1o the
service logic to send a 8IP Request or rather a SIP MESSAGE
with the contents of the POST Request.

[V, COMPONENTS, MAPPING AND TOOLCTAIN

Betore the mapping t¢ TTCN-3 and the tool chain will be
caplained. first the components, the se-called modular finite
state machines, are described.

A. Modutar finite state machines

The medular finite state machines, which establish the basis
for the behaviow model, are predefined and reusable
components which are usually based on specific protocols
(SIP, TCP, HTTP) or categorics (databases). The structurcs of
the state machines for the protocol are derived frem the
particular protocol specilication. The lollowing Figure 4
shows an exemplary state machine.

e |
P VAR Rkl (1§ e)
1
o
i o
AR
W TEIATES S, 900 i
1 trying TLiwprvidc:
] [
- 3 Rttt
i

Figure 4, Shmcture of the finite state maching $1P_UAS Invite

360

Appendix B — Own Publications

Depending on the specification, each state machine can
have several inputs and outputs. These interfaces are used to
compose more state machines with each other and to enable
the building of the behaviour model.

The state machine SIP UAS_INVITE which was derived
from [13] describes the handling of an incoming SIP INVITE
message for an User Agent Server (UAS). Every incoming
and outgoing transition represents a message which either is
received by the UAS or sent. The possible responses, which
can be initiated by the User Agent Server, are defined as
outputs. Besides the relevant protocol specific outputs like the
SIP status codes (2xx, 3xx-6xx) and occurring transport errors,
there is also a so-called “AnyEvent” defined. This output can
be understood as a placeholder for any kind of message from
any protocol. This technique enables the composing of all
available state machines.

A test developer only knows about the available state
machines from specific protocols. His main task to build a
behaviour model is to handle the interfaces of the finite state
machines.

B. Mapping to TTCN-3

The test machine generates messages and sends them to the
system under test (SUT) or it checks the messages sent by
SUT and responds to those messages. With the messages sent
to the SUT, the test system tries to provoke errors on the SUT.
This requires the test machine to understand the messages
from the SUT and also provide test data that consist of
positive and negative cases. To support these tasks TTCN-3
defines some elements that are required to create tests. In
Table I, some of these elements are described.

The Test Case Generator (TCG) creates test cases from the
FSMs and translates them into TTCN-3 code. So the TCG
needs some knowledge about the TTCN-3 elements or
generates these elements by himself. For the mapping of the
elements from the TCG to TTCN-3 two concepts are
introduced, the Connectivity Concept and the FSM Concept.
To generate the required test cases the TCG needs to obtain
the information from both concepts. Each concept provides
other information for the TCG and the two concepts together
offer all the required information to generate the TTCN-3
code.

TABLE I. TTCN-3 ELEMENTS

TTCN-3 element Description

Type Definition Defined data types to describe the
exchange of data between test components

and SUT.

Communication between the test
components and the SUT is established by
connecting local ports.

e.g. SIP port, HTTP Port

Port Definition

Component Definition Structur of the test components that
represent the client and server protocol-
specific endpoints

e.g. UAS SIP, HTTP Client

Test Case Runs individual test components

Summarizes the test events

TTCN-3-Templates Definition for the description of test data

Describes the order and the conditions for
the execution of individual test cases

Control Part

TTCN-3-Codecs and Test Adaptation for the SUT

Adapter Converts TTCN-3 code in an
understandable format for the SUT
Verdict Judgement (Pass, Fail, Inconclusive, error)

The FSM Concept is presented in Figure 5.

Finite State
Machine

TTCN-3 l

Test
Cases

TTCN-3 l

Control
Part

TTCN-3 l

Control ‘

Part

| L% |

Figure 5. Finite State Machine Concept

From the FSM, different TTCN-3 test cases can be
generated. The FSM also describes in what order and under
what conditions the test cases are executed. From this
information, the TTCN-3 Control Part is generated. The FSM
represents only the positive "good" reactions of the service.
All other cases, which occur in TTCN-3, are defined as
invalid (failed). The TTCN-3 verdict can therefore also be
derived from the FSM approach.

The Connectivity Concept is shown in Figure 6.

Connectivity Concept
Component
Definition

Controlled
Global Object
Timers A

Aot
Protocol
Timers Ports

Timer

|
1

|

|

|

1

1

|

|

|

|

> Port !
Definition |
|

|

|

|

|

|

1

1

1

|

|

1

1

M1: Response
M2: Request Codecs/
Adapter
Event Type
Condition Definition

Figure 6. Connectivity Concept

Also from this concept, information for the mapping to
TTCN-3 elements can be derived. The concepts are connected
through the Controlled Object (CO). A CO is assigned to the
FSM within the FSM concept. This CO holds information
about the used ports and timers.

The TCG supports different timers (protocol timer and
global timer). The protocol timers are pre-defined and belong
to the respective ports. Depending on the protocols or the
messages which are required by the test developer, the
associated protocol timers are automatically added to the tests.
The test developer also has the ability to define its own timers.
These timers are called global timers, because they are defined
and can be manipulated within the whole FSM.

361

Appendix B — Own Publications

The ports in the TCG map to the TTCN-3 ports. For all
supported protocols, the ports are predefined in the TCG. Also,
all possible protocol messages must be predefined within the
respective ports. The timers which are defined within the
protocol specifications are also added to the port definition.
The definition of the test data in TTCN-3 is done with the help
of templates. These TTCN-3 templates are generated by the
TCG. For this purpose the TCG uses so called Event
Conditions. The test developer uses these Event Conditions to
choose from pre-defined test data or to define its own test data.

The data types which are used are predefined and
correspond to the TTCN-3 Type Definitions. The ports used in
the TCG are assigned to the corresponding TTCN-3 codec and
TTCN-3 adapter.

C. Toolchain

The TCG generates the test cases and test data for TTCN-3
from the FSM which is created by the test developer. The
TCG is composed by several elements, the GUI, the FSM
Parser, the Connectivity Parser, the FSM Pathfinder and the
TTCN-3 Code Generator, see Figure 7. In order to model the
FSM in a simple manner, the test developer is supported by a
GUI. This GUI consists of several views, the FSM View and
the Connectivity View. In the FSM View, graphical FSM
states and transitions can be defined.

GUI Test Case Generator
= FSM+Connectivity-
| | Parser TTCN-3
| +
FSM-Pathfinder
+
TTCN-3 ~N

Code Generator

Figure 7. Tool chain

In the Connectivity View, ports, messages and timers are
added to the Controlled Object and test data is defined or
adjusted. Another element of the TCG is the parser. The
parser analyses the FSM and gathers the information needed
for the TTCN-3 code generation. All relevant test cases are
required for the SUT test. A test case represents a path from
initial state to end state within the FSM. This means that all
paths within the FSM are discovered by the pathfinder. From
each resulting path of the FSM a TTCN-3 test case is
generated. With all of the test cases and the information
obtained by the parser, a TTCN-3 code generator generates
the complete TTCN-3 test.

V. RELATED WORK

The approach to describe tests with finite state machines is
quite common. Conformiq [14] describes tests by UML state
diagrams, but the focus is not to describe the service from the
view of the SUT, but from the view of the test components.
Furthermore, there are no predefined state machines which
can be used to simplify and accelerate the modelling process.

A similar approach from Yuan [15] describes test case
generation from UML activity diagrams, but the main focus is

about testing Web Service compositions with the help of
TTCN-3. However, the functionality is quite limited, as only
HTTP is supported which enables Web Service composition.

VI. CONCLUSION

In this paper, we have introduced a new approach to
integrate automated functional testing within any SCE to
validate that a created value added service meets the
requirements of the customer who ordered the service.
Therefore, we developed a technique to create a behaviour
model for a service from predefined modular finite state
machines with the help of a certain concept, the Transaction
User. From the behaviour model, abstract test cases can be
derived by the usage of an efficient path finding algorithm.
The abstract test cases are then converted to executable test
cases in TTCN-3, a standardised scripting language used in
testing of communication services.

Further work should address the improvement of the path
finding algorithm and validation of the concept.

ACKNOWLEDGMENT

The research project ComGeneration providing the basis
for this publication was partially funded by the Federal
Ministry of Education and Research (BMBF) of the Federal
Republic of Germany under grand number 1724B09. The
authors of this publication are in charge of its content.

REFERENCES

[1] TeamCom project website:
http://www.ecs.th-osnabrueck.de/teamcom.html

[2] A. Lehmann et al.: “TeamCom: A Service Creation Platform for Next
Generation Networks”, IEEE ICIW 2009, Venice/Mestre, Italy, 24-28
May 2009.

[3] ComGeneration project website:
http://www.ecs.fh-osnabrueck.de/27619.html

[4] ETSI website for the TTCN-3 standards:
http://www.etsi.org/WebSite/technologies/ttcn3.aspx

[5] T. Eichelmann et al.: “Creation of value added services in NGN with
BPEL”, Proceedings of the Fourth Collaborative Research Symposium
on Security, E-learning, Internet and Networking (SEIN 2008),
‘Wrexham, United Kingdom, 5-9 November 2008.

[6] Sun Microsystems, Open Cloud, JSR-000240 Specification, Final
Release, "JAIN SLEE (JSLEE) 1.1", SUN, 2008.

[7] Mobicents Open Source JAIN SLEE Server, http://www.mobicents.org

[8] EG 201 873-1: Methods for Testing and Specification (MTS); The
Testing and Test Control Notation version 3; Partl: TTCN-3 Core
Language. ETSI, September 2008.

[9] EG 201 873-2: Methods for Testing and Specification (MTS); The

Testing and Test Control Notation version 3; Part2: TTCN-3 Tabular

presentation Format (TFT). ETSI, February 2007.

EG 201 873-3: Methods for Testing and Specification (MTS); The

Testing and Test Control Notation version 3; Part3: TTCN-3 Graphical

presentation Format (GFT). ETSI, February 2007.

Recommendation Z.140: The Tree and Tabular Combined Notation

version3 (TTCN-3): Core Language. ITU-T, July 2001.

Recommendation Z.141: The Tree and Tabular Combined Notation

version3 (TTCN-3): Tabular Presentation Format. ITU-T, July 2001.

J. Rosenberg et al. : RFC 3261 — SIP : Session Initiation Protocol.

IETF, June 2002.

Conformiq website: http://www.conformiq.com/

] Quilu Yuan et al.: A Model Driven Approach Toward Business

Process Test Case Generation. IEEE, June 2008

362

Appendix B — Own Publications

Published in ITG-Fachbericht Mobilfunk (Mobilfunktagung 2011), pp. 118-123,
University of Applied Sciences Osnabriick, Germany, ISB: 978-3-8007-3352-1

ComGeneration: die Dienstebeschreibung als Basis fiir automati-

sierte Tests

Patrick Wacht. Thomas Eichelmann,
Armin Lehmann, Ulrich Trick
Fochhochschule Frank furt/M.

