
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

2016

Framework for Automated Functional

Tests within Value-Added Service

Environments

Wacht, Patrick

http://hdl.handle.net/10026.1/5335

http://dx.doi.org/10.24382/4717

Plymouth University

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

Copyright Statement

This copy of the thesis has been supplied on condition that anyone
who consults it is understood to recognise that its copyright rests
with its author and that no quotation from the thesis and no
information derived from it may be published without the author's
prior consent.

Framework for Automated Functional Tests
within Value-Added Service Environments

by

Patrick Sebastian Wacht

A thesis submitted to Plymouth University
in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Computing and Mathematics

In collaboration with
Darmstadt Node of the Centre for Security,

Communications and Network Research (CSCAN)

December 2015

 i

Acknowledgements

In the first place I wish to express my sincere thanks to my supervisors Prof. Woldemar

Fuhrmann and Dr. Bogdan Ghita for their positive and comprehensive support and

guidance throughout this research.

I would like to further express my special appreciation to my supervisor Prof. Ulrich Trick

who has always been a tremendous mentor for me throughout my time as a member of

the Research Group for Telecommunication Networks at the University of Applied

Sciences Frankfurt. His guidance helped me a lot during the research and writing of this

thesis. Without his encouragement and support, this research probably would have never

been performed.

I would also like to thank all current and former members of the Research Group for

Telecommunication Networks for their friendship, support and the great inspiration that

I could experience during the last years.

Warm thanks go to the members of both the graduate school and the CSCAN Network at

Plymouth University, and special thanks also go to the members of the CSCAN

Darmstadt node for their experienced support especially during PhD seminars.

I wish to thank my family and friends for their encouragement and support offered

throughout the whole time of this research.

Above all, I owe thanks to my loving wife Kathleen for her great support, understanding

and all of the sacrifices that she has made on my behalf.

iii

Author's declaration

At no time during the registration for the degree of Doctor of Philosophy has the author
been registered for any other University award without prior agreement of the Graduate
Sub-Committee.

Work submitted for this research degree at the Plymouth University has not formed part
of any other degree either at Plymouth University or at another establishment.

Relevant scientific seminars and conferences were regularly attended at which work was
often presented, and several papers prepared for publication.

Publications:

• Wacht, P.; Lehmann, A.; Eichelmann, T.; Trick, U.; Fischer, M.; Lasch, R.;
Toenjes, R. (2010), “Ein neues Verfahren zum automatisierten Testen von
Mehrwertdiensten” (translated title: “A novel approach to automated testing of
value-added services“), In Proceedings of the 15th VDE/ITG Fachtagung
Mobilkommunikation (Mobilfunktagung 2010), pp. 73-80, 2010.

• Wacht, P.; Lehmann, A.; Eichelmann, T.; Fuhrmann, W.; Trick, U.; Ghita, B.
(2010), “Integration of Model-Based Functional Testing Procedures within a
Creation Environment for Value-Added Services”, In Proceedings of the 6th
Collaborative Research Symposium on Security, E-learning, Internet and
Networking (SEIN 2010), pp. 61-74, 2010.

• Wacht, P.; Eichelmann, T.; Lehmann, A.; Trick, U. (2011), “A New Approach to
Design Graphically Functional Tests for Communication Services”, In
Proceedings of the 4th IFIP International Conference on New Technologies,
Mobility and Security (NTMS 2011), IEEE, pp. 1-5, 2011.

• Wacht, P.; Lehmann, A.; Eichelmann, T.; Trick, U. (2011), “ComGeneration: die
Dienstebeschreibung als Basis für automatisierte Tests” (translated title:
“ComGeneration: a service description as basis for automated tests“), In
Proceedings of the 16th VDE/ITG Fachtagung Mobilkommunikation
(Mobilfunktagung 2011), pp. 118-123, 2011.

• Wacht, P.; Eichelmann, T.; Lehmann, A.; Fuhrmann, W.; Trick, U.; Ghita, B.
(2011), “A new Approach to model a formalised Description of a Communication
Service for the Purpose of Functional Testing”, In Proceedings of the 4th
International Conference on Internet Technologies & Applications (ITA 2011),
pp. 262-269, 2011.

• Wacht, P.; Trick, U.; Fuhrmann, W.; Ghita, B. (2013), “A New Service
Description for Communication Services as Basis for Automated Functional
Testing”, In Proceedings of the Second International Conference on Future
Generation Communication Technology (FGCT 2013), IEEE, pp. 59-64, 2013.

iv

Presentations and Conferences attended:

• 15th ITG Fachtagung Mobilkommunikation (Mobilfunktagung 2010), Osnabrück,
Germany, May 2010

• 2nd International NGN Workshop (ngnlab.eu 2010), Leipzig, Germany,
November 2010

• 6th Collaborative Research Symposium on Security, E-learning, Internet and
Networking (SEIN 2010), Plymouth, UK, November 2010

• 4th IFIP International Conference on New Technologies, Mobility and Security,
Paris, France, February 2011

• 16th ITG Fachtagung Mobilkommunikation (Mobilfunktagung 2011), Osnabrück,
Germany, May 2011

• 4th International Conference on Internet Technologies and Applications (ITA
2011), Wrexham, UK, September 2011

• 8th Collaborative Research Symposium on Security, E-learning, Internet and
Networking (SEIN 2013), Darmstadt, Germany, November 2013

• 2nd International Conference on Future Generation Communication Technology
(FGCT 2013), London, UK, November 2013

Word count of main body of thesis: 71.004

Signed …...……………………………

Date …...……………………………

v

Framework for Automated Functional Tests within Value-Added
Service Environments

Patrick Sebastian Wacht

Abstract

Recent years have witnessed that standard telecommunication services evolved more and
more to next generation value-added services. This fact is accompanied by a change of
service characteristics as new services are designed to fulfil the customer’s demands
instead of just focussing on technologies and protocols. These demands can be very
specific and, therefore, diverse potential service functionalities have to be considered by
the service providers. To make matters worse for service providers, a fast transition from
concept to market product and low price of a new service is required due to the increasing
competition in the telecommunication industry. Therefore, effective test solutions need
to be developed that can be integrated in current value-added service development life-
cycles. Besides, these solutions should support the involvement of all participating
stakeholders such as the service provider, the test developers as well as the service
developers, and, in order to consider an agile approach, also the service customer.

This thesis proposes a novel framework for functional testing that is based on a new sort
of description language for value-added services (Service Test Description). Based on
instances of the Service Test Description, sets of reusable test components described by
means of an applied Statecharts notation are automatically selected and composed to so-
called behaviour models. From the behaviour models, abstract test cases can be
automatically generated which are then transformed to TTCN-3 test cases and then
assembled to an Executable Test Suite. Within a TTCN-3 test system, the Executable Test
Suite can be executed against the corresponding value-added service referred to as System
Under Test. One benefit of the proposed framework is its application within standard
development life-cycles. Therefore, the thesis presents a methodology that considers both
service development and test development as parallel tasks and foresees procedures to
synchronise the tasks and to allow an agile approach with customer involvement.

The novel framework is validated through a proof-of-concept working prototype.
Example value-added services have been chosen to illustrate the whole process from
compiling instances of the Service Test Description until the execution of automated tests.

Overall, this thesis presents a novel solution for service providers to improve the quality
of their provided value-added services through automated functional testing procedures.
It enables the early involvement of the customers into the service development life-cycle
and also helps test developers and service developers to collaborate.

vii

Contents

Contents ... vii

List of Figures ... ix

List of Tables .. xi

1 Introduction .. 1
1.1 Aims and Objectives ... 2
1.2 Thesis Structure .. 3

2 Telecommunications Infrastructure and Value-Added Services 5
2.1 NGN (Next Generation Networks) ... 5
2.2 SIP and its Utilisation in NGN ... 10

2.2.1 SIP Architecture and Basic Functionality .. 11

2.2.2 The Layered Structure of SIP ... 14

2.2.3 SIP-based NGN .. 16

2.2.4 SIP Application Server ... 18

2.3 Value-Added Services in NGN ... 21
2.3.1 Classifications and Definitions ... 21

2.3.2 Development and Provisioning of Value-Added Services 25

2.4 Stakeholders in Value-Added Service Provisioning ... 29
2.5 Conclusion .. 33

3 The Challenge of Testing Value-Added Services... 35
3.1 Principles of Functional Testing ... 35

3.1.1 Fundamentals of Testing and Test Processes ... 36

3.1.2 Schematic Approach to Functional Testing ... 40

3.1.3 Relevance for Testing of Value-Added Services 43

3.2 Related Work on Current Testing Methodologies .. 45
3.2.1 Test-Driven Development .. 46

3.2.2 Acceptance Test-Driven Development .. 49

3.2.3 Behaviour-Driven Development .. 51

3.2.4 Model-Based Testing ... 54

3.3 Related Work on Current Research Projects on Functional Testing 57
3.3.1 UML 2.0 Testing Profile .. 57

3.3.2 TT-Medal Test Platform ... 61

viii

3.3.3 Fokus!MBT Test Modelling Environment ... 64

3.3.4 ComGeneration .. 68

3.3.5 Telling TestStories ... 73

3.4 Requirements for a New Optimised Solution for Functional Testing of
Value-Added Services .. 77

3.5 Conclusion .. 83

4 Proposed Framework for Testing of Value-Added Services 85
4.1 Preconditions and Tasks of Roles ... 85
4.2 Overall Methodology for Testing Value-Added Services 87
4.3 Framework Architecture and Components ... 93
4.4 Conclusion .. 99

5 Novel Service Test Specification and Related Specifications 101
5.1 Existing Specification and Description Languages for Services in the

Telecommunication Domain .. 102
5.1.1 Structured Use Case Models .. 103

5.1.2 Restricted Use Case Modeling (RUCM) .. 110

5.1.3 Unified Test Modeling Language (UTML).. 118

5.1.4 Alternative Approaches .. 124

5.2 Proposed Novel Service Test Description .. 127
5.2.1 Structure of Service Test Description .. 129

5.2.2 Architectural Perspective ... 130

5.2.3 Behavioural Perspective ... 132

5.2.4 Sample Specification with Service Test Description 147

5.3 Comparison of Service and Test Specification Languages 151
5.4 Conclusion .. 154

6 Reusable Test Modules and Behaviour Model Generation 155
6.1 Notation for Behaviour Modelling ... 157

6.1.1 Evaluation of Potential Modelling Notations ... 157

6.1.2 Relevant Portions of the Selected Modelling Notation 162

6.1.3 Principles of Modelling Service Behaviour with Statecharts 169

6.2 Reusable Test Modules ... 175
6.2.1 Test Modules Environment Architecture ... 175

6.2.2 Identification of Reusability ... 178

6.2.3 Classification of Reusable Test Modules ... 180

6.2.4 Modelling of Reusable Test Modules .. 183

6.3 Test Data Integration .. 194
6.4 Generation of Behaviour Models .. 201
6.5 Conclusion .. 218

ix

7 Test Case Generation, Execution and Management ... 221
7.1 Generation of Abstract Test Suite ... 223

7.1.1 From Behaviour Models to Abstract Test Cases 223

7.1.2 Test Case Derivation .. 226

7.2 Test Suite Generation .. 236
7.2.1 Motivation for a TTCN-3-based Approach .. 236

7.2.2 Test Code Generation and Test Suite Building 240

7.3 Test Case Execution .. 262
7.4 Test Evaluation and Management ... 267
7.5 Conclusion .. 271

8 Framework and Prototype Evaluation ... 275
8.1 Evaluation of the Defined Framework Requirements 275
8.2 Prototype Architecture and Implementation ... 279
8.3 Proof of Proposed Framework Concept .. 291

8.3.1 Description of Example Service Scenario .. 291

8.3.2 SUT Environment and Service Implementation 294

8.3.3 Specification of Chat Service with Service Test Description 297

8.3.4 Test Building and Test Execution .. 301

8.4 Conclusion .. 307

9 Conclusions ... 309
9.1 Achievements of the Research .. 309
9.2 Limitations of the Research .. 313
9.3 Suggestions and Scope for Future Work .. 314

References .. 317

Appendix A – Abbreviations .. 331

Appendix B – Own Publications .. 337

ix

List of Figures

Figure 2.1: Principle structure of an NGN (Trick and Weber, 2009) 7

Figure 2.2: NGN architecture in a strata/layer structure (Trick and Weber, 2009) 9

Figure 2.3: Basic principle of SIP communication ... 11

Figure 2.4: Basic establishment of a SIP session .. 13

Figure 2.5: Layered structure of SIP (Ding and Liu, 2008) .. 14

Figure 2.6: Principle structure of SIP-based NGN (Trick and Weber, 2009) 17

Figure 2.7: Modes of operation of a SIP Application Server (Trick and Weber, 2009) . 19

Figure 2.8: Categorisation of telecommunication services ... 23

Figure 2.9: Service life cycle (adapted from (OMA OSPE, 2005)) 26

Figure 2.10: Service Delivery Platform in NGN (Trick and Weber, 2009) 28

Figure 2.11: Roles in NGN management (adapted from (ITU-T M.3340, 2009)) 30

Figure 3.1: Dynamic test processes (ISO/IEC/IEEE 29119-2, 2013) 37

Figure 3.2: Schematic Approach to Functional Testing (adapted from (Pezzè and Young,
2009)) .. 41

Figure 3.3: Comparison of TDD and Traditional Development (adapted from
(Abrahamsson et al., 2005)) .. 47

Figure 3.4: Relevant activities in Acceptance Test-Driven Development life cycle 49

Figure 3.5: Conceptual Model of Behaviour-Driven Development (Solís and Wang, 2011)
 ... 52

Figure 3.6: Example BDD scenario description ... 53

Figure 3.7: Model-Based Test Development (adapted from (ETSI ES 202 951, 2011)) 55

Figure 3.8: Example test case specification with U2TP using a UML sequence diagram
(adapted from (OMG, 2013a)) .. 60

Figure 3.9: TT-Medal test platform (TT-Medal Consortium, 2005) 62

x

Figure 3.10: Fokus!MBT test modelling environment (Wendland et al., 2013) 65

Figure 3.11: Architecture and technology stack of Fokus!MBT (Wendland et al., 2013)
 ... 66

Figure 3.12: ComGeneration methodology (Wacht et al., 2011b) 68

Figure 3.13: Connectivity Editor for Click2IM service (Wacht et al., 2011b) 70

Figure 3.14: Tree-like Test Data Editor (Wacht et al., 2011b) 71

Figure 3.15: Behaviour Model for Click2IM service (Wacht et al., 2011b) 71

Figure 3.16: TTS artefacts overview (Felderer et al., 2010) ... 73

Figure 3.17: Model-driven Testing Process (Felderer et al., 2011) 75

Figure 3.18: Test story of routing a call (Felderer et al., 2010) 76

Figure 4.1: TeamCom service development (adapted from (Eichelmann et al., 2010)) . 87

Figure 4.2: Methodology with both service and test development 88

Figure 4.3: Proposed overall methodology ... 91

Figure 4.4: Use case diagram containing the tasks of the stakeholders 93

Figure 4.5: Test Creation Framework architecture ... 94

Figure 5.1: Interaction between actor and system (Ryndina and Kritzinger, 2005) 104

Figure 5.2: Structured use case metamodel (Ryndina and Kritzinger, 2005) 105

Figure 5.3: Use case model of sample chat service .. 107

Figure 5.4: Structured use case model definition of “Add User” 108

Figure 5.5: Structured use case model definition of “Send Message” 109

Figure 5.6: RUCM process flow (Yue et al., 2009) .. 111

Figure 5.7: Overview of UTML test modelling process (Feudjio, 2009) 118

Figure 5.8: Overview of UTML test models (Feudjio, 2011) 120

Figure 5.9: Test Data View with UTML for SIP messages .. 121

Figure 5.10: Test Architecture Diagram for sample chat service 122

Figure 5.11: Test Behaviour Diagram for Send Message use case of sample chat service
 ... 123

xi

Figure 5.12: Structure of Service Test Description ... 129

Figure 5.13: Dependency of Requirements through Preconditions 134

Figure 5.14: Relationship between Roles and CIs .. 135

Figure 5.15: SIP multimedia communication terminal (ITU-T Q.3948, 2011) 136

Figure 5.16: The Role SIP phone with its corresponding CIs 137

Figure 5.17: Significance of channel for Roles and corresponding CIs 139

Figure 6.1: Generation of Behaviour Models based on STD and reusable test modules
 ... 155

Figure 6.2: Statecharts basic state example... 163

Figure 6.3: Hierarchical OR-state example ... 164

Figure 6.4: Hierarchical AND-state example .. 165

Figure 6.5: Labelling of transitions ... 166

Figure 6.6: Specification of timeouts .. 167

Figure 6.7: Light Switch Statechart example .. 168

Figure 6.8: SCXML representation of Light Switch Statechart 168

Figure 6.9: Transaction user as mediator between client and server cores 171

Figure 6.10: Statechart example with explicit TU involvement 172

Figure 6.11: Simplified Statechart example without explicit TU involvement 173

Figure 6.12: Test Modules Environment architecture... 176

Figure 6.13: Classification template for reusable test modules 181

Figure 6.14: Example classification template for SIP UAS non-INVITE reusable test
module ... 185

Figure 6.15: Behavioural description of SIP UAS non-INVITE reusable test module 186

Figure 6.16: SCXML document of SIP UAS non-INVITE reusable test module 188

Figure 6.17: Example classification template for SIP UAC INVITE reusable test module
 ... 190

Figure 6.18: Behavioural description of SIP UAC INVITE reusable test module 191

xii

Figure 6.19: SCXML document of SIP UAC INVITE reusable test module 193

Figure 6.20: Structure of abstract data types for test data ... 195

Figure 6.21: Conceptual structure of SIP_Request abstract data type 196

Figure 6.22: Predefined copying of message headers ... 198

Figure 6.23: Example XML document of SIP response message “s_Response2xx_6xx”
 ... 199

Figure 6.24: Stored data within Test Data Pool .. 200

Figure 6.25: Behaviour models generation process with ACE 202

Figure 6.26: Conceptual model of Service Test Description .. 204

Figure 6.27: Test modules instantiation in behaviour model flow chart 206

Figure 6.28: Test modules instantiation process example .. 207

Figure 6.29: Variable reading and parameterisation flow chart.................................... 208

Figure 6.30: Composition algorithm flow chart for Sender Step 211

Figure 6.31: Example composition of reusable test module instances with focus on Sender
Step ... 212

Figure 6.32: Composition algorithm flow chart for Receiver Step............................... 213

Figure 6.33: Example parsing with focus on Receiver Step ... 213

Figure 6.34: Composition algorithm flow chart for Parallel Step................................. 214

Figure 6.35: Example composition of reusable test module instances with focus on
Parallel Step .. 215

Figure 6.36: Example composition of reusable test module instances with focus on
Condition Step .. 216

Figure 7.1: Generation, Execution and Evaluation of Test Cases 221

Figure 7.2: Test case derivation from behaviour models .. 224

Figure 7.3: Abstract test case generation from behaviour models by Test Case Derivation
Unit ... 225

Figure 7.4: Hierarchy of structural coverage criteria (adapted from (Haschemi, 2009))
 ... 226

xiii

Figure 7.5: Behavioural description of SIP UAC non-INVITE (with transition marking)
 ... 230

Figure 7.6: Test case derivation from SIP UAC non-INVITE...................................... 230

Figure 7.7: Behavioural description of SIP UAS non-INVITE (with transition marking)
 ... 232

Figure 7.8: Test case derivation from SIP UAS non-INVITE 232

Figure 7.9: Conceptual model of a TTCN-3 test system (Willcock et al., 2011) 237

Figure 7.10: Generation of executable TTCN-3 test suite based on abstract test cases 240

Figure 7.11: Dynamic test configuration with TTCN-3 test system 242

Figure 7.12: Abstract interface definition in TTCN-3 for SUT and test components .. 243

Figure 7.13: Example test configuration with two example PTCs 244

Figure 7.14: Mapping between XML representation of test data and resultant TTCN-3
template ... 246

Figure 7.15: Instantiation of test components in TTCN-3 test case 248

Figure 7.16: Example graph-based test case ... 249

Figure 7.17: First generated TTCN-3 behaviour function based on abstract test case . 250

Figure 7.18: Second generated TTCN-3 behaviour function based on abstract test case
 ... 252

Figure 7.19: Starting of behaviour functions on test components 253

Figure 7.20: Concurrency example with two test components 254

Figure 7.21: Example test case with conditions .. 255

Figure 7.22: Example of conditions within generated TTCN-3 code 256

Figure 7.23: Generation of Executable Test Suite by Test Suite Builder 258

Figure 7.24: Excerpt of test adapter configuration file for compilation process 260

Figure 7.25: Interaction of test system entities during test case execution 263

Figure 8.1: Prototype architecture components illustrated as OSGi bundles................ 282

Figure 8.2: Apache Karaf architecture (adapted from (Apache Karaf, 2015)) 283

xiv

Figure 8.3: Screenshot of TFUT web application showing the definition of an STD
instance.. 284

Figure 8.4: OSGi service interface provided by the “Test Configuration Unit” bundle
 ... 285

Figure 8.5: OSGI service interface provided by the “Test Modules Environment” bundle
 ... 285

Figure 8.6: Simplified UML use case diagram of sample chat service 292

Figure 8.7: Basic functionality of login process in sample chat service 292

Figure 8.8: Alternative functionality of login process in sample chat service 293

Figure 8.9: Basic functionality of message exchange in sample chat service 293

Figure 8.10: Components within Mobicents SIP Servlets application server (adapted from
(Mobicents, 2015)) .. 295

Figure 8.11: ChatServiceServlet class of proof of concept sample chat service 296

Figure 8.12: Active OSGi bundles in Apache Karaf environment 301

Figure 8.13: Logging from "Automatic Composition Engine" bundle 302

Figure 8.14: Created behaviour models by "Automatic Composition Engine" bundle 303

Figure 8.15: Test execution of "Login" process for "[sender]" Role 305

Figure 8.16: Test report for test execution against sample chat service 306

xi

List of Tables

Table 3.1: Overview of the UML 2.0 Testing Profile concepts (Zander et al., 2005) 58

Table 3.2: Evaluation of related projects based on derived requirements 82

Table 5.1: RUCM Use Case template (Yue et al., 2009) .. 112

Table 5.2: Restriction rules R1-R16 of RUCM approach (Yue et al., 2013) 115

Table 5.3: Example RUCM use case of "Send Message" ... 116

Table 5.4: Excerpt of example STD containing two example Participating Roles 135

Table 5.5: Example of specifying CIs in STD .. 138

Table 5.6: Parameterisation of an example SIP MESSAGE request 140

Table 5.7: Instantiation of timers in Parameters field .. 142

Table 5.8: STD architectural perspective of simplified sample chat service 147

Table 5.9: STD Requirement definition for “Send Message” from sample chat service
 ... 148

Table 5.10: Comparison of specification languages ... 153

Table 6.1: Comparison of potential modelling notations .. 162

Table 6.2: Potential server types and their corresponding application layer protocols 180

Table 8.1: Architectural perspective of sample chat service... 297

Table 8.2: Behavioural perspective for "Login" use case ("Req01") 299

Table 8.3: Behavioural perspective for “Message Exchange” use case (“Req02”) 300

1

1 Introduction

The demand for advanced telecommunication services, so-called value-added services,

has increased enormously over the last years. This has led to situations in the

telecommunication domain where service providers and network operators have to

provide a fast transition from concept to market product and have to offer a low price for

new value-added services to satisfy their customers. The monopolies in the

telecommunication domain have disappeared and accordingly, the fight for market shares

between the competitors has become more difficult than ever before. Furthermore, the

demand for even more specialised end-user services keeps growing.

In order to face the mentioned challenges, service providers have integrated Service

Creation Environments (SCE) to allow their developers to rapidly create real value-added

services and bring them to the market. However, relying on the quality of the SCEs and

the skills of the developers to create new value-added services is not sufficient in order

to provide the services in best quality. Therefore, thorough methodologies to

consequently test the value-added services before the deployment and provisioning have

to be implemented by the service providers. Then, they are able to assure their customers

of a proper execution of the delivered value-added services and that they perform

according to the specified requirements.

This research work has been dedicated to find and describe a novel methodology for

functional testing of value-added services. It should enable service providers to increase

1.1 Aims and Objectives

2

the quality of their delivered services and should provide both verification and validation

of the service’s implementation. The detailed aims and objectives of this research work

are presented in section 1.1, followed by an outline of the thesis structure in section 1.2.

1.1 Aims and Objectives

The aim of this research is to propose a framework that allows the functional testing of

value-added telecommunication services involving the concepts of Next Generation

Networks (NGN). It should help test developers during the testing process by means of a

novel sort of specification language and reusability aspects and should allow a better

involvement of the service customer.

The main objectives of this research can be outlined as follows:

1. To analyse the existing approaches in value-added service development and

provisioning and to figure out the possible benefits of the introduction of a novel

test framework and methodology.

2. To analyse existing testing strategies and methodologies and related approaches.

Based on the deficits and assets, the requirements for a novel framework will be

elaborated.

3. To define the architecture and associated methodology of the proposed framework

for the functional testing of value-added services, also including their verification

and validation.

4. To examine diverse service descriptions or rather specifications of services,

resulting in a proposed novel service description language.

1 Introduction

3

5. To analyse recurring behaviour in value-added services and based on the results,

define reusable test modules by means of a selected modelling notation. The

reusable test modules shall be applied based on the proposed novel service

description language.

6. To specify an adequate algorithm to compose the reusable test modules to

complex behaviour models based on the proposed novel service description

language.

7. To propose and analyse test case derivation and test case generation from the

behaviour models and subsequently the execution of the derived test cases against

the SUT.

8. To implement and evaluate the proposed framework for functional testing of

value-added services by means of a prototype implementation.

The order of objectives declared above corresponds to the general structure of this thesis

as presented within the following sections.

1.2 Thesis Structure

Chapter 2 describes the theoretical background of this thesis by introducing the concept

of NGN and giving an overview of the SIP architecture and basic functionality.

Furthermore, the term “value-added service” is defined as well as the service’s life cycle.

The required environment to provide value-added services is depicted. Finally, the

stakeholders in value-added service provisioning are introduced. Here, an important

aspect is to identify the benefits for each stakeholder from the establishment of a novel

test framework.

1.2 Thesis Structure

4

The state of the art in testing and the standardised test processes are described in chapter

3. Moreover, current testing methodologies are described and further related research is

discussed. The essential and final part of this chapter is the definition of requirements for

a novel test framework based on the limitations of the given approaches.

In chapter 4, the results of the identified requirements from chapter 3 are used as the

starting point to propose a novel enhanced metholodogy for functional testing of value-

added services. Additionally, an architectural overview of the associated new test

framework is developed and its components are briefly introduced.

Chapter 5 deals with the proposed novel service specification language (so-called Service

Test Description) for value-added services. The relevant components of the Service Test

Description is described as well as its application within the test framework architecture.

Chapter 6 defines the structure and definition of the generic and reusable test modules

and introduces a novel algorithm to compose the modules based on instances of the

Service Test Description in order to generate so-called behaviour models.

Chapter 7 investigates on the test case derivation, generation and execution. The relevant

algorithms are described. Finally, the evaluation of the tests is discussed.

Chapter 8 focuses on both the research prototype for the proof of concept and the

evaluation of the proposed test framework.

Chapter 9 concludes the research work with a summary of its achievements and

limitations. Furthermore, potential areas of future research and development are

proposed.

5

2 Telecommunications Infrastructure and

Value-Added Services

This chapter provides the theoretical background of the telecommunication infrastructure

this research work is based on. After introducing the Next Generation Networks (NGN)

concept and its general architecture specified by international standardisation bodies

(section 2.1), the SIP protocol, its basic functionality, its relevance for NGN as well as

the concept of SIP Application Servers is described (section 2.2). The third section

outlines the term “value-added service”, gives diverse definitions and introduces the life

cycle of services (section 2.3). Finally, the chapter closes with the identification of the

stakeholders within the telecommunication domain with regard to possible improvements

in the development and provisioning of value-added services (section 2.4).

2.1 NGN (Next Generation Networks)

The concept of NGN was introduced initially in the mid-1990s and has become widely

accepted within the field of both fixed and mobile telecommunication networks. While

telecommunication networks have historically been dominated by a circuit-switched

paradigm, the implementation of NGNs led to a conversion towards packet-switched

networks. Furthermore, the concept of NGN became popular to face the emerging

situation in telecommunications characterised by a lot of different factors (Cochennec,

2002):

2.1 NGN (Next Generation Networks)

6

• deregulation of the market (followed by the open and international competition

among network operators),

• increase of Internet utilisation and accordingly explosion of data traffic,

• strong demand from users for new multimedia services, and

• increasing demand from users for general mobility.

The ITU-T (International Telecommunication Union – Telecommunication

Standardization Sector) started its standardisation work in the field of NGN in the year

2000. According to (ITU-T Y.2001, 2004), an NGN is defined as follows:

“A packet-based network able to provide telecommunication services and able to make

use of multiple broadband, QoS-enabled transport technologies and in which service-

related functions are independent from underlying transport-related technologies. It

enables unfettered access for users to networks and to competing service providers and/or

services of their choice. It supports generalized mobility which allow consistent and

ubiquitous provision of services to users”.

In addition to this definition, (ITU-T Y.2001, 2004), (ETSI TR 180 000, 2006) and (Trick

and Weber, 2004) indicate that NGN can be characterised by the following key features:

• packet-based data transport,

• broadband capabilities with end-to-end QoS (Quality of Service),

• support for a wide range of arbitrary services,

• separation of control functions among bearer capabilities, call/sessions and

applications/services,

• interworking with legacy networks or other important telecommunication

networks, especially access networks,

2 Telecommunications Infrastructure and Value-Added Services

7

• Application Server support,

• unrestricted access for users to different networks and service providers,

• support for multimedia services,

• overall unified network management,

• mobility support,

• service-appropriate charging,

• scalability, and

• compliance with all regulatory requirements such as lawful interception and

emergency calling features.

Figure 2.1 shows the NGN core consisting of a packet-switched network supporting

security and QoS functionalities. Permission to reproduce Figure 2.1 has been granted by

the authors of the referenced publication.

Figure 2.1: Principle structure of an NGN (Trick and Weber, 2009)

CS

MGW SGW

paket-based network with QoS + Security

channel-based

paket-based

paket-based,
radio

BS
MGW SGW

ISDN, GSM/UMTS
mobile networksInternet

MGW SGW

SS 7

access
networks

CS = Call Server
MGW = Media Gateway
SGW = Signalling Gateway
SS 7 = Signalling System 7
BS = Base Station

Application
Server

2.1 NGN (Next Generation Networks)

8

The displayed end user equipment, such as telephones, mobile phones or personal

computers, can be directly connected to the NGN or via other access technologies, for

instance channel- or packet-oriented, fixed or mobile access networks. The connection to

other access networks requires Media Gateways (MGW) and Signalling Gateways

(SGW). The role of the Call Server (CS) is to handle service requests and to control the

MGWs according to a call control model and signalling handling. Application Servers

(AS) can be involved in order to provide advanced services, so-called value-added

services, which play a very relevant role in this research work and will be further specified

in the upcoming section 2.3. Besides the mentioned servers and gateways, the NGN also

offers access to other networks such as the Internet or to both circuit-switched and packet-

switched telecommunication networks by gateways.

Regarding its functional architecture, a basic reference model for NGN was defined in

(ITU-T Y.2012, 2010), which implies “the most important novelty introduced with NGN

in the telecommunications (i.e. ICT) world – the separation of services and transport in

separate so-called stratums” (Janevski, 2014). The transport stratum is concerned with

the transfer of information or rather data between terminating endpoints. It also includes

further transport functions, such as admission control and mobility management

functions. The service stratum is located above the transport stratum and is responsible

for the control and management of network services to enable end-users services and

applications. Such services may be related to voice, data, or video applications, or

alternatively, in some combination in the case of multimedia applications (Obermann and

Horneffer, 2013). The main reason for the separation of the transport stratum and the

service stratum is “to allow independent evolution of the technologies used in these strata”

2 Telecommunications Infrastructure and Value-Added Services

9

(Ding, 2010), meaning that certain evolutions, for instance in the service stratum, will not

affect the transport stratum.

According to (ITU-T Y.2012, 2010), applications are outside of the NGN scope. This

might be an inadequate approach as applications are predicted to be “one of the main

revenue streams in future telecommunication networks” (Lehmann, 2014). Hence, other

researches will not leave applications outside the scope of NGN. (Trick and Weber, 2009)

and (Magedanz and de Gouveia, 2006) describe a so-called application stratum (or

application layer) on top of the service stratum and the transport stratum. The following

Figure 2.2 presents the NGN architecture considering all three strata.

Figure 2.2: NGN architecture in a strata/layer structure (Trick and Weber, 2009)

Permission to reproduce Figure 2.2 has been granted by the authors of the referenced

publication. The integrated Application Stratum includes a Service Delivery Platform

(SDP) with at least one Application Server in order to provide value-added services. The

Access Network with QoS

Service Delivery Platform

SIP

SIP

SIP

SIP

e.g.
RTP

e.g.
RTP

U
se

r
E

qu
ip

m
en

t,
SI

P
U

A

AS

CS

MS

IP Corenet with QoS

other N
G

N
s

RTP

Application Stratum

Service Stratum

Transport Stratum

Location
Server

AAA-
Server

2.2 SIP and its Utilisation in NGN

10

SDP concept will be further described in section 2.3.2. Figure 2.2 also illustrates the

relevant communication channels between the three strata including the needed protocols,

such as the Real-Time Transport Protocol (RTP) mostly relevant in the transport stratum

to transfer real-time payload, and the Session Initiation Protocol (SIP) enabling the

controlling of sessions in the service stratum. SIP and its role for NGN will be further

described in the upcoming section 2.2.

2.2 SIP and its Utilisation in NGN

The Session Initiation Protocol (SIP) was initially defined by the Internet Engineering

Task Force (IETF) and specified in (IETF RFC 2543, 1999). In 2002, a new version of

the IETF standard was established (IETF RFC 3261, 2002). Furthermore, diverse

extensions and updates are specified by a number of RFCs (Request for Comments). The

main purpose of SIP is to initiate, coordinate and tear down real-time communication

sessions between endpoints over an IP-based network. While the role of SIP is to set up

communication sessions, the Session Description Protocol (SDP) is used to describe the

session. Furthermore, the communication endpoints can negotiate the codecs to be used

in a VoIP call. Based on the negotiated codecs, the actual media, such as audio, video or

other multimedia content, is then exchanged between the session participants by the use

of an appropriate transport protocol, e.g. RTP (IETF RFC 3550, 2003). SIP also offers

advanced functions, such as instant and presence messaging, and implements several

mechanisms, e.g. handshake, retry or timeout mechanisms. It has gained wide industry

acceptance and has been determined as standard protocol in the Universal Mobile

Telecommunication System (UMTS) Release 5 (ETSI Tdoc RP 030375, 2003).

2 Telecommunications Infrastructure and Value-Added Services

11

Within the proposed framework for automated functional testing of value-added services

resulting from this research work, the concepts of SIP play a major role. On the one hand,

its transactional concept is reused and, on the other hand, most of the value-added services

require SIP signalling.

2.2.1 SIP Architecture and Basic Functionality

According to (IETF RFC 3261, 2002), SIP uses a modular architecture that includes the

following network components: SIP User Agent (UA), SIP Registrar Server, Location

Server and SIP Proxy Server.

A SIP-enabled end user device within a SIP-based telecommunication infrastructure is

called a SIP UA. It acts as an agent on the behalf of a user and sends and receives SIP

messages to establish, modify and terminate sessions. A SIP UA contains both a client

application and a server application. These two parts are designated as User Agent Client

(UAC) and User Agent Server (UAS). The UAC is responsible to create and send requests

whereas the UAS processes incoming requests and generates appropriate responses.

During a session, a SIP UA will operate as both a UAC and a UAS. The concept of UAC

and UAS within a SIP UA is shown in Figure 2.3.

Figure 2.3: Basic principle of SIP communication

SIP User Agent

User Agent
Client (UAC)

User Agent
Server (UAS)

SIP User Agent

User Agent
Client (UAC)

User Agent
Server (UAS)

2.2 SIP and its Utilisation in NGN

12

Each end-terminal registers its current contact information (such as the IP address and the

port of the endpoint) at a SIP Registrar Server using a special SIP message, the SIP

REGISTER request. Upon receipt of this message, the SIP Registrar Server transmits the

data to the Location Server which will store it in a database for contact information of

participating SIP UAs within a specific domain. The interface between the Location

Server and other servers is not standardised.

The SIP Proxy Server routes messages between SIP UAs. According to (Trick and Weber,

2015), two different kinds of SIP Proxy Servers exist, so-called “Stateless” Proxy Servers

and “Stateful” Proxy Servers. A Stateless Proxy Server acts as an intermediate that simply

forwards the SIP request it receives. It does not store any information of the call. Contrary

to this, a Stateful Proxy Server keeps track of every request and response it receives by

storing the relevant information. It can act as both UAC and UAS and is therefore able to

create requests (e.g. “CANCEL”) and responses (e.g. “100 Trying”). The Stateful Proxy

Server is also capable of absorbing retransmissions because it knows that it has already

received a specific message.

The basic establishment of a SIP session using the described SIP network components is

illustrated in Figure 2.4. At first, a SIP User Agent A sends an INVITE request containing

the target end-terminals address as SIP URI (e.g., “user@domain.de”) to a locally

predefined SIP Proxy Server (see Figure 2.4, step 1). The INVITE request also includes

a Session Description Protocol (SDP) (IETF RFC 4566, 2006) message with the proposed

streaming media initialisation parameters of SIP User Agent A. After the SIP Proxy

Server received the message, it subsequently checks the location database to lookup the

location of SIP User Agent B. However, if the target’s SIP URI is within another domain,

2 Telecommunications Infrastructure and Value-Added Services

13

a lookup is initialised using the Domain Name System (DNS) (IETF RFC 1034, 1987)

(IETF RFC 1035, 1987) (see Figure 2.4, step 2). Then, the message is forwarded to the

proper SIP Proxy Server of the other domain (see Figure 2.4, step 3). If SIP User Agent

B is located within the same domain, the SIP Proxy Server can locate the target’s current

contact address by requesting the domain-local Location Server (see Figure 2.4, step 4).

Figure 2.4: Basic establishment of a SIP session

Accordingly, the SIP Proxy Server is able to forward the message to SIP User Agent B

(see Figure 2.4, step 5). When SIP User Agent B accepts the call, it sends a message with

a response code of “200” that also contains SIP User Agent B’s codec capabilities and

the port numbers where it wants SIP User Agent A to send the RTP data to. The final part

of the so-called “Three-Way-Handshake” occurs when SIP User Agent A sends an

acknowledgement to SIP User Agent B (so-called “ACK” request). By sending the ACK,

SIP User Agent A confirms to have received the response from SIP User Agent B. Now,

a logical connection-oriented communication state, a so-called SIP dialog, has been

2.2 SIP and its Utilisation in NGN

14

established. The end systems are now ready to exchange media data of arbitrary nature,

such as audio and/or video data flows, by making use of RTP (see Figure 2.4, step 6).

2.2.2 The Layered Structure of SIP

SIP is structured as a layered protocol comprising the syntax and encoding layer, transport

layer, transaction layer and transaction user (TU) layer. The structure allows different

modules within it to function independently with just a loose coupling between each layer

(IETF RFC 3261, 2002). The following Figure 2.5 visualises the layered structure of SIP

in the application layer and also includes the two lower layers, transport layer and network

layer. Permission to reproduce Figure 2.5 has been granted by Springer Publishing.

Figure 2.5: Layered structure of SIP (Ding and Liu, 2008)

The lowest layer of SIP is its syntax and encoding specifying the format and structure of

a SIP message by the use of an augmented Backus-Naur Form grammar (BNF) defined

SIP

Transaction User (TU)

Transaction Layer

Transport Layer

Syntax and Encoding

Request Response

UDP SCTPTCP

TLS

IP

Application Layer

Transport Layer

Network Layer

2 Telecommunications Infrastructure and Value-Added Services

15

in (IETF RFC 2234, 1997). Such a SIP message can be either a request from a client to a

server, or a response from a server to a client.

The transport layer as second layer defines the behaviour of SIP entities in sending and

receiving messages over the network. It is responsible for managing persistent

connections for transport protocols like UDP (User Datagram Protocol) or TCP

(Transmission Control Protocol) and SCTP (Stream Control Transmission Protocol) with

or without TLS (Transport Layer Security) over the network. The opened connections are

shared between the client and server transport functions.

On top of the SIP transport layer is the transaction layer. A transaction, a very

fundamental component of SIP, is a request that is sent by a client to a server, along with

all responses to that request sent from the server back to the client. All the SIP messages

of a transaction share a common unique identifier and traverse the same set of hosts

(Toral-Cruz et al., 2011). The transaction layer itself handles application-layer

retransmissions, matching of responses to requests by comparing the identifiers, and

application-layer timeouts. It uses the transport layer for sending and receiving requests

and responses. The transaction layer contains four transaction-state machines each having

their own timers, re-transmission rules and termination rules. These state machines are

specified in (IETF RFC 3261, 2002):

1. UAS INVITE state machine

2. UAS non-INVITE state machine

3. UAC INVITE state machine

4. UAC non-INVITE state machine

2.2 SIP and its Utilisation in NGN

16

The fourth and topmost layer of the SIP structure is the transaction user (TU) that actually

creates client and server transactions. When a TU intends to send a SIP request, first it

creates an instance of a client transaction and subsequently, it sends the SIP request along

with the destination information (destination IP address, port number and transport

protocol). Generally, TUs are defined to be both UAC core and UAS core and are part of

all SIP entities except for Stateless Proxy Servers. The UAC part of the TU creates and

sends requests and receives responses using the transaction layer, whereas the UAS part

receives requests and creates and sends responses using the transaction layer. There are

two factors that can affect the behaviour of the TU, the method name in the SIP message

on the one hand and the state of the request with regard to SIP dialogs on the other hand

(Poikselkä and Mayer, 2009).

2.2.3 SIP-based NGN

As mentioned in the previous sections, SIP is a powerful protocol for the control and

management of communication sessions between end-users in telecommunication

networks. It also includes various methods to modify existing sessions or even to combine

them. These aspects clarify why SIP has become widely accepted as the protocol of choice

for communication control in NGN. A SIP-based NGN matches the descriptions

accentuated in section 2.1 due to the fact that SIP is used as standard protocol to enable

the controlling of sessions in the service stratum. Figure 2.6 shows the principle structure

of an NGN based on SIP. Permission to reproduce Figure 2.6 has been granted by the

authors of the referenced publication.

2 Telecommunications Infrastructure and Value-Added Services

17

Figure 2.6: Principle structure of SIP-based NGN (Trick and Weber, 2009)

A SIP service provider operates and manages the core infrastructure which includes the

Call Server (CS) as a centralised component, whose functionality is provided by SIP

Proxy and SIP Registrar Servers (Trick and Weber, 2009). The SIP Proxy Server relies

on Location Servers in order to find the matching temporary SIP URIs for given

permanent SIP URIs. The Redirect Server acts as a UAS that generates SIP redirection

responses (SIP responses containing status codes from 300 until 399) to SIP requests it

receives in order to direct the client to contact an alternate set of SIP URIs. MGW and

SGW enable access to traditional circuit-switched networks, such as the Public Switched

Telephone Network (PSTN). The Multipoint Control Unit (MCU) or rather Conference

Server (IETF RFC 4353, 2006) is implemented in the SIP-based NGN in order to let SIP

User Agents take part in conference scenarios. All displayed SIP User Agents consist of

the end user equipment.

MGW SGW

CS

IP-Network with QoS + Security

e.g. ISDN

SIP = Session Initiation Protocol
CS = Call Server
MGC = Media Gateway Controller
MGW = Media Gateway
SGW = Signalling Gateway
MCU = Multipoint Control Unit

CS

SIP User Agent SIP User Agent

SIP Proxy/Registrar Server +
MGCMCU

64-kbit/s-Netz

Class 5
switch

SIP Proxy/Registrar Server

Megaco = Media Gateway Control Protocol
B2BUA = Back-to-Back User Agent
ALG = Application Layer Gateway
SBC = Session Border Controller
RTP = Real-time Transport Protocol

ISUP

SIP

SIP

Megaco/H.248
ISUP

SIP, SDP+RTPMegaco/H.248 +
RTP

Application Server Redirect Server Location Server

SIP+RTP

DSS1 or ISUP

SIP

SIP

SIP or
ISUP

Conference Server

B2BUA

B2BUA or ALG or SBC

SIP+RTP

64 kbit/s

2.2 SIP and its Utilisation in NGN

18

As far as (Weber, 2012) is concerned, “SIP signaling and media streams can be forced to

be routed in parallel via intermediate service layer network elements that are trusted by

the SIP service provider”. This aspect might be useful considering particular legal

requirements such as lawful interception, the interconnection with other providers and for

Network Address and Port Translation (NAPT) traversal. To achieve this, SIP Back-to-

Back User Agents (B2BUA) are used. According to (3GPP TR 29.962, 2005), a B2BUA

is permanently inserted at connections between the SIP-based NGN (e.g. IMS) and a

given external network handling all SIP signalling (including session attempts,

subscription, instant messages) including signalling where the flows may forward without

B2BUA interventions. In general, B2BUAs are implemented in network elements such

as Session Border Controllers (SBC) or Application Layer Gateways (ALG).

Finally, the most relevant component of the SIP-based NGN (see Figure 2.6) regarding

this research work, the SIP Application Server, will be introduced in the following

section.

2.2.4 SIP Application Server

In principle, the main task of a SIP AS within a SIP-based NGN is to enable a fast and

cost-efficient provision of value-added services. According to (Trick and Weber, 2015),

the SIP AS is a combination of a SIP UA, and/or a SIP Proxy Server, and/or a SIP Redirect

Server. In particular, it contains a software platform for services.

A SIP AS requires a SIP communication channel to a corresponding CS in order to allow

end users to invoke services that are currently deployed on the SIP AS. The CS routes the

SIP messages to the SIP AS based on configured or currently requested filtering criteria.

2 Telecommunications Infrastructure and Value-Added Services

19

Based on further filtering criteria, the SIP AS chooses the appropriate software and starts

the service execution.

According to (Trick and Weber, 2015), four different modes of operation have been

established regarding the SIP AS. These modes are illustrated in the following Figure 2.7.

Permission to reproduce Figure 2.7 has been granted by the authors of the referenced

publication.

Figure 2.7: Modes of operation of a SIP Application Server (Trick and Weber, 2009)

The first mode of operation, the “Content” mode, determines the SIP AS to either act as

SIP UA or SIP Redirect Server. Here, the SIP UA of user A triggers the initiation of the

service and subsequently, user data can be transmitted between the AS and the SIP UA

of user A. Depending on the interfaces the SIP AS has, the data can be of any kind. An

example service can be, for instance, a weather forecast that will be read out to A based

on the content of a web site.

The “Wake up” mode indicates the SIP AS to be the initiator of the service. So, the SIP

AS builds up a SIP session to the SIP UA of B independently. Usually, the initiation of

Content Wake up Call For-
warding

Click2
Dial

Data Data Data Data

CS

UA/
Redirect

UA Proxy 3PCC

SIP

CS

SIP

CS

SIP

CS

SIP

A

RTP

SIP
B

RTP

SIP
A B

SIP SIP

RTP
A B

SIP SIP

RTP

2.2 SIP and its Utilisation in NGN

20

the call takes place as soon as some specified condition is fulfilled. A typical example

service is the “Wake up” service itself. Here, a call is initialised at a certain time.

In the “Call Forwarding” mode, the SIP AS acts like a standard SIP Proxy Server. First,

the SIP AS receives a request from the SIP UA of A forwarded by the CS because of

some defined filtering criteria (e.g. “user unkown”). Consequently, the SIP AS

determines the relevant data by using its data interface and then provides the CS with the

information. Afterwards, the CS forwards the appropriate message to the SIP UA of B

and finally, both users can exchange data. An example service can be a location-based

search for a restaurant.

In the final “Click 2 Dial” mode of operation, the data interface of the SIP AS or rather

some third party (3PCC = Third Party Call Control) triggers the initialisation of a session

between the UAs of A and B. In this scenario, the SIP AS is acting as a B2BUA. An

example trigger can be, for instance, the clicking of a button on a web site or some other

software application. Based on this event, the call is initiated and finally, the SIP UAs of

A and B can directly communicate via RTP.

The introduced modes of operation of a SIP AS demonstrate the variety of possibilities

regarding the development of value-added services. However, further servers are required

in order to support the diversity of services, such as email servers, media servers, web

servers or database servers. In general, through the data interface of a SIP AS, a value-

added service can make use of any functionality that is provided by the different servers.

The mentioned diversity of services that can be provided by SIP AS gives a further reason

why this research work is so relevant. The more complex a value-added service gets the

2 Telecommunications Infrastructure and Value-Added Services

21

more relevant is the integration of a test framework to support service developers to

program high quality services for the service customers.

2.3 Value-Added Services in NGN

Value-added services are the main object of this research and will be described in the

following. This introduction also requires the knowledge of how services in the

telecommunication domain are classified in general.

2.3.1 Classifications and Definitions

With regard to the definition of the term “telecommunication” itself, the ITU has the

following to say: “Any transmission, emission or reception of signs, signals, writing,

images and sounds or intelligence of any nature by wire, radio, optical or other

electromagnetic systems” (ITU, 2011). To enable this telecommunication capability,

telephone companies provide telecommunication services. To quote (ITU-T T.174,

1996), telecommunication services are “that which is offered by an administration to its

customers in order to satisfy a specific telecommunication requirement”. A more detailed

definition is given in the words of (Calisti, 2003), where a telecommunication service is

“a set of independent functions that are an integral part of one or more business processes.

This functional set consists of the hardware and software components as well as the

underlying communication medium. The customer sees both as an amalgamated unit. A

service can be a service component of another service”. Another quite similar definition

of the term is described by the 3GPP, a service is “a component of the portfolio of choices

2.3 Value-Added Services in NGN

22

offered by service providers to a user, a functionality offered to a user.” (3GPP TR 21.905,

2005).

Besides the provided definitions of the term “telecommunication service” or rather

“service”, many others exist and the words are often used in several different contexts

with somewhat different meanings although they are describing the same, such as in

(Kühn, 1991), (ETSI TS 122 228, 2011), (ETSI TS 122 105, 2011), (ETSI TS 122 101,

2011) and (ITU-T I.211, 1993).

In principle, telecommunication services are divided into bearer services, teleservices and

supplementary services.

A bearer service is a type of telecommunication service that provides the “capability of

transmission of signals between access points” (ETSI TS 122 105, 2011). Typically,

bearer services are categorised by their information transfer characteristics, methods of

accessing the service, interworking requirements (also to other networks), and other

general attributes (Harte et al., 1999). Bearer services cover the lower three layers of the

OSI (Open Systems Interconnection) model from physical layer up to the network layer.

A teleservice is a type of telecommunication service that provides the “complete

capability, including terminal equipment functions, for communication between users

according to protocols established by agreement between network operators” (ETSI TS

122 105, 2011). The teleservices are user end-to-end services (e.g. telephone calls) and

cover the full seven layers of the OSI protocol layer model.

Supplementary services modify or supplement basic telecommunication services.

Therefore, they cannot be offered to a customer as a stand-alone service and must be

2 Telecommunications Infrastructure and Value-Added Services

23

offered in combination with a basic bearer service or basic teleservice. The same

supplementary service can be applicable for a number of telecommunication services

(ETSI TS 122 105, 2011).

According to (ETSI TS 122 001, 2011) and (ITU-T I.210, 1993), Figure 2.8 illustrates

the categorisation of telecommunication services.

Figure 2.8: Categorisation of telecommunication services

Besides the already mentioned classes of services in the telecommunication domain, a

further service type, value-added (telecommunication) services, exists. According to

(ETSI TS 122 101, 2011), these value-added services can be based on fully proprietary

protocols or standardised protocols. With regard to this research work, the following

definitions of the term “value-added services” might be suitable. The OMA (Open Mobile

Alliance), for instance, defines in (OMA ORG, 2007) that the term stands for a

“telecommunication/information service that is offered in addition to and/or in

conjunction with a basic telecommunication/data service”. This rather generic definition

indicates that every service can be seen as a value-added service if it extends the

functionality of a pre-existing basic telecommunication service.

telecommunication services

teleservice
basic teleservice

basic teleservice +
supplementary service(s)

bearer service
basic bearer service

basic bearer service +
supplementary service(s)

2.3 Value-Added Services in NGN

24

(Glitho et al., 2003) agrees with the OMA. In their opinion, value-added services are

“defined as anything that goes beyond two-party voice calls” (Glitho et al., 2003).

Furthermore, “Value-added services are usually grouped under two umbrellas: telephony

services and nontelephony services. Telephony services interact with call control while

nontelephony services do not” (Glitho et al., 2003). The authors also give examples of

telephony services such as conferencing, call diversion or telephone voting.

Nontelephony services can be special instant messaging services, push-to-talk and

multimedia messaging.

A further definition of the term “value-added service” is given by (Guo et al., 2009) who

point out that value-added services “add value to the standard service offering, spurring

the subscribers to use their phone more and allowing the operator to drive up their ARPU

(Average Revenue per User)” (Guo et al., 2009). They also state that “Both the academic

and the industrial communities have paid much attention on the subject how to design

and implement the personalized service and shorten the time to market” (Guo et al.,

2009). Here, the authors denote the potential of value-added services, especially

emphasising the economic benefits for service providers and network operators and the

need for mechanisms in order to provide the services fast, custom-made and in high

quality.

The most appropriate definition of value-added services relating to this research work is

provided in (Lehmann, 2014): “Value-added Services (VAS) are functional properties

which will offer certain comfort to consumers. Consumers will recognise additional

benefit by value-added services”. Regarding the composition of value-added services,

(Lehmann, 2014) discusses that they “are based on a combination of one or more bearer

2 Telecommunications Infrastructure and Value-Added Services

25

services and one or more teleservices, and optionally, one or more supplementary

services.” The author also states that value-added services can be an extension to basic

teleservices and they can sometimes stand-alone (e.g. non-call related services). “VAS

also have a certain time dimension associated with them. A value-added service today

can become a basic service in the future when it becomes sufficiently common place and

widely deployed, and for example, is no longer used as a differentiation feature among

operators” (Lehmann, 2014). The author describes the positioning of value-added

services within the telecommunication domain and predicts that the provisioning of them

will play a major role for the operators in future.

As already mentioned in the sections 2.1 and 2.2.3, unlike basic telecommunication

services being provided in the service stratum of the NGN by Call Servers, the value-

added services are provided by Application Servers. According to (Trick and Weber,

2009), the handover of the service intelligence from the Call Servers to the Application

Servers leads to a significantly low dependency between the network and the value-added

services. This aspect makes it possible to quickly and easily provide new value-added

services.

2.3.2 Development and Provisioning of Value-Added Services

As stated in section 2.2.4, value-added services can be complex because of the diversity

of functionality that can be applied through a SIP AS. As in the development of complex

software systems, the development and provisioning of value-added telecommunication

services requires “expertise on system architecture, software design, communication

protocols, and [possibly] knowledge of legacy systems” (Ling et al., 2009). A major

2.3 Value-Added Services in NGN

26

challenge for service designers is the complexity and heterogeneity of the network

infrastructure which always has to be considered at both system and application levels.

With regard to the traditional service life cycle, the OMA has specified in (OMA OSPE,

2005) the different stages a telecommunication service has to go through. The following

Figure 2.9 illustrates the service life cycle phases.

Figure 2.9: Service life cycle (adapted from (OMA OSPE, 2005))

Initially, the service life cycle starts with the vague idea of a new service demand. Such

an idea is usually inspired either by the analysis of market needs performed by the service

providers or, in most cases, by a customer’s desire of what a new service is supposed to

do. The idea can also be derived from successful service ideas in other networks initiated

by other service providers. Following the phase of idea generation a feasibility study is

done in the “Service Planning & Definition” phase identifying if the service is found to

be commercially feasible. This phase also includes the capturing of the service’s

requirements in order to establish a service specification which includes a detailed

analysis of the service’s functionality, necessary data and desired output. Among all the

II. Service Planning &
Definition

I. Initial Idea
Stimulation

III. Service
Development

IV. Service
Deployment

V. Service
Packaging

VI. Service
Maintenance

Vll. Service Evolution
& Withdrawal

Service Termination

Evolution

Withdrawal

2 Telecommunications Infrastructure and Value-Added Services

27

phases within the service life cycle, the upcoming third phase, “Service Development”,

is the most abstract and general of all phases, since there are diverse approaches on how

to structure the different stages within the phase. Generally, the phase refers to the process

of implementing the service logic and testing its functionality. In the upcoming fourth

phase “Service Deployment”, the implemented and tested service is actually deployed in

the service provider’s environment. This process includes every step from the initial

installation of the service until its activation. Afterwards, the service can be offered to the

customer base by defining commercial packages or bundles in the “Service Packaging”

phase. This phase is followed by the active use of the service by customers who

subscribed the service in advance. The service provider has to maintain the service’s

functionality (“Service Maintenance”) and may find some needs to influence and adjust

the service to changing requirements. This aspect might necessitate the evolution of the

service which leads to an adaptation of the service specification and the phases until phase

six have to be repeated. Alternatively, the service provider decides to withdraw the service

(“Service Termination”) possibly due to its weak technical or commercial performance.

In order to manage the life cycle of services within the service provider’s environment

and especially with respect to the provisioning of value-added services, service providers

use a scalable and standardised platform for the creation, deployment, execution,

orchestration and management of these value-added services, the so-called Service

Delivery Platform (SDP). The SDP is located in the application layer and is connected to

the NGN service and transport layer through abstract interfaces (Trick and Weber, 2009).

It can contain multiple Application Servers and Media Servers and provides interfaces to

an environment, the Service Creation Environment (SCE), in which service developers

can efficiently develop new value-added services by combining the capabilities of

2.3 Value-Added Services in NGN

28

existing basic telecommunication services and other value-added services (Menkens,

2010). This SCE enables the development of a new value-added service either from

scratch or from predefined modules. Generally, the SCE provides graphical tool support

for the service developer in order to simplify and accelerate the service development

process. The already mentioned connection between the SCE and the SDP enables an

immediate provisioning of value-added services (Trick and Weber, 2009). An illustration

of the overall concept of the SDP in NGN is given in Figure 2.10. Permission to reproduce

Figure 2.10 has been granted by the authors of the referenced publication.

