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First reported in 2003, mosaic tetracycline resistance genes are a subgroup of the genes encoding ribosomal
protection proteins (RPPs). They are formed when two or more RPP-encoding genes recombine resulting in a
functional chimera. To date, the majority of mosaic genes are derived from sections of three RPP genes,
tet(O), tet(W) and tet(32), with others comprising tet(M) and tet(S). In this first review of mosaic genes, we report
on their structure, diversity and prevalence, and suggest that these genes may be responsible for an under-
reported contribution to tetracycline resistance in bacteria.

Introduction
Tetracyclines bind to the A-site on the bacterial ribosome, result-
ing in steric blocking of the aminoacyl-tRNA binding site, which
prevents protein synthesis.1 They are effective against both
Gram-positive and Gram-negative bacteria and, due to the rela-
tive lack of major side effects and cheap cost, have been used
extensively in the treatment of infections2 as well as growth pro-
moters in animal husbandry.3

Bacterial resistance to tetracycline is often mediated through
the acquisition of DNA encoding proteins that confer resistance
by one of three main mechanisms: ATP-dependent efflux, enzym-
atic inactivation of tetracycline, or ribosomal protection.2 To date,
a total of 47 different classes of tetracycline resistance gene,
including oxytetracycline resistance genes, have been reported.
These include 31 predicted or proven to encode active efflux
pumps, 12 encoding ribosomal protection proteins (RPPs), 3
encoding inactivating enzymes and 1 reported to confer resist-
ance via an as yet undetermined mechanism, designated tet(U)
(a full list is periodically updated by Roberts4). Although it has
yet to be assigned a mechanistic class, tet(U) has been identified
in Enterococcus and Staphylococcus isolates.5,6 However, a study
by Caryl et al.7 reported that when tet(U) was cloned and
expressed in Escherichia coli, the transformants were not resistant
to tetracycline.

To be considered a new class of tetracycline resistance gene, it
must encode a protein ,80% identical to known tetracycline
resistance proteins.8 Determinants representing new classes
were originally assigned a letter from the English alphabet.9

However, as all letters are used, they are now assigned an

Arabic numeral,8 with new determinants referred to the Levy
group (bonnie.marshall@tufts.edu) in order to obtain a designa-
tion prior to publication to avoid duplication and ensure taxo-
nomic consistency.

RPPs
RPPs are a related group of proteins that, when bound to the ribo-
some, result in the release of tetracycline from the ribosome,
enabling protein synthesis to proceed10 (reviewed by Thaker
et al.11). Of the 12 classes of RPP gene currently reported
[tet(M), (O), (Q), (S), (T), (W), (32), (36), (44), B(P), otr(A) and tet],
tet(M) is considered the most prevalent due to its association
with the broad host range Tn916/Tn1545 family of conjugative
transposons.12 However, a subgroup of RPP genes has been iden-
tified that consist of regions of different, already characterized RPP
genes that appear to have undergone recombination forming a
mosaic gene. It must be stressed here that the progenitors of
mosaic genes are assumed based purely on the order in which
they were discovered and we cannot be sure of the directionality
of mosaic gene formation.

Mosaic RPP genes
In 2003, Stanton and Humphery13 reported two RPP genes in
Megasphaera elsdenii that encoded predicted proteins showing
89.1% and 91.9% identity to Tet(W) (accession number
AJ222769) from Butyrivibrio fibrisolvens. As this was above the
,80% cut-off, they did not qualify as a new resistance class
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under the nomenclature system. However, further analysis of
the amino acid sequence revealed variability in the percentage
identity to Tet(W) across its length. The large central section
in both sequences showed 98.1% identity to Tet(W), while
small sections at the N- and C-terminal ends were found to
have a lower amino acid sequence identity to Tet(W) [between
66.6% and 75.3%]. However, these same N- and C-terminal
sections were shown to have between 99.3% and 100%
amino acid identity to Tet(O) (accession number M18896), des-
pite the central section showing identity to Tet(W). Given the
evidence, this suggested recombination had occurred, creating
a mosaic determinant with a central Tet(W) region flanked by
two Tet(O) regions. Although never before observed between
two different RPP classes, recombination resulting in functional
genes has previously been reported between different phylo-
types of tet(M)14 as well as in other antibiotic resistance
genes, such as penA and pbp2x, which confer resistance to peni-
cillin.15,16 Furthermore, in vitro experiments have successfully
recombined tet(A) and tet(C) to create mosaics that confer
resistance to tetracycline at levels comparable to the non-
mosaic tet(C).17