University o Applied Sciences,
Nibelungenplatz 1, 60318 Frankfurt/M., Germany
E-Mail: {wacht, cichclmann, lchimann, trick’} @e-

technik.org;

Rolf Lasch, Marten Fischer. Ralf Tnjes
1lochschule Osnabriele
University of Applied Sciences,
Albrechistr. 30, 49076 Osnabriick, Germany
E-Mail: {rlasch, m.fischer. r.toenjes}@hs-
osnabrucck.de;

Das dieser Publikation zugrunde liegende Vochaben wurde mit Mitteln des Bundesministeriums fiir Bildung und
Forschung (BMBF) unter dem Férderkennzelchen 1724B409 gefdrdert. Dic Verantwortung fiir den Inhalt dieser

Verdttentlichung licgt bei den Autoren.

Kurzfassung

TIm sicherzustellen, dass ein Mehrwertdienst gemil den Anforderungen eines Kunden realisiert wurds, st die
Durchtithrung von funktionalen Tests unerlidsslich, welche aus einer vorliependen Dienstebeschreibung bzw. Spe-
zifikation abgeleitet werden. In diesem Autsatz wird cine ncue Art der Dicnstebeschreibung vorgestellt, dic nicht
den Kontakt zum Kunden verliert, digsen mil cinbindet und cine solide Grundlage fiir die schnelle, kostenginsi-
ge und qualitativ hochwertige Thenst- und Testentwicklung gewihrleisiel, Tas Vorgehen beim Ergtellen einer sol-
chen Dienstebeschreibung wird vorgestellt und anhand eines konkreten Beispieldienstes gezeigt.

1 Einleitung

Die Nachfrage nach neuen Diensten. speziell Mehr-
werldiensien, wichst stindig, daher besichi cin grofies
Tnieresse seilens der Nelrhetreiber e
Diensteanbieter, kostenoptimierte Lsungen zu finden,
um neue Dicnste cinfach und schnell bereitstellen zu
kénnen. Durch das [MS ([P Multimedia Subsystem)
werden neue Moglichkeiten der einfocheren und
schnelleren Dienstebereitstellung gegeben, die zu neu-
en Einnahmequellen neben der normalen Telefonie
fiillwen, Um die Nachfrage der Kunden zu befricdigen,
miissen neu entwickelte Dienste nicht nur bereitge-
stellt, sondem auch getestet werden, bavor sie in den
Wirkbetriel iibergehen. Nur so kann die Grundvo-
raussctzung fiir dic Zufricdenheit der Kunden garan-
tiert werden. [as Testen von Diensten wird durch die
sleigende Nuchfrage und Komplexitit der neu entwi-
ckelten Dienste zunehmend an Bedentng gewinnen.
Im BMBF-Projekt ComGeneration {Test-gesteuerte
Lvolution und automatisicrte Bereitstellung von
Kommunikativnsdiensien) [1] ist deher eine durch-
gingige Tosung erarbeitel worden, die beginnend mit
der Dienstebeschreibung bis hin 7zum austiihrbaren
Test reicht.

Im niichsten Kapitel wird der in ComGeneration ent-
wickelle Ansalz niher erliutert, der aul giner wohl de-
finierten Drenstebeschreitimg fusst. Triese Trienstebe-
schreibung wird in Kapitel 3 eingehend beleuchtet und

in Kapitel 4 anhand cines Beispicls veranschaulichr.
Die Zusamumenfussung und geplantes weileres Vorge-
hen bilden den Abschluss dieses Aulsatzes in Kapitel
5.

2 ComGeneration-Ansatz

Wie in Bild | dargestellt, wird in diesem Ansatz Wert
darauf gelegt, duss zu Beginn cine definierte Dienste-
beschreibung vorliegl, aus der sowohl die Dienstent-
wicklung als auch die Testentwicklung hervorgehen.

Erzeugen des

Test Case
Verhaltens- Generator
modells

Dienste- s
beschreibung
Service .i
Creation
] Environment
i Digns]

Bild1 ComGeneration Framework

363

Appendix B — Own Publications

Fir die Dienstentwicklung kann theoretisch jedes
existierende Service Creation Environment (SCE)
eingesetzt werden. Ebenfalls denkbar wiére eine manu-
elle Implementierung durch einen Dienstentwickler.
Im Gegensatz dazu ist der Ablauf der Testentwicklung
durch einen Testentwickler im ComGeneration-Ansatz
wohldefiniert [2; 3]. Dieser muss zundchst die testspe-
zifischen Informationen aus der ihm vorliegenden
Dienstebeschreibung herausfiltern. Danach selektiert
er aus einem Repository an vorgefertigten wiederver-
wendbaren modularen Teilautomaten die fiir den
Dienst relevanten Bausteine. Diese modularen Teilau-
tomaten beschreiben typische dienstspezifische Ablau-
fe, z.B. bestimmte Sequenzen von Nachrichten fiir
Protokolle wie SIP (Session Initiation Protocol) oder
HTTP (Hypertext Transfer Protocol). Nach der Aus-
wahl der relevanten modularen Teilautomaten kompo-
niert der Testentwickler diese entsprechend den Anga-
ben aus der Dienstebeschreibung und erhélt in der
Folge das sogenannte Verhaltensmodell, bei dem es
sich um einen komplexen Zustandsautomaten handelt.
Alle in diesem Zustandsautomaten moglichen zu
durchlaufenden Zustidnde und Zustandsiiberginge in-
klusive der diese hervorrufenden Events (Eingangs-
signale) und resultierenden Actions (Ausgangssignale)
vom Startzustand bis zum Endzustand des Zustands-
automaten beschreiben die zu testenden Nachrichten-
abldufe. Diese Nachrichtenabldufe stellen das mogli-
che Verhalten aus der Sicht des Dienstes dar. Um nun
mittels des Test Case Generators aus dem Verhaltens-
modell TTCN-3-Testfille generieren zu konnen, wel-
che anschliefend in einem Test Framework auf das
"System under Test", dem deployten Dienst, ausge-
fiihrt werden konnen, wird die Sicht invertiert. So
handelt es sich bei den Eingangssignalen fiir den
Dienst im Verhaltensmodell um Nachrichten, die von
Testseite bzw. von den Testkomponenten gesendet
werden miissen. Im Gegensatz dazu handelt es sich bei
den Ausgangssignalen vom Dienst um Nachrichten,
welche von der Seite des Tests empfangen werden.

3 Dienstebeschreibung

Wie bereits erwéhnt, ist die Grundlage fiir die Ent-
wicklung eines neuen Dienstes und dessen Tests eine
hinreichend genaue Dienstebeschreibung. Diese
Dienstebeschreibung muss mehrere Kriterien erfiillen.
Sie sollte moglichst unmissverstindlich und eindeutig
sein. Hierfiir sollte ein eingeschrankter Wortstamm
(mit Schliisselwortern) genutzt werden, um Doppel-
deutigkeit an Begriffen zu vermeiden. Dariiber hinaus
muss die Dienstebeschreibung so geartet sein, dass
sowohl der Test- als auch der Dienstentwickler diese
verstehen und interpretieren konnen. Beide Entwickler
sollten moglichst das gleiche Bild des Dienstes vor

sich haben, um spitere Differenzen zu vermeiden. Ei-
ne weitere Anforderung an die Dienstebeschreibung
ist, dass diese hinreichend genau den Dienst bzw. das
Dienstverhalten beschreibt. Hierzu bedarf es speziell
geschultem Personal (sogenannte Service Agents),
welches zusammen mit dem Kunden eine Dienstebe-
schreibung erstellt.

3.1 Aufbau der Dienstebeschreibung

Die Erstellung einer Dienstebeschreibung gliedert sich
wie folgt:
1. Erstellung einer textuellen Dienstebeschrei-
bung.
2. Identifizieren der am Dienst beteiligten Rol-
len.
3. Spezifizieren der Anforderungen aus Sicht
der Benutzer/Kunden.
4. Erginzen der spezifizierten Anforderungen
5. Identifizieren der Kommunikationsschnitt-
stellen zwischen dem Dienst (System) und
den Nutzern.
6. Entwickeln der Tests und des Dienstes.

Die genannten Punkte 1 bis 3 werden werden durch
den Service-Agenten mit dem Kunden erarbeitet. Die
Schritte 4 und 5 werden darauf durch den Service-
Agenten fortgefiihrt und Schritt 6 wird dann durch die
Entwickler (Test- bzw. Dienstentwickler) durchge-
fiihrt. Bis zum Schritt 6 muss die Dienstebeschreibung
allen Anforderungen geniigen. Die einzelnen Schritte
der Dienstebeschreibung bis hin zur Erstellung der
Tests und des Dienstes werden im Folgenden néher
erldutert.

3.2 Textuelle Dienstebeschreibung

In der textuellen Beschreibung wird der Dienst mit all
seinen Eigenschaften aus Sicht des Benutzers be-
schreiben. Hier werden auch Vereinbarungen genauer
definiert wie zum Beispiel die SIP URI (Uniform Re-
source Identifier) des Dienstes. Wihrend der Erstel-
lung der textuellen Beschreibung muss der Service
Agent genau darauf achten, dass keine Ungenauigkei-
ten in der Beschreibung auftreten. Ein Beispiel hierfiir
wire der Satz: ,,Alle weiteren Fehler werden ebenfalls
ibermittelt. Dieser Satz ist unzureichend genau und
muss erginzt bzw. gedndert werden in z.B.: ,Bei
Nichterreichbarkeit und falsch angegebener Zieladres-
se wird dem anfragenden Teilnehmer iiber Statusmel-
dungen der aufgetretene Fehler signalisiert*.

364

Appendix B — Own Publications

3.3 Identifikation der beteiligten Rollen

Aus der bereits erstellten textuellen Beschreibung des
Dienstes konnen Rollen (z.B. SIP-Endgerit) identifi-
ziert werden. Alle Rollen miissen aus der textuellen
Beschreibung ableitbar sein. Hierfiir sorgt der Service
Agent, indem er mit dem Kunden die Beschreibung
komplettiert. Die Rollen miissen immer aus Sicht auf
das System definiert werden, wobei unter dem System
der erwiinschte Dienst zu verstehen ist.

3.4 Spezifikation der Anforderungen

Dieser Abschnitt der Erstellung der Dienstebeschrei-
bung unterteilt den zu entwickelnden Test und Dienst
in einzelne Bereiche, die als sogenannte Dienstpfade
verstanden werden konnen. Unter einen Dienstpfad ist
ein bestimmter Ablauf bzw. eine Variante innerhalb
eines Tests bzw. eines Dienstes zu verstehen. Zum
Beispiel wird auf Grund eines Ereignisses (z.B. Ein-
treffen einer SIP-Nachricht INVITE) ein bestimmter
Pfad betreten. Beim Eintreffen eines anderen Ereig-
nisses (andere SIP-Nachricht) wird ein anderer Pfad
eingeschlagen. Die Dienstpfade dienen dazu, den Test-
bzw. Dienstentwickler zu unterstiitzen. Beide Ent-
wickler konnen sich anhand dieser Spezifikationen
orientieren um den Dienst bzw. die Tests zu erstellen.
Die Spezifikation der Anforderungen besteht aus vier
Elementen (in Tabelle 1 exemplarisch dargestellt).