Figure 2.10: Service Delivery Platform in NGN (Trick and Weber, 2009)

To sum up, the relevance of SDPs in combination with SCEs is very high for service

providers in order to provide value-added services to their customers in a standardised

approach and within a short time period. However, there is to date no standardised and

robust Test Execution Environment (TEE) defined specifically within an NGN. To our

knowledge, the major focus of testing in the NGN field is related to the testing of NGN

2 Telecommunications Infrastructure and Value-Added Services

29

protocols, so-called conformance testing (ITU-T Q.3946.2, 2013), and to the testing of

NGN equipment for compatibility and interoperability (ITU-T Q.3948, 2011). Therefore,

the establishment of a TEE in combination with an equivalent environment to SCEs but

focusing on test creation would make an appealing framework, possibly called “Test

Creation Framework” (TCF). Such a TCF would improve the quality of developed value-

added telecommunication services on the one hand and would verify that the customer’s

desire of what a value-added service has to do is fulfilled on the other hand.

2.4 Stakeholders in Value-Added Service Provisioning

In order to identify the benefits of a TCF especially defined for the process of functional

testing of newly developed value-added telecommunication services, the stakeholders in

service development and provisioning have to be introduced. Of course, the proposed

TCF will be part of the service development and provisioning process and is therefore

situated in the service provider environment. Nevertheless, its implementation might have

potential positive effects for each stakeholder. This assumption will be analysed in the

following.

According to (ITU-T M.3340, 2009), the relevant roles (respectively stakeholders) in an

NGN environment are as illustrated in Figure 2.11. Permission to reproduce Figure 2.11

has been granted by ITU.

2.4 Stakeholders in Value-Added Service Provisioning

30

Figure 2.11: Roles in NGN management (adapted from (ITU-T M.3340, 2009))

Besides the network operators, service providers and service customers, also the service

users or rather end-users are shown including the relationship between one another.

The network operators are organisations that enable the transport stratum in the NGN

architecture illustrated in Figure 2.2. They operate the network and take responsibility for

providing the required end-to-end connectivity to the service providers using their

network (Salina and Salina, 2007). The establishment of a novel TCF within the service

provider environment would not directly concern the network operators. However, the

erroneous function of a newly deployed value-added service could also be due to some

problems (e.g. lack of performance) within the network.

The service providers offer basic and value-added telecommunication services through

their service provider environment to service customers. As far as (ITU-T M.3340, 2009)

is concerned, the service providers may or may not operate a network themselves and

may or may not be a customer of another service provider. Additionally, the service

providers have to deal with the following tasks (Menkens, 2010), (ITU-T M.3340, 2009),

(Salina and Salina, 2007), (ITU-T M.3050.1, 2007):

Service User

Service Customer Service Provider

Service Provider Network Operator

NetworkNetworkNetwork

Contracts

Use management service

Authorizes

manages

2 Telecommunications Infrastructure and Value-Added Services

31

• Managing and administrating the SDP and its associated applications, components

and configuration logic.

• Automating their customer care, service and network management processes.

• Installing and testing new services and supporting functions in the SDP as well as

investigating and resolving service related issues (which may be experienced by

a service user).

• Ensuring that newly deployed services do not impact existing services.

• Administrating the life cycle management of value-added services.

• Aggregating generic service capabilities to create high-value combinational

services that enrich the user experience, e.g. applying an SCE.

• Moving to more of an end-to-end process management approach developed from

the service customer’s point of view.

Apparently, the service providers would benefit most from the establishment of a novel

TCF. As they have to face enormous challenges, such as more demanding customers,

increased competition, ever-growing regulatory requirements and time-to-market

pressure, the service providers have to offer value-added telecommunication services in

the best possible quality. This aspect will lead to satisfied service customers.

The third role, the service customer (ITU-T M.3050.1, 2007), can be a person or an

organisation that has a contractual relationship with a service provider. The customer is

responsible for ordering and paying for the products of a service provider. Additionally,

the service customer can act as service user by actually consuming a service provided by

the network. Alternatively, a service customer can act as a wholesale customer that resells

2.4 Stakeholders in Value-Added Service Provisioning

32

the service provided, possibly with some further value. Relating to the establishment of a

TCF in the service provider environment, the service customers will also benefit from

thoroughly tested value-added services as they are either the direct consumers or

alternatively wholesale customers who can provide their service users with high quality

products.

Another relevant entity, not being mentioned in the NGN environment but playing an

important role in the value-added service development, is the group of service developers.

Generally, the service developers are working for service providers and develop the

applications and business logic that allows the service providers to offer their services to

the service customers. The used development platform within the SDP of the service

provider (e.g. SCE) needs to have a lower barrier of entry for the service developers. It

should be easy to use, easy to maintain and self-descriptive (OMA OSPE, 2005).

Additionally, the development platform needs to be state-of-the art with well-known

programming languages and easy to learn Software Development Kits (SDK) and

Application Programming Interfaces (API). Similarly to the service providers, the service

developers would also benefit from the establishment of a proper TCF. During

development and after having developed a new value-added service, a service developer

might receive feedback if the service is correct and if it meets the requirements of the

service customer. Also, the maintenance phase especially after just having deployed a

service in the service provider environment can be shortened.

2 Telecommunications Infrastructure and Value-Added Services

33

2.5 Conclusion

Within this chapter, the general environment of this research work was introduced.

Starting with the discussion of the NGN concept as defined by ITU-T and ETSI in section

2.1, the following section 2.2 focused on the architecture and structure of the SIP protocol

as well as its basic functionality. This section also mentioned the relevance of the SIP

protocol for the NGN environment and also for the research work as one major

component.

The main object of this research work, the value-added telecommunication services, was

introduced in section 2.3. Several definitions of the term “value-added services” were

mentioned and discussed. A standard life cycle of services was described as well as

approaches for service providers to develop new services and provide them in their

environment in order to be consumed by their customers. Based on the information given,

the lack of a proper test framework for functional testing of services in addition to the

existing concept of SDP for service development and provisioning was identified.

Completing this chapter in section 2.4, the stakeholders in value-added service

development and provisioning were introduced. It was also depicted how they would

benefit from the installation of a novel TCF.

35

3 The Challenge of Testing Value-Added

Services

This chapter introduces the foundations of functional testing and investigates current

testing methodologies and research projects with reference to the research field. Based on

the identified insufficiencies of the related projects, a list of criteria will be defined which

have to be met by the proposed novel test framework.

An introduction into the field of functional testing will be given in section 3.1.

Subsequently, the current state-of-the-art testing methodologies will be described and

evaluated in section 3.2. Related projects as well as technologies are depicted in section

3.3 and the final section 3.4 summarises the requirements for a novel test framework for

value-added services and includes the list of relevant criteria.

3.1 Principles of Functional Testing

The focus on functional testing within this research work requires the understanding of

how testing in general is defined.

3.1 Principles of Functional Testing

36

3.1.1 Fundamentals of Testing and Test Processes

It is widely accepted that it is impossible to implement perfect software, and as value-

added telecommunication services are software-based, it is necessary to do tests in order

to reduce the risk of errors during service development which cause failures when the

service is consumed. According to (IEEE Std 610.12, 1990), testing is defined as “the

process of analyzing a software item to detect the differences between existing and

required conditions (that is, bugs) and to evaluate the features of the software items”.

Other sources, such as (Amman and Offutt, 2008), define testing as the process of

“evaluating a system by observing its execution”. To sum up, testing can be used to detect

failures in the observed system or service, which will be further referred to as

System/Service under Test (SUT). The process is carried out by executing defined test

cases against the SUT in order to check the system’s behaviour.

When it comes to testing, two independent procedures have to be considered, verification

and validation. As far as (IEEE Std 1490, 2011) is concerned, verification is “the

evaluation of whether or not a product, service, or system complies with a regulation,

requirement, specification, or imposed condition. It is often an internal process”. The

definition indicates that “verification” is intended to prove a software (or

telecommunication service) meets a set of functional specifications. This set is usually

part of a document, the System Requirements Specification (SRS), and is derived from

the customer’s demands by members of the development team or a business analyst. In

contrast to verification, validation is “the assurance that a product, service, or system

meets the needs of the customer and other identified stakeholders. It often involves

acceptance and suitability with external customers” (IEEE Std 1490, 2011). The focus of

3 The Challenge of Testing Value-Added Services

37

validation is to confirm that the software (or telecommunication service) will fulfil its

intended use. The tests have to be executed by the customers or end-users because they

have to accept the behaviour of the software.

Historically, testing was mainly used as debugging to verify that the implemented

software performed as intended. There was no separate and well-defined process defined

in the software development life cycle. Today, standards exist in order to describe the

process of testing. The following Figure 3.1 illustrates how dynamic test processes

interact and shows the relationship with the test management process. This methodology

is taken from the standard (ISO/IEC/IEEE 29119-2, 2013), a document published by the

International Organization for Standardization (ISO), the International Electrotechnical

Commission (IEC) and the Institute of Electrical and Electronics Engineering (IEEE).

Figure 3.1: Dynamic test processes (ISO/IEC/IEEE 29119-2, 2013)

The test management process is an overseeing process that initialises the dynamic test

process by delivering the test plan. This document should be based on the IEEE standard

Test Management Process

Dynamic Test Processes

Test Design &
Implementation

Test Environment
Set-up &

Maintenance

Test Execution

Test Environment
Requirements

Test
Specification

Test Environment
Readiness Report

Test Incident
Reporting

Test
Results

[Issue Notices
OR

Retest Result]

[No Issues Noticed]

Incident
Report

Test Plan Test
Measures

Control
Directives

© 2013 IEEE

3.1 Principles of Functional Testing

38

for test plan specification (IEEE Std 829, 2008) and describes the scope of the test, the

testing approach and the resources and schedule of intended testing activities.

Furthermore, it identifies test items to be tested and test items not to be tested. Test items

represent individual elements and can either be a document, a class, a whole program, a

component of a system or even the whole system. Besides the triggering of the dynamic

test processes, the test management process also monitors the progress (through test

measures) and may require further tests (through control directives) to be designed and

run until a specified completion criterion is achieved (ISO/IEC/IEEE 29119-2, 2013).

For any specified test, the dynamic test process will execute in the order presented in

Figure 3.1. The initial phase, the “Test Design & Implementation”, is used to specify the

test specification. Here, the tester as primarily responsible person has to apply one or

more test design techniques to derive test cases and test procedures with the aim of

achieving the test completion criteria which are defined in the test plan. It is possible that

the “Test Design & Implementation” phase is exited and re-entered afterwards, if some

additional test cases are required after the first execution of a test procedure. Besides the

test specification as output of the phase, relevant test data and test environment

requirements are identified by the tester.

A following phase within the dynamic test process, the “Test Environment Set-Up &

Maintenance”, is used to establish and maintain the environment in which the specified

test cases are executed against the SUT. The person responsible for the maintenance of

the test environment may configure a set of parameters that are required for the testing of

the specific SUT. If a test environment based on the Testing and Test Control Notation

(TTCN-3) (ETSI ES 201 873-1, 2015) is used, the responsible person for instance has to

3 The Challenge of Testing Value-Added Services

39

load the appropriate codecs for the protocol communication with the SUT and has to set

the relevant parameters in order to access the SUT. After the setting up of the test

environment is finished, all relevant stakeholders are informed through a so-called test

environment readiness report.

After the test environment is ready, the “Test Execution” follows. This phase contains the

execution of the test procedures generated as a result of the “Test Design &

Implementation” phase on the prepared test environment. Although it is not defined

explicitly in Figure 3.1, it may be required to perform the execution a number of times as

all the available test procedures may not be executed in a single iteration. If an occurred

issue is fixed in the SUT, it should be retested by re-entering the “Test Execution” phase.

As a result of carrying out this phase, the test results and the test execution log are

produced.

The final phase of the dynamic test process is the “Test Incident Reporting” phase that

provides the reporting of test incidents. This phase will be entered if test failures were

identified, unexpected behaviour took place or if retests passed. The main purpose of the

phase is to report the stakeholders emerging incidents which require further action.

With reference to the overall dynamic test process illustrated in Figure 3.1, it should be

noted again that it is shown as a pure sequential process, however, in practice it may be

carried out in iterative steps (ISO/IEC/IEEE 29119-2, 2013).

3.1 Principles of Functional Testing

40

3.1.2 Schematic Approach to Functional Testing

The described concept of dynamic test processes can be applied to any particular phase

of testing (such as unit, integration, system and acceptance testing) or type of testing (such

as performance testing, security testing, usability testing and functional testing)

(ISO/IEC/IEEE 29119-2, 2013). The focus of this research work is the functional testing

of value-added telecommunication services and one of the major objectives is that both

verification and validation are supported by the proposed approach. This section focusses

on black-box or specification-based testing is therefore only related to the verification

process and not to the validation process.

Functional testing is an essential activity in most software development projects and is

also significant during and after the process of developing new value-added services in

service provider environments. The term itself describes the process of verifying the

functions in a system to assure that they meet the specified requirements. Furthermore,

every software system can be seen as a black box, where a tester selects valid and invalid

inputs and determines the correct output. In functional testing, a tester does not need to

know the internals of the SUT as the focus is to evaluate the functional correctness of a

given system, independently of its internal implementation (Pezzè and Young, 2009).

(Pezzè and Young, 2009) describe a schematic approach to functional testing which is

presented in Figure 3.2. Permission to reproduce Figure 3.2 has been granted by the

authors of the referenced publication.

3 The Challenge of Testing Value-Added Services

41

Figure 3.2: Schematic Approach to Functional Testing (adapted from (Pezzè and Young, 2009))

Initially, there is an existing functional specification (see Figure 3.2) describing the

requested behaviour of a system or service. It typically contains what is needed by the

system/service user as well as all the relevant properties of inputs and outputs. Based on

the functional specification, test cases can be directly defined by an experienced test

designer using a Brute Force method (Mathur, 2008). Here, the test cases will be created

without consideration of any criteria and it is nearly impossible to measure the quality of

the test cases. Moreover, the use of the Brute Force method depends only on the expertise

of the test designer and it costs him a lot of time to repeat the process later on. Because

of these limitations, this process is rather inefficient and ineffective.

Alternatively, a systematic approach can be followed. It simplifies the whole process by

separating it into basic automated steps and steps that require intellectual work. The first

step in this approach is the identification of the independent testable features (see Figure

3.2) from the functional specification. These testable features are parts of a system or

service that can be tested separately. In order to group these features, so-called logical

units are defined comprising related use cases. Then, the test designer has to define all

possible input parameters for the specified logical units (Pezzè and Young, 2009).

Functional
Specification

Independent
testable Features

Identify testable
features

Model

Representative
Values

Derive Model

Identify representative
values

Test Case
Specification

Create Test Case
Specification

Create Test Case
Specification

Test Cases

Create Test
Cases

Scaffolding

Instantiate
Tests

Brute Force-Test

3.1 Principles of Functional Testing

42

After the logical units based on the independent features have been identified, a test

designer can choose two alternative methods to generate a test case specification. Firstly,

he can identify an amount of representative values (see Figure 3.2) for each derived

logical unit. According to (Pezzè and Young, 2009), these representative values should

be inputs for the logical units that are especially valuable. In general, valuable inputs can

be identified by choosing representatives of equivalence classes that are apt to fail often

or not at all. The equivalence classes can be derived by examining the input conditions

from the functional specification. Each input condition induces an equivalence class with

valid and invalid inputs. Of course, inputs can also be generated randomly, but this

approach is less likely to cover all parts of the functional specification (Gutjahr, 1999).

An example application for the representative values approach can be a ZIP code lookup.

A user has to input a ZIP code (e.g. “12345”) into a form and the list of cities in the ZIP

code are listed after actuating a button. Now, the tester first defines the valid inputs,

consequently 5-digit ZIP codes. The representative selected ZIP codes have different

impact on the output. The first group returns 0 cities, the second just one city and the third

many cities. Afterwards, the invalid ZIP codes are defined, such as empty inputs, ZIP

codes with less than 5 digits, ZIP codes with more than 5 digits or ZIP codes that contain

characters instead of numbers. For each invalid input, one representative value is selected.

A second approach to derive inputs for the logical units is to derive a formal model (see

Figure 3.2) that specifies software behaviour. Such a model can already be a part of a

functional specification, but more commonly, the test designer has to create the model by

himself. Typical models come as finite state machines (FSM) containing already implicit

information of the possible input values. Comparing this method to the alternative

identification and definition of representative values, the definition of a formal model has

3 The Challenge of Testing Value-Added Services

43

several advantages. Although the definition of representative values might be easier to

handle than a complex formal model, the model is generally much more cost-effective in

the long term. It enables flexibility regarding the amount of test cases to be derived and

can easily be adapted to possible changes in the functional specification (Pezzè and

Young, 2009).

The test case specification (see Figure 3.2) in the systematic approach can be derived by

enumerating the input values for each logical unit from the previous step. Afterwards, the

input values have to be combined. It must be pointed out that invalid combinations of

values have to be eliminated. Depending on the complexity of the functional

specification, the derived test case specification can become quite comprehensive. If

using the formal model in the previous step, an adequate test selection algorithm has to

be chosen to prevent a test case explosion (Pezzè and Young, 2009).

In the next step, the test case specification is converted to an amount of test cases (see

Figure 3.2). In order to instantiate the test cases, the appropriate drivers and stubs have to

be installed and loaded. This process is called scaffolding (see Figure 3.2). Especially for

effective testing of higher level components, scaffolding is required. Afterwards, the

functional test cases can be executed against the SUT (Pezzè and Young, 2009).

3.1.3 Relevance for Testing of Value-Added Services

The fundamentals of testing processes and functional testing approaches has been

introduced in the previous sections 3.1.1 and 3.1.2. Now, it has to be elaborated why

especially value-added services require a distinct approach to testing. The following

characteristics have been identified:

3.1 Principles of Functional Testing

44

1. The provisioning of value-added services in NGNs or SIP-based IP networks is a

very difficult and also error-prone task. On the one hand, this has to do with the

various service architectures. In principle, a proper consumption of a value-added

services does not depend only on the SIP Application Server where the service is

deployed on. Furthermore, other servers as part of the SDP might be involved in

the service consumption such as web servers, media servers or database servers.

So, the SUT can be characterised as distributed and complex which usually

requires a throurough testing approach to validate its functionality.

2. According to (Fischer et al., 2011), “the complexity of the protocols for NGN

networks poses a vast number of possibilities for mistakes during the development

of new services”. Especially the structure of the SIP protocol can get quite

complex. In fact, over 60 different headers have been defined and standardised for

SIP requests and SIP responses (IETF RFC 3261, 2002). If one of these headers

contains errors or misses required fields, the functionality of a service can be

affected.

3. Another important aspect which makes testing of services relevant is the

heterogeneity of services. Due to the requirements mentioned in chapter 1 of this

thesis, the demand for more specialised and individual services keeps growing

and has to be fulfilled by the service providers. The development and provisioning

of individual services is much more demanding for service developers because

they might have to solve issues they are not facing regularly. This oftentimes leads

to errors in the service logic.

4. The execution of value-added services might produce unwanted side effects in

other service executions. Especially changes in data or state caused by service

3 The Challenge of Testing Value-Added Services

45

invocations can interfere with other service compositions. This produces

unwanted changes.

5. Services are often consumed by end-user terminals (such as VoIP phones,

smartphones) which have implemented standardised protocol behaviour. This

leads to the fact that services have to follow the standards of protocol-specific

communication.

Besides these specific reasons for establishing a testing process especially for value-

added services there are of course general reasons. A distinct approach to testing, for

instance, ensures the quality of the product. To deliver a quality product to customers

helps in gaining their confidence.

3.2 Related Work on Current Testing Methodologies

An important aim of this research work is to define a new framework for functional testing

of value-added services. For the development of software and services, many state-of-

the-art methodologies include the process of testing, such as:

• Test-Driven Development (Karleysky et al., 2006) and (Yenduri and Perkins,

2006)

• Acceptance Test Driven Development (Adzic, 2011) and (Gärtner, 2012)

• Behaviour-Driven Development (Solís and Wang, 2011)

• Model-Based Testing (ETSI ES 202 951, 2011) and (Utting and Legeard, 2006)

The first three methodologies are typical agile testing approaches. Especially enhanced

agile concepts have been taken into consideration because they involve the customer at

3.2 Related Work on Current Testing Methodologies

46

frequent intervals within the development and test process. This involvement usually has

a good impact on the service quality, because misunderstanding between the service

provider and the customer can be eliminated quickly. Model-Based Testing (MBT),

however, is a standard approach to realise black box testing. One major advantage of

MBT over most other testing approaches is the possibility to generate a lot of tests within

a short amount of time. Furthermore, MBT approaches enable tests to be linked directly

to requirements through the model. So, a traceability of requirements is supported.

All of the approaches will be evaluated in general and regarding their potential to be

applied as methodology for this research.

3.2.1 Test-Driven Development

Test-Driven Development (TDD) is an agile software development technique that relies

on the repetition of a very short development cycle. It prescribes that test cases have to

be programmed before the functional code is implemented that has to pass the tests. The

main objectives of TDD are on the one hand to be able to test the software at any time

under automation (Karleysky et al., 2006) and to achieve immediate input through the

test cases and thereby construct a program (Yenduri and Perkins, 2006) on the other hand.

The process of defining test cases prior to the implementation code is termed as “Test

First” approach. In traditional software development approaches (such as in the waterfall

model), testing is often left “to the end of a project where budget and time constraints

threaten thorough testing. TDD systematically inverts these patterns” (Karlesky et al.,

2006). The following Figure 3.3 demonstrates the differences between traditional

3 The Challenge of Testing Value-Added Services

47

development and TDD. Permission to reproduce Figure 3.3 has been granted by Springer

Publishing.

Figure 3.3: Comparison of TDD and Traditional Development (adapted from (Abrahamsson et al.,

2005))

The traditional development approach (see Figure 3.3, right part) shows that after

completing the implementation phase, all the tests are implemented and executed against

the implementation. If the tests fail, the emerging errors have to be fixed until the test

execution succeeds with no errors.

Compared to the traditional development, a developer in TDD (see Figure 3.3, left part)

initially adds a new test for a piece of system functionality to implement (such as a single

function or a method). As there is no implementation present, a first test invocation should

fail. Afterwards, the developer writes the implementation code for the piece of system

Write a test

Run the test

Test passes

Write code

Test passes

Test-Driven Development

Complete
implementation

based on
requirements

Write all
automated tests

Run the tests

Test results

Fix errors

fails

Done

passes

Traditional Development

Test fails

Run the test

Test fails,
Remove errors

Refactor

Run the test

Test fails

3.2 Related Work on Current Testing Methodologies

48

functionality and restarts the test. The implementation code now has to be reworked until

all the tests pass. In a final step after the tests succeeded, the implementation code has to

be refactored and tested again. Now, the piece of system functionality is implemented and

tested and the developer can continue with other test definitions.

The proponents of TDD claim that it leads to faster development and that the

implementation code is of better quality. Developers are forced to implement modular

software which makes the implementation code easier to maintain and refactor. TDD

makes collaboration between team members easier and more efficient and they can edit

each other’s code with confidence because the predefined tests will inform them if the

changes are making the code behave in unexpected ways.

Some studies come to the conclusion that TDD has several shortcomings or disadvantages

such as lack of design (Pancur et al., 2003), problems with applying unit tests, lack of

documentation (van Deursen, 2001), reliance on refactoring and dependence on the skills

of the developer (or programmer) (George and Williams, 2004). A further limitation of

TDD is that the developer and tester is one and the same person. Although the developer

can be a highly effective tester, he should not be the tester of the features he has

implemented. With a separate tester involved in the process, the tests are much better at

finding expectations the developer did not take into consideration. Another negative

aspect of TDD is that it is not covering the validation of the software. Even if the

functional specification is the amount of test cases constructed by the developer, there is

no validation whether the functional specification meets the requirements mentioned by

the service customer.

3 The Challenge of Testing Value-Added Services

49

3.2.2 Acceptance Test-Driven Development

Acceptance Test-Driven Development (ATDD) is an agile software requirements

specification process that emphasises the automation of acceptance tests as well as the

specification of customer-readable requirements through concrete examples. Hence, this

approach is also referred to as “specification by example” (Adzic, 2011).

The focus of ATDD is to keep all participants of the development process on the goals of

the software project, whether it is the customer, the developers or the testers. During the

project, customer-readable requirements are established as well as relating acceptance

tests in order to improve the communication between the participants. The collaboration

aspect in ATDD is essential in order to produce testable requirements that enable higher

quality software more rapidly (Gärtner, 2012).

According to (Gregory and Crispin, 2015), the ATDD life cycle comprises four main

activities which have to be managed by the participants or rather stakeholders. The

following Figure 3.4 illustrates the dependency between these activities.

Figure 3.4: Relevant activities in Acceptance Test-Driven Development life cycle

In the initial phase “Discuss”, the customer, testers and developers work together and

define tests that outline expected behaviour to a requirement. All possible variants of the

behaviour are specified through user stories, concrete scenarios, with clearly defined

Discuss Distill

DevelopDemo

3.2 Related Work on Current Testing Methodologies

50

input and output. It is important that the customer also understands the documented tests,

possibly by using tables of example data (Cohn, 2004).

The participating roles in the second phase “Distill” are the developers and the testers

who will transform the documented tests from the previous phase in a format that can be

applied to the used test framework. Here, also further tests can be added based on the

improved understanding of the project goals.

In the “Develop” phase of ATDD, the concept of TDD is applied. The developer follows

the “Test First” approach and executes the defined test from phase “Distill” while

implementing the code. Potentially, the developer might find new scenarios that have not

been identified before. In that case, the new tests have to be added to the previous set and

shared with the other project participants (testers and customers). The role of the tester in

this phase is to work with developers to automate the tests. Furthermore, the testers

conduct exploratory testing and run acceptance tests.

In the final phase “Demo”, the developers will meet the customer to show them the final

implementation containing all the programmed and tested user stories. The customer is

able to validate the required functionality by running the tests within a live environment.

As illustrated in Figure 3.4, the ATDD process is applied iteratively. Each iteration step

starting from the “Discuss” phase until the “Demo” phase can then contain acceptance

tests for specific requirements.

As with TDD, the tests in ATDD are no longer at the end of the development cycle but at

the beginning. The focus on defining acceptance tests increases the shared understanding

of requirements because they are a product of direct interaction between customers,

3 The Challenge of Testing Value-Added Services

51

developers and testers. Another positive aspect is that the software delivery is now

dependent on all acceptance tests passing which also defines the end of a project.

Simultaneously, the percentage of passed acceptance tests is a clear indicator of the

project progress.

There are also some ATDD drawbacks. First, the process requires the customer to play

an active role which might prove to be difficult due to time constraints. Accordingly, the

project progress might be slower because of the additional effort. Another problem might

be that the developers take part in the process of defining and implementing the

acceptance tests. Their influence in the process might end up with a wrong understanding

of certain requirements or user stories and therefore also a wrong implementation. Here,

the acceptance test will pass but the customer will not get a valid product.

3.2.3 Behaviour-Driven Development

Behaviour-Driven Development (BDD) is an agile software development technique that

is generally regarded as the evolution of TDD and ATDD. It focusses on defining fine-

grained specifications of the behaviour of the system or service, in a way that they can be

developed (Solís and Wang, 2011). BDD has adopted the concept of ubiquitous language

from Domain-Driven Design (DDD) (Evens, 2003) that minimises miscommunication

and ensures that all stakeholders, such as developers, analysts, testers and managers, are

using the same words to describe certain behaviour.

Generally speaking, it is often difficult for developers to find a starting point to

communicate with customers during the gathering of requirements for a system.

Therefore, the communication should be focused on the business value the system

3.2 Related Work on Current Testing Methodologies

52

delivers. However, it is very hard to make business value explicit. In BDD, the initial step

is to identify the expected behaviour of a system. This behaviour can be directly derived

from the business outcomes the system intends to produce (see Figure 3.5). Afterwards,

the business outcomes are specified further and feature sets are defined. These feature

sets contain features each capturing a user story.

Figure 3.5: Conceptual Model of Behaviour-Driven Development (Solís and Wang, 2011)

User stories in BDD provide the context of the features delivered by the system. As the

name indicates, user stories are user-oriented and describe interactions between users and

a system. For one user story, there can be different versions and different contexts. These

variations of a user story are called scenarios. The specific contexts and outcomes a

scenario describes should be provided by the customer. In BDD, the scenarios are used

Business Outcome
1

*
-sub

Feature Set
* 0..1
-achieve -achievedBy

Feature
1 *

UserStory

1

* -framedBy

-want

Benefit
1 1

-getUser Story
Template 1 1

-definedUsingBDD Ubiquitous
Language 1 1

Scenario
Template Scenario

-definedUsing

1 *

Executable
Specification

0..1

1

Test Method
1 *

Step

1

*

0..1 1

Context Event Action

-composed by

Role

1

1

- as

1

*

© 2011 IEEE

3 The Challenge of Testing Value-Added Services

53

as acceptance criteria. The described decomposition process should be performed

iteratively.

The implementation of acceptance tests in the process can be done by the tester who can

lean on the scenario specifications. This process can also be automated because the

scenarios are described by means of a ubiquitous language or rather Domain Specific

Language (DSL). Figure 3.6 shows an example description of a scenario to login a user

on a web site implemented with “Given-When-Then” steps.

Figure 3.6: Example BDD scenario description

The “Given” part describes the state of the system before the behaviour starts whereas the

“When” section actually contains the behaviour. Finally, the “Then” section describes the

changes that are expected due to the specified behaviour. In between, concatenations can

be realised by using the “And” statement. All in all, the description is quite easy to follow

and possibly understandable for each stakeholder taking part in the process (Solís and

Wang, 2011).

The concept of BDD has many advantages and also a few drawbacks. As BDD forces the

development team to specify the scenarios in collaboration with the customer, it helps to

avoid wasted effort by helping teams focus on features that are aligned with business

goals. The stakeholders have a “living documentation” throughout the project which

Scenario: Login Successfully

Given I am on the home page
When I enter the username 'admin'
AND I enter the password 'test'
AND I click 'login'
Then I should be logged in

3.2 Related Work on Current Testing Methodologies

54

makes it considerably easier to handle changes or extension in the application.

Furthermore, as testers are not required to carry out long manual testing sessions before

each new release of the application, they can use the automated acceptance tests as

starting point. This leads to faster releases and satisfied customers.

A major drawback of BDD is that the process might be very time consuming, especially

for the customer who may be unwilling or unable to engage in conversations and

collaboration. Another aspect can be poorly written tests by the developers and testers.

This drawback is mainly caused by the possible ambiguities that can be specified when

the scenarios are described by means of the ubiquitious language. In the middle term, this

aspect leads to higher test-maintenance costs.

3.2.4 Model-Based Testing

Model-Based Testing (MBT), also known as Model-Driven Testing, means that testing is

based on some form of a formal (computer-readable) model that describes the desired

behaviour of the system to be tested. After the formal model is complete, tests can be

generated from it by means of an automatic or semi-automatic approach.

According to (ETSI ES 202 951, 2011), the methodology in MBT (see Figure 3.7) starts

with a test designer receiving a set of requirements of the system to be tested, generally

given in a specification written in natural language. Then, the test designer authors a

model using a specific modelling notation that fulfils the requirements stated in the

document. The model encodes the requirements and specifies the aspects of the functional

behaviour and the relevant interfaces via which these are tested.

3 The Challenge of Testing Value-Added Services

55

Afterwards, the model is utilised for the purpose of test case generation by adding or

choosing test selection criteria, e.g. coverage goals. It is necessary to specify the test

selection in order to reduce the amount of test cases that will be derived from the model.

Then, an abstract test suite is automatically generated that complies with the chosen test

selection criteria. In order to enable test execution against the SUT, the abstract test suite

may need to be adapted. Permission to reproduce upcoming Figure 3.7 has been granted

by ETSI.

Figure 3.7 has been removed due to Copyright restrictions.

Figure 3.7: Model-Based Test Development (adapted from (ETSI ES 202 951, 2011))

In MBT, two different testing approaches exist, either offline or online testing. In offline

testing, the test generator is not connected to the SUT and the generated test suite can be

executed against the SUT after it has been built completely. There is also the possibility

to optimise the test suite after its creation. In online MBT, the test generator and the SUT

are connected and all commands are executed directly on the SUT. Here, the test cases

are usually generated and executed one after another which does not allow further

optimisations of the test suite (Utting and Legeard, 2006).

3.2 Related Work on Current Testing Methodologies

56

The MBT methodology in Figure 3.7 continuously delivers feedback for the involved

artefacts on multiple levels. Firstly, the process of creating the model provides feedback

for the consistency of the system specification. This can be measured before any test is

executed. Secondly, the examination of generated test cases and feedback from model

analysis can reveal certain issues either in the system specification or the model. Thirdly,

issues can be found in the SUT, in the system specification and in the model when the

tests are finally executed (ETSI ES 202 951, 2011).

Regarding the evaluation of MBT, several advantages and disadvantages exist. One of

the most attracting benefits of MBT is that it automatically generates relevant test cases

from the formal model so a better test coverage is guaranteed. The higher level of

abstraction in the model helps to concentrate on the right things as the irrelevant details

are hidden. Another positive aspect of models is that they can be visualised easier than

code. Several studies such as (Pretschner et al., 2005) and (Baker et al., 2007) show that

MBT works better at detecting faults in SUTs than manually designed tests. However,

this ability depends on the skills and experience of the test designer. A further advantage

of MBT is traceability throughout the whole process. Each test case can be related to the

model, to the test selection criteria and even to the informal system specification.

Besides the advantages of MBT, several limitations have to be faced. Firstly, the concept

of MBT is not an agile method, so it follows the methodology of traditional test

development. It might be difficult for the developer to figure out all the errors in the

system because there has not been an iterative process. Furthermore, as requirements of

customers can change, also the informal requirements the model is based on might

become out of date. In this case, a wrong model will be built and the test case execution

3 The Challenge of Testing Value-Added Services

57

will yield a significant amount of errors (Utting and Legeard, 2006). Another

disadvantage of MBT is that its quality is totally depending on the skills of the test

designer to build models. He must be able to abstract and design the models and has to

be an expert in the application area. This requires training costs and an initial learning

curve when starting to use MBT (Utting and Legeard, 2006). A further well-known issue

of MBT is the state space explosion. Models of any non-trivial system functionality can

grow beyond manageable levels. In this scenario, all tasks within MBT are affected such

as model maintenance, checking, reviewing and non-random test generation (El-Far and

Whittaker, 2001).

3.3 Related Work on Current Research Projects on

Functional Testing

In this section, related testing approaches and current reseach projects in the field of

testing are introduced. It shall be analysed whether the solutions can be applied in order

to verify and validate value-added telecommunication services. Also advantages and

disadvantages of the approaches are discussed.

3.3.1 UML 2.0 Testing Profile

The UML 2.0 Testing Profile (U2TP) defines a modelling language for designing,

visualising, specifying, constructing and documenting artefacts of test systems and is an

Object Management Group (OMG) standard (OMG, 2013a). According to (Zander et al.,

2005), U2TP can be applied to test systems in various applications and can be either used

3.3 Related Work on Current Research Projects on Functional Testing

58

stand alone for the handling of test artefacts or in an integrated manner with UML 2.0

(OMG, 2011a) for handling of both system and test artefacts. In principal, U2TP enhances

UML 2.0 with test-specific concepts such as test architecture, test behaviour, test data and

time concepts (see Table 3.1). Permission to reproduce Table 3.1 has been granted by

Springer Publishing.

Table 3.1: Overview of the UML 2.0 Testing Profile concepts (Zander et al., 2005)

Architecture concepts Behaviour concepts Data concepts Time concepts

SUT Test objective Wildcards Timer

Test components Test case Data pools Time zone

Test context Defaults Data partitions

Test configuration Verdicts Data selectors

Arbiter Test Control Coding rules

Scheduler

The test architecture group covers the concepts related to test structure and test

configuration such as specifying test components, their interfaces, possible connections

among test components and between test components and SUT. The test behaviour group

embodies dynamic aspects of test procedures and addressing observations and activities

during the test. Test behaviours can be defined by any behavioural diagram of UML 2.0,

e.g. interaction diagrams or state machines. The test data group includes concepts for

specifying test data used in test procedures, such as the structures and meaning of values

to be processed in a test. Finally, the time group covers concepts for a time quantified

definition of test procedures, e.g. the time constraints and time observation for test

execution (Zander et al., 2005) (OMG, 2013a).

Based on the U2TP concepts, a given design model specified in UML notation can be

extended with test-specific information. According to (Dai et al., 2004), a tester first has

3 The Challenge of Testing Value-Added Services

59

to define a new UML package as the test package of the system. Then, he imports the

implementation code, all classes and interfaces, and starts with the specification of the

test architecture and test behaviour. Oftentimes, the test data and time aspects are already

comprised in either the test architecture or test behaviour. In order to define a complete

test model, the following steps within the test architecture have to be performed:

1. Assigning the system components to be tested (SUT).

2. Depending on their functionality, the test components have to be defined. The test

components should be grouped to the system components of the design model.

3. Specifying a test suite class that lists the test attributes and test cases as well as

test control and test configuration.

Besides the test architecture definitions, the test behaviour includes the designing of the

test cases. Here, the given interaction diagrams of the design model can be reused, but the

instances have to be assigned with stereotypes of U2TP according to their functionalities.

At each test case specification, verdicts (such as pass, fail or inconclusive) have to be

assigned.

As soon as the test model is final, the test cases still have to be generated and executed

against the SUT. Actually, U2TP provides two mappings towards test execution

environments or rather technologies, either JUnit (JUnit, 2015) or TTCN-3 (ETSI ES 201

873-1, 2015). Both technologies allow the execution of tests and deliver an evaluation

report.

In the following, an example test case specification using U2TP is demonstrated. The

specific test case concerns the use of a bank Automated Teller Machine (ATM),

especially the verification of an entered pin number. It shall be tested how the ATM reacts

3.3 Related Work on Current Research Projects on Functional Testing

60

if a wrong pin number is entered after a bank card is inserted. In order to test this, a

“hardware emulator” (HW Emulator) is defined as test component as well as an external

component “current” which determines whether the pin number is correct for the given

bank card or not. The test case specification is illustrated as a UML sequence diagram in

the following Figure 3.8. Permission to reproduce Figure 3.8 has been granted by OMG.

Figure 3.8: Example test case specification with U2TP using a UML sequence diagram (adapted

from (OMG, 2013a))

A significant information within the sequence diagram is defined as soon as the HW

Emulator is terminated, the so-called validation action. If the two messages “Invalid PIN”

and “Enter PIN again” are displayed on the HW Emulator after the pin number has been

checked, the test case passes.

The proponents of U2TP claim that the approach is standardised by the OMG and is based

on standard UML notations. Actually, U2TP has a lot of features, such as the support for

sd InvalidPIN

{readOnly} Integer invalidPIN; {current.isPinCorrect(invalidPin) == false}

HW
Emulator

<<SUT>>
Bank ATM Current

storeCardData(current)

display("Enter PIN")

t1
(2.0)

t1

isPinCorrect(invalidPIN)
isPINCorrect(invalidPIN)

isPinCorrect: false

isPinCorrect: false

{0 .. 3}

display("Invalid PIN")

display("Enter PIN again")

<<validationAction>>
pass

3 The Challenge of Testing Value-Added Services

61

domain-independent test modelling, test case specification and test data specification. The

close connection with UML enables also the combination with other standardised profiles

like the Systems Modeling Language (SysML) (OMG, 2012a) or the Service oriented

architecture Modeling Language (SoaML) (OMG, 2012b).

The negative aspects of U2TP correlate with the negative aspects of Model-Based Testing

(MBT). A lot of training is required for the testers to build adequate U2TP test models

with complete test architecture and test behaviour configurations. As the domain model

and the test model are closely coupled, possible changes triggered by the customer of a

system or service lead to changes in the domain model and in the test model. Another

restriction of U2TP is that many important aspects relevant for testing are not covered,

such as a proper test management, audits and reviews or a thorough test methodology.

Finally, agile concepts cannot be applied easily, as the system model always has to exist

before the test model can be defined.

3.3.2 TT-Medal Test Platform

The Information Technology for European Advancement (ITEA) project TT-Medal (TT-

Medal Consortium, 2005) has focused on developing the methodologies, tools and

industrial experience in order to allow the testing process of software intensive systems

to be made more effective and efficient. Special accentuation has been given to

standardised test technologies and notations, such as TTCN-3 and U2TP. Because of its

high maturity, wide applicability and existing tool support, TTCN-3 became the central

focus of the TT-Medal project.

3.3 Related Work on Current Research Projects on Functional Testing

62

Although TTCN-3 is a powerful testing technology, in isolation it only provides one piece

of a complete testing solution. TT-Medal proposes a tool chain that supports testers during

all phases of the testing process. Its resulting toolset is called TT-Medal test platform and

is illustrated in Figure 3.9. Permission to reproduce Figure 3.9 has been granted by the

copyright owner of the white paper.

Figure 3.9: TT-Medal test platform (TT-Medal Consortium, 2005)

TT-Medal considers requirements from the automotive, railway, financial and telecom

domains to find and demonstrate test solutions that are all based on one standardised test

notation. Furthermore, it defines a TTCN-3 test infrastructure that focuses on the test

execution phase and which is applicable for all the mentioned industrial domains.

Furthermore, it included approaches for the development of tests within the test

infrastructure. However, these methods are not further specified in the given sources. (TT-

Medal Consortium, 2005) only state that existing test generation tools from external

kind of test (e.g. functional / stress / performance)

test purposes / test objectives

 test development

legacy tests /
other sources

test
composition

test
derivation

(semi
automatic)

test
generation

(fully automatic)

TTCN-3 U2TP

domain specific
TTCN-3 profiles

abstract test suite

test infrastructure

test repository

test frameworks

test patterns

test variation

compile

simulation /
validation

debugging

3 The Challenge of Testing Value-Added Services

63

sources, or imports and mappings from other specification and programming techniques

have been adopted. The resulting toolset is called TT-Medal test platform and is

illustrated in. Permission to reproduce Figure 3.9 has been granted by the copyright owner

of the white paper.

The test platform offers components dedicated to the synthesis, validation and analysis of

tests. First, tests can be developed along different types, such as functional,

interoperability, performance or load tests. Then, specific purposes (or rather test

objectives) are assigned to the testing types. TT-Medal supports tests that are specified in

either TTCN-3 or U2TP. The results of the test development are abstract test suites (ATS)

that need to be compiled into a target programming code (e.g. Java) before the tests can

be performed using a test management tool (TT-Medal ITEA, 2005). In TT-Medal, the

tools for compiling (TTthree) and execution (TTman) are integrated within an Eclipse-

based TTCN-3 toolset, the TTworkbench (TTworkbench, 2015). The results of the test

execution using the test manager are test logs, which are the basis for determining the

final test results. They can be visualised using diverse presentation formats.

The advantages of TT-Medal are the use of standardised tools such as TTCN-3 and U2TP

and the focus on a wide spectrum of support for diverse domains, even for the telecom

domain. However, the main target of TT-Medal is not to deliver thorough methodologies

for all domains to help deriving test cases from requirements specifications, but to support

certain domain-specific protocols. As an example, a SIP protocol codec was implemented

for TTCN-3 in order to realise SIP conformance testing. Furthermore, the project results

of TT-Medal aimed more on delivering a training and experience package. The training

aspect should show project partners and others in European industry how to use new

3.3 Related Work on Current Research Projects on Functional Testing

64

testing technologies (TTCN-3) to effectively test their business process. The experience

aspect in contrast should describe where the technologies should be applied and why.

Finally, as with U2TP, TT-Medal does not support agile testing concepts.

3.3.3 Fokus!MBT Test Modelling Environment

Fokus!MBT (Fokus!MBT, 2015) is an integrated test modelling environment that

supports test model authoring by guiding the tester through methodology-specific support

(Wendland et al., 2013). Fokus!MBT uses U2TP as language for expressing test models.

Its main goal is to provide domain and testing experts with an integrated modelling

environment helping them to perform their work quickly, easily and free of errors.

Especially in the area of MBT, authoring tools are important in order to avoid the domain

experts of getting easily frustrated with the complexity or the granted degree of freedom

a modelling tool might provide.

The Fokus!MBT test modelling environment is illustrated in the following Figure 3.10.

3 The Challenge of Testing Value-Added Services

65

Figure 3.10: Fokus!MBT test modelling environment (Wendland et al., 2013)

Permission to reproduce Figure 3.10 has been granted by ACM (Association for

Computing Machinery, Inc.). Within the approach, a separate test model is created and

authored independently from the system specification. This separate test model is created

by a test developer by means of a Diagram Editor or a MP Editor. So, the test model can

be either based on a formal model or a document. The compilation process of the test

model can be simplified if an existing system model (Artifact Reuse) is available and

accessible, because Fokus!MBT allows the reusing of certain aspects of the system. This

aspect shows the similarities the approach has to the standard U2TP approach. However,

Fokus!MBT seems to be more flexible as it enables the inclusion of external testing

services, such as test case or test report generators. The test code generation, for instance,

is a service that is part of the Fokus!MBT (Testing) Services environment. The test

execution system is not specified any further.

Fokus!MBT Testing Services

External
Model(s)

System
Implementation

Test Execution
System

Test Execution

System Code Derivation

Test
Model

Fokus!MBT

Req. Engineer
System Developer

Test Developer

Diagram
Editor

MP
Editor

Artifact Reuse (optional)

Test Code
Generation

Test Log
Import

3.3 Related Work on Current Research Projects on Functional Testing

66

Generally speaking, Fokus!MBT is designed to be flexible enough to be integrated into

various testing tools and process landscapes. It can be decomposed into a core component

that is framed by three logical layers which is shown in Figure 3.11. Permission to

reproduce Figure 3.11 has been granted by ACM.

Figure 3.11: Architecture and technology stack of Fokus!MBT (Wendland et al., 2013)

It should be mentioned at this point that the authors chose to illustrate two of the three

layers vertically. The core component relies on the key technologies and provides

fundamental capabilities for implementing and registering test-related services, certain

UI extensions as well as the integration with Eclipse-based modelling environments. The

main task of the core component is to guarantee that both the syntactical and semantical

methodology is respected. The logical layers encapsulate technologies and concepts that

are specific to concrete services and implementations of modelling environments. The

purpose of the three layers is as follows (Wendland et al., 2013):

UI Core Extension Layer

Multi-paradigmatic
Editor

Diagram
Views

Modeling
Commands

Modeling
Assistants

Modeling
Composites Modeling Rules

Te
st

in
g

Se
rv

ic
es

 L
ay

er

Test Case
Generator

Test Data
Generator

Test Code
Generator

Test Logs

Test Reporting

Tool Integration Layer

Papyrus

RSA

Eclipse-
based

Eclipse PDE
View/Editors

UI Components
(SWT, JFace,…)

Eclipse UI

Eclipse PDE

UTP SysML EMF Facet

UML2 Profiles

UML 2

Eclipse Modeling Framework

GMF

OCL

M2T/M2M

Eclipse Rich Client Platform

3 The Challenge of Testing Value-Added Services

67

• Testing Service Layer – Here, testing-related interfaces are provided as services,

such as test case generation or test report generation.

• UI Core Extension Layer – The main objective of Fokus!MBT is to provide an

authoring system for the test developers and engineers. Here, several service

extension points are defined which realise the idea of multi-paradigmatic test

modelling. Furthermore, the service extension points allow tailoring the UI for

different purposes and stakeholders.

• Tool Integration Layer – Any modelling environment-specific implementation

can be encapsulated from the core component.

The focus of Fokus!MBT to simplify the test process for test developers and test engineers

is promising. Especially MBT approaches are oftentimes not embraced by the testers

because of the missing support of the modelling tools. The aspect of highest possible

flexibility in order to integrate the platform into a given process landscape can also be

estimated positively, however, this is also fraught with risk. The tools behind important

testing-related interfaces might not be supported or even error-prone. All in all,

Fokus!MBT is currently developed in the third generation and still has to undergo a lot

of changes. The methodology has not yet proven to be feasible as there is no published

case study so far. Another problem of the approach is that is intends to be an overall

solution for any present problem in model-based testing. This flexibility is, however, a

problem as there is no standard approach or case study published demonstrating the

deriving of test cases or the execution of test cases against a SUT.

3.3 Related Work on Current Research Projects on Functional Testing

68

3.3.4 ComGeneration

The ComGeneration approach described in (Wacht et al., 2011a) and (Wacht et al.,

2011b) defines a methodology that can be specifically applied to functional testing of

value-added services. It considers both service implementation and functional testing of

the service (see Figure 3.12). Permission to reproduce Figure 3.12 has been granted by

the copyright owners of the referenced publication.

Figure 3.12: ComGeneration methodology (Wacht et al., 2011b)

Initially, a so-called service description is specified. This is a natural language-based

document that can be understood as the requirements specification and is created by the

service provider in consultation with a service customer.

After the service description document has been completed, both service developer and

test developer can start with the development. The service developer can use a Service

Creation Environment (SCE) to develop and subsequently deploy the service on a SIP

Application Server within a Service Delivery Platform (SDP).

Modular Sub
Finite State
Machines

Service
Description

Modelling
Behaviour

Model

Test Case
Generator

Service
Creation

Environment

Test Execution
Environment

ttcn3

Test Cases

Service SIP
Application

Server

3 The Challenge of Testing Value-Added Services

69

Just like the service developer, the test developer has to extract the relevant service

information for the test purpose from the service description. First, he chooses the service-

related characteristics out of a repository of so-called predefined modular extended finite

state machines (EFSM). The EFSMs cover basic service characteristics like protocol

sequences for SIP (IETF RFC 3261, 2002) or HTTP (Hypertext Transfer Protocol) (IETF

RFC 2616, 1999). By composing the chosen predefined modular EFSMs, the test

developer creates a behaviour model describing the behaviour of a value-added service.

Once the behaviour model is created, it is passed to the Test Case Generator which

contains an algorithm to automatically generate the service-specific abstract test cases by

identifying every possible path through the EFSM. Afterwards, the abstract test cases are

converted into TTCN-3 test cases by using a special mapping concept (Wacht et al.,

2011a). Finally, the TTCN-3 test cases are combined to a test suite that can be executed

within a TTCN-3 test execution environment. In the approach, the TTworkbench

(TTworkbench, 2015) was used.

In the following, an example demonstrates how the behaviour model is established. The

service to be tested is a standard Click-to-Instant-Message (Click2IM) service. The input

is a SIP URI and a text message. Both have to be set on a web site. By actuating a “Send”

button, a SIP message will be send to the entity that is reachable through the SIP URI.

The message, of course, contains the specified text message from the web site. In the first

step to establish the behaviour model, the test developer has to configure the test

architecture through the so-called Connectivity Editor (see Figure 3.13). Permission to

reproduce Figure 3.13 has been granted by the copyright owners of the publication.

3.3 Related Work on Current Research Projects on Functional Testing

70

Figure 3.13: Connectivity Editor for Click2IM service (Wacht et al., 2011b)

The Connectivity Editor contains the protocols that have to be used (SIP, HTTP),

specifies certain timers that have to be integrated and includes all required messages (SIP

requests and responses as well as HTTP requests and responses). The example also

considers certain mistakes a service customer could do while using the service, such as

forgetting to include the SIP URI in the text field. In the approach, such considerations

require to specify long lists of defined possible messages. In the next step, the messages

have to be further specified. In the approach, complex data types have been defined that

represent example protocol messages. By using a so-called Test Data Editor, the test

developer can determine the test data for each defined message. The following Figure

3.14 shows how a SIP request message can be specified through a tree-like view.

Permission to reproduce Figure 3.14 has been granted by the copyright owners of the

referenced publication.

3 The Challenge of Testing Value-Added Services

71

Figure 3.14: Tree-like Test Data Editor (Wacht et al., 2011b)

The final step of the modelling process is the design of the behaviour model itself. Here,

an EFSM is applied and the main information is included on the transitions (see Figure

3.15). Permission to reproduce Figure 3.15 has been granted by the copyright owners of

the referenced publication.

Figure 3.15: Behaviour Model for Click2IM service (Wacht et al., 2011b)

3.3 Related Work on Current Research Projects on Functional Testing

72

The illustrated Behaviour Model in the ComGeneration approach contains five states,

each representing a predefined EFSM, either SIP-based or HTTP-based. The transitions

between the states either describe events that might occur or specify actions that take

place as soon as the events happened. Finally, based on the complete EFSM-based

Behaviour Model, a test generation transition coverage algorithm has been implemented

to derive test cases and execute them against the value-added service running on a SIP

AS.

To the author’s knowledge, the described methodology of the ComGeneration project is

the only test approach that has been specifically applied to the field of NGN or rather SIP-

over-IP-based environments. It can be understood as the foundation of this research. A

few aspects of the ComGeneration project have been adopted in this research, however,

mainly aspects the author has established during the project work. In this connection,

publications have been done, such as (Wacht et al., 2010), (Wacht et al., 2011a), (Wacht

et al., 2011b) and (Wacht et al., 2011c).

Regarding the ComGeneration approach, the separation of the development process and

the test process enables a thorough verification based on the service description.

Unfortunately, the role of the service customer in this approach is only relevant at the

project start. This leads to the question, if the ComGeneration approach also validates the

value-added services. Furthermore, the approach lacks an efficient test case derivation

algorithm from the behaviour model to avoid the well-known combinatorial explosion

issue in EFSMs. Also in the ComGeneration approach, the agile concepts have not been

considered.

3 The Challenge of Testing Value-Added Services

73

3.3.5 Telling TestStories

(Felderer et al., 2010) and (Felderer et al., 2011) describe a tool-based methodology for

model-driven system testing of service-oriented systems called Telling TestStories (TTS).

This methodology is based on a separated system and test model.

Figure 3.16 shows the existing system and testing artefacts of the methodology. The

informal requirements are written or non-written capabilities or rather properties of the

system whereas the SUT provides the services that are callable by the test controller. The

test execution is not discussed in the papers as it is not a focus of the methodology.

Figure 3.16: TTS artefacts overview (Felderer et al., 2010)

The requirements model contains the requirements for both system development and

testing. It provides a way to integrate the textual descriptions of requirements that are

Informal
Requirements

Requirements
Model

Traceability Traceability

System Model Test Model

Consistency, Integration, Validation

Consistency, Coverage, Generation

System under Test
Test Controller

Test Code

Adapter Code Generation

© 2010 IEEE

3.3 Related Work on Current Research Projects on Functional Testing

74

needed for communication with non-technicians into a modelling tool. The system model

describes the structure of the system and its behaviour in a platform independent way. Its

static structure is based on the notions of services, components and types. Each service

operation call is assigned to specific use cases, actors correspond to components

providing and requiring services. The domain types also correspond to types. (Felderer et

al., 2011) assume that “each service in the system model corresponds to an executable

service in the running system to guarantee traceability”. The test model in contrast defines

the test data and the test scenarios as so called test stories. The concept of the test stories

mentioned can be compared to user stories in ATDD or BDD. The test stories are

controlled sequences of service operation invocations exemplifying the interaction of

components. Principally, test stories can be modelled by means of UML sequence

diagrams or activity diagrams. To gain traceability between the requirements and the test

model, each test story has to be linked to a requirement (Felderer et al., 2011).

In Figure 3.17, the model-driven testing process of TTS is presented. It consists of a

design, validation, execution and evaluation phase and is processed iteratively.

3 The Challenge of Testing Value-Added Services

75

Figure 3.17: Model-driven Testing Process (Felderer et al., 2011)

Initially, from the defined requirements, the system model containing services and the

test model containing tests are designed. The test design includes the data pool definition

as well as the definition of the test requirements. The system model and the test model

can be checked for consistency and coverage based on Object Constraint Language

(OCL) (OMG, 2014) queries. This enables an iterative improvement of both the system

and the test model quality. The methodology does not consider the system development

itself but is based on services offered by the SUT. As soon as adapters are available for

the system services, the process of test code generation can take place. Subsequently, the

generated test code is automatically compiled and executed by a test execution engine

which also logs occurring events into a test log. The test result can be used to validate the

Requirements
Definition

Requirements
Model

System Design Test Design

Test Model

Test Datapool

Validation

Coverage

Transformation
System Model

System Implementation

Test Execution

Adapter
Implementation /

Generation

Test Selection and Test Code
Generation

Adapter

SUT Test Code

Test AnalysisTest Report Test Log

Services
Test Requirements

© 2011 IEEE

3.3 Related Work on Current Research Projects on Functional Testing

76

system model. Finally, a test analysis tool realises the test evaluation and generates the

relevant test reports (Felderer et al., 2010) (Felderer et al., 2011).

A practical example of a test story can be, for instance, the routing of a call. This test

story is a sequence of activities and is illustrated as an example (see Figure 3.18).

Figure 3.18: Test story of routing a call (Felderer et al., 2010)

After the call is initiated by the user, the service routes the call and terminates it. The

results of these calls are triggered on the test controller. The assertions check whether the

result provided matches the expected one (Felderer et al., 2010).

The authors have defined a methodology that includes a very practical form of

specification, test stories or rather user stories. An advantage of this approach is that

theoretically, the traceability between the test model, the system model and the

requirements model is provided. However, the authors do not mention the test case

<<Servicecall>>
initiateCallU

se
r

Ca
ll

M
an

ag
er

<<Trigger>>
incomingCall

<<Servicecall>>
routeCall

<<Trigger>>
routeCallResult

<<Assertion>>
Assertion1

<<Servicecall>>
hangupCall

<<Trigger>>
hangupCallResult

<<Assertion>>
Assertion2

© 2010 IEEE

3 The Challenge of Testing Value-Added Services

77

derivation and they do not follow a standardised approach to execute tests. In fact, the

technologies RMI (Remote Method Invocation) (RMI, 2015) and CORBA (Common

Object Request Broker Architecture) (OMG, 2012c) have been applied. Unfortunately,

there is no standardised test execution technology used such as JUnit or TTCN-3. This

makes it difficult to maintain the environment or to enhance it.

3.4 Requirements for a New Optimised Solution for

Functional Testing of Value-Added Services

The previous sections 3.2 and 3.3 introduced current testing methodologies as well as

related projects in the field of functional testing. All of these approaches include their

relative strengths and weaknesses that have been mentioned at the end of each section.

The target of this chapter is to derive requirements for a new optimised solution in order

to do functional testing of value-added services. This means that these requirements will

also be the basis for the proposed Test Creation Framework (TCF) which will be

presented in chapter 4.

• Test Execution – The fully automatic execution of tests is one major requirement

that has to be met by any test framework. The test developer does not have to do

any manual actions.

