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On the bicyclic acids of petroleum 

Michael John Wilde 

Abstract 

The identification of petroleum acids, also known as ‘naphthenic’ acids (NA), has been 

an analytical challenge for over 140 years. However, most recent interest in NA has 

arisen due to concerns over their presence and apparent associated toxic effect in oil 

platform produced waters and oil sands process waters (OSPW), respectively. 

Understanding the toxicity, transformations during biodegradation and remediation 

treatments and predicting the fate of NA in the environment will be aided by the 

identification of individual NA. However the elucidation of individual acid structures 

by standard chromatographic techniques, such as GC-MS, has so far been limited by the 

extreme complexity of the NA mixtures. 

Recent analysis of NA as the methyl ester derivatives, by multidimensional gas 

chromatography-mass spectrometry (GC×GC-MS), has resulted in the identification of 

several tri- to pentacyclic, aromatic and sulphur-containing acids as well as tricyclic 

diacids. Therefore the current investigation focused on the identification of the abundant 

bicyclic acids in petroleum and OSPW acid extracts, utilising the unparalleled 

chromatographic separation and mass spectrometric detection offered by GC×GC-MS. 

Analysis of fractionated NA as methyl esters, resulted in the first identification of 

several bicyclic acids in OSPW including several novel bridged bicyclic acids, several 

fused bicyclic acids, as well as some terpenoid-derived drimane and labdane acids. 

However, identifications were limited somewhat by a lack of reference mass spectra and 

lack of availability of reference compounds for co-chromatography. 

A complementary method, based on an historical approach, involving reduction of NA 

esters to hydrocarbons, was modified and substantially improved. Analysis of the 

hydrocarbons resulting from the reduced acids, by GC×GC-MS, and comparison of the 

hydrocarbon mass spectra with the more abundant reference spectra available for 

petroleum hydrocarbons, resulted in the identification of over 40 individual bicyclic 

acids including fused, bridged and terpenoid-derived acids. 

The study provides the most comprehensive analysis of one of the major classes of NA 

(the bicyclic acids) to date. The methods developed were applied to the structural 

elucidation of NA in commercial NA and OSPW NA and resulted in the identification 

of numerous alicyclic, aromatic and sulphur-containing acids, supporting and extending 

previous identifications. 

There is clear potential for this method to be used for the identification of other 

unknown acids and functionalised biomarkers in complex matrices. The new knowledge 

of the acid structures in petroleum and OSPW NA can now be used to inform future 

research into the environmental monitoring and toxicity of NA. 
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Chapter 1  

Introduction 

1.1 Occurrences of carboxylic or ‘naphthenic’ acids 

1.1.1 Crude oil and petroleum 

Crude oil is an extremely complex mixture of compounds (Peters et al., 2005b). The 

composition of petroleum can be categorised broadly into four major groups based on 

operational separations and solubility differences. These four groups are known as 

Saturates, Aromatics, Resins and Asphaltenes (SARA) (Waples, 1985; Hughey et al., 

2002). The most ‘polar’ constituents, which often contain nitrogen, sulphur or oxygen 

(NSO) are typically present in the Resin and Asphaltene fractions (Waples, 1985). An 

important class of ‘polar’ compounds in crude oil, despite being present at relatively 

low concentrations compared to the non-polar Saturate and Aromatic classes, is the 

carboxylic acids. The total acid content within a crude oil can vary between 0.1 – 3%, 

depending on geographical location, geological history and extent of biodegradation of 

the petroleum hydrocarbons (Lochte and Littmann, 1955; Hughey et al., 2004). The 

carboxylic acids present in crude oils and bitumens have been the focus of much 

research since the early 1900s, mainly due to their importance in petroleum exploration, 

refining and processing, their industrial uses post-refining and more recently concerns 

over their fate and effects in the environment (Kennedy, 1939; Lochte and Littmann, 

1955; Grewer et al., 2010). 

The carboxylic acids extracted from crude oils are also often termed ‘naphthenic’ acids 

(NA). The term is derived from ‘naphthene’, which is another name for alicyclic 

hydrocarbons (cycloalkanes), because the first identifications of NA were of 

monocyclic acids (Hell and Medinger, 1877). Later investigations showed some 
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petroleum acids were in fact aromatic and heteroatom-containing, so the term 

‘naphthenic’ is not entirely accurate (Knotnerus, 1957; Seifert and Teeter, 1970a; b). 

Nonetheless the term is so embedded in use that it is retained by many petroleum 

scientists (Brown and Ulrich, 2015). Some authors differentiate between alicyclic, 

aromatic and heteroatom-containing acids, referring to the alicyclic acids as ‘classical’ 

NA, fitting the formula CnH2n+zO2, where ‘n’ is carbon number and ‘z’ (a negative 

integer) is hydrogen deficiency due to cyclicity (Grewer et al., 2010). The term 

‘petroleum acids’, is also used, collectively referring to all types of acid in petroleum-

related samples. Several other terms exist, mainly as a result of the increasing 

realisation by scientists of the actual complexity of so-called ‘NA’ mixtures (Headley et 

al., 2013b; Grewer et al., 2010). Thus, ‘Acid-Extractable Organic’ (AEO) fraction has 

been used to denote those acids extracted from oil sands process-affected waters 

(OSPW). High resolution mass spectrometric techniques have shown the presence of 

highly oxidized species or ‘oxy-NA’ and those containing other heteroatoms (e.g. N and 

S) in such materials. A recent, additional term used to describe the NA extracted from 

OSPW, agreed in an international workshop, was ‘NA Fraction Components’ (NAFCs) 

(Headley et al., 2015). This was intended to encompass NA subclasses such as 

‘classical’ NA, oxy-, aromatic and N or S-containing NA (Hindle et al., 2013; Headley 

et al., 2013b). The discovery of long-chain tetraprotic acids in petroleum and 

petroleum-related samples has seen the introduction of terms such as ‘TPAs’ or ‘ARN’ 

acids for this sub-class of acids (Smith et al., 2007; Lutnaes et al., 2007). 

The total acidity of a crude oil is often expressed as a value of the Total Acid Number or 

‘TAN’ value. This value reflects the mass of potassium hydroxide (KOH) in milligrams 

(mg) required to neutralise 1 g of oil at room temperature. Recorded TAN values for 

crude oils range from <0.1 to 8 mg KOH g
-1

 (Peters et al., 2005b). The carboxylic acids 

present in crude oils are considered to be responsible for the main cause of this TAN 
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acidity. For instance, Meredith et al. (2000) showed a positive correlation (r
2
 = 0.91) 

between the concentration of extracted acids and the TAN values of 33 different crude 

oils. The concentrations of carboxylic acids are generally highest in biodegraded crude 

oils and this is considered to be a result of the concurrent formation of the acids by the 

oxidation or microbial alteration of the non-polar or heteroatom-containing saturates 

and aromatics and the preferential removal of these hydrocarbons (Peters et al., 2005a). 

Such observations are supported by the findings of Meredith et al. (2000), who also 

showed that higher extracted acid concentrations correlated strongly with crude oils 

with higher biodegradation levels (r
2
 = 0.86). Despite this, the extent of biodegradation 

or the acid concentrations of oils cannot be directly inferred from the TAN values alone, 

as other compounds present in the crude oils, or acidic compounds not accounted for 

because they are not amenable with gas chromatographic methods, or are inefficiently 

extracted, may contribute to the TAN values (Meredith et al., 2000; Peters et al., 2005a). 

The occurrence of organic acids in petroleum sometimes results in corrosive effects and 

deposition problems in refinery plant distillation units and pipelines (Derungs, 1956; 

Barrow et al., 2003). NA corrosion has been shown to be dependent on several factors 

including temperature, fluid velocity and phase, and the specific composition of the NA 

(Derungs, 1956; Slavcheva et al., 1999; Alvisi and Lins, 2011). The extent of corrosion 

has been shown to reach a maximum between operating temperatures of 200 – 400 °C, 

and typically occurs in areas where the acids are close to their boiling points (e.g. where 

concurrent vaporisation and condensing occurs in trays and walls of distillation columns 

and in bends and transfer lines which experience highest fluid velocities (Derungs, 1956; 

Alvisi and Lins, 2011)). Although oils or distilled fractions with higher TAN values 

generally show highest corrosivity, different crudes with the same TAN values have 

been reported to show different degrees of corrosion (Laredo et al., 2004). The activity 

and corrosion rates of the acids has also been shown to vary with molar mass and 
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carbon number (Slavcheva et al., 1999). Therefore, investigations into the nature and 

structures of NA are important areas of research into corrosion, with the aim of better 

understanding the mechanisms and key contributing factors. 

Deposition problems caused by NA in crude oils reacting with cations (Ca
2+

, Na
+
 and 

K
+
) present in formation or injected seawater within oil processing plants on production 

platforms, results in the formation of naphthenate soaps and deposits which cause flow 

assurance issues in oil pipelines and infrastructure (Dyer et al., 2003). The incorporation 

of calcium can also reduce the market value of the produced crude oils (Turner and 

Smith, 2005). Sticky calcium naphthenate deposits trap other solids (e.g. sands and 

asphaltenes) in pipelines and when exposed to air they harden and cause blockages. A 

few studies investigating the composition of the resultant so-called ‘calcium 

naphthenates’ (CAN), report the presence of high molecular weight C80-82 acids 

containing 4-8 rings with four carboxylic acid groups (‘ARN’ acids) (Smith et al., 2007). 

Some of these higher molecular weight acids have been isolated and characterised by 

methods such as high temperature gas chromatography with a flame ionisation detector 

(HTGC-FID) of the permethyl esters, by electrospray ionisation-mass spectrometry 

(ESI-MS) and by nuclear magnetic resonance (NMR) spectroscopy of the acids or esters 

(Smith et al., 2007; Lutnaes et al., 2006; Lutnaes et al., 2007). 

1.1.2 Athabasca oil sands 

The Athabasca oil sands in Alberta, Canada are a major oil reserve, with proven 

reserves of 175.2 billion barrels (Figure 1-1) (Rowling, 2012). Similar to the Orinoco 

Oil Belt, the bitumen in Alberta is contained within oil sands. The bitumen is extracted 

from the sand and clay by two main extraction processes; surface mining and Steam-

Assisted Gravity Drainage (SAGD). Surface mining involves the extraction of bitumen 

from the ore mined at the surface using adaptations of the Clark hot water extraction 
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process. The mined ores are mixed with hot caustic water and the bitumen is extracted 

as the floating froth on the surface. Approximately 20% of the available bitumen within 

the oil sands region is recoverable by surface mining (Alberta-Energy, 2013). The 

remaining bitumen, deep below the surface requires other extraction techniques such as 

SAGD. This involves channelling two parallel pipelines deep into the bitumen rich 

sands. The upper pipeline carries hot steam down into the well which heats the bitumen 

within the sands, lowering its viscosity so it can be collected and pumped back to the 

surface. 

 

Figure 1-1: Oil sands operation alongside the Athabasca River in Alberta, CA. (Image 

adapted from Droitsch (2015) and Frank et al. (2014)). 

The process water from surface mining is recycled before being stored in large tailings 

ponds. The water soluble components of the ore or oil sands become concentrated 

within the so-called oil sands process-affected water (OSPW). The raw OSPW stored in 

the large lagoons has been shown to be toxic to bacteria (Jones et al., 2011), plankton 

(Leung et al., 2003), fish larvae (Scarlett et al., 2013) and embryos (Marentette et al., 

2015a), fish (Kavanagh et al., 2013), rats (Rogers et al., 2002) and plants (Leishman et 

al., 2013). The major class of compounds identified as causing the toxicity of the 

OSPW is the NA (Clemente and Fedorak, 2005; Grewer et al., 2010). 
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The rapid expansion of oil sands mining in Canada may be exemplified by a 

comparison of the predictions of Holowenko et al. (2002) with recent statistics given by 

the Government of Alberta. Holowenko et al. (2002) stated that the annual production 

of crude oil from oil sands was predicted to rise to 400 million barrels in a decade (e.g. 

by 2012). However, the Canadian Energy Research Institute released statistics for the 

daily production in 2013 of 1.98 million barrels which would approximately equate to 

an annual production of 723 million barrels per annum (CERI, 2014). Furthermore, 

daily production was predicted to double again in the next decade to 3.7 million barrels 

per day by 2020 and 5.2 million barrels per day by 2030 (CERI, 2014). The current area 

of the oil sands tailings ponds is approximately 176 km
2
 (Alberta, 2011). Expanding 

production rates consequently means an increasing volume of toxic OSPW, resulting in 

a greater need to characterise the toxic pollutants such as NA in order to advance 

remediation plans. 

 

Figure 1-2: Satellite images of an area of oil sands mining industry showing the 

expansion between (A) 1984 and (B) 2011. (Images used from NASA Earth 

Observatory website (Riebeek, 2011)). 
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1.2 Early investigations of individual NA  

The initial industrial interest in the isolation and characterisation of acid-extractable 

compounds from petroleum was due to the profitable uses to which the metal salts could 

be utilised (Seifert, 1975). Bulk crude mixtures of petroleum acid salts extracted and 

commercially isolated, were sold as additives in many products, such as drying agents 

in varnish and paints, as insecticides, as antifungals in wood preservatives and as 

dispersants in motor oils (Seifert, 1975; Lochte and Littmann, 1955). In World War II, 

the aluminium hydroxy soaps of NA were used to gelatinise petrol; when mixed with 

napalm in incendiary bombs the gelled petroleum stuck to targets such as buildings 

(Jolly, 1985; Lochte and Littmann, 1955). 

In 1874, preliminary publications which are now recognised as the principal initial 

research into the characterisation of petroleum acids or NA, reported their isolation 

from Romanian oil (Hell and Medinger, 1874) and Baku petroleum (Lochte and 

Littmann, 1955; Ashumov, 1961). Hell and Medinger (1874) received a mixture of 

petroleum acids which they tried to separate by precipitation and fractional distillation, 

but both failed. However, after conversion of the acids to the ethyl esters, separation 

was achieved. Elemental analysis suggested three possibilities for the identity; that of a 

saturated C11H22O2 compound, a monounsaturated C11H20O2 compound or a di-

unsaturated C11H18O2 compound (Hell and Medinger, 1874). Further reactions with Br2 

and HBr showed substitution, not addition, ruling out unsaturated compounds. The 

reactions performed confirmed that the isolated product was unlike any known fatty 

acid, therefore the authors concluded that the isolated compound had a composition 

similar to oleic acid, but was cyclic (i.e. naphthenic). Thus the most probable formula 

was C11H20O2, but due to the difficulties in purification, further confirmation was 

needed (Hell and Medinger, 1874; Lochte and Littmann, 1955). 
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The reported molecular formula gave the first structural information about the organic 

acids, suggesting they were cyclic structures following the general formula for 

monocyclic, monobasic NA of CnH2n-2O2. The techniques utilised in early research to 

identify compounds may be considered primitive compared with the current 

instrumentation available, yet these early workers were able to deduce that the acids 

were cyclic (and not unsaturated) aliphatics by comparing the physical properties, such 

as refractive index with those of reference unsaturated acids with the same molecular 

formulae (Lochte and Littmann, 1955). 

Eichler was involved in extracting ‘illuminating oil’ (i.e. lamp oil), from Baku 

petroleum when he was first challenged with acidic components in petroleum (cited by 

Henry (1905)). Eichler analysed a problematic sample of tinned oil which became 

colourised with time, changing from clear to dark brown after shipping: he deduced the 

colouration was due to organic acids within the oil reacting with iron, resulting in the oil 

having high iron content (Henry, 1905). 

Whilst analysing Baku petroleum, Eichler was able to fractionate the organic acids and 

found that the molecular formula of one fraction matched the formula proposed by Hell 

and Medinger (1874) of C11H20O2 (Lochte and Littmann, 1955). Markownikoff and 

Oglobin, in 1883 were also analysing Caucasian crude and confirmed the acidic 

components isolated previously by Hell and Medinger (1874) were carboxylic acids, 

after which they first proposed the term ‘naphthenic acids’ (cited by Jolly (1985)).  

Interest in NA was not only spurred by industrial use; the acids also have importance in 

organic geochemistry. The origins of NA were thought to have potential links with the 

origins of other components in petroleum and thus might provide an insight into the 

origin of petroleum. The latter has often been a contentious subject. A key investigator 

during the early research of NA was von Braun, who believed that there was a genetic 
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relationship between the hydrocarbons and the organic acids (Lochte and Littmann, 

1955). Identification of hydrocarbons had, up until then, progressed further than the 

identification of the organic acids, due to the difficulty of separating the more polar 

acids which relied on fractional distillation and recrystallization techniques. 

Von Braun’s approach involved the alteration of the acids by decarboxylation and 

reduction to hydrocarbons, as well as through degradation experiments, resulting in 

ketones and derivatives with lower carbon numbers (Lochte and Littmann, 1955). The 

degradation products were isolated and their physical properties used to determine 

structural detail. Accurate identification of the degraded compounds was then used to 

deduce the structures of the original acids. If the acids’ carbon skeletons were found to 

be the same as those of the petroleum hydrocarbons, this was considered evidence for a 

genetic relationship between the acids and hydrocarbons. 

Despite von Braun’s rigorous work and unrelenting efforts, he struggled to identify the 

structure of any individual monocyclic or bicyclic acid (Lochte and Littmann, 1955). He 

was originally credited with isolating and identifying the first pure NA from petroleum, 

achieved by degrading a C10H18O2 acid mixture to amines via the Schmidt reaction 

(Harkness and Bruun, 1940; Hancock and Lochte, 1939; Braun, 1938). He then 

degraded the amines to alkenes by Hofmann elimination and finally used ozonolysis to 

convert the alkenes to C8H14O ketones. He isolated and purified what was believed to be 

an individual ketone and characterised its structure from its physical properties, such as 

the melting point of its semicarbazone and di-p-nitrobenzylidene derivatives, as well as 

logical deductions based on observed structures found in nature (Lochte and Littmann, 

1955; Braun, 1938). 

He identified the ketone as containing a five-membered ring, alkyl substituted at the 3 

and/or 4 positions after comparing it with synthetic 3- and 4-ethylcyclohexanone 
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isomers, concluding it was 3,3,4-trimethylcyclopentanone (Figure 1-3; A) (Braun, 1938; 

Braun et al., 1933). Braun et al. (1933) reported that this ketone, after similar 

degradation experiments, was found in Galician, Romanian, Californian, Texan and 

Venezuelan oils. He converted the ketone to 3,3,4-trimethylcyclopentylacetic acid and 

claimed this acid was a main constituent of Californian and Romanian acid fractions 

isolated between 148-155 °C at 12 mmHg (Lochte and Littmann, 1955; Braun et al., 

1933). 

Afterwards, several attempts were made to replicate the isolation of von Braun’s ketone 

and there were several efforts to synthesise 3,3,4-trimethylcyclopentanone (e.g. 

Buchman and Sargent (1942), Sargent (1942), Ruzicka et al. (1942), Ruzicka et al. 

(1947) and Baumgarten and Gleason (1951)) (Lochte and Littmann, 1955). After 

comparing the melting points of the synthesised 3,3,4-trimethylcyclopentanone 

semicarbazone and di-p-nitrobenzylidene derivatives with those of von Braun’s ketone, 

it became quite apparent that von Braun’s structural deductions were incorrect. Despite 

the misclassification of his ketone, von Braun’s series of experiments were still 

important contributions to the advancement of organic geochemistry and natural 

product chemistry (Kraft et al., 2005). Even Hancock and Lochte (1939) originally 

accepted von Braun’s identification. Later, in the comprehensive report of petroleum 

acid history by Lochte and Littmann (1955), the authors devoted three chapters to von 

Braun’s work and concluded the actual structure of von Braun’s ketone was that of 3-

ethyl-4-methylcyclopentanone (Figure 1-3; B). 

 

Figure 1-3: Structures of (A) 3,3,4-trimethylcyclopentanone (von Braun’s ketone) 

(Braun et al., 1933) and (B) 3-ethyl-4-methylcyclpentanone (Lochte and Littmann, 

1955). 
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The proposed link between the acids and hydrocarbons, led to the theory that such acids 

derived from hydrogenated aromatic structures and therefore also contained cyclohexyl 

rings; compounds in coal tar had been shown to be aromatic. However, the 

dehydrogenation of NA by ‘Zelinsky’s catalytic dehydrogenation’ procedure, showed 

little or no evolution of hydrogen, suggesting no aromatic structures were formed 

(Zelinsky, 1924). Coupled with the observation that 3, 4, 7 and 8-membered rings were 

then uncommon in natural products, the next assumption was that the compounds 

mostly contained cyclopentyl rings, a theory reinforced by von Braun’s work (Zelinsky, 

1911; 1924; Zelinsky and Pokrowskaja, 1924). 

Alteration of carboxylic acids to simpler or better understood compounds, such as 

hydrocarbons, was utilised during other early investigations (Goheen, 1940; Ashumov, 

1961; Anbrokh et al., 1972; Hoering, 1970; Harkness and Bruun, 1940). Seifert and co-

workers, interested in the interfacial activity of carboxylic acids in Californian crude oil 

(Seifert and Howells, 1969; Seifert, 1969), developed an extensive extraction procedure 

to isolate the acids for subsequent GC-MS analysis of the fluoroalcohol derivatives 

(Seifert and Teeter, 1969). Key fragment ions of the fluoroalcohol esters, resulted in the 

partial elucidation of structural features such as the presence of saturated bicyclic acids 

with carboxylated side chains (Seifert and Teeter, 1969). Seifert et al. (1969) developed 

an alternative method for the identification of crude oil acids by conversion of isolated 

acids to their corresponding hydrocarbons, via alcohol and tosyl ester intermediates. At 

the time, the American Petroleum Institute (API) Project 6 had made significant 

advances in the structural identification of individual petroleum hydrocarbons (Rossini 

and Mair, 1958; Mair et al., 1958a) contrasting with the few studies reporting the 

identification of acids, including some monocyclic and isoprenoid acids (Cason and 

Khodair, 1967a; b). This approach, adopted by Seifert and co-workers provided the first 

structural detail for many classes of NA including alicyclic, aromatic (Seifert and Teeter, 
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1970b), steroidal (Seifert et al., 1972) and heteroatom-containing acid species (Seifert 

and Teeter, 1970a). However, in fact, only a few individual hydrocarbons (and thus 

acids) were identifiable due to insufficient chromatographic separation, which prevented 

assignable mass spectra from being obtained routinely. 

The most common uses of NA up to the 1960s (e.g. as drying agents), did not 

necessitate the tedious and laborious challenge of isolating and characterising individual 

acids (Lochte and Littmann, 1955). Industry required no further development, so the 

research area became a quiet topic, despite having been a major topic of interest for 

many early researchers (e.g. Braun (1938); Lochte and Littmann (1955)). The lack of 

funds, coupled with continued difficulties in separation and purification of NA, meant 

progression in the elucidation of specific structures and determining the nature of 

individual NA was severely curtailed (Lochte and Littmann, 1955). 

The beginning of mining in the Athabasca oil sands, coupled with the discovery of 

potassium naphthenates as plant growth stimulants, resulted in a brief revived interest in 

naphthenic acids in the 1970s (Seifert, 1975; Grewer et al., 2010). However, few 

individual NA were identified and this has maintained ever since, until very recently. 

In the last two decades, however, a combination of advancements in technologies, the 

increased exploitation of acid-rich crude oils (and consequentially the threat of toxic 

wastewaters) and increased pipeline corrosion problems, has resulted in an exponential 

increase and rapid expansion of publications investigating NA (reviewed by Grewer et 

al. (2010)). However, despite the power of modern techniques in helping to overcome 

some of the problems of the past, new difficulties have arisen.
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1.3 The modern era of characterisation and structural identification 

of individual NA 

The characterisation and structural identification of NA from different sources has been 

investigated utilising a vast range of different analytical techniques and instrumentation. 

The instrumentation used often includes an initial chromatographic separation by 

methods such as gas chromatography (GC) or high performance liquid chromatography 

(HPLC), followed by detection by mass spectrometry after ionisation by electron impact 

(EI) or electrospray ionisation (ESI). The ionisation technique used is dependent on its 

compatibility with the chromatographic eluents and the subsequent detectors, which 

may be high or low resolution mass spectrometers. Alternate ionisation techniques for 

the analysis of NA include fast atom bombardment (FAB-MS; now little used), or more 

commonly, atmospheric pressure chemical ionisation (APCI) or photoionisation (APPI). 

Many approaches involve extraction and preparative ‘clean-up’ or fractionations of the 

NA prior to analysis and include methods such as solid phase extraction (SPE), 

argentation chromatography (Ag-Ion) or ion exchange chromatography (IE). More 

involved preparation steps include preparative GC (prep-GC) and supercritical fluid 

extraction (SFE). Advanced chromatographic techniques include comprehensive 

multidimensional gas chromatography-mass spectrometry (GC×GC-MS), GC coupled 

with Fourier transform ion cyclotron resonance (FTICR) MS (e.g. GC-APCI-FTICR-

MS and GC-TQ-FTICR-MS) and HPLC or supercritical fluid chromatography (SFC) 

coupled with Orbitrap MS (HPLC- or SFC-Orbitrap MS). Other techniques include 

direct infusion of the sample into a low or high resolution mass spectrometer without 

chromatographic separation (e.g. ESI-MS, ESI-FTICR-MS and ESI-Orbitrap MS), 

Fourier transform infrared spectroscopy (FT-IR) and field asymmetric ion mobility 

spectrometry (FAIMS). The extensive range of techniques, mainly involving mass 

spectrometry, have been summarised in numerous reviews published over the last 
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decade (Headley et al., 2009b; Headley et al., 2013b; Headley et al., 2015; Grewer et al., 

2010; Zhao et al., 2012; Brown and Ulrich, 2015). 

The plethora of different methods for the identification and characterisation of NA all 

have advantages and disadvantages: currently there is no universal method which 

encompasses all that is desired for both qualitative and quantitative investigations. The 

natural variation between NA from different sources, coupled with the different 

extractions and sample preparations of NA or acid-extractable fractions, derivatisation 

methods, ionisation techniques, chromatographic conditions, mass spectrometer 

parameters and even presentation of data (Barrow et al., 2009) are all factors which 

affect the apparent or actual, final compositions of NA and NA classes. 

1.3.1 Gas chromatography and liquid chromatography with mass spectrometry 

Gas chromatographic techniques usually require derivatisation of NA prior to analysis, 

if column lifetime is to be preserved and chromatographic resolution is to be maximised. 

Derivatisation of the polar carboxyl group improves the chromatographic properties and 

volatility of NA, making them more amenable for study. Numerous derivatisation 

options are available, the most common being production of methyl, trimethyl silyl 

(TMS) and tert-butyldimethylsilyl (tBDMS) esters; in earlier studies, particularly of 

acids in used cooking oils, picolinate esters were often studied (Gunstone, 2009). 

One derivatisation procedure often adopted for GC-MS analysis of NA in modern times, 

including recently (e.g. Swigert et al., 2014 and Jie et al. (2015)) was that originally 

proposed by St. John et al. (1998), which involved reacting commercially available NA 

(sources undisclosed) with N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide 

(MTBSTFA) to produce the tBDMS esters. EI MS of such tBDMS esters of commercial 

NA usually results in spectra comprising abundant M-57 fragment ions, corresponding 
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to loss of the tert-butyl group from the molecular ion, which can then be monitored for 

the quantitation of each NA species (St. John et al., 1998). 

Holowenko et al. (2001) produced the tBDMS esters of NA extracted from OSPW for 

analysis by GC-MS. NA were suspected to be a source of substrate for methanogenic 

bacteria and thus thought to drive the methane production observed in OSPW tailings 

ponds (Holowenko et al., 2000). Holowenko et al. (2001) suspected the OSPW NA 

were alicyclic, possessing 1 to 4 condensed cyclohexyl and cyclopentyl rings, with 

carboxylated alkyl side chains (Brient et al., 2000). They suggested that β-oxidation of 

the carboxylated alkyl side chain would occur, resulting in the production of acetic acid 

and H2, which are substrates used by methanogens in the production of methane 

(Holowenko et al., 2001). However they eventually concluded that NA were an unlikely 

primary contributor to the production of methane in the OSPW tailings ponds 

(Holowenko et al., 2001). They used their observations that certain ‘surrogate’ NA 

enhanced methane production with NA composition data obtained by GC-MS, to infer 

structural details about the NA. For example, n-hexadecanoic acid (z = 0) enhanced 

methane production, yet commercial NA did not, despite (according to the GC-MS 

selected ion monitoring data for the M-57 ions of the esters), the fact that the 

commercial NA contained 26% acyclic acids (z = 0) (Holowenko et al., 2001). They 

suggested this correlation was evidence that the majority of acyclic acids in the 

commercial NA had branched alkyl chains, because these are more resistant to β-

oxidation (Holowenko et al., 2001). 

The GC-MS method reported by Holowenko et al. (2001) showed significant 

differences between the compositions of a commercial NA mixture compared with NA 

extracted from OSPW. Therefore, Holowenko et al. (2002) applied the same GC-MS 

method for the analysis of NA extracted from nine different OSPW samples and a 
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sample of oil sands ore, in an attempt to differentiate samples from different sites based 

on NA composition. On the assumption that NA must fit the formula CnH2n+zO2, plots 

of the relative abundance of each carbon number against ‘z’ value (hydrogen deficiency 

due to cyclicity), was used to produce a three dimensional bar chart (Figure 1-4) 

(Holowenko et al., 2002). Such representations subsequently became a popular method 

of displaying NA ‘profiles’ (Figure 1-16; Section 1.5, page 47) (Bataineh et al., 2006; 

Frank et al., 2006; Martin et al., 2008; Hindle et al., 2013). 

 

Figure 1-4: Example of a three dimensional bar chart showing the relative abundance of 

M-57 ions for compounds fitting the formula CnH2n+zO2, suggested to show the NA 

distribution of OSPW from the Mildred Lake Settling Basin, by carbon number and z-

value (Holowenko et al., 2002). 

The authors observed a bimodal acids distribution in several samples and identified two 

groups; <C21 acids with a maximum at C13-17 and a ‘C22+
 
cluster’ with a maximum 

around C24-27. The C22+ cluster was the collective term used to describe the appearance 

of a group of purportedly higher molecular weight acids. The C22+ cluster had a higher 

relative abundance in NA extracts from aged, heavily biodegraded OSPW samples, 

proposed to be due to the preferential removal of the lower molecular weight acids 

during ageing (Holowenko et al., 2002). They suggested that the C22+ cluster could be 

used as a parameter to distinguish between samples, since the relative abundance of the 
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C22+ cluster appeared to correlate with the age of the OSPW and was higher in samples 

with lower total NA concentrations and lower toxicities (Holowenko et al., 2002). 

Clemente et al. (2004) were possibly the first to comment on a possible limitation of 

such derivatisations with unit resolution GC-MS methods. Whilst Holowenko et al. 

(2002) designated ions ≥ m/z 385 ([M-57] ion of a C22, z = -12 acid) which fitted the 

formula CnH2n+zO2, as part of the ‘C22+ cluster’, Clemente et al. (2004) noted that any 

hydroxy acids or di-acids present in the samples, might form the bis-derivatised tBDMS 

ether/ester or di-esters, respectively, with use of the MTBSTFA derivatisation reagent. 

This bis derivatisation would dramatically increase the mass of low molecular weight 

hydroxy acids or di-acids and would possibly result in their misclassification as high 

molecular weight acids as part of the ‘C22+ cluster’ (Figure 1-5). 

 

 

Figure 1-5: Example of a possible C12 z = -6 (tricyclic) tBDMS di-ester misclassified as 

a C22 z = -2 (monocyclic) monoester after derivatisation with MTBSTFA, as highlighted 

by Clemente et al. (2004). Diacids such as 1,3-adamantane-dicarboxylic acid were later 

shown to be present in an OSPW extract following bis-derivatisation with BF3/methanol 

as the dimethyl esters, identified by GC×GC high resolution MS of the molecular and 

fragment ions and co-chromatography with authentic compounds (Lengger et al., 2013). 

Despite their acknowledged doubts surrounding the identification of the ‘C22+ cluster’, 

Clemente et al. (2004) still referred to this feature when comparing the extent of 

m/z 395 possibly mis-assigned 

as C22, z = -2 acid 

C12 z = -6 diacid 

MTBSTFA [M-57] 
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biodegradation of two commercial acid samples, determining the relative abundance of 

different carbon number classes by GC-MS of the tBDMS derivatives. 

Bataineh et al. (2006) developed a comprehensive HPLC-qTOF-MS method to monitor 

compositional changes in NA mixtures, and also for the characterisation of 

transformation products, after the microbial biodegradation of commercial and OSPW 

NA. Selected ion mass chromatograms showed that the use of HPLC prior to ESI-MS 

resulted in separation of the NA by carbon number and z-value, allowing quantification 

of individual NA isomer classes. Comparison of the quantification by this method to 

that obtained by direct infusion showed a significant increase in sensitivity and better 

linearity across a range of NA concentrations using the HPLC method (Bataineh et al., 

2006). They reported that the matrix effects of the tailings water on the model acids 

resulted in up to 21% suppression of ion formation for C12-24 model compounds. 

However, even this was relatively small compared with the suppression observed for a 

monocyclic C8 model acid by 33% (Bataineh et al., 2006). The matrix effects of tailings 

water reported by Bataineh et al. (2006) were significantly lower than the 50% 

enhanced responses reported by Lo et al. (2003) observed for similar model compounds 

analysed by direct infusion ESI-MS without HPLC separation in a simple six compound 

mixture. 

Bataineh et al. (2006) also utilised the power of high resolution mass spectrometry 

(HRMS) (<10 ppm mass accuracy) to produce three dimensional NA profiles (relative 

abundance of carbon number vs. z-value) using their HPLC-MS method on the free 

acids and compared them with reproduced unit resolution GC-MS data using the 

method reported by Holowenko et al. (2002). Their HPLC-MS NA profile for refined 

Merichem NA (commercial sample) matched the GC-MS profile, which again was 

similar to the GC-MS profile reported by Clemente et al. (2003) for the same NA 
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supplier by the same method. The abundant acid classes in the refined Merichem NA 

were z = 0 to -4 acids (Bataineh et al., 2006). The HPLC-MS profile for the NA 

extracted from OSPW however, was significantly different to the GC-MS profile; the 

GC-MS profile was significantly more complex, with a similar ‘C22+ cluster’ to that 

reported previously by Holowenko et al. (2002) which was absent in the HPLC-MS 

profile (Figure 1-6). Bataineh et al. (2006) suggested the increased complexity and 

appearance of apparently ‘high molecular weight acids’ in the GC-MS profile was due 

to misclassification of nominally isobaric species (e.g. hydroxy acids with two 

derivatised functional groups), not distinguishable using low resolution mass 

spectrometry. Bataineh et al. (2006), using GC-HRMS confirmed the presence of more 

highly oxidised species misclassified as high molecular weight acids, previously 

highlighted by Clemente et al. (2004), showing that three ions originally classified as 

C23-25 z = 0 acids had accurate masses corresponding to C22-24H43-47Si2O3 i.e. C14 bis-

derivatised acids (Bataineh et al., 2006). 

 

Figure 1-6: Naphthenic acid profiles produced by (A) unit resolution GC-MS of the 

tBDMS derivatives and (B) HPLC-qTOF-MS of the free NA. Hatched bars shown for 

the GC-MS-derived data were assigned to ions then confirmed by GC-HRMS to be 

indicative of bis-derivatised species (Bataineh et al., 2006). 
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Despite showing the use of HRMS data to distinguish between nominally isobaric 

species from their mass spectra, Bataineh et al. (2006) were unable to further identify 

the O3 species; their method lacked the ability to differentiate between isomers of the 

same molecular formula (e.g. between a C10 monocyclic hydroxy acid and a C10 acyclic 

keto acid). The structure of a monocyclic hydroxy acid could be substantially different 

to that of an acyclic keto acid, particularly for compounds with a higher carbon number, 

which may be important when considering the toxicity of acids. 

The lack of structural information about the nature of the NA present in both 

commercial and OSPW NA also meant the quantification reported by Bataineh et al. 

(2006) of individual NA classes was not fully quantitative. Absolute concentrations 

were unattainable because no representative reference compounds for each NA class 

were available, the composition of NA isomers was unknown and the calibration curves 

were plotted using varying concentrations of commercial NA. Many investigations have 

shown that the composition of commercial NA is different to NA extracted from OSPW 

(Bataineh et al., 2006; Grewer et al., 2010; Barrow et al., 2004). Lo et al. (2003) argued 

that model acids with substantially different structures to each other showed ion 

responses within 50% of each other. However Bataineh et al. (2006) acknowledged that 

the method was optimised on the non-biodegraded NA and that other acids and more 

oxidised acid species produced upon biodegradation, would likely show differences in 

electrospray ionisation efficiency. 

Smith and Rowland (2008) investigated the derivatisation of naphthenic acids to their 

corresponding amides, prior to their analysis using HPLC/ESI-MS
n
. Conversion of the 

acids to the amides resulted in an increased detection response and reproducible 

fragment ions in sequential mass spectrometry studies (Smith and Rowland, 2008). The 

method required further development to produce quantitative results and definitive 
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structures for the NA could not be assigned. However the use of HPLC provided 

sufficient separation and the derivatisation proved effective for the identification of key 

structural details such as the presence and length of alkanoic chains, with acetic chains 

as the most abundant. 

Wang and Kasperski (2010) developed an alternative HPLC-MS/MS method, using low 

resolution mass spectrometry. The use of HPLC prior to detection, afforded sufficient 

separation of NA classes based on carbon number and z-value within a commercial NA 

mixture, again allowing semi-quantitation of different isomer classes (Wang and 

Kasperski, 2010). To avoid misclassification of NA due to the unit mass resolution, 

Wang and Kasperski (2010) plotted z-value against retention times, producing curves 

for individual carbon numbers. They proposed that the retention times of peaks 

identified as NA within other environmental samples could then be compared with these 

curves, established using commercial NA (Wang and Kasperski, 2010). However, this 

method of checking the classification of NA without high resolution MS was not 

confirmed since these workers did not give an example of a compound previously or 

potentially misclassified as an NA being identifiable based on retention time. The 

carbon number curves they produced were not sufficiently separated to be reliable, 

especially for more complex environmental samples such as NA from OSPW, which 

had been shown previously to produce NA isomer classes with a wide range of retention 

times (Bataineh et al., 2006). Also, the method relied on the assumption that the 

commercial NA contained only acids which fitted their assumed definition of NA (i.e. 

were saturated acids possessing the formula CnH2n+zO2).Towards the higher z-values (≥ 

z = -8) the curves overlapped; C17 and C18 z = -8 acids eluted before C14 and C15 z = -8 

acids respectively and even C20 z = -10 acids eluted before C13 z = -10 acids. This was 

possibly due to the presence of aromatic species present in the commercial NA; 

aromatic acids often possess retention times different from those of alicyclic acids with 
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the same hydrogen deficiency, increasing the variation of retention times within the 

same isomer class. 

Wang and Kasperski (2010) designed their HPLC-MS/MS method so that no sample 

pre-treatment was necessary, in order to eliminate alterations in the NA composition 

caused during extraction. They selected a C8 column over the C18 column previously 

used by Bataineh et al. (2006) because process chemicals assumed likely to be in 

OSPW, such as benzalkonium chlorides, were difficult to elute through the C18 column 

and their mobile phase gradient started at 30% methanol, allowing sufficient solubility 

and subsequent elution of inorganic salts within the first 5 minutes, prior to any NA. 

However, Wang and Kasperski (2010) did not demonstrate their method using more 

complex environmental samples, such as NA in OSPW. 

Shang et al. (2013) developed a HPLC-MS method for the rapid screening of NA in 

environmental surface water samples. Their method likewise involved no sample pre-

treatment and similarly to the method described by Wang and Kasperski (2010), aimed 

to remove any salts and highly polar species prior to elution of the NA, achieved with 

an initially high aqueous mobile phase for the first 5 minutes. Salts can cause ion 

suppression and influence ion detection (e.g. sodiated ions can form instead of the 

deprotonated species, not seen in (-)ESI (Barrow et al., 2010)). Shang et al. (2013) 

acknowledged the limitations of calibrating their method using commercial NA 

mixtures for quantifying NA concentrations within Athabasca River surface water 

samples, again showing there were significant compositional differences even between 

three different commercial NA mixtures. Shang et al. (2013) recorded full scan data 

over a limited scan range from m/z 150-350 and reported 90% of a commercial NA 

mixture was within this mass range. However, when developing a method for 

environmental samples, where the NA composition is unknown, limiting the scan range 
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could result in an unknown, possibly higher, proportion of components unaccounted for, 

giving overall unreliable quantitation of NA. 

Hindle et al. (2013) and Brunswick et al. (2015) highlighted and summarised issues 

facing most HPLC-MS and ESI-MS methods for the quantification of NA (specifically 

CnH2+zO2-4, termed ‘oxy-NA’ by these authors) in aqueous environmental samples such 

as OSPW. Hindle et al. (2013) showed that calibrations needed to be performed using 

complex mixtures of NA and for true quantification, the NA mixtures would have to 

possess a similar NA composition, distribution and structures to the NA sample being 

measured. They showed that the response factors of 39 ‘model’ NA with differing 

structures varied considerably, contrary to the data reported by Lo et al. (2003). They 

therefore concluded that selecting small mixtures of ‘model’ NA to be representative of 

the vast number of isomers present in NA mixtures within environmental samples was 

impractical (Hindle et al., 2013). They acknowledged that use of an average response 

factor for all the oxy-NA within an NA mixture might provide better quantification 

(Hindle et al., 2013). They analysed four commercial acid mixtures which revealed 

distinct differences between suppliers and showed the NA concentrations of several 

‘real world’ samples, calibrated with two different commercial NA mixtures, produced 

a 2-fold difference in final total NA concentrations (Hindle et al., 2013). Martin et al. 

(2008) and Zhao et al. (2012) had suggested the reduced extent of branching and 

cyclicity assumed for the NA in the commercial NA made the commercial NA more 

hydrophobic in nature and therefore that they might preferably migrate to the surface of 

the droplets produced during ESI, resulting in a higher response of commercial NA in 

ESI-MS. The HPLC-MS method developed by Hindle et al. (2013) showed strong 

potential for the quantification of NA when representative OSPW NA reference 

mixtures of varying ages and levels of biodegradation eventually become available. 
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Brunswick et al. (2015) used a similarly comprehensive HPLC-MS method to Hindle et 

al. (2013), but used larger injection volumes of samples to improve detection limits for 

the analysis of trace concentrations of NA. Their method showed that some CnH2n+zO2 

species in both commercial Merichem NA (technical grade) and NA extracted from 

OSPW had similar retention times. For example, C15H26O2 (z = -4) isomers in both 

Merichem NA and a fresh OSPW acid extract, eluted between 8.0 and 9.0 min. 

Differences between the commercial NA and NA from OSPW included the detection of 

‘polyoxy’ or CnH2n+zO3 and CnH2n+zO4 species in OSPW samples, identified by the high 

resolution and mass accuracy of the mass spectrometer utilized. This highlighted both 

advantages and limitations of the method. They were able to detect and semi-quantify 

whole carbon number classes that would otherwise not have been reliably assignable by 

unit resolution mass spectrometry methods. However, even the NA classes that were 

supposedly similar in both OSPW NA and commercial NA based on their HPLC 

retention times, may have possessed different structures with varying response factors, 

meaning the method would remain ‘semi’-quantitative until further knowledge of the 

structural nature of the NA in both mixtures became known. 

Brunswick et al. (2015) stated that adamantane-1-carboxylic acid was absent or below 

the limit of detection in NA extracts from fresh, aged and raw OSPW despite being 

shown to be a component of OSPW, albeit a minor component, by other techniques 

which involved derivatisation with BF3/methanol prior to analysis (Rowland et al., 

2011c). They showed their method was capable of measuring C11H16O2 (z = -6) acids in 

full scan mode, producing a linear calibration with adamantane-1-carboxylic acid from 

10 μg L
-1

. Brunswick et al. (2015) acknowledged that other trace, almost absent, 

sulphur-containing NA, which had also been identified by other techniques requiring 

derivatisation (West et al., 2014b), may be below their limit of detection but also 

suggested they could be artefacts introduced by sample clean-up or processing 
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procedures. Discrepancies between the methods therefore suggest that either some NA 

identified using techniques requiring derivatisation (e.g. GC×GC-MS) are artefacts of 

the sample preparation (as suggested by Brunswick et al. (2015)) or that techniques 

such as GC×GC following derivatisation are more sensitive and more specific than the 

HPLC-MS methods used to date. 

1.3.2 Fourier transform ion cyclotron resonance mass spectrometry and 

Orbitrap mass spectrometry 

Fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) and 

Orbitrap-mass spectrometry (Orbitrap-MS) have been utilised for the analysis of 

complex NA mixtures in crude oils (Qian et al., 2001; Barrow et al., 2003; Stanford et 

al., 2007), naphthenate deposits (Mapolelo et al., 2011), OSPW (Barrow et al., 2010; 

Headley et al., 2009a), treated OSPW (Headley et al., 2014; Pereira et al., 2013b), 

contaminated environmental water samples (Yi et al., 2015; Ahad et al., 2013) and plant 

tissues (Headley et al., 2011b) due to their inherent ultra-high mass resolution and mass 

accuracy. 

Barrow et al. (2003) used FTICR-MS to analyse the NA content of two crude oils from 

West Africa. They focused on ‘classical’ NA and the ultra-high resolving power of 

FTICR-MS showed the presence of ‘doublets’, distinguishing between a z = -2 

C25H48O2 compound (theoretical mass: 379.35815 amu) and a z = -16 C26H36O2 

compound (theoretical mass: 379.26425 amu), which would otherwise have been 

misclassified. Plots of carbon number against relative intensity for each z-series showed 

both crude oil extracts were dominated by z = -2 (monocyclic), z = -4 (bicyclic) and z = 

-6 (tricyclic) acids. Subsequently, Barrow et al. (2004) applied their FTICR-MS method 

to the analysis of NA in two commercial acid mixtures and NA from a sample of OSPW. 

The composition of the NA in OSPW was again shown to be substantially more 
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complex (Barrow et al., 2004). Whilst z = -2, -4 and -6 were abundant in all three 

samples, the Acros commercial NA was heavily dominated by z = 0 acids (acyclic) and 

the OSPW NA contained an abundant class of C15-20 z = -12 acids corresponding with 

the results reported by other techniques (Barrow et al., 2004; Grewer et al., 2010; 

Hindle et al., 2013). FTICR-MS was unable to determine if the z = -12 acids were 

saturated hexacyclic or monoaromatic tricyclic acids. 

Stanford et al. (2007) analysed the water soluble acidic, basic and neutral compounds 

from North and South American and Middle Eastern crude oils by FTICR-MS. They 

mainly focused on NSO-containing species within the basic and neutral fractions of 

water-soluble organics, but did note a low abundance of pyrrolic NOx species and SO3 

species present in the acidic water-soluble organic fraction (Stanford et al., 2007). They 

observed that the most abundant ‘classical’ NA (acidic CnH2n+zO2 species) in the water-

soluble acidic fraction were low molecular weight acyclic acids, as well as acids with a 

high number of double bond equivalents (DBE) and concluded the latter were most 

likely aromatic since aromatic acid solubility was shown to be greater than the solubility 

of ‘naphthenic’ non-aromatic acids (Stanford et al., 2007). 

Headley et al. (2007) investigated the effect of solvent on the relative abundance of 

CnH2n+zO2 and CnH2n+zO4 species in NA extracted from OSPW detected by FTICR-MS. 

The most abundant CnH2n+zO2 NA observed in all the solvent systems were z = -4, -6 

and -12, similar to the OSPW NA profile previously reported by Barrow et al. (2004). 

However, the relative intensity of all the CnH2n+zO2 species when using ACN/octanol as 

the solvent, was significantly reduced and the use of ACN/DCM considerably enhanced 

the relative abundance of z = -12 CnH2n+zO2 species (Headley et al., 2007). Conversely, 

the most abundant CnH2n+zO4 species were z = -6, -8 and -4 and their relative abundance 

was significantly greater when using ACN/octanol and were dramatically less, almost 
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absent, in ACN/DCM (Headley et al., 2007). The ACN/1-octanol solvent system also 

showed an apparently higher proportion of higher molecular weight NA. 

Headley et al. (2007) suggested the difference in the relative abundance of CnH2n+zO2 

and CnH2n+zO4 species in the octanol and DCM solvent systems was due to differences 

in the solubility of certain NA species. They further inferred that as octanol was the 

most representative solvent of fatty tissue, the NA species observed in the ACN/octanol 

solvent system, such as CnH2n+zO4 species (potentially diacids), were indicative of the 

most bioavailable NA structures (Headley et al., 2007). However, the bioavailability 

and uptake of compounds by organisms is more complex and reliant on variables other 

than solubility alone. Frank et al. (2009) showed the toxicities of C4-10, z = 0 to -2, 

dicarboxylic acids (CnH2n+zO4) to be lower than those of monocarboxylic acids with 

similar overall structures. However these ‘surrogate’ acids were not representative of 

the abundant C11-18, z = -6 CnH2n+zO4 species detected by Headley et al. (2007) in 

ACN/octanol. Since these studies, some z = -6, CnH2n+zO4 species such as adamantane-

1,3-dicarboxylic acid have been identified in NA from OSPW, therefore representative 

reference compounds could now be used to quantify and study the bioavailability of 

such species (Lengger et al., 2013). 

Barrow et al. (2010) acknowledged that the toxicity of the OSPW may be attributed to 

more than the content of so-called ‘classical’ NA detectable by negative ion ESI-MS 

techniques. Therefore they used both APPI- and ESI-FTICR-MS, in positive and 

negative ion mode, to examine the complete composition of the organic constituents in 

OSPW. APPI in positive ion mode proved capable of detecting the broadest range of 

different compound classes, e.g. hydrocarbons, heteroatom-containing hydrocarbons, 

acids and heteroatom-containing acids (Barrow et al., 2010). All four ionisation 

methods showed that Ox species were the most abundant species in OSPW with ESI in 
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negative ion mode showing the most intense signal for Ox species, highlighting its 

usefulness for analysing NA. The ‘classical’ NA (CnH2n+zO2) profiles produced by ESI 

and APPI in negative ion mode again showed z = -6, -4 and -12 as the three major 

classes of NA with z = -12 NA dramatically enhanced in the APPI profile. The 

increased abundance of z = -12 acids was suggested to be due to the use of toluene in 

the solvent for APPI. However, interestingly, Headley et al. (2007) reported a similar 

NA profile when using ACN/DCM with ESI. 

The challenge facing environmental monitoring, to determine to what extent OSPW 

stored within the large tailings lagoons or the surrounding bunds maybe leaking and 

contaminating the surrounding environment, is that the surrounding groundwater and 

rivers contain natural concentrations of similarly bitumen-derived organic components 

such as NA, due to the naturally high bituminous content of the land and river banks. 

Headley et al. (2011a) attempted to use FTICR-MS (with negative ion ESI) to 

‘fingerprint’ samples in order to differentiate OSPW from nearby river and lake sites. 

Use of Principal Components Analysis (PCA) data for all the compound classes 

detected, arguably differentiated between OSPW from two different industries and 

OSPW from Athabasca River water. The main differences were that both OSPW 

samples contained a smaller range of Ox species, with O1-O8 species detected in the 

OSPW samples as opposed to O1-O14 species detected in the river and lake water 

(Headley et al., 2011a). 

Ahad et al. (2012) developed a unique isolation and separation method for the so-called 

acidic-extractable organic (AEO) fraction of OSPW and environmental samples. They 

used SPE and preparative GC prior to analysis by Orbitrap-MS and intramolecular 

isotopic characterisation (δ
13

Cpyr) (Ahad et al., 2012). Ahad et al. (2013) showed this 

method could be used to distinguish between AEO from natural background substances, 
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such as humic acids, from bitumen-derived AEOs, since bitumen-derived AEO had 

substantially higher δ
13

Cpyr values. Such a differentiation was also achieved by Ross et 

al. (2012) but instead using HPLC-HRMS to observe key differences between the NA 

profiles of environmental and industrial samples. However, the method of Ahad et al. 

(2013) could not distinguish between AEO from natural bitumen sources and OSPW. 

The structural identification of individual NA indicative of an OSPW source could aid 

such studies aimed at differentiating between AEO sources. 

Frank et al. (2014) correlated Orbitrap-MS data with the presence or absence of specific 

monoaromatic compounds detectable by GC×GC-MS (Rowland et al., 2011d), to 

differentiate between AEO from natural waters and OSPW. They proposed that a high 

CnH2n+zO2: CnH2n+zO4 ratio detected by Orbitrap-MS along with the presence of two 

groups of unidentified monoaromatic acids detected by GC×GC-MS, was indicative of 

AEO from OSPW. However, Yi et al. (2015) showed the CnH2n+zO2: CnH2n+zO4 ratios 

of AEO from snow and water samples collected near and far from OSPW storage sites 

varied considerably from the values reported by Frank et al. (2014). The discrepancy 

between the two methods could be due to the differences in sample pre-treatment and 

extraction of AEO. 

High resolution HPLC-MS, FTICR-MS and Orbitrap-MS methods show good potential 

for the rapid, routine analysis of NA without sample pre-treatment since the data can be 

used to distinguish and detect a range of compound classes that might be misclassified 

by unit resolution techniques. The ability to perform analyses without sample pre-

treatment avoids biasing the data; the extraction efficiencies of different NA being 

dependent on solvent (Headley et al., 2007). Despite this, methods which have utilised 

pre-fractionation steps have shown a significant increase in the number of identifiable 

compounds, indicating that perhaps methods without pre-treatment may be 
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misrepresenting the overall complexity of these mixtures. Rowland et al. (2014b) and 

Nyakas et al. (2013) used SPE and offline ultra-HPLC respectively, to pre-fractionate 

OSPW NA to avoid ion suppression of certain species caused by competing 

components; both techniques revealed extended series of NA. 

The most recently developed methods utilising ultra-high resolution FTICR- and 

Orbitrap-MS for the analysis of NA involved interfacing the advanced mass 

spectrometers with chromatographic instrumentation, as opposed to a separate 

fractionation step before analysis. Ortiz et al. (2014) and Barrow et al. (2014) both 

developed techniques, interfacing gas chromatography with FTICR-MS. The 

instrumentation described by Ortiz et al. (2014) separated components through a GC 

column which were then ionised by EI or CI. Ions were then directed via a triple-

quadrupole into the FTICR-MS (Ortiz et al., 2014). Barrow et al. (2014) separated the 

compounds in a similar manner, through a GC column, which was coupled to an APCI 

source, which was then coupled to a FTICR-MS. Combination of GC with ultra-high 

mass resolution allowed characterisation of isomer classes as a function of retention 

time, not only separating isobaric compounds by high mass resolution but also 

separating isomers of the same class by GC. 

Pereira et al. (2013a) interfaced HPLC with Orbitrap-MS to analysis AEO from two 

types of OSPW; process water used in surface mining operations and re-used process 

water from in-situ extraction methods (e.g. SAGD). Orbitrap-MS data could only be 

used to show the differences in compound classes present. However, combination with 

HPLC provided retention time data; therefore compounds with the same molecular 

formula could also be separated (Pereira et al., 2013a). Pereira and Martin (2014) 

developed their method further and integrated an online SPE step with their HPLC-

Orbitrap method to remove the need of sample preparation before analysis. 
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The advantage of coupling a chromatographic step with ultra-high resolution mass 

spectrometer achieves effectively, two modes for distinguishing NA species. Three 

dimensional plots of the relative abundance of accurate mass m/z values, or of extracted 

ions of isobaric species, can be plotted against retention times. The HPLC or GC steps 

give what is described by Barrow et al. (2014) as an additional ‘dimension’ for 

characterising complex mixtures.  

Despite this additional separation achieved by GC and UPLC coupled with FTICR-MS 

and Orbitrap-MS, the structural elucidation of NA using such techniques has not been 

demonstrated. The most structural detail obtained by such techniques was achieved by 

Rowland et al. (2014a), who utilised FTICR-MS and UPLC-Orbitrap-MS to partially 

identify polar species isolated from OSPW NA after Ag-Ion pre-fractionation, eluting 

the retained, more polar, organics with methanol. The compounds in the methanol 

eluate were non-amenable for study by gas chromatographic techniques due to 

insufficient solubility in GC compatible solvents (Rowland et al., 2014a). By 

performing collision-induced dissociation (CID) and high-energy collision-dissociation 

(HCD) experiments on ions corresponding to SO3 species (C17-22, DBE = 3-8), detected 

in positive mode ESI, losses of H2O, methanol and methyl formate and formation of 

product ions containing sulphur without oxygen indicated that some NA species were 

aromatic sulphur-containing species with hydroxy and carboxylic acid functional groups 

(as methyl ester derivatives) such as dibenzothiophene hydroxy acids (Rowland et al., 

2014a). Saponification of the methylated fraction led to the appearance of 

corresponding [M-H]
-
 ions in negative mode ESI, not observed in the methylated 

fraction; this was strong evidence that the SO3 species were carboxylic acids and not 

sulfoxides. 
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1.3.3 Multidimensional gas chromatography with mass spectrometry 

An alternate technique for the analysis of NA, especially for ‘classical’ NA and 

aromatic NA soluble in GC compatible solvents, which is complementary to the 

methods described by Barrow et al. (2014) and Pereira et al. (2013a), is GC×GC-MS. 

The coupling of two GC columns with phases of differing polarity means complex NA 

mixtures experience two ‘dimensions’ of separation, typically followed by EI-MS 

detection; usually a time-of-flight mass spectrometer is necessary to achieve the fast 

acquisition rates needed (Mondello et al., 2008). 

FTICR-MS was shown to have unrivalled mass accuracy and resolution. However other 

investigations have shown the potential application of GC×GC-MS to characterise NA 

in OSPW. GC×GC appears to be a technique with unparalleled chromatographic 

resolution and peak capacity to date. Unlike many previous methods, GC×GC-MS can 

produce high resolution separation of many individual components with ‘medium 

polarity’. Unit resolution or accurate mass, mass spectra for individual compounds can 

then be obtained for structural identification. Compounds possessing the same retention 

time, co-eluting in conventional GC-MS, are separated in the second dimension by 

GC×GC. Therefore GC×GC-MS produces a two-dimensional (2D) chromatogram; a 

contour plot using colour to represent the relative intensity of compounds which can 

also be visualised as a three-dimensional (3D) plot, as opposed to the single 

dimensional ‘hump’ of peaks observed for unresolved complex mixtures by GC-MS 

(Hao et al., 2005; Booth et al., 2006; Sutton et al., 2005; Frysinger et al., 2003).
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1.3.3.1 Principle of GC×GC-MS 

Multidimensional or two-dimensional gas chromatography (GC×GC) involves the 

separation of analytes in two or more chromatographic columns possessing stationary 

phases of different selectivity; thereby separating the compounds in two or more 

dimensions (Vendeuvre et al., 2007). Comprehensive multidimensional gas 

chromatography involves separation of the entire sample in all dimensions, as opposed 

to ‘heart-cutting’ multidimensional separations, involving the transfer of a small section 

of compounds separated in the first dimension onto a secondary column. 