— Rollen: Die bereits identifizierten Rollen,
welche aus Sicht auf das System (Dienst) de-
finiert wurden.

— Preconditions: Hier wird die Situation be-
schrieben, welche zu der vom Kunden ge-
wiinschten Folgesituation (Target) fiihren
soll. Voraussetzung fiir das Erreichen des
Targets ist, dass der gesamte Dienstverlauf
fehlerfrei ist. Der Begriff Situation soll in
diesem Zusammenhang die Summe aller In-
formationen bezeichnen, die dem Benutzer in
seiner momentanen Rolle beziiglich seines
Auftrags an das System zuginglich sind (z.B.
Rufnummern oder Statusinformationen iiber
sein Endgerit).

— Postconditions: Die Postconditions représen-
tieren eine Liste aller moglichen Situationen,
die nach Bearbeitung des Benutzerwunsches
vorliegen kénnen. Hier lassen sich auch die
dusserlich sichtbaren Reaktionen des Systems
bei gestortem oder fehlerhaftem Ablauf des
Dienstes beschreiben. Auch das Target zahlt
zu den Postconditions, es ist allerdings ge-
sondert zu beachten und kenntlich zu ma-
chen.

— Prosa: Hier soll nocheinmal das Target be-
schrieben werden. Dazu sollen allerdings

kurze und prézise Formulierungen verwendet
werden. Hierdurch erhalten die Entwickler
grundlegende Informationen zur Funktionali-
tat des Dienstes.

Tabelle1 Beispiclhafte Anforderunsspezifikation
Rollen Anrufer [a] Zuordnung
der Rollen
Pre- Anrufer kann beliebigen | [a]
conditions | Teilnehmer erreichen
Anrufer hat keine aktive | [a]
Verbindung
Post- Anrufer wird nicht ver- | [a]
conditions | bunden
Empfénger ist unbekannt [a]
Empfanger ist nicht ver- | [a]
bindungsbereit
Anrufer wird verbunden | [a]
Prosa Teilnehmer [a] mdchte ein
Gesprich mit einem ande-
ren Teilnehmer fiihren

Wie bereits erwihnt, ist die gewiinschte Folgesituation
besonders hervorgehoben (hier: ,, Anrufer wird ver-
bunden®) und wird als Geradeausfall definiert.

3.5 Erganzung der Anforderungen

Falls nétig definiert der Service Agent Erweiterungen
fiir die einzelnen Anforderungen. Dariiber hinaus be-
steht in diesem Schritt der Erstellung einer Dienstebe-
schreibung die Méglichkeit, auch dienstinterne Eigen-
schaften aufzufiihren. Dies war in den vorherigen
Schritten nicht mdglich, da der Dienst immer als
Black Box betrachtet wurde. Die folgende Liste soll
ein Beispiel fiir erginzende Anforderungen sein.
— SIP URIs diirfen keine Sonderzeichen enthal-
ten (ausgenommen @).
— SIP URIs diirfen nicht mehr als 64 Zeichen
lang sein.
— Der Inhalt einer Instant Message darf nicht
leer sein.

3.6 I dentifizierung der Kommunikations-
schnittstellen

In diesem Schritt werden die Kommunikationsschnitt-
stellen zwischen dem Dienst und den einzelnen Rollen
bestimmt. Auch hierbei ist darauf zu achten, dass die
Identifizierung der Schnittstellen immer aus Sicht auf
den Dienst geschieht. Hierfiir werden vorab definierte
Schnittstellen verglichen und ausgewihlt. Die Schnitt-
stellen représentieren grundlegende Funktionalitéten

365

Appendix B — Own Publications

verschiedener Protokolle z.B. SIP UAS (User Agent
Server) oder SIP UAC (User Agent Client). Das fol-
gende kurze Beispiel soll dies verdeutlichen.

Ein SIP-Endgerit sendet eine Nachricht (Instant Mes-
sage) an das System. Das SIP-Endgerit reprisentiert
hierbei die Rolle, welche auf das System zugreift. Aus
Sicht dieser Rolle stellt das System die inverse Funk-
tion dar. Das bedeutet fiir dieses Beispiel, dass das
Endgerit die Funktionalitdt eines SIP UACs besitzt
und das System das dazu passende Gegenstiick, den
SIP UAS, darstellt.

Jeder der einzelnen Schritte kann dazu fiihren, einen
oder mehrere Schritte zuriickgehen zu miissen, da
Teilaspekte nicht geniigend genau beschrieben wur-
den. Hierzu kann es auch notwendig sein, den Kunden
wieder mit einzubeziehen, um im Sinne des Kunden
zu handeln. All diese Schritte unterstiitzen die Ent-
wickler, den Test- sowie Dienstentwickler bei der Um-
setzung. Ein Testentwickler kann viele notwendige
Informationen daraus schlieBen. Er kann z.B. einzelne
Testpfade aus den Postconditions zur Erstellung des
Zustandautomaten-basierten Verhaltensmodells ablei-
ten. Auch die zu nutzenden Schnittstellen (représen-
tiert durch modulare Teilautomaten) und weitere wich-
tige Parameter (Ergénzungen der Anforderungen) zur
Bestimmung der Ubergiinge zwischen den Zustinden
im Verhaltensmodell sind bereits definiert worden und
konnen leicht adaptiert werden.

Anhand eines Beispiels soll das Vorgehen zur Erstel-
lung einer solchen Dienstebeschreibung im néchsten
Abschnitt mittels eines Beispieldienstes detailliert er-
lautert werden.

4 Dienstebeschreibung fiir den Bei-
spieldienst Click2l

In dem vorigen Kapitel wurden der Aufbau und die
Struktur einer Dienstebeschreibung in einer abstrakten
Weise erldutert. Die Konkretisierung des Ansatzes er-
folgt nun durch die Anwendung auf einen konkreten
Beispieldienst mit dem Namen Click2IM (Click-to-
Instant-Message).

Der erste Punkt der Dienstebeschreibung fiir den
Click2IM-Dienst ist die grobe textuelle Beschreibung.

4.1 Textuelle Dienstbeschreibung

Es soll mdglich sein, nach dem Aufruf einer Webseite
zwei Eingabemasken auf der Seite auszufiillen. Eine
Eingabemaske beinhaltet die Adresse bzw. Telefon-
nummer eines beliebigen Textanzeigegerites bzw.
Softphones, die andere soll einen beliebigen Text auf-
nehmen. Sobald die Eingaben in den Masken getitigt

wurden, kénnen sie durch Betitigung eines dafiir vor-
gesehenen Buttons bestitigt werden. Falls die Zielad-
resse nicht erreichbar ist oder der Text nicht iibermit-
telt werden konnte, soll dies der Person via Webseite
mitgeteilt werden. Auch die erfolgreiche Versendung
des Textes soll bestdtigt werden.

4.2 | dentifikation der am Dienst beteilig-
ten Rollen

In der textuellen Dienstbeschreibung sind die beiden
beteiligten Rollen bereits implizit erwihnt:

e Rolle 1: Webseite (Browser)
e Rolle 2: Textanzeigegerit (Softphone)

4.3 Spezifikation der Anforderungen aus
der Sicht des Benutzers

In der nachfolgenden Tabelle 2 wird die fiir den
Click2IM-Dienst relevante Anforderungsspezifikation
angegeben. Die Rolle des Browsers wird nachfolgend
als Initiator bezeichnet, da diese den Dienst urspriing-
lich konsumiert. Die Rolle des Textanzeigegerites
bzw. Softphones wird hingegen als Empfinger be-
schrieben.

Tabelle2 Anforderunsspezifikation fiir Click2IM

Rollen Browser [b], Soft- | Zuordnung
phone [s] der Rollen
Preconditions | Initiator kann beliebige | [b]

Zieladresse angeben
Initiator kann Textin- | [b]
halt angeben
Initiator bestdtigt Ein- | [b]
gaben

Postconditions | 1. Empféanger ist un- | [b]
bekannt
2. Empfinger erhilt | [b]
keine Textnachricht

3. Empfénger erhalt
Textnachricht

[b.s]

Initiator mochte eine
Textnachricht an ein
Softphone senden.

Prosa

In der Tabelle sind ferner die relevanten Preconditions
und Postconditions aufgefiihrt. Die Preconditions um-
fassen hierbei alle fiir den Click2IM-Dienst relevanten
Schritte, um zu der geforderten Folgesituation bzw.
Postcondition zu kommen, welche zuvor als Target
definiert wurde. Neben dem eigentlichen Target wer-
den noch weitere Postconditions spezifiziert, welche
die sichtbaren Reaktionen des Dienstes bei gestortem

366

Appendix B — Own Publications

oder fehlerhaftem Ablauf beschreiben. Sowohl dem
Dienstentwickler als auch dem Testentwickler sollte
klar sein, wie es zu derartigen Postconditions kommen
kann. Hierfiir werden die nachfolgenden ergdnzenden
Anforderungen angegeben.

4.4 Erganzung der Anforderungen

Diese Anforderungsergénzungen gelten ausschlieBlich
fir die Postconditions und werden jeweils diesen zu-
geordnet.

a. Standardfehler werden signalisiert (z.B. Ti-
meouts)

b. Maximale Lénge der Zieladresse (128 Zei-
chen)

c. Sonderzeichen in der Zieladresse sind nicht
zuldssig (exklusive @)

d. Maximale Lénge der Texteingabe (256 Zei-
chen)

e. Leere Texteingaben sind nicht zuldssig

Der Bezug zu den in Tabelle 2 definierten
Postconditions wird im nachfolgenden Bild 2 deutlich.

» Postcondition 1

-
Preconditions - + Postcondition 2

., Postcondition 3
(Target)

Bild2 Zuordnung von Anforderungsergdnzungen zu
Postconditions

Die Postcondition 1 (,,Empfinger ist unbekannt*) wird
hier tiber die Anforderungserginzung a erreicht, glei-
ches gilt bei der Postcondition 2 fiir die Anforde-
rungsergénzungen b, ¢, d und e. Wenn also diese feh-
lerhaften Angaben gemacht werden, wird laut Spezifi-
kation erwartet, dass Postcondition 2 eintritt, der
Empfanger sollte also keine Textnachricht erhalten.
Postcondition 3 stellt das Target dar und wird hier ge-
sondert dargestellt.

Indem man also die Anforderungsergéinzungen den
Postconditions zuordnet, erhdlt man aus der Dienste-
beschreibung die relevanten Dienstpfade. Insgesamt
konnen fiir den Click2IM-Dienst sechs Dienstpfade
identifiziert werden, die sowohl der Dienstentwickler
als auch der Testentwickler beriicksichtigen miissen.