• Test Report – The test execution environment shall deliver a thorough test report

that a test developer can interpret easily.

Regarding the related projects, the TT-Medal Test Platform as well as the ComGeneration

approach use the TTworkbench, a TTCN-3-based test execution environment in order to

3.4 Requirements for a New Optimised Solution for Functional Testing of Value-Added Services

78

execute tests. The TTworkbench also supports the generation of report results. The

Telling TestStories project includes a proprietary approach to execute tests based on

CORBA and RMI. U2TP does not support test execution and Fokus!MBT requires an

external tool that is not specified.

A further criterion which could be derived from agile approaches such as ATDD and

BDD is that the needs of the service customer should always be the centre of attention in

the testing and development process. Based on this aspect, the following requirements

can be determined by means of keywords:

• Collaboration and support for agile principles – An optimised solution is required

to integrate all stakeholders in the test process, such as service developers, test

developers and service customers.

• Comprehension – All stakeholders shall always have the chance to get an

overview of the project progress (both testing and development), especially the

service customer if he is interested.

None of the current related projects directly support the collaboration or comprehension.

The ComGeneration approach lets the service customer participate in the compilation of

the Service Description, a contract document between the service customer and the

service provider. The Telling TestStories project includes the compilation of test stories

which can be compared to approaches in ATDD and BDD. So, a minimal support for

agile principles can de identified.

The next set of requirements refers to the usability of a test framework. Here, the

following keywords have been defined:

3 The Challenge of Testing Value-Added Services

79

• Manageability and time exposure – It is important that the framework concepts

and methodologies do not overburden the stakeholders and are quite easily

manageable in a reasonable timeframe.

• Tool support – The framework shall provide tools especially for the test developer

to maintain the test process.

U2TP is very well documented as it is also a test specification standard and directly

connected to UML. There is also a tool that uses components of U2TP (e.g. Eclipse Test

& Performance Tools Platform Project) (Eclipse TPTP, 2015). For the ComGeneration

approach, an Eclipse Modeling Framework (EMF)-based solution exists, but it lacks

relevant documentation. The use of the tool is manageable, but not straightforward.

Fokus!MBT is very complex, as it involves many types of applications depending on the

functionality to apply (e.g. one tool for test data generation). For test modelling, U2TP is

used. The Telling TestStories approach provides a good documentation and a tool is

shipped as a bundle of Eclipse plugins (Telling TestStories, 2015). It is quite easily

manageable, but the functionality is also very limited. For the TT-Medal project, there is

no existing tool that can be used.

• Traceability of requirements – It shall be possible to detect the specified

requirements throughout the whole testing process.

The traceability of requirements is supported by the Fokus!MBT and Telling TestStories

approaches. The other related projects do not mention the support.

The upcoming set of requirements is directly derived from the aims and objectives of this

research:

3.4 Requirements for a New Optimised Solution for Functional Testing of Value-Added Services

80

• Reusability – It shall be possible to reuse certain aspects or components within

the test process in order to save time in future projects.

• NGN-compliance or support for general SIP-based IP networks – The framework

either shall consider the NGN-related artefacts such as possible SCEs, SDPs and

SIP AS or standard SIP-based IP networks.

• Verification and Validation – The framework shall provide both verification and

validation through test processes. Especially the validation of a value-added

service requires an intense involvement of the service customer in the test process.

Regarding the reusability, the ComGeneration approach defines reusable EFSMs that

describe common behaviour. Fokus!MBT and U2TP specify reusable test patterns which

refer to recurring test architectures, but no recurring behaviour is specified. Regarding the

NGN-compliance or the support for SIP-based IP networks, ComGeneration is the only

project to support this. As all approaches are MBT-based, the verification should also be

supported by them. Because of the missing involvement of the service customer in the

processes of the related projects, the validation is not supported by any mentioned project.

• Effectivity and efficiency of generated test cases – The framework shall generate

an amount of test cases that is feasible. Furthermore, these test cases shall be

sufficient enough to prove that the SUT has been implemented completely

towards the specified requirements.

Fokus!MBT and U2TP both apply the test generation methods mostly based on UML

sequence diagrams. This is a rather efficient method, because the amount of test cases is

manageable. However, it does not prove that the test cases are sufficient enough. The

ComGeneration approach is not efficient as it includes the well-known state explosion

3 The Challenge of Testing Value-Added Services

81

problem, but it covers all possible behaviours that might occur in value-added service

consumption. The authors of Telling TestStories claim that their approach is efficient

because the test can be defined on an abstract visual level with tool support (Felderer et

al., 2011). There is no explicit information given regarding the effectivity.

• Expandability – It shall be possible to expand the functionality of the framework

or rather to widen the support for further technologies (such as further protocols

that can be tested).

U2TP is based on UML and because of the object-oriented concept of modularity and

code reuse, this concept should also be provided by concepts that are based on U2TP (so,

also for Fokus!MBT). Principally, this is also possible for ComGeneration, because for

further support of technologies, new modular finite state machines have to be defined.

Telling TestStories includes expandability through the possibility of automatically

generating adapters for the communication with the SUT.

The following Table 3.2 illustrates a list of the related projects with the evaluation

regarding the derived requirements.

3.4 Requirements for a New Optimised Solution for Functional Testing of Value-Added Services

82

Table 3.2: Evaluation of related projects based on derived requirements

Requirements Current related test projects

 U2TP TT-Medal Fokus!MBT ComGeneration Telling
TestStories

Test Execution - + o + +

Test Report - + o + +

Collaboration and
support for agile
principles

- - - o o

Comprehension - - - - -

Manageability and
time exposure o - - o +

Tool support + - + o o

Traceability of
requirements - - + - +

Reusability o - o + -

NGN-compliance or
support for general
SIP-based IP
networks

- - - + -

Verification + + + + +

Validation - - - - -

Effectivity and
efficiency of
generated test cases

o - o o o

Expandability + - + + +

Considering the specified requirements, a novel framework for functional testing of

value-added services will be proposed in chapter 4 and the underlying concept will then

be explained in the upcoming chapters 5, 6 and 7.

3 The Challenge of Testing Value-Added Services

83

3.5 Conclusion

This chapter introduced the fundamentals of testing and functional testing and its

application for value-added telecommunication services. In addition, the difference

between verification and validation of a system (or service) was discussed (section 3.1).

Section 3.2 introduced the state-of-the-art testing methodologies, especially agile

concepts. The advantages and limitations of the approaches were discussed and it was

concluded, that the development and the testing processes have to be performed by

different persons (service developers and test developers). Mentionable is also that most

agile concepts focus on a close collaboration between developers, testers and customers

of a system or service.

Section 3.3 described related testing approaches, tools and methodologies. Most of them

refer to some kind of MBT approach either focussing on enhancing system models with

test-related parameters by using U2TP in order to automatically generate TTCN-3 test

cases or by supporting a tester to create models from which the tests are directly derived.

In principle, the approaches in literature lack the definition of a proper testing

methodology from the definition of the requirements of a value-added service until the

generation and subsequent evaluation of functional tests.

The main outcome of this chapter is the evaluation of the current related projects based

on requirements. The requirements have been derived from the weaknesses and strengths

of the testing methodologies and related projects and represent the major criterion for the

proposed novel framework for testing of value-added services described in the upcoming

chapter.

85

4 Proposed Framework for Testing of

Value-Added Services

This thesis proposes a novel framework that fulfils the requirements stated in section 3.4

and fills the gap of a thorough solution for service providers to provide well-tested value-

added telecommunication services to their service customers. This chapter begins by

defining the preconditions and tasks to be considered when the novel framework is

established (section 4.1), followed by the introduction of the overall novel methodology

to enable a more service customer-centric approach (section 4.2). Subsequently, section

4.3 will describe the framework architecture and its components.

4.1 Preconditions and Tasks of Roles

For service providers, network operators and for their customers, the introduction of a

thorough test process for the provisioning of value-added services in service provider

environments requires a rearrangement of the participating roles. As mentioned in section

2.4, many service providers still try to save costs by letting the developer of a service

figure out himself through manual tests whether a developed value-added service meets

the requirements of a service customer. However, due to the possible increasing

complexity of new value-added services, even an experienced service developer will not

be able to locate possible errors of the services.

4.1 Preconditions and Tasks of Roles

86

Due to the limitations of the current approaches in value-added service provisioning, a

new role is introduced, the service analyst. In general, service analysts work for service

providers and they represent the communication link between service customers on the

one hand and the service developers and test developers on the other. Further tasks of the

service analysts will be discussed later in this section.

Focussing on the test developer, his role is of course derived from the traditional role of

a service tester; however, besides the general requirements testers have to fulfil, further

tasks are imposed on the test developer:

• The test developers have to cope with changes to service customer needs, for

example, if changes in the implementation of the value-added services have to be

done.

• Test developers must improve their social skills. It might be possible that they

need to talk to the service customers in a language that they can understand.

• Test developers have to be able to face new technologies and have to be able to

understand and work with formal models.

• Test developers must be able to help stakeholders to express their requirements,

even if these requirements are rather complex.

Besides the requirements imposed on the service analysts and test developers, also the

service developers and service customers have to reorganise their work.

Just as test developers, the service developers also have to improve their social skills as

they also will get in contact with the service customer more regularly. As service

developers probably implement value-added services by means of a Service Creation

4 Proposed Framework for Testing of Value-Added Services

87

Environment (SCE), they should be able to map specified requirements onto their

implementation.

Service customers need to be open to regularly attending project meetings.

In the following section, an overview of the proposed solution framework is given. Based

on the described preconditions for the framework and tasks the roles have to do, the

functional principle can be performed.

4.2 Overall Methodology for Testing Value-Added Services

The proposed novel methodology assumes that a service provider has an SCE in his

environment to enable the service developers to rapidly create new value-added services

and bring them to market. Figure 4.1 presents an example SCE published by (Eichelmann

et al., 2010) and (Lehmann et al., 2009). Permission to reproduce Figure 4.1 has been

granted by the copyright owners of the referenced publication.

Figure 4.1: TeamCom service development (adapted from (Eichelmann et al., 2010))

First, the service customer writes a non-technical, informal and natural language-based

description of the service. The description should contain the idea of what the service

should deliver. Based on this information, the service developer creates a formal service

Informal
Requirements

Build BPEL
process

Service
Developer

Generate
service code Deploy service

Application
Server

Service Creation Environment

Service Customer

4.2 Overall Methodology for Testing Value-Added Services

88

description (here a Business Process Execution Language (BPEL) process) (OASIS,

2007) which is used as basis to generate the service implementation code. Finally, the

service is deployed on an Application Server.

In order to integrate functional testing on top of the described service development

methodology, a separate test development path is proposed (see Figure 4.2).

Figure 4.2: Methodology with both service and test development

The service development path in this approach was abstracted. Here, the methodology

assumes that any given SCE applied by a service developer can be integrated in the

process if it deploys the service on the Application Server at the end. The new test

development path includes a so-called Test Creation Framework (TCF) which has to be

used by the test developer. Just as the service developer, the test developer also initially

receives an informal description of a value-added service’s functionality. Based on this

information, he can use the tools provided in the TCF in order to create tests that can be

Informal
Requirements

Service Creation
Environment

Application Server

Service
Developer

Service Customer Test Creation
Framework

Test Developer

Test Execution Environment

4 Proposed Framework for Testing of Value-Added Services

89

delivered to the Test Execution Environment (TEE) where they can be executed against

the SUT, the deployed service running on the Application Server.

Independent of the TCF functionality, which will be introduced in section 4.3 and

thoroughly described in the upcoming chapters 5, 6 and 7, the methodology illustrated in

Figure 4.2 has some major drawbacks. First, the interpretation of the informal

requirements by both the service developer and the test developer will definitely show a

high probability to be different. This leads to the fact that the generated tests will most

likely never pass because they will not match with the deployed service. Furthermore, the

methodology is strictly based on a test-last approach. The testing of the service can only

be done when the service is completely developed by the service developer. Hereby, a lot

of project time is wasted because the test developer can only start with the test case

execution at the end of the project.

In order to solve these issues, the methodology requires another new role, the service

analyst. As mentioned before in section 4.1, the service analyst is the communication link

between the service customer, the service developers and test developers. When a service

customer commissions a service provider to develop a new value-added service for him,

he will first get in contact with the service analyst who is working for the service provider.

The service customer will tell the service analyst about his service idea and the

requirements. Based on the informal information, the service analyst will create a

document that contains all the relevant requirements in a structured way. In the best case,

the document will consist of textual use cases. Throughout this thesis, this document will

be referred to as “Structured Requirements”. Intentionally, no example guideline will be

4.2 Overall Methodology for Testing Value-Added Services

90

specified for the compilation of the “Structured Requirements” document, however, it has

to fulfil the following requirements:

1. Each use case specified in the “Structured Requirements” document shall have a

unique identifier or name. Additionally, all use cases shall be numbered (such as

“Req01” for the initial specified use case).

2. If there are any dependencies between use cases they shall be specified.

3. For each use case, the actors shall be named and it shall be clear how the actors

interact with the service to be specified.

4. The use case specification shall include successful scenarios as well as exceptions

or alternative courses of actions.

An example specification language that fulfils all of these requirements is discussed in

5.1.2 and an example is illustrated in Table 5.3. There are many other possible related

approaches that can be applied. A well-known and recognised approach is documented in

(Cockburn, 2000).

Coming back to the methodology, as soon as the service analyst finalised the “Structured

Requirements” document, it has to be accepted by the service customer and subsequently

distributed to the service developer and to the test developer. Based on the specified use

cases, both developers can start defining either the test process or the service process. A

further positive aspect of the “Structured Requirements” document is that all stakeholders

can rely on this document. It also enables an agile approach. Based on the requirements,

both test developer and service developer can, for example, develop the service and test

in order to fulfill the requirements for “Req01”. They should have an opportunity (e.g.

4 Proposed Framework for Testing of Value-Added Services

91

tool support) to notice each other’s progress based on the defined requirements. So, they

are able to test parts of a service even if it has not been implemented completely.

In section 4.3, it will be discussed that due to the structure of the tools and components

in the TCF, it is indeed possible to actually “synchronise” the processes of both service

developer and test developer. In Figure 4.3, the proposed methodology is illustrated

incorporating the “Structured Requirements” and the so-called “Service Quality Group”

(SQG).

Figure 4.3: Proposed overall methodology

The concept behind the SQG is to handle the occurrence of errors due to the testing

process. Of course, the members of the SQG are informed about the results (“Test

Report”) of the testing process by the TEE as soon as the test case execution has

terminated. Theoretically, occurring errors within the “Test Report” can have many

reasons. The first possibility is that the test developer and the service developer have a

different understanding of a certain aspect of the “Structured Requirements” document.

This might need clarification. As the service analyst, the test developer and the service

Informal
Requirements

Service Creation
Environment

Application Server

Service
Developer

Service Customer

Test Creation
Framework

Test Developer

Test Execution Environment

Structured
Requirements

Service Analyst

Test Developer Service Developer

Service Quality Group

Test
Report

4.2 Overall Methodology for Testing Value-Added Services

92

developer are members of the SQG, especially the service analyst can discover the

misunderstanding. If even he is not capable of clarifying the problem, the service

customer has to be consulted. Minor misunderstanding can be clarified by direct contact

(for instance by Email or telephone call). More serious issues have to be solved during a

project meeting with the participating members of the SQG and the service customer.

Actually, consulting the customer to clarify issues is a positive aspect of the methodology.

Although there is an accepted requirements document still misunderstandings can arise.

In a case like this, it is very important that the problems are discussed in an early stage

and that the service customer is involved. Another reason for an occurring error can be

that either the test developer or the service developer did something wrong in their

development or missed a step during the process. This can also easily be clarified by the

SQG. Obviously, it is not always required to arrange meetings where every member of

the SQG is present, but agreements between two parties at least have to be documented

in short. This also complies with methods of agile development.

The tasks the stakeholders have to perform were discussed. The following UML use case

diagram (see Figure 4.4) illustrates the relevant activities they have to perform, either on

their own or together with the other stakeholders. As shown in the use case diagram, the

final project meeting is defined as a separate meeting where the project is validated. The

service customer will have the change to attend a demonstration of the functionality of

the service performed by the service developer as well as a demonstration of the test case

execution and the results of the tests performed by the test developer.

4 Proposed Framework for Testing of Value-Added Services

93

Figure 4.4: Use case diagram containing the tasks of the stakeholders

To sum up, the demonstrated methodology and concepts are oriented towards agile

development. One of the highest priorities is that the service customer is satisfied, e.g. by

continuously and early provisioning of usable services. Theoretically, the presented

approach supports rapid prototyping. Such a prototype can claim to just support a

selection of requirements specified in the “Structured Requirements” document. As the

test developer and the service developer can synchronise their processes, the provided

prototype can even be tested before. This aspect will be further analysed in section 7.4.

4.3 Framework Architecture and Components

Up to now, the Test Creation Framework (TCF) was treated as a black box that is applied

by the test developer in order to derive tests for a specific service based on the “Structured

Service Customer
Service Analyst

Service DeveloperTest Developer

Define informal
requirements

Structure
requirements

Attend SQG
meetings

Discuss minor
misunderstandings

Attend project
meetings

Validate project

<<include>>

Maintain project
status

Define and
perform tests Develop service

4.3 Framework Architecture and Components

94

Requirements” document compiled by the service analyst in cooperation with the service

customer. The proposed TCF is based on an architecture that is presented in the following

Figure 4.5.

Figure 4.5: Test Creation Framework architecture

The workflow of the methodology within the TCF architecture is started by the test

developer who has access to the Test Framework User Terminal (TFUT) and to the Test

Modules Environment (TME).

Test Framework User Terminal

With the help of the TFUT (see Figure 4.5), the test developer can actually plan the testing

process. By using the terminal website, the test developer can manage all of the projects

Test Framework User
Terminal (TFUT)

Test Modules
Environment

(TME)

Test Data Pool
(TDP)

Test Modules
Repository

(TMR)

Automatic
Composition Engine

(ACE)

Test Configuration
Unit (TCU)

Test Case
Derivation Unit (TCDU)

Test Suite Generator (TSG)

Test Code Generator (TCG) Test Suite Builder (TSB)

Test Execution Environment (TEE)

Service Test
Description

Behaviour
Models

Abstract
Test Suite

Executable
Test Suite

Test Developer

Test Report

4 Proposed Framework for Testing of Value-Added Services

95

he is currently working on. He also sees the current progress of the service developer and

can compare the outcomes. Basically, the TFUT is the entrance point for the testing where

he is also able to define instances of the so-called Service Test Description (STD) based

on the “Structured Requirements” document. As soon as an instance is established, the

test developer is able to start the testing process.

Test Modules Environment

The TME (see Figure 4.5) enables a test developer to create, modify or erase so-called

reusable test modules through a graphical user interface. Furthermore, it allows the test

developer to get access to the relating test data templates and data structures that are

connected to the appropriate reusable test modules. To store the relevant data, the TME

uses two different databases, the Test Modules Repository (TMR) (see Figure 4.5) as well

as the Test Data Pool (TDP) (see Figure 4.5). The reusable test modules including further

related metadata is stored within the TMR, whereas the test data templates that are related

to the reusable test modules and instances of these are stored within the TDP. When a test

developer defines new reusable test modules, it is important to define the metadata which

is needed to specify the test module so that a process can automatically select the test

module. In this approach, the reusable test modules are modelled by means of a

Statecharts-based notation and cover typical service characteristics such as sequences of

multimedia protocols like SIP or RTP (Real-Time Transport Protocol) and other

important protocols, such as HTTP. The test modules usually define a protocol-specific

behaviour of a certain use case, e.g. the sending of an instant message by using the SIP

protocol, and cover both standard behaviour as well as possible alternative behaviour like

4.3 Framework Architecture and Components

96

timeouts. To sum it up, the test modules define the standard compliant behaviour of a

certain use case.

Service Test Description

The STD (see Figure 4.5) is a novel type of specification or rather service description

language that comprises elements of test specifications and service specifications.

Furthermore, it contains architectural definitions describing the participating roles

involved in the consumption of a value-added telecommunication service and their

relationships as well as dynamic behavioural definitions specifying use-case related

requirements. In the compilation phase, the test developer has to follow a guideline to

define a STD for a service. The specification of the behaviour definitions will be done

with an applied pi-calculus approach. Within the methodology, this is the only task being

carried out by a human, the subsequent process performs automatically. One positive

aspect of the STD besides others mentioned in section 5.3 is that the specified

requirements within the STD can be directly mapped to the definitions in the “Structured

Requirements” document.

Automatic Composition Engine

The Automatic Composition Engine (ACE) (see Figure 4.5) gets as input the STD after

the test developer has defined it completely. The main task of the ACE is the generation

of behaviour models, which are complete formal models based on Statecharts notation

which describe the desired possible behaviour of the specified value-added

telecommunication service. As a first step, the ACE parses the architectural definitions

from the STD and forwards them to the Test Configuration Unit (TCU) (see Figure 4.5).

4 Proposed Framework for Testing of Value-Added Services

97

Afterwards, the ACE continues parsing the behavioural perspective of the STD and

identifies the participating entities (or roles) (see section 5.2.2) within the specified

requirements to select the suitable reusable test modules from the Test Modules

Repository (TMR) via the service interface of the TME. Afterwards, the ACE connects

to the Test Data Pool (TDP) in order to read the corresponding variables that are related

to the selected reusable test modules. Then, new variables are instantiated and created for

the instances of the reusable test modules and these are parameterised from the inputs of

the STD. In the next step, the ACE starts with the composition of the reusable test module

instances. Each reusable test module has interfaces which are linked to the existing states

within the underlying Statecharts notation of a reusable test module. If two reusable test

module instances have to be combined, the originating reusable test module instance and

the destination reusable test module instance are connected with a new transition between

them. The whole process is thoroughly described in section 6.4.

Test Configuration Unit

The TCU (see Figure 4.5) receives the architectural definitions from the ACE and

thereupon extracts the relevant information for the Test Code Generator. Relevant

information is for instance the SUT addressability and the participating test components.

It is relevant for the TCU to identify which protocol is applied in order to deliver a test

adapter configuration to the Test Suite Builder.

Test Case Derivation Unit

The behaviour model delivered from the ACE is the input for the Test Case Derivation

Unit (TCDU) (see Figure 4.5). It contains a test case finder which uses an algorithm and

4.3 Framework Architecture and Components

98

follows selected coverage criteria to enable the derivation of abstract test cases from the

behaviour model. Depending on the coverage criteria, the amount of derived test cases

differs significantly. The output of the TCDU is an abstract test suite which includes

abstract test cases for each behaviour model.

Test Suite Generator

The Test Suite Generator (TSG) (see Figure 4.5) creates a valid TTCN-3 test suite that

can be imported into a TTCN-3 test execution environment. To achieve this, the abstract

test cases have to be translated into TTCN-3 test cases by means of the Test Code

Generator. The Test Suite Builder will enhance the TTCN-3 code with specific test

modules and includes also the configuration of TTCN-3 codecs and adapters.

Furthermore, the Test Suite Builder includes the TTCN-3 compilation as well as the Java

compilation process in order to generate an Executable Test Suite (ETS).

Test Execution Environment

The final step of the framework’s underlying methodology takes place within the Test

Execution Environment (TEE). The generated ETS can be executed due to the control

part of the main TTCN-3 module. Of course, the TEE has to be installed into the service

provider’s test environment in advance in order to be able to address the deployed service.

Test Report

The test report (see Figure 4.5) is the document the test developer and all the other

members of the SQG receive after the test execution took place. Based on the results, the

test developer has to maintain the project status according to the evaluation of the

specified requirements.

4 Proposed Framework for Testing of Value-Added Services

99

The framework components will be further described and introduced in the following

chapters. Chapter 5 discusses the structure of the Service Test Description (STD) as well

as the underlying concepts. The concept of the test modules, the Automatic Composition

Engine (ACE) algorithms to compose them based on the STD as well as the generation

of the behaviour model will be described in chapter 6. The other test-specific aspects,

such as test case derivation from the behaviour model, the transformation from abstract

test cases to TTCN-3 test cases and the test execution itself against the SUT will be part

of chapter 7.

4.4 Conclusion

This chapter has introduced a novel methodology for functional testing of value-added

services considering current development life cycles in service provider environments.

First, several preconditions have been introduced as well as the new tasks of the roles

participating in the service development and service testing process. Both the test

developer and the service developer have to improve their social skills in order to get in

contact with the service customer and support him during the development and testing

phases. Finally, a new role has been defined, the service analyst, who is acting as the

communication link between the service customer and the service and test developers

(see section 4.1).

Furthermore, section 4.2 has proposed an overall methodology that allows a better

involvement of the service customer within the development and testing process. Here,

also the establishment of the novel Service Quality Group (SQG) with all the tasks for

4.4 Conclusion

100

the participating roles (service analyst, test developer and service developer) has been

discussed.

Finally, section 4.3 has described one of the most relevant aspects of this research, the

architecture of the proposed Test Creation Framework (TFC) with all its components.

The following chapter deals with the introduced STD and will include related work done

in the field of specifying the functionality of services, especially telecommunication

services.

101

5 Novel Service Test Specification and

Related Specifications

A well-defined specification of a value-added service is the basis from which functional

tests can be derived. In literature, a number of service description languages and

specification languages are presented and developed, mainly with the endeavour to

automatically build the source code of the services and deploy them within service

provider environments. To our knowledge, there is no existing service description for the

purpose of functional testing that has been specifically defined for value-added

communication services. To close this gap, this chapter will introduce a new kind of

service description language, the Service Test Description. Firstly, section 5.1 will

introduce existing service description languages and specification languages that can be

applied to specify the functionality of value-added services. In section 5.2, the

requirements on a service description language for the TCF described in chapter 4 will be

documented and the Service Test Description will be presented. The existing specification

and description languages and the new Service Test Description will be compared against

each other in section 5.3.

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

102

5.1 Existing Specification and Description Languages for

Services in the Telecommunication Domain

This section describes a selection of service description languages and service

specifications in order to derive specifications for services. All of these approaches have

the ability to describe the behaviour especially for value-added services in the

telecommunication domain. A major requirement the specifications and descriptions have

to fulfil is the possibility to apply them for automatic test case generation, even if they

have not been considered for this purpose in the first place. Furthermore, the

specifications should support the traceability of requirements. As the “Structured

Requirements” document is based on standard UML use cases, it would be good to have

a mapping to some use case-specific description in the specification languages. For this

reason, mainly use case-based specifications have been taken into consideration.

The following specifications and methodologies will be discussed:

• Structured Use Case Models (Ryndina and Kritzinger, 2005)

• Restricted Use Case Modeling (Yue et al., 2009)

• Unified Test Modeling Language (Feudjio, 2011) and (Feudjio, 2009)

The properties and also drawbacks of the specifications and descriptions will lead to a

novel Service Test Description Language which is used for implementation within the

proposed framework.

5 Novel Service Test Specification and Related Specifications

103

5.1.1 Structured Use Case Models

The research work of (Ryndina and Kritzinger, 2004) and (Ryndina and Kritzinger, 2005)

provide an enhanced requirements specification methodology especially for complex

systems and communication services by improving standard use case modelling

(Jacobson et al., 1992). The authors point out that “use case models lack structure and

exact semantics, which makes rigorous analysis of such models impossible” (Ryndina

and Kritzinger, 2005). Consequently, they suggest supplementing traditional use case

models with a formal structure and semantics such that the use cases are suitable for

automated formal analysis. This procedure allows one to discover logical errors and

missing requirements early in the development cycle and provides developers with a

better understanding of the defined models (Ryndina and Kritzinger, 2004). The authors

declare their enhanced use case approach as “structured use case models”.

In general, use case models specify functional requirements for a system or rather service

by defining scenarios of interaction between the service and its environment. The main

elements used in the models are actors and use cases. The actors represent entities that

actually interact with the service whereas use cases define the functionality the service

has to provide. Similar to the standard use case modelling, the approach described in

(Ryndina and Kritzinger, 2005) focusses on treating the system (or service) under

consideration as a “black box”.

The following Figure 5.1 illustrates the perspective on actor-system interaction, which is

fundamental to the technique. Permission to reproduce Figure 5.1 has been granted by the

authors of the referenced publication.

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

104

Figure 5.1: Interaction between actor and system (Ryndina and Kritzinger, 2005)

Initially, the actor can call upon the system by activating the defined use cases. The

system itself is described by the system state. This system state holds a set of conditions

and can change throughout the model execution. Each defined use case within the

specification is associated with a main flow and an unspecified number of alternative

flows. Every type of flow has pre- and post-conditions. As soon as a use case is activated

by an actor (1), the pre-conditions of the use case’s main flow are queried against the

current system state (2). If the pre-conditions do not hold (3), the alternative flow of the

use case is considered. Analogous to step 2, the pre-conditions of the alternative flow are

queried (4) and in the example shown in Figure 5.1, they are satisfied in the system state

(5). This leads to the post-conditions of the alternative flow changing the system state (6).

The activation of a use case is said to be successful when the pre-conditions for one of

the defined flows hold.

In order to define the structured use case models for systems or rather communication

services, a metamodel was defined by the authors (see Figure 5.2). Permission to

reproduce Figure 5.2 has been granted by the authors of the referenced publication.

Actor

Use Case

User System

User System

Main Flow

Alternative Flow

Pre-conditions

Post-conditions

Pre-conditions

Post-conditions

System
State

(2) Do these hold?

(3) No

(4) Do these hold?

(5) Yes

(6) Change state

(1) Activate

5 Novel Service Test Specification and Related Specifications

105

Figure 5.2: Structured use case metamodel (Ryndina and Kritzinger, 2005)

The displayed metamodel shows that a structured use case model contains four different

types of elements: actors, use cases, conditions and variable types. Each element

comprises a number of properties that capture information related to that element. With

reference to the definition of the metamodel elements, actors and use cases as well as their

associations are depicted in a graphical representation (see Figure 5.1). For each actor and

use case in the diagram, the textual properties can be defined in addition. The other

elements, conditions and variable types, are completely textual and do not have graphical

representations.

The actor element in the metamodel has two properties, a name and a list of attributes.

The attributes include important information about an actor. In order to deliver services

to the actor represented by use cases, a system has to be able to access these particulars.

For example, an actor willing to setup a call to a system has an attribute called Username

that he needs to provide to the system in order to consume the service. Due to the

metamodel in Figure 5.2, each attribute is regarded as a variable, and each variable has

ModelElement

name: String

VariableType

values: List

Variable

value : String

InitialCondition

type

Actor UseCase
actors1..* use_cases 1..*

Condition

isTrue: Boolean

condition

0..*attributes

parameters

0..*

parameters 0..* pre-conditions 0..* 0..* post-conditions

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

106

an associated variable type. A variable type is associated with a number of symbolic

values, which are mainly string literals that can only be compared for equivalence

(Ryndina and Kritzinger, 2004). Two defined variables are declared as equal if their

values are set to identical string literals.

A further important element of the metamodel, the condition, is used to either describe

the global state of the system or to declare use case pre- and post-conditions. The

condition element has three properties: a name, a list of parameters and a truth-value

(“isTrue”). A condition becomes a condition instance, as soon as values are assigned to

all its parameters. The condition instance is either “true” or “false”. A special type of

condition is the InitialCondition which is used to describe the state of the system before

any interaction between actors and the system occurs (Ryndina and Kritzinger, 2005).

The final element in the metamodel, the use case, has five properties: a name, the list of

actors playing a role in the use case, a parameter list, a list of pre-conditions and a list of

post-conditions. The use case parameters describe information that is required to provide

the corresponding service. As soon as a use case is activated, a value for each of its

parameters needs to be passed to the system. The list of pre-conditions specifies that

certain aspects about the system state must hold so that a use case activation can be

successful. On the contrary, the post-conditions describe the change of the system state

after a successful activation of the use case.

Based on the introduced metamodel for structured use case models, a simple chat service,

will be described and specified as an example by means of the methodology. Initially, the

general functions the simple chat service provides will be documented in a standard use

5 Novel Service Test Specification and Related Specifications

107

case diagram which also includes the participating actors. Figure 5.3 illustrates the sample

use case diagram.

Figure 5.3: Use case model of sample chat service

The service chat usage includes two involved actors, an Administrator and a Service User.

The Administrator can register new Service Users (“Add User”) and deregister existing

ones (“Remove User”). He is also able to create new chat rooms for the Service Users

(“Create Room”) or to erase old rooms that might not be used anymore (“Delete Room”).

The other actor, the Service User, initially has to log in (“Login”) to use the provided

functions, such as entering a new chat room (“Enter Room”), leaving the chat room after

having entered (“Leave Room”) and sending messages to users in the same room (“Send

Message”). Finally, the Service User can log out (“Logout”).

Each use case illustrated in Figure 5.3 can be defined by means of a special language

presented in (Ryndina and Kritzinger, 2005). Exemplarily, the use case “Add User” of

the actor Administrator is shown in the following Figure 5.4.

Service User Administrator

Login

Logout

Enter Room

Leave Room

Send Message

Add User

Remove User

Create Room

Delete Room

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

108

Figure 5.4: Structured use case model definition of “Add User”

The definition of the “Add User” use case is quite straightforward and indicates that the

Administrator is the only actor that can activate this use case. Furthermore, the Username

of the Service User to be added needs to be provided to the system as a use case parameter.

Each use case parameter has an associated variable type which defines a finite set of

symbolic values. Here, the variable type UserLogin holds the value “chatUser1”. The pre-

condition for the “Add User” use case states that the activation is successful if the user

with the provided Username does not exist. In addition, the post-condition indicates that

after successful activation of the use case, a Service User with the given Username exists.

It is required that the pre- and post-condition defined within a use case correspond to a

condition declaration within the model, where the name and the type of condition

parameters are determined. In this example, the UserExists condition is declared. It

indicates that the condition has one parameter of variable type UserLogin. The #uc prefix

in the pre- and post-conditions states that at the time of activation, the value of the use

case parameter Username should be used for the evaluation of this condition.

Most of the other use cases in Figure 5.3 can be defined similarly to the “Add User” use

case. There is usually one action performed by an actor that causes a change of the system

state, such as logging in and out or creating a new chat room. Through the pre- and post-

USE CASE 1
name: Add User
actors: Administrator
parameters: Username of type UserLogin
pre-conditions: UserExists (#uc Username) is false
post-conditions: UserExists (#uc Username) is true

VARIABLE TYPE 1
name: UserLogin
values: chatUser1

CONDITION 1
name: UserExists
parameters: Username of type UserLogin

5 Novel Service Test Specification and Related Specifications

109

conditions it can be easily verified if the action had the desired effect. The sending of a

chat message is more complex because more parameters and conditions have to be

checked. The following Figure 5.5 shows the definition of the “Send Message” use case.

Figure 5.5: Structured use case model definition of “Send Message”

In the use case model definition of “Send Message”, the actor role of the Service User is

explicitly specified and enhanced by an attribute Username of the type UserLogin. Two

parameters are required to activate the use case, the Username of the user who is about

to receive the message and the Message itself. There are two pre-conditions that have to

hold in order to activate the use case. On the one hand, all participating users have to be

logged in; on the other hand, all users also have to have entered the chat room #room1.

In order to verify both cases, the conditions LoggedIn and RoomEntered have been

defined in the use case model definition. Besides, the #forall option allows checking that

the conditions hold for all values of a particular variable type. Finally, the post-condition

USE CASE 2
name: Send Message
actors: Service User
parameters: Username of type UserLogin, Message of type MessageContent
pre-conditions: LoggedIn (#forall UserLogin) is true,

RoomEntered (#forall UserLogin, #room1) is true
post-conditions: MessageReceived (#uc Username, #uc Message) is true

ACTOR 1
name: Service User
attributes: Username of type UserLogin

VARIABLE TYPE 2
name: MessageContent
values: Hello, how are you?

VARIABLE TYPE 3
name: RoomDeclaration
values: room1

CONDITION 2
name: LoggedIn
parameters: Username of type UserLogin

CONDITION 3
name: RoomEntered
parameters: Username of type UserLogin, Room of type RoomDeclaration

CONDITION 4
name: MessageReceived
parameters: Username of type UserLogin, Message of type MessageContent

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

110

of the “Send Message” use case states that the user with the Username of the use case

receives the Message. Therefore, an additional condition MessageReceived is defined.

To sum up, the solution to structure standard use case models by applying the well-

defined metamodel enables models that are far more consistent and correct. Nevertheless,

important properties are missing, for instance the actions that actually take place within

the use cases are not precisely specified. Tests cannot be generated from use cases if it is

not defined how to trigger the system or rather service. Only the states of the system

before the action and after the action are determined. It is also very hard to imagine how

the conditions can be applied to the testing process. This can only be done if the conditions

are predefined as reusable test components that have to be parameterised by the inputs

defined within the use case models. This aspect would limit the possibilities to specify

diverse types of services. It is possible that for each condition occurring in structured use

case models for specified services, a proper test component first has to be developed by

a test developer.

5.1.2 Restricted Use Case Modeling (RUCM)

Restricted Use Case Modeling (RUCM) is a use case modelling approach developed by

(Yue et al., 2009). In general, standard use case modelling includes use case diagrams

and use case textual specification and is commonly applied to structure and document

requirements (Jacobson et al., 1992). However, it is well-known and also stated by the

developers of RUCM that standard use case modelling based on textual descriptions

inevitably contains ambiguities and tends to be imprecise and incomplete. To overcome

this obstacle, RUCM is composed of a use case template to structure the use case

5 Novel Service Test Specification and Related Specifications

111

specifications and a well-defined set of restriction rules to restrict the way users write use

case specifications. The developers of RUCM conducted a controlled experiment with

human subjects and results indicate that RUCM, although it enforces a use case template

and restriction rules, “has enough expressive power, is easy to use, and helps improve the

understandability of use cases” (Yue et al., 2011).

The RUCM approach can be applied during the requirements elicitation phase of the

software or rather service development. The following activity diagram in Figure 5.6

illustrates the process flow.

Figure 5.6: RUCM process flow (Yue et al., 2009)

In order to define a use case model, the approach requires the input of a use case diagram

of the service to be specified, the restriction rules as well as the use case template. After

the use case model is documented complying with the rules and structure, an analysis

model can be derived either manually performed by system analysts or automatically if

the inputted use case models are less ambiguous and automated analysis can be facilitated.

In the following Table 5.1, the structure of the RUCM use case template presented in

(Yue et al., 2009) and (Zhang et al., 2013) is illustrated.

Use Case Diagram

Define Use
Case Model

Derive
Analysis Model

Manually / Automatically

Restriction Rules

Use Case Template
Use Case Model

Analysis Model

© 2009 IEEE

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

112

Table 5.1: RUCM Use Case template (Yue et al., 2009)

Use Case Name The name of the use case. It usually starts with a verb.

Brief Description Summarises the use case in a short paragraph.

Precondition What should be true before the use case is executed.

Primary Actor The actor which initiates the use case.

Secondary Actor Other actors the system relies on to accomplish the services of the use case.

Dependency Include and extend relationships to other use cases.

Generalization Generalisation relationships on other use cases.

Basic Flow Specifies the main successful path, also called “happy path”.

Steps (numbered) Flow of events.

Postcondition What should be true after the basic flow executes.

Specific Alternative
Flows

Applies to one specific step of the basic flow.

RFS A reference flow step number where flow branches
from.

Steps (numbered) Flow of events.

Postcondition What should be true after the alternative flow
executes.

Global Alternative
Flows

Applies to all the steps of the basic flow.

Steps (numbered) Flow of events.

Postcondition What should be true after the alternative flow
executes.

Bounded Alternative
Flows

Applies to more than one step of the basic flow, but not all of them.

RFS A list of reference flow steps where flow branches
from.

Steps (numbered) Flow of events.

Postcondition What should be true after the alternative flow
executes.

 © 2009 IEEE

The use case template contains eleven so-called first-level fields (first column of Table

5.1) from which the last four fields are decomposed into second-level fields. The first

seven fields contain general information about the use case (use case name, brief

description), its state before activation (precondition), the actors who are participating in

the use case (primary actor, secondary actor) and relations to other use cases

(dependency, generalization). Additionally, the use case template contains one basic flow

and can have one or more types of alternative flows: specific, global, and bounded

alternative flows.

5 Novel Service Test Specification and Related Specifications

113

The basic flow describes the main successful path in the use case and is composed of a

sequence of steps and a postcondition. In the approach, five different types of interactions

have been reused from (Cockburn, 2000) for each defined step:

• Primary actor system: the primary actor sends a request including data to the

system.

• System system: the system validates a request and data.

• System system: the system alters its internal state, for instance by recording or

modifying something.

• System primary actor: the system replies to the request of the primary actor

with a specific result

• System secondary actor: the system sends a request to a secondary actor.

Furthermore, the steps are numbered sequentially so that each step is completed before

the next one is started. Conditions, iterations and concurrency can be defined within the

steps by specific keywords that are included in the RUCM restriction rules (Yue et al.,

2009).

In contrast to the basic flow describing the main successful part, the alternative flows

describe scenarios, both success and failure. According to (Yue et al., 2009), an

“alternative flow always depends on a condition occurring in a specific step in a flow of

reference, referred to as reference flow, and that reference flow is either the basic flow or

an alternative flow itself”. The classification of the alternative flows has been taken from

(Bittner and Spence, 2002). A specific alternative flow is an alternative flow referring to

a specific step in the reference flow. An alternative flow that refers to more than only one

step in the reference flow is called bounded alternative flow. Finally, the global

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

114

alternative flow refers to any step in the reference flow. It is important to mention that

each flow, both basic and alternative, must have a defined postcondition which describes

a constraint that must be true when the use case terminates.

In order to define the use cases complying with the RUCM use case template, the usage

of the set of restriction rules is important. Basically, the restriction rules are classified into

two groups: restrictions on the use of natural language, and restrictions enforcing the use

of determined keywords for specifying control structures.

The first group of restrictions contains sixteen rules from which the first seven apply only

to action steps (see Table 5.2) and not to steps that contain conditions or preconditions

and postconditions. The rules R8-R16, however, apply to all sentences in a use case

specification, also including the brief description. Mainly, the focus of the sixteen rules

is to reduce ambiguity and also to facilitate automated generation of analysis models. It

is meant to be a guideline for writing clear and concise use case specifications, for

instance by using the appropriate grammatical tense (present tense), avoiding negative

adverbs, negative adjectives, and participle phrases that are very difficult to parse by

natural language parsers (Yue et al., 2013).

5 Novel Service Test Specification and Related Specifications

115

Table 5.2: Restriction rules R1-R16 of RUCM approach (Yue et al., 2013)

Description Explanation

R1 The subject of a sentence in basic and alternative
flows should be the system or an actor.

Enforce describing flows of events
correctly. These rules conform to the
RUCM use case template (five
interactions).

R2 Describe the flow of events sequentially.

R3 Actor-to-actor interactions are not allowed.

R4 Describe one action per sentence. Otherwise it is hard to decide the sequence
of multiple actions in a sentence.

R5 Use present tense only. Enforce describing what the system does,
rather than what it will do or what it has
done.

R6 Use active voice rather than passive voice. Enforce explicitly showing the subject
and/or object(s) of a sentence. R7 Clearly describe the interaction between the system

and actors without omitting its sender and receiver.
R8 Use declarative sentence only. Commonly required for writing UCSs.

R9 Use words in a consistent way. Keep one term to describe one thing.

R10 Don’t use modal verbs (e.g., might)

Modal verbs and adverbs usually indicate
uncertainty.

R11 Avoid adverbs (e.g., very)

R12 Use simple sentences only. Facilitate automated NL parsing and
reduce ambiguity. R13 Don’t use negative adverb and adjective (e.g.

hardly, never), but not or no is allowed.
R14 Don’t use pronouns (e.g. he, this)

R15 Don’t use participle phrases as adverbial modifier.

R16 Use “the system” to refer to the system under design
consistently.

Keep one term to describe the system;
therefore reduce ambiguity.

 © 2013 IEEE

The second group of restrictions contains rules constraining the use of control structures

by keyword. These keywords are applied within steps of basic or alternative flows. The

most important keywords specify conditional sentences (IF-THEN-ELSE-ELSEIF-

ENDIF), concurrency sentences (MEANWHILE), condition checking sentences

(VALIDATES THAT), and iteration sentences (DO-UNTIL). Further rules specify that

alternative flows end with a step either using the keyword ABORT or RESUME STEP.

The later signifies that the flow returns back to the reference flow.

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

116

The important parts of RUCM, the use case template as well as the restriction rules, have

been explained briefly. In the following, the example use case “Send Message” of the

sample chat service (see Figure 5.3) will be described by applying the RUCM method.

Table 5.3 illustrates the “Send Message” RUCM use case.

Table 5.3: Example RUCM use case of "Send Message"

Use Case Name Send Message

Brief Description User sends a text message to an Endpoint participating in a chat room.

Precondition User and Endpoint are logged into the system and have both entered a chat room.

Primary Actor User Secondary Actor Endpoint

Dependency None Generalization None

Basic Flow 1) User sends a text message to the system including the name of the Endpoint as
target.
2) The system VALIDATES THAT User and Endpoint are in the same chat
room.
3) The system forwards the text message to the Endpoint.
4) The system VALIDATES THAT it receives an acknowledgment response
form the Endpoint.
5) The system sends an “OK” text message to the User.
Postcondition: The system is idle.

Specific Alternative
Flow
(RFS Basic Flow 2)

1) The system sends the message “The user is not in the chat room.” to the User.
2) ABORT
Postcondition: The system is idle.

Specific Alternative
Flow
(RFS Basic Flow 4)

1) The system sends the message “Message not received.” to the User.
2) ABORT
Postcondition: The system is idle.

The most relevant information apart from the flow definitions in the shown example use

case is the precondition determining the current state before the use case can be activated

(both the User and Endpoint should be logged in and should have entered the chat room)

and the mentioning of the participating actors (here: User and Endpoint). Only these

actors as well as the system can be mentioned as subjects within the steps of the flow

definitions. The basic flow contains the sending of the text message from the User to the

system (step 1) as well as the forwarding of the message to the Endpoint (step 3). In

addition, a notification is sent to the User that the message transmission was successful

5 Novel Service Test Specification and Related Specifications

117

(step 5). In between, the system inspected if both User and Endpoint are in the same chat

room (step 2) and if the system received an acknowledgement message from the Endpoint

after sending the message (step 4). The inspections are detected by means of the keyword

VALIDATES THAT and automatically lead to the defined specific alternative flows. If the

validation process of the system fails, then the relevant specific alternative flow is

activated.

In summary, the RUCM method allows the definition of well-structured use cases. In the

shown example, the interaction between the system (or rather service) and the

participating actors is described clearly. This is very important when it comes to testing

because the role of the participating actors will be performed by test components in the

test execution process. These test components have to know how to trigger the SUT

(System under Test) and what kinds of messages or notifications to expect from it.

Although the interactions are thoroughly described in the RUCM method and the use of

language is strictly regulated by restriction rules, still natural language might lead to

problems as the processing and parsing of it is still very error-prone. A general issue of

natural language is its ambiguity. To solve this issue, the authors of (Yue et al., 2011)

present a solution to transform the RUCM use cases to UML state machine diagrams by

means of natural language parsers. Nevertheless, the method has not been proven to be

applied to more complex systems or rather communication services. It is also

questionable how reusability of tests can be integrated into the concept. For every system

or service, the flow definitions and functionality has to be performed from scratch. The

approach also lacks a possibility to define parameters (e.g. text message properties such

as text message content, sender and target) explicitly.

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

118

5.1.3 Unified Test Modeling Language (UTML)

(Feudjio, 2011) and (Feudjio, 2009) propose a language dedicated to Model-Driven Test

Engineering (MDTE) that reuses and extends concepts of U2TP (see chapter 3.3.1). This

language is called Unified Test Modeling Language (UTML) and its compilation is

carried out during a specified test modelling process. The design of test automation in

UTML is based on various principles of abstraction which guide the whole test modelling

process to ensure that the resulting model remains concise. The process including the

various phases it implies is illustrated in Figure 5.7.

Figure 5.7: Overview of UTML test modelling process (Feudjio, 2009)

The initial phase, Test Objectives Modelling, includes the identification of relevant test

objectives. These test objectives can be grouped into diverse categories such as functional

correctness or usability. They have to be defined manually by design experts or can be

generated automatically if the requirements on the system are expressed in a machine-

processable notation. (Feudjio, 2011) does not mention an example notation that can be

applied.

Test Objectives Modelling

Test Procedures Modelling

Test Data Modelling

Test Architecture Modelling

Test Behaviour Modelling

5 Novel Service Test Specification and Related Specifications

119

Within the Test Procedure Modelling phase, test procedures are modelled as sequences

of test steps. Each test step represents an action or an observation to be performed on one

or more elements in the test setup. The test steps can be described by using natural

language. The grade of formality increases during the test modelling process (Feudjio,

2011).

The upcoming Test Data Modelling phase, for instance, requires the formal description

of data that will be exchanged between elements of the test environment and the SUT.

The identification of the relevant data results from the designed test procedures from the

previous phase. Possible data can be stimuli (e.g. protocol messages that will be sent to

the SUT) or potential protocol responses from the SUT. As the description of the

messages is depending on the used protocol, a static description of the protocol is required

so that the modeller knows how to add data templates to the UTML test model. The

protocol descriptions can be available either as a plain document (e.g. IETF RFC), an

XML Schema Descriptor (XSD) (W3C, 2012) file or other data description mechanisms

such as Abstract Syntax Notation One (ASN.1) (ITU-T X.680, 2015) or Interface

Description Language (IDL) (OMG, 2002).

Within the Test Architecture Modelling phase, the topology of the test system as well as

a collection of test configurations is defined by means of a formal model. This includes

the setup of the test system consisting of parallel test and system components

interconnected with each other via ports. These ports are used to communicate between

the components either synchronously (request/reply) or asynchronously (message-based)

and to exchange messages.

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

120

In the final Test Behaviour Modelling phase, the semantic requirements on the system (or

service) can be expressed by means of UTML test behaviour models. These test behaviour

models have a graphical representation, the UTML test behaviour diagrams, which are

built upon the test architecture configuration from the previous phase. The diagrams are

similar to standard UML sequence diagrams and describe how each of the defined test

procedures can be illustrated in terms of actions on and between the entities being part of

the test configuration.

From each of the described phases, a specific model is generated. The sum of all these

models provides the foundation for the UTML test model that is illustrated as TestModel

in the following UML class diagram in Figure 5.8. Permission to reproduce Figure 5.8

has been granted by the author of the referenced publication.

Figure 5.8: Overview of UTML test models (Feudjio, 2011)

The models from the diverse phases deal with specific aspects of test design and extend

the abstract BasicTestModel class. The relations between the categories of test models are

TestModel

BasicTestModel

TestProceduresModel TestDataModel

TestObjectivesModel

-version : EString

TestBehaviourModel TestArchitectureModel

1

*

1

* 1

*

1

*

1

*

1

*

1 *

1

*

1

*

1

*

5 Novel Service Test Specification and Related Specifications

121

also depicted in the class diagram. In order to define complete and deliberate UTML test

models, the author proposes in (Feudjio, 2009) to use the tool set MDTester (UTML,

2015), which guides test modellers in defining the different categories of test models.

In the following, the UTML test model approach will be applied to the “Send Message”

use case from the sample chat service (see Figure 5.3). UTML is, however, not based on

standard use case descriptions and a mapping concept is not provided. The requirements

stated in the “Send Message” use case (see Table 5.3) have to be broken down to several

test procedures in UTML covering the successful path (e.g. “message was received

successfully”) as well as the exceptional paths (e.g. “both users are not in the same chat

room”). The test objective will be to evaluate the “functionality” of the “Send Message”

use case. Afterwards, the test procedure will contain the documentation of the test steps

to describe the successful path in natural language. Then, the definition of the test data

will be done in the corresponding phase. The tool set MDTester provides a “Data View”

that enables the test modeller to create test data templates from predefined data models.

Here, every message being exchanged between entities of the test system and the SUT

can be defined. The following Figure 5.9 shows a tree view of MDTester that allows the

definition of templates of request types for the SIP protocol.

Figure 5.9: Test Data View with UTML for SIP messages

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

122

In the shown example, the test modeller has the possibility to create instances (templates)

of SIP requests and set the underlying header fields of the SIP message according to the

information described within the test procedure model. Additionally, SIP responses can

be defined.

After having identified and set all the relevant messages, the topology and test

configuration for the test procedure has to be determined. The following test configuration

(see Figure 5.10) shows two involved so-called Parallel Test Components (PTCs) and the

SUT specifying the chat service deployed on an application server.

Figure 5.10: Test Architecture Diagram for sample chat service

The PTCs are called User and Endpoint and have the same role as the actors described in

the RUCM use case from Table 5.3. Both are connected to the SUT via their SIP ports so

that SIP messages can be exchanged between the corresponding entities.

The specification of the message exchange is part of the Test Behaviour Model. The

following UTML Test Behaviour Diagram (see Figure 5.11) shows the involving entities

(both PTCs and the SUT) and their expected message exchange regarding to the

successful path of the “Send Message” use case. First, the User PTC sends a SIP message

request containing the chat message that it is about to send to the Endpoint PTC. This

SUT

User
:Component1

EndPoint
:Component2

sipPort

sipPort_1 sipPort_2

sipPort

5 Novel Service Test Specification and Related Specifications

123

chat message is embodied within a SIP request template called initChatMessage that has

already been defined in the Test Data Model. After sending the chat message, the SUT

should then acknowledge the receipt of the SIP message by first sending a SIP response

message (recvResponse_OK) to the User PTC and then initiate the transmission of the

SIP message chatMessage to the Endpoint PTC.

Figure 5.11: Test Behaviour Diagram for Send Message use case of sample chat service

The successful receipt will now be acknowledged by the Endpoint PTC and the SUT can

accordingly send the “OK” message confirmMessage to the User PTC to confirm that the

initial chat message transmission has been successful. Finally, the SUT will receive an

acknowledgement that the message was received by the User PTC.

To sum up, the UTML test modelling process structures and simplifies the derivation of

a test specification for a given system and can be applied to value-added communication

services. According to (Feudjio, 2011), there is already a defined methodology to generate

TTCN-3 test cases on the basis of UTML test models. In spite of the positive aspects

mentioned, UTML still lacks some properties in order to be an appropriate language for

the proposed test framework in this research work (see Figure 4.5). First, UTML does not

SUTUser
:Component1

EndPoint
:Component2

SIP_RequestType: initChatMessage

SIP_ResponseType: recvResponse_OK
SIP_RequestType: chatMessage

SIP_ResponseType: sendResponse_OK

SIP_RequestType: confirmMessage

SIP_ResponseType: sendResponse_OK2

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

124

specifically refer to use cases. This makes the transition harder for the test developer who

would have to build the UTML test models based on the “Structured Requirements”

document. Second, a synchronisation of the service development process and the test

development process is also not possible or very hard to manage. Third, it is also

questionable how reusability of tests can be integrated into the UTML approach. In fact,

the test developer has to spend a lot of time to build the test models, especially the Test

Behaviour Diagrams. For each alternative behaviour within one use case, a new diagram

has to be created. Finally, the author of (Feudjio, 2009) states himself that although first

results indicated that the development cycle shortened significantly by applying the

UTML methodology, there is still a problem in the context of model consistency between

the inter-dependent test models.

5.1.4 Alternative Approaches

Besides the precisely described approaches presented above, there are also other

approaches.

Requirements Acquisition and Specification for Telecommunication Services

The first approach is described in (Eberlein, 1997), (Eberlein et al., 1997) and (Eberlein

and Halsall, 1997) and is named Requirements Acquisition and specification for

Telecommunication Services (RATS). The underlying methodology introduces three

different types of scenario representations, textual (natural language-based), structured

(textual, but also with preconditions, postconditions and flow conditions) and formalised

(structured text and component-centered). The idea behind these representations is to

allow a smooth and straight transition from a service description based on natural

5 Novel Service Test Specification and Related Specifications

125

language to a formal specification described in the Specification and Description

Language (SDL) (ITU-T Z.100, 2007). In the scenarios, different aspects of behaviour is

described, such as normal, alternative, and exceptional behaviour. These groupings

support the developers to first focus on the common behaviour and afterwards concentrate

on the less common service functionality. Most of the scenarios are abstract and linear,

but there also so-called overall scenarios capturing multiple scenarios, with a causal

ordering. Overall, the RATS methodology is an interesting approach to requirements

elicitation, but it is significantly depending on its implementation, the RATS tool. This

expert system contains a large knowledge database that has to be updated all the time.

Besides, the publications mentioned do not go in depth into the construction of the SDL

models, but focus more on the acquisition and the specification of requirements. This

leads to the fact that RATS does not provide an output that can be applied to generate test

cases because the grade of formality is not sufficient enough.

Telecommunication Modelling Library

Another alternative approach is called Telecommunication Modelling Library (TelcoML)

(OMG, 2013b). This language is built on top of SoaML (OMG, 2012b), a standard

extension to UML 2.0 that focuses on modelling of services following the Service-

Oriented Architecture (SOA) paradigm. TelcoML itself defines a UML profile for

advanced and integrated services and provides “a common abstraction to all existing

communication services standards so that tools can be built” (OMG, 2013b) for service

providers to be able to model service variations in a consistent manner. TelcoML is

composed of the TelcoML Enabler Library and the TelcoML Service Composition

Profile. The TelcoML Enabler Library is a set of service interfaces representing telecom-

5.1 Existing Specification and Description Languages for Services in the Telecommunication Domain

126

specific facilities such as “Generic Messaging”, “Click-to-Call”, “Synchronisation”,

“Voice Recognition and Text-to-Speech” and “Privacy”. On the other hand, the TelcoML

Service Composition Profile enables the specification of composite services based on the

predefined service interfaces. A UML state machine-based approach can be applied to

define the compositions. To sum up, TelcoML includes a very specific way of describing

communication services based on a very small number of reusable service interfaces. Due

to this limitation only a few services can be modelled based on TelcoML. Although it is

based on UML class diagrams and state machines, it does not contain any relation to UML

use cases. This makes it more difficult for the test developer to derive a TelcoML

specification based on the “Structured Requirements” document. Additionally, test-

specific parameters (such as wild cards for data sent from the SUT to the test components)

are not part of the language.