 

Figure 1-7: Schematic diagram of GC×GC-MS instrumentation. 

Comprehensive GC×GC-MS involves joining two columns of different selectivity with 

a thermal or flow modulator between the columns (Figure 1-7). There are several 

different modulator designs (Edwards et al., 2011). However, one modulation device 

frequently employed for the analysis of NA methyl esters by GC×GC (e.g. Rowland et 

al. (2011c) and Lengger et al. (2015)) is a two stage cooled loop-modulator. The 

modulator consists of a hot and cold jet offset at a 90 ° angle with a modulation loop 

passing twice between the two jets creating two cold spots (Figure 1-8). The modulation 

loop consists of a short length of coiled, non-phase, deactivated fused silica column, 

joined at one end to the primary column and joined at the other to the secondary column 

(Figure 1-8). 
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Figure 1-8: Diagram of a two stage loop modulator (image adapted from Zoex (2015)). 

The cold jet continuously cools the modulation loop with cooled, compressed N2 gas 

(approx. -90 °C). Analytes which have separated in the primary column based on their 

affinity with the non-polar phase, enter the modulation loop. The cooled modulation 

loop traps a small portion of analytes for a short time, dependent on the modulation 

period (s). This traps and re-focuses the small section of analytes into a narrow band. 

The hot jet then quickly turns on and off, momentarily heating the modulation loop (ms), 

remobilising the trapped analytes and effectively ‘re-injecting’ the analytes onto a 

shorter secondary column for them to then be separated based on their affinity with the 

polar phase. 

The modulation period is short and constantly cycling throughout the GC run, thereby 

providing a constant flow of analytes which separate very quickly in the shorter 

secondary column. The analytes eluting from the secondary column are then detected in 

a mass spectrometer, usually capable of fast acquisition rates such as a time-of-flight 

mass spectrometer (TOF-MS). The continuous data recorded by the MS is then ‘sliced’ 

according to the length of the modulation period during the exporting process (Figure 

1-9). These ‘slices’ of data are then transposed onto each other, reconstructing the data 

into a two-dimensional gas chromatogram (Figure 1-9). 
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Figure 1-9: Schematic showing the export process, ‘slicing’ the raw one-dimensional 

chromatogram according to the modulation period to produce a two-dimensional 

chromatogram showing the separation of analytes which co-elute in the first dimension. 

The two-dimensional chromatogram is usually portrayed as a coloured contour plot, 

with each compound observed as a coloured ellipse (Figure 1-10; A). The contour plot 

can then be represented as a 3D image showing the relative intensities of the peaks 

(Figure 1-10; B). 

 

Figure 1-10: Example of (A) a two-dimensional chromatogram represented as a 

coloured contour plot showing six compounds and (B) a 3D representation of the same 

chromatogram showing the relative intensities of the peaks. 
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Numerous reviews and example applications of GC×GC-MS, used for the analysis of 

complex organic extracts from environmental and petrochemical samples, have been 

reported previously (Shellie et al., 2002; Frysinger et al., 2003; Ávila et al., 2010; 

Vendeuvre et al., 2007; Edam et al., 2005). 

1.3.3.2 GC×GC-MS for the analysis of NA 

Hao et al. (2005) analysed two commercial and one OSPW NA extract as the methyl 

esters by GC×GC-MS. Extracted ion, two-dimensional GC×GC chromatograms of the 

expected molecular ions of the methyl esters were examined for patterns and differences 

between samples. However, the GC×GC method only allowed sufficient resolution of z 

= 0 and -2 NA methyl esters, with poor separation of individual isomers within the same 

carbon number for z = -4, -6 and -8 NA. The lack of separation reduced the structural 

detail attainable from mass spectra and the spectra were not used to assign specific 

structures to any of the NA detected. This convinced many workers to dismiss the 

method as useful for NA identification. 

However, later GC×GC-MS studies of commercial, crude oil and OSPW NA (as methyl 

esters) achieved much better separation than the above initial study, which led to the 

first identifications of several individual NA as methyl esters (e.g. Rowland et al. 

(2011c), Rowland et al. (2011e) and West et al. (2014a)). To date, acids identified or 

tentatively identified have included mono- to pentacyclic (z = -2 to -10) alicyclic acids 

(Rowland et al., 2011c; Rowland et al., 2011g; Rowland et al., 2011e; Wilde et al., 

2015), mono- to tetracyclic aromatic acids (Rowland et al., 2011f; Rowland et al., 

2011d; Bowman et al., 2014; West et al., 2014a), sulphur-containing acids (West et al., 

2014b) possible hydroxy acids (Rowland et al., 2014a) and tricyclic diacids (Lengger et 

al., 2013) (Figure 1-11). 
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Optimum separation by GC×GC-MS is highly dependent on optimising the separation 

of compounds in the first GC dimension. Therefore ‘normal’ phase GC×GC-MS, with a 

non-polar first column and mid-high polarity second column, generally leads to 

optimum separation of alicyclic acids. Improved separation between alicyclic and 

aromatic NA was demonstrated by Rowland et al. (2011f) using ‘reverse phase’ 

GC×GC-MS; they used a polar phase (e.g. VF-WAXms) in the first dimension, coupled 

to a mid-polarity column (e.g. BPX50) in the second dimension (Figure 1-12). 

Individual monocyclic, monoaromatic NA (e.g. 4-ethylphenylethanoic acid), were 

identified by comparison with synthesised reference compounds, NIST reference mass 

spectra and by mass spectral interpretation (Rowland et al., 2011f). 

 

Figure 1-11: Examples of alicyclic, aromatic and sulphur-containing NA identified or 

tentatively assigned in commercial, crude oil, pore water or OSPW acid extracts by 

GC×GC-MS analysis of the methyl ester derivatives (Rowland et al., 2011e; Rowland 

et al., 2011g; Wilde et al., 2015; Bowman et al., 2014; West et al., 2014b; West et al., 

2014a; Lengger et al., 2013; Rowland et al., 2011d). 
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Figure 1-12: 3D representation of a GC×GC-MS chromatogram, showing the separation 

of alicyclic and aromatic acids in a commercial acid mixture as methyl esters (Rowland 

et al., 2011f). Note the detection of minor amounts of phenols, indicating that 

commercial NA are not comprised exclusively of acids. 

Pre-fractionation of methylated OSPW NA by silver-ion (Ag-Ion) or argentation 

chromatography developed and utilised by Jones et al. (2012), allowed the GC×GC-MS 

conditions (column selection, modulation parameters, oven temperatures) then to be 

modified and optimised for the type of NA being analysed (i.e. alicyclic or aromatic, 

high or low molecular weight, NA). For example, further separation of the fractionated 

aromatic acids was achieved by use of an ionic liquid column in the first dimension, 

showing unparalleled separation of aromatic acid constituents within OSPW as methyl 

esters (Figure 1-13) (Reinardy et al., 2013). Figure 1-14 shows a GC×GC 

chromatogram displaying the optimised separation of alicyclic acids isolated by a large 

scale Ag-Ion fractionation procedure, using a long non-polar primary column (Jones et 

al., 2012; Wilde and Rowland, 2015). Removal of the aromatic acid methyl esters by 

argentation chromatography reduced co-elution with the alicyclic compounds (discussed 

later in Chapter 5, Section 5.3.1, page 209). 
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Figure 1-13: 3D representation of TIC GC×GC chromatogram showing improved 

separation of an aromatic acid methyl ester fraction, isolated by argentation 

chromatography, using an ionic liquid column in the first dimension (Reinardy et al., 

2013). Insert of TIC shows separation of same aromatic fraction by normal phase 

GC×GC-MS (Jones et al., 2012). 

 

 

Figure 1-14: TIC GC×GC chromatogram (contour plot) showing the separation of an 

alicyclic NA fraction isolated from a commercial NA extract. Insert shows 3D 

representation of TIC. 
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The unparalleled separation achieved using GC×GC-MS, provides a new insight into 

the composition of complex organic mixtures, overcoming the problem of insufficient 

separation which limited much of the early research into NA (Chapter 1, Section 1.2). 

However, the analysis of compounds with polar functional groups requires 

derivatisation of the sample and despite the improved separation, extremely complex 

mixtures still require pre-fractionation and sample preparation, which increases the time 

required for analysis. Secondly, not all compounds within the NA extracts are GC 

amenable, as shown by Rowland et al. (2014a) and the lack of reference mass spectra 

for NA esters requires the synthesis of reference compounds to confirm identification. 

This is time-consuming and impractical for large numbers of compounds. Nonetheless, 

understanding of the mass spectral fragmentation patterns of esters of known specific 

structures and the relative retention positions, can be extrapolated for the assignment of 

homologous series’ and group-type characterisations. 

Most studies of NA involving the use of GC×GC-MS have been qualitative, focusing on 

structural identification (Rowland et al., 2011c; Lengger et al., 2013; West et al., 2013). 

However, following the identification of interesting and abundant acids present in 

OSPW, knowledge of the structures has been used in recent studies for other 

applications, such as source characterisation (Frank et al., 2014), monitoring short-term 

compositional changes within OSPW (Lengger et al., 2015) and comparing 

compositional data for OSPW from different industries (Rowland et al., 2012), as well 

as to direct, arguably more pertinent, toxicological investigations (Jones et al., 2011; 

Reinardy et al., 2013; Scarlett et al., 2013; Swigert et al., 2015). 
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1.4 Toxicity, biodegradation and remediation 

Concern over the toxicity of NA in OSPW, contaminated ground and river waters and 

oil platform produced waters has spurred interest in investigations monitoring the 

changes in toxicity with compositional changes in the AEO, upon biodegradation and 

bio- and chemical remediation treatments. 

As mentioned (Section 1.1.2), OSPW have been shown to be toxic to several organisms 

(Clemente and Fedorak, 2005; He et al., 2012). The toxicity has been attributed to the 

NA content. Indeed some NA and metal naphthenates have been shown to be toxic; the 

toxicity of individual synthesised reference acids (Jones et al., 2011; Frank et al., 2009), 

commercially available acid mixtures (Rockhold, 1955; Kamaluddin and Zwiazek, 2002; 

Tollefsen et al., 2012) and NA extracted from OSPW, have all been measured (Rogers 

et al., 2002; Marentette et al., 2015b; Marentette et al., 2015a; Mohseni et al., 2015). 

However, the toxicity of an acid mixture is dependent on the composition of the extract. 

The composition of an NA mixture has been shown to be highly dependent on its source 

(West et al., 2011; West et al., 2013) and the extraction procedures used to obtain it 

(Huang et al., 2015b; Rowland et al., 2014b). High-resolution mass spectrometry 

coupled with various ionisation techniques has shown that the AEO fraction from 

OSPW contains an extensive range of compounds, beyond simply ‘classical’ CnH2n+zO2 

species (Barrow et al., 2010; Barrow et al., 2015a). The multitude of experiments using 

NA mixtures obtained from different sources by different extraction methods raises 

uncertainty about the toxicity being measured. Questions arise as to whether the toxicity 

of OSPW and OSPW NA extracts can be solely attributed to the NA, to the total NA 

concentration or to a few individual NA with high toxicities, to a type of NA species or 

a combination of several influences. 



Chapter 1 

42 

 

Recent efforts have focused on linking measured toxicity and changes in toxicity, to 

biodegradation and remediation treatments (Frank et al., 2008; Reinardy et al., 2013). 

This approach has included selective fractionation of the NA to isolate specific acid 

species, such as the aromatic acids by silver-ion chromatography, to observe the toxic 

effects of limited groups of compounds (Scarlett et al., 2013). Determination of the NA 

composition and monitoring any changes after remediation treatment, such as the 

appearance of more oxidized acid species after ozonation, has been achieved using 

advanced chromatographic instrumentation, such as ultra-high performance liquid 

chromatography (UPLC) coupled with high-resolution mass spectrometry (Gamal El-

Din et al., 2011) and ion-mobility mass spectrometry (Klamerth et al., 2015; Bauer et 

al., 2015). 

Interestingly, analyses of the produced water from SAGD extraction by GC-MS 

(Kawaguchi et al., 2012), GC×GC-MS (Petersen and Grade, 2011), HPLC-Orbitrap-MS 

(Pereira et al., 2013a) and FTICR-MS (Schaub et al., 2007) all showed that although 

such waters contained similar classes to that of OSPW (e.g. Ox, SOx and NOx species), 

the composition, especially of the acidic CnH2n+zO2 species was chemically distinct 

from the AEO and NA within the OSPW from surface mining operations (Pereira et al., 

2013a). This is important for future concerns regarding the toxicity of oil sands 

wastewaters. As previously stated, surface mining operations are reportedly capable of 

only recovering 20% of the available bitumen (Alberta-Energy, 2013). Therefore the 

increased projections for oil sands production, presumably involving the extraction of 

the remaining ~80% of deep surface bitumen by in-situ methods such as SAGD 

operations, means the AEO and NA composition of SAGD produced waters, chemical 

nature of its components, the toxicity and composition compared to that of OSPW 

currently stored from surface mining, should be important considerations for future 

remediation plans. 
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Similarly, as observed for the OSPW, the composition of the AEO from produced 

waters from SAGD operations shows high heterogeneity, depending on the location, 

industry and the part of the process from which samples are taken. 

GC-MS analysis of the NA as tBDMS esters, extracted from produced water from 

varying stages of a SAGD process, showed the presence of only C4-18, z = 0 (acyclic) 

and -2 (monocyclic) alicyclic monoacids, as well as some z = -8 (benzoic) monoacids 

and CnH2n+zO3 and CnH2n+zO4 species, potentially ‘oxo-’ and dicarboxylic acids 

(Kawaguchi et al., 2012). This was supported by GC×GC analysis of NA extracted 

from SAGD produced water reported by Petersen and Grade (2011). A selected ion 

chromatogram (SIC) from the GC×GC-MS analysis of the free acids, resulting in poor 

peak shape, showed a relatively simple, resolved NA mixture dominated by acyclic 

acids (CnH2nO2) (Petersen and Grade, 2011). The SIC reported by Petersen and Grade 

(2011) was substantially different to those previously reported for OSPW NA as methyl 

esters (Jones et al., 2012; Wilde et al., 2015), which have been shown to contain 

numerous alicyclic, aromatic and heteroatom-containing acids. 

Pereira et al. (2013a) detected CnH2n+zO2 species in both OSPW from surface mining 

and process water from in-situ extraction methods, by HPLC with negative mode ESI-

Orbitrap-MS. Carbon numbers ranged from C7-21 with 1 – 8 DBE in in-situ OSPW and 

C10-21 with 3 – 10 DBE in OSPW from surface mining. However, their HPLC method 

provided insufficient separation to allow inference of structural differences of the 

components based on retention time (Pereira et al., 2013a). Use of HPLC coupled with 

Orbitrap-MS did however show that the CnH2n+zO2 species detected in positive ion 

mode, possessed significantly different retention times to those detected when run in 

negative mode, indicating the presence of non-acidic CnH2n+zO2 species in both OSPW 

samples, potentially indicating the presence of hydroxy- and keto- compounds.  
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The differences in NA composition between OSPW from surface mining and produced 

waters from SAGD procedures could be due to the differences in pH of the water used 

in both processes. The pH of SAGD produced water reported by Kawaguchi et al. (2012) 

was 7.2 with a total NA concentration of 53 mg L
-1

 which was neutral and low 

compared with the recycled produced water and tailings pond water at pH 10.4 with 

total NA concentrations >120 mg L
-1

. Klamerth et al. (2015) and Barrow et al. (2015b) 

recently demonstrated the influence of pH on the extraction of organics from OSPW, 

showing that pH does effect the composition of AEO, as observed by HRMS. 

Current remediation plans include long-term storage of the OSPW in large open settling 

ponds designed, apparently, to allow enhanced biodegradation of the toxic components, 

evaporation of the water and consolidation of the suspended tailings; many new 

technologies focused on the reclamation of the residing solid tailings are being 

developed by Canada’s Oil Sands Innovation Alliance (COSIA, 2015). Other 

remediation treatments which are focused on direct, faster methods for reducing the 

toxicity of the OSPW include photolysis, phytoremediation, nano-filtration, adsorption 

and ozonation (Headley and McMartin, 2004; Gamal El-Din et al., 2011; Brown and 

Ulrich, 2015; Mohamed et al., 2015). Several publications have summarised the 

numerous studies on biodegradation, remediation and corresponding effects on the 

toxicity of ‘model’, commercial and OSPW NA (Headley and McMartin, 2004; 

Clemente and Fedorak, 2005; Kannel and Gan, 2012). 

The biodegradation of NA has shown to be structure specific, with the position of the 

carboxylated side chain, the cyclicity and extent of alkyl branching effecting bio-

resistance (Han et al., 2008; Smith et al., 2008; Misiti et al., 2014). The origin of NA in 

Athabasca bitumen and OSPW is believed, in part, to be due to the partial 

biodegradation of the more recalcitrant hydrocarbons present in the heavily biodegraded 
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bitumen and potentially biodegradation of unrecovered bitumen within the OSPW; this 

is reflected in the recalcitrant nature of the OSPW NA towards bioremediation 

compared with commercial and model NA (Han et al., 2008; Toor et al., 2013a). 

Biodegradation of petroleum hydrocarbons under aerobic conditions (Watson et al., 

2002) and anaerobic conditions e.g. in deep subsurface reservoirs (Aitken et al., 2004), 

has been shown to result in the formation of carboxylic acids including mono- and 

diacids. Formation of the acids is believed to be initiated by oxidation of the alkyl side 

chain of a petroleum hydrocarbon via alcohol and aldehyde intermediates (Watson et al., 

2002) or under anaerobic conditions; via either direct carboxylation or by fumarate 

addition forming succinic acid intermediates (Aitken et al., 2004). The succinic acids 

are proposed to undergo further biodegradation, either via α- or β-oxidation or 

aromatization to form the carboxylic acids (Blakley, 1974; Aitken et al., 2004; Kannel 

and Gan, 2012; Agrawal and Gieg, 2013). 

 

Figure 15: Proposed mechanisms for the biodegradation of petroleum hydrocarbons 

under anaerobic conditions resulting in the formation of carboxylic acids. (Image 

adapted from (Aitken et al., 2004). 

The toxicity studies, remediation plans, current understanding of the biodegradation 

mechanisms and the composition of the residual NA and by-products after chemical 

treatments are limited by the lack of knowledge of the exact structures of NA.  
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1.5 Present investigation 

The need to identify individual NA within complex acid-extractable organic mixtures, 

including historical needs (e.g. to increase understanding of corrosion and to enhance 

understanding of the geochemical significance of acids) as well as more recent, topical 

issues (e.g. improved knowledge of toxicity and environmental contamination and 

monitoring of NA), have been reviewed above. Although there have been significant 

advances in analytical technologies and methodologies to detect and characterise NA by 

molecular formula based on accurate mass data, there is a paucity of knowledge 

regarding the structures, numbers of isomers and nature of NA within both petroleum 

and OSPW NA extracts. 

Although techniques such as high resolution mass spectrometry, have indicated the 

number of individual compound classes (e.g. Ox, SxOx, NxOx) present within OSPW 

AEO, most investigations have shown that Ox species (Headley et al., 2015; Nyakas et 

al., 2013), particularly CnH2n+zO2 species or so-called naphthenic acids (NA) (Barrow et 

al., 2010; Headley et al., 2011a), are most abundant. Within these species, 

investigations focusing specifically on NA have shown that the z = -4, alicyclic bicyclic 

acids are the major class (Figure 1-16) (Bataineh et al., 2006; Martin et al., 2008; 

Barrow et al., 2010; Hindle et al., 2013), comprising approximately 30% of the relative 

abundance of z = 0 to -12 CnH2n+zO2 NA in OSPW (Figure 1-16; B-D) (Martin et al., 

2008; Grewer et al., 2010; Barrow et al., 2010). The alicyclic bicyclic acids also appear 

to be the most abundant acids in many other matrices, such as crude oils (Dzidic et al., 

1988; Barrow et al., 2003; Mapolelo et al., 2011) and petroleum-derived commercial 

NA (Figure 1-16; A) (Damasceno et al., 2014). Indeed, Damasceno et al. (2014) 

showed recently that >120 bicyclic acids were present in each of two commercial NA 

samples although none were identified. 
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Figure 1-16: Distribution ‘profiles’ of NA extracts showing abundant bicyclic NA as a 

major acid class in (A) commercial NA and (B-D) OSPW, analysed by a range of 

techniques including (A) GC×GC-MS, (B) HPLC-qTOF-MS and (C and D) Orbitrap-

MS, previously reported by (and images adapted from) Damasceno et al. (2014), Hindle 

et al. (2013) and Marentette et al. (2015a), respectively. 

In fact, despite the abundance of alicyclic bicyclic NA, very few have been identified in 

crude oil and none had been identified in OSPW prior to the present study. The only 

bicyclic NA to have been identified in petroleum NA are alkyl substituted, fused 

cyclohexyl structures possessing bicyclo[4.4.0]decane (Figure 1-17; B) or 

bicyclo[4.3.0]nonane (Figure 1-17; C) also known as decalin (decahydronaphthalene) 

and perhydroindane structures (Rowland et al., 2011e). A few studies have reported the 

presence of a C16 sesquiterpane acid (a penta-alkyl substituted bicyclo[4.4.0]decane e.g. 

Figure 1-17; A) in bitumen and crude oil by GC-MS (Cyr and Strausz, 1984; 

Nascimento et al., 1999). 
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Figure 1-17: Bicyclic acid structures, including (A) a drimane acid previously identified 

in crude oil (Nascimento et al., 1999) and bitumen (Cyr and Strausz, 1984) and (B) 

bicyclo[4.4.0]decane and (C) bicyclo[4.3.0]nonane acids identified in commercial NA 

(Rowland et al., 2011e). The latter (B and C) have often been assumed, usually without 

justification, to be typical or representative structures of bicyclic NA in OSPW 

(Headley et al., 2013b; Brown and Ulrich, 2015). 

The few bicyclic acids to have been identified thus far in crude oil and commercial NA, 

have all possessed fused cyclohexyl and cyclopentyl rings, as have the few monocyclic 

NA previously identified (Brient et al., 2000; Lochte and Littmann, 1955). These 

structural features are also observed in many natural products and petroleum 

hydrocarbons. NA are also believed to at least partially originate from the 

biotransformation of petroleum hydrocarbons (Aitken et al., 2004; Atlas, 1984). 

Therefore it is often presumed that the few bicyclic NA that have been identified within 

crude oil and petroleum are representative of the bicyclic NA within OSPW. However, 

the NA compositions of crude oil and petroleum are different from those in OSPW 

(Bataineh et al., 2006; Scott et al., 2005; Grewer et al., 2010; Hindle et al., 2013). Alkyl 

substituted bicyclo[4.4.0]decane and bicyclo[4.3.0]nonane acids (Figure 1-17; B and C) 

are often cited as ‘typical’ or representative of the bicyclic acids in OSPW, but no 

justification has ever been given for this assumption (Headley et al., 2013b; Brown and 

Ulrich, 2015). These assumptions are also contradictory to the concluding results from 

the (albeit limited) early investigations (Section 1.2, page 11). Dehydrogenation 

experiments and structural details interpreted from comparison of the physical 

(A) 
(B) (C) 
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properties of isolated NA with those of synthesised reference acids, suggested that the 

majority of NA did not contain fused cyclohexyl rings (Zelinsky, 1911; 1924). 

Jones et al. (2011) measured the toxicity of thirty five individual acids, including 

several which had been identified in commercial and OSPW NA. Although no bicyclic 

NA in OSPW had then been identified, Jones et al. (2011) measured the toxicity of 

bicyclo[4.4.0]decane-2-carboxylic, -2-ethanoic and -1-propanoic acid since these had 

been identified by Rowland et al. (2011e) in commercial NA. The results from the 

Microtox assay showed these bicyclic acids were some of the most toxic acids measured. 

Bicyclo[4.4.0]decane-2-propanoic acid had an EC50 (effective concentration at which 50% 

of the population are affected) of 0.004 mM (0.84 mg L
-1

). 

There is clearly a gap in knowledge regarding the structures of bicyclic NA, particularly 

in OSPW, but also in crude oil and commercial NA. The structures may have important 

implications for the toxicity, corrosivity, origins and other potential uses of NA (e.g. as 

biocides). 

1.5.1 Aims 

The aim of the current investigation was to identify at least some of the bicyclic acids 

typically present in petroleum and oil sands process-affected water acid extracts. As 

multidimensional gas chromatography-mass spectrometry has arguably shown most 

potential for structural elucidation of individual NA, previously demonstrated by the 

successful identification of other acid species within very complex NA mixtures 

(Rowland et al., 2011c), it was chosen and utilized in the present investigation, for the 

identification of bicyclic NA. 

The first objective was to attempt to identify bicyclic NA as their methyl esters, using 

GC×GC-MS to separate individual bicyclic acids as their methyl ester derivatives in 
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various samples of OSPW and petroleum NA. Achieving separation and 

chromatographic resolution of individual isomers by GC×GC-MS might allow the true 

complexity and number of isomers of bicyclic NA to be assessed. If the separation of 

individual bicyclic NA could be achieved, the mass spectra obtained for individual 

components might be used for identification by comparison with spectra for 

commercially available and synthesised, reference bicyclic acids. 

Previous efforts have shown that the identification of bicyclic NA by GC×GC-MS, as 

methyl esters, has proved challenging. For example, only a few bicyclic NA could be 

firmly identified by Rowland et al. (2011e) in petroleum NA. Therefore an alternative 

method for the identification of NA was investigated herein. Taking inspiration from 

early investigations into petroleum NA and the substantial progress made even in the 

absence of the advanced analytical instrumentation available today, the second objective 

was to plan and develop an alternative method for the identification of NA by chemical 

transformation of carboxylic acids to hydrocarbons whilst retaining the ‘core’ bicyclic 

structures. After successfully reducing the petroleum NA to the corresponding 

hydrocarbons, the aim was to achieve clear separation of highly resolved, individual 

bicyclic hydrocarbons and compare the mass spectra and retention positions of the 

bicyclanes with those reference mass spectra and known elution orders of bicyclic 

hydrocarbons readily available in the literature. 

The three-step procedure previously adopted by Seifert et al. (1969) for the conversion 

of petroleum acids to hydrocarbons was used as a starting point. The aim was to first 

develop and perform the new, optimised conversion on model bicyclic acids. Structural 

elucidation of the model bicyclic acids, intermediates and final hydrocarbon products by 

available analytical techniques (e.g. gas chromatography-mass spectrometry (GC-MS) 
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and nuclear magnetic resonance spectroscopy (NMR)), would be used to validate and 

assess the usefulness of the method. 

If conversion of the model acids to hydrocarbons proved feasible, the next objective was 

to apply this new conversion, combined with the use of GC×GC-MS of the resulting 

hydrocarbon products, for the identification of bicyclic acids in petroleum and then 

OSPW NA. 
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Chapter 2  

General Experimental and Analytical Procedures 

All laboratory glassware and apparatus were cleaned by soaking in Decon 90 (liquid 

detergent, Fisher), rinsing with hot water followed by cold deionised water, oven drying, 

solvent washing and oven drying at 110 °C before use. 

2.1 Instrumentation 

2.1.1 Infrared Spectroscopy 

Fourier transform infrared spectroscopy (IR) was performed using a Bruker Alpha FT-

IR spectrometer with a Platinum ATR module. The spectra were obtained at 4 cm
-1

 

resolution using a DTGC detector, running 16 scans per spectrum. 

When the quantity of sample was limited, IR spectra were obtained using a Bruker IFS 

66 spectrometer attached to a Hyperion FT-IR microscope, allowing the analysis of < 1 

mg quantities. 

2.1.2 Gas chromatography-flame ionisation detection 

Samples analysed by gas chromatography with flame ionisation detection (GC-FID) 

were dissolved in either DCM or hexane and diluted to 0.1 - 0.25 mg mL
-1

. The 

instrument used was an Agilent Gas Chromatograph 7890A equipped with a 7683 

Series Autosampler and 7683B Series Autoinjector. The column was a 5% 

phenylmethylpolysiloxane Agilent HP5 (30 m × 0.320 mm × 0.25 μm). The carrier gas 

was nitrogen with a flow rate of 1.2 mL min
-1

 and the inlet temperature was 250 °C. 

Attached was a flame ionisation detector at 300 °C, hydrogen flow rate of 40 mL min
-1

, 

air flow rate of 400 mL min
-1

 and nitrogen (make-up) flow rate of 15 mL min
-1

. The 

temperature programme consisted of 40 – 300 °C at 10 °C min
-1

 and held at 300 °C for 
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10 min. The chromatograms were recorded using Chemstation™ (Revision B.03.01, 

May 2007) software. 

2.1.3 Gas chromatography-mass spectrometry 

Samples analysed by gas chromatography-mass spectrometry (GC-MS) were diluted in 

hexane or DCM to 0.01 – 0.025 mg mL
-1

. The instrument used was an Agilent GC-

MSD; 7890A Gas Chromatograph fitted with a 7683B Autosampler and a 5975A 

quadrupole mass selective detector. The column was changed during the period of the 

investigation. Column A was (5% phenyl)-methylpolysiloxane HP5-ms (30 m × 0.25 

mm × 0.25 μm). Column B was a 100% dimethylpolysiloxane Restek Rxi®-1ms (30 m 

× 0.25 mm × 0.25 μm). The helium carrier gas was kept at a constant flow rate of 1.0 

mL min
-1

 and a 1.0 μL sample was injected into a splitless injector at typically 300 °C; 

however analyses were also performed where specified at 225 °C and 250 °C. The oven 

programme was 40 – 300 °C at 10 °C min
-1

 and held at 300 °C for 10 min. The ion 

source was at 230 °C and the quadrupole detector was at 150 °C, producing an 

ionisation energy of 70 eV. The chromatograms were recorded using Chemstation™ 

and the instrument operated in full scan mode, with a scan range of m/z 50 – 500. 

2.1.4 Multidimensional gas chromatography-mass spectrometry 

Comprehensive multidimensional gas chromatography-mass spectrometry (GC×GC-MS) 

analyses were conducted using an Agilent 7890A gas chromatograph (Agilent 

Technologies, Wilmington, DE) fitted with a Zoex ZX2 two stage cooled loop GC×GC 

modulator and secondary oven (Houston, TX, USA) interfaced with an Almsco 

BenchTOFdx™ time-of-flight mass spectrometer with an electron impact ionisation 

source (Almsco International, Llantrisant, Wales, UK). 

The column diameters were changed during the period of the investigation. Column set 

A: the first dimension column was a 100% dimethyl polysiloxane (60 m × 0.25 mm × 
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0.25 μm) Rxi®-1ms (Restek, Bellefonte, USA), followed by a 1 m × 0.1 mm 

deactivated fused silica modulation loop. The second-dimension column was a 50% 

phenyl polysilphenylene siloxane (2.5 m × 0.1 mm × 0.1 μm) BPX50 (SGE, Melbourne, 

Australia). Column set B: the first dimension column was kept the same as column set 

A, with a 100% dimethyl polysiloxane (60 m × 0.25 mm × 0.25 μm) Rxi®-1ms (Restek, 

Bellefonte, USA), followed by a 0.7 m × 0.25 mm deactivated fused silica modulation 

loop. The second-dimension column was a 50% phenyl polysilphenylene siloxane (1.4 

m × 0.25 mm × 0.25 μm) BPX50 (SGE, Melbourne, Australia). 

Helium was used as carrier gas and the flow was kept constant at 1.0 mL min
-1

. 1 μL 

samples were injected at 275 °C and 300 °C splitless. Different temperature 

programmes for the oven, modulator and ion source were used to achieve optimum 

separation and detection of the various samples analysed (e.g. acid methyl esters, 

fractionated acid methyl esters or hydrocarbons). Therefore the specific oven, modulator 

and ion source temperatures and conditions used are specified in the method section of 

each of the relevant chapters; however, a typical programme was as follows: the 

primary oven was programmed from 30 °C, held for 1 min, then heated to 120 °C at 

5 °C min
-1

, to 220 °C at 0.8 °C min
-1

, to 280 °C at 5 °C min
-1

 and to 320 °C at 10 °C 

min
-1

 and then held for 10 min. The secondary oven was programmed to track the 

primary oven at 40°C above. The hot jet was programmed to start 30 °C above the 

primary oven temperature until 150 °C, it was then ramped to 260 °C at 1.3°C min
-1

 and 

then to 400 °C at 4°C min
-1

. The modulation period was set at 2, 4 or 6 s. The MS 

transfer line temperature was 290 °C and ion source 250°C or 300 °C. The scan range 

was m/z 50 – 550 and the data rate was 50 Hz. The ionisation energy was 70 eV. 

Data processing was conducted using GC Image v2.3 (Zoex, Houston, TX). Obtaining a 

mass spectrum for a particular peak (per pixel or average spectrum of a defined peak 
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area known as a ‘blob’) involved clicking on the two-dimensional gas chromatogram. 

The software allowed the data to be processed in multiple ways e.g. background 

removal (Reichenbach et al., 2003), template matching and batch processing 

(Reichenbach et al., 2004). Data visualisation processing (e.g. Hollingsworth et al. 

(2006)) included the 3D spectral colourisation tool, where the 3D chromatogram was 

colourised based on the mass spectra of each individual pixel. Individual colours were 

assigned to specific ions, allowing compounds with characteristic ions to be visualised 

as different colours (e.g. Figure 5-2; Chapter 5, Section 5.3.1, page 211). An additional 

feature was the Computer Language for Identifying Chemicals (CLIC) expression tool, 

which was used to aid the location of compounds or for determining the presence or 

absence of compounds. CLIC expressions are a powerful tool for producing advanced 

extracted ion chromatograms with the option to apply additional constraints, such as 

specifying the relative intensity of specific ions, the mass of the base peak ion and only 

show peaks between specific retention times (e.g. Figure 6-8; Chapter 6, Section 6.3.3.1, 

page 280). The CLIC expression tool is similar to the LECO ChromaTOF mass spectral 

filters which use Microsoft Visual Basic Scripting. The use and application of CLIC 

expressions for the interpretation of GC×GC chromatograms of complex mixtures has 

been described previously (Reichenbach et al., 2005; Jennerwein et al., 2014; Weggler 

et al., 2014). 
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2.1.5 Nuclear magnetic resonance spectroscopy 

Samples were analysed by nuclear magnetic resonance spectroscopy (NMR) using a 

JEOL ECP-400 NMR spectrometer. All spectra, including 
1
H and 

13
C, DEPT 

13
C, 

COSY, CHSHF (carbon-hydrogen shift correlation) and COLOC spectra, were obtained 

in deuterated chloroform or deuterated acetone (Cambridge Isotope Laboratories, Inc., 

US). The chemical shifts were measured relative to the solvent (CDCl3; 
1
H: 7.24 ppm; 

13
C: 77.0 ppm). For samples of limited quantity an NMR insert tube (Coaxial insert 

assembly, Wilmad-Labglass) was used. The NMR insert tube allowed analysis of 

sample quantities 0.1 – 5 mg. 
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2.2  Extraction, derivatisation and fractionation of naphthenic acids 

During the present work, a number of OSPW acid fractions were made available for 

study from scientists at Environment Canada. Such samples have rarely been made 

available before. These included samples from two oil sands industries’ tailings ponds 

or settling basins. Unfortunately, some details of the sampling locations etc. cannot be 

published herein for legal reasons. The samples were usually received as the NA extract 

and as much detail as possible about each sample and the extraction methods used to 

obtain each sample are given in the method section of each of the relevant chapters. One 

sample, extracted from OSPW in the West-In Pit (WIP) tailings pond within industry A, 

was received as the sodium salts. An overview of the extraction of the NA from the 

WIP sample and the back extraction performed to obtain the free acids is provided 

below. 

2.2.1 Extraction of NA from OSPW 

Three 1 L samples of concentrated naphthenate solution, extracted from oil sands 

process-affected water (OSPW), which had undergone a prior clean-up procedure 

involving weak anion exchange chromatography, was received from Environment 

Canada, Burlington, CA. The extraction and clean-up procedure was developed and 

reported by Frank et al. (2006) for the bulk preparation of a NA stock solution for 

multiple, subsequent investigations. Briefly, 2000 L of OSPW collected from industry 

A, West In-Pit (WIP) tailings pond in 2009 was acidified to pH 2, the precipitated acids 

were separated, re-dissolved and centrifuged to remove sands and clay (Frank et al., 

2006). The naphthenates were passed through a diethylaminoethyl-cellulose column to 

remove humic acid substances and washed with DCM to remove neutral compounds 

(Frank et al., 2006). The cleaned-up, concentrated naphthenates received a final wash 

with acidified water before being reconstituted in 0.05 N NaOH to make 14 L of ~2500 
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mg mL
-1

 NA solution (Frank et al., 2006). The procedure outlined by Frank et al. (2006) 

is depicted in Appendix Figure 1, as a flow diagram with the four main stages of 

preparation highlighted. 

Once received from Environment Canada, 400 mL concentrated naphthenate solution 

was transferred equally into two 500 mL glass separating funnels in order to be 

extracted as ×2 200 mL batches. The OSPW naphthenate solution was a brown, murky 

colour. To each separating funnel, 5 – 10 mL of concentrated HCl (<= pH 2) and 40 mL 

of ethyl acetate (HPLC Grade, Fisher) was added. The solution turned a milky 

orange/brown colour. Acidification produced the free acids which were extracted into 

the organic phase upon vigorous shaking for 2 min and any build-up of pressure during 

mixing was released. An orange/brown emulsion formed between the two layers. The 

orange/brown aqueous bottom layers and emulsions were drained into 500 mL glass 

beakers and the yellow/brown organic top layers were carefully poured through the top 

of the funnels and combined in a 500 mL round bottom flask. 

The aqueous layers and emulsions were transferred back into the respective separating 

funnels and extracted two more times with 20 mL ethyl acetate. The top organic phases 

were combined in the round bottom flask. The smaller emulsions which formed in the 

2
nd

 and 3
rd

 extractions were carefully separated and combined in a conical flask where 

the emulsion appeared to partition further. Therefore the combined emulsion solution 

was split between the two separating funnels and gently swirled with 40 mL ethyl 

acetate to extract as much of the acids as possible. The organic layers were transferred 

and combined with the previous organic extracts in the round bottom flask. The 

remaining emulsions were combined and transferred to a 22 mL vial and centrifuged. 

The emulsion solution separated into a clear brown top layer, above a solid brown 

interfacial ‘pad’, above a lower aqueous layer. The top organic layer was carefully 
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transferred and combined with the previous free acid extracts in the round bottom flask. 

The interfacial pad remained intact when carefully removing the lower aqueous phase to 

waste. The wet brown solid remaining was stored in the 22 mL vial for further analysis. 

The combined free acid solution in the round bottom flask was a golden yellow colour 

and the original aqueous OSPW solution was a much paler and clearer after extraction. 

The free acid extract was concentrated by rotary evaporation at 40 °C to 1 – 2 mL 

before being transferred to a pre-weighed 7 mL glass vial, rinsing the round bottom 

flask with solvent and collecting the rinses. The remaining solvent was removed under 

N2 blowdown at 40 °C yielding 537 mg of NA extract from OSPW. 

2.2.2 Derivatisation of OSPW NA extract 

The free NA (537 mg) extracted from the concentrated OSPW naphthenate solution was 

dissolved in 8 mL DCM and split equally between four glass vials, followed by an 8 mL 

rinse. The DCM was then removed by N2 blowdown at 40 °C. Next, 16 mL of 14% 

BF3-methanol complex solution (Sigma Aldrich) was added to each vial and the vials 

heated at 70 °C for 3 hours. 

The vials were allowed to cool before combining the methylated solutions in a 250 mL 

separating funnel. Afterwards, 30 mL of water (Chromasolv® HPLC Grade, Sigma 

Aldrich) and 30 mL of hexane (HPLC Grade, Rathburns Chemical Ltd.) were added and 

the solution shaken vigorously for 2 min. The solution separated into a cloudy brown 

lower aqueous layer and a clear brown top layer with a small brown emulsion at the 

bottom of the top layer. The lower aqueous layer and emulsion were drained into a 

beaker and the top organic layer transferred into a round bottom flask. The aqueous 

layer and emulsion was re-extracted with two more 30 mL aliquots of hexane. The 

combined organic extracts were concentrated by rotary evaporation to 1 – 2 mL before 
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being transferred to a 15 mL glass vial. The methyl ester solution was dried over 

anhydrous Na2SO4 (≥ 99.0%, Sigma Aldrich) overnight. 

The dried extract was filtered into a pre-weighed 7 mL glass vial and the remaining 

solvent removed by N2 blowdown at 40 °C, yielding 443.4 mg of methylated NA 

extracted from OSPW. 

2.2.3 Derivatisation of commercial NA extract 

A sample of a commercially prepared NA mixture was received as a gift in 2009 from 

the Merichem Company (Batch No. CN/138) and later subsampled in 2010. The 

Merichem Company developed a proprietary method for the efficient extraction of NA 

from high TAN crude oils, jet fuel, kerosene and condensates (Forero et al., 1996). 

Instead of standard extraction by mixing a hydrocarbon feedstock with caustic soda 

(NaOH), with the extraction efficiency being directly related to droplet size and the 

inherent problem of emulsion formation, Merichem Co. developed the Fibre-Film® 

Contactor which passes the hydrocarbon feedstock containing naphthenic acids over 

metal fibres covered with a running film of NaOH (Forero et al., 1996). The concurrent 

flow of the two phases creates a greater surface area and faster rate of extraction without 

the formation of soap emulsions, enabling efficient recovery of both neutralised 

hydrocarbons and naphthenates (Forero et al., 1996). 

A large scale fractionation of commercial NA was required to produce large enough 

quantities of individual fractions for multiple investigations (e.g. West et al. (2014a)). 

Prior to fractionation by argentation chromatography, the free acids required 

derivatisation to the methyl esters. Therefore 40 - 50 mg of commercial NA mixture 

was transferred into ten glass vials each (430 mg in total), followed by the addition of 8 

mL BF3-methanol complex solution (Sigma Aldrich). The vials were placed in a heater 

block at 70 °C and left to derivatise for 1 hour 20 min. After the vials had cooled, a 2 
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mL aliquot of water was added followed by 2 mL hexane (HPLC Grade, Rathburn 

Chemicals Ltd., UK). The top organic layers were carefully transferred and combined in 

a round bottom flask. Each aqueous phase was extracted a further two times with 2 mL 

aliquots of hexane, combining the organic layers in the round bottom flask. 

The combined methylated NA solution was dried over anhydrous Na2SO4 (≥ 99.0%, 

Sigma Aldrich) and then transferred into another round bottom flask. The NA methyl 

esters were concentrated to 1 – 2 mL by rotary evaporation at 40 °C before being 

transferred to a glass vial with rinses and taken to dryness under a stream of N2 at 40 °C, 

yielding at least 310 mg of methylated commercial NA. 

 

2.2.4 Derivatisation of reference and model carboxylic acids and alcohols 

Polar compounds analysed by gas chromatography often require derivatisation prior to 

analysis by GC to improve their chromatographic properties. Therefore the carboxylic 

acids were analysed as their methyl or trimethyl silyl esters and the alcohols were 

analysed as their trimethyl silyl ethers. The methyl esters of the reference and model 

carboxylic acids were obtained by reacting the acids with BF3-methanol complex (15%, 

Sigma Aldrich) or 10% HCl in methanol at 70 °C for 30 – 60 min. The reactions were 

quenched with an aliquot of water and the methylated acids extracted with three aliquots 

of hexane or cyclohexane (HPLC Grade, Rathburn Chemical Ltd., UK). The organic 

solutions were dried over MgSO4 (>99.0%, Sigma Aldrich) before being filtered into 

pre-weighed vials. The solvent was removed by N2 blowdown at 25 – 40 °C. The 

alcohols were derivatised with BSTFA (Sigma Aldrich) at 70 °C for 30 min and diluted 

with hexane or DCM (HPLC Grade, Rathburn Chemical Ltd., UK) to an appropriate 

concentration for GC-MS or GC×GC-MS analysis (Sections 2.1.3 and 2.1.4). 
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2.2.5 Fractionation of methylated commercial NA extract 

The large scale fractionation procedure, previously reported by Scarlett et al. (2013) 

was developed based on the small scale procedure using silver-ion (Ag-Ion) SPE 

cartridges (Discovery®) previously developed by Jones et al. (2012) for the separation 

and study of aromatic acids from OSPW NA. A large glass column (length: 65 cm, I.D: 

0.4 cm) with a fixed sintered glass bed and stopcock was dry-packed with 37.5 g of Ag-

Ion phase (Discovery®) with a piece of filter paper (Whatman™ 1: 42.3 mm) placed on 

top of the phase to reduce disturbance of the top layer during the addition of solvent. 

The column was washed with three 300 mL aliquots of hexane (HPLC Grade, 

Rathburns Chemical Ltd.), the final wash was collected in a 500 mL round bottom flask 

to be analysed, to observe any contamination from the column. 

The commercial NA methyl esters (310 mg) were dissolved in 2 mL of hexane and 

loaded onto the top of the phase in the column with three rinses of the vial with hexane. 

The NA methyl esters were eluted through the phase with an eluotropic series of 

solvents; 300 mL aliquots of solvent were carefully poured down the inside of the 

column and the eluate collected in 500 mL glass round bottom flasks producing 

individual fractions. When the solvent level was just above the top of the phase, to 

prevent the phase from drying out, the stopcock was quickly closed and the round 

bottom flask exchanged for the next fraction before re-opening the stopcock and 

carefully pouring the next aliquot of solvent down the inside of the column, collecting 

the next fraction. The solvent and solvent mixtures were increased in polarity, eluting 

the less polar analytes first (i.e. aliphatic and alicyclic acid methyl esters in hexane) and 

gradually the more polar acid methyl esters (i.e. aromatics and heteroatom-containing 

acid methyl esters). Four fractions were eluted with 100% hexane, followed by three 5% 

diethyl ether (Glass Distilled Grade, Rathburns Chemical Ltd.), 95% hexane fractions, 
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one 10% diethyl ether, 90% hexane fraction, one 100% diethyl ether fraction and finally 

one 100% methanol (Chromasolv® HPLC Grade, Sigma Aldrich) fraction (Table 2-1). 

The 10 individual fractions and the wash prior to loading were concentrated by rotary 

evaporation to 1 – 2 mL and transferred to pre-weighed 7 mL glass vials. The mass of 

each fraction is detailed in Table 2-1. 

Table 2-1: Summary of the fractions obtained by Ag-Ion fractionation of the 

commercial NA methyl esters. 

Fraction Eluent Mass of eluate / mg 

Wash Hexane 0.2 

1 100% hexane 110.0 

2 100% hexane 125.0 

3 100% hexane 12.4 

4 100% hexane 0.6 

5 5% diethyl ether : 95% hexane 20.1 

6 5% diethyl ether : 95% hexane 2.6 

7 5% diethyl ether : 95% hexane 2.9 

8 10% diethyl ether : 90% hexane 11.8 

9 100% diethyl ether 21.6 

10 100% methanol 135.5 

 Total 442.5 

 Total (excluding F10) 307.0 
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2.2.6 Fractionation of methylated OSPW NA extract 

In order to obtain enough material for several concurrent investigations into the nature 

of various classes of OSPW NA (e.g. Rowland et al. (2014a)), the large scale 

fractionation was performed twice, on two quantities of OSPW NA methyl esters which 

had been extracted from the WIP OSPW sample (Section 2.2.1, page 58). The 

procedure used was the same as the large scale fractionation performed on the 

commercial NA methyl esters, based on the procedure developed by Jones et al. (2012), 

previously described in Section 2.2.5. The mass of OSPW NA methyl esters loaded 

onto the phase in the first fractionation was 296 mg, and 300 mg in the second 

fractionation. A summary of the fractions for each fractionation is given in Table 2-2 

and Table 2-3. 

Table 2-2: Summary of the fractions collected in the first Ag-Ion fractionation of the 

OSPW NA methyl esters. 

Fraction Eluent Mass of eluate / mg 

Wash Hexane 0.4 

1 100% hexane 20.1 

2 100% hexane 76.8 

3 100% hexane 7.4 

4 100% hexane 1.7 

5 5% diethyl ether : 95% hexane 61.3 

6 5% diethyl ether : 95% hexane 30.8 

7 5% diethyl ether : 95% hexane 9.2 

8 10% diethyl ether : 90% hexane 11.5 

9 100% diethyl ether 29.6 

10 100% methanol 52.1 

 Total 300.9 

 Total (excluding F10) 248.8 
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Table 2-3: Summary of the fractions collected in the second Ag-Ion fractionation of the 

OSPW NA methyl esters. 

Fraction Eluent Mass of eluate / mg 

Wash Hexane 0.3 

1 100% hexane 7.7 

2 100% hexane 96.7 

3 100% hexane 16.7 

4 100% hexane 2.1 

5 5% diethyl ether : 95% hexane 50.0 

6 5% diethyl ether : 95% hexane 38.2 

7 5% diethyl ether : 95% hexane 12.9 

8 10% diethyl ether : 90% hexane 15.1 

9 100% diethyl ether 36.1 

10 100% methanol 222.9 

 Total 498.4 

 Total (excluding F10) 275.5 
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2.3  Conversion Reactions 

The conversion steps involved in the chemical transformation of carboxylic acids and 

their methyl ester derivatives to the corresponding hydrocarbons was based upon the 

preliminary investigation of Seifert et al. (1969), who proposed the formation and 

reduction of the tosyl esters via the alcohols, as opposed to previous attempts via the 

iodide intermediates (Zelinsky, 1924; Knotnerus, 1957). During attempts at reproducing 

the procedure outlined by Seifert et al. (1969) on model alicyclic, bicyclic acids several 

problems were encountered and new reaction procedures were investigated and used to 

optimise the conversion (Figure 2-1). For example, tosylation in pyridine did not always 

produce the tosyl ester in high yields and reduction of the tosyl ester with lithium 

aluminium hydride (LAH) did not always yield the corresponding hydrocarbon but 

instead, yielded the original alcohol. 

However, the first reduction step using LAH, based on the method of Seifert et al. 

(1969), proved efficient at producing the primary alcohols. The formation of the tosyl 

esters with tosyl chloride (TsCl) in the presence of 4-(dimethylamino)pyridine (DMAP) 

as a catalyst and triethylamine (TEA) as a base, was instead based on the methods by 

Ding et al. (2011) and Yoshida et al. (1999). Final reduction of the tosyl esters to the 

hydrocarbons using lithium triethylborohydride (LiEt3BH) (Super-Hydride®) was 

inspired by the procedures outlined by Krishnamurthy and Brown (1976) and Brown et 

al. (1980). 
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Figure 2-1: General overall reaction scheme for the conversion of carboxylic acids and 

their methyl ester derivatives to the corresponding hydrocarbons. Details of the 

procedure for each step can be found under relevant section numbers. 

General methods are now given for the individual conversion steps performed on the 

model carboxylic acids, commercial NA methyl esters and OSPW NA methyl esters. 

Any minor differences for individual samples are discussed within the appropriate 

chapters. 

2.3.1 General method for the reduction of acid methyl esters to alcohols 

 

 

Figure 2-2: Reaction scheme for the reduction of carboxylic acids and methyl esters to 

primary alcohols using LAH. R = hydrocarbon ‘backbone’ of acid structure. 

 

The reduction of carboxylic acids with lithium aluminium hydride (LAH) (Figure 2-2) 

is a moisture sensitive reaction. Therefore a reflux apparatus, consisting of a 10 mL 

two-neck round bottom flask within a rota-mantle and fitted with a condenser, was 

assembled whilst hot (Figure 2-3). The condenser was fitted with a CaCl2 guard tube 

and a magnetic stirrer added before fitting the side arm with a rubber suba-seal (Figure 

2-3). The reaction vessel was purged with N2 to create an inert atmosphere. 
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Figure 2-3: Reflux apparatus assembly for the reduction of carboxylic acids and methyl 

ester derivatives under a reduced moisture atmosphere. 

First, the model carboxylic acids, extracted OSPW NA, or commercial NA mixtures (5 - 

50 mg) were transferred into the round bottom flask under a stream of N2. The acids 

were dissolved in 1.0 mL anhydrous diethyl ether (Chromasolv® HPLC Grade, 

inhibitor-free, Sigma Aldrich) and heated (50-70 °C). Then, LAH solution (1.0 M in 

diethyl ether, Sigma Aldrich) was added in excess (5 molar equivalents) and the 

reaction left to reflux for 30 min. Upon addition of LAH solution, the reaction mixture 

vigorously effervesced and a grey precipitate formed. Additional aliquots of anhydrous 

solvent were added if necessary to avoid the reaction running dry. In the interest of 

retaining semi-volatile components, it was found that the reduction was as efficient 

when carried out at room temperature (15-20 °C) with a longer reaction time 2+ hours. 
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The reaction was quenched dropwise with 10% H2SO4 to decompose excess hydride. A 

white precipitate formed and then re-dissolved. The mixture was transferred to a 

reaction vial (Wheaton V-Vial; Sigma Aldrich), rinsing the round bottom flask with 

aliquots of diethyl ether. Two clear phases were observed, the lower aqueous phase was 

carefully pipetted from beneath, to a separate reaction vial. 

The aqueous phase was extracted three times with diethyl ether and the upper organic 

layer carefully pipetted into the previous reaction vial each time. The combined ethereal 

solution was washed with 5% NaHCO3 solution and water (HPLC Grade; Fisher 

Scientific) to neutralise the organic phase and then washed with dilute 6% brine 

(technical ~26%, Sigma Aldrich). The solution was then dried over anhydrous MgSO4 

(≥ 99.5 %, Sigma Aldrich). 

The solution was filtered through a rinsed Pasteur pipette plugged with defatted cotton 

wool into a pre-weighed vial, rinsing the reaction vial and plugged pipette with diethyl 

ether. The solvent was removed under a stream of N2 at 25 °C and the yield recorded. 
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2.3.2 General method for the conversion of alcohols to tosyl esters 

 

 

Figure 2-4: Reaction scheme for the derivatisation of primary alcohols to tosyl ester 

derivatives using TsCl in the presence of DMAP and TEA. R = hydrocarbon ‘backbone’ 

of original acid structure. 

The alcohol (5 - 50 mg) was dissolved and transferred into a 5 or 10 mL reaction vial in 

a minimum volume of DCM (HPLC Grade; Rathburns Chemical Ltd.). The reaction 

vial was placed in an ice bath and cooled whilst stirring. Then 4-

(dimethylamino)pyridine (DMAP) (≥ 99 %, Sigma Aldrich) was transferred into the 

reaction vial (1 molar equivalent) followed by p-toluenesulfonyl chloride (TsCl) (≥ 

99 %, Sigma Aldrich) in slight excess (1.2 molar equivalent) and finally an aliquot of 

triethylamine (TEA) (1 molar equivalent) (≥ 99 %, Sigma Aldrich) (Figure 2-4). It was 

found the addition order of the reagents was important to the success of the reaction. 

The reaction vial was closed and the solution left to react for 12 hours. 

The reaction was quenched with diethyl ether and water (HPLC Grade; Fisher Scientific) 

and stirred for 15 min. A white precipitate formed upon addition of diethyl ether and 

cleared again upon addition of water. The lower aqueous phase was carefully pipetted 

into a separate reaction vial and extracted with three aliquots of diethyl ether. The 

extracts were combined in the original reaction vial and the ethereal solution washed 

with HCl (2.0 M), 5% NaHCO3 solution and finally dilute 6% brine (technical ~26%, 

Sigma Aldrich) to remove unreacted TEA and neutralise the organic phase. The solution 

was then dried over anhydrous MgSO4 (≥ 99.5 %, Sigma Aldrich). 
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The solution was filtered through a rinsed Pasteur pipette plugged with defatted cotton 

wool into a pre-weighed vial. The solvent was removed under a stream of N2 at 25 °C 

and the yield recorded. 

2.3.3 General method for the reduction of tosyl esters to hydrocarbons 

 

 

Figure 2-5: Reaction scheme for the reduction of tosyl ester derivatives to 

defunctionalised hydrocarbons using LiEt3BH. R = hydrocarbon ‘backbone’ of original 

acid structure. 

Reduction reactions with lithium triethylborohydride (LiEt3BH or Super-Hydride®) 

(Figure 2-5) are moisture sensitive, therefore the assembly of the reflux apparatus was 

the same as for the first reduction with LAH (Figure 2-3; Section 2.1.3, page 69) to 

create an inert atmosphere. The tosylate (5 - 50 mg) was dissolved and transferred into 

the round bottom flask in anhydrous diethyl ether (Chromasolv® HPLC Grade, 

inhibitor-free, Sigma Aldrich) under a stream of N2. Then LiEt3BH solution (1.0 M in 

THF; Sigma Aldrich) was added in excess (15 molar equivalents). The reaction was left 

stirring at room temperature for 2+ hours. 

The reaction flask was then placed in an ice bath to cool, before being quenched with 

the dropwise addition of 20% NaOH solution to decompose the excess hydride. The 

reaction was stirred for 30 min. The reaction mixture was transferred into a 5 or 10 mL 

reaction vial with anhydrous diethyl ether. Two clear phases were observed. The lower 

aqueous phase was transferred into a separate reaction vial, extracted with three aliquots 

of hexane (HPLC Grade; Rathburns Chemical Ltd.) and combined in the original 



Chapter 2 

73 

 

reaction vial. The combined organic phase was washed with HCl (2.0 M) and dilute 6% 

brine (technical ~26%, Sigma Aldrich) to neutralise the organic phase. The solution was 

dried over anhydrous MgSO4 (≥ 99.5 %, Sigma Aldrich) and filtered through a rinsed 

Pasteur pipette plugged with defatted cotton wool into a pre-weighed vial. 

When the volatility of the product was of concern (i.e. if the sample contained low 

molecular weight hydrocarbons), a Kuderna-Danish apparatus (Section 2.3.4) was used 

instead of removing the solvent under a stream of N2 at 25 °C. 

 

 

 

2.3.4 General method for the concentration of hydrocarbons using a Kuderna-

Danish concentrator followed by silica chromatography 

A Kuderna-Danish (KD) concentrator consisting of three main components was 

assembled. These were: a graduated receiver flask fitted below an inverse conical-

shaped KD flask with a Vigreux or Synder column fitted above (Figure 2-6). A micro 

Dean-Stark receiver with a condenser attached was fitted to the top of the Vigreux 

column (Figure 2-6). The apparatus was lowered so that only the graduated receiver 

flask was submerged in a water bath, consisting of a two-neck round bottom flask 

containing a magnetic stirrer filled with water in a Rota-mantle (Barnstead heating and 

stirring mantle), with a thermometer attached through the side-arm to measure the 

temperature of the water (Figure 2-6). 
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Figure 2-6: Kuderna-Danish apparatus assembly for the concentration of the final 

hydrocarbon product following the reduction of the commercial and OSPW NA methyl 

esters. 

