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Abstract 

Middle to late Holocene sea-level change in western Denmark: a diatom-based study 

Katie Szkomik 

Modem diatom assemblages and associated environmental variables were collected from 

six fransects across the salt-marsh surface in the Ho Bugt embayment in western Denmark. 

The relationship between diatom assemblages and environmental variables (elevation, pH, 

salinity, loss on ignition, grain size) was explored using ordination techniques to assess the 

potential use of diatoms as sea-level indicators. Results for the two data sets analysed in 

ordinations indicate that elevation exerts a sfrong, independent and statistically significant 

influence on modem diatom disfrbutions in the Ho Bugt embayment. Diatom-based 

transfer fiinctions were subsequently developed to reconstmct changes in palaeomarsh-

surface elevation based on the relationship between diatoms and elevation in the modem 

fraining set. Maximum likelihood (ML), weighted averaging (WA) and weighted-

averaging partial least squares (WA-PLS) fransfer fiinctions were developed from 97 

surface samples and 151 taxa. The WA-PLS fransfer fiinction were found to perform best 

(RMSEPjack = 0.12 m, = 0.93 and max biaSjack =0.11 m) and was subsequently applied 

to interpret the diatom assemblages in a series of fossil cores and reconstract palaeomarsh-

surface elevations. The statistical reliability of these reconstmctions was assessed via the 

use of 'goodness of fit' and 'analogue' statistics. Combination of these palaeomarsh-

surface records with reliable age-depth models has enabled the relative sea-level history of 

the Ho Bugt embayment to be reconstmcted. Relative sea-level curves for the Ho Bugt 

embayment document around 7 m of rise in the last 7000 cal. yr BP. Four stages in the 

evolution of the Ho Bugt salt marshes can be recognised: basal peat formation from 7000 -

2000 cal. yr BP, salt-marsh formation from 2000 — 1200 cal. yr BP, a fresh water phase 

from 1200 - 350 cal. yr BP and renewed salt-marsh deposition from 350 cal. yr BP to the 

present. Geophysical modelling suggests that the dominant confrol on relative sea-level 

change in the Ho Bugt embayment during the last 5000 cal. yr BP is glacial isostatic 

adjustment, following decay of the Fennoscandian Ice Sheet. The Ho Bugt relative sea-

level data are best matched by a glacial isostatic adjustment model that includes a zero 

eustatic fiinction for the last 5000 cal. yr BP. 
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Chapter 1 Introduction 

Chapter 1 

Introduction 
This study presents the development and application of a diatom-based transfer ftmction 

for reconstructing changes in relative sea level in the Ho Bugt embayment in westem 

Denmark (Section 3.1). It establishes a series of local water-level curves which span the 

last 5,000 years and reconstmcts the millennial-scale sea-level history of the Ho Bugt 

embayment. In doing so, this thesis generates data that can provide valuable constraints on 

model parameters in glacio- hydro- isostatic models (Lambeck, 1995, Shennan et al., 

2000a). Although many of the statistical methods employed in this study are well 

established in the fields of biogeography, oceanography and palaeolimnology, the 

statistical methodology adopted by the sea-level commimity in transfer fiinction 

development is less well defined. This is especially tme with regard to data screening and 

the use of ordination techniques to investigate relationships in the modem environment. 

The use of such techniques in this study therefore provides a potentially new and original 

contribution to Holocene sea-level research. 

1.1 Quaternary sea-level change 

Fluctuations in sea level throughout the Earth's history have been of interest since the first 

geological observations began during the later part of the 19* century. These observations 

were associated with the development of glacial theory (Agassiz, 1837 cited in 

Charlesworth, 1966) and the recognition of links between glacier expansion and 

contraction (Maclauren, 1841 cited in Lowe and Walker, 1997). Maclauren reasoned that 

during times of glacier expansion, sea levels would fall as water became locked up in ice 

sheets, and following ice melt, sea levels would rise as this water retumed to the ocean 

basins. Glacio-isostatic theory arose fi-om the work of the Scottish geologist Jamieson who 

was the first to make links between raised shoreline evidence and glacial theory. Jamieson 

concluded that cmstal depression resulted fi-om the weight of the ice sheets on land and 

once the weight was removed, rebound would occur (Jamieson, 1865 cited in 

Charlesworth, 1966). Following Jamieson's work postglacial (Holocene) sea-level changes 

have been recognised to be primarily the result of a combination of two processes, glacio-

eustasy and glacio-isostasy. 
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• Glacio-eustasy is the oscillation in sea level that directly results from the expansion 

and contraction of the ice sheets and glaciers ('eustatic changes'). 

• Glacio-isostasy is the deformation of the Earth's crust caused by the weight of ice 

on the land ('isostatic changes'). 

In a number of locations, particularly in areas close to the margins of the former ice sheets, 

eustatic and isostatic processes operate together and result in relative sea-level changes. 

1.2 Post-glacial sea-level change 

With the development of radiocarbon ('"̂ C) dating, a world-wide interest into the 

phenomenon of changing sea levels was established (Fairbridge, 1961). The assumption 

was that because the oceans of the world were interconnected, changes in sea level would 

be synchronous worldwide (Kidson, 1982). Thus the search for a worldwide eustatic sea-

level curve was initiated. The early 1960s saw the division of the sea-level community into 

two major schools of thought following the publication of two benchmark papers. The first 

of these, produced by Fairbridge (1961), argued for a postglacial sea-level rise that was 

sporadic and included both fransgressive and regressive phases. Support for these 

arguments was provided by the investigations of Momer (1969a, 1969b) in the Kattegat 

region (Figure 1.1a) and Tooley (1974) in north westem England. A second paper 

produced by Shepard (1963), argued that post-glacial sea-level rise was continuous, 

occurring at a steadily rising rate. His work was supported by Jelgersma (1961), providing 

evidence from the Netherlands and Kidson and Hejworth (1973), providing evidence from 

the Bristol Channel, UK. Sea-level research at this time saw a broad division into either the 

Fairbridge or Shepard schools of thought. 

In the late 1970s the study of sea-level change saw new stimulus with the implementation 

of Intemational Geological Correlation Programme (IGCP) Project 61 in 1979, which 

sought to establish a single curve of sea-level movements for the Earth (Tooley, 1982). 

However, in the mid 1980s it became apparent that the influence of local factors, primarily 

vertical cmstal movements (Tooley, 1982), and global factors, such as an unstable geoid 

(Momer, 1976), would make constmction of a single eustatic sea-level curve impossible. 

The two original schools of thought became united as the sea-level community sought the 

development of a uniform methodology and interdisciplinary approach (Tooley, 1982, 

Shennan et al., 1983). The primary objective of a new IGCP project (IGCP Project 200) 
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was to identify and quantify the processes that operate to control sea-level change, through 

the production of local and regional sea-level curves (Tooley, 1982, 1985). Since this time 

sea-level research has focussed on the construction of such local and regional sea-level 

curves, as is the intention of this thesis, to understand better the spatial and temporal 

variability of sea-level change on a global scale. 

1.3 Recent advances in sea-level research 
Microfossil-based transfer functions have been widely used in sea-level studies to 

reconstruct changes in relative sea level since the late 1990s (e.g., Gehrels, 2000; Hamilton 

and Shennan, 2005a, 2005b). The development of such a methodology has been a major 

theme in sea-level research in recent years, highlighted at intemational meetings of the 

Intemational Geological Correlation Programme (IGCP) Project 495 working group 

("Quatemary Land-Ocean Interactions: Driving mechanisms and Coastal Responses"'). 

One of the major aims of IGCP Project 495 has been to develop quantitative, high 

resolution records of relative sea-level change that can be compared with other local, 

regional and global records of environmental change. Microfossil-based transfer functions 

provide one way in which to achieve this aim. 

Despite the increasing popularity of the use of transfer fiinctions in sea-level research, the 

statistical methodology adopted by the sea-level community differs to that employed by 

many biogeographers, oceanographers and palaeolimnologists, particularly with regards to 

data screening and the use of ordination techniques in training set development. A 

particular focus of this thesis has been to integrate statistical aspects from the 

palaeolimnological community, where diatom-based transfer functions have been used for 

sometime. In addition, many sea-level studies which use transfer functions focus solely on 

interpreting the statistical output generated by such models. A second major focus of this 

thesis has been to highlight the need for an integrated approach using the combined results 

of microfossil-based, lithological and biostratigraphical investigations to provide a more 

complete picture. The use of statistical methods provides one way of generating a result 

but they do not necessarily provide the full answer. 

' htlp://www.geographv.dur.ac.uk/research/IGCP 495/Proiect_Outline/itidex.html 
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1.4 The importance of Denmark's location for Holocene sea-level studies 

North West Europe is an important location for the study of Holocene relative sea-level 

change (Momer, 1976, 1979; Shennan, 1987). With an excellent geological record of 

cmstal response to glacial loading and unloading, it remains an important region for testing 

glacio- hydro- isostatic models (Lambeck et al., 1998a). Denmark itself occupies a 

particularly interesting location at the margins of the former Fennoscandian Ice Sheet. 

Danish coastlines show evidence of emergence to the north and submergence to the south 

(Gehrels et al., 2006a) (Figure 1.1). This setting is important for constraining the melting 

history of the Fennoscandian Ice Sheet (Lambeck et al., 1998b, Shennan et al., 2000b) and 

for studying associated cmstal movements (Shennan, 1987). 

Despite the importance of Denmark's location, sea-level and coastal changes in the region 

are poorly understood, particularly those along the Danish North Sea coast. This is 

especially tme of changes in the late Holocene. The Danish North Sea coast remains one of 

the longest stretches of coastline around the North Sea basin with comparatively few 

middle and late Holocene sea-level data (Shennan, 1987). This is somewhat surprising 

given the importance of Denmark's location. Certain areas of Denmark lie close to the 

hinge line between the uplifting and subsiding coasts (Figure 1.1a). This means that, 

potentially, very little land movement has occurred in these areas in the past millennia and 

the late Holocene relative sea-level history fi"om this region therefore has the potential to 

reflect primarily glacio-eustatic controlled sea-level change. Several studies have 

contributed to understanding sea-level change in Denmark and these are reviewed in 

Chapter 2. The more recent work of Clemmensen et al (2001a), at Skagen Odde in the 

north of Denmark (Figure 1.1) has provided a much needed update to sea-level research in 

the region but reliable data still remain sparse. 
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Figure 1.1. a) Danish coasthnes in relation to contours of elevation of Holocene marine 
deposits (m) from Krog (1979a) and contours of contemporary crustal motion in mm/yr 
measured by Global Positioning Satellite (GPS) (www.ecgs.lu/pdfi'ilg89/JLG89 3 Schemeck.pdf). 
The location of Ho Bugt, the study site of this thesis (further detailed in Chapter 3) and 
places mentioned in text are indicated, b) Location of Denmark in relation to former 
Fennoscandian and British Ice Sheets at the height of the last glaciation c. 18 000 cal. yrs 
BP (Adapted from Sejrup et al., 2000). 
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1.5 Thesis Aims 
The overall aim of this thesis is to reconstruct the relative sea-level history of the Ho Bugt 

embayment for the last 7000 years, primarily using diatoms as sea-level indicators by: 

• Documenting the modem diatom assemblages and their controlling environmental 

variables across the salt marshes in the Ho Bugt embayment 

• Recording the detailed stratigraphy of the Ho Bugt embayment to gain an 

understanding of the major lithostratigraphical and environmental changes 

occurring 

• Establishing the dominant control on diatom assemblages in this embayment 

through the use of several ordination techniques 

• Developing a diatom-based transfer function for reconstmcting changes in 

palaeomarsh-surface elevation 

• Applying this transfer fiinction to a series of fossil cores to interpret changes in 

palaeomarsh-surface history and assessing the reliability of these reconstmctions 

• Combining these palaeomarsh-surface records with age depth-models to produce a 

series of local water-level curves and comparing these curves with the local tide-

gauge record 

• Documenting the millennial-scale relative sea-level history of the Ho Bugt 

embayment through reconstmction of samples from a number of different cores 

• Comparing this fransfer-fimction predicted relative sea-level curve with those 

established using a qualitative interpretation of lithology 

• Comparing the sea-level curves established in this study with predictions based on 

a series of glacial isostatic adjustment models, to explore the confrols on relative 

sea-level change in the Ho Bugt embayment. 

The above aims are achieved through the use of field sampling, the analysis of modem and 

fossil material and the subsequent application of statistical techniques, hi achieving the 

aims of this investigation, an attempt has been made to harmonise the statistical 

methodology used to explore modem fraining sets and to develop diatom-based fransfer 

functions for sea-level reconstmction by incorporating methodological aspects from 

several communities. In addition, the need for an integrated approach using the results of 

statistical, lithological and biosfratigraphical investigations to provide a more complete 

picture has been acknowledged throughout. 
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1.6 Thesis structure 

The first part of this thesis (Chapter 2) provides a background and context for the current 

study. Existing knowledge of past sea-level change in Denmark and the nearby German 

North Sea coast is reviewed and the significance of relative sea-level records, particularly 

for providing constraints on geophysical models, is discussed. The two main approaches to 

sea-level reconstruction (lithology-based techniques and quantitative techniques) are 

introduced, with a particular focus on the development of microfossil-based transfer 

fiinctions. Some background information on the microfossil group chosen for this study, 

diatoms, and the reasons behind this choice are outlined. Particular focus is given to the 

use of diatoms as sea-level indicators. 

Chapter 3 introduces the study area of Ho Bugt and describes the field and laboratory-

based methods used throughout this investigation. A detailed methodology of the statistical 

methods incorporated into this study is given, with a particular focus on the use of data 

screening techniques and ordination methods. Chapter 4 presents the results from the 

investigation of the modem salt-marsh environment in Ho Bugt. Results of the analysis of 

a number of environmental variables are presented alongside modem diatom data. The 

vertical zonation of diatom taxa with respect to elevation is tested via the use of 

unconstrained cluster analysis and the relationship between diatom taxa and environmental 

variables is explored through the use of several ordination techniques. 

Chapters 5 and 6 present results from the litho- and biostratigraphical investigations of the 

Ho Bugt embayment. The lithosfratigraphy of the embayment is presented alongside 

detailed sedimentological characteristics of a master core sequence. Chronological confrol 

is provided by radiocarbon (''*C), optically stimulated luminescence (OSL), Lead-210 

(^'°Pb), Cesium-137 ('̂ ^Cs) and Americium-241 (̂ "̂ ^Am) ages. High resolution diatom 

records are presented from two core sections. Low resolution diatom analyses of several 

core sections provide an overview of the main biosfratigraphical changes in the Ho Bugt 

salt marshes. 

Chapter 7 details the development of a series of diatom-based fransfer fimctions for 

inferring changes in palaeomarsh-surface elevation. The use of Maximum Likelihood 

(ML), Weighted-Averaging (WA) and Weighted-Averaging Partial Least Squares (WA-

PLS) regression models, alongside the Modem Analogue Technique (MAT), is explored. 
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The reUabihty of these reconstructions is assessed with the use of 'goodness of fit' and 

'analogue' statistics. In Chapter 8 diatom assemblages in a series of fossil cores are 

calibrated using the transfer function to reconstruct changes in palaeomarsh-surface 

elevation. The development of age-depth models using '^C, OSL, ̂ '°Pb, '"Cs and "̂̂^ Am 

ages is illustrated. These models are then used in combination with the transfer-function 

predicted palaeomarsh-surface elevations to reconstruct changes in local water levels. 

In Chapter 9, the millennial-scale sea-level history of the Ho Bugt embayment is 

reconstructed. This record is compared with a record reconstructed using a qualitative 

lithology-based technique. Local water-level curves established in this study are placed in 

the context of litho- and biostratigraphical results to explore the evolution of the Ho Bugt 

embayment. The dominant process controlling relative sea-level change in the Ho Bugt 

embayment is examined through comparison of the relative sea-level data with predictions 

from a series of geophysical models. Chapter 10 presents the conclusions of this study and 

makes recommendations for fixture work. 

1.7 Presentation of radiocarbon dates 

All '''C dates in this thesis are presented in calibrated radiocarbon years before present (cal. 

yr BP) unless otherwise stated. OSL, ^'°Pb and '^'Cs ages are converted to a 1950 datum to 

ensure consistency with the '''C ages (i.e. the '̂ ^Cs peak at 1986 is shown as -36 yr BP). 
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Chapter 2 

Background and Context 

This chapter reviews existing sea-level research along the Danish North Sea coast and the 

nearby German North Sea coast and outlines the significance of relative sea-level records 

for providing constraints on geophysical models. The two main approaches (lithology-

based approaches and quantitative reconstructions) to relative sea-level reconstructions are 

reviewed, with a particular focus on the development of microfossil-based transfer 

functions. Differences between the statistical methodology behind transfer function 

development in sea-level studies and that employed in palaeolimnology are highlighted. 

The use of diatoms in relative sea-level studies is discussed, with a particular focus on their 

value as sea-level indicators. 

2.1 Sea-level change in Denmark 

2.1.1 Eemian shorelines 

Southwestern Denmark lies beyond the limits of the last glaciation (c. 75, 000 - 10,000 yr 

BP) and has not been covered by ice during the last 100,000 years (Konradi et al., 2005). 

During the last interglacial period, the Eemian (128 - 116 kyr BP), the southern North Sea 

was a shallow marine area with numerous embayments and fjords (Gripp, 1964; Konradi 

1976; Kosack and Lange 1985; Strief, 1990; Temmler, 1995; Konradi et al., 2005). 

Although it was previously thought that there was no connection across the Jutland 

peninsula between the Baltic and the North Sea during the Eemian (Petersen, 1985), more 

recent research has speculated that a connection may have existed (Schulz et al., 2001; 

Konradi et al., 2005). 

2.1.2 The early Holocene rise in relative sea level 

The whole Danish coastline experienced a dramatic rise in sea level during the early to 

middle Holocene, primarily considered to be the result of eustatic rise (Jelgersma, 1979). 

The Danish North Sea coast was no exception. Krog (1960, 1973) was one of the first 

researchers to document this rapid rise in sea level for the Store Baslt region (Figure 1.1) 

on the basis of pollen analysis and '"̂ C dating. Krog's curve (Figure 2.1) documents a 

transgression of approximately 25 m between 8000 - 6500 cal. yr BP. It is thought that this 

transgression resulted in the coastline of Denmark attaining somewhere close to the present 

day extent (Krog, 1979b). Krog acknowledges the 'tentative' nature of his curve, in 
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particular the steepness of the eustatic rise, commenting on the lack of fixed points and the 

fact that is it based upon evidence from above present day sea level. 

Age in cal. yrs BP 

Figure 2.1. Published sea-level curves for Denmark. A) Krog (1960, 1973) for the Store 
Baeh, B) Petersen (1981) and Petersen and Rasmussen (1995) for the Limfjord and C) 
Mikkelsen (1949) for Prassto Fjord. Curves are redrawn and revised from Pirazzoli (1991). 
Locations are illustrated in Figure 1.1 and are discussed in text. Where possible data points 
are included, but these are often not presented by the authors. 

Petersen's (1981) research in the Skagerak - Limfjord region, Northem Jutland, built upon 

Krog's earlier work. From a borehole at Vust, north of the Limfjord (Figure 1.1), Petersen 

(1981) reconstmcted the whole course of the early Holocene transgression and provided a 

rate for the eustatic sea-level rise. Based mainly upon radiocarbon dating of marine 

molluscan fauna, he traced the transgression from -25 m at c.9000 - 8000 cal. yr BP to +3 

m above present day sea level at 7000 cal. yr BP. The resulting sea-level curve documents 

some 28 m of sea-level rise in around 880 years (Figure 2.1). Revisions made to these 

figures following developments in U/Th age determination (Bard et al., 1993) and 

radiocarbon calibration (Stuvier and Reimer, 1993) resulted in an even steeper rate of rise 

of 28 m in 850 years (3.3 cm/yr) (Petersen and Rasmussen, 1995). These results 

correspond well with Momer's (1976) eustafic sea-level curve for the region (Figure 2.3). 

Petersen's work has been widely cited, in part because it offers some of the most recent 

data on sea-level changes in Denmark. However, the steepness of the eustatic rise seems 
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questionable, particularly when considering the lack of data points to support this section 

of the curve (Shennan, 1987). 

2.1.3 Middle to late Holocene relative sea-level changes 
For the Danish Kattegat and Baltic coasts (Figure 1.1), evidence of sea-level changes for 

the period following the dramatic rise in sea level is well documented. Extensive work by 

Iversen (1937), Troels-Smith (1937, 1942) and Jessen (1937) along these coastlines 

document a sequence of minor fluctuations in sea level known as the Littorina 

Transgressions. Additional supporting studies were also carried out at Blekinge and 

Bareseback, in southern Sweden (Berglund, 1971 and Digerfeldt 1974, respectively). 

Later work by Mikkelsen (1949) at Praesto Fjord (Figure 1.1) did not provide support for 

the notion of regressive phases separated by transgressive phases, but did demonstrate 

some changes in salinity based on diatom evidence. Mikkelsen's investigations form some 

of the most extensive work undertaken within the Danish part of the Baltic and resulted in 

the construction of a shoreline displacement curve for Praesto Fjord (Figure 2.1). This 

curve illustrates an uninterrupted transgression from 10,000 - 7000 cal. yr BP, which slows 

around 6000 cal. yr BP, before a further rise around 2000 cal. yr BP of up to 1 m above 

present day sea levels (Mikkelsen, 1949; Krog, 1979b). For the Danish North Sea coast, 

corresponding evidence of sea-level changes during this time is sparse. 

For the late Holocene (post 5000 yrs BP), the sea-level history of the region is poorly 

documented, and again evidence from the Danish North Sea coast is sparse (Clemmensen 

et al., 2001). The sea-level curves produced by Mikkelsen (1949) and Krog (1960, 1973) 

show some evidence to suggest above present sea level c. 2000 - 1500 cal. yr BP but the 

latter parts of these curves are poorly defined (Figure 2.1). Several authors provide 

evidence to suggest that sea level has fluctuated during the most recent part of the 

Holocene. Bartholdy and Pejrup (1994) suggest that between 5700 - 2900 cal. yr BP sea-

level attained at least three highstands, of which at least one exceeded present day sea 

level. Their arguments are however based on the assumption that the curve for eustatic sea-

level rise (Figure 2.3), produced by Momer (1976), is correct. This point is discussed 

further in Section 2.1.4. In a more recent study, Clemmensen et al (2001) use small-scale 

fluctuations in peat elevation along the Skagen Odde spit system in northem Denmark, to 

document a series of sea-level highstands (Figure 2.2). Highstands are identified at 5450, 

4700 and 2450 cal. yr BP, with accompanying lowstands at 5200, 4100 and 1650 cal. yr 
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BP. The total maximum eustatic sea-level change for the period under study is estimated to 

be c. 4.5 m, depending on which isostatic model is used (Clemmensen et al., 2001). 

E 

o j ^ 1 1 1 1 1 1 1 1 1 1 1 1 

^ 6000 5000 4000 3000 2000 1000 0 

Age in cal. yrs BP 

Figure 2.2. Sea-level variation at Kanderstedeme, Skagen Odde. A) Relative sea level. B) 
Relative sea level minus land uplift. Adapted from Clemmensen et al. (2001). 

2.1.4 Relative sea-level change along the southern Danish North Sea Coast 

As early as the 1920s Mertz (1924) shows the hinge line between the uplifting and 

subsiding coastlines intersecting the Danish North Sea coast north of the Ringkobing Fjord 

(Figure 1.1), based on the presence of Holocene marine deposits on land (Krog 1979a). It 

is generally believed that those localities situated close to this hinge line have been 

isostatically stable during the Holocene (Bartholdy and Perjup, 1994). Recent research, 

some of which forms part of this thesis, suggests that this may not be the case (Gehrels et 

al., 2006a) (Section 9.7). There have been numerous speculations in the literature about 

higher-than-present sea levels during the middle and late Holocene along the southern 

Danish North Sea coast. One such area is the coastline between Blavands Huk and the 

Ringkobing Fjord (Figures 1.1 and 2.3). 
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Figure 2.3. Geomorphological map of the Ho Bugt area based on Aagaard et al. (1995) 
and Clemmensen et al. (1996) and taken from Gehrels et al. (2006a). The Kattegat sea-
level curve of Momer (1976) is shown as an insert. The late Holocene highstand in the 
Momer curve has been used to support the findings of Aagaard et al. (1995) and Davis et 
al. (1997, 2001) for higher than present sea level c. 3000 cal. yrs BP (see text). 

Jessen (1920) was the first author to highlight the anomalous heights of Holocene beach 

ridges north of Blavands Huk of up to 4.7 m above Danish National Datum (DNN). 

Working in the same area, Jonassen (1957) suggested that the inland marine cliff at 

Grsemp, to the east of the dune ridges marks a Holocene sea-level position +5 m above 

present. These observations were supported by two important findings. Firstiy, Petersen 

(1994) found the marine mollusc Donax vittatus at an elevation of approximately -7 m 

DNN and dated to 2620 ± 75 yrs BP (AAR-1480). Petersen (1994) used this shell as 

evidence to suggest that the cliff line was active approximately 2500 - 3000 '''C years BP. 

Donax vittatus molluscs are indicative of a high energy environment and this finding led 

some authors to suggest that the shoreline at this time was that of the maximum Holocene 

fransgression (e.g., Momer, 1976; Aagaard et al., 1995). Second, Clemmensen et al. (1996) 

identified 'marine deposits' close to the Graemp cliff at a level of + 1.5 m DNN using 
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ground penetrating radar, and also documented the height of the nearby gravel barriers to 4 

- 4.5 m DNN. These two separate findings have led to the speculation that sea level in west 

Denmark was at least 1.5 m above present c. 2500 - 3000 cal. yr BP (Aagaard et al., 1995; 

Davis et al., 1997; 2001). The authors use Momer's widely cited Kattegat sea-level curve 

to support their arguments, which shows a sea-level highstand between 2500 and 3000 cal. 

yr BP (Figure 2.3 insert). 

Originally produced as the outcome of a PhD study in 1969 (Momer, 1969a, 1969b) and 

revised in 1976 (Momer, 1976), the Kattegat sea-level curve has been argued to represent 

the regional eustatic sea-level history for the entire North Sea basin (Sherman, 1987). 

Momer (1979) argued that during the Holocene the entire North Sea acted uniformly to 

global- scale geoidal changes and proposed the concept of 'regional eustasy'. The 2500 -

3000 cal yr BP highstand is an important feature of the Kattegat sea-level curve (Momer, 

1969a; 1969b; 1976) and i f correct represents the highest position reached by the sea 

during the Holocene. 

2.1.5 Evidence from the German North Sea coast 

Unlike Denmark, the German North Sea region (Figure 2.4) has been the subject of several 

comprehensive studies to reconstmct Holocene relative sea-level change (e.g., Behre et al., 

1979; Ludwig et al., 1981; Freund and Streif, 2000; Freund et al., 2004; Behre 2004). 

Recent studies along this coastline provide some of the best evidence concerning middle to 

late Holocene sea-level changes and are highly relevant to this study. It is possible that 

relative sea-level changes observed along the German North Sea coast can also be 

identified in records from southwestem Denmark. 

Relative sea-level change was first studied in the German North Sea region by Schiitte 

(1933, 1939) who examined coastal subsidence and uplift in relation to time in the Jade-

Weser region (Figure 2.4). Evidence for the early Holocene rapid rise in sea level is first 

provided by Behre and Menke (1969) in the form of a well-dated peat on the southem 

Dogger Bank (Behre and Menke, 1969; Behre et al., 1979). This fransgression has been 

fraced to a sea level of-46 m c. 9500 '"C yrs BP (Behre et al., 1979), approximately 500 

yrs earlier than documented by Krog (1979a, 1979b) in Denmark. Other data on the rise in 

sea level during the early Holocene is provided by Menke's (1976) relative mean high 
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water curve from the Eider-Miele region (Figure 2.5) and the curve produced by Ludwig et 

al. (1979, 1981) for the southem North Sea (Figure 2.5). 
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Figure 2.4. German North Sea coast showing location of places mentioned in text. 

The record from the German part of the North Sea for the middle to late Holocene period is 

far more comprehensive than the one in Denmark. Muller (1962) proposed two curves, 

based on fifty-seven '''C dates, documenting mean high water changes along the southem 

North Sea coast of Germany (Pirazzoli, 1991) (Figure 2.5). Both curves show small 

amplitude fluctuations in mean high water throughout the middle and late Holocene. I f 

these changes represent tme eustatic fluctuations, it is highly likely that these fluctuations 

were propagated along the North Sea coast of Denmark. More recentiy Streif (2004) has 

interpreted the regressive overlap of peat layers on tidal flat sedimentation as an indication 

of temporary reversals of sea level from c. 7300 cal. yr BP onwards. Evidence for these 

peat layers is found throughout the coastal lowlands between the Ems and Elbe estuaries 

(Sfreif 2004). Behre (2004) presents a sea-level curve of mean high water for the most 

recent part of the Holocene for Lower Saxony (Figure 2.6). Intercalated peat layers at c. 

5000, 4400, 3500 and 3000 cal. yr BP are argued to correspond with large-scale 

regressions of the North Sea (Behre, 2004). Behre's curve has however been heavily 

criticised by colleagues from the Netherlands and Belgium (e.g., Bateman, 2006) because 

it draws together several types of evidence from multiple basins but does not correct for 

the differences in tidal range. 
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Figure 2.5. Published sea-level curves for the German North Sea coast. A) Menke (1976) 
for the Eider-Miele region, B) Ludwig et al. (1979, 1981) for the southem North Sea, C) 
and D) Muller (1962) for the German North Sea region. Curves are redrawn and modified 
from Pirazzoli (1991). Locations are illustrated in Figure 2.4 and are discussed in text. 
Where possible data points are included, but these are often not presented by the authors. 

Figure 2.6. Sea-level curve of mean high water for the most recent part of the Holocene 
for Lower Saxony, Germany (Behre, 2004). 
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2.2 Significance of relative sea-level records 

Records of Holocene sea level show both temporal and spatial variation around the globe 

as result of the interplay between several key processes operating at the global, regional 

and local scale (Lambeck, 1990). These processes occur as a direct result of the melting of 

the Pleistocene ice sheets and include the response of the Earth's cmst to redistributed 

surface loading, volumetric changes to the ocean caused by ice melt and the tectonic 

movement of shorelines independent of any glacio- hydro- isostatic origin (Lambeck, 

1990). Peltier (1994) argues that relative sea-level data provide one of the best available 

records of these processes, and of the surface loading component in particular. 

Observations of relative sea-level changes can therefore provide valuable constraints on 

model parameters in glacio- hydro- isostatic models (Lambeck, 1995, Shennan et al., 

2000a). Comparison of sea-level observations with model predictions has enabled 

estimates of ice thickness and the extent of ice margins to be established (Lambeck, 1995, 

1996; Milne et al., 2002). Although GPS observations of crustal motion have become an 

important tool for constraining glacial isostatic adjustment (GIA) models (e.g., Milne et al., 

2001, 2006), relative sea-level observations remain important because they cover longer 

time-scales. A combination of both GPS and sea-level observations are therefore important 

for constraining and testing the latest generation of 3-D geophysical models, which take 

into account lateral Earth structure changes (e.g., Latychev et al., 2005a, 2005b, 2005c; 

Whitehorse et al., 2006), and recently refined GIA models such as ICE-5G (Peltier, 2004). 

2.3 Sea-level reconstruction techniques 

Much of the work reviewed in the previous section has increasingly employed a 

methodology that allows high resolution sea-level changes to be reconstructed. 

Reconstructions that can obtain precisions of only a few cm are becoming increasingly 

important when considering the low magnitude changes in sea level that have occurred 

during the last 2000 - 3000 yrs (Varekamp, 1992). The techniques employed in these 

reconstructions can be divided into two main categories: 1) lithology-based techniques and 

2) quantitative techniques. 

2.3.1 Lithology-based approaches 

Prior to the integration of quantitative techniques within sea-level research, the community 

relied heavily on lithology-based reconstructions. Methodologies described by Shennan 

(1982, 1986a, 1986b) and developed within the context of IGCP Projects 61 and 200 
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(Preuss, 1979; van de Plassche, 1986) reUed on the analysis of stratigraphic boundaries 

between freshwater and marine facies. Although increasingly quantitative techniques are 

being employed in sea-level research, a thorough understanding of the lithostratigraphy 

should form the framework of any sea-level study. For example, the most recent work on 

sea-level changes along the German North Sea coast is based on high-resolution 

interpretation of lithological changes (e.g., Sfreif, 2004; Behre, 2004). In this study, 

diatom-inferred quantitative relative sea-level histories are compared with those produced 

using a qualitative interpretation of litho- and biosfratigraphic units in fossil cores. 

2.3.2 Quantitative techniques 

In 1971, Imbrie and Kipp provided the first quantitative estimate of environmental change 

using foraminifera in ocean cores to reconstruct sea-surface temperature and salinity. Since 

this time, quantitative techniques have been extensively developed within biogeography, 

oceanography, palaeolimnology, and more recently, within Holocene sea-level studies. By 

developing and applying transfer ftinctions (Birks, 1995), quantitative techniques aim to 

increase the accuracy of reconstructions by establishing a better understanding of the 

present day relationship between biological indicators (e.g., foraminifera, diatoms, testate 

amoebae) and environmental variables. Examples of the many environmental variables 

which have been reconstructed using such quantitative techniques include: sea-surface 

temperature and salinity (Imbrie and Kipp, 1971), salinity and water-level fluctuations 

(Fritz, 1990), salinity and climate (Fritz et al., 1991), climate and summer temperatures 

(Korhola and Weckstom, 2000), pH (Davis and Anderson, 1985; Birks et al., 1990a; 

Battarbee et al., 2005; Larsen et al., 2006), lake-water chemistry (Birks et al., 1990b; Gasse 

et al., 1995; Korsman and Birks, 1996; Davis et al., 2002), chlorophyll and nutrient 

enrichment (Jones and Juggins, 1995; Bermion et al., 1996; Burgess, 2004). 

Principles of transfer functions 

The primary aim of any quantitative reconstruction is to express the value of an 

environmental parameter (e.g., pH, temperature, elevation) as a function of the biological 

data (e.g., diatoms, foraminifera, pollen) (Birks, 1995). Transfer fianctions are biological 

response fianctions, which model biology as a fianction of the environment (Juggins, pers. 

comm.). The methodology used in developing fransfer functions and providing quantitative 

estimates of environmental variables can be summarised in four main stages (adapted from 

Birks, 1995; 1998): 
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1. Collection of a.modem training set comprising both biological and environmental data 

2. Analysis of these data to relate species assemblages to the environmental variable of 

interest, usually using ordination techniques 

3. Modelling of these relationships using regression analysis to develop a transfer 

fixnction 

4. Application of this transfer fiinction to a fossil core to reconstruct environmental 

variables based on species assemblages and infer past environmental conditions. 

The models used to analyse relationships in the modem training set (ordination methods), 

and regression models used to subsequently develop transfer functions, fall into two main 

categories, linear-based and unimodal-based techniques (Birks, 1995). Ordination methods 

commonly employed in such studies include the linear-based methods of Principal 

Components Analysis (PCA: Orloci, 1966)) and Redundancy Analysis (RDA: van den 

WoUenberg, 1977) and the unimodal-based methods of Detrended Correspondence 

Analysis (DCA: Hill, 1979) and Canonical Correspondence Analysis (CCA: ter Braak, 

1986). A full discussion of these techniques is given in Leps and Smilauer (2003) and 

Jongman et al., (1995). The ordination methods employed in this study are further 

discussed in Chapters 3 and 4. Regression models used to develop transfer functions 

include the linear-based method of Partial Least-Squares (PLS: Wold et al., 1984) and the 

unimodal-based methods of Maximum Likelihood (ML), Weighted Averaging (WA; ter 

Braak, 1987b) and Weighted-Averaging Partial Least Squares (WA-PLS; ter Braak and 

Juggins, 1993). The Modem Analogue Technique (MAT; Prell, 1985) is additionally used 

in transfer function development, but does not assume an underlying response model. 

Regression models employed in this study include ML, WA, WA-PLS and MAT. ML 

regression is based on the concept that the relationship between the abundance of a taxon 

(y) and an environmental variable (x) can be estimated by fitting a response model which 

comprises systematic and random error components (Birks, 1995) (Figure 2.7a). These 

curves are fitted to all taxa in the modem training set using unimodal regression. Species 

composition and likely abundances at a given value of x are determined by the curves for 

all taxa (Birks, 1995). These models can then be used to calculate the probability that a 

certain value of x would occur given a certain species assemblage (Birks, 1995). The ML 

estimate is where the value of x gives the highest probability (Birks, 1995). It has been 

argued that ML regression and calibration provide a robust approach to environmental 
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reconstruction and can perform as well or even better than WA-based methods (Birks, 

1995, 2001). 

a b 

I I 1 1 — I 1 1 — I I I t " — I I 1 

Environmental variable (x) Environmental variable (x) 

Figure 2.7. Unimodal species response models a) Systematic response model used in 
maximum likelihood regression showing relationship between species abundance (y) and 
an environmental variable (x), and b) Gaussian unimodal relationship between species 
abundance (y) and an environmental variable (x). u = species optimum, t = species 
tolerance and c = maximum abundance. Modified from ter Braak (1987c). 

WA is based on the assumption that species respond unimodally to environmental 

gradients. Along an environmental gradient, a taxon's optimum occurs at the point where it 

is most abundant. An estimate of a taxon's optimum can be calculated by taking an average 

of all the X values where the taxon occurs, weighted by the relative abundance of the taxon 

at each site (ter Braak and van Dam, 1989, Birks, 1995). The optimum for each taxon is 

therefore a 'weighted-average' (ter Braak, 1987b). In calibration, an estimate of the 

unknown variable is a weighted average of the x optima of all species present. The species-

environmental relationship behind weighted averaging approaches is shown in Figure 2.7b. 

WA methods have been shown to suffer from several problems. Firstly, they tend only to 

perform well when the entire environmental range of each species in the modem fraining 

set is sampled and they are sensitive to the distribution of sample sites in the fraining set 

(ter Braak and Looman, 1986). Secondly, WA considers each environmental variable 

separately and ignores any residual correlations in the data set that may be the result of 

environmental variables not included in the WA (ter Braak and Juggins, 1993). As an 

improvement to WA, ter Braak and Juggins (1993) developed WA-PLS. WA-PLS 

regression utilises residual correlations in the species data to improve the fit between 

species assemblages and the environmental variable of interest (ter Braak and Juggins, 

1993). 
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The MAT method is also explored in this study. MAT uses a dissimilarity measure to 

compare species assemblages in a fossil samples with species assemblages in the modem 

training set (Birks, 1995). The value of the environmental variable for that fossil sample is 

inferred from the modem sample with which it is most similar (Birks, 1995). For MAT to 

be successfial, it requires an extensive modem training set that covers the likely range of 

species and environmental variables in the past. Unreliable reconstmctions can result i f a 

large number of 'no analogue' species are present in the fossil data (Birks, 1998). This is 

where a species is present in fossil data but absence from the modem training set. Such 

requirements often limit the applicability of the MAT technique (Birks, 1995). 

Nevertheless, MAT has been argued to provide a relatively simple and robust method, 

which can reconstmct one or more environmental variable simultaneously (Birks, 1998). In 

this study MAT is additionally used to assess the reliability of the environmental 

reconstmctions. This is fiirther discussed in Chapter 8. 

Quantitative techniques in sea-level studies 

Quantitative techniques have been used in Holocene sea-level studies since the late 1990s 

to reconstmct changes in relative sea level. Examples of such studies include: Gehrels 

(2000), Hamilton and Shennan (2005a, 2005b), Horton and Edwards (2005) Boomer and 

Horton (2006) and Edwards and Horton (2000, 2006). The fransfer fiinction methodology 

is now widely adopted in sea-level research. However, two significant problems are 

apparent. Firstly, although numerous studies have focussed on the development of modem 

fraining sets to reconstmct changes in relative sea level (stage 1, 2 and 3 above); far fewer 

studies actually demonsfrate such reconstmctions. This is especially tme for diatom-based 

reconstmctions. This is a similar situation to that identified in palaeolimnology by Birks in 

the late 1990s (Birks, 1998). Secondly, the statistical methodology adopted by the sea-level 

community differs to that employed by many biogeographers, oceanographers and 

palaeolimnologists, particularly with regards to data screening and the use of ordination 

techniques in training set development. A major aim of this study is to harmonise the 

statistical methodology used to explore modem fraining sets and to develop diatom-based 

fransfer fimctions for sea-level reconstmction, by incorporating methodological aspects 

from several communities. A particular focus of this thesis has been to integrate statistical 

aspects from the palaeolimnological community, where diatom-based transfer functions 

have been extensively used. 
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Recent advances in quantitative techniques 

Some of the most recent advances in quantitative reconstruction techniques include 

Artificial Neural Networks (ANNs; Malmgren et al., 2001) and Bayesian approaches. 

Whereas the majority of calibration models (e.g., PLS, WA, WA-PLS) assume either a 

linear or unimodal underlying response model, ANNs are able to incorporate and model 

taxa with very different ecological responses (Birks, 1998). Such an approach is highly 

valuable because in reality species may show a skewed or sigmoid response to the 

environmental variable of interest (Birks, 1998). The application of ANN techniques to 

environmental reconstruction is a fairly recent advance and only a limited number of 

studies in the fields of palaeolimnology (e.g., Racca et al., 2001; Koster et al., 2004) and 

oceanography (e.g., Kucera et al., 2005; Malmgren et al., 2001; Barrows and Juggins, 

2005) have attempted to use such a method. Bayesian approaches are based on prior 

information and probability (Birks, 1998). Several very recent studies highlight the 

potential of Bayesian statistics for environmental reconstructions (e.g., Brooks, 2006; 

Erasto and Holmsti-om, 2006; Haslett et al., 2006). 

2.4 Diatoms 

Diatoms are microscopic unicellular algae (Battarbee et al., 2001), found in lakes, ponds, 

estuaries, salt marshes and in the sea. They live in environments dominated by water and 

natural light (Palmer and Abbott, 1986). Diatoms are used extensively in 

palaeoenvironmental reconstructions because they are considered excellent indicators of 

past environmental change (Mackay et al., 2003). In sea-level studies, benthic diatoms are 

of greatest importance, and they are found in association with various biological and 

geological substrates (Palmer and Abbott, 1986). Within the coastal environment diatoms 

are sensitive to a range of environmental variables including salinity (Palmer and Abbott, 

1986), substrate (Whiting and Mclntire, 1985), and tidal inundation (Nelson and Kashima, 

1993). Diatoms occur in large numbers in both contemporary and fossil environments and 

the majority of taxa have a widespread geographical distribution, making them highly 

suitable for use in quantitative studies (Gasse et al., 1995). 
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2.4.1 The importance of diatoms for sea-level research 

Diatoms have been widely used in sea-level studies to infer past changes in relative sea-

level (e.g., Palmer and Abbott, 1986; Nelson and Kashima, 1993; Shennan et al., 1996; 

Dawson and Smith, 1997; Zong, 1997, 1998). More recently the suitability of diatoms as 

sea-level indicators has been demonstrated by a number of studies on modem species-

environment relationships using multivariate statistical approaches (e.g., Zong and Horton, 

1999; Gehrels et al., 2001; Patterson et al., 2005). At present there are few examples of the 

use of diatoms to reconstmct, quatitatively, changes in relative sea-level (e.g., Shennan and 

Hamilton, 2005a, 2005b). Other microfossils commonly used as sea-level indicators 

include foraminifera (e.g., Gehrels, 1999; Horton, 1999; Gehrels 2000; Gehrels and 

Newman, 2004), and testate amoebae (Charman et al., 2002; Gehrels et al., 2001, 2006b). 

In this study diatoms are used in preference to any other sea-level indicator for the 

following reasons: 

• Whilst foraminifera were found to be well preserved in the modem salt-marsh 

environment in this study site (Gehrels and Newman, 2004), preservation in fossil 

cores was poor and counts were generally very low (Gehrels et al., 2006a). 

• Studies demonstrating the use of testate amoebae as sea-level indicators are at an 

early stage. Much additional work would be required to use such a microfossil 

group to reconstmct relative sea level. In addition, testate amoebae generally live 

around mean high water spring tides (MHWST) (Gehrels et al., 2001) and their 

distribution within the tidal frame was not considered large enough for them to be 

used independently in this study. 

• Preliminary work on both the modem and fossil material in the Ho Bugt study site 

suggested that diatom preservation was very good in both the modem and core 

material (Gehrels et al., 2006a; Szkomik et al., 2006). 
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2.4.2 Influences on diatom distribution in the coastal zone 

The use of diatom biostratigraphical techniques to reconstruct changes in relative sea level 

requires a strong understanding of contemporary diatom assemblages across the intertidal 

zone (Zong and Hoton, 1999). The use of diatoms in such studies is therefore often 

constrained by a poor understanding of the relationship between diatom assemblages and 

environmental variables (Zong, 1997; Zong and Horton, 1998). Although the general 

ecology of many coastal diatoms is well understood (Vos and De Wolf, 1993; Denys, 

1994), understanding of their specific habitat preferences is limited, especially in areas 

where marine and terrestrial systems interact (Zong, 1997). Several studies have examined 

the influence of various environmental parameters on modem diatom distributions in the 

coastal zone. These are reviewed below. 

Salinity 

It has long been recognised that particular diatom taxa inhabit water of a particular salinity 

(Palmer and Abbott, 1986). A comprehensive review of the development of salinity 

classification schemes for diatoms based on salinity is provided by Juggins (1992). In this 

study the halobian system of classification is used, originally developed by Kolbe in 1927 

and fiirther refined by Hustedt (1953, 1957). The halobian scheme of Hustdet (1953, 1957) 

is summarised in Table 2.1, taken from Juggins (1992). For the purposes of this study, only 

the division within the oligohalobous group is identified. Sub-divisions within the 

mesohalobous group are classified together. The Hustedt scheme is used in preference to 

the classification scheme proposed by van der Werff and Huls (1957 - 1964), which 

divides species into marine, brackish and freshwater taxa, to provide consistency with 

other recent diatom-based sea-level studies (e.g., Zong and Horton, 1998; Hamilton and 

Shennan, 2005a, 2005b). 
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1. Polyhalobian: > 30 g 1"' 

2. Mesohalobian 

a) Euryhaline mesohalobous: 0.2 - 30 g 1"' 

b) A-mesohalobous: lower brackish water > 10 g 1'' 

c) B-mesohalobous: upper brackish water 0.2 - 10 g 1'' 

3. Oligohalobous 

a) Halophilous: optimum in slightly brackish water 

b) Indifferent: optimum in freshwater but tolerant of slightly brackish water 

4. Halophobous: exclusively freshwater 

Table 2.1. Halobian scheme of Hustedt (1953, 1957), reproduced from Juggins (1992). 

Substrate 

Several studies have demonsfrated the role of substrate in confroUing contemporary diatom 

distributions (e.g.. Chapman, 1941; Whiting and Mclntire, 1985; Trites et al., 2005). At 

Netarts Bay, Oregon, USA, Whiting and Mclntire (1985) showed that diatom taxa formed 

a continuum with species abundance correlating with mean grain size. Other studies have 

demonsfrated the association between the type of sediment and life form (e.g.. Nelson and 

Kashima, 1993; Zong, 1997; Zong and Horton, 1998, 1999). High frequencies of epipelic 

diatoms are associated with fine grained silts and clays whilst episammic diatoms are 

associated with a sandy substrate (Zong, 1997; Zong and Horton, 1999; Sawai, 2001). 

Elevation 

Some of the most recent research in the intertidal zone has examined the relationship 

between diatoms and elevation. Nelson and Kashima (1993), Hemphill-Haley (1995), 

Shennan et al. (1995, 1996), Zong (1997), Zong and Horton (1998, 1999) and Gehrels et 

al. (2001), have demonstrated that diatom distributions are sfrongly related to elevation 

above mean sea level. Tidal inundation and associated hydrology and salinity confrol 

diatom distributions, but the level of tidal inundation is confrolled by elevation (Gehrels, 

2000). Correlations between diatom distributions and elevation are therefore often 

apparent. These observations sfrongly support the concept of a vertical zonation of diatom 

species with respect to the tidal frame (Nelson and Kashima, 1993). Such studies have 

been fiindamental in the development of microfossil-based transfer fimctions which seek to 

establish the history of sea-level changes from fossil cores. 
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Hydrology 
An additional environmental variable which may have an influence on diatom distributions 

across the intertidal zone is hydrology. The relationship between diatom species and 

physical parameters such as water depth, soil moisture and length of submergence has been 

explored in several lake-based studies (e.g. Gaiser et al., 1998, 2001). Such studies have 

direct application within the salt-marsh environment, where water levels vary greatly over 

short temporal scales. With the exception of the study by Gehrels et al. (2001) who relate 

diatom species to the degree of tidal flooding, the influence of these physical parameters 

on diatom distributions are rarely acknowledged in sea-level based investigations. 

As with salinity and substrate, described above, classification schemes have also been 

developed based on taxon-specific responses to soil moisture and drought (e.g. Petersen, 

1935; Lund, 1946). In this study it is likely that 'eu-terrestrial' or 'facultative' taxa 

(Petersen, 1935; Florin, 1970) such as Hantzschia amphioxys and Pinnularia borealis, may 

be found at high elevations. Here, the salt marshes are only flooded during the very highest 

tides and diatom species need to be capable of surviving periods of drought and desiccation 

(Patrick and Reimer, 1966; Gaiser et al., 1998). 

2.4.3 Taphonomic issues 

Studies which involve the use of microfossils to interpret fossil sequences make the 

assumption that no post-depositional changes have occurred but such assumptions are 

often erroneous. Several key taphonomic processes can be identified which are known to 

affect diatom assemblages in coastal marshes. These include transportation (Vos and de 

Wolf, 1993), fragmentation (Sherrod et al., 1989, Nelson and Kashima, 1993), biotiirbation 

(Nelson and Kashima 1993) and dissolution (HemphiU-Haley, 1995; Sherrod, 1999). Other 

processes such as sample preparation, chemical analysis, digenesis and compaction 

(Beyens and Denys, 1982) may be fiirther problems to take into consideration. 

26 



Chapter 2 Background and Context 

Transportation 

The transportation of diatom frustules from surrounding environments is one of the most 

significant problems in diatom-based palaeoecological studies (Sherrod, 1999). hi 

particular, the distinction between autochthonous (locally produced) and allochthonous 

(fransported) diatoms is of major importance (Vos and De Wolf, 1993). In low-energy 

environments such as lakes, the problem is generally considered insignificant (Vos and De 

Wolf, 1993). However, the issue becomes more significant in coastal environments where 

higher energy levels dominate (Brockmann, 1940). In some tidal areas, the allochthonous 

influx has been found to exceed the autochthonous population (e.g., Simonsen, 1969; Vos 

and de Wolf, 1988; Sherrod et al., 1989). Importantly, within a salt-marsh environment a 

species may be allochthonous in some environments but autochthonous in others. Beyens 

and Denys (1982) devised a system for determining the allochthonous component of fossil 

assemblages based on salinity dependence and life-form, although they do not distinguish 

individual taxa. Vos and De Wolf (1988; 1993) developed a classification scheme that 

divided coastal diatoms into broad ecological groups relating to specific environments. 

They proposed several criteria to assess whether diatoms are allochthonous or 

autochthonous. More recently, several authors (e.g., Sherrod, 1999; Sawai, 2001; Sawai et 

al., 2004) have attempted to 'separate out' the allochthonous and autochthonous 

components of diatom assemblages and have provided fiirther criteria for assessment. 

Fragmentation and dissolution 

Selective fragmentation and dissolution of diatom frustules can greatly affect 

palaeoecological interpretation, particularly of fossil assemblages (Sherrod et a., 1989; 

Nelson and Kashima, 1993). Delicate taxa may be broken during transport and digenesis 

and weaker, less silicified taxa such as Gyrosigma spp. are often depleted in an assemblage 

(Nelson and Kashima, 1993; Sherrod et al., 1989). Such processes also play an important 

role in enhancing the relative abundance of certain diatom taxa within an assemblage 

because they are more resilient to these processes (Sherrod, 1999). For example, Parlia 

sulcata is often dominant in coastal assemblages (Hemphill-Haley, 1995) but this is in part 

due to its greater resilience to breakage and dissolution (Sherrod et al., 1989). The 

fragmentation and dissolution of diatom valves has been extensively studied for lake 

envfronments (e.g., Battarbee et al., 2001; Ryves et al., 2005, 2006) but few corresponding 

examples are available for coastal environments (e.g., Hemphill-Haley, 1995). 
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2.5 Chapter summary 

This chapter has reviewed existing sea-level research along the Danish North Sea coast and 

the nearby German North Sea coast. The importance of relative sea-level records, from the 

Danish North Sea coast in particular, for providing constraints on glacio- hydro- and 

isostatic models and has been discussed. The two main approaches to present day relative 

sea-level reconstructions have been outlined, with a particular focus on the development of 

microfossil-based fransfer fiinctions. The importance of diatoms in sea-level research and 

their potential use as sea-level indicators has been examined, and the reasoning behind 

their use in this study has been justified. The next chapter begins by further detailing the 

study site of Ho Bugt before going on to discuss the various field and laboratory-based 

methods used throughout this investigation. 
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Chapter 3 

Methodology 
This chapter outlines the various field and laboratory-based methods used throughout this 

investigation. The first part of this chapter details those techniques employed in the field, 

firstly in the investigation of the modem salt marsh environment and secondly, in the 

investigation of the palaeoenvironment. The second part of this chapter describes the 

laboratory methods employed in the processing and analysis of these samples. Details of 

the procedures used in diatom analysis, and the statistical techniques employed to examine 

these data are discussed in the last sections of this chapter. The statistical methods used in 

the development of a diatom-based transfer fiinction are discussed separately in Chapter 7. 

3.1 Study Site 

This study is located in the tidal embayment of Ho Bugt in westem Denmark (Figures 1.1 

and 3.1). Ho Bugt is located in the northem most extreme of the Danish Wadden Sea, an 

intertidal area extending from the northem coast of the Netherlands, along northem 

Germany and into southem Denmark. The salt marshes within the Ho Bugt embayment 

form the largest section of undiked marsh land in the Danish Wadden Sea (Jepsen, 1996). 

Grazing and the use of fertilizers have been restricted in recent years under management by 

the Wadden Sea National Park authorities, resulting in an intertidal environment that can 

be considered relatively pristine, especially when compared to other marshes in the North 

Sea region. The embayment is micro-tidal, with a mean tidal range of -1.5 m (Christiansen 

et al., 2004). Tidal levels in the Ho Bugt embayment are detailed in Table 3.1. During 

major storm surges, which on average occur once or twice a year, water levels may reach 

as high as 4 m above the Danish national vertical datum (DNN) (Bartholdy and Pejmp, 

1994; Aagaard et al., 1995). The only significant freshwater discharge into Ho Bugt is via 

the Varde A river in the northeast (Figure 3.1). Due to this freshwater supply, a gradient in 

salinity exists from the bay head (10 %o) to the mouth of the Ho Bugt embayment (30 %o) 

(Pejmp, 1986). To the north and east Ho Bugt is bounded by glacial moraine deposits of 

Saalian age (Aagaard et al., 1995). To the west the marshes are backed by an upland that 

consists of Holocene beach ridges covered by dunes. The Varde A river valley contains 

salt-marsh deposits up to more than 10 km inland, underlain by glaciofluvial deposits of 

Weichselian age (Aagaard et al., 1995). The salt marshes in the Varde A river valley 

receive fine grained material from a turbidity maximum in the northem part of Ho Bugt 

(Bartholdy, 1984; Bartholdy and Madsen, 1985; Bartholdy and Folving, 1986). 

29 



Chapter 3 Methodology 

Figure 3.1. Ho Bugt location map showing modem and coring transects. Coring transects 
are labelled by name, modem transects are labelled by number. 1 = Kjelst Enge, 2 = 
Moserva, 3 = Storbsek, 4 = Oksby Enge, 5 = Langli North and 6 = Langli South. 