AGEDIS Modeling Language

Finally, the AGEDIS Modeling Language (AML) is introduced which is based upon the

UML meta-model. Within the AGEDIS methodology presented in (Hartman and Nagin,

2004) and (Craggs et al., 2003), AML serves as behavioural modelling language. Initially,

AML includes the structure of the SUT by means of UML class diagrams with their

associations. Here, the approach bears resemblance to other methodologies, such as U2TP

(see section 3.3.1) and UTML (see section 5.1.3). These methodologies also initially

include the definition of the structure or rather architecture of the SUT. The behaviour of

each class within the diagrams is defined in corresponding state diagrams. The actions

within the state diagrams are individually specified by means of the IF language (Bozga

et al., 1999), a specification language that is based on timed automata and extended with

5 Novel Service Test Specification and Related Specifications

127

discrete data variables, various communication primitives and dynamic process creation.

After the class diagrams and state machines are described, an instance of AML is created.

This creation process requires a very deep knowledge in the modelling of UML class

diagrams and state diagrams and, additionally, the specification of the actions within the

state diagrams requires the use of the IF language which bears resemblance to

programming languages. Another missing aspect of AML is the absence of useful

concepts that test teams may need, especially if they want to apply agile principles.

5.2 Proposed Novel Service Test Description

As described in the sections 5.1.1, 5.1.2, 5.1.3 and also 5.1.4, the introduced service

description languages, service specifications and test specifications are not sufficient

enough to be used within the proposed Test Creation Framework for value-added services

(see section 4.3). Therefore, a novel description language has been developed within this

research that fulfils all the relevant requirements, which are listed below:

• Machine readable and parsable – the output of the novel language is parsable for

the Automatic Composition Engine (ACE) to enable the building of the formal

behaviour model.

• Usability – the definition of instances of the novel description language is

manageable and relatively easy to understand for the test developer.

• Traceability of use cases – to support the agile aspects (such as the possibilities of

rapid prototyping and a better involvement of the service customer) of the overall

methodology (see Figure 4.3), a mapping to the use cases specified in the

“Structured Requirements” document is provided.

5.2 Proposed Novel Service Test Description

128

• Preciseness – the behaviour, such as potential actions and events that might occur,

is determinable in a precise manner.

• Functional specification – within the use case-based specifications, a complete

description of possible behaviours exists (both basic and alternative flows).

• Reusability aspects – the description language contains components that can be

applied to various scenarios and are reusable for different kinds of value-added

services in order to fasten and simplify the definition process.

• Test data integration and parameterisation – the description language supports the

usage of appropriate test data and allows parameterisations of reusable test data

templates.

• SUT interface description – the execution of test cases within a test execution

environment requires knowledge about the SUT (e.g. Service Access Point

(SAP)). This information is included within the novel description language.

• Extension support – the description language shall support later enhancements

(such as including new reusable components).

• Compliant to value-added communication services – the description language

contains typical value-added service-related aspects (e.g. integration of

multimedia protocols).

The upcoming section introduces the proposed novel description language called Service

Test Description.

5 Novel Service Test Specification and Related Specifications

129

5.2.1 Structure of Service Test Description

This research work led to the definition of a new description language, the “Service Test

Description”, which is abbreviated as STD in the following. The term itself implies that

the description language contains both service-specific (“Service”) and test-specific

(“Test”) properties. In fact, the STD can be regarded as being a combination of a service

specification defining service-related information and behaviour, and a test specification

including the determination of test components and test data.

The general overview of the structure of the STD is displayed in the following Figure

5.12.

Figure 5.12: Structure of Service Test Description

Service Test
Description

Service ID

Prose Description

RolesRoles

System Meta
Information

Requirement List

Requirement

Requirement ID

Reguirement
Goal

Precondition

Participating
Roles

Communication
Interfaces

Parameters

Basic Flow

Non-functional
Properties Alternative

Flows

Architectural perspective Behavioural perspective

5.2 Proposed Novel Service Test Description

130

On the basis of the illustration, also the differentiation between the architectural

perspective and the behavioural perspective within the STD becomes evident. This

principle has been derived from both UTML (see section 5.1.3) and U2TP (see section

3.3.1). However, the focus of what is part of the two perspectives and how these parts are

described differs from the proposed STD. Also, UTML and U2TP are typical approaches

to define test specifications or rather test models whereas STD, besides including test-

specific parameters, also contains information that are usually related to service

specifications such as, for instance, the description of requirements.

5.2.2 Architectural Perspective

The architectural perspective of the STD illustrated in the treelike Figure 5.12 contains at

first the Service Test Description element, which is the root for every instance of an STD.

Underneath this element, there are the five fields Service ID, Prose Description, Roles,

System Meta Information and Non-functional Properties.

The Service ID is an identifier for the value-added service that is about to be tested and is

a term containing a series of alphanumeric characters. It should already be defined within

the “Structured Requirements” document by the service analyst. The test developer can

just reuse the given term and select it as Service ID in the STD. This is important because

the service developer will also use the term as code name for his development project.

Using the same identifier, the test and development processes can be easier matched. This

allows an easy test management throughout the development phase. The Service ID will

also be used for further processing regarding the naming of the derived behaviour models,

test cases and the test suite.

5 Novel Service Test Specification and Related Specifications

131

The Prose Description documents the value-added service’s functionality from the

potential user’s point of view. The description is written by the test developer and should

serve him as a reminder of the service’s characteristics and main functionality. It also

helps him to distinguish between diverse projects that he might have to deal with. There

is no defined guideline how to write the Prose Description, but it should be brief and

concise and it should not contain any pronouns to avoid misunderstandings. The Prose

Description does not play a role in the further formal processing of the STD.

The most important part within the architectural perspective of the STD is the Roles field.

It stands for a list of participating entities that communicate with the value-added service

by exchanging signals and data on the one hand and that are external to the service

environment (e.g. application server) on the other. The Roles most likely bear a

resemblance to actor elements known from traditional use case modelling (Jacobson et

al., 1992), “Structured Use Case Models” (see section 5.1.1), RUCM (see section 5.1.2)

and other use case-based approaches. Like actors in the UML context, the Roles in STD

define a potential behaviour that has to be further specified. However, there is a difference

between actors and Roles. According to (OMG, 2011a), actors “may represent human

users, external hardware, or other subjects”. This is a very general statement and allows

diverse assumptions. Contrary to the view on actors in UML, the Roles in STD represent

only specific external hardware or software that can interact with the value-added service

via communication protocols such as HTTP, RTP or SIP. The importance of the Roles

for the STD lies in the fact that based on the chosen Roles for a value-added service, sets

of predefined test modules for the test execution environment can be automatically

derived and afterwards instantiated. This is one major aspect of reusability in the proposed

approach and will be further described in the upcoming section. Examples for Roles

5.2 Proposed Novel Service Test Description

132

applied in the STD can be, for instance, a SIP phone (or rather VoIP phone) or a web

browser. A SIP phone can either be existent as hardware or software whereas the web

browser is, of course, software-based. Both example Roles are able to communicate via

their applied communication protocols (SIP for SIP phone and HTTP for web browser)

with value-added services.

The next field within the architectural perspective, the System Meta Information, contains

properties for the configuration of the SUT. This information is relevant for the TTCN-3

test suite that will be automatically generated based on the STD input. Each TTCN-3 test

suite requires a test configuration containing parameters of the addressability of a service,

such as the service URI, IP addresses, port numbers and the transport protocol (such as

UDP, TCP or SCTP) used for the message transfer.

The final field determined in the architectural perspective of the STD is the Non-

functional Properties. Analogous to the Prose Description, this information does not have

a direct influence on the formal processing. It allows the test developer to capture

information that is important for the service customer (such as quality of service

experience, performance and usability) but does not describe specific functions.

5.2.3 Behavioural Perspective

As illustrated in Figure 5.12, the behavioural perspective of the STD comprises a list of

requirements (Requirement List) to specify the functionality a value-added service has to

accomplish. One Requirement as part of the STD defines one function of a service and

generally includes a set of inputs, the relevant behaviour as well as expected outputs.

5 Novel Service Test Specification and Related Specifications

133

Requirement ID

In the specification of a Requirement, well-defined fields have to be determined. First, a

Requirement needs a unique identifier. The naming, which is subjected to a special

naming convention, can be done in the field Requirement ID. Starting from the first

specified Requirement, the first unique identifier will be named “Req01”. Further

requirements will be named by the prefix “Req” followed by the incremented number of

Requirement.

Requirement Goal

The next field is called Requirement Goal and is comparable to the Prose Description

field within the architectural perspective of the STD. Here, the test developer can specify

in a very short natural language-based prose text the main objective of the corresponding

Requirement.

Precondition

The Precondition field in the STD is comparable to the preconditions known from

traditional use case specifications, but the notation applied here formally defines the

statement as it is not based on natural language. In general, precondition statements

indicate what has to have happened before the current function (or Requirement) is

activated. In the context of STD, the Precondition enables the establishment of

dependencies between Requirements. Figure 5.13 demonstrates how this can be

visualised.

5.2 Proposed Novel Service Test Description

134

Figure 5.13: Dependency of Requirements through Preconditions

A Requirement in the STD contains flows of behaviour, exactly one Basic Flow (BF) and

at least one Alternative Flow (AF). This is exemplified in Figure 5.13 with three

Requirements, “Req01”, “Req02” and “Req03”. The connection originating from the BF

of “Req01” to the target “Req02” determines that “Req02” actually depends on the BF of

“Req01”. Similarly, the second connection in the figure determines that “Req03” depends

on the AF of “Req01”. In the STD, these dependencies are stated through the

Precondition field. In the definition of “Req02”, the field would contain the value

“Req01”. This would set the BF of “Req01” to have happened before “Req02” can be

activated. For “Req03”, the value of the Precondition field is “Req01.AF”. So, regarding

AFs, the id of the Requirement has to be set followed by a full stop and the id of the AF

itself. Theoretically, a Requirement can have more than one Precondition. This is

specified by an ordered comma-separated list of the values.

Participating Roles

In the next field within a Requirement definition, the Participating Roles are selected.

The Roles field within the architectural perspective already specified all the participating

entities that shall interact with the value-added service. The Participating Roles only

contains selected Roles from the architectural perspective that are specifically playing a

Req02
AF

BF

Req01
AF

BF

Req03
AF

BF

5 Novel Service Test Specification and Related Specifications

135

role in the current Requirement. The following table shows an excerpt of a STD

determining two different Participating Roles, “SIP phone” and “Web browser”.

Table 5.4: Excerpt of example STD containing two example Participating Roles

Participating Roles • SIP phone: [s]
• Web browser: [w]

Besides the mentioning of the concrete names of the Participating Roles, the test

developer also has to define aliases for them (“[s]” for SIP phone and “[w]” for Web

browser). They can be used within the complete STD as identifier for the relevant Role.

Communication Interfaces

The Communication Interfaces (CI) field contains the most relevant information

regarding the aspect of reusability. In STD, the CIs are defined as part of the SUT. In fact,

they represent the points of interaction between the currently specified value-added

service, also referred to as SUT, and the participating entities defined as the Participating

Roles. The following Figure 5.14 illustrates the relationship between Roles and CIs.

Figure 5.14: Relationship between Roles and CIs

One Role provides a potential functionality (or rather behaviour) that can be applied by

the SUT when it communicates with the specific Role. The complete scope of potential

functionality is represented by all CIs that are assigned to that Role. In Figure 5.14, there

Participating Entities System Under Test

Role C

Role B

Role A

CI 1 CI 2

CI 1
CI 2 CI 3

CI 1

5.2 Proposed Novel Service Test Description

136

are three different CIs (CI1, CI2, CI3) defined for Role B that can be applied by the SUT.

By selecting one specific CI, for instance “CI2”, one aspect of the complete scope of

functionality Role B provides is selected.

To show the relevance of CIs in the STD and how they are identified for Roles, “SIP

phone” is used as an example Role. According to (ITU-T Q.3948, 2011) and (ITU-T

Q.3949, 2012), a SIP entity can be described as a so-called SIP multimedia

communication terminal that comprises all the functionality displayed in Figure 5.15.

Permission to reproduce Figure 5.15 has been granted by ITU.

Figure 5.15: SIP multimedia communication terminal (ITU-T Q.3948, 2011)

Following the specification of a SIP multimedia communication terminal, a SIP phone as

a SIP entity can be seen as an instance of the terminal. Correspondingly, a SIP phone, as

well as any other SIP entity, has to be able to instantiate and terminate SIP sessions using

the SIP protocol (IETF RFC 3261, 2002) and also the SDP protocol (IETF RFC 4566,

2006). Additionally, it has to be able to exchange multimedia data, either audio and/or

video, via RTP (IETF RFC 3550, 2003). Based on these diverse aspects of functionality

Local Area
NetworkSystem control

SIP
[RFC 3261]

SDP
[RFC 4566]

RTP/RTCP
[RFC 3550]

System control
user interface

Video codec

Audio codec

Video I/O element

Audio I/O element

5 Novel Service Test Specification and Related Specifications

137

provided by a SIP phone, the CIs can be derived. This is illustrated in the following Figure

5.16.

Figure 5.16: The Role SIP phone with its corresponding CIs

Here, six corresponding CIs have been identified for the Role SIP phone on the side of

the SUT. The RTP CIs either represent the sending of RTP streams from the SUT to the

SIP phone (RTP Source), or alternatively, from the SIP phone to the SUT (RTP Sink).

The SIP CIs have been derived from the transaction state machines described in section

2.2.2. They define the handling of messages being initially sent from the SUT to the SIP

phone (either SIP UAC INVITE for sending INVITE requests or SIP UAC non-INVITE

for sending any type of SIP request different from INVITE requests) or from the SIP

phone to the SUT (either SIP UAS INVITE for receiving INVITE requests or SIP UAS

non-INVITE for receiving any type of SIP request different from INVITE requests). For

the SDP protocol, no separate CI has been identified because SDP is usually embedded

into SIP messages, for instance within INVITE or ACK requests or within 200 OK

responses.

Overall, the determined CIs represent standard behaviour of the Role SIP phone. Of

course, this aspect can be generalised. A set consisting at least of one CI is assigned to

Participating Entity System Under Test

SIP phone

RTP Sink
RTP SourceSIP UAC INVITE

SIP UAS INVITE
SIP UAC non-INVITE

SIP UAS non-INVITE

5.2 Proposed Novel Service Test Description

138

each definable Role within the STD. Regarding the aspect of reusability in the novel

approach, it is important to mention that the predefined test modules as part of the Test

Modules Repository within the proposed Test Creation Framework will be automatically

selected based on the determined CIs. So, for every determined CI, a corresponding test

module has to exist in order to run the process.

The specification of CIs within a Requirement in the STD will be exemplified by means

of the following Table 5.5.

Table 5.5: Example of specifying CIs in STD

Communication
Interfaces

• SIP UAS non-INVITE: [s1] → channel a
• SIP UAC non-INVITE: [s2] → channel b

The CIs SIP UAS non-INVITE and SIP UAC non-INVITE are selected for the example

Requirement. Similar to the specification of Participating Roles in Table 5.4, aliases are

assigned to the CIs. Here, a naming convention has to be followed to easily figure out

which CI is assigned to which Role. Therefore, the CIs contain the same identifier as the

corresponding Role followed by a number that increases with every further added CI. If

the alias of SIP phone is “[s]”, the alias of the first mentioned CI will be “[s1]”. Besides

the name of the CI and its alias, also a corresponding so-called channel is set. The

significance of the channel will become apparent in the Flow Definition, but the following

Figure 5.17 demonstrates the meaning of it.

5 Novel Service Test Specification and Related Specifications

139

Figure 5.17: Significance of channel for Roles and corresponding CIs

As shown above, a channel represents the communication channel between a Role as

participating entity and one of its corresponding CIs which is part of the SUT.

Parameters

The relevance of Parameters within a Requirement definition is very significant as they

enable a great variability, especially regarding the CIs. As mentioned before, each CI in

the STD can be assigned to a predefined test module within the framework. A detailed

structure of a test module is explained in section 6.2, but it is worth mentioning that it

describes behaviour that is common to the CI. The test modules also include variables

that are instantiated from abstract data types which represent a communication protocol

message (e.g. SIP request or SIP response). In the approach, each request-response

protocol contains an abstract data type for its request and its response messages (see

section 6.3). The variables within the test modules can be modified (or parameterised) by

the STD through the Parameters field. Here, STD variables are instantiated and assigned

the variables of a corresponding test module. The way how to do the assignment and the

following modification is discussed in the following. In general, a communication

protocol message as part of a CI (or rather test module) is a collection of data fields that

build a compound domain. In STD, the compound domain concept has been derived from

(Xiaoping and Maag, 2013) and can be defined as follows:

SUT
[s1] [s2]Role [s]

channel a

channel b

5.2 Proposed Novel Service Test Description

140

Definition: A compound value v of length n > 0 is defined by the set of pairs {(𝑙𝑙𝑖𝑖 , 𝑣𝑣𝑖𝑖) | 𝑙𝑙𝑖𝑖 ∈

𝐿𝐿 ˄ 𝑣𝑣𝑖𝑖 ∈ 𝐷𝐷𝑖𝑖 ∪ {𝜀𝜀}, 𝑖𝑖 = 1 …𝑛𝑛}, where 𝐿𝐿 = {𝑙𝑙1, … , 𝑙𝑙𝑛𝑛} is a predefined set of labels and 𝐷𝐷𝑖𝑖

are data domains. Based on this, the compound domain is the set of all values with the

identical set of labels and domains defined as 〈𝐿𝐿,𝐷𝐷1, … ,𝐷𝐷𝑘𝑘〉.

(Xiaoping and Maag, 2013) discuss that for any given network protocol P it is possible

to define a compound domain 𝑀𝑀𝑃𝑃 by the set of labels and data domains that are defined

in the underlying protocol specification. Accordingly, a message of a protocol P,

independent of whether it is a request or a response type, is any element 𝑚𝑚 ∈ 𝑀𝑀𝑃𝑃.

In the following Table 5.6, an example parameterisation of a SIP MESSAGE request is

demonstrated.

Table 5.6: Parameterisation of an example SIP MESSAGE request

Parameters var m = [s2]→s_Request;

m = {(Method, “MESSAGE”), (FromURI, “service@sip.de”),
(ToURI, “bob@sip.de”), (Text, “Hello Bob!”)}

First, a local STD variable m using a syntax derived from well-known scripting languages

(such as JavaScript) is initialised. Now, m is assigned the variable “s_Request” from the

CI “[s2]” which refers to the corresponding test module. In the syntax, this assignment is

performed by the arrow symbol. The real parameterisation of the variable takes place

subsequently and is based on the key-value pairs defined by the compound domain.

Conveniently, only the labels Method, FromURI, ToURI and Text and the corresponding

values were used to specify the SIP MESSAGE. Of course, a typical SIP request can be

specified in more detail (see Figure 6.21). Regarding the value determination it is

mentionable that quotation marks have to be used irrespective of whether the values are

5 Novel Service Test Specification and Related Specifications

141

alphanumeric or all kinds of numbers such as integers and floating point numbers. The

example in Table 5.6 also shows how the Parameters field in STD allows differentiations

within the CIs. In general, the SIP UAC non-INVITE CI describes the initiation of a

request from the SUT to a SIP phone that is different from an INVITE request. In the

example, the SIP MESSAGE (IETF RFC 3428, 2002) was used, but through

parameterisation, also the following request types could be defined:

• ACK, BYE, CANCEL, OPTIONS and REGISTER (IETF RFC 3261, 2002)

• PRACK (IETF RFC 3262, 2002)

• SUBSCRIBE and NOTIFY (IETF RFC 6665, 2012)

• PUBLISH (IETF RFC 3903, 2004)

• INFO (IETF RFC 6086, 2011)

• REFER (IETF RFC 3515, 2003)

• UPDATE (IETF RFC 3311, 2002)

Besides the possibility to parameterise variables within the Parameters field, it is also

possible to access the values that were set. Like in many programming languages, such

as Java or C#, fields or rather attributes of variables instantiated from complex data types

can be accessed by applying the dot operator (“.”). This concept is reused here. For the

local variable m defined in Table 5.6, accessing for example the field method would be

written as follows:

m.method

The accessing of fields can be done within the Parameters field on the one hand, or

alternatively, within the Basic Flow and Alternative Flow definitions. The return value of

5.2 Proposed Novel Service Test Description

142

this operation will be the currently stored value (e.g. “MESSAGE” referring to the

definitions made in Table 5.6).

The Parameters field, besides defining and parameterising variables, also enables the

definition of timers. The following Table 5.7 shows how this is realised.

Table 5.7: Instantiation of timers in Parameters field

Parameters timer t1 = [s2]→timerF;

The test module referring to the CI SIP UAC non-INVITE contains a list of timers (e.g.

“Timer E”, “Timer F”, “Timer G”). In this example, “Timer F” was chosen and bound to

to the name “t1”. Within the Basic Flow and the Alternative Flow, the state of this timer

can be verified within specified constructs (if-then-else).

Basic Flow and Alternative Flows

The concept of the Basic Flow and the Alternative Flows within the Requirement of an

instance of the STD is derived from the RUCM method (see section 5.1.2). Besides the

determination of the CIs and the parameterisation, the Basic Flow is the most significant

part of a Requirement. In principle, it contains the descriptions of steps that have to be

taken to achieve the main target (or goal as it is described in the Requirement Goal field)

of the Requirement. Within the steps of the Basic Flow, possible alternative behaviour

can occur. The effects of the alternative behaviour can be specified by means of the

Alternative Flows. Theoretically, a Requirement can contain an infinite number of

Alternative Flows, but it will always contain only one Basic Flow.

In order to define the steps within the Basic Flow, many documented approaches have

been considered, for instance the RUCM method. However, textual use case design might

5 Novel Service Test Specification and Related Specifications

143

also be error-prone even if restriction rules are established to reduce the major problems

of natural language-based descriptions, namely imprecision and incompleteness. Based

on the requirements on the STD drawn up at the beginning of this section, it should be

machine-readable so that it can be parsed by the Automatic Composition Engine (ACE)

within the TCF. Also, the description has to take the reusability aspect into consideration.

To sum up, a new language is required which enables the precise description of behaviour

flows on the one hand and realises the reference to the reusable test modules within the

TMR on the other.

As appropriate foundation of a language being able to meet the mentioned requirements,

a process algebra notation has been found, the pi-calculus (Milner, 1992), (Milner et al.,

1992). In principle, the pi-calculus is a model “of communication systems in which one

can naturally express processes which have changing structure” (Milner et al., 1992). It

belongs to the family of process calculi, which are mathematical formalisms for

describing and subsequentially analysing properties of concurrent computation, and is an

extension of the Calculus of Communication Systems (CCS) (Milner, 1989). One major

benefit of pi-calculus is the simple language it is based on to specify interactive message-

passing programs. The language is also very expressive. However, the original pi-calculus

notation defined by (Milner, 1992) does not contain primitives such as numbers,

booleans, variables, conditions or terms.

Through the syntax of pi-calculus, processes and channels can be represented. A process

is an abstraction of an independent thread of control whereas a channel is an abstraction

of the communication link between two processes. Interaction between processes is

5.2 Proposed Novel Service Test Description

144

enabled by sending and receiving messages over channels. The grammar for processes in

pi-calculus is specified as follows.

Assume that there exists a countable infinite set of names N. Let x, y,… range over N and

let P and Q denote processes. Then:

• 𝑃𝑃 | 𝑄𝑄 denotes a process composed of P and Q running in parallel (an example of

this is illustrated in Figure 6.35).

• 𝑎𝑎(𝑥𝑥).𝑃𝑃 describes a process that receives an input over channel a, binds the result

to x and then proceeds with P.

• 𝑎𝑎�〈𝑦𝑦〉.𝑃𝑃 describes a process that sends out y over the channel a and then proceeds

with P.

• !𝑃𝑃 denotes that an infinite number of copies of P runs in parallel.

• 0 denotes that the current process is terminated.

Generally, the stated constructs for pi-calculus are sufficient to determine concurrent

behaviour. Regarding the Basic Flow of the STD, however, some limitations of the pi-

calculus concept have to be reconciled by means of minor enhancements. Firstly, the

names being sent and received over the channels have to be substituted by terms. Such

terms are placeholders for simple names, variables or even functions that expect input

parameters (e.g. (𝑥𝑥)) and of course return a value to be either sent or received. The

concept of terms has been derived from (Abadi and Fournet, 2001) and (Abadi and

Fournet, 2004). Another limitation of the standard pi-calculus is the syntax lacking the

definition of conditional constructs such as if-then-else. In applied pi-calculus approaches

such as in (Ryan and Smyth, 2011), the concept of including if-then-else constructs has

5 Novel Service Test Specification and Related Specifications

145

already been discussed. However, the checking of values of complex variables has not

been considered in this approach. An example usage of the construct can be as follows:

𝑖𝑖𝑖𝑖 (𝑥𝑥 > 5) 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝑃𝑃 𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 𝑄𝑄

The expression states that if a number stored in a variable x is higher than the value of

“5”, the current process proceeds with P, otherwise with Q.

Applying the pi-calculus with the proposed enhancements, the Basic Flow and also the

Alternative Flows can now be determined. However, the way the pi-calculus is applied in

the STD may differ minimally from its original application. The pi-calculus is used in the

following way:

• Basic Flows and Alternative Flows within Requirements are generally described

by means of enhanced pi-calculus descriptions.

• The Basic Flow contains possible transitions to existing Alternative Flows within

the Requirement.

• Each Alternative Flow has to be specified with a unique identifier (e.g. “AF1”).

• A Basic Flow and each additional Alternative Flow within a defined Requirement

are specified by their own processes 𝑃𝑃,𝑄𝑄,𝑅𝑅, … ∈ 𝜌𝜌. Basic Flow processes and

Alternative Flow processes are always running sequentially and not concurrently.

So, if a step within a Basic Flow leads to an Alternative Flow (possibly because

of an if-else-then construct), the process of the Basic Flow terminates

automatically and is substituted with the process of the Alternative Flow.

• The pi-calculus description focuses on the potential behaviour of the considered

value-added service (SUT), not on the external system (such as the participating

5.2 Proposed Novel Service Test Description

146

entities). So, the test is not in the focus of the pi-calculus description, but the

service.

• Potential behaviour is described through channels and not through concurrent

processes. In fact, the Basic Flow (and also the Alternative Flows) will always

include the major process P and an implicit process Q representing the test

environment.

• A process defined in one Basic Flow describes a period of time within the lifetime

of the SUT (or rather value-added service). The sum of all channels represents the

possible communication channels of the SUT to the test environment.

• The pi-calculus channels are directly mapped to the communication channels

which describe the message exchange between the CIs (as part of the SUT) and

the Participating Roles (see Figure 5.17).

• The variables that are about to be sent and received along the channels are defined

within the Parameters field.

• Within the if-else-then constructs, fields of variables can be accessed through the

dot operator (“.”) as well as states of defined timers can be verified (e.g.

“timeout”).

In order to illustrate the approach with the pi-calculus-based Basic Flow and Alternative

Flow definitions, a sample specification by means of the STD will be discussed in the

following section.

5 Novel Service Test Specification and Related Specifications

147

5.2.4 Sample Specification with Service Test Description

The sample chat service introduced in section 5.1.1 will be applied. The service will be

reused in a simplified form for the prototype validation in section 8.3, and a specification

of the “Send Message” use case is given here for illustration. As discussed in the previous

sections, first the architectural perspective has to be specified (see Table 5.8).

Table 5.8: STD architectural perspective of simplified sample chat service

Service ID Chat Service

Prose Description A chat communication should be provided. The service
users are able to log in to the system and log out
again. While being logged in, the service user can
enter chat rooms and leave the chat rooms again. The
service user can also send textual chat messages. The
Administrator of the chat service can add new users
to the system and is also capabale of erasing existing
users from the system. The Administrator can also
create new chat rooms and erase old chat rooms.

Roles • SIP phone: [admin]
• SIP phone: [sender]
• SIP phone: [recipient]

System Meta
Information

ServiceURI: sip:chatservice@vas.de
Protocol: UDP

Non-functional
Properties

None

As described in the section 5.2.2, within the architectural perspective of the STD, the

Service ID has to be set at first (“Chat Service”). The Prose Description describes the

main functionality the sample chat service has to deliver as precise as possible. Three

different Roles have been identified for the service and all are acting as SIP phones. The

“[sender]” and the “[recipient]” are Service Users (see Figure 5.3) whereas the “[admin]”

is, of course, the Administrator. A further information regarding the service addressability

is given through the service URI. Non-functional Properties are not specified for the

sample chat service.

5.2 Proposed Novel Service Test Description

148

After the architectural perspective is defined, the behaviour has to be specified. To specify

the “Send Message” use case, a Requirement is defined within the sample chat service

STD instance (see Table 5.9).

Table 5.9: STD Requirement definition for “Send Message” from sample chat service

Requirement ID Req03

Requirement Goal Service User [sender] sends a text message to another
Service User [recipient] and gets informed whether
the transmission was successful.

Precondition Req02

Participating Roles • SIP phone: [sender]
• SIP phone: [recipient]

Communication
Interfaces

• SIP UAS non-INVITE: [sender1] → channel a
• SIP UAC non-INVITE: [sender2] → channel b
• SIP UAC non-INVITE: [recipient1] → channel c

Parameters var initMessage = [sender1] → r_Request;
var forwMessage = [recipient1] → s_Request;
var okMessage = [sender2] → s_Request;
var errorMessage = [sender2] → s_Request;
timer t1 = [recipient1] → timerF;

initMessage =
 {(Method, “MESSAGE”), (Text, “Hello Bob!”)}
forwMessage =
 {(Method, “MESSAGE”), (Text, initMessage.Text)}
okMessage =
 {(Method, “MESSAGE”), (Text, “ok”)}
errorMessage =
 {(Method, “MESSAGE”), (Text, “Message not
 received”)}

Basic Flow 𝑃𝑃 ≝
 𝑎𝑎(𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑖𝑖𝑒𝑒).
 𝑐𝑐̅〈𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑖𝑖𝑒𝑒〉.
 𝑖𝑖𝑖𝑖 (𝑡𝑡1. 𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒𝑓𝑓𝑡𝑡𝑡𝑡) 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝑄𝑄 𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒.
 𝑏𝑏�〈𝑓𝑓𝑜𝑜𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑖𝑖𝑒𝑒〉.
 0

Alternative Flow
(AF1)

𝑄𝑄 ≝
 𝑏𝑏�〈𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑖𝑖𝑒𝑒〉.
 0

Initially, the Requirement ID has to be set and a Requirement Goal is specified. The

Precondition field contains the value “Req02”. Although this Requirement is not

determined here, the specified behaviour within its respective Basic Flow has to happen

before the Basic Flow of “Req03” begins. In this example, “Req02” indicates the entering

5 Novel Service Test Specification and Related Specifications

149

of both Service Users into a chat room. Notice that “Req02” itself includes a

Precondition, namely “Req01”, which describes the login process of both Service Users.

So, the Service Users have to be logged in to enter a chat room (“Req01” “Req02”)

and they have to have entered a chat room before sending messages (“Req02”

“Req03”). In the Participating Roles field, both Service Users “[sender]” and

“[recipient]” are included. The Administrator does not participate within the “Send

Message” Requirement. Three different CIs have been identified. The SUT requires two

channels a and b to communicate with the initial sender of the text message. In channel

a, the SUT is acting as SIP UAS whereas in channel b, it is acting as SIP UAC. Regarding

the recipient of the text message, the SUT only requires one channel c where it is acting

as SIP UAC. The Parameter field includes the definition of several variables all

representing SIP MESSAGEs, either being sent from the sender to the SUT

(“initMessage”), from the SUT to the sender (“okMessage”, “errorMessage”) or from the

SUT to the recipient (“forwMessage”). Additionally, the timer F of the SIP UAC non-

INVITE CI is defined. Subsequently, the Basic Flow is defined. First, it denotes the SUT

to receive the SIP MESSAGE “initMessage” over channel a and then consequently sends

the SIP MESSAGE “forwMessage” over channel c. In the next step, the state of the timer

“t1” is checked. If it has not timed out, the SUT sends out the SIP MESSAGE

“okMessage” over channel b and the Basic Flow terminates afterwards. Otherwise, if the

timer has timed out, the Alternative Flow “AF1” is activated. Here, a different SIP

MESSAGE “errorMessage” is sent by the SUT over channel b. Then, also the Alternative

Flow terminates.

To sum up, this section introduced the novel STD, a description language containing

aspects of typical requirements specifications as well as relevant information of the test

5.2 Proposed Novel Service Test Description

150

environment. In contrast to the introduced specification languages in section 5.1, the STD

fulfils all the relevant requirements stated in section 5.2. At first, the relevant data

specified in both the architectural and behavioural perspective can be read and interpreted

by a machine as it is existing either in a structured or formal manner. Although formality

in languages usually means that the compilation of the language is difficult for the

modeller or creator, the pi-calculus-based descriptions to specify the Basic Flows and

Alternative Flows are straightforward and can be defined in a very compact and intuitive

way. At the same time, the descriptions have a very precise meaning and do not allow

any ambiguities. A further requirement mentioned was the possibility to trace the

requirements within the language. This aspect is supported by the STD, as it is indeed

possible to map the use cases defined in the “Structured Requirement” document to the

Requirements within the STD. Moreover, the STD itself supports tracing within an

instance through the Precondition field. Requirements that are based on each other can

easily be specified. Another important aspect, the possibility to reuse certain aspects of

behaviour, is also a very important part of the STD. Through Roles in combination with

the CIs that are belonging to the SUT, sorts of reusable components can be derived. This

concept is discussed in more detail in section 6.4. Of course, the concept will clarify as

soon as the concept behind the reusable test modules is described in section 6.2. Further

specified requirements are covered, such as the test data integration and parameterisation.

This is a very relevant part of the STD and can be realised through the Parameters field

within a specific Requirement. The SUT interface description, which is also specified as

a major requirement, can be defined through the System Meta Information within the

architectural perspective of an STD instance. If demanded, further fields can be added

here. In general, the STD allows extensions without having to change the specification

5 Novel Service Test Specification and Related Specifications

151

language. For example, new Roles besides the already mentioned SIP phone and Web

browser can be added. Of course, this also requires the identification of the corresponding

CIs and regarding the Test Creation Framework, the definition of the reusable test

modules. Finally, the compliance to value-added services is given as standard

communication protocols are supported, such as SIP and RTP and also HTTP.

5.3 Comparison of Service and Test Specification

Languages

As predicted in the introduction, this section compares the service and test specification

languages from section 5.1 and the proposed novel STD from section 5.2 to demonstrate

their relative assets and weaknesses. Considering that, diverse requirements have been

stated. To evaluate the specification languages with regard to the requirements, a rating

will be applied to them in the upcoming Table 5.10 by using a three-level scale. The scale

contains the following ratings:

• (+): the specification language fulfils the requirement completley.

• (o): the specification language fulfils only basic aspects of the requirement.

• (-): the specification language does not fulfil the requirement.

The requirements on a novel specification language have been derived based on their

potential application within the proposed TCF (see section 4.3). A major advantage of the

TCF is that only an instance of the specification language has to be created manually.

Based on this instance, a behaviour model is automatically built, test cases are

automatically derived and generated and subsequently executed against the SUT.

5.3 Comparison of Service and Test Specification Languages

152

Therefore, high demands are placed on the specification language as it presents the

foundation of the quality of testing.

The requirements stated in section 5.2 are as follows:

• Machine-readable and parsable by a machine.

• Usability by test developers who specify the considered value-added services.

• Traceability of use cases to enable an easy transition from standard use case

description.

• Preciseness to avoid ambiguity within the specification.

• Support for functional specification (e.g. flow descriptions or rather use case

descriptions).

• Reusability aspects to simplify and fasten the definition process.

• Test Data integration and parameterisation (e.g. parameterise variables).

• SUT interface description to already specify the addressability of the value-added

service in order to achieve a fully automated process.

• Extension support to allow further changes and enhancements.

• Compliance to value-added telecommunication services.

5 Novel Service Test Specification and Related Specifications

153

Table 5.10: Comparison of specification languages

Characteristics Specification Language

 Structured Use
Case Models

RUCM UTML Proposed STD

Readability/Parsability + - + +

Usability o + + +

Traceability of use cases + + - +

Preciseness o o + +

Functional specification + + + +

Reusability aspects - - - +

Test Data - - + +

SUT interface description - - + +

Support for extensions - o o +

Compliance to services - - + +

Readability and parability of the specification language is best supported by UTML, the

Structured Use Case Models and the proposed STD as they rely on formal models,

descriptions or metamodels. RUCM is natural-language-based and therefore not easily

parsable. The aspect of Usability is fulfiled by RUCM, UTML and the proposed STD

because the procedure within the compilation phase is well-defined. The Traceability of

use cases is supported by all approaches that are actually based on use case design. This

is the case in Structured Use Case Models, RUCM and the proposed STD. Regarding the

Preciseness, the Structured Use Case Models and RUCM have weaknesses as they are

either natural language-based or allow loose determinations. Every specification language

is meant to provide a Functional specification and therefore this requirement is fulfilled

by all four languages. A unique position feature of the proposed STD emerges regarding

the aspect of Reusability, which is not supported by any other specification language. The

Test Data integration is supported by UTML as it is a typical test specification language.

Like in the proposed STD, abstract data types and variables exist that can be

5.4 Conclusion

154

parameterised within the approach. The same argument can be emphasised regarding the

SUT interface description which is also not supported by the Structured Use Case Models

approach and RUCM. The Support for extensions is not specified by RUCM and UTML,

but it should be possible. The Structured Use Case Model is based on a defined

metamodel and does not allow any further extensions. Finally, the Compliance to

services, especially value-added telecommunication services, is fulfilled by UTML and

the proposed STD. Both support the integration of SIP.

5.4 Conclusion

Different specification languages have been presented within this chapter in order to

compare them against the proposed novel STD. The STD has been described with all its

features, starting from the simple way it is compiled, its ability to be parsed and

interpreted, its integration of reusable modules (CIs) and of course, its property to allow

traceability of use cases. The language has been compared to other specification

languages by means of stated requirements. It has been identified that all requirements

are fulfilled by the novel STD.

Up to now, a solid basis has been defined to implement the TCF. However, new essential

questions arise, for instance, regarding the structure and definition of the reusable test

modules. Also the relationships between the CIs within an STD instance and the reusable

test modules has to be clarified. Furthermore, an algorithm needs to be introduced which

builds the formal behaviour models based on an STD instance. All of these questions will

be discussed in the upcoming chapter.

155

6 Reusable Test Modules and Behaviour

Model Generation

“In most engineering disciplines, systems are designed by composing already existing

components that might have been used in other systems” (Sommerville, 2012). In this

chapter, this statement will be taken up for testing, or to put it more precisely, a novel

concept of reusable test modules will be introduced. These reusable test modules are part

of the proposed TCF and are used together with the STD in order to build behaviour

models from which test cases can be derived later on (see section 4.3). The following

Figure 6.1 illustrates a simplified flow chart based on the proposed TCF (see Figure 4.5)

showing the generation of behaviour models based on STD instances.

Figure 6.1: Generation of Behaviour Models based on STD and reusable test modules

The main concern of this chapter is the introduction of the composition algorithm in the

Automatic Composition Engine (ACE) which combines instances of the reusable test

modules and generates behaviour models. The application of such an algorithm, however,

Start

Service Test
Description

Behaviour
Models

End

Automatic
Compositon Engine

Test Modules
Repository

Test Data
Pool

6 Reusable Test Modules and Behaviour Model Generation

156

requires a deep knowledge of its inputs (see Figure 6.1) such as the Service Test

Description (STD) instance, a selection of reusable test modules from the Test Modules

Repository (TMR) as well as test data from the Test Data Pool (TDP). Whereas the

structure of the STD has already been discussed in chapter 5, the upcoming sections 6.1

and 6.2 deal with the reusable test modules. First, an appropriate modelling notation is

selected in section 6.1 based on general requirements for model-based notations and

specific requirements which take the concept behind the proposed TCF (see Figure 4.5)

and the properties of value-added services into consideration. Furthermore, the section

introduces the TU concept which allows a view on client- and server-based cores and in

parallel enables the underlying semantics used in the selected modelling notation. Section

6.2 introduces the architecture component within the proposed TCF, the Test Modelling

Environment (TME), which enables the modelling and definition of new reusable test

modules. The test data integration is discussed in section 6.3 and illustrates how the

abstract data types and concrete test templates for request and response messages of the

given protocol SIP are stored. This concept can be reused for further applicaton layer

protocols (such as HTTP). The main process and the major outcome of this chapter will

be explained in section 6.4. The main task of this ACE algorithm is to produce a well-

defined output, the behaviour models, based on the previously defined input, the STD

instance. The STD instance has to exist in a parsable form to be interpreted by the ACE

algorithm. After the algorithm has read the STD instance, the next step is to identify the

appropriate reusable test module instances by parsing the specified

CommunicationInterfaces within the STD instance. Then, the parameterisation of the

reusable test module instances is performed by reading the Parameter field. Finally, the

ACE algorithm realises the composition of the reusable test modules according to the

6 Reusable Test Modules and Behaviour Model Generation

157

content specified in the Requirements of the STD instance. The different steps that have

to be taken by the algorithm during the composition phase can be derived from the

different categories of steps existing in the pi-calculus-based behavioural description. The

result at the end is a list of behaviour models. Each behaviour model within this list is

related to a specified Requirement within the STD instance.

6.1 Notation for Behaviour Modelling

To generate appropriate functional test cases and execute them against a System Under

Test (SIP AS with deployed value-added services), a formal modelling notation needs to

be selected that enables a behavioural description of the service. However, regarding the

proposed framework (TCF), a number of requirements has to be fulfilled by such a

modelling notation. The upcoming section gives an overview of the essential

requirements, presents possible modelling notations and gives reasons for the selection

of one specific modelling notation.

6.1.1 Evaluation of Potential Modelling Notations

With regard to “Model-Based Testing” described in section 3.2.4, behavioural aspects of

a system or service can be specified by means of modelling notations. According to (ETSI

ES 202 951, 2011), such a modelling notation has to provide basic means for algorithmic

design and data manipulation. The ETSI standard lists further general requirements that

have to be fulfilled by potential modelling notations. The most relevant aspects are

mentioned in the following (ETSI ES 202 951, 2011):

6.1 Notation for Behaviour Modelling

158

• The notation shall be based on unambiguous operational semantics.

• The notation shall support diverse simple data types such as boolean, integer and

character strings.

• The notation shall support user-defined abstract data types.

• The notation shall support basic control structures like variables, assignment and

conditional statements.

• The notation shall support advanced control constructs such as loops.

Considering these general requirements, the authors of (ETSI ES 202 951, 2011) point

out that modelling notations for the specification of behaviour are limited to rule-based

notations, process-oriented notations and Statecharts (Harel and Politi, 1998). Whereas

Statecharts are clearly defined as a special presentation form for finite-state machines,

rule-based notations and process-oriented notations each represent a group of more or less

well-known modelling notations. Rule-based notations are “textual modelling notations

where state transition rules describe the behaviour of the system” (ETSI ES 202 951,

2011). They can be referred to as extended finite state machines (EFSM) (Cheng and

Krishakumar, 1993) or abstract state machines (ASM) (Börger and Stärk, 2003). In

contrast, process-oriented notations focus on describing the activity of a system as a

sequential process (or thread). During its lifetime, the process listens to inputs from its

environment and also produces outputs. A well-known representative is the Business

Process Execution Language (BPEL) (OASIS, 2007).

In order to find the appropriate modelling notations, further specific requirements have

been determined. These requirements take the general requirements on the TCF (see

section 3.4) as well as the properties of value-added services into consideration:

6 Reusable Test Modules and Behaviour Model Generation

159

• The notation shall allow the definition of reusable test modules.

• The notation shall enable the composition of reusable test modules.

• The notation shall support the description of concurrent behaviour.

• The notation shall support temporal logic (e.g. timer integration).

• The notation shall deliver a standardised formal description.

First of all, the aspect of reusability is a major requirement a modelling notation has to

fulfil. Reusability shall be provided by so-called reusable test modules. The

characteristics of these reusable test modules and further information regarding their

identification is discussed in section 6.2. As part of the modelling notation, a reusable test

module shall exist in the form of a formal model which describes recurring behaviour.

With regard to value-added services in the telecommunication domain, recurring

behaviour can be for instance the sending or receiving of instant messages or the initiation

and termination of audio or video calls. Such behaviour has to be specified in a

generalised manner within a reusable test module. As soon as such a behaviour becomes

relevant within a value-added service, the appropriate reusable test modules can be chosen

and adapted to the given scenario, e.g. through parameterisation. All of the mentioned

types of modelling notations enable the definition of reusable test modules although not

all support the principle from scratch. In a rule-based approach with EFSMs, for instance,

the concept of reusability has not been considered. However, behaviour of a test module

can be defined within one state machine. This state machine can be stored and be reused

as part of another state machine later on. As the EFSM-based state machines include

variables, parameterisations at a given point can be performed. BPEL as representative

for process-oriented notations also includes a concept of reusability (through so-called

Partner Links). Within a BPEL process, the behaviour of a reusable test module can be

6.1 Notation for Behaviour Modelling

160

specified and be reused in any other BPEL process. The final notation, Statecharts,

explicitly supports modularity through the defined concept of hierarchical states. Within

such a hierarchical state, the behaviour of one reusable test module can be specified.

The next requirement is directly connected with the previous one, however, it refers to

the composability of reusable test modules. It has to be clarified, if a modelling notation

allows the integration of a test module at any given point within the overall model. It

might also be relevant to modify the internal behaviour of a test module. In principle,

EFSM-based approaches support the composability of test modules. Every state and every

transition within a formal EFSM model describing the behaviour of a test module is

visible and accessible. Therefore, any new transition can be included and a composition

is supported. Although the BPEL process supports reusability in principle, a reused

module in form of BPEL processes is treated like a black box. Only the input parameters

of the test modules can be specified, no changes can be done within the behaviour

definition of a reusable test module based on BPEL. As the syntax of Statecharts is very

similar to EFSMs, the composability of test modules is also supported.

The next requirement is highly relevant for the implementation and test of value-added

services, because especially message flows (e.g. SIP messages) are usually not exchanged

in a fixed sequential order. For instance, if a value-added service sends two SIP INVITE

requests directly one after the other to two different participants in order to instantiate a

Third party call control (3PCC) call (IETF RFC 3725, 2004), the sequence of received

messages such as “200 OK” response and ACK request cannot be determined. In fact, the

sequence of messages can differ from one execution to the other. This aspect requires a

modelling notation that supports the definition of concurrent behaviour. EFSM-based

6 Reusable Test Modules and Behaviour Model Generation

161

approaches do not support concurrency. BPEL contains a special “Flow” element that

enables the definition of parallel processes. Statecharts support concurrency through so-

called concurrent hierarchical states. Within such a concurrent hierarchical state, it can

be more than one state executing simultaneously.

The next requirement concerns the integration of timers. Within the specified behaviour,

it shall be possible to determine that a timer has started or that a timeout occurred.

Originally, EFSMs do not support timer integration. However, some EFSM-based

approaches included the starting of timers within states and the timeouts as events on

transitions (Wacht et al., 2011a) or both as transition actions (Ernits et al., 2006). BPEL

supports timers through a special “onAlarm” element that corresponds to a timer-based

alarm. Finally, Statecharts support timers the same way it has been described for the

EFSM-based approach in (Wacht et al., 2011a). As soon as a state is reached, a specific

timer can be started. The timeout is then specified on a transition as an event.

Modelling notations such as EFSM, BPEL and Statecharts are mainly described

graphically. For further processing of the underlying models, a formal description is

required. This requirement on a modelling notation is essential for the proposed TCF and

has to be fulfilled because of two reasons. Firstly, the reusable test modules have to be

stored persistently in order to be selectable from the Test Module Repository. This can be

done if a formal and textual representation of the modelling notation exists. Secondly, the

generation of the behaviour models also requires a formal and parsable representation.

Particularly the EFSM-based approaches lack standardised formal descriptions as there

are many different notations. In contrast, BPEL processes can be serialised in a

standardised XML-based language (OASIS, 2007). There is also a grammar-based

6.1 Notation for Behaviour Modelling

162

scheme defined which specifies the exact structure of the XML presentation. For the

Statecharts approach, there is also a formal language called State Chart extensible Markup

Language (SCXML) (W3C, 2015) exists which has been defined as World Wide Web

Consortium (W3C) recommendation.

The analysis of the diverse modelling notations resulted in the following Table 6.1. It

demonstrates an evaluation based on a rating scale that has been applied in Table 5.10.

Table 6.1: Comparison of potential modelling notations

Requirements Modelling notations

 EFSM (Rule-based
notation)

BPEL (Process-
oriented notation)

Statecharts

Definition of reusable test
modules o + +

Composition of reusable
test modules + - +

Support for concurrency - + +

Support for timer
integration o + +

Existing standardised
formal description - + +

To sum up, Statecharts are the modelling notation of choice regarding the formal

description of the reusable test modules and the behaviour models.

6.1.2 Relevant Portions of the Selected Modelling Notation

As elaborated in the previous section, Statecharts fulfil the requirements as modelling

notation for the reusable test modules and behaviour models. However, not all aspects of

the notation are required to create formal models in order to specify the behaviour of a

6 Reusable Test Modules and Behaviour Model Generation

163

value-added service. The relevant components and aspects of Statecharts are described in

the following.

Similar to other state machine-based notations, a Statechart is a finite set of states and

transitions. According to (Harel, 1996) and (Harel and Kugler, 2004), there are two

different types of states in a Statechart definition, basic states and hierarchical states.

Basic States

Basic states are not composed of other states and are therefore the lowest in the state

hierarchy. Each state contains a set of transitions that define how the state reacts to events.

In contrast to other state machine notations (such as EFSM-based approaches), a

Statecharts basic state includes different action types, so-called entry and exit actions.

They can appear associated with the entrance to or exit from a state. Figure 6.2 illustrates

an initial state that is connected to a basic state (“State A”) by means of a default

transition. The basic state itself is then connected to an end state, again through a default

transition. Default transitions differ from standard transitions (which are connecting basic

states and hierarchical states) in a way that they do not contain any information, such as

events, actions or conditions (Chattopadhyay, 2013).

Figure 6.2: Statecharts basic state example

State A

entry: id = x+y;
exit: timeout();

default_transition default_transition

Initial state

Basic state

End state

6.1 Notation for Behaviour Modelling

164

Figure 6.2 also shows what kinds of actions can be defined within a basic state. These can

either be arithmetic operations of given variables known in the model (e.g. “id=x+y”) or

the invocation of known functions (e.g. “timeout()”).

Hierarchical States

Statecharts also allow the modelling of hierarchical states. In principle, hierarchical states

are states that are able to contain other states. The Statecharts definition according to

(Harel, 1996) makes a distinction between hierarchical OR-states and hierarchical AND-

states. OR-states have substates related to each other by “exclusive or”. So, if an OR-state

is active, only one of the internal substates will be active. The following Figure 6.3

illustrates the concept of OR-states.

Figure 6.3: Hierarchical OR-state example

The example Statechart shows two initial states. The rule regarding initial states is that

every Statechart model contains at least one initial state. Each hierarchical state within

the Statechart has its own initial state to determine the initial entry point. The hierarchical

OR-state contains a finite number of substates that are connected through transitions. In

order to leave the OR-state, both standard transitions (e.g. “t4”) as well as inter-level

transitions (e.g. “t5”) can be used. The standard outgoing transitions of a hierarchical state

signify that the outer state can be reached from every substate within the hierarchical

OR-State

State A State B

State C

t1

t2t3

t4 State D

State Et5

6 Reusable Test Modules and Behaviour Model Generation

165

state. In the example, “State D” is reachable from “State A”, “State B” and “State C”

through transition “t4”. In contrast, the inter-level transitions to an outer state can only be

reached from the originating substate within the hierarchical state. So, only if “State B”

is active, the hierarchical state can be left through “t5” to “State E”.

The second type of hierarchical states, the AND-states, enable the specification of

concurrent behaviour (Chattopadhyay, 2013). Figure 6.4 displays an example illustration.

Figure 6.4: Hierarchical AND-state example

The hierarchical “AND-State” encompasses two substates, each of which is a hierarchical

OR-state (“OR1” and “OR2”). Thus, the system can be simultaneously in one of the basic

states {State A, State B} for the first subsystem, and in one of {State C, State D} for the

second subsystem. The concurrent substates are left as soon as an event occurs that leads

to an outer state of the hierarchical AND-state. In this example, the occurrence of an event

specified in the transition “t3” leads to the outer basic state “State E”.

Transitions

The most important part of Statecharts besides basic states and hierarchical states are the

connectors of states, the so-called transitions. In principle, transitions define the

AND-State

State A

State B

t1

t3 State E

State C

State D

t2

OR1 OR2

6.1 Notation for Behaviour Modelling

166

conditions under which Statecharts can move between states. Figure 6.5 shows the

labelling of transitions.

Figure 6.5: Labelling of transitions

The two states related by the transition are called source (“State A”) and destination

(“State B”) states. The Event indicates the trigger that forces the transition to be activated.

The condition, also known as Guard, is a boolean expression which decides whether the

state transition actually occurs. Finally, the Action is executed if and when the transition

is taken. A special form of transition is the so-called “self transition”. It implies that

source and destination state of a transition is identical (Harel, 1996).

Timers

The integration of time within behaviour modelling is very relevant. In Statecharts, time

contraints are expressed by using implicit timers and timeouts. The implicit timer

generates the timeout event after a specified number of time units has elapsed. Timers are

associated with states and transitions through events (Chattopadhyay, 2013). The

corresponding Statecharts notation to define a timeout is illustrated in Figure 6.6.

State A
Event [condition] / Action

State B

6 Reusable Test Modules and Behaviour Model Generation

167

Figure 6.6: Specification of timeouts

The shown example states that if an event “Event_A” does not occur within the next three

seconds, a timeout will take place and “State B” will be reached. This standard description

is vague as there is no information given about the origin of the timer. Regarding the final

notation, some enhancements will be done and presented in section 6.2.4.

Formal description (SCXML)

As mentioned in the previous section, SCXML can be applied to describe Statecharts in

a formal structure. It is a “general-purpose event-based state machine language that

combines concepts from Call Control eXtensible Markup Language (CCXML) and Harel

State Tables.” (W3C, 2015) and its main goal is to “combine Harel semantics with an

XML syntax” (W3C, 2015). In September 2015, SCXML became a W3C

recommendation (W3C, 2015). All introduced features within this section are supported

by SCXML. In the following, an example Statechart will be demonstrated in order to

show how the components of a Statechart are described with SCXML language (see

Figure 6.7).

State A

< 3 sec
timeout

State B

State C
Event_A

6.1 Notation for Behaviour Modelling

168

Figure 6.7: Light Switch Statechart example

The shown example contains a hierarchical OR-state (“OK”) which represents the

possible states a light switch can have when it works properly (“OFF” and “ON”). If an

error occurs, the light switch will be moved into the “Error” mode (“device.error”) and

the number of error occurences are counted (“errorCount”). After a reset (“device.reset”),

the light switch should work properly again. The corresponding SCXML description for

this example Statechart is illustrated in the following Figure 6.8.

<?xml version="1.0" encoding="UTF-8"?>
<scxml
 xmlns="http://www.w3.org/2005/07/scxml" version="1.0" name="LightSwitch"
 datamodel="ecmascript" initial="OK">

 <datamodel>
 <data id="errorCount" expr="0"/>
 </datamodel>

 <state id="OK">
 <initial>
 <transition target="OFF"/>
 </initial>
 <transition event="device.error" target="Error">
 <assign location="errorCount" expr="errorCount + 1"/>
 </transition>
 <state id="OFF">
 <transition event="device.turnOn" target="ON"/>
 </state>
 <state id="ON">
 <transition event="device.turnOff" target="OFF"/>
 </state>
 </state>

 <state id="Error">
 <transition event="device.reset" target="OK"/>
 </state>

</scxml>

Figure 6.8: SCXML representation of Light Switch Statechart

OK

Error OFF ON

device.error / errorCount := errorCount+1

device.turnOn

device.turnOff

device.reset

6 Reusable Test Modules and Behaviour Model Generation

169

The main element in Figure 6.8 is the root element <scxml> which encompasses all

elements of the description. Within the <datamodel> element, possible used variables

within the Statechart descriptions are initialised (here: “errorCount”). The other elements

are either <state> or <transition> elements. An important aspect is that every outgoing

transition from a source state is represented as a state’s child within the XML-based

structure. The destination state of the transition is then determined by the target attribute

of the <transition> element. A hierarchical state, both OR-state and AND-state, is

represented as a parent-child relationship in SCXML. The <initial> element refers to the

initial state and its default transition. Figure 6.7 also determines the starting point of the

overall Statechart example, the “OK” state. In the SCXML representation, this is set

through the attribute initial of the <scxml> element.

To sum up, the Statecharts notation is a powerful modelling notation in order to specify

behaviour and also includes features such as timer integration, concurrency and an

underlying formal description. In the following section, it has to be specified how the

Statecharts notation can be applied to describe the behaviour of value-added

telecommunication services.

6.1.3 Principles of Modelling Service Behaviour with Statecharts

As described in (ETSI ES 202 951, 2011), a behavioural description or rather a formal

model of a SUT has to be specified by means of the modelling notation. The primary use

of such a formal model is to automatically create abstract specifications of the tests. Test

cases can than directly be derived from the formal model by a specific test derivation

algorithm.

6.1 Notation for Behaviour Modelling

170

A very relevant aspect regarding the definition of the formal model is the viewpoint of

modelling the behaviour. According to (Malik et al., 2010), this viewpoint can be either

internal or external with regard to the interfaces of the SUT. In the case of internal

modelling, the formal model is a kind of system model. In general, system models are in

a passive role and describe how the SUT responds to given stimulus. They include the

partial or the complete behaviour of the SUT. In contrast to system models, there are also

test models which define behavioural aspects of the SUT from an external point of view.

(Malik et al., 2010) state that a test model determines what kinds of events the SUT should

accept at a certain moment and which not. In summary, test models provide stimuli and

examine the reactions of the SUT whereas system models expect the stimuli and perform

reactions.

This research work suggests a different point of view regarding the modelling of

behaviour as the formal model includes both system-specific and test-specific artefacts.

This novel concept was derived from the transaction user (TU) which is the fourth and

topmost layer of the SIP structure (see section 2.2.2). In the context of the SIP protocol

specified in (IETF RFC 3261, 2002), the TU contains both UAC and UAS core.

According to (IETF RFC 3261, 2002), a “core designates the functions specific to a

particular type of SIP entity”. So, the TU is either able to send requests and receive

responses through UAC or receive requests and send responses through UAS. In the

context of this research work, the TU is part of the SUT and it is enhanced by further

client-based and server-based cores. Although the TU concept has been taken from the

standard of the SIP protocol, also cores of other protocols that are dedicated to the OSI

application layer can be applied. Having access to a set of client-based and server-based

cores, the TU can act as a mediator between available client and server cores. Although

6 Reusable Test Modules and Behaviour Model Generation

171

the TU does not have any information about the internal implementation of a value-added

service, it can control the service logic through the mediator role. It is notified as soon as

a server core received a request message or a client core received a response message.