The ethereal solution containing the hydrocarbon product, obtained after reduction of 

the tosyl esters with LiEt3BH, was transferred into the graduated receiver flask attached 

to the KD-flask, adding 2 – 3 Soxhlet extracted anti-bumping granules. Next, the 
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Vigreux column and remaining apparatus was assembled as previously described 

(Figure 2-6). The temperature of the water bath was slowly increased until the solution 

began to gently reflux, observed by a constant stream of bubbles in the graduated 

receiver. When the level of the solution had decreased to approximately 0.8 mL, the 

water bath was removed and the apparatus allowed to cool, aided by briefly lowering 

the receiver flask into an ice bath. This allowed the remaining vapour in the apparatus to 

condense and wash back down into the receiver flask resulting in a final volume of ~1 

mL. 

The concentrated hydrocarbon product contained two major by-products of the hydride 

reduction, observed in the gas chromatograms as boroxin and butylated hydroxy toluene 

(BHT), present as a stabiliser in the tetrahydrofuran of the LiEt3BH solution. Therefore 

a silica chromatography clean-up was performed to remove the majority of impurities. 

However, following careful concentration of the product using the Kuderna-Danish 

apparatus, the clean-up step had to involve minimum solvent addition. Therefore 300 

μL of concentrated product solution was applied dropwise onto ~1.2 g of activated silica 

(600 A mesh, activated at temp 200°C for 12 hours) in an aluminium weighing boat, 

allowing the excess solvent to absorb or evaporate between applying each drop (Figure 

2-7; A). The loaded silica was then transferred into a shortened column (cut glass 

Pasteur pipette) containing a bed of activated silica plugged with defatted cotton wool 

(Figure 2-7; B). The hydrocarbons were eluted through with hexane until 100 μL was 

collected in an insert vial ready for analysis. 
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Figure 2-7: Outline of ‘clean-up’ procedure involving (A) the concentrated hydrocarbon 

product applied dropwise to activated silica allowing solvent to evaporate before (B) 

transferring loaded silica into a shortened column and eluting the hydrocarbons with 

hexane. 
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2.4  Additional Reactions 

2.4.1 General method for hydrogenation 

Selective catalytic hydrogenation of aromatic rings and unsaturated bonds for the 

synthesis of reference compounds was performed using a H-Cube® (ThalesNano 

Nanotechnology Inc., Budapest), fitted with a HPLC Pump (Model 300, Gynotek) and 

Rheodyne injector. The H-Cube® is a flow reactor which produces an online supply of 

hydrogen from the electrolysis of water and reacts the substrate with H2 in the presence 

of a catalyst at controlled pressures and temperatures up to 100 bar and 100 °C. The 

catalysts come pre-packed in metal cartridges (CatCarts®). 

 

 

Figure 2-8: Components of an H-Cube® hydrogenation flow reactor (ThalesNano 

Nanotechnology Inc., Budapest). 

 



Chapter 2 

78 

 

An aliquot of sample dissolved in hexane or cyclohexane was injected into the 

Rheodyne injector, the injector was turned from the ‘load’ to ‘inject’ position, 

introducing the sample into the solvent flow of cyclohexane at 0.1 – 1.0 mL min
-1

 

through the H-Cube®. After passing through the catalyst under pre-set conditions, 

between 60 – 100 °C and 60 – 100 bar, the hydrogenated product was collected in a pre-

weighed vial. The solvent was removed under a stream on N2 at 25 – 40 °C and the 

yield recorded. If the hydrogenation resulted in partial reduction and complete 

hydrogenation was required, the sample was re-injected and hydrogenated further. 
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Chapter 3  

Identification of bicyclic acids by multidimensional gas 

chromatography-mass spectrometry of methyl ester 

derivatives 

Chapter 3 describes the structural identification of alicyclic bicyclic acids, which is a 

major class of naphthenic acids (NA) within some commercial NA mixtures and in acid 

extracts from oil sands process-affected waters (OSPW). 

A well-accepted toxicity screening assay had indicated previously that some bicyclics 

were the most acutely toxic acids known, but despite this toxicity and despite the high 

abundance of the bicyclics in petroleum acids and OSPW, very few had been identified 

at the inception of the present work.  

Examination herein of esterified acid extracts from samples of OSPW and a sample of 

commercial petroleum-derived acids, by GC×GC-MS showed that >100 C8-15 bicyclic 

acids were present. Synthesis or purchase of reference bicyclic acids allowed the 

GC×GC retention times of the methyl esters of several structural isomers to be 

established. The mass spectra of these and comparison with the published spectra of 

some additional bicyclic acids (methyl esters), allowed identification of numerous C8-11 

fused-ring and several novel, bridged bicyclic acids, for the first time in OSPW and 

indeed in any petroleum related mixture. Delimitation of possible bicyclic structures for 

which no reference compounds were available, or where the data for reference 

compounds did not match those of acids present in the commercial or OSPW NA, was 

also made. Mass spectra of the co-occurring bicyclic C12-15 acid methyl esters suggested 

many were simply analogues of the C8-11 acids identified, but with longer alkanoate 

chains and/or alkyl substituents.  
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The main findings included and discussed in this chapter have been published in: 

Wilde, M. J., West, C. E., Scarlett, A. G., Jones, D., Frank, R. A., Hewitt, L. M. and 

Rowland S. J. (2015) Bicyclic naphthenic acids in oil sands process water: 

Identification by comprehensive gas chromatography-mass spectrometry. Journal of 

Chromatography A, 1378, 74-87. 
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3.1 Introduction 

The composition of the acid-extractable organic (AEO) fractions of OSPW have been 

investigated previously using a range of analytical techniques as described in Chapter 1. 

Despite slight differences in composition dependent on extraction, ionisation, 

chromatographic separation and resolution of the mass spectrometric techniques 

employed, most investigations have shown that Ox species (Headley et al., 2015; 

Nyakas et al., 2013), particularly CnH2n+zO2 species or ‘classical’ naphthenic acids (NA) 

(Barrow et al., 2010; Headley et al., 2011a), are most abundant. Investigations focusing 

specifically on NA have shown that the z = -4, alicyclic bicyclic acids are usually the 

major class in OSPW, crude oil and petroleum-derived commercial NA (Bataineh et al., 

2006; Martin et al., 2008; Barrow et al., 2010; Hindle et al., 2013; Dzidic et al., 1988; 

Barrow et al., 2003; Mapolelo et al., 2011). Damasceno et al. (2014) showed that >120 

bicyclic acids were present in each of two commercial NA samples, though none were 

identified. This lack of knowledge of the structures of the bicyclic NA has important 

implications for the toxicity, corrosivity, origins and potential uses of NA (as reviewed 

in Chapter 1). 

GC×GC-MS has shown great potential for the identification of individual bicyclic acids. 

For example, Rowland et al. (2011e) confirmed the presence of two 

bicyclo[4.3.0]nonane carboxylic acids, two bicyclo[4.4.0]decane-3-carboxylic acid 

isomers and an isomer of bicyclo[4.4.0]decane-3-ethanoic acid, in a commercial NA 

mixture by comparison of the mass spectra with published mass spectra and GC×GC 

retention positions of synthesised reference compounds. Mass spectral interpretation 

and comparison of relative retention positions also led to the more tentative assignment 

of several bicyclo[4.3.0]nonane ethanoic acids, methyl substituted homologues and a 

bicyclo[4.4.0]decane-3-propanoic acid.  
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West et al. (2014a) and Bowman et al. (2014) subsequently used GC×GC-MS to 

identify some bicyclic mono- and diaromatic acids (i.e. naphthalene, indane and 

tetrahydronaphthalene and tetrahydroindane acid isomers) in crude oil and pore water 

from a composite tailings deposit respectively, again by comparison of the mass spectra 

of methyl esters with those of synthesised reference compounds. 

Given the former studies it was worth considering the reasons for the paucity of 

information on the structures of the alicyclic bicyclic acids. Damasceno et al. (2014) 

showed by GC×GC-MS that over 120 acids were present in commercial NA, yet 

Rowland et al. (2011e) only identified a few bicyclics in similar commercial NA. 

The maximum number of isomers for the simplest (C8-11) acids, assuming that at least 

one (necessarily), and sometimes two, carbon atoms would be associated with the 

carboxylate/alkanoate chain was calculated herein. The latter assumption is reasonable 

based on the identifications of ethanoate side chains of the co-occurring tricyclic and 

pentacyclic acids (Rowland et al., 2011a; Rowland et al., 2011c; Rowland et al., 2011g) 

and what is known of the biodegradation processes from which the acids originate 

(Smith et al., 2008; Rowland et al., 2011b; Johnson et al., 2011).  

For a C11 acid, for example, at most ten carbons are left for formation of the bicyclic 

‘core’ of the acid, once the carboxylated carbon is discounted. If any alkyl substituents 

were present, the number of carbon atoms in the ‘core’ would be less than ten and more 

alkylation would be present. Since alkyl groups identified or tentatively established in 

OSPW acids to date have not exceeded those comprising four carbon atoms in total (e.g. 

a combination of ethyl and methyl groups), it is reasonable to assume that the smallest 

number of atoms in the bicyclic ‘core’ would then probably be six.  

Three structural types exist for acids with a C6 ‘core’. These have cyclopropyl or 

cyclobutyl rings; the former are present in carane- and thujane-type compounds and the 
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latter present in bicyclo[3.1.1]heptanes (pinanes), bicyclo[4.2.0]octanes and 

bicyclo[2.2.0]hexanes, which are known in the ladderane acids (Rush et al., 2011). For 

the acids with a C7 ‘core’ and the requisite substituents, there are four structural types 

(examples are given in Figure 3-1; I-III), for the C8 ‘core’ acids, six (e.g. Figure 3-1; IV-

VII), for the acids with a C9 ‘core’, seven (e.g. Figure 3-1; VIII-XI) and for the acids 

with a C10 ‘core’, nine possible structures (where there are two bridgehead carbons, e.g. 

Figure 3-1; XII-XVI). Spiro- and non-fused structures were also considered, such as 

spiro[4.5]decane carboxylic acid (Figure 3-1; XVII), fused at one carbon atom and the 

non-fused cyclopentylcyclopentane carboxylic acid (Figure 3-1; XVIII).  

Therefore, the empirical calculations above suggest that even the simplest acids in 

OSPW or commercial NA samples might comprise over 30 structural types and for each 

of these, many stereoisomers are possible. Examples of some of these bicyclic structural 

types are given in Figure 3-1; most ring types have been identified within natural 

products.  

Thus, in theory, it is certainly possible to account for the >100 bicyclic acids observed 

in commercial acids (cf. Damasceno et al. (2014)). The analytical challenge is to 

identify what at least some of these actually are, particularly in OSPW fractions. 
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Figure 3-1: Examples of generalised structures and names of possible C11 bicyclic acids. 
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3.1.1 Aims and Objectives 

The aims of the current investigation were to use GC×GC-MS to chromatographically 

resolve individual bicyclic acids as their methyl ester derivatives in various samples of 

OSPW NA and a commercially available, petroleum NA. Secondly, to utilise the 

separation afforded by GC×GC-MS to assess the true complexity of the bicyclic acid 

methyl esters mixtures present in samples of OSPW NA and a petroleum NA mixture. 

Thirdly, to use the mass spectra obtained for individual components in these NA 

mixtures, for the identification of C8-11 bicyclic acids as their methyl ester derivatives. 

Identification was reliant on comparison of the retention position and mass spectra of 

the bicyclic NA in OSPW and petroleum acid extracts with those of synthesised or 

purchased reference bicyclic acids, reference mass spectra and logical mass spectral 

interpretation. Finally, the mass spectra of the reference bicyclic acid methyl esters were 

to be evaluated for generic trends which could be correlated with key structural features 

for the tentative assignment and interpretation of the mass spectra of C11+ bicyclic acid 

methyl esters. 
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3.2 Methods 

3.2.1 Acid extract samples 

Six acid extracts were analysed in total; one (sample #1) analysed previously (Wilde et 

al., 2015) and five (sample #2 – #6) analysed herein. The six acid extracts included 

three different OSPW acid extracts from industry A, one from industry B, one 

commercially prepared petroleum acid extract and one acid extract from a well water 

sample within the oil sands mining area of industry A. Details of the NA extracts are 

summarised in Table 3-1. 

Table 3-1: Summary of the OSPW NA and commercial NA sample details. 

Sample No. # Sample Type Originator Details 

1 OSPW Industry A Collected 2004 

2 OSPW Industry A 
Collected 2009, isolated 

concentrated naphthenates 2011 

3 OSPW Industry B Collected 2011 

4 OSPW Industry A Collected 2013 

5 
Commercial 

Naphthenic acids 
Merichem Batch no. CN/138 CAS# 1338-24-5 

6 Well Water 
Environment 

Canada 
Collected 2013, Proximal B #4 

 

The NA extracts included two from oil sands industry A (#1 and #2; Table 3-1) which 

were both extracted from OSPW collected from the West In-Pit (WIP) tailings pond; 

sample #1 was collected in 2004 and used in the identification of tri-, tetra- and 

pentacyclic diamondoid acids by Rowland et al. (2011c) and Rowland et al. (2011g) 

and #2 was sampled in 2009 and used in more recent studies (Scarlett et al., 2013; 

Reinardy et al., 2013). Although several Canadian researchers have reported the source 

of OSPW for their investigations as WIP (Frank et al., 2009; Pereira et al., 2013b; 

Brunswick et al., 2015), little information has ever been reported about sampling 



Chapter 3 

87 

 

procedures, the location of the WIP or the inputs of OSPW into the WIP. However, one 

detailed insight into the transfer and storage of OSPW within industry A and the input 

of OSPW into the WIP was reported by Han et al. (2009). Briefly, OSPW produced 

directly from the main extraction plant in industry A is stored in one of three settling 

basins; the Mildred Lake Settling Basin (MLSB), the South End Pond (SEP) or 

Southwest Sand Settling Basin (SWSB) (Han et al., 2009). OSPW from the SEP and 

SWSB are then transferred to the WIP. Clarified OSPW (i.e. after a period of settling), 

from the WIP is then either mixed with clarified OSPW from MLSB and recycled in in 

the main extraction plant or is mixed with tailings from a secondary site and recycled in 

a secondary extraction plant (Han et al., 2009). Therefore, it is presumed that studies 

into OSPW often include OSPW collected from the WIP, firstly, because access is easy 

and secondly due to its continuous use as storage and recycling of OSPW within 

industry A. 

Sample #1 was isolated using the method reported by Frank et al. (2006), described in 

Chapter 2, Section 2.2.1 (Appendix Figure 1), and extracted and analysed previously 

(Wilde et al., 2015). Sample #2 was isolated using the same clean-up method in Spring 

2011 and extracted using the methods described in Chapter 2, Section 2.2.1. 

Sample #3 was an NA extract isolated from OSPW collected from a tailings pond from 

industry B, as described by Lengger et al. (2015). The extract selected was the north 

east (NE) sample from the spatial study conducted by Lengger et al. (2015); the sample 

site was closest to the inlet pipe with a high concentration of particulate matter, chosen 

due to its higher abundance of low molecular weight acids (C8-15) compared to the other 

sites. Sample #4 was extracted from unprocessed, raw OSPW collected from the 

Mildred Lake Settling Basin (MLSB) from industry A in 2013. The raw OSPW was 

acidified (< pH 2) and extracted with ethyl acetate as described in Chapter 2, Section 



Chapter 3 

88 

 

2.2.1. The lack of sample clean-up and concentration steps meant it was potentially the 

most representative of the NA present in OSPW but as a result contained other non-acid 

species such as polycyclic aromatic hydrocarbons (PAHs).  

A commercially prepared acid mixture, gifted in 2009 from Merichem Co., was 

derivatised and fractionated as described in Chapter 2, Sections 2.2.3 and 2.2.5 and is 

also discussed in Chapter 5, Section 5.3.1. Fractionation by argentation chromatography 

(Ag-Ion) severely reduced the complexity of the commercial NA and the ‘alicyclic’ Ag-

Ion fraction was included in the analysis. Commercial NA are often used as a 

comparison in investigations of OSPW NA. However previous studies have shown 

distinct differences in the commercial NA compositions (Grewer et al., 2010; Hindle et 

al., 2013). Finally an NA extract from an OSPW related well water, collected as part of 

a ‘plume’ investigation by Environment Canada was examined. The well water extract 

was chosen from several samples due to its high abundance of low molecular weight 

acids; the sample was collected from a well adjacent to the MLSB such as those 

described by Frank et al. (2014). 

3.2.2 Reference acids 

Authentic bicyclo[2.2.1]heptane-2-ethanoic acid (Figure 3-3; Structure Ib), 2,6,6-

trimethylbicyclo[3.1.1]heptane-3-carboxylic acid ((+)-3-pinane-carboxylic acid) (IIa), 

bicyclo[2.2.2]octane-2-carboxylic acid (IVa), 4-pentylbicyclo[2.2.2]octane-1-carboxylic 

acid (IVc), bicyclo[3.3.0]octane-2-carboxylic acid (VIa), 4-methylbicyclo[3.3.0]octane-

2-carboxylic acid (3-methyl-octahydro-pentalene-1-carboxylic acid) (VIb) and 

bicyclo[3.3.1]nonane-1-carboxylic acid (VIIIa) were purchased from Sigma (Poole, 

UK). Authentic bicyclo[2.2.1]heptane-1-carboxylic acid (Ia), bicyclo[2.2.2]octane-1-

carboxylic acid (IVb), bicyclo[3.3.1]nonane-3-carboxylic acid (VIIIb) and 5-methyl-
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bicyclo[3.3.1]nonane-1-carboxylic acid (VIIIc) were purchased from Molport (Riga, 

Latvia). 

Bicyclo[3.2.1]octane-6-carboxylic acid (Va) had been previously synthesised from 2-

hydroxybicyclo[3.2.1]octane-6-carboxylic acid (Sigma) by base catalysed dehydration 

followed by hydrogenation as described previously by Rowland et al. (2011a). 

Bicyclo[4.3.0]nonane-3-carboxylic acid (Xa), 7-methylbicyclo[4.3.0]nonane-8-

carboxylic acid (Xb) and bicyclo[4.4.0]decane-2-propanoic acid (XIVe) were 

synthesised previously by catalytic hydrogenation as previously described by Rowland 

et al. (2011e). 

Bicyclo[4.4.0]decane-2-carboxylic (XIVa), -3-carboxylic (XIVb), -2-ethanoic (XIVc) 

and -3-ethanoic acid (XIVd) (numbers refer to position of alkanoate substituents on 

bicyclic core) were synthesised from 1- and 2-(5,6,7,8-tetrahydro)naphthoic acid and 1- 

and 2-naphthalene ethanoic acid respectively as well as 7-methylbicyclo[4.2.0]octane-7-

carboxylic acid (VIIa) from 1-methyl-1,2-dihydrocyclobutabenzene-1-carboxylic acid 

methyl ester by hydrogenation over 20% Pd(OH)2/C and Raney Nickel catalysts at 

100 °C and 100 bar using a Thalesnano H-Cube® as described in Chapter 2, Section 

2.4.1. 

3.2.3 GC×GC-MS 

The GC×GC-MS instrumentation used is described in Chapter 2, Section 2.1.4. Samples 

were analysed using two different temperature programmes (referred to as conditions A 

and B). The GC×GC-MS conditions A involved the primary oven programmed from 

30°C, held for 1 min, then heated to 120°C at 5°C min
-1

, to 220°C at 0.8°C min
-1

, to 

280°C at 5°C min
-1

 and to 320°C at 10°C min
-1

 and then held for 10 min. The secondary 

oven was programmed to track the primary oven at 40°C above. The hot jet was 

programmed to start 30°C above the primary oven temperature until 150°C, it was then 



Chapter 3 

90 

 

ramped to 260°C at 1.3°C min
-1

 and then to 400°C at 4°C min
-1

. The modulation period 

was set at 4 or 6 s. The GC×GC-MS conditions B involved the primary oven 

programmed from 35 °C, held for 1 min, then heated to 120°C at 5°C min
-1

, to 220°C at 

0.8°C min
-1

, 280 °C at 2 °C min
-1

 and to 320 °C at 5°C min
-1

 and then held for 10 min. 

The secondary oven was programmed to track the primary oven at 40 °C above. The hot 

jet was programmed to start 30 °C above the primary oven and finish 100 °C above the 

primary oven over the period of the run; programmed from 65 °C, held for 1 min, then 

heated to 150 °C at 5 °C min
-1

, to 260 °C at 1.3 °C min
-1

 and then to 400 °C at 3 °C min
-

1
. The modulation period was set at 6 and 3 s. 
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3.3 Results and Discussion 

The major focus of the present work was to identify (in many cases for the first time), 

series of bicyclic naphthenic acids in petroleum-related samples.  

Whilst a few bicyclic acids had been identified in one commercial NA batch at the 

inception of this work (Rowland et al., 2011a), none had ever been identified in oil 

sands process-affected water (OSPW), despite the high abundance of bicyclic (z = -4) 

acids in OSPW reported by numerous Canadian workers (e.g. Martin et al. (2008) and 

Hindle et al. (2013)). Mainly this lack of successful identification was a result of the 

extreme complexity of the NA mixtures in substrates such as OSPW, but this was also 

due to the fact that very few OSPW samples had ever been released for study outside of 

Canada, with the consequence that only methods available to Canadian scientists had 

been employed. Until 2011, with perhaps only one published exception in which no 

acids were identified (Hao et al., 2005), this did not involve use of a comprehensive 

GC×GC chromatographic approach: yet such methods probably have the highest 

chromatographic resolving power reported to date. Even since 2011, the use of GC×GC 

methods to study OSPW fractions (Rowland et al., 2011c; Rowland et al., 2011g) 

surprisingly has not involved study of the alicyclic bicyclic acids of OSPW, although 

recently Bowman et al. (2014) identified several monoaromatic bicyclic acids in 

OSPW-related samples and Damasceno et al. (2014) reported resolution, but no 

identification, of alicyclic bicyclic acids, in two commercial NA samples.  

During the present work, a number of OSPW acid fractions were made available for 

study from scientists at Environment Canada. Such samples have rarely been made 

available before and certainly no studies of the bicyclic acids have been made or at least, 

published. These included samples from two oil sands industries’ tailings ponds or 

settling basins and a well water within the oil sands mining area (sample details 
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discussed in Section 3.2.1 and summarised in Table 3-1). Unfortunately, details of the 

sampling locations etc. cannot be published herein for legal reasons. Whilst this means 

that detailed explanations and interpretations of any differences and similarities cannot 

be made, such samples still provided a unique opportunity for the present author to 

attempt to identify some of the acids for the first time using GC×GC-based techniques. 

3.3.1 GC×GC separation of acid methyl esters 

The NA mixtures analysed included four different OSPW extracts (#1-4), one 

commercial NA mixture (#5) and one acid extract from a well water sample within the 

oil sands mining area (#6). Previous studies have shown that NA extracts show a degree 

of heterogeneity, with the NA composition being dependent on several factors, probably 

including: sample origin, location, treatment and extraction as discussed previously 

(Chapter 1, Section 1.3). Despite this, the alicyclic bicyclic acids are repeatedly reported 

as one the most abundant CnH2n+zO2 acid classes, not only in OSPW, but also in 

commercially prepared NA and crude oil acid extracts, yet little is known about their 

structures (Chapter 1, Section 1.5, page 47) (Dzidic et al., 1988; Martin et al., 2008). 

Therefore multiple OSPW samples (#1-4), a commercial NA sample (#5) and an oil 

sands well water sample (#6) were examined herein to maximise the possibility of 

identifying any bicyclic acids, to provide new understanding and improve upon the 

current paucity of knowledge regarding bicyclic acids structures. The OSPW samples 

were collected by workers at Environment Canada as part of several other investigations 

(Frank et al., 2009; Brunswick et al., 2015) and their detailed selection was outside of 

the control of the present author. Nonetheless they are considered representative of 

typical industry process waters and the results of this investigation can be compared 

somewhat with other experimental data for similar samples obtained by other 

techniques (e.g. Hindle et al. (2013), Frank et al. (2014) and Brunswick et al. (2015)). 
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The GC×GC extracted ion chromatograms (EICs) of the five NA samples examined 

herein, showed separation of the acid methyl esters by carbon number (Figure 3-2). 

 

Figure 3-2: EICs (m/z 154 (+14 Da).- 252) showing bicyclic acid methyl ester 

distributions (C8-15) within (A) an OSPW acid extract from industry A (WIP) collected 

in 2009, (C) an OSPW acid extract from industry B, (D) a different OSPW acid extract 

from industry A (MLSB), (E) an alicyclic Ag-Ion fraction of Merichem NA and (F) an 

acid extract from OSPW related well water. (Column set A, Conditions A). 
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Examination of the GC×GC-MS data of the six NA extracts as the methyl esters, using 

extracted ion chromatograms of the expected molecular ions, confirmed the presence of 

bicyclic acids with carbon numbers ranging from at least C11-15 in all the samples (#1-#6) 

(Figure 3-2; A-E and Appendix Figure 2) with an extended range of C8-15 bicyclic acids 

in samples #3 and #4. Furthermore, the GC×GC-MS data gave an insight into the true 

complexity of the OSPW NA mixtures, showing large numbers of individually resolved 

isomers. The exact number of isomers for each carbon number series varied between 

samples. For instance, sample #3 contained at least nineteen C9, twenty seven C10, forty 

C11 and numerous more peaks corresponding to C11+ bicyclic acids (Figure 3-2; C). The 

EIC of the NA extract from the raw MLSB OSPW (Figure 3-2; D) was even more 

complex, which was expected due to the lack of sample clean-up and pre-treatment, 

especially compared with the EICs of the NA extracted from samples #1 and #2 (WIP 

OSPW) which underwent extensive extraction procedures which may have removed the 

lower molecular weight acids. 

Damasceno et al. (2014) recently analysed two commercial acid mixtures by GC×GC-

MS characterising groups of NA by their hydrogen deficiency due to cyclicity (z-value). 

They detected 132 (Miracema-Nuodex NA) and 124 (Sigma Aldrich NA) peaks with 

molecular ions consistent with C9-16 bicyclic acids (z = -4) (Damasceno et al., 2014). 

The EIC of the fractionated, commercial NA mixture (#5) analysed herein was more 

complex, containing a greater number of peaks (>200) corresponding to C9-15 bicyclic 

acids. The OSPW samples and related well water acid extracts (#1-#4 and #6) also 

showed greater complexity than the commercial mixtures reported by Damasceno et al. 

(2014), with a similar number of isomers comparable with the commercial NA analysed 

herein (#5). 



Chapter 3 

95 

 

The large number of isomers observed was strong evidence for the presence of many 

different structural types of bicyclic acids, or at least considerably more than the two 

fused cyclohexyl (decalin) and cyclopentyl (perhydroindane) structures routinely cited 

as examples (Holowenko et al., 2001; Clemente and Fedorak, 2005; Headley et al., 

2009a). 

3.3.2 Reference bicyclic acids 

Based on the delimited, potential bicyclic structures considered (Figure 3-1), a limited 

range of bicyclic acids was synthesised or purchased. The structures of the reference 

acids are displayed in Figure 3-3. The reference acids that were synthesised included 

XIVa-d and VIIa and those previously synthesised, but no longer available included Va, 

Xa-b and XIVe. Despite the limited availability, those purchased included several 

different bicyclic cores, of different carbon numbers and substituted at different ring 

positions. 

Synthesis of fused alicyclic acids via the hydrogenation of the aromatic precursors, for 

example bicyclo[4.4.0]decane-2- and 3-carboxylic acid (XIVa-b) and 

bicyclo[4.4.0]decane-2- and 3-ethanoic acid (XIVc-d) from the tetrahydronaphthalene 

and naphthalene precursors, resulted in the production of multiple isomers of each 

alicyclic acid. For example, the bicyclo[4.4.0]decane acids can show cis-/trans- 

isomerism at the bridgehead carbons and cis-/trans isomerism at the alkyl-substituted 

carbon, resulting in four possible isomers e.g. cis-cis, trans-cis, cis-trans and trans-

trans. Synthesis of the desired structures was confirmed by GC-MS, based on the 

expected number of isomers, corresponding molecular ions and mass spectral 

interpretation. 
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Figure 3-3: Structures of purchased or synthesised reference bicyclic acids. 

 

Previous comparison of the retention positions of bicyclic NA in sample #1 with the 

retention positions of some of the reference acids did not result in any firm assignments 

(Appendix Figure 2; Wilde et al. (2015)). However the elution order of the reference 

acids and comparison of their relative retention positions with the bicyclic NA, was a 

useful indication as to whether isomers with the same bicyclic cores as those which 

eluted closely to the bicyclic NA, could be considered likely components of OSPW NA.  

A systematic examination of the retention positions and mass spectra of the >100 

individual GC×GC peaks in sample #2 - #6 were compared with those of the reference 

compounds. Since interpretation of the data for the lower homologues was likely to be 

simplest and might give clues to the identities of the presumably more alkylated higher 

homologues, the C8-10 acids were examined first (Sections 3.3.3 - 3.3.6). 
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3.3.3 C8 bicyclic acids 

C8 acids were present in the OSPW acid extracts #3 and #4 and the well water #6. Two 

peaks within samples #3, #4 and #6 displayed retention positions and molecular ions 

(m/z 154) consistent with that of C8 bicyclic acid methyl esters. The peak labelled 1a 

(Figure 3-4; A-C) was identified as bicyclo[2.2.1]heptane-2-carboxylic acid methyl 

ester after comparison with a NIST library spectrum. When compared with the 

reference mass spectra reported by Curcuruto et al. (1991), it became clear that the 

isomer was most likely exo-bicyclo[2.2.1]heptane-2-carboxylic acid due to the low 

intensity of the M-32 ion (m/z 122) (Figure 3-5). The mass spectral data reported by 

Curcuruto et al. (1991) showed the endo- isomer with a strong M-32 ion (m/z 122; 84 %) 

(Figure 3-5; A), which was postulated as the loss of methanol from the methoxy group 

of the methyl ester via a hydrogen rearrangement from the carbon in the 6-position of 

the bicyclic core. The loss of methanol via this mechanism would be expected to be 

greater in the endo- position due to the closer vicinity of the methyl ester moiety to the 

γ-hydrogen (Curcuruto et al., 1991). 

Interpretation of the mass spectrum of the second peak labelled 1b (Figure 3-4; A-C) 

resulted in the identification of bicyclo[2.2.1]heptane-1-carboxylic acid methyl ester, 

which was confirmed by comparison of the GC×GC retention time and mass spectrum 

with that of an authentic sample (Figure 3-4; F and G). The assignment of the 1-

carboxylic acid isomer with a reference compound also supported the identification of 

the 2-isomer due to the relative retention position. Examination of the elution order of 

the reference acids showed that acids substituted at a bridgehead position, elute earlier 

than ring substituted homologues (e.g. bicyclo[3.3.1]nonane-1- and -3-carboxylic acid 

methyl esters (Figure 3-9; Section 3.3.5, page 109 and Appendix Figure 2) and 

bicyclo[2.2.2]octane-1- and -2-carboxylic acid methyl esters (Figure 3-6; Section 3.3.4, 

page 101)). 
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There was no mass spectral and retention position match with authentic 

bicyclo[2.2.1]heptane-2-ethanoic acid (Figure 3-5; C). However examination of the 

mass spectrum and retention behaviour, particularly in the second dimension (Appendix 

Figure 2; Wilde et al. (2015)), indicated other bicyclo[2.2.1]heptane acids, potentially 

more alkylated isomers, were present. Literature data were also available for the 

retention indices of some more highly methyl-substituted C8-11 isomers on apolar and 

polar phases (Heintz et al., 1976). These also suggested that bicycloheptane acids were 

possibilities for the unknowns. 

 

Figure 3-4: EICs (m/z 154, 125, 95 and 87) of (A and B) two OSPW acid extracts (#3 

and #4) and (C) a well water acid extract (#6), analysed by GC×GC-MS. Peaks labelled 

1a and 1b were identified by comparison of their mass spectra (D and F) with (E) a 

NIST library spectrum of bicyclo[2.2.1]heptane-2-carboxylic acid methyl ester and (G) 

a purchased reference standard of bicyclo[2.2.1]heptane-1-carboxylic methyl ester. 
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Figure 3-5: Reference mass spectra of (A and B) endo- and exo-bicyclo[2.2.1]heptane-

2-carboxylic acid methyl ester replotted from tabulated values reported by Curcuruto et 

al. (1991) and (C) authentic bicyclo[2.2.1]heptane-2-ethanoic acid methyl ester. 

Compounds with bicyclo[2.2.1]heptane skeletons (Figure 3-1; I, e.g. norbornane and 

bornane), are well-known in nature and are most often encountered as derivatives of 

camphor. Thus, there is precedence for the biosynthesis of compounds with this 

skeleton and numerous analogues have been studied. Seifert and Teeter (1969) 

suggested that naphthenic acids from a Californian petroleum might include such 

structural types. GC retention indices on apolar and polar phases and mass spectra or 

partial spectra of the methyl esters of isomers of C8-11 acids have been published (Heintz 

et al., 1976; Manabe and Nishino, 1983; Curcuruto et al., 1991). 

The GC×GC retention position of authentic 2,6,6-trimethylbicyclo[3.1.1]heptane-3-

carboxylic acid methyl ester was similar to that of the C11 OSPW NA in sample #1 

(Appendix Figure 2), indicating other isomers were also a possibility for the identities 

of some of the unknowns, but no exact match was found in the spectra of the OSPW 
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NA methyl esters in samples #2 - #6. The most common compounds found with 

bicyclo[3.1.1]heptane (Figure 3-1; II) skeletons are pinenes; trimethyl- monterpenes 

produced by plants, particularly abundant in resin from pine trees (e.g. turpentine oil). 

The mass spectrum of 2,6,6-trimethylbicyclo[3.1.1]heptane-3-carboxylic acid methyl 

ester (3-pinane-carboxylic acid methyl ester) is complex (Appendix Figure 3), perhaps 

as a result of the bridged structure which contains a cyclobutane ring within the core. 

The cyclobutane ring makes the bicyclic acid liable to ring-opening and subsequent 

rearrangement in the ion source. This is supported by the very low intensity of the 

molecular ion (<2%) at m/z 196 (Appendix Figure 3). Distinguishable features of the 

mass spectrum included a strong (95%) M-60 ion at m/z 136 corresponding to loss of 

the methyl carboxylate group with a hydrogen transfer and a base peak ion was 

observed at m/z 81, as well as an intense ion at m/z 83 consistent with cyclic C6H9
+
 and 

C6H11
+
 ions respectively. 

3.3.4 C9 bicyclic acids 

The GC retention positions of commercially available C9 and C14 bicyclo[2.2.2]octane 

acids were examined (Figure 3-3; IVa-c). When compared with the retention positions 

of the bicyclic acids within all four OSPW acid extracts (#1 - #4) all three reference 

acids had relatively long retention times in the second dimension, relative to their 

respective carbon number homologues and were not identical to any of the unknowns 

(e.g. Appendix Figure 2). Interestingly however, bicyclo[2.2.2]octane-1-carboxylic acid 

and bicyclo[2.2.2]octane-2-carboxylic acid methyl esters (Figure 3-3; IVb) were both 

identified within the well water sample (#6) (Figure 3-6; A) and bicyclo[2.2.2]octane-1-

carboxylic acid methyl ester was present in the commercial acid extract (#5) (Figure 3-6; 

B). All three identifications had matching retention positions and mass spectra to that of 

the authentic reference compounds (Figure 3-6; C-F). 
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Figure 3-6: EICs (m/z 168) of (A) the commercial acid extract (#5) and (B) well water 

acid extract (#6) and the mass spectra (C and E) of peaks 2a and 2b identified by 

comparison with (D and F) the mass spectra and retention positions of authentic 

bicyclo[2.2.2]octane-1-carboxylic acid and bicyclo[2.2.2]octane-2-carboxylic acid 

methyl esters. 

Compounds with the bicyclo[2.2.2]octane (Figure 3-1; IV) skeleton are found as stable, 

cage-like skeletons in natural products such as eremolactone isolated from Eremophila 

fraseri (Kuo et al., 1998; Asaoka et al., 1983) and (–)-seychellene found in patchouli oil, 

extracted from Pogostemon cablin (Srikrishna and Ravi, 2008). Whilst the mass 
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spectrum of bicyclo[2.2.2]octane-2-carboxylic acid methyl ester (Figure 1A; IVa) was 

characterised by a small molecular ion (m/z 168) and base peak ion (m/z 136) due to 

loss of methanol from the latter (Figure 3-6; D), the mass spectrum of 

bicyclo[2.2.2]octane-1-carboxylic acid methyl ester (Figure 3-6; F) contained 

pronounced molecular and M-29 ions, similar to those of some of the unknowns, as did 

the mass spectrum of the 4-methyl-1-carboxylic acid isomer (free acid, NIST library) 

perhaps due to the loss of ·C2H5. The mass spectrum of the C14 4-

pentylbicyclo[2.2.2]octane-1-carboxylic acid methyl ester (Appendix Figure 4) also 

showed a fairly abundant molecular ion (m/z 238) and the loss of M-29 and M-28 (m/z 

209 and 210). Denisov et al. (1977d) reported the mass spectra of a range of substituted 

bicyclo[2.2.2]octanes with many showing loss of an ethyl group (·C2H5, 29 Daltons) 

from the molecular ion. They proposed a mechanism for the loss of ethyl from a 

monocyclic intermediate brought about by the rupture of a bond at a bridgehead carbon 

coupled with a hydrogen transfer (Denisov et al., 1977d) (discussed further in Chapter 4, 

Section 4.4.3.3). 

GC×GC-MS revealed that two of the OSPW acid extracts containing low molecular 

weight acids (#3 and #4) and the well water sample (#6) all had a peak (3a) sharing the 

same retention position and a mass spectrum to bicyclo[3.2.1]octane-6-carboxylic acid 

methyl ester, identified after comparison with the reference acid (Figure 3-7; A-D and 

F). An isomer present as an impurity in the authentic bicyclo[2.2.2]octane-1-carboxylic 

acid had a matching retention position and mass spectrum with a peak (3b) present in 

the commercial NA and well water sample (#5 and #6) (Figure 3-7; E-H). After 

examination of the mass spectrum and comparison with those of other quaternary 

substituted, bridged bicyclic acid methyl esters (Figure 3-4; G and Figure 3-6; F), the 

isomer and peak within the samples was postulated to be bicyclo[3.2.1]octane-1-

carboxylic acid methyl ester. The mass spectrum of the suspected bicyclo[3.2.1]octane-
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1-carboxylic acid methyl ester was consistent with the other mass spectra, dominated by 

four main intense ions. These four ions observed in both the reference mass spectra of 

bicyclo[2.2.2]octane-1-carboxylic acid methyl ester and bicyclo[2.2.1]heptane-1-

carboxylic acid methyl ester, corresponded to an intense molecular ion, an abundant M-

29 ion due to fragmentation across the largest ring, an abundant M-59 due to the loss of 

the acid methyl ester group and a relatively abundant m/z 67 corresponding to a C5H7
+
 

ion (Figure 3-4; G and Figure 3-6; F). Low intensity M-15 and M-29 were observed in 

the mass spectra of bicyclo[2.2.1]heptane-1-carboxylic acid methyl ester and peak 3b, 

respectively, potentially due to fragmentation across the smallest ring. This was not 

observed in the mass spectrum of bicyclo[2.2.2]octane-1-carboxylic acid methyl ester as 

the rings are all equal, leading to a more abundant M-29 ion. Peak 3b, in samples #5 and 

#6 (Figure 3-7; E and F), also eluted earlier than the identified as bicyclo[3.2.1]octane-

6-carboxylic acid, which was again consistent with the previous observations that 

bicyclic acid methyl esters substituted at a quaternary bridgehead carbon elute earlier 

than those substituted at secondary carbon positions (Figures 3-4, 3-6 and 3-9 and 

Appendix Figure 2). 
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Figure 3-7: EICs (m/z 168 and 87) of (A and B) OSPW acid extracts from two different 

industries (#3 and #4) and (C and D) the mass spectrum of peak 3a identified as 

bicyclo[3.2.1]octane-6-carboxylic acid methyl ester after comparison with the reference 

acid. EICs (m/z 168 and 87) of (E and F) the commercial acid mixture and well water 

extract and (G and H) the speculative assignment of bicyclo[3.2.1]octane-1-carboxylic 

acid after comparison with an isomer within a purchased reference sample. 
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Compounds with the bicyclo[3.2.1]octane-type skeleton (Figure 3-1; V) are common in 

several natural products (Presset et al., 2012). However the hydrocarbon, 

bicyclo[3.2.1]octane and alkyl substituted homologues have also long been known in 

petroleum (Sokolova et al., 1989; Mair et al., 1958b). The mass spectrum of 

bicyclo[3.2.1]octane-6-carboxylic acid (Figure 3-7; D) contained a small molecular ion 

at m/z 168, an ion at m/z 136 attributed to the loss of methanol and a base peak ion 

typical of methyl esters at m/z 87.  

Similarly, cis-bicyclo[3.3.0]octane was identified in petroleum over 50 years ago (Mair 

et al., 1958b). Previously, 4-methylbicyclo[3.3.0]octane-2-carboxylic acid (Figure 3-3; 

VIb) was identified in a commercial NA
 
by comparison of the mass spectrum with that 

of a purchased reference sample (Rowland et al., 2011e). Since then the C9 parent acid, 

bicyclo[3.3.0]octane-2-carboxylic acid (two isomers) had become commercially 

available (Figure 3-3; VIa) and comparison of the mass spectra and GC×GC retention 

times led to the identification herein of the corresponding methyl esters within the 

commercial acid mixture (#5) (Figure 3-8; A-E). 
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Figure 3-8: (A-D) Mass spectra of peaks 4a and b identified as isomers of 

bicyclo[3.3.0]octane-2-carboxylic acid methyl ester. (E) EIC (m/z 168 and 136) of the 

commercial NA (#5) showing peak 4c, present in (F and G) OSPW NA from industries 

A and B (#3 and #4), tentatively assigned as bicyclo[3.3.0]octane acid isomer after 

comparison of (H) the mass spectrum with (D) the minor reference isomer. 
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Another unknown compound (4c) within the commercial NA, not detected in the well 

water but present in the OSPW acid extracts from industry B (#3) and a different 

tailings from industry A (#4), had a very similar retention position and mass spectrum to 

that of the minor bicyclo[3.3.0]octane-2-carboxylic acid, methyl ester, isomer (Figure 

3-8; E-H). However, the retention time of the unknown was different from the authentic 

reference acids and thus the unknown was postulated to be a different isomer. The mass 

spectrum of peak 4c contained an M-18 ion (m/z 150), attributed to the loss of water 

(Figure 3-8; H). The loss of water is often observed in the mass spectra of non-

derivatised acids, keto- or hydroxy acids and not common in spectra of methyl esters. 

However, loss of water (M-18 ion) was observed in the mass spectra of some 

bicyclo[4.4.0]decane acid methyl esters and again appears to be specific to certain 

isomers (Rowland et al., 2011e). The mass spectrum of the unknown displayed an ion at 

m/z 74 (Figure 3-8; H), also a characteristic ion of methyl esters, suggesting it was not a 

non-methylated C10 acid. The molecular ion did not show multiple isotopic peaks, 

suggesting the compound did not contain sulphur and the lack of tailing in the 

chromatogram often observed for non-derivatised or more polar compounds indicated it 

was not a keto- or hydroxy acid and was most likely a different isomer of 

bicyclo[3.3.0]octane-2-carboxylic acid. 

 

3.3.5 C10 bicyclic acids 

Comparison of the mass spectra and retention positions of bicyclo[3.3.1]nonane-1- and 

3-carboxylic acid methyl esters (Figure 3-3; VIIIa and b) with the NA extracts, showed 

that these acids were absent from OSPW samples #2 and #4 from industry A. Wilde et 

al. (2015) showed the bicyclo[3.3.1]nonane acids were also absent from another OSPW 

sample from industry A (sample #1; Appendix Figure 2).. Conversely, 
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bicyclo[3.3.1]nonane-1-carboxylic acid methyl ester was detected in the well water 

sample (#6) (Figure 3-9; A, C and D) and both isomers were identified in the 

commercial acid mixture (#5) (Figure 3-9; B-D). The retention position of 

bicyclo[3.3.1]nonane-1-carboxylic acid methyl ester, matched that of a peak in the 

OSPW acid extract from industry B (#3); however, the peak was clearly co-eluting with 

another compound, complicating the mass spectrum. After analysis of sample #3 under 

different GC×GC conditions (GC×GC-MS conditions B, column set B; Chapter 2, 

Section 2.1.4), separation of the previously unresolved peaks was achieved and the peak 

was identifiable as bicyclo[3.3.1]nonane-1-carboxylic acid methyl ester. 
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Figure 3-9: EICs (m/z 182, 151 and 123) of (A) the commercial acid mixture (#5) and 

(B) the well water sample (#6) and (C-H) the identification of bicyclo[3.3.1]nonane 

acids by comparison with authentic reference compounds. 
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The GC×GC retention position and mass spectrum of authentic 5-

methylbicyclo[3.3.1]nonane-1-carboxylic acid methyl ester was similar to that of a peak 

present in both samples #3 and #5. However, co-elution, even under different GC×GC 

conditions (conditions B, Section 3.2.3), meant the assignment was tentative due to 

differences in ion intensities (Figure 3-9; G and H). Previously it has been speculated 

that biodegradation of adamantanes might produce ring-opened acids with the 

bicyclo[3.3.1]nonane skeleton, since this process occurs in the biodegradation of 

adamantan-2-one (Rowland et al., 2011c; Selifonov, 1992). Indeed given the (albeit 

tentative) identification above, this seems to be possible, at least for some of the present 

samples (e.g. #3, #5 and #6). The data suggest the acids in the OSPW extracts (and 

some commercial acids) sometimes included bicyclo[3.3.1]nonane carboxylic acids. 

Bicyclo[4.3.0]nonane carboxylic acids (Figure 3-1; X) were identified previously in a 

commercial NA mixture, by comparison of the mass spectra with a literature mass 

spectrum of bicyclo[4.3.0]nonane-7-carboxylic acid (perhydroindane-1-carboxylic acid) 

(Rowland et al., 2011e). Wilde et al. (2015) reported the synthesis of 

bicyclo[4.3.0]nonane-8-carboxylic acid (Figure 3-3; Xa) and a 7-

methylbicyclo[4.3.0]nonane-8-carboxylic acid isomer (or 2-methyl-3-perhydroindane 

carboxylic acid) (Figure 3-3; Xb). The retention times of the bicyclo[4.3.0]nonane acid 

standards were generally greater in the second dimension, than those of most of the NA 

in OSPW from industry A (Appendix Figure 2; Wilde et al. (2015)). However, 

examination of a few of the peaks within an OSPW acid extract from industry B (#3), 

the well water sample (#6) and the commercial acid extract (#5) analysed herein, 

displayed mass spectra very similar to those previously identified as C10 

bicyclo[4.3.0]nonane carboxylic acids (methyl esters) in a commercial acid mixture 

(Rowland et al., 2011e; Ranade et al., 2000) (Peaks a-c; Figure 3-10) as well as those of 
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the synthesised standards (Wilde et al., 2015). These data suggest the acids in the 

OSPW extracts include bicyclo[4.3.0]nonane carboxylic acids. 

 

Figure 3-10: (A, C and E) Example mass spectra of three peaks (6a-c) within an OSPW, 

well water and commercial acid extract (samples #3, #5 and #6) identified by 

comparison with the mass spectra of (B and F) two isomers of synthesised 

bicyclo[4.3.0]nonane-8-carboxylic acid methyl ester and (D) an isomer previously 

identified in commercial NA (Rowland et al., 2011e) (most likely a 7-isomer due to 

similarity to mass spectrum reported by Ranade et al. (2000)). 
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The mass spectra of the bicyclo[4.3.0]nonane acids within the commercial acid mixture 

were characterised by medium intensity molecular ions (ca 20%) and ions due to loss of 

methanol at m/z 150 and an ion at m/z 87 typical of acid methyl esters (Ranade et al., 

2000; Rowland et al., 2011e). The mass spectra of the isomers of the synthesised 

bicyclo[4.3.0]nonane-8-carboxylic acid methyl esters varied considerably (Figure 3-10; 

B and F). Thus in the major isomer (69% of total resolved peaks) the molecular ion was 

abundant (80%), whereas in more minor isomers the molecular ion was only <5% 

abundant (Figure 3-10; B and F). The mass spectra of the 8-isomers were easily 

distinguished from those reported for the 7- isomers (Rowland et al., 2011e; Ranade et 

al., 2000). Comparison of the mass spectra of several bicyclic NA (e.g. 6a-c; Figure 

3-10) with the reference mass spectra was evidence of both 8-isomers and almost 

certainly 7-isomers being present in OSPW NA.  

 

Wilde et al. (2015) reported the GC×GC retention position of 4-

methylbicyclo[3.3.0]octane-2-carboxylic acid (Figure 3-3; VIb) was similar to those of 

the NA within the OSPW acid extract from industry A (sample #1; Appendix Figure 2). 

However, similarly to the C9 parent acid isomers, there was no exact retention time or 

mass spectral match with any NA from the OSPW samples. Conversely, 4-

methylbicyclo[3.3.0]octane-2-carboylic acid methyl ester was identified in the 

fractionated commercial NA herein (Figure 3-11), as previously reported by Rowland et 

al. (2011e). 
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Figure 3-11: EIC (m/z 168) of (A) the commercial acid extract and (B) the mass 

spectrum of peak 7a identified by comparison with (C) authentic 4-

methylbicyclo[3.3.0]octane-2-carboxylic acid methyl ester. 

 

The mass spectrum of the C10 4-methylbicyclo[3.3.0]octane-2- carboxylic acid methyl 

ester (Figure 3-11; C) was characterised by a relatively strong (30%) molecular ion and 

multiple fragment ions, including the ion at m/z 140 (70%) assumed to be due to loss of 

a propene moiety, likely via a cycloreversion/retro-Diels-Alder rearrangement, typical 

of cyclic hydrocarbons (Dass, 2007; McLafferty and Tureček, 1993). The retention 

position of the C10 authentic acid methyl ester relative to the OSPW NA reported by 

Wilde et al. (2015) (Appendix Figure 2), coupled with the tentative identification of a 

C9 isomer in OSPW NA (Figure 3-8; H) suggested that some of the acids present in the 

OSPW might have this skeleton. 
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7-methylbicyclo[4.2.0]octane-7-carboxylic acid methyl ester eluted closely to the 

bicyclic acids in the OSPW acid extracts (#1-#4), but there was no exact match for the 

particular isomers synthesised. Bicyclo[4.2.0]octane carboxylic acids contain a fused 

cyclobutane ring (Figure 3-1; VII), similar in structure to short-chain ladderane fatty 

acids previously identified as degradation products of ladderane lipids (Rush et al., 

2011). Ladderane lipids are specific for bacteria capable of anaerobic ammonium 

oxidation (anammox) and therefore the acids can be used as biomarkers for anammox 

bacteria (Sinninghe Damsté et al., 2005). The mass spectra of both 7-

methylbicyclo[4.2.0]octane-7-carboxylic acid methyl ester isomers (Appendix Figure 5) 

displayed weak molecular ions (m/z 182), as expected for alicyclic acids containing a 

highly strained, fused cyclobutane ring. The base peak at m/z 101 was attributed to the 

fragmentation across the cyclobutane ring. 

3.3.6 C11+ bicyclic acids 

Bicyclic NA, believed to be products of biodegradation, have frequently been assumed 

to possess bicyclo[4.4.0]decane structures (Holowenko et al., 2001; Clemente and 

Fedorak, 2005; Headley et al., 2009b). The occurrence of such acids has been shown 

within at least one commercial acid mixture (Rowland et al., 2011e). 

The retention positions of the synthetic bicyclo[4.4.0]decane (decalin) carboxylic, 

ethanoic and propanoic acid methyl esters substituted in either the 2- or 3- positions on 

the decalin core showed that these acids were absent, or had a very low relative 

abundance, in some of the samples of OSPW acids which were examined (e.g. #1 and 

#2), supported by the late elution of these acids in the second dimension (Appendix 

Figure 2; Wilde et al. (2015). 

A small number of bicyclo[4.4.0]decane acids were tentatively identified within another 

OSPW from industry B (#3), based on mass spectral comparison with the synthesised 
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reference acids (Appendix Figures 6 - 9) and those previously reported in a commercial 

acid mixture (Rowland et al., 2011e), such as an isomer of bicyclo[4.4.0]decane-3-

carboxylic acid methyl ester, as well as bicyclo[4.4.0]decane-1-carboxylic acid methyl 

ester which was compared with a NIST library mass spectrum (Figure 3-12). Due to co-

elution and insufficient separation of the acid methyl esters, the assignments could not 

be confirmed by comparison with the retention positions of the synthetic reference acids. 

 

Figure 3-12: (A, C, D and E) Example mass spectra of NA within OSPW from industry 

B (#3), tentatively identified by comparison with (B and D) the mass spectra of 

previously identified bicyclo[4.4.0]decane acid methyl esters (Rowland et al., 2011e). 
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Petroleum hydrocarbons and related compounds possessing bicyclo[4.4.0]decane cores 

such as drimanes, cadinanes and eudesmanes have been well studied (Alexander et al., 

1984; Alexander et al., 1983; Gordadze et al., 2011). Fused cyclohexyl rings are 

common in biologically derived compounds e.g. hopanes. Therefore, bicyclic 

sesquiterpenes can be reasonably postulated to be biodegradation products of higher 

terpenes (Alexander et al., 1983). 

Although samples of bicyclo[3.2.2]nonane (Figure 3-1; IX), bicyclo[4.2.1]nonane (XI), 

bicyclo[4.2.2]decane (XII), bicyclo[5.3.0]decane (XIII), bicyclo[5.2.1]decane (XV), 

bicyclo[3.3.2]decane (XVI), spiro[4.5]decane (XVII) or cyclopentylcyclopentane (XVIII) 

carboxylic acids were not available, when the reported NIST GC retention indices of the 

hydrocarbons bicyclo[5.3.0]decane and cyclopentylcyclopentane, were examined, it was 

clear that these eluted well after decalin (bicyclo[4.4.0]decane). Since the acid methyl 

esters would be expected to have the same relative retention orders and 

bicyclo[4.4.0]decane acids, when present, were the latest eluting acids; these acids were 

fairly confidently ruled out in these samples of OSPW. Since we could find no sources 

of bicyclo[4.2.1]nonane, bicyclo[3.2.2]nonane, bicyclo[4.2.2]decane, 

bicyclo[3.3.2]decane or spiro[4.5]decane carboxylic acids to allow study of the mass 

spectra or GC retention behaviour, and the retention indices of the alkanes appear not to 

have been published, these could not be ruled out as possibilities. 

 

3.3.7 Mass spectral features of bicyclic acids 

Examination of the mass spectral features observed for the authentic reference 

compounds (Figure 3-3) were used to postulate structural features of the unknown acids. 

For example, methyl esters of acids in which the methylated carboxylic group is 

substituted onto the ring, creating a tertiary carbon atom e. g. in the mass spectra of the 
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esters of bicyclo[4.4.0]decane-2- or 3- carboxylic acid (Figure 3-12 and Appendix 

Figures 6 and 7) or bicyclo[4.3.0]nonane-2- (Rowland et al., 2011e) or -3- carboxylic 

acids (Figure 3-10), commonly lose a neutral methanol molecule, or methoxy radical 

(M-31/32), (though the spectra of stereoisomers vary; Figure 3-10). 

 In contrast, methyl esters of acids in which the methylated carboxylic group is 

substituted onto the ring via a longer alkanoate chain e. g. in the mass spectra of the 

esters of bicyclo[4.4.0]decane-2- or 3-ethanoic or propanoic acids (Appendix Figures 8 

and 9) or bicyclo[2.2.1]heptane-2-ethanoic acid (Figure 3-4; C), commonly lose 

a ·CH2CO2CH3 radical (mass 73 and mass 74 with occurrence of hydrogen transfer). 

Methyl esters of acids in which the methylated carboxylic group is substituted onto the 

bridgehead carbon, creating a quaternary carbon atom e. g. in the NIST mass spectrum
 

of the esters of bicyclo[4.4.0]decane-4a-carboxylic acid (Figure 3-12; F) or mass 

spectrum of bicyclo[3.3.1]nonane-1-carboxylic acid (Figure 3-9, D), commonly lose a 

methylated carboxy radical ·CO2CH3 radical (mass 59 and sometimes mass 60 with the 

occurrence of hydrogen transfer). 

Abundant lower mass fragment ions such as m/z 55, 67, 79 and 81 present in many of 

the reference compound mass spectra are common ions observed in the mass spectra of 

cycloalkanes/polycycloalkanes, particularly those containing substituted cyclohexyl and 

cyclopentyl rings (McLafferty and Gould, 2012). Therefore these ions were postulated 

to originate from fragmentations within the bicyclic core via more complex mechanisms 

and rearrangements i.e. corresponding to C4H7
+
, C5H7

+
, C6H7

+
 and C6H9

+
 fragment ions 

respectively. Fragmentation within a bicyclic core requires fission of at least two bonds. 

Mass spectral studies of cycloalkanes, specifically bicyclic hydrocarbons, suggest that 

electron ionisation results in the fission of one of the bonds at a tertiary carbon 
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bridgehead, followed by subsequent rearrangement and fragmentation (Denisov et al., 

1977d; Denisov et al., 1977b; Denisov et al., 1977a). 

The mass spectra of the C11 unknowns in the OSPW samples exhibited some of the 

above features. In general they were also characterised by abundant molecular ions (m/z 

196) and ions at m/z 81, 95 and 107 were often predominant (Appendix Figure 10). In 

some spectra, ions, which may indicate losses of ethyl (M-29) and other alkyl (e.g. M-

57, butyl) substituents, were present. To contain alkyl substituent groups of this size (e.g. 

C4), a C11 acid would require a bicyclic core to contain only six carbons (e.g. C4-

bicyclo[2.2.0]hexane carboxylic acids). Spectra of the methyl esters of such acids are 

distinctive and do not match those observed here (Rush et al., 2011). Thus, the apparent 

C3/C4 losses from the unknown C11 acid methyl esters represent losses from the rings, as 

observed in the spectrum of the methyl ester of authentic 4-methylbicyclo[3.3.0]octane-

2-carboxylic acid, which shows an M-42 ion due to the loss of propene (Figure 3-11; C).  