The guideline for determining a new resistance gene class was
established prior to the discovery of these mosaic RPP genes and
none of the mosaic genes qualified as a new class when analysed
as one single continuous sequence. It was clear, however, that
these mosaic genes were different from their non-mosaic coun-
terparts and that the current classification did not adequately
reflect the true evolutionary background of these genes.
Therefore, an expansion of the nomenclature system was sug-
gested whereby the mosaic gene would receive a designation
that reflected the structural order and class of the genes they
comprised, better reflecting their variable nature.18,19 For
example, the two resistance genes reported in M. elsdenii, which
comprised a central tet(W) region flanked by two tet(O) regions,
were designated tet(O/W/O).13

Although Stanton and Humphrey13 were the first to report
mosaic RPP genes, Melville et al.20 had unknowingly reported
a mosaic gene 2 years previously. This resistance gene,
found in Clostridium saccharolyticum K10, encoded a predicted
protein that showed 76% amino acid identity to Tet(O) (accession
number Y07780). As per the original nomenclature guidelines, it
was given the new designation Tet(32). However, subsequent
re-examination of the sequence found that only the central
section showed ,80% identity to known proteins, while the N-
and C-terminal regions flanking the central section shared
100% and 97.7% identity, respectively, to Tet(O) (accession num-
ber M18896). The central region was still thought to represent a
section of a new Tet(32) class and therefore the determinant
was reclassified Tet(O/32/O).18 Subsequently, the proposed full,
non-mosaic sequences of Tet(32) have been reported in several
isolates identified from the human oral cavity,21,22 with the
Tet(O/32/O) mosaic determinant now showing 89% amino acid
identity to these.

Similarly, the previously reported tet(S) allele (accession num-
ber AY534326) on the conjugative transposon Tn916S23 has sub-
sequently been reclassified as a result of in silico analysis. The
amino acid sequence shows identity to Tet(S) across 595 amino
acids (1 –595 inclusive), with the final 61 amino acids at the
C-terminus end identical to Tet(M) (accession number U09422),
resulting in it being reclassified as Tet(S/M).24

Mosaic gene diversity
To date, a total of 30 mosaic genes have been reported in the lit-
erature, of which 26 currently have sequences deposited in
GenBank (Table 1). Some studies have reported multiple occur-
rences of known genes; however, many of these have been char-
acterized by PCR amplification only. Structurally, these chimeric
genes currently comprise either two [e.g. tet(O/W)], three [e.g.
tet(O/W/O)], four [e.g. tet(O/W/32/O)] or six [e.g. tet(O/W/32/O/
W/O)] different regions (Figure 1), with tet(O), tet(W) and tet(32)
being the predominant RPP genes reported to form mosaic genes,
comprising all but two of the reported variants, and tet(M) and
tet(S) forming the remaining two.24,25 Given the prevalence of
tet(M) in certain samples, and the previous reports of self-
recombination,14,26 it is surprising that there are so few reports
of mosaic genes containing tet(M). Furthermore, alignment of
12 representative RPP gene sequences shows tet(M) sharing
75% and 70% identity, respectively, to tet(O) and tet(44), which
is higher than the percentage identity observed between the
more commonly reported RPP mosaic genes comprising tet(O),
(W) and (32) (Table 2). However, mosaic genes comprising
tet(M) and any other gene, with the exception of tet(S), have yet
to be reported. It is entirely possible that this may be due to a lack
of investigation rather than an absence of recombination followed
by fixation of the recombinant allele in the bacterial population.
Alternatively, it is possible that there is little selective pressure
for tet(M)-based mosaic genes if the resultant protein is no
more efficient than Tet(M) itself and/or there is no indirect select-
ive pressure for mosaicism. A similar situation may exist for other
proteins, such as Tet(S). Stanton et al.27 reported that the protein
encoded by the tet(O/W/O) mosaic genes in M. elsdenii conferred
a higher level of resistance to tetracycline than their non-mosaic
counterparts, but similar investigations are still to be reported for
other RPP genes. Therefore, the prevalence of certain mosaic gene
variants could suggest that they are in some way more beneficial
to the host than the non-mosaic genes they comprise.