The TU can also initiate request messages through the accessible client cores or response

messages through the accessible server cores. A generalised example of the TU acting as

mediator between a server core of a not specified “Protocol A” and a client core of a not

specified “Protocol B” is illustrated in the following Figure 6.9.

Figure 6.9: Transaction user as mediator between client and server cores

The shown scenario starts with a “Request” message that is received by the server core

of “Protocol A”. The TU is informed about the receipt of the request and subsequently

initiates the sending of a response message to the “Protocol A User Equipment” through

the server core. Afterwards, the TU initiates a request message through the client core of

“Protocol B” in order to send it to the “Protocol B User Equipment”. At the end of the

scenario, the client core of “Protocol B” informs the TU about the receipt of a response

message. Although the illustration is theoretical and based on generic protocols, real

protocols can be used with this concept. To realise this, the displayed generic cores just

have to be substituted with existing cores. If a “HTTP Server” core substitutes “Protocol

A Server” and a “SIP UAC” core substitutes “Protocol B Client”, a real inter-protocol

SUT

TUProtocol A
Server

Protocol B
Client

Protocol A
User

Equipment

Protocol B
User

Equipment

Request (Protocol A)
Request

Response
Response (Protocol A) Request

Request (Protocol B)

Response (Protocol B)
Response

6.1 Notation for Behaviour Modelling

172

communication can be described. A well-known value-added service representative of

this compilation of cores (HTTP Server and SIP UAC) can be a “Click-to-Instant

Message” service. By actuating a button on a web site, a SIP MESSAGE is sent to a

specific SIP User Agent.

Now, the relevance of the TU concept for the Statecharts notation has to be examined. To

clarify this aspect, the following Figure 6.10 is shown which describes the behaviour

specified in Figure 6.9 by means of a Statechart.

Figure 6.10: Statechart example with explicit TU involvement

The example Statechart includes an initial state, an end state as well as five basic states

in between. The information regarding the behaviour is included in the transitions

between the prevailing states, either through their specified events or actions. The sum of

events and actions (eight) matches the number of messages (or message informing with

regard to the TU) being exchanged between the different parties in Figure 6.9. This leads

to the fact that events as well as actions in this novel Statecharts notation are represented

by protocol messages (both requests and responses). The focus of interest regarding the

notation are the participating cores and the transactions they manage. An event within the

Statecharts notation means that a certain core, which is part of the SUT, receives a

message. If it is a server-based core, the received message from the external equipment

S1

Request (A) /
Request->TU

S2 S3TU->Response / Response (A)

S4

TU->Request /
Request (B)

S5Response (B) / Reponse->TU

6 Reusable Test Modules and Behaviour Model Generation

173

is always a request type. Otherwise, if it is a client-based core, the externally received

message is always a response type. So, an event in the Statecharts notations always refers

to an input the SUT has to process. In contrast, the actions defined in the Statecharts

notation refer to the reactions of the SUT through the corresponding cores. If the action

within a transition is a request type it is always handled by a client-based core whereas

response types are handled by server-based cores. The view on actions and events that

involve the TU as initiator or receiver of messages differs from the externally specified

messages. However, the TU does not really transmit real messages such as requests or

responses to its cores. It just triggers the cores to initiate messages or to react on incoming

messages by sending further messages. In fact, the messages with TU involvement and

the corresponding messages that are handled by the cores contain redundancies.

Therefore, the Statecharts notation can be simplified by erasing all the events and actions

the TU is involved in. This does not mean that the concept of the TU is also erased, the

meaning is only described implicitly through the cores. An advantage of the simplified

illustratation is the saving of states in the Statecharts models. The following Figure 6.11

shows the simplified Statechart example.

Figure 6.11: Simplified Statechart example without explicit TU involvement

S1
Request (A) /
Response (A) S2

S3

- /
Request (B)

S4Response (B)

6.1 Notation for Behaviour Modelling

174

Figure 6.11 shows that not every transition requires both events and actions to be

determined. Now, only the messages between the cores and the external equipments are

specified. The messages within the SUT between the TU and the cores are erased.

At the beginning of this section, two different types of models have been discussed,

system models and test models. In fact, the applied Statecharts notation includes both

system-specific as well as test-specific aspects. The system-specific aspect relates to the

way a Statechart model is designed. Specified events on transitions can directly be

mapped to events the SUT (or system) receives and specified actions can directly be

mapped to the reactions the SUT performs. So, a Statechart model directly describes the

behaviour on the part of the SUT. The test-specific aspect mainly refers to the definition

of the test data. As mentioned before, events on transitions are events the SUT receives.

These events, which can be either SIP requests and responses or HTTP requests or

messages of any other kind of application layer protocol, have to be set with proper data

so that they can be processed by the SUT. The same can be applied to the actions, where

the SUT actually sends messages. Although the SUT sets the values of the actions, they

have to be verified by the test. So, the definition of test data regardless of whether it was

received by the SUT or sent by the SUT has to be specified in the model (see section 6.3).

This is a typical test-specific aspect.

Besides the meaning of events and actions in the presented Statecharts notation, of course

all other components of standard Statecharts (see section 6.1.2) are used (such as

conditions on transitions, hierarchical AND- and OR-states, timers and timeouts and

variables). There will be examples where these components are used in the upcoming

6 Reusable Test Modules and Behaviour Model Generation

175

sections. The next section deals with the reusable test modules and how they can be

designed within the Test Modules Environment.

6.2 Reusable Test Modules

This section deals with one major feature the proposed TCF provides, the reusable test

modules. First, the following section introduces the concept and architecture of the Test

Modules Environment (TME), a significant part of the TCF.

6.2.1 Test Modules Environment Architecture

It is the task of the test developer to create new reusable test modules for the proposed

TCF as soon as the potential functionality of value-added services is extended, possibly

through enhancements within the service provider infrastructure. The proposed TCF (see

Figure 4.5) provides a special environment for the design and definition of new reusable

test modules, the TME. The following Figure 6.12 illustrates a multi-layered software

architecture of the TME.

6.2 Reusable Test Modules

176

Figure 6.12: Test Modules Environment architecture

The lowest layer of the architecture, the Data Layer, provides access to the databases Test

Modules Repository (TMR) and Test Data Pool (TDP). In the TMR, each defined

reusable test module is stored by two XML-based documents. The first XML document

contains the classification template for the reusable test module. Section 6.2.3 describes

the structure of the classification template in detail. The second XML document contains

the formalisation, the SCXML document (see section 6.2.4). The other database, the TDP,

includes the potential data structures for all supported application layer protocols. In

addition, this database contains all parameterised variables that have been instantiated

during the behaviour models generation (see section 6.3). The Data Layer itself provides

so-called Data Access Components that provide functionality for accessing the stored

data.

Test Data Pool Test Modules
Repository

Automatic
Composition

Engine

Test Developer

Presentation Layer

Controller

Test Suite
Generator

View

Web Browser

Service Layer

Service Interface

Business Layer

Application Logic

Data Layer

Data Access Components

6 Reusable Test Modules and Behaviour Model Generation

177

The Business Layer of the TME architecture contains the Application Logic. Generally

speaking, the main target of this component is to handle the data objects it receives and

to modify them. Therefore, it has to move and process data between the Data Layer and

the upper layers.

The Service Layer is integrated within the TME architecture, because the TMR and the

Test Data Pool have to be accessibly by other applications, such as the Automatic

Composition Engine (ACE) and the Test Suite Generator (TSG). Through the Service

Interfaces, the ACE can select, read and write from and to both databases. The TSG just

requires access to the Test Data Pool in order to read the parameterised variables that

have to be transformed into TTCN-3 templates.

The Presentation Layer provides a web-based graphical user interface (GUI) that can be

accessed through a web browser by the test developer. The Controller and the View are

typical elements of the well-known data/view/controller pattern for web-based

applications. The website enables the test developer to create new reusable test modules

and to add new abstract data types and variables. First, the test developer has to define

the metadata for the specific reusable test module through the classification template.

Then, he models the corresponding behavioural description by means of the Statecharts

notation and saves the new reusable test modules to the TMR.

Before the steps for the definition of a reusable test module will be described in detail,

the next section deals with the aspect of reusability and how it can especially be identified

with respect to value-added telecommunication services.

6.2 Reusable Test Modules

178

6.2.2 Identification of Reusability

In the field of computer science and software engineering, the term reusability often refers

to the “use of existing assets within the software product development process” (Lombard

Hill Group, 2015). Assets are, for instance, software components, test suites, designs and

documentation. In the case of this research, assets represent the description of potential

recurring behaviour. The term “behaviour” in this context stands for a typical black box

approach as it is described in section 3.1.2. The behaviour describes how a system (or

value-added service) behaves (output) if it is stimulated by a specified input. No internal

aspects regarding the implementation of the underlying system are known. Focussing on

value-added telecommunication services, the behaviour can be described through

potential protocol (such as SIP or HTTP) messages that are exchanged between the

service (SUT) and the service consumers. If the potential behaviour of a consumed service

can be categorised and classified, reusability can be derived. In fact, the reusability aspect

regarding value-added services depends very much on the network element that provides

services, the SIP Application Server (AS) (see section 2.2.4).

Considering SIP as an example, the SIP AS contains SIP-based components such as a SIP

Proxy, a Redirect Server, a SIP User Agent and a B2BUA. The functionality of the basic

components can be used by a service in order to provide an added value to consumers.

So, SIP protocol messages (requests and responses) are the key inputs and outputs for a

value-added service that is deployed on a SIP AS. Of course, the service can act in

different roles, either as server or client. The IETF standard of the SIP protocol (IETF

RFC 3261, 2002) specifies potential behaviour regarding SIP transactions by means of

formal descriptions based on finite state machines. Four basic types of formal descriptions

6 Reusable Test Modules and Behaviour Model Generation

179

exist, the “INVITE client transaction”, “non-INVITE client transaction”, “INVITE server

transaction” as well as the “non-INVITE server transaction”. They distinguish between

INVITE requests and all other possible SIP requests (such as “MESSAGE” or “BYE”),

once focused on the server-side (UAS) and once on the client-side (UAC). Besides the

basic protocol message flows (e.g. “MESSAGE 200 OK” or “INVITE 200 OK

ACK”), the formal descriptions also need to consider specific non-conventional message

flows, for example server errors through “500” responses. The formal descriptions can be

reused in this approach as their combination enables the modelling of behaviour for any

kind of SIP communication.

It is important to mention that this research deals with SIP as an example protocol to

demonstrate the principles of modelling recurring behaviour. In fact, a value-added

service can provide far more functionality besides SIP communication. For example, this

aspect relates to the data interface of the SIP AS. Through its data interface, the SIP AS

can include other servers such as web servers, email servers, directory servers and media

servers (Trick and Weber, 2015). The integration of these servers leads to a broader range

of functionality of potential value-added services which again leads to a broader range of

potential behaviour that needs to be specified. As mentioned before in section 6.1.3, the

behaviour of any other OSI application layer protocol can be specified because of the

integration of the TU concept into the applied Statecharts notation. Theoretically, only

new cores for the protocols (both client-based and server-based) need to be included.

The following Table 6.2 illustrates a list of potential server types and the relevant

protocols to use the functionality the servers provide.

6.2 Reusable Test Modules

180

Table 6.2: Potential server types and their corresponding application layer protocols

Server type Relevant protocols

Web server • Hypertext Transfer Protocol (HTTP) (IETF RFC 2616, 1999) to
transfer files on the WWW.

Email server

• Simple Mail Transfer Protocol (SMTP) (IETF RFC 5321, 2008) to
store and forward emails.

• Post Office Protocol (POP) (IETF RFC 1939, 1996) to download
emails.

Directory server • Lightweight Directory Access Protocol (LDAP) (IETF RFC 4511,
2006) to locate resources such as files and devices in a network.

Media server • Real-Time Transport Protocol (IETF RFC 3550, 2003) to deliver
audio and video over IP networks.

It should be mentioned that principally, a media server also uses the SIP protocol to be

controlled by the SIP AS. However, because of the black box focus of the functional

testing approach, this communication is not relevant. It does not directly involve the

service consumers and therefore also not the test environment.

6.2.3 Classification of Reusable Test Modules

In this research work, a reusable test module is a formal description of recurring behaviour

based on the applied Statecharts notation (see sections 6.1.2 and 6.1.3). The behaviour

refers to a given application layer protocol and to a specific core, either server or client-

based.

The ACE as part of the proposed TCF automatically selects appropriate test modules from

a database of predefined reusable test modules (TMR) based on the parsing of a given

STD. Additionally, the ACE realises the composition or rather combination of the

selected test modules and adds data to them. These aspects make it necessary to add some

further information, so-called metadata, to each reusable test module that is stored in the

6 Reusable Test Modules and Behaviour Model Generation

181

TMR. This is particularly important as the reusable test modules are part of a completely

automated process.

The following Figure 6.13 contains a classification template for reusable test modules

that is described by means of an XSD document and is illustrated graphically.

Figure 6.13: Classification template for reusable test modules

The classification template comprises the list of properties that have to be specified

whenever a new reusable test module is defined. One of the most important properties is

the TestModuleName, because it is the identifier of the reusable test module. While

parsing an STD instance and especially the determined CIs mentioned within the

TestModuleName

AlsoKnownAs

Intent

Core

Role

SubModule

0..∞

SubModules

Protocol

0..∞

Protocols

Variable

0..∞

VariableSet

Timer

0..∞

Timers

Formalisation

ReusableTestModule

6.2 Reusable Test Modules

182

Requirements, the ACE will select the reusable test modules based on the identifers of

the CIs. As discussed before, the potential behaviour of a CI is described by the reusable

test modules. The next property, AlsoKnownAs, contains possible aliases of the reusable

test module. A prose description of the major test objective of the reusable test module is

part of the Intent property. The Core property specifies to which core (either client or

server core) the reusable test module refers to. Afterwards, the involved Role is specified.

The Role as part of the STD is identical to the Role specified in the classification template

of the reusable test module. As depicted in section 5.2.2, a Role (e.g. “SIP phone”, “Web

browser”) is an external hardware that interacts in different ways with the SUT. These

different ways are specified through all reusable test modules that determine the same

Role in the classification template. As these reusable test modules relate to the same Role,

they are also called “related test modules”. Reusable test modules can be composed of

other reusable test modules that exist in the TMR. They can then be determined in the

SubModules property. The next property Protocols contains all application layer

protocols that are used in the behaviour described in the reusable test modules. The

VariableSet includes all variables that can be set within a reusable test module. Although

the attributes are not shown in Figure 6.13, each Variable contains a name and a type

attribute. The name attribute refers to the name that is part of the Statechart description

of the reusable test module. The type specifies the underlying abstract data type of the

Variable which should be also present in the Test Data Pool (see section 6.3). Just as with

the Variables, every specified Timer within a reusable test module has to be included in

the Statechart description through its attribute timerID (not shown in Figure 6.13). There

is another attribute defined, the value attribute, which determines the default time interval.

Finally, the classification template contains the property Formalisation. It includes the

6 Reusable Test Modules and Behaviour Model Generation

183

link to the behavioural Statechart description which is stored as SCXML file within the

TMR.

To sum up, a classification template holds all the relevant metadata of a reusable test

module. It is the task of the test developer to carry out the definition of the classification

template as well as the modelling of the behaviour of the reusable test module.

6.2.4 Modelling of Reusable Test Modules

As mentioned in the sections 6.1.2 and 6.1.3, reusable test modules are modelled by

means of the applied Statecharts notation. Of course, the test modules have to be defined

in a generalised way so that they can be specified in detail through the parameterisations

that are included within the STD.

When a test developer starts modelling the behavioural description for a new reusable test

module, he has to observe the following rules:

1. The behavioural description of a reusable test module is defined within one

hierarchical OR-state.

2. The hierarchical OR-state has to include one initial state with a default transition

(transition without events and actions or conditions) to the first relevant state

(“start” state) of the behavioural description.

3. The transition (so called “initial transition”) from the “start” state to the second

state contains the input parameter (either event or action) of the whole reusable

test module.

6.2 Reusable Test Modules

184

4. If the reusable test module refers to a server core (“SUT receives initial request”),

the input parameter within the initial transition contains an event and optionally a

further action. In contrast, a client core (“SUT sends initial request”) must only

contain an action.

5. Every variable within the behavioural description has to be specified in the

classification template. This is necessary, because the classification template also

contains the abstract data type the variable is based on.

6. Every defined timer within the behavioural description has to be included in the

classification template. There, the default timer value is set.

7. For every timer started within a state of the behavioural description, there has to

be a corresponding “timeout” event.

8. Every transition apart from the default transition within the behavioural

description has to include either event or action, or both.

9. The behavioural description does not contain a specific end state, but a final state

that is always called “Terminated”.

The modelling process will be demonstrated in the following using a server core (“SIP

UAS non-INVITE” and a client core (“SIP UAC INVITE”) reusable test module.

SIP UAS non-INVITE reusable test module

First, the server core-based “SIP UAS non-INVITE” reusable test module is introduced.

It describes the potential behaviour of a SUT (or rather service) that receives a SIP request

from a participating external entity (such as a SIP phone). The request type is described

as a generic type that can be further specified through paramterisation (by the STD).

When developing the reusable test module, the test developer first has to define the

6 Reusable Test Modules and Behaviour Model Generation

185

classification template. The example classification template for the SIP UAS non-

INVITE module is shown in the following Figure 6.14.

<ReusableTestModule>
 <TestModuleName>SIP UAS non-INVITE</TestModuleName>
 <AlsoKnownAs>non-INVITE server transaction</AlsoKnownAs>
 <Intent>This test module specifies the potential behaviour of
 a SIP UAS core that receives a request of any SIP request
 type different from INVITE.
 </Intent>
 <Core>server</Core>
 <Role>SIP phone</Role>
 <SubModules />
 <Protocols>
 <Protocol>SIP</Protocol>
 </Protocols>
 <VariableSet>
 <Variable name="r_Request" type="SIP_Request" />
 <Variable name="s_ResponseA1xx" type="SIP_Response" />
 <Variable name="s_ResponseB1xx" type="SIP_Response" />
 <Variable name="s_Response2xx_6xx" type="SIP_Response" />
 </VariableSet>
 <Timers>
 <Timer timerID="globalTimer" value="30000" />
 <Timer timerID="timerJ" value="0" />
 </Timers>
 <Formalisation>SIP_UAS_non-INVITE.scxml</Formalisation>
</ReusableTestModule>

Figure 6.14: Example classification template for SIP UAS non-INVITE reusable test module

Besides general information such as the naming, the Core (“server”), the participating

Role (“SIP phone”), the application layer protocol (“SIP”) and the used variables

including their names and types are defined. The relevance of the variables will be

discussed in the upcoming section 6.3. The classification template also includes two

timers, a “globalTimer” and a “timerJ”. The global timer is started as soon as the

behaviour within the reusable test module is started, in other words, if the request is

received by the SUT. The timeout of the global timer is not explicitly defined. It can take

place within any state of the behavioural description. As a consequence of a timeout of

the global timer, a derived test case will definetly fail. The “timerJ” refers to a protocol-

specific transaction timer and is initialised with the value “0”. The setting of the value

depends on the underlying transport protocol. According to (IETF RFC 3261, 2002), the

timer should be set to a value of T1*64 (where T1 stands for a value of 500 milliseconds),

6.2 Reusable Test Modules

186

if an unreliable protocol such as UDP is used. If a reliable protocol such as TCP is used,

the timer can be set to “0”. After the definition of the classification template, the test

developer can model the behavioural description of the SIP UAS non-INVITE reusable

test module. The result is displayed in Figure 6.15.

Figure 6.15: Behavioural description of SIP UAS non-INVITE reusable test module

The illustrated behavioural Statechart description is derived from (IETF RFC 3261,

2002), the protocol specification of SIP. It includes the initial transition as entry point into

the reusable test module. There, the “r_Request” event is expected by the SUT. The “r”

prefix is a help for the test developer to orientate himself within the reusable test module.

It is an abbreviation for “received” and refers to the SUT that actually “receives” a

message. As soon as the event “r_Request” takes place, the state “Trying” is reached.

From this state, there are two valid optional paths that can be taken, either to the

“Proceeding” state with the “s_ResponseA1xx” action or to the “Completed” state with

the “s_Response2xx_6xx”. Both actions also have a prefix within the names, the “s”

(abbreviation for “send”), which states that the SUT actually “sends” the message back

to the initiator of the “r_Request”. The alternative paths that are determined here describe

SIP UAS non-INVITE

Start

Trying Proceeding

Completed

entry: timerJ.start

r_Request - / s_ResponseA1xx

- / s_ResponseB1xx

r_Request /
s_ResponseA1xx

- / s_Response2xx_6xx- / s_Response2xx_6xx

r_Request /
s_Response2xx_6xx

TerminatedtimerJ.timeout

6 Reusable Test Modules and Behaviour Model Generation

187

the potential behaviour of the SUT (the value-added service). It could happen that based

on the “r_Request” (e.g. a SIP MESSAGE), the SUT directly acknowledges with a “200

OK” response by performing the action “s_Response2xx_6xx”. Here, the range of status

codes from 200 until 699 can be selected. Alternatively, the SUT first sends a provisional

response “s_ResponseA1xx” (status codes from 100 until 199) and afterwards sends a

“s_Response2xx_6xx”, which is also the action determined in the transition that has

“Proceeding” as source and “Completed” as destination state. As soon as the

“Completed” state is reached, the “timerJ” is started and its timeout is expected (either

immediately when TCP is used or after T1*64 milliseconds when UDP is used). The

reaching of the state “Terminated” after the timeout denotes the end of the transaction.

Besides the straight paths within the behaviour description, there are also three self-

transitions defined that describe specific recurring behaviour that could take place.

Based on this specified behaviour, test cases can be later on derived by means of a specific

test case derivation algorithm (see section 7.1.2). Of course, this algorithm will be

performed on the resulting behaviour models, which are compositions of several reusable

test modules.

The formalisation of the reusable test module is based on SCXML and is illustrated in the

following:

6.2 Reusable Test Modules

188

<scxml
 xmlns="http://www.w3.org/2005/07/scxml" version="1.0" name="SIP UAS non-INVITE"
 datamodel="ecmascript">

 <datamodel>
 <data id="r_Request"/>
 <data id="s_ResponseA1xx"/>
 <data id="s_ResponseB1xx"/>
 <data id="s_Response2xx_6xx"/>
 </datamodel>

 <state id="SIP UAS non-INVITE">
 <initial>
 <transition target="Start"/>
 </initial>
 <state id="Start">
 <transition event="r_Request" target="Trying" />
 </state>
 <state id="Trying">
 <transition target="Proceeding">
 <send event="s_ResponseA1xx" />
 </transition>
 <transition target="Completed">
 <send event="s_Response2xx_6xx" />
 </transition>
 </state>
 <state id="Proceeding">
 <transition target="Proceeding">
 <send event="s_ResponseB1xx" />
 </transition>
 <transition event="r_Request" target="Proceeding">
 <send event="s_ResponseA1xx" />
 </transition>
 <transition target="Completed">
 <send event="s_Response2xx_6xx" />
 </transition>
 </state>
 <state id="Completed">
 <onentry>
 <send event="timerJ" delay="0"/>
 </onentry>
 <transition event="r_Request" target="Completed">
 <send event="s_Response2xx_6xx" />
 </transition>
 <transition event="timerJ.timeout" target="Terminated"/>
 </state>
 <state id="Terminated"/>
 </state>
</scxml>

Figure 6.16: SCXML document of SIP UAS non-INVITE reusable test module

The <datamodel> element in Figure 6.16 states the possible variables that are used in the

behavioural description. The hierarchical OR-state “SIP UAS non-INVITE” comprises

all sub states. As specified in Figure 6.15, each state has transitions to other states or self-

transitions. An important aspect regarding the formal description is how events and

actions are determined. An event is defined as direct attribute event within a <transition>

element whereas an action is specified within the attribute event of the element <send>

6 Reusable Test Modules and Behaviour Model Generation

189

which is a child element of <transition>. The syntax looks ambiguous because of the

similar name event for both events and actions. However, it is explicitly expressed

through the <send> element that the message is “sent”. A timer within the SCXML

description can also be specified. Within the <onentry> element of the “Completed”

state, the timer event of “timerJ” is specified and the value is set as attributes of the

<send> element. Then, a <transition> element is defined within the “Completed” state

which specifies the occurance of the timer event. This is synonymous with a timeout of

the timer.

SIP UAC INVITE reusable test module

The SIP UAC INVITE reusable test module differs from the SIP UAS non-INVITE in

two major aspects. First, the SIP UAC INVITE is client core-based, so the SUT is the

inititator or sender of the initial request. Second, it deals with a special SIP message, the

INVITE request, which is generally sent to set-up a VoIP call. As it includes the Three-

Way-Handshake, the behaviour definitely differs from the non-INVITE behaviour. As

demonstrated before, initially the classification template for the SIP UAC INVITE

reusable test module has to be defined. It is shown in Figure 6.17.

6.2 Reusable Test Modules

190

<ReusableTestModule>
 <TestModuleName>SIP UAC INVITE</TestModuleName>
 <AlsoKnownAs>INVITE client transaction</AlsoKnownAs>
 <Intent>This test module specifies the potential behaviour of
 a SIP UAC core that initiates a SIP INVITE to initiate a call.
 </Intent>
 <Core>client</Core>
 <Role>SIP phone</Role>
 <SubModules />
 <Protocols>
 <Protocol>SIP</Protocol>
 </Protocols>
 <VariableSet>
 <Variable name="s_Invite" type="SIP_Request" />
 <Variable name="r_ResponseA1xx" type="SIP_Response" />
 <Variable name="r_ResponseB1xx" type="SIP_Response" />
 <Variable name="r_Response2xx" type="SIP_Response" />
 <Variable name="r_Response3xx_6xx" type="SIP_Response" />
 <Variable name="s_Ack" type="SIP_Request" />
 </VariableSet>
 <Timers>
 <Timer timerID="globalTimer" value="30000" />
 <Timer timerID="timerA" value="500" />
 <Timer timerID="timerD" value="0" />
 </Timers>
 <Formalisation>SIP_UAC_INVITE.scxml</Formalisation>
</ReusableTestModule>

Figure 6.17: Example classification template for SIP UAC INVITE reusable test module

There is no significant difference to the classification template of the SIP UAS non-

INVITE test module. Of course, a different Core is stated (“client”) and a different set of

variables. Additionally, the further Timers “timerA” with a default value of “500”

milliseconds and a “timerD” with a default value of “0” milliseconds. Just as “timerJ” in

the “SIP UAS non-INVITE” behavioural description, the value of “timerD” depends on

the reliability of the underlying transport protocol. The following Figure 6.18 shows the

behavioural description of the SIP UAC INVITE.

6 Reusable Test Modules and Behaviour Model Generation

191

Figure 6.18: Behavioural description of SIP UAC INVITE reusable test module

One major difference to the SIP UAS non-INVITE behavioural description is directly

visible regarding the events and actions. In the behavioural description of the server core-

based SIP UAS non-INVITE module, every request message was determined as event

and every response message as action. Figure 6.18 describing the behavioural description

of SIP UAC INVITE illustrates the opposite. Now, every response message is determined

as event and every request message as action. This opposite view is up to the different

cores. The general specification of the behaviour starts with the SUT sending a “s_Invite”

request. As soon as the state “Calling” is reached, “timerA” is started. Now, the

participating entity has to respond to the initial INVITE request, for instance, by sending

a provisional response “r_ResponseA1xx”. Then, the state “Proceeding” of the reusable

test module will be reached. Alternatively, a successful response “r_Response2xx” can

be sent by the participating entity, which is directly acknowledged by the SUT sending

back an “s_Ack” request (state “Terminated” is reached). The Three-Way-Handshake

SIP UAC INVITE

Start Calling

entry: timerA.start

Proceeding

- / s_Invite

r_ResponseA1xx

r_ResponseB1xx

Terminated

r_Response2xx / s_Ack

Completed

entry: timerD.start

r_Response3xx_6xx /
s_Ack

r_Response3xx_6xx / s_Ack

r_Response2xx / s_Ack

r_Response3xx_6xx / s_Ack

timerA.timeout / s_Invite

timerD.timeout

6.2 Reusable Test Modules

192

(see section 2.2.1) is then successfully established. Finally, the participating entity can

also respond to the initial INVITE request with a redirection or failure response

“r_Response3xx_6xx” which leads to reaching the “Completed” state after the “s_Ack”

request is sent by the SUT. It can also happen that the participating entity does not send

a response within 500 milliseconds. Accordingly, a timeout of “timerA” takes place and

the “s_Invite” request will be sent once again by the SUT. The further behaviour is quite

evident. It should be mentioned that the successful Three-Way-Handshake creates a SIP

dialog through which further message processing can be performed.

In the following, the formalisation of the SIP UAC INVITE reusable test module is

defined. Figure 6.19 shows the example SCXML document.

6 Reusable Test Modules and Behaviour Model Generation

193

<scxml
 xmlns="http://www.w3.org/2005/07/scxml" version="1.0" name="SIP UAC INVITE"
 datamodel="ecmascript">

 <datamodel>
 <data id="s_Invite"/>
 <data id="r_ResponseA1xx"/>
 <data id="r_ResponseB1xx"/>
 <data id="r_Response2xx"/>
 <data id="r_Response3xx_6xx"/>
 <data id="s_Ack"/>
 </datamodel>

 <state id="SIP UAC INVITE">
 <initial>
 <transition target="Start"/>
 </initial>
 <state id="Start">
 <transition target="Calling">
 <send event="s_Invite" />
 </transition>
 </state>
 <state id="Calling">
 <onentry>
 <send event="timerA" delay="500"/>
 </onentry>
 <transition event="timerA.timeout" target="Calling">
 <send event="s_Invite" />
 </transition>
 <transition event="r_ResponseA1xx" target="Proceeding" />
 <transition event="r_Response2xx" target="Terminated">
 <send event="s_Ack" />
 </transition>
 <transition event="r_Response3xx_6xx" target="Completed">
 <send event="s_Ack" />
 </transition>
 </state>
 <state id="Proceeding">
 <transition event="r_ResponseB1xx" target="Proceeding" />
 <transition event="r_Response2xx" target="Terminated" />
 <send event="s_Ack" />
 </transition>
 <transition event="r_Response3xx_6xx" target="Completed" />
 <send event="s_Ack" />
 </transition>
 </state>
 <state id="Completed">
 <onentry>
 <send event="timerD" delay="0"/>
 </onentry>
 <transition event="timerD.timeout" target="Terminated" />
 <transition event="r_Response3xx_6xx" target="Completed">
 <send event="s_Ack" />
 </transition>
 </state>
 <state id="Terminated" />
 </state>
</scxml>

Figure 6.19: SCXML document of SIP UAC INVITE reusable test module

This section described the relevant steps to specify the behavioural part of the reusable

test modules. Of course, one important aspect is still missing, the definition of the test

data. Additionally, the relationships between test data templates within one reusable test

6.3 Test Data Integration

194

module have to be specified. This is the final task the test developer has to do before the

reusable test modules can be processed within the TCF.

6.3 Test Data Integration

The main objective of the previous section was to show how reusable test modules are

designed. Based on a classification template and the behavioural Statecharts-based

description, an abstract definition of potential behaviour is introduced. However, as it is

abstract, there is no real data defined. In principle, every determined event or action within

a behavioural description, irrespective of which underlying protocol is specified,

represents an identifier for a real protocol message. Depending on the protocol, one

message may contain a lot of content and may also comprise a considerably high amount

of headers. In the TCF approach, the content of protocol messages is the test data

described below.

According to the U2TP approach (OMG, 2013a), test data is the data that is transmitted

between the SUT and the test execution environment. In general, two different groups of

test data exist, test data for stimuli and test data for observations. The test data for stimuli

relates to data that is sent from the test execution environment to the SUT whereas the

test data for observations describes the opposite, consequently the sending of data from

the SUT to the test execution environment. The term “observations” states that something

is observed. In fact, the test data the SUT sends to the test execution environment is

observed. When protocol messages such as SIP requests or responses are received by the

test execution environment, its observer component verifies that the incoming message

matches the predefined conditions. Otherwise, if the test execution is the sender of a

6 Reusable Test Modules and Behaviour Model Generation

195

protocol message (“stimuli”), every mandatory header has to be set with appropriate

content. Within the reusable test modules, the names of the variables also indicate whether

they are referring to stimuli messages or observing messages. Variables with the prefix

“r” describe messages the SUT expects and simultaneously, they are describing test data

for stimuli. Contrary to this, variables with the “s” prefix describe messages the SUT

sends and they are also test data for observations.

Every variable specified within the reusable test modules are instances of abstract data

types. For each request-response application layer protocol described within the reusable

test modules, two different abstract data types are defined, one for the request messages

and one for the response messages. For other protocols that do not distinguish between

requests and responses, such as RTP, there is only one abstract data type defined. The

following Figure 6.20 demonstrates an example class structure that includes messages for

the protocols SIP, HTTP and RTP.

Figure 6.20: Structure of abstract data types for test data

The base class Message contains an attribute Type specifying whether the underlying

message is a “send” (prefix “s”) or a “receive” (prefix “r”) message. Of course, the

Message

+ type : Type

<<enumeration>>

Type

send
receive

Request Response

SIP_Request HTTP_Request SIP_Response HTTP_ResponseRTP_Packet

6.3 Test Data Integration

196

displayed protocol messages are just examples. Further protocols could be integrated into

the class structure. The specific classes for the displayed protocols, such as

“SIP_Request” and “SIP_Response for the SIP protocol, “HTTP_Request” and

“HTTP_Response” for the HTTP protocol, and “RTP_Packet” for RTP, are far more

complex than illustrated in Figure 6.20. Of course, the complexity depends on the

principle structure of the protocol messages. The core specification of the SIP protocol

(IETF RFC 3261, 2002), for instance, utilises actually almost 50 header fields, but there

are even more defined within various extensions of the protocol. The following Figure

6.21 illustrates the supported header types within the “SIP_Request” abstract data type.

Figure 6.21: Conceptual structure of SIP_Request abstract data type

The shown structure of the abstract data type for “SIP_Request” is based on a XSD

structure and illustrates header fields of a SIP request. The elements are either marked

with solid lines or broken lines. The difference between these two element categories is

that the values of the solid line elements can be modified through STD variables whereas

SIP_Request
Method

SIPURI

RequestLine

Content-
Length

Content-
Type

MediaTypeGeneric
Field

Generic
Value

Generic From

AllowCallID CSeq Max-
Forwards Contact To

FromURI

ToTag

ViaURIs

Via

Text

MessageBody

Method ContactURICSeqNumber

FromTag

ToURI

MessageHeader

ConnPort

Codec ConnIP

SDP- name

6 Reusable Test Modules and Behaviour Model Generation

197

the broken line elements can not. An example of setting values of a SIP request (SIP

MESSAGE) is shown in Table 5.6. It is important that exactly the identifiers of the

elements are used, such as Text, which represents a text within a SIP MESSAGE. Besides

the mandatory headers, it is possible to add further headers that are optional. Here, the

Generic Field and the Generic Value elements can be used. Of course, the test developer

has to know the exact syntax of such an optional header. Besides the “SIP_Request”

structure, the “SIP_Response” structure has to be defined. In contrast to the

“SIP_Request”, the “SIP_Response” does not include a Text element. Furthermore, the

RequestLine as part of the “SIP_Request” is substituted by the StatusLine in the

“SIP_Response” structure. Besides the mentioned SIP-specific requests and responses, it

is of course possible to also define requests and responses of other protocols. As with the

SIP messages, it is necessary to define XSD structures for the protocol messages.

The introduced conceptual structure (exemplified for the “SIP_Request”) of request and

response messages defines which elements the corresponding message contains.

However, until now, there is no real data stored. Therefore, it should be possible to create

instances of the specified abstract data types. In fact, every reusable test module that is

stored within the TMR contains a set of variables which are further specified in the

corresponding classification templates. For the “SIP UAS non-INVITE” reusable test

module, the “r_Request” is an instance of the abstract data type “SIP_Request” whereas

the other specified variables “s_ResponseA1xx”, “s_ResponseB1xx” and

“s_Response2xx_6xx” are instances of the abstract data type “SIP_Response”. When a

test developer defines a new reusable test module, he can already predefine certain copies

of header fields within the description. The following Figure 6.22 shows, what the test

6.3 Test Data Integration

198

developer can prepare in the “SIP UAS non-INVITE” reusable test module regarding the

test data.

Figure 6.22: Predefined copying of message headers

The mandatory fields of a SIP response message (here: “s_Response2xx_6xx”), the

headers Via, From, CallID and CSeq, can be directly copied from the originating SIP

request (here: “r_Request”). The To header field of the originating SIP request does not

contain a toTag, this needs to be added within the SIP response. The Content-Length

header usually contains the value “0” as there is no data transmitted in the message body

of the response message. The only aspect of the response that is variable is the StatusLine.

In general, the StatusLine is expected to include the “200” for StatusCode and “OK” for

ReasonPhrase. Of course, the predefinition illustrated in Figure 6.22 can be applied to

every defined “SIP_Response” in the “SIP UAS non-INVITE” reusable test module. At

this point, the principles of stimuli messages and observing messages have to be

emphasised again. The “r_Request” is a SIP request message the SUT receives and

therefore, it is a stimuli message. Contrary to this, the “s_Response2xx_6xx” is a message

that the SUT sends which means that it is an observing message. As a matter of fact, some

RequestLine

Type: SIP_Request
Variable: r_Request

StatusLine
Via

Type: SIP_Response
Variable: s_Response2xx_6xx

Max-Forwards

From

To

CallID

CSeq

Content-Length

Via

From

To

CallID

CSeq

Content-Length

6 Reusable Test Modules and Behaviour Model Generation

199

data of an observing message cannot be predefined because it is simply unknown before

the test execution. Of course, this does not apply to the whole message, but to certain

aspects that are generated by the sender (SUT) of the message. Referring back to the

observing “s_Response2xx_6xx” message, this aspect can be exemplified. The

StatusCode as well as the ReasonPhrase contain data of a fixed set of possible values so

they can also be specified exactly. The value of the toTag, however, cannot be foreseen.

In this approach, special symbols, so-called wildcards, have been included from the

TTCN-3 notation that can be used instead of exact values (ETSI ES 201 873-1, 2015):

- “?” is a wildcard for any value.

- “*” is a wildcard for any value or no value at all.

In the case of the toTag, the “?” has to be chosen, because it is a mandatory field that has

to be set by the SUT. The following Figure 6.23 illustrates the “s_Response2xx_6xx”

message in the form of an XML document.

<SIP_Response name="s_Response2xx_6xx">
 <StatusLine>
 <StatusCode>200</StatusCode>
 <ReasonPhrase>OK</ReasonPhrase>
 </StatusLine>
 <MessageHeader>
 <Via>
 <ViaURIs>r_Request.ViaURIs</ViaURIs>
 </Via>
 <From>
 <FromURI>r_Request.FromURI</FromURI>
 <FromTag>r_Request.FromTag</FromTag>
 </From>
 <To>
 <ToURI>r_Request.ToURI</ToURI>
 <ToTag>?</ToTag>
 </To>
 <CallID>r_Request.CallID</CallID>
 <CSeq>
 <CSeqNumber>r_Request.CSeqNumber</CSeqNumber>
 <Method>r_Request.Method</Method>
 </CSeq>
 <Content-Length>0</Content-Length>
 </MessageHeader>
 <MessageBody />
</SIP_Response>

Figure 6.23: Example XML document of SIP response message “s_Response2xx_6xx”

6.3 Test Data Integration

200

The simplified example document shows that most data is directly copied from the

originating request, the “.” operator syntax is used to copy the values into the response

message. The other values are explicitly defined (StatusCode and ReasonPhrase) or a

wildcard is used (toTag).

Just as the abstract data types for the protocol messages, every variable defined within a

reusable test module is stored within a database, the so-called Test Data Pool. The

abstract data types are stored as XSD structures whereas the variables are stored as XML

documents (such as in Figure 6.23). However, there is another group, the variables of

instances of reusable test modules that have been parameterised within the STD instance

and that are integrated within the generated behaviour models. The following Figure 6.24

illustrates the connection between the three data groups that are stored within the Test

Data Pool.

Figure 6.24: Stored data within Test Data Pool

The transition from abstract data types to variables of reusable test modules has been

demonstrated by means of examples in this section. The modelling of the reusable test

Abstract data types (XSD) Variables of reusable test
modules (XML)

Variables of instances of
reusable test modules (XML)

HTTP

SIP

RTP

SIP_Request

SIP_Response

HTTP_Request

HTTP_Response

RTP_Packet

instantiate

parameteriseSIP UAS non-INVITE

r_Request

s_ResponseA1xx

s_ResponseB1xx

s_Response2xx_6xx

CI1: SIP UAS
non-Invite

CI2: SIP UAS
non-Invite

CI3: SIP UAS
non-Invite

r_Request s_ResponseA1xx

s_ResponseB1xx

s_Response2xx_6xx

s_ResponseB1xx

s_Response2xx_6xx

r_Request s_ResponseA1xx

r_Request s_ResponseA1xx

s_ResponseB1xx

s_Response2xx_6xx

Test Developer

ACE
Algorithm

6 Reusable Test Modules and Behaviour Model Generation

201

modules and the definition of the corresponding variables is done by the test developer

within the TME. Then, the behavioural description in form of a Statecharts notation is

stored in the TMR, wheareas the variables are stored in the Test Data Pool. As soon as a

new STD instance is created, the behavioural models for the described value-added

service will be automatically generated by the ACE through a specific algorithm. During

the generation, the ACE selects reusable test modules and creates instances of them. Each

instance is assigned a set of variables that are parameterised through the Parameters field

of the STD. Theoretically, it is possible that one instance of a reusable test module

contains diverse sets of variables. So, the test coverage at the end can be modified or even

improved.

The next section will describe the behaviour models generation through the ACE

algorithm.

6.4 Generation of Behaviour Models

The main concern of this section is the Automatic Composition Engine (ACE), a

component within the proposed TCF. Its main task is to process a well-defined input and

produce a specified output. In this case, the well-defined input are instances of the STD

that have been established by test developers for given value-added telecommunication

services. The output, in contrast, are so-called behaviour models that describe the

potential behaviour of a service based on a formal Statecharts notation. The ACE requires

further information to be able to generate the behaviour model. On the one hand, it has to

be able to access the predefined reusable test modules that describe recurring behaviour

(see section 6.2). So, it can actually reuse the test modules, instantiate them within the

6.4 Generation of Behaviour Models

202

behavioural models, and compose them according to the specifications within the STD.

On the other hand, the ACE also requires access to the specified test data that is used

within the reusable test modules (see section 6.3) in order to parameterise instantiated test

modules. The following Figure 6.25 demonstrates the input and output as well as the

relevant processes that take place within the ACE.

Figure 6.25: Behaviour models generation process with ACE

On the left side of Figure 6.25, an STD instance is shown as input of the ACE. As

described before, it contains an Architectural Perspective as well as a Behavioural

Perspective. Both perspectives contain information that are relevant for the ACE. The

ServiceID within the Architectural Perspective determines the name of the value-added

service and simultaneously, the name for the whole project. So, the name will be defined

within the STD instance and will be within the namings of the behaviour models and

within the tests that are generated on the basis of the behaviour models. The System Meta

Information might contain information that are relevant for the test data parameterisation.

A very important parameter is the service URI which can be resolved as soon as the value-

added service running on a SIP AS is registered in the location database of a call server.

This service URI is very relevant for participating entities (or rather test components)

Service Test Description Instance Automatic Composition Engine Behaviour Models

TME Service Interface

Test Modules
Repository Test Data Pool

Architectural Part

Service ID
Roles

System Meta Information

Behavioural Part

Req01

Req02 Req n

Reading of
STD Instance

Instantiate
Test Modules

Read
Variables

Read next
Requirement

Parameterise
Variables

Compose
Test Modules

Req03

Req01

TM1

TM2

TM3

Req n

TM1

TM2

TM1

TM2

Req02 Req03

TM1

TM2

6 Reusable Test Modules and Behaviour Model Generation

203

when they are about to, for instance, send INVITE requests to the SUT. The request line

of the INVITE request will contain this service URI. Consequently, the request line value

of the SIP request variable “r_Invite” as part of the SIP UAS INVITE reusable test module

instance will contain the service URI. Besides the service URI, there are, of course, other

relevant parameters, such as the permanent SIP URIs of registered participating entities

that are involved in the service consumption. The last parameter, the Roles, is not relevant

for the ACE process itself, however, it delivers the Roles and the System Meta Information

as well as the ServiceID directly to the Test Configuration Unit. This is not illustrated in

Figure 6.25 but will be further discussed in section 7.2.

The Behavioural Perspective contains all the Requirements and of course, within the

Requirements, dependencies are set through the Precondition field. This is exemplified

in Figure 6.25 (“Req03” depends on “Req02”), because it has an effect on the resulting

behaviour models. A Requirement that does not contain another Requirement in its

Precondition field and that is not determined as Precondition within any other specified

Requirement itself, is exactly specified through one behavioural model. If a dependency

between two Requirements exists, there will also be two generated behaviour models.

However, the generated behaviour model of the dependent Requirement will reuse the

behaviour model of the Requirement it depends on. In the example illustrated in Figure

6.27, a behaviour model for “Req02” is generated which is also reused as part of the

behaviour model that is generated for “Req03”. The relationship between Requirements

defined in the STD and the behaviour models is very important regarding the aspect of

traceability of requirements throughout the test generation, execution and evaluation

process.

6.4 Generation of Behaviour Models

204

In the following, the processes taking place within the ACE will be further analysed.

Reading the STD Instance

First, the reading of the current STD instance is performed within the ACE. Therefore, a

conceptual model for the STD has to be established. The following Figure 6.26 illustrates

this conceptual model by means of a UML class diagram.

Figure 6.26: Conceptual model of Service Test Description

The UML class diagram shows all the relevant components (or classes) including their

attributes that have to be readable for the ACE. The main class, of course, is the

ServiceTestDescription, which is specified through its attributes serviceID,

proseDescription and non-functionalProperties. Furthermore, the class has a reference to

the SystemMetaInformation and to one or many Roles and contains one RequirementSet.

The SystemMetaInformation class includes all possible key-value pairs (e.g.

Role

- name: String
- protocolType: String
- alias: String

ServiceTestDescription

- serviceID: String
- proseDescription: String
- non-functional Properties: String

RequirementSet

1

1

Requirement

- identifier: String
- goal: String
- precondition: List<String>

1

*

CommunicationInterface

- classification: String
- alias: String
- channelID: String

Flow

processID: String

BasicFlow

AlternativeFlow

Parameter

- name: String
- type: String
- values: Map<String, String>

*

1

1

*

SystemMetaInformation

metaVariables: Map<String, String>

Step

position: int
expression: String

1

*

1

*

11

1

*

1

1

1

*

Condition Parallel

Sender Receiver

Null

1

*

6 Reusable Test Modules and Behaviour Model Generation

205

“serviceURI” as key and “chatservice@sip.de” as value). The Role class is described

through its attributes name (e.g. “SIP phone”), protocolType (e.g. “SIP”) and alias (e.g.

“[s]”). It has a reference to one or many CommunicationInterface objects. Of course, this

depends on the Role type (SIP phone for instance contains four different CIs). A

CommunicationInterface class includes the attributes classification, alias (e.g.

“[sender1]”) and channelID (e.g. “channel a”). The classification attribute refers to the

type of CI and also directly to the reusable test module (e.g. “SIP UAS non-INVITE”).

Each CommunicationInterface has a set of Parameters from which each can be specified

through its name (here, any kind of name can be determined), type (e.g. “r_Request”) and

values. The RequirementSet as part of the ServiceTestDescription contains an unspecified

number of Requirement objects. A Requirement has an identifier (e.g. “Req02”), a goal

as well as one or many precondition items (e.g. “Req01”). A Requirement has a one or

many Role objects that are participating within the Requirement and it contains one

BasicFlow and one or many AlternativeFlow objects. Each Flow, irrespective of whether

it is a BasicFlow or AlternativeFlow, has a processID (e.g. “P”) and includes a list of

Steps. There can be five different types of Step objects: Sender, Receiver, Condition,

Parallel and Null. The Sender object refers to a Step where a message is sent through a

channel (e.g. “𝑏𝑏�〈𝑓𝑓𝑜𝑜𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑖𝑖𝑒𝑒〉”) whereas Receiver refers to the opposite (e.g.

“𝑎𝑎(𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑖𝑖𝑒𝑒)”). A Condition obviously specifies an if-then-else construct and the

Parallel class the specification of concurrent behaviour. Finally, the Null class refers to

the end of a process.

Based on the illustrated conceptual model of the STD, each instance can be completely

specified. Another advantage is that instances can be persistently stored, e.g. in a

relational database.

6.4 Generation of Behaviour Models

206

Read Requirement and instantiate Test Modules

Now that STD instances can be read, the parsing is processed. The key components of a

behaviour model are the reusable test module instances. Based on the conceptual model

of an STD instance, the ACE algorithm can parse the relevant information to create

instances of the reusable test modules and integrate them into new behaviour models. The

following flow chart describes the algorithm how the test module instantiation is

performed (see Figure 6.27).

Figure 6.27: Test modules instantiation in behaviour model flow chart

First, the initial Requirement within the ServiceTestDescription is parsed by the algorithm

and a new behaviour model is created. Then, for each CommunicationInterface specified

within the Requirement, the algorithm compares the classification attribute with the

entries in the TMR. If there is a match, the stored reusable test module is read in (both

classification template as well as SCXML description). Afterwards, the algorithm parses

Start

Read STD instance

End

Get
classification

attribute
from CI

Read next
Requirement

CIs left?

Read next CI
(Communication

Interface)

yes

Requirements
left?

no

yes

no

Get Test
Module with

name ==
classification

Create new
behaviour model

Read next Step in
Flows of

Requirements

Step specifies entry
point into CI?

Create instance of
Test Module

Create Test
Module Instance

in behaviour
model

yes
Steps left?

no

yes

no

yes

Test Modules
Repository

6 Reusable Test Modules and Behaviour Model Generation

207

the flow descriptions (both BasicFlow and AlternativeFlow) and detects the Step objects

where the corresponding CommunicationInterface is involved. For every Step object that

describes an entry point into the channel of the CommunicationInterface (a new

transaction, for instance an “r_Request” for the “SIP UAS non-INVITE” test module), a

new instance of the reusable test module is created and added to the behaviour model.

The following Figure 6.28 exemplifies the process.

Figure 6.28: Test modules instantiation process example

The excerpt of the example STD instance defines two different CIs and the behavioural

description contains one BasicFlow and one AlternativeFlow. Within the Steps defined in

the Flows, there are two entry points for “[s1]” (“r_message” as well as “r_ackMessage”)

and also two for “[s2]” (“s_messageBob” and “s_message_non”). The sending of the

“s_200Response” does not describe an entry point because it specifies behaviour within

the test module. So, the resulting behaviour model for the specific Requirement contains

four reusable test module instances.

Communication Interfaces:

- SIP UAS non-INVITE: [s1] channel a
- SIP UAC non-INVITE: [s2] channel b

Basic Flow (P):
a(r_message).
a<s_200Response>.
if(r_message.Text != "bob") then Q else.
b<s_messageBob>.
a(r_ackMessage).
0

Alternative Flow (Q):
b<s_message_non>.
0

Automatic
Composition Engine

Behaviour Model

[s1]_1:
SIP UAS non-INVITE

[s1]_2:
SIP UAS non-INVITE

[s2]_1:
SIP UAC non-INVITE

[s2]_2:
SIP UAC non-INVITE

Excerpt of STD Requirement

6.4 Generation of Behaviour Models

208

Read and parameterise variables

The next two processes within the ACE deal with the handling of test data (see Figure

6.25). As the reusable test module instances have already been identified and integrated

in the resulting behaviour model, the variables can now be read. Figure 6.24 already

illustrated how variables of reusable test modules are stored within the Test Data Pool.

Now, they need to be integrated into the behaviour models. The following flow chart (see

Figure 6.29) illustrates the process.

Figure 6.29: Variable reading and parameterisation flow chart

To each instance of a reusable test module within the behaviour model, the adequate sets

of variables are assigned in the first step. Then the relevant information within the STD

instance is parsed, namely the Parameter objects as part of the CI that relates to the

reusable test module. Then, the test data specified in the Parameter objects is integrated

into the variable instances of the reusable test module instance. Finally, the parameterised

variables are stored within the Test Data Pool.

Start

Read behaviour
model

Get variable
set for test

module

Read next reusable
test module

instance

Test module
instances left?

Test Data
Pool

Read Parameter list
of corresponding CI

Add test data from
Parameters to test
module instance

variables

yes

End

no

Test Data
Pool

Store
parameterised

variables

6 Reusable Test Modules and Behaviour Model Generation

209

Compose test modules

The final task the ACE algorithm has to perform for a given Requirement within an STD

instance is the composition of the reusable test module instances into a valid behaviour

model. Regarding the previous steps, the behaviour model consists of a set of reusable

test module instances that contain parameterised variables according to the specifications

in the STD description. Now, the composition algorithm as part of the ACE has to parse

the defined Step objects within the BasicFlow and AlternativeFlow sequentially. For

every parsed Step, the composition algorithm has to decide what effect its definition has

on the behaviour model. As illustrated in the conceptual model of the STD (see Figure

6.26), there are five different categories of Steps: Sender, Receiver, Parallel, Condition

and Null. Each of the Steps have a different impact on the composition algorithm. Besides,

both Sender and Receiver need to have knowledge about the prior Step, wheareas the

Condition and Parallel can involve both the direct prior Step as well as the next Step. The

Null Step is the exception, because it is actually the final Step within any Flow.

In general, the sum of all Steps within the Flows specify the behaviour of the value-added

service following the Requirement. The change from one Step A to a next Step B can

cause different changes in the static behaviour model that only includes instances of

reusable test modules so far. First, a Step change can lead to a change of the current active

reusable test module instance if B refers to a different channel than A. Secondly, if both

Steps refer to the same instance of a reusable test module, the behaviour is restrictively

determined. An example can be, for instance, that A specifies the SUT to send an INVITE

request and B specifies in the same channel that a “200 OK” response is expected. In this

case, the specified “path” is determined as the success path. Only if the messaging is

6.4 Generation of Behaviour Models

210

performed in this sequence, the test cases that are derived later on will pass. On every

transition within an instance of a reusable test module, a flag “pass” can be set, either to

“false” (wrong path, which leads to an error) or to “true” (correct path). Theoretically, the

“pass” flag can be determined for every transition within a reusable test module. This

makes sense for SIP messaging when for instance only provisional or successful response

messages are expected.

In the following, the different Step types will be discussed with regard to the composition

algorithm. The Sender refers to a Step where any kind of message (either request or

response message) is sent from the SUT. If the message is a request type (e.g.

“𝑏𝑏�〈𝑓𝑓𝑜𝑜𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑖𝑖𝑒𝑒〉”), the Step definitely describes an entry point into a reusable test module.

This means that a new transition is established that does not include an event but the

request message as action. The target of the transition is the first state after the “start”

state of an instance of the reusable test module that refers to the corresponding CI. It has

to be specified which instance is taken as there can be a number of instances for one CI

(e.g. “[s2]_1” and “[s2]_2” illustrated in Figure 6.28). Therefore, the algorithm counts

how many transactions have been initiated and terminated before the current Step within

the Flows regarding the specific channel. If the number is for instance “1”, then the second

instance of the reusable test module will be selected as target. Of course, a transition also

requires a source state. This is derived through the direct prior Step of the current one.

Based on the channel and specified message, the source state can be detected within the

corresponding reusable test module instance. The whole process is different if the

message is a response type (e.g. “𝑏𝑏�〈𝑓𝑓𝑜𝑜𝑅𝑅𝑒𝑒𝑒𝑒𝑜𝑜𝑓𝑓𝑛𝑛𝑒𝑒𝑒𝑒〉”). If the prior Step determines a request

type to be received over the same channel than the Step does not effect a change of

reusable test module instance. In that case, a restricted path has been determined and the

6 Reusable Test Modules and Behaviour Model Generation

211

“pass” flag will be set to “true”. Alternatively, if the prior Step determines a message sent

or received over a different channel, a new transition will be created which also includes

the message response as action.

The flow chart displayed in Figure 6.30 illustrates the composition algorithm focusing on

the Sender Step.

Figure 6.30: Composition algorithm flow chart for Sender Step

The main decisions that have to be made regarding the parsing of a Sender Step depend

on the type of message that is sent. If it is a request message, it is obvious that a new

reusable test module instance will be connected with a transition. Contrary to this, every

response message leads either to a staying within the current reusable test module instance

(if the prior Step contains the identical channel) or an establishing of a new transition (if

the prior Step contains a different channel). The flow chart also contains a reference to

another flow chart (“2”) which will describe the Receiver Step. Before focusing on the

Start

 Step is instance
of Sender?

Read Flow

Read next Step

Step contains
Request?yes

Establish new
transition with

request as action

Get source
state from
prior Step

Get target
state of
selected
instance

Steps left in
Flow?

Realise composition
by including

transition

Establish new
transition with

response as action

Find out
relevant

RTM
instance

2

no

Prior Step
different
channel?

no

Establish restricted
path through pass
flag on transitionno

Find out
relevant

RTM
instance

yes

End no

6.4 Generation of Behaviour Models

212

next Step, an example composition using a Sender Step will be shown in the following

Figure 6.31.

Figure 6.31: Example composition of reusable test module instances with focus on Sender Step

The displayed example composition includes simplified reusable test module instances

of “SIP UAS non-INVITE” and “SIP UAC non-INVITE”. The second Step in the

BasicFlow specifies the Sender Step. Here, the channel “b” of the CI “[s2]” is used to

send a request message after a message request was received over channel “a”. The

composition algorithm then generates a new transition from the “Terminated” state of the

“[s1]_1” reusable test module instance to the “Trying” state of the “[s2]_1” reusable test

module instance with the specified request message defined as action.

The Receiver Step is very similar to the Sender Step, because the consequence is the same.

A message request leads to a new transition which targets a new instance of a reusable

test module. The only difference is that the new transition in comparison to the Sender

Step only contains an event but no action. The same aspect is valid if a response message

is specified. The following flow chart (see Figure 6.32) enhances the previous flow chart

displayed in Figure 6.30 but focusing on the Receiver Step.