Although a number of structural features can be observed from the mass spectra of the 

methyl esters of the C12-16 acids, including molecular ions, ions due to losses of 

methanol (M-32) and to losses of alkyl groups or alkene moieties (e.g. M-15, M-28 and 

29) from the molecular ion and ions due to losses of ethanoate (M-73) and propanoate 

(M-87) side chains, no more rigorous assignments of the structural types could be made 

for the C11 acids. Thus based on the structures identified, it was postulated that these 

were mostly higher homologues of the bicyclo[2.2.1]heptane, bicyclo[2.2.2], [3.2.1], 

[3.3.0]octane, bicyclo[3.3.1] and [4.3.0]nonane and some bicyclo[4.4.0]decane skeleta, 

with possibly bicyclo[4.2.1]nonane, bicyclo[3.2.2]nonane, bicyclo[3.3.2]decane or 

spiro[4.5]decane carboxylic acids represented also. 
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3.4 Conclusions 

Consideration of the GC retention behaviour, numbers of structural types and 

comparison of the electron ionisation mass spectra of the methyl esters of a number of 

synthetic and purchased bicyclic carboxylic acids, allowed identification of various 

bicyclic acids in OSPW and commercial acids, many for the first time.  

More than one hundred C8-15 bicyclic acids were shown to be present in each OSPW 

extract. Synthesis or purchase allowed identification of bicyclo[2.2.1]heptane, 

bicyclo[3.2.1]octane, bicyclo[4.3.0]octane and bicyclo[3.3.1]octane acids in OSPW and 

a bicyclo[2.2.2]octane acid in a commercial acid mixture. The retention positions of 

authentic bicyclo[3.3.0]octane and bicyclo[4.2.0]octane carboxylic acid methyl esters 

and published retention indices, showed these were also possibilities, as were 

bicyclo[3.1.1]heptane acids. In most OSPW acid extracts analysed, the 

bicyclo[4.4.0]decane carboxylic (decalin) acids which have always been assumed to be 

present in OSPW (Frank et al., 2008; Headley et al., 2009b), were relatively minor 

components. Bicyclo[5.3.0]decane and cyclopentylcyclopentane carboxylic acids were 

ruled out on the basis that the corresponding alkanes eluted well after 

bicyclo[4.4.0]decane (latest eluting acids). Bicyclo[4.2.1]nonane, bicyclo[3.2.2]nonane, 

bicyclo[3.3.2]decane, bicyclo[4.2.2]decane and spiro[4.5]decane carboxylic acids could 

not be ruled out or in, as no authentic compounds or literature data were available. Mass 

spectra of the methyl esters of the higher bicyclic C12-15 acids suggested that many were 

simply analogues of the above, with longer alkanoate chains and/or alkyl substituents. 

Based on the results, it is hypothesised that, at least, some of these acids represent the 

biotransformation products of the initially somewhat more bio-resistant bicyclanes of 

petroleum. Remediation studies suggest at least some bicyclic acids can be relatively 

quickly removed from suitably treated OSPW (Martin et al., 2010), but a closer 
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examination of which isomers are degraded will now be possible using the methods 

demonstrated here. This may be deemed important as some bicyclic acids are more 

acutely toxic than others (Jones et al., 2011). 

Clearly many bicyclic acids remained to be identified. Since a wider literature of mass 

spectra of bicyclic hydrocarbons (e.g. Denisov et al. (1977d), Denisov et al. (1977c), 

Denisov et al. (1977a), Brodskii et al. (1977), Lukashenko et al. (1973), Golovkina et al. 

(1984)) was available than was extant for the acids, a useful approach formerly adopted 

by Zelinsky (1924) and Seifert et al. (1969) involving conversion of the acids to the 

hydrocarbons might prove a valuable complementary method to that employed here. 

Combining this older approach with the separation power of modern chromatography 

methods such as GC×GC-MS, as demonstrated for the acid methyl esters herein, might 

potentially be useful for furthering the investigation into the structural identification of 

bicyclic petroleum acids. Such an approach is described in the following chapter. 
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Chapter 4  

Development of a method for the conversion of bicyclic 

naphthenic acids to hydrocarbons 

Chapter 4 describes the development of a synthetic route for the conversion of 

carboxylic acids to the corresponding hydrocarbons. The method was tested on three 

‘model’ bicyclic acids in order to optimise yields and to ensure that the structural 

integrity of the acids was maintained without extensive rearrangements. 

The trial conversion method consisted of a three-step transformation encompassing 

reduction of the acids to alcohols, esterification of the alcohols to the tosyl esters 

(tosylates) and reduction of the tosyl esters to hydrocarbons. The products of each step 

were characterised by infrared spectroscopy (IR), gas chromatography-mass 

spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). 

Interpretation of the resultant data showed that the integrity of the bicyclic ‘cores’ was 

maintained in the corresponding bicyclic hydrocarbons (bicyclanes). The method 

therefore showed potential for use with unknown complex acid mixtures for the 

identification (by inference from the identified bicyclanes) of bicyclic naphthenic acids 

(NA), in matrices such as commercial NA and oil sands process-affected waters 

(OSPW). 

The method developed herein and characterisation data for the reduced model acids (i.e. 

bicyclanes) discussed in this chapter have been published in part: 

Wilde, M. J. and Rowland, S. J. (2015) Structural Identification of Petroleum Acids by 

Conversion to Hydrocarbons and Multidimensional Gas Chromatography-Mass 

Spectrometry. Analytical Chemistry, 87, 16, 8457-8465. 
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4.1 Introduction 

The separation power of multidimensional gas chromatography-mass spectrometry 

(GC×GC-MS) has proved valuable in the structural elucidation of some bicyclic NA as 

their methyl ester derivatives for both commercial NA and for NA extracted from oil 

sands process-affected waters (OSPW) (Chapter 3; Wilde et al. (2015)). GC×GC-MS 

led to the identification of several fused-ring and several novel, bridged, bicyclic acids 

in petroleum related mixtures, as described in Chapter 3. 

Although GC×GC-MS affords sufficient separation of numerous individual NA (as 

methyl esters) even in complex mixtures (e.g. Rowland et al. (2011c)), identification of 

bicyclic NA to date has been somewhat limited by the lack of reference mass spectra for 

known, authenticated, acid methyl esters (Wilde et al., 2015). Such limitations led some 

early researchers to adopt alternative complementary approaches involving conversion 

of acids to compounds deemed likely to be more amenable to identification by mass 

spectrometry, such as hydrocarbons (Braun et al., 1933; Zelinsky, 1924; Seifert et al., 

1969). Many more reference mass spectra exist for petroleum hydrocarbons than for the 

esters of the acids. The lack of functional groups in the hydrocarbons means that mass 

spectral fragmentation is wholly dependent on the bicyclic ‘core’, often making 

interpretation of the reference mass spectra of the hydrocarbons somewhat simpler 

(though not in all cases). However, the lack of sufficient chromatographic separation of 

the complex hydrocarbon mixtures produced in these earlier studies meant identification 

of individual compounds was still limited. 

The present investigation aimed to investigate the hypothesis that a combination of the 

historical approach of converting the petroleum acids to the hydrocarbons, plus the use 

of improved chromatographic separations afforded by GC×GC-MS, might allow more 

unknown acids (by inference, following identification of the bicyclanes) to be identified. 
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4.1.1 Aims and Objectives 

The aims of the current investigation involved planning and developing a synthetic 

route for the chemical transformation of carboxylic acids to hydrocarbons whilst 

retaining the ‘core’ bicyclic structure. The three-step procedures previously adopted by 

early researchers (e.g. Seifert et al. (1969)) for the conversion of petroleum acids to 

hydrocarbons were used as a starting point. The aims were initially tested by attempting 

an optimised conversion procedure on three ‘model’ bicyclic acids. The structures of the 

‘model’ bicyclic acids, intermediates and final hydrocarbon products were then 

characterised using infrared spectroscopy (IR), gas chromatography-mass spectrometry 

(GC-MS) and nuclear magnetic resonance spectroscopy (NMR) to investigate the 

efficiency of each stage of the conversion. 
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4.2 Synthetic route for conversion of acids to hydrocarbons 

Historically, synthetic routes adopted for conversion of NA to their hydrocarbon 

counterparts tended to consist of three-step transformations: reduction of the carboxylic 

acids (Seifert et al., 1969), or their methyl (Zelinsky, 1924; Knotnerus, 1957; Anbrokh 

et al., 1972) or ethyl (Goheen, 1940) esters, to the corresponding primary alcohols, 

followed by formation of tosyl or other derivatives and reduction of the tosyl (Seifert et 

al., 1969), mesyl (Koike et al., 1992; Nascimento et al., 1999) or iodide (Zelinsky, 1924; 

Goheen, 1940; Knotnerus, 1957; Anbrokh et al., 1972) intermediates to the 

hydrocarbons (cf. Figure 4-1). An alternative, direct deoxygenation of petroleum acids 

was attempted by hydrogenolysis of the methyl esters over a nickel catalyst 

(Chernyavskaya et al., 1983). 

The initial reduction has usually been carried out with lithium aluminium hydride (LAH) 

and that method was retained herein.  

 The deoxygenation of the resultant primary alcohols is possibly the most versatile step 

of the whole acids to hydrocarbons conversion, with a variety of derivative options 

available. Tosylation reactions are usually carried out in the presence of an amine base, 

classically pyridine with either chloroform or pyridine as the solvent (Seifert et al., 1969; 

Kabalka et al., 1986). However, investigations involving the formation of tosyl and 

mesyl esters have reported the production of the corresponding chlorides and alkenes 

(Dimmler et al., 1984; Kabalka et al., 1986; Ding et al., 2011). Therefore, catalytic 

tosylation in the presence of 4-(dimethylamino)pyridine (DMAP) with triethylamine 

(TEA) as the base, was utilised herein, as an alternative to refluxing in pyridine; this 

method allowed for milder conditions to be employed and resulted in improved yields 

of tosylate formation (Chapter 2, Section 2.3.2). 
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Alternative reductions via the formation of iodides have been achieved by heating the 

alcohols with hydroiodic acid (Knotnerus, 1957; Anbrokh et al., 1972). However, 

studies investigating the ring structures of such acids concerned about possible 

isomerisation, used iodine and red phosphorus as an alternative (Zelinsky, 1924; 

Zelinsky and Pokrowskaja, 1924). Reduction of the iodides is usually carried out over 

zinc dust, in the presence of hydrochloric acid (Knotnerus, 1957; Goheen, 1940). 

 The final reduction of other intermediates is often a repetition of the first step using 

LAH (Fafet et al., 2008). However, since the earlier studies, the use of lithium 

triethylborohydride (LiEt3BH) also often called ‘Super-hydride®’, has been advocated 

for the more efficient reduction of tosylate derivatives (Krishnamurthy and Brown, 

1976; Holder and Matturro, 1977; Krishnamurthy, 1978). This was therefore utilised 

herein. 

Overall therefore, the scheme utilised herein (Figure 4-1) was a substantial refinement 

and potential improvement on the method reported by Seifert et al. (1969) and others. 

Overall, production of the hydrocarbons from the acids, involved reduction of the free 

acids or esters (both were used) with LAH, derivatisation to the tosylates in the presence 

of DMAP and TEA and “Super-hydride®” reduction to the hydrocarbons (Figure 4-1). 

 

Figure 4-1: Route of conversion of the acids to the corresponding hydrocarbons used 

herein. Model compound 4-methylbicyclo[3.3.0]octane-2-carboxylic acid is shown as 

an example. 
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4.3 Methods 

4.3.1 Experimental Details 

Authentic 4-methylbicyclo[3.3.0]octane-2-carboxylic acid (3-methyloctahydro-

pentalene-1-carboxylic acid) (Ia), 2,6,6-trimethylbicyclo[3.1.1]heptane-3-carboxylic 

acid ((+)-3-pinane-carboxylic acid) (IIa) and 4-pentylbicyclo[2.2.2]octane-1-carboxylic 

acid (IIIa) were purchased from Sigma (Poole, UK).  

The general procedures for each step of the conversion, for the reduction of three model 

bicyclic acids to hydrocarbons, via the formation of the alcohol and tosylate 

intermediates are described in Chapter 2, Section 2.3 and specific experimental details 

and results are described below in Sections 4.4.1, 4.4.2 and 4.4.3. 

 

4.3.2 Analytical Procedures 

The instrumentation used for the structural characterisation of the acids, intermediates 

and hydrocarbon products, including IR, GC-MS and NMR are described in detail in 

Chapter 2, Section 2.1. 
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4.4 Results and Discussion 

4.4.1 Synthesis of 2,4-dimethylbicyclo[3.3.0]octane 

4.4.1.1 Synthesis and characterisation of 4-methylbicyclo[3.3.0]octane-2-methanol 

4-methylbicyclo[3.3.0]octane-2-carboxylic acid (Ia) was successfully reduced to 4-

methylbicyclo[3.3.0]octane-2-methanol (Ib) by reacting with excess LAH under an 

inert atmosphere with anhydrous diethyl ether as the solvent (Figure 4-2). Subsequent 

acid work-up using 10% H2SO4 resulted in a clear liquid product, with an average yield 

of 86 ± 3% (n = 3). GC-MS of the product, derivatised with BSTFA, followed by 

integration of the areas of the GC peaks showed Ib, as its trimethylsilyl (TMS) ether, 

present with 98 % purity (Figure 4-3). 

 

Figure 4-2: Reduction of 4-methylbicyclo[3.3.0]octane-2-carboxylic acid, Ia to 4-

methylbicyclo[3.3.0]octane-2-methanol Ib. 

Characterisation of the product was achieved by interpretation of the IR, GC-MS and 

NMR spectra, as well as comparison to the corresponding data for the original acid. The 

first indication of a successful reduction was the difference in the GC retention time of 

the derivatised suspected alcohol product to that of the initial derivatised acid (Figure 

4-3). The derivatised product Ib had a retention time of 11.3 min compared to that of 

the derivatised acid Ia, at 12.5 min (Figure 4-3).  
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Figure 4-3: Comparison of total ion current (TIC) chromatograms showing differences 

in retention times of precursor acid Ia and reduction product Ib, as TMS ester and ether 

derivatives respectively. (Column A, inlet temperature 300 °C; Chapter 2, Section 2.1.3). 

 

The infrared spectrum of the carboxylic acid showed transmissions with typical 

broadening between 3026-2692 cm
-1

 assigned to the carboxylic hydroxyl group and an 

intense transmittance at 1702 cm
-1

 assigned to the C=O stretch in the carboxyl group 

(Figure 4-4; top). The disappearance of these features in the infrared spectrum of Ib, 

coupled with the appearance of a broad, medium intensity band at 3357 cm
-1

 assigned to 

the O-H stretch in an alcohol hydroxyl group, suggested the product was an alcohol and 

that the reduction had been successful (Figure 4-4; bottom and Table 4-1). 
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Figure 4-4: Comparison of the IR spectra of acid Ia (top) and alcohol product Ib 

(bottom). 

 

Table 4-1: Summary of features of the IR spectra of 4-methylbicyclo[3.3.0]octane-2-

carboxylic acid, Ia and 4-methylbicyclo[3.3.0]octane-2-methanol, Ib. 

Ia Ib 

𝝂 (cm
-1

) Assignment Comment 𝝂 (cm
-1

) Assignment Comment 

3026-2692 
Carboxyl 

OH 

Broadening of 

peaks 
3357 

Alcoholic 

OH 

O-H Stretch, 

broad 

2951, 

2898, 

2864 

CH3, CH2, 

CH saturate 

alkyls 

C-H stretch, 

med. > 3000 

2944 

CH3, CH2, 

CH saturate 

alkyls 

C-H stretch, 

med-

str. >3000 2863 

1450 C-H def. 1450 
C-H def., 

weak 1702 
Carboxyl 

C=O 
C=O stretch, str. 1377 

900-1300 
Carboxyl  

C-OH 
fingerprint 1016 

Alcoholic 

C-OH 

C-O stretch, 

med. 
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Analysis by GC-MS provided data which supported the conclusions drawn from the IR 

spectra. The mass spectrum of the alcohol product (Ib) as the TMS ether, showed a 

molecular ion at m/z 226, fourteen Da less than the molecular ion of the reactant acid at 

m/z 240 (Figures 4-5 and 4-6). The reduction in mass was expected given the removal 

of oxygen within the carboxyl group and the gain of hydrogen from LAH.  

Derivatisation of polar functional groups such as carboxylic acids and alcohols using 

BSTFA, dramatically improves their gas chromatographic behaviour on non-polar 

stationary phases; the chromatographic peaks of free acids and alcohols often show 

extensive tailing. However, the mass spectra of TMS derivatives are typically 

dominated by a few intense ions often from facile fragmentation of the TMS group, 

making structural details difficult to interpret. 

The exact structure of the alcohol (Ib) could not be determined from the mass spectrum 

of the trimethyl silyl ether alone, as the dominant ions observed e.g. m/z 211 and 75 

(Figure 4-6), were assigned as losses derived from the trimethylsilyl (TMS) group (e.g. 

M-15 and HO
+
=Si(CH3)3). The mass spectra of TMS derivatives typically show intense 

ions at m/z 73 and 75, as seen in Figure 4-5 and Figure 4-6, due to the fragmentation of 

(CH3)3Si
+
 and (CH3)2Si=O

+
H respectively (Zaikin and Halket, 2009; Eglinton et al., 

1968). An abundant M-15 ion was seen in both spectra, consistent with the losses of 

methyl fragments from the TMS groups (Figures 4-5, 4-6 and 4-7; A). 

Alternatively, the ion assigned as the M-15 ion could also be justified by the loss of 

methyl at the 4-position after hydrogen rearrangement from the bicyclic ring followed 

by α-cleavage (Figure 4-7; B). Hydrogen rearrangement after ionisation and subsequent 

bond cleavage is a mechanism suggested for the occurrence of many ions in 

functionalised bicyclic compounds (Denisov et al., 1977c; Golovkina et al., 1979; 

Curcuruto et al., 1991). Hydrogen transfer from alkyl carbons to form protonated 
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oxygen species in alicyclic alcohols, aldehydes and esters is energetically favourable 

and therefore considered likely to occur (McLafferty and Tureček, 1993). 

The base peak ion at m/z 135 in the mass spectrum of Ib TMS ether (Figure 4-6) was 

difficult to assign from simple cleavage of the molecular ion and was attributed to the 

secondary fragmentation of the ion at m/z 211 (Figure 4-7). Fragmentation of a cation to 

another cation via the loss of a neutral fragment is a known fragmentation mechanism, 

energetically more favourable than fragmentation of a cation to a radical cation 

(McLafferty and Tureček, 1993). Determination of whether the alcohol retained the 

bicyclo[3.3.0]octane ‘core’, required NMR spectroscopy. 

 

Figure 4-5: Mass spectrum of Ia TMS ester. 

 

Figure 4-6: Mass spectrum of Ib TMS ether. 

M+ 

M+ 
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Figure 4-7: Postulated mass spectral fragmentations (A and B) to account for the 

principal ions in the mass spectrum of Ib TMS ether. (a, alpha-cleavage; i, inductive 

cleavage; rH, hydrogen rearrangement). 
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Figure 4-8: (A) 
1
H-NMR spectrum of Ib. (B and C) Focused spectra showing detail 

between chemical shift ranges 0.5 – 2.5 and 3.2 – 4.0 ppm. 

The 
1
H-NMR spectrum of Ib displayed some distinct, identifiable, resonances. However, 

the majority of the proton signals were observed as complex multiplets between 1.20 – 

2.10 ppm, which were attributed to the methylene groups of similar magnetic 

equivalence in the bicyclic ring system. Therefore it was not possible to elucidate the 

complete structure of Ib from the data shown in 
1
H-NMR spectrum alone (Figure 4-8). 

However, the intense doublet (d) seen at 0.98 ppm with an integral of 3.0 was attributed 

to the protons of the methyl substituent at position 1 (Figure 4-8). The doublet observed 

was attributed to the presence of a single neighbouring proton at position 6. 

The multiplets at 3.53 and 3.63 ppm, each integrating to 1.0, were each a doublet of 

doublets (dd), and were attributed to the protons on the methylene group at position 10. 

The splitting pattern (Figure 4-8; C) was attributed to the fact that the two protons at 

position 10 were diastereotopic and each magnetically inequivalent relative to the 
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proton at position 9, which was situated at a chiral centre. The magnetic inequivalence 

of the protons at position 10 is best portrayed as a Newman projection (Figure 4-9). 

Although protons Ha and Hb are on the same carbon (Figure 4-9) their positions are not 

interchangeable and therefore the protons are magnetically inequivalent. 

 
Figure 4-9: Newman projection demonstrating magnetic inequivalence of diastereotopic 

protons Ha and Hb relative to the chiral proton Hc. 

Therefore each proton at position 10 is split by the proton at position 9 and the other 

proton on position 10, resulting in two doublet of doublets at similar chemical shifts. 

The coupling constants were 
3
J = 7.1 and 10.5 Hz (3.53 ppm) and 5.8 and 10.5 Hz (3.63 

ppm); the shared coupling constant of 10.5 Hz is consistent with the above. 

The multiplet at 0.83 ppm (Figure 4-8; B), seemingly a quartet (q), in fact had a 

coupling constant of 11.8 Hz, which was higher than the typical 7 Hz observed for a 

quartet. The equal spacing between the peaks ruled out the possibility that the multiplet 

was a doublet of doublets. However the quartet could still have arisen from three 

protons on different carbons, two of which might possess the same, high coupling 

constant (e.g. an overlapping triplet of doublets (td)). Further assignment of individual 

protons required further analysis by homonuclear decoupling experiments. 

Homonuclear decoupling involves irradiating the compound at a specific frequency (i.e. 

targeting protons at a specific chemical shift). This removes the coupling effects of 

these protons on the surrounding proton environments. Therefore any observable 

changes in the splitting patterns of the remaining signals, results in the identification of 

adjacent environments (e.g. Figures 4-10 and 4-11). The newly identified protons can be 
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targeted and the adjacent protons identified. This approach can dramatically increase the 

structural information obtainable from a 
1
H-NMR spectrum containing complex 

multiplets. 

Only a few distinct multiplets were useful for homonuclear decoupling experiments in 

the 
1
H-NMR spectrum of Ib. If two multiplets share a similar chemical shift, irradiation 

at that frequency can result in the decoupling of multiple environments, decreasing the 

selectivity of the experiment and making it difficult to link specific signals. The 

irradiation strength can be lowered to reduce the possibility of decoupling multiple 

environments with similar chemical shifts; however this reduces the observable changes 

in the spectrum. 

A summary of the results from the homonuclear decoupling experiments of Ib is given 

in Table 4-3 (page 143). Although six of the proton signals were unresolved within the 

complex multiplet between 1.31 – 1.56 ppm, some structural detail could be obtained 

and used tentatively to assign other signals in the spectrum. For example, the 
1
H-NMR 

spectrum of Ib contained nine main multiplets, as seen in Figure 4-8. Irradiation of the 

signals at 3.53 and 3.63 ppm already identified as the diastereotopic protons at position 

10 were expected to change only one other signal in the spectrum, thus identifying the 

chiral proton at position 9. The only difference in the spectrum after decoupling the 

doublet of doublets at 3.53 and 3.63 ppm was a small change seen in the multiplet at 

1.58 ppm, which overlapped with the large complex multiplet between 1.31 - 1.56 ppm. 

The identification of the proton on position 9 at 1.58 ppm was also supported in the 

COSY spectrum of Ib (Appendix Figure 11); the assignment of the proton at position 9 

was then used to identify the positions of other protons. 
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Decoupling the signal at 1.58 ppm might have resulted in decoupling protons within the 

large overlapping multiplet. Therefore the other resolved signals were decoupled to see 

if any affected the signal at 1.58 ppm. Three other signals with integrals of 1.0, in 

addition to the doublet of doublets at 3.53 and 3.63 ppm, were observed to be coupling 

with the proton at position 9; the doublet of doublets at 2.05 ppm and what appeared to 

be a quintet (quint) and quartet (q) at 1.83 ppm and 0.83 ppm, limiting them to the three 

protons at positions 5 and 7. 

After decoupling the ‘quartet’ at 0.83 ppm, the multiplets at 1.58, 1.83 and 1.31-1.56 

ppm were all observed to change, indicating the environment was adjacent to three other 

proton environments (Figure 4-10; A). Decoupling the ‘quintet’ (quint) at 1.83 ppm 

resulted in the same signals being affected, plus the quartet (q) at 0.83 ppm (Figure 4-10; 

C). Therefore the signals at 0.83 ppm and 1.83 ppm both couple with the same two 

environments (1.58 and 1.31-1.56 ppm); one being the proton at position 9 (1.58 ppm), 

the other potentially the proton at position 6 (1.31-1.56 ppm), and to each other. 

Consequently, the multiplets at 0.83 ppm and 1.83 ppm were assigned as the two 

protons on the methylene group in position 5. This was also supported by a large 

coupling constant ~11.6 Hz in both multiplets, corresponding to the coupling between 

the protons on the same carbon at position 5. The assignment of the two multiplets at 

1.83 ppm and 0.83 ppm as the protons at position 5 was confirmed by the two 

resonances correlating in the COSY spectrum of Ib (Appendix Figure 12). 
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Figure 4-10: Comparison of 
1
H-NMR spectra of Ib (A) decoupled at 0.83 ppm, (B) non-

decoupled 
1
H spectrum and (C) decoupled at 1.83 ppm (red; irradiated, blue; affected). 

The two multiplets at 1.88 ppm and 2.05 ppm resembled doublets of doublets (dd). 

When decoupled, they affected each other and the large multiplet between 1.31 – 1.56 

ppm (Figure 4-11; A and C). Decoupling the signal at 2.05 ppm also affected the 

multiplet at 1.58 ppm, assigned as the proton at position 9. Therefore the multiplets at 

1.83 and 2.05 ppm were assigned as the protons on the bridgehead carbons in positions 

7 and 8. This assignment was also supported by the signals at 1.83 and 2.05 ppm, 

correlating with two carbon resonances in the heteronuclear correlation (CHSHF or 

‘HETCOR’) spectrum of Ib (Appendix Figure 13), which showed ‘upwards’ phasing in 

the DEPT 
13

C spectrum of Ib (Figure 4-14). This confirmed the protons responsible for 

the resonances at 1.85 ppm and 2.05 ppm (both integrating to 1.0) were both CH groups 

within the molecule, supporting their assignment as protons at positions 7 and 8, ruling 

out other possibilities such as one of the protons at position 4 and 7. 
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Figure 4-11: Comparison of 
1
H-NMR spectra of Ib (A) decoupled at 1.88 ppm, (B) non-

decoupled 
1
H spectrum and (C) decoupled at 2.05 ppm (red; irradiated, blue; affected). 

The large multiplet between 1.31 – 1.56 ppm had an integral of 7.0. When the signal 

was irradiated at 1.40 ppm, several signals changed as expected (Table 4-3, page 143). 

However the multiplet at 2.05 ppm remained relatively unaffected even though the 

signal at 2.05 ppm coupled with at least one proton within the multiplet at 1.31 – 1.56 

ppm. This was attributed to the multiplet not being fully decoupled, without decoupling 

the signal at 1.58 ppm as well. 

Based on logical deductions from the results of the decoupling experiments 

(summarised in Table 4-3) and the 
1
H and COSY spectra (Figures 4-10 and 4-11 and 

Appendix Figures 11-13), assignment of each signal in the 
1
H spectrum (Figure 4-8) 

was made and correlated with the structure of Ib. The six protons on the three 

methylene groups, positions 2, 3 and 4, were expected to show complex splitting with 
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very similar chemical shifts. Therefore they were tentatively assigned as producing the 

complex multiplet between 1.31 – 1.56 ppm. This was supported by the multiplet 

integrating to 7.0, accounting for the six methylene protons, plus the single proton on 

position 6, also known to be amongst the multiplet from the decoupling of the protons 

of the methyl group at position 1 and observed correlation with the doublet in the COSY 

spectrum (Appendix Figure 12). The large multiplet was decoupled at 1.40 ppm, 

resulting in changes to all the signals apart from those at 3.53 and 3.63 ppm, assigned as 

the protons at position 10, 1.58 ppm, assigned as the proton at position 9 and, 

interestingly, the multiplet at 2.05 ppm assigned as the proton at position 7. Overall, the 

decoupling experiments detailed in Table 4-3 proved useful in refining the structural 

detail obtained from the original interpretation (Table 4-2, page 142). 

The 
13

C-NMR spectrum (Figure 4-13) supported the above assignments of the expected 

structure of Ib (Table 4-3). The chemical shifts were comparable with values given by 

Whitesell and Minton (1987), who detailed the chemical shifts in the 
13

C spectra of 

many alicyclic compounds, including a series of bicyclo[3.3.0]octanes. The list of 

structures included endo- and exo-2-methylbicyclo[3.3.0]octane and endo- and exo-

bicyclo[3.3.0]octane-2-methanol; the net chemical shifts of the two exo- structures 

(Figure 4-12; A and B) related remarkably well to the 
13

C-NMR spectrum in Figure 

4-13. 

 

Figure 4-12: Structures of (A) exo-2-methylbicyclo[3.3.0]octane and (B) exo-

bicyclo[3.3.0]octane-2-methanol; the net 
13

C-NMR chemical shifts reported by 

Whitesell and Minton (1987) were similar to those in the spectrum of (C) Ib in Figure 

4-13. 
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The 
13

C-NMR spectrum contained ten signals, which was expected, as Ib possessed no 

symmetry. The DEPT 
13

C-NMR spectrum showed five signals with opposite phasing 

relative to the other five signals, confirming that the product contained 5 methylene 

groups (labelled red in Figure 4-14). The number of secondary carbons (CH2 groups) 

was equal to the combined number of primary and tertiary carbons (CH3 and CH groups; 

labelled blue in Figure 4-14). Therefore the methylene signals were identified by the 

higher frequency of the branched methylene carbon at position 10, at 67.44 ppm. The 

electronegative oxygen within the hydroxyl group has a negative inductive effect on the 

adjacent carbon, causing the methylene carbon in position 10 to have a higher chemical 

shift. Conversely, the peak at the lowest chemical shift, 19.51 ppm was attributed to the 

methyl substituent in position 1 furthest from the hydroxyl moiety, supported by its 

orientation in the DEPT spectrum (Figures 4-13 and 4-14). The assignment of the peaks 

at 19.51 ppm and 67.44 ppm as carbon positions 1 and 10 was confirmed in the CHSHF 

spectrum of Ib, correlating with the doublet at 0.98 ppm and the doublet of doublets at 

3.53 and 3.63ppm, respectively, in the 
1
H spectrum (Appendix Figure 13). 

 

Figure 4-13: 
13

C-NMR spectrum of alcohol product Ib. 
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Figure 4-14: DEPT 
13

C-NMR spectrum of alcohol product Ib. 

The remaining carbon signals corresponding to CH groups (positions 6, 7, 8 and 9), 

observed in the DEPT 
13

C-NMR spectrum at 41.71, 46.68, 50.28 and 51.91 ppm, were 

assigned based on the correlations observed in the CHSHF spectrum of Ib (Appendix 

Figure 13) and confirmed by the additional 2 and 3-bond heteronuclear correlations 

observed in the correlation through long-range coupling (COLOC) spectrum of Ib 

(Appendix Figure 14). For example, the multiplet at 2.05 ppm attributed to the proton at 

position 7 correlated in the COLOC spectrum of Ib, with the carbon signal at 51.91 ppm, 

assigned as the carbon in position 8, the reciprocal correlation was also observed 

(Appendix Figure 14). The carbon signals corresponding to the methylene groups at 

positions 2, 3 and 4 (25.24, 31.72 and 33.13 ppm) could not be differentiated. However, 

the methylene group in position 5 at 40.28 ppm was identified based on its correlation 

with the proton signals at 0.83 ppm (d) and 1.83 ppm (m) (Appendix Figures 13 and 14), 

previously assigned as the protons at position 5, based on the homonuclear decoupling 

experiments and COSY spectrum (Appendix Figure 12). 
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Table 4-2: Summary of 
1
H and 

13
C-NMR spectra of alcohol product Ib. 

Position 

1
H chemical 

shifts / ppm 

(multiplicity) 

1
H 

integral 

13
C chemical shifts / ppm 

Primary 

(CH) 

Secondary 

(CH2) 

Tertiary 

(CH3) 

Quaternary 

(C) 

1 0.98 (d) 3.0   19.51  

2 

Determined by 

homonuclear 

decoupling experiments 

in Table 4-3 

 25.24
a
   

3  31.72
a
   

4  33.13
a 

  

5  40.28
 

  

6 41.71    

7 46.68    

8 51.91    

9 50.28    

10 
3.53 (dd) 1.0 

 67.44   
3.63 (dd) 1.0 

a
 peaks assigned positions 2, 3 and 4 are interchangeable 

 

 

The combined spectrometric and spectroscopic data confirmed the successful reduction 

of the acid and the formation of a primary bicyclic alcohol with the same structure as 

the acid. The IR and mass spectral data confirmed the formation of a bicyclic alcohol 

and the NMR spectra confirmed that the product possessed a di-substituted 

bicyclo[3.3.0]octane core; the same as that of the original acid. 
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Table 4-3: Summary of the 
1
H-NMR homonuclear decoupling experiments of Ib. 

Position 

1
H 

chemical 

shifts / 

ppm 

Multiplicity 
1
H 

integral 

J values 

/ Hz 

Homonuclear Decoupling Experiments 

Irradiated 

/ ppm 

Affected / 

ppm 

1
H within Structure 

(red – 
1
H irradiated 

blue – 
1
H affected) 

1 0.98 d 3.0 6.6 0.98 
1.31 - 

1.56 

 

2 

1.31-

1.56 
multiplet 

6 of 

7.0 

- 

1.40 
0.83, 0.98, 

1.83, 1.88 

 

3 - 

4 - 

5 

0.83 q 1.0 11.8 0.83 

1.31 – 

1.56, 1.58, 

1.83 
 

1.83 quint 1.0 5.6, 11.6 1.83 

0.83, 1.31 

– 1.56, 

1.58 

 

6 
1.31-

1.56 
multiplet 

1 of 

7.0 
- 1.40 

0.83, 0.98, 

1.83, 1.88 

 

7 2.05 dd/multiplet 1.0 - 2.05 

1.31 - 

1.56, 1.58, 

1.88 

 

8 1.88 dd/multiplet 1.0 - 1.88 
1.31 - 

1.56, 2.05 

 

9 1.58 multiplet 1.0 - 1.60 

0.83, 1.83, 

2.05, 3.53, 

3.63 

 

10 3.53 dd 1.0 7.1, 10.5 3.53 1.58 

 

10 3.63 dd 1.0 5.8, 10.5 3.63 1.58 
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4.4.1.2 Preparation and characterisation of 4-methylbicyclo[3.3.0]octane-2-methanol 

tosyl derivative 

4-methylbicyclo[3.3.0]octane-2-methanol (Ib) was successfully converted to the 4-

methylbicyclo[3.3.0]octane-2-methanol tosyl derivative (Ic) (Figure 4-15) by catalytic 

tosylation using tosyl chloride (TsCl) in the presence of 4-(dimethylamino)pyridine 

(DMAP) and triethylamine (TEA). The procedure was adapted from various methods 

(Ding et al., 2011; Goodenough et al., 2004; Hwang et al., 1984). The addition order of 

the reagents and choice of base was found to affect the outcome of the reaction. The 

method included the use of TEA as the base instead of pyridine, producing an average 

yield of 90 ± 5 % (n = 3). Attempts at refluxing in pyridine produced low yields and 

undesired products, such as the chloride. 

The purity of the product was difficult to ascertain from the gas chromatogram because 

the tosylate underwent elimination of p-toluene sulfonic acid during gas 

chromatography, due to hot injection at 300 °C (Figure 4-16). Even with the inlet 

temperature lowered to 250 °C and 225 °C, decomposition was still observed, albeit it 

was significantly less (as seen for all the tosylate products, Appendix Figures 15 and 23). 

The chromatogram contained a peak at 22.3 min showing slight tailing, which was 

assigned as the tosylate. The earlier eluting peaks, between 5.9 – 7.9 min, with 

molecular ions at m/z 136 were tentatively identified as C10H16 olefins, produced by the 

elimination of p-toluene sulfonic acid. The relative abundance of these earlier peaks was 

directly related to the injection temperature (Appendix Figures 15 and 23). GC-MS was 

useful in determining if any other by-products had formed; for example, whether there 

was unreacted alcohol and whether excess TsCl was present, in the form of p-

toluenesulfonyl-N-diethylamide, after reacting with TEA. Where impurities were 

present, the tosylate products were cleaned over silica, eluting with 30:1, hexane : ethyl 

acetate (Chapter 2, Section 2.3.4). 
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Figure 4-15: Reaction scheme for the tosylation of Ib to Ic. 

 

Figure 4-16: Gas chromatogram of tosylate product, Ic. The product underwent partial 

decomposition in the hot GC inlet. (Column A, inlet temperature 300 °C). 

The mass spectrum of Ic (Figure 4-17) did not display distinguishing features that 

allowed the elucidation of the tosylate structure. Instead, confirmation of the formation 

of the tosylate relied on the interpretation of NMR spectra. However, the high retention 

time and tailing of the peak at 22.3 min in the chromatogram suggested a polar, low 

volatility compound had been produced. The m/z 155 ion in the mass spectrum was 

assigned as due to the fragment ion CH3(C6H4)S
+
O2 (Figure 4-17). The m/z 136 ion was 

attributed to the loss of CH3(C6H4)SO3H resulting in an odd-electron radical cation, 

[C10H16]
+·

 most likely explained by hydrogen rearrangement and inductive cleavage of 

the C-O bond. The majority of low mass fragment ions such as m/z 121, 107 and 93 

were tentatively identified as due to secondary fragments from the m/z 136 radical 

cation (Figure 4-17). However, the ion at m/z 91 was thought to originate from the tosyl 

group; attributed to the toluene cation, C7H7
+
 (sometimes termed the tropylium cation). 
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Figure 4-17: Mass spectrum of tosylate product Ic. 

The 
1
H-NMR spectrum of Ic showed very similar signals to that of Ib, which was 

strong evidence that the bicyclic part of the compound had retained the 

bicyclo[3.3.0]octane structure. For instance, the two doublet of doublets (dd) at 3.95 

ppm were assigned to the diastereotopic protons at position 11 (Figure 4-18; C). The 

intense doublet at 0.94 ppm was attributed to the methyl substituent on the bicyclic 

structure at position 1 (Figure 4-18; D). The slight differences observed in chemical 

shift were due to the differences in polarity of the p-toluenesulfonyl ester relative to the 

hydroxyl moiety of the alcohol. Therefore the signals in the 
1
H-NMR spectrum of Ic 

were assigned based on those previously deduced from the decoupling experiments and 

two-dimensional NMR spectra acquired for Ib. 

Additional signals observed in the 
1
H-NMR spectrum of Ic were assigned as the protons 

on the tosyl ester. For example, the 
1
H-NMR spectrum contained two doublets seen at 

7.32 and 7.76 ppm, each integrating to 2.0. The signals were assigned as the aromatic 

protons at positions 12 and 13 (Figure 4-18; B). The intense singlet (s) at 2.43 ppm with 

an integral of 3.0, absent in the alcohol spectrum, was assigned as due to the protons on 

the methyl substituent on the tosyl group (Figure 4-18; position 2). No splitting was 

observed since the adjacent position comprised a quaternary aromatic carbon atom 
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(Figure 4-18). These assignments were supported by those made based on the 

correlations observed in the COSY, CHSHF and COLOC spectra acquired for the tosyl 

ester products of the other ‘model’ compounds (e.g. Appendix Figure 22). 

 

Figure 4-18: (A) 
1
H-NMR spectrum of Ic. (B, C and D) Focused spectra showing detail 

between chemical shift ranges 0.6 – 2.1 ppm, 3.8 – 4.1 and 7.2 – 7.8 ppm. 

The 
13

C-NMR and DEPT 
13

C-NMR spectra confirmed successful conversion of Ib to Ic. 

The tosylate product Ic showed no symmetry, resulting in fifteen peaks observed in the 

13
C-NMR spectrum (Figure 4-19). The low intensity peaks at 144.61 and 133.38 ppm in 

the 
13

C-NMR spectrum were typical of those of quaternary aromatic carbons, identified 

as positions 14 and 15. This assignment was supported by their disappearance in the 

DEPT 
13

C-NMR spectrum (Figure 4-20). The peaks at 129.84 and 127.94 ppm were 

assigned to positions 12 and 13; the intensities were almost twice the height of the other 

peaks because each signal accounted for two magnetically equivalent environments 

(Figure 4-19). The exact labelling of the signals attributed to positions 12, 13, 14 and 15 
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were based on the correlations observed in the COLOC spectra of IIc and IIIc (e.g. 

Appendix Figure 21). 

 

Figure 4-19: 
13

C-NMR spectrum for tosylate product Ic. 

The methylene carbon at position 11 (Figure 4-19), was assigned as the higher 

frequency resonance at 51.77 ppm, due to the proximity of position 11 being close to 

the sulfonate group. The methylene carbons in the bicyclic ‘core’ were differentiated 

from the CH environments based on their opposite phasing in the DEPT 
13

C-NMR 

spectrum; their exact assignments were based on those determined for Ib, with the 

signals attributed to positions 3, 4 and 5, being interchangeable (Table 4-4). The two 

methyl substituents, positions 1 and 2, were assigned as the peaks at 19.29 and 21.71 

ppm accordingly. All the signals which corresponded to part of the bicyclic structure, 

apart from position 11, appeared at a lower chemical shift than in the 
13

C-NMR 

spectrum of the alcohol. Therefore the peak at 21.71 ppm was assigned as the methyl 

substituent on the tosyl group (Figure 4-20; position 2). 

 



Chapter 4 

149 

 

 

Figure 4-20: DEPT 
13

C-NMR spectrum of tosylate product Ic. 

 

Table 4-4: Summary of 
1
H and 

13
C-NMR spectra for tosylate product Ic. 

Position 

1
H chemical 

shifts / ppm 

(multiplicity) 

1
H 

integral 

J 

value 

/ Hz 

13
C chemical shifts / ppm 

Primary 

(CH) 

Secondary 

(CH2) 

Tertiary 

(CH3) 

Quaternary 

(C) 

1 0.94 (d) 3.0 6.6   19.29  

2 2.43 (s) 3.0 -   21.72  

3 

1.30 – 1.53 6 of 7.0 - 

 25.12
a
   

4  31.59
a
   

5  32.72
a
   

6 1.76 (m) 1.0 -  40.08
b
   

7 1.30 – 1.53 1 of 7.0 - 41.52
b
    

8 1.99 (dd) 1.0 - 46.52
b
    

9 1.86 (dd) 1.0 - 46.70
b
    

10 1.69 (m) 1.0 - 51.76
b
    

11 

3.92 (dd) 1.0 
6.9, 

9.3 
 74.39   

3.98 (dd) 1.0 
6.0, 

9.3 

12 7.32 (d) 2.0 8.1 129.84
b- 

   

13 7.76 (d) 2.0 8.3 127.94
b
    

14 - - -    144.61
b
 

15 - - -    133.38
b
 

a
 peaks assigned positions 3, 4 and 5 are interchangeable 

b
 peaks labelled based on the assignments determined for Ib 
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4.4.1.3 Preparation and characterisation of 2,4-dimethylbicyclo[3.3.0]octane 

The tosyl derivative Ic was successfully reduced to 2,4-dimethylbicyclo[3.3.0]octane 

(Figure 4-21; Id) by reacting with excess lithium triethylborohydride (‘Super-

Hydride®’) at room temperature, under an inert atmosphere. Anhydrous tetrahydrofuran 

(THF) and diethyl ether were used as solvents and the reaction was completed with a 

basic work-up using 20% w/v NaOH, yielding the hydrocarbon Id (Figure 4-21). 

Concentration of the hydrocarbon product was achieved using a Kuderna-Danish 

apparatus, described in Chapter 2, Section 2.3.4, to reduce evaporative losses since 

concentration of the product under a less controlled stream of N2 resulted in significant 

evaporative losses of the product, even at 15 °C. A mixture containing C10-15 n-alkanes 

and C10 tricyclic adamantane, was analysed before and after concentration using the 

Kuderna-Danish concentrator in 5 mL of THF to determine the efficiency of the method 

for retention of low molecular weight hydrocarbons. The approximate average recovery 

of n-C10-15 and adamantane was 95%. 

Reduction using lithium aluminium hydride was also attempted, using the method of 

Seifert et al. (1969). However, only the original alcohol was obtained. Obtaining a 

product of high purity was difficult due to the consistent presence of butylated 

hydroxytoluene (BHT) (Figure 4-22). BHT is often present as an inhibitor or chemical 

stabiliser in reagents and solvents. The Super-Hydride® solution was suspected as the 

source of BHT, since inhibitor-free diethyl ether and THF solvents were used herein. 

 

Figure 4-21: Reaction scheme for the Super-Hydride® reduction of Ic to Id. 
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The BHT was well separated from the model hydrocarbon product in the GC-MS 

chromatogram (Figure 4-22). However, it was anticipated that for more complex acid 

mixtures, the BHT may co-elute or interfere with other analytes of interest. Therefore a 

clean-up step involving silica chromatography of the product by elution of the 

hydrocarbons with 100% hexane was introduced following the concentration of the 

more complex commercial and OSPW reduced acid mixtures (Chapter 2, Section 2.3.4 

and Chapter 5, Section 5.2.2). 

 

Figure 4-22: Gas chromatogram of 2,4-dimethylbicyclo[3.3.0]octane, Id. (Column A, 

inlet temperature 300 °C). 

Confirmation of the final hydrocarbon was achieved by comparing the mass spectrum 

with that reported previously by Jørgensen et al. (1990) and Denisov et al. (1977c). The 

latter authors published data for the exo-exo-, exo-endo/endo-exo and endo-endo- 

isomers of 2,4-dimethylbicyclo[3.3.0]octane (Figure 4-23). The exo-endo- endo-exo- 

isomers are enantiomers and would not be separated on achiral GC stationary phases. 

All three isomers possessed very similar mass spectra, each containing a relatively low 

intensity molecular ion at m/z 138, a base peak ion at m/z 96 and an intense ion at m/z 

67 (Figure 4-23). However, the isomers were distinguishable by comparing the ratios of 

the m/z 96/95 intensities. The hydrocarbon product Id was identified as the exo-exo- 
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isomer based on the relatively intense m/z 95 ion (Figure 4-23; A and B). Therefore the 

intensity of the m/z 95 ion appears to be dependent on the stereochemistry of methyl 

substituents. 

The mass spectrum of Id (Figure 4-23) had a molecular ion at m/z 138, expected for a 

C10 bicyclic hydrocarbon. The base peak ion at m/z 96 was attributed to the loss of a 

neutral propene molecule, C3H6 (M-42). The bicyclic nature of the compound means a 

loss greater than M-15 requires cleavage of two bonds. For example, the M-42 ion can 

be justified by a cleavage on the dimethyl substituted ring, followed by α-cleavage 

resulting in the loss a neutral molecule (Figure 4-24). 

 

Figure 4-23: (A) Mass spectrum of Id identified as exo-exo-2,4-

dimethylbicyclo[3.3.0]octane by comparison with (B-D) mass spectra replotted from 

tabulated data reported by Denisov et al. (1977c). 

M+ 
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Figure 4-24: Example of mass spectral fragments proposed for the principal ions in the 

mass spectrum of Id from the cleavage of two bonds within the bicyclic compound. 

The fragmentation mechanisms proposed above, for 2,4-dimethylbicyclo[3.3.0]octane, 

were supported by the synthesis, and interpretation of the mass spectrum, of deuterated 

2,4-dimethylbicyclo[3.3.0]octane (Ie) (Figure 4-25). The use of lithium aluminium 

deuteride (LAD) in first the step of the conversion instead of LAH, resulted in the 

addition of two deuterium atoms on the carboxyl carbon atom. The remaining steps of 

the conversion, including esterification of the deuterated alcohol to the tosyl ester and 

the reduction of the tosylate, resulted in the synthesis of deuterated 2,4-

dimethylbicyclo[3.3.0]octane with two deuterium atoms on the methyl group in the 2- 

position (i.e. the original carboxyl carbon). 

Therefore, fragment ions in the mass spectrum of Ie (Figure 4-25; B), involving the 

methyl group in the 2-position, could be differentiated from those produced by the 

fragmentation of the other methyl group, or ions originating from fragmentation of the 

unsubstituted cyclopentyl ring. As the structure of 2,4-dimethylbicyclo[3.3.0]octane is 

symmetrical, the intensity of the ions produced by the fragmentation of either methyl 

group, would be expected to be the same, as they would be expected to occur from the 

same fragmentations and be equally energetically favourable. 



Chapter 4 

154 

 

The mass spectrum of Ie (Figure 4-25) displayed a molecular at m/z 140, two Da higher 

than Id, due to the presence of two deuterium atoms on the 2-methyl substituent. Based 

on the appearance of several ‘+2 ions’ in the mass spectrum of Ie (e.g. m/z 55 and 57, 

m/z 96 and 98, m/z 123 and 125), it became apparent that the deuterated methyl group 

was involved in the fragmentation, or at least partially contributing to the abundance, of 

the M-15, M-42, M-57 and M-83 ions (Figure 4-25; B). 

 

Figure 4-25: Mass spectra of (A) 2,4-dimethylbicyclo[3.3.0]octane, Id, synthesised 

using LAH and (B) deuterated 2,4-dimethylbicyclo[3.3.0]octane, Ie, synthesised using 

LAD. 
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Interestingly, the base peak ion in the mass spectrum of Ie increased by only 1 Da (m/z 

96 in Id, to m/z 97 in Ie) (Figure 4-25). This supports the fragmentation mechanisms 

proposed for Id (Figure 4-24), in which the m/z 96 (M-42) ion in the mass spectrum of 

Id, is formed by the fragmentation within the substituted cyclopentyl ring, involving the 

loss of either methyl group, whereas formation of the m/z 95 ion (M-43) was proposed 

to originate from fragmentation of the non-substituted, cyclopentyl ring. 

If the m/z 96 ion in the mass spectrum of Id (Figure 4-25; A) is formed equally from the 

fragmentation of both methyl groups, via cleavage at the bridgehead carbons and 

subsequent α-cleavage resulting in the loss of a neutral propene molecule (Figure 4-24), 

when one of the methyl groups is deuterated, two ions of similar intensity would be 

observed at m/z 96 (loss of propene including deuterated methyl group; M-45) and m/z 

98 (loss of propene including non-deuterated methyl group; M-45). This is observed in 

the mass spectrum of Ie (Figure 4-25; B). If the m/z 95 ion, in the mass spectrum of Id 

(Figure 4-25; A), is formed from the fragmentation on the non-substituted cyclopentyl 

ring, the intensity of the M-43 would be unaffected in the mass spectrum of Ie. This 

observation was also made in the mass spectrum of Ie (Figure 4-25; B), with m/z 97 (M-

43) becoming the base peak ion. 
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4.4.2 Synthesis of 3-methylpinane 

4.4.2.1 Preparation and characterisation of 3-pinane-methanol 

3-pinane-carboxylic acid (IIa) was successfully reduced to 3-pinane-methanol (Figure 

4-26; IIb) by refluxing with excess LAH under an inert atmosphere with anhydrous 

diethyl ether as the solvent. Subsequent acid work-up using 10% H2SO4 produced an 

average yield of 95 ± 7% (n = 3) with a purity of >99 % determined by the integration 

of the areas of the peaks in the gas chromatogram of IIb, as the TMS ether (Figure 

4-27). As seen with the previous conversion of Ia to Ib, the retention time of IIb (12.0 

min) was less than that of the original acid, IIa (13.0 min) (Figure 4-27). 

 
Figure 4-26: Reaction scheme for the reduction of IIa to 3-pinane-methanol, IIb. 

 

Figure 4-27: Comparison of TICs showing the differences in retention times of 

precursor acid IIa and reduction product IIb, as TMS ester and ether derivatives 

respectively. (Column A, inlet temperature 300 °C). 
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Figure 4-28: Comparison of the IR spectra of the acid, IIa (top) and alcohol product IIb 

(bottom). 

 

Table 4-5: Summary of IR spectra of 3-pinane-carboxylic acid, IIa and reduction 

product 3-pinane-methanol, IIb. 

IIa IIb 

𝝂 (cm
-1

) Assignment Comment 𝝂 (cm
-1

) Assignment Comment 

3026-2692 
Carboxyl 

OH 

Broadening of 

peaks 
3318 

Alcoholic 

OH 

O-H Stretch, 

broad 

2923,2872

, 
CH3, CH2, 

CH saturate 

alkyls 

C-H stretch, 

med. > 3000 

2901 

CH3, CH2, 

CH saturate 

alkyls 

C-H stretch, 

med-str. >3000 2869 

1454 C-H def. 1452 

C-H def., weak 
1700 

Carboxyl 

C=O 

C=O stretch, 

str. 
1372 

900-1413 
Carboxyl  

C-OH 
Fingerprint 1016 

Alcoholic 

C-OH 

C-O stretch, 

med. 
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The intense signal at 1700 cm
-1

 in the spectrum of the acid (Figure 4-28; top) was 

assigned as due to a C=O stretch within a carboxyl group. Broadening was observed in 

the carboxylic acid spectrum between 2500 – 3300 cm
-1

 incorporating the intense peaks 

at 2923 and 2872 cm
-1

, representing C-H stretching in alkyl groups (Table 4-5). The 

disappearance of these features in the spectrum of the product IIb (Figure 4-28; bottom), 

with intense narrow bands at 2901 and 2869 cm
-1

, suggested that the reduction had gone 

to completion. Furthermore, the appearance of a broad, medium intensity band observed 

at 3318 cm
-1

 was consistent with the formation of an alcohol and attributed to an alcohol 

O-H stretch (Table 4-5). 

The mass spectra of IIa (Figure 4-29) and IIb (Figure 4-30) as their TMS derivatives 

were very different from each other. The spectra of both the acid and alcohol had very 

low intensity molecular ions at m/z 254 and 240, respectively. The molecular ion of the 

alcohol was fourteen Da less than that of the acid, which was strong additional evidence 

that the reduction had been successful. The presence of m/z 75 and 73 ions was typical 

of the spectra of some TMS derivatives, as was the loss of a methyl group to produce an 

ion at m/z 239 in the spectrum of the acid TMS ester (Figure 4-29). The mass spectra of 

both compounds (IIa and b) had M-90 ions attributed to the loss of Si(CH3)3OH. 

The mass spectrum of the alcohol TMS ether had a low intensity M-15 ion and a base 

peak ion at m/z 95 (Figure 4-30). This suggests that in the case of the alcohol, 

fragmentation results in the charge being retained on the alicyclic hydrocarbon part of 

the molecule, in contrast to the spectrum of the acid (TMS ester), which showed more 

abundant ions where the charge was retained on the functionalised part of the molecule 

with loss of alkyl fragments (e.g. m/z 239 (M-15), m/z 199 (M-55), m/z 183 (M-71)). 
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Bicyclo[3.1.1]heptanes are inherently strained due to the cyclobutane ring; this may 

account for rearrangements during electron impact ionisation. Assignment of fragment 

ions is therefore speculative. Mass spectral studies of the parent pinane and α- and β-

pinene structures also reported uncertainties in the origin of the ions observed, 

suggesting some ions may originate from a cleavage of a bond around the bridgehead 

carbons producing a monocyclic cation (McLafferty, 1963).  

 

Figure 4-29: Mass spectrum of IIa TMS ester. 

 

Figure 4-30: Mass spectrum of IIb TMS ether. 

 

M+ 

M+ 
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The 
1
H-NMR spectrum of IIb showed two intense singlets each integrating to 3.0 at 

0.99 ppm and 1.18 ppm, assigned to the gem-dimethyl substituents; positions 1 and 2 

(labels are interchangeable; Figure 4-31). The methyl substituent at position 3 was 

attributed to producing the intense doublet at 1.05 ppm, split by the single proton in 

position 9. The doublet had a coupling constant of 7 Hz distinguishing it from the signal 

at 0.72 ppm, which also appeared as a doublet but had a higher coupling constant of 9 

Hz and integral of 1.0 (Figure 4-31; B). The two doublet of doublets at 3.58 and 3.45 

ppm corresponded with the diastereotopic protons at position 11, since they are adjacent 

to the proton on the chiral carbon at position 10 (Figure 4-31; C). The pair of doublet of 

doublets around 3.5 ppm appeared to be a feature of all of the primary alcohols studied 

herein formed from bicyclic acids in which the carboxyl group is substituted directly to 

the ring at a 3° carbon. 

 

Figure 4-31: (A) 
1
H-NMR spectrum of IIb. (B and C) Focused spectra showing detail 

between chemical shift ranges 0.60 – 2.35 and 3.35 – 3.64 ppm. 
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The 
1
H-NMR spectrum of IIb contained a series of complex multiplets, which were 

well resolved compared to those seen in the 
1
H-NMR spectrum of Ib (Figure 4-31). 

Therefore a series of homonuclear decoupling experiments was performed on IIb in an 

attempt to identify as many proton environments as possible. For example, decoupling 

of the doublet of doublets (dd) corresponding to the diastereotopic protons at position 

11, resulted in a change in the multiplet at 1.88 ppm with an integral of 2.0, identifying 

one of the two protons as due to the proton at position 10. 

Decoupling the doublet (d) at 1.05 ppm, (i.e. the methyl substituent at position 3), 

resulted in the assignment of the proton at position 9 as producing the quintet of 

doublets (quint d) at 1.68 ppm (Figure 4-32; B). The splitting pattern could be explained 

by the three methyl protons and one of the protons in either position 7 or 10 having the 

same coupling constant of 7.0 Hz, creating a quintet which is split further by the 

remaining proton (2.0 Hz). 
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Figure 4-32: Comparison of (A) the 
1
H-NMR spectrum of IIb with the 

1
H-NMR spectra 

decoupled at (B) 1.05 ppm identifying position 9, (C) 1.68ppm identifying position 7, 

(D) 1.73 ppm identifying a proton on position 4, (E) 2.27 ppm identifying position 8 

and the other proton on position 4 and (F) 0.72 ppm, confirming the assignment of the 

two protons on position 4 (red area; irradiated, blue area; affected). 
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After assigning the two chiral protons at positions 9 and 10, the remaining protons 

within the bicyclic structure could be assigned by decoupling the remaining resonances. 

For example, irradiating the quintet of doublets (quint d) with a low irradiation strength 

resulted in a change in the splitting patterns of the signals corresponding to the protons 

in positions 3 and 10, as expected and the multiplet at 1.73 ppm (Figure 4-32; C). 

Therefore by deduction, the multiplet at 1.73 ppm was assigned as the proton at position 

7. 

Decoupling the multiplet at 1.73 ppm (m) affected the quintet of doublets at 1.68 ppm 

and one other signal at 2.27 ppm (m) with an integral of 1.0 (Figure 4-32; D). This 

indicated the proton in position 7 only coupled with one of the protons of the methylene 

group in position 4. Irradiating the multiplet at 2.27 ppm affected the multiplet at 1.73 

(m), doublet at 0.72 (d) and the triplet of doublets of doublets (tdd) at 2.13 ppm (Figure 

4-32; E). Subsequent decoupling of the doublet at 0.72 ppm (J = 9.6 Hz) resulted in one 

change to the multiplet at 1.73 ppm (Figure 4-32; F). Therefore logical deduction meant 

the doublet and multiplet at 0.72 and 2.27 ppm could be assigned as due to the two 

inequivalent protons at position 4 and the triplet of doublets of doublets (tdd) at 2.13 

ppm was assigned as due to the proton at position 8 (Table 4-7). 