PCR-based analysis
PCR-based assays have been developed to help researchers
detect specific mosaic genes. Stanton and Humphrey13 describe
an assay that distinguished between the non-mosaic genes
tet(O) and tet(W) and the mosaic tet(O/W/O) from Megasphaera
strains, enabling them to detect tet(O/W/O) variants in six add-
itional M. elsdenii strains. Patterson et al.21 investigated the pres-
ence of mosaic genes using various specific oligonucleotide sets
that either bound within the resistance genes or flanked them.
Amplicons specific to tet(O/W), tet(O/32) and tet(W/32) were
detected in faecal samples, with tet(O/32) being the most com-
mon of these mosaic amplicons; it was amplified in all 12 pig fae-
cal samples and 6 of 7 human faecal samples tested. In contrast,
the faecal samples from cows and sheep, as well as human saliva
samples, failed to produce any amplicons for these mosaic genes,
suggesting they were not present at detectable levels.

Chen et al.28 also used an oligonucleotide primer set that
annealed outside tet(O) to determine the presence of tetracycline
resistance genes in two Streptococcus suis isolates. Although no
amplicon was produced using internal, tet(O)-specific primers,
the primers binding to flanking DNA yielded an amplicon, indicat-
ing the presence of mosaic genes [identified as tet(O/32/O) and
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Table 1. A summary of the mosaic tetracycline genes reported to date

Gene Organism Source(s) Accession number Reference(s)

tet(O/W) Bifidobacterium thermophilum B0219 environmental (pig slaughterhouse)
sample

AM889118 32

tet(O/W) B. thermophilum B0241 pig faeces AM889119 32
tet(O/W) B. thermophilum B0242 pig faeces AM889120 32
tet(O/W) B. thermophilum B0253 pig faeces AM889121 32
tet(O/W) B. thermophilum B0256 pig faeces AM889122 32
tet(O/W)-2 Megasphaera elsdenii 25-51 swine faeces AY485122 18,27
tet(O/W)-1 [n¼15a] M. elsdenii 27-51 swine faeces AY485126 27,33
tet(O/W/O)-4 uncultured bacterial clone pig faeces no accession number 21
tet(O/W/O)-3 [n¼9] uncultured bacterial clone pig faeces EF065524 21
tet(O/W/O)-2 [n¼28b] M. elsdenii 14-14 swine caecum AY196920 13,18,27,33
tet(O/W/O)-1 [n¼2] M. elsdenii 7-11 swine caecum AY196921 13,18,27
tet(O/W/32/O) [n¼32] uncultured bacterial clone pig faeces EF065523 21
tet(O/W/32/O) [n¼7c] Streptococcus suis Ss1303 pig (brain, lung and spleen) and

human (CSF) samples
FM164392 34

tet(O/W/32/O) S. suis 32457 diseased pig lung FR823304 34,35
tet(O/W/32/O) Streptococcus gallolyticus subsp. gallolyticus

ATCC 2069 plasmid pSGG1
human blood FR824044 36

tet(O/W/32/O) S. suis diseased pig (blood, brain, heart,
joint and lung) samples

JQ740053 28

tet(O/W/32/O/W/O) Lactobacillus johnsonii G41 human faeces DQ525023 32
tet(O/W/32/O/W/O) uncultured bacterial clone pig faeces DQ679926 21
tet(O/32/O) S. suis diseased pig (blood, brain, heart,

joint and lung) samples
JQ740052 28

tet(O/32/O) Clostridium saccharolyticum K10 human colon AJ295238 18
tet(O/32/O)-2 [n¼3] uncultured bacterial clone human and animal faecal samples no accession number 21
tet(O/32/O)-3 uncultured bacterial clone human and animal faecal samples no accession number 21
tet(O/32/O)-4 uncultured bacterial clone human and animal faecal samples no accession number 21
tet(O/32/O)-5 uncultured bacterial clone human and animal faecal samples no accession number 21
tet(O/32/O) Dorea longicatena AGR2136 rumen microbiome NZ_AUJS01000017 (41626–43545 bp) direct submission, analysed

in this study
tet(O/32/O) Campylobacter coli 202/04 human faeces AINH01000038 (2361–4280 bp) direct submission, analysed

in this study
tet(O/32/O) C. coli 317/04 human faeces NZ_AINJ01000054 (2094–4013 bp) direct submission, analysed

in this study
tet(O/32/O) Campylobacter jejuni subspecies jejuni

2008-894
human AIOQ01000025 (14515–16434 bp) direct submission, analysed

in this study
tet(O/32/O) Roseburia intestinalis XB6B4 human intestinal tract FP929050 (2873814–2875733 bp) direct submission, analysed

in this study
tet(S/M) Streptococcus equinus 1357 food HM367711 25
tet(S/M) Streptococcus intermedius human isolate AY534326 23,24
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tet(O/W/32/O)]. This full-length oligonucleotide primer set does
aid the identification of mosaic genes; however, it is only specific
for those with regions homologous to tet(O) flanking sequences.
Since PCR strategies aimed at identifying resistance genes require
knowledge of the sequence of the target, mosaic RPP genes are
likely to be largely undetected and under-reported by PCR-based
studies.