4.5 | dentifizierung der Kommunikations-
schnittstellen

Die Kommunikationsschnittstellen stellen jeweils das
Gegenstiick der klassifizierten Rollen dar. Sie repri-
sentieren die realen Schnittstellen des Dienstes nach
auBlen. Fiir den Click2IM konnen die folgenden
Schnittstellen identifiziert werden:

e HTTP Server
e SIP UAC (User Agent Client) initRequest

Die Kommunikationsschnittstelle HTTP Server be-
sagt, dass die vom Browser initiierten HTTP Request-
Nachrichten (z.B. HTTP POST) dienstseitig empfan-
gen und weiterverarbeitet werden. Die zweite Kom-
munikationsschnittstelle SIP UAC initRequest regelt
hingegen die SIP-Kommunikation zwischen dem
Dienst und dem Softphone. Bei der Beschreibung des
ComGeneration-Ansatzes in Kapitel 2 wurden bereits
die sogenannten Teilautomaten erwéhnt, welche als
Bausteine zur Erzeugung eines Verhaltensmodells
herangezogen werden konnen. Fir die Kommunikati-
onsschnittstellen wurden im Rahmen des Projektes
derartige Teilautomaten definiert. Die fiir den
Click2IM-Dienst relevanten Teilautomaten kann der
Testentwickler direkt aus den in der Dienstebeschrei-
bung definierten Kommunikationsschnittstellen ablei-
ten und als Basis fiir das Verhaltensmodell verwenden.

5 Zusammenfassung und Ausblick

In dieser Verdffentlichung wird ein Ansatz zur Spezi-
fizierung und Beschreibung von Mehrwertdiensten
vorgestellt. Im Rahmen des Projekts ComGeneration
wird eine durchgingige Losung zum Testen von
Mehrwertdiensten von der Dienstebeschreibung bis
zum ausfiihrbaren Test entwickelt. Der oben gezeigte
Uberblick iiber das Framework lisst bereits auf die
Michtigkeit des hier prisentierten Ldsungsansatzes
schliefen.

Die in diesem Aufsatz vorgeschlagene Dienstebe-
schreibung stellt die Grundlage fiir die Dienstentwick-
lung dar, ganz gleich mit welcher SCE der Entwickler
arbeitet oder ob er den Dienst sogar manuell erstellen
muss. Aus der geforderten Unabhdngigkeit von einer
bestimmten SCE folgt eine gewisse universelle Ein-
setzbarkeit des hier vorgestellten Ansatzes.

Auch fiir den Testentwickler stellt die Dienstebe-
schreibung die Grundlage fiir die Entwicklung von
Testféllen dar. Der Testentwickler ermittelt aus der
Dienstebeschreibung die bendtigten modularen Teilau-
tomaten und verkniipft diese, wie in der Dienstebe-

367

Appendix B — Own Publications

schreibung aus den Dienstpfaden ablesbar ist, mitei-
nander. Daraus entsteht das Verhaltensmodell des
Dienstes, aus dem automatisch TTCN3-Testfalle abge-
leitet werden. Ein weiterer Vorteil dieses Vorgehens ist
die automatische Generierung der Testfille. Der Test-
entwickler muss nur die relevanten Teilautomaten
auswihlen und miteinander verkniipfen. Je umfangrei-
cher und vollstindiger der Pool an vordefinierten
Teilautomaten ist, desto geringer fillt der Aufwand fiir
den Testentwickler aus. Modulare Teilautomaten kon-
nen dabei auch vom Testentwickler aus einfacheren
Teilautomaten komponiert werden, hier entfaltet die-
ser Ansatz sein grofites Potential.

Dieser Aufsatz fokussiert hauptsidchlich auf die
Dienstebeschreibung. Der Aufbau, die Regeln und An-
forderungen fiir die Erstellung dieser werden definiert
und erldutert. Das Vorgehen beim Erstellen einer
Dienstebeschreibung wird vorgestellt und anhand ei-
nes Beispiels gezeigt.

Fiir das hier vorgestellte Framework wird ein Prototyp
implementiert. Der momentane Stand der Framework-
Entwicklung erlaubt dem Testentwickler bereits die
Erstellung der Statemachine fiir das Verhaltensmodell.
Modulare Teilautomaten werden im Moment noch
nicht unterstiitzt. Die automatische Generierung von
TTCN-3-Testfillen aus dem Verhaltensmodell konnte
aber bereits fiir einfache Dienste dhnlich dem hier
vorgestellten durchgefiihrt werden. Der Test Case Ge-
nerator kann das Verhaltensmodell analysieren und
findet die moglichen Testfélle aus dem Verhaltensmo-
dell heraus. Fiir jeden gefundenen Testfall generiert
der Test Case Generator den entsprechenden TTCN-3
Code.

Die Dienstbeschreibung muss hinreichend genau sein.
Eine zu genaue Beschreibung des Dienstes fiihrt zu
umfangreichen Dokumenten, andererseits kann eine
ungenaue Dienstbeschreibung zu Fehlinterpretationen
durch den Dienstentwickler oder den Testentwickler
fithren. Durch die bisherige Formalisierung werden
diese Schwierigkeiten weitgehend vermieden. Den-
noch soll in der ndchsten Entwicklungsstufe ein Mei-
lenstein- und Versionskonzept in den ComGeneration-
Ansatz aufgenommen werden.

An der Integration der modularen Teilautomaten wird
im Moment gearbeitet. Der Testentwickler kann dann
direkt aus der Dienstbeschreibung die bendtigten Teil-
automaten erkennt, diese im Framework auswihlen
und zu einem Verhaltensmodell zusammenfiigen. Da-
mit wire das Ziel einer durchgidngigen Ldsung er-
reicht, die nebenbei noch viele reizvolle Vorteile bie-
tet.

6 Literatur

[1] http://www.ecs.fh-osnabrueck.de/27619.html

[2] Wacht, P.; Eichelmann, T.; Lehmann, A.; Trick,
U.: "A New Approach to Design Graphically
Functional Tests for Communication Services".
Fourth IFIP International Conference on New
Technologies, Mobility and Security, Paris,
Frankreich, 2011

[3] Wacht, P.; Lehmann, A.; Eichelmann, T.; Fuhr-
mann, W.; Trick, U.; Ghita, B.: "Integration of
Model-Based Functional Testing Procedures
within a Creation Environment for Value Added
Services", Sixth Collaborative Research Sympo-
sium on Security, E-learning, Internet and Net-
working (SEIN 2010), Plymouth, United King-
dom, 2010

368

Appendix B — Own Publications

Published in Proceedings of the Fourth International Conference on Internet
Technologies & Applications (ITA 2011), pp. 262-269, Wrexham, United Kingdom,
ISBN: 978-0-946881-68-0

A NEW APPROACH TO MODEL A FORMALISED
DESCRIPTION OF ACOMMUNICATION SERVICE
FOR THE PURPOSE OF FUNCTIONAL TESTING

Patrick Wacht'?, Thomas Eichelmann'?, Armin Lehmann'?, Woldemar
Fuhrmann®, Ulrich Trick' and Bogdan Ghita®

'Research Group for Telecommunication Networks,
University of Applied Sciences Frankfurt/M., Germany
Centre for Security, Communications and Network Research,
University of Applied Sciences Plymouth, United Kingdom
3University of Applied Sciences Darmstadt, Germany
wacht@e-technik.org

ABSTRACT

This paper presents a concept of how a service provider can verify that an implemented communication
service meets the requirements of a customer. This requires functional tests which are derived from a
finite state machine-based behaviour model being composed from predefined modular sub finite state
machines. As the composition of these modular finite state machines to a behaviour model is done by
retrieving information from the requirements specification or rather Service Description, the modef
reflects the business logic of the communication service. A case study of the modelling procedure is
shown in this paper by means of an example service.

KEYWORDS
Functional Testing; Behaviour Model; Finite Sate Machine; Model-Based Testing

1. INTRODUCTION

The complexity of value-added communication services is ever increasing. In the
telecommunication domain, a malfunctioning of services may be costly or even compromises
the reputation of a specific service provider. Therefore, functional testing procedures have to be
executed consequently before the delivering of the service to a customer, because the provider
has to assure that the service is executed properly and does not affect other running services
within the provider’s service environment.

Functional testing is considered a sub-category of black-box testing and the construction of the
test cases is solely done manually by a test developer from the information given in a
specification which is supposed to define the behaviour of a system or rather service. In general,
the test developer has to spend a significant amount of time on test case design, test data
selection, and test evaluation because there are no adequate tools available to automate these
tasks for testing of communication services. So, new mechanisms have to be evolved to help
overcome this situation, thus increasing both efficiency and effectiveness of the testing process.

This paper which demonstrates concepts of the corresponding project ComGeneration [1]
proposes a new approach to compose a so-called behaviour model from predefined building
blocks which can be created by a test developer from the information he could retrieve from a
certain requirements specification. Both the behaviour model and the predefined building blocks

369

Appendix B — Own Publications

are finite state machines (FSM) whose paths represent possible message flows. To create the
behaviour model, the test developer will use a graphical editor to design the model itself and
provide the test configuration and test data. The whole modelling procedure will be the focus of
this paper.

The retrieving of test cases from the behaviour model and the generation and execution on the
System under Test (SUT) will not be discussed. Further information on this purpose can be read
in [2].

The remainder of this paper is structured as follows: Section 2 introduces the related research. In
Section 3, the consistent concept of the approach is described. Section 4 contains a case study
which introduces the development of a behaviour model by means of a service example.
Finally, a conclusion is provided in Section 5.

2. RELATED WORKS

Among the existing researches, test case generation based on models — model-based testing
(MBT) — describing the intended behaviour of a system is proposed by different authors. The
MBT approach is used for various kinds of software.

Conformiq [3] describes tests by UML state diagrams, but the focus is not to describe the
service from the view of the SUT, but from the view of the test components. A similar approach
from Yuan et. al [4] describes test case generation from UML activity diagrams, but the main
focus is about testing Web Service compositions with the help of TTCN-3. Gonczy et. al [5]
address the testing of service infrastructure components against their specifications. They
proposed a technique to synthesise a compact Petri net representation for the possible
interactions between the service under test and the test environment. Concrete test cases can be
defined by a sequence of controllable actions in this Petri net. Brucker et. al [6] report on their
experience on how model-based descriptions can be used to derive tests for security policies.
They were able to derive tests from models for stateless and statefull firewalls. Ali et. al [7]
discuss closely related work to those of the author. In their approach, the use of UML 2.0 state
machines, composed of several sub machines, is proposed. They implemented a model-based
testing tool with the name TRUST (Transformation-based tool for Uml-baSed Testing) which is
able to flatten the complex state machine and transform it into a test model. However, their
approach still requires a lot of interactions with a user and therefore is not applicable for
automated test execution as desired by the author’s research project. Wieczorek at. al [8]
developed an infrastructure in which complex software systems are described by the usage of
model-driven engineering (MDE). The main goal of this project is to develop a standardised
solution to improve the quality and productivity. Testing aspects are limited to model
verification techniques and model-based simulations, allowing only the observation of the
service’s behaviour. Zhang Xiaoyan et al. [9] research generates test cases based on the OWL-S
requirement model in order to test the interaction of several Web Services. Pretschner et. al [10]
give a general overview about common approaches and challenges model-driven testing is
facing. Tretmans et. al [11] highlight the benefits for a completely automated test support
originating from the test code generation from a model, over the test execution to the analysis of
the test results.