The remaining two protons were on the methylene group in position 5. Decoupling of 

the proton at position 8 affected one of the protons at position 4 and 10 (2.27 ppm and 

1.88 ppm) as expected, as well as the doublet of doublets of doublets (ddd) at 1.52 ppm, 

thus identifying one proton in position 5 (Figure 4-33; B). Therefore, the remaining 

proton on position 5 could be assigned as the other proton within the complex multiplet 

at 1.88 ppm with an integral of 2.0, confirmed by decoupling the doublet of doublets of 

doublets at 1.52 ppm (Figure 4-33; C). 
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The series of homonuclear decoupling experiments proved particularly useful in the 

structural elucidation of IIb, importantly, clearly demonstrating that the compound had 

retained the bicyclo[3.1.1]heptane core. This was further supported by interpretation of 

the 
13

C-NMR spectra. 

 

Figure 4-33: Comparison of (A) the 
1
H-NMR spectrum of IIb with the 

1
H-NMR spectra 

decoupled at (B) 2.13 ppm identifying the protons at position 5 and (C) 1.52ppm 

confirming the assignment of the protons at position 5 (red area; irradiated, blue area; 

affected). 

The 
13

C-NMR spectrum of IIb showed eleven signals matching the expected structure 

of IIb, which possesses no symmetry (Figure 4-34). The quaternary carbon at position 6 

had a chemical shift of 38.99 ppm, seen as a low intensity shoulder of the peak at 39.02 

ppm (Figure 4-34 insert). The half peak height and disappearance in the DEPT 
13

C-

NMR confirmed the assignment to the quaternary carbon in position 6 (Figure 4-35 

insert). 
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The three methyl substituents, positions 1, 2 and 3, were assigned as the three signals in 

the typical range for methyl groups, with chemical shifts of 22.15, 22.94 and 28.03 ppm. 

Based on the similarity that was observed between the 
13

C-NMR spectra of the alcohol 

and tosyl ester products of Ib and Ic (Figures 4-13 and 4-19), positions 1 and 2 in the 

alcohol were assigned as producing the peaks at 22.94 and 28.03 ppm, after their 

assignment in CHSHF spectrum later obtained for the tosyl ester product (IIc; 

Appendix Figure 20). The carbon signal at 22.15 ppm was assigned as due to the methyl 

group at position 3. The methylene group adjacent to the hydroxyl moiety, position 11, 

was identified at 70.10 ppm, at a lower field relative to the other alkyl environments. 

The remaining two methylene groups within the structure, positions 4 and 5 at 31.24 

and 33.49 ppm, were assigned based on their opposite phasing in DEPT spectrum 

(Figure 4-35 and Table 4-6) with their exact assignment based on those observed in the 

CHSHF spectrum of IIc (Appendix Figure 20). The remaining CH groups, at positions 

7, 8, 9 and 10, confirmed by the upwards phasing in the DEPT 
13

C-NMR spectrum 

(Figure 4-35), could not be differentiated based on the 
1
H-NMR and 

13
C-NMR spectra 

for IIb. However the signals were later assigned within the structure of IIc. 
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Figure 4-34: 
13

C-NMR spectrum of alcohol product IIb. 

 

 

Figure 4-35: DEPT 
13

C-NMR spectrum of alcohol product IIb. 
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Table 4-6: Summary of 
1
H and 

13
C-NMR spectra of IIb. 

Position 

1
H 

chemical 

shifts / 

ppm 

1
H 

integral 

J value / 

Hz 

13
C chemical shifts / ppm 

Primary 

(CH) 

Secondary 

(CH2) 

Tertiary 

(CH3) 

Quaternary 

(C) 

1 0.99 (s) 3.0 -   22.94
a
  

2 1.18 (s) 3.0 -   28.03
a
  

3 1.05 (d) 3.0 7   22.15  

4 

Determined by homonuclear 

decoupling experiments in 

Table 4-7 

 33.49
 

  

5  31.24   

6    38.99 

7 39.02
b 

   

8 39.43
b
    

9 41.45
b
    

10 47.78
b
    

11 

3.45 

(dd) 
1.0 

7.4, 

10.3 
 70.10   

3.58 

(dd) 
1.0 

5.7, 

10.3 
a
 peaks assigned positions 1 and 2 are interchangeable 

b
 peaks assigned positions 7, 8, 9 and 10 were based on the assignments determined for 

IIc. 
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Table 4-7: Summary of the 
1
H-NMR homonuclear decoupling experiments of IIb. 

Position 

1
H 

chemical 

shifts / 

ppm 

Multiplicity 
1
H 

integral 

J values 

/ Hz 

Homonuclear Decoupling Experiments 

Irradiated 

/ ppm 

Affected / 

ppm 

1
H within Structure 

(red – 
1
H irradiated, 

blue – 
1
H affected) 

1 0.99 s 3.0 - 0.99 - 

 

2 1.18 s 3.0 - 1.18 - 

 

3 1.05 d 3.0 7 1.05 1.68 

 

4 0.72 d 1.0 9.6 0.72 2.27 

 

4 2.27 multiplet 1.0 - 2.27 
0.72, 1.73, 

2.13 

 

10 

1.88 multiplet 2.0 

- 

1.88 

2.13, 

3.445, 

3.575, 

1.68 
 

5 - 

5 1.52 ddd 1.0 
2.7, 5.8, 

13.4 
1.52 2.13, 1.88 

 
6 Quaternary carbon does not appear in 

1
H-NMR spectrum 

7 1.73 multiplet 1.0 - 1.73 1.68, 2.27 

 

8 2.13 
multiplet 

(tdd) 
1.0 - 2.13 

1.52, 1.88, 

2.27 

 

9 1.68 quint d 1.0 2.0, 7.0 1.68 
1.05, 1.73, 

1.88 

 

11 3.45 dd 1.0 7.6, 10.2 3.445 1.88 

 

11 3.58 dd 1.0 5.7, 10.2 3.575 1.88 
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4.4.2.2 Preparation and characterisation of 3-pinane-methanol tosyl derivative 

3-pinane-methanol (IIb) was successfully converted to the tosyl ester (IIc; Figure 4-36) 

using tosyl chloride (TsCl) in the presence of triethylamine (TEA) as the base and a 

catalytic amount of 4-(dimethylamino)pyridine (DMAP). The tosylation method had 

proved successful for Ib and as IIb was a bicyclic primary alcohol, the conditions 

optimised for Ib were considered suitable for the tosylation of IIb. The reaction yield of 

IIb was 80 ± 4% (n = 3) but again determination of the purity from the gas 

chromatogram was difficult as the tosylate underwent decomposition and elimination of 

p-toluene sulfonic acid in the hot GC inlet (Figure 4-37 and Appendix Figures 15 and 

23). Figure 4-37 showed a late eluting peak at 22.7 min identified as the tosylate and a 

mixture of peaks between 6.1 – 9.0 min with molecular ions of m/z 150, consistent with 

alkenes produced upon elimination. The tosylate product was purified by silica 

chromatography to remove the tosyl by-product prior to NMR analysis (Chapter 2, 

Sections 2.3.4 and 2.1.5). 

 

Figure 4-36: Reaction scheme for the tosylation of 3-pinane-methanol, IIb to IIc. 

 

Figure 4-37: Gas chromatogram of tosylation product IIc, with partial decomposition in 

the hot GC inlet. (Column A, inlet temperature 300°C). 
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Figure 4-38: Mass spectrum of tosylate product IIc. 

 

The mass spectrum of the peak at 22.7 min in the gas chromatogram (Figure 4-38) 

showed similar fragment ions to those seen in the mass spectrum of the previous 

tosylate product Ic (Figure 4-17). The absence of a molecular ion meant identification 

of the compound began with the assignment of the ions at m/z 155 and m/z 150. The m/z 

155 ion was identified as the fragmentation of CH3(C6H4)S
+
O2, as previously seen in the 

mass spectrum of Ic (Figure 4-17). Therefore the ion at m/z 150 corresponded to the 

loss of CH3(C6H4)SO3H, resulting in an odd-electron radical cation, [C11H18]
+·

 (Figure 

4-38). The rest of the ions observed, (e.g. m/z 135, 121, 107 and 95), appeared to 

originate from secondary fragmentation of the bicyclic ring from the radical cation m/z 

150, supported by the presence of the ions in the mass spectrum of the original alcohol 

IIb (Figure 4-30). 
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Figure 4-39: 
1
H-NMR spectrum of the tosylate product IIc. 

 

Figure 4-40: 
13

C-NMR spectrum of tosylate product IIc. 
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The 
1
H-NMR spectrum of the tosylate product IIc (Figure 4-39), displayed two, low 

field doublets at 7.32 and 7.77 ppm each integrating to 2.0. These doublets were 

attributed to the aromatic protons on the tosyl group in positions 13 and 14 (Figure 4-39; 

B). Three singlets, each with an integral of 3.0, were observed; two at 0.93 and 1.15 

ppm and one at a higher chemical shift at 2.43 ppm. The higher field singlets were 

assigned as due to the protons of the two methyl groups at positions 1 and 2 and the 

lower field singlet was assigned as the protons on the methyl group within the tosyl 

group. The higher chemical shift of the methyl group within the tosyl moiety is typical 

for a methyl group substituted on an aromatic ring, as seen in the 
1
H-NMR spectrum of 

tosyl chloride (Appendix Figure 16). The higher chemical shift can be explained by the 

external magnetic field inducing a local ring current involving the delocalised π-

electrons in the aromatic ring. This localised ring current, results in the methyl group 

becoming ‘deshielded’ (i.e. the protons experience a larger magnetic field and thus 

appear at a higher chemical shift). 

Many of the signals attributed to protons on the bicyclic structure previously identified 

in the 
1
H-NMR and homonuclear experiments of IIb, were present at slightly different 

chemical shifts in the 
1
H-NMR spectrum of IIc. For example, the 

1
H-NMR spectrum of 

IIc (Figure 4-39; C) showed two doublet of doublets at 3.85 and 3.93 ppm, which were 

attributed to the diastereotopic protons at position 12. These similarities were strong 

evidence that IIc had retained the bicyclo[3.1.1]heptane core during the reaction. Repeat 

homonuclear decoupling experiments were performed and a COSY spectrum of IIc was 

obtained (Appendix Figure 17), which confirmed the assignment of the signals detailed 

in Table 4-8 (page 175). 

The only signals that were different to those observed in the 
1
H-NMR spectrum of the 

alcohol were the multiplet at 2.02 ppm with an integral of 2.0 and the multiplet at 1.85 
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ppm with an integral of 1.0 (Figure 4-39). Deductions based on the repeated 

homonuclear decoupling experiments and COSY spectrum, limited the three protons to 

one of the protons on position 6 and the protons at positions 10 and 11. Decoupling of 

the diastereotopic protons at 3.85 and 3.93 ppm allowed the proton at position 11 to be 

identified as one of the two protons in the multiplet at 2.02 ppm. The proton at position 

10 was assigned as the multiplet at 1.85 ppm, correlating very faintly with one of the 

protons at position 5 in the COSY spectrum (Appendix Figure 18). The remaining 

proton in position 6 was assigned as the other proton at 2.02 ppm, correlating with the 

other proton assigned at a position 6 in the COSY spectrum (Appendix Figure 18). 

 

 

Figure 4-41: DEPT 
13

C-NMR spectrum of tosylate product IIc. 
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The 
13

C-NMR and DEPT 
13

C-NMR spectra provided complementary evidence for the 

successful tosylation of IIb to IIc. The quaternary aromatic carbons in the tosyl group, 

at positions 15 and 16, were identified at 133.5 and 144.6 ppm by their low field 

chemical shift, half peak height and disappearance in the DEPT spectrum (Figures 4-40 

and 4-41). The aromatic CH groups within the tosyl group (positions 13 and 14) were 

identified by their low field chemical shifts at 127.9 ppm and 129.8 ppm and twice peak 

heights. The assignment of positions 13 and 14 was also confirmed by correlations with 

the two low field doublets in the 
1
H spectrum, observed in the CHSHF spectrum of IIc 

(Appendix Figures 19 and 20; A). The exact labelling of the signals attributed to the 

aromatic carbons, was based on the correlations observed in the COLOC spectrum of 

IIc (Appendix Figure 21); the signals at 129.8 and 144.6 ppm correlated with the 

protons at position 3 (Appendix Figure 22). 

The ‘peak’ at 21.6 ppm, upon closer inspection, was found to be two peaks, with very 

similar chemical shifts (Figure 4-40; B insert). These two peaks were assigned as due to 

the 2-methyl substituent in the bicyclic part of the molecule (position 4) and the methyl 

group on the aromatic ring (position 3), based on the correlations observed in the 

CHSHF spectrum of IIc (Appendix Figure 20). The peaks at 21.6 ppm correlated with 

the high field doublet at 0.98 ppm and the lower field singlet at 2.43 ppm, previously 

assigned above in the 
1
H-NMR spectrum as the protons at positions 4 and 3, 

respectively. 

The methylene group in position 12 was assigned as producing the peak at 76.17 ppm 

based on its high chemical shift, and adjacency to the electron-withdrawing tosylate 

group and opposite phasing in the DEPT spectrum (Figure 4-41). This assignment was 

confirmed by the peak correlating with the two doublet of doublets at about 3.9 ppm in 

the CHSHF spectrum of IIc (Appendix Figure 19). 
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The DEPT 
13

C-NMR spectrum confirmed the assignment of the peaks at 30.81 and 

33.41 ppm as due to the methylene groups at positions 6 and 5, respectively (Figure 

4-41). These were differentiated in the CHSHF spectrum, with the peak at 33.41 ppm 

correlating with the two separate proton resonances at 0.65 and 2.24 ppm assigned as 

the protons at position 5. The quaternary carbon (position 8) was assigned as the peak at 

38.8 ppm, confirmed by its non-appearance in the DEPT spectrum (Figures 4-40 and 

4-41). The remaining CH groups at positions 7, 9, 10 and 11, could be assigned as the 

peaks at 39.2, 47.5, 41.1 and 35.7 ppm based on the correlations observed in the 

CHSHF spectrum (Appendix Figure 20; B). All the assignments based on the NMR data 

are summarised in Table 4-8. 

Table 4-8: Summary of 
1
H and 

13
C-NMR spectra of the tosylate product IIc. 

Position 

1
H 

chemical 

shifts / 

ppm 

1
H 

integral 

J value / 

Hz 

13
C chemical shifts / ppm 

Primary 
(CH) 

Secondary 

(CH2) 

Tertiary 

(CH3) 

Quaternary 

(C) 

1 0.93 (s) 3.0 -   22.85  

2 1.15 (s) 3.0 -   27.94  

3 2.43 (s) 3.0 -   21.67  

4 0.98 (d) 3.0 7.2   21.67  

5 

0.65 (d) 1.0 9.8  

33.41
 

  

2.24 (m) 1.0 
1.8, 2.4, 

6.3, 9.8 
   

6 
1.43 (m) 1.0 -  

30.81 
  

2.02 (m) 1 of 2.0 -    

7 
1.65 

(quint d) 
1.0 2.0, 7.1 39.21

  
  

8 Quaternary carbon    38.8 

9 1.72 (m) 1.0 - 47.54
  

  

10 1.85 (m) 1.0 - 41.13 
 

  

11 2.02 (m) 
1 of 

2.0 
- 35.71 

 
  

12 

3.85 

(dd) 
1.0 6.8, 9.1  

76.17 

  

3.93 

(dd) 
1.0 5.6, 9.1    

13 7.32 (d) 2.0 8.3 129.84    

14 7.77 (d) 2.0 8.0 127.91    

15 Quaternary carbon    144.63 

16 Quaternary carbon    133.51 
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4.4.2.3 Preparation and characterisation of 3-methylpinane 

3-methylpinane (IId) was successfully synthesised by the reduction of IIc (Figure 4-42) 

using lithium triethylborohydride (Super-Hydride®), under an inert atmosphere with 

THF and diethyl ether as the solvent. The reaction was performed at room temperature, 

followed by a basic work-up using 20% w/v NaOH. Concentration of the product under 

N2, even at room temperature, resulted in considerable losses (~40% yield). To reduce 

evaporative losses of the volatile C11 hydrocarbon, a Kuderna-Danish apparatus was 

employed (Chapter 2, Section 2.3.4). 

The gas chromatogram showed the product was relatively pure; integration of the peak 

area at 11.42 min (Figure 4-43) gave a purity of 82%. Small peaks between 10-13 min 

with molecular ions of m/z 150 suggested there was a small quantity of unreacted 

tosylate present and BHT was observed, as with the previous use of ‘Super-Hydride®’ 

(Figure 4-22, page 151). This emphasised the need for a clean-up step with silica 

chromatography, during the conversion of the complex NA mixtures. 

 

Figure 4-42: Reaction scheme for the Super-Hydride® reduction of IIc to IId. 

 

Figure 4-43: Gas chromatogram of 3-methylpinane, IId. (Column A, inlet temperature 

300 °C). 
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Figure 4-44: Mass spectrum of 3-methylpinane, IId. 

 

Figure 4-45: NIST mass spectrum of pinane. 

GC-MS was used to characterise the final hydrocarbon product IId based on the mass 

spectrum (Figure 4-44). The mass spectrum of IId was assigned as due to 3-

methylpinane. The spectrum displayed a molecular ion at m/z 152, consistent with a C11 

bicyclic hydrocarbon (Figure 4-44). The low intensity of the molecular ion was 

expected for the structure of IId, attributed to the highly strained nature of the 

compound, which possesses a cyclobutane ring. The mass spectrum of IId was similar 

to that of the reference NIST spectrum of C10 pinane, both having a base peak ion at m/z 

55 corresponding to a C4H7
+
 cation and strong M-43 ions corresponding to the loss 

of ·C3H7 (Figures 4-44 and 4-45). The mass spectrum of the 3-methylpinane product 
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and the reference spectrum of pinane, displayed similar clusters of ions (e.g. M-56/57 

ions and M-69/70/71 ions), suggesting the compounds undergo multiple fragmentations 

upon ionisation, involving hydrogen rearrangement. 

Little appears to be known about the exact mass spectral fragmentation mechanisms that 

occur during the electron impact ionisation of bicyclo[3.1.1]heptanes. However, the 

mass spectral fragmentation of pinane has been postulated to begin via the cleavage of 

one of the bonds at the bridgehead carbons, most likely in the cyclobutane ring, 

followed by loss of the gem-dimethyl substituted carbon as a ·C3H7 (McLafferty, 1963). 

Correspondingly, the M-43 ion in the mass spectrum of 3-methylpinane, could originate 

from initial fission of the cyclobutane ring and hydrogen rearrangement, followed by 

subsequent α-cleavage resulting in the loss of a propyl radical (Figure 4-46). 

 

 

Figure 4-46: Postulated fragmentation of IId demonstrating the possibility of ions 

occurring from fragmentation of the cyclobutane ring at the bridgehead carbon. 

 

The complex fragmentation pattern displayed in the mass spectrum of IId made it 

distinct from those of the spectra of many other bicyclic hydrocarbons (Golovkina et al., 

1984). This was considered useful for the identification of bicyclo[3.1.1]heptanes later 

when performing the conversion of more complex mixtures of NA to the corresponding 

hydrocarbons for identification (vide infra). 
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4.4.3 Synthesis of 1-methyl-4-pentylbicyclo[2.2.2]octane 

4.4.3.1 Preparation and characterisation of 4-pentylbicyclo[2.2.2]octane-1-methanol 

Reduction of 4-pentylbicyclo[2.2.2]octane-1-carboxylic acid (IIIa) with excess LAH 

produced 4-pentylbicyclo[2.2.2]octane-1-methanol (IIIb; Figure 4-47). The reaction 

was carried out under an inert atmosphere with diethyl ether as the solvent, using a 10% 

H2SO4 acid work-up. The yield of the reaction was 92 ± 15% (n = 3) and the purity, 

determined from the integration of the peak areas in the gas chromatogram was >99 % 

(Figure 4-48).  

 

Figure 4-47: Reaction scheme for the reduction of IIIa to 4-pentylbicyclo[2.2.2]octane-

1-methanol, IIIb. 

 

Figure 4-48: Comparison of TICs showing the retention times of the precursor acid IIIa 

and the alcohol product IIIb, TMS ester and ether, respectively. (Column A, inlet 

temperature 300 °C). 
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Figure 4-49: Comparison of the IR spectra of IIIa and IIIb. 

The IR spectrum of IIIb provided preliminary evidence that the reduction had gone to 

completion (Figure 4-49). This was evident by the disappearance of the broadening seen 

in the carboxylic acid spectrum at about 3000 cm
-1

 and the absence of an intense peak at 

1689 cm
-1

 attributed to the C=O stretch in the carboxyl group. The broad, medium 

intensity band at 3340 cm
-1

 in the spectrum of IIIb, was assigned as the hydroxyl O-H 

stretch, which was strong evidence for the formation of an alcohol (Table 4-9). 

Table 4-9: Summary of the IR spectra of IIIa and IIIb. 

IIIa IIIb 

𝝂 (cm
-1

) Assignment Comment 𝝂 (cm
-1

) Assignment Comment 

3300-2400 
Carboxyl 

OH 

Broadening of 

peaks 
3340 

Alcoholic 

OH 

O-H Stretch, 

broad 

2929,2860

, 2657 
CH3, CH2, 

CH saturate 

alkyls 

C-H stretch, 

med. > 3000 

2924 

CH3, CH2, 

CH saturate 

alkyls 

C-H stretch, med-

str. >3000 2857 

1455 C-H def. 1455 

C-H def., weak 
1689 

Carboxyl 

C=O 

C=O stretch, 

str. 
1377 

800-1450 
Carboxyl C-

OH 
fingerprint 1038 

Alcoholic 

C-OH 
C-O stretch, med. 
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Figure 4-50: Mass spectrum of IIIa TMS ester. 

 

Figure 4-51: Mass spectrum of IIIb TMS ether. 

The mass spectra of IIIa and IIIb TMS ester and ethers respectively, only displayed a 

few dominant ions (Figures 4-50 and 4-51). This was attributed to the stability of the 

cage-type, bicyclo[2.2.2]octane ‘core’. The dominant ions in the spectra of the 

derivatised acid and alcohol were assigned to fragmentation involving losses from the 

TMS groups. The spectrum of the acid derivative displayed a molecular ion at m/z 296 

which was relatively intense for a TMS ester (Figure 4-50). The base peak ion at m/z 

281 was attributed to the loss of a methyl group from the TMS group. The medium 
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intensity ion at m/z 178 was assigned as [C13H22]
+·

 resulting from fragmentation at the 

1-position quaternary bridgehead carbon and the loss of HCO2Si(CH3)3. 

The most probable site of ionisation would be the non-bonding electrons on either 

oxygen of the carboxyl moiety, which is supported by the low abundance of ions 

originating from fragmentation of the bicyclic structure, such as the loss of the pentyl 

group assigned to the low intensity ion at m/z 225. Therefore, for fragmentation to occur 

at the quaternary carbon resulting in a radical cation (m/z 178), the mechanism must 

involve hydrogen rearrangement and charge migration to the bicyclic part of the 

structure, possibly via inductive cleavage. 

It was difficult to determine structural detail of IIIb from the mass spectrum of the TMS 

ether (Figure 4-51). The molecular ion at m/z 282 was 14 Da less than that of the acid 

(Figure 4-50), confirming the conclusions made from the IR spectra that the reduction 

had been successful. The base peak ion at m/z 281 in the mass spectrum of IIIb was 

assigned as due to the loss of a methyl group, most likely from the TMS group. The M-

90 ion (m/z 192) was attributed to the loss of Si(CH3)3OH as seen in the mass spectrum 

of IIb (Figure 4-30, page 159) and the m/z 75 ion was assigned as due to HO
+
=SiCH2, as 

seen in the mass spectrum of Ib (Figure 4-6, page 131). 

The 
1
H-NMR spectrum of IIIb was indicative of a highly symmetrical compound; this 

was a good indication that the structure of the bicyclo[2.2.2]octane, substituted at 

carbon positions 1 and 4, had been maintained. Symmetry in a molecule is often 

observed in 
1
H-NMR spectra as a low number of signals with high integrals. The 

1
H-

NMR spectrum of IIIb was dominated by one complex multiplet between 1.0 – 1.4 ppm 

with an integral of 22.0 (Figure 4-52). 

The protons on the methylene group at position 10, adjacent to the hydroxyl group, 

were not diastereotopic as they were adjacent to a quaternary carbon. This was unlike 
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those observed in the structures and 
1
H-NMR spectra of Ib and IIb. Therefore the 

protons at position 10 were expected to produce a low field singlet, as seen at 3.21 ppm 

with an integral of 2.0 (Figure 4-52; C). The triplet at highest field with a chemical shift 

of 0.84 ppm and integral of 3.0 was assigned as due to the protons on the methyl group 

at position 1, the splitting pattern attributed as due to the two neighbouring protons at 

position 2 (Figure 4-52; B). 

 

Figure 4-52: (A) 
1
H-NMR spectrum of IIIb and (B and C) focused spectra showing 

detail between chemical shifts 0.8 – 1.7 ppm and 3.0 – 3.5 ppm. 

The strongest signal between 1.30 – 1.40 ppm was not clearly resolved but was 

tentatively assigned as due to the 12 protons at positions 4 and 5, producing two 

overlapping triplets (Figure 4-52; B). The signal integrated to 12.2 corresponding with 

the 12 protons within the cage-like ‘core’, supporting the expected structure of IIIb 

(Table 4-10). The remaining resonances, observed as a multiplet between 1.0 – 1.3 ppm, 

appeared to be three overlapping signals and by means of deduction, the signals were 
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assigned as due to the methylene protons on the pentyl chain (positions 2, 3, 7 and 9) 

(Figure 4-52; B).  

The singlet at 1.55 ppm had an integral of 1.0, indicating that it was due to an 

environment within the structure of IIIb and not due to an impurity from the reaction or 

residual solvent (Figure 4-52; C). Therefore it was assigned tentatively as due to the 

hydroxyl proton. Protons within alcoholic hydroxyl groups are not always present in 
1
H-

NMR spectra. However, in the spectrum of IIIb, it may be observed due to the highly 

compact, symmetrical structure and the relatively exposed position of the hydroxyl 

moiety. 

The 
13

C-NMR spectrum of IIIb was dominated by two peaks at 28.34 and 30.84 ppm, 

approximately three times the intensity of any other peak (Figure 4-53). These were 

assigned as the methylene carbons at positions 4 and 5. The methyl group in position 1 

was assigned based on its low frequency and opposite phasing in the DEPT 
13

C-NMR 

spectrum (Figure 4-54). The two quaternary carbons, at positions 6 and 8, appeared at 

31.03 and 33.31 ppm, confirmed by their non-appearance in the DEPT 
13

C spectrum 

(Figure 4-54). The lowest field signal at 71.89 ppm was assigned as due to the 

methylene group at position 10, bonded to the hydroxyl group (Table 4-10 and Figure 

4-53). The remaining signals at 22.78, 23.42, 32.95 and 41.71 ppm were attributed to 

the methylene carbons along the pentyl chain (positions 2, 3, 7 and 9). Based on the 
1
H-

NMR and 
13

C-NMR spectra alone, the exact assignment of each signal was not possible. 

However, after examination of the COLOC spectrum for IIIc (Figure 4-61; Section 

4.4.3.2, page 194), full characterisation was achieved. 
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Figure 4-53: 
13

C-NMR spectrum of IIIb. 

 

 

Figure 4-54: DEPT 
13

C-NMR spectrum of IIIb. 
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Table 4-10: Summary of 
1
H and 

13
C spectra of alcohol product IIIb. 

Position 

1
H 

chemical 

shifts / 

ppm 

1
H 

integral 

J value / 

Hz 

13
C chemical shifts / ppm 

Primary 

(CH) 

Secondary 

(CH2) 

Tertiary 

(CH3) 

Quaternary 

(C) 

1 0.85 (t) 3.0 7.3   14.17  

2 
1.00 – 

1.30 (m) 
- -  22.78

a
   

3 
1.00 – 

1.30 (m) 
- -  23.42

a
   

4 1.30 – 

1.40 (m) 
12.2 - 

 28.34
b
   

5  30.85
b
   

6 Quaternary carbon    31.03
c
 

7 
1.00 – 

1.30 (m) 
- -  32.95

a
   

8 Quaternary carbon    33.31
c
 

9 
1.00 – 

1.30 (m) 
- -  41.71

a
   

10 3.22 (s) - -  71.89   
a,b,c

 peaks assigned positions 2, 3, 7 and 9; 4 and 5; 6 and 8 are interchangeable 

based on 
1
H and 

13
C-NMR data alone. Later confirmed in tosylate product (Table 4-11).
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4.4.3.2 Preparation and characterisation of 4-pentylbicyclo[2.2.2]octane-1-methanol 

tosyl derivative 

The catalytic tosylation of 4-pentylbicyclo[2.2.2]octane-1-methanol (IIIb) using tosyl 

chloride (TsCl) produced the tosylate IIIc (Figure 4-55). The use of triethylamine (TEA) 

and 4-(dimethylamino)pyridine (DMAP) produced IIIc in a yield of 88 ± 2 % (n = 3). 

The gas chromatogram of the tosylate product IIIc was consistent with the previous 

tosylate products, with early eluting peaks displaying molecular ions at m/z 192 again 

attributed to the decomposition of the tosylate in the hot GC injector (Figure 4-56 and 

Appendix Figures 15 and 23). The chromatogram also showed three small peaks, with 

small molecular ions at m/z 228 and strong M-35 ions (m/z 193), which suggested the 

loss of a chloride radical from some chloride by-products. The product was purified by 

silica chromatography prior to analysis by NMR. 

 

Figure 4-55: Reaction scheme for the tosylation of 4-pentylbicyclo[2.2.2.]octane-1-

methanol IIIb to IIIc. 

 

Figure 4-56: Gas chromatogram of tosylate product IIIc showing partial decomposition 

in the hot GC inlet. (Column A, inlet temperature 300 °C). 
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Figure 4-57: (A) Mass spectrum of the tosylate product IIIc at 24.8 min and (B) a 

rearrangement product due to the hot GC inlet temperature at 23.8 min. 

The chromatogram of the tosylate product (Figure 4-56) showed two late eluting peaks 

at 23.8 and 24.3 min with similar mass spectra (Figure 4-57). This was unexpected as 

the previous tosylate products (e.g. Ic and IIc) only showed one later eluting peak. The 

structure of IIIc cannot display any geometric isomerism and it was considered unlikely 

that the compound would undergo rearrangement during the reaction because of the 

high stability of the cage-like structure and mild reaction conditions utilised. Lowering 

the GC inlet temperature to 250 °C and 225 °C clarified that the peak at 24.3 min was 

the tosylate product, since this peak increased in intensity as the inlet temperature 

reduced (Appendix Figure 23). The other peak at 23.8 min was assigned as a 

rearrangement product caused during the hot injection of the sample and not a 

rearrangement artefact produced during the reaction. 

The 
1
H-NMR spectrum was very similar to that of the alcohol product IIIb, but with the 

appearance of additional signals due to the protons in the tosyl group (Figure 4-58). The 

1
H-NMR spectrum of IIIc showed a high field triplet with an integral of 3.0 at 0.83 ppm, 

this was attributed to the protons on the methyl group at position 1 and the singlet with 

an integral of 2.0 at 3.59 ppm, was assigned as due to the protons of the methylene 

group in position 11. 
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Figure 4-58: 
1
H-NMR spectrum of tosylate product IIIc. 

The intense multiplet observed between 1.25 – 1.35 ppm with an integral of 12.1, was 

assigned as due to the protons in the methylene groups within the bicyclo[2.2.2]octane 

core at positions 5 and 6. These overlapped with a multiplet between 0.96 – 1.25 ppm 

attributed to the protons in the methylene groups of the pentyl chain at positions 3, 4, 9 

and 10 (Figure 4-58; B). Additional signals not observed in the spectrum of the alcohol 

but present in the spectrum of the tosylate, included a singlet with an integral of 3.0 at 

2.42 ppm. This singlet was attributed as due to the protons on the methyl group within 

the tosyl group at position 2. The assignment was confirmed in the COLOC spectrum of 

IIIc (Figure 4-61, page 194), with the singlet correlating with a quaternary aromatic 

carbon at 144.58 ppm and an aromatic CH group at 129.82 ppm. The two doublets at 

7.31 and 7.35 ppm (Figure 4-58), each integrating to 2.0, were assigned as the aromatic 

protons at positions 12 and 13. The exact assignment of the protons at position 12 as the 

doublet at 7.31 ppm was based on the correlations observed in the COLOC spectrum of 

IIIc (Figure 4-61). The doublet at 7.31 ppm correlated with the same aromatic CH 

signal, at 129.82 ppm, as the singlet assigned as the protons within the methyl group at 
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position 2. Therefore the protons at 7.31 ppm must be within the long-range coupling 

distance relative to the protons at position 2. 

 

Figure 4-59: (A) 
13

C-NMR spectrum of tosylate product IIIc and (B and C) focused 

spectra displaying detail between chemical shifts 125 - 150 ppm and 27 - 43 ppm. 

The 
13

C-NMR spectrum confirmed the tosylate product IIIc had retained its structure. 

The spectrum showed 15 peaks (Figure 4-59), accountable due to the symmetry of IIIc. 

The peak at 78.25 ppm, showing opposite phasing in the DEPT 13C-NMR spectrum 

(Figure 4-60), was assigned as due to the methylene carbon bonded to the tosylate group. 

This was confirmed by its correlation in the CHSHF spectrum (Appendix Figure 24), 

with the singlet at 3.59 ppm assigned as the protons at position 11. 
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The two intense peaks at 28.17 and 30.43 ppm showing opposite phasing in the DEPT 

spectrum (Figure 4-60), were assigned as due to the methylene groups at positions 5 and 

6. This was confirmed in the CHSHF spectrum of IIc (Appendix Figure 25); both peaks 

were observed correlating with the intense multiplet assigned as the 12 methylene 

protons in positions 5 and 6, at 1.25 – 1.35 ppm. The peak at 28.17 ppm was assigned as 

due to the methylene carbon at position 6 because it was observed correlating with the 

singlet at 3.59 ppm, assigned as the protons at position 11 in the COLOC spectrum 

(Figure 4-62, page 195). 

 

Figure 4-60: (A) DEPT 
13

C-NMR spectrum of tosylate product IIIc. (B and C) Focused 

spectra showing detail between chemical shifts 27 - 43 ppm and 125 – 150 ppm. 
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Four quaternary carbons were assigned, based on their non-appearance in the DEPT 

13
C-NMR spectrum (Figure 4-60). These included the two aromatic carbons at positions 

14 and 15 with high chemical shifts at 133.18 and 144.58 ppm and the two bridgehead 

carbons in the bicyclic ‘core’, at positions 7 and 8 at 30.80 and 32.16 ppm. The 

presence of the latter was further evidence that the compound had maintained its 

structure; structural rearrangement from a bicyclo[2.2.2]octane substituted at both 

bridgeheads would result in fewer quaternary carbons. 

The quaternary carbon at 32.16 ppm was assigned as the bridgehead carbon closest to 

the tosylate group in position 8, based on its correlation with the protons in position 11, 

observed in the COLOC spectrum of IIIc (Figure 4-62). Similarly, the aromatic 

quaternary carbon at 144.58 ppm and the aromatic CH group at 129.82 ppm were 

assigned as the carbon atoms at positions 14 and 12 respectively because both peaks 

correlated with the protons in position 2 in the COLOC spectrum (Figure 4-61). 

The two signals at 14.14 and 21.70 ppm were attributed to the methyl groups at 

positions 1 and 2 based on their upwards phasing in the DEPT 13C-NMR spectrum of 

IIIc. The signal at 21.70 ppm was attributed to the methyl substituent in the tosyl group 

(position 2) based on its correlation in the CHSHF spectrum with the singlet at 2.42 

ppm attributed to the protons at position 2 (Appendix Figure 25). Likewise, the methyl 

group at position 1, at the end of the pentyl chain, was assigned based on its low 

chemical shift and correlation with the high field triplet observed in the CHSHF 

spectrum of IIIc (Appendix Figure 25). 

Of the remaining methylene carbons in the pentyl chain, two were differentiated 

following careful examination of the COLOC spectrum (Figure 4-62). The methylene 

group at position 10, bonded to the bridgehead carbon, was assigned as the peak at 41.5 

ppm as the peak correlated with the intense multiplet attributed to the protons at 
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positions 5 and 6 (Figure 4-62). Assignment of the methylene carbon at position 11 

previously, supported its assignment as the carbon atom at position 10. The signals at 

22.79 and 32.86 ppm both showed correlations with the protons within the terminal 

methyl group at position 1 (Figure 4-62). Therefore these signals were assigned as the 

methylene carbons in positions 3 and 4. By deduction, the remaining peak at 23.34 ppm 

was assigned as the methylene carbon at position 9, which was supported by the 

correlation of the signal with the multiplet between 0.96 ppm (Figure 4-62). All of the 

NMR data are summarised in Table 4-11. 

 

Table 4-11: Summary of 
1
H and 

13
C-NMR spectra of the tosylate product IIIc. 

Position 

1
H 

chemical 

shifts / 

ppm 

1
H 

integral 

J value / 

Hz 

13
C chemical shifts / ppm 

Primary 

(CH) 

Secondary 

(CH2) 

Tertiary 

(CH3) 

Quaternary 

(C) 

1 0.83 (t) 3.0 7.3   14.14  

2 2.42 (s) 3.0 -   21.70  

3 
0.96 – 

1.25 (m) 
- -  22.79

a
   

4 
0.96 – 

1.25 (m) 
- -  32.86

a
   

5 1.25 – 

1.35 (m) 
12.1 - 

 30.43   

6  28.17   

7 Quaternary carbon    30.80 

8 Quaternary carbon    32.16 

9 
0.96 – 

1.25 (m) 
- -  23.34   

10 
0.96 – 

1.25 (m) 
- -  41.50   

11 3.59 (s) 2.0 -  78.25   

12 7.31 (d) 2.0 7.9 129.82    

13 7.35 (d) 2.0 8.3 127.95    

14 Quaternary carbon    144.58 

15 Quaternary carbon    133.18 
a
 peaks assigned positions 3 and 4. 
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Figure 4-61: COLOC spectrum of IIIc. 
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Figure 4-62: Zoomed COLOC spectrum of IIIc. 
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4.4.3.3 Preparation and characterisation of 1-methyl-4-pentylbicyclo[2.2.2]octane 

The 4-pentylbicyclo[2.2.2]octane-1-methanol tosyl derivative (IIIc) was reduced using 

excess lithium triethylborohydride to 1-methyl-4-pentylbicyclo[2.2.2]octane (Figure 

4-63; IIId). The reaction was carried out under an inert atmosphere at room temperature 

using THF and diethyl ether as the solvent. Although the hydrocarbon product had a 

higher molecular weight than that of the previous ‘model’ compounds, significant losses 

were still observed during concentration, requiring the use of a Kuderna-Danish 

apparatus (Chapter 2, Section 2.3.4). 

 

 

Figure 4-63: Reaction scheme for the Super-Hydride® reduction of IIIc to IIId. 

 

 

Figure 4-64: Gas chromatogram of 1-methyl-4-pentylbicyclo[2.2.2]octane, IIId. 

(Column B, inlet temperature 250 °C). 
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The mass spectrum of IIId contained a molecular ion at m/z 194, consistent with that of 

a bicyclic hydrocarbon with the molecular formula C14H26 (Figure 4-65). The molecular 

ion was relatively abundant for a bicyclic hydrocarbon, suggesting the compound had 

retained its stable cage-like ‘core’ (Figure 4-65; A). A reference mass spectrum for the 

direct comparison of IIIc was not available in the literature. However, Denisov et al. 

(1977d) reported the mass spectra for a series of other alkyl substituted 

bicyclo[2.2.2]octanes. These included that of 1,4-dimethylbicyclo[2.2.2]octane, a 

hydrocarbon with the same bicyclic ‘core’, substituted at both bridgehead carbons 

(Figure 4-65; B). 

 

Figure 4-65: (A) Mass spectrum of IIId, identified as 1-methyl-4-

pentylbicyclo[2.2.2]octane and (B) the mass spectrum of 1, 4-

dimethylbicyclo[2.2.2]octane replotted from tabulated values reported by Denisov et al. 

(1977d). 

The base peak ion in the mass spectra of both 1,4-dimethylbicyclo[2.2.2]octane and 1-

methyl-4-pentylbicyclo[2.2.2]octane hydrocarbon product was the M-29 ion (m/z 165, 

Figure 4-65; A), which was attributed to the loss of an ethyl radical (·C2H5). If the 

bicyclo[2.2.2]octane structure underwent a retro-Diels Alder type fragmentation, as 

proposed by McLafferty and Tureček (1993) for the fragmentation of some cyclic 

structures such as cyclohexane, the expected loss would be the ejection of a neutral 
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ethene molecule (M-28) i.e. loss of a C2 bridge between carbons 1 and 4. The loss of an 

ethyl radical suggested the bicyclo[2.2.2]octane structure in fact undergoes a 

mechanism similar to that postulated by Denisov et al. (1977d) with cleavage first 

occurring at a bridgehead carbon and a hydrogen rearrangement followed by α-cleavage 

(Figure 4-66), as observed for other bicyclic hydrocarbons.  

 

Figure 4-66: Postulated mechanism for the loss of an ethyl radical from IIIc, adapted 

from the mechanism reported by Denisov et al. (1977d). 

The high intensity of the lower mass ions e.g. m/z 109, 95 and 81 was typical of mass 

spectra of alicyclic hydrocarbons and the increased abundance of the ion m/z 123 was 

tentatively assigned as due to the loss of the pentyl chain. 
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4.5 Conclusions 

An alternative method for the identification of petroleum acids to that described in 

Chapter 3, via conversion to the corresponding hydrocarbons, was developed herein, 

based on the historical approach previously utilised by Seifert et al. (1969). Reference 

mass spectra of petroleum hydrocarbons are more readily available and the mass 

spectral fragmentation patterns are better understood, making interpretation easier. 

There is a lack of reference mass spectra of acid methyl esters, which in any case tend to 

be dominated by fragmentation of the carboxyl groups, making structural elucidation 

difficult. 

The final optimised method developed herein involved reproducible reactions resulting 

in high yields of the desired products. Structural characterisation of each of the alcohol 

and tosylate intermediates by IR, GC-MS and NMR and of the final hydrocarbon 

products by GC-MS, confirmed the successful conversion of all three model bicyclic 

acids, possessing different bicyclic cores, to the corresponding hydrocarbons. The mass 

spectra of the resulting bicyclanes were all comparable to those of relevant reference 

hydrocarbons. The results of the current investigation provided evidence for the 

development of a successful method for the conversion of acids to the corresponding 

hydrocarbons; such detailed proof has not before been reported in previous 

investigations attempting to achieve a similar aim. 

The conversion method developed herein can now be attempted for the conversion of 

more complex mixtures of petroleum NA and OSPW acids to the corresponding 

hydrocarbons, in an attempt to identify unknown bicyclic acids as their bicyclane 

equivalents (Chapter 5). 
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Chapter 5  

Structural identification of bicyclic petroleum acids by 

conversion to hydrocarbons and multidimensional gas 

chromatography-mass spectrometry 

Chapter 5 describes application of the method developed in Chapter 4 (for ‘model’ 

acids), to the conversion of unknown petroleum acids to hydrocarbons, followed by 

analysis using multidimensional gas chromatography-mass spectrometry (GC×GC-MS).  

A commercially prepared petroleum-derived acid mixture, was derivatised and first 

separated by argentation chromatography into two ‘alicyclic’ acid methyl ester fractions. 

The fractions were converted to the corresponding hydrocarbons using the three step 

transformation described in Chapter 4. Subsequent analysis of the hydrocarbon products 

by GC×GC-MS resulted in the separation of numerous individual hydrocarbons, 

reflecting the vast complexity of the original acid mixture, displaying highly resolved 

homologous series’ of >150 C9-15 bicyclic hydrocarbons (bicyclanes). 

Comparison of the individual mass spectra of the corresponding bicyclanes with a mass 

spectral database of petroleum hydrocarbons collated from the literature, led to the 

identification of more than forty individual bicyclanes. The bicyclic hydrocarbons 

identified and by inference the structures of the original bicyclic acids, included fused 

and bridged structures possessing methyl, dimethyl, ethyl and propyl alkyl substituents, 

as well as some terpenoid-derived acids. The study provides the most comprehensive 

analysis of a major class of petroleum acids to date. 
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Many of the results and methods described in this chapter have been published: 

Wilde, M. J. and Rowland, S. J. (2015) Structural Identification of Petroleum Acids by 

Conversion to Hydrocarbons and Multidimensional Gas Chromatography-Mass 

Spectrometry. Analytical Chemistry, 87, 16, 8457-8465. 
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5.1 Introduction 

The identification of individual bicyclic acids in complex naphthenic acids (NA) 

mixtures has been hindered to date by the chromatographic properties of the acids and 

derivatives, the lack of mass spectral databases for the relevant acids and derivatives 

and the lack of reference compounds for identification. Advanced analytical 

instrumentation is often used and indeed has been proved necessary for examination of 

the acid mixtures (as discussed in Chapter 1). Most investigations reporting mass 

spectral data for commercial NA only report group-type classifications (e.g. acyclic, 

mono-, bicyclic etc.) based on hydrogen deficiency (‘z’ values), with bicyclic or so-

called ‘z = -4’ acids, frequently reported as one of the most abundant classes 

(Damasceno et al., 2014; Scott et al., 2005; Clemente et al., 2003; Martin et al., 2008).  

The use of GC×GC-MS for the analysis of NA as the methyl ester derivatives recently 

led to the identification of several bicyclic acids in both petroleum-derived acids, as 

well as those extracted from oil sands process-affected water (OSPW), by comparison 

of the mass spectral and retention position data of the unknowns with those of reference 

compounds (as discussed in Chapter 3; Wilde et al. (2015)). This approach resulted in 

the identification of some individual bicyclic acids for the first time in NA mixtures (op 

cit). However the number of identifications possible was still limited by the sparsity of 

current mass spectral databases for relevant acid methyl esters (Wilde et al., 2015). 

An historical approach, formerly adopted by Seifert et al. (1969) and others, involved 

converting the petroleum acids to compounds more amenable for study; for example, 

defunctionalisation of the acids to the corresponding hydrocarbons. A wider range of 

petroleum hydrocarbons are known, due to the early petroleum research projects which 

developed methods for their isolation and characterisation (Denisov et al., 1977a; 

Golovkina et al., 1984; Petrov, 1987; Sanin, 1976). The aim of the present conversion 
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methods developed herein was to achieve identification of the acids by comparison of 

the reduced acid products with the abundant data available for petroleum hydrocarbons 

(e.g. chromatographic properties and mass spectra). Structural assignment of individual 

hydrocarbons after conversion from the acids was limited in the earlier studies (e.g. 

Seifert et al. (1969)), due to the lack of chromatographic resolution using the available 

GC techniques but it was proposed that use of GC×GC methods might improve on this. 

Therefore, the current investigation aimed to combine both the historical approach of 

converting the acids to hydrocarbons with subsequent analysis of the hydrocarbons by 

GC×GC-MS, affording the mass spectra of individual bicyclanes. It was hypothesised 

that comparison of the mass spectra with the abundant reference mass spectra of 

bicyclic hydrocarbons collated from the literature and relevant retention position data, 

would allow identification of the bicyclanes and by inference the original bicyclic acids. 

The general synthetic route for the conversion of the acids to the hydrocarbons was 

developed based on the method previously reported by Seifert et al. (1969), involving 

reduction of the acids via a tosylate intermediate (Figure 5-1). 

 

Figure 5-1: Route of conversion of the acids, via derivatisation and fractionation of the 

acid methyl esters, to the corresponding hydrocarbons. Model compound 4-

methylbicyclo[3.3.0]octane-2-carboxylic acid is shown only as an example. 
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The conversion was first optimised on three ‘model’ bicyclic acids during which the 

individual steps including the reagents and conditions used were modified to improve 

yields and to involve milder conditions (as discussed in Chapter 4). Characterisation of 

the ‘model’ alcohol and tosylate intermediates and the final hydrocarbon products by 

infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR) and gas 

chromatography-mass spectrometry (GC-MS), confirmed that the ‘model’ compounds 

retained their structural integrity throughout the conversion, showing the potential for 

this method to be applied to unknown complex acid mixtures. The mild conditions and 

use of a Kuderna-Danish apparatus reduced the loss of volatile C10-11 hydrocarbon 

products which was considered important for identification purposes when performing 

the conversion on unknown acid mixtures. Retaining the most volatile hydrocarbons 

was important because many of the reference mass spectra were known for C10-11 

bicyclic hydrocarbons and also because C9-11 acids are reported in many studies (though 

seldom if ever, identified) of NA mixtures (Damasceno et al., 2014; Wilde et al., 2015). 

Previous studies have utilised argentation chromatography of the acid methyl esters 

prior to GC×GC-MS analysis in order to reduce the overall complexity of the mixtures 

analysed (Jones et al., 2012; Scarlett et al., 2013; Reinardy et al., 2013). Petroleum-

derived NA have been shown previously to contain aromatic species (Knotnerus, 1957). 

Argentation chromatography was utilised by Wilde et al. (2015) to obtain a less 

complex ‘alicyclic’ acid methyl ester fraction in which bicyclic acids were abundant. 

Therefore, fractionation of the acid methyl esters by argentation chromatography was 

also performed on some samples herein, prior to converting them to the corresponding 

hydrocarbons and analysis by GC×GC-MS.
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5.1.1 Aims and Objectives 

The aims of the current investigation were to apply the method developed in Chapter 4, 

for the conversion of NA to hydrocarbons, to alicyclic acids isolated from petroleum 

NA. After successfully reducing the petroleum NA to the corresponding hydrocarbons, 

the aim was to achieve clear separation of highly resolved individual bicyclic 

hydrocarbons and compare the mass spectra of the bicyclanes and retention positions 

with reference mass spectra and known elution order of bicyclic hydrocarbons collated 

from the literature. 

The first objective was to reduce the initial complexity of the NA mixture by 

derivatisation of the acid extract to the methyl esters followed by fractionation of the 

acid methyl esters by Ag-Ion chromatography. Secondly, to achieve a controlled 

concentration of the final hydrocarbon product, in order to retain the low molecular 

weight bicyclanes, using a Kuderna-Danish apparatus. Numerous reference mass 

spectra were replotted from tabulated mass spectral data, which had been collated from 

the literature. The majority of reference mass spectra available for bicyclic 

hydrocarbons exist for C9-11 bicyclanes and it was therefore important to retain and 

separate by GC×GC-MS, the low molecular weight bicyclic hydrocarbons. 
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5.2 Methods 

5.2.1 Derivatisation and fractionation of petroleum NA 

A commercially prepared, petroleum acid mixture was received as a gift in 2009 from 

Merichem Co., and was derivatised and fractionated as described in Chapter 2, Sections 

2.2.3 and 2.2.5. The analysis of the acid methyl esters was discussed previously in 

Chapter 3. 

5.2.2 Conversion of petroleum NA to hydrocarbons 

The alicyclic acid methyl ester Ag-Ion fractions of the petroleum NA, were converted to 

the corresponding hydrocarbons using the method developed in Chapter 4. The general 

procedure for the conversion to hydrocarbons is described in Chapter 2, Section 2.3. 

Retention of the low molecular weight hydrocarbons (C9-11) was considered important 

for the identification of the bicyclanes and thus of the bicyclic acids. Therefore a 

Kuderna-Danish apparatus was used to concentrate the final hydrocarbon products of 

each fraction, the concentration procedure is described in Chapter 2, Section 2.3.4. 

5.2.3 GC×GC-MS 

The GC×GC-MS instrumentation used is described in Chapter 2, Section 2.1.4. Samples 

were analysed using two different temperature programmes (referred to as conditions A 

and B). The GC×GC-MS conditions A involved the primary oven programmed from 

30°C, held for 1 min, then heated to 120°C at 5°C min
-1

, to 220°C at 0.8°C min
-1

, to 

280°C at 5°C min
-1

 and to 320°C at 10°C min
-1

 and then held for 10 min. The secondary 

oven was programmed to track the primary oven at 40°C above. The hot jet was 

programmed to start 30°C above the primary oven temperature until 150°C, it was then 

ramped to 260°C at 1.3°C min
-1

 and then to 400°C at 4°C min
-1

. The modulation period 

was set at 4 or 6 s. The GC×GC-MS conditions B involved the primary oven 
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programmed from 30°C, held for 1 min, then heated to 200°C at 1°C min
-1

 and to 320°C 

at 10°C min
-1

 and then held for 2 min. The secondary oven was programmed to track 

the primary oven at 5°C above. The hot jet was programmed to track the primary oven 

at 5°C above. The modulation period was set at 2 s. 
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5.3 Results and Discussion 

5.3.1 Fractionation and GC×GC-MS of acid methyl esters 

The petroleum acid mixture gifted in 2009 from Merichem Co. (Batch no. CN/138, 

CAS# 1338-24), was first derivatised to the acid methyl esters with BF3-MeOH at 70 °C 

before separation by argentation (Ag-Ion) chromatography. The free acids were 

derivatised to the acid methyl esters prior to fractionation in order to reduce the 

interaction of the carboxylic functional group with the Ag-Ion phase. The separation of 

the acid methyl esters was thus mainly dependent on the aromatic interactions with the 

phase only. Derivatisation of the free acids also meant the collected fractions, after 

concentration, were ready for analysis by GC-MS and GC×GC-MS. 

Seifert et al. (1969) fractionated the final hydrocarbon product obtained from the 

reduction of acids extracted from crude oil after the conversion by silica 

chromatography. However in the current study, the NA were fractionated before 

conversion to the hydrocarbons in order that the fractions and any acids identified in the 

fractions could be compared, if necessary, with previous studies on NA from 

commercial and OSPW sources, which have utilised the same fractionation procedure 

(Jones et al., 2012; Reinardy et al., 2013; Scarlett et al., 2013; Rowland et al., 2014a). 

Fractionation reduced the overall complexity and allowed separation of broadly 

‘alicyclic’ ester fractions (Figure 5-2; A-C). The ‘alicyclic’ fractions were the first four 

fractions, eluting with 100% hexane (Table 2-1, Chapter 2, Section 2.2.5). The total 

mass of the four alicyclic fractions collected (248 mg) accounted for 80.0% of the total 

mass of acid methyl esters (310 mg) loaded onto the Ag-Ion column. Fraction 1 

contained 110.0 mg (35.5%), fraction 2; 125.0 mg (40.3%), fraction 3; 12.4 mg (4.0%) 

and fraction 4 contained 0.6 mg (0.2%). 
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This high proportion of non–aromatic, poorly retained (by Ag-Ion chromatography) 

‘alicyclic’ acids methyl esters correlated well with data from previous studies using 

ESI-HRMS, HPLC-ESI-HRMS and Orbitrap-MS, which have also shown commercially 

available petroleum-derived NA to be dominated by z = 0 to z = -6, non-aromatic 

species (Bataineh et al., 2006; Martin et al., 2008; Hindle et al., 2013; Marentette et al., 

2015a). The use of Ag-Ion chromatography also ensured that the dominant species, 

possessing some degree of hydrogen deficiency (e.g. z = -2, -4 and -6), were in fact 

cyclic as opposed to containing (non-aromatic) double bonds, because unsaturated 

compounds as well as aromatics would be retained on the Ag-Ion column. 

Previously, GC×GC-MS of the methyl esters of two other commercial NA samples 

showed that over 100 bicyclic acids were typically present (Damasceno et al., 2014). 

Examination of the current methyl ester fractions by GC-MS and GC×GC-MS also 

showed that fractions 2 and 3 contained relatively abundant, homologous series’ of 

peaks with apparent molecular ions corresponding to those of bicyclic acid methyl 

esters (e.g. m/z 168, 182, 196, 210 etc.) (Figure 5-2; D and E). Therefore fractions 2 and 

3 (F2 and F3) were selected herein for conversion to the corresponding hydrocarbons. 

Fraction 1 contained 35.8% of alicyclic components by mass; however EIC mass 

chromatograms indicated it was dominated by z = 0, straight chain and branched acid 

methyl esters. 
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Figure 5-2: TICs (colours based on total ion intensity) of (A) unfractionated petroleum-

derived NA methyl esters. (B) NA methyl esters of F2 and (C) F3 after Ag-Ion 

chromatography and EICs (m/z 168, 182… 252) of (D) F2 and (E) F3 showing 

homologous series’ of C9-15 bicyclic acid methyl esters. TICs (colours based on 

molecular ions for z = 0 to -6 species; z = 0, red; -2, yellow; -4, green and -6, blue) for 

(D) F2 and (E) F3 highlight the separation of alicyclic acid methyl esters by carbon 

number in the first dimension and cyclicity in the second dimension. (Column set A, 

conditions A). 
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5.3.2 Yields of conversion 

The three step conversion was performed on ~50 mg and 9 mg of fractions 2 and 3 acid 

methyl esters, respectively. It was anticipated that only small quantities of NA mixtures 

would be available for investigation in most subsequent studies and therefore the 

conversion was developed and tested on similar quantities of the ‘model’ acids (5 – 50 

mg; Chapter 3 and Chapter 4). The starting masses of reactants and final masses of 

products for each stage of the conversions are given in Table 5-1. An approximate 

percent yield was determined using an approximate average molecular weight of 210 g 

mol
-1

 for the acid methyl esters in fractions 2 and 3, based on the carbon number range 

and distribution of acid methyl esters maximising at C12-13. The estimated molecular 

weight was kept the same for fractions 2 and 3 as Ag-Ion chromatography separates the 

compounds based on their affinity for the phase through pi-bond interactions and not 

molecular weight.  

Table 5-1: Summary of the masses and yields for the conversion of fractions 2 and 3 of 

commercial NA to the hydrocarbons. 

Starting 

Reactant 

Starting mass and yield / mg (approx. percentage yield / %) 

LiAlH4 Reduction Tosylation 
Super-Hydride® 

Reduction 

NA methyl 

esters / mg 

Alcohols 

/ mg 

Alcohols 

/ mg 

Tosylates 

/ mg 

Tosylates 

/ mg 

Hydrocarbons 

/ mg* 

Fraction 

2 
50

†
 

43.5 

(99%
‡
) 

43.5 
63.8 

 (82%
‡
) 

63.8 
- 

Fraction 

3 
9

†
 

8.7 

(107%
‡
) 

8.7 
11.3  

(73%
‡
) 

11.3 
- 

†
approximate masses, as methyl esters 

‡
approximate yield based on average molecular weight of acid methyl esters being 210 

g mol
-1

 
*
 Kuderna-Danish apparatus used to concentrate to minimum volume to reduce volatile 

compound losses so no gravimetric weight recorded 
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5.3.3 GC×GC-MS of hydrocarbon products 

Reduction of the ‘alicyclic’ (F2 and F3) ester fractions by the methods developed herein 

(Figure 5-1), as expected, produced mixtures of the corresponding bicyclic 

hydrocarbons. Examination of these by GC×GC-MS demonstrated excellent separations. 