Tidal Level Height (m CD) Height (m DNN) 

Lowest Astronomical Tide (LAT) -0.2 -0.89 

Mean Low Water of Springs (IVILWST) 0.0 -0.69 

Mean Low Water of Neaps (MLWNT) 0.4 -0.29 

Mean Sea Level (MSL) 0.9 0.21 

Mean High Water of Neaps (MHWNT) 1.4 0.71 

Mean High Water of Springs (MHWST) 1.8 1.11 

Highest Astronomical Tide (HAT) 2.0 1.31 

Table 3.1. Tidal levels at Esbjerg relative to Chart Datum (CD) and Danish national 
vertical datum (DNN). Data are from Admiralty Tide Tables (2004) and reproduced from 
Gehrels and Newman (2004). 
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3.2 Fieldwork 

Fieldwork in Ho Bugt was carried out between May 2002 and April 2005. In May 2002, 

fieldwork was undertaken as part of the HOLSMEER Project (Scouse and others 2004). 

Data fi-om the HOLSMEER Project are used in this study and where presented they are 

clearly indicated. Three separate field sessions were undertaken as part of this PhD: April -

May 2004, July - August 2004 and in April 2005. In total, two and a half months were 

spent in the field. The methods and sampling strategies used in the field to investigate 

aspects of both the modem and palaeoenvironment are described below. 

3.3 Surface transects 

3.3.1 Site selection and rationale 

Potential modem transect locations were identified during a preliminary reconnaissance 

survey of the Ho Bugt embajnnent. Transect locations were selected where: 

1. A clear vegetation zonation was observed across the salt marsh 

2. The transect would compliment existing transects, taken during the HOLSMEER 

Project, by extending the vertical range of samples and therefore the types of 

environment sampled 

3. The salt marsh was reasonably accessible. 

3.3.2 Sampling Design 

A total of six modem transects were sampled from locations within Ho Bugt. These 

fransects were taken across the salt marsh surface at Kjelst Enge, Moserva, Storbaek, 

Oksby Enge, Langli North and Langli South (Figure 3.1). The Kjelst Enge transect was 

sampled in May 2002 as part of the HOLSMEER Project. Along each fransect a series of 

individual samples were taken from the salt-marsh surface at regular vertical (altitudinal) 

intervals. Where possible, the fransect extended from the high salt marsh down to the tidal 

flat. At Moserva and Storbaek, fransect length was consfrained by the presence of the 

Storbask drainage channel which bounds the seaward extent of these marshes. This channel 

proved impossible to cross and hence sampling was restricted in both these locations to the 

high and middle salt marshes. At Oksby Enge, the seaward extent of the marsh is bounded 

by an erosional cliff. Sampling here did not extend out onto the tidal flat due to the 
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presence of eroded blocks of salt-marsh sediment. The number of samples taken along 

each transect was dependent upon the transect length and the elevation change observed 

across the marsh surface. Where possible, sampling along each transect was conducted at 

similar stages in the tidal cycle. A summary of the six transects, detailing the transect 

length, number of samples, elevation range and range of environments sampled, is 

presented in Table 3.2. 

Transect 
Number of 

samples 

Transect 

length (m) 

Elevation range 

(m DNN) 
Range of environments sampled 

Date 

sampled 

Kjelst Enge* 27 380 +0.7 to+1.9 High salt marsh - tidal flat 
May 2002 

Moserva 14 200 +1.9 to+2.7 Fresh water marsh - middle salt marsh April 2004 

Storbaek 13 40 +1.3410+1.46 High salt marsh - middle salt marsh May 2004 

Oksby Enge 22 360 +1.25 to+2.2 High salt marsh - low salt marsh July 2004 

Langli North 31 130 +0.23 to+1.76 High salt marsh - tidal flat July 2004 

Langli South 33 440 +0.67 to+1.78 High salt marsh - tidal flat July 2004 

Table 3.2. Summary of the six modem transects sampled detailing the transect length, 
number of samples, elevation range and range of envirormients sampled. * Indicates the 
sampling was undertaken as part of the HOLSMEER Project. 

3.3.3 Sampling methodology 

At each individual sampling site, two surface samples were taken using a hand-held 

volume surface sampler (Figure 3.2). One sample of approximately 200 cm^ was taken for 

diatom analysis whilst the other, of the same volume, was taken for further analysis of 

environmental variables. Both samples were transferred to plastic pots, the lids held 

securely in place using insulation tape to make the container airtight. Samples were stored 

in cool, dark conditions. Once back in the UK, they were refiigerated at 4°C until needed 

for sampling. 
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Figure 3.2 Hand-held sampler used to take the modem surface samples. 

3.3.4 Surveying 

To establish the surface elevation of each sample, samples were surveyed to a nearby 

geodetic benchmark using a Zeiss Elta S20 (Trimble 360) total station and linked to Danish 

national vertical datum (DNN). Three main benchmarks, established by the Danish 

Geological Survey, were used in this study; their details are given in Table 3.3. A fourth 

benchmark, on Langli Island, was established by colleagues in Copenhagen using 

differential GPS. Since some sampling sites were located some distance away from the 

nearest benchmark, a comprehensive network of temporary benchmarks was set up to 

facilitate the ease of surveying. 

Benchmark 

number 
Established by Height (m DNN) Easting Northing Description 

BM 134-01-9051 Danish Geological Survey 8.322 451498 6163019 Bolt on East side of house 

BM 134-01-9053 Danish Geological Survey 9.3 451318 6161039 Bolt on East side of house 

BM 134-04-843 Danish Geological Survey 24.069 450681 6155858 Trig point on sand dune 

640001 Differential GPS 12.08 456789 6152399 Trig point on sand dune 

Table 3.3. Details of the main benchmarks used in this study, established by the Danish 
Geological Survey or by differential GPS. 
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3.3.5 Environmental variables 
bi order to characterise the morphological and sedimentary characteristics of the substrate 

a series of environmental variables were measured. At each sampling site a total of eight 

envirormiental variables were measured. Elevation, described above, pH and conductivity 

(salinity) were measured in the field at the Skallingen laboratory. The remaining 

environmental variables measured; particle size (sand, silt and clay fi-actions), loss on 

ignition (LOI) and calcium carbonate (CaCOs) content, were measured in the laboratory at 

Plymouth and their methods are detailed in Section 3.5 below. For the Kjelst Enge transect, 

sampling was completed as part of the HOLSMEER Project and only elevation, pH and 

conductivity (salinity) were measured, all of which were conducted in the field. There was 

no remaining archived material from which to measure the additional environmental 

variables. 

pH and conductivity were measured using approximately 10 g of soil, disaggregated in a 

1:2.5 soil-water mix. pH was measured using a K&M7002 probe. Conductivity was 

recorded using a LFAVTW conductivity meter. Values were converted into salinity 

(sodium chloride (NaCl) equivalents), using a standard equation (Equations 3.1 & 3.2). 

For conductivity range 0 to 2000 |iScm"' 

Salinity (mgf' NaCl) = 0.5073 (EC25) - 10.7 Equation 3.1 

For conductivity range 5 to 50 mScm'' 
Sahnity (gf' NaCl) = 0.0079 (ECss)̂  + 0.2959 (EC25) + 0.8095 Equation 3.2 

Where EC25 = Electrical conductivity measured at 25 °C. Salinity values are expressed as 

NaCl equivalents in gl' '. 
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3.4 Palaeoenvironments 
3.4.1 Site selection and rationale 

Potential coring locations were identified during a preliminary reconnaissance survey and 

on the basis of existing work completed under the HOLSMEER Project. Coring locations 

were selected with the following objectives in mind: 

1. To gain a thorough understanding of the underlying stratigraphy of the Ho Bugt 

embayment 

2. To provide sample cores for further laboratory analysis (Diatoms, macrofossils, 

sedimentology, geochemistry) 

3. To complement and extend existing transects, cored as part of the HOLSMEER 

Project, and to core in areas of the embayment not yet investigated 

4. To examine the temporal and spatial extent of the humified black layer identified 

by Dr Roland Gehrels and co-workers under the HOLSMEER Project in May 2002 

(Gehrels et al., 2006a) 

5. To obtain datable material from deeper basal peat samples. 

3.4.2 Sampling design 

A total of eight fransects were cored at various locations within the Ho Bugt embayment. 

Coring fransects were undertaken at Kjelst Enge, Rogel, Oksby Enge (two fransects), 

Bredmose, Norballe, Sonderballe and Langli Island (Figure 3.1). Seventy-six cores were 

collected in total, 37 as part of this PhD study and 39 as part of the HOLSMEER Project. 

In addition to the coring fransects, a number of monolith sections were also obtained. Sites 

were chosen where the salt-marsh cliff was clearly exposed and where monolith samples 

would complement existing coring fransects. Four cliff sections were sampled using 

monolith tins, at Oksby Enge (three sections), and at Sonderballe (one section). 
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3.4.3 Sampling methods 

Initially, the coring interval along each transect was fairly large to gain an overview of the 

stratigraphy at each location. Additional cores were taken at a higher spatial resolution 

where interesting changes in the depth and nature of the stratigraphy were observed. All 

cores were taken using an Eijkelkamp hand-held corer (20 mm, 30 mm or 60 mm diameter 

barrels) and the lithostratigraphy was logged in the field. Coring extended until 

impenetrable sediments were reached. The cores that were subjected to laboratory analysis 

(diatoms, macrofossils, sedimentology, and geochemistry) were collected with a Russian 

peat sampler (50 mm diameter barrel). In some locations, it was impossible to penetrate the 

sediment using the Russian peat sampler and sample cores were taken using an Eijkelkamp 

corer. 

Monolith samples were collected using stainless steel tins 0.6 x 0.10 x 0.08 m. The 

exposed cliff face was cut back, cleaned and made vertical, to avoid sampling of oxidised 

and weathered material and to minimise contamination. Monolith tins were held vertical 

whilst carefiilly being driven into the exposure. Tins were positioned so that some overlap 

between samples occurred (Figure 3.3). This was to ensure retrieval of a continuous, 

undisturbed stratigraphic section. Tins were removed from the cliff face by carefiilly 

digging away the surrounding material. 

All cores and monolith sections were surveyed to a nearby geodetic benchmark using a 

Zeiss Elta S20 (Trimble 360) total station and linked to DNN. Samples were labelled with 

a location identifier, depth, number and year. Cores and monolith sections were wrapped in 

non-PVC cling-film and kept in cool, dark conditions. Once back in the UK, they were 

refrigerated at 4°C until needed for sampling. A summary of all borehole data collected is 

given in Table 3.4. The sampling design and methodology used along each individual 

coring transect is described below. Transects are described in a north - south direction. 
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Figure 3.3. Sampling the salt-marsh exposure using monolith tins at Oksby Enge 
(Monolith 0EB5) 

Transect Transect 
length (m) No. of cores Date 

sampled 

Maximum 
depth cored 

(m) 
Cores sampled 

Kjelst Enge* 628 14 May 2002 
July 2004 7.18 KE2 (2002) 

KE1, KE12, KEl 3 (2004) 
Roqel 410 10 May 2004 2.54 R01 
Oksby Enge A* 610 7 May 2002 4.50 Monolith OEA 
Oksby Enqe B 320 11 July 2004 2.15 Monoliths 0EB5 and OEB 
Bredmose* 450 15 May 2002 4.00 BR1, BR2, BR9, BR12 
Norballe* 125 4 May 2002 2.25 
Sonderballe 150 8 May 2004 3.29 Monolith SOA 
Langlj Island 60 7 July 2004 0.70 

Table 3.4. Summary of all borehole data collected. * Indicates that the transect was either 
cored or partly cored as part of the HOLSMEER Project. The sampling design and 
methodology used along each individual coring transect is described below. 
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Kjelst Enge 

A transect of 11 cores was established in May 2002. Cores were taken at approximately 30 

m intervals in order to sample the full extent of the salt marsh. An additional three cores 

were taken in July 2004 as part of this study. One previous core (KEl from 2002) was 

extended in July 2004 to reach the deepest part of the basal peat (7.18 m). Cores KEl , 

KEl 2 and KEl3 were selected for sampling, alongside core KE2 sampled in May 2002. 

These cores contained the deepest penetrable material sampled from the Ho Bugt marshes. 

All four cores contained extensive basal peat layers from which to obtain material for 

radiocarbon dating. 

Kegel 

A transect of 10 cores was established in May 2004. Cores were taken at 40 m intervals. 

One complete core section (R01) was selected for analysis and was sampled using a 

Russian peat sampler. Core R01 was selected for analysis for the following reasons: 

1. The core was located where an interesting change in the nature of the black layer 

occurred, according to reconnaissance coring and preliminary field sketches 

2. The core was located at a similar altitudinal position on the salt marsh to that of 

core KE2 (HOLSMEER master section) making it a suitable test of replicability. 

Core R01 was taken in triplicate to ensure ample material was available for analysis 

(diatoms, macrofossils, sedimentology, and geochemistry). For each core, two holes 

approximately 0.5 m apart were used, and each 0.5 m section was extracted from them 

alternately. In the upper section of this fransect an extensive sand layer is found. Neither 

the Eijkelkamp nor the Russian corer could penefrate this material. A small pit was 

therefore excavated on the surface of the salt marsh to enable the upper 0.5 m of sediment 

to be sampled using a monolith tin. The sand layer did not preserve well during sampling 

and the section 0.18 - 0.33 m depth in the monolith was poorly preserved. 

Oksby Enge A 

A fransect of 7 cores was established in May 2002. Cores were taken at 20, 40 or 60 m 

intervals. In May 2004 monolith sections were taken from the cliff face at the seaward end 

of the Oksby Enge A fransect. These monolith sections are hereafter referred to as OEA. 
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The exposed cliff face extended down to a depth of 0.70 m. To extend the depth of the 

sampled exposure, a small pit was dug next to the cliff face. Sampling then extended below 

the surface of the tidal flat, down to 1.65 m. At this depth, both the basal peat and the basal 

sand were exposed. 

Oksby Enge B 

A transect of 11 cores was established in July 2004. Cores were taken at 20 or 40 m 

intervals. Although a previous coring transect was established at Oksby Enge {Oksby Enge 

A) in May 2002, this second transect was taken in an ungrazed field (Lauridsen, local land 

owner, j9er5. comm.). This transect was considered more suitable for analysis, since there is 

less likelihood of the sediments having been affected by animal trampling. 

In July 2004 monolith sections were taken from the cliff face at the seaward end of the 

Oksby Enge B transect. These monolith sections are hereafter referred to as OEB. 

Sampling extended down to a depth of 1.45 m. These sections, taken from an ungrazed 

field, provided a more reliable section for analysis than those taken in May 2004. In 

August 2004, monolith sections were taken from a small french, excavated in collaboration 

with researchers at the Institute of Geography, University of Copenhagen, along the Oksby 

Enge B fransect at core location 0EB5. A 1.26 m monolith section was retrieved from this 

french (Figure 3.3). These monolith sections are hereafter referred to as 0EB5. 

Bredmose 

A transect of 15 cores was estabhshed in May 2002. Cores were taken at 10, 20 or 40 m 

intervals. Sample cores BRl, BR2 and BRl2 were selected for analysis since they 

contained extensive basal peat units. These cores were sampled using a Russian peat 

sampler. Core BR9, at the seaward end of the transect, was sub-sampled and used for Pb 

dating. Due to the presumed high sedimentation rate at this site, as determined by Pedersen 

(2004), this core was selected to enable a comparison of records with a core from Kjelst 

Enge, where the sedimentation rate was speculated to be lower. 

Nerballe 
A fransect of 4 cores was established in May 2002. Cores were taken at 20 or 30 m 

intervals. 
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Senderballe 

A transect of 8 cores was established in May 2004. Cores were taken at 20 m intervals. 

This transect is the southernmost location in which the humified black layer is found. 

Reconnaissance coring of the marshes to the south of Sonderballe indicated that these salt 

marshes were much younger in age and were therefore not sampled as part of this study, hi 

May 2004 monolith sections were taken from the cliff face at the seaward end of the 

Sonderballe transect. These samples were taken primarily as back up material and would 

have been used i f problems arose in the analysis of other core and monolith sections. 

Langli Island 

A fransect of 7 cores was cored in July 2004. Cores were taken at 10 m intervals due to the 

comparatively narrow extent of the salt marsh. The salt-marsh sediments on Langli were 

foimd to be very shallow and impenetrable sediments were reached after less than 1 m. 
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3.5 Laboratory-based methods. 

Laboratory work was completed between April 2004 and April 2006. The following 

section describes the laboratory methods employed in the processing and analysis of 

samples collected in the field and sub-sampled in the laboratory. Details of the procedures 

used in diatom sampling, preparation and analysis are described separately in Section 3.7. 

3.5.1 Environmental variables 

In the laboratory, particle size (sand, silt and clay fractions), loss on ignition (LOI) and 

calcium carbonate content (CaCOs) were measured from each of the modem samples. 

Only the top I cm of the sample was used in the analysis. Sedimentation rates in the Ho 

Bugt embayment, determined by ^'°Pb dating, suggest that this depth of sediment 

represents approximately two years accumulation and can therefore be considered as 

modem (Pedersen, 2004). For particle size, it was necessary to use the top 2 cm of the 

sample since more material was needed. For each technique, the same methodology was 

also used in the processing of the core samples. The detailed methodologies are therefore 

described only once in the relevant sections below. 

3.5.2 Lithology 

In the laboratory, the stratigraphy of each core or monolith section was checked against 

that logged in the field. Before sampling, all cores and monolith sections were cleaned, by 

carefiilly scraping away the material at the exposed surface. All core sections were 

photographed to document the intact sfratigraphy. In general, the material was well 

preserved and signs of oxidation and microbial decay were minimal. 

3.5.3 Sedimentology 

A number of sedimentological parameters were investigated in the laboratory, primarily 

from the master core section (core R01), in order to characterise the nature of the 

sediments. These included: bulk density, loss on ignition, carbonate content and grain size 

(sand, silt and clay fractions). 
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Bulk Density 

Post-depositional compaction is a particular problem for most studies of sea-level change, 

where it can cause a vertical lowering of index points from their original elevation (Long et 

al., 2006). To evaluate in a qualitative way the degree to which sediments had been 

affected by compaction, dry bulk density was investigated for all core sections from which 

''̂ C and '̂̂ Pb dating material was obtained (Section 3.6). 

For the R0gel master core section (core R01), core depth 0 - 0.18 m was sampled at 0.5 

cm resolution, as these data were required as part of the ^'°Pb dating methodology (Section 

3.6.3). Core depth 0.33 - 1.6 m was sampled at 1 cm resolution, core depth 1.6 - 2.0 m at 2 

cm resolution and core depth 2.0 - 2.25 m at 10 cm resolution. From this core the largest 

number of '"̂ C dates was obtained (Section 3.6.1) and so a comprehensive dry bulk density 

record is useful for assessing compaction. Monolith sections OEB5 and OEA were 

sampled initially at 4 cm resolution and then at 2 cm resolution. It was originally thought 

that the black layer was highly compacted. This layer was therefore sampled at 1 cm 

resolution in both these sections, in addition to the samples from the black layer in core 

R0I , to test this hypothesis. Bredmose core BR9 was sampled for dry bulk density at 1 

cm resolution in the upper 0.3 m, alongside sampling for diatoms to assess compaction in 

the upper part of this sequence where a ̂ '°Pb record is established. 

To establish dry bulk density, a sample of known volume was taken intact from the 

sediment. For all cores, a 1 cm wide slice was cut out of the core and placed flat on a piece 

of paper. A ruler was then used to cut a sample of 2 x 1 x 1 cm sub-sample. For the 

monolith sections, a scalpel was used to outline an area of approximately I x 3 cm. This 

was exfracted from the monolith using a spatula. Once again, the sub-sample was placed 

flat on a piece of paper and a ruler was used to cut a 2 x 1 x I cm sub-sample. Where 

possible, larger samples were cut from each of the monoliths to increase the degree of 

accuracy obtained. The narrow width of most of the cores prevented larger samples from 

being taken. The sand layer, present in several of the monolith sections, presented a 

particular problem for sampling. The nature of the material meant that sfratigraphic 

integrity was lost as soon as any attempt was made to cut out the sample. For these sections 

a 6.5 X 1 X I cm shape cutter was used. The slightly damp sand was held intact by the 

cutter and fransferred directly to a sample pot. 
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All sub-samples were placed in an oven at 105°C and left to dry for at least 48 hours. This 

ensured that the sample was completely dry before weighing. Dry bulk density was then 

calculated using the following formula: 

Loss on Ignition 

Loss on ignition (LOI) and calcium carbonate content (CaCOs) were measured according 

to procedures described by Ball (1964) and Folk (1965). Samples for LOI and CaCOs were 

taken from all modem surface samples and the R0gel master core section. For the core, 

samples were taken at 1 cm resolution in the top 1 m of the core, at 2 cm resolution 

between core depths 1 arid 1.6 m, at 4 cm resolution between core depths 1.6 and 2 m and 

at 8 cm resolution from core depth 2 m to the bottom of the core (2.25 m). CaCOs 

measurements were taken from core R01 to provide a usefiil record with which to compare 

with the diatom record. Samples with high CaCOs values indicate an inflow of 

minerogenic material, which is often associated with an increase in the abundance of 

fransported diatom taxa (BCirby, pers. comm.). For each sub-sample, between 0.5 and 2 

grams of oven-dried material was placed in a cmcible, weighed and then bimit at 550°C for 

a minimum of four hours to establish the percentage of organic matter. After re-weighing, 

the samples were retumed to the fumace and burnt at 950°C for a minimum of four hours 

to establish the percentage calcium carbonate content. The establishment of LOI and 

CaCOs for each of the surface samples followed the same methodology. 

Particle Size 

To characterise the sedimentary characteristics of the substrate, particle size analysis was 

completed on all modem surface samples and on the Rogel master core (core R01). For 

the core, this record provided information on the detailed sedimentary stmcture of the 

various lithological units. Sand, silt and clay fractions were identified by particle size 

analysis using a Malvem long-bed Mastersizer X, with wet sample unit MS 17. Sub-

samples of between 2 and 10 grams of wet sediment were placed in 200 ml Petri dishes 

and 20 ml of 6% hydrogen peroxide (H2O2) was added. The samples were then heated, 

using water baths, for between 4 and 6 hours until all organic material was removed. In 

most cases, the samples were very active and were left to react overnight before any heat 

was added. After heating, the samples were left to cool and settle before any remaining 

Dry bulk density 
g/cm^ 

Dry weight (g) 
Volume (cm^) Equation 3.3 
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H2O2 was removed using a pipette. Samples were transferred to 100 ml beakers and 

approximately 25 ml of water was added to re-suspend the sediment. 

Using a magnetic stirrer, the samples were then well mixed. During mixing, four 4 ml sub-

samples were taken using a pipette and placed in cuvettes. The sub-samples were held in 

polystyrene trays and placed in large plastic sampling bags to minimise evaporation. Each 

bag was clearly labelled with the transect name, sample labels and the date sampled. 
o 

Samples were refrigerated at 4 C until needed for analysis. 

Using the Malvem Mastersizer two sets of analysis were conducted for each sample; one 

using a 45|im lens to analyse material in the fine-grained range, and the other using a 

lOO îm lens to analyse material in the coarse-grained range. For each sample, one of the 

four sub-samples taken was used for 45|am analysis and the other three were used for 

lOOpm analysis. During the 45 pm analysis, three replicates were run for each sample. For 

the 100pm analysis, five replicates were run for each sample. In addition to the replicates 

analysed, a quality control check was also mn on every sample to determine the reliability 

of the results obtained. The same methodology was followed for all of the surface samples 

with some minor modifications. Some surface samples, such as those from Langli Island, 

contained visible shell material. The laser sizer is unable to analyse particles > 2 mm and 

so these samples were sieved through a 2 mm round hole sieve to remove this material. Al l 

shell material removed was placed in sample bags and labelled for fiature reference. 

3.5.4 Black layer investigations 

Several analyses were conducted on the R0gel master core section as an aid in determining 

the nature of the humified black layer. Similar black layers have been identified along the 

northeast German Baltic Sea coast (Lampe, 2005) and the types of analyses undertaken 

here aimed to try and replicate those results obtained from the Baltic. Total Organic 

Carbon (TOC), Total Inorganic Carbon (TOI), the amount of humic substances insoluble in 

sodium hydroxide (NaOH), fron (Fe), Calcium (Ca), Magnesium (Mg) and Manganese 

(Mn) concenfrations were analysed for the upper 0.72 m of the Kegel master core to 

compare with the Baltic records (Lampe, unpublished data). In addition, the black layer in 

the Rogel master section was analysed for microscopic charcoal. 
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Sub-sampling strategy and rationale 
Initially, 40 sub-samples were taken from the top part of the Rogel master core for 

analyses. Core depth 0 - 0.24 m was sampled at 2 cm resolution and core depth 0.33 - 0.6 

m was sampled at I cm resolution. The higher sampling resolution in the lower parts of the 

core section covers the black layer, which is the section of greatest interest in this instance. 

It was not possible to obtain samples between core depths 0.25 - 0.32 m as this part of the 

sand layer was not preserved intact. Preliminary results of TOC analysis suggested that 

TOC values were very high in the black layer and were still high at 0.6 m core depth. Sub-

sampling at 1 cm resolution was then extended until TOC values retumed to pre-black 

layer levels (c. 0.72 m). 

All samples were dried in a drying cupboard at 40°C for at least 72 hours to ensure the 

samples were completely dry. Using an agate pestle and mortar, each sample was ground 

into a fine powder and passed through a 500 pm sieve. Approximately 3 grams of 

powdered and sieved sample was needed in order to complete all analyses. Only plastic 

sampling instruments were used in the preparation of samples and plastic gloves were 

wom to minimise the risk of contamination. Samples were stored in airtight plastic vials 

ready for analysis. 

Total Organic Carbon 

The amount of TOC was measured in addition to the conventional loss-on-ignition fiimace 

technique for the upper 0.72 m of the Rogel master core. Measurement of TOC gives a 

potentially more accurate result than the LOI fiimace technique. Samples were analysed 

for TOC using a Skalar Primacs Carbon Analyser. For each sample, one sub-sample was 

used to measure Total Carbon (TC) and a second sub-sample was used to measure 

Inorganic Carbon (IC). Before running any samples, one TC and one IC 'flush' sample was 

run to ensure the Carbon Analyser was properly calibrated. To measure TC, 10 - 20 mg of 

sample was placed in a ceramic receptacle, covered with quartz wool and positioned in the 

'TC Carbon Analyser port. The quartz wool ensured that the sample stayed in the 

receptacle even at the high combustion temperatures used. To measure IC, 80 mg of 

sample was placed in a boiling tube and two or three drops of distilled water was added. 

The sample was then positioned in the ' I C Carbon Analyser port. TOC was then 

calculated as: 
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TOC = T C - I C 

Methodology 

Equation 3.4 

Geochemistry 
The concentration of Fe, Ca, Mg and Mn in the samples from the Rogel master core was 

established using acid digestion. For each sample, 1.00 g ± 0.005 g of dried and sieved soil 

was transferred into 100 ml borosilicate glass digestion tubes. Approximately 0.5 ml of 

distilled water was added to wet each sample. 7.0 ml of hydrochloric acid and 2.5 ml of 

nitric acid was then carefiilly added to each tube. The samples were then transferred to a 

heating block and allowed to reflux gently. Due to the high organic content of some 

samples, especially those from the black layer, the digests were heated for up to ten hours 

to a maximum temperature of 140° C. 

Once cooled, approximately 20 ml of distilled water was added to each sample and the 

sample was carefiilly mixed using a rotary mixer. The exfract was then filtered into a 50 ml 

volumetric, topped up with distilled water and fransferred to a 50 ml polypropylene tube. 

Samples were refiigerated at 4°C until needed for analysis. Samples were analysed using 

an Atomic Absorption Spectrometer. For each element, three standards were first analysed. 

These standards were later used to construct the calibration curves needed to interpret the 

results (Figure 3.4). The standards were intermittentiy checked to ensure values remained 

consistent. Initial results for all elements suggested that the metal concentrations were very 

high and in many cases, above the range of the Spectrometer. All samples were then 

diluted again to give a 1 in 5000 dilution. 

Samples were analysed for each element in tum and the resulting absorption value 

recorded. With the exception of Fe, each element was analysed using a single wavelength. 

Lower concenfrations of Fe in some of the diluted black layer samples required a second 

analysis on a shorter wavelength, using a new set of standards. To convert absorption 

values to concentrations a series of calibration curves were constmcted using the measured 

standard values. For each curve, a linear frend line was added and the equation of the line 

obtained. The calibration curve for Fe measured at 386 pm wavelength is shown in Figure 

3.4 as an example. 
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Figure 3.4. Calibration curve for Fe measured at 386 pm wavelength showing linear trend 
line and equation. 

Measured absorption values were then converted to parts per million (ppm) using the linear 

regression equation. In this example; 

y = 250x - 2.5 Equation 3.5 

where y = Concentration in parts per million 
X = Measured absorption value. 

This process was repeated for each element. For Fe, two calibration curves were 

constructed since some samples were analysed on a different wavelength. In order to relate 

the values obtained to the initial weight of sample and dilution used, it was necessary to 

convert ppm values to the commonly expressed milligrams per kilogram (mg kg"') using 

the following formula; 

Metal concentration in mg kg"' = (a/b) x c Equation 3.6 

where a = Sample dilution used 
b = Initial weight of sample 
c = Metal concentration in ppm 

Some concentrations were found to be very high and consequently results for Fe, Ca and 

Mg are expressed as grams per kilogram (g kg"'). Results are presented in Section 5.2.3. 
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Humification 
Decomposition was determined following the light transmission method detailed in 

Blackford and Chambers (1993). This method is the standard method used to determine the 

degree of decomposition in peaty soils. Although not altogether suitable when used on 

other sediment types, the method was applied here in an attempt to assess the degree of 

humification of the black layer following the methodology of Lampe {unpublished data). 

The percentage light transmission was measured for each sample at a 550 nm wavelength 

using a Zeiss Specord M500 spectrophotometer and the programme Aspect Plus, version 

1.31. The 550 pm wavelength was selected because it produces the greatest difference in 

observed readings of differently humified peats (Hazell, 2004). Each sample was analysed 

exactly 4 hours after the NaOH was added to obtain the maximum light transmission value 

(Blackford and Chambers, 1993). The samples were placed in tum in a clear glass cuvette 

and measured against a standard of distilled water. Three replicates were measured for 

each sample and the average calculated. Results are presented in Section 5.2.3. 

Microscopic charcoal analysis 

Samples were prepared for microscopic charcoal analysis following procedures detailed in 

Tumer et al. (2006) and Tumer (2007). Microscopic charcoal was extracted using heavy 

liquid separation (Lithium Hereopolytungstate; LST) (Tumer et al., 2006; Tumer, 2007). 

Although developed primarily for use on lake sediments, the method was applied here 

since this work was considered exploratory. To calculate charcoal concentration, the exotic 

marker Lycopodium was added to each sample during preparation (Stockmarr, 1971). 

Samples were analysed for microscopic charcoal at x 200 magnification using an Olympus 

BX50, high power microscope. Charcoal particles were counted until 250 Lycopodium 

spores were reached (Finsinger & Tinner, 2005; Tumer, 2007). The identification of 

microscopic charcoal is a somewhat subjective process. Identification of charcoal particles 

in this study follows Tumer et al. (2006). Absolute charcoal counts were converted to 

concentrations using TILIA (version 2.02) (Grimm, 2004). Results are presented as the 

concentration of charcoal particles per cm^ of sediment analysed in Section 5.2.3. 
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3.6 Chronology 

A combination of several radiometric dating techniques (AMS'''C, • '̂°Pb, '̂ ^Cs, and ^'''Am, 

OSL) were used in this investigation to derive chronologies for the cores and monolith 

sections. Using a number of different dating methods makes it possible to construct reliable 

age-depth models (Section 8.7) and to link chronologies between different cores and 

stratigraphic sections. The methodology employed for each of the dating techniques used is 

discussed below. 

3.6.1 AMS ''•C datmg 

Previous studies have shown the usefialness of AMS '''C dating in sea-level studies (e.g., 

Gehrels, 1999; Gehrels et al., 1996, 2002; Tomquist et al., 1998). Targeting small, 

horizontally embedded plant fragments allows the precise dating of the former land surface 

and minimises the possibility that the samples are reworked. Cores and monolith sections 

were therefore meticulously dissected cm by cm to obtain datable material to meet the 

following objectives: 

1. To establish a chronology for a master section from which a high resolution diatom 

record is established. The record will be used to test the replicability of the 

reconstruction of core KE2 (HOLSMEER master core section) 

2. To date key sfratigraphic units including the black layer and the sand layer 

3. To provide additional (older) compaction free sea-level index points derived from 

basal peat. 

For the core sections, each core was dissected cm by cm alongside sampling for diatoms, 

particle size and LOI. All monolith sections were sliced along their longest (height) axis. 

One section was retained for fixture use whilst the other section was meticulously dissected 

and examined for suitable dating material. To avoid in-situ roots and horizontal 

Phragmites rhizomes, only plant fragments that were clearly broken, detrifral in nature, 

and away from the edges of the core or monolith were sampled. All datable material was 

careftilly removed and washed with distilled water. The material was examined, when wet, 

under a low power microscope to check for contamination by vertical rootlets. Any visible 

rootlets were carefully removed with tweezers. The datable material was then dried at 
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40°C, weighed and stored in plastic, airtight vials at 4 °C to inhibit microbial decay. A 

complete inventory of all datable material found in the sediments is presented in Appendix 

4. 

A total of 26 samples were selected for analysis (Table 5.2), based on sample weights and 

the degree to which they met the above objectives, and were fiirther prepared at the NERC 

Radiocarbon Laboratory, East Kilbride. A fiirther 18 samples were previously analysed at 

the AMS '''C Dating Laboratory, University of Arhus, Denmark as part of the 

HOLSMEER Project (Table 5.1). A visit was made to the Radiocarbon Laboratory, East 

Kilbride (January 2006) to assist with the preparation of the samples. Samples were 

digested in 2M HCL at 80°C for 8 hours, washed with deionised water, dried and 

homogenised. The total carbon was recovered as carbon dioxide (CO2) by heating with 

copper oxide (CuO) in a sealed quartz tube. CO2 was then converted to graphite by 

iron/zinc (Fe/Zn) reduction. Samples were analysed at the Scottish Universities 

Environmental Research Centre (SUERC) AMS Facility for "'C analyses. The '''C ages 

were calibrated to calendar ages with CALIB version 5.0.2 (Stuvier et al., 2005), using the 

non-marine INTCAL04 calibration curve (Reimer et al., 2004). The age-depth models 

derived fi-om these dates are presented in Section 8.7. 
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3.6.2 OSL dating 
The presence of the buried sand unit, identified in many of the coring transects, provided 

an opportunity to sample material for OSL dating. Samples were taken in locations where 

the sand unit was clearly exposed and easily accessible. A total of four samples were taken 

for OSL dating in two locations, at Rogel and Oksby Enge. The location, core depth and 

stratigraphic context of these samples are summarized in Table 5.3. Three of these samples 

were taken in order to provide constraints on the age of the buried sand unit. The fourth 

sample, from the basal sand at Oksby Enge, was taken to provide an estimate of the age of 

this unit and to provide a maximum age for the overlying basal peat. 

Two plastic tubes were driven horizontally into the exposure at each of the locations and 

depths specified (Figure 3.5). Samples were taken in duplicate to ensure enough material 

was available for processing. The depth of each sample was measured from the salt-marsh 

surface down to the centre of the tube. The tubes were removed by carefully digging away 

at the surrounding material. Both ends of each tube were sealed quickly with black duct 

tape to ensure as little light as possible entered the tube. The samples were labelled clearly 

with a location identifier, depth, date and the direction in which the tube was driven into 

the exposure. This last label was important for determining which end of the tube had 

received the greatest exposure to light. Samples were kept in cool, dark conditions to 

inhibit microbial decay. Once back in the UK, samples were refrigerated at 4°C until 

needed for analysis. Samples were prepared and analysed at the Nordic Laboratory for 

Luminescence Dating, Roskilde, Denmark. A detailed discussion of the preparation and 

analysis techniques used can be found in Murray and Olley (2002) and Madsen et al. 

(2005, 2006) and is not repeated here. 
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Figure 3.5. OSL sampling tubes in position in the cliff exposure at Oksby Enge (Sample 
number 4, Table 5.3). 

3.6.3 Lead-210 dating 

One of the most widely used methods to date recent sediments (0-150 years), is '̂''Pb 

(Appleby, 2001). This technique is considered most reliable in environments with uniform 

sediment accumulation rates. However, several studies have successfully used '̂''Pb dating 

on cores from salt marshes where non-uniform accumulation rates often prevail (e.g., 

Gehrels et al., 2002, 2005; Pedersen, 2004; Horton et al., 2006). The artificial 

radionuclides '̂ ^Cs and ^'"Am are often measured alongside ^'°Pb. Cesium-137 is derived 

both from atmospheric nuclear weapons testing during 1953-63, and from the Chernobyl 

accident in 1986 (Appleby, 2001). Americium-241 is derived from atmospheric nuclear 

weapons testing during 1953-63 (Appleby, 2001). Measurement of these two artificial 

radionuclides often provides additional chronological control on sediment cores (Appleby, 

2001). 

^'°Pb, '•'̂ Cs and ^'''Am age estimates were obtained from Ragel monolith to integrate with 

'•̂ C and OSL dates obtained from this same core (Sections 3.6.1 and 3.6.2). The upper 0.18 

m of this section were carefiilly sliced at 0.5 cm resolution. Sampling did not extend below 

this depth due to the presence of the sand layer. Coarse-grained material such as sand is not 

considered suitable for use in '̂"Pb dating due to the increased mobility of isotopes in these 
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sediments. The 0.5 cm sampling resolution was selected since only a relatively small 

section of sediment was to be analysed (0 - 0.18 m). It was important to have a large 

enough number of samples between these depths from which to construct a reliable decay 

curve of ^'°Pb activity. 

Each 0.5 cm slice was placed flat on a piece of paper and a sub-sample with a known area 

was removed for ^'°Pb dating. The samples were then dried at 40 °C, weighed and ground 

into a coarse matrix. The dried samples were analysed for ^'°Pb, Radium-226 (̂ ^̂ Ra), '̂ ^Cs 

and Am by direct gamma assay at the Liverpool University Environmental Radioactivity 

Laboratory, using Ortec HPGe GWL series well-type coaxial low background intrinsic 

germanium detectors (Appleby et al., 1986). Following three weeks storage in sealed 

containers to allow radioactive equilibration, Pb was determined via its gamma 

emissions at 46.5 keV, and ^̂ R̂a by the 295 keV and 352 keV y-rays emitted by its 

daughter isotope, '̂''Pb. '̂ ^Cs and Am were measured by their emissions at 662 keV and 

59.5 keV respectively. The absolute efficiencies of the detectors were determined using 

calibrated sources and sediment samples of known activity. Corrections were made for the 

effect of self-absorption of low energy y-rays within the sample (Appleby et al., 1992). 

The age-depth models derived from these chronologies are presented in Section 8.7. 
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3.7 Diatoms 

The following section describes the techniques used in the sampling, preparation, counting 

and analysis of diatom samples from both modem and fossil samples. Statistical techniques 

employed to analyse the modem diatom and environmental data are discussed in Section 

3.8. 

3.7.1 Diatom Sampling 

Before sampling, all samples, cores and monolith sections were checked for signs of 

oxidation and microbial decay. This was a particularly important check since microbial 

decay could greatly affect the diatom counts obtained. In general, the samples were well 

preserved and no signs of decay were noted. For the surface samples, the top I cm of each 

surface sample was used for diatom analysis and any surface vegetation was carefiilly 

scraped away using a knife. For the core samples, all cores were cleaned prior to any 

analysis being undertaken. Approximately 0.5 g of wet sediment was used for each diatom 

sample. Initial test preparations showed that this weight would result in optimal diatom 

concentrations. A second sub-sample of approximately Ig in weight was taken alongside 

each of the diatom samples from which to establish soil moisture and calculate the dry 

weight of sediment used. To analyse diatom assemblages in the palaeoenvironment, cores 

and monolith sections were sampled for diatoms to meet the following objectives: 

1. To establish a high-resolution diatom record from one master core section to 

compare with the existing record from core KE2 (analysed for diatoms as part of 

the HOLSMEER Project) 

2. To provide samples from the upper core sections of Bredmose and R0gel to 

correlate with ^'°Pb dates 

3. To provide water-level relationships (the 'indicative meaning') for horizons from 

which datable material was obtained 

4. To establish the palaeoenvironmental conditions of the black layer. 
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Sub-sampling strategies and rationale 

Initially, diatom samples were taken at 8 cm resolution from cores and monolith sections at 

Rjatgel (R0I) and Oksby Enge (OEB5 and OEA) to gain an understanding of the diatom 

changes occurring over a fairly wide spatial scale. These three sections were selected for 

initial diatom analysis since they contained the most abundant material for radiocarbon 

dating (Section 3.6.1). They were therefore the most likely core sections from which to 

obtain a robust chronology to accompany the diatom changes. Following initial analyses, 

higher resolution sub-sampling was conducted on several core and monolith sections and is 

described and justified below. 

Kegel 

Rogel core R01 was selected as the master core section from which to obtain a high 

resolution diatom record. Although initially selected as the master section whilst in the 

field, core R01 was confirmed as a suitable master section after initial investigations and 

for the following reasons: 

1. The skeleton diatom stratigraphy (8 cm resolution) showed interesting changes in the 

abundance and presence of several diatom taxa, especially in the upper 0.80 m of the 

core 

2. Core R01 contained the most abimdant material for radiocarbon dating from which a 

robust chronology could be constructed. 

Diatom samples were taken at 1 cm resolution throughout the entire core section down to a 

depth of 2.22 m. Samples from the upper 0.5 m were taken from Rjagel monolith. Between 

0.19 and 0.33 m core depth, the sand unit was not well preserved. Pilot samples taken from 

the sand unit at this and at other locations, suggested that diatoms were not preserved and 

most samples were barren. 
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Bredmose 

Core BR9 from the salt marsh at Bredmose was analysed for diatoms to meet two 

objectives: 

1. To provide a high resolution diatom record from the upper core section to 

correlate with existing •̂ '̂ Pb dates 

2. To establish the palaeoenvironmental conditions of the black layer. 

To meet the first objective, diatom samples were analysed at 1 cm resolution in the upper 

0.30 m of the core. The black layer in this core is 3 cm thick and extends from 0.755-0.785 

m core depth. To investigate the palaeoenvironmental conditions of the black layer and 

meet the second objective, samples were analysed at 1 cm resolution from 0.74 - 0.82 m 

core depth, and then at 2 cm resolution down to 0.88 m core depth. Three samples were 

analysed from the black layer itself, three from the clay unit below the black layer and two 

from the clay unit overlying the black layer. These samples served as early pilot samples 

for determining the nature of the black layer and assessing the potential for diatom 

preservation (Gehrels et al., 2006a). 

Additional Diatom Samples 

For depths from which radiocarbon dates were obtained (Table 5.2) additional samples 

were also taken for diatom analysis. The purpose of these samples was to establish the 

water-level relationship (the 'indicative meaning') of the sediment, using the modem 

diatom fraining set. The determination of the indicative meaning of each of these samples 

is discussed in Section 8.5. 
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3.7.2 Preparation of samples for diatom analysis 

Diatom samples were prepared for microscope analysis according to a modification of 

standard procedures described by Palmer and Abbott (1986) and Battarbee et al. (2001). 

The method followed is outlined in Figure 3.6. Modifications to the standard method were 

made following initial experimental preparations. Some samples, particularly those from 

Moserva, were found to be highly reactive to hydrogen peroxide (H2O2). In these cases it 

was necessary to use 6% H2O2 rather than the 30% H2O2 as outlined in the standard 

method. The addition of deionised water in between stages resulted in a much 'cleaner' 

solution being produced. Once added, the deionised water was left to completely settle 

before being removed. The use of a centrifuge was avoided in processing to prevent fiirther 

breakage of diatom valves. Early pilot samples suggested that this may be a problem for 

some core sections (Chapter 6). 
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Sub-sample 

Addition of 30% H^O, 
Samples heated on hotplate 

until all organic material removed 

Sample reacted violently? 

No 

Coarse organics remaining? -

No 

Once cooled and settled, 
excess HjO^ removed by pipetting 

Yes 

Yes 

•ionised water added, 
samples left to settle overnight. 

Excess water removed by pipetting 

Addition of 10%HCI 
Samples heated on hotplate 

Once cooled and settled, 
excess HCI removed by pipetting 

Dionised water added, 
samples left to settle overnight. 

Excess water removed by pipetting 

Dionised water added 
to give measured volume 

Sample ready to be mounted on slide. 

Sub-sample retaken and processed using 6% H^Oj 

Sample sieved through 500 nm sieve 

Figure 3.6. Summaiy of the stages used in the preparation of samples for diatom analysis. 
Method is adapted from standard procedures described by Palmer and Abbott (1986) and 
Battarbee etal. (2001). 

58 



Chapter 3 Methodology 

Slide Preparation 

A measured volume of each prepared diatom suspension was carefiilly dropped by pipette 

onto a clean cover slip. The remaining cover slip volume was made up with water. For 

each sample, two different concentration cover slips were made up; one at a relatively high 

concentration, and the other at a lower concentration, to minimise the need to make up 

additional slides. The samples were left to settle and allow the water to evaporate at room 

temperature. This method is preferable to evaporating the cover slips using heat, since it 

usually results in a more even spread of diatoms across the cover slip. To avoid dust 

contamination during settling, the cover slips were moved into a fume cupboard. When 

dry, the cover slips were mounted using Naphrax® resin. One drop of Naphrax® was 

placed at both ends of a slide and was heated at approximately 130 C for 15 minutes to 

drive off the toluene. The two cover slips were then inverted and placed onto the 

Naphrax® at each end of the slide. Once cool, each slide was checked to ensure that the 

cover slip did not move and labelled with a sample number, the cover slip concentrations 

and a date. All slides were then examined under the microscope to ensure that the 

concentration of diatom values on the cover slip was appropriate for counting. 

3.7.3 Diatom identification and taxonomy 

Diatoms were identified, where possible, to species and sub-species level under a light 

microscope using oil immersion at 1 OOOx magnification and brightfield illumination. Both 

Olympus CH30 and Olympus BH2 models were used in counting. The image analysis 

system, AnalySIS®, was used to aid taxonomic work and images were taken via this 

system for fiiture reference using a Leica DC 100 camera attached to an Olympus BX-50 

microscope. Additionally, an Olympus camera attached to the BH2 microscope was used 

to obtain 'still' black and white images of some diatom species. The primary identification 

references and floras consulted included: Van der Werff and Huls (1957), Round et al 

(1990), Krammer and Lange-Bertalot (1991a, 1991b, 1997a, 1997b) and Hartley (1996). 

Taxonomy follows Krammer and Lange-Bertalot (1991a, 1991b, 1997a, 1997b) as this was 

the primary flora consulted. The Automatic Diatom Identification and Classification 

(ADIAC) and the European Diatom Database (EDDI) websites were consulted as 

additional resources. Drs Nigel Cameron and Viv Jones (ECRC, UCL) assisted with 

taxonomy early on in the project. The diatom data from Kjelst Enge was analysed by Dr. 

Jason Kirby (John Moores, Liverpool). Several taxonomic sessions were organised with Dr 

Kirby to ensure identification, taxonomy and counting techniques (see below) were 
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comparable before these data were integrated with that produced by this study. Drs. Jason 

Kirby and Sue Dawson (St Andrews) assisted with identification of difficult diatom taxa. 

Salinity classifications follow the halobian scheme of Hustedt (1953; 1957). The Hustedt 

scheme is used here because of its relative simplicity and to ensure consistency with other 

recent diatom-based sea-level studies (e.g., Zong and Horton, 1998; Hamilton and 

Shennan, 2005). 

3.7.4 Counting Tecliniques 

The number of valves to be counted varies greatly with the type of analysis (Battarbee et 

al., 2001). To determine the appropriate number to count, the relationship between the 

number of taxa, the number of valves and the species number change was explored for 

several samples (following Battarbee, 1986). This experiment was conducted on samples 

from both the modem and palaeoenvironment to ensure an appropriate number of valves 

were counted. Whilst marked differences in the percentages between a count of 100 and 

200 valves were noted, between 200 and 300 valves the percentages were found to level 

off. As a large number of high resolution samples were counted for this study, a relatively 

low count of 300 valves was considered sufficient to account for the variation in the 

diatom data. This number is commonly used in similar mudflat, salt marsh and coastal 

shadies (e.g., Zong, 1997; Patterson et al., 2000; Gehrels et al., 2001; Sawai, 2001; Trites et 

al., 2005; Sawai et al., 2004). 

A representative proportion of each cover slip was examined by counting individual fields 

of view along continuous fraverses, ensuring equal edge and cenfre sections of the cover 

slip were examined. Each single valve was considered as one counting unit and complete 

fiiistules were counted as two (Battarbee et al., 2001). Diatom preservation was found to 

be highly variable with many broken valves present. A robust and consistent counting 

methodology was developed to deal with these broken fragments after several 

experimental counts. All fragments that included the cenfre part of the valve were counted 

as one. For taxa which do not possess recognisable cenfres (e.g., some Nitzschia species), 

fragments where at least 60% of the valve was present were also counted as one. Al l 

smaller fragments were ignored, although this was somewhat subjective. For example, the 

species Campylodiscus echeneis is usually only found in small fragments, and very rarely 

found as a whole valve, because of its size. For this species, and a few others, it was 

necessary to count fragments smaller than 60%) of the total valve size otherwise some 
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important indicators would have been excluded from the counts. Any double or multiple 

counting of such species would also be replicated in the fossil counts. The counting 

methodology adopted was consistent with that employed by Dr. J. Kirby who counted the 

Kjelst Enge diatom samples. 

No systematic distinction between allochthonous (fransported) and autochthonous {in-situ) 

taxa are made during counting in this study. The distinction between locally produced and 

fransported taxa poses a major problem in the use of diatoms in palaeoecological research, 

especially in the case of high energy coastal environments (Brockmann, 1940). 

Assumptions for this investigation initially followed those of Zong (1997), who argued that 

since a mixture of both allochthonous and autochthonous valves occurs in sediments that 

accumulated in the palaeoenvironment, their presence in modem samples can be 

considered less significant. However, in this study allochthonous taxa present several 

problems. These issues are fiirther explored in Chapters 6, 7, 8 and 9. 

3.7.5 Presentation of diatom data 

Diatom data were graphically displayed using a combination of two computer packages: 

TILIA (version 2.0.2, Grimm, 2004), and Ĉ  (version 1.4.2, Juggins, 2003). Diatom counts 

are expressed as percentage relative abundance. Only taxa which had a maximum relative 

abundance of at least 3% or 5% are presented for each location to ease visual 

interpretation. 

3.7.6 Diatom zonation 

For both the modem (Chapter 4) and core material (Chapter 6), diatom assemblage zones 

were identified using incremental sum-of-squares cluster analysis (CONISS; Grimm, 1987) 

based on a square-root fransformation of data (Edwards and Cavalli Sforza's chord 

distance). In the case of frequency data, such as that used in this investigation, this 

fransformation increases the weights of rare variables relative to abundant ones (Grimm, 

1987). Such a data fransformation assists in stabilizing variances and is often applied to 

percentage data sets with a high number of variables (Prentice, 1980). Unconsfrained 

cluster analysis was applied to the surface samples to establish diatom assemblage zones. 

Sfratigraphically consfrained cluster analysis was applied to the biosfratigraphical data 

from the cores. In order to minimise the effects of rare taxa, the cluster analysis excluded 

all taxa where relative abundances are < 1%. 
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3.8 Statistical Analysis 

The following section details the various statistical methods employed in the analysis of 

the modem diatom and environmental data. 

3.8.1 Inclusion of samples 

The following samples were excluded from the data set before any statistical analysis due 

to insufficient diatom counts: M014, LNl , LN7, LN8, LN20, LSI, LS2, LS3, LS20, LS22, 

LS24 and LS26. Sample LN05 was also excluded before any statistical analysis since no 

particle size data was obtained for this sample (Section 4.2). Samples were excluded from 

both the diatom and environmental data. The twenty-seven samples from Kjelst Enge, 

where only three environmental variables were measured (elevation, pH and salinity), were 

included in the initial analysis (normality tests. Spearman's Rank) of environmental 

variables. Two data sets were analysed in the ordinations: the first data set (hereafter 

referred to as DataSetA), excluded the Kjelst Enge samples and contained six 

environmental variables measured from five transects (elevation, pH, salinity, LOI, 

CaCOs, sand, silt, clay). The Kjelst Enge samples were excluded from this data set as only 

three environmental variables were measured along this fransect and the analysis could not 

be performed on variables with absent values The second data set (hereafter referred to as 

DataSetB), contained samples from all six fransects (127 samples) but only three 

environmental variables (elevation, pH and salinity). The samples and environmental 

variables included in each of these data sets are summarised in Table 4.2. 

3.8.2 Inclusion of species 

Previous studies have shown that rare species need to be removed from a data set before 

any analysis is carried out (Patterson and Fishbein, 1989; Fishbein and Patterson, 1993; 

Patterson et al., 2005). In coastal environments, species with relative abundances of < 1% 

are likely to be allochthonous (fransported) taxa and are not often used in interpretation 

(Nelson and Kashima, 1993). Commonly, coastal type studies often employ a 3 or 5% cut

off (Roe, pers. comm.). However, early experimentation with a 2, 3 and 5% cut-off level in 

this study resulted in a significant loss of biological information and an increased number 

of fossil taxa with no modem analogue. For these reasons a 1% cut-off level was 

employed. Individual samples which contain rare taxa (i.e. where a species may only be 

present in one sample) can also significantly distort the analysis (Hill, 1979). Diatom taxa 

62 



Methodolosv Chapter 3 

were therefore included in ordinations i f a) their relative abundance was > 1%, and b) the 

species was present in more than one sample. 

3.8.3 Correlations between environmental variables 
Within any large data set, environmental variables commonly show a high degree of inter-

correlation with one another resulting in redundancy in the data set (Birks, 1995). Prior to 

the implementation of any ordination techniques, the degree of intercorrelation between 

environmental variables was assessed using a correlation coefficient. A Pearson product-

moment correlation coefficient matrix is commonly employed when exploring 

environmental data and developing diatom training sets (e.g.. Hall and Smol, 1992; Jones 

et al., 1993; Ng and Sin, 2003; Trites et al., 2005). However, a prerequisite of this test is 

that the environmental data are normally distributed (Kent and Coker, 1992). 

Tests for normality were conducted on all eight environmental variables measured in 

MINITAB® Release 14, using the Anderson-Darling normality test. In this test, the null 

hypothesis (Ho) states that the data follow a normal distribution. Where p-values were less 

than a rejection level of 0.05 (95% confidence), the null hypothesis was rejected and the 

data were assumed not to be normally distributed. Normality tests for elevation, pH and 

salinity included the samples from Kjelst Enge. 

The majority of environmental variables tested did not show a normal distribution (Table 

4.3). Several attempts were made to obtain normal distributions by fransforming the 

variables, but most still did not obtain normality (Table 4.3). For this reason correlation 

coefficients in this study were calculated using a Spearman's Rank correlation coefficient, 

which does not require data to be normally distributed, instead of the more commonly used 

Pearson's correlation coefficient. Spearman's Rank correlation coefficients were 

subsequently calculated between pairs of environmental variables using MINITAB®. A 

scatter plot matrix showing relationships between environmental variables was constructed 

to enable visual interpretation of the relationships. The results are presented in Section 

4.5.2. 
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3.8,4 Ordinations 

Ordination techniques provide an objective way in which to examine species and 

environmental data. They aim to identify variability in the biological composition of 

samples and to visualise this variability in the form of a diagram (an ordination diagram) 

(Leps and Smilauer, 2003). With the addition of environmental variables, constrained 

ordination can be used to identify the variability in biological composition that is explained 

by these variables (Leps and Smilauer, 2003). The ordination techniques employed in this 

study included: Principal Components Analysis (PCA), Detrended Correspondence 

Analysis (DCA), Canonical Correspondence Analysis (CCA) and Detrended Canonical 

Correspondence Analysis (DCCA). hi all ordinations, Monte Carlo permutation tests were 

run using restricted permutations (499 permutations under a restricted model), to account 

for the spatial structure that results from sampling along line transects (J. Birks, pers 

comm). All ordinations were performed using the computer programme CANOCO version 

4.51 (ter Braak and Smilauer, 2003). Ordination diagrams were plotted using 

CANODRAW version 4.1 (Smilauer, 1999- 2003). 