The introduced research activities have in common that they only support artefacts of the whole
software testing process. Most of the concepts do not provide a consequent procedure from the
requirements specification to the execution of tests and, furthermore, do not provide any
predefined building blocks like the modular FSMs in the ComGeneration approach.

370

Appendix B — Own Publications

3. CONCEPT OVERVIEW

Belore looking at the practical sleps being demonstrated in the upeoming case study in Scetion
4, it is worthwhile having a look at the ComGeneration approach [2; 12]. Figure | gives an
abslracl overview,

Modelling Test Case

Modular Sub Behaviour Generator
Finite State Model

Machines

Service
Description

Service
— Creation
Environment

Figure 1. ComGeneration Architecture

The shown architecture can be divided into two main paths: The Service Development and the
Test Development. Both the paths have their ovigin in the initial Service Description that can be
seen as a sert of requirements specification for communication services. The Service
Description consists of a document containing specific use-case related information and is
created by the service provider in consultation with a customer. It contains all possible demands
a customer might have for a cemmunication service.

Once the Service Description is detined, both the Service Development and the Test
Development can begin in parallel. In the presented approach, it is not ultimately defined which
Service Creation Environment {SCE} is used to develop and subsequently deploy a specific
service. However, the base for the developiment and deployment of services with any SCT is the
Service Description. The cutput will then be a service which is deployed on a SIP Application
Server.

The Test Development process starts with the test developer who has to interpret the Service
Description properly and extracts the relevant service informastion for the test purpose.
Afterwards, he chooscs the service-related characteristics out of a repository of so-called
predefined modular FSMs. These state machines cover typical service characteristics like
protocel sequences for SIP (Session Imitiation Protocol) or HTTP (Hyptertext Transfer
I'rotocol). By composing the chosen predefined modular FSMs, the test developer creates a
behaviour model, which describes the possible behaviour of a value added service. Once the
behaviour model 1s created it is passed to the Test Case Generator (TCG) which contains an
algorithm to automatically generate the service-specific abstract test cases by identifying every
possible path through the FSM. After the generation of these abstract test cases is done, they are
afterwards converted into executable TTCN-3 (Testing and Test Control Notation) test cases.
TTCN-3 is an abstract test scripting language which was standardised by ETSI [13] and ITU-T
[14: 15] and supports the modularised creation of fest scenarios tor message and procedure
based systems. In the ComGeneration approach, the execution of the executable TTCN-3 test
cases on the deployed service is done within a TTCN-3 test framework.

371

Appendix B — Own Publications

The significant aspect of this paper is the way how the behaviour model is created by a test
developer from the information he can retrieve from the Service Description.

4. CASE STUDY: THE EXAMPLE SERVICE CLICK2IM

In this section an evaluation of the modelling approach is presented with the help of an example
service Click2IM (Click-2-Instant-Message).

4.1. Scenario Description

The function of the Click2IM service is to send a SIP MESSAGE with a specified text to a SIP
phone having a specified SIP URI. Both the text and the SIP URI are input parameters in a form
on a website. Once the parameters are sent by actuating a button, the service creates the SIP
MESSAGE which contains the input text and sends it to the SIP phone with the SIP URIL

4.2. Service Description

As described in Section 3, the Service Description is maybe the most important aspect within
the process of creating a service on the one hand and testing it against the requirements on the
other hand. The Service Description can be seen as a kind of contract between the customer and
a service provider.

In the following Table 1, an exemplary Service Description for the Click2IM service is
illustrated. It contains a short textual description of the main functionality of the service.
Furthermore, the participating roles are defined as well as the preconditions which have to be
fulfilled to trigger the service. Also, the possible postconditions are defined within the table
which show the possible consequences of the preconditions.

Table 1. Service Description for Click2IM Service

Short Description

A website should deliver two input masks. The first input mask should contain the address or
telephone number (SIP URI) of any participant and the second one should carry any kind of
text. A button should be integrated on the website. When submitting it, the text included in the
second input mask should be transferred to the address that was filled in the first input mask. If
the SIP URI is not reachable or the text could not be transferred an error should occur on the
website. If the transfer worked, a success message should occur.

Roles Web Browser [b], SIP UAS [s] Assignment of the
roles
Preconditions Initiator sets any destination address [b]
Initiator sets text input [b]
Initiator confirms inputs [b]
Postconditions 1. Receiver is unknown [b]
2. Receiver does not get text message [b]
3. Receiver getstext message [b, s]
Prosa Initiator wants to send a text message to a SIP
phone.

The third postcondition in the table is specially highlighted, because it represents the required
functionality of the service which is defined as target. The other postconditions define how the
service should behave when certain errors or malfunctions occur. For both the test developer
and the service developer, it is necessary to define additional requirements which demonstrate
how the postconditions are reached:

372

Appendix B — Own Publications

a. Standard errors will be signalised, for instance timeouts (leads to = Postcondition 1)

b. Maximal Length of the destination address can be 128 characters (leads to —=>
Postcondition 2)

¢. Maximal length of the text input can be 256 characters (leads to = Postcondition 2)

d. Special characters (except of ‘@) are not allowed in the destination address (leads to >
Postcondition 2)

e. Empty text inputs are not allowed (leads to = Postcondition 2)

For the target (Postcondition 3), there are no additional requirements defined as the limitations
are already covered.

4.3. Tool Support

Once the Service Description is available the test developer can start to create the behaviour
model. For this purpose, the ComGeneration approach provides three editors which have to be
used:

1. Connectivity Editor
2. Test Data Editor
3. Behaviour Model Editor

To enable the modelling of the behaviour model, a lot of preliminary work has to be done. Both
the Connectivity Editor and the Test Data Editor can contain service-specific conditions which
have to be defined before adding further properties to the Behaviour Model. Within the
Connectivity Editor, the test developer can define certain parameters for the service like a
component, ports and timers. These parameters are derived from typical TTCN-3 test
configurations. A component represents one test component within the test. The communication
between the component and a system under test is realised through the connection of the local
ports, which can be seen as well-defined interfaces [13]. The defined timers can be typical
protocol timers or certain global timers.

In the Test Data Editor, the definition of the test data is done with the help of so-called
templates. In dependency of the protocol, the test developer can define the inputs of the headers
for certain protocol messages. In SIP, this would be the SIP Requests (e.g. INVITE,
MESSAGE) and SIP Responses (e.g. 200 OK, 404 Not Found).

Within the Behaviour Model Editor, a test developer can create the referring behaviour model
for a specific service by means of a FSM. This FSM describes in what order and under what
conditions the test cases are executed. It represents the predicted reactions of the service which
were defined as postconditions in the Service Description.

4.4. Creation of the Behaviour M odel

Based on the information the test developer retrieves from the Service Description, he first does
the test configuration within the Connectivity Editor. Independent of the service he wants to
test, he first has to define a so-called component which can be seen as the central element within
the Connectivity Editor. Because the two roles Web Browser (HTTP) and SIP UAS (SIP) are
mentioned, the test developer exactly knows that he will need the two ports SIP and HTTP to
cover the sending and receiving of messages from these protocols. Then, he defines two global
timers which may be used to protect the test from infinite waiting for service responses.

Finally, the test developer has to define so-called message variables. Such message variables
usually represent protocol messages, for instance SIP or HTTP Requests and Responses which
might occur within the test procedure. Because of the message variable’s acquisition to
protocols, they are usually used in combination with the defined ports. There are other elements

373

Appendix B — Own Publications

like guards and actions which are not yet supported completely by the editors. Nevertheless, the
modelling can be done. Figure 2 shows the configurations for the Click2IM service within the
Connectivity Editor.

Click2iM.model_diagramConnectivity &3 [clickzm.model =a
b
<, Port1 (5P} <, Port2 (HTTP)
’ Component
‘ & ., CompenentGlobaltimer
S‘pReqMESSAGE ’Ct’mncnent \Cnmpunentpurts
& gtz “\ CompenentVariables
SipREsZUUOK 2
<, Port
SpResTor bxx [E=]Hetprequalid ¢ GlobalTimer
LY Action
S‘PRES”“ @Httpnaqlnvaud § Guard
%, Guardvariables
2] HetpResErrar =] HetoReshatok =] Hetpresok X Primitivevariable
-
v ‘
- - 2] Messagevariable

Figure 2. Connectivity Editor for Click2IM

All the Message Variables that were defined in the Connectivity Editor are connected to so-
called test data templates. These templates can be edited in the Test Data Editor. For both the
protocols SIP and HTTP it is possible to configure a lot of values for headers that were defined
in the protocol specifications. Figure 3 demonstrates the configuration of a template belonging
to the Message Type SIP Request. Here, the headers for the SIP MESSAGE are edited.

ClickziM. model_diagramConnectivity |) ClickziM.model £3 =0
FD Resource Set

v 4 Connectivity View

~ 8 component Component

v . Port Porkt (SIF)
v 4 Message Type Request
v 4 Message Field requestLine
> <4 Message Field requestUri
<4 Message Field sipVersion
> 4 Message Field msgHeader
> 4 Message Field messageBody
> 4 Message Field payload
> <4 Message Type Response

v ., Port Part2 (HTTP)

] Tasks | = properties 8 B > v =0
Property Value =

Complex Type % False

Datatype Method

MName MESSAGE :
< <>

Figure 3. Test Data Editor for Click2IM

Once all the configuration and definition of protocol messages and ports is done, the test
developer can start to model the behaviour model. At first he has to choose the relevant sub
FSMs for the Click2IM service. Within the Service Description, the roles have been defined.
The counterparts of these roles represent the relevant groups of sub FSMs. This would be on the

374

Appendix B — Own Publications

one hand the group of Web Server (HTTP) which consists of two sub FSMs and SIP UAC
nonInvite which consists of three sub FSMs.

After choosing the correct sub FSMs, the test developer has to follow the instructions within the
Service Description and has to reproduce the behaviour within the composition of the sub
FSMs. This composition is done by a concept called Transaction User (TU) which acts as a
mediator between possible client and server roles. The whole concept is described in [2].