Extracted ion monitoring of the expected molecular ions (e.g. m/z 138, 152, 166) 

revealed highly resolved homologous series of >150 bicyclanes (Figures 5-3 and 5-6, 

page 221 ). Fractions 2 and 3 contained bicyclanes assigned from molecular ions 

maximising between C9-15 (F2) and C10-15 (F3) (Figure 5-3). 

 

Figure 5-3: EICs (m/z 124, 138, 152, 166, 180, 194 and 208) of the hydrocarbon 

products of (A) fraction 2 and (B) fraction 3, showing abundant homologous series’ of 

bicyclanes separated by carbon number. (Column set A, conditions A). 
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Separation was also observed between individual isomers of the same carbon number 

with and without the same hydrogen deficiency. For example, C10 and C11 bicyclanes 

were separated, monocyclic C11 and bicyclic C11 hydrocarbons were separated and 

individual C10 bicyclanes were resolved (Figures 5-3 - 5-6). This was achieved by 

careful and systematic manipulation of the GC×GC-MS conditions. 

Investigations into optimisation of GC×GC-MS conditions and column set selection are 

usually based on maximising the separation between different classes of compounds (i.e. 

non-polar species such as alkanes, from aromatic and polar species such as oxygen-, 

nitrogen- and sulphur-containing (NSO) compounds (Omais et al., 2013)). To obtain 

maximum separation in both GC ‘dimensions’, a so-called ‘orthogonal’ column set is 

recommended (Watson et al., 2007). For a system to be deemed orthogonal, the 

mechanism of separation for each column must be independent of the other (Watson et 

al., 2007). For example, a typical orthogonal column set is a primary GC column with a 

non-polar stationary phase and a secondary GC column with a mid-polarity or polar 

stationary phase (Edwards et al., 2015). The general mechanism of separation in the 

primary column is ‘volatility / boiling point’ or more specifically, dispersive or induced-

dipole interactions. The general mechanism of separation in the second dimension is 

‘polarity’ or more specifically, dipole-dipole and dipole-induced dipole interactions. 

Methods for measuring the orthogonality of a GC×GC system have focused on 

examination of the area of chromatographic space occupied by peaks across both 

dimensions, relative to the maximum space and peak capacity (Omais et al., 2013). 

Therefore an orthogonal system should utilise the maximum chromatographic space, 

separating the peaks in both dimensions. 

However, Omais et al. (2013) reviewed the separation of paraffins, naphthenes, 

aromatics and NSO compounds in coal-derived oil using several different column sets 
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including orthogonal (non-polar × polar), non-orthogonal (polar × non-polar) and 

unconventional (polar × electrostatic polar) column sets. They showed that column sets 

defined as non-orthogonal based on their generic separation mechanism (e.g. polar × 

non-polar) showed maximum use of the two-dimensional chromatographic space. 

Furthermore, the unconventional column set (polar × electrostatic polar) proved 

particularly useful in specifically separating phenols from aromatics and NSO 

compounds. Therefore, it would appear that the criteria for an orthogonal system are not 

necessarily the same criteria required to obtain best group-type separation and best 

separation of specific classes. 

The current investigation focused on separating compounds within the same class (i.e. 

acid methyl esters or hydrocarbons as opposed to group-type separation). The main 

separation mechanism was predicted to be non-polar, dispersive interactions. Therefore 

a 60 m 100% dimethylpolysiloxane (non-polar) phase was selected as the primary 

column to achieve optimum separation in the first dimension. The results showed the 

main separation in the first dimension was due to volatility/boiling point, with 

individual homologous series separated based on carbon number (Figure 5-3). Further 

separation between individual isomers of the same carbon number was also observed in 

the first dimension, thought to be due to the additional length of the column and slow 

temperature gradient. This was supported by experiments involving varying the 

temperature gradient; slowing the temperature gradient resulted in increased separation 

between C10 bicyclanes (Figure 5-4).  

A mid-polarity, 2 m 50% phenyl dimethylpolysiloxane (BPX50) was selected as the 

secondary column so that any monoaromatics eluting early during the Ag-Ion 

chromatography, unreacted intermediates from the conversion and functionalised by-

products and impurities in the reduced hydrocarbon products, would be well separated 
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from the analytes of interest (i.e. the bicyclic hydrocarbons). The mode of separation of 

the mid-polarity column on the acid methyl esters and hydrocarbons was difficult to 

predict, especially for the hydrocarbons, which do not possess a functional group 

capable of polar interactions. However, previous investigations using a similar non-

polar × mid-polar column combination achieved separation between acyclic and cyclo- 

alkanes (Cochran and Pijpelink, 2011). 

The separation observed in the second dimension appeared to be different from that 

observed in the first dimension but could not be described as fully orthogonal. In the 

second dimension, alicyclic compounds were mainly separated based on their cyclicity, 

with acyclic compounds eluting first (red in Figure 5-2; F and G), followed by 

monocyclics, bicyclics and finally tricyclics, eluting near the top of the chromatogram 

for both the acid methyl esters and hydrocarbons (yyeellllooww, ggrreeeenn and blue in Figure 5-2; 

F and G) with some tetracyclic and monoaromatic compounds eluting even later. 

Separation appeared to be dependent on variations in the cyclic ‘core’, causing subtle 

differences in the interactions with the stationary phase. 

Using the chosen column combination (Chapter 2, Section 2.1.4), several GC×GC-MS 

methods were trialled in an attempt to obtain maximum separation of both the acid 

methyl esters and hydrocarbons under the same run conditions for comparative purposes. 

The four main variables for optimisation were the primary oven temperature gradient, 

modulation period, secondary oven temperature offset and modulation temperature (hot 

jet) offset. 

Changes to the modulation temperature offset and the secondary oven temperature 

offset mainly affected the separation in the second dimension. The secondary oven 

offset was kept constant at 40 °C higher than the primary oven to encourage rapid 

elution through the secondary column. The temperature of the hot jet during the 
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modulation was set 30 °C above the primary oven gradually increasing to an 80 °C 

offset over the length of the run to improve peak shape of higher boiling point 

compounds particularly for the acid methyl esters which eluted much later than the 

corresponding hydrocarbons. 

Optimal separation of the hydrocarbons was achieved with a slow temperature gradient 

and short modulation time of 2 s with some ‘wrapping’ in the secondary dimension 

(Figure 5-4). The ‘wrapping’ phenomenon is caused when the compounds don’t elute 

from the secondary column fast enough in the short modulation period, and are 

therefore incorporated in the next modulation phase (Zoex, 2015). However these 

conditions were unsuitable for the acid methyl esters, which showed considerable 

wrapping with modulation times shorter than 4 s, even with a higher secondary and 

modulation temperature offset. Therefore, the optimal run conditions which gave the 

best separation and peak shape for the acid methyl esters along with sufficient 

separation of the hydrocarbons, without reduced resolution of individual isomers and 

hence potential for identification by mass spectral comparison, were a fast temperature 

gradient and a 4 or 6 s modulation (Figure 5-5). 
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Figure 5-4: (A) EIC (m/z 138, 152, 166, 180, 194) showing separation of C10-14 

hydrocarbons and (B) a region of the EIC (m/z 138) showing highly resolved C10 

hydrocarbon peaks, using an optimised, slower hydrocarbon temperature program with 

2 s modulation (Wilde and Rowland, 2015). (Column set A, conditions B). 

 

Figure 5-5: Full TIC of the F3 hydrocarbon products using the same temperature 

gradient optimised for the acid methyl esters with a 4 s modulation, showing minimal 

wrapping, sufficient separation and no loop-breakthrough of volatile components 

(Wilde and Rowland, 2015) (Conditions A). Insert shows EIC displaying further 

separation of homologous series’ with a 2 s modulation with wrapping (Wilde and 

Rowland, 2015) (Conditions B). 
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The excellent GC×GC separation meant clear, distinguishable mass spectra could be 

obtained for individual components probably for the first time, and certainly in stark 

contrast to those obtained in earlier GC-MS studies (Seifert et al., 1969; Seifert and 

Teeter, 1970b). This was crucial for assignment of individual compounds by MS. 

Alongside the excellent separation provided by GC×GC-MS, fractionation by Ag-Ion 

chromatography of the methyl esters prior to the reduction step also aided identification, 

by decreasing the complexity of the final hydrocarbon products. Analysis of the 

hydrocarbons resulting from the transformation of each of the alicyclic NA ester 

fractions (F2 and F3) separately, further reduced co-elution. For example, some bicyclic 

hydrocarbons, which co-eluted with monocyclic hydrocarbons in F2, were identifiable 

in F3, where the monocyclics were absent. Separation of the different alicyclic acids 

(e.g. acyclic, mono-, bi- and tricyclic acid methyl esters) by Ag-Ion chromatography in 

fractions 2 and 3 was observed in Figure 5-2; F and G. Fraction 3 showed the 

disappearance of acyclic (red) and monocyclic (yyeellllooww) acids and an increase in 

tricyclic (blue) acids (Figure 5-2; G). 

Recovery of the volatile, lower carbon number (e.g. C9-11) bicyclanes was attributed to 

the mild reaction conditions employed and effective use of the Kuderna-Danish 

apparatus to reduce evaporative losses (Scarlett et al., 2011). Retaining these low 

molecular weight bicyclics was important for the subsequent identifications because the 

majority of published studies report the mass spectra of low molecular weight alkanes 

(Denisov et al., 1977d; Denisov et al., 1977c; Denisov et al., 1977b; Denisov et al., 

1977a). A mass spectral database of bicyclic hydrocarbons was collated herein and 

spectra plotted from tabulated data in the literature, along with published retention 

position and elution order data, where available. Much of this mass spectral information 

was obtained from older literature, particularly from Russia; early Russian 
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investigations involved extensive research into the isolation and identification of 

individual petroleum hydrocarbons, which rivalled that of the famous API Project 6 

(Lochte and Littmann, 1955). However, none of these studies used the approach herein 

to infer the structures of the corresponding bicyclic acids. 
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5.3.4 Identification of bicyclic petroleum NA as hydrocarbons 

The combination of the separation power of GC×GC-MS, coupled with the older 

approach of chemical transformation of the acids (esters) to hydrocarbons, resulted in 

the identification of over 40 individual bicyclic NA as the corresponding hydrocarbons 

by mass spectral comparison with published mass spectra of known alkanes (Figure 

5-6). These included bicyclo[4.4.0]decanes, bicyclo[4.3.0]nonanes, 

bicyclo[3.3.1]nonanes, bicyclo[2.2.2]octanes, bicyclo[3.3.0]octanes and 

bicyclo[3.2.1]octanes, as well as some more highly substituted terpenoid bicyclanes 

(Figure 5-7). 

 

Figure 5-6: (A) EIC of C10-13 bicyclanes (m/z 138, 152, 166, 180) in the F3 hydrocarbon 

product showing clear separation of homologous series by carbon number (Wilde and 

Rowland, 2015). (B) Zoomed insert showing sufficient separation of individual C10 

homologues for identification by comparison with literature reference mass spectra 

(Wilde and Rowland, 2015). Labels correspond with structures in Figure 5-7. 
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Figure 5-7: Bicyclic hydrocarbons identified by conversion of petroleum acids to 

alkanes and comparison of mass spectra with those of known hydrocarbons. The 

identification of the alkanes allows inference of the structures of the corresponding 

bicyclic acids, which were previously unknown for decades (*presence of acid methyl 

ester confirmed with reference compound). For mono-substituted bicyclics R = CH3 in 

bicyclanes; CO2H in acids. For di-substituted bicyclics R, R’ = CH3 in bicyclanes; R = 

CO2H, R’ = CH3 or R = CH3, R’ = CO2H in acids. 

 

5.3.4.1 Bicyclo[3.2.1]octanes 

Comparison of the mass spectra of the C10 hydrocarbons within fractions 2 and 3 after 

reduction, with those reported by Denisov et al. (1977a), gave good matches with those 

of two dimethyl- and one ethyl-substituted bicyclo[3.2.1]octane (Figure 5-8; A-F). All 

three isomers were substituted at the quaternary bridgehead in the 1-position (Figure 5-7; 

bi-VI-VIII). The 1,3- and 1,4-dimethyl- isomers were two of the earliest eluting peaks 

within the C10 homologous series and the 1-ethyl- isomer eluted later, as expected 

(Figure 5-6). 
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Figure 5-8: (A, C and E) Mass spectra of C10 bicyclo[3.2.1]octanes identified within the 

F2 and F3 reduced acid products by comparison with (B, D and F) mass spectra 

replotted from values previously reported in tablature by Denisov et al. (1977a). 



Chapter 5 

224 

 

The mass spectrum of bi-VII (Figure 5-8; C) was assigned as the endo- isomer, 

distinguished from that of the exo- isomer based on the intensity of the m/z 109 and 81 

ions; the m/z 81 ion is the base peak ion in the mass spectrum of the endo- isomer, 

whereas the m/z 109 ion is the base peak ion in the mass spectrum of the exo-isomer 

similar to that of the 1,3-dimethyl isomer (Figure 5-8; C and D and Appendix Figure 

26). The mass spectrum of bi-VI (Figure 5-8; A) was assigned as the 1,3-dimethyl- 

isomer and distinguished from that of the exo-1,4-dimethyl isomer based on the 

intensities of the m/z 123 ion and molecular ion (m/z 138) (Figure 5-8; A, B and 

Appendix Figure 26). 

The mass spectra of both dimethyl- isomers showed intense M-29 and M-57 ions (m/z 

109 and 81) corresponding to losses of ·C2H5 and ·C4H9. These fragment ions can be 

justified by a similar fragmentation route to that suggested for the ‘model’ bicyclic 

hydrocarbons (Figure 4-46; Chapter 4, Section 4.4.2.3, page 178), viz; a primary 

cleavage on either side of a bridgehead carbon, followed by a hydrogen rearrangement 

and α-cleavage. The mass spectrum of the ethyl isomer, bi-VIII (Figure 5-8; E) 

displayed a base peak ion at m/z 109, attributed to loss of the ethyl group due to 

cleavage at the bridgehead, quaternary carbon. The M-43 ion could be assigned to 

fragmentation across the largest unsubstituted ring. 

Theoretically, a dimethyl- substituted bicyclane such as 1,4-

dimethylbicyclo[3.2.1]octane could originate from an acid with the carboxylic acid 

group originally substituted at either methyl- position (e.g. 1-

methylbicyclo[3.2.1]octane-4-carboxylic acid or 4-methylbicyclo[3.2.1]octane-1-

carboxylic acid) or on both positions in the case of a diacid (e.g. bicyclo[3.2.1]octane-

1,4-dicarboxylic acid). A potentially useful method for determining the original position 
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of the carboxyl group of a dimethyl-bicyclane, involving deuteroreduction, is discussed 

in detail in Chapter 7, Section 7.2.2, page 336. 

5.3.4.2 Bicyclo[2.2.2]octanes 

One of two peaks possessing similar mass spectra, was identified as 2-

ethylbicyclo[2.2.2]octane (Figure 5-7; bi-X). The spectrum of the second peak 

resembled that of the 1-isomer but co-eluted with another unknown, making the 

assignment speculative. The mass spectra matched those reported by Denisov et al. 

(1977d), easily distinguished from the C10 dimethylbicyclo[2.2.2]octane isomers by 

their intense base peak ion at m/z 109 corresponding to the dominant loss of ·C2H5 (M-

29) (Figure 5-9). The 1-ethyl- and 2-ethyl- isomers had similar mass spectra but could 

be differentiated by the intensities of the m/z 81 and 82 ions; the loss of ·C4H9 (m/z 81) 

being greater for 2-ethylbicyclo[2.2.2]octane and the loss of C4H8 (m/z 82) being greater 

for the 1-ethyl isomer (Figure 5-9; B and Appendix Figure 27). 

 

Figure 5-9: (A) Mass spectrum of a peak identified as 2-ethylbicyclo[2.2.2]octane 

within the F2 and F3 reduced acid products by comparison with (B) a mass spectrum 

replotted from values previously reported in tablature by Denisov et al. (1977d). 

The strong intensity of the M-29 ion and the relatively low abundance of the other ions 

were indicative of a stable structure with a single dominant loss of the ethyl group. The 

virtual absence of the M-15 ion was typical of an ethyl substituted compound. 
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5.3.4.3 Bicyclo[3.3.0]octanes 

Previously Rowland et al. (2011e) reported the presence of 4-

methylbicyclo[3.3.0]octane-2-carboxylic acid (also called 3-methyloctahydropentalene-

1-carboxylic acid) in commercial NA, but they did not report the mass spectrum. In the 

current study, the corresponding 2,4-dimethylbicyclo[3.3.0]octane was identified by 

comparison with a series of bicyclo[3.3.0]octane mass spectra (Figure 5-10; A and B) 

(Denisov et al., 1977c). 

Such assignments were made possible by the pre-fractionation of the alicyclic acid 

methyl esters by argentation chromatography, prior to reduction to the alkanes. Thus, 

2,4-dimethylbicyclo[3.3.0]octane in the reduced hydrocarbons of F2 could not be 

initially firmly identified, due to co-elution with an unknown C10 monocyclic 

hydrocarbon, which made the mass spectrum less clear. However, in the reduced F3, co-

elution with the monocyclic was no longer observed and the mass spectrum of the 

unknown was clear and similar to that of the authentic bicyclooctane, which was then 

assigned in both F2 and F3 (Figure 5-10; A and B). The corresponding acid methyl ester 

in the esterified NA was then confirmed by comparison of the mass spectrum with that 

of a reference compound (Figure 5-10; C and D). This showed the complementary 

approach of analysis of both ester and alkane fractions by GC×GC-MS (Chapter 3 and 

Chapter 5). 
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Figure 5-10: (A) Mass spectrum of a C10 bicyclic hydrocarbon within F2 and F3 

hydrocarbon products, identified as 2,4-dimethylbicyclo[3.3.0]octane by comparison 

with (B) a reference mass spectrum replotted from values previously reported in 

tablature by Denisov et al. (1977c) as well as the reduced hydrocarbon product of 4-

methylbicyclo[3.3.0]octane-2-carboxylic acid used a model acid. (C) The corresponding 

acid methyl ester was identified within the original acid methyl ester fractions and 

compared with (D) the mass spectrum of a commercially available reference compound. 

 

In the alkanes, two later eluting peaks were also identified as both 2-

ethylbicyclo[3.3.0]octane isomers (Figure 5-11; A and C), the exo- isomer eluting 

before the endo- isomer; an observation made by Jørgensen et al. (1990) as well as 

Bagrii et al. (1967) for the 2-methyl isomers. 
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Figure 5-11: (A, C and E) Mass spectra of bicyclo[3.3.0]octanes identified within the F2 

and F3 hydrocarbon products by comparison with (B, D and F) mass spectra replotted 

from values previously reported in tablature by Denisov et al. (1977c). 
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Concentration of the final hydrocarbon products with a Kuderna-Danish apparatus 

proved extremely efficient at reducing evaporative losses of the <C10 bicyclanes. The 

mass spectra of two C9 bicyclanes were similar to those of 2-methyl and 3-

methylbicyclo[3.3.0]octane (Appendix Figure 28) and comparison of the F2 acid methyl 

esters with that of an esterified reference compound showed bicyclo[3.3.0]octane-2-

carboxylic acid methyl ester was indeed present in the NA mixture, as reported 

previously in another (Rowland et al., 2011e; Wilde et al., 2015). 

Amongst the C11 bicyclic hydrocarbons (m/z 152) was a component with a mass 

spectrum matching that of 2-propylbicyclo[3.3.0]octane (Figure 5-11; E). This series of 

bicyclo[3.3.0]octanes (Figure 5-7; bi-I-V), with increasing alkyl chain length (from 

methyl to propyl) reaffirms the hypothesis that the higher carbon number homologues 

are more alkylated equivalents of the lower carbon number structures identified herein 

(Wilde et al., 2015). It was also strong evidence for the current understanding of 

biodegradation of hydrocarbons along alkyl side chains and the occurrence of NA 

(Quagraine et al., 2005). 

5.3.4.4 Bicyclo[2.2.1]heptanes 

Wilde et al. (2015) reported the presence of a few bicyclo[2.2.1]heptane acids in an 

OSPW acid extract which were absent in commercial petroleum NA after analysis of 

the acid methyl esters. The corresponding hydrocarbons would be expected to have the 

earliest retention times of the C10 hydrocarbons based on the relative positions of the 

acid methyl esters; bicyclo[2.2.1]heptane-2-ethanoic acid eluted earlier than 

bicyclo[3.2.1]octane-2-carboxylic acid and bicyclo[2.2.2]octane-2-carboxylic acid 

(Wilde et al., 2015). Interestingly, no C10-11 bicyclo[2.2.1]heptanes were observed in the 

reduced commercial NA fractions when compared with the mass spectra of the 

trimethyl-/methylethyl- or tetramethyl/-dimethylethyl-bicyclo[2.2.1]heptane isomers 

(Rusinova et al., 1981). 
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5.3.4.5 Bicyclo[3.3.1]nonanes 

Three components, eluting the last amongst the C10 hydrocarbons, had mass spectra 

comparable with those of four methylbicyclo[3.3.1]nonane isomers (Figure 5-7; bi-XI-

XII) reported by Golovkina et al. (1979) (Figure 5-12). This corresponds with previous 

observations of bicyclo[3.3.1]nonane-1- and 3-carboxylic acids identified in commercial 

NA as the methyl esters (Wilde et al., 2015). 

Herein, two isomers of 3-methylbicyclo[3.3.1]nonane were identified (Figure 5-12; A - 

D), but 1-methylbicyclo[3.3.1]nonane, which has a mass spectrum distinguished by a 

base peak ion at m/z 95, due to the loss of a propyl group (M-43), was not, despite the 

fact that the presence of the acid methyl ester was confirmed with a reference standard. 

The corresponding hydrocarbon could have remained unidentified due to co-elution or 

loss during evaporation. A pair of resolved peaks eluting later than the 3-methyl isomer 

had mass spectra matching two isomers of 2-methylbicyclo[3.3.1]nonane (Figures 5-6 

and 5-12; E-H). 

The mass spectra of the methylbicyclo[3.3.1]nonane isomers all possessed medium to 

strong intensity molecular ions (33 – 63%) (Figure 5-12), due to the relatively stable 

structure of the bicyclic ‘core’; each ring either side of the bridgehead carbons is able to 

adopt a stable cyclohexyl- chair conformation. The mass spectra of the endo- and exo-3-

methylbicyclo[3.3.1]nonane isomers differ significantly, with the exo- isomer showing 

a strong M-15 ion. The mass spectra of the 2-methyl isomers differed from those of the 

3-methyl isomers by the m/z 95/96 intensities, with the m/z 96 dominant in the 2-methyl 

isomers, this indicated that the loss of ·C3H7 and C3H6 may originate from the 

substituted ring. 
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Figure 5-12: (A, C, E and G) Mass spectra of C10 bicyclo[3.3.1]nonanes identified 

within the reduced acid products of F2 and F3 by comparison with (B, D, F and H) mass 

spectra replotted from values previously reported in tablature by Golovkina et al. (1979). 

 



Chapter 5 

232 

 

5.3.4.6 Bicyclo[4.3.0]nonanes 

Rowland et al. (2011e) tentatively identified a series of bicyclo[4.3.0]nonane carboxylic 

acids based on mass spectral interpretation and comparison with one available mass 

spectrum of the 2-carboxylic acid isomer (perhydroindane-1-carboxylic acid). They 

proposed the presence of several isomers. However, the lack of mass spectra available 

meant they were unable to confirm this or to identify the position of the carboxyl group. 

Reduction of the commercial NA herein resulted in several methylbicyclo[4.3.0]nonane 

isomers (Figure 5-7; bi-XIII-XVI) being identified by comparison with reference 

hydrocarbon mass spectra (Denisov et al., 1977b) (Figures 5-13, 5-14 and 5-15). 

The isomers with matching mass spectra included structures with the methyl group 

substituted on the cyclohexyl and cyclopentyl ring, but not on a bridgehead carbon. 

Methylbicyclo[4.3.0]nonanes substituted at the 7- or 8- position (on the cyclopentyl ring) 

showed a prominent loss of C3H6 (m/z 96) (Figure 5-15) compared to those substituted 

at the 2- and 3- positions (on the cyclohexyl ring) which showed a prominent loss 

of ·C3H7 (m/z 95) (Figures 5-13 and 5-14). 
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Figure 5-13: (A-F) Mass spectra of peaks identified within the F2 and F3 hydrocarbon 

products as 2- methylbicyclo[4.3.0]nonanes by comparison with mass spectra replotted 

from values previously reported in tablature by Denisov et al. (1977b). 
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Figure 5-14: (A-F) Mass spectra of peaks identified within the F2 and F3 hydrocarbon 

products as 3- methylbicyclo[4.3.0]nonanes by comparison with mass spectra replotted 

from values previously reported in tablature by Denisov et al. (1977b). 
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Figure 5-15: (A-H) Mass spectra of peaks identified within the F2 and F3 hydrocarbon 

products as 7- and 8-methylbicyclo[4.3.0]nonanes by comparison with mass spectra 

replotted from values previously reported in tablature by Denisov et al. (1977b). 
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5.3.4.7 Bicyclo[4.4.0]decanes 

Bicyclo[4.4.0]decane acids (decalin acids) are probably the most studied or identifiable 

acids within the few studies which report EI mass spectra for individual NA. Aitken et 

al. (2004) identified two isomers of bicyclo[4.4.0]decane-3-carboxylic acid (decahydro-

2-naphthoic acid) within several biodegraded oils from deep surface reservoirs and 

proposed they were the reduced product of the anaerobic biodegradation of naphthalene. 

Rowland et al. (2011e) also identified two isomers of bicyclo[4.4.0]decane-3-carboxylic 

acid and suggested that their presence could be evidence that at least some of the acids 

present within their commercial NA were a result of anaerobic biodegradation. They 

also reported that they could not detect any bicyclo[4.4.0]decane-2-carboxylic acid 

(decalin-1-carboxylic acid) isomers (Rowland et al., 2011e), but without reporting the 

limits of detection of their methods. 

Careful examination of the C11 hydrocarbon mass spectra herein and comparison with 

the reported mass spectra of methylbicyclo[4.4.0]decanes (decalins) (Lukashenko et al., 

1973) allowed the identification of three isomers of 3-methylbicyclo[4.4.0]decane and 

one isomer of 2-methylbicyclo[4.4.0]decane (i.e. decahydro-1- and 2-naphthalene) 

(Figure 5-16). Subsequent comparison of the corresponding acid methyl ester fractions 

with synthesised reference compounds confirmed the presence of the 

bicyclo[4.4.0]decane-2- and 3-carboxylic acid methyl ester isomers (i.e. decahydro-1- 

and 2-naphthoic acids). 
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Figure 5-16: (A) 3D representation of a GC×GC chromatogram showing only 5 

components after applying the CLIC expression to return data points with an m/z 152 

ion greater than 50% relative intensity (Relative (152)>50) and (B) a contour plot of an 

EIC (m/z 152) showing the relative retention positions of the peaks. (D) Mass spectrum 

of one component identified as a 2-methylbicyclo[4.4.0]decane isomer and (C, E and F) 

the mass spectra of three components identified as 3-methylbicyclo[4.4.0]decane 

isomers by comparison with the reference mass spectra previously reported by 

Lukashenko et al. (1973) and comparison of the original acid methyl esters’ retention 

positions and mass spectra with synthesised reference compounds; 

bicyclo[4.4.0]decane-2- and 3-carboxylic acid methyl esters. 
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The mass spectra of methylbicyclo[4.4.0]decanes are distinguishable from other 

bicyclanes by their strong molecular ions (m/z 152). Using the CLIC expression tool to 

return data points where the m/z 152 ion had a relative intensity greater than 50%, 

reduced the complexity of the image to that comprising only five peaks, making it easier 

to identify the methylbicyclo[4.4.0]decanes present (Figure 5-16; A). 

Examination of the C12 bicyclane mass spectra and comparison with the mass spectra 

replotted from the tabulated values reported by Brodskii et al. (1977), led to the 

tentative identification of two dimethylbicyclo[4.4.0]decane isomers (Figure 5-17). 

Furthermore, two major peaks and four later eluting minor peaks had NIST mass 

spectral matches with 1- and 2-ethylbicyclo[4.4.0]decane isomers (Figure 5-18; A-F). 

Subsequent analysis of the acid methyl esters and synthesis of the corresponding eight 

possible ethanoic acid isomers confirmed the two major peaks were isomers of 

bicyclo[4.4.0]decane-1- and 2-ethanoic acid (methyl esters) with matching mass spectra 

and retention positions of the reference compounds (Figure 5-19; A-F). 
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Figure 5-17: (A and D) Mass spectra of some example C12 bicyclanes in the F3 

hydrocarbon product tentatively identified as dimethylbicyclo[4.4.0]decanes by 

comparison with (B, C and E) mass spectra replotted from tabulated values previously 

reported in tablature by Brodskii et al. (1977). 
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Figure 5-18: (A) 3D representation of a GC×GC chromatogram showing two major 

peaks in the F2 and F3 hydrocarbon products corresponding to two C12 bicyclanes using 

corresponding CLIC expression and (B) an EIC (m/z 166) showing their relative 

retention positions in relation to the C12 bicyclanes with (C and E) mass spectra 

matching (D and F) NIST library mass spectra of 1-ethyl- and 2-

ethylbicyclo[4.4.0]decane isomers. 
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Figure 5-19: (A) 3D representation of a GC×GC chromatogram showing the equivalent 

two major peaks in the original acid methyl ester fractions using corresponding CLIC 

expression and (B) an EIC (m/z 210) showing their relative retention positions in 

relation to the C12 bicyclic acid methyl esters with (C and E) mass spectra and retention 

times matching those of (D and F) synthesised reference compounds 

bicyclo[4.4.0]decane-1- and 2-ethanoic acid methyl esters. 
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5.3.4.8 Spiro[4.5]decanes and Spiro[5.5]undecanes 

Wilde et al. (2015) were unable to confirm or rule out the possibility of bicyclic acids in 

OSPW NA possessing spiro- type cores such as spiro[4.4]nonane, spiro[4.5]decane and 

spiro[5.5]undecane acids. However, the hydrocarbon mass spectra of a series of 

dimethylspiro[4.5]decanes and dimethylbicyclospiro[5.5]undecanes, reported by 

Rusinova et al. (1987), were available for comparison with the reduced petroleum NA 

herein. There were no mass spectral matches for the C11 and C12 bicyclanes with the 

reference mass spectral data reported by Rusinova et al. (1987), confirming, at least the 

absence of dimethyl substituted spiro- bicyclics in this particular petroleum NA sample. 

5.3.4.9 Terpenoid-derived acids 

In addition to mono- and di-substituted bicyclo[4.4.0]decanes, a few components which 

eluted late in chromatograms of both F2 and F3 were observed, with mass spectra 

matching those of bicyclic sesquiterpanes possessing drimane structures (Figure 5-20) 

(Dimmler et al., 1984; Alexander et al., 1984; Alexander et al., 1983). Bicyclic 

sesquiterpane hydrocarbons such as drimanes, rearranged drimanes and eudesmanes 

have been studied and used as biomarkers in crude oils and their mass spectra are well 

documented (Alexander et al., 1983; Stout et al., 2005; Nytoft et al., 2009). To the best 

of our knowledge, the corresponding drimane acids have not been reported in 

commercial NA mixtures. Cyr and Strausz (1984) reported the mass spectrum of one 

C16 bicyclic acid (methyl ester) present in the mineral-bound organic extract of the 

Alberta oil sands which possessed a similar mass spectrum to that of a C16 drimane 

hydrocarbon identified in Athabasca bitumen (Dimmler et al., 1984). Nascimento et al. 

(1999) also identified a C16 bicyclic drimane acid in a heavily biodegraded oil from the 

Albacora oil field, Brazil, along with higher C19-20 labdanic acid homologues. Koike et 

al. (1992) reported the presence of one C16 drimane peak in the reduction product of the 

acids from Albacora crude oil. However, synthesis of the corresponding acid methyl 
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ester, based on the structure previously reported by Cyr and Strausz (1984) showed that 

it was absent. The mass spectrum of the synthetic C16 acid methyl ester reported by 

Koike et al. (1992) was slightly different to that previously reported by Cyr and Strausz 

(1984), with a distinct M-89 (m/z 177), possibly the mass spectrum of a different 

diastereoisomer. 

In the GC×GC chromatogram of the F3 hydrocarbon product, two C16 bicyclic 

hydrocarbons (M
+ 

= m/z 222) were observed eluting 3 min apart and one C17 bicyclic 

hydrocarbon eluting 6 min later. Their mass spectra matched those of C16 homodrimane 

and higher homologues (Figure 5-20; A, C and E) (Dimmler et al., 1984; Alexander et 

al., 1984). 

The mass spectra of the drimane hydrocarbons show very characteristic fragmentation 

patterns, with a common loss of M-15. The mass spectra are dominated by a strong base 

peak ion at m/z 123, corresponding to fragmentation of the gem-dimethyl substituted 

ring (Figure 5-20). Complementary analysis of the original F3 acid methyl esters by 

GC×GC-MS, prompted by the identification of the bicyclanes herein, then allowed 

confirmation of the presence of the corresponding C16 and C17 drimane acids in the 

same elution order as the hydrocarbons (3 and 6 min apart) (Figure 5-20; B, D and F). 

Interestingly, the mass spectrum of the earlier eluting C16 acid methyl ester matched the 

mass spectrum reported by Cyr and Strausz (1984), whereas the mass spectrum of the 

later eluting C16 acid methyl ester matched the mass spectrum reported by Koike et al. 

(1992) with a more abundant m/z 177 ion. Using the CLIC expression tool to return data 

points with a base peak ion at m/z 123 only (CLIC expression: Ordinal(123)=1), 

revealed a further two later eluting peaks with mass spectra and molecular ions 

matching those of C19 and C20 homologues (Figure 5-21) (Dimmler et al., 1984). 
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Figure 5-20: (A, C and E) Mass spectra of C16 and C17 bicyclanes identified, within both 

reduced fractions, as possessing terpenoid-derived drimane structures by comparison 

with previously reported mass spectra (Dimmler et al., 1984; Alexander et al., 1984) 

and (B, D and F) mass spectra of the corresponding methyl esters in the F2 and F3 acid 

methyl ester fractions (Cyr and Strausz, 1984). (I-IIIa; R = CH3. I-IIIb; R = CO2CH3). 
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Figure 5-21: (A and B) Mass spectra of C19 and C20 bicyclanes identified within the F2 

hydrocarbon product as higher labdane homologues of terpenoid-derived structures by 

comparison with previously reported mass spectra (Dimmler et al., 1984; Nascimento et 

al., 1999) (In hydrocarbon product; R = CH3. I-IIIb and in the acids; R = CO2CH3). 
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5.4 Conclusions 

The identifications presented herein of individual bicyclic hydrocarbons and thus, by 

inference, of the corresponding acids, possibly represent the most comprehensive study 

of bicyclic petroleum NA to date. The assignments are supported by the identification 

of multiple isomers of each acid type and are consistent with the (albeit sparse) previous 

evidence of such acids identified as the esters, in other matrices, (Wilde et al., 2015). 

Where possible the assignments were supported by close matches with the GC×GC 

retention positions and mass spectra of reference compounds. Also, for various isomers, 

the GC×GC elution order of the hydrocarbons additionally matched those reported for 

other complex mixtures e.g. bicyclanes produced from the catalytic conversion of 

bicyclo[4.4.0]decane and bicyclo[4.3.0]nonane (Piccolo et al., 2010; Bagrii et al., 1970; 

Bagrii et al., 1967; Petrov, 1987). The retention indices of the peaks in Figure 5-6, 

assigned as the structures in Figure 5-7 are reported in Appendix Table 1. 

For decades limited identification of individual petroleum acids has hindered a detailed 

understanding of their role in petroleum generation and oil production processes, 

refinery corrosion, as wood preservatives and as environmental toxicants. The present 

method, based on a combination of an historical approach of converting acids to the 

corresponding hydrocarbons, followed by analysis by GC×GC-MS, resulted in 

identification of over 40 individual bicyclic acids as the bicyclane hydrocarbons. There 

is now clear potential for this method to be used for the structural elucidation of other 

unknown acids (e.g. oil sands NA) and functionalised biomarkers in complex organic 

extracts as described in Chapter 6. 
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Chapter 6  

Identification of naphthenic acids in oil sands process waters 

by multidimensional gas chromatography-mass spectrometry, 

before and after conversion of acids and esters to the 

corresponding hydrocarbons  

Chapter 6 describes the identification of naphthenic acids (NA) extracted from oil sands 

process water (OSPW) by multidimensional gas chromatography-mass spectrometry 

(GC×GC-MS), before and after conversion of either the free acids or the methyl esters, 

to the corresponding hydrocarbons. 

The approach of converting NA (as esters) to the corresponding hydrocarbons to aid 

identification, using the method developed in Chapter 4, showed great potential when 

applied to commercially prepared, petroleum-derived NA, resulting in the identification, 

by inference, of over 40 individual bicyclic acids (Chapter 5). 

Due to their ready availability and perhaps some naivety over their relevance (e.g. as 

discussed by West et al. (2011)), commercial NA have been used as ‘model’ acid 

mixtures in studies investigating the toxicity, remediation and fate in the environment of 

NA extracted from OSPW. Since numerous recent and some older investigations (e.g. 

Scott et al. (2005), Bataineh et al. (2006), Grewer et al. (2010) and Hindle et al. (2013)) 

have shown the composition of commercial and OSPW NA to be different, there is a 

need for greater compositional information about OSPW NA. For instance, lack of 

knowledge of the structures of NA in OSPW has limited attempts to calibrate methods 

for quantification and hindered a better understanding of toxicity, biodegradation and 

hence possible bioremediation mechanisms (Hindle et al., 2013; Brunswick et al., 2015). 
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Hence the approach developed for the identification of petroleum acids by conversion to 

hydrocarbons (Chapters 4 and 5), was applied herein to NA extracted from OSPW. 

GC×GC-MS of the methyl esters of the OSPW NA showed the mixtures were 

extremely complex, even after fractionation by argentation chromatography, although 

the findings of previous studies (Rowland et al., 2011c; Rowland et al., 2011g) were 

confirmed and in some cases extended. GC×GC-MS of the reduced free acids (viz: the 

hydrocarbon products) and of hydrocarbons produced from reduction of ester fractions 

of ‘alicyclic’, ‘aromatic’ and ‘heteroatom-containing’ fractions of OSPW NA, resulted 

in the confirmation of numerous bicyclic acids, adamantane and diamantane acids, as 

well as monoaromatic and sulphur-containing acids, as their hydrocarbon equivalents 

and included identification of numerous previously unidentified NA. 

The main results of this chapter and methods described have been drafted for 

publication: 

Wilde, M. J. And Rowland, S. J. (2015) Identification of naphthenic acids in oil sands 

process water by multidimensional gas chromatography-mass spectrometry after 

conversion to their corresponding hydrocarbons. To be submitted to Analytical 

Chemistry 

.
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6.1 Introduction 

Intensive surface mining of the bituminous oil sands of Alberta, Canada, by hot water 

extraction, produces large volumes of oil sands process-affected waters (OSPW; 

Chapter 1, Section 1.1.2). Despite recycling of the caustic extraction water, large 

volumes of process water contaminated with high concentrations of aqueous-soluble 

components from the bitumen, such as NA, as well as suspended solids, continue to 

accumulate. The total volume is currently estimated to be between 720 to 975 million 

m
3
, with volumes continually rising (Headley et al., 2013a; Barrow et al., 2015a; 

Alberta-Energy, 2013), covering an area estimated to be between 130 to 220 km
2
 

(Headley et al., 2013a; Alberta-Energy, 2013). The OSPW is stored in large open 

‘tailings’ ponds, allowing the suspended tailings to settle. Long-term reclamation plans 

for the land include storage of the water in so-called End-Pits, or by other measures 

(Quagraine et al., 2005; Kavanagh et al., 2009). Residual toxicity in the OSPW is a 

hindrance to successful reclamation by most, if not all, methods, so better identification 

of the toxic constituents (toxicity is largely attributed to the NA; Marentette et al. 

(2015a)), is essential in order that remediation attempts can be better directed. 

OSPW have been shown to be toxic to numerous organisms ranging from bacteria to 

birds and fish at the concentrations found in tailings ponds (Clemente and Fedorak, 

2005; He et al., 2012). Since this toxicity has been attributed mainly to the NA content 

(Marentette et al., 2015a; Mohseni et al., 2015) (Chapter 1, Section 1.4), methods have 

been developed for monitoring NA in OSPW from surface mining, from treated OSPW, 

from steam-assisted gravity drainage (SAGD) produced water and from water samples 

taken from the local and distal environments surrounding the mining developments 

(Petersen and Grade, 2011; Pereira et al., 2013b; Noestheden et al., 2014; Frank et al., 

2014). Most of the latter quantitative studies have involved use of negative ion 
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electrospray ionisation ((-)ESI) coupled with high and ultra-high resolution mass 

spectrometry (HRMS) (Schaub et al., 2007; Headley et al., 2011a; Headley et al., 2014; 

Yi et al., 2015). Investigations using other ionisation techniques such as atmospheric 

pressure photoionisation ((+) and (-) APPI) and (+)ESI have also reported detection of 

hydrocarbon and heteroatom-containing species present in the acid-extractable organics 

(AEO) isolated from OSPW (Barrow et al., 2010; Barrow et al., 2015a). Also, methods 

involving fractionation procedures followed by HRMS methods have revealed that at 

least some OSPW samples contain, not only an extensive range of NA, but other 

compounds beyond so-called ‘classical’ CnH2n+zO2 species (Rowland et al., 2014b; 

Rowland et al., 2014a). 

The latest analytical methods for the characterisation of NA have often included a 

chromatographic separation step, such as gas chromatography (GC), or more commonly, 

high and ultra-high performance liquid chromatography (UPLC), followed by detection 

by Fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) (Barrow 

et al., 2014; Ortiz et al., 2014), Orbitrap-mass spectrometry (Pereira et al., 2013a; 

Pereira and Martin, 2014) or ion mobility-mass spectrometry (IMS) (Klamerth et al., 

2015; Huang et al., 2015a). Methods involving the combination of a chromatographic 

separation step with HRMS enable the separation of isobaric species possessing the 

same molecular formulae, which can be determined very accurately by HRMS. 

However, beyond basic assumptions based on the retention times of unresolved isomers, 

these methods lack sufficient separation power for determining key structural features 

and have not allowed the identification of any individual acid from which toxicity data 

can then be obtained or modelled. Determination of the chemical nature of individual 

OSPW NA and AEO components would also allow monitoring methods to be devised 

to examine whether the bitumen-derived Ox, SOx and NOx species detected in OSPW 

and surrounding ground and river waters (Frank et al., 2014) might be differentiated. 
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This would aid source identification and profiling studies designed to determine the 

extent to which OSPW is migrating/leaking into the surrounding environment. 

Identification of individual NA species would also aid current understanding of 

treatment mechanisms and remediation plans; identification could lead to targeted 

treatment so changes in concentration and the formation of by-products from specific 

NA could be monitored. 

Recently, Lengger et al. (2015) monitored the distribution of individual tricyclic 

diamondoid mono- (CnH2n-6O2) and di- (CnH2n-6O4) acids as their methyl and dimethyl 

ester derivatives, to determine short-term compositional changes in, and sample 

variability between, replicate OSPW samples from two different industries. Similarly, 

Frank et al. (2014) used (-)ESI-Orbitrap-MS to determine CnH2n+zO2: CnH2n+zO4 ratios 

and complementary GC×GC-MS analysis to profile tentatively identified aromatic acids 

previously reported to be in OSPW (Rowland et al., 2011d), to differentiate between 

AEO from OSPW and surrounding groundwater samples. Identification of NA 

structures has also enabled the toxicity of a number, albeit limited, of synthesised and 

commercially available reference acids, to be measured (Jones et al., 2011; Tollefsen et 

al., 2012). The results were used to predict the toxicity of numerous acids in OSPW and 

to identify those NA of most concern, based on modelled toxicity data (Scarlett et al., 

2012). 

However, the identification of individual NA as their methyl ester derivatives is 

partially limited by the lack of mass spectral and retention time data and available 

reference compounds for confirmation. Recently, Wilde and Rowland (2015) reported a 

complementary, additional method for the identification of petroleum NA, after 

conversion of NA (as methyl esters) to the corresponding hydrocarbons (Chapter 5). 

This approach, based on the chemical transformation methods used in early 
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investigations of NA (e.g. Seifert et al. (1969)), coupled with analysis of the reduced 

acid products by GC×GC-MS, resulted in the identification of over 40 individual 

bicyclic petroleum NA. Identification of the bicyclic hydrocarbons, and by inference the 

original bicyclic acids, was achieved by comparison of the hydrocarbon mass spectra 

with the abundant mass spectra of known bicyclic hydrocarbons collated from (mainly) 

early Russian investigations into petroleum hydrocarbons (Sanin, 1976; Denisov et al., 

1977a; Denisov et al., 1977b; Denisov et al., 1977c; Denisov et al., 1977d; Golovkina 

et al., 1984; Golovkina et al., 1979; Petrov, 1987). 

The goal of the current investigation was now to apply the latter conversion method to 

NA extracted from samples of OSPW, both as free acids and as ester derivatives, in an 

attempt to assign specific structures to the compounds. 

The study did indeed result in the identification of several new individual acids (as 

hydrocarbons) in OSPW. The results also confirmed numerous previous assignments, 

which were only tentative previously due to the lack of supporting mass spectral 

evidence for the acid methyl esters. The results also contradicted speculations that 

certain adamantane acids identified in OSPW might be entirely artefactual (Brunswick 

et al., 2015). 
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6.1.1 Aims and Objectives 

The aims of the current investigation were to apply the method for the conversion of 

NA to hydrocarbons, to NA extracted from OSPW and to conduct GC×GC-MS analysis 

on the resulting hydrocarbon products, to aid the identification of NA in OSPW. The 

conversion was to be performed on a derivatised (methyl esters), fractionated sample 

(#2) and underivatised, unfractionated (#7) sample of OSPW NA. To confirm if the 

reduction procedure was successful on the more complex unfractionated, underivatised 

OSPW NA, both the reduced underivatised, unfractionated NA and a reduced alicyclic 

fraction were each examined, to identify hydrocarbons for which the corresponding 

acids such as tricyclic and pentacyclic diamondoid NA, had been identified previously 

in OSPW NA,. 

After confirming successful reduction, initial focus was placed on identification of 

bicyclic acids, as the corresponding bicyclanes, which had not been reported previously 

in OSPW NA. Following this, additional aims included examination of the reduced 

alicyclic, aromatic and aromatic/sulphur-containing NA fractions, to identify previously 

unknown NA, or NA that had only been identified tentatively previously, by 

comparison of the mass spectra of the resolved hydrocarbon products with reference 

hydrocarbon mass spectra and known elution orders. 
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6.2 Methods 

6.2.1 OSPW acid extracts, derivatisation and fractionation 

In the current investigation, two different OSPW NA extracts from industry A were 

analysed, the first (sample #2) provided by Environment Canada and the second 

(sample #7) provided by the University of Alberta. Sample #2 was an NA extract from 

OSPW, collected from the WIP tailings pond in 2009, and prepared as described in 

Chapter 2, Section 2.2.1 and discussed in Chapter 3, Section 3.2.1. The origin of sample 

#7 has to remain anonymous; however, it was also a NA sample extracted from OSPW 

in a tailings pond in industry A; the OSPW was filtered, acidified and extracted in DCM 

(cf. Pereira et al. (2013a)). 

Sample #2, which was also analysed as a whole NA (methyl esters) mixture in Chapter 

3, was now fractionated by Ag-Ion chromatography using the same large scale method 

used to fractionate the petroleum NA in Chapter 5 (Jones et al., 2012; Scarlett et al., 

2013). Three fractions were selected from this procedure in order to perform the 

conversion to hydrocarbons; an ‘alicyclic’ fraction (F2) eluted in 100% hexane, an 

‘aromatic’ fraction (F5) and an ‘aromatic/sulphur’-containing fraction (F7) eluted with 

95%:5% hexane : ether. To obtain enough material of each of the fractions on which to 

perform the conversion, the above fractionation was carried out twice. As the OSPW 

NA fractions were also used in other concurrent investigations (e.g. Rowland et al. 

(2014a) and West et al. (2014b)), the alicyclic Ag-Ion fraction (F2) was taken from the 

first large scale fractionation and the aromatic and aromatic/heteroatom-containing 

fractions (F5 and F7) were taken from the second fractionation (Chapter 2, Section 

2.2.6). 

Sample #7 (University of Alberta) was selected for the conversion to hydrocarbons as 

this had been shown to possess a higher abundance of lower molecular weight acids (e.g. 
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C10 bicyclic acids), relative to sample #2. Sample #7 was not derivatised or fractionated 

prior to the conversion to the hydrocarbons. 

6.2.2 Conversion of OSPW NA to hydrocarbons 

The acid methyl ester Ag-Ion fractions of sample #2 and of the free, underivatised, 

unfractionated acids of sample #7, were each converted to the corresponding 

hydrocarbons using the method developed in Chapter 4, previously shown to be 

successful on petroleum NA in Chapter 5. The general procedure for the conversion to 

hydrocarbons is described in Chapter 2, Section 2.3. 

The hydrocarbon products of the reduced Ag-Ion fractions were concentrated under a 

stream of N2. As sample #7 had been selected as a mixture known to contain low 

molecular weight acids (Prof J Martin, University of Alberta, personal communication), 

the final hydrocarbon products of the reduced, underivatised, unfractionated OSPW NA 

were concentrated using a Kuderna-Danish apparatus, as described in Chapter 2, 

Section 2.3.4. 

6.2.3 GC×GC-MS 

The GC×GC-MS instrumentation used is described in Chapter 2, Section 2.1.4. Samples 

were analysed using two different temperature programmes (referred to as conditions A 

and B). The GC×GC-MS conditions A involved the primary oven programmed from 

30°C, held for 1 min, then heated to 120°C at 5°C min
-1

, to 220°C at 0.8°C min
-1

, to 

280°C at 5°C min
-1

 and to 320°C at 10°C min
-1

 and then held for 10 min. The secondary 

oven was programmed to track the primary oven at 40°C above. The hot jet was 

programmed to start 30°C above the primary oven temperature until 150°C, it was then 

ramped to 260°C at 1.3°C min
-1

 and then to 400°C at 4°C min
-1

. The modulation period 

was set 4 - 6 s. The GC×GC-MS conditions B involved the primary oven programmed 

from 40°C, held for 1.3 min, then heated to 200 °C at 1°C min
-1

, to 280 °C and 5 °C 
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min
-1

 and to 320°C at 10 °C min
-1

 and then held for 5 min. The secondary oven was 

programmed to track the primary oven at 20 °C above. The hot jet was programmed to 

start 20 °C above the primary oven and finish 100 °C above the primary oven over the 

period of the run; programmed from 60 °C, held for 1 min, then heated to 200 °C at 

1.1 °C min
-1

, to 280 °C at 3 °C min
-1

 and then to 400 °C at 5 °C min
-1

. The modulation 

period was set at 4 - 6 s. 

 

 

 



Chapter 6 

257 

 

6.3 Results and Discussion 

6.3.1 Derivatised, fractionated and underivatised, unfractionated, OSPW NA 

Sample #2 was first derivatised to the acid methyl esters with BF3-MeOH at 70 °C 

before separation by Ag-Ion chromatography. The large scale fractionation procedure 

had proven successful in isolating a broadly ‘alicyclic’ fraction(s) of petroleum NA 

previously (Chapter 5) and had been employed in other studies investigating the 

composition and toxicity of OSPW NA to obtain broadly ‘aromatic’ and 

‘aromatic/sulphur’-containing fractions (Jones et al., 2012; Reinardy et al., 2013; 

Scarlett et al., 2013). Therefore the approach of converting the fractionated acid methyl 

esters to hydrocarbons was applied to three fractions herein (F2, F5 and F7), broadly 

characterised as ‘alicyclic’, ‘aromatic’ and ‘aromatic/sulphur’-containing NA by GC-

MS and GC×GC-MS; equivalent fractions from previous investigations had been 

characterised additionally using elemental analysis, sulphur chemiluminescence 

detection (SCD) and high resolution mass spectrometry (HRMS) (Jones et al., 2013; 

West et al., 2014b). Therefore, any NA identified using the conversion approach herein 

could be compared, if necessary, with those identified in previous studies on OSPW 

isolated by the same fractionation procedures (Scarlett et al., 2013; Reinardy et al., 

2013). 

The ‘alicyclic’ fraction selected, was the second of the first four fractions, eluting with 

100% hexane (Table 2-2; Chapter 2, Section 2.2.6, page 65). The total mass of the four 

hexane fractions collected in the first fractionation (106 mg) accounted for 35.8% of the 

total mass of acid methyl esters (296 mg) loaded onto the Ag-Ion column. Fraction 1 

contained 20.1 mg (6.79%), fraction 2; 76.8 mg (25.9%), fraction 3; 7.4 mg (2.5%) and 

fraction 4 contained 1.7 mg (0.6%). The values of the hexane fractions from a second 

fractionation were very similar (Tables 2-2 and 2-3, pages 65 and 66). The lower 
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‘alicyclic’ content of the OSPW NA (35.8%) relative to the high ‘alicyclic’ content 

(80.0%) observed for petroleum NA (Chapter 5, Section 5.3.1) correlates with previous 

ESI-HRMS and HPLC-ESI-HRMS studies (Bataineh et al., 2006; Hindle et al., 2013). 

Almost half the ‘alicyclic’ NA content in petroleum NA, was collected in fraction 1, 

which was dominated by acyclic, z = 0, NA. The numerous charts that have been 

produced from high resolution mass spectrometric techniques, showing carbon number 

against z-value, all show OSPW NA to have depleted z = 0 and -2 NA and more 

abundant z = -8 to -12 NA, relative to commercial NA mixtures (Bataineh et al., 2006; 

Hindle et al., 2013).  

The ‘aromatic’ (F5) and ‘aromatic/sulphur-containing’ (F7) fractions accounted for 16.9% 

and 4.4% of the total mass of NA methyl esters loaded onto the Ag-Ion column, 

respectively. These values were much higher than the equivalent fractions collected for 

petroleum NA (6.5% and 0.9%, respectively) and corresponded well with the more 

abundant NA species with higher z-values observed in the HRMS charts for OSPW NA 

(Bataineh et al., 2006; Martin et al., 2008; Hindle et al., 2013). The lower abundance of 

acyclic NA in OSPW and the increased aromatic content relative to petroleum NA, has 

been attributed to the heavily degraded, oil sands bitumen and the increased 

susceptibility of smaller and monocyclic NA towards biodegradation and the more 

recalcitrant nature of the polycyclic and aromatic NA (Toor et al., 2013b; Brown and 

Ulrich, 2015). 
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6.3.2 Yields of conversion 

The three step conversion was performed on ~10 - 25 mg of the OSPW NA methyl ester 

Ag-Ion fractions of sample #2, dependent on the availability of material, and ~30 mg of 

the underivatised, unfractionated OSPW NA sample #7. The method had been 

developed on small quantities of ‘model’ acids (5 – 50 mg; Chapter 4) in preparation for 

the limited availability of OSPW material and had been shown to be successful on 

milligram quantities for the conversion of two Ag-Ion fractions of a petroleum NA 

extract (9 – 50 mg; Chapter 5). 

The starting masses of reactants and final masses of products for each stage of the 

conversions are given in Table 6-1. An approximate percent yield was determined for 

the first two stages of the reaction for each Ag-Ion fraction, as well as the underivatised, 

unfractionated OSPW NA. Approximate yields were calculated using estimated average 

molecular weights, based on the carbon number distributions and the most abundant 

molecular ions observed in the average mass spectra across each chromatogram for each 

sample. The average molecular weight for the ‘alicyclic’ fraction was 250 g mol
-1

; for 

the ‘aromatic’ fraction, 286 g mol
-1

; for the ‘aromatic/sulphur’-containing fraction, 294 

g mol
-1

 and for the underivatised, unfractionated NA, 246 g mol
-1

. 

The final hydrocarbon products of the reduced Ag-Ion fractions were concentrated 

under a stream of N2. However, it was obvious that the products still contained some 

remaining THF (by odour) and boroxin (observed as clear crystals). Therefore, the 

masses of the hydrocarbon products were all above the expected/theoretical mass of 

product. 

 



Chapter 6 

260 

 

Table 6-1: Summary of the masses and yields for the conversion of the Ag-Ion fractions 

2, 5 and 7 of the derivatised OSPW NA and of the underivatised, unfractionated OSPW 

NA samples, to hydrocarbons. 

Starting Reactant Starting mass and yield / mg (approx. percentage yield / %) 

Derivatised 

(# sample 

number) 

Fraction 

LiAlH4 Reduction Tosylation 
Super-Hydride® 

Reduction 

NA methyl 

esters / mg 

Alcohols 

/ mg 

Alcohols 

/ mg 

Tosylates 

/ mg 

Tosylates 

/ mg 

Hydrocarbons 

/ mg 

Yes (#2) 2 10
†
 

9.8 
(104%

‡
) 

9.8 
13.3 

(82%
‡
) 

12.2 20.7
*
 

Yes (#2) 5 25
†
 

23.0 
(97%

‡
) 

23.0 
27.9 

(77%
‡
) 

27.9 17.2
*
 

Yes (#2) 7 10
†
 

9.1 
(96%

‡
) 

9.1 
10.5 

(74%
‡
) 

10.5 6.7
*
 

No (#7) Whole 30
†
 

25.0 
(88%

‡
) 

25.0 
32.3 

(78%
‡
) 

32.0 
- 

†
 approximate masses, as methyl esters 

‡
 approximate yield based on average molecular weight of acid methyl esters as 250 g 

mol
-1

 in F2, 286 g mol
-1

 in F5, 294 g mol
-1

 in F7 and 246 g mol
-1

 in the whole 

underivatised OSPW NA 
*
 hydrocarbon product concentrated by N2 blowdown resulting in evaporative losses; 

THF and boroxin residue present 
-
 Kuderna-Danish apparatus used for concentration to reduce volatile compound losses, 

so no weight was recorded 
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6.3.3 Identification of OSPW acids as methyl esters and by reduction to 

hydrocarbons 

The identification of hydrocarbons such as tricyclic and pentacyclic diamondoids, for 

which the corresponding acids had been identified previously in OSPW NA (discussed 

later in Sections 6.3.3.2 and 6.3.3.3), confirmed that the conversion to hydrocarbons 

was successful for the more complex alicyclic OSPW NA. Hence, initial focus was to 

identify any bicyclic acids, as the corresponding bicyclanes, which had not been 

reported previously in OSPW NA. Following this, the reduced ‘aromatic’ and ‘aromatic, 

sulphur’-containing fractions were examined and the identification made of previously 

unknown NA, or NA that had only been identified tentatively, by comparison of the 

mass spectra of the resolved hydrocarbon products with reference hydrocarbon mass 

spectra and known elution orders. 

