
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

2016

Optimised Mammogram Displays for

Improved Breast Cancer Detection

Riley, Graeme Alexander

http://hdl.handle.net/10026.1/5150

http://dx.doi.org/10.24382/3292

Plymouth University

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



This copy of the thesis has been supplied on condition that anyone

who consults it is understood to recognise that its copyright rests

with its author and that no quotation from the thesis and no

information derived from it may be published without the author's

prior consent.

1



2



OPTIMISED MAMMOGRAM DISPLAYS FOR IMPROVED BREAST CANCER

DETECTION

by

GRAEME ALEXANDER RILEY

A thesis submitted to Plymouth University in partial ful�lment for the degree of

DOCTOR OF PHILOSOPHY

Health and Human Sciences Doctoral Training Centre

March 2016

3



4



Acknowledgements

I would like to express my gratitude to my supervisor, Dr. William Simpson, �rstly for o�ering

me the opportunity to study for a PhD in the �rst place but, subsequently for his support and

guidance in all aspects of my research practice. Without his expertise and knowledge this thesis

could never have even been imagined let alone reached the threshold of publication. I would also

like to thank my second supervisor, Dr Giorgio Ganis for his support and advice along the way.

A very special thanks goes to Dr Jim Steele from the Primrose Breast Care Unit at Derriford

Hospital in Plymouth, not just for the material support of anonymised images, but also for his

own expertise, advise and support in building my knowledge of the highly specialised discipline of

mammography.

There are many participants to thank, particularly as psychophysical research demands a high

level of concentration and many hours spent searching for the metaphorical needle in a haystack,

but two that have provided outstanding support are my wife, Janice Riley and my friend, Sharon

Power. Without their hours of participating my data would be far less rich.

Apart from her contribution as a participant, I would also like to acknowledge the unwavering

support that I have received from my wife throughout my PhD, as a sounding board for my, often

incomprehensible, thoughts, for her understanding during di�cult times, her proof reading as well

as her love and encouragement without which I could not have �nished this thesis.

5



6



Author's Signed Declaration

At no time during the registration for the degree of Doctor of Philosophy has the author been

registered for any other University award without prior agreement of the Graduate Sub-Committee.

Work submitted for this research degree at the Plymouth University has not formed part of any

other degree either at Plymouth University or at another establishment.

This study was �nanced with the aid of a studentship from Plymouth University.

Relevant scienti�c seminars and conferences were regularly attended at which work was often

presented and several papers were prepared for publication.

Presentation and Conferences Attended:

� Only Connect Psychology Conference, Plymouth University, 14 Jun 2013

� Plymouth University Post Graduate Society Conference, Plymouth University, 18 Jun 2013

� Medical Image Perception Society Conference, Washington DC, 13-16 Aug 2013

� Plymouth University Psychology Conference, Plymouth University, 12-13 Jun 2014

External Contacts:

� �Dr Jim Steel, Director of Breast Screening, Consultant Breast Radiologist, Primrose Breast-

care Unit, Derriford Hospital, Plymouth

Word count of main body of thesis: 58,325

Signed..........................................

Date .............................................

7



8



Abstract

Graeme Alexander Riley

OPTIMISED MAMMOGRAM DISPLAYS FOR IMPROVED BREAST CANCER

DETECTION

In current mammography practice, radiologists typically view mammograms in a symmetric,

side-by-side, con�guration in the belief that abnormalities will be made salient because they break

the perceived symmetry. The literature on the use of symmetry as an aid to signal detection is

limited and this thesis has taken a psychophysical approach to investigate the radiologist's task

of detecting a small mass (a blob) in paired mammogram backgrounds. Initial experiments used

Gaussian white noise and synthetic mammogram backgrounds to test observer performance for

the radiologist's task using symmetric (side-by-side) displays and animated (the two images of a

pair alternated sequentially in the same location) displays. The use of animated displays was then

tested using real mammogram backgrounds in the subsequent experiments. The results showed

that side-by-side presentation of paired images does not provide any bene�t for the detection of a

blob, whereas, alternated presentation enabled the observer to use the correlation present between

the paired images to improve detection performance. The e�ect of alternation was not evident

when applied to the task of detecting a small mass in real mammogram pairs and subsequent

investigation suggested that the loss of e�ect resulted from the lack of scale invariance of real

images. This meant that, regardless of the level of global correlation between two images, the

localised correlation, at a region size re�ecting the visual angle subtended by the fovea, was much

lower. Thus, decorrelation by the visual system was ine�ective and performance for the detection of

a blob in the paired images was also ine�ective. This thesis suggests that, whilst animated displays

can be a powerful tool for the identi�cation of di�erences between paired images, the underpinning

mechanism of decorrelation makes them unsuited for mammograms where scale invariance means

that correlation at local levels is a fraction of the global correlation level.
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Quick Reference Guide

BIRADS The Breast Image Reporting and Data Systems (BIRADS) is a

scheme for categorising the �ndings of mammogram sceenings.

Contrast This thesis uses Weber contrast which can be de�ned,

mathematically, as the di�erence between the luminance of the

signal and the luminance of the background divided by the

luminance of the background (Whittle, 1994), as shown in the

following Equation:

CW =
Ls − Lb
Lb

Where:

CW = Weber Contrast

Ls = Luminance of the signal

Lb = Luminance of the background

Contrast threshold Contrast threshold is de�ned as �the minimum amount of

contrast necessary for a stimulus to be just detectable.�

(Kingdom & Prins, 2010, p. 10)

Criterion The criterion refers to the bias of an observer towards making

one decison over another.

d' (pronounced d prime) The detectability index, d', provides a measure of the separation

between the means of signal and noise distributions compared

against the standard deviation of the signal plus noise

distributions.

Fluctuating asymmetry Fluctuating asymmetry is a measure of biological asymmetry

and refers to small random deviations from perfect symmetry in

bilaterally paired structures such as may be present between the

left and right sides of the human body (Tomkins & Kotiaho,

2002).

Forced choice Forced choice refers to tasks where the observer is required to

make a choice from a predetermined set of choices. This thesis

uses a forced choice procedure with two alternative choices

(2AFC).

29



Gaussian white noise (GWN) GWN is a noise where the pixel values have a normally

distributed probability density function and are independent and

identically distributed (uncorrelated) (Lu & Dosher, 2014, p.

34).

Parenchyma The parenchyma refers to the functional tissue of an organ

which, in the case of the breast, includes both glandular and

�brous tissues. This is distinct from the connective and

supporting tissue (stroma).

Pedestal A baseline stimulus to which the signal is added (Kingdom &

Prins, 2010, p. 265)

Power law noise (PLN) PLN is a noise with a power spectral density (energy or power

per Hertz) that is inversely proportional to its frequency. PLN

with a power spectrum of the from1/f3, where f refers to the

noise frequency, was used in this thesis because of its similarity

to real mammograms. See section 1.6.4 on page 77.

Signal known exactly The observer has complete a priori information about the signal

including its size, shape and location (Abbey & Eckstein, 2000,

p. 630).

Signal known statistically The observer has a priori information about the signal statistics

including its size and shape but signal location is uncertain

(Burgess, 2010, p. 30).
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Chapter 1

The Detection of Visual Signals

This thesis is about the detection of visual signals in noise backgrounds and how this relates to the

applied discipline of mammography. Detecting a lesion in a mammogram in psychophysical terms

is the detection of a spatial signal in a noise background and there is a long line of psychophysical

research related to this. The application of mammography will be considered in chapter 2, however,

this chapter will concentrate on the theoretical and psychophysical aspects of the task.

Beginning with the sources of observer variability, the nature and origins of the �noise� that

takes the decision making task from being a categorical decision, with a step change from yes

to no, to one with a grey area of ambiguity between yes and no will be discussed. With the

causes of this ambiguity established, how it can be quanti�ed will be considered in the section on

signal detection theory, enabling an empirical basis for decision making to be developed. With this

theoretical baseline established, the concept of the ideal observer will be introduced, along with

the related measure of observer e�ciency.

Following on from the discussion of the decision making process, the subsequent sections will

move from the simple description of a signal to consider the more complex qualities of a real signal,

such as its spatial and temporal characteristics. The historical research into the response of the

human visual system to spatial and temporal frequency will be discussed, introducing the contrast

sensitivity function, through Fourier analysis, the temporal contrast sensitivity function and onto

the concept of sustained and transient channels. Similarly, a more in depth treatment of the types

of noise that will feature in this thesis will be given, along with the display modes that will be

employed. The chapter will close by looking at the theoretical concepts so far discussed from the

perspective of a human observer and will review of the literature relating to the ability of the

human observer to implement those theoretical concepts.

This chapter will review and discuss literature relating to each of the aforementioned areas to
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establish the historical and theoretical background for this thesis. The broad scope of research

that impacts upon this thesis, as well as the extensive literature produced over the past 80 years,

means that this review will, necessarily, be selective, attempting to focus on key moments and

breakthrough research, to build the theoretical foundations upon which our own research is based.

1.1 The Sources of Observer Variability

Possibly the �rst consideration when discussing the detection of visual signals should be the ques-

tion of what leads to the variability in the decision making process of the observer about the

presence, or absence, of a signal when it is close to the observer's threshold for seeing? Variability

results from noise which is �usually� considered to be a random process where each individual out-

come is variable but, given a large enough number of samples, can be described by a probability

distribution. The word �usually� has been inserted because, in the context of medical imaging, non

random features, such as anatomical structure, are often classed as noise. This is not limited to

medical images and natural images, such as landscapes, people or buildings, also feature structured

noise (power law noise) and there is a large literature related to the statistics of natural images

(Hyvärinen et al., 2009; Simoncelli & Olshausen, 2001; Field, 1999), however, for the purposes of

this section, we will consider noise as a random process. Non random features in mammograms,

such as anatomical structure, will be discussed in section 1.6.5 and in chapter 2. Random noise

poses important problems for the visual system, and recognising the sources of random noise and

quantifying them has occupied researchers over many decades but is an important aspect when

considering the detection of a signal. This subsection will outline those sources and some of the

important research milestones leading to their understanding.

1.1.1 The e�ect of the quantum variation of light

Perhaps the �rst �port of call� in determining the sources of observer variability is to determine the

absolute physical threshold of seeing. What is the lowest intensity of light that the human visual

system can see? This was the aim of the pioneering work on the absolute threshold of vision carried

out by Hecht et al. (1942). The researchers carefully controlled the parameters of the experiment

to optimise the conditions for detecting a disc of light which was located 20 degrees from the

eye's �xation point so that the light would be incident upon the area of the retina with the highest

concentration of rods (Hecht et al., 1942). The spatial and temporal frequencies of the light, as well

as its wavelength, were speci�ed to minimise thresholds for detection. The participants were also

dark adapted to minimise their sensitivity to light. The disc of light was �ashed and participants
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were asked to respond �yes� or �no� to say whether they had seen the �ash and the procedure was

repeated at a number of di�erent �ash intensities with a number of participants. Hecht et al. (1942)

found that, under optimal conditions, the human visual system can detect a �ash of light 60% of

the time when it contains about 90 photons. Taking into account the losses experienced in the eye,

they estimated that only about 10% of the photons arriving at the eye are actually absorbed by the

visual pigment of the rods and, as these photons were spread over about 500 rods (since estimated

to be nearer to 350 rods (Cornsweet, 1970, p. 25)), they were able to statistically conclude that

only a single photon is necessary to activate a rod. Hecht (1945) clari�ed this estimate suggesting

that, whilst one photon may be su�cient to excite a rod, �ve photons would be necessary for seeing

because of the possibility for spontaneous excitation occurring within a rod. Less than 5 photons

would not be su�cient to enable discrimination between these spontaneous excitations and genuine

photon excitation, whereas it would be highly unlikely for 5 or more spontaneous excitations to

occur together, thus establishing a �xed threshold, below which seeing would not occur (Hecht,

1945). Whilst recognising that neural noise (in the form of spontaneous excitation of rods) did

occur, Hecht et al. (1942) did not credit the visual system as able to respond to this, concluding

that the variations in human response resulted from the quantum �uctuations in light once above

a �xed internal threshold; not from any variability in the participant themselves and any false

positive responses below the �xed internal threshold were the result of guesswork rather than any

sensory activity. This idea of a �xed internal threshold became known as the high threshold theory

(Green & Swets, 1966, p. 127) and, whilst this part of their conclusion would later be dismissed,

the concept of noise being inherent in any visual signal was an extremely important �nding.

1.1.2 A variable criterion for seeing

The assumption from the high threshold theory that false positive responses below the �xed internal

threshold were simply guesses led to the practice of adjusting the psychometric functions to account

for this. After all, the theory supposed, how could the visual system respond to neural activity

below the �xed threshold?

Therefore, a measured psychometric function, as shown by the dotted line in Figure 1.1, would

be corrected to the function shown by the solid line in Figure 1.1 using the formula shown at

equation 1.1.

pcorr =
pact −Qfp

1−Qfp
(1.1)

where:
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Figure 1.1: Example psychometric function for the probability of saying �yes� signal present against
the number of quanta absorbed at the retina. The �as measured� function is shown by the dotted
line and the corrected function is shown by the solid line.

pcorr = corrected probability of saying yes

pact = measured probability of saying yes

Qfp = false positive response at quanta=0

The concept of the high threshold theory and the notion that responses below a �xed, neu-

rophysiologically determined threshold were the result of guesswork, and thus requiring the psy-

chometric function to be corrected, was challenged by Tanner & Swets (1954). Tanner & Swets

(1954) contended that, rather than the result of guesswork, these responses were the result of the

visual system responding to neural activity, which must be generated within the visual system

itself rather than resulting from the stimulus. Tanner & Swets (1954) proposed that, rather than

a �xed, neurophysiologically determined threshold, the observer had a variable threshold, known

as a criterion. A criterion refers to the observer's implicit rule for converting the internal response

elicited by the stimulus into an external response or decision; for example, internal responses

above the criterion will elicit a �yes� response and internal responses below the criterion will elicit

a �no� response. This study was largely responsible for the introduction of the theory of signal

detectability, now more commonly referred to as signal detection theory (SDT), into the domain of

psychophysics (Cohn, 1993, p. 4), though it largely remained in the audition sphere until the 1970s.
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Figure 1.2: The e�ect of shifting the observers criterion on the position of the psychometric
function.

SDT will be treated in greater detail in section 1.2, however, at this juncture, the experiment of

Tanner & Swets (1954) will be introduced because of its relevance in countering the concept of high

threshold theory, as suggested by Hecht et al. (1942). Tanner & Swets (1954) argued that, rather

than observer responses to stimuli below the high threshold limit being the result of guesswork,

the response was the result of both the small number of quanta received at the retina from the

presented stimulus and a noise generated within the observer that is independent of the signal.

Tanner & Swets (1954) presented �ashed signals on a blank background to participants in both

forced choice and yes/no experiments with a range of signal intensity levels. The participants had

to identify the interval in which the signal occurred and their criterion was shifted by informing

them of the prior probability of signal presentation as well as with varying �nancial inducements

for each possible decision outcome (correct detection, correct rejection, false alarm or miss).

The results produced similar shape functions to those produced by high threshold theory but, as

illustrated in Figure 1.2, by showing how changing the observer's willingness to say signal present,

or not, shifted the threshold level for the same signal, they were able to refute the notion of a �xed

threshold as suggested by the high threshold theory (Green & Swets, 1966, pp. 127-136). Integral

with the concept of SDT was the notion of an internal noise source, independent of the signal,

that drove the observer's responses in the absence of a signal, rather than their responses being
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guesswork, but the origin of this noise was not elucidated by Tanner & Swets (1954) and, whilst

Hecht (1945) recognised the existence of internal noise, it would fall to Barlow (1957) to provide a

more detailed investigation into its e�ects.

The results from Tanner & Swets (1954) suggest that, given an appropriate criterion (and a

well trained observer) it should be possible to demonstrate the minimum light intensity that the

human visual system is able to detect and, many years later, Sakitt (1972) used SDT to do just this,

arguing that only a single photon (or quantum) was necessary for the experience of seeing. Sakitt

(1972) used an experimental set up similar to Hecht et al. (1942), with dark adapted participants

and disc signals on blank backgrounds �ashed to the temporal retina, but instead of a yes/no

protocol, he used a rating scale ranging from 0 (we did not see anything) to 6 (we saw a very

bright light) and three signal strengths, blank (no signal), weak (average 55 photons at the cornea)

and strong (average 66 photons at the cornea). Plotting the average rating score for each signal

strength against the number of quanta incident on the cornea, a linear relationship was observed

and for subject BS (the study author) the following linear model was derived:

ī = 0.0274Qc+ 0.36 (1.2)

where

ī = the average rating score

Qc = average number of quanta at cornea per �ash

The form of the linear model for the average rating score closely matched the linear model for

the average number of rod signals:

a = f (Qc+Xc) (1.3)

where

a = the average number of rod signals

f = the fraction of incident quanta that produce rod signals

Qc =average number of quanta at cornea per �ash

Xc = dark light (now more commonly referred to as internal noise)

From the close similarity of equations 1.2 and 1.3, Sakitt (1972) drew the conclusion that the

average rating score was equal to the number of rod signals. As shown in equation 1.3, the number

of rod signal results from the average number of e�ective quantum absorptions plus noise events

and using the Poisson distribution of the average rating scores and the known values for f and

Qc, Sakitt (1972) was able to calculate the number of quanta incident on the retina as shown in
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equations 1.4 to 1.6.

Assuming the average rating score is equal to the number of rod signals then:

a = 0.0274

(
Qc+

0.36

0.0274

)
(1.4)

a = 0.0274 (Qc+ 13.1) (1.5)

From the cumulative probability distribution of rating scores, Sakitt (1972) estimated the

average number of rod signals for a criterion of 1 as a = 0.7. Thus:

Qc =
0.7

0.0274
− 13.1 = 12.4 (1.6)

Sakitt (1972) actually calculated Qc = 12.6, which was consistent with the estimated display

luminance, and he therefore argued that a trained observer (such as himself), could actually count

every quantum absorption such that the absolute threshold for seeing would be a single photon.

The results from Sakitt (1972) show that there is no absolute physiological threshold for seeing,

rather the threshold for seeing is variable, as dictated by the observer's criterion, and, with the

right conditions, training and a low enough criterion, can be as low as a single quantum incident

on the retina.

1.1.3 The e�ect of background luminance on the threshold of seeing

The research cited in sections 1.1.1 and 1.1.2 was concerned with the absolute threshold of the

human eye to �ashes of light in either totally dark conditions (Hecht et al., 1942) or with a uniform

background luminance, constant throughout the experiment (Tanner & Swets, 1954), such that the

only variability considered was the quantum �uctuation of the light emitted by the �ash. Whilst

this early research, as well as that of Sakitt (1972), established absolute thresholds for seeing, the

detection of a spatial signal, as will be used in the experiments in this thesis, is a more complex task.

With a spatial signal, the observer is no longer simply counting photons, but is now required to

match the spatial signal with a template of that signal, in an operation known as cross-correlation.

Cross-correlation will be one of the underpinning concepts for all of the experiments in this thesis

and will be discussed fully in section 1.3, however, before introducing the concept more formally,

the formative research providing the foundations for cross-correlation will be introduced, beginning

with the research conducted for the US Navy during World War II by Blackwell in 1946.

This research introduced another source of variability by introducing variation in background
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illumination and di�erent sizes of target signal and Blackwell (1946) used spatial signals, rather

than light �ashes. These were displayed on blank backgrounds, with luminance ranging from zero

to 1000 footlamberts (3426 cd/m2), and the experiments determined the contrast threshold of the

human eye (rather than measuring the simple quantum strength of a light �ash as used by Hecht

et al. (1942); Hecht (1945)).

Before proceeding further, it would be appropriate to clarify and de�ne what contrast means

and what is meant by contrast threshold and contrast sensitivity. The contrast of the signal is the

relative di�erence in luminance from its background and for this thesis the Weber contrast will

be used. Weber contrast can be de�ned, mathematically, as the di�erence between the luminance

of the signal and the luminance of the background divided by the luminance of the background

(Whittle, 1994), as shown in Equation 1.7

CW =
Ls − Lb
Lb

(1.7)

Where:

CW = Weber Contrast

Ls = Luminance of the signal

Lb = Luminance of the background

Contrast threshold is de�ned as �the minimum amount of contrast necessary for a stimulus to be

just detectable.� (Kingdom & Prins, 2010, p. 10) and, therefore, the contrast detection threshold

would be the minimum value of Weber contrast required to just detect the stimulus. Contrast

sensitivity is the reciprocal of contrast threshold and represents the ability of the observer to

detect di�erences between the stimulus and its background.

The circular stimuli used by Blackwell (1946) ranged in diameter from 3.6 to 121 minutes of

arc with varying levels of contrast and were projected in one of eight locations on the periphery

of a blank circular screen of varying brightness. The participants were instructed to identify the

position they thought that the stimulus occupied and threshold contrasts were calculated from the

50% correct point on the observers' psychometric function. Blackwell (1946) was thus able to show

how the contrast threshold for the detection of a spatial signal varied with background luminance

and disc size.

The results shown in �gure 1.3 show that at high background luminance and with large stimuli

the relationship between contrast and background luminance obeyed the Weber-Fechner law. The

Weber-Fechner law, when applied to contrast threshold, states that if the background luminance is

doubled, then to maintain the signal just visible, the luminance di�erence between the signal and

background must also double. Thus, the contrast threshold remains constant as shown in equation
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Figure 1.3: A reproduction of Blackwell (1946) Figure 10 showing the variation of contrast levels
with room luminance with seven disc sizes.

1.8.

I − Ib
Ib

=
∆I

Ib
= Kw = Contrast Threshold (1.8)

where

∆I = luminance di�erence

I = signal luminance

Ib = average luminance

Kw = the Weber Fraction

The Weber-Fechner law would, thus, predict a �at function of contrast sensitivity versus back-

ground luminance and this is what we see at high luminance levels with large stimuli. At lower

background luminance, with smaller stimuli, the relationship between contrast and background

luminance no longer obeys the Weber-Fechner law; the contrast needed to see a signal in low lu-

minance increases approximately with the square root of the decreasing background luminance.

Whilst not a conclusion drawn by Blackwell (1946), Barlow (1957) later suggested that the de-

viation from the Weber-Fechner law seen in low luminance levels may result from the increasing

in�uence of what he referred to as �dark light�, a concept now more commonly referred to as

internal noise.

1.1.4 The e�ect of internal noise

Barlow (1956) proposed that �dark light� resulted from noise occurring in the optic pathway, in-
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dependent of any external signal. This was demonstrated by Barlow (1957) in a psychophysical

experiment requiring observers to detect spatial disc signals on blank backgrounds which estab-

lished the threshold values for several disc sizes at varying levels of background luminance. The

results were compared against the theoretical prediction that at higher background luminance, the

level of background luminance would determine the observer's threshold, whilst at low background

luminance, the threshold would level o� at a lower threshold determined by the dark light of the

optic pathway. This can be seen in Figure 1.4, showing the function of the log increment threshold

(the log of the di�erence between the intensity of the signal and the intensity of the background)

plotted against the log of the background intensity.

There are two sources of noise contributing to the total noise in the system, the noise resulting

from the intensity of the background and the unknown internal noise. At high background lumi-

nance levels the internal noise is insigni�cant and the function is determined by the background

intensity and, in accordance with the Weber-Fechner law, the di�erence between the increment

threshold must be increased to detect the signal as external noise increases. At very low levels of

background luminance, internal noise increasingly becomes important and eventually dominates

causing a levelling o� of the increment threshold required for detection of the signal. As shown

in Figure 1.4, the straight sections of the two parts of the curve intersect at the point at which

the noise resulting from the background luminance is equal to the internal noise and the dotted

line from the intersection onto the x axis indicates its value. The results were consistent with the

prediction made by Barlow (1957) and enabled the dark light to be estimated as being equivalent

to approximately 1000 quanta entering the eye.

The dark light proposed by Barlow (1957) also �tted well with SDT as proposed by Tanner

& Swets (1954), providing the source of noise independent of the signal that drove the observer's

response in the absence of a signal, leading to false alarms. Barlow (1957) also recognised the

quantal �uctuation of the background luminance as a source of noise independent of the signal

and, hence, was recognising the e�ect of noise internal to the visual system (the dark light) and

noise external (the quantal �uctuation of the background luminance).

Nagaraja (1964) used the same principle for estimating internal noise as Barlow (1957) but

took an engineering methodology, used to measure the noise in ampli�ers, of adding external noise

to a system (known as equivalent input noise measurement (Pelli, 1990, p. 4)) and adapted this

to measure noise in human visual perception tasks (Lu & Dosher, 2008, 2014, p. 272). Using

disc signals on backgrounds with variable noise levels, Nagaraja (1964) plotted contrast levels for

the detection of the disc signal as a function of background noise level for several disc sizes and

background luminance. It was observed that adding external noise to the system didn't change
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Figure 1.4: Example measurement of equivalent input noise.

the shape of the psychometric function, but simply shifted it to higher contrast thresholds and,

thus, Nagaraja (1964) suggested that the contrast threshold is the result of the internal noise plus

the additional external noise. Nagaraja (1964) observed that at higher levels of external noise, the

internal noise was negligible and could be ignored and using the methodology illustrated in Figure

1.4, was able to estimate the level of internal noise. Decreasing the disc size simply shifted the

curve of signal to noise ratio higher without changing the measured level of internal noise.

1.1.5 The internal and external components of internal noise

The approach of adding external noise to a system, as used by Nagaraja (1964), was extended

and widely used by numerous researchers over the following decades (for example: Burgess (1985);

Burgess & Ghandeharian (1984a,b); Burgess et al. (1981); Legge et al. (1987); Pelli (1981, 1990)).

Pelli (1990, p. 12) argued that the internal noise arose from two sources; absorbed photon noise

and contrast invariant (or �xed) neural noise which together he referred to as �equivalent noise�.

Re-analysing data from several earlier studies, Pelli (1990, p. 11) showed that the equivalent noise

level reduced as luminance levels increased and went on to show that this change resulted from the

variation of absorbed photon noise whilst the contrast invariant neural noise remained constant. As

the luminance levels increase so absorbed photon noise decreases and at high luminance levels the
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equivalent noise is dominated by neural noise. At low luminance levels, the opposite is true and,

as luminance decreases, the equivalent input noise becomes increasingly dominated by absorbed

photon noise, though this is at extremely low light levels where rod vision predominates.

Whilst Pelli (1990) showed that the quantum �uctuations of the background luminance make

an inversely proportional contribution to the level of internal noise, decreasing as background

luminance increases, (Burgess & Colborne, 1988) suggested that added background noise also

in�uenced the level of internal noise. Burgess & Colborne (1988) proposed that neural noise was

made up of a �xed component and a second component that was dependent upon the strength

of the external noise. Their experiment used two techniques to estimate the ratio of internal

noise to external noise; �rstly a method called response consistency and secondly using same and

di�erent noise �elds. The method of response consistency compares the responses of observers to

two identical detection experiments, conducted several weeks apart; if the observers had no internal

noise their performance should be consistent across experiments and the ratio would approach one,

whereas with high levels of internal noise, the results would be inconsistent and the probability

of agreement would approach chance (ratio = 0.5). Using the probability ratios determined from

the two separate experiments and the known data for the external noise, Burgess & Colborne

(1988) calculated an internal noise to external noise ratio of 0.75 at high external noise levels with

an increasing ratio as external noise levels reduce, indicating that the internal noise reduced as

external noise fell.

A similar result was achieved using the same/di�erent noise �eld method. The theoretical

basis for this was explained using the formulas for the detection of a signal in a two alternative

forced choice (2AFC) detection task, as shown in equations 1.11 to 1.20, as detailed by Burgess

& Colborne (1988). Burgess & Colborne (1988) used the detectability index
(
d
′
)
and before

discussing this treatment, it would be worthwhile to brie�y introduce the concept of d
′
.

The detectability index
(
d
′
)
represents the di�erence between the mean values of two inter-

nal response distributions (for example, signal and noise distributions or two signal distributions)

divided by the standard deviation of the two distributions (Green & Swets, 1966, p. 60). The de-

tectability index represents the discriminability between two distributions and, using the detection

of a signal in noise, the detectability index can be de�ned mathematically as:

d
′

=
µs+n − µn

σ
(1.9)

where

µs+n = Internal noise distribution of signal plus noise

µn = Internal noise distribution of noise only
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σ = Standard deviation of the distributions (assuming equal variance distributions)

The detectability index
(
d
′
)
can also be measured from experimental data using the formula:

d
′

= z (H)− z (F ) (1.10)

(Macmillan & Creelman, 2005, pp. 8-10)

where

z = Inverse of the normal distribution function

H = Hit rate

F = False alarm rate

Referring back to Burgess & Colborne (1988), the detectability index for a signal in di�erent

noise �elds is as follows in equation 1.11.