Behaviour Model

Communication Interfaces:

- SIP UAS non-INVITE: [s1] channel a
- SIP UAC non-INVITE: [s2] channel b

Basic Flow (P):
a(r_message).
b<s_messageBob>.
0

ACE

Excerpt of STD Requirement

Start

Trying

Completed

Proceeding
- / s_ResponseA1xx

r_Request

[s1]_1: SIP UAS non-Invite

Terminated
timerJ.timeout

- / s_Response2xx_6xx

Start

Trying

Completed

Proceeding
r_ResponseA1xx

- / s_Request

r_Response2xx

[s2]_1: SIP UAC non-Invite

Terminated
timerK.timeout

r_Response2xx
- / s_Response2xx_6xx

- / s_Request

6 Reusable Test Modules and Behaviour Model Generation

213

Figure 6.32: Composition algorithm flow chart for Receiver Step

The main difference between the two different flow charts for Sender and Receiver Step

can be identified on the created transitions. Here, the transitions include events instead of

actions. Besides, the flow chart also contains two references (“1”) and (“3”). The

reference (“1”) targets back to the Sender Step flow chart, specifically to the decision

module “Steps left in Flow?”. This is relevant because the flow charts describe the parsing

process as a loop. The reference (“3”) targets to the next possible Step to be analysed.

An example illustration is also given for the Receiver Step in the following Figure 6.33.

Figure 6.33: Example parsing with focus on Receiver Step

 Step is instance
of Receiver?

Step contains
Request?

yes

Establish new
transition with

request as event

Get source
state from
prior Step

Get target
state of
selected
instance

Realise composition
by including

transition

Establish new
transition with

response as event

Find out
relevant

RTM
instance

3

no

Prior Step
different
channel?

no

Establish restricted
path through pass
flag on transitionno

Find out
relevant

RTM
instance

1

Communication Interfaces:

- SIP UAC non-INVITE: [s1] channel a

Basic Flow (P):
a<s_message>.
a(r_200_ok).
0

ACE

Behaviour Model
Excerpt of STD Requirement

Start

Trying

Completed

Proceeding
r_ResponseA1xx

- / s_Request

r_Response2xx

[s1]_1: SIP UAC non-Invite

Terminated
timerK.timeout

r_Response2xx

6.4 Generation of Behaviour Models

214

This example does not specify a composition between reusable test module instances, but

the determination of a restricted path through a Receiver Step. The second Step within the

BasicFlow of the Requirement states that a response message is expected on channel “a”

after a request was sent over the identical channel. This leads to a restricted path within

the “[s1]_1” reusable test module instance.

The next Step specifies concurrent behaviour, the Parallel Step. It describes a behaviour

where transactions, either server-based or client-based, are opened in a short time interval.

The problem with this is that the order of the potential incoming messages cannot be

specifically determined. Even if a request within a transaction A is for instance sent before

the request within a transaction B, still it is possible that response messages relating to B

will be received earlier than the response messages that relate to A. The following flow

chart (see Figure 6.34) describes what the composition algorithm has to do.

Figure 6.34: Composition algorithm flow chart for Parallel Step

First, all relevant parallel channels are identified and the corresponding reusable test

module instances are detected. Then, a new hierarchical AND-state is established, which

enables to describe concurrency in Statecharts notation (see section 6.1.2). The detected

 Step is instance
of Parallel?

yes

4

no Identify parallel
channels

Find out
relevant

RTM
instances

1

2

Establish new
hierarchical AND-

State

Include RTM
instances within

AND-State
Prior Step exists?

Establish default
transition to AND-

State
no

Find out
RTM

instance of
prior Step

yes

Establish default
transition between
instance and AND-

State

6 Reusable Test Modules and Behaviour Model Generation

215

reusable test module instances are then included into the hierarchical AND-state. It is

important to mention that incoming and outgoing transitions on AND-states are always

default transitions that do not contain any events or actions. However, it has to be analysed

which reusable test module instance contains the originating state. If there is a prior Step

before the Parallel Step, the corresponding reusable test module instances will be found

and a transition can be established. Otherwise, a new default transition from the start state

of the behaviour model to the AND-state will be generated.

The following Figure 6.35 demonstrates an example where the Parallel Step is used.

Figure 6.35: Example composition of reusable test module instances with focus on Parallel Step

The simple example STD shows a Requirement with two “SIP UAC non-INVITE” CIs.

Within the BasicFlow, the parallel sending of request messages through the channels “a”

and “b” is determined through the Parallel Step (by means of the “|” statement in pi-

calculus). Based on the given notation, the ACE creates a new instance of a hierarchical

AND-state. Within the AND-state, the two corresponding reusable test module instances

are included. Then, a default transition from the start state is included that has the AND-

state as target.

Behaviour Model

AND-StateCommunication Interfaces:

- SIP UAC non-INVITE: [s1] channel a
- SIP UAC non-INVITE: [s2] channel b

Basic Flow (P):
a<s_messageA> | b<s_messageB>.
0

ACE

Excerpt of STD Requirement

Start

Trying

Completed

Proceeding
r_ResponseA1xx

- / s_Request

r_Response2xx

[s1]_1: SIP UAC non-Invite

Terminated
timerK.timeout

r_Response2xx

Start

Trying

Completed

Proceeding
r_ResponseA1xx

- / s_Request

r_Response2xx

[s2]_1: SIP UAC non-Invite

Terminated
timerK.timeout

r_Response2xx

6.4 Generation of Behaviour Models

216

The Condition Step does not contain any message sending or receiving, but it can use

content of messages from prior Steps. The Condition Step itself describes a distinction of

cases and is comparable to a standard if-then-else structure. In the following, an example

STD specification is illustrated that contains one Condition Step. The result of the

composition algorithm is also shown in Figure 6.36.

Figure 6.36: Example composition of reusable test module instances with focus on Condition Step

A request message is received over channel “a”, specifically a SIP MESSAGE. It contains

a text that is checked in the following Condition Step. If the message does not contain the

value “Login”, the AlternativeFlow is invoked and a new request message

“s_errorMessage” is sent over the “b” channel. Alternatively, the “Login” is part of the

incoming SIP MESSAGE and the request message “s_okMessage” is sent. Alltogether,

the Flow specification contains three entry points, so three reusable test module instances

have to be established within the behaviour model. The “[s1]_1” reusable test module

instance deals with the receiving of the initial message. As soon as it terminates, two new

outgoing transitions are created because of the Condition Step definition. Both contain a

Behaviour Model

Communication Interfaces:

- SIP UAS non-INVITE: [s1] channel a
- SIP UAC non-INVITE: [s2] channel b

Basic Flow (P):
a(r_loginMsg).
if(r_loginMsg.Text != "Login" then Q else.
b<s_okMessage>.
0

Alternative Flow 1 (Q):
b<s_errorMessage>.
0

ACE

Excerpt of STD Requirement

Start

Trying

Completed

Proceeding
- / s_ResponseA1xx

r_Request

[s1]_1: SIP UAS non-Invite

Terminated
timerJ.timeout

- / s_Response2xx_6xx

Start

Trying

Completed

Proceeding
r_ResponseA1xx

- / s_Request

r_Response2xx

[s2]_1: SIP UAC non-Invite

Terminated
timerK.timeout

r_Response2xx

- / s_Response2xx_6xx

[r_Request.Text != "Login"] - / s_Request

Start

Trying

Completed

Proceeding
r_ResponseA1xx

- / s_Request

r_Response2xx

[s2]_2: SIP UAC non-Invite

Terminated
timerK.timeout

r_Response2xx

[r_Request.Text == "Login"] - / s_Request

6 Reusable Test Modules and Behaviour Model Generation

217

transition guard and determine the specified conditions and lead to different instances of

the “SIP UAC non-INVITE” reusable test module.

The final Null Step refers to the end states of each defined Flow (both BasicFlow and

AlternativeFlow). A behaviour model specifying the behaviour of a given Requirement

contains as many ends as it contains Flows. The end states can be seen as connection

points between Requirements that are depending on one another. If Requirement “Req02”

depends on “Req01”, the end point of the BasicFlow in the behaviour model of “Req01”

can be eliminated and the loose connection can be linked to the start state of “Req02”.

This principle allows the connection of diverse Requirements.

This section demonstrated the role of the ACE, the automatic building of the behaviour

models. The whole process can be summarised as follows:

1. The ACE reads the instance of the STD by means of the conceptual model (see

Figure 6.26).

2. For each Requirement within the STD instance, the ACE creates a new behaviour

model instance. Based on the participating Roles and CIs within the Requirement,

the ACE also creates new instances of reusable test modules and assigns them to

the behaviour model instance.

3. Based on the Parameters specified within each Requirement, the ACE creates new

sets of variables for each reusable test module instance and stores them in the Test

Data Pool.

4. Finally, the BasicFlow and the Alternative Flows of each Requirement is parsed.

Depending on the category of the parsed steps within the flows (either Sender,

6.5 Conclusion

218

Receiver, Condition, Concurrency or Null Step), a different composition of the

reusable test module instances is performed by the ACE.

5. The result at the end is a set of behaviour model instances.

6.5 Conclusion

Within this chapter, the concept of the reusable test modules has been introduced as well

as the generation of the behaviour models based on the content of STD instances. First, a

suitable modelling notation had to be found in order to specify the occurring behaviour

within the reusable test modules. Taking into consideration relevant criteria such as the

possibility to integrate concurrency, reusability, temporal logic as well as having an

underlying formal specification, the Statecharts notation has been chosen. A new way of

defining Statecharts has been introduced by means of the TU concept (see section 6.1).

Furthermore, the chapter has introduced in section 6.2 how the reusable test modules are

created by the test developer by means of the Test Modelling Environment (TME). It has

been discussed how reusability can be detected specifically for value-added

telecommunication services and how the resolving reusable test modules can be classified

(e.g. classification template) and modelled.

Then, the aspect of handling test data has been shown in section 6.3. As a result, each

defined reusable test module contains a set of variables that can be parameterised by

Parameters that are defined within the Requirements of STD instances.

Finally, the behaviour model generation has been described in section 6.4. The focus of

the chapter is the ACE, an important component of the proposed TCF, which realises the

6 Reusable Test Modules and Behaviour Model Generation

219

parsing of STD instances and simultaneously generates behaviour models for given

value-added telecommunication services.

The behaviour model concept also has a significant meaning for the upcoming chapter,

as all generated behaviour models that are assigned to a value-added service build the

foundation for the generation of test cases. An algorithm has to be developed which

realises the test case derivation and also the test case generation of TTCN-3 test cases.

Furthermore, the upcoming chapter gives answers regarding the test case execution and

evaluation.

221

7 Test Case Generation, Execution and

Management

The chapter comprises three very relevant processes within the TCF architecture, the

generation of test cases, their execution against the SUT as well as the subsequent analysis

and management of the upcoming test results. Based on the output of the ACE algorithm

discussed in the previous chapter, these processes can apply. Figure 7.1 illustrates the

processes as well as their inputs and outputs.

Figure 7.1: Generation, Execution and Evaluation of Test Cases

This chapter is structured based on the illustrated processes in Figure 7.1. Initially, section

7.1 (see Figure 7.1, Test Case Derivation) deals with the derivation of test cases from the

behaviour models generated by the ACE algorithm. The relevant steps are performed by

Start

Behaviour
Models

Abstract
Test Cases

End

Test Case
Derivation

Test Suite
Generation

Executable
Test SuiteTest Execution

Test Results Test Evaluation

7 Test Case Generation, Execution and Management

222

the Test Case Derivation Unit (TCDU) which is part of the TCF architecture (see Figure

4.5). For each behaviour model, the TCDU derives a reasonable amount of abstract test

cases by applying a specific structural coverage criterion. Advantages and disadvantages

of existing coverage criteria will also be discussed in section 7.1. Section 7.2 (see Figure

7.1, Test Suite Generation) introduces the Test Suite Generator (TSG) as architecture

component of the TCF (see Figure 4.5). It comprises a Test Code Generator (TCG) as

well as a Test Suite Builder (TSB). The main task of the TCG is to read the abstract test

cases derived from the TCDU and to subsequently generate the appropriate TTCN-3 code.

The TTCN-3 code generation is separated into three different parts:

1. Generation of test code for test configuration.

2. Generation of required test data templates.

3. Generation of test behaviour by means of TTCN-3 test cases.

In the final step, the TCG generates collections of test cases which can be directly mapped

to the Requirements specified within the corresponding STD instance. Now, the TSB

performs a compilation of the generated TTCN-3 code and generates an Executable Test

Suite (ETS). The final step includes a transmission of the ETS to the TTCN-3 test

execution environment. The third process described in this chapter is the execution of the

tests against the SUT (see Figure 7.1, Test Execution) in section 7.3. Here, the principles

of executions within TTCN-3-based environments is discussed. An example test case

invocation is shown as well as its impact on the components of a TTCN-3 system. The

final process in section 7.4 (see Figure 7.1, Test Evaluation) introduced in this chapter

refers to the management and evaluation of test results. It has to be specified how a valid

product can be achieved which involves all stakeholders within the service development

7 Test Case Generation, Execution and Management

223

process. In principle, the test developer analyses the tests. If test case errors eccour, the

test developer first has to figure out if he made a mistake in the STD definition. If this is

not the case, the test management requires the involvement of the Service Quality Group

(SQG) (see section 4.2) and the service customer.

7.1 Generation of Abstract Test Suite

Regarding the TCF architecture, this section deals with the Test Case Derivation Unit

(TCDU), a component which derives abstract test cases and builds an abstract test suite

from the generated behaviour models.

7.1.1 From Behaviour Models to Abstract Test Cases

As described in section 6.4, the behaviour models, just as as the reusable test modules,

are based on the applied Statecharts notation. If there are n Requirements defined for a

value-added service within an STD instance, there will also be n different behaviour

models from which test cases have to be derived. The following Figure 7.2 is based on

the example behaviour models illustrated in Figure 6.25 and shows the test case derivation

from behaviour models.

7.1 Generation of Abstract Test Suite

224

Figure 7.2: Test case derivation from behaviour models

For each behaviour model, irrespective of whether or not it includes a dependency to

another behaviour model, test cases are derived. If there is a dependency included

between two Requirements (such as between “Req02” and “Req03”), the test case

derivation of “Req03” needs to consider the behaviour model of “Req02” while deriving

the test cases. Each test case for “Req03” will then start at the beginning of the description

of the behaviour model of “Req02” and will end within the behaviour model of “Req03”.

Theoretically, it would then be sufficient to just generate test cases from independent

behaviour models (such as “Req01”) and from composed behaviour models (such as

“Req03”) because it also includes the test cases that are relevant for the Requirement it

depends on (here, it is “Req02”). However, the proposed approach in this research enables

a thorough traceability of requirements, especially to be able to do a “rapid protoyping”-

alike procedure where both service developer and test developer can focus on

implementing or rather testing the requirements step by step. Following this approach,

“Req02” can be tested even if “Req03” is not yet specified.

Req01

Test Cases

TM1

TM2 TM3

TM1

TM2

Req02

Test Cases

Req03

TM1

TM2 TM3
Test Cases

7 Test Case Generation, Execution and Management

225

Focusing on the task of the TCDU, the TCF component needs to analyse the diverse

behaviour models that it gets as input and produce one abstract test suite as output. An

abstract test suite contains collections of abstract test cases that are sorted according to

the behaviour models (and therefore also according to the Requirements) that they have

been derived from. In offline Model-based testing approaches, abstract test cases are quite

commonly derived from models (see section 3.2.4). According to (Devroey et al., 2014),

an abstract test case is defined as a trace 𝑎𝑎𝑡𝑡𝑐𝑐 = (𝛼𝛼1, … ,𝛼𝛼𝑛𝑛) within a model that specifies

behaviour and can therefore be understood as a finite sequence of actions α that might

occur according to the model description. In the case of this research, the concept of

abstract test cases differs a little bit. The concept will be explained in the next section

7.1.2. The following Figure 7.3 presents the main task of the TCDU showing the

necessary inputs and outputs.

Figure 7.3: Abstract test case generation from behaviour models by Test Case Derivation Unit

As soon as the TCDU gets the behaviour models as input, it successively reads them and

derives the abstract test cases. For every set of abstract test cases belonging to a specific

behaviour model, a collection is created. After all behaviour models have been processed,

the TCDU creates the abstract test suite exemplified on the right side of Figure 7.3. It has

to be noticed that each of the three collections illustrated within the abstract test suite

Abstract Test Suite

Test Case Derivation Unit
Behaviour Models

Read next
Behaviour Model

Req01

TM1

TM2

TM3

TM1

TM2

TM1

TM2

Req02 Req03

Req01

Req02

Req03

Create Abstract
Test Suite

Derive abstract
test cases

Create
collection

7.1 Generation of Abstract Test Suite

226

includes abstract test cases as test paths. In principle, this is comparable to the definition

of (Devroey et al., 2014), however, Figure 7.3 also shows some test paths that contain

loops or alternative paths. The reason for this will be described in the following section

which includes the description of the underlying abstract test case derivation algorithm.

7.1.2 Test Case Derivation

For the derivation of test cases from formal models, the literature discusses several

approaches and algorithms that can be applied, such as in (Ammann and Offut, 2008),

(Utting and Legeard, 2006), (Binder, 1999) and (Tahat et al., 2001). In general, the

approaches are referred to as so-called structural coverage criteria. Especially for

transition-based models such as Statecharts, there are many different structural coverage

criteria that can be used to manage test case derivation. Depending on the selected

structural coverage criteria, a test case generator automatically generates a set of test paths

within the model from an initial state to the end state. A selection of possible structural

coverage criteria is illustrated in the following Figure 7.4. Permission to reproduce Figure

7.4 has been granted by ACM.

Figure 7.4: Hierarchy of structural coverage criteria (adapted from (Haschemi, 2009))

All-Paths

All-k-Loops-Paths All-Transition-Pairs

All-Loop-Free-Paths All-Round-Trips All-Configurations All-Transitions

All-States

7 Test Case Generation, Execution and Management

227

According to (Haschemi, 2009), the diagram shows the strongest structural coverage

criterion at the top and weaker ones in a lower level. The arrow between the criteria

illustrates that every test suite satisfying a criterion c1 (arrow source) subsumes another

criterion c2 (arrow destination). The meaning of the diverse structural coverage criteria is

as described in (Binder, 1999), (Ammann and Offut, 2008) and (Haschemi, 2009):

• All-States – Every defined state within a given model is visited at least once.

• All-Transitions – Every transition of the model must be traversed at least once.

• All-Transition-Pairs – Every pair of adjacent transitions in the model must be

traversed at least once.

• All-Configurations – A configuration is a set of concurrently active states. This

criterion requires that all configurations of the model’s states are visited.

• All-Round-Trips – This criterion requires a test case for each loop in the model and

that it only has to iterate once around the loop.

• All-k-Loops-Paths – Every path that contains at most two repetitions of one

configuration has to be traversed at least once. This requires all the loop-free paths

within the model to be visited at least once and additionally, all the paths that loop

once.

• All-Loop-Free-Paths – Every path free of loops has to be traversed at least once. A

path is loop-free if it does not contain any repetitions.

• All-Paths – This coverage is satisfied as soon as all paths of the model are traversed

at least once. This criterion is usually not practical because models typically contain

an infinite number of paths, especially if they contain loops.

7.1 Generation of Abstract Test Suite

228

For this research, the existing structural coverage criteria have been evaluated, however,

none of them could be directly applied for the given behaviour models. Of course, it

would be possible to apply each of the mentioned structural coverage criteria on the

Statechart-based notation, but most of the derived abstract test cases will run result in an

inconclusive verdict as soon as they have been made executable. This has to do with the

fact that resulting from all these coverage criteria, linear test cases are derived consisting

of a linear sequence of events and actions. In principle, this aspect is not well suited for

testing of a value-added service that is supposed to operate within a reactive environment.

It might be possible that a value-added service responds to a stimuli triggered by the test

execution environment in a valid but unexpected way. To exemplify the issue, a standard

Three-Way-Handshake for SIP (IETF RFC 3261, 2002) is considered. The test execution

environment sends an INVITE request in order to establish a session to the value-added

service. The linear test cases that this behaviour relies on, first expects a provisional

message (e.g. “100 Trying”) from the SUT and afterwards a successful “200 OK”

response. Now the SUT, after having sent the expected “100 Trying” message

(incidentally, this message will always be sent by a Stateful Proxy Server that is included

within the NGN environment), sends another provisional message (e.g. “180 Ringing”).

Although this behaviour is allowed as an option, the test system compares the incoming

“180 Ringing” with the expected “200 OK” message and will come to the conclusion that

the response does not match. Accordingly, the test case will fail or will be evaluated as

inconclusive. The problem of this test case derivation strategy is that the linear test cases

do not describe multiple expected output states. However, the concept of the applied

Statecharts notation (see section 6.1.3), having the messages that the SUT expects as

events and the ones it potentially sends as actions, allows a different representation of test

7 Test Case Generation, Execution and Management

229

cases than in the standard linear form. In fact, a test case derived from a behaviour model

can also be presented as a directed graph G = (V, E), where V is a set of vertices and E is

a set of edges and where each edge is a pair of vertices. Especially in a directed graph, an

edge is an ordered pair of two vertices (u, v) with the edge pointing from u to v. Contrary

to linear representations of test cases, a graph is able to determine branches. So, any given

vertex 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉 can theoretically have an inifinite number of outgoing edges. However,

according to the test case representation, there is a restriction defined. A vertex 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉

can only have more than one outgoing edge if it specifies an action and not an event.

In order to exemplify the novel principle of the test case representation with graphs, two

example Statechart descriptions will be analysed. But before, an appropriate structural

coverage criterion has to be selected. Even though the general output of the mentioned

coverage criteria is a linear test sequence, still the concept behind the criteria can be

applied for the graph-based test sequences. For this research, the structural coverage

criterion All-Round-Trips has been selected. According to (Binder, 1999) and (Utting and

Legeard, 2006), this structural coverage criterion can be satisfied with a linear number of

test cases whereas the All-Paths-based criteria (such as All-Paths itself, All-k-Loops-

Paths and All-Loop-Free-Paths) require an exponential number of test cases if the model

contains many alternative branches. This is important, because all of the specified SIP-

based example Statecharts contain a few branches and also loops. In comparison to

standard structural coverage criteria such as All-Transitions and All-States, the All-

Round-Trips is able to detect faults more thoroughly (Antoniol et al., 2002), as the tests

are more extensive. Additionally, (Binder, 1999) explicitly recommends this coverage

criterion for model-based approaches.

7.1 Generation of Abstract Test Suite

230

In the following illustration (see Figure 7.5), the “SIP UAC non-INVITE” behavioural

description is illustrated with a special identification of the transitions (e.g. “{a1}”).

Figure 7.5: Behavioural description of SIP UAC non-INVITE (with transition marking)

The test derivation based on the behavioural description will be realised as follows. In

principle, the All-Round-Trips algorithm includes the All-Transitions algorithm without

loops and adds one further test case for each occurring loop within the model. Based on

the behavioural description of “SIP UAC non-INVITE”, five test cases can be derived.

They are illustrated in the following Figure 7.6.

Figure 7.6: Test case derivation from SIP UAC non-INVITE

SIP UAC non-INVITE

Start

Trying

entry: timerE.start

Proceeding

entry: timerE.start

Completed

entry: timerK.start

- / s_Request {a1} r_Response1xx {e2}

timerE.timeout / s_Request {e4/a3}

r_Response1xx
{e5}

r_Response_2xx_6xx
{e6}

r_Response2xx_6xx {e3}

TerminatedtimerK.timeout {e7}

timerE.timeout / s_Request {e1/a2}

TC1

TC2

TC3

TC4

TC5

S Tr C Tee7

S Tr P Ce6

S Tr Tr Ce3

S Tr P Pa1

S Tr P Pa1

Tee7

Te

C

Ce6

Tee7

Tee7

7 Test Case Generation, Execution and Management

231

The state names within Figure 7.5 have been abbreviated, “Start” to “S”, “Trying” to

“Tr”, “Proceeding” to “P”, “Completed” to C” and finally, “Terminated” to “Te”. The

first two test cases “TC1” and “TC2” shown in Figure 7.6 are based on the All Transitions

without loops. Both describe a standard behaviour of a SIP request being sent from the

SUT to the participating entities (or rather the test execution environment). The difference

is that “TC2” includes a further provisional message that is sent before the terminating

response is sent. The other three test cases “TC3”, “TC4” and “TC5” refer back to the

three loops or rather self-transitions that are part of the behavioural description of the

“SIP UAC non-INVITE” reusable test module. “TC3” specifies the first timeout of

“timerE” that could happen in the “Trying” state, “TC4” correspondingly describes the

next timeout of “timerE” in the “Proceeding” state and finally, “TC5” specifies that a

further provisional response is sent before the final terminating response. Of course, the

loops could be visited more than once and it could also be possible that multiple loops

occur within one test case. However, this is not relevant in the “SIP UAC non-INVITE”

reusable test module because of the perspective. As it is a client core-based reusable test

module, the SUT acts as a trigger by sending the initial request. The test execution

environment will react based on the request and sent the appropriate responses the SUT

has to deal with. The perspective changes if a server core-based reusable test module is

applied. Then, the graph-based test case descriptions with branches become relevant. In

the “SIP UAC non-INVITE”, there have not been any branches.

The following Figure 7.7 illustrates the “SIP UAS non-INVITE” behavioural description.

It specifies the SUT to receive a SIP request from a participating entity or rather test

execution environment. Also within this description, the transitions have identifiers

included in order to represent the test case graphs.

7.1 Generation of Abstract Test Suite

232

Figure 7.7: Behavioural description of SIP UAS non-INVITE (with transition marking)

From the “SIP UAS non-INVITE” reusable test module (see Figure 7.7), three test cases

can be derived by the TCDU. In the following Figure 7.8, they are represented as directed

graphs.

Figure 7.8: Test case derivation from SIP UAS non-INVITE

All three test cases start the same way describing an event “e1” received by the SUT.

Afterwards, the SUT can act in two different ways either by first sending a provisional

SIP UAS non-INVITE

Start

Trying Proceeding

Completed

entry: timerJ.start

r_Request {e1}
- / s_ResponseA1xx

{a1}

- / s_ResponseB1xx {a3}

r_Request /
s_ResponseA1xx

{e2/a4}

- / s_Response2xx_6xx
{a5}

- / s_Response2xx_6xx
{a2}

r_Request /
s_Response2xx_6xx

{e3/a6}

TerminatedtimerJ.timeout {e4}

TC1

TC2

TC3

Tre1S

Tre1S

Tre1S

P

Ca2

a3

Tee4

P
a3

Ca2

Pe2/a4

P
a3

C Ce3/a6 e4

Te

Te

7 Test Case Generation, Execution and Management

233

response (action “a1”) or a terminating response (action “a2”). This branch illustrates why

a graph-based test case description is required. It cannot be predicted whether the SUT

responds with “a1” or “a2”, but it is obvious that both responses represent valid

behaviour. If “a1” is sent by the SUT, the state “Proceeding” is reached. In the graph-

based description of “TC1”, the vertex “P” contains a self-loop “a3”. As mentioned

before, loops in the All-Round-Trips algorithm lead to a new test case and should there

only be iterated once. This was a valid approach in the “SIP UAC non-INVITE” reusable

test module, because the iteration can be controlled. This cannot be done in the “SIP UAS

non-INVITE” case because the SUT is actually allowed to send provisional messages as

long as the global timer times out. So, every self-transition within a behavioural

description leads to a self-loop within a resulting test case if it only contains an action.

Contrary to this, an event specified in a self-transition leads to a new test case that will

iterate once in that specific self-transition. The test case will also not contain a self-loop,

but a new edge to the corresponding vertex. It symbolises that the state of the SUT

actually changed. For instance, “TC2” evolves from the self-transition containing an

event in the “Proceeding” state. As soon as the state is reached, the SUT will receive a

retransmitted request event (“e2”) and has to respond to this correspondingly (“a4”). This

example shows that event-based self-transitions and action-based self-transitions are

treated differently. “TC3” evolved from another self-transition containing an event “e3”

in the “Completed” state of the behavioural description of “SIP UAS non-INVITE”.

Besides the evident information shown in the test case graphs, there is further information

that needs to be included in the edges and vertices. For the later generation of real

executable test cases based on the abstract test cases, it is necessary to know to which

reusable test module instance the events or actions belong to. Therefore, identifiers of the

7.1 Generation of Abstract Test Suite

234

instances (e.g. “[s1]_1”) are stored within the edges. Furthermore, the pass flags that the

test developer might have set can be included, too. In the vertices, it is relevant to store

the starting of timers if it has been determined within the corresponding states of the

Statechart description.

The two examples illustrated the principle test case derivation by the TCDU and depicted

that there is a difference between test case derivation of reusable test module instances

which are server core-based or client-core-based. There are a few questions left regarding

the test case derivation. The first one focusses on the composition of two reusable test

modules. It is quite obvious what would happen if, for example, two instances of the

reusable test modules “SIP UAS non-INVITE” and the “SIP UAC non-INVITE” are

composed. The amount of test cases will be the product of the derived test case for each

reusable test module instance (in this case 15, because 3 are derived from “SIP UAS non-

INVITE” and 5 from “SIP UAC non-INVITE”). Of course, depending on the number of

reusable test module instances, the number of test cases can increase quite fast. A

possibility to decrease this amout can be the use of a different structural coverage criteria,

such as the All-Transitions strategy. For both reusable test module instances, applying

All-Transitions will lead to 2 test cases each. This is an enormous reduction, especially if

many instances of reusable test modules are used within one Requirement or between

depending Requirements. Besides changing the coverage criteria, the test developer can

also make use of the characteristics and the resultant flexibility of reusable test modules.

In fact, each reusable test module within the TMR can be modified according to the

present circumstances. For instance, the test developer could load the “SIP UAS non-

INVITE” reusable test module, erase the state “Proceeding” within the behavioural

description as well as the variables from the classification template (here:

7 Test Case Generation, Execution and Management

235

“s_ResponseA1xx” and “s_ResponseB1xx”) and store the whole reusable test module

under a new name, such as “SIP UAS non-INVITE without Proceeding”. This would

minimise the behavioural description, but of course, maybe relevant test cases to verify

the value-added service’s functionality will also be erased. However, for certain

behaviour, such as for instance instant messaging with SIP MESSAGEs, this would make

sense. In fact, although it is allowed according to (IETF RFC 3261, 2002) to send

provisional responses on receipt of a SIP MESSAGE request, it is not very common and

does not have to be specifically required for a value-added service.

Regarding the test case derivation, there are still some peculiarities that need to be

mentioned. The first concerns possible conditions that are defined in the STD instance

and are therefore part of the behavioural description. A condition will always compare

some variable with a given value. If for example there is a condition that compares a text

to a given value (for instance through if(message.Text == “Login”) then within the STD

instance, exactly this value will be specified in order to test that it works properly.

However, also the “else” part of a condition needs to be verified. This is performed

through the establishment of a new data set for the reusable test module instance. All

variables that are belonging to the current test module instance will be copied and stored

as another set of test data. However, the field message.Text will be automatically modified

through some generated value. The establishment of a new data set does not affect the

description within the STD instance. There is the rule that test cases for a given reusable

test module instance need to be invoked for every defined data set that is stored in the

Test Data Pool and that exactly belongs to the reusable test module instance.

7.2 Test Suite Generation

236

A further peculariarity regarding the test case derivations concerns the concurrent

behaviour. Here, it has been determined that the test cases for the reusable test module

instances within an AND-state are fixed and will be invoked step by step for each

concurrent behaviour specified through the reusable test module instances. A test case

graph contains a special vertex to describe that the upcoming behaviour is concurrent.

Now that the abstract test cases have been derived, the TCDU can generate the abstract

test suite that contains the collections sorted by the Requirements. In the following

section, the Test Suite Generator as part of the TCF architecture transforms the abstract

test cases into executable TTCN-3 test cases and creates a complete TTCN-3 test suite

for the value-added service that is about to be tested.

7.2 Test Suite Generation

Before the automatic generation of executable TTCN-3 test cases is presented, a short

introduction of the TTCN-3 technology is given in the following section together with

the reasons why it has been selected in this research.

7.2.1 Motivation for a TTCN-3-based Approach

According to (Willcock et al., 2011), the Testing and Test Control Notation Version 3

(TTCN-3) is an “internationally standardised language for defining test specifications for

a wide range of computer and telecommunication systems. It allows the concise

description of test behaviour by unambiguously defining the meaning of a test case pass

or fail”. There are a lot of ETSI standards specifying TTCN-3, such as (ETSI ES 201 873-

7 Test Case Generation, Execution and Management

237

3, 2015) describing the core language. Furthermore, there are ETSI standards for the

existing presentational formats, either tabular-based (ETSI ES 201 873-2, 2007) or

graphical-based (ETSI ES 201 873-3, 2007). Further important interfaces that are usually

part of a TTCN-3 test system are the TTCN-3 Control Interface (TCI) (ETSI ES 201 873-

6, 2015) and the TTCN-3 Runtime Interface (TRI) (ETSI ES 201 873-5, 2015). Based on

the following Figure 7.9 illustrating the conceptual model of a TTCN-3 test system, the

interfaces of such a system as well as the components are explained. Permission to

reproduce Figure 7.9 has been granted by the publisher John Wiley and Sons.

Figure 7.9: Conceptual model of a TTCN-3 test system (Willcock et al., 2011)

(Willcock et al., 2011) describes a TTCN-3 test system as a collection of entities that

interact with each other while the test suite execution is performed. The central layer of

the TTCN-3 test system, the TTCN-3 Executable (TE), deals with the execution of

TTCN-3 statements. The TE itself depends on several services provided by the Test

Management (TM), External Codecs (CD) and Component Handling (CH) entities that

Test Management & Control (TMC)

Test System User

System Under Test (SUT)

External Codecs
(CD)

Test Management
(TM)

Component
Handling (CH)

TCI

TTCN-3 Executable (TE)

TRI

SUT Adapter (SA) Platform Adapter (PA)

7.2 Test Suite Generation

238

are accessible via the standardised TCI. The entities are part of the Test Management &

Control (TMC) layer. The TM is responsible for the overall management of the test

system by providing a test system user interface to analyse the executed tests and to set

relevant test parameters. The CD enables the encoding and decoding of data that is

associated with message-based communication within the TE. Finally, the CH provides

means in order to realise a communication between parallel test components (TTCN-3,

2015). Through the TRI, the TE is able to use services provided by the two adapters SUT

Adapter (SA) and Platform Adapter (PA). The SA adapts message-based communication

(or procedure-based alternatively) to and from the SUT wheareas the PA is responsible

for the TTCN-3 external functions and timers. Finally, on the top of Figure 7.9, the test

system user is able to coordinate the testing through the TMC.

Based on the explanation of a TTCN-3 test system, the main arguments for using a TTCN-

3-based specification of test cases are as follows:

• TTCN-3: ETSI standard – First of all, the language is a respected standard for the

specification of tests by both academia and industry.

• Hiding of the underlying complexity – The TTCN-3 language allows to quite

easily implement test sequences without complex steps. This has to do with the

fact that the underlying complexity, for instance the memory allocation, network

communication or the representation of data is hidden behind so-called abstract

artefacts (e.g. test components, test behaviours, test templates). This aspect also

allows a quite straightforward generation of TTCN-3 test code.

• Programming language – TTCN-3 itself is an abstract language that can only be

executed by means of the SA and PA within a special TTCN-3 test system.

7 Test Case Generation, Execution and Management

239

However, it contains constructs that are are known from programming languages,

such as variables and control structures (if-else and loops). These aspects are

relevant in order to compare values and act accordingly.

• Parallel Test Components – This aspect of TTCN-3 is one of the most relevant

factors for its usage in this research. A TTCN-3-based test system can create

multiple test components to perform behaviours in parallel. Within an STD

instance, several Roles can participate in a value-added service consumption

through their CIs. These Roles or participating entities can be mapped to the

parallel test components of the TTCN-3 test system. So, each Role defined in the

STD is represented by one test component in the TTCN-3 test system and

execution environment.

• Concurrent behaviour – Behaviours can be specified for the parallel test

components. In TTCN-3, so-called behaviour functions are defined which can be

bound to the test components. If the behaviour is then explicitly started for several

test components, concurrent behaviour is possible. This aspect is a solution for the

hierarchical AND-state and its representation of concurrency. For each Role that

is addressed to a specific behaviour within the AND-state, the behaviour can be

started.

• Codecs – The reusable test modules describe recurring behaviour that is

specifying protocol messaging. The codec concept of TTCN-3 allows to enhance

the test systems if for instance new reusable test modules are defined. Of course,

the codecs have to be implemented once by a developer.

To sum up, TTCN-3 provides a lot of features that are required within this research and

has therefore been chosen as notation of the executable test cases. The following section

7.2 Test Suite Generation

240

describes how TTCN-3 test cases can be generated based on the derived abstract test

cases.

7.2.2 Test Code Generation and Test Suite Building

The TCF architecture integrates the component Test Suite Generator (TSG) in order to

build executable test suites for specified value-added services. The TSG itself comprises

two components, a Test Code Generator (TCG) and a Test Suite Builder (TSB). The main

tasks of these two elements are presented in the following Figure 7.10.

Figure 7.10: Generation of executable TTCN-3 test suite based on abstract test cases

The input of the executable test suite generation process is the output of the test derivation

process of the last section (the abstract test suite containing graph-based test cases). First,

the TCG will read the abstract test suite. Afterwards, it will generate a test configuration

based on the parameters it retrieves from the Test Configuration Unit (TCU) and will then

continue with the generation of test data definitions. This requires a connection to the

Test Data Pool database, because all variables of instances of the reusable test modules

Abstract Test Suite

Test Configuration Unit (TCU)

Req01

Req02

Req03

Test Code Generator (TCG)

Generate Test
Configuration

Test Suite Builder (TSB)

TTCN-3 compilation

Read Abstract
Test Suite

Create Test
Data Definition

Create Test
Behaviour

Test Data
Pool

Executable
Test Suite

Test Suite Generator (TSG)

Java compilation

7 Test Case Generation, Execution and Management

241

being consumed have to be generated as so-called TTCN-3 data templates. In the

following, the test behaviour has to be created. For every requirement-based collection

within the abstract test suite, a new TTCN-3 module is created which will contain the set

of test cases that are generated from the graph-based test cases. Of course, this is an

iterative process, because the test cases will be analysed sequentially and according to the

inputs, the relevant TTCN-3 code is generated. The test behaviour creation process

includes all particularities that are integrated within the graph-based tests, such as the

sending of messages initiated by the test system, the subsequent receiving and evaluation

of messages from the SUT, the handling of conditions and timers as well as the

description of concurrency between the defined test components. The final step of the

TCG is to deliver the generated TTCN-3 code to the TSB component within the Test

Suite Generator. The TSB then compiles the code by means of a special TTCN-3 compiler

which generates Java code. The subsequent Java compilation process generates

executable Java bytecode which can be run within a Java VM (Java Virtual Machine).

The Java bytecode is represented as the “Executable Test Suite” which now can

automatically be executed within a TTCN-3 test execution environment. The described

steps will now be analysed in detail.

Generate test configuration

The test configuration is the responsible part for the communication between the SUT on

the one side and the test system (or test execution environment) on the other. However,

the real physical connection is not directly supported via TTCN-3 but through appropriate

SUT Adapters (see Figure 7.9). Instead, TTCN-3 provides well-defined abstract

definitions of test system interfaces that shall be associated with the generated test cases.

7.2 Test Suite Generation

242

Generally speaking, a complex test configuration can contain several test components that

are able to communicate with each other and with the SUT.

As illustrated in Figure 7.10, the TCU provides the TCG with parameters from the STD

instance, especially the ServiceID and the Roles are relevant. Wheareas the ServiceID is

just used for the further naming of test cases and files, the Roles have a very significant

meaning. In fact, each Role specified in an STD instance defined for a given value-added

service is represented by one so-called parallel test component (PTC) in TTCN-3.

According to (Willcock et al., 2011), a PTC is not a test component on which statements

are executed, it is just a set of ports. A message-based TTCN-3 port defines which

messages or message types are allowed to transfer through a specific port. In the following

Figure 7.11, an example illustration of the test configuration is shown.

Figure 7.11: Dynamic test configuration with TTCN-3 test system

The test configuration shows two example PTCs that are directly connected to the SUT

interfaces and are also connected to another element, the so-called MTC (Main Test

Component). The major role of the MTC is to coordinate the creation and execution of

the PTCs and usually, it does not interact with the SUT. It is also responsible for the

logging of the verdict for every test step. The question is now how the illustrated

SUT
Test System

MTC

PTC PTC

7 Test Case Generation, Execution and Management

243

configuration can be generated by the TCG. However, before the MTC and the PTCs can

be initialised, the kinds of interfaces of the test components and the SUT have to be

determined. The following TTCN-3 statements (see Figure 7.12) specify the abstract SUT

interfaces as well as the interfaces for the test components (PTCs).

group Interfaces {

 type component SUTInterface {

 port UdpPort UDP1, UDP2, UDP3;

 port TcpPort TCP1, TCP2, TCP3;

 port RTPPort RTP1, RTP2, RTP3;

 port HttpPort http;

 }

 type component SipComponent {

 timer globalTimer := 30.0;

 port SipPort SIPP;

 port RTPPort RTP1;

 port Coordination cpA;

 port Coordination cpB;

 port Coordination cbC;

 }

}

Figure 7.12: Abstract interface definition in TTCN-3 for SUT and test components

The component “SUTInterface” represents the SUT component containing abstract

interfaces for the procotols UDP, TCP, RTP and HTTP. There is no specified SIP port

defined, because SIP can be transported via diverse transport protocols (such as UDP and

TCP). The “SUTInterface” as it is defined represents the interfaces provided by the SIP

AS on which the value-added service is deployed. Additionally, the “SipComponent”

refers to a test component that represents the Role “SIP phone”. In contrast to the

“SUTInterface”, the test component has a timer “globalTimer” which is also defined

within the classification templates of reusable test modules. Furthermore, the

7.2 Test Suite Generation

244

SipComponent has a SIP port defined as well as an RTP port. Besides, the defined

coordination ports are used for the coordination of the MTC and the synchronisation of

the PTC.

In the following, the TTCN-3 syntax of the test configuration illustrated in Figure 7.11 is

shown. An example test scenario could require the involvement of two Roles, both of the

type “SIP phone”.

function createTestConfiguration(SipComponent mtcComp, SipComponent comp1,

SipComponent comp2, SUTInterface sut) {

 map(comp1: SIPP, sut: UDP1);

 map(comp2: SIPP, sut: UDP2);

 connect(mtcComp:cpA, comp1: cpA);

 connect(mtcComp:cpB, comp2: cpB);

}

Figure 7.13: Example test configuration with two example PTCs

The illustrated TTCN-3 function could be generated by the TCG. The “map” function

actually maps the ports between the PTCs and the SUTInterface whereas the “connect”

function is only possible between MTC/PTCs in order to coordinate and synchronise. For

every test case that is generated later on in the process, the test configuration function

needs to be invoked.

Create Test Data Definition

One of the major benefits of TTCN-3 in comparison to other test specification methods

is the ability to send and receive complex messages over the communication ports that

have been defined by the test configuration. Besides predefined basic data types such as

charstrings and integers, the syntax also provides a special language element called

7 Test Case Generation, Execution and Management

245

template. According to (Willock et al., 2011), TTCN-3 templates are used to either

transmit a set of specific values (so-called send template) or to test whether received

values are contained in a set of expected messages, which are again represented by a

specification template (so-called receive template).

The task of the TCG in the test data definition process is to take all the relevant data sets

(instantiated variables) from the Test Data Pool and to automatically generate either send

or receive templates. Both send and receive templates are based on the same abstract data

type. In TTCN-3, these abstract data types are called records, so there is no significant

difference between the two. However, in contrast to send templates which have to contain

explicit values, receive templates can either include explicit values or alternatively,

wildcards (see section 6.3). In the Test Data Pool, send and receive templates can be

distinguished through their names. A variable within a reusable test module instance

containing a prefix “s” signifies that the SUT sends this message to the test system. So,

as the test system actually receives this message, every “s” prefix message is a TTCN-3

receive template. Contrary to this, every “r” prefix message is a message that the SUT

receives and accordingly a TTCN-3 send template.

In the following Figure 7.14, an excerpt of an example mapping is demonstrated between

the XML-based structure of a variable within the Test Data Pool and the resultant TTCN-

3 code. As an example, a SIP MESSAGE is specified that is sent by the SUT to the test

system (prefix “s”). In the example, the request line as well as the text body of the SIP

message are specified.

7.2 Test Suite Generation

246

Figure 7.14: Mapping between XML representation of test data and resultant TTCN-3 template

The example shows how specific the definition of an example SIP request template is.

On the one hand side, this has to do with the complexity of the protocol itself with all the

possible headers that can be used. On the other side, the complexity in TTCN-3 templates

is caused by the underlying TTCN-3 codec implementation. For this approach, the

TTsuite-SIP is applied (TTsuite-SIP, 2015). Figure 7.14 also demonstrates the steps the

TCG has to perform within the test data definition process. Every element of the XML-

based structure has to be parsed and depending on the element name (e.g.

“<RequestLine>”), the generation of a complete block of TTCN-3 code will be generated

and integrated within a predefined TTCN-3 template. If a SIP URI is specified within the

XML-based definition, the pieces of it will be splitted by “scheme”, “user info” and “host

port”. This enables a precise analysis when a test case fails because of a wrong SIP URI.

It is noted that the resultant TTCN-3 template includes message header definitions besides

<SIP_Request name=“s_Request“>
 <RequestLine>
 <Method>MESSAGE</Method>
 <SIPURI>sip:chatservice@192.168.0.10</SIPURI>
 </RequestLine>
 <MessageBody>
 <Text>Login</Text>
 </MessageBody>
</SIP_Request>

template Request s_Request_CI_sender1_2 := {
 requestLine := {
 method := MESSAGE_E
 requestUri := {
 scheme := “sip“,
 userInfo := {
 userOrTelephoneSubscriber = “chatservice“
 },
 hostPort := {
 host := “192.168.0.10“,
 port := omit
 }
 },
 sipVersion := “SIP/2.0“
 },
 msgHeader := {
 accept := *,
 allow := *,
 contentLength := ?,
 contentType := {
 fieldName := CONTENT_TYPE_E,
 mediaType := “plain/text“
 },
 fromField := ?,
 toField := ?,
 callId := ?,
 cSeq := {
 fieldName := CSEQ_E,
 seqNumber := ?,
 method := “MESSAGE“
 },
 contact := *,
 //...
 },
 messageBody := {
 messBody := addCRLF(“Login“)
 }
}

7 Test Case Generation, Execution and Management

247

the relevant fields request line and message body. This is required, because every template

has to include all the fields of the record type it is based on. This does not mean that the

fields have to be part of the real SIP protocol message. If they are not required at all,

TTCN-3 provides the wildcard “*” for receive templates and the “omit” statement for

send templates. As described in section 6.3, the wildcard “?” for receive templates is a

little bit different from the “*” wildcard as it requires that at least a value is provided. In

the example shown in Figure 7.14, this is valid for the mandatory headers of a SIP request

(such as the “FROM” header). Of course, the example does not show all the headers

included as it is just an excerpt.

As soon as the TCG has generated all the relevant TTCN-3 templates, they will be

included in a separate TTCN-3 module. This module will then be integrated in the

requirement-based modules which are generated in the following process, the creation of

the test behaviour.

Create Test Behaviour

The test behaviour is a specification of what has to be tested by means of given inputs,

results and conditions. The TTCN-3 syntax provides diverse constructs for describing the

functionality of a test system and it also allows an efficient description of behaviour by

means of sequences, alternatives and loops.

The TCG performs the test behaviour generation sequentially considering the

requirements-based collections of abstract test cases. Then, each graph-based

representation of an abstract test case is analysed. In the first step, all the edges are parsed

7.2 Test Suite Generation

248

in order to find out which Roles are participating in the test case. Based on the result, the

following initialisation of the test case can be done (see Figure 7.15):

testcase req01_tc1() runs on SipComponent system SUTInterface {

 var SipComponent v_sender := SipComponent.create alive;

 var SipComponent v_recipient := SipComponent.create alive;

 createTestConfiguration(mtc, v_sender, v_recipient, system);

}

Figure 7.15: Instantiation of test components in TTCN-3 test case

First, the TTCN-3 test case “req01_tc1” for the currently analysed abstract test case is

established. The “runs on” clause signifies on which component type the described

behaviour is to be executed and through the “system” clause, the SUT abstract interface

specification is determined. In the following two lines, two test components of the type

“SipComponent” are created and are then accessible through the variables “v_sender”

and “v_recipient”. The “alive” statement used within the creation process signifies that

the components can execute so-called behaviour functions more than once before they

terminate. The concept behind the behaviour functions will be introduced later in this

section. Regarding the defined test components, everything indicates that the parsing of

edges of the current graph-based test case resulted in two Roles that are now represented

as test components. In the final step of the initialisation process, the test configuration is

established by invoking the function illustrated in Figure 7.13. The first parameter refers

to the MTC where the behaviour is currently executed in.

In the next step, the graph-based abstract test cases are converted to test behaviour. The

tree-like structure of a graph is advantageous because the concept of the “alt” statement

in TTCN-3 is also a tree-based representation. So, the TCG algorithm has to traverse the

tree and has to act according to the information stored on the edges (events, actions,

7 Test Case Generation, Execution and Management

249

reusable test module instances and the “pass” flag) and the vertices (starting of timers).

To exemplify the following steps, the code generation is shown by means of a graph-

based test case in the following Figure 7.16.

Figure 7.16: Example graph-based test case

As described in section 6.2.4, the behaviour models are focusing on the SUT. An event is

referred to an actual event message that the SUT receives. For the test system, an event

is a message that has to be sent and correspondingly, each defined action has to be

received by the test system. This aspect has to be considered by the test code generation

algorithm.

The illustrative graph-based test case example (see Figure 7.16) has been taken from

Figure 7.8 and describes a SIP request being received by the SUT (standard “SIP UAS

non-INVITE” behaviour). Then, the SUT either sends provisional messages back to the

test system or an immediate terminating response. The test case also includes a possible

retransmission of the initial SIP request after the terminating response has already been

received by the test system.

The TTCN-3 code to specify this test case will be split into two parts. The first part

specifies the test case from vertex “S” until the first vertex of “C”, the second part from

the first vertex “C” to “Te”. The separation demonstrates how behaviour descriptions can

TC1

Tre1S

P

a3

Ca2 e3/a6 e4 TeC

7.2 Test Suite Generation

250

be modularised through so-called behaviour functions. Then, the algorithm also enables

an efficient code generation.

1 function behaviour_tc1_1() runs on SipComponent {

2 globalTimer.start;

3 SIPP.send(r_Request_sender1_1);

4 alt {

5 [] SIPP.receive(s_ResponseA1xx_sender1_1) {

6 alt {

7 [] SIPP.receive(s_ResponseB1xx_sender1_1) {

8 repeat;

9 }

10 [] SIPP.receive(s_Response2xx_6xx_sender1_1) {

11 globalTimer.stop;

12 setverdict(pass);

13 }

14 [] SIPP.receive { setverdict (inconc); }

15 [] globalTimer.timeout { setverdict (fail); }

16 }

17 }

18 [] SIPP.receive(s_Response2xx_6xx_sender1_1) {

19 globalTimer.stop;

20 setverdict(pass);

21 }

22 [] SIPP.receive { setverdict (inconc); }

23 [] globalTimer.timeout { setverdict (fail); }

24 }

25 }

Figure 7.17: First generated TTCN-3 behaviour function based on abstract test case

The behaviour function “behaviour_tc1_1” begins with the starting of the timer

“globalTimer” which is part of the “SipComponent” test component. The timer is

accessible because the behaviour code can only run on a “SipComponent”. Upon the timer

has been started, the template “r_Request_sender1_1” representing the SIP request is sent

7 Test Case Generation, Execution and Management

251

via the “SIPP” port of the “SipComponent”. As a consequence, alternative behaviour is

specified through a so-called “alt” statement which enables to specify several different

alternative behaviour that can take place at a given point. Here (see Figure 7.17, line 4),

four different kinds of alternatives are defined. The first option is a valid one (see Figure

7.16, action “a1”, and correspondingly, see Figure 7.17, line 5), the receipt of the

provisional SIP response “s_ResponseA1xx_sender1_1”. If there is a match, further SIP

responses are received (see Figure 7.17, line 7 and line 10). If there are further provisional

responses, the “repeat” statement (see Figure 7.17, line 8) determines that the current “alt”

construct is still active. If a terminating response (for instance a successful “200 OK”

response) is received (see Figure 7.17, line 10), the “globalTimer” will be stopped

immediately, the test case will be considered as “pass” and the behaviour function is done.

However, there are also two further alternative steps defined that always have to be

integrated besides the explicit ones defined in the graph-based test case. Firstly, it is

possible that the test system receives a message on the port “SIPP” that is not recognised

as one of the specified messages (see Figure 7.17, line 14). In this case, the test case will

be “inconclusive”. This verdict describes a situation where neither a pass nor a fail can

be assigned. Secondly, the “globalTimer” can time out (see Figure 7.17, line 15), because

the SUT does not respond to the initial SIP request at all. Accordingly, the test case fails.

It is also possible that the SUT does not respond with a provisional message in the first

place, but directly sends back a terminating response (see Figure 7.17, line 18). Of course,

the test case passes, too. The other two alternatives (see Figure 7.17, line 22 and 23) again

specify timeouts or wrong messaging.

As mentioned before, there is a second behaviour function required to process the

complete test case shown in Figure 7.16. The trigger or reason for establishing a new

7.2 Test Suite Generation

252

behaviour function is the junction of two or more paths into one identical vertex.

Furthermore, the following outgoing edge of the vertex has to be an event and not an

action. The first “C” vertex in the graph-based illustration is an example as it has two

incoming edges “a5” and “a2” and an outgoing edge with an event “e3".

1 function behaviour_tc1_2() runs on SipComponent {

2 globalTimer.start;

3 SIPP.send(r_Request_sender1_1);

4 alt {

5 [] SIPP.receive(s_Response2xx_6xx_sender1_1) {

6 timer timerJ := 0.0;

7 timerJ.start;

8 alt {

9 [] timerJ.timeout (

10 globalTimer.stop;

11 setverdict (pass);

12 }

13 [] SIPP.receive { setverdict (inconc); }

14 [] globalTimer.timeout { setverdict (fail); }

15 }

16 }

17 [] SIPP.receive { setverdict (inconc); }

18 [] globalTimer.timeout { setverdict (fail); }

19 }

20 }

Figure 7.18: Second generated TTCN-3 behaviour function based on abstract test case

The second behaviour function “behaviour_tc1_2” specifies exactly the behaviour that

takes place if the verdict of the behaviour specified in “behaviour_tc1_1” passed.

Consequently, the “globalTimer” was stopped which now has to be restarted again (see

Figure 7.18, line 2). Then, the retransmission of the initial request is initialised (see Figure

7.18, line 3) and the retransmission of the terminating response is expected (see Figure

7 Test Case Generation, Execution and Management

253

7.18, line 5). If that does not take place, then the usual two alternatives might occur (see

Figure 7.18, lines 17 and 18). Otherwise, the timer “timerJ” is started and the test waits

for the timer to time out. If that occurs, the complete test case passes.

Now, the specified behaviour functions have to be explicitly invoked by the test

component. In the following Figure 7.19, the TTCN-3 test case “req01_tc1” (see Figure

7.15) is enriched with the test behaviour.

1 testcase req01_tc1() runs on SipComponent system SUTInterface {

2 var SipComponent v_sender := SipComponent.create alive;

3 var SipComponent v_recipient := SipComponent.create alive;

4 createTestConfiguration(mtc, v_sender, v_recipient, system);

5

6 v_sender.start(behaviour_tc1_1());

7 v_sender.done;

8 v_sender.start(behaviour_tc1_2());

9 v_sender.done;

10 all component.kill;

11 }

Figure 7.19: Starting of behaviour functions on test components

After the test case configuration, the first behaviour function (“behaviour_tc1_1”) is

invoked by the test component “v_sender” with the statement “start” (see Figure 7.19,

line 6). In the next line, the statement “done” is used on the same test component. This

signifies that the test system waits until the behaviour invoked by the test component is

terminated. As soon as this takes place, the second behaviour function

(“behaviour_tc1_2”) can be invoked by the test component. After the behaviour for all

test components has terminated, the statement “kill” has to be executed on the existing

test components. This is relevant, because the test components have been created with the

additional “alive” property.

7.2 Test Suite Generation

254

The previously described example already illustrates how concurrent behaviours can be

defined in TTCN-3. An example value-added service where this is relevant includes the

functionality to setup a call between two participating entities. This would mean that the

SUT (the value-added service) has to send two INVITE requests to the participating

entities and has to handle the upcoming concurrent behaviour (“Three-Way-Handshake”).

In TTCN-3, the code would look very similar to the example illustrated in Figure 7.19.

However, the test case would not wait until the termination of a specified behaviour but

directly invoke the two behaviours on the existing test components. A short excerpt of

the TTCN-3 code is illustrated in the following Figure 7.20.

1 testcase req02_tc2() runs on SipComponent system SUTInterface {

2 //Test Configuration

3 v_recipient1.start(behaviour_tc2_1());

4 v_recipient2.start(behaviour_tc2_2());

5 all component.done;

6 }

Figure 7.20: Concurrency example with two test components

The example does not show the test configuration and the creation of the test component,

but this does not differ much from the previous example (see Figure 7.19). The starting

of the concurrent behaviour functions is performed by the two test components

“v_recipient1” and “v_recipient2”. Then, the test waits until the concurrent behaviour is

terminated. Therefore, the “done” statement is used for all existing test components.

A further aspect the TCG has to take into consideration is the occurrence of conditions.

The following Figure 7.21 is a simplified illustration of a test case derived from the

composed behaviour model in Figure 6.36.

7 Test Case Generation, Execution and Management

255

Figure 7.21: Example test case with conditions

The displayed test case excerpt involves one instance of the “SIP UAS non-INVITE”

reusable test module and two instances of the “SIP UAC non-INIVTE” reusable test

module. The test case specifies a typical behaviour that might take place when some

action should occur based on a specific test data value. Here, the value is the content of

an instant message that has been sent from the test system to the SUT in order to “Login”

into a specific service and consume further functions (such as the chat room service). In

order to login successfully, the content of the message should be “Login”. All the message

flows that take place within the behavioural part of the “SIP UAS non-INVITE” describe

the receipt of the initial instant message on the part of the SUT until the transaction is

terminated in the “Te” vertex. From here, there are two edges which lead to vertices of

different “SIP UAC non-INVITE” behavioural descriptions. Both edges contain

conditions which check whether the value of the “Text” attribute (see Figure 6.21) of the

initial instant message “r_Request” contains the text “Login” or some different value.