6.3.3.1 Bicyclic acids 

Alicyclic bicyclic acids are a major class of OSPW NA (Martin et al., 2008). High- and 

ultra-high resolution mass spectrometric techniques often show ions corresponding to z 

= -4, CnH2n+zO2 acid species with carbon numbers ranging from C9-20, as the most 

abundant CnH2n+zO2 species (Bataineh et al., 2006; Barrow et al., 2010). Analysis of 

commercial and OSPW NA methyl esters by GC×GC-MS, has shown that the ions 

detected by high resolution mass spectrometry represent hundreds of different structural 

isomers (Damasceno et al., 2014; Wilde et al., 2015). Based on the limited knowledge 

of bicyclic acids, a well-accepted screening assay reported some bicyclic acids to be the 

most toxic of those studied (Jones et al., 2011). Scott et al. (2008) showed the ozonation 

of OSPW resulted in the removal of most z = -4 acids; however, nothing is known about 

the residual acids, or of any transformation products. 
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Investigations into the structural identification of bicyclic acids were previously 

described in Chapter 3. In summary, no or few, identifications, particularly in OSPW, 

had been made until that study. In the accompanying publication, Wilde et al. (2015) 

reported the identification of a few bicyclic acids in different samples of OSPW NA, 

following analysis of the methyl esters by GC×GC-MS and subsequent comparison of 

the mass spectra and retention positions with reference compounds, as described in 

more detail in Chapter 3. Following the development of the alternative method for the 

identification of NA by conversion to the hydrocarbons and analysis by GC×GC-MS 

(Chapter 4), Wilde and Rowland (2015) also reported the identification of over 40 

individual bicyclic acids in petroleum NA, by comparison of the mass spectra and 

elution orders of the corresponding bicyclanes with those of known hydrocarbons 

(Chapter 5). These investigations resulted in the first identification of novel bridged 

bicyclic acids, along with several bicyclic fused and terpenoid-derived acids. 

In the current investigation, analysis of the ‘alicyclic’ acids as methyl esters of sample 

#2 showed that C11-16 bicyclic acids were indeed present, as reported as typical of 

OSPW NA (Bataineh et al., 2006; Hindle et al., 2013). The absence of the lower 

molecular weight C8-11 acids, shown to be present in several other OSPW NA samples 

(Figure 3-2; Chapter 3, page 93), coupled with the additional loss of <C13 bicyclanes 

after conversion to the hydrocarbons and concentration in this case without use of a 

Kuderna-Danish apparatus, limited the potential for the identification of such bicyclic 

acids in this sample. Reference spectra for bicyclic petroleum hydrocarbons mainly 

exist for C9-11 bicyclanes and therefore the absence of the lower molecular bicyclanes 

limited initial identification attempts. 

By contrast, GC×GC-MS analysis of the acid methyl esters of sample #7 revealed 

homologous series of isomers with mass spectra displaying molecular ions consistent 
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with C10-15 bicyclic acid methyl esters. In this case, careful concentration of the 

hydrocarbon product, following reduction of the unfractionated NA, using a Kuderna-

Danish apparatus and subsequent analysis by GC×GC-MS showed homologous series 

of C10-15 bicyclanes (Figure 6-1; A and B). However, the reduced sample #7, which had 

not been fractionated by Ag-Ion chromatography, revealed a more complex distribution 

of bicyclanes, with co-elution with tricyclanes and other hydrocarbons. 

Despite this, comparison of the mass spectra of those bicyclanes which were not 

hindered by co-elution effects, resulted in the identification of bicyclo[3.2.1]octane, 

bicyclo[3.3.0]octane and bicyclo[4.3.0]nonane alkyl derivatives (Figure 6-1; C-H). The 

earliest eluting isomer (bi-VII) was assigned as 1,4-dimethylbicyclo[3.2.1]octane 

(Figure 6-1; C and D) after comparison with the reference mass spectrum reported by 

Denisov et al. (1977a). This identification was supported by the identification of the 

same bicyclane, and by inference the same acid, previously in petroleum-derived NA 

(Figure 5-8; Chapter 5, page 223). 

Comparison of the mass spectrum of isomer bi-XXIII with the mass spectra of alkyl 

bicyclo[3.3.0]octanes reported by Denisov et al. (1977c), resulted in the identification 

of 1,2-dimethylbicyclo[3.3.0]octane (Figure 6-1; E and F). This assignment was 

supported by its retention position relative to 1,4-dimethylbicyclo[3.2.1]octane (bi-VII) 

which matched the elution order of C10 bicyclanes previously reported by Piccolo et al. 

(2010) and complemented the previous identification of several bicyclo[3.3.0]octane 

acids in petroleum-derived NA (Chapter 5, Sections 5.3.4.1 and 5.3.4.3). The 

bicyclo[3.3.0]octane acids previously identified in petroleum NA consisted of 

carboxylic, ethanoic and propanoic acid isomers and a methyl-substituted carboxylic 

acid isomer, all substituted at secondary carbon positions. (A similar observation was 
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made for the bicyclo[4.3.0]nonane petroleum acids). The result is thus the first 

identification of a bicyclo[3.3.0]octane acid with a substituent at a bridgehead carbon. 

 

Figure 6-1: (A) EIC (m/z 138, 152, 166 and 180) of C10-13 bicyclanes in the reduced 

unfractionated NA (sample #7) showing separation of homologous series by carbon 

number. (B) Zoomed insert showing C10 isomers and (C-H) identification of bridged 

and fused bicyclanes by mass spectral comparison with reference mass spectra and 

elution order (Denisov et al., 1977a; Denisov et al., 1977c; Denisov et al., 1977b). 
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The isomer bi-XV displayed a mass spectrum matching those of cis-cis and trans-cis 3-

methylbicyclo[4.3.0]nonane reported by Denisov et al. (1977b) (Figure 6-1; G and H). 

Numerous methylbicyclo[4.3.0]nonanes were identified in the reduced petroleum NA 

(Figures 5-13 - 5-15; Chapter 5, Section 5.3.4.6, pages 233 - 235) with the isomer 

assigned as the cis-cis/trans-cis 3-methyl- isomer eluting earliest of all the 2- and 3-

methyl- isomers. 

The mass spectra of the later eluting isomers bi-XXIV to XXVI were less distinct and 

more difficult to assign. The isomer bi-XXIV was tentatively assigned as 2,6-

dimethylbicyclo[3.2.1]octane based on its mass spectral match (Figure 6-2; A and B). 

However, there was no previous identification of this isomer in petroleum NA and no 

record of its retention position relative to other C10 bicyclanes. 

The remaining bicyclanes, such as isomers bi-XXV and XXVI, were not able to be 

assigned as their mass spectra did not match any of the collated reference mass spectra 

of numerous bicyclane isomers. This contrasted with the results of the reduced 

petroleum NA (Chapter 5), which resulted in the identification of almost all the 

corresponding C10 bicyclic hydrocarbons. 
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Figure 6-2: Mass spectra of C10 bicyclanes (bi-XXIV to XXVI) in the reduced 

unfractionated NA (sample #7). (A) Isomer bi-XXIV assigned after comparison with (B) 

the reference mass spectrum of endo-endo-2,6-dimethylbicyclo[3.2.1]octane. (C and D) 

Mass spectra of isomers bi-XXV and XXVI which did not match any reference spectra 

and were significantly different to those within reduced petroleum-derived acids 

previously reported (Wilde and Rowland, 2015). 

 

Petroleum NA and NA extracted from OSPW have often been reported to possess 

significantly different compositions (Grewer et al., 2010; Hindle et al., 2013). These 

differences in compositions are often observed as a notable difference in the HPLC 

retention times of the unresolved NA ‘humps’. The different compositions of OSPW 

NA, which elute slightly earlier than petroleum NA (typically in HPLC methods; e.g. 

Bataineh et al. (2006) and Han et al. (2008)), are often explained as due to the increased 

resistance to biodegradation of the OSPW NA, when compared with petroleum NA 

(Scott et al., 2005; Frank et al., 2008; Brown and Ulrich, 2015). The current 
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justification used by some authors to explain both of these phenomena is that the 

carboxylated alkyl side chains in OSPW NA, which are otherwise believed to possess 

alkyl substituted alicyclic structures similar to those of petroleum NA, are more highly 

branched in OSPW NA (example given in Figure 6-3; A) (Holowenko et al., 2002; 

Bataineh et al., 2006). It is well known that highly branched hydrocarbons, such as 

acyclic isoprenoid hydrocarbons, elute earlier than the equivalent carbon number, so-

called ‘straight chain’ hydrocarbons and also that increased alkyl branching along 

carboxylated side chains and increased cyclicity, hinders biodegradation (Smith et al., 

2008; Misiti et al., 2014; Quesnel et al., 2011). 

However, this explanation has never been supported by the identification of an acid 

possessing a long non-branched alkanoate chain in petroleum NA or the corresponding 

acid with a branched alkanoate chain in OSPW NA (such as the structures shown in 

Figure 6-3; A). Whilst increased cyclicity due to the presence of aromatic structures in 

OSPW NA, may have an important role in the differences in retention time and toxicity 

observed for different NA mixtures (Jones et al., 2012; Rowland et al., 2011d), 

aromaticity obviously does not explain the observations made for the alicyclic acids. 

This speculation that OSPW NA are simply more highly branched analogues of 

petroleum NA (Figure 6-3; A) is not borne out by the identifications of bicyclic acids 

made in both petroleum and OSPW herein (Figure 6-3; B and C). 
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Figure 6-3: Examples of generalised structures demonstrating (A) previous 

hypothesised petroleum NA and OSPW NA, suggesting that OSPW NA are more 

highly branched equivalents and (B and C) a suggested hypothesis for the differences 

between petroleum NA and OSPW NA based on the bicyclic NA identified in the 

present study. (Structures in A are theoretical as none have been identified to support 

the theory. R’ = alkanoate side chain; R = alkyl substituent). 

 

An alternative or complementary explanation is that alongside differences in alkyl 

branching and aromatic content of the NA, the OSPW NA examined herein possess a 

higher proportion of condensed, bridged structures, substituted at the bridgehead 

position (Figure 6-3; B and C and Figure 6-4). 

Following the conversion of petroleum NA to corresponding bicyclanes (Chapter 5), a 

pattern in the elution orders was observed (Figure 6-4); a pattern which was also 

observed for the corresponding bicyclic acid methyl esters, as shown by the analysis of 

several reference acids (Wilde et al., 2015). The general retention times of the 



Chapter 6 

269 

 

bicyclanes and reference bicyclic acids increased as follows; bicyclo[2.2.1]heptanes, 

bicyclo[3.2.1]octanes, bicyclo[3.3.0]octanes, bicyclo[2.2.2]octanes, 

bicyclo[4.3.0]nonanes, bicyclo[3.3.1]nonanes and bicyclo[4.4.0]decanes, with the more 

condensed-type and bridged structures eluting earlier. 

 

Figure 6-4: Schematic diagram showing general GC×GC elution order of bicyclic acids 

and bicyclanes and their relative abundance in petroleum NA and OSPW NA based on 

the number of structures of each identified in the present study. 

Some overlap was observed, with the positions and numbers of substituents also 

affecting the elution order (e.g. dimethyl- isomers eluted earlier than ethyl- isomers and 

1-ethylbicyclo[4.4.0]decane and the corresponding acid methyl ester eluted before 2-

ethylbicyclo[4.4.0]decane and corresponding acid methyl ester (Figures 5-16 - 5-19; 

Chapter 5, Section 5.3.4.7). The few bicyclic acids identified in both OSPW and 

petroleum NA show they both contain some similar compounds: hence some overlap in 

overall NA retention times is to be predicted. However, there were some differences 

observed between the bicyclic acids identified as the corresponding bicyclanes, in 

petroleum NA and OSPW NA, such as the position of substituents (e.g. bridgehead 
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substituted isomers present in OSPW, Figure 6-3; C) as well as the presence of some 

unknown bicyclic acid isomers detected in OSPW, but not detected in petroleum NA 

(e.g. Figure 6-2; C and D). The mass spectra of the isomers bi-V and -VI in the reduced 

OSPW NA, did not match those of any of the reference alkanes in all the collated mass 

spectral data, which covered the majority of possible bridged, fused and spiro- bicyclic 

structures. The suggestion that OSPW NA contains more condensed, bridged structures 

with different substituent positions (Figure 6-3; B and C) is also supported by the 

identification of bicyclo[2.2.1]heptane acids in OSPW. These were the earliest eluting 

bicyclic acids, which were not detected in petroleum NA as the methyl esters, or 

corresponding bicyclanes (Wilde et al., 2015; Wilde and Rowland, 2015). This 

explanation for the difference between petroleum NA and OSPW NA may partly 

explain the differences in toxicity of the two NA mixtures. Following the successful 

identification of the bicyclic acids, representative standards could now be used to 

quantify the relative proportions of different bicyclic species and measure their toxicity 

to confirm this (discussed in Future Work; Chapter 7, Section 7.2.1, page 334). 
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6.3.3.2 Adamantane Acids 

Previously, Rowland et al. (2011c) identified a series of tricyclic diamondoid acids in 

OSPW, comprising 1- and 2-adamantane carboxylic acids, mono- and di-substituted 

alkyl adamantane carboxylic acids, as their methyl ester derivatives, using GC×GC-MS. 

Comparison of the mass spectra and two-dimensional retention positions with reference 

compounds confirmed the identification of adamantane-1-carboxylic acid and 3-

ethyladamantane-1-carboxylic acid. Subsequent synthesis and purchase of more isomers 

and further mass spectral interpretation led to the identification and tentative 

identifications of numerous others (Rowland et al., 2011c). Using the same technique, 

Bowman et al. (2014) reported the presence of a similar series of adamantane acids in 

oil sands composite tailings pore water. Most recently Lengger et al. (2015) confirmed 

the presence of several alkyl adamantane acids, including structures mainly substituted 

at tertiary carbon positions; structures tentatively assigned by Rowland et al. (2011c), 

which could now be confirmed using the more recently available, wider array, of 

reference acids. Therefore there is precedent for the identification of adamantane acids 

within some OSPW NA when derivatised with BF3-methanol and examined by 

GC×GC-MS. Thus, if the conversion of OSPW NA methyl esters was successful for the 

more complex OSPW NA (free acid and esterified) mixtures herein, analysis of the final 

reduced acid products should lead to the identification of the corresponding alkyl 

adamantane hydrocarbons. 

All previous identifications of adamantane acids by GC×GC-MS have involved initial 

derivatisation of the extracted NA to the acid methyl esters, usually by refluxing with 

BF3-methanol (Rowland et al., 2011c; Lengger et al., 2015). When Brunswick et al. 

(2015) analysed underivatised NA in AEO extracts from fresh and aged OSPW by 

HPLC-MS, they were unable to detect adamantane-1-carboxylic acid in any OSPW 

samples, despite a limit of detection of 0.01 μg mL
-1

. Although they acknowledged that 
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the concentrations of adamantane-1-carboxylic acid could be below the limits of 

detection of their method, they also suggested that such compounds could be artefacts 

produced by the derivatisation procedures, which they also suggested might be biased 

towards certain species (Brunswick et al., 2015). 

However, the occurrence of adamantane acids is known to be variable in different 

OSPW (Rowland et al., 2012; Lengger et al., 2015) and it is not clear that the particular 

OSPW samples examined by Brunswick et al. (2015) had previously been reported to 

contain adamantane-1-carboxylic acid (or indeed adamantane-2-carboxylic acid, since 

the method of Brunswick et al. (2015) was not reported to differentiate the two acids; 

Rowland et al. (2012)). Nonetheless, reactions involving the rearrangement of 

polycyclic hydrocarbons to form adamantane in the presence of Lewis acids are well 

documented (von R. Schleyer, 1957; Schleyer and Nicholas, 1961) and as BF3 is also a 

Lewis acid and is used during the methylation of NA with BF3-methanol, formation of 

rearrangement artefacts from such derivatisation procedures might be possible. The 

observation of methyl esters of adamantane acids in fractions esterified with other 

reagents (e.g. diazomethane; Bowman et al. (2014)) perhaps argues against this, but the 

identification of the adamantane hydrocarbons in the reduced, unprocessed, 

underivatised OSPW NA (sample #7) herein (and further identifications in sample #2) 

would help clarify the legitimacy of the earlier identifications of adamantane acids in 

OSPW derivatised with BF3-methanol (e.g. Rowland et al. (2011c) and Frank et al. 

(2014)). 

The lowest carbon number observed for tricyclic acid methyl esters in the ‘alicyclic’ 

methyl ester Ag-Ion fraction (F2; eluted in hexane) of sample #2 were two C11 acids 

(M
+
 = m/z 194). The mass spectra of the two C11 peaks matched those of adamantane-1- 

and -2-carboxylic acid methyl esters previously reported in other OSPW (Rowland et al., 
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2011c; Rowland et al., 2011a; Lengger et al., 2015). Thus the identification of such 

acids in derivatised  samples is extended to a further OSPW. However this did not 

negate the possibility that they were artefactual products. After reduction the lowest 

carbon number alkanes observed for tricyclic hydrocarbons in the reduced ‘alicyclic’ 

fraction (F2; eluted in hexane) of sample #2 were C13 (M
+
 = m/z 178), not C11 alkanes. 

This was attributed to the evaporative losses of the more volatile C11-12 alkanes because 

this hydrocarbon product mixture was not concentrated using the Kuderna-Danish 

apparatus, which was employed in later analyses to avoid such losses. Therefore, the 

expected 1- and 2-methyl adamantane were not detected in the reduced alicyclic fraction, 

leaving the question of aretfactual production still open; thus the reduced hydrocarbons 

of a non-derivatised sample (#7) was examined. 

When methylated with BF3-methanol prior to analysis of the acids by GC×GC-MS, 

sample #7 contained a series of C11 acid methyl esters, but none could be assigned as 

adamantane-1- or -2-carboxylic acid methyl esters. This indicated that OSPW samples 

vary in composition; a fact which has been used previously for differentiating different 

OSPW samples (Rowland et al., 2012; Lengger et al., 2015). The absence of 

adamantane-1- and -2-carboxylic acid in the derivatised samples showed that such acids 

are not always, if ever, consistent artefacts of BF3-methanol treatment. 

In the reduced sample #7, the lowest alkanes observed using controlled Kuderna-Danish 

evaporation were the expected C11 species (M
+
 = m/z 150). However, consistent with 

the absence of the corresponding adamantane carboxylic acids when studied as the 

methyl esters, none of the alkanes had mass spectra matching those of 1- or 2-methyl 

adamantane. These analyses were good evidence that extraction and methylation of 

OSPW acid methyl esters, or conversion of the acids to the corresponding hydrocarbons, 

does not consistently produce, via rearrangement, adamantane acids or the equivalent 
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hydrocarbons (cf. Brunswick et al. (2015)). If this were always the case, adamantane 

carboxylic acids and the corresponding methyladamantanes would have been observed 

in this OSPW sample. Of course it does not rule out entirely that this can never occur 

for any OSPW sample, but this seems unlikely given the abundance of (presumably) 

potential precursor C11 acids in the present sample and the use of typical methylation 

and reduction procedures herein. The statistically robust, reproducible nature of the 

methyl ester product distributions (Lengger et al., 2015) also argues against such 

rearrangements, unless, that is, they too occur in a very reproducible fashion, in which 

case they may be equally useful for profiling. 

The identity of the tricyclic C11 hydrocarbons in the reduced sample #7 remains 

unknown. However, several tricyclo-decanes, -undecanes and –dodecanes have been 

reported previously in petroleum and their key mass spectral features have been studied. 

However no partial or full mass spectra were provided (Vorob'eva et al., 1971; Sanin, 

1976; Golovkina et al., 1984). Such structures include tricyclo[5.2.1.0
2,6

]decane (Figure 

6-5; A), tricyclo[5.4.0.0
4,8

]undecane (B), tricyclo[5.3.1.0
4,11

]undecane (C), 

tricyclo[5.3.1.0
3,8

]undecane (homo-isotwistane) (D) and tricyclo[7.2.1.0
2,7

]dodecane (E) 

(Golovkina et al., 1984). The occurrence of these structures in petroleum means they 

could be considered as possible structures for the reduced C11 tricyclic acids detected 

herein, based on previous evidence that at least some of the NA previously identified in 

OSPW appear to be biotransformation products of petroleum hydrocarbons (Rowland et 

al., 2011c; Rowland et al., 2011g). 
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Figure 6-5: Example structures of tricyclo-decanes, -undecanes and –dodecanes 

previously identified in petroleum, including (A) tricyclo[5.2.1.0
2,6

]decane, (B) 

tricyclo[5.4.0.0
4,8

]undecane, (C) tricyclo[5.3.1.0
4,11

]undecane, (D) 

tricyclo[5.3.1.0
3,8

]undecane (homo-isotwistane) and (E) tricyclo[7.2.1.0
2,7

]dodecane 

(Golovkina et al., 1984). 

An EIC of the hydrocarbons of the reduced unfractionated OSPW acids also showed a 

series of peaks with molecular ions consistent with C12 tricyclic hydrocarbons (m/z 164) 

(Figure 6-6; A). Comparison of the mass spectra for the peaks labelled ad-I-V, with 

reference mass spectra plotted from tabulated values reported by Polyakova et al. (1973) 

and those in the NIST MS library for alkyl adamantanes, supported assignment of 1-

ethyl and 2-ethyladamantane (ad-II and ad-V; Figure 6-6). These were readily 

identified by the strong M-29 ion corresponding to the loss of ·C2H5. The 2-ethyl isomer 

was distinguished from the 1-ethyl isomer by the stronger molecular ion and later 

retention position (Figure 6-6; B-E). The corresponding adamantane ethanoic acids 

were then identified in the methyl esters by comparison of data with those for reference 

compounds, once more indicating the complementary nature of the two GC×GC-MS 

based approaches. The identification of these mono-substituted acids as the 

hydrocarbons, in the reduced non-methylated, unfractionated OSPW NA, finally 

showed that the acids are indigenous and not artefactual (cf. Brunswick et al. (2015)). 

The mass spectra of alkyl adamantanes are very distinct and many reference mass 

spectra are readily available in the literature since diamondoid hydrocarbons are 

commonly used as biomarkers in petroleum geochemistry (Peters et al., 2005b). The 
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mass spectra of alkyl adamantanes substituted at tertiary carbons display a relatively 

low intensity molecular ion (approx. 5 – 20%), compared with those of isomers 

substituted at secondary carbon positions, which display relatively intense molecular 

ions (approx. 30 – 50%) (Golovkina et al., 1984). Typically, alkyl adamantanes 

substituted at the secondary carbon positions elute much later in GC (and GC×GC) than 

isomers substituted at the tertiary carbon positions (Petrov, 1987). 

All alkyl adamantane mass spectra usually display a dominant or base peak ion 

corresponding to the loss of the largest alkyl group as a radical, producing an adamantyl 

cation (m/z 135) for mono-substituted isomers and corresponding alkyl adamantyl 

cations (e.g. m/z 149 and 163) in poly-substituted alkyl adamantanes. Although, from 

previous mass spectrometric studies of alkyl adamantanes, it is postulated that the 

structure of this cation does not retain that of a tricyclic adamantyl cation with the 

charge stabilised on the secondary or tertiary bridgehead carbon but extensively 

rearranges to a cyclic allyl ion (Golovkina et al., 1984). Independent of its structure, the 

stability of the cation formed means extracted ion monitoring of the molecular ions and 

expected base peak ions enables alkyl adamantanes to be readily identified.  

The GC elution order of many dimethyl-, ethyl-, methylethyl- and trimethyl adamantane 

isomers is well documented (Hála et al., 1970; Wingert, 1992; Wei et al., 2006; Wang 

et al., 2013) and therefore the assignment above of the two ethyl isomers also allowed 

identification of numerous dimethyl- isomers (Figure 6-7) based on the comparison of 

their retention positions, relative to the ethyl isomers. The only two 

dimethyladamantane isomers reported to elute between the two ethyl isomers are the 

cis- and trans- isomers of 2,4-dimethyladamantane (Wang et al., 2013; Wei et al., 2006). 

In the present study this assignment was supported by the high intensity molecular ions 
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(50 – 60%) observed in the mass spectra of peaks ad-III and ad-IV, typical for alkyl 

adamantanes substituted at the secondary carbon positions (Figure 6-7; A and B). 

 

 

Figure 6-6: (A) EIC (m/z 135 and 149) of the hydrocarbon product after reduction of the 

underivatised, unfractionated OSPW NA and (B-D) identification of 1-ethyl and 2-

ethyladamantane isomers (ad-II and ad-V) by comparison with reference mass spectra 

and GC elution order (Polyakova et al., 1973). 
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Figure 6-7: Mass spectra of isomers ad-I, III and IV (labels refer to components in EIC 

in Figure 6-6) assigned as dimethyladamantanes including (A and B) two isomers of 

2,4-dimethyladamantane (ad-III and IV) and (C) 1,2-dimethyladamantane (I) by 

comparison of the known GC elution order of alkyl adamantanes relative to 1- and 2-

ethyladamantane (ad-II and V) and by comparison with (D) reference mass spectrum of 

1,3-dimethyladamantane (Polyakova et al., 1973; Wang et al., 2013; Wingert, 1992). 

The earliest eluting peak (ad-I) had a mass spectrum which was similar to that of 1,3-

dimethyladamantane (Figure 6-7; C and D) and 3-methyladamantane-1-carboxylic acid 

has previously been identified in OSPW NA (Lengger et al., 2015), but the reported 

retention position for 1,3-dimethyladamantane relative to the 1-ethyl isomer was much 

earlier than observed for ad-I herein. Instead the retention position of ad-I more closely 

matched that of 1,2-dimethyladamantane. The mass spectrum of the 1,2-dimethyl 

isomer has not been reported fully but might be expected to be very similar to that of the 

1,3-dimethyl- isomer. Wingert (1992) reported that the mass spectra of the 1,3- and 1,4-
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dimethyl isomers were almost identical, suggesting they undergo a similar 

fragmentation mechanism and that it is the methyl group substituted at the tertiary 

carbon position which is preferentially lost; this is also consistent with the difference in 

relative intensities of the molecular ions for 1- and 2-methyladamantane. The molecular 

ion of the 1,2-dimethyl isomer reported by Wang et al. (2013) had a relative intensity of 

12%, matching that of ad-I (Figure 6-7; C and D). 

The assignment of the 1,2-dimethyl- isomer was also consistent with the absence of 3-

methyladamantane-1-carboxylic acid methyl ester after comparison of the retention time 

and mass spectrum of the reference acid methyl ester with the original NA methyl esters. 

All five assignments were supported by comparison of the EIC in Figure 6-6; A and 

elution order of peaks ad-I-V with those reported by Wang et al. (2013) for the same 

isomers, during their investigation of diamondoid hydrocarbons in crude oil. 

Extracted ion monitoring of both the reduced alicyclic fraction and reduced 

underivatised, unfractionated OSPW samples also showed series of peaks displaying 

molecular ions at m/z 178, corresponding to C13 tricyclic hydrocarbons, many of which 

had mass spectra matching the reference mass spectra of trimethyl- and methylethyl- 

adamantanes (Figures 6-8; A and Figure 6-9; A-I). However, due to the complexity of 

the unfractionated sample, the isomers were more difficult to distinguish. Therefore, as 

poly-substituted adamantanes have distinct mass spectra, a CLIC expression was 

applied to the chromatograms (described in Chapter 2, Section 2.1.4, page 56; 

Reichenbach et al. (2005)); the conditions of the expression were chosen to show only 

peaks with mass spectra possessing a base peak ion at m/z 135, 149 or 163 and with the 

relative intensity of m/z 93 < 55% and m/z 192 and 206 <1%. The resulting 

chromatogram was much simplified, and displayed more clearly a series of isomers with 

mass spectra fulfilling the criteria of poly-substituted alkyl adamantanes (Figure 6-8; B). 
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Figure 6-8: Comparison of an (A) EIC (m/z 135, 149, 163 and 178) and (B) 

chromatogram after a CLIC expression was applied (peaks only with a base peak of m/z 

135, 149 or 163 and relative intensity of m/z 93 < 55% and m/z 192 and 206 <1%) of the 

reduced unfractionated OSPW sample, clearly showing the presence of three dimethyl- 

(ad-I, III and IV), 2 ethyl- (ad-II and V), 8 trimethyl- (ad-VI-VIII, X-XIII and XVII) 

and seven ethylmethyl-adamantane isomers (ad-IX, XIV-XVI and XVIII-XX) based 

on comparison with reference mass spectra (Polyakova et al., 1973) and known elution 

order (Wang et al., 2013; Wingert, 1992). 

The C13 trimethyl- isomers were distinguished from methylethyl- isomers based on the 

dominant loss from the molecular ion; trimethyl- isomers displayed a base peak ion at 

m/z 163 (M-15) whereas those with an ethyl substituent displayed a base peak ion at m/z 

149 (M-29). The additional clarification of peaks provided by the CLIC expression 

chromatogram, allowed comparison of the retention positions of the C13 adamantane 

isomers with those reported in the literature to aid identification. 
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The peak labelled ad-IX was assigned as a methylethyl- isomer based on its base peak 

ion at m/z 149 and was the earliest eluting methylethyl- isomer. The earliest eluting 

methylethyl- isomer and the only one reported to elute between 1-ethyl and 2-

ethyladamantane (ad-II and V), is 1-ethyl-3-methyladamantane (Wingert, 1992; Wang 

et al., 2013). Comparison of its mass spectrum with the reference spectrum reported by 

Polyakova et al. (1973) confirmed this identification for ad-IX (Figure 6-9; B and D). 

Of course 1-ethyl-3-methyladamantane could theoretically originate from either 3-

methyladamantane-1-ethanoic acid or 3-ethyladamantane-1-carboxylic acid, both of 

which have been previously reported in different samples of OSPW NA from different 

industries (Lengger et al., 2015). Subsequent analysis of both reference acids as their 

methyl ester derivatives showed that 3-methyladamantane-1-ethanoic acid methyl ester 

was detected and 3-ethyladamantane-1-carboxylic acid was not detected in the 

unfractionated OSPW NA, indicating the 1-ethyl-3-methyladamantane in the 

hydrocarbon product derived from 3-methyladamantane-1-ethanoic acid. 

Six other peaks (ad-XIV-XVI and ad-XVIII-XX) had mass spectra corresponding with 

methylethyl- isomers. However, identification of the substituent positions was not 

possible. Interestingly though, Wang et al. (2013) also reported the presence of the 1-

ethyl-3-methyl- isomer in crude oil as well as six other methylethyl- isomers with 

retention positions later than 2-ethyladamantane, similar to that observed for peaks ad-

XIV-XVI and ad-XVIII-XX in Figure 6-8. 

Based on the relative retention positions and elution order of the eight peaks identified 

as trimethyl- isomers (ad-VI-VIII, X-XIII and XVII) compared with those reported by 

Wang et al. (2013) and Wingert (1992), the earliest eluting peak (ad-VI) was identified 

as 1,3,6-trimethyladamantane and its mass spectrum matched the reference mass 

spectrum reported by Polyakova et al. (1973) (Figure 6-9; A and C). 
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Figure 6-9: (A-I) Identification of 

trimethyl- (base peak ion; m/z 163) and 

ethylmethyl- (base peak ion; m/z 149) 

adamantane isomers in the reduced 

unfractionated OSPW sample by 

comparison with reference mass spectra 

(Polyakova et al., 1973) and known 

elution order (Wang et al., 2013; 

Wingert, 1992). 
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The only other trimethyl- isomer reported to elute before 1,2-dimethyladamantane (I) is 

1,3,5-trimethyladamantane. However, subsequent comparison of the original NA 

methyl esters with the retention position and mass spectrum of the reference acid, 3,5-

dimethyladamantane-1-carboxylic acid methyl ester, showed it was absent, supporting 

the above alternative assignment as the 1,3,6-trimethyl- isomer. Wang et al. (2013) and 

Wingert (1992) both reported that only two isomers eluted between 1,2-

dimethyladamantane and 1-ethyladamantane (ad-I and II), such as the peaks ad-VII 

and VIII in Figure 6-8. These were the cis- and trans- isomers of 1,3,4-

trimethyladamantane. Comparison of the retention position of the remaining isomer X 

indicated that it could be 1,2,3-trimethyladamantane (Wang et al., 2013). The positions 

of the alkyl groups in the remaining trimethyl- isomers (ad-XI-XIII and XVII) which 

eluted after 2-ethyladamantane (ad-V) were not assignable. However, based on their 

late retention positions and the high intensity of the molecular ions observed in some of 

the mass spectra, such as in the mass spectrum of ad-XVII (Figure 6-9; H), they were 

postulated to be substituted at one or more of the secondary carbon positions. 

In summary, analysis of the hydrocarbon products of both derivatised (methylated) 

fractionated (sample #2) and underivatised, unfractionated OSPW NA (sample #7) from 

different OSPW samples resulted in the identification of numerous alkyl adamantanes in 

each (Figures 6-6 - 6-9). The identifications of alkyl adamantane acids were supported 

by subsequent comparison of data for the original OSPW NA methyl esters with those 

of the esters of reference acids.  

These results confirm that the conversion of OSPW NA mixtures to the corresponding 

hydrocarbons was successful, despite the increased complexity compared to the 

petroleum acid mixtures previously analysed in Chapter 5. 
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Secondly, the identification of numerous isomers of monoalkyl- adamantanes and 

therefore by inference, monoalkyl- adamantane acids, in both the unfractionated, 

underivatised OSPW NA and the derivatised fraction of a second OSPW sample (as 

acid methyl esters), is strong evidence that these were indeed present as authentic 

components of OSPW NA, and are at least, not all (if indeed any), artefacts of 

derivatisation procedures. This was further supported by the identification of alkyl 

adamantanes substituted mainly at secondary carbon positions. Isomers substituted 

solely at the tertiary carbon positions, which are deemed most stable and hence most 

likely to form during Lewis acid catalysed reactions, were largely absent or more minor. 

The absence of adamantane-1- and 2- carboxylic acids in one sample of OSPW even 

after methylation (and of the corresponding hydrocarbons on reduction), and in the 

presence of other C11 acids, also shows that adamantane acids are not ubiquitous 

artefacts of methylation or reduction processes. 

Finally, due to the extensive reports of reference mass spectra and the known elution 

order of alkyl adamantanes, conversion of the OSPW NA to their corresponding 

hydrocarbons has confirmed the presence of several structures that were only tentatively 

assigned previously when based on the acid methyl ester mass spectra. This also 

resulted in the identification of several new alkyl adamantane acids. Synthesis, or 

purchase when available, of the newly identified alkyl adamantane acids means these 

structures could be added to the adamantane acids used previously to profile OSPW NA 

variability and source characterisation (Lengger et al., 2015). The adamantane acids 

profiled by Lengger et al. (2015) were almost exclusively isomers substituted at the 

tertiary carbon positions, most likely due to availability of commercial reference 

compounds for confirmation. However, the results of this investigation suggest that it 

would be worthwhile to synthesise and use some isomers with alkyl groups and 
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carboxyl groups substituted at the secondary carbon positions in profiling investigations, 

as it appears they are indeed present in some OSPW NA. 

Alkyl adamantane hydrocarbons have been identified in various crude oils (Sanin, 

1976). The relative abundance of the different isomers in crude oil were different to 

those observed when formed at equilibrium by isomerisation over an alumina catalyst 

(Sanin, 1976). If the relative abundance of the individual alkyl adamantane acids was 

measured relative to the total alkyl adamantane acids detected, the ratios may indicate 

the type of conditions under which the acids were formed, aiding source 

characterisation. 
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6.3.3.3 Tricyclic terpenoid acids 

Apart from the tricyclic diamondoid acids previously discussed (Section 6.3.3.1), few 

alicyclic tricyclic acids have been identified in OSPW. The abundance of isomers 

within the homologous series observed in EICs of the lower molecular weight tricyclics 

(Figures 6-6; A and 6-8), suggested numerous different structures were possible. 

However, when examining the mass spectra of the higher molecular weight compounds, 

a clear series of peaks (tt-I to -VI) with molecular ions corresponding to C20-24 tricyclic 

hydrocarbons, were observed eluting late in the chromatogram of the reduced alicyclic 

Ag-Ion fraction of OSPW NA (Figure 6-10; A and B). Their elution in the alicyclic Ag-

Ion fraction and their mass spectral fragmentation, strongly supports their assignment as 

alicyclic, tricyclic hydrocarbons and not other compounds with the same nominal mass, 

such as tricyclic triaromatic hydrocarbons. 

The mass spectra of isomer tt-I to -VI all displayed a similar fragmentation pattern, 

characterised by low-medium intensity molecular ions and M-15 ions and dominated by 

strong base peak ions at m/z 191 (Figure 6-10). The mass spectra of isomers tt-I to -VI 

were characteristic of those of tricyclic terpane hydrocarbons (Figure 6-10; F and H). 

Tricyclic terpanes are known petroleum hydrocarbons, often used as biomarkers, due to 

their abundance in petroleum and sediments (Moldowan et al., 1983; Anders and 

Robinson, 1971). Ekweozor and Strausz (1982) reported the identification of a series of 

C19-30 tricyclic terpanes present in bitumen from the Athabasca oil sands. Most tricyclic 

terpane hydrocarbons have been reported to possess a cheilanthane ‘core’, with the 

branched alkyl side chain substituted at position 14 (Figure 6-10; F), increasing in chain 

length as carbon number increases. 
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Figure 6-10: (A) EIC (m/z 191) and (B) CLIC expression chromatogram revealing 

series of isomers assigned as (C-H) C20 (tt-I and II), C21 (tt-III and -IV), C23 (tt-V) and 

C24 (tt-VI) tricyclic terpanes by comparison with reference mass spectra (Chicarelli et 

al., 1988; Cyr and Strausz, 1983; Philp, 1985; Hall and Douglas, 1981). 
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Tricyclic terpenoid acids have not been reported in OSPW NA previously. However, 

they have been reported in other petroleum NA by Seifert (1975) and, perhaps more 

significantly in the present context, by Cyr and Strausz (1983) in bitumen from the 

Athabasca oil sands. Although the availability of the mass spectra for tricyclic terpenoid 

acid methyl esters was far more limited, the mass spectrum of the C24 tricyclic terpenoid 

acid methyl ester reported by Cyr and Strausz (1983) was used to examine the original 

acid methyl esters of tt-I to -VI in the original alicyclic Ag-Ion fraction of NA methyl 

esters. The mass spectrum of the acid methyl ester was almost identical to that of the 

hydrocarbon (Figure 6-10; F), again dominated by a base peak ion at m/z 191, with a 

low-medium intensity molecular ion and M-15 ion, 44 Da higher than the corresponding 

hydrocarbon. However, the corresponding acid methyl esters were expected to elute 

later than hydrocarbons, towards the end of the temperature programme and as such, 

only two isomers, including the first C20 and C21 acid methyl esters, with mass spectra 

matching those of the reference spectra, were observed. 

Based on the molecular ions, in the mass spectra of tt-I to -VI, the series included two 

C20 (tt-I and -II), two C21 (-III and -IV), one C23 (-V) and one C24 (-VI) structure. After 

comparison of their mass spectra with those reported in the literature (Chicarelli et al., 

1988; Philp, 1985; Hall and Douglas, 1981), identification of some of the corresponding 

acid methyl esters and the previous evidence of such acids present in petroleum and 

Athabasca bitumen, tt-I to -VI were assigned as tricyclic terpanes. The structures were 

proposed to possess cheilanthane ‘cores’, methyl- substituted in the 13-position with a 

branched alkyl chain substituted in the 14-position. However, the structures were only 

tentatively assigned (Figure 6-10), because the presence of the methyl substituent in the 

13-position and the structure of the alkyl chain substituted in 14-position in terpenoid 

acids has been debated for the lower (C20) molecular acids (Cyr and Strausz, 1983). 



Chapter 6 

289 

 

6.3.3.4 Tetracyclic and pentacyclic diamondoid acids 

The presence of tricyclic diamondoid acids in OSPW was proposed to be, at least partly, 

due to the biotransformation of the corresponding hydrocarbons (Rowland et al., 2011c); 

adamantane and alkyl adamantanes are known constituents of crude oil and bitumen 

(Sanin, 1976; Petrov, 1987). Tetra- and pentacyclic diamondoid hydrocarbons such as 

diamantane and alkyl diamantanes (Figure 6-11; A and C-E) have also been reported in 

various crude oils (Petrov, 1987). However diamantane hydrocarbons have been found 

to be much more resistant to biodegradation compared to the adamantane homologues 

(Wang et al., 2006). Adamantane hydrocarbons were reported to be relatively more 

biodegradable than other non-diamondoid tricyclic hydrocarbons (e.g. tricyclic terpanes; 

Wang et al. (2006)), which would explain the reported absence of adamantane and its 

methyl to butyl derivatives in the saturates fraction of Athabasca bitumen (Strausz et al., 

2010) and the numerous adamantane acids present in the OSPW, reported by Rowland 

et al. (2011c) and identified in Section 6.3.3.1. 

However, Rowland et al. (2011g) also detected some pentacyclic diamondoid acids in 

OSPW, confirming the presence of diamantane-1- and -3-carboxylic acid by 

comparison of the OSPW NA methyl esters with the GC×GC retention positions and 

mass spectra of reference acid methyl esters. Mass spectral interpretation also led to the 

tentative identification of methyl-, dimethyl- and ethyldiamantane carboxylic acids as 

well as a diamantane ethanoic acid and methyl- and dimethyl- derivatives. Rowland et 

al. (2011g) suggested the occurrence of these acids was from the biodegradation of the 

corresponding diamantane hydrocarbons and suggested their presence was evidence for 

an unprecedented degree of biodegradation. 

Isomers with mass spectra displaying molecular ions and fragmentation patterns 

corresponding to those of tetracyclic acids were also tentatively assigned based on mass 

spectral interpretation (Rowland et al., 2011g). The tetracyclic acids were proposed to 
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possess a ring-opened diamantane structure (Figure 6-11; B) and were postulated to be 

further biodegradation products of the diamantanes. Rowland et al. (2011a) later 

synthesised some tetracyclic, ring-opened diamantane acids. However, comparison of 

the retention positions and mass spectra of the synthetic reference standards with those 

of NA within OSPW, did not confirm their identification. 

 

Figure 6-11: Examples of substituted pentacyclic and tetracyclic diamondoid 

compounds showing the structure of the skeletal core, including (A) diamantane, (B) 

2,4-cyclohexano-adamantane (tetracyclic ring-opened diamantane), (C) 2,4-

cyclopentano-adamantane, (D) 1,2-cyclopentano-adamantane and (E) 1,2-cyclohexano-

adamantane. 

Following the successful conversion and identification of the alkyl adamantane 

hydrocarbons herein and therefore, by inference, alkyl adamantane acids, in both the 

reduced alicyclic fraction of the esters and unfractionated OSPW free NA, the 

hydrocarbon products of each were further examined for isomers of pentacyclic and 

tetracyclic diamondoid hydrocarbons. 

Reference spectra reported for diamantane hydrocarbons are fewer than those of the 

adamantanes. However, the mass spectra of alkyl diamantanes are as distinctive as those 

of the alkyl adamantanes due the stability of the cage-like core; the molecular ions 

undergo similar fragmentation patterns to those of the alkyl adamantanes. For example, 

the molecular ion of 3-methyldiamantane (M
+
 = m/z 202), in which the methyl group is 

substituted on a secondary carbon position, is significantly more intense than the 
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molecular ions observed for the 1- and 4-methyl- isomers (Kuras̆ and Hála, 1970; 

Golovkina et al., 1984). Comparison of the reference mass spectra of 1-, 3- and 4-

methyldiamantanes reported by Kuras̆ and Hála (1970) and their GC elution order 

(Wingert, 1992; Wang et al., 2013), allowed the identification of all three isomers in the 

unfractionated OSPW sample herein and of 3-methyldiamantane in the reduced alicyclic 

NA ester fraction (Figure 6-12; B). 

Similar to the mass spectra of alkyl adamantanes, alkyl diamantanes display a dominant 

base peak ion corresponding to the loss of the largest alkyl group as a radical, producing 

a diamantyl cation (m/z 187) for mono-substituted isomers and corresponding alkyl 

diamantyl cations (e.g. m/z 201 and 215) in poly-substituted isomers. 

Extracted ion monitoring of the key fragment ions then revealed the series of isomers 

assigned as alkyl diamantanes (diA-I to diA-XXV) ranging from C15-18 based on the 

observed molecular ions (m/z 202, 216, 230 and 244) (Figure 6-12). A CLIC expression, 

equivalent to that produced for the alkyl adamantanes (cf. Figure 6-8 above; page 280) 

was applied using the observed base peak ions and molecular ions for the alkyl 

diamantanes; the peaks remaining in the chromatogram supported those assigned in the 

EIC in Figure 6-12; A. 

Interpretation of the mass spectra of the peaks labelled diA-I to XXV (examples shown 

in Figure 6-12; B-G) resulted in the assignment of isomers of ethyl- (Figure 6-12; D), 

dimethyl- (E), ethylmethyl- (F and G) and dimethylethyl- (H) diamantanes. These 

results provided strong supporting evidence for the array of highly substituted alkyl 

diamantane acids previously speculated to be present in OSPW by Rowland et al. 

(2011g). 
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Figure 6-12: (A) EIC (m/z 187, 201, 202, 

215, 216, 230, 244) of the reduced alicyclic 

NA ester fraction and the assignment of (B) 

3-methyldiamantane (diA-I) and (D-H) 

alkyl diamantanes (diA-II – XXV) based on 

comparison with (C) a reimaged spectrum 

of 3-methyldiamantane reported by Kuras̆ 

and Hála (1970), reference retention 

positions and mass spectral interpretation 

(Wingert, 1992; Wang et al., 2013). 
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Similarly, series of peaks were observed in the hydrocarbon products obtained from 

both samples #2 and #7, with molecular and base peak ions consistent with C14-18 

tetracyclic adamantanoid hydrocarbons, and some additional C13 isomers present in the 

reduced sample #7 (Figures 6-13 and 6-14). The mass spectra were very similar to those 

of alkyladamantanes and alkyldiamantanes, dominated by a base peak ion, presumably 

corresponding to the loss of the largest alkyl substituent and suggesting a highly stable 

core (Figures 6-13 and 6-14). These hydrocarbons were presumed to originate from 

tetracyclic acids, such as those previously tentatively assigned by Rowland et al. 

(2011g). Subsequent examination of the original acid methyl esters showed isomers 

across the same carbon number range, with mass spectra similar to those previously 

reported in other OSPW samples (Rowland et al., 2011g). 

Interestingly, the lowest carbon number isomers displayed base peak ions of m/z 161 

(Figure 6-13; B-C). Assuming the compounds possess adamantanoid-like structures, 

based on the structures of hydrocarbons previously identified in crude oils (Figure 6-11; 

B-E), the loss of methyl (M-15) and ethyl (M-29) groups from a C13 (M
+
 = 176) and C14 

(M
+
 = 190) isomer would indicate a C12 core; m/z 161 (100%) corresponding with a 

C12H17
+
 highly stable cation. The only alkyl adamantanoid structures with a C12 core, 

previously assigned in crude oils, are alkyl 2,4-cyclopentano-adamantanes (Petrov, 

1987). In contrast, the 2,4-cyclohexano-adamantane structures tentatively proposed for 

the tetracyclic acids by Rowland et al. (2011g) possessed a C13 core; therefore, 

monosubstituted isomers would display a base peak ion at m/z 175, as shown in the 

mass spectra in Figure 6-14; A and B. The OSPW acids did not correspond to those 2,4-

cyclohexano-adamantane acids synthesised by Rowland et al. (2011a) since the GC×GC 

retention positions were different, though the spectra were very similar. Analysis of the 

reduced acid hydrocarbon products herein therefore provides the first evidence for a 

firmer assignment of the tetracyclic acids as 2,4-cyclopentano-adamantane acids. 
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Subsequent re-examination of the unfractionated OSPW NA as their acid methyl esters, 

did indeed reveal esters with mass spectra consistent with those of the corresponding 

2,4-cyclopentano-adamantane acids (Appendix Figure 29).  

 

Figure 6-13: (A) EIC (m/z 161, 175, 176, 189, 190, 203, 217) of the reduced 

unfractionated OSPW NA, showing components with mass spectra containing 

molecular ions corresponding to C13 and C14 tetracyclic hydrocarbons, tentatively 

assigned as alkyl 2,4-cyclopentano-adamantanes. 

Due to the lack of reference mass spectra available for tetracyclic adamantanoid 

hydrocarbons, specific structures could not be assigned to the higher carbon number 

homologues (Figure 6-14). The different types of tetracyclic adamantanoid 

hydrocarbons would be expected to display similar mass spectra and retention positions. 

Other stable, non-adamantanoid tetracyclic structures, such as bridged or highly 

condensed cyclohexyl or cyclopentyl structures were considered, but none would allow 

for isomers with carbon numbers as low as C13 and the few reference mass spectra 
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available for bridged tetracyclic diterpenoids, such as kauranes or the fused 

dicyclopentapentalene structures proposed by Vorob'eva et al. (1986), were 

significantly different from those observed herein. 

 

Figure 6-14: (A-F) Mass spectra of C14-18 alkyl tetracyclic hydrocarbons in the reduced 

unfractionated NA, postulated to possess adamantanoid structures (e.g. Figure 6-11; B-

E). 

Rowland et al. (2011g) suggested the tetracyclic adamantanoid acids in OSPW could be 

formed during the biodegradation of diamantane; this was based on previous evidence 

that biodegradation of tricyclic adamantanone resulted in formation of a lactone which 

upon secondary reactions produced a ring-opened bicyclic alcohol, bicyclo[3.3.1]nonan-
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3-ol (Selifonov, 1992). However, the identifications of most NA, assigned to date, have 

been supported by the identification of the corresponding hydrocarbons in petroleum as 

possible precursors, formed by either direct carboxylation or fumarate addition and β-

oxidation of the alkyl carboxylate side chain (discussed in Chapter 1, Section 1.4). The 

2,4-cyclohexano-adamantane structure (Figure 6-11; B) suggested for the tetracyclic 

acids reported by Rowland et al. (2011g) has not been previously identified as the 

corresponding hydrocarbons in crude oils, based on the literature available (Sanin, 1976; 

Petrov, 1987; Musayev et al., 1983; Golovkina et al., 1984) and hence Rowland et al. 

(2011g) favoured a source from ring-opening of the co-occurring diamantane acids by 

bacteria. However, methyl substituted 2,4-cyclopentano-adamantane (Figure 6-11; C) 

and 1,2-cyclopentano- and cyclohexano-adamantane (Figure 6-11; D and E) have been 

reported to be present in crude oils (Musayev et al., 1983; Golovkina et al., 1984; 

Petrov, 1987). Considering this, coupled with the assignment of C13 tetracyclic 

adamantanoid hydrocarbons in the reduced acid products (Figure 6-13), it appears likely 

that the tetracyclic adamantanoid acids present in the OSPW possess cyclopentano-

adamantane cores, at least for some of the higher carbon number homologues, 

substituted at both the 1,2- and 2,4- positions. Conclusive assignment of such structures 

would require synthesis of a range of alkyl substituted tetracyclic adamantanoid 

hydrocarbons or acids and comparison with the corresponding reduced or original NA 

methyl esters. Synthesis of the hydrocarbons would advance current understanding, 

show their mass spectral features and aid their assignment in biodegraded oils. 

Synthesis of the acids and analysis of the methyl esters by GC×GC-MS would allow 

their retention positions and mass spectra to be compared with the isomers tentatively 

assigned as 2,4-cyclopentano-adamantane acids in Appendix Figure 29.  
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6.3.3.5 Monoaromatic Acids 

Fraction 5 from the large scale fractionation of the derivatised OSPW NA sample #2, 

detailed in Chapter 2, Section 2.2.6, eluting with 95:5%, hexane : diethyl ether, was also 

selected for conversion to the hydrocarbons since it was rich in aromatic acids, as 

exemplified by FTIR spectroscopy, strong UV absorption and adsorption to silver ions 

in thin layer chromatography and SPE (Jones et al., 2012; Jones et al., 2013). The 

‘aromatic’ acids have been shown to have similar acute toxicity to the ‘alicyclic’ acids 

and additionally produce a weak estrogenic toxicological effect in zebrafish larvae 

(Scarlett et al., 2013; Reinardy et al., 2013). Such compounds are thus of interest for 

environmental as well as industrial reasons. 

Early investigations of petroleum NA, rarely cited in the current literature, also showed 

that aromatic acids were present (Knotnerus, 1957) but the use of the term ‘naphthenic’ 

to describe the acids appears to have led most recent workers to overlook the relevance 

of the aromatic species. Even with this realisation, (e.g. Rowland et al. (2011f) and 

Jones et al. (2012)), very few aromatic acids have been firmly identified in OSPW to 

date. 

Rowland et al. (2011f) synthesised numerous alkyl-substituted monoaromatic alkanoic 

acids for chromatographic and spectral comparison with those in OSPW, but despite 

these efforts, few could be assigned. Those reported recently by Bowman et al. (2014) 

in oil sands composite tailings pore water after GC×GC-MS of the methyl esters, are an 

exception. 

However, herein using the mass spectral characteristics of the hydrocarbons to aid 

assignments, series of peaks with spectra containing base peak ions characteristic of 

aromatic species were identified. Thus, a number of components with spectra containing 

molecular ions consistent with C14-18 monoaromatic hydrocarbons (alkylbenzenes; 
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(McLafferty, 1963)), were observed in the reduction product of the OSPW ‘aromatic’ 

fraction of sample #2 (Figure 6-15 shows some example spectra). 

 

Figure 6-15: Example mass spectra of components assigned as C16-18 alkylbenzenes 

within the reduced aromatic fraction of sample #2. 

The base peak ions in the mass spectra (e.g. m/z 105, 119, 133) suggested these 

consisted mainly of di-, tri- and tetramethylalkylbenzenes (Figure 6-15). The presence 

of many fragment ions (e.g. m/z 175, 161 and 147) suggested they did not possess 

straight n-alkyl chain substituents, since the spectra were dissimilar from those reported 

elsewhere for such compounds (Ji-Zhou et al., 1993). The lack of intense ions at m/z 

106, 120 and 134 (from γ-hydrogen transfer as opposed to benzylic or β-cleavage) also 

implied that either, the alkyl chain was not methyl-substituted at the γ-position or, that 

both ortho- positions on the benzene ring were substituted (Sinninghe Damsté et al., 

1988), such as those reported by Requejo et al. (1992). Some of the mass spectra 

closely resembled those reported by Larter et al. (1981) for monoaromatic hydrocarbons 

identified as alkylbenzenes obtained from artificially matured melanoidins. Further 
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structural assignments would require preparation of reference compounds. Importantly, 

the above arguments imply that the corresponding alkylbenzene alkanoic acids were 

present in the OSPW NA. These have not been reported in OSPW previously. Further 

structural assignments would require preparation of more reference compounds. 

Since alkylbenzenes are common pollutants and might also be contaminants in the 

OSPW, the corresponding acid methyl esters were searched for in the esterified OSPW 

NA, based on the expected 12 minute retention difference observed between the acid 

methyl esters and the hydrocarbon products (Appendix Figure 30). Extracted ion 

chromatograms using the key fragment ions expected in the spectra of such acids due to 

benzoic cleavage (e.g. m/z 91, 105, 119) were used to guide the searches. The acids 

(methyl esters) were indeed, present. For example, Figure 6-16 shows the mass 

spectrum of an alkylbenzene eluting 12 min earlier than the peak tentatively identified 

within the F5 OSPW acid methyl esters, as the corresponding acid methyl ester. The 

difference between the molecular ions was 44 Da, as expected from the spectra of 

similar synthesised compounds (Rowland et al., 2011e), and the similarity in mass 

spectra indicated that the carboxylate moiety was at the end of an alkyl side chain and 

not directly substituted onto the benzene ring, fitting with the current understanding of 

bacterial degradation of branched alkyl hydrocarbons (Smith et al., 2008; Han et al., 

2008; Misiti et al., 2014). Again, this showed the complementarity of the approach used 

herein, via identification of the hydrocarbon analogues of the acids, coupled with a 

retro-search for the parent acids (methyl esters) in the OSPW extracts. 
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Figure 6-16: (A) Mass spectrum of a C16 monoaromatic hydrocarbon in the reduced 

aromatic fraction, assigned as a dimethyl branched alkylbenzene, based on comparison 

with reference spectra and mass spectral interpretation and (B) the mass spectrum of a 

C16 monoaromatic acid methyl ester, assigned as the corresponding alkylbenzene acid 

methyl ester before reduction in the aromatic NA methyl ester fraction. Structures given 

are speculative, to demonstrate the key fragment ions observed. 

Recently, Bowman et al. (2014) identified the methyl esters of the bicyclic 

monoaromatic C11 indane-2-acetic acid and tetralin-2-carboxylic acids in oil sands 

composite tailings pore water, following derivatisation. Such low molecular weight 

acids were not present in the OSPW aromatic fraction of sample #2 under study herein 

and hence were not observed in the hydrocarbon reduction product. Nonetheless, series 

of larger C14-20 branched alkyl indanes and tetralins were tentatively identified by 

comparison of the spectra in the NIST mass spectral library and with available literature 

mass spectra (Booth, 2004; Booth et al., 2006). The spectra contained putative 

molecular ions for bicyclic monoaromatic hydrocarbons with the same recurring alkyl 

group losses (M-43 and -57) and common fragment ions at m/z 145, 159, which are 

often characteristic of the spectra of substituted indanes and tetralins (Figure 6-17) 
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(Booth, 2004; Booth et al., 2006). These identifications imply that the corresponding 

indane and tetralin alkanoic acids, not known previously, were present in OSPW. 

 

Figure 6-17: (A-F) Mass spectra of C14-19 monoaromatic bicyclic hydrocarbons 

tentatively assigned based on mass spectral comparison and interpretation. 