(
d
′

2

)2
=

E2

σ2
0 + σ2

c

(1.11)

where

d
′

2 = detectability index for detection of a signal in di�erent noise �elds

E2 = signal energy

σ2
0 = variance external noise

σ2
c = variance internal noise

Note: Signal energy
(
E2
)
is de�ned as the integral over space and time of the squared signal

function. Mathematically this is represented by:

E2 =

ˆ ˆ ˆ
S2 (x, y, t) dxdydt (1.12)

where S is de�ned as the signal function (or contrast), x and y are the signal dimensions measured

in degrees of arc and t is time in seconds (Legge et al., 1987)

Burgess & Colborne (1988) stated that for identical noise �elds, the ideal observer would

subtract the two noise �elds, leaving a noiseless image and, therefore, the detectability index for a

signal in same noise �elds is as follows in equation 1.13.

(
d
′

1

)2
=
E2

σ2
c

(1.13)

where

d
′

1 = detectability index for detection of a signal in same noise �elds

Thus, manipulating equations 1.11 and 1.13:
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(
d
′

2

)2 (
σ2
0 + σ2

c

)
= E2 and

(
d
′

1

)2
σ2
c = E2 (1.14)

For the same signal energy:

(
d
′

2

)2 (
σ2
0 + σ2

c

)
=
(
d
′

1

)2
σ2
c (1.15)

and: re-arranging

(
σ2
0 + σ2

c

)
=

(
d
′

1

)2
(
d
′
2

)2 σ2
c (1.16)

Take σ2
c outside the left hand side bracket

σ2
c

(
σ2
0

σ2
c

+ 1

)
=

(
d
′

1

)2
(
d
′
2

)2 σ2
c (1.17)

Cancel σ2
c

(
σ2
0

σ2
c

)
=

(
d
′

1

)2
(
d
′
2

)2 − 1 (1.18)

(
σ0
σc

)
=


(
d
′

1

)2
(
d
′
2

)2 − 1


1
2

(1.19)

and, �nally, the ratio of internal to external noise equals:

(
σc
σ0

)
=


(
d
′

1

)2
(
d
′
2

)2 − 1


− 1

2

(1.20)

Using this method the internal-external noise ratios were estimated as 0.73 for one observer and

0.63 for the second observer, roughly consistent with the response consistency method. These

results enabled Burgess & Colborne (1988) to conclude that internal noise had two components:

the �xed, contrast invariant, internal noise as suggested by previous researchers (Barlow, 1957;

Nagaraja, 1964; Pelli, 1981) and a variable component directly dependent upon the external noise.

1.1.6 What is internal noise?

Although internal noise can be conveniently categorised into a �xed and variable components, it

is likely that both components result from a combination of neuronal noise and noise resulting
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from the variability in the decision making process. Considerable work has been carried out

into the causes of neuronal noise and Destexhe & Rudolph-Lilith (2012) list a number of sources

including thermal noise, channel noise, shot noise and burst noise, amongst others, however a

simpler designation is made by Baylor et al. (1980) who suggested that internal noise results from

two sources; �rstly continuous �uctuations of the neural signal, thought to arise in the transduction

process, and, secondly, occasional discrete events most likely caused by thermal or spontaneous

isomerisation of the photoreceptor rhodopsin molecules (although this second factor will not be

important at the light levels used for the experiments in this thesis). One e�ect of neuronal noise is

to create a transition region for the detection of a signal between not seeing and seeing the signal,

where the observer cannot be certain about its presence, or absence, and this, therefore, creates

a region where the observer can exercise a variable criterion for seeing. Thus, internal noise is a

combination of neuronal noise and noise resulting from criterion variability.

1.1.7 Summary of the sources of observer variability

The research cited here (along with a great number of other contributions) has established that,

whilst the absolute threshold for seeing may be as low as 100 photons of light incident on the eye

and a single photon absorption at the retina, the actual threshold for the detection of a signal is

inherently dependent upon the various sources of noise. That noise has a number of components

resulting from factors external and internal to the visual system. For the simple case of a �ash of

light Hecht et al. (1942) and Hecht (1945) demonstrated that observer variability was caused by

the e�ect of quantum �uctuations of the signal luminance. Barlow (1957) also recognised that the

luminance of the background was also subject to quantum �uctuation and, as shown by Blackwell

(1946) and Nagaraja (1964), the background luminance itself contributes to the external noise

levels impacting upon the observer's ability to detect a stimulus.

Tanner & Swets (1954) found that observer variability also resulted from sources internal to

the observer in the form of criterion variability, enabling the observer's response to be shifted

independently of any factors associated with the external signal. Identi�cation of the underlying

cause of the observer's variability to response criterion changes fell to Barlow (1956, 1957) who

coined the term �dark light� to describe, what would become known as, internal noise. Further

research has shown that internal noise is made up of induced and �xed components, with the

induced component variable and proportional to the strength of the external noise and the �xed

component, invariant of external noise. All these separate components need to be considered when

determining the contrast threshold (as de�ned on page 38) for detecting a signal.
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1.2 Signal Detection Theory

When studying the decision making process for the detection of a signal, whether it is static or

animated, under conditions of variability resulting from noise, a general model for the decision

making process is useful. Signal detection theory has been found to be one of the most suc-

cessful models and is widely used in psychophysical applications, as well as more general contexts

(Macmillan & Creelman, 2005, pp. xiii; Wickens, 2001, pp. v-ix). As discussed in section 1.1.2, the

widespread use of SDT in psychophysics followed on from research carried out by Tanner & Swets

(1954) (Cohn, 1993, p. 4). Tanner & Swets (1954) implemented the mathematical / engineering

basis developed by Peterson et al. (1954) and the use of SDT in psychophysics, although initially

predominately in audition applications, was re�ned by Swets (1961) and Swets et al. (1961) and

formalised in the classic text by Green & Swets (1966).

Although the experiments in this thesis will involve spatially extended patterns which can

be represented by matrices, for simplicity, the concept of SDT will be introduced using a scalar

stimulus, such as a �ash of light. The application of SDT to spatially extended patterns will be

introduced in section 1.3 once the basic principles have been established.

The presentation of a scalar stimulus to a receiver, such as a �ash of light containing some

number of photons, will result in an internal neural response, however, as a result of the quantum

nature of light and the sources of variability discussed in section 1.1, the response to the stimulus

will vary across a range of response strengths. If displayed as a probability density function showing

the strength of each response against the frequency with which each value of strength occurs, it

can be approximately described by a Gaussian distribution (Figure 1.5).
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Figure 1.5: Probability density function for the neural internal response to a scalar stimulus, such
as a �ash of light containing some number of photons.
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Figure 1.6: Probability density function for the neural internal response to a stimulus consisting of
noise only and noise plus a signal. The left hand pair of stimuli represents the noise only stimulus
and a stimulus containing a weak signal and the weakness of the signal results in a lot of overlap
between the two stimuli. The right hand pair of stimuli represents the noise only stimulus and a
stimulus containing a stronger signal which results in less overlap between the two stimuli.
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If a signal is added to the original stimulus, the internal response will once again take a range

of values, dependent upon the strength of the signal and, once again, re�ecting the sources of

variability discussed in section 1.1, and this can also be represented by a probability density

function. The challenge for the receiver, or observer, is to decide from one internal response

whether it was elicited by the noise alone or the noise plus signal. Clearly with a very strong signal

this is easy, however, for a weak signal, the probability density functions of noise only and noise

plus signal have considerable overlap making the decision of whether the signal is present much

more di�cult. A criterion is useful here and this enables the observer to make consistent decisions.

A criterion refers to the observer's implicit rule for converting the internal response elicited by the

stimulus into an external response or decision; for example, internal responses above the criterion

will elicit a �yes� response and internal responses below the criterion will elicit a �no� response.

Selection of the criterion will inevitably lead to some errors as well as correct decisions and in

signal detection theory these can be categorised into one of four response types:

a. Hit

b. Miss

c. False alarm

d. Correct rejection

As shown in Figure 1.7 :

Figure 1.7: Response types to signal present and signal absent.

Taking the criterion level to be λ; if the received stimulus on a single trial elicits a value greater

than λ we will say yes, signal present and if it elicits a value less than λ we will say no, signal

absent. If the stimulus presented is signal plus noise and the trial elicits a value greater than λ,
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we will say yes and this represents a hit. Because the distributions overlap, the trial may elicit a

value above λ for a stimulus of noise only, we will again say yes, but this time it will be a false

alarm. Note that, whilst stating that the two distributions overlap, they do not actually appear

together, indeed, they do not appear to the observer at all and are just pictorial representations

of the range of internal responses from a noise only and a signal plus noise stimulus. The observer

only sees a single stimulus and they must make a decision regarding whether it is best represented

by the noise alone distribution or by the signal plus noise distribution.

We can calculate the probability of these decisions being a hit or a false alarm by calculating

the area under probability distribution function of the stimulus above λ.

The probability density function of a Gaussian distribution of a random variable x with zero

mean and a variance of σ2 (N(µ, σ2)) is given by:

φ (x) =
1√
2πσ

e−
x2

2σ2 (1.21)

where:

φ (x) = probability density function

x = a random variable

σ2 = variance

The area under this probability density function is found by integrating equation 1.21, so that

the probability of correctly saying yes, signal present, given the stimulus xs+n = signal+ noise is

shown in Figure 1.8 and, mathematically, by equation 1.22:

P (Y es|signal + noise) =

ˆ ∞
λ

φ (xs+n) dx (1.22)

Similarly, the probability of a false alarm given the stimulus xn = noiseonly is shown in Figure

1.9 and, mathematically, by equation 1.23.

P (Y es|noise only) =

ˆ ∞
λ

φ (xn) dx (1.23)

1.2.1 Likelihood ratio

Given the response from a single observation, it would be useful to be able to make a decision

regarding whether the observation belonged to the noise only distribution or from the signal plus

noise distribution and the likelihood of each can be calculated using the probability density function

of the noise and signal plus noise and the value returned by the single observation (Wickens, 2001,
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Figure 1.8: The probability density functions of noise only and signal plus noise. The shaded area
shows the probability of correctly saying �yes� given a signal from the signal plus noise distribution
that is equal to or greater than λ.
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Figure 1.9: The probability density functions of noise only and signal plus noise. The shaded area
shows the probability of incorrectly saying �yes� given a signal from the noise only distribution
that is equal to or greater than λ.
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Figure 1.10: A noise only distribution with a mean of µ1 and the signal plus noise distribution
with a mean of µ2, both with an equal variance of σ2. The observer receives a stimulus resulting
in an internal response of X.

pp. 154-157). Figure 1.10 shows a noise only distribution with a mean of µ1 and the signal plus

noise distribution with a mean of µ2, both with an equal variance of σ2.

The likelihood that the observationX belongs to the noise only distribution (Hypothesis 1 (H1))

or to the signal plus noise distribution (Hypothesis 2 (H2)) is given by equations 1.24 and 1.25:

Likelihood that Hypothesis 1 is true L(H1) : L (X | H1) =
1√
2πσ

e−
(X−µ1)2

2σ2 (1.24)

of

Likelihood that Hypothesis 2 is true L(H2) : L (X | H2) =
1√
2πσ

e−
(X−µ2)2

2σ2 (1.25)

Which can be written as equation 1.26:

ratio H1 : H2 =
L (H1)

L (H2)
(1.26)
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To ensure manageable numbers and a symmetrical distribution the likelihood ratio is calculated

using the logarithm of each likelihood as shown in equation 1.27:

ln (ratio H1 : H2) = ln

(
L (H1)

L (H2)

)
= lnL (H1)− lnL (H2) (1.27)

An unbiased observer will have a criterion of zero (the intersection point of the two distributions)

and values greater than zero will indicate the likelihood that the signal X comes from the noise

only distribution and values less than zero will indicate the likelihood that the signal X comes

from the signal plus noise distribution. We can, of course, set the criteria to increase or decrease

the likelihood of each decision.

1.2.2 The Bayesian observer

The likelihood ratio simply indicates the likelihood of the observation falling in one distribution or

the other, however, it does not give the probability of the observation actually being correct. By

taking account of the prior probabilities of each alternative the likelihood ratio can be converted

into a probability model; this is the Bayesian observer. By including the prior probability of

each outcome (P (H)) with the likelihood of its occurrence (P (X | H)) we obtain an a posteriori

probability (P (H | X)) for that event using equation 1.28 (Wickens, 2001, pp. 157-160).

P (H | X) =
P (X | H)P (H)

P (X)
(1.28)

P (X) is the probability of observed stimulus occurring and, for the trials used in this thesis,

is the same for all observations and, therefore doesn't contribute to the optimal decision rule. By

following the same strategy as used with likelihoods of �nding the ratio, the value of P (X) is not

required as can be seen from equation 1.30.

Bayes ratio =
P (H1 | X)

P (H2 | X)
=

P (X|H1)P (H1)
P (X)

P (X|H2)P (H2)
P (X)

(1.29)

Bayes ratio =
P (X | H1)P (H1)

P (X | H2)P (H2)
(1.30)

If hypothesis H1 is that the signal is present, the Bayesian observer will say signal present if

the Bayes ratio is equal to or greater than 1 and signal absent if the ratio is less than 1. We can

see from equation 1.30 that if the prior probability of each hypothesis is the same as, for example,

in the case of a 2AFC task, then the Bayes ratio will be the same as the likelihood ratio and, in

this case, both would describe the optimum decision making strategy for the observer.
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1.3 The Detection of Spatially Extended Patterns

Section 1.2 discusses the case of detecting a scalar signal, for example a packet of some number

of photons as encountered in many of the early experiments (Barlow, 1957; Hecht et al., 1942;

Hecht, 1945). A lesion embedded in a mammogram, and, indeed, a Gaussian blob superimposed

on an image, is a more complex situation and involves a two dimensional spatial signal. Now,

rather than a scalar quantity representing the strength of a signal, the spatial signal is represented

by a matrix which can be �attened into a vector quantity. However, the theoretical approach of

SDT, the likelihood observer and the Bayesian observer can still be applied by reducing the vector

quantities to a single value through cross-correlation, as described in section 1.3.1. This single

value can be compared to a criterion in the same way as section 1.2 or compared to an alternative

stimulus, as in the case of a 2AFC task.

1.3.1 Cross-correlation

Cross-correlation is a technique that enables the similarity of two signals to be measured and

was originally developed for use in electronics. The basic premise of cross-correlation is that the

corresponding pixel values from the template of a signal and of the received stimulus (the image to

be searched) are multiplied and summed to give a cross-correlation value of the stimulus and signal

template. Taking a 2AFC, signal known exactly paradigm as an example, the cross-correlation

would be carried out with the two alternative locations and the location that returns the largest

cross-correlation value would be selected as the proposed location of the signal. For a multiple

alternative forced choice (MAFC) paradigm, the cross-correlation would be carried out for all

possible values of M. For a Yes/No task, we would say Yes, signal present, if the cross-correlation

value exceeded the criterion set.

The proof of cross-correlation as the optimum strategy has been provided by Green & Swets

(1966, pp. 162-164) and Kay (1998, pp. 95-96), among other texts, and, this will be summarised

for a signal known exactly (SKE) task for the detection of a discrete signal in Gaussian white noise

below. Taking the optimum decision making strategy of the likelihood ratio as the starting point,

the proof will demonstrate that this equates to the cross-correlation of the signal template with

the received stimulus
∑N−1
n=0 r s where r is the received stimulus and s is the template of the signal.

Using the format of equations 1.24 and 1.25 as our starting point, and setting the mean of the

noise only distribution to zero and assuming equal variances of σ2, we can derive the likelihood

values for the two hypotheses as follows:
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H1 : r = n (1.31)

H2 : r = s+ n (1.32)

where:

H1 is hypothesis 1 (the received stimulus contains noise only)

H2 is hypothesis 2 (the received stimulus contains the signal plus noise)

r is the received stimulus

n is Gaussian white noise (GWN) with a mean of zero and a variance of σ2

s is a discrete signal with zero value outside the range n = 0 and N − 1

Note: The received stimulus will be summed between the range n = 0 and N − 1 throughout

this proof, i.e.
∑N−1
n=0 , however, for clarity the summation sign will be shown without limits, i.e.∑

.

The likelihood that hypothesis H1 is true (i.e. the received stimulus contains noise only) is

given by equation 1.33.

Likelihood that Hypothesis 1 is true (L(H1)) : L (r | H1) =
1√
2πσ

exp−
∑

(r)2

2σ2 (1.33)

where:

L (H1) is the likelihood that the received stimulus contains noise only.

The likelihood that hypothesis H2 is true (i.e. the received stimulus contains the signal plus

noise) is given by equation 1.34.

Likelihood that Hypothesis 2 is true (L(H2)) : L (r | H2) =
1√
2πσ

exp−
∑

(r−s)2

2σ2 (1.34)

where:

L (H2) is the likelihood that the received stimulus contains the signal plus noise.

The likelihood ratio is:

L (r) =
L (H2)

L (H1)
=

1√
2πσ

exp−
∑

(r−s)2

2σ2

1√
2πσ

exp−
∑

(r)2

2σ2

(1.35)

where:
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L (r) is the likelihood ratio

Therefore:

L (r) = exp

[(
−
∑

(r − s)2

2σ2

)
−

(
−
∑

(r)
2

2σ2

)]
(1.36)

Tidying up:

L (r) = exp

[
− 1

2σ2

(∑
(r − s)2 −

∑
r2
)]

(1.37)

Taking the log of both sides

lnL (r) = − 1

2σ2

(∑
(r − s)2 −

∑
r2
)

(1.38)

Multiplying out:

lnL (r) = − 1

2σ2

(∑(
r2 − 2r s+ s2 − r2

))
(1.39)

Which simpli�es to:

lnL (r) =
∑(

r s− s2

2σ2

)
(1.40)

Because s2

2σ2 is known and, therefore a constant, its e�ect is simply to shift the value of lnL (r)

down - it can, therefore be ignored and we are left with:

lnL (r) =
∑

r s (1.41)

Equation 1.41 is the cross-correlation of the stimulus with the signal template and, therefore,

provides the mathematical proof of cross-correlation leading to the optimum decision making strat-

egy. Equation 1.41 can be written as a test statistic T (r) that can be compared to a threshold λ,

such that when the test statistic is greater than λ we conclude that hypothesis H2 is true and the

signal is present and when less than λ we conclude that hypothesis H1 is true and the signal is not

present .

T (r) =
∑

r s > λ H2 is true (1.42)

T (r) =
∑

r s < λ H1 is true (1.43)
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The images presented to the observer can be represented by a column vector with the number

of rows equal to the number of pixels and the ideal strategy of cross-correlation can be conveniently

handled by linear algebra. Taking the received stimulus to be r, the column vectors for r will be

either:

r = n (noise only)

or:

r = s+ n (signal plus noise)

The received stimulus vector is �rst transposed to enable matrix multiplication and the likeli-

hood ratio is determined by cross-correlating this with the signal vector as shown in equation

T (r) = (r)
t
s (1.44)

Where t indicates transpose and T (r) is the test statistic.

For a yes/no task, if the test statistic exceeds the observer's criterion, the observer will say yes,

signal present. For a 2AFC task, with stimuli presented left and right, the observer will cross-

correlate with both stimuli and the observer will decide that the signal is present on the left if

the cross-correlation value of the left stimulus is larger than that of the right, and right if the

cross-correlation value of the right stimulus is larger than the left.

1.4 The Ideal Observer and Observer E�ciency

1.4.1 The ideal observer

The preceding sections have shown that the optimum decision making strategy for a signal known

exactly in Gaussian white noise is to cross-correlate the stimulus with a template of the signal to

be detected using a likelihood or Bayesian strategy to de�ne the criterion and this de�nes the ideal

observer for this task. Thus for the task pertinent to this thesis of detecting a signal in a noise

background, the ideal observer will compute the test statistic T (r), as shown in equation 1.44,

compare this number to a criterion and if it is above the criterion will say �signal present�, if below

the criterion, �signal absent�.

The ideal observer is a widely used technique with a long history in visual perception with

early examples of its use exempli�ed by Peterson et al. (1954); Tanner & Birdsall (1958) and it
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is described in detail by Green & Swets (1966, p. 151). Numerous examples of the use of the

ideal observer theory occur both in general visual perception research (examples are: Burgess &

Judy (2007); Conrey & Gold (2009); Simpson et al. (2003); Tapiovaara (1990)) and in medical

image research (examples are: Abbey & Boone (2008); Abbey et al. (2006); Kupinski et al. (2003);

Veldkamp et al. (2003)).

The Ideal observer is, thus, a theoretical device that achieves optimal performance for a des-

ignated task (Geisler, 2011; Green & Swets, 1966, p. 151). Biological systems such as the human

visual system generally don't perform optimally, and therefore the ideal observer should not be

thought of as a potentially realistic model of the actual performance of the human visual system.

Rather, its value lies in providing a precise measure of the stimulus information available for per-

forming the task and a computational framework that enables optimum performance of that task

(Geisler, 2011). In its simplest form the performance of the ideal observer can be used as a bench-

mark against which to compare the human observer (Geisler, 2011; Green & Swets, 1966, p. 152;

Kersten & Mamassian, 2009). In some cases, this can reveal what the human observer can do, but,

just as importantly, it can also reveal what the human observer can't do. This information can

aid in the design of algorithms for use in an interface that can assist the human observer towards

optimum performance (He & Park, 2013).

1.4.2 Can human observers adopt the strategies of the ideal observer?

The preceding sections have shown that, for the detection of a signal in a noise background,

the ideal observer will use a strategy of cross-correlating the stimulus with a template of the

signal to be detected and make a decision about the presence or absence of the signal using a

likelihood or Bayesian decision making strategy. The following subsections will review the literature

investigating whether human observers can operate in the same way as ideal observers.

1.4.2.1 Can human observers cross-correlate?

As discussed in section 1.3, the optimum strategy for the detection of a SKE in Gaussian white

noise is to cross-correlate the received image with a template of the signal (Green & Swets, 1966,

p. 165) and use likelihood or Bayesian reasoning to select the option with the highest a posteriori

probability and this is, therefore, the strategy that the ideal observer would use for this task. But

can the human observer operate in the same way as an ideal observer?

Burgess & Ghandeharian (1984a) proposed that the Bayesian ideal observer would make use of

a priori information and in the signal known exactly scenario this will include information about

the size, shape and location of the signal. Thus, the Bayesian ideal observer will match a template
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of the signal to the received stimulus and make a decision based on the most probable hypothesis;

the strategy of cross-correlation or template matching. Burgess & Ghandeharian (1984a), in the

�rst of a series of four papers, asked the question of whether human observers could also use a cross-

correlation strategy and investigated this by comparing the performance of human observers against

the predicted performance of the ideal cross-correlating observer and an alternative strategy, the

ideal auto-correlating observer. Whereas the cross-correlating observer cross-correlates the received

stimulus with a known template of the signal, the auto-correlating observer is simply an energy

detector and, hence, cannot use all the known properties of the signal in the same way as a

cross-correlating observer, as illustrated in Equations 1.45 and 1.46.

Cross correlator : say yes if
∑

r · s > criterion (1.45)

Energy detector : say yes if
∑

r2 > criterion (1.46)

Burgess & Ghandeharian (1984a) calculated the performance of the ideal cross-correlating

observer and derived the performance of the auto-correlating observer, which we will refer to as

an energy detector, using Monte Carlo simulations. They used a 2AFC protocol with static noise

in one �eld and static noise plus the signal in the other �eld and compared the performance of

human observers against the two ideal observers in two conditions; with phase information about

the signal and without this information. An energy detector is unable to use properties of the

signal, such as phase, and would predict the same performance in both conditions. This was not

the case and, as shown in Figure 1.11, observers given phase information performed better than

without phase information and, indeed, performed better than the ideal energy detector.

This supported the hypothesis of Burgess & Ghandeharian (1984a) that human observers could

use a template with information, in this case phase, about the signal and supported the theory

that humans can perform cross-correlation detection when given enough information about the

signal that they can form a good template of it.

1.4.2.2 Can human observers make use of a priori and a posteriori information?

Whilst Burgess & Ghandeharian (1984a) demonstrated the ability of the human observer to cross-

correlate, the format of the task didn't provide evidence that they could also use a Bayesian

strategy in the decision making process, however, this was tested in Burgess & Ghandeharian

(1984b) and Burgess (1985). The second paper of the series, Burgess & Ghandeharian (1984b)

introduced uncertainty about the signal by carrying out the experiment with multiple possible
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Figure 1.11: Figure reproduced from Burgess & Ghandeharian (1984a) showing that the perfor-
mance of a human observer, for the detection of a two cycle sine wave, when given signal phase
information (�lled data points) is better than a human observer not given phase information (open
data points). The performance of the human observer given phase information also exceeds that
of the performance of a theoretical auto-correlating observer (energy detector) (dotted line) sup-
porting the hypothesis that the human observers can cross-correlate.

locations ranging from 2 to 1800. The optimal, ideal observer, strategy was proposed as cross-

correlating the signal locations with a known template of the signal and weighting the cross-

correlation with the probability of the signal being in that location, a strategy referred to as

the maximum a posteriori (MAP) decision strategy. The ideal observer performance was then

further weighted by 50% to re�ect the likely human observer e�ciency. For the ideal observer,

signal location uncertainty reduces performance as the number of locations increases. Once again,

human performance was compared against the weighted ideal observer performance and the results

for the human observers showed a good �t with that of the weighted ideal observer, showing similar

decrements in performance as uncertainty increased. The observation that ine�ciency remained

at 50% regardless of the number of locations supported the hypothesis that human observers can

also carry out a MAP strategy as employed by the Bayesian ideal observer.

These conclusions from the �rst two papers in the series (Burgess & Ghandeharian, 1984a,b)

were further supported by the third paper in the series (Burgess, 1985), where signal uncertainty

was introduced by increasing the the number of possible signal types to ten, with the signals

selected from a Hadamard function set (Pratt, 1978). The study used an alternative forced choice

paradigm with a signal selected from the set in a known location but conducted using three

methods; detection with signal known, detection with signal unknown and an identi�cation task

with signal unknown.
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Figure 1.12: Example �gure, reproduced from Burgess (1985), showing percent correct against the
signal to noise ratio for the 2AFC and 10AFC identi�cation tasks. The theoretical comparison for
the ideal observer is shown by the solid line and the comparison for two human observers (AB and
RA) are shown by the open and �lled symbols.

Burgess (1985) predicted the ideal observer performance by calculation for the signal known

exactly condition and using a Monte Carlo simulation for the signal unknown condition and com-

pared this to the human observer performance. As would be expected, the e�ect of increased

signal uncertainty was to reduce ideal observer performance. The same performance decrements

were seen for the human observers, who were found to operate with, on average, 33% e�ciency

when compared to the ideal observer. Figure 1.12, reproduced from Burgess (1985), illustrates

this, showing the close agreement between the ideal observer (weighted for human e�ciency) and

the two human observers for two alternative forced choice and the 10 alternative forced choice

conditions.

As in the second paper (Burgess & Ghandeharian, 1984b), the human response varied linearly

with that of the ideal observer showing that signal uncertainty has the same e�ect on the human

observer as on the ideal observer and provides support for the hypothesis that human observers

can utilise prior signal knowledge to cross-correlate with the received stimuli and use a Bayesian

MAP strategy for decision making.

1.4.3 Observer e�ciency

The concept of an ideal observer enables the performance of human observers to be compared and

their e�ciency to be calculated. Barlow (1978) re-introduced the concept of the ideal observer into

the domain of the visual psychophysics to calculate the performance of the ideal observer and used

this to determine and compare the e�ciency of human observers when detecting various higher

density dot patterns sited in lower density dot backgrounds. Barlow (1978) found an upper limit
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of 50% e�ciency for human observers carrying out this task.