Altogether, the behaviour model consists of five sub FSMs which have to be composed due to
the specification. In the following, the FSM compositions referring to the case “Success” is
introduced. From the initial state in the behaviour model, a HTTP POST Message is expected
which contains the input text and SIP URI as parameters. Once this is done, the current state is
“HttpRequest_Server”. Then, the service initiates the sending of the SIP MESSAGE which
contains the input text to a SIP phone with the SIP URI. The transition from
“HttpRequest_Server” to “SipUAC_nonlInvite_init” contains a guard which compares the text
inputs of the POST Message and the SIP MESSAGE to verify that they are identical.
Afterwards, the transition from “SipUAC_nonlnvite init” to “SipUAC_nonlnvite term” refers
to the expecting SIP 200 OK response message which verifies that the SIP MESSAGE has been
successfully received by the SIP phone. The last transition is integrated between the states
“SipUAC_nonlInvite term” and “HttpResponse_Server”. It represents the response of the HTTP
Web Server to the originating HTTP POST request of the web browser. Figure 4 demonstrates
the complete behaviour model.

] Ehek2IM model_disgramPsh 1 oY)
°® ~ | 3% patette 3
+ Tu->HtzpRiesHotOk/Port2 HEtsResHaE Ok s
“ Port2 HetpReqVabd/HetpReqvalid->Tu & modelF5d
A Transition
4 HEcpReguest _Server 4 TU-=HEEpResOK/Port2 HetpResOK 4 HREpResponse_Server ¢ TU-»HetpResEmonPor2 HekpRerEmor
@ Initiaistate
@ Enditate

4 TU-»SipRegMESIAGE Port 1 ipReoMESIACE [SipReqMessage LextsaHREpReGVAlid Lert]] Hermalsate

4 Tu-HEEpResOK /Part2 HEEpRESTK
4 Port1.Spfes boc o SpRes 2ioc-faoe > TU
SipUAC_noninvte_init HpUAL_nonimdte_term
* 5 & Port timerF/timenut-sTU +

TranspartErrar/ErraesTU

4 HRMAL_nantwite_prec

4 Port1.5) fTu- e
& Portt SpRestogTu-=Spfest o 4 Portt Sphes o oy Spfes bocoe>TU

Figure 4. Behaviour Model for Click2IM

5. CONCLUSION

In this paper, we have introduced an approach to automate functional testing of communication
services by means of creating a so-called behaviour model from which the relevant test cases
are derived. For the modelling purpose, a test developer has to get a deep knowledge about the
service requirements from the Service Description and then has to build the behaviour model by
composing the sub FSMs. This procedure is simplified and accelerated due to the supply of
three editors, the Connectivity Editor, the Test Data Editor and the Behaviour Model Editor.
Besides, enhancements like the support of additional protocols and sub FSMs can be easily
integrated as the software is modular-based.

Further work should address the improvement of the handling and the support of additional
elements within the Connectivity Editor like actions and guards to increase the readability of the

375

Appendix B — Own Publications

Behaviour Model. Moreover, the evaluation of the concept from the Service Description to the
execution of test cases on the System under Test, which was not the focus of this paper, is
planned near-term.

ACKNOWLEDGEMENTS

The research project ComGeneration providing the basis for this publication was partially
funded by the Federal Ministry of Education and Research (BMBF) of the Federal Republic of
Germany under grant number 1724B09. The authors of this publication are in charge of its

content.

REFERENCES

1 ComGeneration project website: http://www.ecs.fh-osnabrueck.de/27619.html

[2] P.Wacht et al., “A new Approach to design graphically Functional Tests for Communication
Services”, in Proceedings of the Fourth IFIP International Conference on New Technologies,
Mobility and Security, Paris, France, 2011

[3] Conformiq website: http://www.conformiq.com/

4] Quilu Yuan et al., “A Model Driven Approach Toward Business Process Test Case Generation”,
in Proceedings of the Tenth |EEE International Symposium on Web Site Evolution, Bejing,
China, 2008

[5] Goncezy et al., “Model-based Testing of Service Infrastructure Components”, in Proceedings of
the Nineteenth |FIP TC6/WG6.1 International Conference, Tallinn, Estonia, 2007

[6] Brucker et al., “Verified Firewall Policy Transformations for Test Case Generation”, in
Proceedings of the International Conference on Software Testing, Verification and Validation
(ICST2010), Paris, France, 2010

7 S. Ali et al., “Model Transformations as a Strategy to automate Model-Based Testing — A Tool

and Industrial Case Studies, Version 1.0”, Technical Report, 2010

[8] S. Wieczorek et al., “Enhancing Test Driven Development with Model Based Testing and
Performance Analysis”, in Proceedings of the Practice and Research Techniques Academic &
Industrial Conference TAIC PART, Cumberland Lodge, Windsor, UK, 2008

[9] Zhang Xiaoyan, Huang ming, Yu Ying, “OWL-S Based Test Case Generation”, in Journal of
Bgjing University of Aeronautics and Astronautics, Bejing, China, 2008

[10] A. Pretschner et al., “One Evaluation of Model-Based Testing and its Automation”, in
Proceedings of the Twenty Seventh International Conference on Software Engineering, St.
Louis, USA, 2005

[11] G. Tretmans, H. Brinksma, “Automated Model-Based Testing”, in Proceedings of the First
European Conference on Model-Driven Software Engineering, Nuremberg, Germany, 2003

[12] P. Wacht et al., “Integration of Model-Based Functional Testing Procedures within a Creation
Environment for Value Added Services”, in Proceedings of the Sixth Collaborative Research
Symposium on Security, E-learning, Internet and Networking (SEIN 2010), Plymouth, United
Kingdom, 2010

[13] EG 201 873-1: Methods for Testing and Specification (MTS): The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language . ETSI, 2008

[14] Recommendation Z.140: The Tree and Tabular Combined Notation version 3 (TTCN-3): Core
Language. ITU-T, 2001

[15] Recommendation Z.141: The Tree and Tabular Combined Notation version 3 (TTCN-3):
Tabular Presentation Format. ITU-T, 2001

376

Appendix B — Own Publications

Published in Proceedings for the Second International Conference on Future Generation
Communication Technology (FGCT 2013), pp. 59-64, London, United Kingdom, IEEE,
ISBN: 978-1-4799-2974-0

A New Service Description for Communication
Services as Basis for Automated Functional Testing

P. Wacht, U. Trick

Research Group for Telecommunication Networks
University of Applied Sciences Frankfurt
Frankfurt, Germany
{wacht, trick} @e-technik.org

W. Fuhrmann
University of Applied Sciences Darmstadt
Darmstadt, Germany
w.fuhrmann@fbi.h-da.de

P. Wacht, B. Ghita
Centre for Security, Communications, and Network research
University of Plymouth
Plymouth, United Kingdom
{patrick.wacht, bogdan.ghita} @plymouth.ac.uk

Abstract—The advances in the telecommunication domain to
support complex communication services has resulted in a need
for a new approach to automatically verify that the
communication services meet the demands of the customers. This
paper presents a concept for automated functional testing by
means of a novel test framework. Within the framework, the tests
are automatically derived from a proposed new sort of
requirements specification for communication services, the
Service Description, and afterwards generated by means of
predefined test modules. Finally, the test cases are executed
against the System under Test, the communication service.

Keywords—automated functional testing; communication
services; requirements specification; test framework; testing
methodology

L INTRODUCTION

In the telecommunication domain, network operators and
service providers aim for fast, easy and -cost-efficient
provisioning of value-added communication services. A fast
transition from concept to market product and low price of new
communication services is necessary due to the increasing
competition in the telecommunication industry. The sum of
these demands leads to reducing complete and sufficient
functional testing which has a bad impact on the quality of the
service. Moreover, functional testing procedures have to be
executed consequently before the delivering of a
communication service to a customer because the service
provider has to assure that the communication service is
executed properly and according to the specified requirements
and that the communication service may not cause undesired
behaviour within the provider’s service environment.

In order to avoid these problems, the whole test
development cycle specifically for communication services has
to be improved. This starts with the requirements analysis
which is usually standard Unified Modelling Language (UML)
use case design [1; 2], with mostly natural language-based
descriptions. This often leads to a lack of clarity as it is difficult

to use language in a precise and unambiguous way. Besides the
requirements analysis, the service testing is oftentimes
manually done by test developers who gain their knowledge
about a service’s functionality from the natural language-based
requirements specification. The test developer has to spend a
significant amount of time on test case design, test data
selection, and test evaluation.

In this paper, we propose a new test framework in order to
do automatic functional testing of communication services. The
foundation of the testing methodology is based on the
definition of a new sort of requirements specification for
communication services, the Service Description. After the
Service Description is specified for a new communication
service, it is parsed by a special test framework artifact which
reads out the significant content and generates a formal
behaviour model by composing predefined parameterised test
modules. From the behaviour model, the functional test cases
are derived and generated into executable TTCN-3 test cases
which are subsequently executed against the communication
service within a TTCN-3 test execution environment.

The remainder of this paper is structured as follows: the
related work is presented in section 2. Section 3 introduces the
novel architecture of the test framework and describes the
testing methodology. Afterwards, section 4 discusses the
demands on a new sort of requirements specifications for
communication services and introduces the proposed Service
Description. A simplified example of a communication service
specification using the Service Description is discussed in
section 5 and section 6 concludes the paper.

II. RELATED WORK

Our survey of the related literature shows that many
different methodologies have been developed in the field of
automated testing, mostly in the field of process-based systems.
These approaches either generate test paths directly from code,
based on data and control flow information [3; 4], or translate
the code into formal specification languages like Petri nets [5],

377

Appendix B — Own Publications

[6], to perform the model checking and test derivation. A major
disadvantage of these approaches is that the tests cannot detect
the deviations from the functional specifications as the tests are
directly derived from the code.

A series of methods is proposed in [7] to capture
requirements and then manually transform them into
conceptual models composed of object models (e.g. class
diagrams), dynamic models (e.g. state machines and sequence
diagrams) and functional diagrams. The authors introduce a set
of techniques for users to precisely specify requirements and
describe rules how the users can derive conceptual models
from these requirements. The paper [7] does not mention a
complete transformation method. Besides, the effort for a
human to define both requirements and conceptual models
seems to be very high.

An approach to generate finite state machines from use
cases in restricted Natural Language (NL) is proposed in [8].
The approach needs the existence of a domain model which
serves two purposes: a lexicon for the NL analysis of use cases,
and the structural basis of the state transition graphs being
generated. The domain model acts as the lexicon for NL
analysis of the use cases because the model elements of the
domain model are used to document the use cases. It is
imaginable that an enormous user effort is needed to obtain a
domain model containing classes, associations, and operations
which are indispensable for generating state machines. There is
no proof that the restricted NL is sufficient to describe the use
cases.Yet no case study is presented to evaluate the approach.

In [9], the authors use a behaviour engineering
methodology to formalise and validate a requirements
specification and extend it with appropriate test activities. It is
shown how testing information may be weaved into behaviour
trees by identifying the system’s boundaries and the definition
of test action. The approach lacks the information of how tests
are generated and executed but it seems necessary to transform
the behaviour trees in state machines.

The generation of test cases from complete system
requirements models is discussed in [10]. The model is
described in a requirements specification language (SpecTRM-
RL) which is based on a formal state machine model.
Nevertheless, according to the authors, the notation is simple to
read and understand for non-experts. However, the approach
allows the definition of requirements models in different
degrees of abstraction. Besides, the generation of tests and their
execution is indeed discussed but not further defined.