Reflecting the findings by Patterson et al.,21 almost all the
mosaic genes reported to date have originated from faecal sam-
ples, with the majority identified from a porcine origin and less
commonly from humans (Table 1). The gut houses a complex
and diverse bacterial community with potential for widespread
horizontal gene transfer, and the mosaic genes found in faecal
samples are likely to reflect the pool of non-mosaic genes present
within the gut microbiota. Genes such as tet(W) and tet(O) are
commonly reported from these types of samples,29 but the preva-
lence of tet(32)-containing mosaic genes suggests that tet(32)
may be more common than initially thought. In fact, tet(O/32/O)
was found to be the most common mosaic gene in both the
human and pig faecal samples tested and was present in almost
as many samples tested as the non-mosaic tet(O) and tet(W)
genes.21 In contrast, mosaic genes have not yet been reported in
faecal samples from bovine and ovine origin or in human saliva.21

Why they are predominantly found in pigs while as yet unreported
in other animals is not immediately clear, though the extensive use
of tetracyclines in the swine industry3,30,31 may have contributed to
their selection.

Draft genome analysis
The advent of high-throughput genomic sequencing has led to an
increase in the number of genomes being deposited in sequence
databases. Many contain tetracycline resistance genes that are
generically labelled simply as ‘tetracycline resistance protein’ or
as ‘tet(M)-like’, the designation of which may be a result of auto-
mated annotation pipelines. A preliminary search of the NCBI
nucleotide database, using tet(O) (accession number Y07780)
as the query, found that some of these generically labelled tetra-
cycline resistance genes gave a partial match to tet(O). Further
examination indicates that some are as yet uncharacterized and
unreported mosaic genes, which have been further defined for
this review using the nucleotide sequence to determine the cross-
over points. For example, the tet(M)-like gene (accession number
NZ_AUJS01000017, location 41626–43545 bp) in the draft gen-
ome of Dorea longicatena AGR2136 from a human faecal sample
appears to be a previously unreported variant of tet(O/32/O)
(Figure 1).

Furthermore, the tetracycline resistance genes present in
Campylobacter jejuni subspecies jejuni 2008-894, Campylobacter
coli 202/04, C. coli 317/04 (accession numbers AIOQ01000025,
AINH01000038 and NZ_AINJ01000054, respectively) and
Roseburia intestinalis XB6B4 (accession number FP929050) are
also structurally novel variants of tet(O/32/O) (Figure 1). The
three mosaic genes present in the Campylobacter spp. are identi-
cal to each other, while that in R. intestinalis is different. Taking
into account these newly defined genes, the total number of
mosaic genes reported increases from 30 to 35 (not including
those identified via PCR amplification only; Table 1) and suggests
that other generically labelled tetracycline resistance genesTa
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Figure 1. Schematic representation of reported mosaic tetracycline RPP genes. The coded bars indicate sequences of high identity to specific RPP genes:
vertical line bars for tet(M), white bars for tet(O), grey bars for tet(S), black bars for tet(W) and checked bars for tet(32). The number above the bar
indicates the reported crossover point. aIndicates those sequences that are incomplete or absent in GenBank, with the crossover points taken from
the publication. bIndicates sequences that have been analysed in this study due to no specific crossover point(s) reported.
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present in the database [e.g. those labelled as tet(M)-like] could
be further classified, helping to understand mosaic gene prolifer-
ation and diversity.

Conclusions
Our knowledge of the mosaic RPP gene group is steadily increasing
since their discovery in 2003, with the majority derived from
tet(O), tet(W) and tet(32) and others deriving from tet(M) and
tet(S). It is clear that these genes are being under-reported both
in terms of experimental detection and also within genomic data.
Further work and increased attention on mosaic RPP genes is
important if we are to understand the evolutionary selective pres-
sures driving their fixation in bacterial populations and the subse-
quent effects on resistance and mobile genetic element evolution
within their host.
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