Burgess et al. (1981) measured the e�ciency of human observers when conducting a 2AFC

discrimination task where the observers were presented with grating signals embedded in the centres

of side-by-side square noise patches. The grating signals were presented as stationary gratings,

periodic pulse burst signals or periodic sinusoidal signals and the observers were required to indicate

which noise �eld contained the grating signal with the greatest amplitude. The e�ciencies of the

human observers were calculated from the ideal observer's performance which was determined

using equation 1.47:

d
′

Ideal =
E

N0
(1.47)

where

d
′

Ideal = ideal observer performance

E =
´∞
−∞
´
s2 (x, y) dxdy = signal energy

N0 = noise spectral density

and human observer performance from:

d
′

Human = 2erfi (2P − 1) (1.48)

where

d
′

Human = human observer performance

erfi = inverse error function

P = proportion of correct responses

and e�ciency from:

Efficiency =

(
d
′

Ideal

d
′
Human

)2

× 100% (1.49)

Burgess et al. (1981) found e�ciencies ranging from 54% for an aperiodic Gaussian signal to

83% for a 4.6 cycle/degree sine-wave grating.

Legge et al. (1987) proposed that the overall e�ciency of the human observer could be parti-

tioned into two components; one re�ected by the observer's equivalent noise (re�ecting the level of

internal noise) and a second related to the observer's sampling e�ciency. Legge et al. (1987) used

the equivalent noise technique, described in section 1.1.4, and the established relationship between

the threshold signal energy (Et) and noise, described by equation 1.50:

Et = k (N +Neq) (1.50)
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where

Et = signal energy at threshold

k = slope

N = noise spectral density. Noise spectral density refers to the noise power per unit of band-

width and is sometimes known as the power spectral density of the noise. Legge et al. (1987)

calculated this by multiplying the pixel area with the squared value of the root mean square (rms)

contrast of the noise.

Neq = equivalent noise

Note: The parameters k and Neq can be estimated by plotting the performance data as shown

in Figure 1.13 as described on the next page

The observer's sampling e�ciency is related to the e�ectiveness by which the observer cross-

correlates the signal template with the target signal with mismatch in template size and shape,

along with incomplete spatial or temporal summation leading to reductions in sampling e�ciency

(Legge et al., 1987). The study included two separate experiments, one using a 2 cycle/degree sine

wave as the target signal, the other using a 13.6 arcmin disc as the target signal, both embedded

in a pedestal to facilitate a discrimination task between signal and pedestal, with added external

noise that was static in the �rst experiment and dynamic in the second (Legge et al., 1987). In

both cases the threshold signal energy for discrimination was plotted against the noise spectral

density such that the separate contributions of equivalent noise and sampling e�ciency could be

estimated as shown in Figure 1.13, extracted from Legge et al. (1987).

For an ideal observer, with no internal noise and a sampling e�ciency of 1, the signal detectabil-

ity index d
′
will be given by:

d
′

=

√
Et
N

(1.51)

And, therefore the signal energy Et required by the ideal observer for detection will be:

Et = d
′2N (1.52)

For a human observer with internal noise and a sampling e�ciency of 1, the signal energy Et

required for detection will be:

Et = d
′2 (N +Neq) (1.53)

Sampling e�ciency is the reciprocal of the slope k, i.e. as the slope increases, sampling e�ciency
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Figure 1.13: Illustration of Legge et al. (1987) methodology for partitioning contrast threshold for
discrimination into the e�ect of sampling e�ciency and the e�ect of equivalent noise.

reduces, and, therefore, sampling e�ciency J can be de�ned as:

J =
d
′2

k
(1.54)

and hence, equation 1.50 on page 62 can be rewritten as:

Et =
d
′2

J
(N +Neq) (1.55)

With reference to Figure 1.13, we can determine the contrast threshold for discrimination with

no added noise from the intercept on the Y axis and this shows that functions B and C have

the same threshold energy, but, from threshold energy alone it would not be possible to identify

the contribution of the individual sources of ine�ciency. However, by adding external noise and

plotting Et against noise spectral density N , with the signal detectability index maintained at

d
′

= 1, using equation 1.50, we are able to determine the contribution of sampling e�ciency from

the reciprocal of the slope of the function and the (negative) value of the equivalent noise from the

intercept on the X axis.

From Figure 1.13, we can see that the ideal observer has a slope of 1 and no equivalent noise,

therefore Et = N. An observer with a sampling e�ciency of 1 but with added equivalent noise of
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1 is shown by function A, where Et = N + 1. An observer with a sampling e�ciency of 1 but with

added equivalent noise of 2 is shown by function B, where Et = N+2. An observer with a sampling

e�ciency of 0.5 and an equivalent noise of 1 is shown by function C, where Et = 2 (N + 1) .

Using this methodology, Legge et al. (1987) were able to determine that the major contribution

to the variation in contrast discrimination, and thus, to the overall e�ciency of the human visual

system for this task, resulted from the variation in equivalent noise, with sampling e�ciency

remaining relatively constant across the range of pedestal contrast.

Pelli (1990) also attempted to consolidate and clarify the components that together determined

the overall quantum e�ciency of vision, breaking down the process of vision from the presentation

of the image to the performance of the assigned task, be it detection or discrimination, into three

discrete stages. The �rst two stages being the production of the photon image at the retina and the

production of an e�ective image within the cortex which, together, Pelli (1990) called transduction.

The third stage Pelli (1990) referred to as calculation which represented the observer's use of the

e�ective image in decision making and this is analogous to the sampling e�ciency of Legge et al.

(1987). Calculation e�ciency is also known as central e�ciency (Barlow, 1977) and detection

e�ciency (Kersten, 1987).

The �rst stage of transduction requires the conversion of photons from the stimulus into an

image at the retina, and includes the random nature of the the luminance received at the cornea,

the losses experienced within the eye plus the impact of noise added to the display and Pelli (1990)

described the signal to noise ratio (SNR) at this stage as:

SNR1 =
E

N +Nphoton
(1.56)

where

E = signal energy

N = added display noise

Nphoton = corneal plus photon noise

The formation of the e�ective image in the cortex introduces the e�ect of neural noise and the

contrast invariant quotient of this added to the corneal and photon noise can be estimated using

the equivalent noise method described in section 1.1.4 such that the SNR at this stage is:

SNR2 =
E

N +Neq
(1.57)

where

Neq = equivalent noise = corneal plus photon noise and neural noise
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Interestingly, Pelli (1990) has not included the noise resulting from the decision making process

in equivalent noise which, by inference, previous researchers have done (Barlow, 1957; Nagaraja,

1964), but includes it in the �nal performance measure
(
d
′2
)
for the task in a similar manner to

Legge et al. (1987). E�ciency can be calculated for each stage and the overall quantum e�ciency

is equal to the product of the e�ciencies at each stage. Hence:

Transduction efficiency (F1) =

E
N+Neq
E

N+Nphoton

=
N +Nphoton
N +Neq

(1.58)

Calculation efficiency (F2) =
d
′2

E
N+Neq

(1.59)

and

Overall quantum efficiency (F ) = F1F2 =
d
′2

E
N+Nphoton

(1.60)

Using these de�nitions of e�ciency, Pelli (1990) demonstrated, using data from a number of

previous studies that transduction e�ciency is relatively constant at around 1% and, thus, variation

in e�ciency must result from variation in calculation e�ciency. Whilst this appears to contradict

the conclusion drawn by Legge et al. (1987), this may be explained by the methodology. Legge et al.

(1987) showed that sampling e�ciency within a task remained constant, however acknowledged

that sampling e�ciency between di�erent tasks (static noise and dynamic noise) did change, in

agreement with the conclusion drawn by Pelli (1990).

1.5 The E�ect of Signal Characteristics on Signal Detectabil-

ity

So far we have considered the detection of a signal in noise in isolation, without considering the

characteristics of the signal such as its spatial or temporal frequency. In the clinical environment,

the breast radiologist is trying to detect abnormalities that are represented by spatially extended

patterns with a range of spatial frequencies and in this thesis we will use a Gaussian blob with a

predetermined spatial frequency. This thesis will also add a temporal aspect to the task, intro-

ducing a signal that varies with time. These characteristics of spatial and temporal frequency will

impact on the ability of the radiologist or observer to detect a signal in noise and this section will

review the literature associated with these characteristics.
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1.5.1 The e�ect of spatial frequency on signal detectability

The breast radiologist is faced with the task of detecting abnormalities of varying size and an

observation from the studies cited previously is the variation of threshold with a change in the size

of the signal (Barlow, 1957; Blackwell, 1946; Nagaraja, 1964). Size is, of course, related to spatial

frequency; small signals correspond to higher spatial frequencies and larger signals to lower spatial

frequencies (Hess, 2011). The response of the visual system to the variation in size can, therefore,

be understood by studying its response to spatial frequency.

1.5.1.1 The units of spatial frequency in vision science and medical physics

This thesis straddles between the two distinct disciplines of visual science and medical physics and

in doing so occasionally encounters di�erent de�nitions or methodologies for the same concept.

The de�nition of symmetry, to be discussed in section 2.5, is a case in point and reporting spatial

frequency is another. In vision science visual angles are always used and spatial frequency is

expressed in terms of the number of cycles (where, for a grating, one cycle consists of one light

bar plus one dark bar) per degree subtended at the eye. Medical physics papers, however, will

often report spatial frequency in cycles/mm (Bushberg, 2002, p. 269) or as a spatial dimension

measured in mm or cm (for example: Bochud et al. (2004); Reiser et al. (2013)) or the number of

pixels (for example: Judy et al. (1981)).

In vision science, visual angle is preferred as it enables a true measure of the image size on the

retina and, thus, re�ects the perceived size of a stimulus. For a stimulus measured in mm, cm or

pixels the perceived size would depend upon the distance from the stimulus, however, given the

stimulus size and viewing distance, the visual angle can be simply calculated.

1.5.1.2 The spatial contrast sensitivity function

Schade (1956) was the �rst researcher to measure contrast detection thresholds for the response

of the human visual system to gratings of varying spatial frequency. This was achieved by using

a television monitor to display vertical bands of varying width to represent spatial frequency at

six di�erent luminance levels and adjusting the contrast of the image until the bands were just

visible, measuring the contrast at this point (Schade, 1956). Taking the reciprocal of the threshold

contrast values at each spatial frequency Schade (1956) was able to describe the contrast sensitivity

function for each luminance level and demonstrate the variation of sensitivity of the human visual

system with spatial frequency. Using a similar approach Campbell and his colleagues (Campbell &

Green, 1965; Campbell & Gubish, 1966) produced the more familiar, inverted U shaped, contrast

sensitivity function, such as shown in Figure 1.14. The fall o� in sensitivity at higher spatial
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Figure 1.14: A typical contrast sensitivity function.

frequencies was expected and resulted from the deteriorating optical properties of the eye as the

spatial frequency increased, whereas the fall o� at lower spatial frequencies was the result of neural

factors (Levin et al. (2011, p. 639); Wandell, 1995, p. 202).

The use of gratings became the predominant method for research into the spatial frequency

response of the human visual system, providing a stimulus where the spatial frequency, spatial

phase, orientation, and contrast can be independently varied. Spatial frequency refers to the

number of luminance cycles, or bars (noting that each cycle consists of two bars, one light and one

dark), that the grating repeats in one degree of visual angle; the greater the number of cycles, the

higher is the spatial frequency. The spatial phase describes the shift of the grating with reference

to a �xed point, for example, a grating that is a quarter of the way through its 360° cycle will have

a phase shift of 90°. Orientation refers to the tilt of the grating which can be vertical, horizontal

or oblique. Contrast is usually measured to determine the e�ect that one of the other parameters

has on the sensitivity of the visual system. Examples of gratings are shown in �gure 1.15
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Figure 1.15: Examples of spatial frequency gratings; low frequency (left), medium frequency (cen-
tre) and high frequency (right).

1.5.1.3 Fourier analysis and multiple channels

Schade (1956) assumed that the contrast sensitivity function re�ected the response of a single

detector mechanism, sensitive to a broad range of spatial frequencies, with peak sensitivity at

around 4 cycles per degree and tailing o� at higher and lower frequencies. Campbell & Robson

(1968) suggested that the function wasn't the result of a single channel but multiple channels each

tuned to a speci�c frequency. They conducted trials using square wave gratings and from the

Fourier analysis of a square wave (equation (1.61)) predicted that the fundamental component of

the square wave would determine its visibility and it would have a contrast sensitivity 4
π greater

than a same amplitude sine wave shown as follows.

Fourier series for a square-wave function:

f (x) =
4

π

{
sin

2π

X
+

1

3
sin 3

2π

X
+

1

5
sin 5

2π

X
+ ...

}
(1.61)

From (equation (1.61)), the fundamental component of the square wave is:

4

π
sin

2π

X

And the same amplitude sine wave is:

sin
2π

X

This is exactly what they found with the ratio of 4
π consistently true down to a spatial frequency

of 0.8 cycles per degree. They proposed that at higher spatial frequencies only the fundamental of

the square wave would be visible, with the harmonics outside the spatial sensitivity range of the

human visual system, producing a retinal image of a sine wave with an amplitude 4/π greater than

a sine wave with the same amplitude as the original square wave. As the spatial frequency reduced

they observed that the ratio of sensitivity to the square wave and the sine wave increased as the
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Figure 1.16: A schematic multiple channel model of spatial frequency detection.

higher frequency harmonics began to fall within the range of the visual system. The increased

ratio, however, did not behave as predicted by the theoretical model of single detector with a

broad band �lter but rather, as a set of independent detectors each with its own narrow band

�lter and proposed this as evidence for the multiple channel hypothesis. A schematic example of

a multiple channel model is shown in �gure 1.16.

The multiple channel theory was supported by evidence from Blakemore & Campbell (1969)

who used the method of neural adaptation to a speci�ed stimulus as a test mechanism. They

proposed that prolonged viewing of a high contrast pattern at a speci�ed frequency would lead to

neural adaptation and would reduce the sensitivity of the visual system to subsequently viewed

patterns. The hypothetical result for a single detector mechanism would be seen as a uniform dip

in sensitivity across the full spatial frequency range of the contrast sensitivity function, whereas,

for a multiple channel detector mechanism, there would be a dip in sensitivity only in the range of

the spatial frequency of the adaptation grating, as shown in the example in Figure 1.17. Blakemore

& Campbell (1969) found the latter; adaptation only reduced the sensitivity in the vicinity of the

spatial frequency of the adaption grating, thus providing strong evidence for the multiple channel

hypothesis of Campbell & Robson (1968).

Further evidence in support of the multiple channel hypothesis is provided by Graham &

Nachmias (1971) who used sine wave gratings with spatial frequencies separated by a ratio of 3:1,

displayed separately as simple gratings and then together as complex gratings. They measured the
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Figure 1.17: Example of neural adaptation showing the depressed contrast sensitivity around the
frequency range of the adaptation stimulus.

contrast threshold for pattern detection for the simple gratings and then compared the contrast

thresholds required for detection of the complex gratings. A single channel model for spatial

detection would predict addition of the waveforms, and thus, a lower contrast detection for complex

than simple gratings, even when the simple grating is below threshold. A multiple channel model

would predict that each grating would be detected by a separate channel and, thus the complex

grating would not be detectable unless one of its simple components was above threshold. The

results supported the multiple channel theory with the ratio for the detection of a complex to a

simple grating consistently falling close to one, supporting the idea that each frequency is detected

separately (Graham & Nachmias, 1971).

The concept of independent channels has, more recently, been challenged with research sug-

gesting a more complex picture of interacting neural networks (Wilson & Wilkinson, 2004, pp.

1062-1067). Theories such as contrast gain control (Heeger, 1992) and spatial pooling (Ellem-

berg et al., 1998; Wilkinson et al., 1997) suggest that there is interaction across visual channels

to enhance individual channel responses. Nonetheless, the concept of multiple channels continues

to provide a good model of the response to spatial frequency of the human visual system and,

represents a suitable estimation for the purposes of this thesis.

1.5.2 The e�ect of temporal frequency on signal detectability

The introduction of an animated display mode in this thesis means that the visual system of

the observer has to consider temporally modulated stimuli as well as spatially modulated. The

temporal frequency of a stimulus represents how quickly that stimulus changes with time with a
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low temporal frequency referring to a slow animation rate and a high temporal frequency referring

to a high animation rate. In the same way that the response of the visual system to spatial stimuli

can be characterised by a spatial contrast sensitivity function, its response to temporal stimuli

can be represented by a temporal contrast sensitivity function, representing how the visual system

responds to temporal variation at a range of frequencies.

1.5.2.1 The temporal contrast sensitivity function

The �rst temporal contrast sensitivity function was produced by de Lange (1958) who used close

approximations to sinusoidal (the technology of the time made it impossible to produce pure

sinusoids) and square waveforms that varied in their frequency and modulation. de Lange (1958)

produced a temporal function, similar to the spatial function discussed in section 1.5.1.2, as shown

in �gure 1.18. de Lange (1958) found that sensitivity peaked at around 8Hz, falling rapidly as

frequency increased until the critical �icker frequency (the frequency at which the �icker will

appear to fuse into a continuous light) is reached between 50-70Hz. There is also a fall o� in

sensitivity as frequency decreases, however, this is not as steep as seen with increasing frequency.

As with spatial frequency, the temporal frequency contrast sensitivity function is thought to

be underpinned by multiple channels with much of the evidence pointing towards three channels

(Hess & Snowden, 1992; Mandler & Makous, 1984; Watson & Robson, 1981).

1.5.3 The spatio-temporal contrast sensitivity function

Whereas the temporal contrast sensitivity function as described by de Lange (1958) does not con-

sider the e�ect of the spatial frequency characteristics of the signal, the studies by Hess & Snowden

(1992); Mandler & Makous (1984); Watson & Robson (1981) investigating temporal channels did

and recognised that there is an interaction between the spatial and temporal responses of the visual

system. This interaction was investigated by Robson (1966) who measured the temporal contrast

sensitivity functions at four spatial frequencies and showed that the visual system behaved di�er-

ently to temporal modulation with di�erent spatial frequencies. At high spatial frequencies, no

decline was seen as temporal frequency reduced, however, at low spatial frequencies, a marked de-

cline was observed (Robson, 1966). Kelly (1972, 1979) mapped the spatiotemporal function of the

visual system from a range of measures demonstrating the interaction between the two characteris-

tics.. Figure 1.19 shows the relationship between spatial and temporal characteristics, illustrating

the visual system's band pass characteristic at low spatial frequencies and its low pass nature at

high spatial frequencies. Whilst some have argued that the spatiotemporal contrast sensitivity

function would suggest that the spatial and temporal mechanisms are inseparable (Kelly, 1984),
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Figure 1.18: A typical set of temporal contrast sensitivity curves showing the variation of contrast
sensitivity with temporal frequency measured at various mean background luminance levels (Stork
& Falk, 1987).
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Figure 1.19: The human spatio-temporal contrast sensitivity function from Kelly (1979).

there is also a great deal of evidence to support the idea that spatial and temporal responses are

mediated by separate mechanisms.

1.5.3.1 Sustained and transient channels

Tolhurst (1973) and Kulikowski & Tolhurst (1973) suggested that separate mechanisms could

mediate the visual system's sensitivity to spatial frequency information and to temporal frequency

information and they were among the �rst to use the sustained and transient description for

these mechanisms. Kulikowski & Tolhurst (1973) used temporally modulated gratings that were

either switched on and o� or phase shifted by 180 degrees (alternated). The e�ect of this was to

create a stimulus that was transient then static (on/o� grating) or always transient (alternated

grating). Because, the alternated gratings were always on, merely shifted by 180 degrees, in

contrast to the on/o� grating which was on for half of the time, the luminance with the alternated

waveform was twice that of the on/o� waveform and Kulikowski & Tolhurst (1973) argued that the

observer should, therefore, be twice as sensitive to the alternated waveform. However, Kulikowski

& Tolhurst (1973) found that this ratio only held true for the detection of �icker and not for the

detection of stationary patterns and argued that this must be the result of two independent types

of channel, which they referred to as movement analysers and form analysers, the �rst sensitive to

transiency and the second, sensitive to form. Using waveforms modulated at 3.5Hz, Kulikowski &

Tolhurst (1973) observed that at spatial frequencies below 5 cycles/degree the movement analysers

were more sensitive and, above this, the form analysers became more sensitive. By repeating

the experiments at di�erent temporal frequencies, Kulikowski & Tolhurst (1973) were able to

conclude that �icker and pattern were detected by separate channels, both with di�erent responses

to spatial and temporal frequency. They referred to these channels as sustained; most sensitive at
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medium to high spatial frequencies with no fall o� as temporal frequency reduced, and transient;

most sensitive at low to medium spatial frequencies with a distinct fall o� in sensitivity as temporal

frequency reduced. The sustained channels were equally sensitive to alternated and on/o� gratings

as the channels are responsive to pattern, whereas the transient channels are more sensitive to the

alternated grating as this is a continuously transient waveform, unlike the intermittent nature of

the on/o� grating.

Watson & Nachmias (1977) provided more formal de�nitions for the sustained and transient

channels, proposing that the sustained channels were characterised by an impulse response of only

one sign, either positive or negative and a maximum response at a temporal frequency of zero,

whilst the transient channels had responses with equal positive and negative response and an

integral of zero with no response at a temporal frequency of zero. As a purely sustained or purely

transient system is unlikely to occur, they suggested that the channels would be either relatively

sustained or relatively transient, dependent upon which characteristic predominated (Watson &

Nachmias, 1977).

There remains considerable debate regarding whether the sustained and transient channels

are separate or whether both spatial and temporal stimuli are processed by a single mechanism,

however, as with the debates surrounding the independence of channels for spatial frequency de-

tection, the concept of sustained and transient channels provides a suitable model of the response

to spatial-temporal stimuli that meets the purposes of this thesis.

1.6 Types of Noise Backgrounds and Other Concepts Rele-

vant to this Thesis

1.6.1 Gaussian white noise

So far, consideration has only been given to the detection of signal in Gaussian white noise, which

is an important noise condition as, when used with the use of a signal known exactly paradigm,

it a�ords the simplest detection problem; the �. . . simple versus simple hypothesis. . . � (Kay, 1998,

p. 94). This enables the property of interest to be isolated and examined whilst minimising the

possibility of confounds that could be introduced by more complex images. GWN is a noise where

the pixel values have a normally distributed probability density function and are independent and

identically distributed (uncorrelated) (Lu & Dosher, 2014, p. 34). Figure 1.20 shows an example

of Gaussian white noise and its power spectral density showing an equal power distribution across

all frequencies (showing just one dimension - the power spectral density is two dimensional and so
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Figure 1.20: Example of Gaussian white noise (left) with its power spectral density plotted on a
log-log scale (right).

the frequency components will be re�ected about the Y-axis when plotted).

1.6.2 Signal known exactly with Gaussian white noise

Signal known exactly (SKE) refers to an experimental set up where the observer knows the signal's

pro�le, size and location within an image (Abbey & Eckstein, 2010, p. 244). The Gaussian white

noise / SKE model has been widely used in visual psychophysics to investigate precise visual

properties such as the e�ciency of human visual signal discrimination (Burgess et al., 1981), the

relative e�ciencies of �rst-order and second-order vision (Manahilov et al., 2005) and classi�cation

images (Abbey & Eckstein, 2002). These are just three examples from 1000s of other studies

using a Gaussian white noise / SKE model, which include four of the most in�uential, already

discussed, from Burgess and colleagues in their series of Visual Signal Detection papers (Burgess

& Ghandeharian, 1984a,b; Burgess, 1985; Burgess & Colborne, 1988). There are fewer examples

of a Gaussian white noise / SKE model being used in the more applied domain of mammography

research, where the preference is for synthetic or real mammogram noise backgrounds, however,

the value of the Gaussian white noise/SKE model is to establish the theoretical baseline for a

phenomenon before testing it in a more realistic setting. This is the rationale taken by this

thesis and closely re�ects the approach taken by Reiser & Nishikawa (2006), who investigated

the detection and discrimination of simulated microcalci�cations using the performance achieved

with a white noise background as a comparison to the performance for the same tasks using real

mammogram backgrounds.

76



1.6.3 Synthetic signals

Lesions within a mammogram can have a variety of shapes and appearances (Zonderland &

Smithuis, 2013) and, therefore, the use of real lesions as signals complicates the use of a SKE

approach. Synthetic lesions are often used for this reason. Reiser & Nishikawa (2010) used spher-

ically symmetric 3D designer nodules with radii ranging from 0.025 cm to 0.8 cm and, similarly,

Suryanarayanan et al. (2005) generated two-dimensional mass like lesions for their research into

the detection of simulated lesions on digital mammograms. Castella et al. (2009) and Castella

et al. (2007) also used a spherical mass superimposed upon real mammogram backgrounds. Sev-

eral researchers have used a signal with a Gaussian pro�le (Abbey & Barrett, 2001; Chakraborty,

2006; Johnson et al., 2002), sometimes referred to as a Gaussian bump or blob, and this is the

signal pro�le that will be used throughout this thesis. The use of a single signal pro�le simpli�es

the experimental procedure making the use of naïve observers more practical and this pro�le is a

good match to a typical lesion (a small mass) found in mammograms (see also section 2.9).

1.6.4 Power law noise

As outlined in section 1.6.1, Gaussian white noise enables the simpli�ed analysis of the theoreti-

cal performance of the ideal observer; however, real mammograms contain a more complex noise

spectrum and to enable extrapolation of results to real mammograms requires images that re�ect

the properties of real mammograms. There are two main components to the noise in x-ray mam-

mograms; �rstly, quantum noise, which can be described as background �uctuations arising from

the �nite number of x-ray quanta as well as non-signal noise introduced by the imaging system

electronics and, secondly, anatomical noise, which refers to the background �uctuations resulting

from the normal breast tissue and anatomy within the breast but not including the signal (Samei

et al., 2000, p. 656; Bochud et al., 2004). Modern imaging systems minimise the level of quantum

noise and, as a result, anatomic noise is the limiting and most important component of the overall

noise and the component that determines signal detection performance (Samei et al., 2000, p. 658;

Burgess et al., 2001). Burgess & Judy (2007) suggest that the anatomic noise is close to pure

random noise following a power spectrum of the form 1/fβ .

Bochud et al. (1999) found that the exponent β varies from 1.5 to 4 in their sample of mam-

mograms and, along with other researchers, suggest that the average value for β is approximately

3 (Burgess et al., 2001; Kierkels et al., 2012). This would suggest that a random noise generated

background with a power law spectrum of 1/f3 would be a suitable model for mammogram noise,

however, Burgess (2010, p. 53) contends that real mammograms can only be considered as being

partly random noise with the remainder being the non-random features of the breast tissue and
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Figure 1.21: An example of power law noise (left) with its power spectral density plotted on a
log-log scale (right)

anatomy and a number of studies support this view (Bochud et al., 2004, 1999; Burgess et al.,

2001). Burgess et al. (2001) included a comparison of the performance of human observers when

detecting simulated tumours in either real mammogram backgrounds or simulated mammogram

backgrounds with a 1/f3 power law spectrum and found that, whilst the simulated tumour was

detected with a lower contrast threshold in real mammograms than in simulated mammograms,

there was a qualitative agreement in the way they performed. The conclusion drawn was that

the real mammograms behaved as if they contained a mixture of random noise and deterministic

components (the anatomic structure), which assisted the observers in the decision making process

(Burgess et al., 2001). In the same study, when conducting a search task, the results indicated

no di�erence between the contrast thresholds for real mammograms and simulated mammograms

suggesting that for a search task the two backgrounds could be considered as equivalent (Burgess

et al., 2001). Despite the di�erences observed in the detection experiments, Burgess et al. (2001)

nonetheless concluded that the statistical properties of power law noise backgrounds are similar

to those of real mammograms, making them suitable for theoretical research. This is supported

by Reiser et al. (2013), whose study compared the performance of human and model observers

carrying out a signal known exactly detection task in both power law noise backgrounds and real

breast backgrounds. The real breast backgrounds were two dimensional 384 x 384 pixel sections

from tomosynthesis acquired x-ray images and the simulated mammograms were generated using

a power law noise model with a simulated designer nodule used as the signal to be detected (Reiser

et al., 2013). Human observer performance for the detection of the signal as it varied in size was

very similar for both simulated and real breast backgrounds and closely matched the performance

of the pre-whitening observer model (which will be discussed in section 1.6.6), thus supporting the

use of a power law noise background for simulating breast tissue (Reiser et al., 2013).
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The research cited here suggests that noise backgrounds with a 1/f3 power law spectrum

provide an acceptable level of similarity to real mammograms for detection and search experiments,

as conducted in this thesis, and, therefore, this thesis will progress from using Gaussian white noise

backgrounds to using noise backgrounds with a 1/f3 power law spectrum as a realistic alternative

to real breast images.

1.6.5 Mammogram backgrounds

As discussed in section 1.6.4, the two main types of noise in medical images are quantum noise

and anatomical noise with anatomical noise being the limiting and most important component of

the overall noise. The anatomical features present in real mammograms can a�ect the decision

making ability of the observer and Samei et al. (2000, p. 660-678) identify three key e�ects by

which anatomical structure impacts upon the observers ability to detect abnormalities: the search

e�ect, the global e�ect and the local e�ect.