Numerous tricyclic monoaromatic acids were present in OSPW NA, though the only 

acid to be assigned to date is dehydroabietic acid (DHAA); identification based on a 

comparison of the mass spectrum and GC×GC retention time of an authentic sample 

(Jones et al., 2012). A compound with a mass spectrum which was similar to that of the 

corresponding hydrocarbon, dehydroabietane, was identified in the OSPW 
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hydrocarbons obtained from reduction of the ‘aromatic’ OSPW NA Ag-Ion fraction of 

sample #2 (Figures 6-18; A and B). However, the spectrum was more similar to that of 

the C19 and isomeric C20 hydrocarbons 13,14-dimethyl- and 13-methyl-14-

ethylpodocarpa-8,11,13-triene (Figure 6-18; C and D) (Azevedo et al., 1990; Azevedo 

et al., 1992) than to that of dehydroabietane, in this OSPW sample. A subsequent retro-

examination of the aromatic acid methyl esters of this fraction also failed to reveal the 

presence of DHAA methyl ester in this OSPW sample (cf. a different OSPW sample 

examined by Jones et al. (2012)). 

 

Figure 6-18: (A) Mass spectrum of isomer tm-II, a C20 tricyclic monoaromatic 

hydrocarbon assigned as 13-methyl-14-ethylpodocarpa-8,11,13-triene after comparison 

with the mass spectra of (B) dehydroabietane plotted from the NIST MS Library, (C) 

13,14-dimethylpodocarpa-8,11,13-triene reimaged from the spectrum reported by 

Azevedo et al. (1992) and (D) 13-methyl-14-ethylpodocarpa-8,11,13-triene replotted 

from the tabulated values reported by Azevedo et al. (1990). 

Identification of the corresponding alkyl substituted podocarpa-8,11,13-triene acid has 

not been previously reported in OSPW NA. However, Azevedo et al. (1994) reported 
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the presence of a series of C19-30 tricyclic C-ring monoaromatic carboxylic acids 

possessing the same structure, with the alkanoate chain in the 14-position increasing in 

length, in Tasmanian tasmanite (a marine type oil shale). 

Interestingly, a series of non-aromatic tricyclic acids, were identified as the 

corresponding hydrocarbons, in the reduced ‘alicyclic’ OSPW NA fraction  herein and 

in the reduced unfractionated OSPW NA sample, possessing cheilanthane-type ‘cores’ 

(Figure 6-10, discussed in Section 6.3.3.3). These structures are perhydro- equivalent 

structures of the podocarpa-8,11,13-triene reported in Figure 6-18. 

Other monoaromatic acids tentatively identified in OSPW previously included possible 

de-A steroidal tricyclic acids (Rowland et al., 2011d; Frank et al., 2014). Rowland et al. 

(2011d) tentatively assigned a series of acids within OSPW NA, characterised by a 

dominant base peak ion at m/z 145 as de-A steroidal keto acids, suggested as possible 

biotransformation products from A-ring degraded steranes or keto-steranes. Accurate 

mass data obtained by analysis of the free acids by (-)ESI-Orbitrap-MS and analysis of 

expected molecular ions for the deprotonated free acids (e.g. [C20H27O2]
-
, m/z 299) 

revealed the most abundant ions had accurate masses consistent with O3 species (m/z 

299.1642), hence the acids were tentatively assigned as the keto acids (e.g. [C19H23O3]
-
, 

m/z 299) (Rowland et al., 2011d). The base peak ion at m/z 145 was reasoned to be a 

keto ion (C10H9O
+
) instead of a methyltetralin cation (C11H13

+
) (Rowland et al., 2011d). 

However, a later investigation into the ‘m/z 145’ acid series, involving isolation of one 

of the abundant C21 isomers by GC- and GC×GC-prep and characterisation by 

subsequent GC-HRMS and GC×GC-HRMS, showed the acid was in fact, a tricyclic 

monoaromatic acid (C21H30O2) and that the base peak ion at m/z 145 corresponded with 

a C11H13
+
 cation (Rowland et al., [unpublished]). NMR analysis of the isolated acid 

showed it possessed a methyl substituted fused aromatic ring (Figure 6-19). 
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Figure 6-19: Partial 
1
H-NMR spectrum showing the aromatic resonances for the isolated 

monoaromatic acid and proposed partial structure (Rowland et al., [unpublished]). 

Based on the accurate mass and NMR data, as well as comparison of the mass spectra 

and retention positions of several synthesised octahydrophenanthrene acids, the ‘m/z 

145’ series of acids were putatively assigned as de-A steroidal acids, such as that shown 

in Figure 6-20 (Rowland et al., [unpublished]). However no authentic compounds or 

reference spectra were available for confirmation or rebuttal of these. 

 

Figure 6-20: Proposed tentative structure of the ‘m/z 145’ series of tricyclic 

monoaromatic acids. 

Despite the heterogeneity observed between OSPW acid extracts, the tentative de-A 

steroidal acids are usually observed as consistent components in relatively high 

abundances in OSPW NA. Their apparent ubiquitous occurence in numerous OSPW 

samples and well resolved nature, when examined by GC×GC-MS as the methyl esters, 

allowed Frank et al. (2014) to monitor their presence in OSPW and in environmental 

samples taken from the surroundings within the oil sands industry, in an attempt to 

distinguish between NA from OSPW and NA from erosion of natural oil sands outcrops. 
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Analysis of the reduced aromatic fraction of OSPW NA and the reduced unfractionated 

OSPW NA herein, as expected, revealed a series of the corresponding hydrocarbons. 

Their relatively high abundances were not only observed in the acid methyl esters, but 

also in the hydrocarbon product, as shown in the TIC in Figure 6-21; A, of the reduced 

aromatic fraction and were clearly resolved in the EIC in Figure 6-21; B. The mass 

spectra of the acid methyl esters were characterised by a m/z 145 base peak ion; this 

feature was also observed in the putative hydrocarbon products (Figure 6-21; C-H). 

Six isomers (tm-I, -IV – VII and -IX) with base peak ions at m/z 145 and mass spectra 

similar to those of the acids reported previously (Rowland et al., 2011d), were observed 

in the reduced ‘aromatic’ fraction of sample #2, with spectra displaying molecular ions 

consistent with one C19, three C20, one C21 and one C23 isomer (Figure 6-21; C-H). A 

peak eluting after tm-VII appeared to be a seventh isomer; however, it had a very low 

abundance. The six isomers were also detected in the reduced sample #7, along with 

three additional isomers (tm-XI – XIII) spectra of which displayed molecular ions 

consistent with another C19 isomer (tm-XI), eluting between tm-IV and -V and two C20 

isomers (tm-XII and -XIII) which eluted between tm-VI and -VII and tm-VII and -IX, 

respectively. The isomer tm-XIII detected in the unfractionated sample was thought to 

be the low intensity, seventh isomer observed in the reduced aromatic fraction sample. 

Retro-analysis of the aromatic fraction of sample #2 as the acid methyl esters showed 

the presence of seven abundant isomers (Figure 6-22; A), with molecular ions consistent 

with one C19, three C20, one C21 and two C23 isomers. Their distribution and mass 

spectra were comparable with that of the same acids shown in the 3D EIC reported by 

Frank et al. (2014) and Rowland et al. (2011d), respectively (Figure 6-22; B and Figure 

6-23). However, the seven isomers reported by Rowland et al. (2011d) did not contain a 

C21 isomer, but another C20 isomer. 
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Figure 6-21: (A) TIC and (B) EIC (m/z 256, 270, 284, 298 and 312) of the reduced 

aromatic fraction and (C-H) mass spectra of isomers assigned as C19-23 tricyclic 

monoaromatic hydrocarbons derived from the abundant acids putatively re-assigned as 

de-A (18-nor) steroidal acids (Rowland et al., 2011d; Rowland et al., [unpublished]). 
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Figure 6-22: (A) EIC (m/z 145) of the aromatic acid methyl ester fraction showing the 

distribution of the ‘m/z 145’ series of tricyclic monoaromatic acids and (B) a 3D 

representation of the EIC comparable with that reported by Frank et al. (2014). 

The conversion of the acid methyl esters to the corresponding hydrocarbons supported 

the assignment of the series as CnH2n+zO2 tricyclic monoaromatic acids and not keto 

acids. The molecular ions of the original acids (Figure 6-23) (M
+
 = m/z 300, 314, 328 

and 356) all reduced by 44 mass units after the reduction, corresponding to the 

reduction of the acid methyl ester to a defunctionalised hydrocarbon. If a keto group 

was present, this would have been expected to be reduced to an alcohol and either 

further derivatised to the tosylate and reduced accordingly, or remain unaffected as the 

keto or alcohol group, dependent on its position in the structure. The mass spectra and 

molecular ions of reduced keto products would not produce the molecular ions observed 

in the mass spectra of the corresponding hydrocarbons in Figure 6-21. 
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Figure 6-23: (A) Mass spectra of tricyclic monoaromatic acids in the aromatic acid 

methyl ester fraction, tentatively re-assigned as de-A steroidal acids (Rowland et al., 

2011d; Frank et al., 2014). 
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The mass spectra of the hydrocarbons displayed a similar fragmentation pattern to those 

observed for the acids; an observation made for the alkyl benzene acids, suggesting the 

acid group was substituted at the end of an alkanoate side chain. No reference mass 

spectra for de-A steroidal acid methyl esters were found, but a few mass spectra were 

available for de-A sterane hydrocarbons with structures similar to those proposed for 

the corresponding hydrocarbons herein. The fragmentation patterns observed in the 

reference mass spectra reported by Peakman et al. (1986) and van Graas et al. (1982) 

for C23 and C25 de-A steranes, respectively (Figure 6-24; A), were similar to those 

observed for corresponding hydrocarbons in Figure 6-21, supporting the assignment of 

a de-A (18-nor) sterane ‘core’ (Figure 6-24; B). The reference mass spectra displayed a 

dominant base peak ion at m/z 157 with a smaller m/z 145 ion, as opposed to the m/z 

145 base peak ion with a smaller m/z 131, observed herein (Figure 6-25; A-C). 

Therefore, it is proposed that the acids and corresponding hydrocarbons are 18-nor 

isomers; potentially products of further biodegradation of the hydrocarbon precursors 

similar to those reported by Peakman et al. (1986) and van Graas et al. (1982), observed 

at the severe level of biodegradation previously reported in the OSPW (Rowland et al., 

2011g). This is supported by the detection of these acids (‘m/z 145 series’) in severely 

biodegraded crude oils (Rowland et al., [unpublished]). 

 

Figure 6-24: Structure of (A) a de-A sterane reported by Peakman et al. (1986) and van 

Graas et al. (1982) and (B) the proposed structure of the tricyclic monoaromatic, de-A 

(18-nor) sterane acids and corresponding hydrocarbons (R = alkyl chain in reduced 

hydrocarbon product; = alkanoate chain in acid methyl esters). 
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Figure 6-25: (A and B) Example mass spectra of tricyclic monoaromatic hydrocarbons 

in the reduced aromatic fraction of OSPW NA tentatively assigned as de-A (18-nor) 

steranes after comparsion with (C) the reimaged reference mass spectrum reported by 

Peakman et al. (1986) and observations reported by van Graas et al. (1982). 

The formation of a stable m/z 145 ion is postulated to proceed via fission of a 

bridgehead bond in the terminal saturated ring (i.e. the cyclopentyl ring), followed by 

hydrogen rearrangement and inductive cleavage; a similar mechanism to that previously 

shown for other known tricyclic monoaromatic terpanes (Enzell, 1966; Azevedo et al., 

1990). Initial fission and resulting fragmentation across the ring, as opposed to 

fragmentation of the alkyl side chain, has been reported for similar tricyclic 

monoaromatic terpanes with long alkyl side chains (Azevedo et al., 1990). The isomers 

reported herein possessed carbon numbers of C19 and higher, suggesting alkyl side 

chains greater than C5 in length. 
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Figure 6-26: Proposed mass spectral fragmentation mechanism for the formation of the 

base peak ion m/z 145 observed in the mass spectra of the tricyclic aromatic 

hydrocarbons and acids, tentatively assigned as possessing de-A (18-nor) steroidal cores. 
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6.3.3.6 Diaromatic sulphur-containing acids 

Fraction 7 from the large scale fractionation of the derivatised OSPW NA sample #2, 

detailed in Chapter 2, Section 2.2.6, eluting with 95%:5% hexane:diethyl ether, was 

selected as a sulphur-rich, aromatic fraction of OSPW NA for conversion to 

hydrocarbons. The fraction was known to be sulphur-rich following a previous 

investigation on the equivalent Ag-Ion fraction of the same OSPW NA sample; 

elemental analysis of the acid methyl esters showed the fraction contained 1.5% sulphur 

(Jones et al., 2013). Jones et al. (2013) performed a series of spectrometric 

investigations of the fractionated acid methyl esters, including FT-IR, UV-Vis 

spectroscopy, GC×GC-HRMS and GC×GC with sulphur chemiluminescence detection 

(GC×GC-SCD); the results of the FT-IR and GC×GC-HRMS analyses indicated that the 

major SO2 species detected were sulphur-containing aromatic carboxylic acids. 

Later, West et al. (2014b) analysed the equivalent fraction of the same OSPW NA again 

by GC×GC-MS, GC×GC-SCD and GC×GC-HRMS. The accurate mass of the 

molecular ions of five major isomers, were consistent with C16-18 SO2 species with 10 

double bond equivalents (DBE) (West et al., 2014b). The mass spectra of all five 

isomers; one C16, two C17 and two C18 acid methyl esters, all displayed relatively 

intense (~40%) molecular ions at m/z 284, 298 and 312 and dominant base peak ions at 

m/z 197, 211 and 225, respectively, consistent with the loss of C4H7O2 (West et al., 

2014b). Synthesised reference, mono-substituted dibenzothiophene and naphtho[2,1-

b]thiophene acids, with a n-C4 alkanoate side chain and some with branched C5 

alkanoate side chains substituted at the 2-position, were compared with the GC×GC 

retention positions and mass spectra of the unknown NA (West et al., 2014b). Although 

the reference acids (methyl esters) possessed similar retention positions to those of the 

unknowns, none were identified. The mass spectra of the reference compounds all 

contained an even mass radical cation, which was attributed to loss of either M-74 and 
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M-88 produced by a γ-hydrogen or McLafferty rearrangement on the alkanoate side 

chain (McLafferty and Tureček, 1993). This rearrangement ion was absent in all the 

mass spectra of the unknown acids. Therefore West et al. (2014b) tentatively assigned 

the C16-18 diaromatic sulphur-containing acids as possessing methyl substituted 

dibenzothiophene or dimethylnaphthothiophenes (or dimethyldibenzothiopyrans) with 

methyl branched propanoate acid side chains. 

Prior to the investigations by Jones et al. (2013) and West et al. (2014b), utilising 

GC×GC-MS, little was known about the identity of the sulphur-containing 

dioxygenated species in OSPW, despite the frequent reports of sulphur acid species in 

OSPW NA and AEO samples by other HRMS techniques (Barrow et al., 2010; Headley 

et al., 2011a). The only other sulphur-containing acids to have been identified 

previously were a series of mono- and disubstituted C6-7 thiophene acids in oil sands 

composite tailings pore water after analysis of the acid methyl esters by GC×GC-MS 

and comparison with authentic reference compounds (Bowman et al., 2014).  

Examination of the ‘aromatic/sulphur’-containing fraction of acid methyl esters 

analysed herein by GC×GC-MS revealed the five C16-18 isomers reported by West et al. 

(2014b). Following reduction, the corresponding sulphur-containing hydrocarbons were 

detected with molecular ions at m/z 240, 254 and 268, possessing mass spectra similar 

to those of the acids (e.g. dominated by base peak ions at m/z 197, 211 and 225), 

corresponding to the loss of ·C3H7 (Figure 6-27; A and B). The five isomers (dbt-I to -

V) were detectable using extracted ion monitoring. However, they were more readily 

detected after the simple application of a CLIC expression (intensity of base peak ions 

at m/z 197, 211 and 225 >200000 counts and relative intensity of ions at m/z 240, 254 

and 268 > 20%) (Figure 6-27; B). This helped differentiate the isomers from minor 
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components with similar ions and elution times and enabled clear mass spectra to be 

obtained for interpretation and comparison with reference spectra and compounds. 

 

Figure 6-27: (A and B) TIC and CLIC EIC of reduced ‘aromatic, sulphur’ fraction of #2, 

showing isomers dbt-I to -V assigned as the reduced hydrocarbons of the five methyl 

esters reported by West et al. (2014b). (C-D) Identification of dbt-I after comparison 

with (D) synthesised 4-isobutyldibenzothiophene (Luty, 2014) and (E-H) assignment of 

dbt-II to -V as methyl- and dimethyl- isobutyldibenzothiophenes. 
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The only structure possible for the alkanoate side chain of these isomers, which would 

result in the consistent loss of M-87 and the absence of a radical cation produced from a 

McLafferty rearrangement in the mass spectra of the acid methyl esters (West et al., 

2014b), along with the consistent loss of ·C3H7 by benzylic cleavage in the mass spectra 

of the hydrocarbons, was that of a dibenzothiophene (or naphthothiophene) containing 

an isobutyl side chain. 

Authentic reference dibenzothiophene or naphthothiophene acids with an isobutyric 

acid (C2-methyl propanoate) side chain were not available. However authentic 4-propyl- 

and 4-isobutyldibenzothiophene previously synthesised by Luty (2014) was available 

for comparison with the corresponding hydrocarbons obtained herein. The GC×GC 

retention position of 4-propyldibenzothiophene matched that of two co-eluting isomers 

in the reduced OSPW F7 hydrocarbon product (labelled nat-III and -IV in Figure 6-27), 

though the mass spectra of the two isomers were different to the reference hydrocarbon. 

However the GC×GC retention position and mass spectrum of synthesised 4-

isobutyldibenzothiophene matched that of the dbt-I isomer, confirming its identification 

(Figure 6-27; C and D), and by inference, the identification of dibenzothiophene-4-

isobutanoic acid in OSPW NA for the first time, as originally postulated by West et al. 

(2014b). This is another example of how the approach of chemical transformation 

developed and applied herein was complementary to the analysis of the acid methyl 

esters; interpretation of the mass spectra of both the acid methyl esters and 

hydrocarbons and comparison of the hydrocarbon product with available reference 

compounds in the absence of available reference acid methyl esters aided the 

identification of unknown NA in OSPW. 

West et al. (2014b) also reported the presence of some sulphur-containing acids with 8 

and 9 DBE, eluting slightly earlier than those compounds possessing 10 DBE now 
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identified as dibenzothiophene acids. The identities of these acid methyl esters were not 

investigated further. However, examination of the OSPW F7 hydrocarbon product 

herein, revealed a series of isomers with spectra displaying molecular ions consistent 

with diaromatic sulphur-containing hydrocarbons with 8 DBE (e.g. m/z 214, 228, 242 

and 256), eluting slightly earlier than the 10 DBE dibenzothiophenes (e.g. isomer nat-1 

in Figure 6-27). 

The mass spectra of these isomers (nat-1 to -V) were dominated by intense base peak 

ions at m/z 171 and 185, with very few fragment ions observed below m/z 171, except 

very low intensity ions at m/z 92, 115, 127, 152 and 165 present in most of the spectra 

(Figure 6-28). This indicated that the compounds were highly condensed, with the base 

peak ion most likely formed via benzylic cleavage of an alkyl substituent; similar to the 

mass spectra of alkyl 2H-naphtho[1,8-bc]thiophenes reported by Hawthone and Porter 

(1968) and the mass spectra of alkyl substituted, condensed polycyclic aromatic 

hydrocarbons (e.g. those of alkyl acenaphthenes and pyrenes; NIST library). 

Comparison of the mass spectrum of the isomer with the lowest carbon number (nat-I), 

with reference spectra in the NIST MS Library, showed that the spectrum was similar to 

that of 2-methyl-2H-naphtho[1,8-bc]thiophene (Figure 6-28; A and B). The NIST mass 

spectrum showed a loss of M-15, attributed to fragmentation of the methyl substituent, 

via benzylic cleavage, as proposed previously for the fragmentation of alkyl 2H-

naphtho[1,8-bc]thiophenes (Hawthone and Porter, 1968; Porter, 1985) (Figure 6-28; A). 

The mass spectrum of nat-I displayed a similar fragmentation pattern and ions to that of 

the NIST reference spectrum, with the base peak ion corresponding to the loss of M-43 

instead, attributed to the loss of a propyl group ·C3H7 (Figure 6-28; B). The series of 

isomers (nat-II to -V) had increasing molecular ions (by 14 Da) and showed similar 

losses in accordance with higher carbon number homologues (Figure 6-28; C-F). 
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Figure 6-28: Mass spectra of a series of isomers (nat-I to -V) in the reduced ‘aromatic, 

sulphur’ fraction of sample #2, tentatively assigned, after comparison with (A) the NIST 

spectrum of 2-methyl-2H-naphtho[1,8-bc]thiophene and their retention positions 

relative to authentic 4-propyl- and isobutyl- dibenzothiophene, as (B-F) 2-alkyl (C3-5) 

substituted 2H-naphtho[1,8-bc]thiophenes and methyl 2H-naphtho[1,8-bc]thiophenes. 

As previously mentioned, the retention positions of nat-III and -IV matched that of 

synthesised 4-propyldibenzothiophene. A tricyclic, diaromatic sulphur-containing 

hydrocarbon possessing a more highly condensed ring structure such as a naphtho[1,8-

bc]thiophene would be expected to elute in a similar 2
nd

 dimension retention position to 
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that of a dibenzothiophene isomer possessing the same carbon number. The isomer with 

a more condensed ring structure would also be expected to possess an earlier 1
st 

dimension retention position; both these observations matched that observed for the 

retention position of the nat-I isomer relative to the dbt-I isomer (Figure 6-27; A). 

If the hydrocarbon isomers detected (nat-I to -V) did indeed possess condensed ring 

structures, such as naphtho[1,8-bc]thiophenes, the mass spectra of the original acids 

would be expected to display similar mass spectral fragmentation patterns (due to the 

stability of the condensed structure) with additional radical cations due to McLafferty 

rearrangement of the alkanoate side chain, involving the hydrogen on the carbon 

adjacent to the sulphur atom. The original acid methyl esters would also possess 9 DBE 

with retention positions similar to those observed by West et al. (2014b). Subsequent 

examination of the OSPW F7 NA methyl esters indeed revealed a series of peaks with 

mass spectra displaying fragmentation patterns similar to those of the nat-I to -V 

hydrocarbons, with additional even mass ions, corresponding to M-74, M-88 and M-102 

ions (Figure 6-29), attributed to neutral losses from hydrogen rearrangement on the 

alkanoate side chain. These observations coupled with the mass spectral interpretation, 

similarity with the reference mass spectrum (Figure 6-28; B) and precedent for the 

presence of sulphur-containing acids with 9 DBE confirmed by GC×GC-SCD and 

HRMS (West et al., 2014b), led to the tentative assignment of naphtho[1,8-bc]thiophene 

acids in OSPW NA herein. 
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Figure 6-29: (A and B) Example mass spectra of a C14 and C16 acid methyl ester in the 

‘aromatic, sulphur’ fraction of sample #2, with molecular ions and retention positions 

consistent with condensed tricyclic, diaromatic sulphur-containing acid methyl esters, 

tentatively assigned as naphtho[1,8-bc]thiophene acids. 

Sulphur-containing hydrocarbons possess the same nominal mass as some aromatic 

hydrocarbons and could be mis-assigned when analysed by unit resolution mass 

spectrometric techniques, as highlighted by Hegazi and Andersson (2007). For example, 

the C16 sulphur-containing hydrocarbons tentatively assigned above (Figure 6-27; D and 

E) with molecular ions at m/z 242, possess the same nominal mass as a C18 tricyclic 

monoaromatic hydrocarbon e.g. an alkylated C4 octahydrophenanthrene, as well as a C19 

tetracyclic tetra-aromatic hydrocarbon (e.g. methyl benz[a]anthracene or chrysene). 

However, interpretation and comparison of the mass spectra of such hydrocarbons 

(NIST MS Library v.2.0) clearly rule them out as possibilities for those discussed above. 

There is precedence for the occurrence of aromatic sulphur-containing acids in 

petroleum; benzothiophene-3-carboxylic acid has been shown to occur as a metabolite 

during the bacterial oxidation of 3-methylbenzothiophene (Kropp and Fedorak, 1998). 

Sulphur-containing hydrocarbons e.g. polycyclic sulphides (Payzant et al., 1986) and 

alkylated dibenzothiophenes, have been reported as petroleum hydrocarbons and the 

mass spectra of several methyl and polysubstituted isomers have been reported (Zeigler 
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et al., 2012; Andersson and Schade, 2004; Andersson et al., 2001). Polycyclic aromatic 

thiophenes have been used frequently as biomarkers in oil analysis, including as tracers 

for determining oil migration (Li et al., 2014). 

To confirm the identification of the methyl- and dimethyl substituted dibenzothiophene 

acids and the tentatively assigned naphtha[1,8-bc]thiophene acids, reference acids or 

hydrocarbons should now be synthesised and spectra compared with those of 

constituents in the OSPW NA or equivalent hydrocarbon products. Sulphur-containing 

species (e.g. SO3 and SO5 species), are also present in more polar fractions of OSPW 

NA e.g. in the methanol eluate (e.g. Rowland et al. (2014a)), and these are potentially 

hydroxy- or keto- equivalents of those identified in the fraction analysed herein. 

Therefore the identification of sulphur-containing acids has implications for the 

understanding of further degradation processes and, formation of more polar sulphur 

species, as well as for their toxic effects. 
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6.4 Conclusions 

The identifications presented herein, including those of novel alicyclic bi-, tri-, tetra- 

and pentacyclic hydrocarbons; mono-, bi- and tricyclic monoaromatic hydrocarbons and 

diaromatic sulphur-containing hydrocarbons and thus, by inference, of the 

corresponding acids, extends significantly previous identifications of OSPW NA as 

their methyl esters (Rowland et al., 2011c; Rowland et al., 2011g; Rowland et al., 

2011d; West et al., 2014b; Wilde et al., 2015). The data also lend support to many 

previous assignments. 

The assignments were all supported by the identification of multiple isomers of each 

acid type, easily detected by the separation achieved using GC×GC and an 

understanding of the elution patterns observed for higher carbon number homologues. 

The assignments were also supported by interpretation of the hydrocarbon mass spectra 

and where possible, by comparison with the known elution order of the hydrocarbons. 

Furthermore, the assignments were supported, where possible, by subsequent re-

examination of data for the NA methyl esters and comparison of their GC×GC retention 

positions and mass spectra with those of reference compounds, as well as interpretation 

of the corresponding acid methyl ester mass spectra. Most identifications were 

consistent with previous evidence for the identification of the acids, or for the petroleum 

hydrocarbons from which the acids identified herein could derive. 

The identification of numerous adamantane acids as hydrocarbons in the reduced 

samples #2 and #7, supported by comparison of the NA methyl esters with reference 

compounds, confirmed that the conversion was successful on OSPW NA despite the 

increased complexity. Identification of methyl, ethyl, di- and trimethyl adamantane 

acids in the reduced underivatised, unfractionated OSPW NA confirmed adamantane 
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acids were indeed authentic components of OSPW NA and not just artefacts of 

derivatisation with BF3-methanol. 

The identification of novel bicyclic acids in OSPW NA, by comparison of spectra with 

collated bicyclane mass spectra and known elution orders was achieved. Although the 

identification of the bicyclics was limited by the low abundance of lower molecular 

weight acids, and thus hydrocarbons in OSPW NA, for comparison with reference mass 

spectra, new structures that had not been previously identified as the acid methyl esters 

could still be assigned. These new structures were also consistent with those previously 

identified, including both novel bridged and fused bicyclic compounds. Based on the 

observed differences between the bicyclic acids, identified as bicyclanes and acid 

methyl esters in petroleum NA and those identified in OSPW NA, new conclusions 

about the nature of these NA mixtures (a greater majority of bridgehead-substituted 

condensed bicyclics, rather than branched chain substituted bicyclics) were postulated. 

The conversion of acids to hydrocarbons also proved successful on aromatic and 

sulphur-containing NA. Reference mass spectra of aromatic hydrocarbons have been 

frequently reported and are well characterized and often show distinctive mass spectral 

fragmentation patterns. This allowed for the assignment of several new mono- to 

tricyclic monoaromatic NA, as well as diaromatic sulphur-containing NA. Confirmation 

of the identification of dibenzothiophene-4-isobutanoic acid was possible by 

comparison of mass spectrum and retention position of the hydrocarbon equivalent with 

those of an available reference hydrocarbon. An equivalent reference acid was not 

available in this case. 

The paucity of knowledge regarding the structure of NA in OSPW has limited the 

understanding of toxicity, remediation and the ability to accurately quantify and profile 

NA for environmental monitoring purposes. Prior to the current investigation, recent 
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advances in the identification of individual NA had only been achieved by GC×GC-MS 

analysis of the methyl esters. The complementary method developed and described 

herein, which combined an historical approach for identifying NA by chemical 

transformation to hydrocarbons with the unparalleled chromatographic separation 

afforded by GC×GC-MS, resulted in the identification of numerous individual NA as 

their hydrocarbon equivalents in OSPW. 

Clearly many acids remain to be identified and the data produced in the current study 

can be re-examined as more hydrocarbon mass spectra and reference hydrocarbons 

become available. However, a significant number of acids from several acid classes 

have now been identified (e.g. alicyclic, aromatic, sulphur-containing), as detailed in the 

current investigation and in previous studies (Rowland et al., 2011c; Rowland et al., 

2014a) and these can now be used to inform environmental monitoring programs and 

toxicity studies. For example, representative standards, including potentially radio-

labelled analogues, could be purchased or synthesised and used to measure the toxicity 

of specific NA, or to study the transformation of such species during chemical treatment 

or bioremediation, or to quantify specific classes of NA by other complementary 

techniques (Hindle et al., 2013; Brunswick et al., 2015; Pereira et al., 2013a; Pereira 

and Martin, 2014). The current investigation has shown the successful application of the 

conversion method developed herein to a complex NA mixture and there is now 

potential for it to be applied to other organic extracts for the identification of other acids 

and functionalised biomarkers from environmental samples, such as sediments. 
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Chapter 7  

Conclusions 

The current investigation focused on the bicyclic acids of petroleum with the primary 

aim of identifying at least some of the bicyclic acids typically present in petroleum and 

in oil sands process-affected waters (OSPW) acid extracts. 

This aim was achieved, first by carrying out the analysis of petroleum and OSPW 

naphthenic acid (NA) extracts using the unparalleled chromatographic separation and 

subsequent mass spectrometric detection of the methyl esters offered by 

multidimensional gas chromatography-mass spectrometry (GC×GC-MS). More than 

one hundred C8-15 bicyclic acids were shown to be present in each OSPW extract. 

Consideration of the GC retention behaviour, numbers of structural types and 

interpretation and comparison of the electron ionisation mass spectra of the methyl 

esters of a number of synthetic and purchased bicyclic carboxylic acids allowed 

identification of various bicyclic acids in OSPW and commercial acids, many for the 

first time. The identifications included several, novel, bridged bicyclic acid structures 

e.g. bicyclo[2.2.1]heptane, bicyclo[3.2.1]octane, bicyclo[2.2.2]octane and 

bicyclo[3.3.1]nonane acids, fused bicyclic acid structures e.g. bicyclo[3.3.0]octane, 

bicyclo[4.3.0]nonane and bicyclo[4.4.0]decane acids. Many of the findings were 

published (Wilde et al., 2015). 

Further identifications were still limited by the lack of reference spectra and availability 

of reference compounds for comparison. For example, bicyclic acid structures including 

bicyclo[4.2.1]nonane, bicyclo[3.2.2]nonane, bicyclo[3.3.2]decane, bicyclo[4.2.2]decane 

and spiro[4.5]decane carboxylic acids could not be ruled out or in, as no authentic 

compounds or literature data were available. Interpretation of the mass spectra of the 
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methyl esters of the higher bicyclic C12-15 acids suggested that many were simply 

analogues of those identified, with longer alkanoate chains and/or alkyl substituents. 

Many bicyclic acids remain to be identified. 

Since a wider literature of mass spectra of bicyclic hydrocarbons (e.g. Denisov et al. 

(1977d), Denisov et al. (1977c), Denisov et al. (1977a), Brodskii et al. (1977), 

Lukashenko et al. (1973), Golovkina et al. (1984)) was available than was extant for the 

acids or esters, a useful approach, formerly adopted by Zelinsky (1924) and Seifert et al. 

(1969) was investigated as an alternative approach for the identification of NA: namely, 

conversion of the acids to hydrocarbons. 

Although this approach was adopted by early researchers (Zelinsky, 1924; Braun et al., 

1933; Seifert et al., 1969), the lack of sufficient chromatographic separation of the 

complex hydrocarbon mixtures produced in these earlier studies meant identification of 

individual compounds was still limited. Therefore combining this older approach with 

the separation power of a modern chromatographic method such as GC×GC-MS, was 

considered potentially useful for furthering the investigation into the structural 

identification of bicyclic petroleum acids. A large data set of reference mass spectra for 

bicyclic hydrocarbons was laboriously collated from the older literature and replotted 

from the tabulated values. Many of these data were from early Russian investigations 

into the isolation and characterisation of petroleum hydrocarbons (Denisov et al., 1977a; 

Denisov et al., 1977b; Denisov et al., 1977c; Denisov et al., 1977d; Rusinova et al., 

1987; Rusinova et al., 1981; Golovkina et al., 1984; Golovkina et al., 1979). 

The optimised method, based on the historical approach involving reduction of the NA 

esters to hydrocarbons, was developed first on three model bicyclic acids to obtain 

reproducible reactions and high yields of the desired products. The multistep synthetic 

route involved reduction of the free acids or esters with lithium aluminium hydride; 
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derivatisation to the tosylates using tosyl chloride in the presence of 4-

(dimethylamino)pyridine and triethylamine and in a novel modification and 

improvement, “Super-hydride®” reduction using lithium triethylborohydride to the 

hydrocarbons. Structural characterisation of each of the alcohol and tosylate 

intermediates by IR, GC-MS and NMR and of the final hydrocarbon products by GC-

MS, confirmed the successful conversion of the model bicyclic acids, possessing 

different bicyclic cores, to the corresponding hydrocarbons. Data for the resulting 

bicyclanes were all comparable with relevant reference mass spectra. The method 

developed was reliable, and by carrying out full characterisation of the compounds at 

each stage to ensure that the structural integrity of the bicyclic core was maintained 

throughout the conversion, the method could then be applied with confidence to much 

more complex NA mixtures. 

The method developed was first performed on a petroleum NA mixture. Subsequent 

analysis of the reduced acids by GC×GC-MS and comparison of the hydrocarbon mass 

spectra with the numerous reference spectra for bicyclic hydrocarbons collated from the 

literature, resulted in the identification of >40 individual bicyclic acids including fused, 

bridged and terpenoid-derived acids (Wilde and Rowland, 2015). The identification of 

acids, across a range of carbon numbers, with the same reoccurring bicyclic ‘core’ such 

as the identification of methyl-, dimethyl-, ethyl- and propylbicyclo[3.3.0]octanes and 

thus of the corresponding bicyclo[3.3.0]octane carboxylic to propanoic acids, was 

strong evidence in support of the previous proposal that at least some of the higher 

carbon acids are analogues of those identified, with longer alkanoate chains and/or alkyl 

substituents. 

The success of the conversion and the numerous identifications achieved after careful 

sample concentration, fractionation and optimal separation using GC×GC-MS, and thus 
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by inference the corresponding acids, represents the most comprehensive study of 

bicyclic petroleum NA to date. Assignments were supported by the identification of 

multiple isomers of each acid type by close matches with the GC×GC retention 

positions and mass spectra of reference hydrocarbons and the bicyclic acids identified 

were consistent with the previous evidence of such acids in other matrices, identified as 

the esters (Piccolo et al., 2010; Bagrii et al., 1970; Bagrii et al., 1967; Petrov, 1987). 

Many of the above results were published (Wilde and Rowland, 2015). 

The method developed, for the conversion of NA to hydrocarbons followed by analysis 

using GC×GC-MS, was then applied to the structural elucidation of NA in OSPW. 

Rigorous examination of the mass spectra of individual hydrocarbons, made possible by 

the separation afforded by GC×GC-MS and effective use of data processing software 

(e.g. CLIC expressions), resulted in the identification of numerous alicyclic, aromatic 

and sulphur-containing acids. In addition to the identifications of acids that had 

previously been assigned in OSPW as methyl esters and which were used herein to 

confirm the successful conversion of acids to hydrocarbons, numerous identifications of 

other acids were made, including some NA which were only tentatively assigned in 

OSPW previously and many new identifications of NA in OSPW. 

Although the identification of bicyclic acids, as bicyclanes, was more limited than when 

applied to petroleum NA, new structures that had not been previously identified as the 

acid methyl esters were assigned. These new structures were also consistent with those 

previously identified, including both novel bridged and fused bicyclic structures. Based 

on the observed differences between the bicyclic acids, identified as bicyclanes and acid 

methyl esters, in petroleum NA and those identified in OSPW NA, new conclusions 

about the nature of these NA mixtures were drawn. 
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7.1 Wider context 

7.1.1 Occurrence and nature of bicyclic NA 

Based on the structures of the bicyclic acids identified herein, many possessing bicyclic 

cores similar to bicyclic petroleum hydrocarbons, it can be hypothesised that these acids 

probably represent the biotransformation products of the initially somewhat more bio-

resistant, bicyclanes of petroleum. This hypothesis can also be applied to several of the 

other NA classes identified in the OSPW NA herein (e.g. diamondoid and 

dibenzothiophene acids).  

The identification of acids (as hydrocarbons) herein possessing more highly condensed 

or bridged-type structures (e.g. bicyclo[2.2.2]- and [3.2.1]octanes, adamantanes and 2,4-

cyclopentanoadamantanes), makes it possible to suggest that these also likely derive 

from biotransformation of the corresponding alkylhydrocarbons in petroleum, rather 

than from ring opening of higher polycyclic terpenoids as sometimes suggested 

previously (Rowland et al., 2011g). 

Petroleum NA and NA extracted from OSPW have, in general, often been reported to 

possess significantly different compositions (Grewer et al., 2010; Hindle et al., 2013), 

observed most commonly as differences in the HPLC retention times of the unresolved 

acid ‘humps’. This has typically been attributed to the increased resistance, of the 

OSPW NA to biodegradation (Scott et al., 2005; Frank et al., 2008; Brown and Ulrich, 

2015). The current justification used to explain both of these phenomena is that the 

carboxylated alkyl side chains in OSPW NA, which are otherwise believed to possess 

alkyl-substituted alicyclic structures similar to those of petroleum NA, are simply 

longer and more highly branched in OSPW NA (Holowenko et al., 2002; Bataineh et al., 

2006). This explanation is based on the knowledge that the branched chain acids elute 

before the corresponding straight chain equivalents and that branched chain are more 
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resistant to biodegradation (Smith et al., 2008; Misiti et al., 2014; Quesnel et al., 2011). 

However, this explanation has never been supported by the identification of, for 

example, an acid possessing a long non-branched alkanoate chain in petroleum NA and 

the corresponding acid with a branched alkanoate chain in the OSPW NA. 

Based on the new knowledge of bicyclic structures identified in both petroleum NA and 

OSPW NA herein, an alternative explanation was made for the observed differences 

between the retention times and biodegradation of petroleum and OSPW NA mixtures. 

It is proposed herein that OSPW and petroleum NA indeed contain acids with some 

similar structures, but that, alongside differences in alkyl branching and aromatic 

contents of the NA, the OSPW NA might also possess a greater abundance of more 

condensed, bridged structures. This is reflected in the elution order of the bicyclanes 

and the corresponding bicyclic acid methyl esters observed herein. The general retention 

times of the bicyclanes and reference bicyclic acids increased as follows: 

bicyclo[2.2.1]heptanes, bicyclo[3.2.1]octanes, bicyclo[3.3.0]octanes, 

bicyclo[2.2.2]octanes, bicyclo[4.3.0]nonanes, bicyclo[3.3.1]nonanes and 

bicyclo[4.4.0]decanes, with the more condensed-type and bridged structures eluting 

earlier. 

The identification of a series of C9-11 bicyclo[3.3.0]octane acids with increasing 

alkanoate side chains supports the proposal that some of the higher carbon number 

analogues in OSPW NA, possess structures similar to the lower molecular weight 

bicyclic acids identified herein. However, the paucity of data for C13-15 bridged bicyclic 

hydrocarbons means this extrapolation of knowledge is limited. Examination of the 

relevant literature suggests that there has been no identification of petroleum 

hydrocarbons possessing small, condensed, bridged bicyclic cores e.g. 

bicyclo[3.2.1]octanes with alkyl chains longer than C4 (despite the mass spectra of some 
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long chain >C5 bicyclo[2.2.1]heptanes present in the NIST library). In order for the C13-

15 bicyclic acids observed in the OSPW NA herein to simply be homologues of those 

observed in the petroleum NA, but with longer and more branched alkanoate chains, 

these condensed bridged bicyclics would have to derive from either bicyclo-octanes 

with >C5 branched alkyl chains or from more complex rearrangements of higher carbon 

number unknown precursors. Therefore it is proposed that at least some of the higher 

carbon number bicyclic acids observed in the OSPW NA, and petroleum NA to less of 

an extent, actually possess larger bridged bicyclic cores such as the 

bicyclo[4.2.1]nonane, bicyclo[3.2.2]nonane, bicyclo[3.3.2]decane, bicyclo[4.2.2]decane 

structures which could not be ruled in or out herein due to lack of reference data and 

compounds. 

7.1.2 Implications for future research 

Now there are a significant number of acids from various acid classes identified herein 

(e.g. alicyclic, aromatic, sulphur-containing), or during previous studies (Rowland et al., 

2011c; Rowland et al., 2014a), this knowledge can be used to inform other research, 

such as investigations into the environmental monitoring of NA or toxicity studies to 

target remediation of specific NA or NA classes. 

Using the current and new knowledge, representative compounds can be purchased or 

synthesised and used to measure the toxicity of specific relevant NA. Representative 

standards of acids known to be components specific to OSPW NA can be purchased or 

synthesised, to be used for the quantification of specific NA or NA classes, using the 

recently developed advanced techniques such as HPLC or GC coupled with high or 

ultra-high resolution mass spectrometry or ion mobility mass spectrometry (Pereira and 

Martin, 2014; Pereira et al., 2013a; Barrow et al., 2014; Bauer et al., 2015; Huang et al., 

2015a; Brunswick et al., 2015). 
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Similar standards or radio-labelled analogues could be spiked into OSPW NA mixtures 

before being chemically treated to help monitor the formation of by-products to enhance 

current understanding of proposed short-term remediation plans. Remediation studies 

suggest at least some bicyclic acids can be relatively quickly removed from suitably 

treated OSPW (Martin et al., 2010), but a closer examination of which isomers are 

degraded will now be possible, using the knowledge of the structures identified herein. 

This may be deemed important as some bicyclic acids are more acutely toxic than others 

(Jones et al., 2011). Further investigations into the identification of OSPW NA could 

result in the identification of those most resistant to biodegradation in OSPW NA. The 

isolation of bacteria which effectively remove the most recalcitrant OSPW NA could be 

used for long term remediation plans. 

Alternative uses of the NA identified herein, or simple transformation products or 

derivatives, could also be investigated. For example the medicinal properties or 

lubrication and surfactant properties of the ester or amine derivatives (e.g. Bagrii and 

Maravin (2013)). Initial interest in the extraction and identification of NA was due to 

their economic value. However, these mixtures were often crude NA mixtures used as 

additives or bulking agents (Lochte and Littmann, 1955). If a specific NA or class of 

NA were discovered to possess an economic value, significant quantities obtained by a 

targeted extraction process, could be extracted from the large volumes of stored OSPW 

wastewater. 

Limited identification of individual petroleum acids has hindered a detailed 

understanding of their role in petroleum generation and oil production processes, 

refinery corrosion, uses as wood preservatives and as environmental toxicants, for 

decades. The current investigation has shown the successful application of the methods 

developed herein, including conversion of NA to hydrocarbons, for the identification of 
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numerous NA in petroleum and OSPW acid extracts. There is now potential for this to 

be applied to other complex NA mixtures and for the identification of other 

functionalised biomarkers in environmental samples such as the polar constituents of 

sediments or contaminated groundwaters. 
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7.2 Future Work 

Considering the conclusions of the results and their application in a wider context, 

future work could involve methods to address both the limitations of the current 

investigation, but also investigate how the results could be used to progress future 

research. The three main limitations of the work included the lack of knowledge of 

higher carbon number analogues of bicyclic acids, the ambiguity regarding the position 

of the carboxyl group in poly-substituted acids and the lack of available reference 

compounds to confirm new identifications. Fortunately these limitations can all be 

addressed. 

7.2.1 Reference Compounds 

The synthesis of higher carbon number reference acids and hydrocarbons, guided by 

those identified in the current investigation, would not only extend the potential for the 

method developed herein in aiding the identification of higher carbon number 

homologues, but also be useful in future studies. 

Synthesis of C12-15 bridged bicyclic hydrocarbons or carboxylic acids could be 

performed, including some with small bicyclo-octanes cores, with longer branched alkyl 

or alkanoate side chains, as well as those with larger bicyclic cores (e.g. 

bicyclo[4.2.1]nonanes and bicyclo[3.2.2]nonanes). Synthesis of the hydrocarbons may 

be easier than the functionalised equivalents. The synthesis of reference hydrocarbons 

would aid the identification of NA after conversion using the method developed herein 

and would enhance current knowledge of petroleum hydrocarbons. 

Several procedures for the synthesis of various bridged and fused bicyclic compounds 

are reported in the literature. For example, Knotnerus and co-workers reported a series 

of investigations for the synthesis of bicyclo[3.3.0]octanes (Knotnerus and Schilling, 
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1964a; b), bicyclo[2.2.2]octanes (Bickel et al., 1960), bicyclo[4.3.0]nonanes and 

bicyclo[4.4.0]decanes (Knotnerus and Bickel, 1964). The synthetic procedures usually 

proceed via three mains routes, including cycloaddition across a π-system (Singh et al., 

2006; Blaney et al., 1972), via ring closure reactions (Filippini and Rodriguez, 1999), or 

via the rearrangement or isomerisation of other bicyclic compounds (Chow et al., 1966; 

Bagrii et al., 1970; Flego et al., 2009). As novel bicyclic compounds are found in 

natural products, synthetic routes for the synthesis of bicyclic terpenoids could also be 

investigated (Cocker et al., 1968; Mori et al., 1972; Pavel, 1982; Filippini and 

Rodriguez, 1999). 

Following the identification, or in some cases tentative identification, of several new 

acids in OSPW NA, such as several adamantane acids substituted at a secondary carbon 

position, tricyclic terpenoid acids and naphtha[1,8-bc]thiophene acids, a broader range 

of NA could be synthesised and used for profiling and source characterisation studies. 

Frank et al. (2014) demonstrated the potential use of monitoring individual acids for 

identifying the source of AEO in natural groundwaters and Lengger et al. (2015) 

reported the use of adamantane acid distributions to determine short-term temporal and 

spatial variability within OSPW tailings ponds. The eleven adamantane acids including 

diacids used for profiling purposes by Lengger et al. (2015) were all, excluding 

adamantane-2-carboxylic acid, isomers substituted at the tertiary carbon positions. This 

was most likely due to the availability of commercial reference compounds. However, 

the results of the current investigation suggest that it would be worthwhile to synthesise 

and use some isomers with alkyl groups and carboxyl groups substituted at the 

secondary carbon positions, as it appears they are indeed present in some OSPW NA. 
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7.2.2 Conversion of acids to deuterated hydrocarbons 

The reduction of petroleum and OSPW NA to their corresponding hydrocarbons, 

resulted in the identification of several alkyl-substituted acids as dimethyl-, trimethyl, or 

methylethyl-substituted hydrocarbons. Although the approach resulted in the 

identification of the ‘main’ acid structures, there still remained a degree of ambiguity 

regarding the original positions of some of the carboxylic acid groups. For example, 

there were three possible precursor acids of 1,4-dimethylbicyclo[3.2.1]octane; a 

bicyclane identified in the reduced hydrocarbons of petroleum NA and OSPW NA 

(discussed in Chapter 5, Section 5.3.4.1, page 224). 

Theoretically, a dimethyl- substituted bicyclane such as 1,4-

dimethylbicyclo[3.2.1]octane could originate from an acid with the carboxylic acid 

group originally substituted at either methyl- position (e.g. 1-

methylbicyclo[3.2.1]octane-4-carboxylic acid or 4-methylbicyclo[3.2.1]octane-1-

carboxylic acid) or on both positions in the case of a diacid (e.g. bicyclo[3.2.1]octane-

1,4-dicarboxylic acid). 

An approach previously adopted by early researchers of petroleum NA, who also 

attempted identification by chemical transformation, was to use a metal deuteride in one 

of the conversion steps as opposed to a metal hydride (e.g. lithium aluminium deuteride; 

LAD, instead of lithium aluminium hydride; LAH) (Hoering, 1970; Seifert et al., 1972). 

The use of a metal deuteride to produce deuterium labelled hydrocarbons is a method 

also used in investigations into the mass spectral fragmentation mechanisms of certain 

compounds (Kwart and Blazer, 1970). Incorporation of deuterium atoms onto a specific 

part of a compound and analysis by mass spectrometry reveals information about the 

mass spectral fragmentation of that molecule. However the origins of all fragment ions 
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observed in the mass spectra of bicyclic hydrocarbons are not always easily justified 

using basic rules for mass spectral interpretation. 

A preliminary experiment, to investigate the use of LAD, was attempted on one of the 

model acids (Ia) to produce deuterium labelled 2,4-dimethylbicyclo[3.3.0]octane (Ie; 

Figure 4-25, Chapter 4, page 154). The use of LAD during the reduction of the acid to 

the alcohol intermediate, resulted in the addition of two deuterium atoms onto the 

carboxyl carbon atom. In the final hydrocarbon product, the methyl group derived from 

the original carboxyl carbon was observed as a -CHD2 substituent instead of a -CH3 

group. The additional 2 mass units were observed in the mass spectrum as a change in 

the molecular ion and the fragment ions which involved the loss of the deuterated 

methyl group. 

Whilst deuterium labelling of the carboxyl carbons would be especially useful in the 

detection of diacids, resulting in the molecular ion increasing by 4 mass units in the 

mass spectrum of the hydrocarbon products, its usefulness for the determination of the 

carboxyl group in dimethyl- bicyclanes derived from monoacids relies on detailed 

understanding and mass spectral interpretation of bicyclic hydrocarbon mass spectra, 

with the potential for misidentification. The mass spectrum of deuterated 2,4-

dimethylbicyclo[3.3.0]octane indicated that the compound can undergo extensive 

rearrangement (Chapter 4, Section 4.4.1.3). A more detailed understanding of the main 

fragmentations of bicyclic hydrocarbons may also be better studied using a lower 

ionisation energy by means of a variable-energy ion source. 

Following the successful deuteroreduction of a model bicyclic acid (Chapter 4, Section 

4.4.1.3, page 153), this approach could now be applied first to petroleum NA and the 

results compared with those discussed herein (Chapter 5). Mass spectral interpretation 

would require clear mass spectra to be obtained by good separation of resolved, 
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individual hydrocarbons, previously achieved using GC×GC-MS. However, the 

deuteroreduction approach may be less informative when applied to more complex 

mixtures such as OSPW NA. 

It was considered likely that for a dimethyl- bicyclane identified as the hydrocarbon 

herein, (e.g. 1,4-dimethylbicyclo[3.2.1]octane), both possible acid isomers (e.g. 1-

methylbicyclo[3.2.1]octane-4-carboxylic acid and 4-methylbicyclo[3.2.1]octane-1-

carboxylic acid), with the acid substituted at either alkyl position would be present in 

OSPW NA. This was observed in the instance of 3-methyladamantane-1-ethanoic acid 

and 3-ethyladamatane-1-carboxylic acid; both of which have been detected in some 

samples OSPW NA and both of which produce the same tricyclic hydrocarbon upon 

reduction (discussed in Chapter 6, Section 6.3.3.1, page 281). Therefore synthesis or 

purchase of as many possible isomers would be most beneficial for the detection of such 

acids in other NA matrices. 

7.2.3 Continued data analysis 

The large volume of data within a single, multidimensional gas chromatogram 

displaying the separation of a complex NA or hydrocarbon mixture, means further 

information can always be extracted if the data are continually processed. Future work 

would entail the continued collection of hydrocarbon mass spectra (i.e. those of alicyclic, 

aromatic and heteroatom-containing hydrocarbons), and comparison with the GC×GC-

MS data of all the reduced NA mixtures discussed herein. Good use of GC×GC-MS 

software for the interpretation and presentation of GC×GC-MS data has been 

demonstrated herein, especially the application of CLIC expressions for the fast 

identification of specific compounds. Similar expressions could be produced and 

automatically applied to the analysis of other hydrocarbon and NA mixtures for the 

rapid screening of target compounds. 
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Appendix 

Appendix Table 1: 1st dimension retention indices of the peaks assigned as C9-12 

bicyclanes in Figures 5-6 and 5-7. 

 

 

  

Carbon Number Structure/Peak Label Retention Index (RIRxi-1ms) 

9 Nonane 900 

9 bi-II 928 

9 bi-I 949 

10 bi-VI 954 

10 bi-III 965 

10 bi-VII 974 

10 Decane 1000 

10 bi-XIV b 1011 

10 bi-XIII* isomer 2 1014 

10 bi-XV* isomer 3 1017 

10 bi-XVI c 1021 

10 bi-IV b 1029 

10 bi-IX* isomer 3 1032 

10 bi-VIII 1032 

10 bi-IX* isomer 2 1035 

10 bi-IX* isomer 1 1039 

10 bi-XIV a 1044 

10 bi-XV* isomer 2 1046 

10 bi-XV* isomer 1 1049 

10 bi-IV a 1051 

10 bi-X 1055 

10 bi-XVI b 1059 

10 bi-XI b 1061 

10 bi-XVI a 1062 

10 bi-XIII* isomer 1 1071 

10 bi-XI a 1076 

10 bi-XII b 1080 

10 bi-XII a 1085 

11 Undecane 1100 

11 bi-XVIII (peak 1) 1118 

11 bi-V 1125 

11 bi-XVII (peak 2) 1160 

11 bi-XVIII (peak 3) 1172 

11 bi-XVIII (peak 4) 1179 

12 Dodecane 1200 

12 bi-XIX (major isomer) 1231 

12 bi-XX (major isomer) 1241 
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Appendix Figure 1: Flow diagram depicting extraction and clean-up procedure for 

naphthenic acids from OSPW as outlined by Frank et al. (2006). 
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Appendix Figure 2: Schematic GC×GC EIC of sample #1 (WIP, 2004) showing the 

relative retention positions of the C11-15 bicyclic NA methyl esters compared with those 

of the authentic reference acid methyl esters (Wilde et al., 2015). 

 

 

Appendix Figure 3: Electron ionisation mass spectrum of 2,6,6-

trimethylbicyclo[3.1.1]heptane-3-carboxylic acid methyl ester ((+)-3-pinane-carboxylic 

acid methyl ester). 

 



Appendix 

344 

 

 

Appendix Figure 4: Electron ionisation mass spectrum of 4-pentylbicyclo[2.2.2]octane-

1-carboxylic acid methyl ester. 

 

 

Appendix Figure 5: Electron ionisation mass spectra of two isomers of synthesised 7-

methylbicyclo[4.2.0]octane-7-carboxylic acid methyl ester. 
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Appendix Figure 6: Electron ionisation mass spectra of four isomers of synthesised 

bicyclo[4.4.0]decane-2-carboxylic acid methyl ester. 

 

Appendix Figure 7: Electron ionisation mass spectra of four isomers of synthesised 

bicyclo[4.4.0]decane-3-carboxylic acid methyl ester. 
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Appendix Figure 8: Electron ionisation mass spectra of four isomers of synthesised 

bicyclo[4.4.0]decane-2-ethanoic acid methyl ester. 

 

Appendix Figure 9: Electron ionisation mass spectra of four isomers of synthesised 

bicyclo[4.4.0]decane-3-ethanoic acid methyl ester. 
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Appendix Figure 10: (A and B) EIC (m/z 196) and 3D representation, showing 

examples of C11 bicyclic NA in OSPW from industry A (sample #2) and (C-F) mass 

spectra of six peaks A-F (Wilde et al., 2015). 
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Appendix Figure 11: Correlation (COSY) spectrum of Ib. 



Appendix 

349 

 

 

 

 

Appendix Figure 12: Zoomed COSY spectrum of Ib. 
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Appendix Figure 13: Heteronuclear shift correlation (HETCOR or CHSHF) spectrum of 

Ib. 

Chemical shift / ppm 
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Appendix Figure 14: Correlation through long-range coupling (COLOC) spectrum of Ib. 

Chemical shift / ppm 
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Appendix Figure 15: GC-MS chromatograms showing tosylation product IIc injected at 

an inlet temperature of 225 and 250 °C. 
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Appendix Figure 16: 
1
H-NMR spectrum of tosyl chloride (TsCl). 
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Appendix Figure 17: COSY spectrum of IIc. 
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Appendix Figure 18: Zoomed COSY spectrum of IIc. 
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Appendix Figure 19: CHSHF (HETCOR) spectrum of IIc. 

 

Chemical shift / ppm 
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Appendix Figure 20: (A and B) Zoomed in CHSHF (HETCOR) spectra of IIc. 
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Appendix Figure 21: COLOC spectrum of IIc. 

Chemical shift / ppm 
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Appendix Figure 22: Zoomed COLOC spectrum of IIc. 

Chemical shift / ppm 
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Appendix Figure 23: GC-MS chromatograms showing tosylation product IIIc injected 

at an inlet temperature of 225 and 250 °C. 
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Appendix Figure 24: CHSHF (HETCOR) spectrum of IIIc. 

 

 

Chemical shift / ppm 
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Appendix Figure 25: Zoomed CHSHF (HETCOR) spectrum of IIIc. 

 

 

 

  

Chemical shift / ppm 
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Appendix Figure 26: Electron ionisation mass spectrum of exo-1,4-

dimethylbicyclo[3.2.1]octane replotted from tabulated values reported by Denisov et al. 

(1977a). 

 

 

Appendix Figure 27: Electron ionisation mass spectrum of 1-ethylbicyclo[2.2.2]octane 

replotted from tabulated values reported by Denisov et al. (1977d). 

 



Appendix 

364 

 

 

Appendix Figure 28: (A and C) Electron ionisation mass spectra of peaks bi-I and bi-II 

in reduced petroleum NA hydrocarbon product identified as 2- and 3-

methylbicyclo[3.3.0]octane after comparison with (B and D) reference mass spectra 

replotted from tabulated values reported by Denisov et al. (1977d). 
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Appendix Figure 29: Electron ionisation mass spectra of components in sample #7 NA 

methyl esters tentatively assigned as cyclopentano-adamantane acids after examination 

of the mass spectra of the corresponding hydrocarbons. 

 

Appendix Figure 30: Comparison of the GC-MS TIC chromatograms before (top) and 

after (bottom) reduction of the ‘aromatic’ acid methyl ester Ag-Ion fraction (F5) of 

sample #2, to the corresponding hydrocarbons. 
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