A tool-based methodology to model-driven system testing
of service-oriented systems is introduced in [11]. Additionally,
it provides full traceability between the requirements, the
system and test model. This aspect, however, leads to an
amount of work for the human as the requirements have to be
specified, the system model has to be defined as well as the test
model. For the execution of test cases, the outdated
technologies RMI (Remote Method Invocation) and CORBA
(Common Object Request Broker Architecture) have been
applied.

Whittle and Schumann proposed an approach [12] to
automatically generate UML state machines from UML

sequence diagrams. However, widespread modeling techniques
like UML are too generic and lack the formalism required for
domain modelling such as the requirements modeling of
communication services.

Most approaches described in literature lack the definition
of a testing methodology from the definition of the
requirements until generation and subsequent evaluation of the
functional tests. There is no discussed framework covering
these steps specifically for communication services. Besides
the standard way of defining requirements of communication
services through UML use case design no further approaches
are discusses so far.

III. TEST FRAMEWORK ARCHITECTURE

This section provides an overview of the underlying
components and principles within the developed test
framework.

Fig. 1 shows the artifacts of the test framework. The
workflow of the testing methodology is triggered by a Test
Developer whose role is the compilation of the Service
Description. The Service Description is a new sort of
requirements specification for communication services for the
purpose of specification-based functional testing. It contains
static architectural definitions describing the participating roles
involved in the consumption of a communication service and
their relationships as well as dynamic behavioural definitions
specifying use-case related requirements on the part of the
communication service. In the compilation phase, the Test
Developer has to follow a well-defined guideline to define a
Service Description for a communication service. Within the
testing methodology this is the only task being carried out by a
human, the subsequent process performs automatically. A more
detailed introduction regarding the Service Description will
follow in section 4.

Test Developer
Q

ILH.

Service Description

Automatic
Composition Engine

Test Modules
Repository

Test Configuration

Linit

Test Case Generator

I T

Test Report

Fig. 1. Test framework artifacts and methodology

According to Fig. 1, the Service Description will be
delivered to a very significant component within the testing

378

Appendix B — Own Publications

methodology, the Automatic Composition Engine (ACE). The
main task of the ACE is the generation of a system model, the
Behaviour Model, which is a complete formal model or rather
Extended Finite State Machine (EFSM) describing the desired
and possible behaviour of the specified communication service.

In order to generate the Behaviour Model, the ACE first
parses the architectural definitions from the Service
Description and forwards them to the Test Configuration Unit
(TCU). The TCU thereupon extracts the relevant information
for the Test Execution Environment (TEE) such as the System
under Test (SUT) addressability, the participating test
components and the data structures being exchanged between
SUT and test system.

The ACE parses the behavioural part of the Service
Description and identifies the participating roles within the
specified requirements to select suitable test modules from the
so-called Test Modules Repository (TMR). The TMR is a
database containing predefined modular EFSMs, so-called test
modules, which cover typical communication service
characteristics such as sequences of multimedia protocols like
SIP (Session Initiation Protocol) or RTP (Real-Time Transport
Protocol) and other important protocols, e.g. HTTP (Hypertext
Transfer Protocol). The test modules usually define a protocol-
specific behaviour of a certain use case, e.g. the sending of an
instant message by using the SIP protocol, and cover both
standard behaviour as well as possible alternative behaviour
like timeouts. To sum it up, the test modules define the
standard compliant behaviour of a certain use case.
Additionally, the test modules are parameterised in order to
configure the test data.

After selecting the appropriate test modules from the TMR,
the ACE connects to the Test Data Pool, a database containing
collections of test data templates for each test module within
the TMR. Then the ACE chooses the adequate test data
templates and the parameters from the Service Description are
included. After that, the ACE starts with the composition of the
test modules. Each test module has interfaces which are linked
to the existing states within the underlying EFSM of a test
module. If two test modules are to be combined, the originating
test module and the destination test module are connected with
a transition between their interfaces. The task of the ACE is to
realise the connection according to the use-case related
information within the Service Description. Obviously, not all
the interfaces within one test module has to be operated, it
depends on the descriptions. However, at least the interfaces
within the start state and the end state of a test module have to
be activated excepting the first and the last test module to be
composed.

After the composition of the chosen test modules is fulfilled
the dependencies of the parameterisations for each test module
have to be dissolved. This is necessary in order to reuse and
change parameter values being defined in one test module for
the other test modules within the composed model. This is
important if certain parameter values defined in test module A
have to be reused in test module B. This could be for instance a
SIP URI which was defined in A and has to be reused in B.

As mentioned before, the result of the composition is the
Behaviour Model which is then delivered to the Test Case

Generator (TCG). The TCG contains a test case finder which
uses an algorithm to enable the derivation of abstract test cases
from the Behaviour Model. This algorithm optimises the
traversal of the EFSM by combining depth-first search and
breadth-first search. After the extraction of the abstract test
cases, a test code generator translates them into executable test
cases by means of a special mapping concept which is
described in [13]. The executable test cases are defined in
TTCN-3 (Testing and Test Control Notation), a test scripting
language which was standardised by ETSI [14] and ITU-T [15;
16], and supports the modularised creation of test scenarios for
message and procedure based systems.

The final step of the methodology takes place within the
TEE which receives both the executable TTCN-3 test cases
from the TCG and the relevant information about the SUT and
the participating test components from the TCU. Based on the
information, the TEE selects the appropriate system adapter
and codecs. The system adapter [17] adapts the communication
of the TTCN-3 test system to the specific execution platform of
the SUT whereas the codec is responsible for the encoding and
decoding of TTCN-3 values into bitstrings so that the data can
be sent to the SUT. Finally, the system adapter and codecs are
added to the Test Suite and the generated TTCN-3 test cases
are executed against the SUT. A test log is written which
documents the test case execution and the reactions of the
SUT. The data is formatted and integrated into a Test Report to
demonstrate if all the tests were successful due to the defined
requirements specified in the Service Description. If there are
mismatches the whole process has to be verified, the SUT as
well as the Service Description.

IV. SERVICE DESCRIPTION

A well-defined requirements specification is the critical
component when it comes to functional testing as it represents
the foundation for every derived test case. Especially with
reference to the proposed test framework introduced in the last
section, several demands on the Service Description were
discussed.

A. Demands on the Service Description

The Service Description should meet some general
demands which are relevant for any kind of specification
document. First of all, the Service Description should be
complete and has to contain all the requirements which
describe exactly the desired behaviour of a communication
service. The specified requirements should be understandable
and not ambiguous. The Service Description should not contain
any contradictions and changes can be done without
difficulties. It should be machine-readable and interpretable so
that the ACE is able to parse the content.

Besides the general demands, the proposed test framework
requires some further specific demands with reference to the
artifacts within the testing methodology. The ACE for instance
requires the description of behavioural aspects which can be
described in terms of use-case related requirements. Each
requirement has to be traceable throughout the whole testing
process from its definition within the Service Description by
the Test Developer until the execution of the automatically

379

Appendix B — Own Publications

derived test cases. Therefore, a formal semantic relationship
between the requirements and test cases has to exist. Also, the
requirements have to contain information about the
participating roles so that the ACE can select the appropriate
test modules while parsing the Service Description. As the
requirements describe the specification of a communication
service they address a subset of the protocol-specific behaviour
defined in the test modules. Possible relations and
dependencies between requirements can lead to compositions
of test modules. Another important demand on the Service
Description is the support for applying the test data from the
Test Data Pool. Within the requirements it should be easily
possible to parameterise and address the test data sets.

Finally, with reference to the test configuration within the
Test Execution Environment, the Service Description has to
contain all the relevant information about the test architecture,
which is a representation of the structural aspects of the test
system, such as SUT information, test components and
required codecs.

B. Service Description structure

As mentioned in section 3, the proposed Service
Description is subdivided into architectural and behavioural
definitions. Besides, some further information is given. Fig. 2
illustrates the structure of the Service Description.

Service
Description

Service ID

Prosa Description

components within the test configuration. Further test
configuration properties are defined in the Systen Meta
Information containing SUT information in order to build up
the test configuration. Here, the service addressability is
defined such as the service URI, IP addresses and port
numbers. A predefined variable list is available to assure that
the relevant parameters are set. The Non-functional properties
contain non-functional requirements like costs.

A further important part of the Service Description is the
Requirement List which defines the behavioural part and
contains all the relevant requirements a communication service
has to fulfill. The specification of each requirement in the
Requirement List is well-defined by the following components
in Table L.

TABLE 1. SPECIFICATION OF A REQUIREMENT

Component Description

Requirement ID Unique identifier for a requirement.

Prosa description of the requirement’s
target.

Determination of depending flows within
other requirements that have to be carried
out before the Basic Flow of this
requirement can take place.

List of the roles involved in this
| requirement.

Requirement Goal

Precondition

Participating Roles

Communication Definition of the relevant system side
Interfaces communication interfaces.

Determination of the required parameters
Parameters I X

within this requirement.

Description of the steps that have to be
Basic Flow taken to achieve the target of the

requirement.

—| Requirement ID l

i

Precor

Participating
Rioles
Communication
Interfaces

System Meta
Infarmation

Non-functional
properties

Basic Flow

Alternative
Flows

Fig. 2. Structure of the Service Description

The Service Description element is the root of every
instance of a requirements document. It contains the Service
ID, a unique identifier for the communication service to be
specified. This is an important attribute as it determines the
name of the test suite to be generated. The Prosa Description
contains an abstract description of the communication service’s
functionality. In the Roles attribute, all the participating users
who consume the communication service are listed. Roles
could be for instance Web Browsers or SIP Softphones. The
definition of the roles is the basis for the selection of the test

Description of exceptional behaviour.
Each step within a Basic Flow can lead to
an Alternative Flow.

Alternative Flows

The significant part of a requirement is the use case
description of the Basic Flows and Alternative Flows. In
standard textual UML use case design, natural language-based
descriptions are used. There are many documented approaches
[18], where restriction rules for textual use case design are
applied to reduce the imprecision and incompleteness.
However, even if restricted vocabulary is used, formulation
oftentimes is confusing and error-prone. The larger a
requirements specification is the more problems arise
disproportionately with natural language-based specifications.
With reference to the testing methodology, the Basic Flows and
Alternative Flows, the descriptions should be machine-readable
so that the ACE can parse and interpret them. Therefore, a new
formal approach is required which enables the description of
behaviour flows and realises the reference to the test modules
within the TMR and the test data.

As an appropriate formal method the usage of a process
algebra notation has been found, the pi-calculus [19]. In
general, the pi-calculus is a simple language to specify
interactive message-passing programs. It provides
mathematical foundations of some modern workflow
languages like the Business Process Execution Language
(BPEL) and is more concise than automata, very expressive

380

Appendix B — Own Publications

and even easier to develop. However, the pi-calculus is so
minimal that it does not contain primitives such as numbers,
booleans, variables, functions, or even usual flow control
statements such as if-then-else constructions. The syntax just
consists of a set of prefixes and process expressions which is
illustrated in Table II.