The search e�ect refers to the way anatomical structure not only in�uences the observers overall

impression of the image, but also the way they subsequently scan the image which may result in the

failure to detect an abnormality, for example, areas of increased breast density have been shown

to a�ect the way the radiologist scans the mammogram with more attention on denser areas than

less dense areas resulting in poorer detection rates for abnormalities in the less dense areas (Mousa

et al., 2014).

The global e�ect refers to the tendency of normal anatomic structure to mimic true abnormali-

ties, thus creating false signals and evidence for this can be seen in the study by Zanca et al. (2007),

where the characteristics of fatty tissue were shown to have an impact, signi�cantly increasing the

number of false positives in this type of breast tissue.

Samei et al. (2000) also suggests that local e�ects have a major impact on the detection of

abnormalities and this refers to the way that local structure can obscure or a�ect the appearance

of an abnormality such that it is camou�aged and Samei et al. (1998) conducted an experiment

to quantify the e�ect of this. By varying the location of abnormalities in relation to the anatomic

structure in chest radiographs, Samei et al. (1998) found a signi�cant e�ect of the proximity of the

anatomic structure and that varying the proximity had a similar e�ect to varying the size of the

abnormality.

Although synthetic mammograms, as described in section 1.6.4, can provide close statistical

representations of real mammograms, the evidence above suggests that, having established a sound

theoretical basis for the detection of simulated lesions in synthetic mammograms, it is necessary to

then assess the performance of the techniques with real mammograms. This thesis will, therefore,
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progress onto testing both the symmetric, side-by-side presentation and animated display modes

using real mammogram backgrounds.

1.6.6 Pre-whitening

For the detection of a signal in Gaussian white noise, the ideal observer was shown to cross-

correlate the received image with a template of the signal Green & Swets (1966, p. 165) and

use Bayesian reasoning to select the option with the highest a posteriori probability (Burgess

& Ghandeharian, 1984a; Burgess, 1985). In power law noise, the theory is the same with one

extra element; the power law noise has a low-pass spectrum and, therefore, is spatially correlated.

Therefore, the ideal observer will �rst pre-whiten the noise �eld prior to cross-correlating with the

signal template (Bochud, 2013, pp. 153-164; Burgess, 2010, pp. 38-40; Burgess & Judy, 2007).

Pre-whitening (or simply whitening) a stimulus by decorrelating the data it contains has been

proposed as a method of redundancy reduction, to remove unnecessary information and improve

the e�ciency of the visual system (Hyvärinen et al., 2009, p. 126). Pre-whitening, thus, reduces

the spatially correlated noise to white noise (Hyvärinen et al., 2009, p. 126). This process was

suggested as far back as 1961 by Barlow, who proposed that the human visual system simpli�ed

the natural scene by removing information that was positively correlated (Barlow, 2001). This

information would be predictable and e�ectively redundant and its removal would enhance the

e�ciency of the human visual system. It would be expected that evolutionary pressures would

lead the visual system to be maximally e�cient at decorrelating stimuli within a power spectrum

corresponding to that of natural scenes. Field & Brady (1997) showed that natural scenes exhibit

a power spectrum ranging from 1/f1.2 to 1/f3.2 and, indeed, there is a long line of research that

suggests that the human visual system has evolved to operate with maximal e�ciency in natural

scenes (Atick, 1992; Field, 1987; Tolhurst & Tadmor, 2000). There is also considerable research

into the question of whether human observers can pre-whiten spatially correlated images and this

will be discussed next.

Research carried out into pre-whitening suggests that the human visual system is able to pre-

whiten images with a low pass spectrum (Abbey & Barrett, 2001; Abbey & Eckstein, 2007; Burgess,

1999; Burgess & Judy, 2007; Rolland & Barrett, 1992), such as encountered in natural scenes, but

not with noise with a high pass spectrum (Myers, 1985; Myers et al., 1985). In the study carried

out by Burgess (1999), the ability of the human observer to partially pre-whiten low pass �ltered

noise was demonstrated by comparing the performance of human observers against three observer

models; the pre-whitening observer, the non pre-whitening observer and the partial pre-whitening

(or Hotelling) observer. Burgess (1999) used both a low pass Gaussian �lter and a low pass power
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law �lter to create noise backgrounds with a low pass Gaussian or power law noise spectrum and

carried out a 2AFC trial for the detection of Gaussian pro�le nodules with the �nding that the

human observer results were much better �tted by the pre-whitening models than the non pre-

whitening model. This can be seen in Figure 1.22, which shows one example of the data plotted

by Burgess (1999) for observer performance in power law noise. The evidence from Burgess (1999)

thus supports the suggestion that the human visual system is able to pre-whiten images with a

low pass spectrum.

Figure 1.22: Example Figure reproduced from Burgess (1999) showing the variation of performance
(top �gure) and e�ciency (lower �gure) with the power law exponent (β). The theoretical per-
formances of the non-pre-whitening observer (NPWE - dashed line), the pre-whitening observer
(PWE - solid line) and the partial pre-whitening observer (PWCavg- dash-dot line) are shown.
Human observer performance is shown by the �lled symbols and it is clear that human performance
is much better predicted by the pre-whitening models than by the non-pre-whitening model.

The �ndings of Burgess (1999) are further supported by the results of the second part of

the study by Myers et al. (1985), where four transfer functions were used to create images with

background noise that ranged from a low pass power spectrum through to increasingly high pass

power spectra. Myers et al. (1985) used human observer e�ciency, as de�ned by Burgess et al.
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(1982) and as shown in equation 1.62, applied to the task of detecting a disc signal in a noise

background.

η =

(
d
′

SNRideal

)2

(1.62)

where:

η = e�ciency

d
′

= detectability index

SNRideal = signal to noise ratio for the ideal observer

Manipulating equation 1.62 as follows:

η =

(
d
′

SNRideal

)2(
SNRnpw ideal
SNRnpw ideal

)2

(1.63)

where:

SNRnpw ideal = signal to noise ratio for the non pre-whitening ideal observer

η =

(
d
′

SNRnpw ideal

)2(
SNRnpw ideal
SNRideal

)2

(1.64)

η = ηnpw × observer reconstruction penalty (1.65)

ηnpw = e�ciency of human observer relative to an ideal non pre-whitening observer

The overall e�ciency (η) is the product of the e�ciency of a human observer relative to an

ideal non pre-whitening observer (ηnpw) and a factor that is proportional to the ability of the

observer to pre-whiten the noise. This manipulation enabled Myers et al. (1985) to observe the

e�ect of changing the power spectra of the background noise in the images; if ηnpw remained

constant then they could show that any reduction in e�ciency must result from a reduction in

the observer's ability to pre-whiten the noise and this is exactly what they found. The results

showed that human observers exhibited the same level of e�ciency with power law noise with a

low pass power spectrum as with the low pass Gaussian white noise, with their e�ciency falling as

the power spectrum became more and more high pass, strongly supporting the idea that human

observers are able to pre-whiten images with a low pass power spectrum but not with a high pass

spectrum (Myers et al., 1985).

The ability of the human observer to pre-whiten correlated backgrounds is not universally

supported and research by Judy (1996) found that the performance of human observers for the

detection of clusters of simulated calci�cations was worse in lumpy backgrounds (a type of synthetic
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background containing correlated noise) than in a uniform, uncorrelated, noise background. Judy

(1996) found that the detectability index, d
′
, was signi�cantly lower with lumpy backgrounds

suggesting that the observers were unable to pre-whiten the noise.

Whilst the evidence supporting the ability of the human observer to utilise a pre-whitening

strategy is equivocal, a reasonable conclusion is that the human observer can, at least, partially

pre-whiten correlated noise �elds. As the images typically used in x-ray mammographic research,

and as used in this thesis, fall within a low-pass spectrum, whilst accepting that the human observer

may be able to only partially pre-whiten, thus reducing their e�ciency, the ideal observer strategy

of pre-whitening the noise �elds is, nonetheless, consistent with this research.

1.7 The Presentation of Paired Images

1.7.1 The ideal observer strategy for detecting a signal in paired images

The use of an ideal observer approach requires that we identify the task to be carried out, identify

the stimulus within which the task will be performed and, �nally, identify the optimum computation

for conducting the task (Geisler, 2011; Kersten & Mamassian, 2009). For this thesis, the task is

to detect a signal in one image of a pair of images. The signal is a Gaussian blob and two paired

images are presented with a measurable level of correlation between them. One image is signal

plus noise; the other is noise alone. Perhaps the simplest, and most obvious, computation that

could be carried out would be to subtract, or di�erence, the two images and then cross-correlate

the di�erence image with the observer's template of the signal to be detected (Burgess & Colborne,

1988) (see section 1.3.1 for a discussion of cross-correlation). If the two images were identical (apart

from the embedded signal to be detected), with an inter-image correlation of one, subtraction would

remove all the background noise, leaving only the signal in one image and performance would be

perfect. As the inter-image correlation declines, and the level of di�erence between the two images

increases, less and less noise would be removed and performance would also decline.

A less obvious, but more sophisticated, method of removing redundant information is to decor-

relate (or pre-whiten) the image pair (Hyvärinen et al., 2009, pp. 126-130). Pre-whitening, in

relation to removing redundancy within an image, was discussed in section 1.6.6, however, the

same technique of decorrelation can be applied to an image pair by decorrelating between the two

images. It should be noted that decorrelation and pre-whitening (or simply whitening) refer to the

same operation Hyvärinen et al. (2009, p. 126) and the two terms are interchangeable. However,

in this thesis, to minimise any potential confusion, we will use the term pre-whitening to refer to

the redundancy reduction carried out within an image and the term decorrelation will refer to the
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redundancy reduction carried out between two images.

Each process can be understood by considering the task of detecting a signal known exactly in

one image of a pair of Gaussian white noise images with an inter-image correlation of between 0

and 1. Figure 1.23 shows a simple 16 x 16 pixel white noise image consisting of 256 pixels.

Figure 1.23: Example images for the illustration of the decorrelating process. Each image is a 16
x 16 pixel white noise image with 256 pixels and each pixel has a numerical value from 0 to 255
representing the intensity value of the pixel. The right image contains a blob signal, shown well
above threshold.

Each image shown in Figure 1.23 can be displayed in a numerical format, as shown in Figure

1.25. Each pixel has now been replaced by a numerical value representing its grey level and can

take a value from 0 to 255, where 0 is pure black and 255 is pure white, as shown in Figure 1.24.

Figure 1.24: Graphic showing the grey shade intensity represented by the range of pixel values
from 0 to 255.

The signal has been placed in the right image and in Figure 1.23 can be seen as a bright white

area which in Figure 1.25 can be seen as pixel values of, or very close to, 255.
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Figure 1.25: The white noise images from Figure 1.23 displayed in numerical format. The shade
of grey of each pixel has been replaced by a numerical value representing its intensity. The left
image consists of a noise only background and the right image consists of a signal added to a noise
background.

Figure 1.26: Each image represented as a vector with the pixel values placed in two columns each
with their number of rows equal to the number of pixels in the image. Note: for clarity only 24
rows are shown, whereas the actual vector for these images would be 256 rows long. The left
vector (r1) consists of noise only and the right vector (r2) consists of the signal added to a noise
background.
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Each image can be �attened into a vector with the pixel values placed in a column with the

number of rows equal to the number of pixels in the image, as shown in Figure 1.26. The left vector

(r1) consists of a noise only background and the right vector (r2) consists of the signal added to a

noise background.

The observer therefore receives r, which consists of two columns, r1 and r2, and for the case of

a signal in the right image this can be illustrated as follows:

r1 = n1 (1.66)

and

r2 = s+ n2 (1.67)

where:

n1 = noise in left image

n2 = noise in right image

s = signal

r1 = left stimulus image

r2 = right stimulus image

1.7.1.1 Di�erencing the images

Considering the method of redundancy reduction of di�erencing the two images by subtracting one

from the other, the two columns of r1 and r2 are subtracted and the resulting di�erenced columns

are then cross-correlated with the signal (Kay, 1998, p. 106). Thus the observer computes:

r1 diff = r1 − r2 (1.68)

r2 diff = r2 − r1 (1.69)

where:

r1 diff = resulting r1 image following subtraction of r2

r2 diff = resulting r2 image following subtraction of r1

Using Equation 1.44 on page 57 we can determine the value of the test statistic resulting from

the cross correlation of each di�erenced column:
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T = (rdiff )
t
s (1.70)

where:

T = Test statistic following cross correlation with rdiff

s = signal template

t denotes transpose

If T > criterion, decide yes, signal present, else, no, signal not present.

1.7.1.2 Decorrelation of the images

The columns of r1 and r2 are correlated, with an inter-image correlation between 0 and 1, and

have a 2 x 2 covariance matrix K. r is a matrix having columns r1 and r2, as shown in Equations

1.66 and 1.67. To decorrelate we multiply r by the inverse of the covariance matrix K−1 and the

resulting decorrelated columns are then cross-correlated with the signal, as in section 1.7.1.1, (Kay,

1998, p. 106). Thus the observer computes:

rdec = rK−1 (1.71)

where:

r = matrix having columns r1 and r2

rdec = decorrelated image of r

Using Equation 1.44 we can determine the value of the test statistic resulting from the cross

correlation of each di�erenced column:

T = (rdec)
t
s (1.72)

where:

T = Test statistic following cross correlation with rdec

s = signal template

t denotes transpose

If T > criterion, decide yes, signal present, else, no, signal not present.

1.7.1.3 Simulations

Simulations were conducted to compare the theoretical performance of the di�erencing observer,

the decorrelating observer and a non-decorrelating observer. The di�erencing and decorrelating

observers are described above. The non-decorrelating observer is an observer that does not carry
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out any redundancy reduction measures on the image pair, simply cross correlating the original

image columns with the signal template.

For the simulations the images were Gaussian white noise with a standard deviation of 0.22

and the signal was a Gaussian blob. Simulations were run for each type of observer at inter image

correlations of 0, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99 and 1. Taking the level of d
′
at detection threshold

to be 1, the contrast of the blob was adjusted for each simulation until a d
′
value of close to 1 was

achieved for each type of observer. A minimum of 10 simulations with 6000 trials per simulation

were carried out to obtain an accurate prediction for the contrast threshold for each type of observer

at each correlation level.

Figure 1.27 shows the performance of each type of observer plotted against the inter image

correlation. The non-decorrelating observer, who doesn't utilise the correlation between the images,

not surprisingly, exhibits a very �at pro�le, with no improvement in performance as correlation

increases. The decorrelating observer is able to use the image pair correlation. The decorrelating

observer shows a performance level equal to that of the non-decorrelating observer at an image

pair correlation of zero, however, shows a reduction in the contrast threshold required to detect

the signal as correlation increases, demonstrating errorless performance with a correlation of 1.

The di�erencing observer also exhibits errorless performance at a correlation of 1, and shows the

ability to utilise correlation, however, at a correlation of zero, the performance of the di�erencing

observer is worse than both the decorrelating and non-decorrelating observers.

1.7.1.4 Observer performance

Observer performance is calculated in the standard way (Green & Swets, 1966, p. 165; Kay, 1998,

p. 102; Macmillan & Creelman, 2005, p. 121) using the following notation:

E = signal energy=
∑
s21

σ2 = noise variance

d
′

= signal detection theory measure of performance

ρ = image pair correlation

Non-decorrelating observer performance The performance of the non-decorrelating and

cross-correlating observer in the 2AFC detection task where the observer is unable to utilise the

correlation between the columns of n is given by:

d
′

=

√
2E

σ2
(1.73)

(Green & Swets, 1966, p. 165; Kay, 1998, p. 102; Macmillan & Creelman, 2005, p. 121)
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Figure 1.27: Results of simulations for each type of theoretical observer plotting observer contrast
threshold against image pair correlation for the detection of a signal in paired images. The type
of observer is shown in the legend.
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Taking the level of d
′
at detection threshold to be 1, the energy threshold Et is:

Et =
σ2

2
(1.74)

The contrast threshold is equal to some constant a times the square root of the energy threshold.

Therefore, for the non-decorrelating observer the contrast threshold Ct is:

Ct = a

√
σ2

2
(1.75)

Non− decorrelating observer Ct =
aσ√

2
(1.76)

Decorrelating observer performance The performance of the decorrelating observer, when

the noise has correlation ρ is given by:

d
′

=

√
2E

(1− ρ)σ2
(1.77)

(Kay, 1998, p. 112)

Taking the level of d
′
at detection threshold to be 1, the energy threshold Et is:

Et =
(1− ρ)σ2

2
(1.78)

The contrast threshold is equal to some constant a times the square root of the energy threshold.

Therefore, for the ideal observer the contrast threshold Ct is:

Decorrelating observer Ct = a

√
(1− ρ)σ2

2
(1.79)

Decorrelating observer Ct =
aσ
√

1− ρ√
2

(1.80)
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Di�erencing observer performance From the simulation values, the contrast threshold of

the di�erencing observer, when the noise has correlation ρ, appears to be a factor of
√

2 greater

than the decorrelating observer. The values for the decorrelating observers contrast threshold can,

therefore, be estimated from the following:

Differencing observer Ct = a
√

(1− ρ)σ2 (1.81)

= aσ
√

1− ρ (1.82)

Thus, for the di�erencing and decorrelating observers, as the correlation between the two noise

�elds increases, the detectability of the signal rises. In the limit, when the two noise �elds are

identical, d
′
is in�nite and performance is perfect (Kay, 1998, p. 112). However, when measuring

the contrast threshold, the di�erencing observer is less e�cient than the decorrelating observer by

a factor of
√

2. For the non-decorrelating observer, who is unable to use the image pair correlation,

increasing the correlation between the two noise �elds has no impact on the detectability of the

signal.

From these simulations we conclude that the optimum strategy and, therefore, the strategy of

the ideal observer, will be to decorrelate the image pair and then cross correlate the decorrelated

image with the template of the signal to be detected, deciding signal present if the internal response

exceeds some criterion.

1.7.2 Paired noise �elds presented in a side by side display

Breast radiologists often view images in pairs so it is important in the context of this thesis to

consider research that has been conducted using this mode of display. There does not appear to

be any direct empirical evidence to support the presentation of mammograms in a symmetric side-

by-side protocol, rather the practice seems to be based upon the intuitive notion that violations

of symmetry will be easily detected, an area that will be explored further in section 2.5.

Not only does there appear to be no evidence to support the mirror symmetric presentation of

mammograms, but neither does there appear to be much psychophysical research into the detection

of signals in symmetrically paired images. One example is from Burgess & Colborne (1988), where

the researchers used same and di�erent noise �elds (equating to paired noise �elds with an inter-

image correlation of one (same noise) and zero (di�erent noise), respectively, in the context of

this thesis) to estimate the ratio of internal to external noise (see section 1.1.5). The experiment
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used this ratio to estimate the internal noise across a range of external noise strengths, however,

more pertinent to the context of this thesis is the e�ect on observer performance of using same

or di�erent noise �elds and the quoted value for one example value of signal to noise ratio, found

d
′

1 = 2.0 for the same noise �elds and d
′

2 = 1.26 for the di�erent noise �elds (Burgess & Colborne,

1988). Assuming this di�erence is signi�cant (which wasn't speci�ed), this result suggests that the

observers were able to use (or, at least, partially use) the correlation between the images enabling

their performance to improve as the similarity of the background �elds improved.

Ahumada & Beard (1997) used the same methodology of same/di�erent noise as Burgess &

Colborne (1988) to investigate theoretical models for signal detection. They used three noise

conditions, �rstly a ��xed� condition where the images in each pair had identical noise backgrounds

and the same pair were used throughout. Secondly, a �random-�xed�, condition where each pair

within a trial had the same noise background but di�erent pairs were used across trials. Finally,

for the �random� condition each image of a pair had di�erent noise backgrounds and di�erent pairs

were used throughout the experiment. In relation to this thesis, the �random-�xed� condition would

equate to the presentation of an image pair with a correlation of one between the images and the

�random� condition would equate to the presentation of an image pair with a correlation of less

than one between the images (it is surmised that the correlation would be closer to zero, however,

this was not reported) (Ahumada & Beard, 1997). Unlike Burgess & Colborne (1988), Ahumada &

Beard (1997) did not �nd any improvement in performance with the same noise images �nding no

signi�cant di�erence between the two conditions which suggests that the observers were not able

to use the correlation present between the images in the �random-�xed� condition, even though

the images were identical, with a correlation of 1.

A similar approach, with similar �ndings was carried out by Watson et al. (1997) in their

investigation into image quality and entropy masking. Watson et al. (1997) included a power law

condition (random and twin conditions equating to di�erent and same noise, respectively) and

a white noise condition (white and �xed-white conditions equating to di�erent and same noise,

respectively) and once again, the images were presented side-by-side. As for Ahumada & Beard

(1997), Watson et al. (1997) found no bene�t on observer performance for the similarity of the

noise background with either power law noise or white noise backgrounds, again, suggesting that

the observers were unable to bene�t from the correlation present between the images in the twin

and �xed white conditions.

Thus the limited psychophysical research using paired noise backgrounds, presented side-by-

side, for signal detection tasks is inconclusive. Whilst, as Burgess & Colborne (1988) suggest, the

ideal observer will subtract the two background images, the experimental evidence for this is mixed,
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with Ahumada & Beard (1997) and Watson et al. (1997) �nding no e�ect for same compared to

di�erent noise �elds and Burgess & Colborne (1988) �nding an improvement for same compared

to di�erent noise �elds. The research available relating to signal detection in paired and correlated

noise �elds is limited and the papers cited here have di�erent goals to this thesis, however, this is

an area that this thesis will explore further.

One alternative research strand to the psychophysical approach discussed above is the work

done investigating a comparative visual search strategy. The side-by-side presentation of images,

with the goal of identifying a subtle abnormality present in one image but not in the other, could be

likened to the �spot the di�erence� puzzles popular in magazines and newspapers and the challenge

of these puzzles demonstrates the di�culty faced by the observer.

Atkins et al. (2006) identi�ed the radiologist's task in viewing paired images as a comparative

visual search task and used eye gaze tracking to investigate the interaction of radiologists' with

paired arti�cial images. They found that the search pattern occurs in two phases, �rstly searching

one image for a target and then making multiple saccades between images to con�rm their �nding,

with longer �xations for more complex patterns, concluding from this that the repeated saccades are

necessary to prevent cognitive overload because of the limitations of visual working memory (Atkins

et al., 2006). Irwin (1991) referred to this as transsaccadic memory, suggesting it was similar to

visual working memory with a limited capacity, and showed how the accuracy of participants in

a pattern discrimination task was impaired as the complexity of the images increased. With the

mechanism of comparative visual search being underpinned by repeated saccades Atkins et al.

(2006), the �ndings of Irwin (1991) cast doubt on the capacity of transsaccadic memory (or,

indeed, working memory) to retain the level of information contained in a mammogram to enable

comparison across images.

Although Atkins et al. (2006) used side by side images, they were di�erent views rather than

symmetrical pairs, similar to presenting the cranio-caudal view along with the medio-lateral oblique

view (see chapter 2 for an explanation of mammogram views). Hence, whilst illustrating the

cognitive limitations for the human visual system in conducting search tasks in paired images,

they do not address or refute the notion that targets present in one image of a symmetric pair

will �pop out� rather than necessitating cognitively demanding visual search. Pomplun (1998)

conducted comparative visual search studies for his PhD thesis, and two of the experiments carried

out compared the performance of observers detecting a target in symmetrical paired images that

were either a translational repeat or mirror repeat of each other; the only di�erence between

the paired images being the presence of the target in one image of the pair (experiments A and

E, Pomplun (1998)). Pomplun (1998) found no bene�t of mirror symmetric presentation over
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translational repeat presentation for the detection of the target and, using the criteria of search

speed, area covered in the search and saccade length as measures of e�ciency, found both search

speed and area covered to be signi�cantly higher with translationally symmetric images than for

mirror symmetric images. Saccade length was signi�cantly longer for the mirror symmetric images

than for translationally symmetric images and Pomplun (1998) pointed out that the variability,

and potentially longer distances between corresponding points in the mirror symmetric images,

compared to the �xed distance between corresponding points in translational repeat images could

lead to inaccurate programming of saccades with their end points likely to be in the wrong position.

Although the stimuli used were very simple in comparison to a mammogram, the results from

experiments A and E of Pomplun (1998) do not lend support to the notion that either translational

or mirror symmetric presentation enables targets to �pop out� and, also, suggest that translational

repeat symmetry is likely to confer better target detection performance than mirror symmetry.

The evidence presented does not lend support to the notion that displaying image pairs in a

mirror symmetric format will confer any advantage to the observer for the detection of a signal in

one of the images, either through utilising the correlation present or by some pre-attentive �pop

out� mechanism.

1.7.3 Paired noise �elds presented sequentially as an animated display

One alternative to presenting images in a side-by-side format is to display the images in an animated

sequence, in the same location, so that any di�erences between the images will appear to �ash on

and o� (�icker) or appear to move. Whilst there is extensive research into the sensitivity of the

human visual system to temporally modulated stimuli (see section 1.5.2 for a short review), a

large section of this research investigates the detection of �icker as a property in its own right

(where the observer is discriminating between a �ickering and non-�ickering stimulus) and there

is considerably less research investigating the use of animated displays as an aid to the detection

of signals within those displays. The intuitive notion behind animated displays is that this mode

of presentation will enable the visual system to make use of the correlation between the images

facilitating redundancy reduction and better signal detection performance.

The use of animation to assist in visual search and detection is not a new idea, however, and

examples of its application can be found in a number of diverse applications. In astronomy the blink

comparator (Mayer & Phillips, 1983) has been used since the early 1900s to study astronomical

photographs and it operates by rapid alternation of the images, enabling the astronomer to detect

small di�erences between the images. When comparing two images of the night sky, taken several

days apart, moving objects such as planets and comets will be observed to move and �icker, whereas
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stars will remain stationary and, in 1930, the planet Pluto was discovered by Clyde Tombaugh,

using a blink comparator to study photographic plates of a region in the constellation Gemini

(Fraknoi, 2009).

Security is another application, using animated displays of images of security seals, taken at

the initial sealing and at a later date, typically following transport or storage. Rapidly alternating

the two images will cause any di�erences to �ash on and o�, which may be evidence of tampering

(Lazerson, 1984). Research has also been carried out comparing the e�ectiveness of displaying two

architectural drawings sequentially in the same location against displaying them side by side for

the detection of di�erences, and possible errors in reproduction, between the two drawings (Fleury

& Jamet, 2014). Although not strictly an animated display, presenting the drawings sequentially

in the same location does bear some resemblance to the animated displays used in this thesis and

Fleury & Jamet (2014) demonstrated improved e�ectiveness for the detection of errors (seen as

di�erences between the two drawings) using this strategy.

A common factor across the application of animated displays in astronomy, security and ar-

chitecture is the close similarity of the images being compared, with the aim of �nding minor

di�erences. The images compared in medical imaging, and in particular in mammography, rarely

have such high levels of similarity and this may be one reason why there appear to be very few

examples of the use of animated displays in this �eld. Notwithstanding this potential limitation,

some studies have been conducted, such as the use of a blink comparator approach by Carlbom

(1994), as a technique to identify mismatch between corresponding views of nerve cells to assist in

registration and the construction of 3D images of the cells.

Animated displays were compared against the more traditional side by side display for the

detection of tumours in brain images by Erickson et al. (2011). Erickson et al. (2011) used baseline

and follow up images from 66 cases with a known malignant brain tumor and asked participants

to identify changes between the baseline and follow up images. Three processing methods were

tested; normal, where no processing was carried out, image subtraction and change detection using

a computer algorithm. Each of these methods could be displayed in a traditional side-by-side mode

or a �icker mode, alternately displaying the images in the same location, thus giving a total of six

presentation methods (Erickson et al., 2011). Whilst image subtraction and change detection were

found to be signi�cantly better than the normal images for detecting subtle changes, the option of

using animated displays did not improve detection for any of the presentation methods. The study

used experienced neuroradiologists, although only one had any experience of animated displays and

this observer did show an improvement with �icker, though it did not reach signi�cance. Erickson

et al. (2011) concluded that the lack of a signi�cant e�ect for �icker may have resulted from a lack
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of experience and training with the technique and, despite their �ndings, still believed that �icker

has the potential to improve detection performance.