Therefore, two alternative edges are included here. This branching is valid, because the

edges only contain actions and no events. Independent of the content of the “Text”

attribute of “r_Request”, a response from the SUT is expected based on the initial instant

TC1

Tre1S

P

Ca2

a3

[s1]_1: SIP UAS non-INVITE

[s2]_1: SIP UAC non-INVITE

[s2]_2: SIP UAC non-INVITE

Tr

Tr

Te

7.2 Test Suite Generation

256

message. In fact, it will send an instant message which informs the user (or the test system

in this case) whether the “Login” process was successful or not.

Based on the graph-based test case excerpt illustrated in Figure 7.21, the corresponding

TTCN-3 code has to be generated by the TCG. Basically, the TTCN-3 code generated

from “SIP UAS non-INVITE” has already been shown in Figure 7.17 and Figure 7.18.

So, the following Figure 7.22 includes a behaviour function that it started as soon as the

“SIP UAS non-INVITE” behaviour is terminated in the vertex “Te” (see Figure 7.21).

1 function behaviour_tc1_3() runs on SipComponent {

2 globalTimer.start;

3 var Request v_r_Request_s1_1 := valueof(r_Request_s1_1);

4 alt {

5 [v_r_Request_s1_1.messageBody.messBody == “Login”]

6 SIPP.receive(s_Request_s2_1) {

7 //…

8 }

9 [v_r_Request_s1_1.messsageBody.messBody != “Login”]

10 SIPP.receive(s_Request_s2_2) {

11 //…

12 }

13 [] SIPP.receive { setverdict (inconc) }

14 [] globalTimer.timeout { setverdict (fail) }

15 }

16 }

Figure 7.22: Example of conditions within generated TTCN-3 code

The behaviour function “behaviour_tc1_3” initially restarts the “globalTimer” in order to

verify that the test case fails if no event occurs after a given amount of time. Then, a

temporary variable “v_r_Request_s1_1” is initialised based on the initial instant message

which is contained in the TTCN-3 template “r_Request_s1_1” (see Figure 7.22, line 3).

7 Test Case Generation, Execution and Management

257

The “valueof” operation used here allows the value specified within a template to be

assigned to the fields of a variable. This step is always included in the generated TTCN-

3 code as soon as values within templates have to be accessed. The name of the variable

is always identical to the corresponding template’s name including a “v_” prefix. In the

test case illustrated in Figure 7.22, the variable is needed, because it is relevant for the

conditions. After the variable is created, alternative behaviour is specified within the test

case through the “alt” statement (see Figure 7.22, line 4). The first two alternative steps

within the “alt” statement refer to the two possible conditions (see Figure 7.22, lines 5

and 9), whereas the other two are the common alternative steps that are always included

in “alt” statements (see Figure 7.22, lines 13 and 14). Both conditions are included within

the brackets “[]” symbolising alternative steps and within each of them, the field

“messBody” of the Request attribute “messageBody” is accessed and compared to either

the value “Login” or not “Login”. This field refers to the “Text” attribute that is used in

the graph-based test case description. The difference in the syntax has to do with the

mapping concept between the XML representation of test data within the Test Data Pool

and the resultant TTCN-3 code (see Figure 7.14). The main reason behind this is to

simplify the definition of test data for the test developer without loosing the possibility to

check any given field within a SIP message. The XML representation is a more abstract

representation of the underlying TTCN-3 templates that specify SIP requests and

responses. To take up the issue of conditions again, the process is as follows. For each

alternative step that includes a condition, the behaviour specified within it can only take

place if the condition is true and if the test system verifies that the incoming message and

the defined template match. In the case of the first conditions (“==”), the template

7.2 Test Suite Generation

258

matching will be done with the SIP request template “s_Request_s2_1” (see Figure 7.22,

line 6).

Test Suite Builder

After the abstract test cases have been translated into TTCN-3 test cases by the TCG, the

Test Suite Builder (TSB) as part of the Test Suite Generator (TSG) builds the “Executable

Test Suite” (ETS). This process is illustrated in the following Figure 7.23.

Figure 7.23: Generation of Executable Test Suite by Test Suite Builder

The input of the TSB is the collection of TTCN-3 files, such as the “Test Configuration”

(see Figure 7.12), the generated TTCN-3 test data templates as well as the generated

TTCN-3 test cases. As shown in Figure 7.23, the test cases are separately included within

TTCN-3 test modules. For every specified Requirement in the STD, a separate TTCN-3

module exists which includes all TTCN-3 test cases that are required to verify that the

Requirement is fulfilled by the value-added service.

As soon as the TSB receives the collection of TTCN-3 files, it invokes the TTCN-3

compilation process. Here, a specific TTCN-3 compiler reads the module definitions of

the TTCN-3 files and compiles them into Java-based sources. Most commercial TTCN-

Generated TTCN-3 Source Files

Test Configuration

Test Data Templates

Test Cases

Module
(Req01)

Module
(Req02)

Module
(Req03)

Executable Test Suite (ETS)
Test Suite Builder (TSB)

TTCN-3 compilation

Java compilation

TTCN-3 Executable (TE)

TCI

TRI
System

Adapter (SA)
Platform

Adapter (PA)

Co
D

ec
 (C

D)

Test Configuration Unit (TCU)

7 Test Case Generation, Execution and Management

259

3 execution environments also include TTCN-3 compilers which enable the compilation

into other programming languages (e.g. C, C++ and C#), such as Elvior (Elvior, 2015)

and OpenTTCN (OpenTTCN, 2015). In this research, the TTworkbench (TTworkbench,

2015) has been applied which also includes a TTCN-3 compiler called “TTthree”. Figure

7.23 also shows a second input into the TTCN-3 compilation process from the Test

Configuration Unit (TCU). In principle, this input is a so-called test adapter configuration

file (“taconfig” file), an XML-based document the TTCN-3 compiler has to know during

the compilation process. The “taconfig” file is generated by the TCU based on the

information it holds from the STD instance, such as the SUT addressability and the

information about the participating test components. Within the file, the TCU specifies

the required TTCN-3 Codecs (CD) as well as the real ports that are used to communicate

with the SUT. The following Figure 7.24 shows a simplified excerpt of an example

“taconfig” file.

7.2 Test Suite Generation

260

<testadapter>

 <codec encode=”SipNist”>

 <plugin id=”com.testingtech.ttworkbench.tt3rt.sip.codec.SipCodecPlugin”>

 <parameter id=”class”

 value=”com.testingtech.ttworkbench.tt3rt.sip.codec.SipCodecProvider”/>

 </plugin>

 </codec>

 <port>

 <plugin id=”com.testingtech.ttcn.tri.udp.UDPPortPlugin”>

 <parameter id=”class” value=”com.testingtech.ttcn.tri.UDPPortProvider”/>

 </plugin>

 <parameter id=”UDP1”>

 <parameter id=”UDP_LOCAL_PORT” value=”${PX_ETS_PORT}”/>

 <parameter id=”UDP_LOCAL_ADDRESS” value=”${PX_ETS_IPADDR}”/>

 <parameter id=”UDP_REMOTE_PORT” value=”${PX_IUT_PORT}”/>

 <parameter id=”UDP_REMOTE_ADDRESS” value=”${PX_IUT_IPADDR}”/>

 </parameter>

 </port>

</testadapter>

Figure 7.24: Excerpt of test adapter configuration file for compilation process

The <testadapter> element is the root element of the “taconfig” file and specifies all the

required CDs and ports that are required within the execution process of the ETS. The

<codec> element comprises the relevant information of an existing CD that can be

applied within the test execution environment (here, a CD has been chosen which is part

of the TTworkbench). For each determined CD, a so-called provider has to be determined,

a Java class which handles the CD processing. In Figure 7.24, the selected CD is a codec

for the SIP protocol. Furthermore, the “taconfig” file includes the specification of the

communication endpoints of the ETS. Here, a <parameter> with the id “UDP1” is

specified, which contains four specific variables, the IP address and port number of the

test component running within the test execution environment as well as the IP address

7 Test Case Generation, Execution and Management

261

and the port number of the SUT. The example in Figure 7.24 just includes placeholders

(such as “${PX_IUT_PORT}”). A valid “taconfig” file contains real values, such as 5060

as the SIP standard port number. With the help of the port specification within the

“taconfig” file, the loading of the appropriate System Adapters (SAs) and CDs are

realised. Now, the communication between the test components of the test system and the

SUT can be established.

As discussed before, the TTCN-3 compilation process generates Java-based sources.

Additionally, a so-called “Campaign Loader File” (CLF) is generated. The CLF file

contains the test adapter configuration (“taconfig” file) as well as a list of all test cases

within the ETS. The CLF file is also based on XML and is therefore machine-readable.

In the second step, the TSB (see Figure 7.23) compiles the Java sources into byte code

class files. Furthermore, they are combined into a Java Archive (JAR). The JAR actually

represents the TTCN-3 Executable (TE) within the ETS. Through the CLF file as part of

the ETS, the services of the relevant SA and the Platform Adapter (PA) are activated and

can be used by the TE through the TRI (TTCN-3 Runtime Interface). Furthermore, the

CD is accessible by the TCI (TTCN-3 Control Interface).

Now, the ETS including all the relevant test cases has been generated in order to verify

the functionality of a value-added service. In the following section, the principles of the

test case execution within TTCN-3 based test execution environments is discussed.

7.3 Test Case Execution

262

7.3 Test Case Execution

As introduced in the previous section, the part of the TTCN-3 conceptual model or rather

system architecture (see Figure 7.9) which executes the TTCN-3 test cases is the TE

entity. However, according to (Willcock et al., 2011), not all relevant functions for the

test case execution are integrated within the executable Java bytecode produced by the

TTCN-3 and Java compilers. Some functions deal with aspects that cannot be extracted

from information included within the TTCN-3-based tests. An example for such a

function is the mapping of the “send” statement. Of course, the TE does not include any

information on how to send data to the SUT. To achieve this, the TE needs to call an

operation which is provided by the SA through the TRI. In general, the following

functionality is not included in the TE but is supported through the entities running within

a TTCN-3 test system:

• The communication with the SUT is provided by the System Adapter (SA)

through the TRI.

• The timer functionality is provided by the Platform Adapter (PA) through the TRI.

• The data encoding functionality is provided by the External Codecs (CD) through

the TCI.

The following Figure 7.25 is a modified illustration taken from (Willcock et al., 2011)

and exemplifies the execution of a test case which involves all the relevant entities of a

TTCN-3 test system and the SUT.

7 Test Case Generation, Execution and Management

263

Figure 7.25: Interaction of test system entities during test case execution

The displayed test case execution performs the sending of a SIP request (for instance a

SIP MESSAGE) to the SUT and subsequently expects a SIP response from the SUT. The

process starts with the TE invoking the “triSAReset” and the “triPAReset” operations

which are provided by the SA and the PA. According to (ETSI ES 201 873-5, 2015) and

(Willcock et al., 2011), the “triSAReset” operation resets all communications means the

SA is currently maintaining, such as static connections to the SUT. Dynamic connections

to the SUT are closed and pending messages are discarded. If the operation has been

performed successfully, it returns a status which indicates the local success (e.g.

“TRI_OK”) or failure (“TRI_Error”) of the operation. This status is sent by all the

upcoming operations that are related to the TRI. The second operation, “triPAReset”,

TECD SA PA SUT

triSAReset

triPAReset

triExecuteTestCase

triMap

tciEncode

triSend

triStartTimer

(encoded) SIP request

(encoded) SIP response
triEnqueueMessage

tciDecode

triStopTimer

pass

7.3 Test Case Execution

264

concerns the PA. Here, all timing activities the PA is currently performing shall be

resetted. A typical example is the stopping of all running timers.

As soon as both SA and PA are resetted, the TE calls the “triExecuteTestCase” operation

on the SA immediately before the execution of a test case. The operation includes two

further parameters, the test case name and a list of ports that have been declared in the

definition of the system component for the test case (see the system component

“SUTInterface” in Figure 7.12).

In the next step, the “triMap” operation (see Figure 7.25) is called by the TE upon

executing a “map” statement in a TTCN-3 test suite (an example is illustrated in Figure

7.13). According to the TRI standard (ETSI ES 201 873-5, 2015), the operation is used

to prepare a SUT communication interface (also defined as test system interface port) for

the interaction with the SUT. A successful completion of the “triMap” operation enables

a test component within a test case to communicate with the SUT. For a test case that

includes SIP communication, the invocation of the “triMap” operation could trigger the

allocation of a UDP socket (or alternatively, a TCP socket) and port through which SIP

messages can be sent and received. Although an unmapping is not included in Figure

7.25, there is also an operation “triUnmap” defined in the TRI standard which can be

invoked immediately after the termination of a test case. The main task of the operation

is to close a dynamic connection to the SUT for a specific test system interface port.

The next operation invoked by the TE, “triStartTimer”, is implemented by the PA (see

Figure 7.25). Of course, its invocation depends on the definition of the current test case.

If a timer is started by means of a TTCN-3 statement, the operation is invoked. The call

itself specifies the duration of the timer and includes an identifier for the timer in future

7 Test Case Generation, Execution and Management

265

communication between the TE and PA. Although it is not included within Figure 7.25,

it is possible that the timer expires before it is explicitly stopped again. The PA indicates

a timeout by calling the “triTimeout” operation (Willcock et al., 2011). As soon as the

“triStartTimer” operation has been invoked and the timer has been started successfully,

the execution of the test case continues with the sending of a SIP request message.

The sending of a message on the part of the test system requires to first encode it into a

message the SUT accepts. Encoding as well as decoding services are provided by the CD

entity which can be accessed by the TE via the TCI. The operation “tciEncode” (see

Figure 7.25) encodes a requested TTCN-3 message value and subsequently passes it back

to the TE as a binary string. According to (ETSI ES 201 873-5, 2015), the binary string

is then one of the input parameters of the following “triSend” (see Figure 7.25) operation.

Another parameter “componentId” identifies the test component that is acutally sending

the message and a further parameter “tsiPortId” specifies the test system interface port

via which the message is sent. As soon as the operation has been invoked, it is the task of

the SA to transmit the message to the SUT.

If the SUT accepts the SIP request, it answers back with a SIP response to the UDP port

(or TCP port) from where the corresponding message originated. The SIP response is

received by the SA which forwards it to the responsible test component within the TE by

invoking the “triEnqueueMsg” (see Figure 7.25) operation. The message is passed in an

encoded form. According to (Willcock et al., 2011), the arrival of any incoming message

(here, the SIP response) triggers a new evaluation of the “alt” statement which contains

different alternatives to deal with the different possible reactions from the SUT. The “alt”

statement blocks until one of its determined alternatives matches. However, the matching

7.3 Test Case Execution

266

process requires the encoded message to be decoded into a structured TTCN-3 value. The

CD entity provides the decoding service which is implemented in the “tciDecode”

operation. Besides the encoded message, the “tciDecode” operation needs to know the

assumed type of the message, the so-called decoding hypothesis. The CD can then select

the appropriate decoding mechanism. In the case of the SIP response, the decoder would

check if the received message is a correctly encoded SIP response message. A successful

check automatically creates a TTCN-3 “SIP_Response” value of the message and returns

it to the TE.

If the received SIP response matches, the execution of the test case proceeds with the

explicit stopping of the timer. Here, the TE invokes the “triStopTimer” operation

implemented by the PA. This operation succeeds, even if the timer has already stopped

or timed-out. It allows the PA to discard the timer.

As soon as the timer has stopped, finally, a test case verdict has to be determined. In the

example test case execution illustrated in Figure 7.25, the test case is judged as “pass”,

because the message flow (including the checking of the test data) has taken place as

specified in the TTCN-3 test case definition.

For each generated test case within an ETS which has been built by the TSB, the described

interaction of test system entities within the test execution environment, the

TTworkbench, is performed. The execution results of the test cases are documented in an

incident report which includes any event that occurs during the testing process that

requires further investigation. Then, the stakeholders have to figure out where the issue

originates. The following section discusses these issues and introduces methods

supported by the TCF to simplify the test evaluation process.

7 Test Case Generation, Execution and Management

267

7.4 Test Evaluation and Management

In the chapters 5 and 6 as well as in the previous sections of chapter 7, the concept of the

TCF and its components have been introduced thoroughly. The integration of the

proposed TCF within a service provider environment would change the tasks of the roles

participating in the service development and testing process. Especially test developers

benefit from the proposed TCF as they are also involved in the requirements elicitation

process due to their participance in the so-called Service Quality Group (SQG). The SQG

is a novel concept developed in this research and has been introduced in section 4.2.

Besides test developers, also service analysts and service developers participate in the

SQG. The SQG has been established to build a foundation for successful functional test

integration and to deliver products (value-added services) to service customers that have

been verified and validated. Most of the related work (such as related frameworks for

functional testing, see section 3.3) that has been done in the field of automated functional

testing of services focus only on developing efficient methods to build test models from

which test cases can be derived. The emerging agile concepts are not considered in these

approaches. In order to achieve a valid product, this research considers the agile concept

through the establishment of the SQG, which enables a “Whole Team” approach in the

methodology. In agile principles, the “Whole Team” approach (also called team-based

approach) describes a style in project management in which all project members are

equally responsible for the quality and success of a project (Gregory and Crisping, 2015).

The benefits of the SQG supporting the “Whole Team” approach are as follows:

• It helps the team in building a strong working relationship through effective

cooperation, communication and teamwork.

7.4 Test Evaluation and Management

268

• It enables the team members to learn from each other and share knowledge.

• Every member of the SQG is responsible for the outcome.

Especially the enforcing of service developers and test developers to intensify their

collaboration is a very important aspect of the SQG. In this section, the statements

regarding the SQG will be clarified. As discussed in section 4.2, both development (for

instance by means of a Service Creation Environment (SCE)) and testing (by means of

the proposed TCF) can start as soon as the service analyst hands out the “Structured

Requirements” document which contains the informal textual use cases specifying the

functionality of the value-added service. Both developers can rely on the described use

cases within the “Structured Requirements”. The service developer can implement the

service logic, possibly by means of reusable building blocks that are integrated within the

applied SCE, whereas the test developer can define an instance of the Service Test

Description by applying the TCF accordingly. It is important to emphasise once again

that every use case specified in the “Structured Requirements” document can be mapped

to a Requirement defined within an STD instance. This aspect allows an iterative testing

approach because a generated Executable Test Suite (ETS) does not have to contain all

test cases for a given value-added service. It is also possible to successively enhance the

STD instance and allow test iterations. The first test iteration might include just the initial

Requirement (e.g. “Req01”), whereas the last test iteration includes all the Requirements

specified within the final STD instance. The aspect of establishing test iterations has many

advantages. First, the test development process and the service development process can

be synchronised. If a service developer implemented the service partly so that it fulfils

the initial use case specified in the “Structured Requirements” document, it can be

automatically tested by means of the first test iteration. Further iterations can be

7 Test Case Generation, Execution and Management

269

established so that throughout the duration of the value-added service development, tested

so-called prototypes shall be demonstrably even if they just fulfil a range of use cases. In

principle, this approach can be called “rapid prototyping”. A second advantage of the

approach refers to the collaboration with the service customer. As soon as a prototype

exists as well as the corresponding ETS for this stage of development (test iteration), the

test cases will be executed against the prototype. If all test cases within the ETS pass, the

prototype can be declared as a verified prototype. In order to validate the prototype, the

service customer can be involved. So, each successfully tested (all test cases passed)

prototype can be demonstrated to the service customer. If the prototype meets the

requirements of the service customer, the prototype can be declared as a validated

prototype. If it does not meet the requirements of the service customer, possibly the

“Structured Requirements” document is not complete or includes misunderstandings or

errors. It is possible that the service analyst made a mistake while creating the document

or the service customer did not have a clear vision of the value-added service at the

beginning. In both cases, the “Structured Requirements” document needs to be updated

as well as the corresponding steps within the test and service development. The whole

process continues until the prototype fulfils all use cases specified in the “Structured

Requirements” document. This prototype is then the final value-added service.

The previously described process assumed that all test cases within an ETS passed during

their execution against a prototype. However, test cases can also fail. Inpedendent of the

underlying category of occurred error, such as “timer expired” or “other message received

than expected”, the following reasons can be stated:

7.4 Test Evaluation and Management

270

1. While defining the Requirements within the STD instance, the test developer

made a syntactical error (e.g. error in the parameterisation of variables).

2. The test developer did not understand the description of a use case properly

(maybe because it has not been described precisely enough) and defined a

different corresponding Requirement in the STD instance.

3. The service developer did not understand the description of a use case properly

(maybe because it has not been described precisely enough) and implemented a

different service logic.

4. The service developer made mistakes during the implementation of the service

logic.

Besides the mentioned reasons, there are of course alternative flaws that might occur. The

handling of errors in the test execution is always the same. First, the test developer has to

analyse the test cases that failed. If he made mistakes on his own (see reason 1), an

experienced test developer will find them quite fast and will be able to fix them.

Otherwise, for the reasons 2, 3 and 4, the test developer needs to first get in contact with

the service developer to discuss the issues. If both cannot fix the issue or have different

understandings of the matter, the service analyst is consulted and the SQG meets

officially. Generally, the service analyst should be able to solve the issues by clarifying

the possible misunderstandings or ambiguities in the “Structured Requirements”

document. However, it might also be necessary to contact the service customer for further

clarification.

In principle, the SQG requires a separate framework to control and monitor the testing

and development process and to simplify the communication with one another. Each role

7 Test Case Generation, Execution and Management

271

within the group and also the service customer could get access to a personalised

graphical user interface (GUI). The test developer and the service developer get an

overview of their current projects. For each project, they get information regarding the

included use cases and whether there are already existing prototypes for the use cases.

Furthermore, the developers can see the status of the prototype (“verified”, “validated”

or “final”). Over the GUI, the developers can get in contact with each other (e.g. via

instant chat message, audio/video calls or even via audio/video conferences) and are able

to request for a meeting of the SQG. The service analyst can also retrieve information

regarding the projects he is currently participating in. He sees the status of the projects

and is able to arrange SQG meetings with the service and test developers. If a prototype

is declared as verified, the service analyst can personally contact the service customer.

Finally, the service customer gets informed as soon as a prototype has been verified. The

next step for the service customer would be to test the verified prototype in order to

validate it.

The proposal regarding a separate framework for the SQG and the collaboration with the

service customer is not within the scope of this research, but it can be analysed for further

research.

7.5 Conclusion

This chapter has introduced the test case generation based on behaviour models.

Furthermore, it has dealt with the execution of the generated test cases and the subsequent

evaluation of test results.

7.5 Conclusion

272

First, an appropriate algorithm had to be found to derive test cases from the generated

behaviour models. Although the finding of traces within the Statechart-based behaviour

models seemed to be the only choice, linear sequences of events and actions have not

been identified to suite well for testing of value-added services. Therefore, a graph-based

representation of derived test cases has been chosen which fits best to the structure and

properties of the bahaviour models. Furthermore, several structural coverage criteria have

been discussed and analysed. In order to reduce the number of generated test cases and

taking literature into consideration, the structural coverage criteria All-Round-Trips has

been selected. Finally, the properties of the graph-based test cases have been introduced

and examples have been discussed.

The generation of TTCN-3 test cases from the graph-based test cases has been described

in section 7.2. First, the reason for selecting the TTCN-3 language have been discussed.

The result has shown that the technology is a respected ETSI standard, supports

concurrency, is similar to programming languages and provides a lot of further features

that are required in this research. In the following, the test code generation of TTCN-3

test cases has been introduced, mainly the generation of the test configuration, the test

data definitions as well as the test behaviour. Finally, the building process of an

Executable Test Suite (ETS) has been described by means of the Test Suite Builder

(TSB).

The next section 7.3 has illustrated the execution of test cases within a TTCN-3 test

system and has emphasised the relevance of the several entities.

The evaluation and handling of test results has been discussed in section 7.4. Here, the

relevance of the Service Quality Group (SQG) in order to enable the validation of a value-

7 Test Case Generation, Execution and Management

273

added service has been identified. Finally, the section gives guidelines for the test

developer how to deal with the test results. If all test cases of an ETS pass, the prototype

can be declared as verified whereas a fail requires further analysis.

The concept of the TCF has been introduced completely in the chapters 5, 6 and 7. The

upcoming chapter 8 investigates whether the requirements that have been established in

section 3.4 can be met by the described solution. Furthermore, the prototypical

implementation of the TCF is described as well as the evaluation of the prototype by

means of an example value-added service.

275

8 Framework and Prototype Evaluation

This chapter deals with the prototype implementation as proof of concept evaluation to

demonstrate that the proposed framework for automated functional testing of value-added

services meets the requirements that have been derived from the deficits and assets of

related projects. In section 8.1, each of the defined requirements is analysed and it is

explained how it is fulfilled by the proposed framework. The upcoming section 8.2

depicts the architecture of the protoype implementation of the framework, its utilised

components and their functionality. Section 8.3 discusses the use of the prototype

implementation by means of an example value-added service in order to evaluate the

application of the prototype and framework.

8.1 Evaluation of the Defined Framework Requirements

This section evaluates the proposed TCF with regard to the derived requirements listed

in section 3.4. Each requirements is evaluated in the following regarding its fulfilment

within the proposed framework (TCF).

• Test Execution and Test Report – The ability to execute tests is provided by the

framework through the connection to an external TTCN-3-based test execution

environment (in the case of the provided prototype, a connection to the

TTworkbench was established, an example TTCN-3 test execution environment).

After a test suite for a given value-added service is generated by the Test Code

8.1 Evaluation of the Defined Framework Requirements

276

Generator and built by the Test Suite Builder, the suite can be executed against

the SUT (see section 7.3). Fortunately, the TTCN-3-based test execution

environment already provides a test report for test executions that have been

performed.

• Collaboration and support for agile principles – This agile aspect of the proposed

framework and methodology is supported through the initiated Service Quality

Group (SQG), which involves the service customer, the service developer and test

developer as well as a new role, the service analyst. The service analyst realises

the coordination and acts as a mediator between the developers on the one side

and the service customer on the other side. A thorough methodology of the tasks

that can be initiated by the diverse roles within the SQG is defined in chapter 4

and some further information is given in section 7.4. Here, some agile principles

are highlighted such as the support for rapid prototyping.

• Comprehension – This aspect depends on the collaboration requirement. The

major concern of the comprehension requirement is the strict involvement of the

service customer within the process and that he is always able to see the current

progress of the project. The collaboration web site concept that has been

mentioned in section 7.4 is an example solution to let the service customer

participate in the development and test process.

• Manageability and time exposure – This requirement refers directly to the test

developer who is actually applying the functionality of the proposed TCF.

Manageability and time exposure refers to the difficulty level of the application

on the one hand and to the time that is required to achieve the goals. Regarding

8 Framework and Prototype Evaluation

277

the proposed framework, the test developer gets a straightforward service and test

specification language (STD) in order to create individual instances for the value-

added services that have to be tested (see section 5.2). In comparison to related

projects that involve the manual modelling of formal behaviour models based on

EFSMs, a lot of time can be saved. Besides the straightforward foundation of the

STD, also the concept of the reusable test modules and their instances fastens the

process, because the behaviour only has to be specified once (see section 6.2).

• Tool support – A prototype implementation of the major components of the

proposed TCF is described in section 8.2. The test developer is able to create

instances of the STD on a web page and can then trigger the whole automated

process which will start from the automated building of the behaviour models,

will then derive and subsequently generate the test cases (an ETS) and finally, the

test execution against the SUT is performed. As a feedback, of course, the test

developer will get a test report.

• Traceability of requirements – Requirements are playing a major part within the

proposed TCF and within the whole process, of course. The initial and informal

requirements are initially specified by the service customer in collaboration with

the service analyst. The result will be the “Structured Requirements” document,

which can be, for instance, a standardised UML use case specification. The next

trace of the requirements is performed by the test developer who creates an STD

instance containing Requirements. The approach intends to have a direct mapping

between the informal requirements specified in the “Structure Requirements”

document and the Requirements specified in the STD instance. The next trace of

requirements occurs in the building of behaviour models. For each Requirement

8.1 Evaluation of the Defined Framework Requirements

278

specified in the STD instance, a behaviour model is built. The requirements-based

behaviour models are the input of the TCDU which generates an abstract test suite

that contains a sorted list of abstract test cases. Of course, every generated abstract

test case is assigned to a specific requirement. The Test Code Generator considers

the abstract test cases belonging to a requirement and includes all generated

TTCN-3 test cases based on the abstract test cases within one TTCN-3 module. If

the “Structured Requirements” document contains five different requirements (in

UML notation, the requirements are called use cases), the resulting TTCN-3 test

suite will also contain five TTCN-3 modules for each specified requirement. The

test execution can then be differentiated by means of the TTCN-3 control part.

• Reusability – This requirement is obviously fulfilled by the proposed TCF through

the reusable test modules (see section 6.2).

• NGN-compliance or support for general SIP-based IP networks – The proposed

TCF has been initially developed for the purpose of testing NGN-based value-

added services. In fact, the framework is intended to be integrated into a service

provider test environment and can be seen as a counterpart to the Service Creation

Environments for service development. The prototype validation described in

section 8.3 illustrates an example value-added service that requires the existence

of typical components from a SIP-based NGN, such as a SIP AS.

• Verification and Validation – Verification is supported, because the test cases are

directly derived from the requirements specification and are traceable troughout

the whole process. In contrast, validation requires especially the involvement of

the service customer. He needs to confirm that the value-added service meets his

requirements. Through the establishment of the SQG, validation is supported.

8 Framework and Prototype Evaluation

279

• Effectivity and efficiency of test generation – The amount of test cases to be

generated depends either on the selected coverage criteria (for instace All-

Transitions or All-Round-Trips) or on the construction of a reusable test module

itself. Regarding both aspects, the test developer is given flexibility by the test

framework to achieve efficiency in the test case generation (see section 7.1.2). As

the test cases are based on standard protocol behaviour that can be applied by any

given value-added service, they have to be highly effective.

• Expandability – The proposed TCF supports further enhancements, for instance

by defining new reusable test modules. New protocols can be specified and added

to the TMR, however, this also requires an enhancement of the test execution

environment. In order to exchange messages of a given protocol, the TTCN-3-

based test execution environment needs implemented codecs.

Besides the mentioned requirements, the framework also supports a rapid prototyping-

alike approach. Theoretically, the service developer and test developer could manage to

implement a value-added service iteratively based on the specified requirements.

For the proof of concept of the framework, major parts of it have been implemented. The

architecture of the prototype implementation is introduced in the following section.

8.2 Prototype Architecture and Implementation

To demonstrate the essential functionalities of the Test Creation Framework (TCF), a

research prototype was developed. Most components of the TCF architecture were

implemented, but not all functionality of each component has been implemented for the

8.2 Prototype Architecture and Implementation

280

proof of concept (see section 8.3). Besides the simplified version of the graphical user

interface Test Framework User Terminal (TFUT), further trimmed versions of the

Automatic Composition Engine (ACE), the Test Case Derivation Unit (TCDU), the Test

Code Generator (TCG) and the Test Suite Builder (TSB) as well as the service interface

of the Test Modules Environment (TME) to access the two databases Test Modules

Repository (TMR) and Test Data Pool (TDP) have been implemented. The Test Suite

Generator (TSG) has not been considered as a separate component as its only task is to

comprise the TCG and the TSB. Furthermore, the graphical user interface of the TME

has not been implemented because it is also not required for the proof of concept.

Actually, it is not needed because a modelling environment is not required to add new

reusable test modules to the TCF. To define a new reusable test module, three files have

to be added: an SCXML description specifying the behaviour, a classification template

containing the metadata of the reusable test module (both stored within the TMR) and,

finally, a set of variables described by means of XML (stored within the TDP). The final

component considered in the implementation is the Test Execution Environment (TEE).

As mentioned before in chapter 7, the selected TEE is the TTworkbench (TTworkbench,

2015), a commercial TTCN-3 test system which enables the execution of tests and the

generation of test reports. For the proof of concept of the research prototype and proposed

TCF, an example value-added service has been selected and described by means of the

STD (see section 8.3). Based on the STD instance, the whole process will be demonstrated

for proof of concept until the test execution against the SUT has terminated.

The research prototype was implemented using the Java programming language because

it is known to be platform independent. Furthermore, Java is required for the usage of

OSGi (OSGi Alliance R5, 2012), formerly known as the Open Services Gateway

8 Framework and Prototype Evaluation

281

initiative. OSGi is a framework for Java which enables to install units of resources which

are called bundles. These bundles can export services or run processes, and have their

dependencies to other bundles or libraries managed by an OSGi container. It is also

possible that each bundle has its own internal classpath so that it serves as an independent

unit. In general, bundles are loosely coupled and interact either by service interfaces or

by OSGi events. All of these features are standardised in order to verify that any valid

OSGi bundle can theoretically be installed in any valid OSGi container. The OSGi

platform has been chosen as development framework for the research prototype because

of the architecture of the application. The TCF architecture (see Figure 4.5) contains many

components that are loosely coupled. Within the research prototype, each of the loosely

coupled components are implemented as OSGi bundle. The following Figure 8.1

illustrates the architecture of the research prototype.

8.2 Prototype Architecture and Implementation

282

Figure 8.1: Prototype architecture components illustrated as OSGi bundles

The architecture illustration (see Figure 8.1) shows how the OSGi bundles communicate

with one another. Each bundle is classified by its name and by a specific Java package

name. The name of the “Automatic Composition Engine” OSGi bundle, for instance, also

contains the Java package name “de.fuoas.research.ace”. Correspondingly, the source

code for the implementation of the ACE is also included in this Java package.

Furthermore, Figure 8.1 includes six processing bundles (such as “TFUT Web

Application Bundle”, “Automatic Composition Engine”, “Test Case Derivation Unit”,

“Test Code Generator”, “Test Suite Builder” and “Test Execution Environment Bundle”)

as well as two service bundles (such as “Test Modules Environment” and “Test

Configuration Bundle”). In the prototype implementation, each of these bundles were

implemented and installed within an OSGi framework implementation. There are many

TFUT Web Application
Bundle

de.fuoas.research.tfut

Test Modules
Environment <Service>

de.fuoas.research.tme

Automatic Composition
Engine

de.fuoas.research.ace

Test Configuration Unit
<Service>

de.fuoas.research.tcu

Test Code Generator

de.fuoas.research.tcg

Test Suite Builder

de.fuoas.research.tsb

Test Case Derivation Unit

de.fuoas.research.tcdu

Test Execution
Environment Bundle

de.fuoas.research.tee

(1) Event [STD instance]

(4) deliver [RTM list]

(3) getRTMs

(5)storeVariable

(2) storeConfig

(6) Event [Behaviour Models]

(7) Event [Abstract Test Suite]

(8) getConfig

(9) deliver [ServiceID, Roles, SMI]

(10) getVariables

(11) deliver [variables]

(12) Event [compile]

(13) getTestAdapterConfig

(14) deliver [testAdapterConfig]
(15) Event [execute]

8 Framework and Prototype Evaluation

283

OSGi framework implementations available such as Apache Felix (Apache Felix, 2015)

or Apache Karaf (Apache Karaf, 2015) and many others. The main difference between

these available OSGi framework implementations is the set of features they support.

Apache Felix just provides a basic set of features whereas Apache Karaf, although

declared as lightweight, is still a powerful and enterprise ready OSGi framework

implementation. Because of its useful features and easy handling, the Apache Karaf

implementation has been chosen for the prototype implementation. The Karaf

architecture is demonstrated in the following Figure 8.2.

Figure 8.2: Apache Karaf architecture (adapted from (Apache Karaf, 2015))

The provided features of Apache Karaf enable a thorough monitoring and configuration

of the platform (“Console”, “Logging” and “Admin”). Furthermore, the handling of

bundles such as the deployment (“Deployer”) and the integration of external libraries

(“Provisioning”) is supported. The “Blueprint” feature is required in order to classify

developed bundles as services and to include their implemented functionality in other

bundles.

Coming back to Figure 8.1, the Apache Karaf requires a further feature, an integrated

Java web server. In fact, Apache Karaf can act as complete WebContainer powered by

Jetty (Jetty, 2015) with fully support of the JavaServer Pages (JSP) and Java servlets. This

is required to publish the web application that is included in the “TFUT Web Application

Bundle” (see Figure 8.3).

Ka
ra

f

OSGi

Console Logging Deployer Provisioning Admin Blueprint

8.2 Prototype Architecture and Implementation

284

Figure 8.3: Screenshot of TFUT web application showing the definition of an STD instance

The web page shows a form which enables a test developer to create an STD instance.

All the required fields of the architectural and behavioural perspective (see section 5.2)

are included on the web page. As soon as the STD instance has been completely defined,

the form can be sent to the web server. Here, a Java servlet “STDWebServlet” is

implemented which reads all the delivered parameters and creates a Java object of the

“ServiceTestDescription” class, the STD instance. In the prototype implementation, the

class structure of the conceptual model was realised (see Figure 6.26). As soon as the

STD instance exists, it is automatically sent to the “Automatic Composition Engine”

bundle via an OSGi event. An OSGi event can include any kind of data and can be

transferred between bundles that acquire the “EventAdmin” service provided by the OSGi

framework implementation (Apache Karaf).

8 Framework and Prototype Evaluation

285

When the “Automatic Composition Engine” bundle receives the STD instance it first

acquires the service of the “Test Configuration Unit”. If a service within OSGi is

established a Java interface is required in order to determine the offered functions. The

Java interface for the “Test Configuration Unit” is as follows (see Figure 8.4):

Figure 8.4: OSGi service interface provided by the “Test Configuration Unit” bundle

The “Automatic Composition Engine” bundle invokes the method “storeConfig” to store

the metadata of the SUT (such as “ServiceID”, “Roles” and “SystemMetaInformation”)

for further processing during the test case generation and execution. This is the illustrated

step 2 of Figure 8.1. While parsing the Requirements of the STD instance, the “Automatic

Composition Engine” bundle identifies the reusable test modules that are involved. Based

on the information, the bundle consumes another service which is now provided by the

“Test Modules Environment” bundle. Again, a Java interface is required in order to

specify the OSGi service functionality. This is illustrated in the following Figure 8.5.

Figure 8.5: OSGI service interface provided by the “Test Modules Environment” bundle

<<Interface>>

TestConfigurationService

+ storeConfig (String ServiceID, List<Role> roles, SystemMetaInformation SMI): void
+ getConfig(): ConfigData
+ getTestAdapterConfig(String serviceID): TestAdapterConfig

<<Interface>>

RepositoryService

+ getRTMs (List<Role> roles): List<SCXML>
+ storeVariable (Message message, String classification, String instanceID): void
+ getVariables(String instanceId): List<Message>
+ addNewRTM(SCXML notation, ClassificationTemplate template): boolean
+ addVariables(List<Message> variables, String testModuleName): boolean

8.2 Prototype Architecture and Implementation

286

First, the “Automatic Composition Engine” bundle invokes the “getRTMs” method (see

Figure 8.5). The Roles (list of roles) need to be added as parameter because they include

the selected CIs within the STD instance and accordingly, the information about the

reusable test modules to be selected. The method returns a list of objects of the class

“SCXML” which has not been further specified yet. In fact, this class refers to a Java

library being applied to handle the SCXML-based descriptions of the reusable test module

instances and the behaviour models. This Java library is called “Apache Commons

SCXML” (Commons SCXML, 2015) and enables a complete representation of the XML-

based Statecharts notation by means of Java classes. After the invocation of “getRTMs”,

the reusable test modules are initialised within the behaviour models. As soon as the

Parameters within the STD instance have been parsed, the “Automatic Composition

Engine” invokes the “storeVariable” method (see Figure 8.5). Here, the variables of the

reusable test module instances need to be stored in the Test Modules Repository (TMR)

database via the service interface of the “Test Modules Environment” bundle. To store

data, a NoSQL database has been applied for both TMR and Test Data Pool (TDP) which

is called MongoDB (MongoDB, 2015). Coming back to the “storeVariable” method,

three input parameters are required: the message itself, the type of reusable test module

the variable refers to and the id of the reusable test module instance the variable is

assigned to. For the class “Message” any kind of request or response type can be added

due to the specific class structure (see Figure 6.20). The “storeVariable” method has to

be invoked as often as a variable within the Parameters of the STD instance has been

initialised and parameterised.

The following step 6 in Figure 8.1 describes the sending of a further OSGi event which

already includes the behaviour models. So, the “Automatic Compositon Engine” bundle

8 Framework and Prototype Evaluation

287

has already performed the formal processing and composition of reusable test module

instances (see section 6.4). The bundle which receives the behaviour model is the “Test

Case Derivation Unit” bundle which includes algorithms to derive the graph-based test

cases applying the All-Round-Trips coverage criteria (see section 7.1). As a result, the

abstract test suite is generated which is also sent within an OSGi event from the “Test

Case Derivation Unit” bundle to the “Test Code Generator” bundle (see Figure 8.1, step

7).

In order to generate the TTCN-3 test configuration, the “Test Code Generator” bundle

needs the meta information of the SUT (see Figure 8.1, steps 8 and 9). Therefore, the

“getConfig” method (see Figure 8.4) provided by the “Test Configuration Unit” bundle

is invoked. The return type “ConfigData” comprises the “ServiceID”, “Roles” and

“SystemMetaInformation”. Besides the generation of the test configuration, the “Test

Code Generator” creates TTCN-3 templates for the test data. To get the relevant data, the

“Test Code Generator” needs to invoke the “getVariables” method (see Figure 8.1, steps

10 and 11). As input, the “getVariables” method requires the reusable test module

instance id. The return type is a list of “Message” objects which can be processed and

generated into TTCN-3 templates. Finally, the “Test Code Generator” needs to internally

process the generation of the TTCN-3 test cases based on the graph-based test cases (see

section 7.2.2). The generation of actual TTCN-3 text-based files is performed by means

of a special test generating utility “Texen” which is part of the Apache Velocity Project

(Apache Velocity, 2015). After all TTCN-3 source files have been generated, the “Test

Code Generator” bundle sends a command OSGi event (see Figure 8.1, step 12) to the

“Test Suite Builder” bundle.

8.2 Prototype Architecture and Implementation

288

Before the “Test Suite Builder” initiates the TTCN-3 compilation process, it requires the

test adapter configuration file. As the “Test Configuration Unit” bundle holds the

necessary meta information about the SUT, it can also generate the appropriate XML-

based test adapter configuration. By invoking the “getTestAdapterConfig” method

provided by the “Test Configuration Unit” bundle service (see Figure 8.4), the file can be

fetched (see Figure 8.1, steps 13 and 14). Of course, it is important to add the correct

“ServiceID” as input parameter of the method. As soon as the test adapter file is added to

the TTCN-3 source files, the Executable Test Suite (ETS) can be generated. Therefore,

the execution of the command line tool (or rather script) “Ttthree” is required which is

provided by the TTworkbench in order to compile the sources. The “Test Suite Builder”

bundle includes a specific Java class “ProcessBuilder” which invokes the “Ttthree” script.

For a proper execution, the following options have to be added to the “Ttthree” script

(TTworkbench UserGuide, 2015):

• --clf-name: Through this option, the name of the test campaign can be specified.

It is advisible to include the “ServiceID” here so that the existing ETS for specific

SUTs can be differentiated.

• --clf-taconfig-file: The presence of the test adapter configuration has already been

discussed and an example of it is illustrated in Figure 7.24. Here, the project

relative path to the file including its filename has to be specified.

• --destination-path: This option specifies the path where the compiled TTCN-3

modules will be placed in the file system. As the “Test Execution Environment

Bundle” performs the execution of the test cases the complete ETS is copied to a

location of the bundle scope.

8 Framework and Prototype Evaluation

289

• moduleId: Here, all the modules that have to be generated are specified. As

discussed in 7.2.2, every module is assigned to a Requirement specified in the

STD instance.

After the compilation has been performed, the generated Java classes that represent the

ETS are automatically copied to the specified destination path. Furthermore, a campaign

loader file (*.clf) is generated which includes the order of the test cases to be executed.

The final step 15 in Figure 8.1 is initiated by the “Test Suite Builder”. As soon as the

compilation process has terminated the bundle sends an OSGi event including a command

(“execute”) to the “Test Execution Environment Bundle”. Subsequently, this bundle uses

a further command line tool or rather script, the “TTman”. This script also includes

specific options that can be configured (TTworkbench User Guide, 2015):

• --error: If this option is set, the test execution stops in the case of an error.

Otherwise, the execution continues.

• --log: This option defines a destination folder where the log file shall be stored

after the test case execution. If this option is not used, the file is stored in the same

directory where the ETS is stored.

• --loop: This option defines how many times all test cases within the ETS shall be

executed.

• --report: Based on the test case execution, the output format of the results can be

specified, either as HTML, PDF, Excel or Word document.

• --wait: This option allows to define a delay (in milliseconds) between the

execution of two test cases. This might be useful for services where certain data

has to be reset.

8.2 Prototype Architecture and Implementation

290

• loader_file: The loader file (*.clf) has been generated during the compilation

phase. It is required to specify this file for a proper test execution.

As soon as the script is started, all test cases included in the ETS are executed against the

SUT. The results are presented in the specified format and additionally included in a

generated log file (*.tlz).

Before continuing with the prototype-based framework evaluation in the next section, two

further methods the TME service interface provides are described which have not been

used in the process (see Figure 8.5). First, the method “addRTM” enables the adding of

new reusable test modules to the TMR database. There are two input parameters required,

the formalised underlying Statecharts notation as SCXML type (used from the Apache

Commons SCXML library) as well as the XML-based classification template which

includes all the required metadata of the reusable test module. The second method

“addVariables” also refers to the definition of new reusable test modules. Here, a new set

of variables can be added to a stored reusable test module. Therefore, the variables have

to be specified as input parameter (“variables”) as well as the unique identifier of the

reusable test module (“testModuleName”). Both of the specified methods are not used in

the process, but they are required for the extensibility of the prototype implementation.

To support the inclusion of further reusable test modules, a test bundle has been

implemented besides the specified ones in Figure 8.1. This test bundle consumes the

service provided by the “Test Modules Environment” bundle and allows to add new

reusable test modules to the TCF implementation.

8 Framework and Prototype Evaluation

291

8.3 Proof of Proposed Framework Concept

The implementation and architecture of the research prototype based on the proposed

novel TCF concept has been briefly introduced in the previous section. This section deals

with the proof of concept and evaluation of the underlying concept this research proposes.

Therefore, the following steps have to be performed:

1. An example service has to be specified for proof of concept and has to be

described shortly.

2. A System Under Test (SUT) environment (SIP Application Server) has to be set

up. The example service has to be developed and deployed on the SIP AS.

3. The example service has to be defined for proof of concept and has to be specified

by means of the Service Test Description (STD).

4. The automatic TCF process needs to be started until the test case execution against

the deployed service has terminated. The test case results can then be evaluated.

In general, it has to be shown that new value-added services can be tested by applying the

novel concept of the TCF.

8.3.1 Description of Example Service Scenario

As mentioned before in section 5.2.4, a simplified form of the sample chat service

introduced in section 5.1.1 will be applied as proof of concept for the proposed framework

and prototype implementation. The following UML use case diagram shows the reduced

functionality (see Figure 8.6).

8.3 Proof of Proposed Framework Concept

292

Figure 8.6: Simplified UML use case diagram of sample chat service

The sample chat service includes two major functionalities, the login of two service users

as well as the exchange of instant chat messages between both service users.

The functionality of the “Login” process is illustrated by means of the following message

sequence chart (see Figure 8.7).

Figure 8.7: Basic functionality of login process in sample chat service

Both service users involved in the example login process send SIP MESSAGE requests

to the SUT (SIP AS with deployed chat service) which contain a character string “login=”

Service User

Login

Message Exchange

SUT
(Chat Service)Service User A Service User B

SIP MESSAGE: "login=user1"

SIP 200 OK

SIP MESSAGE: "login=user2"

SIP 200 OK

SIP MESSAGE: "user1 logged in"

SIP 200 OK

SIP MESSAGE: "user2 logged in"

SIP 200 OK

8 Framework and Prototype Evaluation

293

followed by a specific user name (either “user1” or “user2”). If the login was successful,

this is acknowledged by the SUT through a SIP MESSAGE request with the text “user1

logged in” or “user2 logged in”. Otherwise, if the user to be logged in by a service user

is unknown (see Figure 8.8), the SUT responds with SIP MESSAGE containing the text

“Unknown user! Login failed!”.

Figure 8.8: Alternative functionality of login process in sample chat service

Regarding the “Message Exchange” use case, the following message sequence chart

illustrates the basic functionality.

Figure 8.9: Basic functionality of message exchange in sample chat service

SUT
(Chat Service)Service User A

SIP MESSAGE: "login=user123"

SIP 200 OK

SIP MESSAGE: "Unkown user! Login failed!"

SIP 200 OK

SUT
(Chat Service)Service User A Service User B

SIP MESSAGE: "Hello user2!"

SIP 200 OK

SIP MESSAGE: "Message was received!"

SIP 200 OK

SIP MESSAGE: "Hello user2!"

SIP 200 OK

8.3 Proof of Proposed Framework Concept

294

Based on a SIP MESSAGE sent from service user A, the service forwards the message to

the user who is also currently logged in, service user B. During the login process, the

service assigns the permanent SIP URIs of the service users to the user names that they

selected. This enables the service to forward the messages to all users who are logged in

except for the originator of the message. Finally, the service also informs the originator

that the transmission was successful.

The main functionality has been specified. In the following section, the characteristics of

the SUT environment will be introduced.

8.3.2 SUT Environment and Service Implementation

As described in section 2.2.4, value-added services running within SIP-based NGN

environments are generally deployed on SIP Application Servers. The SIP AS enable a

fast and cost-efficient provision of these services. For the proof of concept, a SIP AS

implementation has been chosen that is based on SIP servlets. According to (Oracle,

2010), a SIP servlet “is a Java programming language server-side component that

performs SIP signalling. SIP servlets are managed by a SIP servlet container, which

typically are part of a SIP-enabled application server”. The specific SIP-enabled

application server is called “Mobicents SIP Servlets” which “delivers a consistent, open

platform on which to develop and deploy portable and distributable SIP and Converged

JEE services.” (Mobicents, 2015). It implements the SIP Servlet v.1.1 (JSR 289 Spec,

2008) on top of Tomcat (Tomcat, 2015) and JBoss (JBoss, 2015) containers. In the

following Figure 8.10, the components of the Mobicents SIP Servlets application server

(AS) are illustrated.

8 Framework and Prototype Evaluation

295

Figure 8.10: Components within Mobicents SIP Servlets application server (adapted from

(Mobicents, 2015))

Besides the mentioned SIP servlets, the Mobicents SIP Servlet AS also enables the

provision of HTTP servlets. Furthermore, a “Mobicents Media Server” (MMS) can be

installed which provides functions a standard media server (see sections 2.3.2 and 6.2.2)

provides, such as Interactive Voice Response (IVR) as well as generation and detection

of tone including DTMF (Dual-tone multi-frequency signaling). The MMS can also act

as a conference access point or an announcement access point (Mobicents, 2015).

For the proof of concept, the Mobicents SIP Servlets AS was installed on a Linux-based

virtual machine and was integrated into the local IP network with the TTCN-3-based test

execution environment (TTworkbench) and the prototype (Apache Karaf with deployed

bundles). In the following, the implementation of the Java-based sample chat service was

performed. The class diagram is shown in the following Figure 8.11.

HTML5 WebRTC Client

Mobicents
Media Server

Java EE 6 HTTP + SIP Servlets

Mobicents
SIP Servlets

JBoss 7 Tomcat 7

HTTP SIP
UDP

SIP
TCP/TLS

SIP Over
WebSockets

8.3 Proof of Proposed Framework Concept

296

Figure 8.11: ChatServiceServlet class of proof of concept sample chat service

The “ChatServiceServlet” class contains as attribute a USER_LIST which holds all the

users that are allowed to log in and that already have logged in. The serverAddress

attribute holds the current IP address of the application server (here: “192.168.110.10”)

whereas the factory enables the establishment of new SIP requests and responses within

the “ChatServiceServlet”. The “ChatServiceServlet” inherits from a base class called

“SipServlet” from which it takes over the methods “init” and “destroy”. Both methods

are used to either set the relevant parameters at the beginning (“init”) or to be prepared as

soon as the server shuts down (“destroy”). The further public (“+”) methods are referring

to the message handling. The method “doMessage”, for instance, deals with incoming

SIP MESSAGE requests and processes the content in the following. This method is

invoked as soon as login messages are sent to the SUT or messages that have to be

forwarded to other users. The methods “doErrorResponse” and “doSuccessResponse”

refer to provisional messages the servlet receives. Furthermore, the private methods (“-“)

perform internal processing, such as the sending of the messages to be forwarded to the

users that are logged in (“sendToUsers”). The method “containsUser” checks if a “Login”

ChatServiceServlet

- USER_LIST: Map<String, String>
- serverAddress: String
- factory: SipFactory
+ init(ServletConfig servletConfig): void
+ destroy(): void
+ doMessage(SipServletRequest request): void
+ doErrorResponse(SipServletResponse response): void
+ doSuccessResponse(SipServletResponse response): void
- sendToUsers(Object message): void
- containsUser(String from): void
- addUser(String from): void
- removeUser(String from): void

8 Framework and Prototype Evaluation

297

SIP MESSAGE contains a user that is allowed to be logged in. Finally, the methods

“addUser” and “removeUser” manage the USER_LIST attribute.

In this section, the SUT environment has been set up and the example service (SUT) itself

has been developed. The next section deals with the first task the test developer has to do,

the definition of an STD instance for the sample chat service.

8.3.3 Specification of Chat Service with Service Test Description

The compilation of an STD instance with all the required components has been described

thoroughly in this thesis (see section 5.2). Also for the selected proof of concept example

service, first the architectural perspective has to be defined. The definitions are shown in

the following Table 8.1.

Table 8.1: Architectural perspective of sample chat service

Service ID ChatService

Prose Description A chat communication should be provided. The service
users are able to log into the system by sending a
text message that contains predefined user names. If
the login process was successful the service
responses accordingly. A message exchange can be
performed between two users if they are both logged
in. If the message exchange was successful the
service responses accordingly.

Roles • SIP phone: [sender]
• SIP phone: [recipient]

System Meta
Information

ServiceURI: sip:chatservice@192.168.110.10:5060
Protocol: UDP

Non-functional
Properties

None

The specification of the architectural perspective in Table 8.1 is very similar to the one

defined in Table 5.8, however, a few aspects changed. The ID of the service, the Service

ID, is very relevant as it will be reused throughout the process. Furthermore, the most

important information is included in the Roles field and in the System Meta Information

8.3 Proof of Proposed Framework Concept

298

field. For the “ChatService”, two Roles have been specified and both are acting as SIP

phones. The “[sender]” and the “[recipient]” both can be mapped to the service users

specified in section 8.3.1. The System Meta Information includes the service URI, which

includes the addressability of the implemented “ChatServiceServlet”. The specified IP

address “192.168.110.10” is the IP address of the Mobicents SIP Servlet AS. As transport

protocol, UDP has been selected.

In the following the behavioural perspective of the STD instance has to be determined.

The UML use case illustration (see Figure 8.6) of the sample chat service includes two

use cases which have to be defined as Requirements within the STD instance. In the

following Table 8.2, the “Login” process (see Figure 8.7 and Figure 8.8) is specified as

“Req01”.

8 Framework and Prototype Evaluation

299

Table 8.2: Behavioural perspective for "Login" use case ("Req01")

Requirement ID Req01

Requirement Goal Service User A [sender] sends a login message to the
service and receives a confirmation message. Service
User B [recipient] sends a login message to the
service and receives a confirmation message.

Precondition None

Participating Roles • SIP phone: [sender]
• SIP phone: [recipient]

Communication
Interfaces

• SIP UAS non-INVITE: [sender1] → channel a
• SIP UAC non-INVITE: [sender2] → channel b
• SIP UAS non-INVITE: [recipient1] → channel c
• SIP UAC non-INVITE: [recipient2] → channel d

Parameters var loginA = [sender1] → r_Request;
var loginB = [recipient1] → r_Request;
var okLoginA = [sender2] → s_Request;
var okLoginB = [recipient2] → s_Request;
var errorLoginA = [sender2] → s_Request;
var errorLoginB = [recipient2] → s_Request;

loginA =
 {(Method, “MESSAGE”), (Text, “login=user1”)}
loginB =
 {(Method, “MESSAGE”), (Text, “login=user2”)}
okLoginA =
 {(Method, “MESSAGE”), (Text, “user1 logged in”)}
okLoginB =
 {(Method, “MESSAGE”), (Text, “user2 logged in”)}
errorLoginA =
 {(Method, “MESSAGE”}, {Text, “Unknown User!
Login failed!”)}
errorLoginB =
 {(Method, “MESSAGE”}, {Text, “Unknown User!
Login failed!”)}

Basic Flow 𝑃𝑃 ≝
 𝑎𝑎(𝑙𝑙𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛𝑙𝑙).
 𝑖𝑖𝑖𝑖(𝑙𝑙𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛𝑙𝑙.𝑇𝑇𝑒𝑒𝑥𝑥𝑡𝑡 ! = "login=user1") then Q else.
 𝑏𝑏�〈𝑓𝑓𝑜𝑜𝐿𝐿𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛𝑙𝑙〉.
 𝑐𝑐(𝑙𝑙𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛𝑙𝑙).
 𝑖𝑖𝑖𝑖(𝑙𝑙𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛𝑙𝑙.𝑇𝑇𝑒𝑒𝑥𝑥𝑡𝑡 ! = "login=user2") 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝑅𝑅 𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒.
 �̅�𝑑〈𝑓𝑓𝑜𝑜𝐿𝐿𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛𝑙𝑙〉.
 0

Alternative Flow
(AF1)

𝑄𝑄 ≝
 𝑏𝑏�〈𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐿𝐿𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛𝑙𝑙〉.
 0

Alternative Flow
(AF2)

𝑅𝑅 ≝
 �̅�𝑑〈𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐿𝐿𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛𝑙𝑙〉.
 0

Both Roles “[sender]” and “[recipient]” are participating within Requirement “Req01”

through both of their CIs “SIP UAS non-INVITE” and “SIP UAC non-INVITE”. Within

8.3 Proof of Proposed Framework Concept

300

the Parameters field, six potentially used SIP MESSAGE requests are parameterised. The

Basic Flow describes the straightforward case by including the appropriate SIP

MESSAGEs in order to log in both participating Roles. Two if-then-else structures are

included in order to handle wrong login messages. The further actions are specified

through both Alternative Flows. In the following Table 8.3, the second Requirement

specifying the “Message Exchange” use case is described.