Data Screening 

Any large ecological data set is likely to contain redundant environmental information, 

anomalous samples and environmental variables which do not exert an independent 

influence on diatom distributions (Birks et al., 1990a). Before implementation of the final 

ordinations, several preliminary ordinations were performed to identify and subsequently 

eliminate these data. In this study the data screening process consisted of three stages: 

a) PCA was used to highlight and subsequently eliminate samples with extreme 

environmental characteristics 

b) DCA were used to identify anomalous or 'outlier' samples with unusual species 

assemblages. 

c) CCA was used to identify redundancies in environmental information and to 

eliminate environmental variables which did not exert an independent influence on 

diatom distributions. 

The above data screening process follows the methodology commonly employed in 

palaeolimnology studies (e.g., Birks et al., 1990a; Hall and Smol, 1992; Jones and Juggins, 

1994; Ng and King, 1999; Burgess, 2004). As yet there are few examples of such a 
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thorough screening process being used when developing training sets in the coastal 

environment, particularly when developing models to reconstruct relative sea-level change. 

Some notable exceptions include the work of Ng and Sin (2003) and Charman et al. 

(2002), where several aspects of this screening process were implemented. A thorough 

screening process is important because outlier samples and redundant environmental 

information can significantly distort the species-environment relationships. 

Principal Components Analysis (PCA) 

PCA is an indirect (unconstrained) gradient technique and was used in this study to 

summarise environmental information and to highlight samples with extreme 

environmental characteristics. Whilst PCA is no longer recommended as an ordination 

technique with which to examine the variation in species data, it is still widely used as a 

method to synthesise environmental information (Kent and Coker, 1992). Standardised 

PCA was performed on a correlation matrix, obtained by centering and standardisation of 

the environmental data. The results of PCA and the subsequent removal of outlier samples 

based on these results are presented in Section 4.5.3. 

Detrended Correspondence Analysis (DCA) 

Detrended Correspondence Analysis (DCA) (Hill, 1979) is an indirect (unconstrained) 

gradient technique, and was used in this study to reveal major patterns in the diatom 

species data, to highlight anomalous or 'outlier' samples and to determine whether linear 

or unimodal methods were suitable for fiirther exploration of the modem training set. DCA 

aims to overcome problems such as the 'arch' or 'horseshoe' effect (Kendall, 1971; Gauch 

et al., 1977), and the distortion of ordination axis (Hill and Gauch, 1980), associated with 

earlier methods. DCA is generally considered an improvement on other indirect ordination 

techniques such as CA, although it is not without criticism (e.g., Dargie, 1986; Wartenberg 

etal., 1987). 

DCA was performed using detrending by segments with no species transformation. Rare 

taxa were down weighted in proportion to their frequency (Hill and Gauch, 1980). 

Detrending by segments, considered as inappropriate by some authors (e.g., Wartenberg et 

al., 1987; Knox, 1989) was used here in preference to defrending by polynomials since no 

environmental variables were present in the analysis. The results of DCA can be used to 

indicate whether linear or unimodal methods of direct gradient analysis are suitable for 
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exploration of the species-environment relationships within the data set. Where gradient 

lengths are short, < 3 standard deviations (SD), linear models are usually used. Where 

gradient are long (> 4 SD), unimodal methods are usually more appropriate (Leps and 

Smilauer, 2003). In this study, gradient lengths of > 3 SD have been taken to indicate the 

suitability of unimodal direct gradient analysis techniques. The results of DCA and the 

subsequent removal of outlier samples based on these results is presented and detailed in 

Section 4.5.3. 

Canonical Correspondence Analysis (CCA) 

DCA axis one gradient lengths of 3.342 and 3.065 SD for the two data sets analysed 

(Tables 4.7 and 4.16) indicated that most species responses can be approximated with a 

unimodal model. The unimodal ordination method of CCA was therefore chosen to explore 

the species-environment relationships within the two data sets. CCA (ter Braak, 1985; 

1986; 1987b) is a direct (constrained) gradient analysis technique which is used to analyse 

the variability in species composition that can be explained by the measured environmental 

variables (Leps and Smilauer, 2003). CCA was performed with a focus on inter-species 

distances and Hills' scaling. Hills' scaling was chosen in preference to biplot scaling 

because of the longer gradient lengths established by the DCA (Jongman et al., 2002; Leps 

and Smilauer, 2003; ter Braak and Smilauer, 2002). In this study CCA was initially applied 

to the data sets as a screening exercise to i) remove outlier samples with environmental 

variables which had extreme influence or 'leverage'(Montgomery and Peck, 1982) ii) to 

identify and exclude environmental variables which did not exert an independent influence 

on diatom distributions and iii) to eliminate any redundancies in environmental 

information. 

An initial CCA was run on both of the full data sets. Outlying samples, identified through 

PCA and DCA, were excluded from the CCA ordinations. Samples with environmental 

variables with extreme influence or 'leverage' (Montgomery and Peck, 1982) were 

detected based on the results of this initial CCA. Any sample with > 5x the average 

influence in the CCA was considered to be outlying (Birks et al., 1990a, 1990b). Following 

the initial CCA, the screening process to remove environmental variables consisted of the 

following stages: 
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1. Constrained CCAs 

A series of constrained CCAs were run to identify and subsequently exclude any 

environmental variable which did not exert an independent and statistically significant 

influence on diatom distributions (ter Braak and Smilauer, 2002). Constrained CCAs were 

run for each environmental variable in tum. Variables with high eigenvalue ratios between 

axes 1 and 2 (hl'^i), were considered more important in explaining the variance in the 

species data. Variables were removed from subsequent analyses if they showed no 

independent influence over diatom distributions (p > 0.05). 

2. Intercorrelation between envirormiental variables 

Intercorrelations between environmental variables were initially identified from a 

Spearman's Rank correlation matrix (Table 4.4). Examination of the inter-set correlations 

between the variables and the ordination axes, and the information gained from the 

Spearman's Rank correlations, was used to identify a subset group of variables to be tested 

in a partially constrained CCA. Highly intercorrelated variables, which also showed high 

correlation with axis one, were selected in this subgroup. 

3. Preliminary CCA with automatic forward selection 

A preliminary CCA was mn using automatic forward selection to determine which of the 

environmental variables in the group (identified through step two above), was most 

important for explaining the amount of variance in the diatom data. This environmental 

variable was then used in step four as a representative of that group of correlated 

environmental variables. 

4. Partially constrained CCAs 

A series of partially constrained CCAs was mn to determine i f other environmental 

variables in the intercorrelated correlated group exerted an independent influence on 

diatom distributions. The environmental variable identified in step three was used as the 

sole environmental variable in a partially constrained CCA. Correlated environmental 

variables were then entered in tum as sole covariables. The significance of the first 

canonical axis was tested (p = < 0.05, with 499 permutations imder a reduced model, 

restricted for spatial stmcture (Birks, pers. comm.)). Any covariable not exerting an 

independent influence of diatom distributions was subsequently removed from the 

analysis. 
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5. Examination of variance inflation factors (VIFs) 

As a final screening measure, VIFs were examined from the results of the final CCA. High 

VIFs are an indication of multicoUinerarity among environmental variables (ter Braak and 

Smilauer, 2002). VIFs with a value > 20 indicate that the environmental variable is nearly 

perfectly correlated with other environmental variables and should be removed from the 

analysis (ter Braak and Smilauer, 2002). Variables with VIFs < 20 were deemed to have 

stable canonical coefficients and merited interpretation (ter Braak, 1986). 

6. CCA with manual forward selection 

Following the data screening process, a final CCA was run using manual forward selection 

to identify a final subset of variables that explained a statistically significant amount of 

variation in the diatom data. The statistical significance of each variable was tested in tum. 

Variables that were statistically significant (p < 0.05), were added to the model in tum. 

7. Variance Partitioning 

The relative strengths of the major gradients in the final CCA were explored using a series 

of partial CCAs (Borcard et al., 1992). Partial CCAs were used to determine the proportion 

of explained variance that was attributed to each of the remaining environmental variables. 

The use of partial CCAs also allowed determination of the amount of covariance between 

remaining variables. Variables explaining high, independent and significant proportions of 

variance in the diatom data were deemed suitable variables from which to develop diatom-

based fransfer fiinctions. 

Detrended Canonical Correspondence Analysis (DCCA) 

Following a through exploration of the modem environmental and species data, DCCA (ter 

Braak, 1986, 1987b), was used to determine which type of models, linear or unimodal, 

were most suitable to use in subsequent fransfer fiinction development. The methodology 

used is discussed m detail in Section 7.5. 

3.9 Chapter Summary 

This chapter has detailed the various methods used throughout this investigation in the 

collection, processing and subsequent analysis of material and samples. The next section of 

this thesis presents the results of these investigations, firstly from the modem salt-marsh 

environment (Chapter 4), and secondly from the palaeoenvironment (Chapters 5 and 6). 
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Chapter 4 

Modern salt-marsh environments 
Having detailed the methodology used throughout this study in the previous chapter, this 

chapter presents results from the analysis of modem diatom assemblages and associated 

environmental variables. The chapter begins with a description of the topography and 

vegetation of the salt marsh at each of the six transects locations investigated. Results of 

the analysis of a number of environmental variables are presented alongside modem 

diatom data from each fransect location. The vertical zonation of diatom species with 

respect to the tidal frame is tested via the use of unconsfrained cluster analysis, fri the 

second part of this chapter, the relationship between diatom species and environmental 

variables is explored through the use of several ordination techniques. 

4.1 Modern salt-marsh environments 

A total of six modem fransects were investigated across the salt-marsh surface from 

locations within Ho Bugt as detailed in Chapter 3 (Figure 3.1). A description of the marsh 

surface topography and vegetation zonation at each fransect location is given below. 

Transects are described in a north - south direction. Examples of the vegetation types 

identified along each fransect are shown in Figure 4.1. Marsh surface topography, 

vegetation zonation and tidal levels are illustrated in Figures 4.2 - 4.4. 

Kjelst Enge (Figure 4.2a) 

At Kjelst Enge, the topography of the marsh is flat and varies between +0.7 and +1.9 m 

DNN. A levee-like feature is found where the high marsh reaches its seaward extent. 

Seaward of the 'levee' the low marsh slopes steeply down to the tidal flat. The high salt 

marsh is dominated by the vascular plants Agrostis stolonifera, Festuca rubra, Armeria 

maritima and Cochlearia officinalis. Salicornia spp. and Spergularia spp. are found in the 

low marsh. Stands of Carex spp. occur in the low marsh as a result of freshwater drainage 

from a nearby channel. 

Moserva (Figure 4.26) 

At Moserva, the marsh surface lies between +1.9 m and +2.7 m DNN. The landward extent 

of the marsh is marked by transition to scmbland. The marsh is bounded at the seaward 

extent by the Storbcek drainage channel. The marsh surface slopes gently down towards the 

drainage channel. The marsh is dominated by the common reed, Phragmites australis. 
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High marsh grasses such as Agrostis stolonifera and Festuca rubra are found mixed with 

Phragmites australis along the entire Moserva transect, except its uppermost part. 

Storbcek (Figure 4.3a) 

The marsh surface at Storbask lies between +1.34 and +1.46 m DNN. At the landward 

extent, the salt marsh is bounded by a steep rising gradient, linked to the Holocene dune 

ridges which lie immediately to the west. The seaward extent of the marsh is again 

bounded by the Storbask drainage channel. At high elevations the marsh is dominated by a 

large expanse of Phragmites australis. At slightly lower elevations, where more moisture 

is present, Juncus gerardi and Juncus effusus are found. Grasses such as Agrostis 

stolonifera and Festuca rubra dominate the seaward extent of the marsh. 

Oksby Enge (Figure 4.3^0 

At Oksby Enge, the marsh surface lies between +2.2 and +1.25 m DNN. At the landward 

margin, the marsh is bounded by scrubland. At the seaward extent, the marsh borders onto 

the tidal flat and the transition is marked by a single erosional cliff Species such as the 

thistle, Cirsium palustre are found in the scrubland at the landward extent of the marsh. 

Phragmites australis is common at slightly lower elevations. Towards the seaward extent 

of the marsh, several grasses are dominant including Agrostis stolonifera and Festuca 

rubra. Patches of Juncus gerardi are found at lower elevations. 

Langli North (Figure 4.4a) 

At the northem end of Langli Island, the marsh surface lies between +0.23 and +1.76 m 

DNN. Marsh surface topography is fairly flat, although the gradient steepens with 

transition fi-om the middle to low marsh. On the low marsh, Spartina x towsendii and 

Spartina anglica (Pedersen, 1974; Bartholdy et al., 2004) is the dominant vegetation type 

alongside occurrences of Salicornia perennis and Puccinellia maritima. The middle marsh 

is characterised by species such as Limonium vulgare, Plantago maritima and Artemisia 

maritima. At the landward extent of the marsh, increasing occurrences of Halimione 

portulacoides are found. Here the salt marsh is bounded by a line of sand dunes. 
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Langli South (Figure 4.46) 

The marsh surface at the southem end of Langli Island lies between +0.67 and +1.78 m 

DNN. The marsh surface is again relatively flat. However, the topography is complicated 

by the presence of several major creeks which mn in an approximate east - west direction. 

Vegetation zones are very similar to those found on the north of the island and here also, 

the marsh is bounded at the landward extent by a sand dune ridge. 

Figure 4.L Examples of the types of salt-marsh vegetation identified along transects 
within the Ho Bugt embayment, a) Artemisia maritima and Limonium vulgare, Langli 
North, b) Cirsium palustre, Oksby Enge, c) Spartina towsendii, Langli South and d) 
Phragmites australis, Oksby Enge. 
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a) Kjelst Enge 
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Figure 4.2. Environmental variables measured along transect at a) Kjelst Enge and b) 
Moserva, alongside topography, tide levels and vegetation zones. Sampling locations are 
indicated. 
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a) Storbaek b) Oksby Enge 
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Figure 4.3. Environmental variables measured along transect at a) Storbaek and b) Oksby 
Enge, alongside topography, tide levels and vegetation zones. Sampling locations are 
indicated. 
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Figure 4.4. Environmental variables measured along transect at a) Langli North and b) 
Langli South, alongside topography, tide levels and vegetation zones. Sampling locations 
are indicated. 
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4.2 Environmental variables 

A total of six environmental variables were investigated along each of the modem transects 

sampled: elevation, pH, salinity (conductivity), LOI, CaCOs and grain size (sand, silt and 

clay fractions). For the Kjelst Enge fransect, which was sampled as part of the 

HOLSMEER Project, only elevation, pH and salinity were measured. All variables were 

successfiilly measured from all samples, at each of the transect locations unless otherwise 

stated. Results are described below and illustrated in Figures 4.2 - 4.4. Transects are 

described in a north - south direction. 

Kjelst Enge (Figure 4.2a) 

Along the Kjelst Enge transect, salinity ranges from 0.93 - 1.64 g/f'. Salinity is variable 

across the marsh with the highest salinity values found in the middle marsh. Towards the 

seaward extent of the fransect, salinity values are slightly lower. Values here are affected 

by the Storbcek drainage channel, which drains water from the higher marshes out into the 

Ho Bugt embayment. The pH ranges from 4.09 - 7.85 and is variable across the transect. 

Highest pH values are found at the very seaward end of the transect. 

Moserva (Figure 4.26) 

Salinity is very low across the marsh at Moserva, ranging from 0.02 - 0.51 g/l"' but 

increases towards the seaward extent of the transect. The pH ranges from 4.5 - 6.8 and is 

found to be highly variable across the fransect. The pH is lowest in samples from the 

Phragmites marsh and increases in the seaward direction. The percentage of organic matter 

(LOI) in the surface samples at Moserva varies from 15 - 65%. Lowest LOI values are 

found in samples from the Phragmites water marsh with values increasing in the seaward 

direction. The percentage of calcium carbonate (CaCOs) found in the surface samples, 

measured as a percentage of the original material, varies from 0.3 - 2 %. Lowest values are 

foimd in the high marsh. Grain size (sand, silt and clay fractions) varies greatly across the 

Moserva fransect. The surface sample which borders the scmbland environment is 

characterised by a high sand content (> 95%) and low silt and clay fractions. With 

movement seaward, the sand fraction decreases greatly and silt and clay fractions increase. 

The high marsh samples are characterised by high silt fractions (> 65%)). 
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Storbcek (Figure 4.3 a) 

Salinity across the Storbask transect ranges from 0.3 - 3.1 g/ l ' . Salinity is higher at the 

seaward extent of the transect. The pH ranges from 5.5-7.1. In general, values are lowest 

in samples from the high marsh and increase in the seaward direction. LOI is variable 

across the Storbaek fransect with values ranging between 25 and 39%. CaCOs varies from 

2.-3.4 %) and is also highly variable across the transect. Grain size analysis shows the 

surface sediments at Storbask to be predominantly composed of silts. The silt fraction 

accounts for at least 70% of the minerogenic matter in all surface samples. Sand content is 

variable across the fransect and the clay fraction is low in all samples (< 12%)). 

Oksby Enge (Figure 4.36) 

At Oksby Enge salinity ranges from 0.04 - 2.8 g/f'. In general, salinity values are higher 

towards the seaward extent of the transect. The highest salinity values are found in the 

middle marsh. The pH ranges from 4.9 - 7.0. Values fluctuate across the transect but are 

highest in the most seaward of the samples. LOI varies from 22 - 66%. Highest LOI values 

are found in the Phragmites marsh and the high salt marsh, with values decreasing in the 

seaward direction. CaCOs varies from 3 - 5%. The lowest CaCOs values are found in 

samples from the fresh water and high salt marshes. Grain size analysis shows that the 

surface sediments at Oksby Enge are predominantly composed of silts. Here, as is the case 

at Storbask, the silt fraction accounts for at least 70% of the minerogenic matter in all 

surface samples. 

Langli North (Figure 4.4a) 

At Langli North salinity ranges from 0.5 - 3 g/l''. Salinity is variable across the transect 

with the highest values foimd towards the seaward end. The pH ranges from 6-8.5. The 

highest values are found in the low marsh and values decrease towards the high marsh. 

LOI varies from 1.2 - 44%). Highest LOI values are found in samples from the high marsh 

and lowest LOI values (c. 4%) are found in samples from the low marsh and tidal flat. 

CaCOs varies from 0.7 - 5.3%). Values fluctuate greatly across the sah-marsh surface. 

Grain size at Langli North is highly variable across the fransect. At the seaward extent of 

the fransect, where samples border onto the tidal flat, surface sediments are composed 

predominantiy of sand (> 60% sand fraction). Samples from the high marsh, which border 

onto the sand dune ridge, also have a high sand fraction. In the high and middle salt 

marshes, samples are mainly composed of silt. Here, the silt fraction accounts for greater 
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than 70% of the minerogenic material in the surface samples. No particle size data is 

available for sample LN05. The quality control check on this sample suggested that the 

result was not reliable and so this sample has been excluded from the results and all 

subsequent analysis. 

LangU South (Figure 4.46) 

Salinity at Langli South ranges from 1 - 2.5 g/l"'. Salinity is variable across the fransect but 

values tend to be higher towards the most seaward end. pH is fairly consistent across the 

transect, ranging from 7.0 - 8.8%. LOI varies from 3 to 45%) and is highly variable along 

the fransect. The percentage CaCOs varies from 0.6 - 8.4%. In general, the highest CaCOa 

values are found on the low salt marsh and the tidal flat. Grain size at Langli South is 

highly variable across the fransect. Samples from the tidal flat are dominated by high sand 

fractions (> 50% sand fraction), with relatively low silt and clay fractions. High fractions 

of sand (> 45 %) are also found in samples from the high salt marsh, which borders onto 

the sand dune ridge. Samples from the middle marsh are dominated by high silt fractions 

(> 60%). 

Kjelst Enge MoservS Storbaek Oksby Enge Langli North Langli South 

Environment 
not presenl 

Cirsium palustre 

Phragmiles australis 

Environment 
not present Cirsium palustre 

Phragm'rtes australis 

Environment 
not present 

Environment 
not present Fresh water marsh 

Agrostis sto/ontfera 

Festuca rubra 

Umonium vulgare 

Armeria maritima 

Trigtocfjin maritima 

Phragmiles australis 

Agrostis stoionifera 

Fesluca rubra 

Phragmites australis 

Agnjstis stolonifera 

Juncus effeffusus 

Juncus gerardi 

Agnjstis siolonifera 

Festuca rubra 

Juncus gerardi 

Halimione portulacoides 

Artemisia marilima 

Plantago marilima 

Limonium vulgare 

... . 1 4 m PNN 

Halimione portulacoides 

Artemisia maritima 

Plantago marttima 

Limonium vulgare 

1 ? m nMM 

High salt marsh 

Saiicomia spp. 

Spergularia spp. 

Cerex spp. 

Not sampled Not sampled Not sampled 

Pucdnella maritima 

Salicomia perennis 

Spariina x townsendii 

Puccinelia maritima 

Saiicomia perennis 

Spartina x townsendii 

0 75 m PNN 

Low salt marsh 

Vegetation absent Not sampled Not sampled Not sampled Vegetation absent Vegetation absent Tidal flat 

Table 4.1. Marsh zones at each of the six fransects investigated, defined by vegetation 
type. The elevation of the fransition between tidal flat, low salt marsh, high salt marsh and 
fresh water marsh along each of the transects is indicated where applicable. These 'salt-
marsh zones' are referred to throughout the remainder of this thesis. See text for an 
explanation of marsh zones 'not sampled' at each transect location. 
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4.3 Modern Diatom Assemblages 

Modem diatom data from the six fransects investigated are plotted with respect to elevation 

and presented in Figures 4.5 - 4.16. The results of unconstrained incremental sum-of-

squares cluster analysis (CONISS; Grimm, 1987) are shown for each of the six fransect 

locations (Figures 4.5 - 4.16) and resulting diatom assemblage zones are illustrated using 

box plots. (Figures 4.5 - 4.16). Transects are described in a north - south direction. The 

location of each fransect is illusfrated in Figure 3.1. 

Kjelst Enge 

Modem diatom data from the salt marsh at Kjelst Enge are presented in Figure 4.5. 

Samples were analysed by Dr. J. Kirby as part of the HOLSMEER Project. A total of 95 

diatom taxa were identified across the salt marsh at Kjelst Enge, of which 62 taxa were 

found with relative abundances > 1%. All 27 surface samples analysed retumed fiill counts 

of between 250 and 300 diatom valves. In general, valve preservation was very good 

across the majority of the transect. 

The salt marsh at Kjelst Enge is dominated mainly by polyhalobous and mesohalobous 

taxa such as Achnanthes delicatula, Diploneis didyma and Delphineis surirella, indicative 

of a brackish to marine environment. Several of these taxa are also allochthonous 

(transported) and their occurrence in relatively high abimdances, especially at higher 

elevations may complicate the diatom signal. The oligohalobous - halophile taxon, 

Navicula cincta - type is also found in high abundances across this transect. Relatively few 

fresh water taxa, represented by the oligohalobous - indifferent group, are identified. At 

lowest elevations there is an increase in the abundance of species within this group. 

Navicula rhynchocephala is found with a relative abundance of > 15% in the two samples 

with the lowest elevation. This is somewhat surprising and the occurrence of this taxon at 

such low elevations may be linked to the proximity of these samples to the nearby Storbsek 

drainage channel. This channel drains fresh water from the higher salt marshes out into the 

Ho Bugt embajmient. 
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Figure 4.5. Modem diatom data from the saU-marsh at Kjelst Enge (analysist J.R. Kirby). Only species with > 3% relative abundance arc shown. 
Summary halobian preference only includes species with at least 3% relative abundance. 
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Figure 4.6. a) Results of unconstrained cluster analysis on the Kjelst Enge diatom data. 
Cluster analysis excludes all taxa where relative abundances are < 1%. b) Elevation range 
and dominant taxa of diatom assemblage zones, identified from unconsfrained cluster 
analysis. Halobian preferences of these taxa are indicated. P = polyhalobous, M = 
mesohalobous, OH = oligohalobous - halophile, 01 = oligohalobous - indifferent, H = 
halophobous. 
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Unconstrained cluster analysis divides the modem samples into four diatom assemblage 

zones (Figure 4.6a). The elevation range and dominant taxa in each zone are presented in 

Figure 4.6b. The diatom assemblages across the salt marsh at Kjelst Enge show some 

evidence of a vertical zonation. However, samples in zones two, three and four have very 

similar elevation ranges and no clear vertical zonation is apparent within these samples. 

This is most probably due to the presence of high abundances of allochthonous taxa in all 

of these samples. The zonation is also likely to be affected by the presence of the 

oligohalobous - indifferent taxon, Navicula rhynchocephala, in the lower marsh samples. 

It is clear from this analysis that the diatoms in the samples from Kjelst Enge do not 

demonstrate a vertical zonation. This transect in particular is highlighted for ftirther 

analysis (Section 4.5.3) and the possible exclusion of at least some of these samples from 

the final fraining set. 

Moserva 

Modem diatom data from the salt marsh at Moserva are presented in Figure 4.7. A total of 

142 diatom taxa were identified across the salt marsh, of which 71 taxa were found with a 

relative abundance > 1%. Two species remain unidentified. Species Gl and Species X I , 

both of which occur with a maximum relative abundance of 1.1%. Unidentified diatom 

taxa, with relative abundances > 1%), are described in Appendix 5. Of the 14 surface 

samples analysed, 13 of them retumed fiall counts of 300 valves. Sample MO 14 reacted 

violently to H2O2 freatment and proved difficult to process. No data is available for this 

sample and it has therefore been excluded from the results and subsequent analysis. In 

general, valve preservation was very good across the whole transect, although diatom 

concenfrations were low and highly concenfrated slides were needed to obtain fiiU counts. 

The salt marsh at Moserva is dominated by taxa in the oligohalobous - indifferent group, 

indicative of a fresh water environment. Taxa such as Nitzschia terrestris, Hantzschia 

amphioxys and several species of Pinnularia are abundant across this fransect. At lower 

elevations there is an increasing abundance of taxa within the oligohalobous - halophile, 

mesohalobous and polyhalobous groups, indicative of a more brackish water environment. 

Taxa such as Navicula mutica, Nitzschia debilis and Navicula cincta - type are found in 

increasing abundances towards lower elevations. The abundance of polyhalobous and 

mesohalobous species remains very low overall, but increasing abundances of species such 

as Cymatosira belgica and Diploneis didyma are found in samples with the lowest 

elevations. 
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Figure 4.7. Modern diatom data from tlie salt-marsfi surface at Moserva. Only species > 3% relative abundance are shown. 
Summary halobian preferences only include species with at least 3% relative abundance. 
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Figure 4.8. a) Results of unconstramed cluster analysis of the Moserva diatom data. 
Cluster analysis excludes all taxa where relative abvmdances are < 1%. b) Elevation range 
and dominant taxa for diatom assemblage zones, identified from unconsfrained cluster 
analysis. Halobian preferences of these taxa are indicated. 
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Unconstrained cluster analysis divides the modem samples into three diatom assemblage 

zones (Figure 4.8a). The elevation range and dominant taxa in each zone are presented in 

Figure 4.8b. The diatom assemblages across the salt-marsh surface at Moserva show some 

evidence of a vertical zonation, although some samples do not clearly fit this trend. 

Samples MOl and M02 contain noticeably different diatom assemblages to the remaining 

samples. These samples are highlighted as possible outliers. Cluster analysis has 

demonstrated the need for fiirther investigation of samples in this transect, with the 

possible removal of at least some of the samples from the final training set. 

Storbcek 

Modem diatom data from the salt marsh at Storbask are presented are Figure 4.9. A total of 

144 diatom taxa were identified across the salt marsh at Storbask, of which 78 taxa were 

found with relative abundances > 1%. One species, species Gl , remains unidentified with a 

maximum relative abundance of 8.3%. Unidentified diatom taxa, with relative abundances 

> l%o, are described in Appendix 5. A small number of Achnanthes species could not be 

identified to species level. These species remain grouped together and named as 

Achnanthes sp. Valve preservation was very good across the whole fransect and all 13 

surface samples analysed retumed fiiU counts of more then 300 valves. 

The salt marsh at Storbaek is dominated by mesohalobous and oligohalobous taxa such as 

Gomphonema parvulum, Navicula cincta - type, Navicula peregrina and Pinnularia 

ignobilis Small abundances (< 5%) of the polyhalobous species Cymatosira belgica are 

found across the entire fransect. Unconsfrained cluster analysis divides the modem samples 

into three diatom assemblage zones (Figure 4.10a). The elevation range and dominant taxa 

in each zone are presented in Figure 4.10b. The diatom assemblages across the salt-marsh 

surface at Storbaek do not demonsfrate a vertical zonation of diatom species with respect to 

elevation. 

84 



00 

% Relative abundance Summary halobian preference (%) ^• O a a 
Figure 4.9. Modern diatom data from tlie salt-marsli suiface at Storbaslc. Only species witli > 3% relative abundance are shown. TO 
Summary halobian prefemces only include species with at least 3% relative abundance. E? 



Chapter 4 Modern salt-marsh environments 

a) CONISS 

ST-3 

ST-2 

ST07 

ST08 

ST09 

ST11 

ST13 

ST12 

ST10 

ST-1 

ST01 

ST02 

ST04 

ST05 

ST03 

ST06 
1 2 3 

Total sum of squares 

b) 

Q 

c o 
ro > 

1.475 

1.450 

1.425 

1.400 • 

1.375 -

1.350 -

ST-1 

A. lanceolata (01) 
G parvulum (01) 

ST-3 

ST-2 

Achn.sp 
Species G1 
P. borealis (Ol) 

N. c/Victe - type (OH) 
P. ignobilis (Ol) 

Diatom assemblage zones 

Figure 4.10. a) Results of unconstrained cluster analysis of the Storbask diatom data. 
Cluster analysis excludes all taxa where relative abundances are < 1%. b) Elevation range 
and dominant taxa for diatom assemblage zones, identified from unconstrained cluster 
analysis. Halobian preferences of these taxa are indicated. 
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Oksby Enge 

Modem diatom data from the salt marsh at Oksby Enge are presented in Figure 4.11. A 

total of 150 diatom taxa were identified across the salt marsh at Oksby Enge, of which 94 

taxa were found with relative abundances > 1%. Two species remain unidentified. Species 

A l , with a maximum relative abundance of 1.6% and Species Gl , with a maximum 

relative abundance of 8.3%. Unidentified diatom taxa, with relative abundances > 1%, are 

described in Appendix 5. Valve preservation was very good across the entire transect, 

although diatom concenfrations were low and highly concenfrate slides were needed to 

obtain fiill counts from some samples. All 22 surface samples analysed retumed fiill counts 

of more than 300 diatom valves. 

The salt marsh at Oksby Enge is dominated by the two oligohalobous groups. Taxa such as 

Fragilaria capucina, Nitzschia dissipata, Nitzschia terrestris and Nitzschia palea 

characterise this transect and are indicative of a fresh to brackish water environment. 

Increasing abundances of the oligohalobous - halophile taxa, Navicula cincta - type, 

Navicula mutica and Nitzschia debilis are found towards lower elevations, indicating that 

the environment is more brackish here. The abundance of polyhalobous and mesohalobous 

taxa remains low overall but increasing abundances of taxa within these two groups are 

found at lower elevations. Unconstrained cluster analysis divides the modem samples into 

four diatom assemblage zones (Figure 4.12a). The elevation range and dominant taxa in 

each zone are presented in Figure 4.12b. The diatom assemblages across the salt-marsh 

surface at Oksby Enge show a sfrong vertical zonation of species with respect to elevation. 
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Figure 4.12. a) Results of unconstrained cluster analysis of the Oksby Enge diatom data. 
Cluster analysis excludes all taxa where relative abundances are < 1%. b) Elevation range 
and dominant taxa for diatom assemblage zones, identified from unconsfrained cluster 
analysis. Halobian preferences of these taxa are indicated. 
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LangU North 

Modem diatom data from the salt marsh at Langli North are displayed in Figure 4.13. A 

total of 146 diatom taxa were identified across the salt marsh at Langli North, of which 92 

taxa were found with relative abundances > 1%. Seven species remain unidentified: 

Species B l , C2, D2, E2, G2, 12 and J2, all with relative abundances of < 3%. Unidentified 

diatom taxa, with relative abundances > 1%, are described in Appendix 5. Valve 

preservation was variable across the transect but poor overall. In the majority of samples, 

smaller taxa such Achnanthes delicatula were well preserved whilst larger taxa, such as 

Diploneis didyma, Navicula digitoradiata and Nitzschia vitrea, were broken or 

fragmented. Of the 31 samples analysed, 27 of them retumed fiill counts. In samples which 

did retum full counts, it was mainly broken valves that were counted (See Chapter 3, 

Section 3.7.4 for a description of the strategy adopted for counting broken valves). 

Samples LNl , LN7, LN8 and LN20, only retumed partial counts due to the extremely poor 

valve preservation in these samples. These samples have therefore been excluded from the 

results and subsequent analysis. 

The salt marsh at Langli North is dominated by polyhalobous and mesohalobous taxa such 

as Cymatosira belgica, Delphineis surirella and Achnanthes delicatula. The oligohalobous 

- halophile taxa, Navicula cincta - type, is also found in high abundances across the 

transect. Some oligohalobous - indifferent taxa such as Achnanthes minutissima - type and 

Achnanthes oblongella, are found at mid elevations in relatively high abundances. At 

lowest elevations, in samples from the tidal flat, Achnanthes delicatula clearly dominates 

the assemblage. Unconsfrained cluster analysis divides the modem samples into three 

diatom assemblage zones (Figure 4.14a). The elevation range and dominant taxa in each 

zone are presented in Figure 4.14b. The diatom assemblages across the salt-marsh surface 

at Langli North demonsfrate a sfrong vertical zonation of species with respect to elevation. 
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Figure 4.13. Modern diatom data from tlie salt-marsli surface at Langli North. Only species > 3% relative abundance are shown. 
Summary halobian prefences only include species with at least 3% relative abundance. 
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Figure 4.14. a) Results of unconstrained cluster analysis of the Langli North diatom data. 
Cluster analysis excludes all taxa where relative abundances are < 1%. b) Elevation range 
and dominant taxa for diatom assemblage zones, identified from unconsfrained cluster 
analysis. Halobian preferences of these taxa are indicated. 
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Langli South 
Modem diatom data from the salt marsh at Langli South are presented in Figure 4.15. A 

total of 117 diatom taxa were identified across the salt marsh at Langli North, of which 75 

taxa were found with relative abundances > 1%. Species B l remains unidentified with 

1.3% maximum relative abundance. Unidentified diatom taxa, with relative abundances > 

1%, are described in Appendix 5. Valve preservation was highly variable across the 

fransect. At low elevations and in particularly sandy samples, valve preservation was very 

poor. Towards higher elevations, valve preservation was much better. Of the 33 samples 

analysed, 26 retumed frill counts of more than 300 valves. Samples, LSI, LS2, LS3, LS20, 

LS22, LS24 and LS26 retumed only partial counts due to the exfremely poor valve 

preservation in these samples. These samples have therefore been excluded from the 

results and subsequent analysis. 

The salt marsh at Langli South is dominated by polyhalobous and mesohalobous taxa such 

as Cymatosira belgica, Navicula digitoradiata and Nitzschia vitrea. The oligohalobous -

halophile taxon, Navicula cincta - type, is also dominant across this transect, as is the case 

in the majority of fransects investigated. At lower elevations, in samples from the tidal flat, 

Achnanthes delicatula again dominates the assemblage. At higher elevations, several 

oligohalobous taxa are identified including Navicula pusilla, Nitzschia debilis and 

Pinnularia ignobilis. Unconsfrained cluster analysis divides the modem samples into four 

diatom assemblage zones (Figure 4.16a). The elevation range and dominant taxa in each 

zone are presented in Figure 4.16b. The diatom assemblages across the salt-marsh surface 

at Langli South do not demonstrate a vertical zonation of species. Samples in Zone LS-1 

(LS31, LS32, LS33) and Zone LS-2 (LS28, LS29, LS30), contain noticeably different 

diatom assemblages to the remaining samples. These samples in particular are highlighted 

for fiirther investigation and possible removal from the final fraining set. 
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Figure 4.15. Modern diatom data from tlie salt-marsh surface at Langli South. Only species with > 3% relative abundance are shown. 
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Figure 4.16. a) Results of unconstrained cluster analysis of the Langli South diatom data. 
Cluster analysis excludes all taxa where relative abundances are < 1%. b) Elevation range 
and dominant taxa for diatom assemblage zones, identified from unconsfrained cluster 
analysis. Halobian preferences of these taxa are indicated. 
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4.4 Combined Modern Diatom Data 

Diatom data from each of the six modem fransects were subsequently combined to form 

one large, modem diatom data set using the TILIA package (Grimm, 2004). A total of 251 

taxa resulted, 166 of which were found with relative abundances of > 1%. Samples where 

minimum diatoms counts were not obtained (M014, LNl , LN7, LN8, LN20, LSI, LS2, 

LS3, LS20, LS22, LS24 and LS26) are excluded from this data set, resulting in a total of 

128 samples. The combined modem diatom data are presented in relation to elevation in 

Figure 4.17. Only species with relative abundances > 5% are presented for ease of visual 

interpretation. 

In general, at low elevations, polyhalobous and mesohalobous taxa such as Achnanthes 

delicatula, Cymatosira belgica and Navicula digitoradiata are dominant. At higher 

elevations, oligohalobous taxa such as Nitzschia terrestris, Pinnularia borealis, Pinnularia 

viridis and Stauroneis phoenicenteron are common. Between approximately 1.30 and 1.90 

m elevation, the diatom signal is somewhat conftising. The abundance of polyhalobous, 

mesohalobous and oligohalobous taxa fluctuates greatly and no one group is dominant. 

The samples identified from anomalous diatom assemblage zones at Kjelst Enge in 

particular mostly fall within this elevation range. 

Results from the six individual fransect locations have shown that in some locations the 

diatom assemblages demonstrate a strong vertical zonation of species with respect to 

elevation. In other transects, in particular at Kjelst Enge, Moserva, Storbask and Langli 

South, the diatoms do not. Unconsfrained cluster analysis was repeated for the fiiU 

combined data set to assess whether the diatom assemblages demonsfrated a vertical 

zonation for the Ho Bugt embayment as a whole. The results are presented in Figure 4.18. 

Unconsfrained cluster analysis divides the modem samples in the combined data set into 

five diatom assemblage zones (Figure 4.18). The elevation range and dominant taxa in 

each zone are presented in Figure 4.19. The modem fransect samples which fall within 

each of these zones are also indicated. The diatom assemblages across the salt-marsh 

surface in the Ho Bugt embayment as a whole show some evidence to support the concept 

of a vertical zonation of diatom species. Vertical zonation is demonsfrated between Zones 

COM-1 and COM-2 and also between Zones COM-3, COM-4 and COM-5, but not for the 

data set as a whole. This is likely to be the result of including some samples from fransects 
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such as Kjelst Enge, Moserva, Storbask and Langli South which, even at the local scale, do 

not appear to be vertically zoned. These results suggest that a through exploration of the 

modem samples, species and environmental data is required before any training set is 

developed. This is achieved in later sections of this chapter (Section 4.5) via the use of 

several statistical analyses and ordination techniques. 

Unconstrained cluster analysis on the whole data set shows that each transect appears to be 

associated with its own assemblage composition, hi general, samples from the same 

transect appear to fall within the same cluster on the dendrogram. For example, all samples 

from Storbsk fall within Zone COM-1, all samples from Moserva fall within Zone COM-2 

and all samples from Kjelst Enge fall within Zone COM-5. This is to be expected where 

samples from different transects cover different elevation ranges. However, in some cases 

samples from the same elevation range are shown to be associated with very different 

diatom assemblages (Table 3.1 and Figures 4.5 - 4.15). For example, the majority of 

samples from Langli North and Langli South fall within Zone COM-4 and are dominated 

by taxa such as Navicula mutica, Navicula pusilla, Nitzschia debilis and Nitzschia vitrea 

(Figure 4.18 and 4.19). The Kjelst Enge samples all fall within Zone COM-5 and cover a 

similar elevation range to the Langli samples, but are instead dominated by taxa such as 

Diploneis didyma, Navicula cincta and Nitzschia sigma var. diminuata (Figure 4.18 and 

4.19). These observations have interesting implications with regards to the spatial 

variability of diatom assemblages within salt marshes, and the subsequent development 

and application of fransfer fiinctions. It is possible that samples from only one of these 

clusters (Zone COM-4 or Zone COM-5) can be used in the fraining set, depending on 

which one is the most representative. These points are explored fiirther in Section 7.2 and 

are discussed in Section 9.11. 
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Figure 4.17. Combined modem diatom data fi-om the six transects investigated. Only species > 5% relative abundance are shown. 
Summary halobian preferences only included species with at least 5% relative abundance. 
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Figure 4.18. Results of unconstrained cluster analysis for the combined modem diatom 
data. Cluster analysis excludes all taxa where relative abundances are < 1%. Samples 
which fall within each subsequent diatom assemblage zone are indicated. 
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Figure 4.19. Elevation range and dominant taxa for diatom assemblage zones identified 
from unconsfrained cluster analysis for the combined modem diatom data. The modem 
transect samples that fall into each zone are indicated. 
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4.5 Statistical Analysis 

Initial results obtained from cluster analysis of the modem diatom data have highlighted a 

number of anomalous samples and suggest that a through exploration of the modem 

species and environmental data is required before any fransfer ftinction can be developed. 

This section presents the results of both indirect (PCA and DCA) and direct (CCA) 

gradient analysis, used to explore variation in the species and environmental data. 

4.5.1 Inclusion of samples, species and environmental variables 

Details of the samples, species and environmental variables included in ordinations are 

fiiUy detailed in Section 3.8, and summarised in Table 4.2. Two data sets are analysed in 

the ordinations: DataSetA excludes the Kjelst Enge samples and contains six 

environmental variables measured from five fransects (elevation, pH, salinity, LOI, 

CaCOs, sand, silt, clay). DataSetB, contains samples from all six fransects (127 samples) 

but only three environmental variables (elevation, pH and salinity). Descriptive statistics 

for each environmental used in ordinations is presented in Table 4.3. Information for 

individual fransects is presented in Appendix 6. 

Data Set 
Species cut-off 

employed 

Species 

before 

cut-off 

Species 

after cut-off 

Samples 

Included 

Transects 

Included 

Environmental 

Variables 

DataSetA 
s 1% relative abundance 

& present in > 1 sample 
251 152 100 

MO, ST, 

OE, LN 

and LS 

Elevation, pH, salinity, 

LOI, CaCOa, Sand, Silt, 

Clay 

DataSetB 
2 1% relative abundance 

& present in > 1 sample 
251 161 127 

KE, MO, 

ST, OE, 

LN and LS 

Elevation, pH, salinity 

Table 4.2. Summary details of the species, samples and environmental variables included 
in the two data sets analysed in ordinations. Full details are given in Section 3.8. 
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Environmental Variable Min imum Maximum Mean Median Standard Deviat ion 

Elevation (m DNN) 0.225 2.666 1.468 1.442 0.473 

pH 4.09 8.75 6.652 6.690 1.008 

Salinity (g/l"') 0.02 3.360 1.367 1.30 0.837 

LOI (%) 1.16 65.46 30.80 30.08 18.82 

CaCOa (%) 0.300 8.41 2.627 2.653 1.228 

Sand (%) 4.23 94.15 30.15 22.41 20.83 

Silt (%) 5.85 91.02 62.65 69.33 19.51 

Clay (%) < 0.001 12.17 7.204 7.325 2.755 

Table 4.3. Descriptive statistics for each environmental variable used in ordinations. 
Statistics were calculated using MESflTAB® Release 14. Information for individual 
transects is presented in Appendix 6. 

4.5.2 Correlations between environmental variables 

Results of normality tests on all eight environmental variables are presented in Table 4.4. 

In this test, the null hypothesis (Ho) states that the data follow a normal distribution. Where 

/7-values were less than a rejection level of 0.05 (95% confidence), the null hypothesis was 

rejected and the data were assumed not to be normally distributed. Results for elevation, 

pH and salinity include the Kjelst Enge samples (127 samples); results for all other 

enviroimiental variables are based on 100 samples (Table 4.2). 

Elevation and clay fraction are the only two variables which show a normal distribution 

prior to fransformation. One variable CaCOs, showed a skewed distribution and all other 

variables displayed bimodal distributions. CaCOs achieves a normal distribution after a 

square-root fransformation. For the other five environmental variables, fransformations do 

little to alter the bimodal distributions. All environmental data included in ordinations are 

therefore unfransformed. Correlations between pairs of environmental variables were 

calculated using a Spearman's Rank correlation coefficient, since this test does not require 

data to be normally distributed. Results are presented in Table 4.5. To aid visual 

interpretation of relationships, the results are also presented as a scatter plot matrix (Figure 

4.20). 
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Variable 

Before 

transformation 

(p value) 

Normally 

distributed? 

After Logio 

transfonnation 

(p value) 

Normally 

distributed? 

After Sqrt 

transfonnation 

(p value) 

Normally 

Distributed? 

Elevation 0.587 Yes N/A N/A N/A N/A 

pH 0.008 No 0.001 No 0.005 No 

Salinity 0.040 No 0.000 No 0.000 No 

LOI 0.007 No 0.000 No 0.002 No 

CaC03 0.012 No 0.000 No 0.074 Yes 

Sand 0.000 No 0.008 No 0.001 No 

Silt 0.000 No 0.000 No 0.000 No 

Clay 0.092 Yes N/A N/A N/A N/A 

Table 4.4. Results of Andersen-Darling normality tests applied to all eight environmental 
variables. Results for elevation, pH and salinity include the Kjelst Enge samples (127 
samples), results for all other environmental variables are based on 100 samples. Attempts 
to achieve normality through various data transformations and resulting /7-values are 
shown. Normal distributions are highlighted in bold. 

Elevation pH Salinity LOI CaCOs Sand Silt 

pH 
-0.707 

< 0.001 
Correlation (rs) 
P-value 

Salinity -0.712 
< 0.001 

0.462 
< 0.001 

LOI 0.858 
< 0.001 

-0.633 
< 0.001 

-0.617 
< 0.001 

CaCOa 0.109 
0.282 

-0.123 
0.224 

0.134 
0.183 

0.296 
0.003 

Sand -0.631 
< 0.001 

0.634 
< 0.001 

0.316 
0.001 

-0.708 
< 0.001 

-0.473 
< 0.001 

Silt 0.699 
< 0.001 

-0.674 
< 0.001 

-0.396 
< 0.001 

0.777 
< 0.001 

0.447 
< 0.001 

-0.983 
< 0.001 

Clay 0.025 
0.805 

-0.058 
0.564 

0.143 
0.157 

0.111 
0.272 

0.326 
0.001 

-0.507 
< 0.001 

0.373 
< 0.001 

Table 4.5. Spearman's Rank Correlation matrix between all environmental variables. 
Resuhs for elevation, pH and salinity include the Kjelst Enge samples (127 samples). 
Results for all other enviroimiental variables are based on 100 samples. Correlation (rs) and 
P-values are shown for each pair of envirormiental variables. Significant (p < 0.05) 
correlations are highlighted in bold. 
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Figure 4.20. Scatter plot matrix between pairs of environmental variables. Results for 
elevation, pH and salinity include the Kjelst Enge samples (127 samples), results for all 
other environmental variables are based on 100 samples. 

Calculation of the Spearman's Rank correlation coefficient between pairs of environmental 

variables shows a number of variables to be significantly (P < 0.05) or highly significantly 

{P < 0.01) correlated with one another. For the main data set, elevation in particular shows 

relatively strong (r̂  > 0.7) and highly significant negative correlations with pH (rs -0.707) 

and salinity (r̂  -0.712), and strong and highly significant positive relationships with LOI (r̂  

0.858) and silt fi-action (rs 0.699). This is not surprising since a number of these variables 

are influenced, either directly or indirecfly, by the duration of tidal flooding, which itself is 

a fiinction of elevation. A number of other variables are highly significantly correlated with 

one another, but in the majority of cases the relationships are weaker (rs < 7). LOI shows a 

strong and highly significant negative relationship with sand (rs -0.708) and a strong and 

highly significant positive relationship silt fraction (rs 0.777). These results suggest that 

there is a relatively high degree of intercorrelation between the environmental variables 

measured. In ordinations, variables which are highly correlated essentially describe similar 

axis of variation in the data. No environmental variables are removed from the data set at 

this stage, but this exercise has highlighted variables which show sfrong inter-correlations, 

and will facilitate removal of such variables in subsequent ordinations and in the 

interpretation of results. These points are fiirther explored in the following sections of this 

chapter. 
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4.5.3 Ordinations 

Ordination techniques were used in this study to provide an objective way in which to 

examine species and environmental data. Preliminary ordinations were performed to 

highlight samples with extreme environmental characteristics and/or unusual species 

assemblages (through PCA and DCA, respectively), to identify redundancies in 

environmental information (through CCA), and to eliminate variables which did not exert 

an independent influence on diatom distributions (CCA). The following section presents 

the results of PCA, DCA and CCA ordinations, firstly for DataSetA and secondly for 

DataSetB. 

Principal Components Analysis (PCA) - DataSetA 

PCA was used in this study to summarise environmental information and to highlight 

samples with extreme environmental characteristics. PCA was initially performed on the 

entire data set (100 samples, 8 environmental variables). Results are presented in Table 4.6 

and displayed graphically in Figure 4.21. 

Axis 1 2 3 4 
Eigenvalue 0.534 0.226 0.101 0.065 

Cumulative percentage variance 53.4 76.0 (22.6) 86.0 (10) 92.5 (6.5) 

Table 4.6. Results of an initial PCA for DataSetA (100 samples, 8 envirormiental 
variables). Numbers in parentheses are individual axes contributions. 

The results of an initial PCA show that the percentage variance explained by the first four 

axes is 92.5%. Axis one reflects the dominant environmental gradient, explaining 53.4%) of 

variance, although the contribution of axes two (22.6%o) and three (10%) is also reasonably 

large. The PCA bi-plot of axis 1 and axis 2 (Figure 4.21a) illustrates that the first axis is 

positively correlated with sand, pH and to a lesser extent, salinity, and negatively 

correlated with elevation, LOI and silt. Axis one therefore contrasts high sand, pH and 

salinity in samples to the right of the diagram, and high elevation, LOI and silt in samples 

to the left of the diagram. None of the envirormiental variables appear to be particularly 

strongly correlated with this axis one. This is most possibly due to the presence of outlier 

samples within the data set, which are clearly visible on the PCA bi-plot. Axis two is 

negatively correlated with CaCOs and clay. Axis three (Figure 4.21b) is negatively 

correlated with clay and positively correlated with CaCOs. Correlations between a number 

of the enviroimiental variables is highlighted by the small angles between their 
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Figure 4.21. Ordiantion bi-plots showing results of PCA on DataSetA illustrating axes a) 1 
and 2 and b) 1 and 3 for 100 samples and 8 environmental variables. Samples are colour 
coded by transect. Moserva = purple, Storbask = blue, Oksby Enge = green, Langli North = 
yellow and Langli South = red. Sample labels are not shown for clarity. 
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environmental vectors and confirmed by the results of Spearman's correlation coefficients 

(Table 4.5). For example, elevation is positively correlated with LOI and negatively 

correlated with pH and salinity. 

Removal of outlier samples 

On examining the PCA bi-plots (Figure 4.21), the following samples are identified as 

outHers: LN31 (axis I) , MOl (axis 2) and LS28 (axis 3). These samples are confirmed as 

outliers by their extremely high axis scores on the respective axes and also upon 

examination of the environmental data. Samples LN31 and MOl have high sand fractions 

(93 and 94% respectively) and correspondingly low clay fractions (0 %). Sample MOl also 

has a low CaCOa value (0.30%)). Sample LS28 has a high CaCOs value (8.4%)), almost 

twice that of any other sample. Whilst these measured values are deemed to be correct, 

their values are well outside the range of all other samples in the data set. For these reasons 

they are considered to be outiier samples and are therefore removed from the data set. To 

some extent, samples M02 and M03 also appear to be outliers. However, examination of 

their axes scores and of the environmental data suggests that the measured environmental 

values for these samples are within the range of other samples. These two samples are 

therefore retained in the data set. Following removal of samples LN31, MOl and LS28, 

one species, Eunotia exigua, was also excluded from the corresponding diatom data set as 

it no longer met the aforementioned abundance criteria (Table 4.2). 

Removal of samples LN31, MOl and LS28 therefore reduces the data set to 97 samples, 8 

environmental variables and 151 taxa. Results of a PCA run using this reduced data set are 

presented in Table 4.7 and Figure 4.22. The percentage of variance explain by the first 

four axes is now 0.9% higher than for the fiiU data set. The contribution of each individual 

axis is also shown to increase. Axis one, reflecting the dominant environmental gradient, 

now accounts for 55.8% of variation in the data. 2.4% more than when the PCA was run on 

the fiiU data set. Examination of the PCA bi-plot (Figure 4.22) shows that the removal of 

the three outliers does not significantly alter the position of remaining sites on the 

ordination diagram. The orientation, length and relative positions of the bi-plot arrows also 

remains fairly consistent, with the exception of pH which now has the sfrongest correlation 

with axis one. This suggests that the removal of the three outiying samples does not 

significantly alter the overall interpretations but results in a small increase in the 

percentage of variance explained. 
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Axis 1 2 3 4 

Eigenvalue 0.558 0.213 0.098 0.066 

Cumulative percentage variance 55.8 77.1 (21.3) 86.9 (9.8) 93.4 (96.5) 

Table 4.7. Results of PCA for DataSetA on a reduced data set (97 samples, 8 
environmental variables). Samples LN31, MOl and LS28 are removed. Numbers in 
parentheses are individual axes contributions. 

Figure 4.22. Ordination bi-plot showing the results of PCA on reduced data set (97 
samples). The orientation, length and relative positions of the bi-plot arrows remains fairly 
consistent but a higher percentage of variance is now explained with the removal of the 
three outliers. Samples are coloiu" coded by transect. Moserva = purple, Storbask = blue, 
Oksby Enge = green, Langli North = yellow and Langli South = red. Sample labels are not 
shown for clarity. 
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Detrended Correspondence Analysis (DCA) - DataSetA 

DCA was used in this study to reveal major patterns in the diatom species data, to highlight 

samples with unusual diatom assemblages and to determine whether linear or unimodal 

methods were suitable for fiirther exploration of the modem training set. DCA was initially 

performed on the fiill data set (97 samples and 151 taxa). Results are presented in Table 4.8 

and Figure 4.23. 

Axis 1 2 3 4 
Eigenvalue 0.489 0.306 0.171 0.084 
Lengths of gradient (SD units) 3.342 2.612 2.174 2.034 
Cumulative percentage variance of species 
data 

16.4 26.6 (10.2) 32.3(5.7) 35.1 (2.8) 

Table 4.8. Results of DCA for DataSetA (97 samples, 151 taxa). Numbers in parentheses 
are individual axes contributions. 

The gradient length of the longest axis, axis one, is reasonably long (3.34 SD units) 

indicating that most species in the data set can be approximated by a unimodal response 

model. This confirms the choice of DCA for the examination of species data and indicates 

that unimodal ordination methods (CCA) are suitable for the subsequent analysis of 

species-environment relations (Leps and Smilauer, 2003). The first two axes account for 

26.6% of the variance in the diatom species data. This relatively low value is in common 

with several other studies and is considered 'typical' of noisy data sets with a large 

numbers of zero values (e.g., Stevensen et al., 1991; Beimion 1994; Burgess, 2004). 

Examination of the ordination bi-plots (Figures 4.23) reveals a general trend in the diatom 

data. The samples from Moserva and Oksby Enge, found towards the left of the diagram, 

are predominantly associated with oligohalobous diatom taxa and fresh water conditions. 

Taxa such as Eunotia arcus, Nitzschia terrestris, Pinnularia gibba, Pinnularia viridis and 

Stauroneis phoenicenteron are associated with these samples. These findings are consistent 

with the fact that the samples from Moserva and Oksby Enge are mainly from the fresh 

water and high salt marshes. Towards the right of the diagram, samples from Langli North 

and Langli South are associated with polyhalobous and mesohalobous diatom taxa, 

characteristic of brackish and marine conditions. Taxa such as Diploneis didyma, Diploneis 

interrupta, Nitzschia navicularis and Nitzschia vitrea are associated with these samples. 

These samples are mainly from the middle and low salt marshes and their association with 
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these taxa is expected. These general trends suggest that axis one is most probably 

associated with elevation and/or salinity. 