In relation to mammography, van Engeland et al. (2003) conducted a study to investigate

the use of optimised displays for the detection of temporal change between previous and current

mammograms. The study used real mammogram pairs without abnormality and pasted in lesions

extracted from abnormal mammograms. The extracted lesions were resized to give seven new

lesion dimensions and one resized lesion was pasted into one mammogram of the pair whilst the

original size lesion was pasted into the other image of the pair. Two display modes were used; the

traditional side-by-side display and the optimised display which allowed the observers to toggle

between the two images of the pair. Four observers, who were physicists working in the �eld of

mammography, were asked to select the image containing the largest lesion and a psychometric

function of the fraction correct against resize factor was plotted showing a signi�cant increase

in performance for three out of the four observers when using the optimised display of toggling

between the images (van Engeland et al., 2003). Whilst the toggle rate was manually controlled

and determined by the observers and a di�erent task was used, the study by van Engeland et al.

(2003), nevertheless, hints at the strong potential for the e�ectiveness of an animated display mode

such as will be tested in this thesis.

Honda et al. (2014) also conducted research into the use of an image toggle tool for the com-

parison of digital mammograms. The study used the retrospective images from 12 patients with

suspected breast cancer and found that when the images were well aligned the use of the image

toggling tool enabled easy detection of di�erences between the image pair, suggesting that the tool

may be an e�ective aid to the radiologist (Honda et al., 2014). A similar study was conducted by

Hasegawa et al. (2008), who found that with accurate registration, toggling between images was

an e�ective method for �nding subtle masses, asymmetries and architectural distortions within the

breast. Whilst the research supporting the use of sequentially displayed images by toggling may

be limited, the technique does have its advocates with a number of texts recommending toggling

images as an aid to the detection of abnormalities (Dogan, 2012, p. 26; Kopans, 2007, p. 367).

Whilst not using sequential displays of mammogram pairs, another study investigating the

e�ectiveness of utilising motion and �icker as an aid to the detection of microcalci�cations in real

mammograms was undertaken by Plett et al. (2007). Plett et al. (2007) used two types of motion

to create the dynamic cues; �rstly, spatial motion, where each pixel oscillated sideways with the

rate of oscillation determined by the pixel intensity such that lighter pixels oscillated faster than

darker pixels. Secondly, they induced temporal motion by oscillating the intensity of each pixel

with the rate of oscillation determined by the original intensity of the pixel and, again, lighter pixels
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oscillated faster than darker pixels. Diagnostic performance for the detection of microcalci�cations

in real mammograms was measured for �ve radiologists and �ve non-radiologists and analysed

using receiver operating characteristic curves (ROC). In comparison to displays without dynamic

cues, the area under the ROC curve (AUC) was 20.8% and 8.4% greater for non-radiologists and

radiologists, respectively (Plett et al., 2007). Although the study by Plett et al. (2007) measured

performance for the detection of microcalci�cations, rather than masses (as this thesis will focus

on) and single mammograms, rather than prior and current mammogram pairs (again as focused

on in this thesis), it does, once again, show that motion and �icker are powerful cues that merit

further investigation.

The evidence presented in section 1.7.3 gives an indication of the strong potential for animated

displays to improve observer performance in signal detection tasks, however, the research cited is

highly applied and there appears to be a dearth of research with a visual psychophysical approach

that would provide the theoretical basis for an animated presentation method. One of the aims of

this thesis is to to go some way to addressing this void by providing a theoretical basis for signal

detection in paired noise �elds and investigating this in laboratory conditions using Gaussian white

noise images before addressing the applied use of animated displays to create a �ickered stimulus

in the �eld of mammography.

1.8 Chapter Summary

The aim of this chapter was to introduce the historical and theoretical background that underpins

the research conducted in this thesis. The detection of visual signals in noise backgrounds builds

upon a rich history of research spanning a broad base. From the early research determining the

absolute threshold for seeing, researchers have investigated the various sources of noise that cause

the variation in observer responses over and above this absolute threshold, using signal detection

theory to determine the optimum possible performance for a given task and providing a benchmark

against which other observers can be compared. The chapter has shown how this ideal observer

approach not only sets a baseline performance level for comparison against, but, more importantly,

reveals the optimum strategy for executing a given task. It is not an unexpected outcome that

the human visual system will often fail to execute this optimum strategy, but this knowledge alone

points the researcher towards the nature of the interface required to enable it to do so.

The detection of a tumour in one image of a pair of mammogram images is a complex task

that encompasses a wide range of the historical and theoretical research and this chapter reviews a

broad swathe of this, including the e�ect of internal and external noise, the response of the human
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visual system to spatially extended patterns and the e�ect of the di�erent types of background

in which these patterns exist. Despite the complexity of the images, the ideal observer approach,

nevertheless, enables an optimum strategy to be established and, for the detection of a signal in

paired noise �elds, this has been shown to be achieved by the decorrelation of the paired images,

to remove redundant information. This is then followed by the cross correlation of the resulting

images with a template of the signal to be detected, selecting the image that returns the highest

internal response.

Real mammograms are complex images that introduce a level of uncertainty into the testing

of a concept such as a decorrelating and cross correlating strategy. If the theoretical basis for

this strategy can be established using the simpli�ed conditions of Gaussian blob signals located

in known locations in Gaussian white noise backgrounds, the theory can then be applied to more

complex scenarios, such as power law noise backgrounds and, ultimately, to real mammograms.

Thus, the use of both Gaussian white noise and power law noise backgrounds, in addition to real

mammogram backgrounds has been introduced in this chapter and, this knowledge will be applied

to the research in this thesis.

This chapter has suggested that there is limited evidence that the human visual system can

execute this ideal strategy when the images are presented in a side-by-side format, as is the

predominant practice in mammography, but introduces an alternative method of displaying the

two images of the pair alternately in the same location in a continuous movie sequence. This

establishes the rationale for this thesis; can the human visual system utilise the optimum strategy of

decorrelating and cross correlating with paired images to optimise its performance for the detection

of a signal in one of the images of the pair when they are presented side-by-side or, alternatively,

when they are presented in a continuous, alternating movie sequence.

This rationale underpins each of the experimental stages of this thesis, however, before pre-

senting the experiments, Chapter 2 will introduce mammography as an applied clinical discipline.

Mammography has own its distinct terminology and practices along with a substantial body of

clinical research, a small portion of which will be reviewed and the aim of Chapter 2 will be to

enable the reader to ground the theoretical aspects of this thesis in the clinical application of

mammography. Having done this, the broad aims of this thesis and a summary of each experiment

will be given.
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Chapter 2

Introduction to Mammography

2.1 Introduction

This thesis is concerned with the visual detection of signals embedded in noise and the background

literature was reviewed in Chapter 1. My aim is to apply our knowledge of such visual detection to

the applied problem of detecting lesions (abnormalities such as tumours) in mammograms (x-ray

images of breasts). In this chapter I will show how, in certain de�ned circumstances, the radiol-

ogist's task of detecting a tumour in a mammogram can be considered as a case of detecting a

visual signal in a noise background. Mammography is a highly complex and extremely challenging

discipline with its own language and terminology. Whilst this thesis will be removed from the

clinical application, it is, nevertheless, important to establish a basic understanding of what mam-

mography is including the visual factors limiting the detection of tumours in real mammograms

and the approaches used by radiologists to assist them in this task. This understanding will enable

a better understanding of how the experimental results may impact on the clinical application and

will help to place the thesis in the wider picture of mammography research.

2.2 Breast Cancer

Breast cancer is the most common cancer in the UK with a lifetime risk of diagnosis for women of

1 in 8 and in 2012, 11,643 women in the UK died from breast cancer (Cancer Research UK, 2014a).

For women in the UK in 2012, 15% of all deaths from cancer were from breast cancer and it was

second behind lung cancer as the most common cause of death from cancer in women (Cancer

Research UK, 2014b). The breast is made up of adipose (or fatty) tissue, �brous connective tissue

and glandular tissues which consist of the milk producing lobules and the ducts to deliver the milk
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Figure 2.1: Simpli�ed breast image.
(Cancer Research UK / Wikimedia Commons, 2014)

to the nipple (�gure 2.1). The lobule and duct are commonly referred to as the terminal ductal

lobular unit (TDLU) and most tumours will originate here (Kopans, 2007, p. 30). The �brous

connective tissue and the glandular tissues together are often referred to as �broglandular tissues

and these are more dense and appear whiter on the mammogram than the fatty tissues (Bontrager

& Lampignano, 2013, p. 751).

Breast cancer, like any other cancer, is an uncontrolled growth of cells leading to the formation

of a tumour. The tumour may be benign or malignant. Benign tumours are slow growing, do not

spread to other parts of the body and are not a threat to health. Malignant tumours can grow

rapidly with the potential to spread to other parts of the body and become life threatening.

2.3 The Mammogram

A mammogram is an x-ray image of the breast and is carried out to detect and diagnose breast

disease. It can be conducted as a diagnostic mammogram to investigate a speci�c problem or as

part of a screening programme to give early indication of breast cancer. It can identify cancers

that are too small for a woman or her doctor to see or feel. The mammogram is carried out by

compressing the breast between an adjustable plate on top of the breast and a �xed x-ray plate

underneath (�gure 2.2). The compression of the breast functions to keep the breast still during

the imaging process and enables a thinner layer of breast tissue to be x-rayed. This allows the
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Figure 2.2: Woman undergoing a mammogram of the right breast (National Cancer Institute /
Wikimedia Commons, 2006)

radiation dose to be minimised, reduces x-ray scatter and produces a clearer, sharper picture with

a more uniform density of tissue across the image (Andolina & Lillé, 2010).

2.4 Breast Cancer Screening

The goal of any screening programme is the early identi�cation of asymptomatic disease so that it

can be treated and thus, reduce mortality from that disease. Mammograms enable the radiologist to

detect tumours before any symptoms are present and so breast screening has the potential to reduce

mortality from breast cancer. There is an extensive literature supporting the e�ectiveness of breast

screening programmes and these are established in the vast majority of developed countries around

the world (Youlden et al., 2012). They are regarded as an essential tool in reducing breast cancer

mortality by both the European Union (Perry et al., 2006) and the World Health Organisation

(World Health Organisation (WHO), 2002). Mammographic screening is the most widely adopted

and only evidence based screening methodology for the early detection of breast cancer with

numerous supporting studies showing mortality reductions in randomised controlled trials and

service screening evaluations (see Hakama et al. (2008) for a summary). The National Health

Service (NHS) England has operated a screening programme since 1988 (Advisory Committee on

Breast Cancer Screening, 2006) and during 2012/13 1.97 million women aged 45 or over were

screened, detecting 16,432 instances of cancer (Health and Social Care Information Centre, 2014).
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Figure 2.3: Cranio-caudal (CC) (left) and Medio-lateral Oblique (MLO) (right) positioning

In the UK, screening is carried out on women between the ages of 50 and 70 with three year

intervals between each screening (Advisory Committee on Breast Cancer Screening, 2006).

A screening mammogram usually consists of four images, two from each breast with two views

of each. The views used for routine screening mammograms are the cranio-caudal view and the

medio-lateral-oblique view as shown in �gure 2.3. The cranio-caudal (CC) view is a projection

taken from above a horizontally-compressed breast and the medio-lateral-oblique (MLO) view is

taken from the side and at an angle of a diagonally-compressed breast (Andolina & Lillé, 2010).

2.5 Symmetry and Asymmetry

Symmetry is an appealing quality and often associated with good health and attractiveness in

humans (Livshits & Kobyliansky, 1991; Møller & Thornhill, 1998; Scheib et al., 1999; Tovée et al.,

2000; Wade, 2010). Random deviation from perfect symmetry in bilaterally symmetric organisms,

such as humans has been linked to qualities of health and sexual selection (Tomkins & Kotiaho,

2002) and asymmetry, therefore, represents an obvious choice as an indicator of disease or ill health.

This is a concept that is widely supported in mammography with an extensive literature investigat-

ing asymmetry between breasts and the associated risk of developing breast cancer (Eltonsy et al.,

2007; Scutt et al., 2006; Wang et al., 2011). However, whilst seemingly straightforward concepts,

the terms symmetry and, in particular, asymmetry can have di�erent meanings in mammography

when compared to the mathematical de�nitions or even the layman's understanding of the terms.

Even within mammography, asymmetry can be interpreted in several ways. It would, therefore,

be prudent to clarify the various interpretations and how the terms will be used in this thesis.
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2.5.1 Symmetry and asymmetry in visual science and mathematics

Wagemans (1995, p. 10) describes symmetry as �. . . self-similarity under a class of transforma-

tions. . . �. This de�nition of symmetry includes transformations such as rotation or translation

(Darvas, 2007) as shown in �gure 2.4.

Figure 2.4: Types of symmetry - re�ection (left) and translation (right)

Geometric symmetry can be mathematically de�ned with, for example, a function f (x, y)

having perfect mirror symmetry when viewed around a vertical axis y when:

f (x, y) = f (−x, y) (2.1)

Where x and y are points, in each image, orthogonal and parallel to the axis of symmetry. There

are a number of mathematical measures of the level of symmetry (or conversely, the level of

asymmetry), such as the measurement of the di�erence between the two halves of an image, given

by an equation of the form:

Level of asymmetry =

ˆ n

x0

[f (x, y)− f (2x0 − x, y)]
2

(2.2)

(Tyler, 2002)

Where:

n = image size in pixels

x0 = position of the axis of symmetry

This thesis, however will use the Pearson correlation as a measure of the symmetry between

the two halves of an image or of two paired images. The level of symmetry of functions f (x1, y1)

and f (x2, y2) is given by:
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ρ ((x1, y1) , (−x2, y2)) =
Covariance ((x1, y1) , (−x2, y2))√
V ariance (x1, y1)V ariance (−x2, y2)

(2.3)

When the Pearson correlation ρ = 1, the functions have perfect mirror symmetry and when

ρ = 0, the functions are perfectly asymmetric. Values between ρ = 1 and ρ = 0� indicate varying

levels of asymmetry. This visual science or mathematical de�nition of symmetry will be referred

to as �geometric symmetry�.

2.5.2 Symmetry and asymmetry in mammography

As we will see in section 2.8, the breast radiologist often views mammograms in symmetric pairs

and, by the scienti�c or mathematical approach described above, any di�erences would be classed

as asymmetries. In some cases, radiologists do use a mathematical approach, however in other

circumstances the use of the word �asymmetry� has a stricter de�nition relating to a category

of abnormality (see section 2.6.2). These two, contrasting, approaches to the seemingly simple

concept of asymmetry will now be discussed.

2.5.2.1 The use of asymmetry, as de�ned mathematically, in mammography

Most textbooks recommend that radiologists view mammograms in a mirror symmetric display

to take advantage of the natural symmetry of the breasts, using deviations from symmetry, or

asymmetry, as possible indications of disease (Andolina & Lillé, 2010; Bun, 2002; Harvey & March,

2013; Kopans, 2007; Sickles, 2007). The level of geometric asymmetry observed by the radiologist

is subjective and the unquanti�able nature of this decision means that replicability can be di�cult

to achieve. Nonetheless, overall geometric asymmetry of the breasts, particularly in relation to the

size of each breast, remains an important indicator for the breast radiologist.

A more objective approach, that does make more quanti�able estimates of the level of asymme-

try is that of �uctuating asymmetry. Fluctuating asymmetry is a measure of biological asymmetry

and refers to small random deviations from perfect symmetry in bilaterally paired structures such

as may be present between the left and right sides of the human body (Tomkins & Kotiaho, 2002).

In the context of mammography �uctuating asymmetry would represent di�erences between the

left and right breasts and it can be measured in several ways. Eltonsy et al. (2007) and Scutt et al.

(2006) measured the di�erence in the volume of each breast to estimate �uctuating asymmetry.

Another measure uses the �uctuation of image pixel intensity between each breast to calculate

density di�erences (Zheng et al., 2012, 2014). Feature based methods are also commonly used,

particularly with computer aided detection (CAD) systems, whereby suspicious features are iden-
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ti�ed through image �ltering techniques based upon image statistics and image qualities, such as

texture and brightness and a comparison is then made to the opposite breast to identify asymmetric

features (Lau & Bischof, 1990; Tahmoush & Samet, 2006; Wang et al., 2011).

Fluctuating asymmetry, therefore, represents a measure of the amount of deviation from perfect

symmetry between the left and right breast as a whole, however, this is predominantly a research

tool and is rarely, if ever, used by the practicing clinical radiologist. The clinical radiologist will

use the term asymmetry in a more precise manner to refer to a speci�c class of abnormality as

described below and in section 2.6.2

2.5.2.2 The use of asymmetry, as de�ned as a distinct class of abnormality, in mam-

mography

When a clinical radiologist refers to the term �asymmetry�, they are usually referring to a speci�c

class of abnormality. While normal and other abnormal variations between breasts may contribute

to the mathematical de�nition of asymmetry between two mammograms, the clinical radiologist

will not usually call these features asymmetries unless they meet the strict de�nition of the class

of abnormality known as asymmetry (Zonderland & Smithuis, 2013). Thus normal variation will

be referred to as such and other abnormalities, such as a mass or an architectural distortion, will

be identi�ed by the class of abnormality that they belong to (see section 2.6 for a discussion of the

types of abnormality encountered by the radiologist). A fuller discussion of asymmetric �ndings

will be given in section 2.6).

2.6 Abnormalities � What is the Radiologist Looking For?

Breast cancer is an uncontrolled growth of cells leading to the formation of a mass of abnormal tissue

known as a tumour. The tumour may be benign or malignant, however, before its malignancy or

otherwise can be determined, it has to be found. This is the challenge for the radiologist. Whilst

the tumour may not always be visible on the mammographic views taken, other signs such as

asymmetry, architectural distortion or calci�cations may be indicative of an underlying tumour

and a brief description of each will be given to understand their relevance in the context of this

thesis.

2.6.1 Mass

A mass is a three-dimensional feature with convex outward borders that is usually visible on two

di�erent views (Sickles et al., 2013). Masses can be round, oval or irregular in shape and can have

105



well-de�ned or indistinct edges that are microlobulated (small undulating circles along the edge

of the mass), indistinct or spiculated (thin lines radiating from the mass) (Sickles et al., 2013;

Zonderland & Smithuis, 2013).

2.6.2 Asymmetry

Zonderland & Smithuis (2013) de�ne mammographic asymmetry as �Findings that represent uni-

lateral deposits of �broglandular tissue not conforming to the de�nition of a mass.� Fibroglandular

tissue refers to both the �brous connective tissues and the glandular tissues of the breast and these

will appear as the whiter areas on the mammogram (Bontrager & Lampignano, 2013, p. 751).

The �broglandular tissue will normally be bilaterally similar, however, when di�erences in the

pattern of the �broglandular tissue occur between the left and right breasts this will be reported

as an asymmetry. Although a mass or architectural distortion can represent a di�erence in the

parenchymal pattern from left to right breast they are not referred to as an asymmetry. A mass can

be discriminated from an asymmetry by its spherical three dimensional shape, appearing denser

at the center than at the periphery and it will be visible on two di�erent projections whereas an

asymmetry may only be visible on one projection, will have a more evenly dense appearance and

will lack the more distinct convex borders of a mass (Sickles, 2007; Zonderland & Smithuis, 2013).

An architectural distortion will be di�erentiated from an asymmetry by the pinched or indented

pattern of the tissue (Shaw De Paredes, 2007, p. 370). The Breast Image Reporting and Data

Systems (BIRADS) de�nes four sub-categories of asymmetry � asymmetry, global asymmetry, fo-

cal asymmetry and developing asymmetry (Zonderland & Smithuis, 2013), as summarised below

(Sickles, 2007).

Asymmetry represents an area of �broglandular tissue that is only visible on one of the two

standard views (either MLO or CC, but not both).

Global asymmetry represents a greater volume of �broglandular tissue, with no apparent mass,

architectural distortion or calci�cation present, in one breast than in the opposite breast and

corresponding to at least one quadrant of the breast.

Focal asymmetry represents an asymmetry of �broglandular tissue corresponding to less than

one quadrant of the breast, visible on both standard views (MLO and CC) but lacking the distinct

convex contours obvious characteristics of a mass.
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Developing asymmetry represents a focal asymmetry that has grown larger or denser since

the previous screening.

2.6.3 Architectural distortion

An architectural distortion is a localised disruption of the normal shape of the breast or of the

internal pattern of the breast which is seen as an indentation or tightening of the features Shaw

De Paredes (2007, p. 370) and it is this indentation or tightening that di�erentiates it from an

asymmetry. For an abnormality to be classi�ed as architectural distortion there should be no

de�nite mass visible (Zonderland & Smithuis, 2013). Architectural distortion has a number of

underlying causes, most of which are benign, such as post-surgical scarring, sclerosing adenosis

(nodules of �brous tissue or cysts), trabecular thickening (a thickening of the connective and

supportive tissues) or fat necrosis (concentration and in�ammation of fatty tissue usually resulting

from surgery or trauma) but the distortion may also be indicative of a malignant breast lesion

(Shaw De Paredes, 2007, pp. 363-444).

2.6.4 Calci�cations

Calci�cations are calcium deposits within breast tissue appearing as very small white spots or

�ecks on a mammogram, usually less than 1mm in size (Zonderland & Smithuis, 2013).

2.7 Use of symmetry and asymmetry in this thesis

In an e�ort to achieve consistency and clarity throughout this thesis the following de�nitions

relating to symmetry and asymmetry will apply to this thesis:

Symmetry and symmetric will be used to refer to the type of presentation of the image pairs

when they are presented side by side. Images that are re�ected about a vertical axis will be

referred to as having mirror symmetry or as being mirror symmetric. Images that are a same

orientation translation of each other will be referred to as having repeat symmetry or as being

repeat symmetric.

Fluctuating asymmetry refers to the di�erences between the left and right breast resulting

from normal and abnormal variations (see sections 2.6 and 2.10).

Asymmetry will be used to refer to the speci�c class of abnormality as described in section

2.6.2.
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2.8 Reading the Mammogram

Radiologists typically conduct a systematic search of each mammogram image for features of

concern and make comparisons with the corresponding regions of any available images of the

same breast from prior screenings and to the opposite breast from the same screening to identify

di�erences that may indicate breast cancer (Harvey et al., 2008). To facilitate the latter, it is

common practice for radiologists to view the mammograms in pairs � either bilateral pairs that

consist of the same view of the left and right breast from the same screening or temporal pairs

that consist of the same view of the same breast, taken at two di�erent screenings (Kopans, 2007,

p. 367).

2.8.1 Bilateral pairs

Bilateral pairs (sometimes referred to as contralateral pairs) consist of the same view (either CC

or MLO) of the left and right breast from the same screening. As shown in �gure 2.5, bilateral

pairs are normally viewed in a mirror symmetric format. This protocol is recommended by most

texts with the rationale that the radiologist can take advantage of the natural symmetry of the

breasts (Andolina & Lillé, 2010; Bun, 2002; Harvey & March, 2013; Kopans, 2007; Sickles, 2007).

Bilateral asymmetry is an important indicator for the radiologist as a predictor for breast cancer

and this will be discussed later in this chapter.

2.8.2 Temporal pairs

Temporal pairs consist of the same view (either CC or MLO) of the same breast, taken at two

di�erent screenings. Temporal pairs aim to take advantage of the stasis of the breast over time

and during the examination the radiologist will look for di�erences that indicate changes from the

previous image. A feature that may, in itself, cause concern to the radiologist, could be discounted

as a risk if it appears in, and is unchanged from, the previous mammogram. The comparison of

temporal pairs has strong evidential support for reducing false positive decisions (Roelofs et al.,

2007; Sumkin et al., 2003; Thurfjell et al., 2000), identifying developing asymmetry (Sickles, 2007),

reducing recall rates (Callaway et al., 1997) and identifying subtle changes, such as the appearance

or change of a small mass, that may be indicative of cancer (Frankel et al., 1995; White et al.,

1994).
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Figure 2.5: Standard mammogram opening hanging protocol with key

2.8.3 Mammogram workstation hanging protocols

As an aid in identifying abnormalities from the paired images, radiologists often use a mirror

symmetric hanging protocol (Haygood & Dogan, 2013; Kopans, 2007, p. 367). Whilst, in the UK

NHS, hanging protocols are not mandated, this is the usually recommended protocol such that

bilateral pairs are displayed in a mirror symmetric format with the same four views from the prior

screening situated above, as shown �gure 2.5. The temporal pairs are, therefore, usually viewed as

translational or repeat symmetric images of each other. Whilst it is technically possible for most

mammography workstations to display the temporal image pairs in a mirror symmetric format,

this is not usually done.
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2.9 The Importance of Detecting Masses

Research by Venkatesan et al. (2009) suggests that a mass is the most likely indicator of malignant

(or invasive) breast cancer. Venkatesan et al. (2009) found from their sample of 1287 instances

of invasive breast cancer, that 68% were identi�ed with a mass, compared to 5% identi�ed with

asymmetry, 6% identi�ed with architectural distortion and 21% identi�ed with calci�cations. Other

studies have also shown similarly high positive predictive value of both masses and calci�cations;

Gajdos et al. (2002) suggest that 95% of masses were caused by invasive cancers and McKenna

(1994) concluded that masses, in particular when spiculated in shape and with suspicious calci�-

cations were indicative of a high probability of breast cancer, but asymmetry was associated with

a much lower probability.

This indicates the importance of identifying masses and this is further emphasised by the rela-

tionship between tumour size and mortality with the chances of survival being inversely correlated

with the size of the tumour and ten year survival probability improving from 60% for a 2-5 cm

tumour to 95% if the tumour is detected before it exceeds 1 cm (Tabár et al., 1999).

This is not to underestimate the importance of other indicators of breast cancer and geometric

asymmetry, in particular, is recognised as an important sign for the radiologist, with a great deal

of evidence linking asymmetry to the risk of breast cancer (Eltonsy et al., 2007; Scutt et al., 2006;

Wang et al., 2011; Zheng et al., 2012, 2014). Indeed, symmetry or, asymmetry, is often cited as

the radiologists' most potent weapon in the search for abnormalities (Andolina & Lillé, 2010) and,

as previously stated, current practice recommends viewing mammograms back to back in a mirror

image display to assist the radiologist in identifying deviations from symmetry (Harvey & March,

2013; Bun, 2002; Andolina & Lillé, 2010; Kopans, 2007). Thus, there is no question that asymmetry

is a powerful tool and, in some cases, may be the only indication of breast cancer available to the

radiologist (Sickles, 2007). Nevertheless, it should be clari�ed that the aim of this thesis is not

to measure an observer's ability to identify whether two images are symmetric or not, rather the

focus will be on the detection of discrete masses (simulated by a Gaussian blob) in paired images

that contain a level of symmetry ranging between none and perfect symmetry. There is a large

body of literature on the capability of the human visual system to detect symmetry and deviations

from symmetry (Baylis & Driver, 1994; Julesz, 1971; Koning & Wagemans, 2009; Treder, 2010;

Treisman & Patterson, 1984; Wagemans, 1995), however, the medical and psychophysical literature

has much less to say on the e�ectiveness of symmetric displays in making a discrete mass more

salient and testing this will be one of the goals of this thesis.
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2.10 Normal Di�erences Between Paired Mammograms

Although, taking the subjective approach of the radiologist, the breasts are fairly symmetric struc-

tures, di�erences between breasts will always be evident on the mammograms. For bilateral pairs,

this may result from natural di�erences between each breast and for temporal pairs the breast can

change over time as a result of ageing, lifestyle changes or hormonal factors (Heine & Malhotra,

2002). For both bilateral and temporal pairs, di�erences can be introduced by process induced

di�erences resulting primarily from the variation of breast positioning and compression within the

scanner. The presence of di�erences between the images, whether they are a bilateral or temporal

pair, is, therefore, normal, to be expected and is not usually indicative of a problem.

2.11 The Detection of Masses as a Psychophysical Task

Whilst, the detection of asymmetry and architectural distortion is clearly important and, in a clin-

ical context, will clearly in�uence the radiologist's decision making strategy, from a psychophysical

viewpoint, they could be considered to be part of the background noise limiting the observer's

ability to detect a tumour. Thus, in the context of this thesis, where we are interested in an

observer's ability to detect discrete masses in paired images, presented in a symmetrical, or al-

ternative, protocol, asymmetries, architectural distortions and calci�cations are not features to

be detected, but part of the background noise limiting detection of the mass. Normal di�erences

between the two images, whether they are bilateral or temporal pairs, will also contribute to this

noise. Figure 2.6 illustrates this concept of a tumour representing a psychophysical signal and the

breast tissue representing the background noise and �gure 2.7 shows how this may look in a typical

psychophysical experimental set up using real mammogram, Gaussian white noise and power law

noise backgrounds.