Table 8.3: Behavioural perspective for “Message Exchange” use case (“Req02”)

Requirement ID Req02

Requirement Goal Service User A [sender] sends a message to the service
which is then forwarded to the service users that are
currently logged in (except for the originator of the
message). Service User A [sender] receives a
confirmation message.

Precondition Req01

Participating Roles • SIP phone: [sender]
• SIP phone: [recipient]

Communication
Interfaces

• SIP UAS non-INVITE: [sender1] → channel a
• SIP UAC non-INVITE: [sender2] → channel b
• SIP UAC non-INVITE: [recipient2] → channel d

Parameters var msgA = [sender1] → r_Request;
var forwMsgB = [recipient2] → s_Request;
var okMsgA = [sender2] → s_Request;

msgA =
 {(Method, “MESSAGE”), (Text, “Hello user2!”)}
forwMsgB =
 {(Method, “MESSAGE”), (Text, “Hello user2!”)}
okMsgA =
 {(Method, “MESSAGE”), (Text, “Message was
received!”)}

Basic Flow 𝑃𝑃 ≝
 𝑎𝑎(𝑚𝑚𝑒𝑒𝑖𝑖𝑙𝑙).
 �̅�𝑑〈𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑀𝑀𝑒𝑒𝑖𝑖𝑙𝑙〉.
 𝑏𝑏�〈𝑓𝑓𝑜𝑜𝑀𝑀𝑒𝑒𝑖𝑖𝑙𝑙〉.
 0

Requirement “Req02” includes “Req01” in the Precondition field, in particular the Basic

Flow of “Req01”. Furthermore, “Req02” also specifies the two participating Roles from

the architectural perspective and selects both CIs for the “[sender]” Role and the “SIP

UAC non-INVITE” CI for the “[recipient]” Role. The Parameters field includes the

8 Framework and Prototype Evaluation

301

parameterisation of both the initiated and the forwarded SIP MESSAGE as well as the

confirmation SIP MESSAGE the service sends to the originator, the “[sender]”. The Basic

Flow illustrates the steps to be taken. “Req02” does not contain any Alternative Flows.

8.3.4 Test Building and Test Execution

The STD instance from the previous section can be processed as soon as the test developer

has defined it in the graphical user interface (see Figure 8.3) provided by the “TFUT Web

Application Bundle”. First, it has to be verified that the prototype implementation is

running within the Apache Karaf. The OSGi implementation provides a console which

can be used for specific commands and also for logging. The following Figure 8.12 shows

the list of the currently active OSGi bundles within Apache Karaf.

Figure 8.12: Active OSGi bundles in Apache Karaf environment

All the specified OSGi bundles of the prototype implementation are listed and can be

identified by their name which includes both the Java package name and the standard

name already known from Figure 8.1. Besides the specified bundles there is also a further

“Utilities Bundle”. Here, so-called helper classes are included to support other bundles

for recurring processing, such as string operations. All bundles are stated as “active”, so

8.3 Proof of Proposed Framework Concept

302

the processing can start. As soon as the test developer has submitted the STD instance on

the web site, the “Automatic Composition Engine” bundle receives the instance and starts

processing (see Figure 8.13).

Figure 8.13: Logging from "Automatic Composition Engine" bundle

The logging displayed in Figure 8.13 shows that as soon as the ACE receives the STD

instance, it instantiates the reusable test modules, six for the behaviour model of “Req01”

and three for the behaviour model of “Req02”. Then, the processing continues with the

instantiation of the test data and the composition of the reusable test module instances. A

logging message also considers that a new test data set is included for a specific reusable

test module instance as soon as a condition has been detected which includes test data

from the specific reusable test module instance. Finally, the behaviour models for both

“Req01” and “Req02” have been generated in the process. In the following Figure 8.14,

the representation of the composed reusable test module instances within the ACE is

illustrated.

8 Framework and Prototype Evaluation

303

Figure 8.14: Created behaviour models by "Automatic Composition Engine" bundle

The behaviour model above refers to “Req01” with six instances of reusable test modules

whereas the lower refers to “Req02” with three instances. In “Req01”, the Alternative

Flows are labelled as “AF1” and “AF2”.

As soon as the behaviour models exist, they are automatically delivered to the “Test Case

Derivation Unit” bundle which derives the test cases. As mentioned in section 7.1.2, the

selection of an appropriate structure of the reusable test modules as well as the chosen

coverage criterion is important with regard to the test coverage and the number of test

cases. Before the test developer created the STD instance, a modified version of both

standard “SIP UAC non-INVITE” and “SIP UAS non-INVITE” reusable test modules

has been chosen. In fact, the “Proceeding” state which includes the handling of

provisional SIP responses has been removed for both reusable test modules because it is

not relevant for the handling of SIP MESSAGE requests. This possibility has already

been discussed in section 7.1.2 (e.g. “SIP UAS non-INVITE without Proceeding”). As

coverage criterion, the recommended All-Round-Trip algorithm has been applied. From

Test CasesUAS non-Invite

[sender1]_1

UAC non Invite

[sender2]_1

UAC non-Invite

[sender2]_2
UAS non-Invite

[recipient1]_1

UAC non Invite

[recipient2]_1

UAC non-Invite

[recipient2]_2

Req01 BM

UAS non-Invite

[sender1]_2

UAC non-Invite

[recipient2]_3
UAC non-Invite

[sender2]_3

Req02 BM

Test Cases

AF1 AF2

8.3 Proof of Proposed Framework Concept

304

every reusable test module instance within Figure 8.14, two test cases will be derived.

Regarding “Req01”, the amount of test cases for the Basic Flow is 16 (2*2*2*2) as there

are four reusable test module instances visited one after the other. For each Alternative

Flow path, two further test cases are added with the generated and modified test data sets.

So, the sum of all test cases for “Req01” is 20. As “Req02” is based on “Req01”, the

number of test cases now increases significantly. For each further reusable test module

instance within “Req02”, the current number of test cases is multiplied by 2. In total, this

leads to a number of 128 test cases for “Req02”. In total, the ETS generated for the sample

chat service includes 148 test cases. Although they have not been implemented within the

prototype implementation, there are a possibilities to reduce this seemingly high number

of test cases. The concepts are as follows:

1. As soon as all test cases for a CI have been tested by traversing through one

reusable test module instance, the following reusable test modules using the

identical CI can derive a reduced set of tests (e.g. All-Transitions algorithm).

2. If Requirements are based on each other through the Precondition field (such as

“Req02” depends on “Req01”), it is not necessarily required to execute all test

cases for “Req01” once again before the test cases derived from “Req02” are

executed. In fact, only one test case for the Basic Flow of “Req01” would be

sufficient as basis to verify the functionality of “Req02”. This concept has a

significant impact on the number of test cases. For the sample chat service, the

total number of test cases for both “Req01” and “Req02” would be 28 (20 for

“Req01” and 8 for “Req02”).

8 Framework and Prototype Evaluation

305

As soon as the test cases have been derived and afterwards generated by the “Test Code

Generator” and “Test Suite Builder” bundles, the test execution can be fulfilled. The

following test execution sample in Figure 8.15 (generated by the TTworkbench after test

case execution) illustrates the “Login” process of “[sender]”.

Figure 8.15: Test execution of "Login" process for "[sender]" Role

As discussed in section 7.2, every Role specified in the STD is represented as a test

component in TTCN-3 and therefore also in the test execution process. In Figure 8.15,

besides the SUT (“SYSTEM”), the Roles “[sender]” (“v_sender”) and “[recipient]”

(“v_recipient”) are included. Between the test components and the SUT, the messaging

is illustrated. Every message that is received by a test components will be highlighted

either by green color (“match”) or red color (“fail”). The example test case (see Figure

8.15) is judged as “pass” at the end of the test component “v_sender”, however, the final

judgement is done by the main test component (MTC).

8.3 Proof of Proposed Framework Concept

306

After all 148 test cases have been executed against the SUT, a test report is generated (see

Figure 8.16).

Figure 8.16: Test report for test execution against sample chat service

Besides the verdicts with regard to all 148 test cases, the test report contains

documentation of the complete test case execution for each test case (like illustrated in

Figure 8.15). This makes it easy for the test developer to figure out which test case failed

and why it failed. The steps he has to take afterwards are described in section 7.4.

To sum up, the framework and prototype implementation could be evaluated by testing a

sample value-added service. There is potential for improvement regarding the derivation

of test cases within the prototype implementation. With respect to this matter,

recommendations have been stated in this section.

8 Framework and Prototype Evaluation

307

8.4 Conclusion

This chapter has started with the evaluation of the proposed TCF (see section 8.1) with

regard to the requirements stated in section 3.4. It has been analysed whether or not the

requirements have been fulfilled by the proposed TCF. In fact, the framework meets all

the given requirements successfully.

Furthermore, the research prototype (see section 8.2) within this project has been

introduced. The prototype’s architecture with the relevant developed TCF components

and their interactions has been outlined as well as the used underlying Java-based modular

system and service platform OSGi. The research prototype has been successfully adopted

for a proof of concept evaluation of the proposed framework which demonstrates its major

functionalities as well as its general applicability.

To demonstrate the applicability of the novel concept and to evaluate the framework in

general, a typical value-added service has been considered as SUT, a simplified chat

service. Of course, the chat service had to be specified in detail and an implementation

had to be provided. Finally, the TCF process could be exemplified starting from the

specification of the STD instance until the generation of the test report. The test report

includes the results of the test case executions against the SUT.

309

9 Conclusions

This chapter concludes the thesis by summarising the main achievements of the research

work (section 9.1). Additionally, limitations of the research are discussed (section 9.2)

and scopes and ideas for further research are suggested (section 9.3).

9.1 Achievements of the Research

This research was dedicated to the development of a novel approach for functional testing

of value-added services within NGN-based environments or SIP-based IP networks. A

novel framework has been defined, which supports the test developer by means of a

straightforward new service and test specification language. It includes all phases of

testing starting from the reading of the STD instance compiled by the test developer and

followed by the automated building of Statecharts-based behaviour models considering

the information retrieved from the STD instance. Furthermore, the process includes an

automated derivation of abstract test cases and the subsequent transformation into

executable TTCN-3 test cases. Finally, it also performs automated testing of the test cases

against the value-added service, the SUT. Because of its support for the whole testing

life-cycle, the framework can be applied as a complete solution for functional value-added

service testing.

9.1 Achievements of the Research

310

The analysis of existing current methodologies in the field of agile testing and Model-

based testing has been illustrated as well as related projects for functional testing (see

section 3.2 and 3.3). Based on the deficits of the related projects, but also on a few assets

they provide, a requirements catalogue on a novel framework for functional testing of

value-added services has been established. It has been analysed whether one of the related

projects could fulfil these requirements, however, an ideal solution could not be found.

Besides, only one related project specifically was referred to the testing of NGN-based

value-added services.

Applying the requirements that evolved from the deficits and assets of related projects, a

novel framework has been developed (see chapter 4). The underlying framework

architecture contains several components such as databases (Test Modules Repository

and Test Data Pool) for data which are used within the tests, graphical user interfaces for

the test developer to either create so-called reusable test modules which specify recurring

behaviour or, alternatively, to define service and test specifications of value-added

services by applying the proposed and novel STD. Furthermore, the framework includes

process components for model constructions, test case derivation and test case generation.

The framework can be instantiated within traditional service development life-cycles and

by applying it, a path of testing is established besides the development path. As it is based

on the informal requirements from which a service developer also retrieves his ideas for

developing a value-added service, it enables requirements-based testing that is similar to

rapid prototyping. This ability of the framework led to a novel concept that has also been

established in this research, the Service Quality Group with a new role introduced in the

process, the service analyst. The idea for this new integration within the process came up,

9 Conclusions

311

because in current solutions, the service customer is not as involved during the

development and testing phase as he could be.

The basis for establishing a requirements-based testing approach lies in one of the key

novelties of this research, the service and test specification language STD (see chapter 5).

Here, the test developer can describe the potential behaviour of a value-added service by

means of reusable behaviour which is determined through Roles in combination with their

CommunicationInterfaces. In further related work, traditional test specifications are

applied for this step, but the focus of the STD is different, as it puts the accent on the

SUT. In fact, a CommunicationInterface is always part of the SUT and not part of the test

system. A further novel aspect of the STD is its underlying behavioural notation that is

based on the pi-calcus, a simple but very expressive process calculus in order to specify

communication channels. There is no existing related work where a pi-calculus-based

notation has been applied to functional testing.

A further novelty within the research has been discussed with the introduction of the

reusable test modules (see chapter 6). The Statechart-based notation enables a novel view

on specifying behaviour through the differentiation of server cores and client cores. This

TU concept which has been taken from the SIP specification, can be applied to any

application layer protocol. Based on standard SIP-related behaviour, example reusable

test modules have been introduced and it has been demonstrated how they can be

classified through so-called classification templates and formally stored through an XML-

based notation called SCXML. Furthermore, a composition algorithm of reusable test

modules based on STD instances is introduced which leads to the generation of behaviour

9.1 Achievements of the Research

312

models. Another important aspect is the support of concurrency through so-called

hierarchical AND-states which are part of Statechart-based notations.

The derivation of abstract test cases from the behaviour models introduces a new graph-

based illustration of them (see chapter 7). In related works, abstract test cases which are

generally derived from formal models, are represented as sequences within the model.

Here, diverse coverage criteria have been taken into consideration to derive the abstract

test cases. For thorough testing, the All-Round-Trip algorithm has been applied whereas

All-Transitions does not lead to such a high amount of test cases if many reusable test

module instances are involved. An important characteristic of the reusable test modules

has been mentioned, the possibility to easily modify the behavioural description by

removing states that lead to provisional behaviour. Furthermore, the generation of TTCN-

3 test cases based on the abstract test cases is shown by means of a mapping.

In the final chapter 8, the proposed framework has been evaluated regarding the defined

requirements (see section 3.4). Besides, for the verification of the overall framework

functionalities, a research prototype has been developed. This research prototype has been

successfully adopted for a proof of concept of the proposed framework by demonstrating

the process by means of an example value-added service.

Several papers referring to diverse aspects of the results achieved during this research

have been presented at refereed conferences and have received positive comments from

delegates and reviewers.

9 Conclusions

313

9.2 Limitations of the Research

Even though the overall objectives of the research have been met, still some decisions

had to be taken that resulted in limitations imposed on the work. In principle, those

decisions were caused by practical reasons, or to limit the effort spent in areas where no

new insights could be expected. The limitations are summarised below.

1. The research prototype was restricted to only implement as much functionality as

required to prove that the approach taken for functional testing of value-added

services was viable and that the methods developed were actually manageable.

Therefore, the prototype only supports the specification of SIP-based value-added

services. For instance, also the protocols HTTP and RTP could have been taken

into consideration in order to check whether multimedia or web-based data could

be received by a test component, but the value of knowledge would be limited.

2. Although a lot of research has been done in the field of test case derivation, the

selection of an appropriate coverage criteria cannot be finally evaluated.

Generally speaking, this field of research can be expanded.

3. Although it is a component of the TCF architecture, the TME has not been

developed by the research prototype. However, the relevance would have been

low, because new reusable test modules can of course be installed by defining a

classification template and a SCXML description of the corresponding reusable

test module.

4. There is no specific methodology defined within the proposed TCF to reset the

state of the SUT so that a test case execution can be performed properly. It is the

task of the test developer to take this into consideration.

9.3 Suggestions and Scope for Future Work

314

5. The approach only supports specified functional tests or rather positive tests.

Negative tests such as ruggedness tests are not supported.

Despite these limitations, the research has made valid contributions to knowledge and

provided sufficient proof of concept for the proposed approaches.

9.3 Suggestions and Scope for Future Work

This research has advanced the field of automated functional testing of value-added

services in the field of NGN and SIP-based IP networks. However, there are numbers of

areas for future work that can be identified upon the results of this project. Some of these

have already been mentioned, however they are summarised in the following.

1. Further research may address how easily further protocols can be included into

the approach and if every protocol can be described by the reusable test module

concept.

2. The aspect of reusability can be further investigated. Maybe recurring behaviour

can also be detected within the combination of protocols, such as SIP and HTTP.

3. The framework can be applied to different technologies and environments. For

instance, functional testing of diverse software can be performed as soon as the

underlying software models exist. Futher different types of applications can be

analysed (such as Machine-to-Machine applications).

4. Possibly, the TCF can be used for the analysis of protocols.

9 Conclusions

315

5. The ideas regarding the collaboration of service customers, service developers,

service analysts as well as test developers can be further developed, e.g. by means

of an interactive web interface for graphical monitoring and managing.

317

References

1. 3GPP TR 21.905 V7.0.0 (2005), Technical Report, “Vocabulary for 3GPP
Specifications (Release 7)”, 3GPP

2. 3GPP TR 29.962 V6.1.1 (2005), Technical Report, “Signalling interworking
between the 3GPP profile of the Session Initiation Protocol (SIP) and non-3GPP
SIP usage”, 3GPP

3. Abadi, M.; Fournet, C. (2001), “Mobile values, new names, and secure
communication”, Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pp. 104-115, ACM

4. Abadi, M.; Fournet, C. (2004), “Private authentication”, Theoretical Computer
Science, Vol. 322, Issue 3, pp. 427-476, Elsevier

5. Abrahamsson, P.; Hanhineva, A.; Jäälinoja, J. (2005), “Improving Business Agility
Through Technical Solutions: A Case Study on Test-Driven Development in
Mobile Software Development”, Proceedings of the IFIP TC8 WG 8.6
International Working Conference, pp. 227-243, Springer

6. Adzic, G. (2011), “Specification by Example: How successful Teams deliver the
right Software”, Manning Publications, Shelter Island, USA, ISBN: 978-1-617-
29008-4

7. Ammann, P. and Offutt, J. (2008), “Introduction to Software Testing”, Cambridge
University Press, Cambridge, UK, ISBN: 978-0-521-88038-1

8. Antoniol, G.; Briand, L.C.; Di Penta, M.; Labiche, Y. (2002), “A case study using
the round-trip strategy for state-based class testing”, Proceedings of the 13th
International Symposium on Software Reliability Engineering (ISSRE 2002), pp.
269-279, IEEE

9. Apache Felix (2015), “Apache Felix Website”, Available at:
http://felix.apache.org, [accessed 2nd November 2015]

10. Apache Karaf (2015), “Apache Karaf”, Available at:
http://karaf.apache.org/index.html, [accessed 2nd November 2015]

11. Apache Tomcat (2015), “Apache Tomcat”, Available at: http://tomcat.apache.org/,
[accessed 30th November 2015]

12. Apache Velocity (2015), “The Apache Velocity Project”, Available at:
http://velocity.apache.org/texen/devel/, [accessed 3rd November 2015]

13. Baker, P.; Ru Dai, Z.; Grabowski, J.; Schieferdecker, I.; Williams, C. (2007),
“Model-Driven Testing: Using the UML Testing Profile”, Springer, Berlin,
Germany, ISBN: 978-3-540-72562-6

References

318

14. Binder, R. (1999), “Testing Object-Oriented Systems: Models, Patterns, and
Tools”, Addison-Wesley, Boston USA, ISBN: 0-201-80938-9

15. Bittner, K. and Spence, I. (2002), “Use Case Modeling”, Addison Wesley, Boston,
USA, ISBN: 978-0-201-70913-1

16. Börger, E. and Stärk, R. (2003), “Abstract State Machines”, Springer, Heidelberg,
Germany, ISBN: 978-3-642-62116-1

17. Bozga, M.; Fernandez, J.Cl.; Ghirvu, L.; Graf, S.; Krimm, J.P. and Mounier, L.
(1999), “IF: An Intermediate Representation and Validation Environment for
Timed Asynchronous Systems”, Proceedings of the World Congress on Formal
Methods in the Development of Computing Systems, pp. 307-327, Springer

18. Calisti, M. (2003), “An Agent-Based Approach for Coordinated Multi-Provider
Service Provisioning”, Birkhäuser Verlag, Basel, Switzerland, ISBN: 3-7643-
6922-1

19. Chattopadhyay, S. (2013), “Embedded System Design”, PHI Learning Private
Limited, Delhi, India, ISBN: 978-8-120-34730-4

20. Cheng, K.-T. and Krishnakumar, A.S. (1993), “Automatic Functional Test
Generation Using The Extended Finite State Machine Model”, Proceedings of the
30th Conference on Design Automation, pp. 86-91, IEEE

21. Cochennec, J.-Y. (2002), “Activities on next-generation networks under Global
Information Infrastructure in ITU-T”, Communication Magazine, Vol. 40, Issue 7,
pp. 98-101, IEEE

22. Cockburn, A. (2000), “Writing Effective Use Cases (Crystal Series for Software
Development)”, Addison Wesley, Boston, USA, ISBN: 978-0-201-70225-5

23. Cohn, M. (2004), “User Stories Applied: For Agile Software Development”,
Addison-Wesley, Boston USA, ISBN: 0-321-20568-5

24. Commons SCXML (2015), “Apache Commons SCXML”, Available at:
http://commons.apache.org/proper/commons-scxml/, [accessed 3rd November
2015]

25. Craggs, I.; Sardis, M.; Heuillard, T. (2003), “AGEDIS Case Studies: Model-based
testing in industry”, Proceedings of the 1st European Conference on Model Driven
Software Engineering, pp. 106-117

26. Dai, Z.R.; Grabowski, J.; Neukirchen, H.; Pals, H. (2004), “From Design to Test
with UML – Applied to a Roaming Algorithm for Bluetooth Devices”,
Proceedings of the 16th International Conference on Testing of Communication
Systems (TestCom 2004), pp. 33-49, Springer

27. Devroey, X.; Perrouin, G.; Schobbens, P.-Y. (2014), “Abstract Test Case
Generation for Behavioural Testing of Software Product Lines”, Proceedings of
the 18th International Software Product Line Conference (Companion Volume for
Workshops, Demonstrations and Tools), pp. 86-93, ACM

28. Ding, J. (2010), “Advances in Network Management”, CRC Press, Boca Raton,
USA, ISBN: 978-1-4200-6455-1

References

319

29. Ding, L. and Liu, L. (2008), “Modelling and Analysis of the INVITE Transaction
of the Session Initiation Protocol Using Coloured Petri Nets”, Proceedings of the
29th International Conference on Application and Theory of Petri Nets and Other
Models of Concurrency (PETRI NETS 2008), pp. 132-151, Springer

30. Eberlein, A. (1997), “Requirements Acquisition and Specification for
Telecommunication Services”, PhD thesis, Department of Electical & Electronic
Engineering, University of Wales, Swansea, United Kingdom

31. Eberlein, A.; Crowther, M.; Halsall, F. (1997), “Development Of New
Telecommunications Services Using An Expert System”, BT Technology Journal,
Vol. 15, Issue 1, pp. 217-222, ACM

32. Eberlein, A. and Halsall, F. (1997), “Telecommunications service development: A
design methodology and its intelligent support”, Engineering Applications of
Artificial Intelligence, Vol. 10, Issue 6, pp. 647-663, Elsevier

33. Eclipse TPTP (2015), “Eclipse Test & Performance Tools Platform Project”,
Available at: https://eclipse.org/tptp, [accessed at 24th April 2015]

34. Eichelmann, T.; Fuhrmann, W.; Trick, U.; Ghita, B. (2010), “Enhanced concept of
the TeamCom SCE for automated generated services based on JSLEE“,
Proceedings of the 8th International Network Conference (INC 2010), pp. 75-84,
Heidelberg, Germany, ISBN: 978-1-84102-259-8

35. El-Far, I.K. and Whittaker, J.A. (2001), “Model-Based Software Testing”,
Encyclopedia on Software Engineering, Vol. 2, Wiley

36. Elvior (2015), “TestCast TTCN-3 Professional”, Available at:
http://www.elvior.com, [accessed 30th October 2015]

37. Ernits, J.; Kull, A.; Raiend, K.; Vain, J. (2006), “Generating TTCN-3 Test Cases
from EFSM Models of Reactive Software Using Model Checking”, GI
Jahrestagung (2), Vol. 94, pp. 241-248, GI

38. ETSI ES 201 873-1 V4.7.1 (2015), ETSI Standard, “Methods for Testing and
Specification (MTS); The Testing and Test Control Notation version 3; Part 1:
TTCN-3 Core Language”, ETSI

39. ETSI ES 201 873-2 V3.2.1 (2007), ETSI Standard, “Methods for Testing and
Specification (MTS); The Testing and Test Control Notation version 3; Part 2:
TTCN-3 Tabular presentation Format (TFT)”, ETSI

40. ETSI ES 201 873-3 V3.2.1 (2007), ETSI Standard, “Methods for Testing and
Specification (MTS); The Testing and Test Control Notation version 3; Part 3:
TTCN-3 Graphical presentation Format (GFT)”, ETSI

41. ETSI ES 201 873-5 V4.7.1 (2015), ETSI Standard, “Methods for Testing and
Specification (MTS); The Testing and Test Control Notation version 3, Part 5:
TTCN-3 Runtime Interface (TRI)”, ETSI

42. ETSI ES 201 873-6 V4.7.1 (2015), ETSI Standard, “Methods for Testing and
Specification (MTS); The Testing and Test Control Notation version 3, Part 6:
TTCN-3 Control Interface (TCI)”, ETSI

References

320

43. ETSI ES 202 951 V1.1.1 (2011), ETSI Standard, “Methods for Testing and
Specification (MTS); Model-Based Testing (MBT); Requirements for Modelling
Notations”, ETSI

44. ETSI Tdoc RP 030375 V0.10 (2003), Technical Document, “Overview of 3GPP
Release 5”, ETSI Mobile Competence Centre

45. ETSI TR 180 000 V1.1.1 (2006), Technical Report, “NGN Terminology”, ETSI
TISPAN

46. ETSI TS 122 001 V10.0.0 (2011), Technical Specification, “Principles of circuit
telecommunication services supported by a Public Land Mobile Network
(PLMN)”, ETSI

47. ETSI TS 122 101 V10.7.0 (2011), Technical Specification, “Service aspects;
Service principles”, ETSI

48. ETSI TS 122 105 V10.0.0 (2011), Technical Specification, “Services and service
capabilities”, ETSI

49. ETSI TS 122 228 V10.4.1 (2011), Technical Specification, “Service requirements
for the Internet Protocol (IP) multimedia core network subsystem (IMS)”, ETSI

50. Evans, E. J. (2003), “Domain-Driven Design: Tackling Complexity in the Heart of
Software”, Addison-Wesley, Boston, USA, ISBN: 0-321-12521-5

51. Felderer, M.; Zech, P.; Fiedler, F.; Breu, R. (2010), “A Tool-Based Methodology
for System Testing of Service-Oriented Systems“, Proceedings of the 2nd
International Conference on Advances in System Testing and Validation Lifecycle
(VALID 2010), pp. 108-113, IEEE

52. Felderer, M.; Chimiak-Opoka, J.; Zech, P.; Haisjackl, C.; Fiedler, F.; Breu R.
(2011), “Model Validation in a Tool-Based Methodology for System Testing of
Service-Oriented Systems”, Advances in Software, Vol. 4 no 1 & 2, pp. 129-143,
IARIA

53. Fischer, M; Toenjes, R.; Lasch, R. (2011), “A New Approach For Automatic
Generation of Tests for Next Generation Network Communication Services“,
Processings of the 16th Conference on Emerging Technologies & Factory
Automation (ETFA 2011), pp. 1-6, IEEE

54. Feudjio, A.-G.V. (2009), “Model-Driven Functional Test Engineering for Service
Centric Systems”, Proceedings of the 5th International Conference on Testbeds and
Research Infrastructures for the Development of Networks & Communities and
Workshops (TridentCom 2009), pp. 1-7, IEEE

55. Feudjio, A.-G.V. (2011), “A Methodology For Pattern-Oriented Model-Driven
Testing of Reactive Software Systems”, Doctor of Engineering Dissertation,
Faculty of Electrical Engineering and Computer Science, Technical University of
Berlin, Germany

56. Fokus!MBT (2015), “Fokus!MBT”, Available at: http://www.fokusmbt.com/
key_features/index.html, [accessed 24th April 2015]

References

321

57. Gärtner, M. (2012), “ATDD by Example: A Practical Guide to Acceptance Test-
Driven Development”, Addison-Wesley, Upper Saddle River, USA, ISBN: 978-0-
321-78415-5

58. George, E. and Williams, L. (2004), “A structured experiment of test-driven
development”, Information and Software Technology, Vol. 46, Issue 5, pp. 337-
342, ACM

59. Glitho, R. H.; Khendek, F.; De Marco, A. (2003), “Creating Value Added Services
in Internet Telephony: An Overview and a Case Study on a High-Level Service
Creation Environment”, IEEE Transactions on Systems, Man, and Cybernetics –
Part C: Applications and Reviews, Vol. 33, No. 4, pp. 446-457, IEEE

60. Glover, A. (2009), “Agile testing: a whole team approach”, Available at:
http://www.javaworld.com/article/2072867/agile-testing--a-whole-team-
approach.html, [accessed 30th October 2015]

61. Gregory, J. and Crispin, L. (2015), “More Agile Testing”, Addison-Wesley, Upper
Saddle River, USA, ISBN: 978-0-321-96705-3

62. Guo, J; Chen, J.; Cheng, B.; Liu, D. (2009), “A Choreography Approach for Value-
Added Services Creation”, Proceedings of the 5th International Conference on
Wireless Communications, Networks and Mobile Computing (WiCom 2009), pp.
1-4, IEEE

63. Gutjahr, W.J. (1999), “Partition Testing vs. Random Testing: The Influence of
Uncertainty”, IEEE Transactions on Software Engineering, Vol. 25, Issue 5, pp.
661-674, IEEE

64. Hartmann, A. and Nagin, K. (2004), “The AGEDIS tools for model based testing”,
Proceedings of the 2004 ACM SIGSOFT International Symposium on Software
testing and analysis (ISSTA 2004), pp. 129-132, ACM

65. Harel, D. (1996), “The STATEMATE Semantics of Statecharts”, Transactions on
Software Engineering and Methodology (TOSEM), Vol. 5, Issue 4, pp. 293-333,
ACM

66. Harel, D. and Kugler, H. (2004), “The RHAPSODY Semantics of Statecharts (or,
On the Executable Core of the UML)”, Integration of Software Specification
Techniques for Applications in Engineering, Vol. 3147, pp. 325-354, Springer

67. Harel, D. and Politi, M. (1998), “Modeling Reactive Systems with Statecharts: The
Statemate Approach (Software Development)”, McGraw-Hill Inc., New York
City, USA, ISBN: 978-0-070-26205-8

68. Harte, L.; Hoenig, M.; McLaughlin, D.; Kikta, R. (1999), “CDMA IS-95 for
Cellular and PCS: Technology, Applications, and Resource Guide (1st edition)”,
McGraw-Hill Professional, New York City, USA, ISBN: 978-0-0702-7070-1

69. Haschemi, S. (2009), “Model Transformations to Satisfy All-Configurations-
Transitions on Statecharts”, Proceedings of the 6th International Workshop on
Model-Driven Engineering (MoDeVVa 2009), ACM

References

322

70. IEEE Std 610.12 (1990), IEEE Standard, “IEEE Standard Glossary of Software
Engineering Terminology”, IEEE

71. IEEE Std 829 (2008), IEEE Standard, “IEEE Standard for Software and System
Test Documentation”, IEEE

72. IEEE Std 1490 (2011), IEEE Standard, “IEEE Guide – A Guide to the Project
Management Body of Knoledge (PMBOK® Guide) – Fourth Edition”, IEEE

73. IETF RFC 1034 (1987), Request For Comments, “Domain Names – Concepts and
Facilities”, IETF

74. IETF RFC 1035 (1987), Request For Comments, “Domain Names –
Implementation and Specification”, IETF

75. IETF RFC 1939 (1996), Request For Comments, “Post Office Protocol – Version
3”, IETF

76. IETF RFC 2234 (1997), Request For Comments, “Augmented BNF for Syntax
Specifications: ABNF”, IETF

77. IETF RFC 2543 (1999), Request For Comments, “SIP: Session Initiation Protocol
(Version 1.0)”, IETF

78. IETF RFC 2616 (1999), Request For Comments, “Hypertext Transfer Protocol –
HTTP/1.1”, IETF

79. IETF RFC 3261 (2002), Request For Comments, “SIP: Session Initiation
Protocol”, IETF

80. IETF RFC 3262 (2002), Request For Comments, “Reliability of Provisional
Responses in the Session Initiation Protocol (SIP)”, IETF

81. IETF RFC 3311 (2002), Request For Comments, “The Session Initiation Protocol
(SIP) UPDATE Method”, IETF

82. IETF RFC 3428 (2002), Request For Comments, “Session Initiation Protocol (SIP)
Extension for Instant Messaging”, IETF

83. IETF RFC 3515 (2003), Request For Comments, “The Session Initiation Protocol
(SIP) Refer Method”, IETF

84. IETF RFC 3550 (2003), Request For Comments, “RTP: A Transport Protocol for
Real-Time Applications”, IETF

85. IETF RFC 3725 (2004), Request For Comments, “Best Current Practices for Third
Party Call Control (3pcc) in the Session Initiation Protocol (SIP)”, IETF

86. IETF RFC 3903 (2004), Request For Comments, “Session Initiation Protocol (SIP)
Extension for Event State Publication”, IETF

87. IETF RFC 4353 (2006), Request For Comments, “A Framework for Conferencing
with the Session Initiation Protocol (SIP)”, IETF

88. IETF RFC 4511 (2006), Request For Comments, “Lightweight Directory Access
Protocol (LDAP): The Protocol”, IETF

References

323

89. IETF RFC 4566 (2006), Request For Comments, “SDP: Session Description
Protocol”, IETF

90. IETF RFC 5321 (2008), Request For Comments, “Simple Mail Transfer Protocol”,
IETF

91. IETF RFC 6086 (2011), Request For Comments, “Session Initiation Protocol (SIP)
INFO Method and Package Framework”, IETF

92. IETF RFC 6665 (2012), Request For Comments, “SIP-Specific Event
Notification”, IETF

93. ISO/IEC/IEEE 29119-2 (2013), International Standard, “Software and systems
engineering – Software testing – Part 2: Test processes”, ISO/IEC/IEEE

94. ITU (2011), Constitution and Convention, “Collection of the basic texts of the
International Telecommunication Union adopted by the Plenipotentiary
Conference”, ITU

95. ITU-T I.210 (1993), Recommendation, “Principles of Telecommunication
Services supported by an ISDN and the means to describe them”, ITU-T

96. ITU-T I.211 (1993), Recommendation, “B-ISDN Service aspects”, ITU-T

97. ITU-T M.3340 (2009), Recommendation, “Framework for NGN service fulfilment
and assurance management across the business to business and customer to
business interfaces”, ITU-T

98. ITU-T M.3050.1 (2007), Recommendation, “Enhanced Telecom Operations Map
(eTOM) – The business process framework”, ITU-T

99. ITU-T Q.3946.1 (2013), Recommendation, “Conformance tests specification for
the session initiation protocol – Part 2: Test suite structure and test purposes”, ITU-
T

100. ITU-T Q.3948 (2011), Recommendation, “Service testing framework for VoIP at
the user-to-network interface of next generation networks”, ITU-T

101. ITU-T Q.3949 (2012), Recommendation, “Real-time multimedia service testing
framework at the user-to-network interface of next generation networks”, ITU-T

102. ITU-T T.174 (1996), Recommendation, “Application Programming Interface
(API) for MHEG-1”, ITU-T

103. ITU-T X.680 (2015), Recommendation, “Abstract Syntax Notation One (ASN.1):
Specification of basic notation”, ITU-T

104. ITU-T Y.2001 (2004), Recommendation, “General overview of NGN”, ITU-T

105. ITU-T Y.2012 (2010), Recommendation, “Functional requirements and
architecture of next generation networks”, ITU-T

106. ITU-T Z.100 (2007), Recommendation, “Specification and Description Language
(SDL)”, ITU-T

References

324

107. Jacobson, I.; Christerson, M.; Jonsson, P. (1992), “Object-Oriented Software
Engineering: A Use CASE Approach (ACM Press)”, Addison-Wesley, ISBN: 978-
0-201-54435-0

108. Janevski, T. (2014), “NGN Architectures, Protocols and Services”, John Wiley &
Sons Inc, Hoboken, USA, ISBN: 978-1-118-60720-6

109. JBoss (2015), “JBoss Developer”, Available at: http://www.jboss.org/, [accessed
30th November 2015]

110. Jetty (2015), “Jetty – Servlet Engine and Http Server”, Available at:
http://www.eclipse.org/jetty/, [accessed 5th November 2015]

111. JSR 289 Spec (2008), “JSR 289: SIP Servlet v1.1”, Java Specification Request

112. JUnit (2015), “JUnit”, Available at: http://junit.org, [accessed 10th May 2015]

113. Karlesky, M.J.; Bereza, W.I.; Erickson, C.B. (2006), “Effective Test Driven
Development for Embedded Software”, Proceedings of the IEEE International
Conference on Electro/information Technology, pp. 382-287, IEEE

114. Kühn, P. (1991), “Vorlesungsskript Nachrichtenvermittlung I und II” (translated
title: “Lecture notes message switching I and II”), University Stuttgart, Institut für
Nachrichtenvermittlung und Datenverarbeitung

115. Lehmann, A.; Eichelmann, T.; Trick, U.; Lasch, R.; Ricks, B.; Tönjes, R. (2009),
“TeamCom: A Service Creation Platform for Next Generation Networks“,
Proceedings of the 4th International Conference on Internet and Web Applications
and Services (ICIW 2009), pp. 12-17, IEEE

116. Lehmann, A. (2014), “Service composition based on SIP peer-to-peer networks”,
PhD thesis, School of Computing and Mathematics, Plymouth University, United
Kingdom

117. Ling, J.; Ping, P.; Chun, Y.; Jinhua, L.; Qiming, T. (2009), “Rapid Service Creation
Environment for Service Delivery Platform based on Service Templates”,
Proceedings of the International Symposium on Integrated Network Management
(IM 2009), pp. 117-120, IEEE

118. Lombard Hill Group (2015), “Software Reuse 101: What Is Software Reuse?”,
Available at: http://lombardhill.com/articles/software-reuse-101-what-is-
software-reuse/, [accessed 20th July 2015]

119. Magedanz, T. and de Gouveia, F.C. (2006), “IMS – the IP Multimedia System as
NGN Service Delivery Platform”, Elektrotechnik & Informationstechnik, Vol. 123,
Issue 7-8, pp. 271-276, Springer

120. Malik, Q.A.; Jääskeläinen, A.; Virtanen, H.; Katara, M. (2010), “Model-Based
Testing using System vs. Test Models – What is the Difference?”, Proceedings of
the 17th IEEE International Conference and Workshops on Engineering of
Computer-Based Systems (ECBS 2010), pp. 291-299, IEEE

121. Mathur, A.P. (2008), “Foundations of Software Testing”, Pearson Education India,
New Delhi, India, ISBN: 978-8-1317-0795-1

References

325

122. Menkens, C. (2010), “From service delivery to application delivery in the
telecommunication industry”, Proceedings of the IEEE GLOBECOM Workshops
(GC Wkshps 2010), pp. 1339-1344, IEEE

123. Milner, R. (1989), “Communication and Concurrency”, Prentice Hall, Upper
Saddle River, New Jersey, USA, ISBN: 0-13-115007-3

124. Milner, R. (1992), “Functions as processes”, Mathematical Structures in Computer
Science, Vol. 2, Issue 2, pp. 119-141, Cambridge University Press

125. Milner, R.; Parrow, J.; Walker, D. (1992), “A calculus for mobile processes”,
Information and Computation, Vol. 100, Issue 1, pp. 1-40, Elsevier

126. Mobicents (2015), “Mobicents – The Open Source Cloud Communications
Platform”, Available at: http://www.mobicents.org/, [accessed 30th November
2015]

127. MongoDB (2015), “MongoDB”, Available at: https://www.mongodb.org/,
[accessed 3rd November 2015]

128. OASIS (2007), OASIS Standard, “Web Services Business Process Execution
Language Version 2.0”, OASIS

129. Obermann, K. and Horneffer, M. (2013), “Datennetztechnologien für Next
Generation Networks (2nd edition)” (translated title: “Data network technologies
for Next Generation Networks (2nd edition)”), Springer Vieweg, Wiesbaden,
Germany, ISBN: 978-3-8348-2098-3

130. OMA OSPE (2005), “OMA Service Provider Environment Requirements
(Candidate Version 1.0)”, OMA

131. OMA ORG (2007), “Dictionary for OMA Specifications (Approved Version 2.6)”,
OMA

132. OMG (2002), “CORBA 3.0 – OMG IDL Syntax and Semantics”, Version 3.0

133. OMG (2011a), “Unified Modeling Language (UML)”, Version 2.4.1

134. OMG (2012a), “OMG System Modeling Language (SysML)”, Version 1.3

135. OMG (2012b), “Service oriented architecture Modeling Language (SoaML)”,
Version 1.0.1

136. OMG (2012c), “Common Object Request Broker Architecture (CORBA/IIOP)”,
Version 3.3

137. OMG (2013a), “UML Testing Profile (UTP)”, Version 1.2

138. OMG (2013b), “UML Profile for Advanced and Integrated Telecommunication
Services (TelcoML)”, Version 1.0

139. OMG (2014), “Object Contraint Language (OCL)”, Version 2.4

140. OpenTTCN (2015), “OpenTTCN Tester 2012”, Available at:
http://www.openttcn.com, [accessed 30th October 2015]

References

326

141. Oracle (2010), “The SIP Servlet Tutorial”, Available at:
https://docs.oracle.com/cd/E19355-01/820-3007/gfmpq/index.html, [accessed 30th
of November 2015]

142. OSGi Alliance R5 (2012), “OSGi Core Release 5”, OSGi specification, Version
5.0.0

143. Pancur, M.; Ciglaric, M.; Trampus, M.; Vidmar, T. (2003), “Towards Empirical
Evaluation of Test-Driven Development in a University Environment”,
EUROCON 2003 Computer as a Tool, Vol. 2, pp. 83-86, IEEE

144. Pezzè, M. and Young, M. (2009), “Software testen und analysieren” (translated
title: “Testing and analysing software”), Oldenbourg, Munich, Germany, ISBN: 3-
486-58521-6

145. Poikselkä, M. and Mayer, G. (2009), “The IMS: IP Multimedia Concepts and
Services (3rd edition)”, John Wiley & Sons Inc, Hoboken, USA, ISBN: 978-0-
4707-2196-4

146. Pretschner, A.; Prenninger, W.; Wagner, S.; Kühnel, C.; Baumgartner, M.;
Sostawa, B.; Zölch, R.; Stauner, T. (2005), “One Evaluation of Model-Based
Testing and its Automation”, Proceedings of the 27th International Conference on
Software Engineering (ICSE 2005), pp. 392-401, ACM

147. RMI (2015), “Remote Method Invocation”, Available at:
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html,
[accessed 12th of May 2015]

148. Ryan, M.D. and Smyth, B. (2011), “Applied pi calculus”, Formel Models and
Techniques for Analyzing Security Protocols, V. Cortier and S. Kremer

149. Ryndina, O.; Kritzinger, P. (2004), “Improving Requirements Specification for
Communication Services with Formalised Use Case Models”, Proceedings of the
Southern African Telecommunication Networks and Applications Conference
(SATNAC), Spier Wine Estate, South Africa

150. Ryndina, O.; Kritzinger, P. (2005), “Analysis of Structured Use Case Models
through Model Checking”, South African Computer Journal, Vol. 35, pp. 84-96,
South African Computer Society

151. Salina, J.L. and Salina, P. (2007), “Next Generation Networks – Perspectives and
Potentials”, John Wiley & Sons Inc, Hoboken, USA, ISBN: 978-0-470-51649-2

152. Solís, C. and Wang, X. (2011), “A Study of the Characteristics of Behaviour
Driven Development”, Proceedings of the 37th EUROMICRO Conference on
Software Engineering and Advanced Applications (SEAA 2011), pp. 383-387,
IEEE

153. Sommerville, Ian (2012), “Software Engineering (9th edition)”, Pearson
Deutschland GmbH, Munich, Germany, ISBN: 978-3-8689-4099-2

154. Tahat, L.H.; Vaysbury, B.; Korel, B.; Bader, A.J. (2001), “Requirement-based
automated black-box test generation”, Proceedings of the 25th Annual

References

327

International Computer Software and Applications Conference (COMPSAC
2001), pp. 489-495, IEEE

155. Telling TestStories (2015), “Telling TestStories”, Available at:
http://teststories.info, [accessed 25th April 2015]

156. Toral-Cruz, H.; Argaez-Xool, J.; Estrada-Vargas, L.; Torres-Roman, D. (2011),
“An Introduction to VoIP: End-to-End Elements and QoS Parameters”, VoIP
Technologies, Vol. 1, Issue 4, pp. 79-94, InTech

157. Trick, U. and Weber, F. (2004), “SIP, TCP/IP und Telekommunikationsnetze (1st
edition)” (translated title: “SIP, TCP/IP and Telecommunication Networks (1st
edition)”), Oldenbourg, Munich, Germany, ISBN: 3-486-27529-1

158. Trick, U. and Weber, F. (2009), “SIP, TCP/IP und Telekommunikationsnetze (4th
edition)” (translated title: “SIP, TCP/IP and Telecommunication Networks (4th
edition)”), Oldenbourg, Munich, Germany, ISBN: 3-486-59000-5

159. Trick, U. and Weber, F. (2015), “SIP und Telekommunikationsnetze (5th edition)”
(translated title: “SIP and Telecommunication Networks (5th edition)”), De Gruyter
Oldenbourg, Berlin, Germany, ISBN: 3-486-77853-3

160. TT-Medal Consortium (2005), “A Vision for Automated Testing [White Paper]”,
Available at: http://www.testingtech.com/download/publications/
TTmedalWhitePaper.pdf, [accessed 14th June 2014]

161. TT-Medal ITEA (2005), “Advanced Test Processes using TTCN-3”, Available at:
https://itea3.org/project/result/download/5565/TT-Medal%20Innovation%
20Report.pdf, [accessed 14th June 2014]

162. TTCN-3 (2015), “TTCN-3 Test System Reference Architecture”, Available at:
http://www.ttcn-3.org/index.php/about/referrence-architecture, [accessed 10th
October 2015]

163. TTsuite-SIP (2015), “TTsuite-SIP – Analyzing Internet System Components,
Voice-over-IP, and SIP, the 3G Signaling Protocol”, Available at:
http://www.testingtech.com/solutions/ttsuite-sip.php, [accessed 12th October
2015]

164. TTworkbench (2015), “TTworkbench – The Reliable Test Automation Platform”,
Available at: http://www.testingtech.com/products/ ttworkbench.php, [accessed
10th May 2015]

165. TTworkbench User Guide (2015), “TTworkbench 20 User’s Guide”, Available at:
http://www.testingtech.com/download/users_guides/TTworkbench_UserGuide.pd
f, [accessed 5th November 2015]

166. UTML (2015), “Die UTML Notation für Musterbasierte Modelgetriebene
Entwicklung von Tests” (translated title: “The UML notation for pattern-based
model-driven development of tests”), Technology Article, Available at:
http://wwwold.fokus.fraunhofer.de/de/sqc/wir_bieten/technologien/utml/index.ht
ml, [accessed 13th July, 2015], Fraunhofer FOKUS

References

328

167. Utting, M. and Legeard, B. (2006), “Practical Model-Based Testing: A Tools
Approach”, Morgan Kaufmann Publishers Inc., San Francisco, USA, ISBN: 978-
0-1237-2501-1

168. Van Deursen, A. (2001), “Program Comprehension Risks and Opportunities in
Extreme Programming”, Proceedings of the 8th Working Conference on Reverse
Engineering (WCRE 2001), pp. 176-185, IEEE

169. W3C (2012), Recommendation, “W3C XML Schema Definition Language (XSD)
1.1 Part 1: Structures”, W3C

170. W3C (2015), Recommendation, “State Chart XML (SCXML): State Machine
Notation for Control Abstraction”, W3C

171. Wacht, P.; Lehmann, A.; Eichelmann, T.; Trick, U.; Fischer, F.; Lasch, R.; Toenjes,
R. (2010), “Ein neues Verfahren zum automatisierten Testen von
Mehrwertdiensten“ (translated title: “A new method to automated testing of value-
added services”), Proceedings of the Fifteenth VDE/ITG Mobilfunktagung, pp. 73-
79, VDE

172. Wacht, P.; Eichelmann, T.; Lehmann, A.; Trick, U. (2011a), “A New Approach to
Design Graphically Functional Tests for Communication Services“, Proceedings
of the 4th IFIP International Conference on New Technologies, Mobility and
Security (NTMS 2011), pp. 1-5, IEEE

173. Wacht, P.; Eichelmann, T.; Lehmann, A.; Fuhrmann, W.; Trick, U.; Ghita, B.
(2011b), “A New Approach to model a formalised Description of a
Communication Service for the Purpose of Functional Testing“, Proceedings of the
4th International Conference on Internet Technologies & Applications (ITA 2011),
Wrexham, UK, ISBN: 978-0-946881-68-0

174. Wacht, P.; Lehmann, A.; Eichelmann, T.; Trick, U. (2011c), “ComGeneration: die
Dienstebeschreibung als Basis für automatisierte Tests“ (translated title:
“ComGeneration: a service description as basis for automated tests”), Proceedings
of the Fifteenth VDE/ITG Mobilfunktagung, pp. 118-123, VDE

175. Weber, F. (2012), “Quality of Service optimization framework for Next Generation
Networks”, PhD thesis, School of Computing and Mathematics, Plymouth
University, UK

176. Wendland, M.-F.; Hoffmann, A.; Schieferdecker, I. (2013), “Fokus!MBT – A
Multi-Paradigmatic Test Modeling Environment“, Proceedings of the Workshop
on ACadeMics Tooling with Eclipse (ACME 2013), ACM

177. Willcock, C.; Deiß, T.; Tobies, S.; Keil, S.; Engler, F.; Schulz, S. (2011), “An
Introduction to TTCN (2nd edition)”, Wiley Publishing, Chichester, West Sussex
PO19 8SQ, England

178. Yenduri, S. and Perkins, L. (2006), “Impact of Using Test-Driven Development:
A Case Study”, Proceedings of the International Conference on Software
Engineering Research and Practice (SERP 2006), pp.126-129, CSREA Press

179. Yue, T.; Briand, L.C.; Labiche, Y. (2009), “A Use Case Modeling Approach to
Facilitate the Transition Towards Analysis Models: Concepts and Empirical

References

329

Evaluation”, Proceedings of the 12th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2009), pp. 484-498, ACM/IEEE

180. Yue, T.; Ali, S.; Briand, L.C. (2011), “Automated Transition from Use Cases to
UML State Machines to Support State-based Testing”, Technical Report 2011-05,
University of Oslo, Norway

181. Zander, J.; Dai, Z.R.; Schieferdecker, I.; Din, G. (2005), “From U2TP Models to
Executable Tests with TTCN-3 – An Approach to Model Driven Testing”,
Proceedings of the 17th International Conference on Testing of Communication
Systems (TestCom 2005), pp. 289-303, Springer

182. Zhang, G.; Yue, T.; Ali, S. (2013), “Modeling Crisis Management Systems with
the Restricted Use Case Modeling Approach”, Proceedings of the 16th
International Conference on Model Driven Engineering Languages and Systems
(MODELS 2013), ACM/IEEE

183. Xiaoping, C. and Maag, S. (2013), “Passive Testing on Performance Requirements
of Network Protocols”, Proceedings of the 27th International Conference on
Advanced Information Networking and Applications Workshop (WAINA 2013), pp.
1439-1444, IEEE

331

Appendix A – Abbreviations

3GPP Third Generation Partnership Project

A

ACE Automatic Composition Engine

ACM Association for Computing Machinery, Inc.

ALG Application Layer Gateway

AML AGEDIS Modeling Language

API Application Programming Interface

AS Application Server

ASN.1 Abstract Syntax Notation One

ASM Abstract State Machines

ATDD Acceptance Test-Driven Development

ATS Abstract Test Suite

B

B2BUA Back-to-Back User Agent

BDD Behaviour-Driven Development

BPEL Business Process Execution Language

C

CCS Calculus of Communication Systems

CCXML Call Control eXtensible Markup Language

CD Codec

CH Component Handling

CLF Campaign Loader File

CS Call Server

Appendix A – Abbreviations

332

D

DNS Domain Name System

DTMF Dual-tone multi-frequency signaling

E

ETSI European Telecommunications Standards Institute

EFSM Extended Finite State Machine

EMF Eclipse Modeling Framework

ETS Executable Test Suite

F

FSM Finite State Machine

G

GUI Graphical user interface

H

HTTP Hypertext Transfer Protocol

I

IDL Interactive Data Language

IEEE Institute of Electrical and Electronics Engineering

IEC International Electrotechnical Commission

ICT Information and Communications Technology

IETF Internet Engineering Task Force

IMS IP Multimedia Subsystem

IP Internet Protocol

ISO International Organization for Standardization

ITEA Information Technology for European Advancement

ITU International Telecommunication Union

IVR Interactive Voice Response

 Appendix A – Abbreviations

333

J

JAR Java Archive

JSR Java Specification Request

K

L

M

MBT Model-Based Testing

MDTE Model-Driven Test Engineering

MGW Media Gateway

MMS Mobicents Media Server

MOF Meta Object Facility

MTC Main Test Component

N

NGN Next Generation Networks

O

OASIS Organization for the Advancement of Structured Information Standards

OMA Open Mobile Alliance

OMG Object Management Group

OSI Open Systems Interconnection

P

PA Platform Adapter

PSTN Public Switched Telephone Network

PTC Parallel Test Component

Q

QoS Quality of Service

Appendix A – Abbreviations

334

R

RATS Requirements Acquisition and specification of Telecommunication
Services

RFC Request for Comments

RTP Real-Time Transport Protocol

RUCM Restricted Use Case Modeling

S

SA SUT Adapter

SAP Service Access Point

SBC Session Border Controller

SCXML State Chart extensible Markup Language

SDK Software Development Kit

SDL Specification and Description Language

SDP Service Delivery Platform

SEE Service Execution Environment

SGW Signalling Gateway

SIP Session Initiation Protocol

SCTP Stream Control Transmission Protocol

SOA Service-Oriented Architecture

SoAML Service oriented architecture Modeling Language

SQG Service Quality Group

STD Service Test Description

SUT System/Service under Test

SysML Systems Modeling Language

T

TelcoML Telecommunication Modeling Library

TCF Test Creation Framework

TCI TTCN-3 Control Interface

TRI TTCN-3 Runtime Interface

TCP Transmission Control Protocol

 Appendix A – Abbreviations

335

TCU Test Configuration Unit

TCDU Test Case Derivation Unit

TE TTCN-3 Executable

TEE Test Execution Environment

TFUT Test Framework User Terminal

TDD Test-Driven Development

TLS Transport Layer Security

TM Test Management

TMC Test Management & Control

TME Test Modules Environment

TMR Test Modules Repository

TPTP Test and Performance Tools Platform

TSB Test Suite Builder

TTCN Testing and Test Control Notation

U

U2TP UML 2.0 Testing Profile

UA User Agent

UAC User Agent Client

UAS User Agent Server

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunication System

URI Uniform Ressource Identifier

UTML Unified Test Modeling Language

V

W

W3C World Wide Web Consortium

Appendix A – Abbreviations

336

X

XML eXtensible Markup Language

XSD XML Schema Descriptor

337

Appendix B – Own Publications

Appendix B – Own Publications

338

Published in ITG-Fachbericht Mobilfunk (Mobilfunktagung 2010), pp. 73-80, University

of Applied Sciences Osnabrück, Germany, ISBN: 978-3-8007-3269-3

Appendix B – Own Publications

339

Appendix B – Own Publications

340

Appendix B – Own Publications

341

Appendix B – Own Publications

342

Appendix B – Own Publications

343

Appendix B – Own Publications

344

Appendix B – Own Publications

345

Published in Proceedings for the Sixth Collaborative Research Symposium on Security,

E-learning, Internet and Networking (SEIN 2010), pp. 61-74, University of Plymouth,

Plymouth, UK, ISBN: 978-1-84102-269-7

Appendix B – Own Publications

346

Appendix B – Own Publications

347

Appendix B – Own Publications

348

Appendix B – Own Publications

349

Appendix B – Own Publications

350

Appendix B – Own Publications

351

Appendix B – Own Publications

352

Appendix B – Own Publications

353

Appendix B – Own Publications

354

Appendix B – Own Publications

355

Appendix B – Own Publications

356

Appendix B – Own Publications

357

Appendix B – Own Publications

358

Published in Proceedings for the Fourth IFIP International Conference on New

Technologies, Mobility and Security (NTMS 2011), pp. 1-5, Paris, France, IEEE, ISBN:

978-1-4244-8704-2

Appendix B – Own Publications

359

Appendix B – Own Publications

360

Appendix B – Own Publications

361

Appendix B – Own Publications

362

Appendix B – Own Publications

363

Published in ITG-Fachbericht Mobilfunk (Mobilfunktagung 2011), pp. 118-123,

University of Applied Sciences Osnabrück, Germany, ISB: 978-3-8007-3352-1

Appendix B – Own Publications

364

Appendix B – Own Publications

365

Appendix B – Own Publications

366

Appendix B – Own Publications

367

Appendix B – Own Publications

368

Appendix B – Own Publications

369

Published in Proceedings of the Fourth International Conference on Internet

Technologies & Applications (ITA 2011), pp. 262-269, Wrexham, United Kingdom,

ISBN: 978-0-946881-68-0

Appendix B – Own Publications

370

Appendix B – Own Publications

371

Appendix B – Own Publications

372

Appendix B – Own Publications

373

Appendix B – Own Publications

374

Appendix B – Own Publications

375

Appendix B – Own Publications

376

Appendix B – Own Publications

377

Published in Proceedings for the Second International Conference on Future Generation

Communication Technology (FGCT 2013), pp. 59-64, London, United Kingdom, IEEE,

ISBN: 978-1-4799-2974-0

Appendix B – Own Publications

378

Appendix B – Own Publications

379

Appendix B – Own Publications

380

Appendix B – Own Publications

381

Appendix B – Own Publications

382