One cluster of samples, towards the bottom right of the diagram is distinct from the 

remaining samples in terms of their diatom assemblages (e.g., samples LN23, LN24, LS31, 

LS32, and LS33). These samples are associated with diatom species such as Achnanthes 

delicatula, Achnanthes oblongella, Cocconeis placentula, Navicula phyllepta, Opephora 

parva and Opephora pacifica. The position of these samples on the ordination diagram is 

determined by the high abundance of such species at these sites. For example, A. delicatula 

is found with an abundance of > 50% in most of the samples in this cluster. This cluster of 

samples is from the tidal flat. 

Removal of outlier samples 

No visible outliers with unusual diatom assemblages are detected from the DCA. The 

cluster of samples in the bottom right of the ordination diagram are not considered to be 

outliers despite their distinct diatom assemblages. The samples here are the only samples 

analysed from the tidal flat and their association with a slightly different diatom 

assemblage is expected. Removal of these samples, at this stage of the analysis, would 

result in a significant loss of information. 
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Figures 4.23. Ordination bi-plots showing the results of DCA on DataSet A (97 samples 
and 151 taxa), showing a) species and b) samples. Species mentioned in text and those best 
illustrating the general trend are labelled (see text). See Appendix 7 for a conversion of 
species codes to fiiU names. Samples are colour coded by transect. Moserva = purple, 
Storbaek = blue, Oksby Enge = green, Langli North = yellow and Langli South = red. 
Sample labels are not shown for clarity. 
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Canonical Correspondence Analysis (CCA) - DataSetA 

A DCA axis 1 gradient length of 3.34 SD units (Table 4.8) has indicated that most species 

in this data set can be approximated by a unimodal response model (Leps and Smilauer, 

2003). A unimodal ordination method (CCA) was therefore subsequently used to explore 

species-environment relations in the data set. Prior to the implementation of CCA, PCA 

highlighted three samples (MOl, LN21 and LS28) with extreme environmental 

characteristics. These samples are excluded from all CCA ordinations. Following removal 

of these samples, one species, Eunotia exigua, was also excluded from the corresponding 

diatom data set as it no longer met the aforementioned abundance criteria (Table 4.2). 

Results of DCA indicated that there were no outlying samples with atypical diatom 

assemblages. The data set analysed by an initial CCA therefore consisted of 97 samples 

and 151 taxa. Results are presented in Table 4.9 and Figure 4.24 

Axis 1 2 3 4 Total inert ia 

Eigenvalue 0.457 0.221 0.165 0.060 
Species-environment correlations 0.971 0.836 0.838 0.708 
Cumulative percentage variance: 
of species data 
of species-environment relation 

15.3 
45.3 

22.7 (7.4) 
67.3 (22) 

28.2 (5.5) 
83.3(16) 

30.2 (2) 
89.6 (6.3) 

Sum of all eigenvalues 
Sum of all canonical eigenvalues 

2.986 
1.007 

Table 4.9. Results of an initial CCA for DataSetA (97 samples, 151 taxa, 8 envirormiental 
variables). Numbers in parentheses are individual axes contributions. 

CCA axis 1 and axis 2 together explain 22.7% of the variance in the diatom species data. 

This percentage is very close to that obtained by the DCA in an unconsfrained analysis 

(21.9 compared to 22.7%), and suggests that the envirormiental variables measured are 

those responsible for explaining the variation in the species data (Leps and Smilauer, 

2003). The species-enviroimient correlations are very high for axis 1 (0.971) and are also 

reasonably high for axes 2, 3 and 4. Together the 8 envirormiental variables explain 33.7%) 

of the variance in the diatom data. Associated Monte Carlo permutation tests demonsfrate 

that the first axis and all canonical axes are significant (p = 0.008 and 0.008 respectively, 

with 499 permutations under a reduced model, restricted for spatial structure (Bfrks, pers. 

comm.)). 
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Figure 4.24. CCA tri-plot for DataSetA with 8 environmental variables, 97 samples and 
151 taxa. Species (black dots) are not labelled for clarity, samples are colour coded by 
transect. Samples are colour coded by transect. Moserva = purple, Storbaek = blue, Oksby 
Enge = green, Langli North = yellow and Langli South = red. Sample labels are not shown 
for clarity. 
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Examination of the CCA tri-plot shows the majority of environmental variables are 

associated with axis 1. Clay fraction is associated with axis 2. Axis 1 therefore represents 

the major gradient in the data, from high salt marsh (high elevation, high LOI and low 

salinity) plotted on the right, to low salt marsh (low elevation, low LOI and high salinity) 

plotted on the left. Those variables with longer arrows, such as elevation, are more strongly 

correlated with the ordination axes (Jongman et al., 2002). CaCOs shows a weak 

correlation with the axes and is likely to be a redundant environmental variable. The 

proximity of a number of the environmental variable arrows to one another indicates a high 

degree of intercorrelation within the environmental data. Earlier results of Spearman's 

correlation confirm this (Table 4.5). 

Removal of outlying samples 

Samples with environmental variables with extreme influence or 'leverage' (Montgomery 

and Peck, 1982) can have a greater influence on the ordination results. In this study any 

sample with > 5x SD influence was considered to be outlying (Birks et al., 1990a). One 

sample (M02) was identified with 4.3x SD influence in the initial CCA but was retained in 

the analysis. No other outlier samples were detected. 

Constrained CCAs 

Results of a series of constrained CCAs are presented in Table 4.10. Out of the eight 

environmental variables, six are shown to exert an independent and statistically significant 

influence on diatom distributions {P < 0.05). Sand and CaCOs are statistically insignificant 

and are removed from the analysis. Elevation is considered the most important variable in 

explaining the variance in the diatom data, shown by the high eigenvalue ratio (l.IO) and 

the amount of variability explained (13.7%). pH is also shown to be important (eigenvalue 

ratio 1.12, variability explained 12.5%). This result is not unexpected since a number of 

palaeolimnological studies have demonstrated a strong relationship between diatom 

species and pH (e.g., Birks et al., 1990b). The low relative importance of salinity in 

explaining the variance in the diatom data is, however, somewhat surprising. The salinity 

measurements taken in this study are only point measurements (Section 3.3) and probably 

do not reflect the true variability of salinity that occurs over tidal cycles. Had salinity been 

measured on a variety of temporal scales, it is highly likely that the diatom assemblages 

would show a stronger relationship with this variable. The low relative importance of 

salinity in explaining the variation in the diatom data may also be linked to the proximity 
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of drainage systems which have lead to a highly spatially variable pattem of salinity across 

the Ho Bugt marshes. 

Variable Ai A2 A1/A2 % Variance explained P - va lue 

Elevation 0.410 0.372 1.10 13.7 0.008 

pH 0.375 0.335 1.12 12.5 0.008 

LOI 0.343 0.361 0.95 11.5 0.008 

Silt 0.322 0.379 0.84 10.8 0.038 

Sand 0.299 0.394 0.76 10.0 0.162 

Salinity 0.279 0.355 0.79 9.3 0.024 

Clay 0.177 0.480 0.37 5.9 0.030 

CaCOs 0.088 0.484 0.18 2.9 0.380 

Table 4.10. Results of a series of constrained CCAs for DataSetA. Variables are ordered 
by the greatest amount of variance explained. Significant {p < 0.05) variables are 
highlighted in bold. Sand and CaCOa do not exert an independent influence on diatom 
distributions and are therefore removed from the analysis. 

Results of a CCA run on a reduced data set of six environmental variables (sand, CaCOs 

excluded) are presented in Table 4.11. By removing two environmental variables the 

eigenvalues for axes one and two are slightly reduced, as is the overall percentage of 

variance explained (32% cf 34%) Table 4.9). These results suggest that the removal of two 

environmental variables has not significantly reduced the explanatory power of the 

ordination. 

Axis 1 2 3 4 Total inertia 

Eigenvalue 0.454 0.221 0.158 0.051 
Species-environment correlations 0.969 0.836 0.825 0.703 
Cumulative percentage variance: 
of species data 
of species-environment relation 

15.2 
47.3 

22.6 (7.4) 
70.4 (23.1) 

27.9 (5.3) 
86.8(16.4) 

29.6(1.7) 
92.1 (5.3) 

Sum of all eigenvalues 
Sum of all canonical eigenvalues 

2.986 
0.960 

Table 4.11. Results of CCA for DataSetA performed on a reduced data set with only 6 
environmental variables (97 samples, 151 taxa). Numbers in parentheses are individual 
axes contributions. 
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Intercorrelation between environmental variables 

Earlier results of a Spearman's correlation coefficient have demonstrated that a high degree 

of correlation and intercorrelation exist within the data set (Table 4.5). For example, 

elevation is correlated with salinity, pH, LOI and silt, and salinity is itself correlated with 

LOI and silt. Upon examination of the inter-set correlations between the variables and the 

ordination axes (Table 4.12), a number of these intercorrelated variables are also shown to 

correlate with axis one in the CCA. This suggests that some of these variables may be 

multicoUinear and potentially redundant. Highly intercorrelated variables, which also 

showed high correlation with axis one, were selected as a subset group to be tested in a 

partially constrained CCA. This subset group consisted of the following variables: 

elevation, pH, salinity, LOI and silt. 

Variable Ax is 1 Axis 2 Axis 3 

Elevation 0.88 -0.32 0.14 

Salinity -0.72 0.10 -0.14 

pH -0.84 -0.20 0.25 

LOI 0.82 -0.19 -0.00 

Silt 0.75 -0.23 -0.37 

Clay -0.15 -0.38 -0.71 

Table 4.12. Inter-set correlations between the environmental variables and the ordination 
axes. A number of variables are highly correlated with axis one and are also highly 
intercorrelated (See also Spearman's correlation coefficients. Table 4.5). 

Partially constrained CCAs 

Table 4.13 shows the results of a series of partially constrained CCAs. Elevation was 

selected as the sole constraining environmental variable based on the results of a 

preliminary CCA with automatic forward selection (Elevation, Lambda! = 0.41). Highly 

significant P-values (< 0.01) were obtained for all variables tested in partially constrained 

CCAs. Despite these variables being intercorrelated and all having a strong correlation 

with axis one, each of these intercorrelated variables is still seen to exert a statistically 

significant and independent influence on diatom distributions. 
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Variable Ai A2 A1/A2 P - value 

Elevation Sole variable 

pH 0.241 0.303 0.80 0.008 

LOI 0.127 0.359 0.35 0.008 

Silt 0.221 0.370 0.60 0.008 

Salinity 0.194 0.355 0.55 0.008 

Table 4.13. Results of partially constrained CCAs for DataSetA using elevation as the sole 
representative of the group of intercorrelated variables, hitercorrelated variables v̂ êre 
tested in tum as sole covariables in the CCA. 

Examination of VIFs 

Examination of the VIFs for the remaining six environmental variables showed that all 

variables had VIFs < 20. Sand and silt originally had extremely high VIFs (> 100) in the 

initial CCA. Removal of sand and CaCOs from the analysis reduced the VIE for silt and 

resulted in all remaining VIFs being under 20. 

CCA with manual forward selection 

Summary results obtained from a CCA using manual forward selection of enviroimiental 

variables are shown in Table 4.14. Elevation and pH are shown to be the most important 

variables in the model in terms of the amount of variance they explain. Monte Carlo 

permutation tests show all variables, except LOI, to be significant. LOI is therefore 

excluded from the final model. Results of a final CCA with manual forward selection are 

shown in Table 4.15 and Figure 4.25. By removing another envirormiental variable (LOI), 

the eigenvalues for axes 1 and 2 are almost the same as when six environmental variables 

were included in the model (Table 4.11). The overall percentage variance explained is now 

31%, only shghtly less than the original CCA with eight envirormiental variables (33.7%, 

Table 4.9). The first four axes explain 30% of the variation in the species data and 95%o of 

the species-envirormient relation. Axis one now explains 49% of the species-environment 

relation. Associated Monte Carlo permutation tests demonsfrate the first axis and all 

canonical axes are significant {P = 0.008 and 0.008 respectively, with 499 permutations 

under a reduced model, restricted for spatial stmcture (Birks, per^. comm.)). 
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Variable P-value Included in f inal model? 

Elevation 0.006 Yes 

pH 0.012 Yes 

Clay 0.014 Yes 

Salinity 0.028 Yes 

LOI 0.126 No 

Silt 0.022 Yes 

Table 4.14. Summary results obtained from manual forward selection of environmental 
variables. Variables are listed in order of the extra variance each one explains when 
included in the model. Significant (P = < 0.05) results are shown in bold. 

Axis 1 2 3 4 Total inertia 

Eigenvalue 0.454 0.221 0.158 0.050 
Species-environment correlations 0.969 0.835 0.825 0.704 
Cumulative percentage variance: 
of species data 
of species-environment relation 

15.2 
49.0 

22.6 (7.4) 
72.9 (23.9) 

27.9 (5.3) 
89.9 (17) 

29.6(1.7) 
95.4 (5.5) 

Sum of all eigenvalues 
Sum of all canonical eigenvalues 

2.985 
0.926 

Table 4.15. Summary results obtain from a final CCA for DataSetA (5 envirormiental 
variables, 97 samples, 151 diatom taxa). The inclusion of envirormiental variables in this 
final CCA is based on using manual forward selection (Table 4.14). Numbers in 
parentheses are individual axes contributions. 

The final CCA ordination tri-plot (Figure 4.25) shows salinity, pH, elevation and silt to be 

associated with axis one. Clay fraction is associated with axis two. Although all five 

variables have been shown to exert an independent and statistically significant influence on 

diatom distributions, there is still one clear environmental gradient in the data. Samples 

and species associated with the high salt-marsh envirormient (high elevation and low 

salinity, low pH) are plotted on the right of the diagram and those associated with the low 

salt-marsh environment (low elevation and high salinity, high pH) are plotted on the left of 

the diagram. 
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Figure 4.25. Final CCA tri-plot with five environmental variables, 97 samples and 151 
taxa. Selection of environmental variables in the final CCA is based on the results of 
manual forward selection (Table 4.14). Species (black dots) are not labelled for clarity. 
Samples are colour coded by transect. Moserva = purple, Storbaek = blue, Oksby Enge = 
green, Langli North = yellow and Langli South = red. Sample labels are not shown for 
clarity. 
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Variance partitioninig 

Figure 4.26 displays the results of variance partitioning. Of the total explained variance 

(31%), the unique contributions of elevation and pH are the highest (15.5 and 16.3%» 

respectively). The high contribution of pH is a little surprising. Although several 

palaeolimnological studies have demonstrated a strong relationship between diatom taxa 

and pH, the contribution of pH in this data set was expected to be weaker than that of 

elevation. The contribution of salinity is less important (7.2%)). It is important to note that 

both pH and salinity were measured from single spot samples (Section 3.3). These 

measurements probably do not reflect the true temporal or spatial variability of these 

variables across the Ho Bugt salt marshes. Elevation was also measured from a single spot 

sample but is less likely to have varied over similar temporal scales. A total of 42.5% of 

the explained variance in the data is attributed to associations between the five 

environmental variables. 

Initial results of variance partitioning suggest that both pH and elevation are suitable 

variables to reconstruct. However, given the nature of the point sampling method used 

(Section 3.3) pH values obtained in this study are unlikely to reflect the true temporal or 

spatial variability of pH. On this basis, elevation is argued to be the more suitable of the 

two variables to reconstruct. 

a) b) 
Explained 3 1 % 

15.5% 

Unexplained 69% 
Silt 5.7% Salinity 7.2% 

Figure 4.26. Variance partitioning pie charts for DataSetA, showing a) the total variation 
of the diatom data explained by the final CCA model and b) the total variation explained 
by each of the components and the interactions between variables. 
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Principal Components Analysis (PCA) - DataSetB 

PCA was again used on this data set to summarise environmental information and to 

highlight any samples with extreme environmental characteristics. PCA was initially 

performed on the entire data set (127 samples, including the Kjelst Enge samples, 3 

environmental variables); results are presented in Table 4.16 and displayed graphically in 

Figure 4.27. 

Axis 1 2 3 

Eigenvalue 0.730 0.201 0.069 

Cumulative percentage variance 73.0 93.1 (20.1) 100.0 (6.9) 

Table 4.16. Results of an initial PCA for DataSetB (127 samples and 3 environmental 
variables). Numbers in parentheses are individual axes contributions. 

The results of an initial PCA on DataSetB shows that axis one explains a large proportion 

of variance in the data (73%) and represents the dominant environmental gradient. The 

PCA bi-plot of axis one and two (Figure 4.27) illustrates that the first axis is positively 

correlated with elevation and negatively correlated with pH and salinity. Axis one 

therefore contrasts high elevation, low salinity and low pH in samples to the right of the 

diagram and low elevation, high salinity and high pH in samples to the left of the diagram. 

The correlation between axis one and elevation is very strong, much stronger than that seen 

for DataSetA (Figure 4.21). Axis two is positively correlated with salinity and negatively 

correlated with pH. 
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-3 PCA axis 1 3.0 

Figure 4.27. Ordination bi-plot showing results of PCA on DataSetB (127 samples, 3 
environmental variables). Samples are colour coded by transect. Moserva = purple, 
Storbask = blue, Oksby Enge = green, Langli North = yellow and Langli South = red, 
Kjelst Enge = black. Sample labels are not shown for clarity. 

Removal of outlying samples 

On examining the PCA bi-plot (Figure 4.27) and the corresponding axes scores, none of 

the samples appear to be outliers. Sample MOl has a slightly higher axis score on axis one 

when compared to other samples. This sample has a higher elevation (2.67 m DNN), than 

any other sample in the data set and so the relative positioning of this sample is somewhat 

expected. An exploratory PCA run with sample MOl removed changed the relative 

positioning and direction of bi-plot arrows and resulted in a lower percentage of variance 

explained. For these reasons this sample is retained in the analysis. 
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Detrended Correspondence Analysis (DCA) - DataSetB 

DCA was again used on this data set to reveal major patterns in the diatom species data, to 

highlight samples with unusual diatom assemblages and to determine whether linear or 

unimodal methods were suitable for further exploration of the modem training set. DCA 

was initially performed on the full data set (127 samples and 161 taxa). Results are 

presented in Table 4.17 and Figure 4.28. 

Axis 1 2 3 4 
Eigenvalue 0.476 0.222 0.161 0.123 
Lengths of Gradient (SD units) 3.065 2.972 2.101 1.957 
Cumulative percentage variance of species 
data 

15.4 22.5(7.1) 27.7 (5.2) 31.7 (4.0) 

Table 4.17. Results of an initial DCA for DataSetB (127 samples, 161 taxa). Numbers in 
parentheses are individual axes contributions. 

The gradient length of the longest axis, axis one, is reasonably long (3.065 SD units) 

indicating that most species in the data set can be approximated by a unimodal response 

model. As with DataSetA, this confirms the choice of DCA for the examination of the 

species data and indicates that unimodal ordination methods (CCA) are suitable for the 

subsequent analysis of the species-environment relations (Leps and Smilauer, 2003). The 

first two axes account for 15.4% of the variance in the diatom species data. This value is 

lower than that obtained for DataSetA but is likely to be the result of including more 

samples in the data set resulting in increased 'noise.' Examination of the ordination bi-

plots (Figure 4.28) reveals a general trend in the diatom data. As with DataSetA, samples 

from Moserva and Oksby Enge, found towards the left of the diagram are predominately 

associated with oligohalobous diatom taxa and fresh water conditions. Towards the right of 

the diagram, samples are associated with polyhalobous and mesohalobous diatom taxa, 

characteristic of brackish and marine conditions. 

Literestingly, the Kjelst Enge samples all plot within one cluster towards the bottom right 

of the diagram. This is somewhat surprising because these samples span a large elevation 

range (0.73 - 1.86 m DNN), and cover a range of sah-marsh environments (Table 4.1) yet 

they all appear to be associated with similar diatom taxa. Two reasons are hypothesised for 

these results. Firstly, the presence and reasonably high abundance of polyhalobous (and 

often allochthonous) diatom taxa along much of the Kjelst Enge transect (Figure 4.5) 
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means that many of these samples are similar in terms of their overall diatom assemblages. 

Samples from the high salt marsh, containing a high abundance of polyhalobous taxa, will 

plot alongside samples from the tidal flat, where these taxa are more commonly found. 

Secondly, the presence of several fresh water taxa in the low salt marsh because of the 

proximity of the fresh water drainage channel (Section 4.3) emphasises this similarity 

between samples from high and low elevations. Samples from the low salt marsh 

containing a high abundance of oligohalobous taxa will plot alongside samples from the 

high salt marsh, where oligohalobous taxa are more common (e.g.. Figure 4.11). The 

implications of including these Kjelst Enge samples in any transfer fiinction development 

are fiirther explored in Chapter 7. 

Earlier vertical zonation results (Figures 4.18 and 4.19) indicated that the Kjelst Enge and 

Langli samples covered similar elevation ranges, but are associated with different 

dominant diatom taxa. DCA (Figure 4.28) provides more detailed information on this 

relationship. The Kjelst Enge samples are shown to have similar diatom assemblages to the 

Langli North samples, but different diatom assemblages to the Langli South samples. The 

Langli South samples cover a similar elevation range to the Kjelst Enge samples. Again, 

these observations have interesting implications with regard to the spatial variability of 

diatom assemblages across the salt marshes. 
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Figures 4.28. Ordination bi-plots showing the results of DCA on DataSetB (127 samples 
and 161 taxa), showing a) species and b) samples. Species mentioned in text and those best 
illustrating the general trend are labelled (see text). See Appendix 7 for a conversion of 
species codes to full names. Samples are colour coded by transect. Moserva = purple, 
Storbaek = blue, Oksby Enge = green, Langli North = yellow and Langli South = red. 
Sample labels are not shown for clarity. 
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Removal of outlying samples 

No visible outlying samples with unusual diatom assemblages are detected from the DCA. 

However, the similarity between all of the Kjelst Enge samples, which come from a wide 

elevation range, suggests that caution needs to be employed when including these samples 

in any training set. This issue is ftirther explored in Section 7.2. 

Canonical Correspondence Analysis (CCA) - DataSetB 

A DCA axis 1 gradient length of 3.065 SD units (Table 4.17) has indicated that most 

species in this data set can be approximated by a imimodal response model (Leps and 

Smilauer, 2003). The unimodal ordination method of CCA was therefore subsequently 

used to explore species-environment relations in the data set. Results of PCA and DCA 

analysis indicated that there were no outlying samples with exfreme environmental 

variables or atypical diatom assemblages. The data set analysed by an initial CCA 

therefore consisted of 127 samples and 161 taxa. Results are presented in Table 4.18 and 

Figure 4.29. 

Axis 1 2 3 Total inert ia 

Eigenvalue 0.347 0.117 0.053 
Species-environment correlations 0.914 0.758 0.707 
Cumulative percentage variance: 
of species data 
of species-environment relation 

11.2 
67.1 

15.0 (3.8) 
89.7 (22.6) 

16.7(1.7) 
100.0(10.3) 

Sum of all eigenvalues 
Sum of all canonical eigenvalues 

3.098 
0.517 

Table 4.18. Results of an initial CCA for DataSetB (127 samples, 161 taxa, 3 
environmental variables). Numbers in parenthesis indicate individual axes contributions. 

CCA axes one and two together explain only 15% of the variance in the diatom species 

data and the total variance explained is 16.7%. This suggests that the measured 

envfrormiental variables (elevation, pH and salinity) only account for a small proportion of 

the variation in the diatom data, but given some of the differences between fransects 

already noted this is not unexpected. Together the three envfronmental variables analysed 

in this data set explain only 17% of the total variance in the diatom data. Associated Monte 

Carlo permutations tests demonsfrate the first axis and all canonical axis to be significant 

(P = 0.008 and 0.004, respectively, with 499 permutations under a reduced model, 

restricted for spatial structure (Birks,pers. comm.)). 
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Examination of the CCA tri-plot (Figure 4.29) shows elevation and salinity to be 

associated with axis one and pH to be associated, although less strongly, with axis two. 

Axis one therefore represents the major environmental gradient in the data from high salt 

marsh (high elevation, low salinity) plotted on the right of the diagram, to low salt marsh 

(low elevation, low salinity) plotted on the left of the diagram. Despite their atypical 

diatom assemblages, the samples from Kjelst Enge generally conform to this pattem. 

Figure 4.29. CCA tri-plot for DataSetB with three environmental variables, 127 samples 
and 161 taxa. Species (black dots) are not labelled for clarity. Samples are colour coded by 
transect. Moserva = purple, Storbaek = blue, Oksby Enge = green, Langli North = yellow 
and Langli South = red. Sample labels are not shown for clarity. 
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Removal of outlying samples 

One sample KE03 was identified with a 3.1 x SD influence in the initial CCA. This sample 

was retained in the analysis because the influence of this sample was below the 5 x SD cut

off. 

Constrained CCAs 

Results of a series of constrained are presented in Table 4.19. Out of three environmental 

variables, only elevation is shown to exert an independent and statistically significant 

influence on modem diatom distributions (P = < 0.05). Elevation is therefore considered 

the most important variable in explaining the variance in the diatom data, shown by the 

highest eigenvalue ratio (0.85) and the amount of variability explained (10.9%). 

Variable Ai Az A1/A2 % Variance explained P - va lue 

Elevation 0.337 0.398 0.85 10.9 0.040 

pH 0.245 0.391 0.63 7.9 0.070 

Salinity 0.222 0.404 0.55 7.2 0.062 

Table 4.19. Results of a series of constrained CCAs for DataSetB. Variables are ordered 
by the greatest amount of variance explained. Significant (P < 0.05) variables are 
highlighted in bold. 

With only one remaining envirormiental variable in the model, no fiirther screening 

techniques or analysis were employed for DataSetB. Analysis of this data set has indicated 

that elevation is the most important variable in explaining diatom distributions. The results 

obtained for this data set are somewhat different from those obtained for DataSetA. The 

inclusion of the Kjelst Enge samples has clearly had significant implications for the 

species-environment relations. This is especially tme for the relationship between species 

and pH and salinity. Results of CCA have demonstrated that elevation is still the most 

important variable in influencing diatom distributions but results of DCA have suggested 

that the diatom assemblages in samples from Kjelst Enge are complex. Carefiil 

consideration will be given as to whether these samples should be included in any training 

set and subsequent fransfer fiinction development. These points are fiirther explored in 

Section 7.2. 
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4.6 Chapter summary 

This chapter has presented the results from the investigations into the modem salt-marsh 

environment. The first part of the chapter described the topography and vegetation 

zonation of the salt-marsh environment at each of the fransect locations samples. Modem 

diatom data was presented alongside the analysis of a number of environmental variables. 

The vertical zonation of diatom species with respect to the tidal frame was tested via the 

use of unconsfrained cluster analysis. These results have highlighted several key points: 

• The diatom assemblages at Oksby Enge and Langli North were found to display a 

sfrong vertical zonation of diatom species with respect to elevation. 

• The diatom assemblages from the remaining four fransects (Kjelst Enge, Moserva, 

Storbsk and Langli South) did not display a clear vertical zonation. 

• For the combined modem diatom data, some evidence of a vertical zonation is 

apparent but clearly there are several groups of samples which do not fit this 

pattem. 

• Samples from Langli and Kjelst Enge, which cover similar elevation ranges, were 

seen to be associated with different dominant diatom taxa. 

These results suggested that a thorough exploration of the modem species and 

environmental data was needed before any fraining set and subsequent fransfer function 

could be developed. This was achieved through the use of several ordination techniques. 

Two data sets were analysed in ordinations and the results have highlighted several key 

points: 

For DataSetA, which included a smaller number of samples but a larger number of 

environmental variables (100 samples, 152 taxa and 8 environmental variables): 

• PCA identified three samples with exfreme environmental characteristics that were 

subsequently removed from the data set. 

• DCA highlighted the samples from the tidal flat at Langli North and Langli South 

as being associated with a different diatom assemblage from the remaining samples 
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• CCA established that both pH and elevation exert strong, independent and 

statistically significant influences on modem diatom assemblages, suggesting that 

diatom-based training sets can be developed fijr both these variables 

• Concerns regarding the nature of the sampling method used to measure pH (Section 

3.3), means that elevation is the more suitable variable to reconstmct. The point 

sampling method used is unlikely to reflect the tme temporal and spatial variability 

of pH over tidal cycles. 

For DataSetB, which included a larger number of samples but a smaller number of 

environmental variables (127 samples, 161 taxa and 3 environmental variables): 

• DCA has demonstrated that the samples from Kjelst Enge are all associated with 

similar diatom assemblages. This is surprising given the fact that these samples 

span a relatively large elevation range (+0.7 - +1.9 m DNN) and come from a 

range of salt-marsh environments. 

• DCA has shown that samples from Langli South and Kjelst Enge cover similar 

elevations ranges but are associated with different diatom taxa. 

• CCA established that only elevation was shown to exert an independent and 

statistically significant influence on diatom distributions. This suggests that the 

inclusion of the Kjelst Enge samples has sfrong implications for the species-

environment relations. 

• Careful consideration needs to be given as to whether the samples from Kjelst Enge 

should therefore be included in any fraining set and subsequent fransfer function 

development. 

For both DataSetA and DataSetB: 

• Elevation exerts a sfrong, independent and statistically significant influence on 

modem diatom distributions in the Ho Bugt embayment and is therefore the most 

appropriate envfronmental variable to reconstmct. 

These points are further discussed in Chapter 7 alongside the detailed development of a 

diatom-based fransfer function for reconstmcting changes in palaeomarsh-surface 

elevation. The next two chapters present the results from the investigations of the 

palaeoenvironment. 

130 



Chapter 5 Palaeoenvironments - Lithostratieraphv 

Chapter 5 

Palaeoenvironments - Lithostratigraphy 
Following the description and discussion of the modem salt-marsh environment in the 

previous chapter, this chapter presents the first results fiom the palaeoenvironment. The 

lithostratigraphy of the Ho Bugt salt marshes is presented alongside the detailed 

sedimentological characteristics of the master core sequence (core R01 from Rogel salt 

marsh). Justification for this choice of core is given in Section 3.4.3. The results of 

investigations focussing specifically on the humified black layer in this core are also 

presented. Chronological control is provided by ''̂ C, OSL and •̂ '̂ Pb/'̂ ^Cs dates. The 

modelling of these dates to produce a series of age-depth models for the various core 

sequences is detailed and discussed in Section 8.7. 

5.1 Salt-marsh lithostratigraphy 

Cores and monolith sections were collected fi-om 8 transects across the salt marshes along 

the northem and westem side of the Ho Bugt embayment (Figure 3.1). Radiocarbon dates 

were obtained from sfratigraphic sections at Kjelst, Bredmose, Rogel and Oksby Enge. 

OSL dates were obtained from sections at Regel and Oksby Enge. '̂ '̂ Pb/'̂ ^Cs age 

estimates were obtained from Bredmose, Kjelst and Rogel. Dates are presented alongside 

lithostratigraphy and are fiilly detailed in Tables 5.1 - 5.3. •̂ '̂ Pb/̂ '̂ Ĉs ages are presented 

and modelled in Section 8.7. Transects are described from north to south. 

5.1.1 Kjelst Enge (Figure 5.1a) 

At Kjelst Enge, a Phragmites peat forms the basal unit of the Holocene sequence overlying 

sand, presumably of Saalian age and of glacial origin (Aagard et al., 1995). The deepest 

basal peat was found at a depth of - 5.85 m DNN. This basal peat unit is up to 2 m thick. 

The sharp upper basal contact suggests that the peat has been eroded in places. In the most 

landward of the cores the fransition to the overlying clay is conformable. Here, the basal 

peat reaches a level of + 0.5 m DNN. Overlying the basal peat lays an extensive clay unit 

within which a bed of clayey Phragmites peat is found in the most landward of the cores. 

This unit, found between 0 and approximately + 1 m DNN, is variable in thickness but is 

up to one mefre thick at its greatest extent. The upper most unit at Kjelst consists of a peaty 

clay. 
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Figure 5.1. Stratigraphy of Kjelst Enge salt marsh. Radiocarbon ages shoŵ  the fiiU 2a 
calibrated age range. Full details are provided in Table 5.1. 
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A series of radiocarbon dates have been obtained from cores at Kjelst (Table 5.1). 

Radiocarbon dates from core KE2 were obtained as part of the HOLSMEER Project 

(Gehrels et al., 2006a). Additional radiocarbon dates from the basal peat unit found in 

cores KE12, KE13 and KEl , were obtained as part of this project (Table 5.2). Radiocarbon 

dates from core KE2 indicate that the basal peat in this core was formed between 3500 and 

3200 cal. yr BP. Erosion has removed the upper part of the basal peat and one dated 

sample in the overljdng clay unit is reworked from the basal peat. The clay unit was 

deposited between 2000 and 1700 cal. yr BP. Ages on the upper Phragmites peat range 

from 1400 to 1000 cal. yr BP. One sample in the upper clay unit has been dated and this 

retumed a near modem age. 

In core KEl , radiocarbon dates suggest that the basal peat in this core was formed between 

7200 and 3800 cal. yr BP. This core contains the oldest radiocarbon dates obtained from 

the Ho Bugt salt marshes. In core KE13, the basal peat was formed between 5900 and 2500 

cal. yr BP and in core KE12 between 3700 and 2500 cal. yr BP. Erosion has removed the 

upper part of the peat in these cores. The two uppermost dates obtained from the basal peat 

in core KEl (Table 5.2. nos. 37 & 38), suggest that the peat here has been somewhat 

compacted. This is especially obvious when compared with the basal dates from core 

KEl3. Although deeper in sequence, these two samples retumed younger ages than the 

basal date from core KEl3, indicating that some down core movement has taken place. 

The issue of core compaction and the implications for this study are ftirther explored in 

Section 9.1. One sample from the overlying clay unit in core KEl was dated. This retumed 

an age of 2700 - 2800 cal. yr BP. 
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Kjelst core KE2 

Sample 
number 

Laboratory 
Code 

Sample 
Depth (cm) 

Elevation 
(m DNN) Material dated 

Conventional 
Radiocarbon 

Age ("C yr BP) 

Calibrated 
Radiocarbon Age 

2 Sigma (cal. yr BP) 

Median age 
(cal .yrBP) 

1 AAR-8891 0.12 +1.46 Detrital plant material 25 ±39 31 - 2 5 6 69 
2 AAR-8892 0.50 +1.08 Detrital plant material 1191 ±41 984-1286 1118 

3 AAR-8048 0.56 +1.02 Detrital plant material 1330 ±65 1081 -1350 1249 
4 AAR.8049 0.68 +0.90 Detrital plant fragment 1562 ±40 1367- 1536 1460 
5 AAR-8050 0.82 +0.76 Detrita! plant fragment 1487 ±42 1300-1514 1372 

6 AAR.8051 0.96 +0.62 Detrital Phragmites 1772 ±57 1548-1824 1693 
7 AAR8052 1.16 +0.42 Juncus nodule 1763 ±42 1567-1813 1673 

8 AAR-8053 1.38 +0.20 Detrital Juncus fragment 1765 ±50 1562- 1817 1679 
9 AAR.8054 1.51 +0.07 Detrital Phragmiles 1995 ±55 1825 - 2110 1949 
10 AAR.80SS 1.67 •0.09 Detrital plant fragment 1853 ±46 1635 - 1892 1788 

11 AAR.8056 1.84 -0.26 Detrital plant fragment 1965 ±39 1826-1994 1917 

12 AAR.8057 2.01 -0.42 Detrital plant fragment 1930 ±43 1740 -1989 1879 

13 AAR.8058 2.35 -0.77 Detrital Phragmites 3122 ±44 3244 - 3445 3349 
14 AAR.8059 2.57 -0.99 Detrital Phragmites 3073 ±44 3163 - 3384 3293 
15 AAR.8060 2.75 -1.17 Detrital plant fragment 3332 ±48 3453 - 3687 3565 

Bredmose core 
BR1 

Sample 
number 

Laboratory 
Code 

Sample 
Depth (cm) 

Elevation 
(m DNN) Material dated 

Conventional 
Radiocartion 

Age ("C yr BP) 

Calibrated 
Radiocarbon Age 

2 Sigma (cal. yr BP) 

Median age 
(caLyrBP) 

16 AAR-8067 1.77 -0.09 Phragmites fragment 1577 ±41 1378-1547 1466 
Bredmose core 

BRl 2 

Sample 
number 

Laboratory 
Code 

Sample 
Depth (cm) 

Elevation 
(mDNN) 

Material dated 
Conventional 
Radiocartion 

A g e ( " C y r B P ) 

Calibrated 
Radiocarbon Age 

2 Sigma (cal. yr BP) 

Median age 
(cal. yr BP) 

17 AAR-8068 1.53 +0.65 Detrital fragment 1880 ±41 1714-1918 1823 
Bredmose core 

BR2 

Sample 
number 

Laboratory 
Code 

Sample 
Depth (cm) 

Elevation 
(m DNN) Material dated 

Conventional 
Radiocarbon 

Age ("C yr BP) 

Calibrated 
Radiocarbon Age 

2 Sigma (cal. yr BP) 

Median age 
(cal .yrBP) 

18 AAR.8069 1.60 -0.02 Detrital plant fragment 2360 ±100 2153-2719 2431 

Table 5.1. Radiocarbon data obtained by AMS "'C dating as part of the HOLSMEER Project 
(Gehrels et al., 2006a). Samples were analysed at the AMS ^^C Dating Laboratory, 
University of Arhus. All ages are corrected for S'̂ C. Calibrated ages are based on the non-
marine rNTCAL04 calibration curve (Reimer et al., 2004). 
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Ronel core R01 

Sample number Laboratory Code Sample 
Depth (cm) 

Elevation 
(m DNN) Material dated 

Conventional 
Radiocarbon Age 

( " C y r B P ) 

Calibrated 
Radiocarbon Age 

2 Sigma 
(cal. yr BP) 

Median age 
(cal. yr BP) 

19 SUERC-9253 51 +1.09 Unid. Rant remains 1026 ±34 802-1051 945 
20 SUERC-9254 68 +0.92 Phrapmites 1464 ±34 1302-1404 1351 
21 SUERC-9255 72 +0.88 Phraqmites 1683 ±34 1524-1694 1590 
22 SUERC-9256 81 +0.79 Phraqmites 1271 ±31 1093-1287 1221 
23 SUERC-9257 92 +0.68 Unid. Rant remains 1532 ±34 1351 -1518 1420 
24 SUERC-9259 168 -0.08 Unid. Rant remains 2698 ±33 2753-2855 2800 
25 SUERC-9262 189 -0.29 Juncus{7) stem 3015 ±36 3079 3338 3226 
26 SUERC-9263 215 -0.55 Phraqmites 3890 ± 37 4162 - 4421 4329 
27 SUERC-9264 219 -0.59 Unid. Rant remains 3882 ± 37 4160 - 4419 4322 
28 SUERC-9265 222 -0.62 Unid. Rant fraqment 3939 ± 34 4253-4515 4384 

Rogel core R01 
Monolith 

Sample number Laboratory Code Sample 
Depth (cm) 

Elevation 
(m DNN) Material dated 

Conventional 
Radiocarbon Age 

( " C y r B P ) 

Calibrated 
Radiocarbon Age 
2 Sigma (cal. yr 

BP) 

Median age 
(caLyrBP) 

29 SUERC-9266 55 +1.05 Ptjraqmites 968 ±34 791 - 936 860 
30 SUERC-9267 60 +1.00 Phraqmites 1193 ±32 1005-1236 1119 

Oksby Enge 
Monolith A 

Sample number Laboratory Code Sample 
Depth (cm) 

Elevation 
(m DNN) Material dated 

Conventional 
Radiocarbon Age 

( " C y r B P ) 

Calibrated 
Radiocarbon Age 

2 Sigma (cal. yr 
BP) 

Median age 
(cal. yr BP) 

31 SUERC-9268 124 +0.38 Phraqmites 1835 ±35 1698-1868 1773 
32 SUERC-9269 152 +0.10 Unid. Rant remains 2718 ±32 2758 - 2868 2814 

Oksby Enge 
0EB5 

Sample number Laboratory Code Sample 
Depth (cm) 

Elevation 
(m DNN) Material dated 

Conventional 
Radiocarbon Age 

( " C y r B P ) 

Calibrated 
Radiocarbon Age 
2 Sigma (cal. yr 

BP) 

Median age 
(cal. yr BP) 

33 SUERC-9272 18 +1.61 Phraqmites (rhizome?) Modern n/a n/a 
34 SUERC-9274 82 +0.97 Phraqmites 744 ±34 658 - 730 684 
35 SUERC-9275 101 +0.78 Phraqmites 1318±34 1178-1298 1257 

Kjelst core KE1 
(20O4) 

Sample number Laboratory Code Sample 
Depth (cm) 

Elevation 
(m ONN) Material dated 

Conventional 
Radiocarbon Age 

( " C y r B P ) 

Calibrated 
Radiocarbon Age 
2 Sigma (cal. yr 

BP) 

Median age 
(cal. yr BP) 

36 SUERC-9276 416 -2.59 Unid. Rant fraqment 2680 ±35 2748 - 2849 2785 
37 SUERC-9277 515 -3.58 Juncus (?) stem 3667 ±37 3890-4091 3998 
38 SUERC-9278 598 -4.41 Phraqmites 4821 ±39 5470 - 5643 5527 
39 SUERC-9279 654 -4.97 Phraqmites 5514 ±55 6208 - 6408 6317 
40 SUERC-9282 683.5 -5.27 Unid. Rant remains 6101 ±42 6860 - 7157 6976 

KielstcoreKE12 

Sample number Laboratory Code Sample 
Depth (cm) 

Elevation 
(m DNN) Material dated 

Conventional 
Radiocarbon Age 

( " C y r B P ) 

Calibrated 
Radiocarbon Age 
2 Sigma (cal. yr 

BP) 

Median age 
(cal. yr BP) 

41 SUERC-9283 235 -0.83 Phraqmites 2549 ±35 2493-2751 2631 
42 SUERC-9285 380 -2.28 Phraqmites 3352 ±34 3480 - 3686 3592 

Kjelst core KE13 

Sample number Laboratory Code Sample 
Depth (cm) 

Elevation 
(m DNN) Material dated 

Conventional 
Radiocarbon Age 

( " C y r B P ) 

Calibrated 
Radiocarbon Age 
2 sigma (cal. yr 

BP) 

Median age 
(cal. yr BP) 

43 SUERC-9286 333.5 -1.75 Phraqmites 2507 ± 55 2470-2736 2586 
44 SUERC-9287 508 -3.49 Phraqmites 5101 ±40 5746 - 5922 5820 

Table 5.2. Radiocarbon data obtained by AMS '''C dating (this study). Samples were 
prepared at the NERC Radiocarbon Laboratory, East Kilbride and analysed at the SUERC 
AMS Facility for '''C analysis. All ages are corrected for 5'^C. Calibrated ages are based on 
the non-marine INTCAL04 calibration curve (Reimer et al., 2004). 
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5.1.2 R0gel (Figure 5.2) 
At R0gel the basal peat unit is found between -0.8 and +0.3 m DNN and is again underlain 

by sands. Towards the seaward end of the transect the basal peat is clearly eroded, hi the 

landward cores, the basal peat forms a more gradual transition to the overlying clay. 

Phragmites roots are found in the uppermost part of the clay unit. Overlying the clay is a 

very distinct amorphous black organic unit. It is found approximately 0.5 m below the 

surface in the landward cores but dips slightly towards the sea. Towards the landward part 

of the transect, the black layer merges into a clayey peat. Here the unit is very similar to 

the clayey peat unit in the Kjelst transect. The uppermost unit at Rogel is a peaty clay, 

within which is contained a 5 - 10 cm thick layer of fine, well-sorted sands. The sand unit 

thickens towards the dune system that borders the marsh along its westem margin (Figure 

5.3), suggesting a possible aeolian origin. In the landward part of the transect, the sand 

directly overlies the clayey peat. 

A series of radiocarbon dates from core R01 (Table 5.2) indicates that the basal peat in 

this core was formed between 4500 and 2800 cal. yr BP. Although no dates are available 

from the base of the clay unit, it is estimated to have been deposited between 1100 and 

1600 cal. yr BP. This estimate is based on ages from the same clay unit in the KE2 core. 

Several dates obtained from this unit do not conform to sfratigraphic order, suggesting that 

some reworking of the clay has taken place. This is very similar to the situation found in 

core KE2 from the Kjelst fransect (Section 5.1.1). Three dates were obtained from the 

lower black layer contact and these suggest that the initial formation of the black layer in 

this core took place between 1200 and 700 cal. yr BP. No datable material was found in the 

black layer itself, or in the overlying peaty clay unit. 

In addition to the radiocarbon ages, two OSL ages were obtained from the upper sand unit 

at Rogel (Table 5.3). Dates from the top and bottom of the sand unit retumed ages of 396 ± 

30 and 486 ± 40 yr BP, respectively. The top 18 cm of Rogel core R01 was also subjected 

to ^'°Pb and '̂ ^Cs analyses. Here the peaty clay is dated to between 100 and -50 yr BP. 

These ages agree reasonably well with the OSL chronology and are presented and 

discussed in Section 8.7. 
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Figure 5.2. Stratigraphy of Kegel salt marsh. Radiocarbon ages show the tull 2a calibrated 
age range. Full details are provided in Table 5.2. 

Sample 
number Core Laboratory 

Code 
Sample Depth 

(m) 
Elevation 
(m DNN) Age(yrBP) 

45 Rogel monolitti (R01) Ris0 052803 23 +1.37 396 ± 30 
46 Rogel monolith {R01) Risa 052804 33 +1.27 486 ± 40 
47 Oksby Enqe 0EB5 Riso 052802 33 +1.46 436 ± 30 
48 Oksby Enqe Monolith A Ris0 052801 152 +0.08 5626 ±340 

Table 5.3. OSL data for samples taken from the salt marshes at Ragel and Oksby Enge. 
Samples were prepared and analysed at the Rise National Laboratory for Luminescence 
dating, Roskilde, Denmark. Errors are analytical laboratory errors. 
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Figure 5.3. Map of Ho Bugt salt marshes showing location and thickness of the sand unit. 
The unit is seen to thicken in a landward direction. To the west the marshes are backed by 
a former dune ridge system which has now been stabilised by plantations (Jepsen, 1996). 
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5.1.3 Oksby Enge A (Figure 5.4a) 

The basal peat unit at Oksby Enge A is found around - 2 m DNN. Here the unit is up to 2 

metres thick in places and reaches an elevation of + 0.5 m DNN. In the most landward 

cores, where the basal peat unit is thinner, the transition to the overlying clay unit is very 

sharp and indicative of an erosional contact. The stratigraphy above the basal peat is 

similar to that found at Oksby Enge B. The black layer and sand layer are clearly present. 

Here, as is the case at Rogel, the sand layer thickens in a landward direction (Figure 5.3). 

5.1.4 Oksby Enge B (Figure 5.4b) 

The stratigraphy at Oksby Enge B is very similar to that at Rogel. Here however, the basal 

peat unit is thin suggesting that it has been eroded. The black layer is found between +0.7 

and +1.2 m DNN and varies between 5 and 11 cm in thickness. The sand urut at Oksby 

Enge B thickens in a landward direction (Figure 5.3) and is up to one metre thick in the 

most landward core. A second sand unit is identified c. -0.5 m DNN in the most landward 

core. 

Five radiocarbon dates were obtained from cores at Oksby Enge B (Table 5.2). Three dates 

from core OEB 5 and two dates from monolith OEA. In core OEB 5, one date from the top 

of the sand layer retumed a 'modem' age (Table 5.2. no.33). This age is much younger 

than expected. Laboratory notes reflect some doubt over the nature of the plant macrofossil 

used for dating, suggesting the possibility that an in-situ rhizome was dated. This sample is 

therefore excluded for any fiirther analysis in this study. One dated sample from the bottom 

of the black layer (Table 5.2. no. 34) retumed an age of 670 - 730 cal. yr BP. This is 

slightly younger than the age for the black layer obtained at Kegel. From the clay unit, one 

dated sample retumed an age of 1180 - 1300 cal. yr BP. One OSL sample from the upper 

sand unit retumed an age of 406 - 466 yr BP (Table 5.3), agreeing well with the OSL ages 

from Kegel. 

In Monolith OEA, two radiocarbon dates suggest that the basal peat vinit in this monolith 

was formed between 2800 and 1700 cal. yr BP. Clearly some erosion of the peat has taken 

place in the core. One OSL sample from the underlying basal sand in this core (Table 5.3) 

retumed an age of 5626 ± 340 yr BP. This date provides a maximum age for the formation 

of the basal peat unit at Oksby Enge. 
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Figure 5.4. Stratigraphy of salt marshes at a) Oksby Enge A, and b) Oksby Enge B. 
Radiocarbon ages show the fiiU 2a calibrated age range. Full details are given in Table 5.2. 
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5.1.5 Bredmose (Figure 5.5a) 

At Bredmose, the basal peat unit is up to 2 metres thick. In core BRl2 it is found up to a 

level of + Im DNN, higher than found at any other location in Ho Bugt. The overlying 

stratigraphy is similar to the Oksby Enge transects. The black layer is found between + 1.4 

and + 0.6 m DNN and is around 10 cm in thickness. The sand layer is found between + 

2.46 and + 0.95 m DNN and again thickens considerably towards the landward part of the 

transect where the dunes are located. In the most landward cores, the sand layer is almost 1 

metre thick (Figure 5.3). 

Three radiocarbon dates were obtained from cores along the Bredmose fransect as part of 

the HOLSMEER Project (Table 5.1) (Gehrels et al., 2006a). In core BR12 the basal peat 

unit is dated to the 1700 to 1900 cal. yr BP. In core BR2, a slightly lower date on the basal 

peat retumed an age of 2200 - 2700 cal. yr BP. In core BRl, where the overlying clay unit 

encroaches upon the underlying sands an age of 1400 - 1500 cal. yr BP was obtained. This 

last sample (no. 16, Table 5.1) retumed a younger than expected age. Again, laboratory 

notes reflect some doubt over the nature of the sample used for dating, suggesting the 

possibility that an m-situ rhizome was dated. This sample is therefore excluded for any 

fiirther analysis in this study. 

5.1.6 Nerballe (Figure 5.5b) 

At Norballe, the Phragmites basal peat is again of variable thickness and is eroded in 

places. The black layer is found between +1.2 and - 0.6 m DNN. The sand unit is up to 0.5 

m thick and is marginally thicker in the most landward of the cores. In the most seaward 

core, a second sand layer was found around 0 m DNN but was not identified in any other 

core. 
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a) Bredmose 

BR12 BR1 BR2 BR9 
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Figure 5.5. Stratigraphy of sak marshes at a) Bredmose and b) Nerballe. Radiocarbon ages 
show the full 2a calibrated age range. Full details are provided in Table 5.1. 
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5.1.7 Senderballe (Figure 5.6) 

At Senderballe, as is the case elsewhere, the basal peat unit reaches an elevation of around 

0 m DNN and is overlain by a thick clay unit. A second sand layer is contained within this 

clay unit and, in the most seaward of the cores, is directly overlain by the black layer. Here 

the black layer is found between - 0.63 and + 1.08 m DNN. The main sand unit, found 

between + 1 and + 1.6 m DNN, is very extensive at Senderballe and in most cores is 

around 0.5 m thick (Figure 5.3). 

Sanderballe 

Figure 5.6. Stratigraphy of Senderballe salt marsh. 

5.1.8 Langli Island 

On Langli Island, the salt marshes sediments were found to be very shallow. In most cases, 

impenetrable sediments were reached after less than 1 m and consequently the stratigraphy 

is not presented. Overlying the basal sand xinit is clay which contains orange staining in the 

lower most section. The upper most unit at Langli is a peaty clay topsoil which varies 

between 0.35 and 0.05 m in thickness. No evidence for the sand layer or the black layer 

was found on Langli Island, presumably because the sediments here are too young. 
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5.2 Regel Master Core Sequence (core R01) 

Core R01 from Rogel salt marsh was selected as the master sequence fr)r analysis of 

diatoms and sedimentological characteristics. Justification for this choice of core is given 

in Section 3.4.3. In addition, detailed investigations focussing specifically on the humified 

black layer in this core were also undertaken. The sedimentological characteristics and 

results from investigations of the black layer are presented here. The biostratigraphy of 

core R01 is presented in Chapter 6. The "*C, OSL and ^'°Pb/'^^Cs ages associated with this 

core are described in context above and are presented in Tables 5.1-5.3 and also in Figure 

5.7a. 

5.2.1 Core R01 - Lithostratigraphy 

The detailed lithosfratigraphy of this core is shown in Figure 5.7a. In this core the basal 

peat unit is found between 1.48 - 2.25 m core depth (between + 0.12 and - 0.65 m DNN). 

The lower most peat section (core depth 1.74 - 2.25 m), is a Phragmites peat. The upper 

fransition to clay is fairly sharp, suggesting an erosional contact, but not as sharp as in the 

most seaward cores along this transect. The overlying clay unit is found between core 

depths 0.52 and 1.48 m (+ 1.08 and + 0.12 m DNN). Phragmites remains are found 

throughout the clay, with numerous Phragmites roots visible in the uppermost part. 

Between core depths 0.47 and 0.52 m (+ 1.13 and + 1.08 m DNN) the black layer is found. 

The lower contact of the black layer is diffiise with some black staining and black mottles 

visible down to 0.60 m core depth (+ 1.0 m DNN). The fransition from the black layer to 

the overlying peaty clay vmit is very sharp, the change occurring over a depth of less than 

0.01 m. The uppermost unit is a peaty clay. Within this peaty clay, the sand layer is well 

preserved and extends from 0.18 - 0.33 m core depth. ( + 1.42 to + 1.27 m DNN). Both the 

upper and lower contacts of the sand layer are found to dip slightly in a seaward direction. 

These dipped contacts are shown in situ in the salt marsh in Figure 5.7. 
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a) Lithology b) 
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Figure 5.7. a) Detailed lithology of Rjagel master core sequence (core R01). b) The 
dipping upper and lower sand layer contacts in situ in the salt marsh, c) the reasonably 
sharp transition from peat to clay at 1.48 m core depth, and d) Phragmites basal peat found 
in this core. 
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5.2.2 Core R01 - Sedimentological characteristics 

A number of sedimentological parameters were investigated from core R01 in order to 

characterise the nature of the sediments. These included: bulk density, loss on ignition, 

carbonate content and grain size (sand, silt and clay fractions). The results of these 

investigations are presented below. 

Dry Bulk Density 
A total of 194 samples were analysed from core R01 for dry bulk density. Results are 

presented in Figure 5.8. Values are found to range from 0.14 to 1.28 g/cm .̂ Changes in dry 

bulk density correlate well with the lithosfratigraphy. Bulk density is low but consistent in 

the basal peat, here values range from 0.14 to 0.42 g/cm .̂ In the overlying clay unit bulk 

densities are higher but are again fairly consistent, ranging from 0.54 to 1.11 g/cm .̂ A 

distinct change in bulk density is noted with fransition from the clay into the black layer. 

Here bulk density values are low but extremely consistent, ranging from 0.24 to 0.39 

g/cm ,̂ and are comparable to those values found in the basal peat. Below the sand layer, 

bulk densities in the peaty clay unit are comparable to those found in the lower clay unit. 

The sand layer did not preserve well in the Regel monolith section and so bulk density 

results are not available from this layer. The peaty clay above the sand layer shows 

considerable variation in dry bulk density. Values here range from 0.25 to 1.28 g/cm3. 

There is a noticeable down core increase in dry bulk density values in this upper 

lithological unit, which indicate that some compaction of the core sequence has taken place 

here. The remaining parts of the core appear largely unaffected by compaction, as 

suggested by the bulk density record. The issue of core compaction and the possible 

implications for this study are further discussed in Section 9.1. 

Loss on Ignition 

A total of 148 samples from core R01 were analysed using the loss on ignition method 

(Ball, 1964; Folk, 1965) to estabhsh organic content. Results are presented in Figure 5.8. 

As with previous measurements, samples from core depths 0.25 - 0.28 m were not 

analysed since the sand layer sediments at this depth were not preserved intact. Samples 

were analysed at 1 cm resolution in the top 1 m of the core, at 2 cm resolution between 

core depths 1.0 and 1.60 m, at 4 cm resolution between core depths 1.6 and 2.0 m and at 8 
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cm resolution from core depth 2.0 m to the bottom of the sequence. Samples were taken 

alongside diatom samples. 

LOI values vary greatly throughout the core sequence with values ranging from 0 - 80%. 

Changes in LOI correlate well with lithosfratigraphy. The highest LOI values are found in 

the basal peat. Here values range from 55 - 80% organic matter. LOI values are also high 

in the black layer with values ranging from 50 - 70% organic matter. Lower LOI values 

dominate in the clay unit (5 - 20% organic matter). The lowest LOI values are found in the 

sand layer. Here, the organic component accounts for less than 5% of material in each of 

the samples analysed. LOI values are higher in the upper peaty clay compared unit with the 

lower clay unit, reflecting the higher organic content of these samples. 