When considering the psychophysical task of detecting a discrete mass from a paired noise

background, the combination of di�erences between the images of the pair, resulting from abnormal

and normal variations, creates a level of di�erence between the two images that can be measured

by the Pearson correlation between them. The greater the di�erence is, the lower will be the

level of correlation and vice versa. Hence, phrased in psychophysical terminology, when viewing

paired images, the radiologist's task is, typically, to identify (recognise) a signal in paired noise

backgrounds that have a level of correlation between them, where the signal is unknown in location,

shape and size, etc.

This task description forms the basis for the experiments in this thesis, with initial experiments

using a signal of known size, shape and location before progressing to signals of known size and

111



Figure 2.6: A CC mammogram pair, displayed in a mirror symmetric format, illustrating the
concept of a signal (the tumour (circled)) in noise (the breast tissue - consisting of fat, �broglandular
tissue and blood vessels)

shape, but unknown location. For the Gaussian white noise and synthetic images used in this

thesis, the level of di�erence between the two background images will be varied by adjusting the

level of correlation between the two images. When these images are viewed side by side, varying

the correlation varies the level of symmetry between the two images. This enables us to determine

whether symmetric backgrounds, be they mirror or repeat symmetry, assist the radiologist in the

detection of a signal embedded in one of the images.

2.12 Viewing Modalities

As already stated, current practice recommends that radiologists view image pairs in either a mirror

symmetric format or a repeat symmetric format. This thesis will investigate the e�ectiveness of

symmetry as an aid to the radiologist in detecting a tumour present in one image of the pair.

An animated presentation method will also be introduced as an alternative viewing modality. To

achieve this, two images of the pair will be displayed sequentially in the same location such that

any di�erences between the two images will appear to �ash on and o�. The human visual system is

highly sensitive to motion and �icker (Adelson & Bergen, 1986; Watson, 1986), with most cortical

cells responding better to movement than to stasis (Hubel, 1995, pp. 78-79) and so an animated

presentation method should be able to take advantage of this. This thesis will investigate the

animated presentation method to determine its e�ectiveness in detecting a signal present in one

112



Figure 2.7: Examples of typical psychophysical type displays showing how a mammogram image
pair with a tumour in one image (top) can be likened to a signal in a Gaussian white noise
background (middle) or a power law noise background (bottom).

image of the pair and compare its performance against that of symmetric presentation.

2.13 Image Registration

Image registration is a technique that can be used to reduce the level of misalignment that can occur

between the two images of a pair. Image registration can be de�ned as a process of transforming

an image so that points in that image are brought into alignment with the corresponding points

in a paired image (Wyawahare et al., 2009). Various techniques have been utilised to achieve

registration algorithms. However, they basically fall into feature based or intensity based methods,

or a hybrid of the two. Feature based methods utilise anatomical features such as the skin boundary,
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the nipple, vasculature, the pectoral muscle (in MLO images) or �bro-glandular features. Intensity

based methods use pixel intensity (Guo et al., 2006). The quality of registration is a measure of

how closely aligned the two images in a pair are and a number of measures are available such as

the sum of the squared di�erences, the normalised correlation coe�cient and mutual information

(Bozek et al., 2011a).

The e�ectiveness of registration for mammogram images, however, depends upon the initial

similarity of the two images to be registered. It can be very e�ective for images that are similar

but misaligned, such as in cases where the imaging process captures the same features of the breast

but the breast has been shifted in a horizontal plane within the imaging scanner. Here, the two

images can be brought into alignment by registration and high levels of correlation between the

two images can be achieved. Registration is less successful where di�erent features are captured as

a result of changes in the breast or because of a di�erent positioning of the breast in the scanner.

For example, one image scan may capture the nipple whereas the second scan may compress the

breast in a di�erent vertical plane and not capture the nipple. In this example, where a feature

(the nipple) is apparent in one image but does not appear in the second image, registration of that

feature cannot be achieved. Notwithstanding this, even with an incongruity of features, registration

will attempt to bring the breast boundary and any common features into alignment and, whilst

the two images can never be identical in these cases, registration can increase the correspondence

between them.

2.14 The Correlation Coe�cient as a Measure of Image Match-

ing

The similarity of the features present in the two images of a pair and the alignment of the cor-

responding features are both important attributes in the measurement of how closely two images

are matched. How closely matched the two images are will determine the level of symmetry when

the image pair are displayed in a symmetric format and the level of di�erences between the two

images when they are displayed in a sequentially presented format. The level of symmetry and

the level of di�erence between two images are the same measure - both re�ecting the variable

of how well matched the two images of a pair are and this variable is readily measured by the

correlation coe�cient (Pearson correlation) between the two images of the pair. Thus, the level

of symmetry (when the images are presented side-by-side) and the level of di�erence (when the

images are presented sequentially) re�ect the same underlying variable and will both be measured

by the correlation coe�cient.
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2.15 The Choice of a Target Signal

Breast cancer is a progressive disease which means that, unchecked, a malignant tumour will get

bigger and will spread to other parts of the body. This progression can be halted by detecting the

tumour early and the probability of a positive outcome is increased by early detection when the

tumour is small (Michaelson et al., 2002; Tabár et al., 1999). It is important, therefore, to be able

to detect small low contrast masses in one image of a bilateral or temporal pair. The appearance

of masses can vary widely; round, irregular, distinct or indistinct, spiculated or smooth are just

some of the descriptions attributed to a mass. For our aim of comparing viewing modalities in a

laboratory setting, signal realism is a secondary consideration and a single, easily controlled signal

is the primary goal. A small Gaussian blob was, therefore, chosen as the target signal giving good

experimental control and an acceptable level of realism as discussed in section 1.6.3.

2.16 Chapter Summary

The aim of this chapter was to introduce the background information that establishes the context

and relevance of this research in the clinical scenario. The chapter has also shown how speci�c

aspects of the radiologists' task can be isolated and tested in a laboratory setting using a psy-

chophysical approach. The psychophysical experiment has been identi�ed as the detection of a

signal in correlated paired noise backgrounds. Relating the experimental terminology to the clini-

cal environment; the signal represents a tumour or mass that the radiologist aims to detect. The

paired noise backgrounds are the mammogram pairs (bilateral or temporal) that the radiologist is

viewing where the noise equates to the pixel values of the breast tissue. The correlation between

the images of the pair will depend upon the di�erences between the two images and this will be

the result of abnormal and normal variations. To isolate and test the speci�c task of detecting a

small mass, in the experimental setting, the observer is only trying to detect the small mass and

not the abnormal variations; in the context of this thesis, abnormal variation only represents a

contribution to the correlation level between the images of a pair.
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Chapter 3

The Aims of this Thesis

Chapter 1 introduced the broad range of literature that underpins the research conducted in this

thesis and argued that the optimum outcome for the detection of a signal in paired noise �elds

can be achieved by an observer using a decorrelating and cross correlating strategy; this observer

is known as the ideal observer. This strategy required that the paired images be decorrelated

to remove redundant information before cross-correlating the resulting images with a template of

the signal to be detected and selecting the image that returns the highest internal response as

the image containing the signal. Chapter 1 argues that there is limited evidence that the human

visual system can execute this decorrelating and cross correlating strategy when the images are

presented in a side-by-side format but suggests that an alternative method of displaying the two

images of the pair alternately in the same location in a continuous movie sequence may enable a

human observer to operate in the same way as the ideal observer.

Whilst investigation of whether either mirror symmetric displays or animated movie displays

can enable the human observer to operate in a manner akin to the ideal observer is a valid the-

oretical topic in its own right, this thesis also has a clinical rationale in the applied discipline of

mammography. Chapter 2, therefore, introduces the terminology, practices and some of the rele-

vant clinical research in the �eld of mammography to enable the reader to ground the theoretical

aspects of this thesis in the clinical application of mammography. Chapter 2 establishes how the

clinical task of the breast radiologist can be identi�ed as the psychophysical task of detecting a

signal in correlated paired noise backgrounds where the signal represents a tumour or mass that

the radiologist aims to detect and the paired noise backgrounds represent the mammogram pairs

that the radiologist is viewing.

This thesis will take a psychophysical approach to investigating the detection of a small mass in

paired mammogram backgrounds, establishing the theoretical basis for the ideal observer strategy
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in controlled conditions, before advancing closer to the clinical scenario. The aims of this thesis,

therefore, are:

1. To investigate the e�ectiveness of symmetric displays, as used by breast radiologists, as an

aid for the detection of a Gaussian blob in paired noise �elds.

2. To investigate the e�ectiveness of animated displays as an aid for the detection of a Gaussian

blob in paired noise �elds.

3. To compare the e�ectiveness of animated and symmetric displays as an aid for the detection

of a Gaussian blob in real mammogram pairs.

3.1 Summary of Experiments to be Conducted

3.1.1 Experiment 1: Weak Use of Symmetry in the Detection of Simu-

lated Tumours in Paired Synthetic Mammograms.

The goal of Experiment 1 will be to address the �rst aim of this thesis: to investigate the ef-

fectiveness of symmetric displays, as used by breast radiologists, as an aid for the detection of a

Gaussian blob in paired noise �elds. The correlation between the paired images will be used as

a measure of the symmetry between them and this will be varied between 0 and 1 to enable the

e�ect of symmetry to be quanti�ed. The experiment will �rst be conducted using Gaussian white

noise �elds to examine the theoretical basis for the use of symmetry, before introducing a power

law noise, which better re�ects the application of mammography.

3.1.2 Experiment 2: A Comparison of Side-by-Side Versus Animated

Presentation of Images.

Experiment 2 will address the second aim of this thesis: to investigate the e�ectiveness of animated

displays as an aid for the detection of a Gaussian blob in paired noise �elds and compare against the

e�ectiveness of symmetric displays. Again, the correlation between the image pair will be varied

between 0 and 1 to investigate how varying the similarity of the images a�ects the observer's ability

to detect the Gaussian blob signal. As in Experiment 1, the experiment will �rst be conducted

using Gaussian white noise �elds to examine the theoretical basis for the use of animation, before

introducing a power law noise, which better re�ects the application of mammography.
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3.1.3 Experiment 3: Does the Rate of Alternation A�ect the Observer's

Contrast Threshold for the Detection of a Signal in Paired Noise

Backgrounds?

The rate at which the displays are alternated will be investigated in Experiment 3. The aim of this

experiment will be to determine what the optimal rate of alternation is for the task of detecting

a Gaussian blob in paired noise �elds and this will be investigated in both Gaussian white noise

�elds and power law noise �elds.

3.1.4 Experiment 4: Comparison of Animated Presentation against Tra-

ditional Mirror Symmetric Presentation for the Detection of a

Synthetic Tumour in Real Mammogram Backgrounds.

Experiment 4 will introduce real mammogram pairs with a synthetic Gaussian blob superimposed

on one image. The aim of this experiment will be to investigate and compare the e�ectiveness

of mirror symmetric and animated display types for the task of detecting a Gaussian blob in real

mammogram image pairs.

3.1.5 Experiment 5: An Investigation into the use of Animated Presen-

tation for the Detection of a Synthetic Tumour in Real Mammo-

grams and Power Law Noise Backgrounds.

Experiment 5 will compare the e�ectiveness of mirror symmetric and animated display types for

the task of detecting a Gaussian blob in paired real mammogram image sections and paired power

law noise image pair sections. The experiment will use tightly controlled experimental conditions to

ensure that the real mammogram image sections and power law noise image sections are matched

on all speci�cations such that the only di�erence is the noise type. This will, thus, enable an

unmitigated comparison of observer performance with each display type and each noise type.
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Chapter 4

Experiment 1: Weak Use of

Symmetry in the Detection of

Simulated Tumours in Paired

Synthetic Mammograms

4.1 Introduction

The introduction to mammography in Chapter 2 took one aspect of the breast radiologist's task

and rede�ned it in psychophysical terms. Thus, the task of detecting a tumour or mass from the

background of paired mammograms displayed in a mirror symmetric format is presented as the

detection of a signal in correlated noise backgrounds displayed in a symmetric format. In the

clinical environment, the correlation between the paired mammograms will vary dependent upon

the level of normal and abnormal di�erences present, and the practice of viewing mammograms

back to back in a mirror image display means that, as the level of correlation varies, the level of

symmetry presented by the paired images will also vary.

Mirror symmetric presentation is widely recommended as an aid to making abnormalities more

salient (Andolina & Lillé, 2010; Bun, 2002; Harvey & March, 2013; Kopans, 2007; Sickles, 2007),

and there is an abundance of evidence to support this notion, showing that the human visual

system is highly attuned to detect the occurrence of (and by inference, the violation of) visual

symmetry (Baylis & Driver, 1994; Julesz, 1971; Koning & Wagemans, 2009; Treder, 2010; Treisman
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& Patterson, 1984; Wagemans, 1995).

The e�ectiveness of mirror symmetric presentation for the detection of large violations, as

would be caused by large abnormalities, is not disputed, however, there appears to be no empirical

evidence to support the notion that mirror symmetric presentation assists the observer in the

detection of a small localised violation, such as may be caused by a small mass or tumour. Indeed,

research suggests that mirror symmetric presentation may have limitations for the detection of

small localised violations in certain circumstances which may have implications for its use in

mammography. First, there is evidence that violations of mirror symmetry may be less easily

detected when the violation is remote from the midline of the symmetric display (Barlow & Reeves,

1979; Bruce & Morgan, 1975; Jenkins, 1982). This confers a substantial shortcoming for the use

of symmetry in mammography as a localised mass may be present anywhere in the breast, not

just close to the midline. Second, previous studies on symmetry detection providing evidence for

the e�ectiveness of mirror symmetric displays as a tool for violation detection have used patterns

that are relatively simple (e.g. Baylis & Driver, 2001), with a minimal number of features (e.g.

Wenderoth, 1996) or a limited number of violations of the symmetric pattern (e.g. Locher &

Wagemans, 1993). A typical pair of mammogram images, however, is not made up of such simple

patterns, nor is it likely to be completely symmetric, with normal and abnormal variations in

breast tissue potentially reducing the e�ectiveness of mirror symmetry as an aid to the detection

of a localised mass when presented in the traditional side-by-side format.

While not agreeing on the underlying mechanism, several studies have shown the adverse e�ect

of increasingly complex images on symmetry detection, providing explanations of increased levels

of information within the images (Tapiovaara, 1990), the increasing density of that information

(Rainville & Kingdom, 2002), or the increasing spatial frequency of the patterns within the images

(Dakin & Herbert, 1998). In relation to the complexity of paired images, Huang & Pashler (2002),

suggested that symmetry detection operates using coarse �binary maps� that �lter individual fea-

tures of an image, such as shape, size or colour, that are checked for symmetry (or for violations

of symmetry). Huang & Pashler (2002) measured observers' response times to detect symmetric

patterns and for all of the features presented found that response times increased as the complexity

of the image increased concluding that symmetry detection is spatially inaccurate. When applied

to a mammogram image pair, these �ndings suggest that symmetry detection would be a very

coarse process and would be likely to miss minor violations of the symmetric pattern such as may

be caused by a small tumour. This clearly has implications for the e�ectiveness of symmetry as

an aid to the mammographer. Finally, although the occurrence of symmetry in nature is common,

it is rarely perfect (Va`rkonyi & Domokos, 2006). This is demonstrated in examples commonly
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thought of as symmetric but which rarely are, such as the human face (Lu, 1965) and the snow�ake

which, as Libbrecht (2006, p. 48) noted, "The vast majority show imperfect symmetry, if they

show much symmetry at all". The implication here is that the human visual system may have

optimally evolved to detect imperfect, natural symmetry but may be insensitive to minor violations

of symmetry. This observation was supported by the Tjan & Liu (2005) study which found, using

random dot patterns, that the visual system was disproportionately less well attuned to smaller

rather than to larger departures from symmetry. The evidence from the study of Tjan & Liu

(2005) that that small violations of symmetry are poorly perceived, gives us cause to doubt the

e�ectiveness of such displays for the detection of small localised masses.

The preceding evidence suggests that the value of using symmetric displays to aid in the detec-

tion of small masses is, questionable and, whilst this evidence has focused on mirror symmetry, it

should be noted that both mirror and repeat symmetric displays are used by the breast radiologist.

Thus, the aim of this experiment was to test both mirror and repeat symmetric displays, however,

before testing in a clinical scenario, this experiment will establish the theoretical basis by testing

the e�ect of symmetry in a laboratory simulation. Thus, in this experiment we used synthetic

images and synthetic tumours and presented two side-by-side noise images to simulate the con-

ventional display of two mammograms side-by-side. Observers decided which image contained the

synthetic tumour signal. Varying the level of correlation between the background images varies

the level of symmetry presented by the images. By varying this during a signal detection task,

the experiment is able to determine whether improvements in symmetry lead to improvements in

observer performance. The question of whether symmetry helps in the detection of a signal can

be analysed theoretically using an ideal observer approach (see Theory section of Experiment 1a

on page 125). When attempting to detect a signal known exactly embedded in one of a pair of

correlated noise patches, an ideal observer will decorrelate the two patches and cross-correlate a

template of the signal with the decorrelated stimuli presented (<signal+noise> or <noise>) (Kay,

1998, p. 106). If the cross-correlation exceeds a criterion level, the observer says "signal present"

and "signal absent" otherwise. Decorrelation e�ectively removes any correlated noise and with a

correlation of 1, all the noise will be removed, leaving only the signal (Kay, 1998, p. 111). Thus,

an observer who can decorrelate the noise patches will have much better performance than that of

an observer who cannot perform such decorrelation. It is interesting to note that the correlation

remains the same whether the image pair is presented in a mirror symmetric format or a repeat

symmetric format and the ideal observer, therefore, performs the same for both types of symmetry.

Whether the human observer can perform decorrelation and use the symmetry of the back-

ground is an important question. The ideal observer provides the optimal benchmark against
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which other observers can be compared and, even if humans perform poorly in relation to the

ideal observer, the comparison provides an insight into the limitations of the human visual system

and the requirements of the type of display that would enable the human observer to perform the

task optimally. Real observer performance was assessed by measuring the contrast threshold for

detecting the signal as a function of the degree of symmetry in the image pairs. The degree of sym-

metry was manipulated by varying the correlation between the two noise images. The correlation

is de�ned as:

ρ =
σxy
σxσy

(4.1)

where σxy is the covariance between pixel intensities in image x and image y, σx is the standard

deviation of image x, and σy is the standard deviation of image y. If the correlation was zero, the

noise was completely unrelated and the two images were completely asymmetric. If the correlation

was 1.0, the two images had identical noise (though re�ected about the vertical axis in the mirror

condition) and the image pair had perfect symmetry. Intermediate levels of correlation produced

pairs with partial symmetry. If symmetry helps the observer to detect the signal, as suggested

by the performance of the ideal observer, the contrast threshold should decline as the correlation

increases. In addition, if mirror symmetry as is commonly used in the clinic is helpful for detecting

tumours and small masses, we expect that performance will be better for image pairs that have

mirror symmetry rather than simply translational symmetry as presented in the repeat condition.

Experiment 1a used a Gaussian white noise background to enable a simpli�ed examination

of the theoretical basis for the ideal observer. Experiment 1b used a noise background with

a 1/f3 power spectrum chosen for the similarity of its statistical properties with those of real

mammogram backgrounds (Burgess et al., 2001). In both experiments the signal to be detected

was a Gaussian blob signal, the characteristics of which are similar to the typical mass searched

for in real mammograms, as discussed in section 1.6.3 and section 2.15.

The aim of both experiments was to investigate whether mirror and repeat symmetric presen-

tations aid the observer in the detection of a signal in correlated noise �elds.

4.2 Experiment 1a

In the �rst experiment the Gaussian blob signal to be detected was presented on one of two

Gaussian white noise backgrounds. This noise permits a simpli�ed formal analysis of the ideal

observer (Abbey & Eckstein 2010, pp. 240-244; Kay, 1998, pp. 94-105), which we present in

section 4.2.1. The experiment tested whether human observers can adopt the same strategy as the
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ideal observer to take advantage of the image pair symmetry to assist in the detection of a signal

in noise.

4.2.1 Theory

4.2.1.1 Theory for the detection of a signal in paired noise �elds

The task is a simple signal known exactly (SKE) detection task, detecting a Gaussian blob signal

which is placed in the centre of either the left or right image (analogous to the left and right breast

images of a mammogram reading). The signal is added to a Gaussian white noise background.

The noise within each image is white (having no spatial correlation), but is correlated between

the images. The correlation value of the image pair (ρ) ranges from ρ = 0 (asymmetric) to ρ = 1

(symmetric). On each trial the observer receives two images, each of which we will �atten into a

vector and place in a column. The observer receives:

r = s+ n (4.2)

where r, s, and n are matrices having number of rows equal to the number of pixels and two

columns, r is the pair of displayed images, the columns of s contain either zero or the Gaussian

blob signal (depending on whether the signal is on the left or right), and n is Gaussian noise. The

columns of n have 2 × 2 covariance matrix K. Note that each column of n (each noise image) is

Gaussian white noise � there is no spatial correlation within each image. However the two columns

of n are correlated. The ideal strategy for deciding which image contains the signal has two stages.

First the columns of r are decorrelated, by multiplying by the noise covariance matrix's inverse

K−1. Then the resulting decorrelated matrix is cross-correlated with the signal (Kay, 1998, p.

106). Thus the observer computes:

(rK−1)ts1 (4.3)

where s1 is the nonzero column of s and t denotes transpose. The observer decides "left" if the

cross-correlation value of the �rst element is larger, and "right" otherwise.

The performance of this decorrelating and cross-correlating observer in the 2AFC detection

task where the columns of n are uncorrelated is given by:

d′ =

√
2E

σ2
(4.4)

(Green & Swets, 1966, p. 165) where E is the energy of the signal
∑
s21, σ

2 is the noise variance,
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and d′ is the usual signal detection theory measure of performance. The performance when the

noise in the two images has correlation r is:

d′ =

√
2E

(1− ρ)σ2
(4.5)

(Kay, 1998, p. 112)

Thus, as the correlation between the two noise �elds increases, the detectability of the signal

rises. In the limit, when the two noise �elds are identical, performance is perfect. A simple way

of visualising this is to think of the decorrelating algorithm as di�erencing the two images such

that, if the noise in the two �elds is identical, the noise will be completely removed, leaving only

the signal and hence, performance is error-less. Note, however, that as the correlation between

the two images declines, the e�ectiveness of a di�erencing algorithm, in relation to a decorrelation

algorithm, will also decline.

Taking the level of d
′
at detection threshold to be 1, the energy threshold Et is:

Et =
(1− ρ)σ2

2
(4.6)

The contrast threshold is equal to some constant a times the square root of the energy threshold

where the constant a is dependent upon the stimulus duration and signal area. Signal area remains

constant throughout the experiment and, for real observers, temporal summation means that the

signal energy quickly reaches a maximum and increasing the time function does not increase signal

energy beyond this maximum, constant, value.

Therefore, for the ideal observer the contrast threshold Ct is:

Ct = a

√
(1− ρ)σ2

2
(4.7)

The ideal observer is able to take advantage of increasing levels of symmetry of the two-�eld

display, with the detection threshold declining as the image inter-correlation increases. If real

observers are able to resemble the ideal, we would expect their thresholds to decline likewise.

4.2.1.2 Comparison of observer strategies using relative threshold contrast

Without a precise measure of the real observer's e�ciency value and the viewing time for each,

a direct comparison of the absolute values of contrast threshold calculated for the ideal observer

against those actually recorded by the real observer is of limited value. The comparison of abso-

lute contrast threshold values against the ideal observer is, however, unnecessary for the aim of

determining whether the real observer can adopt the optimum strategy of decorrelation, as used
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by the ideal observer, for the detection of a signal in paired noise �elds. To compare the strategies

used we need to compare the response curve for each observer (ideal and real) as the correlation

between the paired images is varied from zero to one.

This can be achieved by measuring how the contrast threshold for the detection of the signal

changes from no symmetry (a correlation of ρ = 0) to perfect symmetry (a correlation of ρ = 1).

We would expect, if symmetry helps, that contrast threshold would fall as the level of correlation

increases. This can most clearly be seen by representing the contrast thresholds for each correlation

relative to the value at a correlation of zero, thus showing how the contrast threshold changes as

the correlation level is increased, as shown in Figure 4.1.

From Equation 4.7, for the ideal observer, the contrast threshold equals:

Ct = a

√
(1− ρ)σ2

2
(4.8)

At a correlation of zero, ρ = 0, therefore:

Czero = a

√
σ2

2
(4.9)

Therefore, for the ideal observer, the relative contrast threshold for each value of correlation

(Cρ), relative to the contrast threshold at ρ = 0 equals:

Relative Contrast Threshold =
Cρ
Czero

=
a
√

(1−ρ)σ2

2

a
√

σ2

2

(4.10)

Which simpli�es to:

Relative Contrast Threshold =
√

1− ρ (4.11)

Thus, we can see that the ideal observer will exhibit a falling contrast threshold as inter-image

correlation (symmetry) increases. For real observers, we can determine their rate of change of

contrast threshold, and hence, their ability to use the correlation between the two noise �elds, by

�tting the model:

Relative Contrast Threshold = (1− k) + k
√

1− ρ (4.12)

The constant k measures the degree to which an observer's performance is improved by the

correlation between the two noise �elds and, from equations 4.11 and 4.12, we can see that for the

ideal observer k = 1. We shall refer to k as the symmetry improvement factor. For the real observer,
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Figure 4.1: A plot of threshold contrast relative to the threshold contrast for an image pair corre-
lation of zero for the detection of a signal in a noise background against the inter image correlation
from ρ = 0 to ρ = 1. Three plots are shown for three values of the symmetry improvement factor
(k): k = 1 (the ideal observer), k = 0.5 (an observer able to make moderate use of the correlation
between the images) and k = 0.1 (an observer able to make poor use of the correlation between
the images).

if k = 1 the observer performs like the ideal observer and contrast threshold declines maximally

as the image pair becomes more and more symmetrical. If k = 0 the observer's performance is

not a�ected by the symmetry and so the function is �at. For illustration, examples of functions of

relative threshold contrast versus correlation for k values of 0.1, 0.5 and 1 are shown in Figure 4.1.

4.2.2 Method

4.2.2.1 Apparatus

Stimuli were presented on an LG 15EL9500-ZA OLED monitor with ultra-short persistence, re-

freshed at 120 Hz. Fine control of the stimulus contrast (1786 grey levels) was achieved using

bit-stealing (Tyler, 1997), and the contrast was calibrated using a Minolta LS-110 photometer.

The room lighting was dim and held constant across runs and observers such that the black of the

monitor had a luminance of 0.02 cd/m2. Viewing was binocular from a chin-rest at a distance of

52 cm from the monitor screen; at this distance the width of the display was 27.20 deg.
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4.2.2.2 Stimuli

Each image contained Gaussian white noise, and one of the two images (randomly either on the

left or right) had a Gaussian blob signal added to it. The Gaussian white noise background is

generated within the trial programme as a 256 x 256 pixel matrix with each pixel set to a value

drawn randomly from a normal distribution of pixel values between 0 and 255, where 0 is pure

black and 255 is pure white. The standard deviation of the noise was 0.22. Thus, each noise

�eld was a square patch of 256 x 256 pixels subtending 10.87 deg square, and was surrounded by

a grey region having the mean luminance of the noise patches of 25 cd/m2. Two noise patches

were generated for each trial and the correlation between the two noise patches was set using a

Cholesky transformation. The two �elds were separated by 0.22 deg. The signal was a Gaussian

blob truncated at ± 3 standard deviations with a spatial SD of 0.43 deg. The blob was always

centred in the square noise background region (signal known exactly (SKE)). A small red �xation

square was situated at the centre of the screen between the two images. Although each image

background was white Gaussian noise, the two backgrounds had a correlation of 0.0, 0.25, 0.5,

0.75, 0.9 or 1.0. Two modes of image presentation were used. In the repeat condition, one noise

background was a translated version of the other. In the mirror condition, one background was a

re�ection about the vertical axis of the other. The duration of the stimulus was dependent upon

the response of the observer, with a response terminated display.

4.2.2.3 Procedures

The experiment used a two alternative forced choice (2AFC) paradigm and on each trial the

observer was presented a left and a right image, as shown in Figure 4.2. In all experiments, the

contrast threshold corresponding to 75% correct in the 2AFC task (d' = 1) was measured. Each

pairing of correlation and type of symmetry (repeat or mirror) was presented in one 60 trial block.