TABLE II. BASIC PI-CALCULUS SYNTAX

Syntax Description

Process P is a null process.

Parallel composition of processes P and

P Replication of process P.

x is sent along channel a, then process P
starts.
Channel a receives x, then process P
starts.

‘a<x>.P

a(x).P

The mentioned limitations of pi-calculus may justify why it
has not been applied as a requirements specification language
for functional testing methodologies so far. Therefore, we
propose an applied pi-calculus language in order to describe the
Basic Flow and Alternative Flows within the requirements
properly. The conceptual idea was derived from [20]. In that
approach the grammar for processes is similar to the one in the
pi-calculus, except that messages can contain terms. In our
proposed pi-calculus, we reuse the ideas of terms to define flow
control statements, variable usage and method invocation.
Furthermore, we reuse the channels to express possible outputs
and inputs on the part of the system side communication
interfaces.

Our proposed enhancements of the pi-calculus syntax are
illustrated in Table III.

TABLE IIL ENHANCED PI-CALCULUS SYNTAX

Syntax Description
if x == {value} then P else | If the variable x contains the value the
Q process P starts otherwise process Q.
“a<httpServer->response Through channel a, a _200. response is
200> sent from the communication interface

httpServer.
The attribute statusCode of the complex
variable response is set to the value 200.

response—>statusCode=200

The complex variables such as response within the
description of Table III are parameters which can be loaded
from the Test Data Pool. The arrow symbolises the access to
the attributes of the complex data structure. In standard
programming languages this would be the dot operator. As the
dot has a different meaning in pi-calculus, namely the
separation of process steps, the arrow is used in our approach.

With reference to the description of the requirements, each
Basic Flow and each Alternative Flow can be defined by one
pi-calculus process in the Service Description. Again, each
process contains n channels where each is representing the
communication between the communication service and the
components which are depending on the defined
communication interfaces. The mentioned enhancements of the

pi-calculus show that certain conditions can lead to different
behaviour which is specified through different following
processes.

In the following, an example of a communication service
specification with the Service Description will be described.

V. EXAMPLE

The example communication service being specified by the
Service Description is called Click-2-Instant-Message. The
service flow starts with a text message and a destination SIP
URI being typed in by a user on a website. By actuating a
button the message is sent via HTTP protocol to an application
server with the deployed Click-2-Instant-Message service.
Subsequently, the service sends a SIP Message containing the
text message from the website to the SIP phone with the stated
SIP URI.

The architectural part of the Service Description enables the
building of the test configuration and is illustrated in Table IV.

TABLEIV. EXAMPLE SERVICE DESCRIPTION ARCHITECTURAL PART
ServiceID Click-2-I nstant-M essage

A website should deliver two input masks. The first
input mask should contain the address or telephone
number (SIP URI) of any participant and the
second one should carry any kind of text message.
A button should be integrated on the website.

Prosa When submitting it, the tex} included in the second

Description input mask should be transferred to the address that
was filled in the first input mask. If no text was
typed, the user should be informed with “No text
input” on the website. If the SIP URI was invalid
the user should be informed with “No valid SIP
URI”. If the transfer worked, a success message
should occur, “Message sent successfully”.

Roles Web Browser, SIP Softphone

System . Meta ServiceURL: sip:click2IM@sip.de

Information

Non-functional

. None
properties

The defined roles leads to the fact that two test components
are required with one understanding the HTTP protocol (Web
Browser) and the other one understanding the SIP protocol
(Softphone). The SUT is reachable through the ServiceURI
which is specified in the System Meta Information.

Furthermore, the behavioural part of the Click-2-Instant-
Message Service Description contains one requirement. The
requirement determines amongst others the communication
interfaces which describe the communication channels from
the SUT to the test components. The declaration of the
communication interfaces automatically leads to the selection
of the test modules, in this example HTTP_Server and the
SP_UAClient MESSAGE. A more detailed description of the
structure of the test modules is described in [21]. Every test
module contains a set of parameters. The relevant ones for the
specified flows in the requirements have to be determined like
in Table V.

381

Appendix B — Own Publications

TABLE V. EXAMPLE SERVICE DESCRIPTION BEHAVIOURAL PART

Requirement 1
ID

Requirement
Goal

Precondition

Initiator wants to send a text message from a website
to a SIP softphone.

None

Participating
Roles

Communicatio
n Interfaces

Web Browser, SIP Softphone

HTTP_Server [w] - channel a
SIP_UAClient MESSAGE [s] - channel b
[w]->httpRequest; [w]->httpResponse;

Parameters [s]>sipRequestMessage; [s]> sipResponse2xx_6xx
P == a([w]>httpRequest(text, targetURI)).
if text == NULL then Q else.
if isValidURI(targetURT) == false then R else.

Basic Flow "b<[s]->sipRequestMessage(targetURI, text)>.
b([s]>sipResponse2xx_6xx(200)).
"a<[w]->httpResponse(200, “Message sent
successfully”)>.0

?ll;;m?nve Q == "a<[w]->httpResponse(200, “No text input”)>.0

Alternative R = "a<[w]->httpResponse(200, “No valid SIP

Flow 2 URI")>.0

The behavioural flows are described in the proposed pi-
calculus syntax. The Basic Flow specifies the process P with
an incoming HTTP request over the channel a containing the
parameters fext and fargetURI. Then the content of both
parameters is checked. If text does not have content, process Q
is triggered, otherwise if fargetUR/ contains an invalid SIP
URI, process R is triggered. If both parameters are correct, a
SIP Message with the text is expected to be sent over the SIP
channel b and acknowledged. At the end, a HTTP response is
sent over channel a to inform that the transfer was successful.
The sum of flow descriptions in this example define a
specification of a service which describes a certain subset of
the flows being contained in the test modules.

VI. CONCLUSION

Automated functional testing of communication services
directly from a requirements specification requires its
understandability, completeness and machine-readability. Such
a requirements specification, the Service Description, was
introduced and exemplified in this paper. Besides, its
significance was discussed with reference to the proposed test
framework.

The presented approach empowers network operator and
service providers to deliver high quality communication
services in a cost and time optimised way to their customers.
The services undergo a continuous testing procedure based on
a new functional testing methodology.

REFERENCES

[1] O. Ryndina, P. Kritzinger, “Improving requirements specification for
communication services with formalised use case models”, Proceedings
of the Southern African Telecommunication Networks and Applications
Conference (SATNAC 2004), Spier Wine Estate, Western Cape, South
Africa, September 2004.

[2] A. Eberlein, M. Crowther, F. Halsall, “Development of new

telecommunications services using an expert system”, BT Technology
Journal, vol. 15, pp. 2137-222, 1997.

3]

[6]

(1]

[12]

(13

[14]

[15]

o]

[17]

18]

[19]

[20]

[21]

J. Yan, Z. Li, Y. Yuan, W. Sun, and J. Zhang, “BPEL4WS Unit Testing:
Test Case Generation Using a Concurrent Path Analysis Approach”,
Proceedings of the Seventeenth International Symposium on Software
Reliability Engineering (ISSRE 2006), Raleigh, North Carolina, USA,
November 2006.

Y. Yuan, Z. Li, and W. Sun, “A graph-search based approach to bpel4ws
test generation”, Proceedings of the International Conference on
Software Engineering Advances, Papeete, Tahiti, French Polynesia,
October 2006.

J. Garcia-Fanjul, J. Tuya, and C. de la Riva, “Generating test cases
specifications for BPEL compositions of web services using SPIN”,
Proceedings of the International Workshop on Web Services: Modeling
and Testing, Palermo, Italy, June 2006.

Y. Zheng, J. Zhou, and P. Krause, “A model checking based test case
generation framework for web services”, Proceedings of the
International Conference on Information Technology (ITNG 2007), Las
Vegas, Nevada, USA, April 2007.

E. Insfran, O. Pastor, R. Wieringa, “Requirements Engineering-Based
Conceptual Modelling”, Requirements Engineering Journal, vol. 7, pp.
61-72, June 2002.

S. Somé, “An approach for the synthesis of state transition graphs from
use cases”, CSREA Press, vol. 1, pp. 456-462, 2003.

M.-F. Wendland, 1. Schieferdecker, A. Vouffo-Feudjio, “Requirements-
driven testing with behaviour trees”, Proceedings of the Fourth
International Conference on Software Testing, Verification and
Validation Workshops (ICSTW 11), Berlin, Germany, March 2013.

K. Kelley, “Automated Test Case Generation from Correct and
Complete System Requirements Models”, Proceedings of the IEEE
Acrospace Conference, Big Sky, Montana, USA, March 2009.

M. Felderer, P. Zech, F. Fiedler, R. Breu, “A Tool-based methodology
for System Testing of Service-Oriented Systems”, Proceedings of the
Second International Conference on Advances in System Testing and
Validation Lifecycle (VALID 2010), Nice, France, August 2010.

J. Whittle, J. Sct “Generating hart designs from scenarios”,
Proceedings of the Twentysecond International Conference on Software
Engineering (ICSE 2000), Limerick, Ireland, June 2000.

P. Wacht, T. Eichelmann, A. Lehmann, and U. Trick, “A New Approach
to Design Graphically Functional Tests for Communication Services”,
Proceedings of the Fourth IFIP International Conference on New
Technologies, Mobility and Security (NTMS 2011), Paris, France,
February 2011.

EG 201 873-1: Methods for Testing and Specification (MTS): The
Testing and Test Control Notation version 3; Part 1; TTCN-3 Core
Language, ETSI, 2008.

Recommendation Z.140: The Tree and Tabular Combined Notation
version 3 (TTCN-3): Core Language. ITU-T, 2001.

Recommendation Z.141: The Tree and Tabular Combined Notation
version 3 (TTCN-3): Tabular Presentation Format. ITU-T, 2001.

S. Blom et al., “TTCN-3 for Distributed Testing Embedded Software”,
Proceedings of the Sixth International Andrei Ershov Memorial
Conference on Perspectives of Systems Informatics (PSI 2006), Berlin,
Germany, 2007.

T. Yue, S. Ali, L. Briand, “Automated Transition from Use Cases to
UML State Machines to Support State-based Testing”, Proceedings of
the Seventh European Conference on Modelling Foundations and
Applications (ECMFA 2011), Birmingham, United Kingdom, June
2011

D. Sangiorgi, “The Pi-Calculus: A Theory of Mobile Processes”,
Cambridge University Press, 2008.

M. Abadi, C. Fournet, “Mobile Values, New Names, and Secure
Communication”, Proceedings of the Twentyeighth ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
London, United Kingdom, January 2001

P.Wacht, T. Eichelmann, A. Lehmann, U. Trick, “A New Approach to
Design Graphically Functional Tests for Communication Services”,
Proceedings of the Fourth IFIP International Conference on New
Technologies, Mobility and Security (NTMS 2011), Paris, France,
February 2011

382