Calcium Carbonate Content 

The samples used to establish LOI were fiirther analysed to establish the calcium carbonate 

content. The results are presented in Figure 5.8. Calcium carbonate values are expressed as 

a percentage of the original material. Changes in the calcium carbonate content are found 

to correlate well with changes in lithosfratigraphy. Throughout the majority of the core, 

calcium carbonate values are low and remain fairly consistent within each lithological unit. 

However, in the basal peat calcium carbonate values are more variable ranging from 0.7 -

14%. This is probably a result of in-washing events. Flooding of the basal peat, by an 

exfreme high tide or similar event, will result in higher calcium carbonate values as 

carbonate rich material is in-washed (Kirby, pers. comm.). The two highest peaks in 

calcium carbonate values in this unit occur just before the upper basal peat contact, 

suggesting that the peat was flooded several times before finally being fransgressed. 

In the overlying clay unit, calcium carbonate values vary between 2.5 and 5%. Above 0.92 

m core depth, calcium carbonate values in the clay unit increase and range from 5 - 10.5 %. 

In the peaty clay immediately below the sand layer, calcium carbonate values are slightly 

lower than those found in the clay unit, varying between 2 and 3%. In the sand layer, 

calcium carbonate values are the lowest (< 0.5%). 
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Grain Size (sand, silt and clay fractions) 

The results of grain size analysis are presented in Figure 5.8. A total of 220 samples from 

core R01 were analysed for sand, silt and clay fractions. These samples were taken at 1 cm 

resolution throughout the entire core sequence. Samples from core depths 0.25 - 0.28 m 

were not analysed since the sand layer sediments at this depth were not well preserved. Of 

these 220 samples three samples, from core depths 2.20, 2.24 and 2.25 m, produced 

unreliable results. It is speculated that some remaining organic material in these samples 

distorted the grain size distribution graphs and produced these poor results. Repeat 

analyses of these samples also resulted in the same problem; hence these samples have 

been removed from the analysis. Since the organic component is removed from samples 

during preparation, all percentages are expressed as a percentage of the minerogenic 

fraction. 

Changes in grain size distribution are found to correlate well with changes in 

lithosfratigraphy. The basal peat unit in core R01 is dominated by silt (40 - 80%) and sand 

(c. 30 - 40%) fractions. Only very small amovmts of clay (<10%) are found in this unit. 

The overlying clay unit is dominated by silt (c. 80%) with some clay (c. 10 - 15%) and 

only minimal amounts of sand (< 10%). The grain size distribution of the black layer is 

very similar to that of the underlying clay unit. Here also, the silt fraction is the most 

dominant grain size fraction (c. 90%) with the remaining minerogenic component of these 

samples comprised of clay (c. 10%), and only very minimal amounts of sand (< 5%). The 

sand layer, contained within this unit, has a distinctly different grain size distribution to the 

remainder of the core. Here, as expected, the sand fraction is the most dominant (> 95%), 

with minimal amounts of silt (< 5%). Within this unit the grain size is also fairly uniform, 

suggesting rapid deposition. 
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Figure 5.8. Sedimentological characteristics of core R01 alongside lithology. Key to lithoiogy is given in Figure 5.7. 
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5.2.3 Core R01 - Black layer investigations 

Several analyses were conducted on the Rogel master section as an aid in determining the 

nature of the humified black layer, hi the Baltic similar black layers have been interpreted 

to be the result of temporary reversals in relative sea level (Lampe and Janke, 2004; 

Lampe, 2005). In the Tender salt marsh, along the North Sea coast of southernmost 

Denmark, a distinct black horizon is associated with embankment in 394 cal. yr BP 

(Jacobsen, 1964). However, there is no evidence to suggest that the Ho Bugt marshes were 

ever diked. In this study the hypothesis that the black layer resulted from a temporary 

reversal in relative sea level was therefore initially explored. Iron (Fe), Calcium (Ca), 

Magnesium (Mg) and Manganese (Mn) concentrations. Total Organic Carbon (TOC) and 

the amount of humic substances insoluble in sodium hydroxide (NaOH) were analysed for 

the upper 72 cm of the Rogel master core (R01). These variables were selected to enable 

direct comparisons to be made with the investigations in the Baltic (Lampe, unpublished 

data). In addition, the black layer from the Rogel master section was analysed for 

microscopic charcoal. The results of these investigations are presented below. 

Geochemistry 

The results of Fe, Ca, Mg and Mn measurements are presented in Figure 5.9. Changes in 

the concenfration of the various elements are found to correlate well with changes in 

lithosfratigraphy. Fe, Ca, and Mg concenfrations are found to be fairly high throughout this 

core section. Fe concenfrations in particular are found to be exfremely high with 

concenfrations reaching 40 g/kg"'. Mn concentrations are found to be much lower than the 

other elements investigated. Of the four elements investigated, only calcium shows any 

noticeable change associated with the black layer. This is in confrast to data from the Baltic 

where black layers are associated with higher Fe values (Lampe, unpublished data), a 

result of oxidation and reduction processes. A distinct peak in calcium is observed 

correlating with the black layer and here values reach a maximum of 6.4 g/kg"*. This is 

possibly related to the high microscopic charcoal content of this layer (see below). Higher 

calcium values in sediments after fire events have been observed in several contemporary 

studies (e.g. Neff et al., 2005). The lowest concenfration of all four elements is fovmd in the 

sand unit. 
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Total Organic Carbon (TOC) 

The resuhs of total organic carbon measurements are presented in Figure 5.9. Changes in 

the amount of total organic carbon are found to correlate well with changes in 

lithostratigraphy. hi the clay unit below the black layer, TOC values range from 8 to 20%. 

Values are shown to increase with movement up core towards the black layer. Samples 

from the black layer are found to have the highest TOC values. Here values range from 20 

-28% TOC. 

Humification 

The results of the humification experiments are presented in Figure 5.9. The results 

obtained show some agreement with the lithosfratigraphy. Lowest light transmission 

values, indicating greater humification, are found in the black layer. Here, light 

fransmission values range between 40 and 60%. The highest light transmission values are 

found in the sand layer. Here, light transmission values are close to 100%. Two of the 

samples from the sand layer retumed light fransmission values over 100%. This is probably 

a reflection of the inappropriateness of the method used in this part of the core. The higher 

minerogenic component of some sediments, such as this sand unit, can distort light 

fransmission values resulting in higher than expected results (Hazell, 2004). It is also 

possible that quartz grains in these samples acted as reflectors, distorting the beam of light 

and producing incorrect results (Solman, pers. comm.). Light fransmission values in the 

clay and peaty clay units vary between 70 and 95%. However, once again these results 

must be interpreted with caution. Higher light fransmission values may be a reflection of 

increased minerogenic component rather than indication of a lesser degree of humification 

(Hazell, 2004). Although it is possible to correct for this (e.g. Hazell, 2004), humification 

was analysed in this investigation only an exploratory basis and this was not considered 

necessary. 

Microscopic Charcoal 

A total of 13 samples were examined for microscopic charcoal. The results are presented in 

Figure 5.9. A clear peak in charcoal concenfration is associated with the black layer. The 

concenfration of charcoal is approximately six times greater in the black layer compared to 

that of the neighbouring clay and peaty clay units. 
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5.3 Chapter summary 

In this chapter, the lithostratigraphy of the Ho Bugt salt marshes has been presented 

alongside the detailed sedimentological characteristics of the master core sequence (core 

R01 from Kegel salt marsh). '''C, OSL and ^'°Pb/'^'Cs ages have been described in context 

of the salt-marsh lithosfratigraphy. The results of investigations focussing on the humified 

black layer in this core have also been presented. The lithostratigraphy of the Ho Bugt 

marshes is characterised by several key lithological units: 

1) An extensive basal peat unit, formed between approximately 7000 and 2000 cal. yrs 

BP and containing numerous Phragmites remains. 

2) A clay unit formed between approximately 2000 and 1200 cal. yr BP. 

3) A humified black layer formed between approximately 1200 and 650 cal. yr BP and 

found around 0.5 m below the surface. This unit is up to 10 cm thick in places and 

is correlative to a clayey peat found along the Kjelst fransect in the northem most 

part of the embayment. 

4) An extensive sand unit formed between approximately 450 and 400 cal. yr BP and 

found around 0.2 m below the surface. This unit is up to 1 m thick in places and is 

thickest towards the landward extent of the fransect, where the salt marsh borders 

onto a former dune ridge system. The geometry of this sand unit sfrongly suggests 

an aeolian origin (Figure 5.3). 

The interpretation of these units is discussed alongside biostratigraphical data in Chapter 9. 

Changes in the sedimentological characteristics of the master core sequence (core K01), 

have been found to correlate well with changes in the lithosfratigraphy. Noticeable changes 

in dry bulk density, LOI and grain size are correlated with the black layer and the sand 

layer. Detailed investigations focussing on the black layer in this core have shown that this 

layer is characterised by a peak in Ca values and a six-fold increase in charcoal abundance. 

'̂ C, OSL and ^'°Pb/'^^Cs ages are found to agree well with one another and have provided 

chronological confrol for the various lithological units. The modelling of these dates to 

produce a series of age depth models for each of the core sequences are presented in 

Section 8.7. The biosfratigraphy of core K01 and other core and monolith sections 

investigated is presented in the next chapter. 
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Chapter 6 

Palaeoenvironments - Biostratigraphy 
In the previous chapter, the lithostratigraphy of the Ho Bugt salt marshes was presented 

alongside the detailed sedimentological characteristics of the master core sequence (core 

R0I). In this chapter, the biostratigraphy of the core and monolith sections is presented. 

Low resolution diatom analyses of several core and monolith sections provide an overview 

of the main biostratigraphical changes in the Ho Bugt salt marshes. A high resolution 

diatom record from the master core sequence (core R01) provides a detailed record of 

biostratigraphical changes from which a high resolution local water-level history can be 

established. Justification for this choice of core is given in Section 3.4.3. This local water-

level history is later compared with that established from the existing master core sequence 

from Kjelst Enge (core KE2), analysed as part of the HOLSMEER Project. 

6.1 Salt-marsh biostratigraphy 

Sample core and monolith sections were collected from six locations within the Ho Bugt 

embayment and analysed for diatoms. Justification for the choice of core and monolith 

sections selected for diatom analysis, and the sampling resolution chosen, is given in 

Chapter 4 and summarised below. Where appropriate, the radiocarbon and OSL dates 

presented in the previous chapter are shown alongside the biosfratigraphy. Core and 

monolith sections are described from north to south. The location of all core and monolith 

sections are shown in Figure 3.1. 

6.2 Kjelst Enge (KE2) 

Core KE2 from the salt marsh at Kjelst Enge was analysed as part of the HOLSMEER 

Project by Dr J. Kirby. The results are presented here since they form an integral part of 

this investigation. From 0 to 0.90 m core depth (1.58 - 0.68 m DNN), samples for diatom 

analyses were counted at 4 cm resolution. Below 0.90 m, samples were analysed at 8 cm 

resolution. In the majority of samples the diatoms were well preserved and minimum 

counts of 250 - 300 diatom valves were obtained. In the bottom of the core, diatom 

preservation was very poor. The bottom samples at 2.82 and 2.90 m core depth were 

barren, whilst the sample at 2.74 m contained only the occasional broken diatom fragment. 

The biostratigraphy of core KE2 is presented in Figure 6.1. 
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Figure 6.1. Diatom stratigraphy of core KE2. Samples were counted by J.R. Kirby. Only species with at least 3% relative abundance are shown. Cluster 
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A total of 110 diatom taxa were identified throughout core KE2, 87 with relative 

abundances > 1%. Constrained cluster analysis (CONISS; Grimm, 1987), divides the 

samples into four diatom assemblage zones. The lowest sample to retum a complete count 

is at 2.66 m core depth, at the eroded contact of the basal peat and the clay. This sample is 

dominated entirely by polyhalobous species, including Paralia sulcata, Grammatophora 

oceanica, Cocconeis scutellum var scutellum and Diploneis didyma, indicative of a marine 

environment. Several of the dominant taxa identified in this sample are allochtonous 

(transported), and their occurrence is most probably associated with the flooding and 

reworking of the upper part of the basal peat. 

Zone KE-1 (2.66-1.60 m depth) corresponds with the lower clay unit and is mainly 

dominated by polyhalobous species, including Cymatosira belgica, Delphineis surirella 

and P.sculcata. Several mesohalobous taxa such as Achnanthes delicatula, D. didyma and 

Synedra fasciculata also present. The diatom taxa in this zone are indicative of a marine 

environment. Zone KE-2 (0.60-1.60 m depth) corresponds with the upper part of the lower 

clay unit and with the lower part of the upper Phragmites peat. Dominant taxa such as 

Navicula peregrina, Epithemia adnata and Gomphonema angustatum are indicative of a 

brackish to fresh water environment. Indicator species for Zone KE-3 (0.37-0.60 m depth) 

include Pinnularia microstauron, Pinnularia viridis, Eunotia arcus, Eunotia fallax and 

Tabellaria flocculosa. The indicator species for this zone suggest a predominately 

freshwater environment. Zone KE-3 spans the upper part of the Phragmites peat and the 

lower part of the overlying peaty clay. Zone KE-4 (0-0.35 m depth) is characterized by 

increasing occurrences of Â . peregrina, Navicula cincta - type and Pinnularia ignobilis, 

indicating the retum to slightly brackish conditions. Zone KE-4 corresponds with the upper 

part of the upper clay unit. The biosfratigraphy generally corresponds with 

lithosfratigraphical changes, but some differences are noticeable. For example, the 

freshwater conditions that are prevalent throughout the upper Phragmites peat unit persist 

well into the overlying clay unit. 
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6.3 Bredmose (BR9) 

Core BR9 from the sah marsh at Bredmose was analysed for diatoms to meet two 

objectives: 

i) To provide a high resolution diatom record from the upper core section ft)r 

which a ̂ '°Pb/'^'Cs chronology was available (HOLSMEER project). 

ii) To establish the paleoenvironmental significance of the black layer. 

Diatom samples were analysed at 1 cm resolution in the upper 0.3 m of the core. The black 

layer in this core is 3 cm thick and extends from 0.755-0.785 m core depth (+0.595-0.565 

m DNN). Diatom samples were analysed at 1 cm resolution from 0.74-0.82 m depth, and 

then at 2 cm resolution down to 0.88 m depth. Three samples were analysed from the black 

layer itself, three from the clay unit below the black layer and two from the clay unit 

overlying the black layer. 

In the upper section of this core the diatoms were well preserved and minimum counts of 

300 diatom values were obtained from all samples. Diatom preservation was highly 

variable throughout the black layer section, with numerous broken fragments visible. 

Minimum counts of 300 diatom values were obtained from all eight samples counted 

however, most of these counts comprised of broken fragments. 

Figure 6.2 presents the diatom stratigraphy of a section through the black layer in core 

BR9. A total of 88 diatom taxa were identified in this core section, of which 48 were found 

with relative abundances of > 1%. Constrained cluster analysis divides the samples into 

three diatom assemblage zones (Figure 6.2). Zone BRBLK-1 corresponds to the clay unit 

directly below the black layer, extending from 0.785 to 0.81 m core depth. This zone is 

dominated by several polyhalobous species including Dimeregramma minor, C. belgica 

and P. sculcata. These species are all allochtonous (transported) and are found in relatively 

high abundances throughout much of this clay layer. Several mesohalobous and 

oligohalobous species are also present in Zone BRBLK-1, including N. peregrina and 

Epithemia turgida. The diatom assemblage in this zone is indicative of a marine to 

brackish water environment. 
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Zone BRBLK-2 (0.755-0.795 m depth) corresponds with the black layer and with the 

upper part of the lower clay unit. The diatoms in Zone BRJBLK-2 show a distinct 

freshening of the environment, characterized by an increase in several Pinnularia species, 

including Pinnularia borealis, Pinnularia major and P. viridis. Zone BRBLK-3 (0.74 -

0.755 m depth) corresponds to the upper clay unit. The diatom flora here is again 

indicative of a more marine environment, dominated by species such as Diploneis smithii 

and Diploneis interrupta. Very few Pinnularia species are identified in this zone. 

Although only a few samples were analysed in this section of the core, the changes in 

biosfratigraphy are shown to correlate reasonably well with the changes in the 

lithosfratigraphy. In particular, a distinct fresh water diatom assemblage appears to be 

associated with the black layer. 

Figure 6.3 presents the diatom sfratigraphy of the upper 0.3 m of core BR9. A total of 137 

diatom taxa were identified in this section of the core, of which 82 were found with 

relative abundances of > 1%. Three of these species remain unidentified. Species Gl has a 

maximum relative abundance of 9.6%, the other two unidentified species occur with only 

minor (< 3%) relative abundances. Unidentified diatom taxa, with relative abundances > 

1%, are described in Appendix 5. In this relatively short core section, corresponding with 

the upper peaty clay unit, several major changes in the diatom assemblage are noted which 

are not identified in the lithosfratigraphy. Consfrained cluster analysis divides the samples 

into three diatom assemblage zones (Figure 6.3). Zone BR9-1 (0.175-0.30 m depth) is 

dominated by mesohalobous taxa such as Denticula subtilis, D. interrupta, N. peregrina 

and the oligohalobous - halophile taxon N. cincta - type. These taxa are indicative of a 

brackish water environment. Indicator species for Zone BR9-2 (0.055 - 0.175 m depth) 

include a number of oligohalobous - indifferent taxa such as Fragilaria capucina, 

Nitzschia fonticola and Achnanthes clevei. These taxa are mostly absent from the rest of 

this core section. Mesohalobous taxa such as Navicula phyllepta and Navicula pygmaea 

are also dominant in this zone. The taxa in this zone are indicative of a brackish to fresh 

water environment. In Zone BR9-3 (0-0.055 m depth), the relative abundance of 

oligohalobous - indifferent taxa decreases. The mesohalobous taxon Navicula phyllepta 

and the oligohalobous - halophile taxa N.cincta - type and Nitzschia debilis, are dominant 

in this zone. These taxa indicate a retum to brackish water conditions. 
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6.4 R0gel (R01) 
Diatom analysis was conducted on Core R01 from the salt marsh at Regel to provide a 

high resolution diatom record to compare with the existing record from the salt marsh at 

Kjelst Enge (core KE2, Figure 6.1). Diatom samples were initially analysed at 8 cm 

resolution. In sections of the core where interesting changes in the abundance and presence 

of several taxa were noted, samples were then analysed at a higher resolution. Diatom 

samples were analysed at 1 cm resolution down to a depth of 0.80 m, at 2 cm resolution to 

a depth of 1.0 m, at 4 cm resolution to a depth of 1.60 m and then at 8 cm resolution to the 

bottom of the core (2.25 m). Additional samples were analysed from sfratigraphic levels 

that were '"̂ C dated. Samples from the upper 0.5 m were taken from Kegel monolith. 

Between 0.19 and 0.33 m core depth, the sand layer was not well preserved and 

consequently no diatom data is available for this part of the record. 

The diatom sfratigraphy of core R01 is presented in Figure 6.4. Diatom preservation was 

highly variable throughout the core. In the lowest part of the basal peat, from 2 m depth 

down to the bottom of the core, samples were barren. The last sample to retum a complete 

coimt is at 1.92 m depth. In the upper part of the basal peat, diatoms were found to be 

reasonably well preserved, although numerous broken and partially dissolved fragments 

were observed. Around 1.6 m core depth several samples did not retum fiiU counts. The 

upper contact of the basal peat is at 1.48 m depth. It is possible that erosion and reworking 

of the upper part of the basal peat has affected diatom preservation in this section of the 

core. From 0.60 - 1.60 m depth, diatom preservation was very good and frill counts were 

obtained from all samples within this section of the core. This section corresponds to the 

lower clay unit. 

Between 0.46 and 0.60 m depth, diatom preservation was highly variable. In samples from 

core depths 0.47, 0.50, 0.51, 0.53, 0.54 and 0.56 m, only a few broken diatom fragments 

were observed, even when highly concentrate slides were examined. Consequently these 

samples have been excluded from the results. Samples from 0.46, 0.49, 0.52, 0.55, 0.57 

and 0.59 m depth, retumed partial counts of between 180 and 300 diatom valves. These 

samples are included in the results at this stage. Samples from 0.48, 0.58 and 0.60 m depth 

were the only samples within this section of the core to retum frill counts. The black layer 

in core R01 extends from 0.47 - 0.52 m depth. It is important to note that the samples 
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which did not return counts, or retumed only partial counts, are mainly concentrated within 

this layer (Figure 6.5). 

Diatom preservation in the samples from 0.33 - 0.45 m depth was also very good (Figure 

6.6) and minimum counts were again obtained from all samples in this section of the core. 

This section corresponds to the upper clay unit. Although it was not possible to sample 

accurately the sand layer (0.18 - 0.33 m depth) due to poor preservation, pilot samples 

taken from this layer indicated that the diatoms were not preserved here. In the peaty clay 

unit in the upper part of the core (0 - 0.17 m depth) diatom preservation was again very 

good. 

A total of 194 diatom taxa were identified in this core, of which 132 had relative 

abundances > 1%. Six species remain unidentified. Five of these unidentified species were 

found with relative abundances of < 2% and one with a relative abundance of < 3%. 

Unidentified diatom taxa, with relative abundances > 1%, are described in Appendix 5. 

Some major changes in the diatom assemblages are noted throughout this core. The most 

interesting changes are, however, concenfrated in the upper 0.80 m, the focus of the very 

high resolution analysis 

Constrained cluster analysis divides the samples into four diatom assemblage zones 

(Figure 6.4). Zone R0I-1 (0.715-1.92 m depth) is the largest of the four zones, spanning 

the upper part of the basal peat and lower part of the lower clay unit. This zone is 

dominated by polyhalobous and mesohalobous taxa such as C belgica, D. interrupta and 

Navicula digitoradiata. Several taxa from the oligohalobous groups such as N. cincta — 

type, Navicula mutica and Caloneis bacillum, are also present in high abundances. The 

absence of oligohalobous - indifferent and halophobous taxa, indicative of a fresh water 

environment, throughout much of the basal peat is somewhat surprising. Laboratory notes 

indicate that numerous broken and partially dissolved diatom fragments were observed in 

these samples. It is likely that the autochthonous {in situ) diatom population is not well 

preserved in this section of the core and as a consequence, the counts reflect a mostly 

allochtonous (fransported) population. This is confirmed by the high abundance of 

numerous allochtonous taxa such as C. belgica, D. surirella, G. oceanica and P. sulcata 

throughout the basal peat, and the high CaCOs values found in this part of the core 

(Section 5.2.2 and Figure 5.7). Higher CaCOs values are indicative of in-washing and tidal 
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flooding events (Kirby pers. comm). The presence of allochothonous marine taxa in this 

section of the core is likely to be linked to the gradual transgression of the basal peat unit. 

Zone R01-2 (0.47-0.715 m depth) corresponds with the upper part of the lower clay unit 

and with the black layer. An increasing number of oligohalobous taxa such as E. adnata, 

Navicula amphibola, Navicula ryhnchocephala and P. minor are identified in this zone and 

are associated with the black layer samples. These species are indicative of a fresh water 

environment. Alongside these taxa, an increase in the number of polyhalobous and 

allochtonous taxa is also noted. High relative abundances of C scutellum var scutellum, D. 

minor, G. oceanica and P. sulcata are also found in these samples. Diatom preservation 

was particularly poor in this part of the core and, as is the case for the basal peat, it is likely 

that the autochthonous population is not well preserved and that the counts again reflect a 

mostly allochtonous population. The presence of these allochtonous taxa also suggests that 

the fresh water environment, under which it is likely that the black layer was created, may 

have been reflooded at some point in time. 

In Zone R01-3 (0.105-0.47 m depth), mesohalobous and oHgohalobous taxa are dominant. 

This zone is characterised by high abundances of taxa such as C. bacillum, Fragilaria 

brevistriata - type, Fragilaria exigua, Fragilaria pinnata and P. viridis, indicative of a 

fresh water environment. This zone corresponds to the upper part of the lower clay unit, 

and with the peaty clay above the sand layer. No diatom data are available for the sand 

layer. However, from the diatom data presented, it is clear that sand layer formation began 

at a time when fresh water conditions prevailed. The upper part of the core. Zone R01-4 

(0-0.105 m depth) corresponds with the upper part of the peaty clay. Here the diatom taxa 

are again indicative of a brackish water environment. 

In general the biosfratigraphy of core R01 generally corresponds with the 

lithosfratigraphical changes, but some differences are noticeable. For example, the (fresh 

water?) conditions under which the black layer formed appear to be initiated in the top 0.17 

m of the underlying clay unit. 
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c 

Figure 6.5. Examples of the poor preservation of diatoms in the black layer of core R01. 
a) Cymbella aspera (?) and b) Navicula amphibola (?). 
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20yUm 

Figure 6.6, Examples of the good preservation of diatoms in the upper peaty clay unit of 
core R01. a) Denticula subtilis, Nitzschia terrestris and Diploneis interrupta (girdle view) 
and b) Rhopalodia gibba. 
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6.5 Oksby Enge (OEB5 and OEA) 

Diatom analysis was conducted on two monolith sections from Oksby Enge, OEB5 and 

OEA. Samples were analysed at 8 cm resolution to provide a general overview of the 

biosfratigraphical changes occurring at these locations. Additional samples were analysed 

to assess the preservation of diatoms in the black layer and the sand layer, and from 

sfratigraphic levels that were dated. 

6.5.1 OEB5 

Diatom preservation was generally very good in monolith OEB5 and frill counts were 

obtained from the majority of samples down to a depth of 1.20 m. One sample taken from 

the upper contact of the black layer (0.72 m depth) also retumed a frill count, although 

laboratory notes indicate that diatom preservation was very poor in this slide. In this 

monolith, a thin (< 0.5 cm) organic horizon is observed within the sand layer. The diatom 

sample from this unit (0.33 m core depth) retumed a frill count. Samples immediately 

above and below (at 0.32 and 0. 34 m core depth) retumed partial counts of between 100 

and 200 valves. The remaining few pilot samples taken from the sand layer were barren of 

diatoms. 

Figure 6.7 presents the diatom stratigraphy of monolith OEB5. A total of 134 diatom taxa 

were identified in samples from this monolith, of which 83 were found with relative 

abundances of > 1%. Two species remain unidentified but were foimd with very low (< 

1%) relative abundances. Unidentified diatom taxa, with relative abundances > 1%, are 

described in Appendix 5. Consfrained cluster analysis divides the samples into four diatom 

assemblage zones. Zone OEB5-1 (0.75-1.20 m depth) corresponds to the lower clay unit. 

This zone is mainly dominated by polyhalobous and mesohalobous taxa such as C 

scutellum var scutellum, C belgica, D. subtilis and Nitzschia vitrea. High abundances of 

N. cincta - type are also noted. The diatom taxa in this zone are indicative of a marine to 

brackish water environment. 

Zone OEB5-2 (0.695-0.75 m depth) corresponds with the black layer. Indicator species in 

this zone include N. amphibola, P. minor and P. viridis. These taxa are indicative of a fresh 

water environment. Zone OEB5-3 (0.25-0.695 m depth) corresponds with the upper clay 

unit and also includes the samples from the organic horizon within the sand layer. This 

zone is dominated by mesohalobous and oligohalobous taxa including D. subtilis, C. 
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bacillum and Pinnularia lagerstedtii. These taxa indicate a retum to slightly brackish water 

conditions. The few samples analysed from the organic horizon within the sand layer, 

indicate that this layer is associated with predominately fresh water conditions. Zone 

OEB5-4 corresponds with the peaty clay layer at the top of the monolith. The diatom 

assemblage in this zone is again indicative of brackish to fresh water environment. 

Indicator taxa for this zone are C. bacillum, Navicula pusilla, and Navicula variostriata. 

6.5.2 OEA 

Diatom preservation was very good in this monolith and frill counts of 300 diatom valves 

were obtained from most of the samples. The one sample taken from immediately below 

the black layer (0.66 m depth) also retumed a ftiU count. Samples from below 1.20 m 

depth, taken from the basal peat, were barren of diatoms and only a few broken fragments 

were observed in these samples. 

Figure 6.8 presents the diatom sfratigraphy of OEA. A total of 115 taxa were identified in 

samples from this monolith, of which 73 were found with relative abundances of > 1%. 

Two species remain unidentified. Species C, which occurs with a maximum relative 

abundance of 6.3% and Species G, which occurs with a maximum relative abundance of 

2.7%. Unidentified diatom taxa, with relative abundances > 1%, are described in Appendix 

5. Consfrained cluster analysis divides the samples into three diatom assemblage zones. 

Zone OEA-1 (0.76-1.20 m depth), corresponds to the lower clay unit. This zone is 

dominated mainly by polyhalobous and mesohalobous taxa indicative of a marine 

environment. Taxa such as C belgica, D. minor, Cyclotella straita and D. interrupta are 

common in this zone. Some oligohalobous taxa such as N. cincta - type and Fragilaria 

exigua, are also identified. Zone OEA-2 (0.45-0.76 m depth), corresponds to the upper part 

of the lower clay unit and with the black layer. Mesohalobous taxa dominate this zone. A 

number of oligohalobous - indifferent taxa such as N. variostriata, P. borealis, P. 

microstauron and P. viridis are associated with the sample from immediately below the 

black layer. These taxa are indicative of a fresh water enviomment. The diatom taxa in 

Zone OEA-3 (0 -0.45 m depth) are indicative of a brackish water envfronment. This zone 

is charterised by taxa such as A. delicatula, N. cincta - type and Â . pusilla. This zone 

corresponds with the upper part of the upper clay unit and with the peaty clay at the very 

top of the core. 
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6.6 Additional fossil samples 

Diatom samples were also analysed from sfratigraphic levels that were ''*C dated in a 

number of additional cores, to establish the water-level relationships of the facies for the 

sea-level reconstruction. The determination of the 'indicative meaning' for each of these 

samples is discussed in Section 8.5. 
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6.7 Chapter summary 

This chapter has presented the results from the biostratigraphical investigations of several 

core and monolith sections from the Ho Bugt salt marshes. In general the biostratigraphy in 

all sections investigated has been shown to correlate well with lithostratigraphical changes. 

Some exceptions to this are noted, in particular in cores KE2 and R01, where the highest 

resolution analyses were conducted. Across all of the sections investigated some key points 

can be noted: 

• Diatom preservation in many of the basal peat sections was found to be poor. 

Where counts were obtained, the results reflect a mainly allochtonous (transported) 

population. 

• Diatoms were fovmd to be best preserved in the clay units across all cores. These 

units are associated with polyhalobous and mesohalobous taxa, indicative of a 

marine environment. 

• Samples analysed from cores BR9, R01, and monoliths 0EB5 and OEA, indicate 

that the black layer is associated with a predominantly fresh water diatom 

assemblage. Results from core R01 suggest that these fresh water conditions were 

initiated sometime before the formation of this layer. High abundances of 

allochtonous taxa in these samples also suggest that the black layer may have been 

reflooded at some point in time, at least in this location. 

• Whilst diatom data from the sand layer are sparse, samples from core R0I and 

monolith OEB5, indicate that the initial formation of this layer began during a time 

when fresh water conditions prevailed. 

• Diatoms were also found to be well preserved in the upper peaty clay unit across all 

cores. This unit is associated with mesohalobous taxa, indicative of a brackish 

water environment, and consistent with present day salt marsh conditions. High 

resolution diatom analyses of this unit in core BR9 has indicated that some changes 

in the diatom assemblage occur within this layer 

• Diatom sfratigraphy is fairly consistent across the Ho Bugt marshes. Identified 

lithosfratigrphical units in the various cores have similar diatom populations, 

suggesting that dated sections are representative. 

The next chapter details the development of a diatom-based fransfer fiinction for 

reconstructing changes in palaeomarsh-surface elevation in a number of the cores 

investigated. 
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Chapter 7 

The development of a diatom-based transfer function 
Results presented in Chapter 4 demonstrate that elevation exerts a strong, independent and 

statistically significant influence on modem diatom distributions in the Ho Bugt 

embayment. This chapter details the development of a series of diatom-based transfer 

fiinctions (DBTFs) using regression models, to reconstmct changes in palaeomarsh-surface 

elevation based on this strong relationship. Regression models are initially created using 

Maximum Likelihood (ML), Weighted-Averaging (WA) and Weighted-Averaging Partial 

Least Squares (WA-PLS) and also by use of the Modem Analogue Technique (MAT). The 

performance and predictive abilities of each of the models is discussed with the aim of 

determining whether robust transfer fiinction models can be derived from the Ho Bugt 

fraining set. The previous chapter highlighted the presence and high abundance of several 

allochthonous taxa in many of the core sections investigated. Such taxa are likely to 

present problems in the application of any fransfer function. The second part of this chapter 

therefore explores the development of a fransfer fimction which excludes allochthonous 

diatom taxa. 

7.1 Justification for transfer function construction 

Chapter 4 presented the results of a detailed investigation into the modem salt-marsh 

environment within the Ho Bugt embayment. A thorough exploration of the modem 

diatom and environmental data was achieved through the use of several ordination 

techniques. Two data sets were analysed in ordinations: DataSetA (100 samples, 8 

environmental variables) and DataSetB, which includes the Kjelst Enge samples (127 

samples, 3 environmental variables). For both data sets, elevation was shown to exert a 

sfrong, independent and statistically significant influence on modem diatom distributions, 

suggesting that DBTFs can be developed to reconstmct changes in palaeomarsh-surface 

elevation. The analysis of DataSetB highlighted the anomalous nature of the samples from 

Kjelst Enge and suggested that carefiil consideration should be given as to whether these 

samples should be included in any fraining set and subsequent fransfer fiinction 

development. This point is discussed fiirther below. 
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7.2 Inclusion of Samples 

After careful consideration and exploratory analysis it was decided to exclude the Kjelst 

Enge samples fi-om the training set. These samples are excluded for the following reasons: 

• The Kjelst Enge transect is dominated by polyhalobous (and often allochthonous) 

diatom taxa, even at high elevations (Figure 4.5). 

• The relatively high abundance of several oligohalobous diatom taxa (e.g., Navicula 

rhynchocephala, Stauroneis phoenicenteron) at low elevations (samples KE21-

KE27) is linked to the proximity of these samples to the nearby Storbcek drainage 

channel and complicates the species-environment relationship (Figures 4.2 and 

4.5). 

• Unconstrained cluster analysis of the entire modem diatom data demonstrates that 

samples from similar elevation ranges at Kjelst Enge and Langli are associated with 

very different diatom assemblages (Figure 4.19). 

• DCA analysis of the Kjelst Enge diatom data (Section 4.5.3, pp.123) shows all 27 

samples to be associated with similar diatom taxa (Figure 4.28), despite spanning a 

relatively large elevation range (0.73 - 1.86 m DNN) and covering a range of salt-

marsh environments (Table 4.1). 

• Early experimentation with fransfer fimction development (Szkomik et al., 2005) 

suggested that the inclusion of the Kjelst Enge samples led to erroneous predictions 

for many of the core samples. This was primarily because of the presence of fresh 

water taxa (mainly Navicula rhynchocephala) at low elevations in the modem 

Kjelst Enge samples (Figure 4.5). Although this was not a problem for cores where 

such taxa were absent (e.g., core KE2; Szkomik et al., 2006) problems arose when 

the fransfer fiinction was applied to cores where such taxa were present (e.g., Rjagel 

coreR01). 

In addition, the screening process implemented m Chapter 4 identified three outiier 

samples, LN31, MOl and LS28, with exfreme environmental characteristics (identified 

through PCA). These samples are likely to have anomalous diatom assemblages associated 

with their exfreme environmental characteristics and are therefore excluded from fransfer 

fiinction development. 
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7.3 Inclusion of species 

As was the case in earlier statistical analysis (Chapter 4) species are only included in 

transfer fiinction development i f a) their relative abundance is > 1%, and b) the species is 

present in more than one sample, hi coastal environments, species with relative abundances 

of < 1% are likely to be allochthonous and are not often used in interpretation (Nelson and 

Kashima, 1993). In this study allochthonous taxa remain a major problem both as a result 

of their presence in the modem training set and also due to their high relative abundance in 

many of the core sections investigated (Chapter 6). Attempts to develop a DBTF which 

excludes allochthonous taxa, and the problems associated with such an approach, are 

discussed below in Section 7.6.3. 

7.4 Inclusion of environmental data 

All elevation data included in training set development is untransformed. Results of 

Andersen-Darling normality tests (Table 4.3) illustrated that the elevation data used in this 

study are normally distributed. 

7.5 Linear versus unimodal models 

Statistical methods used to develop DBTFs fall into two categories: linear and unimodal 

(Birks, 1995). The ordination technique of Detrended Canonical Correspondence Analysis 

(DCCA) was used as a tool for determining which type of model was most suitable for use 

in subsequent transfer fiinction development. Where gradient lengths are short (< 2 SD), 

the majority of taxa are behaving monotonically along the environmental gradient and 

linear models are usually more appropriate. Where gradient lengths are long (> 2 SD) 

unimodal models of regression and calibration are deemed more appropriate (Birks, 1995). 

A DCCA, using elevation as the sole constraining environmental variable (ter Braak and 

Juggins, 1993; Birks, 1995), was performed on the entire data set (97 samples and 151 

taxa) to establish gradient length in SD units. An axis one gradient length of 3.5 SD was 

obtained (Table 7.1) indicating the suitability of unimodal regression models. 
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Axis 1 2 3 4 

Eigenvalue 0.410 0.263 0.135 0.071 
Lengths o f gradient 3.539 2.557 2.153 1.617 
Species-environment correlations 0.943 0.000 0.000 0.000 
Cumulative percentage variance: 
of species data 13.7 22.5 27.1 29.5 

Table 7.1. Resuhs of a DCCA performed on a data set of 97 samples, 156 taxa, using 
elevation as the sole constraining envirotmiental variable (ter Braak and Juggins, 1993; 
Birks, 1995). 

7.6 Development of DBTFs for elevation 

Unimodal models were initially developed for the entire data set (97 samples, 151 taxa) 

based on ML, WA and WA-PLS regression models. An additional model was developed 

using the MAT which does not have an underlying statistical model (Birks, 1995). Models 

were developed using both untransformed and square-root transformed species data. A 

square-root transformation of species data is often used when developing regression 

models to stabilise the variances (Prentice, 1980). For all models 'jack-knifing' was used 

to cross-validate the training set. Jack-knifing is the simplest method of cross-validation 

and gives a good measure of the overall predictive abilities of the training set (ter Braak 

and Juggins, 1993). All prediction errors in this study are therefore expressed as 'cross-

validated' (jack) estimates. All models were developed using the computer programme Ĉ  

version 1.4.3 (Juggins, 2003-2006). 

The performance of the various regression models was assessed in terms of the root-mean 

squared error of prediction (RMSEPjack) and the maximum bias (max biasjack)- The most 

appropriate model is one with a low cross-validated RMSEP, a measure of the random 

error in the model (Altman and Bland, 1983, Birks, 1998), and a relatively low maximum 

bias (ter Braak and Juggins, 1993). Many studies (e.g., Horton et al., 2003; 2006) 

commonly quote the coefficient of determination (r^) as an important performance statistic. 

However, this statistic is dependent on the range of the observed environmental gradient 

and is not considered as independent as the RMSEPjack and max biasjack (Oksanen et al., 

1990; Altman and Bland, 1983; Birks, 1998). The r^ is most important when comparing 

models for different environmental variables (Gasse et al., 1995). In addition to selecting a 

model with the best performance statistics, it was also necessary to follow the principle of 

parsimony in statistics and select the 'minimum adequate model' (Birks, 1998, sensu 

Crawley, 1993). 
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Table 7.2 highlights the performance of the ML, WA, WA-PLS and MAT regression 

models initially developed for the full data set (97 samples, 151 taxa). Most WA-PLS and 

MAT models perform slightly better when a square-root transformation of species data 

(Vspecies) is used, although the differences are minimal. WA models perform best when 

untransformed species data are used. ML, WA-PLS (two components) and MAT models 

are shown to perform best when RMSEPjack and max biaSjack statistics are compared. The 

WA-PLS Vspecies (two component) model performs slightly better then the WA-PLS (two 

component) model when RMSEPjack are compared (0.127 m cf 0.129 m respectively), but 

has a slightly higher max biaSjack (0.177 m cf 0.127 m). On this basis, and because the 

improvement on RMSEPjack is only minimal, the model using untransformed species data 

is considered most appropriate. 

ML and WA-PLS (two components) were selected as the models to develop fiirther on the 

basis of their low RMSEPjack (0.147 m and 0.129 m, respectively) and their relatively low 

maximum biasjack (0.182 m and 0.127 m, respectively) values. Although MAT also 

performs very well, this method has come under criticism in the recent literature because 

of issues related to spatial autocorrelation (Telford and Birks, 2005). Spatial 

autocorrelation describes the tendency of sites located close to one another to resemble 

each other ecologically (Legendre and Fortin, 1989; Legendre, 1993; Telford and Birks, 

2005). Although this issue has been considered for sometime in ecology and biogeography 

(e.g., Griffith, 1987; 1992; Legendre and Fortin, 1989; Legendre, 1993) it has only recently 

been acknowledged as a major issue in transfer fiinction development. Telford and Birks 

(2005) and Telford (2006) argue that MAT is particularly sensitive to this problem and that 

models based on unimodal methods, such as ML and WA-PLS, are more robust. For these 

reasons the MAT transfer fiinction is not developed fiirther in this study. 
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Model 
Apparent RMSE 

(m) 
Apparent Max Bias (m) RMSEP,ack(m) 1^lack 

Max Bias Jack 

(m) 

ML 0.126 0.937 0.080 0.147 0.909 0.182 

WA (Inverse) 0.146 0.907 0.171 0.159 0.891 0.235 

WA (Inverse) i Species 0.171 0.872 0.339 0.186 0.849 0.411 

WA (Classical) 0.153 0.907 0.077 0.166 0.892 0.139 

WA (Classical) i Species 0.183 0.872 0.229 0.193 0.851 0.306 

WATOL (Inverse) 0.131 0.925 0.174 0.178 0.864 0.345 

WA TOL (Inverse) i Species 0.156 0.895 0.309 0.224 0.780 0.512 

WATOL (Classical) 0.136 0.925 0.122 0.177 0.865 0.277 

WATOL (Classical) i Species 0.164 0.895 0.249 0.229 0.781 0.432 

WA-PLS (component 1)* 0.146 0.907 0.172 0.159 0.891 0.236 

WA-PLS (component 2) 0.106 0.951 0.104 0.129 0.928 0.127 

WA-PLS (component 3) 0.092 0.963 0.092 0.131 0.926 0.125 

WA-PLS (component 4) 0.079 0.973 0.066 0.138 0.918 0.120 

WA-PLS (component 5) 0.071 0.978 0.066 0.147 0.907 0.129 

WA-PLS (component 1)* i Species 0.0.172 0.872 0.355 0.187 0.849 0.424 

WA-PLS (component 2) i Species 0.103 0.954 0.115 0.127 0.930 0.177 

WA-PLS (component 3) i Species 0.081 0.971 0.110 0.135 0.921 0.200 

WA-PLS (component 4) J Species 0.066 0.981 0.067 0.149 0.904 0.217 

WA-PLS (component 5) i Species 0.055 0.987 0.036 0.161 0.889 0.162 

MAT (mean) 0.134 0.930 0.328 

MAT (weighted-mean) 0.126 0.938 0.286 

MAT (mean) i Species 0.123 0.939 0.305 

MAT (weighted-mean) I Species 0.118 0.944 0.286 

Table 7.2. Performance of M L , WA and WA-PLS (unimodal) and MAT regression models using both untransformed and square-root transformed species 

data (J Species). Best performing models (models with RMSEPj^.^ < 0.15) are highlighted in bold. * WA-PLS one component reduces to simple WA (Birks, 1995). 
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7.6.1 Development of a ML regression model 

The performance of the initial ML regression model (based on 97 samples and 151 taxa) is 

shown in Table 7.2 and displayed graphically in Figure 7.1. A relatively strong relationship 

is noted between observed and ML predicted elevation. This is confirmed by the high r̂ jack 

value (0.909, Table 7.2). Examination of the observed versus ML predicted elevation plot 

(Figure 7.1a) demonstrates this strong relationship. Increased scatter is noted at both ends 

of the environmental gradient (i.e. for samples with both low and high elevations), 

suggesting that the model performs less well here. This is confirmed by the residual plot 

(Figure 7.1b) which shows higher residual values for samples from the highest and lowest 

elevations. The residual plot also indicates that there may be outlier samples, with high 

residual values, within this model. Within environmental data sets there are often samples 

which show a poor relationship to the environmental variable of interest (Jones and 

Juggins, 1995). These outlier samples can have a strong influence within the model and 

can significantly reduce the predictive abilities of the transfer function (Martens and Naes, 

1989). Further screening to remove these samples is therefore needed and is likely to 

improve the predictive abilities of the dataset. 

Figure 7.1 Scatter plots showing a) observed elevation versus model predicted elevation 
and b) residual plot, using a ML model based on 97 samples and 151 taxa. Trend lines are 
1:1 and LOWESS smooth fits (stiffness = 0.4). 
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Removal of outlying samples 

Outlier samples were determined where the absolute residual (observed elevation minus 

ML predicted elevation) was found to be greater than one standard deviation of the 

observed elevation (Jones and Juggins, 1995). Although several samples were found to 

have reasonably high residuals (e.g., samples M02, STIO), no samples were found with a 

residual greater in absolute value than 0.48, the standard deviation of the observed 

elevation (m DNN). All samples are therefore retained in the model and no further 

improvements were made. The final performance of the ML model is therefore shown in 

Table 7.2. 

7.6.2 Development of a WA-PLS regression model 

The performance of the initial WA-PLS (two components) regression model (based on 97 

samples and 151 taxa) is shown in Table 7.2 and displayed graphically in Figure 7.2. A 

very strong relationship is noted between observed and WA-PLS predicted elevation and is 

confirmed by the high r̂ jack value (0.926). Examination of the observed versus WA-PLS 

predicted elevation plot (Figure 7.2a) demonstrates this strong relationship. The WA-PLS 

regression model appears to perform well along the entire length of the gradient. The 

majority of samples lie close to the 1:1 line, even at the high and low ends of the 

environmental gradient. Examination of the residual plot (Figure 7.2b) confirms this point. 

The LOWESS smooth fit is not as deflected at the extreme ends of the gradient as in the 

ML model (Figure 7.1b). This suggests that the WA-PLS model performs much better than 

the ML model at the extremes of the environmental gradient (i.e. for samples with the 

highest and lowest elevations). 
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0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0 

Observed Elevation (m DNN) Observed Elevation (m DNN) 

Figure 7.2 Scatter plots showing a) observed elevation versus model predicted elevation 
and b) residual plot, using a WA-PLS (two components) model based on 97 samples and 
151 taxa. Trend lines are 1:1 and LOWESS smooth fits (sfiffness = 0.4). 

Removal of outlying samples 

As with the ML model, outlying samples were determined where the absolute residual was 

fijund to be greater than one standard deviation of the observed elevation (Jones and 

Juggins, 1995). No samples were found with a residual greater in absolute value than 0.48, 

the standard deviation of the observed elevation (m DNN). Sample M 0 5 was found to 

have a residual value close to this (-0.44) and plots as a clear outlier on the residual plot 

(Figure 7.2b). Sample M 0 5 contains a high abundance of Achnanthes minutissima (39.5%) 

which is 16% higher than any other sample in the training set. A. minutissima is well 

represented in the training set in samples which show a stronger relationship to elevation. 

Removal of this sample is therefore unlikely to have any adverse affect on the species 

coefficients. Re-ruiming the WA-PLS regression model with this sample removed resulted 

in a slight improvement in the performance statistics. Sample M 0 5 was therefore excluded 

from the final WA-PLS model. Following removal of this sample, the species data was re-

checked to ensure all species sfill fiilfilled the aforementioned abundance criteria (Section 

7.3). A summary of the final performance of the WA-PLS model is shown in Table 7.3. 

The WA-PLS two component model is still foimd to perform the best. The three 

component model also performs very well but the addition of this component to the model 

does not result in any reduction in the RMSEPjack- Ter Braak and Juggins (1993) and 

Brooks and Birks (1999) argue that a component should only be considered 'useftxl' i f the 

addition of that component to the model results in a reduction of the RMSEPjack of 5% or 

more of the RMSEPjack for the one component model. 

181 



Chapter 7 The development of a diatom-based transfer function 

Model Apparent RMSE (m) Apparent r' Max Bias (m) RMSEPjack (m) Jack Max Bias jack(m) 

WA-PLS 

(1 component) 
0.141 0.912 0.180 0.153 0.897 0.245 

WA-PLS 

(2 components) 
0.100 0.955 0.097 0.122 0.934 0.109 

WA-PLS 

(3 components) 
0.084 0.968 0.085 0.122 0.934 0.118 

WA-PLS 

(4 components) 
0.071 0.977 0.058 0.125 0.931 0.102 

WA-PLS 

(5 components) 
0.062 0.983 0.061 0.131 0.925 0.123 

Table 7.3. Perfonnance of the final WA-PLS regression model based on 96 samples and 
151 taxa. Sample M05 is removed. Best performing model (WA-PLS 2 components) is 
highlighted in bold. 

Given that the WA-PLS model performs better than the ML model when RMSEPjack and 

max biasjack statistics are compared (Table 7.2 and 7.3), and the WA-PLS model is seen to 

perform better at the ends of the enviroimiental gradient (Figures 7.1a and 7.2a), the WA-

PLS (two component) model is chosen as the final transfer fiinction model for the fdll 

training set. The development of a transfer fimction which excludes allochthonous taxa is 

explored in the next sections of this chapter. 

7.6.3 Development of regression models which exclude allochthonous taxa 

Initial application of the ML and WA-PLS regression models to the core and monolith 

sections analysed in this study, suggested that the presence, and high abundance, of 

allochthonous taxa in many of the core sections may be a potential problem. This is 

particularly true for the black layer in Rjggel core R01. Here a high abundance of 

allochthonous taxa (Section 6.4 and Figure 6.4) such as Paralia sulcata, Cocconeis 

placentula and Dimeregramma minor, potentially the result of a re-flooding event, coupled 

with the poor preservation of many in situ freshwater taxa, is likely to lead to erroneous 

fransfer fiinction predictions. For these reasons attempts were made to develop a diatom-

based transfer function which excludes all allochthonous taxa. Although RMSEPjack and 

max biaSjack statistics for these models (not shown) suggested that they performed very 

well, and were comparable to those for the fiiU fraining set, application of these models to 

the various core sections greatly increased the number of fossil taxa without a modem 

analogue (the 'no analogue problem'). For example, for core KE2, application of the 

fransfer fianction which excludes allochthonous taxa increased the number of fossil taxa 
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without a modem analogue from 29 to 44% (Section 8.2). These problems are fiirther 

illustrated in Sections 8.2 - 8.5. Such results were considered unacceptable and the 

development of a fransfer fiinction which excludes allochthonous taxa was not fiirther 

pursued. Further discussion on the problems of allochthonous taxa encountered throughout 

this study can be found in Section 9.9. 

7.7 Comparing the performance with published models 

Compared to other microfossils commonly used to develop fransfer fianctions for 

reconstmcting changes in palaeomarsh-surface elevation and relative sea level, such as 

foraminifera, the development of diatom-based fransfer fiinctions has been more limited. 

Studies by Zong and Horton (1998, 1999) were the first to use the relationship between 

diatoms and elevation to develop diatom-based fransfer fiinctions for reconstmcting 

changes in palaeomarsh-surface elevation and relative sea level. More recently, diatom-

based fransfer fiinctions have been developed to assess changes in palaeomarsh-surface 

elevation and relative sea-level to provide insights into the earthquake deformation cycle 

(e.g., Hamilton and Shennan 2005) and to assess palaeoseismic changes along the Pacific 

coast of Japan (Sawai et al., 2004). Other studies have compared the relative performance 

of foraminifera, testate amoebae and diatoms as sea-level indicators by investigating the 

potential of multiproxy fransfer function models (Gehrels et al., 2001). The relative 

performance of these published models is compared with those produced in this study in 

Table 7.4. 

Examination of the data presented in Table 7.4 implies that the models developed in this 

study compare favourably in terms of RMSEPjack with those published in the literature. 

Comparison of max biasjack statistics is not possible because the majority of authors do not 

state this. Although the performance statistics indicate that the models developed in this 

study perform equally as well as those already published, the tme predictive abilities of a 

model cannot be fiilly assessed until it is applied to fossil data. The application of the final 

WA-PLS fransfer fiinction developed here is applied to data in fossil cores in the next 

chapter. 
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Author(s) Study area Regression model RMSEP(m) r̂  Average |jd^al range 

Hamilton and Shennan (2005) Cook Inlet, Alaska 

Full data set = WA-PLS (2 components) 

SWLI* > 180 = WA-PLS (3 components) 

SWLI > 225 = WA-PLS (3 components) 

0.214 

0.078 

0.023 

0.75 

0.89 

0.93 

8.8 

Zong and Horton (1998) UK regional 
WA(Tol) Inverse 

WA(Tol) Classical 

0.195 

0.214 

0.71 

0.72 5.4 

Gehrels etal (2001) UK regional WA-PLS 0.054 0.78 5.7 
Sawai et al (2004) Pacific coast Japan WA-PLS (2 component) 0.29 0.84 ~ 1.7 

Szkornik (this study) Ho Bugt, Denmark WA-PLS (2 components) 0.122 0.934 -1.5 

Table 7.4. Comparison of the perfonnance of published diatom-based transfer functions for reconstmcting changes in palaeoniarsh-surface elevation 
and relative sea level with that produced by this study. * Standardised Water Level Index (SWLI) is used to enable elevation data to be compared 

between sites with different tidal ranges (Horton 1997). All studies use jack-knifing as the method of cross-validation. 
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7.8 Chapter Summary 

This chapter has detailed the development of a series of diatom-based transfer functions for 

reconstructing changes in palaeomarsh-surface elevation, based on the strong, independent 

and statistically significant relationship between diatoms and elevation demonstrated in 

Chapter 4. Unimodal models were initially developed for the entire data set (97 samples, 

151 taxa) based on ML, WA and WA-PLS regression. An additional model was developed 

using the Modem Analogue Technique (MAT) but was not developed fiirther due to issues 

with spatial autocorrelation. ML and WA-PLS (2 component) models were found to 

perform best when RMSEPjack and max biasjack statistics were compared. The WA-PLS 

(two components) model was selected as the final transfer function model for the following 

reasons: 

• RMSEPjack and max biaSjack statistics for the final WA-PLS model (Table 7.3) are 

slightly better than for the ML model (Table 7.2) 

• The WA-PLS model is seen to perform best at the extremes of the environmental 

gradient (i.e. for samples with very high or very low elevations) (Figures 7.1a and 

7.2a). This is especially important in this study where samples from fresh water 

basal peats (Section 8.5) are likely to lie close to the upper exfreme or beyond the 

range of the measured environmental gradient. 

The second part of this chapter explored the development of regression models which 

exclude allochthonous diatom taxa. However, exploratory application of such methods to 

the fossil cores (Sections 8.2 - 8.5) resulted in a large increase in the number of fossil taxa 

with no modem analogue. For these reasons the development of a transfer fiinction which 

excludes allochthonous taxa was not fiirther pursued. 

In the next chapter the final WA-PLS fransfer function model (Table 7.3) is applied to a 

series of cores to reconstmct changes in palaeomarsh-surface elevation. Following 

constmction of reliable age-depth models (Section 8.7), these changes are linked to former 

local water level and the data are plotted as a series of time-height diagrams of local water-

level change. These water-level curves are integrated with the results of litho- and 

biosfratigraphical investigations in Chapter 9 to explore the evolution of the Ho Bugt 

embayment. 
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Chapter 8 

Reconstruction of local water-level changes 
In the previous chapter, a WA-PLS transfer fiinction was developed based on the strong 

and significant relationship between diatoms and elevation established in Chapter 4. In this 

chapter, diatom data from the various core sections analysed (Chapter 6) are calibrated 

using the WA-PLS transfer function to reconstruct changes in palaeomarsh-surface 

elevation. The reliability of these reconstructions is assessed via the use of goodness of fit 

and analogue statistics. Following development of age-depth models using the available 

•̂ '"Pb, '̂ ^Cs, Am, ''̂ C and OSL ages, the palaeomarsh-surface records are linked to local 

water level and the data are plotted in a series of time-height diagrams of local water-level 

change. Reconstructions from the past two centuries are compared with the observations 

from the nearby tide gauge at Esbjerg. 