In one session all conditions were run in random order. In the �rst session, the observer was given

a number of practice runs to become familiar with the procedure and the signal characteristics to

facilitate a SKE protocol. On each trial, the observer was presented with a pair of images, and

the observer chose the image containing the Gaussian blob signal by button press. The image pair

remained on the screen until a response was given. Feedback for wrong responses was indicated by

a pulsed enlargement of the central red square. At the start of a block of trials, the contrast was set

well above threshold and was always on the right, in order to refresh the observer's memory about

the signal. The contrast was varied from trial to trial using a staircase (Levitt, 1971) converging

on 71% correct that decreased the contrast after two consecutive correct responses and increased

it after one incorrect response. Each observer conducted a minimum of four sessions, where each
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Figure 4.2: Example mirror-symmetric image pairs containing a Gaussian blob signal in Gaussian
white noise. From top to bottom, the inter-image correlations are 0, .75, and 1. The blob is well
above threshold and is either on the left or right.
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session included both symmetry modes and all six correlation levels and took approximately one

hour to complete.

4.2.2.4 Observers

Six observers participated in Experiment 1a (three male and three female). Four were inexperienced

observers (JR, SP, JN, and KJ) but received training prior to commencing the study. GR and

WS were the author and the author's PhD supervisor and both were experienced psychophysical

observers. No observer had any background in radiology or medical physics. All observers had

normal or corrected-to-normal vision.

4.2.3 Results and discussion

Contrast thresholds for detecting a Gaussian blob were measured as a function of the cross-

correlation between the two noise �elds presented to the observer. The cross-correlation was a

measure of the level of symmetry present. Thresholds for each correlation value were calculated

from the 75% correct point of each observer's psychometric function �tted using probit regression.

The response on each trial was correct or incorrect, and the probit regression used these binary

values. Thus each threshold represents a �t to at least 4 blocks of 60 trials = 240 points. Using

the relative values of contrast threshold, determined as shown in section 4.2.1.2, the experiment

aimed to investigate whether symmetry, either mirror or repeat, aids the observer in the detection

of a signal in correlated Gaussian white noise �elds.

4.2.3.1 Mirror symmetric displays - does symmetry aid the observer in the detection

of a signal in mirror symmetric noise �elds?

Figure 4.3 shows the relative threshold contrast plotted against correlation for the detection of a

signal in mirror symmetric paired Gaussian white noise backgrounds for the six observers. The

thresholds and 95% con�dence intervals obtained by probit regression are shown. Curves were

�tted using least squares regression of Equation 4.12 and the �tted parameters are given in Table

4.1. It is clear from Figure 4.3 that real observers' performance does not improve as the correlation

between the noise �elds increases. The �tted curves are very �at compared to the performance of

the ideal observer, as shown by the dotted curves.

In terms of Equation 4.12, the ideal observer has a k value of 1 and the real observers have

values close to zero, or even negative. As shown in Table 4.1, the �tted parameter k has a value

that is not signi�cantly di�erent from zero for observer JN (k = 0, 95% CIs [-0.04, 0.04]), slightly

positive for observers JR, SP and GR (k = 0.15, 0.18 and 0.18 respectively, 95% CIs [0.08, 0.22],
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Figure 4.3: Contrast thresholds for detecting a Gaussian blob relative to that obtained when the
correlation is zero plotted as a function of the correlation between the two white noise �elds. The
solid curves are least squares �ts of Equation 4.12. The noise �elds in the image pair had mirror
symmetry. Results for six observers are shown. Error bars show 95% con�dence intervals. The
dotted curve shows the performance for the ideal observer. The real observers' thresholds do not
decline as correlation increases, unlike those of the ideal observer.
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Gaussian White Noise
Mirror Symmetric Display

Observer k LCL UCL
JR 0.15 0.08 0.22
SP 0.18 0.10 0.26
GR 0.18 0.14 0.22
JN 0.00 -0.04 0.04
WS -0.45 -0.67 -0.23
KJ -0.29 -0.33 -0.25

Table 4.1: The symmetry improvement factors (k) and 95% con�dence limits for the mirror sym-
metric displays with a signal in Gaussian white noise for six observers.

[0.10, 0.26], and [0.14, 0.22], respectively), and negative for WS and KJ (k = −0.45 and − 0.29

respectively, 95% CIs [-0.67, -0.23] and [-0.33, -0.25], respectively). A negative value of k means that

performance actually gets worse as the correlation increases. It is clear that for mirror symmetric

displays with Gaussian white noise images real observer's performance does not improve, or at

best, improves minimally, as the correlation between the noise �elds increases. While the ideal

observer will take advantage of the noise correlation and, thus, exhibit declining thresholds as noise

correlation increases, real observers are not able to decorrelate the image pair.

4.2.3.2 Repeat symmetric displays - does symmetry aid the observer in the detection

of a signal in repeat symmetric noise �elds?

Whilst bilateral mammograms are usually viewed in a mirror symmetric format, temporal mam-

mograms tend to be viewed across the workstation, e�ectively in a repeat symmetric format (un-

re�ected about the vertical axis). The experiment, therefore also looked at the e�ect of symmetry

for the repeat displays in the same way as described above. The results of the repeat symmetric

condition are shown in Figure 4.4.

The pattern of results is similar to that in Figure 4.3 for the mirror symmetric noise, with �ts

of Equation 4.12 being markedly �at compared to that of the ideal observer (dotted curve).

The �tted values and 95% con�dence intervals for parameter k are shown in Table 4.2. Once

again, whereas the ideal observer has a k value of 1, reference to Table 4.2 shows that real observers

have much lower values. As shown in Table 4.2, the �tted parameter k has a value that is not

signi�cantly di�erent from zero for observers JR and KJ (k = 0.07 and −0.04 respectively, 95%

CIs [-0.06, 0.20] and [-0.15, 0.13], respectively). Observer JN shows worsening performance as

correlation increases (k = −0.17, 95% CIs [-0.32, -0.02]) and observers SP, GR and WS show

modest improvements in performance (k = 0.36, 0.21 and 0.15, 95% CIs [0.20, 0.52], [0.14, 0.28]

and [0.01, 0.29], respectively). In all cases, the k values are far from the ideal observer's value of 1

and it is clear that for repeat symmetric displays with Gaussian white noise images real observer's
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Figure 4.4: Contrast thresholds for detecting a Gaussian blob relative to that obtained when the
correlation is zero plotted as a function of the correlation between the two white noise �elds. The
solid curves are least squares �ts of Equation 4.12. The noise �elds in the image pair had repeat
symmetry. Results for six observers are shown. Error bars show 95% con�dence intervals. The
dotted curve shows the performance for the ideal observer. The real observers' thresholds do not
decline as correlation increases, unlike those of the ideal observer.

134



Gaussian White Noise
Repeat Symmetric Display

Observer k LCL UCL
JR 0.07 -0.06 0.20
SP 0.36 0.20 0.52
GR 0.21 0.14 0.28
JN -0.17 -0.32 -0.02
WS 0.15 0.01 0.29
KJ -0.04 -0.15 0.07

Table 4.2: The symmetry improvement factors (k) and 95% con�dence limits for the repeat sym-
metric displays with a signal in Gaussian white noise for six observers.

performance does not improve, or at best, improves moderately, as the correlation between the

noise �elds increases. While the ideal observer will take advantage of the noise correlation and,

thus, exhibit declining thresholds as noise correlation increases, real observers are not able to

decorrelate the image pair.

As a whole, the results of Experiment 1a show that increases in noise correlation between the

paired backgrounds produce a modest or no decline in detection thresholds for both mirror and

repeat displays. The results do not, therefore, provide support for the usefulness of either mirror

or repeat symmetry in detecting targets in Gaussian white noise. The intuition that viewing

mammograms in mirror-symmetric pairs should help in the detection of tumours is not supported

by this experiment.

4.3 Experiment 1b

4.3.1 Introduction

Gaussian white noise in each of the two images was used in Experiment 1a (section 4.2 on page 124)

due to the simplicity of the ideal observer. However, in order to make inferences about the use-

fulness of symmetry in mammogram reading, it would be helpful to present observers with images

that are closer to mammograms in appearance, whilst retaining a measure of control over image

statistics. As discussed in section 1.6.4 noise backgrounds with a 1/f3 power law spectrum provide

a suitable level of similarity to real mammograms for detection and search experiments and their

use means that we are better able to draw conclusions about performance with real mammograms

from out results. To that end, in Experiment 1b we used noise with a 1/f3 power spectrum and

we will refer to this as "power law noise". The experiment will measure contrast thresholds for

detecting a Gaussian blob as the symmetry of the side-by-side display (correlation between the two

noise �elds) increases. As before, the aim of the experiment is to determine whether symmetry, be

it mirror or repeat, aids the observer in the detection of a signal in correlated noise �elds, which
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in this experiment consist of power law noise.

4.3.2 Theory

For an ideal observer we expect that performance will improve as the symmetry increases. The

theory is as given in Experiment 1a Theory section 4.2.1, with one extra element. The power law

noise has a low-pass spectrum and therefore is spatially correlated. Therefore the ideal observer

will �rst pre-whiten each noise �eld (Burgess, 2010, pp. 26-46; Bochud, 2013, pp. 153-164) prior

to decorrelating the image pair and cross-correlating with the signal template. Since the �rst step

of pre-whitening reduces the spatially correlated noise to white noise, there are no changes to the

theoretical development given in Experiment 1a Theory section 4.2.1.

4.3.3 Method

The apparatus, stimuli and procedures for Experiment 1b were identical to those used in Experi-

ment 1a with the exception that a low-pass 1/f3 power law noise background was used instead of

a white noise background (Figure 4.5). A set of 150 pairs of power law images was generated for

pairwise correlation value. These were generated by �ltering pairs of correlated Gaussian white

noise images. The actual correlation of each resulting noise pair was measured, and pairs having

correlation values more than 0.01 away from the nominal level were discarded. The standard devi-

ation of the noise in the images was the same as for the white noise, 0.22. On each trial, a random

pair of images was selected from the pool, and a Gaussian blob was added to one of them.

4.3.4 Observers

Six observers participated in Experiment 1b (two male and four female). Four were inexperienced

observers (JR, CA, JN, and AW) but received training prior to commencing the study. GR

and WS were the author and author's PhD supervisor and both were experienced psychophysical

observers. No observer had a background in radiology or medical physics. All observers had normal

or corrected-to-normal vision and each observer conducted a minimum of four sessions, where each

session included both symmetry modes and all six correlation levels and took approximately one

hour to complete.

4.3.5 Results and discussion

Contrast thresholds for detecting a Gaussian blob were measured as a function of the cross-

correlation between the two noise �elds presented to the observer. The cross-correlation was a
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Figure 4.5: Example mirror-symmetric synthetic mammogram image pairs with low-pass 1/f3

power spectrum noise. From top to bottom, the inter-image correlations are 0, .75, and 1. A
Gaussian blob having contrast well above threshold is shown on the left or right.
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measure of the level of symmetry present. Thresholds for each correlation value were calculated

from the 75% correct point of each observer's psychometric function �tted using probit regression.

The response on each trial was correct or incorrect, and the probit regression used these binary

values. Thus each threshold represents a �t to at least 4 blocks of 60 trials = 240 points. Using

the relative values of contrast threshold, determined as shown in section 4.2.1.2, the experiment

aimed to investigate whether symmetry, either mirror or repeat, aids the observer in the detection

of a signal in correlated power law noise �elds.

4.3.5.1 Mirror symmetric displays - does symmetry aid the observer in the detection

of a signal in mirror symmetric noise �elds?

Figure 4.6 shows the relative threshold contrast plotted against correlation for the detection of

a signal in mirror symmetric paired power law noise backgrounds for the six observers. The

thresholds and 95% con�dence intervals obtained by probit regression are shown. Curves were

�tted using least squares regression of Equation 4.12 and the �tted parameters are given in Table

4.3. It is clear from Figure 4.6 that, whilst observers JR and GR do show some improvement,

for most real observers' performance does not improve as the correlation between the noise �elds

increases. Their �tted curves are very �at compared to the performance of the ideal observer, as

shown by the dotted curves.

Power Law Noise
Mirror Symmetric Display

Observer k LCL UCL
AW 0.10 0.02 0.18
JR 0.39 0.31 0.47
CA -0.03 -0.09 0.03
GR 0.52 0.45 0.59
JN -0.03 -0.09 0.03
WS -0.11 -0.21 -0.01

Table 4.3: The symmetry improvement factor k and 95% con�dence limits for the mirror and
repeat conditions with a signal in low-pass 1/f3 power law noise for six observers.

As with Gaussian white noise in Experiment 1a, the symmetry improvement factors are much

lower than the ideal value of k = 1. As shown in Table 4.3, the �tted parameter k has a value that

is not statistically di�erent from zero for observers JN and CA (k = −0.03 and −0.03 respectively,

95% CIs [-0.09, 0.03] and [-0.09, 0.03], respectively) and slightly positive for AW ((k = 0.1, 95%

CIs [0.02, 0.18]). Observers JR and GR show moderately positive values (k = 0.39 and 0.52

respectively, 95% CIs [0.31, 0.47] for observer JR and [0.45, 0.59] for observer GR, and observer

WS shows a slightly negative (k = −0.11, 95% CIs [-0.21, -0.01]). A negative value of k means

that performance gets worse as the correlation increases. From these data it is clear that mirror
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Figure 4.6: Contrast thresholds for detecting a Gaussian blob relative to that obtained when the
correlation is zero plotted as a function of the correlation between the two power law noise �elds.
The solid curves are least squares �ts of Equation 4.12. The noise �elds in the image pair had
mirror symmetry. Results for six observers are shown. Error bars show 95% con�dence intervals.
The dotted curve shows the performance for the ideal observer. The real observers' thresholds do
not decline as correlation increases, unlike those of the ideal observer.
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symmetry provides, at best modest, but in most cases, little or no help when trying to detect a

signal in paired noise �elds.

4.3.5.2 Repeat symmetric displays - does symmetry aid the observer in the detection

of a signal in repeat symmetric noise �elds?

The experiment also looked at the e�ect of symmetry for the repeat displays in the same way

as described above. The results of the repeat symmetric condition are shown in �gure 4.7. The

pattern of results is similar to that in �gure 4.6 for the mirror symmetric noise, with �ts of Equation

4.12 being markedly �at compared to that of the ideal observer (dotted curve).

The values of the symmetry improvement factor (k), derived from the linear regression analysis

of the variation of relative threshold contrast with correlation for the detection of a signal in paired

power law noise �elds displayed in a repeat symmetric format are shown in Table 4.4.

Power Law Noise
Repeat Symmetric Display

Observer k LCL UCL
AW 0.09 0.04 0.14
JR 0.48 0.27 0.69
CA 0.06 0.00 0.12
GR 0.48 0.38 0.58
JN -0.13 -0.21 -0.05
WS 0.11 0.08 0.14

Table 4.4: The symmetry improvement factor k and 95% con�dence limits for the mirror and
repeat conditions with a signal in low-pass 1/f3 power law noise for six observers.

Once again, the symmetry improvement factors are much lower than the ideal value of k = 1.

As shown in Table 4.4, the �tted parameter k has a value that is not statistically di�erent from zero

for observer CA (k = 0.06 , 95% CIs [0.00, 0.12]) and slightly positive for AW and WS ((k = 0.09

and 0.11 respectively, 95% CIs [0.04, 0.14] and [0.08, 0.14] respectively). Observers JR and GR

show moderately positive values (k = 0.48 for both observers, 95% CIs [0.27, 0.69] and [0.38, 0.58],

respectively and observer JN shows a slightly negative (k = −0.13, 95% CIs [-0.21, -0.05]). A

negative value of k means that performance gets worse as the correlation increases. In all cases,

the k values are well below the ideal observer's value of 1. From these data it is clear that repeat

symmetry provides, at best modest, but in most cases, little or no help when trying to detect a

signal in paired power law noise �elds. This tells us that symmetry, be it mirror or repeat, does

not provide much help to the observer for the detection of a signal in one of the images.
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Figure 4.7: Contrast thresholds for detecting a Gaussian blob relative to that obtained when the
correlation is zero plotted as a function of the correlation between the two power law noise �elds.
The solid curves are least squares �ts of Equation 4.12. The noise �elds in the image pair had
repeat symmetry. Results for six observers are shown. Error bars show 95% con�dence intervals.
The dotted curve shows the performance for the ideal observer. The real observers' thresholds do
not decline as correlation increases, unlike those of the ideal observer.
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4.4 General Discussion

Radiologists conventionally view mammograms in a mirror symmetric side-by-side display, with

the intuition that an abnormality will stand out against the symmetrical background. This is a

time honoured clinical technique for large di�erences, guiding the radiologist in further search.

However, it is not known how much the detection of more localised lesions is aided when they

are embedded in symmetric noise backgrounds. The purpose of this study was to examine, using

controlled laboratory stimuli, whether observers can use the symmetry present between the image

pair to improve their performance in the detection of a small Gaussian blob representative of a

small tumour. The symmetry was manipulated by varying the correlation between the two noise

�elds presented on each trial. An ideal observer's contrast thresholds decline in proportion to

√
1− ρ where ρ is the correlation between the two noise �elds. We found that real observers

were very unlike an ideal observer, showing little or no bene�t of symmetry when detecting a low

contrast Gaussian blob (simulated small mass).

The �rst experiment was conducted with a Gaussian white noise background and it was pre-

dicted that the ideal observer would decorrelate the two images prior to cross-correlating the noisy

stimulus received with a signal template. It was, therefore, expected that increases in noise corre-

lation resulting from greater symmetry of the alternative image pairs would confer an advantage,

producing a reduction in contrast threshold. The second experiment was conducted with a power

law noise background and it was predicted that the ideal observer would �rst pre-whiten each

image before utilizing the same strategy as with Gaussian white noise, of decorrelating the image

pair prior to cross-correlating the noisy stimulus with a signal template.

To gain an intuition into decorrelation, consider an observer who di�erences the two images.

This is a form of decorrelation, though it is inferior to a method that multiplies the images by the

inverse of their covariance matrix. As the noise �elds in the image pair become more and more

similar, the di�erence becomes smaller and smaller. In the limiting case of identical noise in the

two images, the di�erence is zero and so the noise is removed altogether, leaving only the signal.

The aim of each experiment was to determine whether the human observer would utilise a strategy

similar to that of the ideal observer when detecting a blob in Gaussian white noise and power law

noise backgrounds. The results of this study show that human observers do not behave like the

ideal observer; their thresholds for detecting the signal were essentially una�ected or, at best, only

moderately a�ected by the correlation of the two noise �elds (degree of symmetry).

The literature on the use of correlated noise backgrounds to aid in signal detection is limited

(see section 1.7.2 on page 91 for a review). Burgess & Colborne (1988) report that for one observer,

2AFC detection was done with d
′

= 1.26 for totally uncorrelated white noise �elds and d
′

= 2.00 for
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identical noise �elds (our repeat condition). Assuming that this di�erence is statistically signi�cant,

the Burgess & Colborne study suggests that in some cases observers can decorrelate the paired noise

�elds. This was not true for our observers with white noise �elds that were uncorrelated or identical,

as is shown in Figure 4.3 � the relevant points are at correlations of 0.0 and 1.0, and none of these

observers shows a bene�t of correlated noise �elds. Ahumada & Beard (1997) also conducted a

study similar to the current study and, whilst their aims were di�erent to ours, they also reported

no signi�cant di�erence in detection threshold levels between image pair backgrounds that were

symmetric or non-symmetric (identical or not), a result that is consistent with the current study.

Ahumada & Beard (1997) used a white noise, which has equal power at all frequencies including

high spatial frequencies, and this was similar to the stimuli used in the current experiment. This

may constitute a key factor in the observers being unable to decorrelate the noise �elds. Pre-

whitening is a form of decorrelation and, as discussed in section 1.6.6, human observers have

been found to be unable to pre-whiten high frequency noise (Myers, 1985; Myers et al., 1985), as

contained in the white noise used in the study by Ahumada & Beard and in the current study.

Pre-whitening is usually associated with the simpli�cation of noise with a power law spectrum

to improve the e�ciency of the human visual system and it may be worth, at this juncture,

reminding the reader why we are attempting to pre-whiten noise that already has a white noise

power spectrum. Whilst each image is, itself, white, there is, nonetheless, a correlation between

the two images and it is this correlation between the two images that the ideal observer takes

advantage of. The process of pre-whitening is discussed in section 1.6.6 and, just as the evidence

presented in section 1.6.6 supports the notion that the human visual system is able to use pre-

whitening to remove redundancy within a scene, it is also suggested that it will also be able to,

similarly, remove redundant information between two adjacent scenes. Whilst pre-whitening is

the process that underpins both redundancy reduction within a scene and redundancy reduction

between two scenes, to maintain clarity, the former will be referred to as pre-whitening and the

latter as decorrelation. Decorrelation is, thus, a method of redundancy reduction that can be

applied to paired images and its e�ect is to remove correlated noise between the two images,

therefore making the signal easier to see. It is interesting to note that two observers (JR and GR)

did show a modest improvement in their ability to use the correlation in Experiment 1b (section

4.3), where the images were power law noise, with both mirror and repeat displays. Although the

other observers that participated in both experiments were unable to utilise the correlation in either

experiment, the modest improvements shown by JR and GR may be indicative of a greater ability

to pre-whiten noise with a low pass spectrum (Abbey & Barrett, 2001; Abbey & Eckstein, 2007;

Burgess, 1999; Burgess & Judy, 2007; Rolland & Barrett, 1992) and, therefore, make use of the
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correlation between the image pair by removing correlated (and, therefore, redundant) information.

Notwithstanding the improvement in the ability to use the correlation between the images seen

in power law noise as exhibited by observers JR and GR, this is still relatively modest in relation

to the ideal observer. As a whole, both Experiment 1a and 1b demonstrate that real observers are

not able to use the correlation present between paired images when they are presented in a mirror

symmetric or repeat symmetric format.

One observation made during the experiments, though not measured, was that observers GR

and JR appeared to deliberate longer than other observers. Both observers suggested that they were

consciously discounting features that appeared in both images and, hence, seemed to be carrying

out a post-attentive decorrelation strategy rather than, perhaps, a pre-attentive decorrelation

strategy used by other observers. The results in Gaussian white noise suggest that this strategy did

not confer any advantage, but, in power law noise both GR and JR performed signi�cantly better

than any other observer. The lower spatial frequency of power law noise with its more distinct

�clumpy� features may have enabled their post-attentive decorrelation strategy to be easier to carry

out and hence more e�ective at discounting noise. The anecdotal nature of these observations

and the experimental procedure of unlimited viewing times and no �xation or limitation on eye

movements means that it is not possible to address this point. The use of this protocol was chosen

to more closely replicate the task of the radiologist and is a recognised methodology (Burgess &

Ghandeharian, 1984a,b; Burgess, 1985; Burgess & Colborne, 1988), however, to address this point

and to rule out a post-attentive decorrelation strategy would require a repeat of the experiment

with limited viewing time and �xation to minimise eye movements.

The inability to match the performance of the ideal observer may also stem from the two stage

nature of the detection process: decorrelation of the image pair followed by cross-correlation. In

the �rst stage the image pair is viewed as a whole to facilitate decorrelation and in the second

stage the observer is required to view each half of the image separately to obtain a cross-correlation

value for each half. This is a statistical exercise for the ideal observer and, therefore, achievable

without loss. However, if the real observer is carrying out a similar, two stage process, then the

process of forming an accurate internal representation of the decorrelated image, holding it in

iconic memory and cross-correlating each half without loss would be a challenging task for the

visual system. Whilst iconic memory is a high capacity memory store, retention time is very short

(typically <1sec) and this may degrade performance as the internal representation fades.

Although only apparent for two observers (WS and KJ in Gaussian white noise; WS in power

law noise) it is not clear why they showed an improvement in performance with repeat over mirror

symmetry, particularly as the predictions for an ideal observer suggest that both conditions will
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see similar advantages of the correlated noise and thus will have similarly declining thresholds as

noise correlation increases. It is interesting that no observers show the opposite trend of improved

performance in mirror symmetry over repeat symmetry. Despite the comparative improvement

seen in these two observers in repeat displays, their function was still essentially �at and did not

indicate any ability to use the correlation present between the images of the pair.

Overall, the results show that mirror symmetry and repeat symmetry do not confer any more

than weak bene�ts in the detection of small synthetic blobs in correlated noise �elds. Whilst, some

observers did show an advantage in signal detection in symmetric over non-symmetric displays, for

both types of symmetry, this was no more than a modest improvement. The fact that this occurred

more predominantly in power law noise than Gaussian white noise where, as discussed in section

1.6.6, the human visual system is more e�cient at pre-whitening (decorrelating) images with a low-

pass spectrum, suggests that it may be image pair decorrelation, rather than symmetry per se, that

determines this improvement. In addition, this improvement was predominantly shown by only two

observers and may have been the result of a post-attentive discounting strategy; further research

would be necessary to investigate this. The results also show that mirror symmetric presentation

confers no bene�t over translational repeat symmetry in the detection of small synthetic blobs

in correlated noise �elds. he current study has used synthetic noise backgrounds and synthetic

signals and, thus, does not enable us to draw conclusions about the performance of radiologists

searching for tumours in real mammograms. Having established a theoretical baseline, this thesis

will progress to test our �ndings in a more clinical scenario. However, based on the current

results, if we were to extrapolate our �ndings with synthetic mammograms and synthetic tumours

to the clinical world of real mammograms and real tumours, it would suggest that some small

fraction of radiologists may show limited bene�t from symmetric (repeat and mirror) mammogram

presentation, although most will not. It is clear that symmetric displays do not enable the observer

to use the correlation between the images and, therefore, if a display method can assist observers

in decorrelating image pairs, then improvements in performance may be possible. The next stage

of this thesis, before progressing to the use of a more clinical experimental set up, will be to

investigate an alternative, movie, presentation mode. The aim of this will be to determine whether

a movie presentation mode can facilitate the use of the correlation present between image pairs to

improve observer performance for the detection of a signal in one image of the pair.
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Chapter 5

Experiment 2: A Comparison of

Side-by-Side Versus Animated

Presentation of Images

5.0.1 Introduction

If mirror symmetric presentation is bene�cial to the observer in detecting a signal in one image

of a pair then we would expect signal detection performance to improve as the level of symmetry

improved. We found this not to be the case and the results of Experiment 1a (see section 4.2 on

page 124) and 1b (see section 4.3 on page 135) suggest that mirror symmetric presentation does

not confer any more than limited bene�ts to the observer. The observers' performance with a

mirror symmetric display was no better than with a repeat symmetric display and both showed

only weak to moderate improvements in performance as the level of symmetry improved.

Whilst the ability of the human visual system to use symmetry as an aid to signal detection

may, therefore, be questionable, its sensitivity to motion and �icker is less so (Adelson & Bergen,

1986; Watson, 1986). With species survival dependent upon the detection of predators and prey it

is of little surprise that motion is a highly salient property and it is, as stated by Hubel (1995, pp.

78-79) �no wonder that most cortical cells respond better to a moving object than to a stationary

one�. Flicker is an integral aspect of motion detection and it is, therefore, of little surprise that

�icker is also a highly salient visual property in its own right.

Spalek et al. (2009) showed that �icker is able to grab attention in the same way as colour and

motion. They found that a �ickering target `popped out' from a �eld of distractors producing a
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�at search pro�le as a function of the number of distractors, supporting their assertion of �icker

as a primitive visual feature. Similar �ndings have been reported by Franconeri et al. (2005)

who found that luminance based transients, such as �icker, captured attention and Ludwig et al.

(2008) whose results demonstrated that �icker was particularly disruptive in drawing attention

away from a speci�ed target, illustrating its e�ectiveness in capturing attention. Despite the large

body of literature associated with �icker in general, there appears to be little of this related to

signal detection, however, it presents an interesting alternative to symmetric presentation to make

tumours salient. Instead of placing mammograms in a mirror symmetric con�guration side-by-

side, they can be presented sequentially in the same location in a two-frame animation sequence

such that any di�erence between the images will result in highly salient motion and �icker. For

example, a tumour that is present in one image and absent in the other will be seen to �ash on and

o�. The continuous two-frame animation sequence can be likened to a movie and will be referred

to as movie presentation throughout this study. By contrast the mirror symmetric displays are

static and will be referred to as static displays. This study is interested in testing whether the

movie presentation of a pair of images can aid the observer in the detection of a signal in one of

the images and whether it can confer an advantage in this task over the observer using a static

presentation technique.