8.1 Methodology 

The final WA-PLS transfer function is presented in Table 7.3. In the following sections of 

this chapter, diatom data from the various core sections analysed (KE2, BR9, R0I) are 

calibrated using this WA-PLS transfer fijnction. For each diatom sample analysed the WA-

PLS fransfer function calculates the palaeomarsh-surface elevation at which the sample 

was formed (known as the 'indicative meaning'). The indicative meaning of a sample 

describes the vertical relationship between the environment in which it accumulated and a 

contemporary reference water level, in this case DNN (Shennan, 1982; 1986; van de 

Plassche, 1986). For all reconstructions, sample-specific root mean squared errors of 

prediction for each of the fossil samples are estimated by bootsfrapping (1000 bootsfrap 

cycles) using the computer programme Ĉ  (Birks et al., 1990a; Line et al., 1994). For the 

purposes of sea-level reconstructions, these errors are treated as the 'indicative range' 

(Shennan, 1982, 1986a, 1986b). 

8.1.1 Inclusion of species and samples 

Only taxa with relative abundances > 1% and present in more than one sample in each core 

section are used in calibration. This is to ensure consistency with the cut-off levels defined 

for the modem fraining set (Section 3.8.2). Only samples where counts of at least 250 

valves were obtained are included in the calibration. 
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8.1.2 Assessing the reliability of the reconstructions 

The reliabiUty of each of the reconstructions was assessed via 'goodness of fit' and 

'analogue' statistics (Birks et al., 1990a, Birks, 1998). Goodness of fit statistics for each of 

the fossil samples were assessed by fitting these samples passively into ordination space 

(e.g., Laird et al., 1996). A CCA ordination was run using elevation as the sole 

constraining environmental variable in order to calculate the squared residual distance of 

each fossil sample fi-om the elevation axis (Birks, 1990a; Laird et al., 1996). Following 

Birks et al. (1990a) and Laird et al (1996) fossil samples with residual distances larger than 

the residual distance of the extreme 10% of the training set (samples with squared residual 

length > 5.75) were considered to have a 'poor fit' and samples with residual distances 

larger than the residual distance of the extreme 5% of the training set (samples with 

squared residual length > 6.2) were considered to have a 'very poor' fit. All other samples 

were considered to have a 'good fit'. 

The MAT was used in addition to the goodness-of-fit statistics as a second independent 

method for assessing the reliability of the reconstructions. Although the MAT can be used 

to model relationships in the modem training set, as explored in Chapter 7 of this thesis 

(Table 7.2), it is used here as a tool for comparing the similarity (or dissimilarity) between 

fossil and modem samples. MAT compares numerically the assemblages in each of the 

fossil samples with assemblages in the modem training set (Birks, 1995). I f fossil samples 

have good modem analogues in the training set then the reconstmctions are likely to be 

more reliable (ter Braak, 1995). MAT was performed in the computer programme C , 

using the squared chord distance as the dissimilarity coefficient and based on the 10 closest 

modem analogues (Prentice, 1980; Overpeck et al., 1985). The MAT produces a series of 

dissimilarity values for percentiles of the modem training set and a minimum dissimilarity 

coefficient (Min. DC), measured as the squared chord distance, for each of the 

reconstmcted fossil samples. Following Birks et al. (1990a), Bartlein and Whitlock (1993) 

and Lotter (1998), cut-off values for 'no close' and no 'good analogue' are based on the 

second (27.77) and fifth percentiles (36.09) of the distribution of the dissimilarities of 

samples in the modem training set. Fossil samples with squared chord distances greater 

than these values are defined as having 'no close' and 'no good' analogue respectively. 
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Although there are several examples of the use of such techniques to evaluate 

reconstructions within palaeolimnology (e.g., Birks et al., 1990a, Lotter et al., 1998, 

Juggins et al., 1994), there are few examples of the employment of such techniques to 

assess reconstructions in the sea-level literature. Some exceptions to this include the work 

of Edwards and Horton (2002) and Hamilton and Shennan (2005a), who use the MAT to 

evaluate their reconstructions. It is, however, important to note that although these 

statistical techniques offer one way of evaluating a reconstruction, they do not necessarily 

provide the only answer. One of the most powerfiil ways to assess the reliability of a 

reconstruction is to compare the reconstruction with historical or observational records 

(Birks and Birks, 2006). For sea-level reconstructions this commonly involves comparison 

with tide-gauge records (e.g., Gehrels et al., 2002; 2005). These comparisons are explored 

in the latter parts of this chapter (Section 8.8). 

8.2 Palaeomarsh-surface reconstruction of core KE2 (Kjelst Enge) 

Diatom data in core KE2 from the salt marsh at Kjelst Enge were calibrated using the WA-

PLS transfer ftinction. The resulting palaeomarsh-surface reconstruction is presented in 

Figure 8.1. Reconstructed palaeomarsh-surface elevations range from 1.27 - 2.2 m and 

sample-specific standard errors of prediction for the fossil samples range from 0.124 -

0.151 m (Table 8.1). Highest sample-specific errors are for those samples with the highest 

reconstructed elevations. 

In general, the reconstruction appears to correspond well with changes in the litho- and 

biostratigraphy. The lowest reconstructed elevations are found to correspond with diatom 

zone KE-1 and the lower clay unit. Here, reconstructed elevations are around 1.3 m DNN. 

Around 0.6 m core depth a significant increase in oligohalobous - indifferent and 

halophobous diatom taxa is noted, which indicates a 'freshening' of the salt-marsh 

environment. This change is also reflected in the reconstruction. Higher salt-marsh surface 

elevations (up to 2.2 m) are foimd to correspond with the increase in oligohalobous -

indifferent taxa between 0.62 and 0.42 m core depth. At the very top of the core, 

reconstructed elevations decrease once again to c. 1.5 m and correlate with a retum to more 

brackish water conditions as indicated by the diatom record and the lithosfratigraphy. 
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Sample Depth (m) 

WA-PLS predicted 

palaeomarsh-surface 

elevation (m) 

(Indicative meaning) 

Bootstrap standard 

error (m) 

(indicative range) 

Goodness of fit Min DC Analogue 

0.02 1.44 0.124 Good 62.763 No Good 

0.06 1.362 0.124 Good 61.236 No Good 

0.10 1.409 0.124 Good 55.096 No Good 

0.14 1.460 0.125 Good 59.797 No Good 

0.18 1.561 0.127 Good 67.427 No Good 

0.22 1.552 0.127 Good 82.384 No Good 

0.26 1.372 0.125 Good 81.482 No Good 

0.30 1.420 0.126 Good 81.819 No Good 

0.34 1.825 0.129 Very Poor Fit 83.315 No Good 

0.38 2.177 0.138 Very Poor Fit 89.966 No Good 

0.42 2.226 0.151 Very Poor Fit 74.430 No Good 

0.46 1.847 0.132 Very Poor Fit 76.010 No Good 

0.50 1.710 0.134 Very Poor Fit 90.176 No Good 

0.54 1.742 0.129 Good 82.807 No Good 

0.58 1.77 0.130 Very Poor Fit 81.283 No Good 

0.62 1.465 0.126 Good 77.618 No Good 

0.66 1.484 0.129 Poor Fit 81.336 No Good 

0.70 1.420 0.128 Good 77.449 No Good 

0.74 1.486 0.126 Good 75.378 No Good 

0.78 1.456 0.125 Good 81.043 No Good 

0.82 1.522 0.126 Very Poor Fit 83.493 No Good 

0.86 1.432 0.125 Good 82.576 No Good 

0.90 1.426 0.125 Good 85.388 No Good 

0.98 1.358 0.125 Good 78.808 No Good 

1.06 1.346 0.125 Good 74.187 No Good 

1.14 1.433 0.127 Good 85.396 No Good 

1.22 1.429 0.127 Good 85.191 No Good 

1.30 1.429 0.128 Poor Fit 87.609 No Good 

1.38 1.375 0.125 Good 75.700 No Good 

1.46 1.401 0.126 Good 67.405 No Good 

1.54 1.330 0.126 Good 61.990 No Good 

1.62 1.366 0.125 Good 62.991 No Good 

1.70 1.311 0.127 Very Poor Fit 67.438 No Good 

1.78 1.310 0.125 Good 65.389 No Good 

1.86 1.300 0.126 Good 61.217 No Good 

1.94 1.267 0.126 Poor Fit 67.452 No Good 

2.02 1.279 0.126 Very Poor Fit 68.130 No Good 

2.10 1.282 0.126 Good 58.808 No Good 

2.18 1.270 0.126 Good 60.458 No Good 

2.26 1.327 0.126 Good 45.425 No Good 

2.34 1.346 0.126 Very Poor Fit 61.401 No Good 

2.42 1.328 0.126 Very Poor Fit 68.748 No Good 

2.50 1.277 0.126 Good 61.685 No Good 

2.58 1.383 0.125 Good 63.794 No Good 

2.66 1.515 0.126 Very Poor Fit 61.190 No Good 

Table 8.1. Summaiy of the WA-PLS predictions (m) and bootstrap errors (m) generated by 
the WA-PLS transfer flanction for fossil samples from core KE2. Output is compared M^ith 
goodness of fit statistics, produced by fitting samples passively into ordination space 
(Figure 8.2) and dissimilarity coefficients (Min DC), produced by MAT. 
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Chapter 8 Reconstruction of local water-level changes 

Although in general the reconstruction agrees well with both the litho- and biostratigraphy, 

some significant differences are noted. For example, around 1.3 m core depth an increase 

in oligohalobous - indifferent diatom taxa is observed which correlates with diatom zone 

KE2 and corresponds to the Phragmites peat unit. The lithology and diatom taxa of this 

zone indicate 'freshening' conditions. Surprisingly, only a small corresponding increase in 

reconstructed palaeomarsh-surface elevations is noted. A second example is highlighted 

towards the top of the core. Here the freshwater conditions that are prevalent throughout 

the upper part of the Phragmites peat are seen to persist well into the overlying peaty clay 

unit. The highest reconstructed elevation (2.25 m) is found within the upper peaty clay unit 

and not within the Phragmites peat as might be expected. Not surprisingly, the 

reconstructed palaeomarsh-surface record appears to correlate better with the 

biostratigraphical changes than with the lithostratigraphy. 

8.2.1 Reliability of the reconstruction 

KE2 fossil samples fitted passively into ordination space are shown in Figure 8.2. Fossil 

samples from core KE2 with a poor or very poor fit to the modem data and those with 'no 

close' and 'no good' analogue are indicated in Figure 8.1 and Table 8.1. 
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Figure 8.2. Fossil samples from core KE2 fitted passively into ordination space. Colour 
coding for samples is as per previous ordinations: Moserva =purple, Storbask =blue, Oksby 
Enge =green, Langli North =yellow, Langli South =red, KE2 fossil samples =black. 
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Chapter 8 Reconstruction of local water-level changes 

Out of a total of 45 fossil samples, 10 (22%) are considered to have a very poor fit and 3 

(7%) are considered to have a poor fit to the modem data (Figure 8.1 and Table 8.1). The 

majority of samples with a very poor fit are those samples with the highest predicted 

palaeomarsh-surface elevations. In this particular section of the core (core depth 0.34 -

0.58 m), the fossil samples are dominated by a number of fresh water taxa such as Eunotia 

arcus, Eunotia, fallax, Rhopalodia operculata and Tabellaria flocculosa. E. fallax and R. 

operculata are not represented in the modem training set and although E. arcus and T. 

flocculosa are, their occurrences are sparse and their relative abundances low (generally < 

5%). Results of MAT show that all 45 fossil samples from core KE2 do not possess a good 

modem analogue (Figure 8.1 and Table 8.1). As with the goodness of fit statistics, the 

results of MAT are clearly influenced by poor representation (< 10% occurrences (Birks, 

1998)) and missing taxa in the modem training set. Out of a total of 86 taxa in the KE2 

fossil samples, 25 (29%) do not have a modem analogue. For taxa which do have a modem 

analogue, the distribution of these taxa in the fraining set is often sparse and overall 

abundances are relatively low (< 10%). Calibrating the data in this core using a transfer 

fiinction which excludes allochthonous taxa (Section 7.6.3) results in 38 (44%) of fossil 

taxa with no modem analogue, and even fdrther reduces the reliability of the 

reconstmction. 

These results indicate that the reconstraction of core KE2 should be interpreted with 

caution, but it is important to place this limitation in context. Although many fossil 

samples have no 'good analogue' with the modem training set, this does not mean that they 

have no analogue at all. It is highly likely that given 'better' fresh water analogues and by 

improving the representation of taxa in the modem fraining set, the overall frends 

demonsfrated by the palaeomarsh-surface record would remain the same. In some cases 

these frends would be amplified (i.e. high palaeomarsh-surface elevations would become 

'higher'). The current reconstmction gives a valuable insight into changes in palaeomarsh-

surface elevation that have occurred and is of value as long as the limitations are 

acknowledged. 

It is worth noting that the inclusion of the modem surface samples from Kjelst Enge 

(Section 7.2) into the fraining set does not improve the results. With the inclusion of these 

samples, an additional four taxa gain a modem analogue. However, the relative 

abundances of these taxa are again low (< 5%). 
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8.3 Palaeomarsh-surface reconstruction of core BR9 (Bredmose) 
Diatom data from the upper 0.3 m of core BR9 from the salt marsh at Bredmose were 

calibrated using the WA-PLS transfer fiinction. The resulting palaeomarsh-surface 

reconstruction is presented in Figure 8.3. Reconstructed palaeomarsh-surface elevations 

range from 0.863 - 1.476 m DNN. Sample-specific standard errors of prediction for each 

of the fossil samples range from 0.125 - 0.139 m (Table 8.2). In general the reconstruction 

corresponds well with changes in litho- and biosfratigraphy, although, as noted previously 

(Chapter 6), some significant changes in biostratigraphy occur within this single peaty clay 

unit. These changes are reflected in the reconstruction. In the lower part of the core section 

from 0.18 - 0.30 m core depth, reconstructed palaeomarsh-surface elevations are around 

1.4 m DNN. At 0.18 m core depth reconstructed values decrease to around 1.2 m DNN. 

This change corresponds with the shift from diatom zone BRl to diatom zone BR2. At 

0.04 m core depth, the highest reconstructed value is obtained (1.476 m) with values then 

decreasing towards the top of the core. The sample with the lowest predicted palaeomarsh-

surface elevation (0.863 m) is at the very top of the core. Here the WA-PLS fransfer 

fimction under-predicts the surveyed elevation for the core top (1.35 m DNN). 

Although changes in the reconstructed palaeomarsh-surface elevations appear to 

correspond well with changes in litho- and biosfratigraphy some important differences are 

noted. For example, diatom zone BR2 corresponds with the highest abundance of 

oligohalobous - indifferent taxa, indicative of fresh water conditions. However, the 

palaeomarsh-surface record shows the lowest predicted elevations for this zone. In 

addition, the highest predicted palaeomarsh surface elevation does not correspond to the 

diatom sample with the highest percentage of fresh water diatom taxa. 
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Figure 8.3. Palaeomarsh suiface reconstruction of core BR9 (Bredmose) alongside lithology, summary halobian 
groups and diatom zones. Cluster analysis and summary halobian groups only include taxa with at least I % relative abundance. 
The full diatom record for this core is presented in Chapter 6. Errors on the reconstruction are sample-specifc bootstrap standard 
errors. Fossil samples with a poor (.) and very poor (..) fit to the modern diatom data, and fossil samples with no good modern 
analogue are indicated. Key to lithology is presented in Figure 6.2. 



Chapter 8 Reconstruction of local water-level changes 

Sample Depth (m) 

WA-PLS predicted 

elevation (m) 

(Indicative meaning) 

Bootstrap 

standard error m) 

(Indicative range) 

Goodness of fit Min DC Analogue 

0.00 0.863 0.137 Very Poor 71.405 No Good 

0.01 1.091 0.125 Good 48.901 No Good 

0.02 1.157 0.125 Good 49.711 No Good 

0.03 1.182 0.125 Good 55 777 No Good 

0.04 1.476 0.132 Very Poor 61.373 No Good 

0.05 1.266 0.127 Good 53.607 No Good 

0.06 1.260 0.132 Very Poor 72.719 No Good 

0.07 1.145 0.129 Very Poor 61.850 No Good 

0.08 1.168 0.128 Good 58.375 No Good 

0.09 1.066 0.130 Very Poor 62.968 No Good 

0.10 1.081 0.129 Very Poor 59.451 No Good 

0.11 1.046 0.129 Good 57.851 No Good 

0.12 1.133 0.129 Poor 52.334 No Good 

0.13 1.146 0.130 Very Poor 69.16 No Good 

0.14 1.177 0.127 Very Poor 64.391 No Good 

0.15 1.157 0.129 Very Poor 61.279 No Good 

0.16 1.118 0.131 Very Poor 73.43 No Good 

0.17 1.106 0.139 Very Poor 83.695 No Good 

0.18 1.326 0.125 Poor 57.246 No Good 

0.19 1.155 0.126 Good 36.299 No Good 

0.21 1.287 0.126 Good 40.817 No Good 

0.22 1.384 0.134 Very Poor 52.776 No Good 

0.23 1.437 0.128 Good 42.622 No Good 

0.24 1.392 0.127 Good 47.758 No Good 

0.25 1.411 0.126 Good 45.630 No Good 

0.26 1.416 0.126 Good 48.556 No Good 

0.27 1.355 0.127 Good 53.258 No Good 

0.28 1.350 0.126 Good 38.464 No Good 

0.29 1.309 0.126 Poor 47.952 No Good 

0.30 1.378 0.130 Very Poor 57.738 No Good 

Table 8.2 Summary of the WA-PLS predictions (m) and bootstrap errors (m) generated by 
the WA-PLS transfer function for fossil samples from core BR9. Output is compared with 
goodness of fit statistics, produced by fitting samples passively into ordination space 
(Figure 8.4) and dissimilarity coefficients (Min DC), produced by MAT. 
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Chapter 8 Reconstruction of local water-level changes 

8.3.1 Reliability of the reconstruction 

BR9 fossil samples fitted passively into ordination space are shown in Figure 8.4. Fossil 

samples from core BR9 with a poor or very poor fit to the modem data and those with 'no 

close' and 'no good' analogue are indicated in Figure 8.3 and Table 8.2. 

-3.0 CCA Axis One 3.0 

Figure 8.4. Fossil samples from core BR9 fitted passively into ordination space. Moserva 
= purple, Storbaek = blue, Oksby Enge = green, Langli North = yellow, Langli South = red, 
BR9 fossil samples = black. 

Out of a total of 30 fossil samples in core BR9, 10 (33%) have a very poor fit and 3 (10%) 

have a poor fit (Figure 8.3 and Table 8.2). Although the majority of taxa that occur in the 

fossil samples in core BR9 do have a modem analogue, many of the fossil taxa are under-

represented in the modem training set. For these species, calibration parameters will be 

poorly estimated and the resulting reconstmcted values are likely to be unreliable (Birks, 

1990). Of the 80 taxa present in the fossil samples, only 5 of them (6.3%) do not have a 

modem analogue. This is a significantly smaller figure than occurred in the Kjelst Enge 

reconstmction. Fossil samples with a very poor fit are dominated by Navicula phyllepta, 

Navicula pygmaea, Nitzschia fonticola and Diploneis interrupta. All of these taxa are 

represented in the modem training set but generally occur with relative abundances of < 

3% (N. pygmaea < 8%). Results of MAT show that all 30 fossil samples from core BR9 do 

not posses a good modem analogue (Figure 8.3 and Table 8.2). For this reconstmction, the 

issue of under-representation of taxa is a bigger problem than that of no analogues and 
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reduces the rehabiHty of the reconstruction. Calibrating the data in this core using a 

transfer fianction which excludes allochthonous taxa (Section 7.6.3) results in 17 (21%) of 

fossil taxa with no modem analogue, and even further reduces the reliability of the 

reconstmction. 

As with the reconstmction of core KE2, these results indicate that the reconstmction of 

core BR9 should be interpreted with caution, bjut does not mean that the reconstmction is 

entirely meaningless. As argued previously, increasing the representiveness of taxa in the 

modem training set is likely to result in the same general pattem of reconstmcted 

elevations. This is especially tme for the BR9 core where the majority of taxa do have a 

modem analogue, albeit one that is poorly represented in the modem training set. 

8.4 Palaeomarsh-surface reconstruction of core R01 (Rogel) 

The WA-PLS transfer fianction was calibrated to core R01 fi-om the salt marsh at Rogel. 

Samples from 0.52 and 0.55 m core depth were excluded from the calibration because 

these samples only retumed partial diatom counts of 186 and 220 valves, respectively. The 

resulting palaeomarsh-surface reconstmction is presented in Figure 8.5. Reconstmcted 

palaeomarsh-surface elevations range from 2.08 - 1.16 m DNN. Sample-specific standard 

errors of prediction for each of the fossil samples range from 0.124 - 0.191 m (Table 8.3). 

In general, the reconstmction shows agreement with the litho- and biostratigraphy. In the 

lowermost section of the core (below 1.0 m core depth), reconstmcted elevations vary 

between 1.2 and 1.6 m, corresponding to the upper part of the basal peat and lower clay 

unit. Re-working of the upper part of the eroded basal peat is likely to explain the 

similarity between diatom assemblages in the upper part of the peat unit and those in the 

overlying clay unit. Above 0.80 m core depth, reconstmcted values show a fluctuating but 

gradual increase in elevation up to a maximum of 2.08 m DNN at 0.37 m core depth. 

Highest diatom-predicted elevations correspond with the upper part of the lower clay unit 

and the overlying black layer. This is in agreement with the biosfratigraphy (Chapter 6) 

which indicates that the (fresh water?) conditions under which the black layer formed are 

initiated in the top 0.17 m of the underlying clay unit. A second phase of higher diatom-

predicted elevations is noted immediately below the sand layer, corresponding with earlier 

biosfratigraphical results (Chapter 6) which indicated that the initial formation of the sand 

layer began during a time when fresh water conditions prevailed. 
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Figure 8.5. Palaeomarsh surface reconstruction of core R01 (Rogel) alongside lithology, summary halobian 
groups and diatom zones. Cluster analysis and summary halobian groups only include taxa with at least 1% relative abundance. 
The full diatom record for this core is presented in Chapter 6. Errors on the reconstruction are sample-specifc bootstrap standard 
errors. Fossil samples with a poor (.) and very poor (..) fit to the modem diatom data, and fossil samples with no good modem 
analogue are indicated. Key to lithoiogy is presented in Figure 5.7. 
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Sample Depth (m) 

WA-PLS predicted 

elevation (m) 

(Indicative meaning) 

Bootstrap 

standard error (m) 

(Indicative range) 

Goodness of fit IVlin DC Analogue 

0.00 1.785 0.127 Good 42.53 No Good 

0.01 1.546 0.126 Good 46.20 No Good 

0.02 1.590 0.127 Good 38.78 No Good 

0.03 1.536 0.127 Good 54.37 No Good 

0.04 1.520 0.126 Good 43.19 No Good 

0.05 1.558 0.125 Good 40.07 No Good 

0.06 1.704 0.132 Very Poor 52.37 No Good 

0.07 1.631 0.136 Very Poor 46.95 No Good 

0.08 1.785 0.135 Very Poor 53.43 No Good 

0.09 1.769 0.140 Very Poor 65.02 No Good 

0.10 1.895 0.137 Very Poor 70.60 No Good 

0.11 1.65 0.134 Very Poor 54.58 No Good 

0.12 1.696 0.133 Very Poor 69.51 No Good 

0.13 1.653 0.136 Very Poor 74.63 No Good 

0.14 1.640 0.136 Very Poor 82.19 No Good 

0.15 1.777 0.135 Very Poor 98.29 No Good 

0.16 1.691 0.138 Very Poor 71.42 No Good 

0.17 1.72 0.189 Very Poor 106.8 No Good 

0.30 1.639 0.133 Very Poor 88.81 No Good 

0.31 1.610 0.129 Very Poor 77.48 No Good 

0.32 1.707 0.144 Very Poor 111.70 No Good 

0.33 1.862 0.128 Very Poor 98.70 No Good 

0.34 1.917 0.134 Very Poor 103.09 No Good 

0.36 1.936 0.134 Very Poor 107.10 No Good 

0.37 2.080 0.130 Very Poor 88.19 No Good 

0.38 1.740 0.134 Very Poor 93.95 No Good 

0.39 1.862 0.132 Very Poor 100.40 No Good 

0.40 1.806 0.129 Very Poor 108.30 No Good 

0.41 1.783 0.130 Very Poor 101.14 No Good 

0.42 1.432 0.167 Very Poor 141.60 No Good 

0.43 1.53 0.145 Very Poor 110.04 No Good 

0.44 1.591 0.140 Very Poor 116.39 No Good 

0.45 1.669 0.133 Very Poor 102.47 No Good 

0.46 1.972 0.145 Very Poor 117.99 No Good 

0.48 1.851 0.131 Very Poor 75.34 No Good 

0.49 1.710 0.132 Very Poor 84.36 No Good 

0.57 2.061 0.159 Very Poor 95.66 No Good 

0.58 1.835 0.145 Very Poor 93.16 No Good 

0.59 1.583 0.139 Very Poor 81.86 No Good 

0.60 1.503 0.129 Very Poor 71.60 No Good 

0.61 1.783 0.130 Very Poor 100.06 No Good 

0.62 1.777 0.132 Very Poor 93.73 No Good 

0.63 1.685 0.131 Very Poor 83.22 No Good 

0.64 1.460 0.128 Very Poor 74.50 No Good 

0.65 1.525 0.128 Very Poor 75.58 No Good 

0.66 1.449 0.129 Very Poor 64.46 No Good 

0.67 1.513 0.130 Very Poor 66.08 No Good 

0.68 1.400 0.129 Very Poor 66.38 No Good 

0.69 1.399 0.128 Good 68.63 No Good 
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0.70 1.414 0.128 Good 46.47 No Good 

0.72 1.450 0.125 Good 49.94 No Good 

0.74 1.345 0.127 Very Poor 55.29 No Good 

0.76 1.479 0.128 Good 55.73 No Good 

0.78 1.332 0.126 Good 51.95 No Good 

0.80 1.480 0.126 Good 49.14 No Good 

0.81 1.394 0.125 Good 50.75 No Good 

0.82 1.396 0.125 Good 44.79 No Good 

0.84 1.4190 0.126 Good 47.52 No Good 

0.86 1.5270 0.129 Very Poor 63.06 No Good 

0.88 1.474 0.127 Very Poor 60.62 No Good 

0.90 1.460 0.126 Very Poor 50.45 No Good 

0.92 1.4190 0.125 Good 50.05 No Good 

0.94 1.443 0.125 Good 42.39 No Good 

0.96 1.406 0.126 Good 48.48 No Good 

0.98 1.388 0.125 Poor 42.97 No Good 

1.00 1.383 0.125 Good 30.95 No close 

1.04 1.399 0.126 Very Poor 47.49 No Good 

1.08 1.154 0.128 Good 43.09 No Good 

1.12 1.417 0.125 Good 46.02 No Good 

1.16 1.182 0.129 Good 46.92 No Good 

1.20 1.434 0.125 Good 36.94 No Good 

1.24 1.290 0.127 Good 45.57 No Good 

1.28 1.418 0.125 Very Poor 41.60 No Good 

1.32 1.373 0.124 Good 37.51 No Good 

1.36 1.420 0.126 Very Poor 56.12 No Good 

1.40 1.447 0.125 Good 32.76 No Good 

1.44 1.548 0.127 Very Poor 60.64 No Good 

1.48 1.409 0.125 Good 41.32 No Good 

1.52 1.421 0.126 Good 53.71 No Good 

1.56 1.706 0.128 Very Poor 62.47 No Good 

1.68 1.398 0.125 Good 40.85 No Good 

1.76 1.447 0.125 Very Poor 40.88 No Good 

1.84 1.471 0.125 Good 39.20 No Good 

1.89 1.506 0.125 Good 44.87 No Good 

1.92 1.416 0.124 Good 38.58 No Good 

Table 8.3. Summary of the WA-PLS predictions (m) and bootstrap errors (m) generated by 
the WA-PLS transfer function for fossil samples from core R01. Output is compared with 
goodness of fit statistics, produced by fitting samples passively into ordination space 
(Figure 8.6) and dissimilarity coefficients (Min DC), produced by MAT. 
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8.4.1 Reliability of the reconstruction 

R01 fossil samples fitted passively into ordination space are shown in Figure 8.6. Fossil 

samples from core R01 with a poor or very poor fit to the modem data and those with 'no 

close' and 'no good' analogue are indicated in Figure 8.5 and Table 8.3. 

Figure 8.6. Fossil samples from core R01 fitted passively into ordinafion space. Moserva 
= purple, Storbaek = blue, Oksby Enge = green, Langli North = yellow, Langli South = red, 
R01 fossil samples = black. 

Out of a total of 86 fossil samples from core R01, 52 (60.5%) have a very poor fit and one 

sample has a poor fit. In general, samples in the lower part of the core have a better fit to 

the modem samples than those in the upper parts of the core, apart from the uppermost six 

samples. The major bio- and lithostratigraphical changes that occur in the upper 0.80 m of 

this core have probably resulted in assemblages that are very different to those found in the 

modem surface samples, explaining the dissimilarity of these samples. Samples 

immediately below the black layer and those samples on either side of the sand layer have 

a very poor fit to the modem data. Samples immediately below the black layer are 

dominated by four main taxa: Cocconeis scutellum var. scutellum, Cymatosira belgica, 

Grammatophora oceanica and Paralia sulcata, all of which are allochthonous. C. 

scutellum var scutellum and G. oceanica are present in the modem training set but they are 

poorly represented with relative abundances not exceeding 5%. C. belgica and P. sulcata 
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are also present in the modem training set but they occur across the whole range of modem 

samples and their abundances are highly variable. Samples on either side of the sand layer 

are dominated by Rhopalodia acuminata, Caloneis bacillum, Fragilaria brevistriata and 

Fragilaria exigua. R. acuminata is not present in the modem training set and C. bacillum, 

F. brevistriata and F. exigua do not occur with relative abundances > 5% (F. exigua 15% 

in sample M02). 

Results of MAT show that of the 86 fossil samples in core R01, 85 have no good modem 

analogue and 1 has no close modem analogue. Of the 126 diatom taxa present in the fossil 

samples, 21 (16.7%) do not possess a modem analogue. Although the majority of taxa in 

the core without a modem analogue only occur with low relative abundances (< 5%), 

several of these taxa are more dominant. Maximum relative abundances of dominant taxa 

in the core without a modem analogue include: R. acuminata (17%), Epithemia turgida 

(11%), Epithemia adnata (11%) and Navicula amphibola (11%). As a result, many of the 

fossil samples are significantly different from the samples in the modem training set (as 

illustrated by the Min DC, Table 8.3) and consequently are considered to have 'no good 

analogue'. Calibrating the data in this core using a transfer fiinction which excludes 

allochthonous taxa (Section 7.6.3) results in 36 (28%) of fossil taxa with no modem 

analogue, and even ftirther reduces the reliability of the reconstmction. 

As with the cores from Kjelst Enge and Bredmose, no analogue species and poorly 

represented taxa in the modem training set have greatly influenced the reliability of the 

reconstmction. In the reconstmction of core R0I , the additional problem of taxa in the 

modem training set which span a range of environments and results in 'multiple analogues' 

has fiirther exacerbated these issues. The absence of several dominant core taxa from the 

modem fraining set makes this reconstmction more unreliable than previous ones but again 

does not mean that the reconstmction is entirely meaningless. The majority of these 

missing taxa are fresh water taxa (e.g., E. turgida, E. adnanta and Â . amphibola) and 

inclusion of such taxa into the fraining set is likely to amplify existing frends. In particular 

the 'fresh water' sections of the core are likely to become more 'fresh.' From this 

perspective the reconstmction can still be considered valuable as long as the limitations are 

acknowledged. 
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8.5 Reconstruction of additional diatom samples 

Diatom data from a series of additional fossil samples from which ''̂ C and OSL ages were 

obtained were also calibrated using the WA-PLS fransfer fiinction in order to establish an 

indicative meaning for these samples (Tables 8.4, 8.5 and 8.6). Establishment of the 

indicative meanings for these samples is important because they are used to reconstruct the 

millennial-scale sea-level history of the Ho Bugt embayment (Chapter 9). Core KE2 was 

sampled and dated as part of the HOLSMEER Project. For this core, samples were not 

taken from depths at which datable material was obtained and because there was no 

remaining material from which to take new samples, the indicative meaning is calculated 

from the average of the two nearest samples, or interpolated from the nearest sample, hi 

most cases, the nearest samples are two cm either side of the depth at which the ''̂ C date 

was obtained (e.g., the indicative meaning for the ''̂ C sample at 0.12 m depth is the 

average of the indicative meanings for samples at 0.10 and 0.14 m core depth). For the 

Bredmose core, also dated as part of the HOLSMEER Project, archived material was 

available from which to take new samples and these were counted as part of this study. 

Although the samples from core R01 are presented previously (Table 8.3), they are again 

presented here to place them in context with the indicative meanings for other '"̂ C samples. 

For the two OSL ages from Ragel (Table 8.3), the indicative meanings are inferred from 

the nearest diatom sample. For the age at 0.23 m core depth, the indicative meaning is 

inferred from the diatom sample at 0.17 m core depth. For the age at 0.33 m core depth, a 

diatom sample was also counted at this depth from which to infer the indicative meaning 

(Table 8.3). This is also true for the OSL sample from core OEB5 at 0.33 m core depth. 

One sample (no. 4, Table 5.3), taken from the basal sand unit in monolith OEA is excluded 

from further analyses because no diatom data are available for this sample, and the sample 

could not be related to a modem environment (Table 8.7). 
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Sample 

No. 

Laboratory 

Code 

Sample 

depth (m) 

WA-PLS predicted 

elevation (m) 

(Indicative meaning) 

Bootstrap 

standard error (m) 

(Indicative range) 

Fit IVlin. DC Analogue 

KE2 

1 AAR-8891 0.12 1.43 ±0.12 N/A N/A rg/A 

2 AAR-8891 0.50 1.71 ±0.13 N/A N/A N/A 

3 AAR-8048 0.56 1.76 ±0.13 N/A N/A N/A 

4 AAR-8049 0.68 1.45 ±0.12 N/A N/A N/A 

5 AAR-8050 0.82 1.52 ±0.13 N/A N/A N/A 

8 AAR-8051 0.96 1.37 ±0.12 N/A N/A N/A 

7 AAR8052 1.16 1.43 ±0.13 N/A N/A N/A 

8 AAR-8053 1.38 1.38 ±0.13 N/A N/A N/A 

9 AAR-8054 1.51 1.34 ±0.13 N/A N/A N/A 

10 AAR-8055 1.67 1.31 ±0.13 N/A N/A N/A 

11 AAR-8056 1.84 1.30 ±0.13 N/A N/A N/A 

12 AAR-8057 2.01 1.28 ±0.13 N/A N/A N/A 

13 AAR-8058 2.35 1.35 ±0.13 N/A N/A N/A 

14 AAR-8059 2.57 1.38 ±0.12 N/A N/A N/A 

15 AAR-8060 2.75 2.30- ± 0.40" N/A N/A N/A 

BR12 
17 AAR-8068 1.53 1.52 0.13 Good 75.83 No Good 

BR2 
18 AAR-8069 1.60 1.46 0.13 Very Poor 51.09 No Good 

Table 8.4. Indicative meanings for samples dated by C as part of the HOLSMEER 
Project, predicted using a WA-PLS transfer fiinction, except the samples marked by double 
asterisks (**) which have been estimated by surveyed heights of present day marsh 
environments because no diatom data are available (Table 8.7). One dated sample (no. 16, 
Table 5.1) has previously been excluded because it retumed a much younger than expected 
age (Section 5.1.5). The reUability of samples fi-om core KE2 are not statistically assessed. 
The indicative meaning for these samples is calculated from the average of the two nearest 
samples, or interpolated from the nearest sample. The reconstmction of these neighbouring 
samples has been previously assessed in Section 8.2.1. 
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Sample 

depth (m) 

WA-PLS predicted Bootstrap standard 

Sample No. Laboratory 
Code 

Sample 

depth (m) 
elevation (m) 

(Indicative meaning) 

error (m) 

(Indicative range) 

Fit Min. DC Analogue 

R01 

19 SUERC-9253 0.51 1.70" ± 0.20" N/A N/A N/A 

20 SUERC-9254 0.68 1.40 ±0.13 Very Poor 85.67 No Good 

21 SUERC-9255 0.72 1.45 ±0.13 Good 58.18 No Good 

22 SUERC-9256 0.81 1.39 ±0.13 Good 55.04 No Good 

23 SUERC-9257 0.92 1.42 ±0,13 Good 54.63 No Good 

24 SUERC-9259 1.68 1.40 ±0.13 Good 47.74 No Good 

25 SUERC-9262 1.89 1.51 ±0,13 Good 45.06 No Good 

26 SUERC-9263 2.15 2.30" ± 0.40" N/A N/A N/A 

27 SUERC-9264 2.19 2.30" ± 0,40- N/A N/A N/A 

28 SUERC-9265 2.22 2.30" ± 0,40" N/A N/A N/A 

Rsgel Monolith 

29 SUERC-9266 0.55 1.57 ±0,13 Very Poor 76.91 No Good 

30 SUERC-9267 0.60 1.50 ±0,13 Very Poor 82.28 No Good 

OEA 

31 SUERC-9268 1.24 2.01 ±0.14 Very Poor 92.20 No Good 

32 SUERC-9269 1.52 2.30" ± 0.40" N/A N/A N/A 

OEB5 

34 SUERC-9274 0.82 1.37 ±0.13 Good 39.81 No Good 

35 SUERC-9275 1.01 1.39 ±0.13 Poor 47.16 No Good 

KE1 (2004) 

36 SUERC-9276 4.16 1.55 ±0,13 Very Poor 71.18 No Good 

37 SUERC-9277 5.15 1.73 ±0.17 Very Poor 150.34 No Good 

38 SUERC-9278 5.98 1.69 ±0,15 Very Poor 96.50 No Good 

39 SUERC-9279 6.54 2.00 ±0.14 Very Poor 108.92 No Good 

40 SUERC-9282 6.84 1.78 ±0,15 Very Poor 101.27 No Good 

KE12 

41 SUERC-9283 2.35 1.62 ±0.13 Very Poor 77.95 No Good 

42 SUERC-9285 3.80 2.17 ±0,14 Very Poor 83.32 No Good 

KEl 3 

43 SUERC-9286 3.34 1.83 ±0.13 Very Poor 81.42 No Good 

44 SUERC-9287 5.08 1.77 ±0,13 Very Poor 97.75 No Good 

Table 8.5, bidicative meaning for samples dated by C (this study) predicted using a WA-
PLS transfer ftmction, except the samples marked by double asterisks (**) which have 
been estimated by surveyed heights of present day marsh environments because no diatom 
data are available (Table 8.7). One dated sample (no. 33, Table 5.2) has previously been 
excluded because it retumed a much younger than expected age (Section 5.1.3). 
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Sample 

No. 
Core 

Laboratory 

Code 

Sample 

Depth (m) 

WA-PLS predicted 

elevation (m) 

(Indicative meaning) 

Bootstrap standard 

error (m) 

(Indicative range) 

Fit IVlin. DC Analogue 

1 R01 Riso 052803 0.23 1.72 0.19 
Very 

Poor 
106.83 No Good 

2 R01 Riso 052804 0.33 1.86 0.12 
Very 

Poor 
98.70 No Good 

3 OEBS RiSB 052802 0.33 1.74 0.13 Good 58.57 No Good 

Table 8.6. Indicative meaning for samples dated by OSL predicted using the WA-PLS 
transfer fiinction. Indicative meanings and indicative ranges are inferred from the nearest 
WA-PLS predicted diatom sample (see text). One sample (no. 4, Table 5.3) taken from the 
basal sand unit is excluded because no diatom data are available for this sample and the 
sample could not be related to a modem environment (Table 8.7). 

Surface env i ronment m DNN 
Freshwater marsh 2.30 ± 0.40 
Salt marsh to freshwater marsh transition 1.90 ±0.20 
High salt marsh 1.70 ±0.20 
High salt marsh to low salt marsh transition 1.50 ±0.20 
Low salt marsh 1.10 ±0.40 
Low salt marsh to tidal flat transition 0.75 ± 0.20 
Tidal flat <0.75 

Table 8.7. Indicative meaning of lithofacies and lithosfratigraphical contacts based on 
survey of modem salt-marsh environments (Gehrels et al., 2006a). This information is used 
to infer the indicative meanings for samples for which no diatom data are available. 

8.5.1 Reliability of the reconstructions 

Additional fossil samples fitted passively into ordination space are shown in Figure 8.7. 

Samples for core KE2 are not assessed. The indicative meaning for these samples is 

calculated from the average of the two nearest samples, or interpolated from the nearest 

sample. No diatom data is available from these exact depths to enable the samples to be 

analysed in the ordinations. Goodness of fit and MAT statistics for the original samples 

used in these calculations are shown in Table 8.2 and give some idea of how reliable the 

reconstmcted values may be. Samples where the indicative meaning is inferred from 

surveyed heights of modem salt-marsh environments are also not assessed. Again, no 

diatom data are available for these samples to enable them to be entered into the 

ordination. Reconstmcted values for all other samples in Tables 8.4, 8.5 and 8.6 are all 

assessed via goodness of fit and analogue statistics. Fossil samples with a poor or very 

poor fit to the modem data and those with 'no close' and 'no good' analogue are indicated 

in Tables 8.4, 8.5 and 8.6. 
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-3.0 CCA Axis One 3.0 

Figure 8.7. Additional fossil samples fitted passively into ordination space. Sample 
numbers 17-18, 20-25, 29-31 (Table 8.4) and 34-44 (Table 8.5) and 1-3 (Table 8.6) are 
plotted. Samples where the indicative meaning is inferred from the surveyed heights of 
modem salt-marsh environments are not assessed (see text). Moserva = purple, Storbask = 
blue, Oksby Enge = green, Langli North = yellow, Langli South = red, fossil samples = 
black. 

The results of goodness of fit and MAT suggest that several of the inferred indicative 

meanings need to be interpreted with caution. A number of fossil samples are shown to 

have a very poor fit to the modem samples and all diatom-inferred indicative meanings are 

shown to have no good analogue. These results are not surprising given that a number of 

these additional fossil samples are from basal peat deposits (e.g., sample numbers 37 - 44, 

Table 4.5), that formed under a fresh water environment. Previous reconstmctions have 

already highlighted the lack of fresh water analogues and under-representation of such taxa 

in the modem training set. The modem training set extends to a height of 2.53 m DNN and 

although it does include samples from the high and fresh water marshes, the highest 

elevation is still probably lower than the height at which the basal peat unit formed. 

Dominant taxa found in these fossil samples include Fragilaria pinnata, Fragilaria 

virescens, Epithemia adnanta and Epithemia turgida. E. adnanta and E. turgida have no 

modem analogue and F. pinnata and F. virescens only occur with relative abundances < 

5% in the modem training set. As was the case for previous reconstmctions, under 

representation of taxa and lack of modem analogues has reduced the reliability of the 

diatom inferred indicative meanings. 
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8.6 Comments on the reliability of the reconstructions 
From the assessment of the various reconstructions, it is clear that there are concerns 

regarding the reliability of the reconstructed values but it is important to place these 

findings in context. Lack of modem analogues, under-representation of taxa and multiple 

analogues have all contributed to reducing the reliability of the reconstmcted values. 

However, for many of the core sections under representation of taxa, rather than a 

complete lack of analogues, is the biggest problem. This is particularly tme of the fresh 

water taxa. The use of statistical methods such as goodness of fit and MAT, provide only 

one way of assessing the reliability of a reconstmction. It is important to assess the 

reliability of a reconstmction alongside litho- and biostratigraphical information as well as 

by using statistical techniques. These points are further explored in Chapter 9. 

The next part of this chapter presents the development of a series of age-depth models. The 

diatom-inferred palaeomarsh-surface records presented here are linked to local-water level 

and the data are plotted in a series of time-height diagrams of local water-level change. 

These diatom-predicted local water-level curves are compared with observational data 

from the nearby tide gauge record at Esbjerg to provide further assessment on their 

reliability. 
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8.7 Age-depth models 

To provide chronological control on the relative sea-level records and to enable 

comparison between records, age-depth models were developed using the available • '̂°Pb, 

'^'Cs, ^'*'Am, OSL and ''*C ages for all core sections from which reconstructions were 

attempted (cores KE2, BR9 and R01). Selecting a suitable age-depth model for each of the 

cores is important as subtle changes in salt-marsh accretion can greatly affect the accuracy 

of the water-level reconstruction (Gehrels et al., 2005). In developing an age-depth model 

it is often convenient to have a single, central point estimate of a ''*C date (Telford et al., 

2004a). For '''C dates this is not a problem however, calibrated ''̂ C ages, as used in this 

study, often display multi-modal and non-normal errors (Telford et al., 2004a; Gehrels et 

al., 2005). One of the most frequently used methods for gaining a point estimate of a 

calibrated '"̂ C age is the intercept, i.e. where the mean or median of the ''*C date intercepts 

the calibration curve (e.g., Stuiver and Reimer, 1993, Seierstad et al., 2002). However, 

such a method has been criticised in the literature because small variations in the 

calibration curve can greatly affect the point estimates (Telford et al., 2004a). In this study, 

the median age is used to provide a point estimate but the full 2a range (95% confidence 

intervals) is also presented as horizontal error bars. Although this is not the only possible 

option, presentation of the full 2a range provides some assessment of the uncertainty in the 

radiocarbon result (Bowman and Leese, 1995; Telford et al., 2004a). Such a method is also 

consistent with the HOLSMEER ages previously published in Gehrels et al. (2006a). 

A number of different approaches to age-depth modelling have been presented in the 

literature (Telford et al., 2004b). Some of the more common methods include linear 

interpolation and linear regression models (e.g., Bennett, 1994), mixed effect models (e.g., 

Heegard, 2003; Heegard et al., 2005) and weighted-average probability density functions 

(e.g., Telford et al., 2004; Gehrels et al., 2005, 2006c). fri this sttidy, selecting one linear 

regression model for each of the core sections modelled was considered erroneous as the 

cores contains several lithological units which are likely to have been deposited under 

different sedimentation rates. The development of mixed effect models and weighted-

average probability density functions, such as those employed by Heegard et al. (2005) and 

Gehrels et al. (2005, 2006c) respectively, were beyond the scope of this present study but 

are potential areas to explore in future work. The age-depth models established for cores 

KE2, BR9 and R01 are presented in the next section of this chapter. 
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8.7.1 Kjelst Enge core KE2 

Chronology 

The age-depth model for core KE2 is based on ^'°Pb, '"Cs and fifteen ages. The first 

two techniques were used to establish a chronology for the youngest part of the sequence. 

A definitive chronology based on an assessment of all the radiometric data (̂ '*'Pb and 

Cs) for this part of the core was calculated using the methods described in Appleby 

(2001). Total •̂'̂ Pb activity was found to reach equilibrium with the supporting ^̂ R̂a at a 

depth of about 15 cm (Figure 8.8). The '̂ ^Cs activity versus depth (Figure 8.8) was found 

to have three relatively distinct peaks. The upper peak at 5 cm is likely to be attributed to 

the Chernobyl accident in 1986. Several studies have identified the Chernobyl peak in the 

'̂ 'Cs record in the Danish Wadden Sea (e.g., Pedersen, 2004; Ehlers et al., 1993; Andersen 

et al., 2000) and the amount of '̂ ^Cs represented by this peak in core KE2 (c. 180 Bq/kg-1) 

is comparable with these studies. The two lower peaks at 7.5 and 9.5 cm may be attributed 

to the same event and result from down core movement of '̂ 'Cs as documented by other 

studies in the Danish Wadden Sea (e.g., Bartholdy et al., 2004; Pedersen, 2004). It is also 

possible that one of these peaks could be attributed to atomic weapons testing, which 

began in 1953 and reached a maximum in 1963. Measurements of '̂*'Am measurements are 

not available for this core to support this link. 

a b e 
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Total "°Pb activity (Bq/kg') Unsupported "°Pb activrty (Bcykg') "'Cs activity (Bq/kg') 

Figure 8.8. Isotopic data plotted against core depth for core KE2 showing a) total and 
supported '̂̂ Pb activity, b) unsupported (excess) ^'°Pb activity and c) '"Cs activity. 
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Raw ^'°Pb dates were calculated using the constant rate of supply (CRS) dating model 

(Equation 8.1; Appleby, 2001). Although this method is considered most reliable in 

sediments where uniform sedimentation rates prevail, several studies have demonstrated 

the use of such a model on salt-marsh cores, where non-uniform accumulation rates are 

more common (e.g., Gehrels et al., 2002, 2005; Pedersen, 2004; Horton et al., 2006). Age 

of sediments at depth (m) is calculated as: 

t = 1/^ Ln (A(0)/A) Equation 8.1 

Where t = age 

X = ^'°Pb radioactive decay constant (0.03114 y"') 

A(0) = total inventory of unsupported ^'°Pb at depth where activity is negliable, 

A = difference between A(0) and cumulative input at that depth. 

Raw ^'°Pb dates calculated using the CRS dating model place 1963 at a depth of 0.08 m 

and 1986 at a depth of 0.05 m, in both cases in good agreement with the depths suggested 

by the ''̂ ^Cs record. On this basis the CRS ^'°Pb ages are accepted. 

Age-depth model 

The age-depth model for core KE2 is based on the following assumptions: 

• Sedimentation rates within each lithological unit are likely to have remained 

constant, except in the upper 10-20 cm where there is less likelihood of 

compaction. 

• The top of the basal peat is eroded as evidenced by the sharp boundary between the 

peat and the overlying clay (Section 5.1.1). 

• The clay unit accumulated very rapidly as a result of infill, following the 

excavation of the top of the basal peat. This is supported by the series of 

radiocarbon ages in the lower clay unit, all of which are overlapping in calibrated 

ages. 

• Following stabilisation of the salt-marsh surface, the sedimentation rate within the 

peaty clay unit appears to have slowed, as suggested by the radiocarbon ages in the 

upper peaty clay unit. 
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The age-depth model for core KE2, based on '̂̂ Pb, '̂ ''Cs and 14 calibrated "*C ages, is 

presented in Figure 8.9. One dated sample (no. 13, Table 5.2) is in the clay unit, but its 

age indicates that it is an eroded basal peat fragment (Gehrels et al., 2006a). The age of this 

sample is close to that of the basal peat, and a number of cores show that the basal peat is 

eroded, as evidenced by the sharp upper basal contact (Section 5.1.1). This re-worked 

sample is excluded from fiirther analysis. Some age reversals are apparent in the cenfral 

part of the clay unit. This unit represents a low marsh to tidal flat envirormient and 

sedimentation rates would have been very high. The age-reversals in this unit are relatively 

small and are the result of rapid infill. The radiocarbon ages from the upper part of the 

peaty clay unit suggest some slowing of accumulation rates following the initial rapid 

infill. Given the lack of dates in the lower part of the clay, inferred ages in this part of the 

core are much less certain, but are estimated here by extrapolating the accumulation rate 

from the upper part of the profile. 
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Figure 8.9. Age-depth model for core KE2 from Kjelst Enge. Key to lithology is given in Figure 6.1. 
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8.7.2 Bredmose core BR9 

The age-depth model for Bredmose core BR9 is based solely on '̂"Pb and '̂ ^Cs ages. 

These two techniques were used to establish a chronology for the upper 0.30 m of this core 

for which a diatom record has also been established. Total '̂*'Pb activity was found to 

reach equilibrium with the supporting ^̂ R̂a at a depth of about 23 cm (Figure 8.10). The 

Cs activity versus depth (Figure 8.10) was found to have two possible peaks at 12.5 and 

14.5 cm. It is possible that the first peak at 12.5 cm results from the Chernobyl accident 

(1986) and that the second results from nuclear weapons testing (1963). However, in both 

the Rogel and Kjelst Enge cores the Chernobyl peak is usually the larger of the two 

(Figures 8.8 and 8.11), which is not the case for this core. Since these two peaks are only 2 

cm apart is it also possible that they represent one peak relating to either the Chernobyl 

accident (1986) or the result of nuclear weapons testing (1963) and that some down core 

movement of '̂ ^Cs has taken place. Post-depositional mobility of '̂ ^Cs in coastal 

sediments has been documented by several authors (e.g., Bartholdy et al., 2004; Foster et 

al., 2006; Pedersen, 2004). ^'*'Am measurements are not available for this core to support 

either argument. Attributing the peak at 14.5 cm to Chernobyl would result in an 

accumulation rate of around 1 cm/yr, which seems too high. It seems more likely that this 

peak is the result of nuclear weapons testing (1963) and that the Chernobyl peak is 

'blurred.' Raw "̂̂ Pb dates calculated using the CRS dating model place 1986 at a depth of 

9 cm and 1963 at a depth of 14.5 cm. Given the uncertainty associated with the '^'Cs 

record for this core, assessment of the raw '̂̂ Pb chronology is very difficult. However, on 

the basis of a lack of any other information the CRS '̂"Pb record is accepted. 
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Figure 8.10. Isotopic data plotted against core depth for core BR9 showing a) total and 
supported '̂̂ Pb activity, b) unsupported (excess) ̂ ' Pb activity and c) '̂ ^Cs activity. 
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SJ.3 Kegel core R01 

Chronology 

The age-depth model for core R01 is based on '̂"Pb, '̂ ^Cs, ^'''Am, 10 calibrated '''C and 

two OSL ages. The first three techniques were used to establish a chronology for the 

youngest part of the sequence and were modelled by Appleby and Piliposian (2006). Total 

^"'Pb activity was found to reach equilibrium with supporting ^̂ R̂a at a depth of about 12 

cm (Figure 8.11). The '^'Cs activity versus depth (Figure 8.11) has two relatively distinct 

peaks. The more recent, at 4.75 cm, may record fallout from the 1986 Chernobyl accident. 

The earlier peak, at 6.75 cm, may record the 1963 fallout maximum ft-om the atmospheric 

testing of nuclear weapons. Traces of ^" '̂Am confirm the presence of weapons test fallout 

in this part of the core, though the record is not sufficiently distinct to be certain of the 

above attributions. 

Figure 8.11. Isotopic data plotted against core depth for core R01 showing a) total and 
supported "̂̂ Pb activity, b) unsupported (excess) ^'°Pb activity and c) '̂ ^Cs and ^'*'Am 
activity. 

Raw ^'°Pb dates calculated using the CRS dating model place 1963 at a depth of 6 cm and 

1986 at a depth of 3.75 cm, in both cases about 1 cm above the depths suggested by the 

'̂ 'Cs record. This suggests some discrepancy between the '̂ ^Cs and '̂"Pb ages. 

Calculation of the ^'°Pb flux suggested that it was relatively uniform up to the mid-1980s 

(with a mean value of 107 Bq m"̂  y"'), but increased significantly after this date, resulting 

in a mean value of 183 Bq m'̂  y ' in the last 20 years. Appleby and Piliposon (2006) use a 

corrected chronology, calculated by applying the CRS model (Equation 8.1) in a piecewise 

manner using the lower value of the ^"'Pb flux for pre-1986 sediments and the higher value 
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for the post-1986 sediments. This technique of correcting the ^'°Pb chronology on the basis 

of •̂̂ 'Cs peaks has been successfully used in lake sediment cores in Denmark (Appleby, 

2001). 

Age -Depth Model 

The age-depth model for core R01 is based on the following assumptions: 

• Sedimentation rates with each lithological unit are likely to have remained constant, 

except in the upper 10-20 cm where there is less likelihood of compaction. 

• The top of the basal peat is eroded (Chapter 5), but not as significantly as in core 

KE2, and only a small hiatus is identified. In core R01 the stratigraphic contact 

between the basal peat and the overlying clay unit is more difflise than in core KE2 

(Section 5.2.1). 

• The clay unit accumulated very rapidly as a result of infill, following the 

excavation of the top of the basal peat 

• A change in sedimentation rate is hypothesised following deposition of the black 

layer. 

The age-depth model for core R0I , based on ^'°Pb, '"Cs, ^'*'Am, 2 OSL and 10 calibrated 

'"̂ C ages, is presented in Figure 8.12. Between 0.92 and 1.68 m core depth no datable 

material was found in this core (Appendix 4) and as a result a large gap in the age depth 

model is noted. As was the case for the KE2 core, several age reversals are apparent, 

particularly between 0.5 and 1 m core depth, which result from rapid infill. Here, the 5 

dates which form the steepest trend are included in the model and the remaining two dates 

in this unit are considered too old. Given the lack of dates in the lower part of the clay, 

inferred ages in this part of the core are much less certain, but are estimated here by 

extrapolating the accumulation rate from the upper part of the profile. 
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Chapter 8 Reconstruction of local water-level changes 

8.8 Reconstruction of local water levels 
For each diatom sample analysed the WA-PLS transfer fianction has calculated the 

palaeomarsh-surface elevation at which the sample was formed (the 'indicative meaning') 

(Sections 8.2-8.5). Although goodness of fit and MAT statistics have indicated that some 

of the reconstructed palaeomarsh-surface elevations are unreliable, it would be erroneous 

to exclude samples solely on the basis of these results. It is important to assess the 

reliability of a reconstruction alongside litho- and biostratigraphical information as well as 

by using statistical techniques. This is explored and discussed in the next chapter where 

local water-level curves are compared with the results of litho- and biostratigraphical 

investigations to explore the evolution of the Ho Bugt embayment. All diatom-inferred 

samples are therefore retained in the analysis at this stage. Local water-level curves are 

presented for Kjelst Enge, Bredmose and Ragel salt marshes in the following sections of 

this chapter. The most recent parts of these records are compared with observational data 

from the nearby tide gauge at Esbjerg to provide flirther assessment on the reliability of the 

reconstructions. The tide gauge at Esbjerg has recorded sea-level change since 1890 (data 

available from the Permanent Service for Mean Sea Level at http://www.pol.ac.uk/psmsl/) 

and provides a usefiil test of the reconstructed records. 

To reconstruct local water-level changes, all diatom-inferred data points are plotted in a 

time-height diagram using the relationship: 

where LWL is the local water level, H is the sample height relative to DNN and / is the 

diatom-inferred indicative meaning of the sample, calculated from the WA-PLS fransfer 

fiinction. The age (and age error) of each sample is estimated from the respective age-

depth model to produce a relative sea-level chronology. Ages are interpolated for samples 

within each sfratigraphic unit using the equation of the appropriate frend line plotted in 

Figures 8.9 and 8.12. Sample-specific bootsfrap errors established for each sample (the 

'indicative meaning') (Section 8.2-8.5) are applied as vertical (height) errors in the water-

level reconstruction. Samples which have an indicative meaning and an age that is not 

interpolated are known as sea-level index points (SLEPs) (Shennan, 1982,1986a, 1986b). 

Equation 8.2 

218 

http://www.pol.ac.uk/psmsl/


Chapter 8 Reconstruction of local water-level changes 

8.8.1 Kjelst Enge core KE2 

Two water-level curves for core KE2 from Kjelst Enge are presented in Figures 8.13 and 

8.14. The first of these presents only SLIPs, and the second presents SLIPs and all age-

interpolated data points. As only three data points are available from the most recent part 

of this core, this record is not considered sufficient enough to make a valid comparison 

with the nearby tide-gauge record at Esbjerg. 

The two water-level curves for core KE2 show a rise in local water level of around 3.5 m 

in approximately 4000 years. In Figure 8.14 a period of rapid rise is observed around 1900 

cal. yr BP. Here the water level appears to rise by approximately 1 m in only a few 

hundred years. Concerns regarding the statistical reliability of many of the diatom-inferred 

reconstructed points have already been highlighted (Section 8.2.1). Here, however, the 

steepness of the rise is primarily the result of the age-depth model used. Reconstructed 

points in this particular section of the core are all from the clay unit. Whilst it is accepted 

that the clay unit is likely to have accumulated very rapidly, as a result of infill, a number 

of age reversal are apparent in this particular section of the core (core depth 0.96 - 2.0 m). 

In addition, the lack of dates in the lower part of the clay means that inferred ages in this 

part of the core are much less certain. Age-interpolated data points in this particular section 

of the water-level curve can therefore be considered less reliable. 

In Figure 8.14 a period of slightly lower water level around 900 cal. BP is observed. 

However, this is consfrained by only a few data points. The lack of data points between 

approximately 1000 and 200 cal. yr BP is probably insufficient to infer sub-millennial 

scale fluctuations in this section of the curve. Importantly, at no stage in the last 4000 years 

did the local water level in core KE2 appear to reach above present day levels. 
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Figure 8.13. Local water-level history of core KE2 from Kjelst Enge showing only SLIPs. 
The median age of the 2a calibrated radiocarbon age ranges are plotted, and the full 2a 
range is shown by the x-axis error bars. Vertical (height) error bars represent the indicative 
meaning. 
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Figure 8.14. Local water-level history of core KE2 from Kjelst Enge showing SLIPs and 
all diatom-inferred reconstructed sea-level points. Age-errors for interpolated ages are not 
shown. These errors are at least as large as those from adjacent calibrated ages. Age-
errors on "̂̂ Pb age estimates were not provided by the laboratory. Vertical (height) error 
bars represent the indicative meaning. 
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8.8.2 Bredmose core BR9 

On the basis of ̂ '̂ Pb and '̂ 'Cs age estimates the local water-level history for the past two 

centuries from core BR9 is reconstructed in Figure 8.15. The reconstruction for this core is 

compared with the observations from the tide-gauge record at Esbjerg. For clarity the data 

in this figure are plotted against age in calendar years (AD). The observed trend of relative 

sea-level rise since 1890 is reasonably matched by the reconstruction, although some 

discrepencies are noted. For example prior to 1930 the reconstructed points under-predict 

the relative sea level. After 1930 the reconstruction tends to over-predict relative sea level. 
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Figure 8.15. Local water-level history of core BR9 from Bredmose showing all diatom-
inferred reconstructed water-level points and the Esbjerg tide-gauge record. Age-error bars 
for ^'°Pb ages were not provided by the laboratory. Vertical (height) error bars represent 
the indicative meaning. 
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8.8.3 R0gel core R01 

Local water-level curves for core R01 from Kegel salt marsh are presented in Figures 8.16 

and 8.17. Again, the first of these curves presents only SLIPs. The second presents SLIPs 

and all age-interpolated data points. The two curves for core R01 show a rise in local 

water level of around 3 m in approximately 4500 years and are in general agreement with 

the record from Kjelst Enge. One major exception to this is noted. Around 1900 cal. yr BP, 

the rise in local water level in the R01 record does not appear to be as rapid as that 

identified in the KE2 record (Figure 8.14). However, once again some concern regarding 

the age-depth model used must be highlighted. Given the lack of dates in the lower part of 

the clay unit in core R01 (Figure 8.12), inferred ages in this part of the core are again less 

certain. These two records from Rogel and Kjelst Enge are fiirther compared and discussed 

in the next chapter. 

In Figure 8.17, two periods of slightly lower water level are identified. The first around 

1000 cal. yr BP, and the second around 500 - 600 cal. yr BP. However, these frends are not 

particularly well consfrained and considerable scatter is noted during these periods. It is 

possible that the lower water levels around 1000 and 500 cal. yr BP relate to the formation 

of the black layer and the sand layer, respectively. However, an absence of diatom data 

from the black layer in this core means that the water-level history between approximately 

900 and 600 cal. yr BP is very poorly consfrained. These points are fiirther discussed in the 

next chapter where the local water-level curves are integrated with the results of litho- and 

biostratigraphical analyses. 

On the basis of "̂̂ Pb, '̂ ^Cs and ^" '̂Am age estimates the water-level history for the past 

two centuries is reconstructed in Figure 8.18. The fifteen youngest samples in core R0I 

span the period from 1790 until the present (2004) and they are plotted together with the 

tide-gauge data in Figure 8.18. For clarity the data in this figure are again plotted against 

age in calendar years (AD). The reconstructed sea-level record shows reasonable 

agreement with the tide-gauge observations. The observed trend of relative sea-level rise 

since 1890 is matched by the reconstruction for the past 50 years, but the older part of the 

record (prior to AD 1955) appears to be under-estimated. This is also the case at 

Bredmose. 
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Figure 8.16. Local water-level history of core R01 from R0gel showing only SLIPs. The 
median age of the 2a calibrated radiocarbon age ranges are plotted, and the fiill 2 a range 
is shown by the x-axis error bars. Vertical (height) error bars represent the indicative 
meaning. 
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Figure 8.17. Local water-level history of core R01 from Regel showing SLIPs and all 
diatom-inferred reconstructed sea-level points. Age-errors for interpolated ages are not 
shown. These errors are at least as large as those from adjacent calibrated '''C ages, except 
for the uppermost samples where age-errors on "̂̂ Pb age estimates are between 2 and 10 yr 
and are too small to show. Vertical (height) error bars represent the indicative meaning. 
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Figure 8.18. Local water-level history of core R01 from Ragel showing the 15 youngest 
diatom-inferred reconstructed water-level points and the Esbjerg tide-gauge record. 

8.9 Chapter summary 

This chapter has presented the palaeomarsh-surface reconstruction of three core sections 

(BR9, KE2 and R01) using the WA-PLS transfer function developed in Chapter 7. The 

reliability of the reconstructions was assessed via the use of goodness of fit statistics after 

fitting the samples passively into ordination space and the MAT. In all reconstructions 

these statistics have indicated that many of the reconstructed values should be interpreted 

with caution. Under representation of taxa in the modem training set is the main reason 

affecting the reliability of these reconstmctions, although the absence of several key fresh 

water taxa has also been noted. However, it is highly likely that given 'better' fresh water 

analogues and by improving the representation of taxa in the modem training set, the 

overall trends demonstrated by the palaeomarsh-surface records would remain the same. In 

some cases these trends would be amplified. This is especially tme of the fresh water basal 

samples for which the indicative meanings are likely to be under-estimated. 

In the second part of this chapter age-depth models were developed for each of the core 

sections investigated using available OSL, calibrated '"̂ C, '̂ ^Cs, ^'°Pb and ^" '̂Am ages. The 

indicative meaning for each diatom sample, calculated from the WA-PLS transfer fiinction, 
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was then Hnked to local water level and plotted in a time-height diagram of local water-

level change. Given the lack of dates and the age reversals in the lower part of the clay unit 

in both cores KE2 (Figure 8.9) and R01 (Figure 8.12), inferred ages in these units are 

much less certain and the corresponding sections of the resulting water-level curves need 

to be interpreted with caution. The water-level reconstructions for the past two centuries at 

Rogel and Bredmose were compared with the nearby tide-gauge record from Esbjerg to 

provide fiirther assessment on the reliability of the reconstructions. From these 

reconstructions the following key points can be highlighted: 

• The local water-level records from Kjelst and Rogel both demonsfrate around 4 m of 

rise in the last 4000 yr. These records are further compared in the next chapter 

• The records from cores BR9 and R01 for the past two centuries generally show good 

agreement with the tide-gauge data from Esbjerg since 1950, but appear to 

underestimate relative sea-level in the early parts of the record. 

Comparisons between the local water-level curves are discussed in the next chapter where 

they are placed in the context of litho- and biostratigraphical results to investigate the 

evolution of the Ho Bugt embayment. The millennial-scale relative sea-level history of the 

Ho Bugt embayment is established, and the dominant process confroUing relative sea-level 

change in the Ho Bugt embayment is explored through comparison of the relative sea-level 

data with predictions from a series of geophysical models. 
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Chapter 9 

Integration and Discussion 
In this chapter, sea-level index points (SLIPs) from a number of cores are plotted on one 

diagram to reconstruct the millennial-scale sea-level history of the Ho Bugt embayment. 

The local water-level curves established in Chapter 8 are compared and discussed and 

placed in the context of litho- and biostratigraphical results obtained throughout this study. 

Particular focus is given to comparing the local water-level history of the master sequence 

established in this study (core R01) with that previously established as part of the 

HOLSMEER Project (core KE2). The second part of this chapter draws together the results 

of litho- and biostratigraphical investigations, alongside the local water-level histories to 

explore the evolution of the Ho Bugt salt marshes. The value of obtaining relative sea-level 

data from this area is demonsfrated by comparing sea-level data established by this study 

with predictions based on geophysical models. These models provide some insight into the 

confrols on relative sea-level change in the Ho Bugt embayment during the mid- to late 

Holocene. In the final section of this chapter, the implications of this study for a number of 

broader themes are discussed. 

9.1 The millennial-scale relative sea-level history of the Ho Bugt embayment 

In order to docvmient the longer-term relative sea-level history of the Ho Bugt embayment, 

all available diatom-inferred SLIPs are plotted on one time-height diagram of relative sea-

level change (Figure 9.1). This diagram plots only samples for which an age has been 

established by either '"̂ C or OSL ('true' SLIPs). Table 9.1 shows the "'C and OSL samples 

that have been previously excluded from analyses, and the reason for their rejection. These 

samples are not included in this diagram. The '''C and OSL samples that are used to 

document the millennial-scale relative sea-level history of the Ho Bugt embayment are 

shown in Table 9.2. Relative sea-level change is calculated using the relationship: 

RSL = H-I, Equation 9.1 

where RSL is the relative sea level, H is the sample height relative to DNN and / is the 

diatom-inferred indicative meaning of the sample, calculated from the WA-PLS fransfer 

fiinction (Table 9.2). 
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Sample 

number 
Core 

Sample 

depth (m) 

Elevation 

(m DNN) 
Material dated Reason for rejection 

16 BRl 1.77 -0.09 Phragmites fragment Returned younger than expected age. 
33 OEBS 0.18 +1.61 Phragmites (rhizome?) Returned younger than expected age. 
13 KE2 2.35 -0.77 Detrital Phragmites Sample re-wori<ed from basal peat 

20 R01 0.68 +0.92 Phragmites Sample considered too old, 
removed from age-depth model 

21 R01 0.72 +0.88 Phragmites Sample considered too old, 
removed from age-depth model 

48 OEA 1.52 +0.08 Sand No diatom data and sample could not 
be related to a modern environment. 

Table 9.1. Details of the ''̂ C and OSL samples that have been previously excluded from 
analyses, and the reason for their rejection. These samples are also excluded from the 
millermial-scale relative sea-level history of the Ho Bugt embayment. Sample numbers 
correspond to those in Tables 5.1, 5.2 and 5.3. 

The milleimial-scale relative sea-level history of the embayment is presented in Figure 9.1. 

Basal SLIPs are differentiated from non-basal SLIPs in order to assess the degree to M^hich 

non-basal samples have been affected by sediment compaction. Basal SLIPs are usually 

considered superior compared to non-basal SLEPs, as the former are collected from the 

base of peat where it directly overlies an incompressible substrate and vertical 

displacement by compaction can therefore be ruled out (Gehrels et al., 2006a). However, in 

this study diatom-inferred indicative meaning estimates for many of the older, fresh water 

basal samples may under estimate elevation. These points are fiirther explored in Section 

9.4. 

The reconstructed milleimial-scale relative sea-level history for the Ho Bugt embayment 

(Figure 9.1) shows that in Ho Bugt, sea level has risen by about 7 m during the past 7000 

yr. In the last 2000 yr, the rise in sea level has been slower than in the preceding 5000 yr. 

At no point during the last 7000 cal. yr BP does the Ho Bugt relative sea-level history 

show evidence for above present day sea level. Non-basal SLIPs older than 4000 cal. yr BP 

appear to have been affected by core compaction as these SLIPs plot lower than the basal 

SLIPs. For the more recent part of the curve (post 4000 cal. yr BP) the non-basal SLIPs 

plot within the trend suggested by the basal SLIPs suggesting that the more recent SLIPs 

have not been affected by compaction. SLIPs from the two master sections investigated in 

this study (ICE2 and R0I) fall within this latter part of the curve. Interpretation of the 

milleimial-scale record suggests that neither of these two sequences have been particularly 

affected by sediment compaction. 
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Sampl* No. U b C o d * Cora Dopth In cor* Elevation Calibrated " C aga Indicative Indicative range RSL Indicative Indicative range RSL Sampl* No. U b C o d * (m) (m DNN) (2 Sigma) meaning (m) (m) (mDNN) meaning (m) (m) (m DNN) 
1 AAR-8891 KE2 0.12 •H.46 31-256 1.43 0.12 0,03 1,70 0.2 -0.24 
2 AAR.8892 KE2 0.50 +1.08 984-1286 1.71 0 13 -0 63 2.30 0,4 -1.22 
3 AAR-8048 KE2 056 • 1 02 1081-1350 1 76 0 13 230 0 4 -1 28 
4 AAR-8049 KE2 0.68 +0.90 1367-1536 ' J'. 1.90 0.2 -1.0 
S AAR-8050 KE2 082 +0 76 1300-1514 : 1... • i (!,7G 1 70 0 2 -0 94 
6 AAR-8051 KE2 0.96 +0 62 1548-1824 1.J7 0.12 -0.75 1 50 0.2 088 
7 AAR-80S2 KE2 1.16 +0.42 1567-1813 1 4.1 0 13 -1.01 1.50 0.2 -1.08 
8 AAR-80S3 KE2 1 38 +0.20 1562-1817 1.38 0.13 -1.18 1,70 0.2 -1.50 
9 AAR-8054 KE2 1.51 +0.07 1825-2110 1 34 0 13 27 1.50 0.2 -1.43 
10 AAR8055 KE2 1.67 -0.09 1635-1892 1 31 0 13 -i 40 1 10 0.4 -1.19 
11 AAR-8056 KE2 1.84 -0.26 1826-1994 1.30 0.13 -1.56 1.10 0.4 -1 36 
12 AAR-8057 KE2 2.01 -0.42 1740-1989 1 28 0 13 -1 70 1.10 0,4 1 52 
14 AAR-8059 KE2 2.57 -0.99 3163-3384 1 '!o 0 '2 . - 1,7 2.30 0 4 -329 
15 AAR-8060 KE2 2.75 -1.17 3453-3687 ;-• .;(]• v) .r -3 .17 2.30 0 4 -3.47 
17 AAR-806e BR12 1.53 +0.65 1714-1918 1 5 ' 0 13 -C 36 2.30 0.4 -1.65 
18 AAR-806g BR2 1.60 -0.02 2153-2719 1-16 0,12 • .lb 2.30 0 4 -2.32 
19 SUERC-9253 R01 0.51 +1.09 802-1051 1 70' 0 20- -C 61 1.70 0 2 -061 
22 SUERC-9256 R01 0.81 +0.79 1093-1287 1.39 -0,60 1 10 0,4 -0,31 
23 SUERC-9257 R01 092 +0.68 1351-1518 1 42 0 -3 -0,7.1 11 0 4 -042 
24 SUERC-9259 R01 1.68 -0.08 2753-2855 1 40 2.3 0.4 -2.38 
25 SUERC-9262 R01 1 89 -0.29 3079-3338 1 b; O . ' i OU 2,30 0 4 -259 
26 SUERC-9263 R01 2.15 -0.S5 4162-4424 : 30 0,40- -2 85 2.30 0.4 -2.85 
27 SUERC-9264 R01 2.19 -0.59 4160-419 0 40- -2,89 2.30 0.4 -2.89 
28 SUERC-9265 R01 2.22 -0.62 4253-4515 2.30- 0.40- -2.92 2.30 0.4 -292 
29 SUERC-9266 R01 0.55 +1.05 791-936 1 57 0 13 -0 52 1.70 0.2 -0.65 
30 SUERC-9267 R01 0.60 +1.00 1005-1236 1 50 0 13 -0.50 1 70 0 2 -0.70 
31 SUERC-9268 OEA 1.24 +0.38 1698-1868 -1.63 2.30 0.4 -1.92 
32 SUERC-9269 OEA 1.52 +0.10 2758-2868 -2,20 2,30 0.4 -2.20 
34 SUERC-9274 OEBS 082 +0.97 658-730 -0,4C 1,5 0.2 -0.53 
35 SUERC-9275 0EB5 1.01 +0.78 1178-1298 - ,/. u 1 1)1 1 70 0.2 -0.92 
36 SUERC-9276 KE1 4.16 -2.59 2748-2849 1 55 0.13 -4,14 1,50 0.4 -4.09 
37 SUERC-9277 KEl 5.15 -3.58 3890-4091 1 73 0.17 5,31 2,30 0.4 -588 
38 SUERC-9278 KEl 5.98 -4.41 5470-5643 1.69 0,15 - c o 2,30 0.4 -6.71 
39 SUERC-9279 KEl 654 -4.97 6208-6408 2 00 0 14 2,30 0.4 -7.27 
40 SUERC-9282 KEl 6.84 -S.27 6860-7157 1 75 0.15 7,02 2 30 0.4 -7 57 
41 SUERC-9283 KE12 2.35 -0.83 2493-2751 1 62 0.13 -2,45 230 0.4 3 13 
42 SUERC-9285 KE12 380 -228 3480-3686 2 17 0.14 4,45 230 0.4 -4 58 
43 SUERC-92e6 KE13 3.34 -1.75 2470-2736 1 ', 0,13 -3,58 2.30 0 4 -4.05 
44 SUERC-9287 KE13 5.08 -3.49 5746-5922 0 1 3 -.S 26 230 0.4 -5 79 
45 Risa 052803 R01 0.23 1.37 366-426 (OSL) 1,72 0 13 -0,35 1.72" 0.19" -0.35" 
46 Risa 052804 R01 0.33 1.27 446-526 (OSL) 1 86 0 12 0 •••a 1.86" 0,12" •0.59" 
47 Risa 052805 OEBS 033 1.46 406-466 (OSL) 1.74 0 13 -0,2S 1.74" 0 1 3 " -0 2 8 " 

Table. 9.2. The "C and OSL samples that are used to document the millennial-scale relative sea-level history of the Ho Bugt embayment. Numbers in red are WA-PLS, 
diatom-inferred valves, except for samples marked by an asterisk (*), which have been estimated from surveyed heights of present day marsh environments (Table 8.7) 
because no diatom data are available. Numbers in blue arc inferred from lithofacies and lithostratigraphical contacts based on surveyed heights of present day marsh 
environments (Table 8.7), except for the samples marked by a double asterisk (**), which are diatom inferred because the samples cannot be related to a modem 
environment (Table 8.7). The information in these columns in used in Section 9.4. Five dated samples (nos. 13, 16, 20, 21, 33 and 48) have been previously excluded (Table 9.1). 
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Figure 9.1. Millennial-scale sea-level history of the Ho Bugt embayment based on all 
available basal and non-basal SLIPs (Table 9.2). The median age of the 2a calibrated 
radiocarbon age ranges are plotted, and the full 2a range is shown by the x-axis error bars. 
Vertical (height) error bars represent the indicative meaning. 

The millermial-scale relative sea-level curve presented in Figure 9.1 has established 42 

new sea-level index points for the Ho Bugt embayment. Sixteen of these have been already 

published in Gehrels et al. (2006a) but are revised in this study on the basis of new 

quantitative relative sea-level predictions obtained by use of the WA-PLS, diatom-based 

transfer function. In the previous chapter concerns were highlighted regarding the 

statistical reliability of many of the diatom-inferred reconstructions presented in this study 

however, reasonable agreement between the Esbjerg tide gauge data and sea-level 

reconstructions from Bredmose and Rjagel for the past two centuries (Figures 8.15 and 

8.18) suggest that the SLIPs presented in this study are perhaps more reliable than the 

goodness of fit and MAT statistics (Sections 8.2 - 8.5) initially suggest. The limitations of 

the millennial-scale relative sea-level history are discussed in Section 9.4 where this curve 

is compared with one established using a qualitative interpretation of lithology, to provide 

fiirther assessment on the reliability of the diatom-inferred reconstructions. 
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9.2 Comparison of local water-level curves 

In Chapter 8, local water-level histories were presented for cores KE2 (Figures 8.13 and 

8.14) and R01 (Figures 8.16 and 8.17). These two water-level curves are compared in 

Figure 9.2. Both curves demonstrate the same general trend in water level and show around 

3.5 m of rise in the last 3500 - 4500 yr. Both curves demonstrate that the rate of rise has 

been slower in the last 1500 yr than in the preceding 3000 yr, as evidenced by the 

steepness of the two curves prior to 1500 cal. yr BP. This supports the findings of the 

millennial-scale sea-level record (Figure 9.1), which suggests a slower rate of rise during 

the last 2000 yr. 
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Figure 9.2. Comparison of the diatom-inferred local water-level curves from Kjelst Enge 
core KE2 and Rjagel core R01. For SLIPs, the median age of the 2a calibrated radiocarbon 
age range is plotted and the ftill 2a range is shown by the x-axis error bars. Ages for all 
other reconstructed points are inferred from the age-depth models (Figures 8.9 and 8.12). 
Age-errors for interpolated ages are not shown. These errors are at least as large as those 
from adjacent calibrated '''C ages. Vertical (height) error bars represent the indicative 
meaning. 

Although the two curves from cores KE2 and R01 show the same general trend in relative 

sea-level, the two records appear to be offset prior to 1500 cal. yr BP. In particular, a rapid 

period of rise is noted in the KE2 record between 2000 and 1500 cal. yr BP which is not 

identified in the R01 record. Here the KE2 record shows around 1.5 m of rise in only a 

few hundred years. In both cores, the age-depth models for this time period are considered 

less reliable. In core R01, no dates are available for the period between 1420 and 2800 cal. 
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yr BP. Here inferred ages are estimated by extrapolating the accumulation rate from the 

upper part of the profile. In core KE2, a series of radiocarbon ages in the lower clay unit 

with overlapping calibrated ages has resulted in a very high accumulation rate for this 

particular section for the core. Between 1880 and 3290 cal. yr BP no dates are available 

and again inferred ages are estimated by exfrapolating the accumulation rate from the 

upper part of the profile. For both cores, the water-level record between approximately 

1500 and 3000 cal. yr BP is therefore considered less reliable, primarily because of the 

uncertainty associated with the interpolated ages. 

For the most recent part of the record (post 1500 cal. yr BP) cores KE2 and R01 show 

better agreement. Both curves demonsfrate a small fall in relative sea-level around 900 cal. 

yr BP. A second fall is identified at 500 cal. yr BP in the R01 record but not in the KE2 

record. Here the lack of data points between approximately 1000 and 200 cal. yr BP in the 

KE2 record is probably insufficient to infer sub-millennial scale fluctuations in this 

particular section of the curve. 

In Chapter 8, local water-level histories for the past two centuries were presented for cores 

BR9 (Figure 8.15) and R01 (Figure 8.18). These two water-level curves are compared in 

Figure 9.3. Both records show reasonable agreement with the observed tide gauge data 

from Esbjerg, although both records tend to under-estimate relative sea level in the earlier 

parts of the record (before 1955). For the most recent 20 years, the R01 record shows 

better agreement with the observational data than the record from Bredmose. Although the 

two reconstructed records show the same general frend as the tide gauge data, the diatom-

inferred water-level records show a greater amount of change during the past 130 years 

than is observed in the tide-gauge data. Between AD 1855 and AD 2005 the diatom-

inferred records show approximately 0.40 m of rise. However, the Esbjerg tide-gauge 

record only shows around 0.20 m of rise during the same time period. The reasons for this 

are imclear but may be related to under-represented and missing taxa in the modem 

fraining set. 
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Figure 9.3. Comparison of the most recent part of the diatom-inferred water-level records 
from Bredmose core BR9 and Kegel core R01, alongside observational data for the past 
two centuries from the Esbjerg tide-gauge record. Age error bars are not available for the 
Bredmose ^^°Pb ages, as the laboratory did not provide this information. 

9.3. Comparisons with published data 
It is difficult to compare the sea-level and local water-level records from Ho Bugt with 

previously published sea-level curves from other locations in Dermiark and along the 

German North Coast, mainly because the resolution and age-control on these older records 

is poor (Figures 2.1 and 2.5). Although poorly constrained, sea-level records for the 

German North Sea region for example, Menke (1976) for the Eider-Miele region, Ludwig 

et al. (1979, 1981) for the southem North Sea, and Muller (1962) for the German North 

Sea region (Figure 2.5), all appear to document around 7 m of rise during the last 7000 yr, 

which is in general agreement with the Ho Bugt records. A number of these curves show 

evidence to suggest above present day sea levels around 2000 cal. yr BP. The Ho Bugt sea-

level histories do not support this. 

The sea-level records from Ho Bugt agree less well with the published sea-level curves 

from other locations in Derunark (Figure 2.1) however, this is in part due to differing 

isostatic settings (Figure 1.1). Again, it is difficult to make comparisons because the 

resolution and age-control on many of these older records is very poor. Importantly, the 
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sea-level records established by this current study disagree with previously published data 

on sea-level changes along the southem Danish North Sea Coast. Most significantly, the 

Ho Bugt relative sea-level histories do not provide evidence for a sea-level highstand at 

any time during the last 7000 yr. The 2500 - 3000 cal. yr BP highstand is an important 

feature of Momer's widely cited Kattegat sea-level curve (Figure 2.3 inset) (Momer, 

1969a; 1969b; 1976) and is used by several authors (e.g., Aagaard et al., 1995; Davis et al., 

1997; 2001) to speculate that sea level in south west Denmark was at least 1.5 m above 

present c. 2500 - 3000 cal. yr BP (Section 2.1.2). However, this study does not support 

such findings. The 'marine deposits' found at a level of+1.5 m DNN west and south of the 

Graemp cliff (Figure 2.4) by Clemmensen et al. (1996) are likely to represent a recent salt-

marsh surface, rather than an old tidal flat as suggested by previous authors, who relate this 

surface to a sea-level highstand (Gehrels et al., 2006a). This interpretation is consistent 

with the level of salt-marsh deposition in the modem environment (Table 8.7). 

Additionally evidence for refviting the 3000 cal. yr BP highstand is provided by '"̂ C ages 

obtained from basal peat sections in this study. ''̂ C ages obtained from cores at Kegel 

(R01) and Kjelst Enge (KE2) (Figure 5.1 and 5.2, respectively) clearly indicate that 

around 3000 cal. yr BP basal peat formation was taking place in the Ho Bugt embayment. 

In the Ho Bugt embayment basal peat formation occurs above + 1.9 m DNN and forms 

under fresh water conditions. The suggestion that a sea-level highstand occurred around 

this time is therefore erroneous. On the basis of the evidence present in this current study, 

the 3000 cal. yr BP shoreline suggested by Aagaard et al. (1995) and Clemmensen et al. 

(1996) for the Ho Bugt embayment (Figure 2.3) is incorrect. 

9.4 Limitations of the relative sea-level histories 

One important limitation of the water-level curves and the millennial-scale relative sea-

level history presented in this study is that the indicative meanings for many of the fresh 

water samples may be under-estimated. This issue was previously highlighted in Chapter 8. 

Here, several dominant fresh water taxa were identified as being absent or under-

represented (< 10% occurrence) in the modem fraining set. This presented problems in the 

reconstmction of samples where these taxa are dominant. This is especially tme of many of 

the fresh water basal peat samples (Section 8.5.1). The modem fraining set extends to a 

height of 2.53 m DNN and although it does include samples from the high salt marsh and 

fresh water marshes, the highest elevation is still probably lower than the height at which 
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much of the basal peat unit formed. In the modem salt-marsh environment, the fresh water 

marsh is estimated from surveyed heights to have formed around 2.30 ± 0.40 m. The 

modem fraining set does not extend to the upper limits of this range, and may therefore be 

missing a number of fresh water taxa which occupy this part of the marsh environment. 

Failure to cover the likely palaeo-range of the environmental variable of interest is one of 

the major limitations of the use of modem training sets and fransfer fiinctions (Birks, 1995, 

1998). 

In Chapter 8 it was argued that given 'better' fresh water analogues and by improving the 

representation of taxa in the modem fraining set, the overall trends demonstrated by the 

palaeomarsh-surface record would remain the same. In some cases these trends would be 

amplified i.e. high palaeomarsh-surface elevations are likely to become 'higher.' This 

again is especially tme of the fresh water basal peat samples. For samples where the 

palaeomarsh-surface elevation is under-estimated, resulting relative sea-level predictions 

are likely to be over-estimated (i.e. too 'high') (Equation 9.1). To provide some assessment 

on the degree to which relative sea-level predictions may be over-estimated by the transfer 

fiinction. Figure 9.4 compares the millennial-scale relative sea-level history of the Ho Bugt 

embayment established using two methods. The first method uses a quantitative approach, 

whereby the indicative meaning of samples is inferred by use of the WA-PLS fransfer 

fiinction (as previously presented in Figure 9.1). The second method uses a qualitative 

approach whereby the indicative meaning of samples is inferred from surveyed heights of 

modem salt-marsh environments (Table 8.7). For this method the indicative meaning is 

based on an assessment of lithofacies and lithosfratigraphical contacts and compared with 

those established for the modem environment (Tables 8.7 and 9.2). It is important to note 

that although the qualitative method employed here provides some assessment of the 

degree to which the relative sea-level predictions may be over-estimated by the transfer 

fimction, it does not necessarily provide more 'accurate' predictions. 

Figure 9.4 shows that both methods demonsfrate the same overall frend in relative sea-level 

for the Ho Bugt embayment over the last 7000 yr. However, in the majority of cases the 

SLIPs inferred by use of the WA-PLS fransfer fiinction plot slightly above those SLIPs for 

which the indicative meaning is based on surveyed heights of modem salt-marsh 

environments. This is especially tme for the older part of the record (before 2500 cal. yr 

BP). In this part of the record, the difference (height) in relative sea-level predictions 
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between the two reconstruction methods used is around 0.5 m. Here, many of the older 

fresh water basal peat samples are lacking modem fresh water analogues. For these 

samples especially, the transfer fiinction significantly under-predicts palaeomarsh-surface 

elevation, resuUing in a higher relative sea-level prediction. 
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Figure 9.4. Comparison of millennial-scale relative sea-level histories for the Ho Bugt 
embayment showing SLIPs for which the indicative meaning is diatom-inferred, using the 
WA-PLS transfer function, and SLIPs for which the indicative meaning is based solely on 
lithostratigraphical interpretation (Tables 8.7 and 9.2). The position of five SLIPs (shovm 
in black) remains the same between both methods because no diatom data are available for 
these samples (Table 9.2) and their indicative meanings are based solely on 
lithostratigraphical interpretation. 

In the latter parts of the record (post 2000 cal. yr BP), the SLIPs from both methods are in 

better agreement. This is because many of the SLIPs in this section of the record are from 

the clay units. Goodness of fit statistics for these samples suggest that the samples here are 

more similar to those sampled in the modem environment. For these samples, the majority 

of fossil taxa have analogues in the modem training set which are well represented. As a 

result the relative sea-level predictions for both methods are in good agreement. Some 

exceptions to this are noted. The younger fresh water basal peat SLIPs suffer from the 

same problems as the older fresh water basal SLIPs. For these samples the transfer 

function again under-predicts palaeomarsh-surface elevation, resulting in a slightly higher 

relative sea-level prediction. 
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In addition, the two reconstruction methods provide very different vertical (height) error 

bars. Height errors for the WA-PLS inferred SLIPs are much smaller than those inferred 

from lithostratigraphy (Table 9.2 and Figure 9.4). This is an important point to note and 

one which has lead many authors to argue that transfer fimctions are able to provide highly 

precise reconstructions of relative sea-level (e.g., Horton et al., 2006; Edwards and Horton, 

2006; Horton et al., 2003). The drive to reconstruct increasingly precise records of relative 

sea-level change has been a key theme in sea-level research in recent years, highlighted at 

intemational meetings of the IGCP 495 working group'. It has also been a major factor 

behind the growing popularity of the use of transfer functions in relative sea-level studies. 

Diatom-inferred SLIPs presented in this study reconstmct relative to level with a precision 

of between 0.12 and 0.15 m. However, the absence of several key fresh water taxa from the 

modem training set means that the diatom-inferred SLIPs from many of the fresh water 

samples may over-predict relative sea-level by up to 0.5 m (Figure 9.4). Such potential 

inaccuracies outweigh any gains in precision. This study has demonstrated the need for a 

thorough understanding of both the modem and fossil species data, and how these relate to 

one another, alongside the use of statistical techniques. 

A second important limitation of the relative sea-level changes presented in this study is 

that these reconstmctions do not take into account palaeotidal changes. An accurate 

analysis of tidal changes resulting from, for example, changes in the configuration of spits 

and tidal inlets would require an extensive modelling approach (e.g., Gehrels et al., 1995) 

and is beyond the scope of this study. Lithosfratigraphical evidence suggests that the 

cormection between the Ho Bugt embajnnent and the sea was maintained throughout the 

time period of this study. Sfratigraphical cross-sections presented (Section 6.1) suggest a 

phase of unintermpted salt-marsh deposition between at least 2000 and 1200 cal. yr BP. 

The continuous presence of marine allochthonous diatoms such as Cymatosira belgica, 

Grammatophora oceanica and Paralia sulcata throughout many of the core sections 

investigated (Figures 6.1, 6.3, 6.4 and 6.5) suggests that a cormection to the sea has been 

maintained throughout the time period of this study. 

' http://www.geographv.dur.ac.uk/research/IGCP_495/Proiect_Outline/index.html 
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9.5 The mid- to late Holocene evolution of the Ho Bugt salt marshes 

hi the next section of this chapter, the relative sea-level histories previously presented and 

discussed are integrated with the results of litho- and biostratigraphical investigations to 

explore the evolution of the Ho Bugt embayment. On the basis of the relative sea-level 

histories established (Chapters 8 and 9), stratigraphical cross-sections (Chapter 5), 

lithological and sedimentological analyses (Chapter 5) and diatom analyses (Chapter 6), 

the evolution of the Ho Bugt salt marshes can be divided into four main phases: 

Stage 1 - Basal peat formation: 7000 - 2000 cal. yr BP 

Between 7000 and 2000 cal. yr BP extensive Phragmites marshes were present in Ho Bugt, 

expanding laterally and vertically under the influence of a rising water table. In the 

majority of core sections investigated, diatom preservation in the basal peat was found to 

be extremely poor. In the upper part of the basal peat, polyhalobous diatom valves 

dominate and are indicative of marine conditions. Many of these polyhalobous taxa are 

also allochthonous, and are hypothesised to result from the gradual flooding and re

working of the upper part of the basal peat unit. Abundant plant macrofossil remains, 

found in the majority of basal peat sections, suggests a reed swamp environment 

commonly found in many Holocene stratigraphic sequences around the North Sea (e.g., 

Behre, 2004). 

Stage 2 - Salt-marsh formation: 2000 -1200 cal. yr BP 

The fransgression of the basal peat is characterised by rapid salt-marsh expansion between 

approximately 2000 and 1200 cal. yr BP. In many locations, this process eroded the upper 

part of the basal peat, demonsfrated by the sharp fransition between the basal peat and clay 

units in many cores investigated. In this period, between one and two mefres of clay were 

deposited in only a few hundred years. Sedimentological results from core R01 (Chapter 

5) indicate that this clay deposit is characterised by low LOI values and a high silt fraction 

(> 80%). The presence of many brackish and marine diatom taxa such as Achnanthes 

delicatula, Denticula subtilis, Navicula cincta, Navicula mutica and Navicula pusilla are 

indicative of a low salt-marsh environment. Towards the end of this phase, high salt-marsh 

conditions dominate with an increase in the abundance of several oligohalobous -

indifferent diatom taxa. Taxa such as Navicula variostriata, Pinnularia major and 

Pinnularia viridis are indicative of more fresh water conditions. 
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Stage 3 - Fresh water phase: 1200 - 350 caL yr BP 

With the rapid infill of accommodation space, salt-marsh formation outstripped relative 

sea-level rise to permit a retum to fresh water conditions. It is possible that the infilling of 

tidal creeks and channels led to a reduction in tidal range and contributed to this process. 

However, a definite fall in relative sea level is observed in the relative sea-level 

reconstmctions established by this study around this time (Figures 8.14 and 8.17). Along 

the westem side of the Ho Bugt embayment, the salt marshes appear to have dried out 

resulting in the widespread formation of a humified black layer. A series of dates 

consfrain the formation of this layer to between 1200 and 650 cal. yr BP. Archaeological 

evidence from the German North Sea coast suggests a period of settlement of the Wadden 

Sea salt marshes around this time (Behre, 2004). It is possible that this period of settlement 

was related to the small fall in relative sea-level c. 900 cal. yr BP identified in the R0gel 

water-level record. 

Sedimentological and geochemical investigations of the black layer show that it is 

characterised by high LOI (> 60%) and TOC (> 20%) values, high calcium content and a 

microscopic charcoal concenfration six times greater than samples from the neighbouring 

clay and peaty clay units. It seems highly likely that at some point during this fresh water 

stage the salt marshes along the westem side of the Ho Bugt embayment were subjected to 

a period of burning. The results of geochemical analyses vmdertaken in this study seem to 

support this theory. High calcium values have been observed in sediments after burning in 

contemporary studies (e.g., Neff et al., 2005). The microscopic nature of the charcoal 

fragments in this layer indicates that it is likely to have been a localised event (Patterson et 

al., 1987; Whitlock and Millspaugh, 1996). It is unclear whether this event was natural or 

possibly the result of anthropogenic land clearance. A number of studies have investigated 

changes in the cultural landscape of Denmark (e.g., Odgaard, 1994; Odgaard and 

Rasmussen, 2000; Bradshaw et al., 2005; Rasmussen, 2005), but none of these provide 

evidence to link with data produced in this study. 

Diatom preservation in the black layer is exfremely poor (Section 6.4). However, samples 

from Bredmose, Rogel and Oksby Enge indicate that the black layer is associated with a 

poorly preserved fresh water diatom assemblage. High abundances of allochthonous and 

polyhalobous taxa also suggest that the black layer may have been reflooded at some point 

in time. Some of the characteristics of the black layer (high organic content, high relative 
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abundances of Pinnularia diatoms and a sharp upper contact) are very similar to black 

layers found in the coastal stratigraphy of the German Baltic Sea where they have been 

hypothesised to relate to sea-level regressions (Lampe and Janke, 2004). The formation of 

the black layer in this study around the time of a lower relative sea level appears to support 

such a theory. In this study, much of the black colouration is largely the result of a high 

microscopic charcoal concentration. Studies in the Baltic by Lampe and Janke (2004) and 

Lampe {unpublished data), did not investigate microscopic charcoal in these layers. In the 

T0nder salt marsh, along the North Sea coast of southernmost Denmark, a distinct black 

horizon is associated with the building of embankments in 394 cal. yr BP (Jacobsen, 1964). 

However, there is no evidence to suggest that the marshes in Ho Bugt were ever diked. 

Toward the northem end of Ho Bugt at Kjelst Enge, the black layer shows a transition into 

an organic Phragmites peat unit. Here it is hypothesised that the marshes did not dry out 

completely due to freshwater supply from the surrounding glacial upland. Freshwater 

drainage is observed in the modem salt marsh at Kjelst Enge today where sedges and 

oligohalobous-indifferent diatom taxa are found in a low salt marsh habitat near the mouth 

of drainage channels (Figure 4.5). 

The final part of this fresh water phase coincides with the deposition of a widespread sand 

unit. OSL ages from this unit indicate that it was formed between 450 and 400 cal yr BP, 

around the time of the Little Ice Age (Lamb, 1982). The geometry of the sand sheet (Figure 

5.3) and grain size analyses (Section 5.2.2) strongly suggest an aeolian origin. Within the 

sand unit, grain size is fairly uniform and the sand is well sorted, suggesting rapid aeolian 

deposition. Although no diatom data are available from the sand layer itself, 

biosfratigraphical analyses from cores at R0gel and Oksby Enge show that samples close to 

this sand unit are associated with a predominately fresh water diatom flora, dominated by 

taxa such as Fragilaria pinnata and Pinnularia viridis. The local water-level curve from 

R0gel in particular (Figure 8.17) suggests a lower water level around this time. 

Links between coastal dune movement and causal factors, such as relative sea-level 

change, are poorly understood. Sea-level change is acknowledged as a factor in influencing 

dune movement, but opinions are divided as to the direction and magnitude of the 

necessary sea-level change (Pye, 1984; Christiansen and Bowman, 1986). Pye (1984) 

suggested two main models for coastal dune development (Figure 9.5), whereby dune 

movement occurs when sea level is either (a) rising or 'high' or (b) falling or 'low'. More 
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recently, several authors have speculated about the control of low relative sea-level 

positions on coastal sand movements (e.g., Christiansen et al., 1990; Orford et al., 2000). 

The bio- and lithostratigraphical evidence presented in this study strongly suggest that 

aeolian sand invasion of the Ho Bugt marshes took place during a time of low relative sea 

level. This study is therefore the first to confirm a direct link between low relative sea level 

and aeolian sand movement by documenting evidence for both processes in the same 

stratigraphic section. 

a) Model 1. Rising and high relative sea level. 

Sea level 2 

Sea level 1 

b) Model 2. Falling and low relative sea level. 

Figure 9.5. Two models of coastal dune formation related to sea-level change a) Model 1 -
rising and high relative sea level and b) Model 2 - falling and low relative sea level. 
Adapted fi-om Pye (1984), Christiansen and Bovmian (1986) and Christiansen et al. (1990). 

The suggestion that sand invasion of the Ho Bugt salt marshes took place during the early 

part of the Little Ice Age is consistent with many historical records which document the 

problems caused by drifting sands in westem Denmark during the 15* and 16"̂  centuries 

(Lamb, 1991). Such records document the burial of houses, farms and even whole villages 

by sand (Skarregaard, 1989). In West Jutland, approximately 55,000 hectares of land had 

been destroyed by sand drifting by the end of the 18* century (Jepsen, 1996). Other studies 

also document increased aeolian sand movement and dune building during the Little Ice 

Age. For example, Dawson et al. (2004) and Gilbertson et al. (1999) from the Outer 

Hebrides, NW Scotland and Clarke et al. (2002) along the Aquitaine coast, SW France. 

240 



Chapter 9 Integration and discussion 

Stage 4 - Renewed salt-marsh deposition: 350 caL yr BP to present 

Some time after the deposition of the sand unit, the Ho Bugt embayment retumed to a high 

salt-marsh environment. Brackish diatom taxa such Navicula phyllepta, Navicula pygmaea, 

Navicula cincta and Nitzschia debilis are dominant in the most recent sediments 

investigated. These high salt marshes are still in existence in the embayment at the present 

day. 

9.6 The glacial isostatic adjustment of Ho Bugt 

The study site of Ho Bugt was originally selected because of its proximity to the zone of 

relative isostatic stability (Figure 1.1). However, relative sea-level records obtained from 

this study for the mid- to late Holocene, suggest that isostatic processes may have played a 

more important role in the evolution of the embayment than originally thought. A relative 

sea-level history which shows around 7 m of rise is 7000 yr cannot be explained entirely 

by eustatic contribution. To provide insights into the role of glacial isostatic adjustment 

(GIA) on the Ho Bugt embayment, the millennial-scale relative sea-level history 

established in this study is compared with a series of relative sea-level curves predicted by 

models which stimulate the GIA of the Ho Bugt embayment (Figure 9.6). These models 

include the ice-sheet history of Tushingham and Peltier (1991), except for the British Ice 

Sheet, which is based on Shennan et al. (2002). Full details on these models can be found 

in Milne et al. (2006) and references therein. These models are employed in this study on 

an exploratory basis and cover the time period from approximately 4500 cal. yr BP to the 

present. Relative sea-level predictions from these models cover the range from -4 to +1 m. 

Four SLIPs fall outside of the time frame of the GIA model predictions (nos. 38, 39, 40 

and 44 Table 9.2), and three fall outside of the relative sea-level range covered by these 

models (nos. 36, 37 and 42, Table 9.2). These SLIPs are therefore not discussed in the 

context of these models. Future work (Section 10.9) aims to extend these GIA model 

predictions for Ho Bugt to incorporate these additional SLIPs. 
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Age in cal. yr BP 

Figure 9.6. SLIPs from Ho Bugt, where the indicative meaning is inferred from the WA-
PLS transfer fiinction, compared with relative sea-level curves predicted by the glacial 
isostatic adjustment (GIA) model of Milne et al. (2006). The curves are labelled by the 
various rheological parameters as x-y-z, where x is the lithospheric thickness (71, 96 and 
120 km), y is the upper mantle viscosity (0.1, 0.5 and 1 x 10 '̂ Pa s) and z is the lower 
mantle viscosity (1, 10 and 50 x 10 '̂ Pa s). 

Figure 9.6 shows that the WA-PLS diatom-inferred SLIPs established in this study are in 

best agreement with two of the GIA predicted curves (shown by the light blue and orange 

lines). The first of these models (shown by the light blue line and hereafter referred to as 

GIA Model 1) contains a lithosphere thickness of 120 km, an upper mantle viscosity of 0.5 

X 10 '̂ Pa s and a lower mantle viscosity of 10̂ ^ Pa s. The second model (shown by the 

orange line and hereafter referred to as GIA Model 2) contains a lithosphere thickness of 

96 km, an upper mantle viscosity of 0.5 x 10 '̂ Pa s and a lower mantle viscosity of 10̂ ^ Pa 

s. Importantly, in GIA Model 1 the increased lithosphere thickness allows for ~ 0.9 m of 

melt water contribution in the last 4000 yr. In GIA Model 2 the eustatic ftmction does not 

include any water addition to the world's oceans after 5000 cal. yr BP. 

In the early part of the record (before 2500 cal. yr BP), SLIPs show best agreement with 

the predictions of GIA Model 1. In the most recent 1000 yrs, SLIPs show better agreement 

with GIA Model 2. These findings link in with previous arguments in this chapter which 

highlighted the fact that the diatom-inferred palaeomarsh-surface elevations for many of 

the older, fresh water samples may be under-estimated, resulting in relative sea-level 

predictions that are over-estimated. Given better fresh water analogues it is likely that 

relative sea-level predictions for these samples would be lowered, resulting in a better fit 
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between these samples and GIA Model 2. Three basal SLIPs which plot at c. -3 m at 

approximately 4450 cal. yr BP are not in good agreement with either of the two GIA 

models discussed. The reasons for this are unclear but will be fiirther explored with fiiture 

GIA modelling (Section 10.9). 

Figure 9.7 plots the same SLIPs as Figure ,9.6 however, in this diagram the indicative 

meaning for the samples are inferred from lithosfratigraphy and based on surveyed heights 

of modem salt-marsh environments (Table 8.7) and are not inferred using the WA-PLS 

fransfer function. Figure 9.7 shows that the SLIPs here are in best agreement with GIA 

Model 2 (lithosphere thickness of 96 km, upper mantle viscosity 0.5 x 10 '̂ Pa s and lower 

mantle viscosity 10 x 10 '̂ Pa s). This confirms the arguments above in Section 9.4, and 

suggests that with better fresh water analogues, relative sea-level predictions for older, 

fresh water basal peat samples would be lower, resulting in best agreement with GIA 

Model 2. The parameters of this model are consistent with the models employed by 

Lambeck et al., (1998b). Using sea- and lake-level records from Denmark, Lambeck et al. 

(1998b) consfrain the upper mantle rheology of the region and found the records to be 

consistent with a lithosphere thickness of 80-100 km and an upper-mantle viscosity of 0.4 

-0.5 X 10 '̂ Pa s. GIA Model 2 in this study has very similar parameters to the model 

employed by Lambeck et al., (1998b). Post-glacial sea-level data from around the British 

Isles (e.g., Shennan et al., 2002) also show best fit with GIA Model 2. For these data GIA 

Model 1 is considered implausible because it shows considerable misfit with the British 

Isles sea-level data (Shennan et al., 2002). 
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Age in cal. yr BP 

Figure 9.7. SLIPs from Ho Bugt, where the indicative meaning is inferred from surveyed 
heights of modem salt-marsh environments, compared with relative sea-level curves 
predicted by the glacial isostatic adjustment (GIA) model of Milne et al. (2006). The 
curves are labelled by the various rheological parameters as x-y-z, where x is the 
lithospheric thickness (71, 96 and 120 km),>' is the upper mantle viscosity (0.1, 0.5 and 1 x 
10 '̂ Pa s) and z is the lower mantle viscosity (1,10 and 50 x 10 '̂ Pa s). 

9.7 Controls on relative sea-level change in the Ho Bugt embayment 

Having established a reasonable fit between the Ho Bugt sea-level data and GIA Model 2, 

based on the arguments above, this model gives some insight into the dominant process 

controlling relative sea-level change in the Ho Bugt embayment. The eustatic function of 

GIA Model 2 does not include any water addition to the world's oceans after 5000 cal. yr 

BP. This is significant and indicates that the dominant process controlling relative sea-level 

change in the Ho Bugt embayment during the last 5000 yr is glacio-isostatic rebound, 

following decay of the Fennoscandian Ice Sheet. In Figure 9.8, GIA Model 2 is used to 

calculate rates of relative sea-level change for all of Denmark at 5000 cal yr BP and for the 

present day. For both maps the eustatic fiinction is zero and the relative sea-level 

movements are produced largely by glacial isostatic movements. At 5000 cal. yr BP, the 

maps demonstrate that all of Denmark was located in a zone of isostatic subsidence. The 

modelled rate of relative sea-level rise is 2 mm/yr for Ho Bugt. For the present day, this 

figure is modelled as 0.5 mm/yr. 
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Figure 9.8. Rates of relative sea-level rise in min/yr predicted by GIA model 2 (Milne et 
al., 2006) for the present day and for 5000 cal yr BP. The location of Ho Bugt is indicated 
by the red dot. Published in Gehrels et al. (2006a). 

These maps suggest that the rate of isostatic adjustment has not remained constant through 

time and that the zone of relative isostatic stability has migrated southwards. These 

findings have important implications for the concept of 'regional eustasy'. Momer's 

(1969a; 1969b; 1976) widely cited Kattegat sea-level curve has been argued to provide a 

record of eustatic sea-level change for the entire North West European region. This curve 

has been used as a baseline to evaluate cmstal movements, tidal variations and local 

sediment consolidation around the North Sea region (Shennan, 1987). In particular it has 

been used by Sherman (1989) and Shennan and Horton (2002) to estimate vertical cmstal 

motion around the UK coastline. Maps showing this vertical cmstal motion have 

subsequently been used by govenmient agencies to estimate fiiture flood risk. Exploratory 

GIA modelling employed in this study and published in Gehrels et al. (2006a) suggests that 

there is no single locality in which a 'regional' eustatic sea-level curve can be established. 
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9.8 Implications for estimates of global eustatic sea-level change 

The relative sea-level history of Ho Bugt, and conclusions drawn from exploratory GIA 

modelling, have wider implications for estimates of global eustatic sea-level change in the 

mid- to late Holocene. The eustatic contribution to global sea-level change during this time 

has been the subject of great debate in the literature. For example, Peltier (2002) maintains 

that there has not been any ice melt after 4000 cal. yr BP. Pirazzoli (2005) presents sea-

level data from a number of Mediterranean sites (France, Sardinia, Tunisia, Greece, 

Turkey, Syria and Lebanon) which are consistent with nearly stable global eustasy since 

6000 BP. Sea-level data from shorelines in Tunisia, in particular, do not support any water 

addition to the world's oceans after 6000 cal. yr BP (Morhange and Pirazzoli, 2005). 

However, from analysis of sea-level data along the French Atlantic and Channel coasts, 

Lambeck (1997) suggests that there may have been a small (~ 3 m) increase in eustatic sea-

level during the last 6000 years. Following evaluation of a variety of data along the Italian 

coastline, including bivalves, gastropods, speleotherms and submerged archaeological 

remains, Lambeck et al. (2004) argue that significant melting continued until at least 7000 

yr BP and that ocean volumes continued to increase until at least 3000 yr BP. Along the 

French Mediterranean coast, Lambeck and Bard (2000) use evidence in the form of shells, 

vermetids and estuarine, fluvial and beach deposits, to argue for less than 0.5 m of ice 

equivalent sea-level rise during the last 4000 '"̂ C years. Fleming et al. (1998) review 

observational evidence in the form of corals and shells from Barbados, Papua New Guinea, 

Tahiti, Ausfralia, Jamaica and Malaysia, to suggest that 3-5 m of water has been added to 

the world's oceans in the last 7000 '"̂ C yr. Based on a comprehensive review of all 

available evidence. The Intergovernmental Panel for Climate Change (IPCC) estimates that 

long-term melting of land-based ice is responsible for 0.25 ± 0.25 mm/yr of global sea-

level rise (Church et al., 2001), equivalent to 1.0 ± 1.0 m in tiie last 4000 yr. 

Exploratory GIA modelling employed here indicates that the Ho Bugt sea-level data are 

best matched by a GIA model that also includes a zero eustatic ftinction in the late 

Holocene. However, this conclusion must be viewed as tentative, given the uncertainties 

associated with some of the SLIPs described above. Extension of the GIA modelling 

predictions to c. 7000 cal. yr BP will enable the additional SLIPs that are outside the time 

frame of the models presented here, to be included. This will provide fiirther assessment 

on the confrols on relative sea-level change in the Ho Bugt embayment. Additional 
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modelling will also provide insights into the possible complications arising from effects of 

glacial forebulge movement (Section 10.9). 

In the next part of this chapter, the implications of the results of this study for a number of 

broader themes are discussed. These include the use of diatoms in the coastal environment, 

the implications from this study for regional diatom fraining sets and issues surrounding 

the development and application of diatom-based fransfer fiinctions. A number of these 

issues have been acknowledged in previous sections of this thesis but are ftirther discussed 

here as they have important implications for the conclusions of this study. 

9.9 The use of diatoms in the coastal environment 

This study has relied heavily on the interpretation of diatom data. The use of diatoms in the 

coastal environment does however, present several problems. In such environments the 

fransportation of diatom valves is an important issue (Sherrod, 1999; Vos and De Wolf, 

1993; Brockmann, 1940) and the presence of, and issues associated with, a high abundance 

of allochthonous values has been acknowledged throughout this study. Attempts were 

made to develop a diatom-based fransfer function which excluded allochthonous taxa 

(Section 7.6.3). However, the exclusion of such taxa increased the number of fossil taxa 

without a modem analogue (Sections 8.2.1, 8.3.1 and 8.4.1) and the development of such a 

transfer ftinction was not fiirther pursued. Consideration was also given to the removal of 

allochthonous taxa from the fossil samples. However, in many cases this lead to counts in 

these samples falling below 200 valves and making them statistically less reliable. 

Zong (1997) argues that since a mixture of both allochthonous and autochthonous valves 

occurs in sediments that accumulated in the palaeoenvironment, their presence in modem 

samples can be considered less significant. Many similar coastal studies therefore give 

little consideration to the presence and abundance of allochthonous diatom valves. 

However, results obtained in this study suggest that the presence of allochthonous valves in 

both modem and fossil samples can have significant implications. This is illusfrated in the 

record from core R01. Here a number of polyhalobous and allochthonous taxa have 

analogues in the modem environment. However, many of these taxa are found in several 

samples, across a range of elevations. This has resulted in fossil taxa with so-called 

'multiple analogues' (Birks, 1998). With hindsight, one way forward would have been to 

separate out the allochthonous and autochthonous valves during counting in this study 
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(e.g., Sawai, 2001; Sawai et al., 2004) to enable statistically reliable counts to be obtained, 

whilst excluding allochthonous valves. However, it was not envisaged that allochthonous 

valves would present such a problem in this study. 

This study has highlighted both advantages and disadvantages in using diatoms as 

quantitative sea-level indicators. Diatoms span the entire range of salinities, from highly 

saline marine conditions (> 30 g/l'') to entirely fresh water environments (Kolbe, 1927; 

Hustedt, 1957; Simonsen, 1962; Palmer and Abbott, 1986; Juggins, 1992). They are 

therefore found in all types of salt marsh environment ranging from tidal mudflats to high 

and fresh water marshes (Section 4.3). This makes them particularly suitable for use as 

quantitative sea-level indicators. Provided suitable modem analogues are available, the 

entire range of past environments, from tidal flats to high and fresh water marshes, can be 

reconstmcted. In this sense, diatoms outperform other microfossils used as sea-level 

indicators such as foraminifera and testate amoebae. Foraminifera are rarely found above 

MHWSTs and testate amoebae are found only around MHWST (Gehrels et al , 2001). The 

distribution of such microfossils within the tidal frame restricts the range of past 

environments that can be reconstmcted using fransfer fimctions based only on these 

microfossils. For example, i f a former fresh water environment existed with a particular 

core section, palaeomarsh-surface elevations and relative sea level in. this part of the core 

cannot usually be reconstmcted by use of a foraminifera-based fransfer fimction. 

Foraminifera do not occur in the modem fresh water marshes and are unlikely to be found 

in such fossil deposits. This is demonsfrated by the absence of foraminifera in many core 

sections investigated as part of previous work in the Ho Bugt embayment (Gehrels et al., 

2006a). Foraminifera are not well preserved in these core sections because the former 

marsh environment was too 'fresh.' 

9.10 Multiproxy training sets 

This study has highlighted a number of issues surroimding the use of diatoms in the coastal 

environment. However, the section above has illusfrated the advantages of using diatoms 

compared to a number of other microfossils commonly used as sea-level indicators. A 

potential resolution of these conflicting arguments is through the use of multiproxy fraining 

sets. The most reliable, precise and accurate sea-level reconstmctions are likely to be 

obtained through the integration of several of these proxies. Although the use of 

multiproxy training sets in the coastal environment has previously been investigated (e.g., 
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Gehrels et al., 2001), such traimng sets have never been applied to interpret changes in 

fossil cores, hi this study, the initial transfer fiinction developed performs very well 

(Chapter 7) and out performs many similar training sets published in the literature (Table 

7.4). Only when applied to the fossil cores (Sections 8.2 - 8.5) did problems with missing 

and under-represented taxa become apparent. In order to assess the true predictive abilities 

of such multiproxy training sets it is essential that they are also applied to interpret changes 

in fossil cores. It is highly likely that in these situations they will outperform training sets 

based on single proxies. 

9,11 Implications of this study for regional diatom training sets 

In Chapter 4 a number of issues were highlighted which have implications for the 

development of regional diatom training sets for reconstructing changes in relative sea 

level. Unconstrained cluster analysis on the entire data set (Figures 4.18 and 4.19) 

demonstrated that samples from the same elevation range are associated with different 

dominant diatom taxa. These observations have interesting implications with regard to the 

spatial variability of diatom assemblages within salt marshes, and the subsequent 

development of modem training sets, and in particular regional fraining sets. In this study, 

the decision was made to exclude samples from one of these fransects (Kjelst Enge) from 

the modem fraining set (Section 7.2). Unconstrained cluster analysis and DCA of the entire 

diatom data set were important tools in making this decision. However, in many sea-level 

based studies which develop fraining sets for reconstmcting relative sea level, such a 

thorough exploration of the modem species data is not considered. Several studies examine 

these issues on an individual transect basis, using unconsfrained cluster analysis and 

sometimes DCA (e.g., Horton et al., 2006; Horton and Edwards, 2005), but very rarely are 

such thorough investigations of the modem species data conducted. In developing regional 

diatom fraining sets for reconstmcting changes in relative sea-level, data from individual 

transects are often 'lumped' together with little or no ftirther analysis (e.g., Zong and 

Horton, 1999; Horton et al., 2006). Often with such data sets, specific focus is given to 

examining the species-envfronment relationships for the data set as a whole, but spatial 

variation within the diatom data is not fiirther explored. In this study diatom data from 

within the same embayment were shown to display very different relationships with 

elevation. Within regional diatom fraining sets it is highly likely that these relationships are 

even more complex. This study has therefore demonsfrated the need for a thorough 
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exploration of both species and environmental at different spatial scales before developing 

transfer fiinctions. 

9.12 Development and application of a diatom-based transfer function for elevation 

This investigation has relied heavily on the assumption that the transfer function developed 

and applied in this study provides a suitable tool for assessing changes in palaeomarsh-

surface elevation. In this study problems with under-represented taxa, a lack of modem 

analogues and multiple analogues, highlighted in Chapter 8, have all affected the reliability 

of the results obtained. Although the use of a unimodal transfer function model such as 

WA-PLS was deemed most suitable in this study (Chapter 7), such a model is also likely to 

over generalise the ecological responses of many of the individual diatom taxa. In reality, 

speeies response curves are more complex (e.g., Austin, 1992; Austin et al., 1994; Austin 

and Gajwood, 1994). Many of the issues surrounding transfer fiinction development and 

application encountered in this study, such as under-representation of taxa, fossil taxa with 

no modem analogue and fossil taxa with multiple analogues, are common problems and 

are widely acknowledged in the literature (Birks, 1995; 1998). 

One issue in particular, which is likely to have affected the reliability of the reconstmctions 

in this study, is the fact that elevation is, in reality, a 'compound' or 'composite' variable 

(Birks, 1998). Across a salt marsh, it is not elevation per se which controls diatom 

distributions. Tidal inundation and associated hydrology and salinity are the main 

ecological controls on diatom distributions however, the level of tidal inundation is itself 

controlled by elevation (Gehrels, 2000). Such arguments are commonly used to justify the 

use of elevation as an environmental variable in the majority of quantitative sea-level 

reconstmctions, and is the case in this study (e.g. Gehrels, 2000; Hamilton and Shennan, 

2005a, 2005b; Horton and Edwards, 2005; Boomer and Horton, 2006 and Edwards and 

Horton, 2000, 2006). This concept however, violates one of the major assumptions of 

quantitative reconstmctions (Juggins,/jer^. comm). In using transfer functions in particular, 

it is assumed that the environmental variable to be reconstmcted is of 'ecological' 

importance (Birks, 1995; Korsman and Birks, 1996). Elevation is not a 'tme' ecological 

variable (Juggins,/>er5. comm). It is highly likely that the poor reconstmctions obtained in 

this study reflect the fact that the diatoms are responding to some ecological factor other 

than elevation, but which itself is influenced by elevation. 
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Another issue that may fiirther have affected the reliability of the transfer fiinction applied 

here is the issue of spatial autocorrelation. Spatial autocorrelation describes the tendency of 

sites located close to one another to resemble each other ecologically (Legendre and Fortin, 

1989; Legendre, 1993; Telford and Birks, 2005). Recent studies have highUghted the likely 

over-optimistic estimates of RMSEP and inappropriate model choice when spatial 

autocorrelation is present in the data set (Telford and Birks, 2005). Chapter 7 explored the 

development of a series of transfer fiinctions for the Ho Bugt training set. One of the best 

performing transfer fiinctions was the MAT (Table 7.2). However, the MAT transfer 

fiinction was not fiirther developed in this study primarily because of concerns regarding 

the issue of spatial autocorrelation. Telford and Birks (2005) and Telford (2006) argue that 

MAT is particularly sensitive to spatial autocorrelation and that models based on unimodal 

methods, such as the ML and WA-PLS transfer fiinctions developed in this study (Chapter 

7), are more robust. 

Spatial autocorrelation is likely to be a particular problem for sea-level studies, where 

sampling often takes place along line transects. In this study, as in other similar 

investigations (e.g., Zong and Horton, 1998; 1999; Gehrels and Newman, 2004; Horton et 

al., 2006) samples were taken along a series of individual line transects (Chapter 3). It is 

highly likely that a considerable degree of spatial autocorrelation is therefore present in the 

data set. This is an issue which has not thus far been considered by the sea-level research 

community. Future use of random sampling methods and statistical techniques to 'partial 

out' the degree of spatial autocorrelation provide usefiil avenues for fiiture research. 

9.13 Chapter summary 

This chapter has presented a millennial-scale relative sea-level reconstruction for the Ho 

Bugt embayment using all available SLIPs. This curve documents around 7 m of rise since 

7000 cal. yr BP. The local water-level curves established in Chapter 8 were compared and 

discussed. From these comparisons several key points can be noted: 

• Water-level reconstructions fi-om cores R01 and KE2 show the same general trend 

in relative sea level but the curves are offset prior to 1500 cal. yr BP. 

• A rapid period of rise is noted in the KE2 record between 2000 and 1500 cal. yr BP 

which is not identified in the R01 record. Here the KE2 record demonstrates 

around 1.5 m of rise in only a few himdred years. 
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• In both cores, the age-depth models for this time period are considered less reliable. 

The water-level records for these two cores between approximately 1500 and 3000 

cal. yr BP must therefore be interpreted with caution, primarily because of the 

uncertainty associated with the interpolated ages. 

The millennial-scale relative sea-level record for the Ho Bugt embayment is in broad 

agreement with the rise established by published sea-level curves for the German North 

Sea coast. However, the sea-level records for Ho Bugt do not support the concept of a sea-

level highstand (or series of highstands) at any time during the last 7000 yr. The sea-level 

records established in this study agree less well with previously published sea-level records 

from other locations in Denmark, although this is in part due to differing isostatic settings. 

Importantly, the Ho Bugt sea-level curves disagree with previously published data on sea-

level changes along the southem Danish North Sea coast, many of which provide evidence 

for a sea-level highstand around 3000 cal. yr BP. 

A number of limitations to the relative sea-level records established here have been 

discussed. Two major issues have arisen which affect the reliability of the sea-level records 

established: 

1. The WA-PLS fransfer ftinction under-predicts palaeomarsh-surface elevation, and 

therefore over-predicts relative sea-level and local water level for many samples. This 

is especially tme of the fresh water basal peat samples. 

2. Uncertainly in the age-depth models established for cores KE2 and R01 (Figures 8.9 

and 8.12, respectively), means that the local water-level histories between 

approximately 1500 and 3000 cal. yr BP in both these cores are considered less 

reliable. 

Integration of the local water-level curves with the results of litho- and biosfratigraphical 

investigations has enabled the evolution of the Ho Bugt salt marshes to be summarised in 

four stages: 

• Stage 1 - Basal peat formation from 7000 - 2000 cal. yr BP 

• Stage 2 - Sah-marsh formation from 2000 - 1200 cal. yr BP 

• Stage 3 - Fresh water phase from 1200 - 350 cal. yr BP 

• Stage 4 - Renewed salt-marsh deposition from 350 cal. yr BP to present 
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Comparison of the relative sea-level histories established by this study with relative sea-

level predictions from a series of GIA models has provided insights into the role of 

isostatic adjustment on the Ho Bugt embayment. The Ho Bugt relative sea-level data are 

best matched by a GIA model that does not include any eustatic fiinction for the last 5000 

cal. yr BP. GIA modelling results also suggest that the role of isostatic processes has not 

remained constant through time and that the zone of relative isostatic subsidence has 

migrated southwards. Such findings have implications for the concept of 'regional 

eustasy.' 

In the final part of this chapter problems in the use of diatoms in coastal environments 

were acknowledged. The problems associated with a large abundance of allochthonous 

taxa have been acknowledged throughout this study. The advantages and disadvantages of 

using diatoms as quantitative sea-level indicators were highlighted with the suggestion that 

a potential way to resolve many of these issues is through the increased use of multiproxy 

training sets. The next chapter presents the conclusions from this study and discusses 

avenues for possible fiiture research. 
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Chapter 10 

Conclusions 
This chapter provides a summary of the results obtained throughout this investigation. The 

first part of this chapter restates the original aims of tins thesis. The second part presents 

the main conclusions of this study, and relates these to the original aims of the thesis. In 

the final section of this chapter, recommendations are made for possible avenues for fiature 

research. 

10.1 Thesis aims 

This thesis aimed to reconstruct the relative sea-level history of the Ho Bugt embayment 

by: 

• Documenting the modem diatom assemblages and their controlling environmental 

variables across the salt marshes in the Ho Bugt embayment 

• Recording the detailed stratigraphy of the Ho Bugt embayment to gain an 

understanding of the major lithostratigraphical and environmental changes 

occurring 

• Establishing the dominant control on diatom assemblages in this embayment 

through the use of several ordination techniques 

• Developing a diatom-based transfer fimction for reconstmcting changes in 

palaeomarsh-surface elevation 

• Applying this transfer function to a series of fossil cores to interpret changes in 

palaeomarsh-surface history and assessing the reliability of these reconstmctions 

• Combining these palaeomarsh-surface records with age depth-models to produce a 

series of local water-level curves and comparing these curves with the local tide-

gauge record 

• Documenting the millennial-scale relative sea-level history of the Ho Bugt 

embayment through reconstmction of samples from a number of different cores 

• Comparing this fransfer-function predicted relative sea-level curve with those 

established using a qualitative interpretation of lithology 

• Comparing the sea-level curves established in this study with predictions based on 

a series of glacial isostatic adjustment models, to explore the confrols on relative 

sea-level change in the Ho Bugt embayment. 
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10.2 Modern diatom assemblages 

• Modem diatom assemblages and associated environmental variables were 

investigated from six transects in the Ho Bugt embayment. These fransects spanned 

a range of salt-marsh environments from the fresh water marsh down to the tidal 

flat. At some individual fransect locations diatom assemblages displayed a strong 

vertical zonation with respect to the tidal frame. At other locations, and for the data 

set as a whole, they did not. 

• Multivariate statistical analysis demonsfrated that the diatom assemblages in the Ho 

Bugt embayment are sfrongly confrolled by elevation. 

10.3 Mid to late Holocene salt-marsh stratigraphy 

The mid to late Holocene salt-marsh sfratigraphy of the Ho Bugt embayment developed • 

over the last 7000 cal. yr BP and shows a sequence of (from bottom to top): 

• fresh water basal peat 

• low salt-marsh clay 

• fresh water clayey peat 

• a distinct black organic layer 

• an aeolian sand unit 

• a high salt marsh clay 

10.4 Development and application of diatom-based transfer functions 

• A series of diatom-based transfer fiinctions were developed based on the sfrong 

relationship established between diatom assemblages and elevation. WA, WA-PLS, 

ML and MAT fransfer fimction methods were all explored in this study. The ML 

and WA-PLS fransfer fimctions were found to perform the best when RMSEPjack 

and max biaSjack results were compared. The WA-PLS (2 component) fransfer 

fimction (RMSEPjack = 0.122, r^ = 0.934 and max biasjack = 0.109) was found to 

perform best at the exfremes of the environmental gradient and was subsequently 

applied to a series of cores (KE2, R01 and BR) to interpret changes in 

palaeomarsh-surface history. 

• The reliability of these diatom-inferred predictions was assessed via the use of 

goodness of fit and analogue statistics. In all reconstmctions, these statistics 

indicated that the reconstmctions should be interpreted with caution. The majority 

of samples showed a 'poor fit' with the modem data and had 'no good' modem 
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analogue. Lack of modem analogues, under representation of taxa and multiple 

analogues, all contributed to reducing the reliability of the reconstmcted 

palaeomarsh-surface elevations. However, for many of the core sections 

investigated, under representation of taxa, rather than a complete lack of analogues, 

was the biggest problem. 

• The absence and under-representation of a few fresh water taxa has resulted in the 

transfer fianction under-predicting palaeomarsh-surface elevations for many of the 

fresh water basal peat samples. For these samples relative sea-level predictions are 

over-predicted. 

10.5 Local water-level changes 

• The diatom-inferred palaeomarsh-surface records were subsequently combined 

with age-depth models for cores KE2, R01 and BR9 to reconstmct local-water 

level changes. 

• The local water-level curves for cores KE2 and R01 show around 3.5 m of rise in 

approximatley 4500 years. 

• The two curves show the same general trend in local water-level but are offset prior 

to 1500 cal. yr BP. 

• Given the lack of dates and the age reversals in the lower part of the clay unit in 

both cores KE2 (Figure 8.9) and R01 (Figure 8.12), inferred ages in these units are 

much less certain. For both cores, the water-level record between approximately 

1500 and 3000 cal. yr BP is considered less reliable. 

10.6 The millenial-scale relative sea-level history of the Ho Bugt embayment 

• The millennial-scale relative sea-level history of the Ho Bugt embayment 

documents around 7 m of rise in 7000 cal. yr BP 

• The Ho Bugt relative sea-level histories do not provide evidence for a sea-level 

highstand at any time during the last 7000 cal. yr BP. This refiites older published 

data on sea-level changes along the southem Danish North Sea coast 

• Comparison of the fransfer fiinction predicted millenial-scale relative sea-level 

curve with one produced using a lithology-based approach, confirmed the fact that 

palaeomarsh-surface elevations for many of the fresh water basal peat samples are 

under-estimated, and that relative sea-level predictions for these smaples are over

estimated. 
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10.7 The mid to late Holocene evolution of the Ho Bugt salt marshes 

• hitegration of the relative sea-level histories with the results of litho- and 

biostratigraphical analyses enabled the evolution of the Ho Bugt salt marshes to be 

summarised in four key stages: 

- Basal peat formation from 7000 - 2000 cal. yr BP 

- Salt-marsh formation from 2000 - 1200 cal. yr BP 

- A fresh water phase from 1200 - 350 cal. yr BP with formation of an 

organic black layer (between approximately 1200 and 650 cal. yr BP) and 

deposition of an aeolian sand unit (between 450 and 400 cal. yr BP) 

- Renewed salt-marsh deposition from 350 cal. yr BP to present. 

10.8 Controls on relative sea-level change in the Ho Bugt embayment 

• Exploratory GIA modelling suggests that the dominant control on relative sea-level 

change in the Ho Bugt embayment during the last 5000 cal. yr BP is glacial 

isostatic adjustment, following decay of the Fennoscandian Ice Sheet 

• Isostatic adjustment rates have not remained consistent through time and the zone 

of relative isostatic stability has migrated southwards 

• These fmdings have important implications for the concept of 'regional eustasy' 

• The Ho Bugt relative sea-level data are best matched by a model that includes a 

zero eustatic fianction for the last 5000 cal. yr BP. 

10.9 Future work 

• The absence and under-representation of several key fresh water taxa has been a 

major limiting factor in the use of diatom-based fransfer fimctions in this study. 

Extension of the modem fraining set to include samples from higher elevations 

(above 2.3 m DNN) is one way of providing 'better' fresh water analogues and may 

fiarther refine the diatom-inferred relative sea-level predictions. However, such 

environments are no longer present in the Ho Bugt embajanent 

• It has been demonsfrated that there are both advantages and disadvantages to the 

use of diatoms as quantitative sea-level indicators. One possible resolution of these 

conflicting arguments is via the use of multiproxy training sets. Development and 

application of such fraining sets for the Ho Bugt embayment is likely to reduce the 

problems associated with a lack of modem analogues and under-representation of 

taxa, and increase the reliability of the reconstmctions. For the fresh water basal 
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Chapter 10 Conclusions 

peat samples, where these problems are most significant, the use of testate amoebae 

may provide a potential way forward. 

• The uncertainty associated with the age-depth models used in this study has been a 

major limitation of the local water-level histories established. The development of 

mixed effect models and weighted-average probability density functions, such as 

those employed by Heegard et al. (2005) and Gehrels et al. (2005) respectively, 

were considered beyond the scope of this present study but are potential areas to 

explore in fiiture work. Such models may enable more robust age-depth models to 

be developed, fiirther refining the chronology of the cores investigated. 

• Additional GIA modelling experiments will provide fiirther insights into the 

controls on relative sea-level change in the Ho Bugt embayment. In particular, 

extension of the GIA modelling predictions fiarther back in time will enable an 

additional number of SLIPs to be compared to the model predictions. Future 

modelling also aims to explore the possible effects arising from glacial forbulge 

movement, something which is not considered in the current study. Such effects 

may greatly affect the pattem of glacial isostatic adjustment of the Ho Bugt 

embayment. 
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APPENDIX 4 

Inventory of all available datable material Numbered samples correspond to those 

samples dated (Table 5.2). A total of twenty-six samples were selected for analysis based 

on sample weights and the degree to which they met the objectives detailed in Section 

3.6.1. 

Sample number 
Sample 
depth 

(m) 

Elevation 
(m DNN) 

Sample 
weight 

(mg) 
Sample description Stratigraphic 

context 

Rogel core R01 
1 0.51 +1.09 4.5 Unidentified plant remains Bottom of black layer 
2 0.68 +0.92 10.9 Phraqmites Phragmites clay 
3 0.72 +0.88 15.7 Phrgamites Phragmites clay 

0.74 +0.86 5 Phragmites Phragmites clay 
0.78 +0.82 5.6 Phragmites Phragmites clay 
0.80 +0.8 5.8 Phraqmites Phragmites clay 

4 0.81 +0.79 8.9 Phragmites Phraqmites clay 
0.91 +0.69 21.7 Phragmites Phraqmites clay 

5 0.92 +0.68 11.2 Unidentified plant remains Phragmites clay 
6 1.68 -0.008 22.1 Unidentified plant remains Top of basal peat 

1.70 -0.1 31.3 Wood Top of basal peat 
1.73 -0.13 4.8 Unidentified plant remains Top of basal peat 
1.83 -0.23 4.2 Unidentified plant remains Top of basal peat 
1.87 -0.27 7.1 Phragmites Top of basal peat 

7 1.89 -0.29 17.6 Reed stem {Juncus)7 Top of basal peat 
2.14a -0.54 10.7 Reed stem {Juncus)7 Top of basal peat 
2.14b -0.54 33 Reed stem {Juncus)? Top of basal peat 
2.14c -0.54 8.6 Unidentified plant remains Top of basal peat 

8 2.15 -0.55 14.3 Phragmites Top of basal peat 
2.16 -0.56 8.7 Unidentified plant remains Top of basal peat 
2.17 -0.57 60 Phraqmites Top of basal peat 
2.18 -0.58 15.4 Unidentified plant remains Top of basal peat 
2.19 -0.59 25.6 Reed fragments Top of basal peat 
2.20 -0.60 4.3 Grass fragment Top of basal peat 

10 2.22 -0.62 4.4 Grass fraqment Top of basal peat 
2.24 -0.64 4.4 Phgramites Top of basal peat 

Regel Monolith 
11 0.55 +1.05 8.7 Phgramites Bottom of black layer 
12 0.60 +1.00 15.9 Phraqmites Clay 

0.61 +0.99 5.6 Phragmites Clay 
0.66 +0.94 2.1 Grass Clay 

Oksby Enge Monolith OEA 
0.17 +1.45 514.97 Wood Peaty clay 
1.00 +0.62 3 Phraqmites Clay 
1.09 +0.53 24.3 Phragmites Clay 
1.17 +0.45 15.15 Phraqmites Clay 

13 1.24 +0.38 77.48 Phragmites Top of basal peat 
1.42 +0.20 228.66 Phragmites Basal peat 

1.43a +0.19 125.36 Phragmites Basal peat 
1.43b +0.19 82.08 Phrgamites Basal peat 
1.52a +0.10 1070.55 Wood Basal peat 

14 1.52b +0.10 38.24 Reed stem? Basal peat 
Oksby Enge OEBS 

0.15 +1.64 131.6 Phragmites Top of sand layer 
0.17 +1.62 26 Phragmites Top of sand layer 

15 0.18 +1.61 78.6 Phragmites Top of sand layer 
16 0.82 +0.97 20.5 Phraqmites Clay 

0.84 +0.95 3.5 Phragmites Clay 
0.92 +0.87 49 Phragmites Clay 
0.93 +0.86 15.7 Phraqmites Clay 
0.94 +0.85 6.3 Phragmites Clay 
0.96 0.83 34.7 Phragmites Clay 

17 1.01 +0.78 27.8 Phragmites Clay 
1.02 +0.77 16.9 Phraqmites Clay 
1.04 +0.75 11.4 Phragmites Clay 

319 



Sample number 
Sample 
depth 

(m) 

Elevation 
(m DNN) 

Sample 
weight 

{"^9) 

Sample description Stratigraphic 
context 

Kjelst Enge core KE1 
18 4.16 -2.59 25.9 Unidentified plant fraqment Phragmites clay 

4.19 -2.62 29.9 Phraqmites Phragmites clay 
4.21 -2.64 54.4 Phraqmites Phraqmites clay 
4.25 -2.68 34.6 Phraqmites Phraqmites clay 
4.41 -2.84 50.1 Phragmites Phraqmites clay 
4.57 -3.00 38.9 Phraqmites Phragmites clay 
4.81 -3.24 12.8 Phraqmites Phragmites clay 
4.82 -3.25 24.2 Phragmites Phragmites clay 
4.86 -3.29 12.8 Phragmites Phragmites clay 
4.89 -3.32 36.3 Phragmites Phragmites clay 
4.92 -3.35 16 Phragmites Phragmites clay 
4.96 -3.39 39 Grass steams Phragmites clay 
4.97 -3.40 9.5 Grass stem? Phragmites clay 
5.00 -3.43 42.8 Reed stem {Juncus?) Phraqmites clay 
5.09 -3.52 3.9 Grass stem Basal peat 
5.12 -3.55 61.5 Wood Basal peat 
5.14 -3.57 5.1 Unidentified plant remains Basal peat 

19 5.15 -3.58 10.6 Reed stem {Juncus?) Basal peat 
5.165 -3.595 7.7 Rees stem {Juncus?) Basal peat 
5.17 -3.6 0.9 Reed stem {Juncus?) Basal peat 
5.23 -3.66 2.8 Unidentified plant remains Basal peat 

20 5.98 -4.41 59.3 Phraqmites Basal peat 
6.185 -4.615 16.9 Phraqmites Basal peat 
6.205 -4.635 40.2 Phraqmites Basal peat 
6.22 -4.65 18 Phraqmites Basal peat 
6.235 -4.665 29.5 Phragmites Basal peat 
6.245 -4.675 33.5 Phragmites Basal peat 
625 -4.68 26.5 Phragmites Basal peat 

6.275 -4.705 75 Phraqmites Basal peat 
6.375 -4.805 38.4 Phragmites Basal peat 
639 -4.82 31.8 Phragmites Basal peat 
6.43 -4.86 11.4 Phraqmites Basal peat 

21 6.54 -4.97 19.8 Phraqmites Basal peat 
6.62 -5.05 14.3 Phragmites Basal peat 
6.655 -5.085 23.2 Phragmites Basal peat 
6.68 -5.11 18.6 Unidentified plant remains Basal peat 
6.71 -5.14 21.1 Unidentified plant remains Basal peat 
6.73 -5.16 17.2 Phragmites Basal peat 
6.77 -5.2 43.4 Phragmites Basal peat 
6.80 -5.23 13.3 Unidentified black 

fragments 
Basal peat 

22 683.5 -5.265 13.6 Unidentified black 
fragments 

Basal peat 

Kjelst Enge core KE12 
23 2.35 -0.83 26.3 Phragmites Top of basal peat 

2.38 -0.86 17.2 Phragmites Top of basal peat 
3.80 -2.28 33.9 Phragmites Bottom of basal peat 
3.81 -2.29 19.8 Phragmites Bottom of basal peat 

Kjelst Enge core KE13 
25 3.335 -1.745 19.3 Phragmites Top of basal peat 

4.86 -3.27 40.1 Phragmites Top of basal peat 
4.995 -3.405 18.8 Phraqmites Bottom of basal peat 

26 5.08 -3.49 36 Phragmites Bottom of basal peat 
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APPENDIX 5 

Unidentified Diatom Taxa 

This appendix presents and describes unidentified diatom taxa encountered during this 

study. Only unidentified taxa with > 1% relative abundance are described. The remaining 

unidentified taxa are excluded from all analysis and interpretation and are therefr)re not 

described. Of the unidenfified taxa described, only SpeciesC and SpeciesGl occur with a 

maximum relative abundance of > 3%. The image analysis system, AnalySIS®, was used 

to aid taxonomic work. However, images presented here were taken with an Olympus 

camera attached to an Olympus BX-50 microscope, as this method was found to produce 

clearer illustrations. Morphological descriptions follow Barber and Haworth (1994). 

SpeciesC (Figure 1) 

Valve clavate, heterpolar and asymmetrical. Valve length c. 18 pm, valve width c. 3 pm. 

Striae not visible through light microscope. Found in the palaeoenvironment and associated 

with taxa such as Achnanthes delicatula, Cymatosira belgica, Navicula cincta and 

Navicula pusilla. 

Figure 1. SpeciesC. 
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SpeciesG (Figure 2) 

Valve elliptic. Valve length c. 8 pm, valve width 3-5 pm. Striae not clearly visible through 

light microscope but appear dense. Found alongside occurrences of SpeciesC. 

Figure 2. Species G. 

SpeciesX (Figure 3) 

Valve elliptic. Valve length typically c. 12pm, valve width c.2 pm. Striae radiate 

throughout, striae count c. 12/10 pm. Found in low relative abundances (< 2%) in the black 

layer in core BR9 alongside occurrences of several Pinnularia species. 

Figure 3. SpeciesX. 

322 



SpeciesAl (Figure 4) 

Valve elliptic. Valve length c. 4 pm, valve width 3-5 pm. Possibly a P-valve of Achnanthes 

sp? Found sporadically throughout the master core sequence in association with Pinnularia 

species. 

Figure 4. SpeciesAl. 

SpeciesBl (Figure 5) 

Valve triangular, ends rounded and slides slightly convex. Found alongside occurrences of 

Achnanthes delicatula, Cyclotella striata and Navicula cincta. 

Figure 5. SpeciesBl. 
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SpeciesCl 

Photo not shown, valve too small to be seen clearly on photo. Valve elliptic, valve length c. 

3-5 p, valve width c. 2-3 pm. Possibly a very small Fragilaria spp. Occurs sporadically in 

core R01 in very low abundances. Maximum relative abundance 1.6%. Found alongside 

occurrences of Navicula cincta. 

SpeciesNl (Figure 6) 

Valve ovate and slightly heteropolar? Valve length c. 8-10 pm, valve width 4-5 pm. Striae 

unclear and difficult to differentiate. Most probably Fragilaria exigual Only present in one 

sample (R01 0.88 m core depth). 
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SpeciesGl (Figure 7) 

Valve elliptic, with subcapitate ends. Valve length c. 20 pm, valve width c. 7 pm, striae 

sigmoid, c. 10/10 pm. Central raphe terminals appear to be bent unilaterally. Associated 

with Pinnularia taxa (Figures 4.9 and 4.11). 

Figure 7. SpeciesGl 

SpeciesSl (Figure 8) 

Valve lanceolate with rostrate ends. Valve length c. 65 pm, valve width, c. 20 pm, striae 

radiate throughout, striae count 17/10 pm. Found in the palaeoenvironment in association 

with taxa such as Navicula phyllepta and Navicula pygmaea. 
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SpeciesXl (Figure 9) 

Valve lanceolate with rostrate ends. Valve length 19-22 pm, valve width c. 3 pm. Striae 

slightly convergent at the ends and radiate towards the centre, striae count at least 25/10 

pm. Possibly N. cryptocephala! Found in the modem environment on the high salt marsh 

alongside occurrences of Achnanthes minutissima, Navicula cincta, Nitzschia terrestris and 

Pinnularia ignobilis. 

Figure 9. SpeciesXl. Possibly N. cryptocephalal 

SpeciesC2 (Figure 10) 

Valve linear with slightly panduriform centre. Valve length c. 20 pm, valve width c. 5 pm, 

striae parallel, striae count 8/10 pm. Found in the modem environment on the low salt 

marsh in association with polyhalobous and mesohalobous taxa. 

20 fj^m 

Figure 10. SpeciesC2. 
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SpeciesD2 (Figure 11) 

Valve narrow elliptic, valve length 12-15 pm, valve width c. 3-4 pm, striae appear slightly 

radiate but difficult to differentiate. Central area appears circular. Found in the low salt 

marsh on Langli Island in association with polyhalobous and mesohalobous taxa such as 

Diploneis didyma and Achnanthes delicatula. 

20 Mm 

Figure 11. SpeciesD2. 

SpeciesE2 (Figure 12) 

Valve shape lanceolate, cuneate ends. Valve length c. 24 pm, valve width c. 5 pm, striae 

slightly radiate, striae count 13/10 pm. Found in the modem environment on the low salt 

marsh, in association with Diploneis didyma and high abundances of Achnanthes 

delicatula (58%). 

Figure 12. SpeciesE2. 
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SpeciesG2 (Figure 13) 

Valve elliptic, slightly narrowed, valve length 16-18 pm, valve width 4-5 pm. Striae 

parallel at the ends and radiate towards the centre, striae count c. 17/10 pm. Found 

alongside occurrences of species C2, D2 and E2 on the low salt marsh and in association 

with polyhalobous and mesohalobous taxa. 

Figure 13. SpeciesG2. 

Species 12 (Figure 14) 

Valve narrow elliptic with rostrate ends. Valve length c. 45 pm, valve width c. 5-7 pm. 

Striae strongly radiate towards the centre and parallel at the ends. Striae count c. 10/10 pm. 

Found in the modem environment in the low salt marsh. 

20/im 

Figure 14. SpeciesI2. 
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Species J2 (Figure 15) 

Valve panduriform. Valve length c.20 pm, valve width c. 4 pm, striae parallel throughout, 

slightly radial in the centre, striae count 11/1 Op. Found in the modem environment on the 

low salt marsh in association with polyhalobous and mesohalobous taxa. 

Figure 15. SpeciesJ2. 

Species M2 (Figure 16) 

Valve narrow elliptic with slightly rostrate ends. Valve length c. 38 pm, valve width c. 5 

pm. Striae parallel throughout, slightly convergent towards the ends? Striae count c. 11/10 

pm. Central area a wide transverse fascia. 

Figure 16. SpeciesM2. 
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SpeciesN2 (Figure 17) 

Valve lanceolate. Valve length c. 11 pm, valve width c. 3 pm. Striae difficult to 

differentiate but appear parallel? Possibly Achnanthes minutissimal Found towards the top 

of core BR9 in association with polyhalobous and mesohalobous taxa. 

20 

Figure 17. SpeciesN2. 

SpeciesP2 (Figure 18) 

Valve narrow, elliptical. Valve length c.38 pm, valve width c. 10 pm, striae radiate and 

composed of very fine puncta, central area not differentiated. Striae count 15/10 pm. 

Presence of a pseudo-septum? Found in the palaeoenvironment in association with taxa 

such as Mastagloia smithii, Nitzschia obtusa, and Caloneis bacillum. 

Figure 18. SpeciesP2. 
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SpeciesQ2 (Figure 19) 

Valve elliptic, slightly narrowed, valve length 24-26 pm, valve width 4-6 pm. Striae radial 

throughout, striae count typically c. 10/10 pm. Striae are denser towards the valve ends. 

Found in the palaeoenvironment in core R01 (c. 0.30 m core depth) in association with 

several Pinnularia species and Caloneis bacillum. 

Figure 19. SpeciesQ2. 
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APPENDIX 6 

Descriptive statistics for each environmental variable at individual transects. Statistics were 

calculated using MINITAB® Release 14. Descriptive statistics for each environmental variable 

for the data set as a whole are summarised in Table 4.3. 

Environmental Variable Min imum Max imum Mean Median Standard Deviat ion 

Elevation (m DNN) 0.74 1.86 1.50 1.63 0.32 

pH 4.09 7.85 6.02 5,94 0.88 

Salinity (glY') 0.93 1.64 1.15 1.12 0.16 

Table 1. Descriptive statistics for each environmental variable measured from Kjelst Enge. 

Environmental Variable Min imum Max imum Mean Median Standard Deviat ion 

Elevation (m DNN) 1.88 2.66 2.18 2.15 0.25 

pH 4.45 6.83 6.070 6.29 0.65 

Salinity (g/l") 0.02 0.51 0.20 0.14 0.16 

LOI (%) 15.29 65.13 49.95 56.76 15.93 

CaCOs (%) 0.3 2.23 1.430 1.58 0.58 

Sand (%) 11.07 94.15 29.85 21.47 22.42 

Silt (%) 5.85 82.72 64.92 71.31 20.40 

Clay (%) < 0.001 7.98 5.23 5.95 2.47 

Table 2. Descriptive statistics for each environmental variable measured from Moserva. 

Environmental Variable Min imum Max imum Mean Median Standard Deviat ion 

Elevation (m DNN) 1.34 1.455 1.40 1.41 0.03 

pH 5.54 7.1 6.37 6.47 0.46 

Salinity (g/l"') 0.26 3.07 0.93 0.73 0.76 

LOI (%) 24.85 39.17 32.25 32.88 4.60 

CaCOa {%) 2.02 3.53 2.83 2.89 0.43 

Sand(%) 4.23 20.43 13.78 13.86 5.24 

Silt (%) 70.06 91.02 76.65 75.53 6.13 

Clay (%) 4.75 11.78 9.56 9.56 1.66 

Table 3. Descriptive statistics for each environmental variable measured from Storbaek. 
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Environmental Variable Min imum Maximum Mean Median Standard Deviat ion 

Elevation (m DNN) 1.50 2.34 1.88 1.83 0.27 

pH 4.90 6.98 5.66 5.64 0.43 

Salinity (g/l"') 0.04 2.75 1.08 0.79 0.96 

LOI (%) 22.4 65.46 48.91 49.34 11.97 

CaCOs (%) 2.57 5.27 3.44 3.19 0.74 

Sand(%) 4.26 25.76 10.30 8.93 5.57 

Silt {%) 71.09 90.95 82.46 83.09 5.12 

Clay (%) 0.95 12.17 7.24 7.24 3.89 

Table 4. Descriptive statistics for each environmental variable measured from Oksby Enge. 

Environmental Variable Min imum Maximum Mean Median Standard Deviat ion 

Elevation (m DNN) 0.23 1.74 1.06 1.09 0.433 

pH 6.84 8.51 7.51 7.37 0.457 

Salinity (g/l"') 0.49 3.36 2.34 2.48 0.57 

LOI (%) 1.16 44.10 16.84 1.16 13.61 

CaCOa (%) 0.66 5.29 2.48 2.70 1.13 

Sand(%) 14.06 93.38 40.39 35.78 21.58 

Silt (%) 6.62 75.32 52.37 57.14 19.11 

Clay (%) < 0.001 10.62 7.23 7.055 2.55 

Table 5. Descriptive statistics for each environmental variable measured from Langli North. 

Environmental Variable M in imum Maximum Mean Median Standard Deviat ion 

Elevation (m DNN) 0.66 1.53 1.16 1.20 0.22 

pH 7.04 8.75 1.71 7.70 0.47 

Salinity (g/i"') 1.04 2.47 1.66 1.69 0.30 

LOI (%) 2.98 17.77 19.14 17.77 11.88 

CaCOa (%) 1.09 8.41 2.58 2.16 1.62 

Sand{%) 22.32 65.79 45.04 47.23 12.08 

Silt (%) 29.39 68.78 48.01 45.56 10.92 

Clay (%) 4.82 9.15 6.95 6.98 1.25 

Table 6. Descriptive statistics for each envfronmental variable measured from Langli South. 

333 



APPENDIX 7 

Abbreviations for taxa with > 1 % relative abundance in both modem and fossil samples, 

including full taxon name and authority. Unidentified taxa with > 1% relative abundance 

are described in Appendix 5. 

Taxon code Full taxon name Author i t y 

Achnbrev 
Achncera 
Achndeli 
Achnhols 
Achnlanc 
Achnlate 
Achnlong 
Achnminu 
Achnoblo 
Achnrupe 
Actisena 
Actinorm 
Ardicrys 
Amphexig 
Amphcoff 
Amphline 
Amphlybi 
Amphprot 
Amphturg 
Auliscul 
Actisena 
Caloamph 
Calobaci 
Calosili 
Calowest 
Campeche 
Campcymb 
Coccpedi 
Coccpelt 
Coccplac 
Coccscpa 
Coccscut 
Coccstau 
Coscradi 
Cyclstri 
Cymbaspe 
Cymbnavi 
Cymbsile 
Cymabeig 
Delpsuri 
Dentsubt 
Diattenu 
Dimemino 
Diplbomb 
Dipldidy 
Diplelli 
Diplinte 
Diploblo 
Diploval 
Diplsmit 
Diplsubo 

Achnanthes brevipes 
Achnanthes ceramii 
Achnanthes delicatula 
Achnanthes holsatica 
Achnanthes lanceolata 
Achnanthes laterostrata 
Achnanthes longipes 
Achnanthes minutissima - type 
Achnanthes oblongella 
Achnanthes rupestoides 
Actinoptychus senarius 
Actinocyclus normanii 
Ardissoni crystallina 
Amphora exigua 
Amphora coffeaeformis 
Amphora lineolata 
Amphora lybica 
Amphora proteus 
Amphora turgida 
Auliscus sculptus 
Actinoptychus senarius 
Caloneis amphisbeana 
Caloneis bacillum 
Caloneis silicula 
Caloneis westii 
Campylodiscus echeneis 
Campylosira cymbelliformis 
Cocconeis pediculus 
Cocconeis peltoides 
Cocconeis placentula 

Agardh 1824 
Hendy 1977 
(Kutzing) Grunow 1880 
Hustedt in A. Schmidt et al., 1936 
(Brebisson) Grunow in Cleve and Grunow 1880 
Hustedt 1933 
Agardh 1824 
Kutzing 1833 
Oestrup 1902 
Hohn 1961 
(Ehrenberg) Ehrenberg 1843 
(Gregory ex. Greville) Hustedt 1957 
Unknown 
Gregory 1857 
(Agarth) Kutzing 1844 
Ehrenberg (1838) 1843 
Ehrenberg 1840 
Gregory 1857 
Gregory 1857 
(W. Smith) Ralfs in Pritchard. 1861 
(Ehrenberg) Ehrenberg 1843 
Bory (Cleve) 1894 
(Grunow) Cleve 1894 
(Ehrenberg) Cleve 1894 
(W.Smith) Hendey1964 
(Ehrenberg) KUtzing, 1844 
(Schmidt) Grunow in H. Van Heurck 1885 
Ehrenberg 1838 
Hustedt 1939 
Ehrenberg 1838 
(Grunow in Van Heurck 1880) Cleve 1895 Cocconeis scutellum var parva 

Cocconeis scutellum var scutellum Ehrenberg 1838 
Cocconeis stauroneiformis (W. Smith) Okuno 1957 
Coscinodiscus radiatus 
Cyclotella striata 
Cymbella aspera 
Cymbella naviculformis 
Cymbella silesiaca 
Cymatosira belgica 
Delphineis surirella 
Denticula subtilis 
Diatoma tenuis 
Dimeregramma minor 
Diploneis bombus 
Diploneis didyma 
Diploneis elliptica 
Diploneis interrupta 
Diploneis oblongella 
Diploneis ovalis 
Diploneis smithii 
Diploneis suborbicularis 

Ehrenberg 1841 
(Kutzing) Grunow (1880) in Cleve and Grunow 
(Ehrenberg) Peragallo 1849 
(Auerswald) Cieve 1894 
Bleisch in Rabenhorst 1864 
Grunow in Van Heurck 1880-1885 
(Ehrenberg) G. Andrews 1981 
Grunow 1862 
Agardh 1812 
(Gregory) Ralfs in Pritchard 1861 
(Ehrenberg) Cleve 1894 
(Ehrenberg) Ehrenberg 1854 
(Kutzing) Cleve 1891 
(Kutzing) Cleve 1894 
(Naegeli) Cleve-Euler 1922 
(Hilse) Cleve 1891 
(Brebisson) Cleve 1894 
Gregory (Cleve) 
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Epitadna Epithemia adnata (Kutzing) Rabenhorst 1853 
Eunoarcu Eunotia arcus Ehrenberg 1837 
Eunobilu Eunotia bilunaris (Ehrenberg) Mills 1934 
Eunoexig Eunotia exigua (Brebisson ex Kutzing) Rabenhorst 1853 
Eunofall Eunotia fallax Cleve 1895 
Eunomino Eunotia minor (Kutzing) Rabenhorst 1864 
Eunopect Eunotia pectinalis (Kutzing) Rabenhorst 1864 
Epitadna Epithemia adnata (Kutzing) Brebisson 1838 
Epitturg Epithemia turgida (Ehrenberg) Kutzing 1844 
Fragbrev Fragilaria brevistriata - type Grunow in Van Heurck 1885 
Fragcape Fragilaria capensis Grunow 1862 
Fragcapu Fragilaria capucina Desmazieres 1825 
Fragcons Fragilaria construens - type (Ehrenberg) Grunow 1862 
Fragpinn Fragilaria pinnata Ehrenberg 1843 
Fragelli Fragilaria elliptica Schumann 1867 
Fragexig Fragilaria exigua Grunow in Cleve & Moller 1878 
Fragfasc Fragilaria fasciculata (Agardh) Lange-Bertalot 1980 sensu lato. 
Fragneop Fragilaria neoproducta Lange-Bertalot, 1991 
Fragnitz Fragilaria nitzschoides Grunow in Van Heurck 1881 
Fragschu Fragilaria schulzii Brockmann 1950 
Fragtene Fragilaria tenera (W. Smith) Lange-Bertalot 1980 
Fragvire Fragilaria virescens Ralfs 1843 
Frusrhom Frustulia rhomboides (Ehrenberg) De Toni 1891 
Gompacum Gomphonema acuminatum Ehrenberg 1832 
Gompangu Gomphonema angustatum (KOtzing) Rabenhorst 1864 
Gompparv Gomphonema parvulum (Kutzing) KOtzing 1849 
Gramocea Grammatophora oceanica Ehrenberg 1854 
Gyroacum Gyrosigma acuminatum (Kutzing) Rabenhorst 1853 
Gyrobalt Gyrosigma balticum (Ehrenberg) Rabenhorst 1853 
Gyrofasi Gyrosigma fasciola (Ehrenberg) Griffith & Henrey 1856 
Hyalradi Hyalodiscus radiatus (0* Meara ) Grunow 1862 
Hantamph Hantzschia amphioxys (Ehrenberg) Grunow in Cleve and Grunow 1880 
Mastsmit Mastagloia smithii Thwaites in W. Smith 1856 
Naviabru Navicula abrupta (Gregory) Donkin, Asmus 1982 
Naviamph Navicula amphibola Cleve 1891 
Naviatia Navicula atlantica (A.W.F.Schmidt) H.Perag. & Perag 
Navicari Navicula carl Ehrenberg 1843 
Navicinc Navicula cincta - type (Ehrenberg) Ralfs in Pritchard 1861 
Navicryp Navicula cryptocephala Kutzing 1844 
Navicusp Navicula cuspidate (Kutzing) Kutzing 1844 
Navidigi Navicula digitoradiata Gregory) Ralfs in Pritchard 1861 
Navielgi Navicula elginensis (Gregory) Ralfs in Pritchard 1861 
Naviforc Navicula forcipata Greville 1859 
Navigreg Navicula gregaria Donkin 1861 
Navihalo Navicula halophila (Grunow) Cleve 1894 
Navihume Navicula humerosa Brebisson in W. Smith 1856 
Navimari Navicula marina Ralfs in Prichard 1861 
Navimeni Navicula menisculus Schumman 1867 
Navimuti Navicula mutica Kutzing 1844 
Navipere Navicula peregrina (Ehrenberg) Kutzing 1844 
Naviphyl Navicula phyllepta Kutzing 1844 
Navipupu Navicula pupula Kutzing 1844 
Navipusi Navicula pusilla W. Smith 1853 
Navipygm Navicula pygmaea Kutzing 1849 
Naviradi Navicula radiosa Kutzing 1844 
Navirhyn Navicula rhynchocephala KCitzing 1844 
Navitrip Navicula tripunctata (O.F. Muller) Bory 1822 
Navisali Navicula salinarum (Grunow) in Cleve and Grunow 1880 
Navivari Navicula variostriata Krasske 1923 
Nitzacum Nitzschia acuminata (W. Smith) Grunow 1878 
Nitzbilo Nitzschia bilobata W. Smith 1853 
Nitzbrem Nitzschia bremensis Hustedt 1930 
Nitzbrev Nitzschia brevissima Grunow in Van Heurck 
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Nitzcoar Nitzschia coarctata Grunow in Cleve & Grunow 1880 
Nitzcomp Nitzschia compressa (Bailey) Boyer 1916 
Nitzcomv Nitzschia compressa var compressa (Bailey) Boyer 1916 
Nitzcons Nitzschia constricta (Kutzing) in Ralfs Prichard 1861 
Nitzdebi Nitzschia debilis (Arnott) Grunow in Cleve & Grunow non Pantocsek 1902 
Nitzdiss Nitzschia dissipata (Kutzing) Grunow 1862 
Nitzdubi Nitzschia dubia W. Smith 1853 
Nitzfili Nitzschia filiformis (W. Smith) Van Heurck 1896 
Nitzfont Nitzschia fonticola Grunow in Van Heurck 1881 
Nitzfoss Nitzschia fossilis Grunow in Van Heurck 1881 
Nitzfrus Nitzschia frustulum (KiJtzing) Grunow in Cleve & Grunow 1880 
Nitzgran Nitzschia granulata Grunow 1862 
Nitzhung Nitzschia hungarica Grunow 1862 
Nitzlevi Nitzschia levidensis Grunow 1862 
Nitzline Nitzschia linearis W. Smith 1853 
Nitzlitt Nitzschia littoralis Grunow in Cleve and Grunow 1880 
Nitzmarg Nitzschia marginulata Grunow in Cleve and Moller 1878 
Nitznana Nitzschia nana Grunow in Van Heurck 1881 
Nitznavi Nitzschia navicularis (Brebisson) Grunow in Cleve and Grunow 1880 
Nitznorm Nitzschia normannii Grunow in Van Heurck 1880-1885 
Nitzobtu Nitzschia obtusa W.Smith 1853 
Nitzpale Nitzschia palea (Kutzing) W.Smith 1856 
Nitzpell Nitzschia pellucida Grunow in Cleve & Grunow 1880 
Naviplac Navicula placentula (Ehrenberg) Kutzing 1844 
Nitzplan Nitzschia plana W. Smith 1853 
Nitzscal Nitzschia scalaris (Ehrenberg) W. Smith 1853 
Nitzsgma Nitzschia sigma (Kutzing) W. Smith 1853 
Nitzsgmd Nitzschia sigma var diminuta Grunow 1862 
Nitzsgmo Nitzschia sigmoidea (Nitzsch) W. Smith 1853 
Nitzterr Nitzschia terrestris (Petersen) Hustedt 1934 
Nitzvitr Nitzschia vitrea Norman 1861 
Odonauri Odontella aurita (Lyngbye) Agardh 1832 
Odonrhom Odontella rhombus (Ehrenberg) Kutzing 1844 
Opeppaci Opephora pacifica (Grunow) Petit 1888 
Opepparv Opephora parva (Van Heurck) Krasske 1939 
Parasulc Paralia sulcata (Ehrenberg) Cleve 1873 
Pinnbore Pinnularia borealis Ehrenberg 1843 
Pinngibb Pinnularia gibba Ehrenberg 1841 
Pinnigno Pinnularia ignobilis (Krasske) Cleve-Euler 1955 
Pinninte Pinnularia intermedia (Lagerstedt) Cleve 1895 
Pinnlage Pinnularia lagerstedtii (Cleve) Cleve-Euler 1934 
Pinnlund Pinnularia lundii Hustedt 1954 
Pinnmajo Pinnularia major (Kutzing) Rabenhorst 1853 
Pinnmicr Pinnularia microstauron (Ehrenberg) Cleve 1891 
Pinnsimi Pinnularia similis Hustedt 1954 
Pinnsubc Pinnularia subcapitata Gregory 1856 
Pinnsuco Pinnularia subconstricta Ehrenberg 1843 
Pinnviri Pinnularia viridis (Nitzsch) Ehrenberg 1843 
Plagstau Plagiogramma staurophorum (Gregory) Heiberg 1863 
Plagvanh Plagiogramma vanheurckii Grunow 1862 
Podostel Podosira stelligera (Bailey) A. Mann 
Pseuwest Pseudopodosira westii (W. Smith) 
Rhabadri Rhabdonema adriaticum Kutzing 1844 
Rhabarcu Rhabdonema arcuatum (Lyngbye in Hornemann) Kutzing 1844 
Rhabminu Rhabdonema minutum Kutzing 1844 
Rhapamph Rhaphoneis amphiceros (Ehrenberg) Ehrenberg 1854 
Rhopacum Rhopalodia acuminata Krammer in Lange-Bertalot and Krammer 1987 
Rhopgibb Rhopalodia gibba (Ehrenberg) 0 Muller 1895 
Rhopmusc Rhopalodia musculus (Kutzing) 0 . Muller 1899 
Rhopoper Rhopalodia operculata (Agardh) Hakansson, 1979 
Stauphon Stauroneis phoenicenteron (Nitzsch) Ehrenberg 1843 
Stauprod Stauroneis producta Grunow 1880 
Stauprom Stauroneis prominula (Grunow) Hustedt 1959 
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Suribreb Surirella brebissonii 
Suribrig Surirella brightwellii 
Surioval Surirella ovalis 
Synearcu Synedra arcus 
Synefasi Synedra fasciculata 
Syneulna Synedra ulna 
Tabefloc Tabellaria flocculosa 
Thalnitz Thalassionema nitzschioides 
Thalecce Thalassiosira eccentrica 
Tracaspe Trachyneis aspera 
Tricbale Triceratium balearicum 

Krammer & Lange-Bertalot 1987 
W. Smith, 1853 
Brebisson 1838 
Kutzing 1844 
(Agardh) Kutzing 1844 
(Nitzsch) Ehrenberg 1836 
(Roth) Kutzing 1844 
(Grunow) Grunow ex Hustedt 
(Ehrenberg) Cleve 1904 
(Ehrenberg) Cleve 1894 
Cleve & Grunow 
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