Of course, any di�erences, other than a potential tumour, will also be made salient and this

is an important observation in a clinical scenario as no two breasts, nor even two mammograms

of the same breast taken at di�erent times, will be identical. These di�erences arise from natural

variations between left and right breast and natural changes in breast composition between screen-

ings as well as di�erences introduced during the screening process as a result of the deformability

of breast tissue and breast positioning in the scanner. Intuitively we would expect the task of

detecting a signal to become more di�cult as the two images become less similar and this is what

the ideal observer analysis shows (see Theory section in Experiment 1a, section 4.2.1 on page 125).

In a clinical situation, with real image pairs, misalignment or skewing between the images can be

compensated for, to a certain extent, by image registration (Guo et al., 2006). Image registration

is a technique used to reduce the level of misalignment between two images and a brief descrip-

tion of registration can be found at section 2.13. As discussed in section 2.13 registration cannot

compensate for an incongruence in the features present in each image. Thus, the extent to which

two images match is a result of the di�erences in features present between the images and any

misalignment between corresponding features and is typically measured by the correlation between

images. The e�ect of varying how well the two images of a pair are matched needs to be quanti�ed

in assessing both a static presentation technique and a movie presentation technique and this can
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be done by varying the level of correlation between the image pairs. By presenting the same images

in two alternative ways, the e�ect of varying the correlation level is seen in di�erent ways; when

presented side-by-side in a static display the symmetric appearance varies and when presented in

an animated movie display the extent and amount of �icker and apparent motion varies.

We can quantify the e�ect of mis-match between two images by varying the level of correlation

between the two images of a pair (as de�ned in Experiment 1a, section 4.2.1 on page 125) and

measuring the contrast threshold necessary for the detection of a signal in one image. If the

correlation was zero, the noise was completely unrelated and would indicate no correspondence

between the two images at all. If the correlation was 1.0, the two images had identical noise and

the image pair would have perfect correspondence. Intermediate levels of correlation produced

pairs with varying levels of correspondence re�ecting the varying levels of correspondence found

in real image pairs. Experiment 2a used a Gaussian white noise background to enable a simpli�ed

examination of the theoretical basis for the ideal observer. Experiment 2b used a noise background

with a 1/f3 power. In both experiments the signal to be detected was a Gaussian blob signal.

The Theory section of Experiment 1a (section 4.2.1 on page 125) shows that the ideal observer

achieves optimum performance for the detection of a signal in correlated noise �elds, taking ad-

vantage of the correlation by decorrelating (or whitening) the two noise �elds to increase signal

to noise ratio. Experiment 1 demonstrated that static (mirror symmetric) presentation does not

enable the real observer to do this. Movie presentation may enable the real observer to decorrelate

the paired noise �elds and, hence, make use of the correlation between them to improve signal de-

tection performance. Therefore, the aim of Experiment 2a and 2b is to determine whether movie

presentation enables the real observer to decorrelate (or whiten) paired noise �elds and thus, use

the correlation present between the images. Experiment 2a and 2b also replicate the testing done

in Experiment 1a and 1b to determine whether static (mirror symmetric) presentation enables the

real observer to decorrelate (or whiten) paired noise �elds and thus, use the correlation present

between the images

5.0.2 Theory

The theory for Experiment 2a is the same as for Experiment 1, as described in the Theory section

of Experiment 1a (see section 4.2.1 on page 125).
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Figure 5.1: Example two frame animation sequence showing left and right displays, each containing
two images displayed sequentially in the same location. One image contains a Gaussian blob signal
in Gaussian white noise and is either in the left or right display pair. The blob is shown well above
threshold.

5.0.3 Experiment 2a

5.0.3.1 Method

Apparatus The apparatus used in Experiment 2a was the same as for Experiment 1a.

Stimuli For the static presentation, the stimuli were the same as the mirror symmetric displays

used in Experiment 1a, however, repeat symmetric presentation was not used and a movie presen-

tation mode was used in Experiment 2a. To create the movie stimuli, the noise backgrounds were

presented as the same orientation images in the same location, displayed sequentially with frame

duration of 250 ms. As with static displays, movie displays were also presented side by side with

one side (randomly either the left or right display) containing the noise �eld with the superimposed

blob, as shown in Figure 5.1. In both presentation modes the Gaussian blob signal was the same

as used in Experiment 1a.

Procedures The procedures were the same as used in Experiment 1a for static displays but

with a movie display instead of a repeat symmetric display. As in Experiment 1a, the observer

was presented a left and a right image, with an example static display as shown in Figure 4.2 and

an example movie display shown in Figure 5.1. For both presentation modes, viewing time was

unlimited, with a response terminated display.
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Observers Six observers participated in Experiment 2a (three male and three female). Five

were inexperienced observers (JR, SP, JN, CH and KJ) but received training prior to commencing

the study. GR is the author and an experienced psychophysical observer. No observer had any

background in radiology or medical physics. All observers had normal or corrected-to-normal

vision.

5.0.4 Results and Discussion

Contrast thresholds for detecting a Gaussian blob were measured as a function of the correlation

between the two noise �elds presented to the observer. The correlation was a measure of the level

of correspondence present between the two images. Thresholds for each correlation value were

calculated from the 75% correct point of each observer's psychometric function, �tted using probit

regression. The response on each trial was correct or incorrect, and the probit regression used

these binary values. Each threshold represents a �t to at least 4 blocks of 60 trials = 240 points.

The study aimed to determine whether movie presentation enabled the real observer to decorrelate

(or whiten) paired noise �elds and thus, use the correlation present between the images. The

study also aimed to replicate the work done in Experiment 1a to determine whether static (mirror

symmetric) presentation enabled the real observer to decorrelate (or whiten) paired noise �elds

and thus, use the correlation present between the images.

These aims have been addressed by making a comparison against the ideal observer to determine

whether human observers are able to make use of the correlation between the two noise �elds for

the detection of a signal in one of those noise �elds, in a similar manner to the optimum strategy

of the ideal observer. As discussed in Experiment 1, whilst a direct comparison of the absolute

values of contrast threshold calculated for the ideal observer against those actually recorded by the

real observer is of limited value, a comparison of the response curves for each observer (ideal and

real) enables the strategies of the respective observers to be compared. This gives an indication of

whether the real observer is able to use the correlation present between the images, as exempli�ed

by the ideal observer. We would expect, if the correlation helps, that contrast threshold would fall

as the level of correlation increases from a correlation of ρ = 0 to a correlation of ρ = 1.. This can

most clearly be seen by representing the contrast thresholds for each correlation relative to the

value at a correlation of zero, thus showing how the contrast threshold changes as the correlation

level is increased. This process is explained in Experiment 1a Theory (section 4.2.1 on page 125)

but here, we will refer to correlation rather than symmetry.

To clarify, the relative threshold contrast equals:
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Relative Threshold Contrast =
Ct at ρx
Ct at ρ0

(5.1)

where:

Ct at ρ0 = contrast threshold at zero correlation

Ct at ρx = contrast threshold at correlation x

where x = inter image correlation = 0, 0.25, 0.5, 0.75, 0.9 or 1.0
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Figure 5.2: Contrast thresholds for detecting a Gaussian blob relative to that obtained when the
correlation is zero, plotted as a function of the correlation between the two Gaussian white noise
�elds. The solid curves are least squares �ts of Equation 4.12. The noise �elds in the image pair
were presented as a static display (�lled triangle) or as a movie display (�lled square). Results for
six observers are shown. Error bars show 95% con�dence intervals. The dotted curve shows the
performance for the ideal observer.
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Using the linear model (Experiment 1a, Equation 4.12 on page 127):

Relative Threshold Contrast = (1− k) + k
√

1− ρ (5.2)

Where k is the slope of the function and will be called the correlation improvement factor. If k = 1,

the observer performs like the ideal observer, and threshold declines maximally as the correlation

between the image pair goes from ρ = 0 to ρ = 1. If k = 0, the observer's performance is not

a�ected at all by changes in correlation and so the function is �at. The correlation improvement

factors for static presentation and movie presentation are shown in Table 5.1 on the next page and

the �tted curves for each observer are shown in Figure 5.2.

Figure 5.2 clearly shows the contrast in performance strategies between static presentation,

where the �tted curve is very �at, in comparison to the movie presentation, which shows a pro�le

much closer to that of the ideal observer. This can also be seen by reference to Table 5.1 on the

following page, which shows that the results for static presentation replicate the results from Ex-

periment 1a. The values of the correlation improvement factor (k) are close to zero, demonstrating

very little, or no, improvement of performance as correlation improved. As shown in Table 5.1, for

static presentation the �tted parameter k has a value that is not statistically di�erent from zero

for observers GR and JN (k = 0.03 and 0.14 respectively, 95% CIs [-0.04, 0.09] and [0.00, 0.28],

respectively) and slightly positive for JR, SP and CH ((k = 0.06, 0.18 and 0.33 respectively, 95%

CIs [0.02, 0.10], [011, 0.25] and [0.05, 0.62], respectively). Observer KJ shows a negative value

(k = −0.29, 95% CIs [-0.33, -0.25]). A negative value of k means that performance gets worse as

the correlation increases. In every case the �tted curves have a value of k whose 95% con�dence

interval spans a range that is close to zero and very far from 1.0. From these data it is clear that

static presentation provides little or no help when trying to detect a signal in paired noise �elds.

This con�rms the �ndings of Experiment 1a, showing that mirror symmetry does not enable the

real observer to take advantage of the correlation between paired Gaussian white noise �elds and

provides little or no help when trying to detect a signal in them.

As can be seen in Figure 5.2, the results for movie presentation demonstrate a very di�erent

response. Reference to Table 5.1 on the next page shows that the values of the correlation im-

provement factor (k) are much higher and much closer to the ideal observer's value of k = 1,

demonstrating a clear improvement of performance as correlation increases. As shown in Table

5.1, the �tted parameter k has a value ranging from k = 0.73, 95% CIs [0.70, 0.78] for observer

SP to k = 0.84, 95% CIs [0.83, 0.86] for observers CH and KJ. From these data it is clear that

the real observer using movie presentation behaves much more like the ideal observer, able to take

advantage of the noise correlation, exhibiting declining thresholds as noise correlation increases in
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contrast to the real observers using static presentation, who are not able to decorrelate the image

pair.

Gaussian White Noise
Static Movie

Observer k LCL UCL k LCL UCL
JR 0.06 0.02 0.10 0.81 0.80 0.82
SP 0.18 0.11 0.25 0.73 0.70 0.78
GR 0.03 -0.04 0.09 0.79 0.78 0.80
JN 0.14 0.00 0.28 0.76 0.70 0.82
CH 0.33 0.05 0.62 0.84 0.83 0.86
KJ -0.29 -0.33 -0.25 0.84 0.83 0.86

Table 5.1: Correlation improvement factors (k) and 95% upper and lower con�dence limits for the
static and movie conditions with a signal in Gaussian white noise for six observers.

5.0.5 Experiment 2b

5.0.5.1 Introduction

Gaussian white noise in each of the two images was used in Experiment 2a due to the simplicity

of the ideal observer. However, in order to make inferences about the usefulness of static or movie

presentation in mammogram reading, it would be helpful to present observers with images that

are closer to mammograms in appearance. To that end, in Experiment 2b we used noise with

1/f3 power spectrum, which has been found by other authors to have a power spectrum similar to

that of real mammograms (Burgess et al., 2001). We will call this "power law noise". As before,

the aim of the experiment is to measure contrast thresholds for detecting a Gaussian blob as the

correlation between the two noise �elds varies.

For an ideal observer we expect that performance will improve as the correlation increases.

The theory is the same as for Gaussian white noise, with one extra element. The power law noise

has a low-pass spectrum and therefore is spatially correlated. Therefore the ideal observer will

�rst pre-whiten each noise �eld (Burgess, 2010, pp. 26-46; Bochud, 2013, pp. 153-164) prior to

decorrelating the image pair and cross-correlating with the signal template. Since the �rst step of

pre-whitening reduces the spatially correlated noise to white noise the theoretical results are the

same as for Gaussian white noise.

5.0.5.2 Method

The apparatus and procedures for Experiment 2b were identical to those used in Experiment

2a. For the static presentation, the stimuli were the same as the mirror presentation used in

Experiment 1b with a low-pass 1/f3 power law noise background. A repeat presentation was not
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Figure 5.3: Example two frame movie sequence showing left and right displays, each containing
two images displayed sequentially in the same location. One image contains a Gaussian blob signal
in power law noise and is either in the left or right display pair. The blob is shown well above
threshold.

used in Experiment 2b, however a movie presentation was used, again, with a low-pass 1/f3 power

law noise background (Figure 5.3). The power law noise images were generated as described in

Experiment 1b. Six observers participated in experiment 2b (three male and three female). Five

were inexperienced observers (JR, CA, JN, AW and KJ) but received training prior to commencing

the study. GR is the author and an experienced psychophysical observer. No observer had any

background in radiology or medical physics. All observers had normal or corrected-to-normal

vision.

5.0.5.3 Results and discussion

Experiment 2b aimed to address the same aim investigated in Experiment 2a; does movie pre-

sentation enable the real observer to decorrelate (or whiten) paired noise �elds and thus, use the

correlation present between the images? Experiment 2b also replicated the testing done in Exper-

iment 1b to determine whether static (mirror symmetric) presentation enables the real observer to

decorrelate (or whiten) paired noise �elds and thus, use the correlation present between the images.

The results were analysed in the same way as Experiment 2a (see section 5.0.4 on page 151) and

will use the correlation improvement factor as presented in Experiment 2a as a measure of how

well the real observer can use the correlation between the two images. This gives an insight into

the strategy being used by the real observers when using movie and static presentation and enables
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Power Law Noise
Static Movie

Observer k LCL UCL k LCL UCL
JR 0.39 0.31 0.47 0.97 0.96 0.97
GR 0.50 0.43 0.57 0.94 0.94 0.95
CA -0.03 -0.09 0.02 0.42 0.36 0.48
KJ -0.31 -0.41 0-.21 0.96 0.95 0.97
AW 0.10 0.02 0.08 0.67 0.60 0.74
JN -0.03 -0.09 0.03 0.65 0.60 0.69

Table 5.2: Correlation improvement factors (k) and 95% con�dence limits for the static and movie
conditions with a signal in power law noise for six observers.

a comparison against the strategy used by the ideal observer. An ideal observer, using a decorre-

lating strategy will have a correlation improvement factor of k = 1, whereas, a non-decorrelating

observer will have a correlation improvement factor closer to zero.

Reference to Figure 5.4 shows that the results for the real observers using static displays follow

a similar pattern to that found in Experiment 1b. We see that the �tted curves for the real

observers using static displays are essentially �at with only modest reduction in contrast threshold

as the inter-image correlation increases. Also as seen in Experiment 2a, Figure 5.4 shows that for

the real observers using movie displays, contrast threshold shows a much greater reduction as the

inter-image correlation increases.

As in Experiment 2a, we can use the correlation improvement factor, k, to address the aim of

the study and compare the performance curves of real observers using static displays and movie

displays against those of the ideal observer to determine whether those real observers are adopting

a strategy that enables the use of the correlation between the paired images, in a similar manner

to the optimal strategy of the ideal observer. The k value is calculated as shown in Experiment 2a

and the results are shown in Table 5.2.

For static presentation, two observers show moderate improvements in contrast threshold as

correlation increases, with k values for JR and GR of 0.39 and 0.50 respectively, 95% CIs [0.31,

0.47], [0.43, 0.57], respectively. A weak improvement is seen by observer AW (k = 0.10, 95% CIs

[0.02, 0.08]) and no improvement by observers CA and JN with correlation improvement factors

that do not di�er signi�cantly from zero with k values equal to −0.03 for both observers, 95%

CIs [-0.09, 0.02] and [-0.09, 0.03], respectively. KJ showed a negative k value, indicating that

contrast threshold increased and performance got worse as correlation increased (k = -0.31, 95%

CIs [-0.41, -0.21]). Overall, with static displays, in power law noise, we see a range of responses to

increases in correlation from performance getting worse, through little or no change, to a moderate

improvement in performance. However, the real observers using a static display are not able

to approach the optimum use of the correlation between the two images, as shown by the ideal
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Figure 5.4: Contrast thresholds for detecting a Gaussian blob relative to that obtained when the
correlation is zero plotted as a function of the correlation between the two power law noise �elds.
The solid curves are least squares �ts of Equation 4.12. The noise �elds in the image pair were
presented as a static display (�lled triangle) or as a movie display (�lled square). Results for
six observers are shown. Error bars show 95% con�dence intervals. The dotted curve shows the
performance for the ideal observer.
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observer's correlation improvement factor of k = 1.

As we saw with Gaussian white noise in Experiment 2a, the movie presentation mode shows a

very di�erent picture with all six observers achieving k values far greater than their corresponding

value with static displays, as seen in Table 5.2. Once again, there are a range of k values. A

moderate improvement in contrast threshold as correlation increases is seen with CA, k = 0.42,

95% CIs [0.36, 0.48] and stronger improvements are shown by AW and JN with k values of 0.67

and 0.65, respectively, 95% CIs [0.60, 0.74], [0.60, 0.69], respectively. Three observers, JR, GR

and KJ, show very high levels of improvement in contrast threshold as correlation increases, with

values approaching that of the ideal observer (k = 0.97, 0.94 and 0.96, respectively, 95% CIs [0.96,

0.97], [0.94, 0.95], and [0.95, 0.97], respectively). The higher k values shown for movie displays

over static displays demonstrate that the real observer is able to use improvements in correlation

between the image pairs better when the images are displayed in a movie format than if they are

displayed in a static format. Once again, this shows that the real observer using movie presentation

is able to utilise the correlation between the image pair in a similar manner to the ideal observer,

exhibiting declining thresholds as noise correlation increases when trying to detect a signal in

paired noise �elds, unlike the real observer using static presentation, whose thresholds decline, at

best moderately and, at worst, not at all. The suggestion here is that symmetry, as exhibited by

static displays, provides little or no help when trying to detect a signal in paired power law noise

�elds, whereas animation, as exhibited by movie presentation, does.

5.0.6 General Discussion

Radiologists conventionally view mammograms in a static, mirror symmetric side-by-side display,

with the intuition that deviations from symmetry, as caused by an abnormality in one breast, will

become salient. This is a widely used strategy; however, it may have limitations under certain con-

ditions as discussed in section 1.7.2 on page 91 and in the introduction to Experiment 1 (section 4

on page 121). One visual property that is highly salient to the human visual system is motion and

�icker and this has been exploited in this study by the movie display method.

The correlation between the two noise �elds presented on each trial was varied, and contrast

thresholds measured. An ideal observer who can decorrelate the two noise �elds perfectly has

contrast thresholds that decline in proportion to
√

1− ρ , where ρ is the correlation between the

two noise �elds. The concept of the ideal observer is a powerful tool that enables the optimum

performance for a task to be speci�ed. Its power stems as much from the ability to reveal what the

human visual system cannot do as from revealing what it can do and, hence, gives an indication

of a potential algorithm for a display system that may enable the human observer to perform the
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task in the optimum manner.

Experiment 2a used a Gaussian white noise background and the theoretical discussion proposed

that the ideal observer would decorrelate the two images prior to cross-correlating the noisy received

stimulus with a signal template. This decorrelation process enables the ideal observer's performance

to improve as the noise pair correlation increases. Experiment 2b was conducted with a power law

noise background and the theoretical discussion proposed that the ideal observer would �rst pre-

whiten each image before utilising the same strategy, as with Gaussian white noise, of decorrelating

the image pair prior to cross-correlating each noisy image with a signal template.

The aim of this study was to examine whether real observers, when viewing images in a movie

display mode, behave like the ideal observer and utilise the correlation present between the images.

The results of this study show that when using the traditional static, side-by-side mirror presenta-

tion the human observers do not behave like the ideal observer; their thresholds for detecting the

signal were essentially una�ected or, at best, only moderately a�ected by the correlation of the

two noise �elds. The �at performance pro�le across the range of correlation shows that, unaided,

humans are poor at utilising the correlation between the paired noise �elds. In contrast, when

the human observer is aided by the movie display they do behave in a manner more like the ideal

observer; their thresholds for detecting the signal reducing markedly as the correlation between the

two noise �elds increased. The suggestion here is that presentation of the images in a movie format

provides a display that enables the human visual system to utilise the correlation present between

the two images in a manner similar to an ideal observer and, thus, gives the human observer the

potential to perform closer to the optimum level for the task.

This experiment has used an SKE paradigm with Gaussian white noise to enable a simpli�ed

analysis of the ideal observer and synthetic images using a power law noise background as a step

towards the more realistic situation of mammography. Naive observers have also been used. The

results, whilst illustrating the potential bene�ts of a movie presentation technique must be treated

with caution and further research is necessary using real mammogram images, real tumours with

unknown positions and trained readers before any practical implications can be assessed. The

results do, nonetheless, suggest that movie displays do enable the human observer to utilise the

correlation between paired images and give us con�dence to progress the research into these more

clinical scenarios.
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Chapter 6

Experiment 3: Does the Rate of

Alternation A�ect the Observer's

Contrast Threshold for the Detection

of a Signal in Paired Noise

Backgrounds?

6.1 Introduction

As discussed in Experiment 2, there is abundant evidence showing the sensitivity of the human

visual system to motion and �icker (Adelson & Bergen, 1986; Hubel, 1995; Watson, 1986) and

the salience of �icker has been demonstrated in a number of studies (Franconeri et al., 2005;

Ludwig et al., 2008; Spalek et al., 2009). Flicker can easily be generated by sequentially presenting

two images with minor di�erences in a two frame animation sequence, such that any di�erences

between the two images will appear to �ash on and o� or appear to move. This is the technique

used in Experiment 2, where observers attempted to detect a signal placed in one image of the

pair with varying levels of correlation between the two images. The aim of Experiment 2 was to

establish, using controlled laboratory stimuli, whether a two frame animation sequence could be a

viable presentation mode for displaying mammogram pairs to improve the detection of a lesion or

abnormality in one image.
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The rate of sequential presentation of each image in Experiment 2 was chosen following a

review of research across various �elds to ascertain what rate of alternation would be most salient,

but primarily on the basis of trial and error across a number of practice trials and what �felt�

right. This study aims to provide some scienti�c grounding for the choice of alternation rate.

Reference to Figure 1.18 on page 73 suggests that the human visual system is most sensitive to

stimuli animated at a rate between approximately 5 Hz to 10 Hz, however, this is dependent upon

the spatial characteristics of the signal, as shown in Figure 1.19 on page 74. The signal used in

Experiment 1 and Experiment 2 was a Gaussian blob truncated at ± 3 standard deviations with a

spatial SD of 0.43 deg, thus giving a signal size of 2.58 degrees and, taking the blob to be a single

cycle, this equates to approximately 0.4 cycles per degree. Reference to Figure 1.19, suggests a

peak sensitivity for a signal of this size of between 4Hz and 8Hz.

Research into attention has also found a range of animation or �icker rates suggested to be

optimum. Spalek et al. (2009) using a visual search task found maximum sensitivity to �icker at

about 10 Hz, whereas Huang et al. (2011), also conducting visual search tasks, here relating to ad-

vertising on web pages, found that search accuracy was best for a �icker rate of 0.5 Hz. Animated

warnings are important in safety related �elds such as motor vehicle safety and a report commis-

sioned by the United Kingdom Department of the Environment, Transport and the Regions found

that �ash rates of 4 Hz facilitated the most e�ective detection of vehicle mounted warning signals

(Cook et al., 2000). For warnings in general, Sanders & McCormick (1992, p. 151) recommended

�ash rates of between 3 - 10 Hz to draw attention to the signal's presence with 4 Hz considered

to be the best rate. For alarms and warnings in buildings the European Standard (BS EN 54-23 -

summarised at the Building Services Building Services Index (2015)) suggests the optimum �ash

rate for detection should be between 0.5 Hz and 2 Hz.

The ultimate goal of this thesis is to investigate the e�cacy of �icker generated using animated

displays as a technique that can be used in medical imaging. The particular area of interest for

this thesis is mammography, where the use of paired images is common and an animated display

would be feasible, however, the range of research with animation and �icker in this �eld is limited.

Erickson et al. (2011) compared a �icker technique against a traditional side by side presentation

of brain images, although the �icker rate was not speci�ed and van Engeland et al. (2003) used

a technique of toggling between mammogram images to induce an element of �icker but here the

�icker rate was varied by the operator's toggling rate.

The research cited earlier into the use of animation and �icker in vision research, industry and

road safety supports a wide range of �ash or �icker rates, perhaps not surprisingly given the varied

applications involved, however, it gives a sensible band of animation frequencies across which our
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Single frame length (ms) Cycle length - (ms) Alternation rate (Hz)
50 100 10

83.33 166.67 6
133.33 266.67 3.75
166.67 333.33 3
250 500 2
500 1000 1

Table 6.1: Alternation rates and frame durations used in Experiments 3a and 3b.

own application of �icker can be tested. Thus, having established the viability of animated displays

as a presentation mode in Experiment 2, Experiment 3a and Experiment 3b aimed to establish an

empirical basis for the choice of animation rate and to determine what animation rate would be

most e�ective for the detection of a signal in one noise �eld of two noise �elds presented as a pair.

6.2 Theory

The theory for Experiment 3 is the same as for Experiment 1, as described in the Theory section

of Experiment 1a (see section 4.2.1 on page 125).

6.3 Experiment 3a

6.3.1 Method

6.3.1.1 Apparatus

The apparatus used in Experiment 3a was the same as for Experiment 1a.

6.3.1.2 Stimuli

Presentation of the stimuli was the same as for the alternated presentation in Experiment 2a

except that only one correlation between the backgrounds was used, this being 0.9, and instead of

a single frame duration of 250 ms, six frame durations were used to give six alternation rates. The

alternation rates were calculated as shown in Table 6.1.

6.3.1.3 Procedures

The procedures used for the alternated presentation were the same as used in Experiment 2a.

6.3.1.4 Observers

Three observers participated in experiment 3a (two male and one female). Two were inexperienced

observers (JR and KJ) but received training prior to commencing the study. GR is the author and
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an experienced psychophysical observer. No observer had any background in radiology or medical

physics. All observers had normal or corrected-to-normal vision.

6.3.2 Results and discussion

Contrast thresholds for detecting a Gaussian blob were measured as a function of the alternation

rate of the two noise �elds presented to the observer. Thresholds for each correlation value were

calculated from the 75% correct point of each observer's psychometric function �tted using probit

regression. The response on each trial was correct or incorrect, and the probit regression used

these binary values. Thus, each threshold represents a �t to at least 6 blocks of 60 trials = 360

points.

The study aimed to answer the question of what alternation rate is most e�ective for the

detection of a signal in one noise �eld of two noise �elds presented as a pair with Gaussian white

noise backgrounds. Reference to Figure 6.1 shows how threshold contrast varied with variation

of the alternation rate. The slope of the function gives an indication of whether the observer is

able to make use of changes in alternation rate. The general picture emerging from Figure 6.1 is

of a gradual decrease in contrast threshold as alternation rate decreases to a minimum of 2Hz for

observers GR and JR and 1 Hz for KJ.

Table 6.2 aims to show whether the di�erence between the lowest threshold contrast and the

highest threshold contrast is signi�cant, and hence, whether change of alternation rate has a

signi�cant e�ect on the performance of the observer as measured by their contrast thresholds for

detecting the signal. To achieve this a t-test was conducted between the alternation rate with the

highest contrast threshold and the alternation rate with the lowest contrast threshold. By testing

whether a signi�cant di�erence exists, it can be concluded whether the change of alternation rate

has a signi�cant e�ect on the performance. For example, for observers GR, JR and the pooled

data, the minimum measured contrast threshold is at 2Hz and the maximum measured contrast

threshold is at 10Hz and, therefore, a t-test is conducted between the threshold contrast values

at 2Hz and 10Hz. For observer KJ, the minimum measured contrast threshold is at 1Hz and the

maximum measured contrast threshold is at 10Hz and, therefore, the t-test is conducted between

the threshold contrast values at 1Hz and 10Hz.

Reference to Table 6.2 shows that JR, GR and the pooled data show a signi�cant di�erence

between the highest and lowest contrast thresholds indicating that alternation rate has a signi�cant

e�ect on observer performance (t = 3.65, p < .001; t = 6.35, p < .001; and t = 3.50, p < .001

for observers JR, GR and pooled data, respectively). KJ does not show a signi�cant di�erence

(t = 1.62, p = .11). With the exception of observer KJ, the optimum alternation rate appears
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Figure 6.1: Plots of contrast threshold against alternation rate (Hz) for the animated condition
with a signal in Gaussian white noise for three observers. Error bars show 95% con�dence intervals.
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Gaussian White Noise
Range Lowest SE Highest SE t Signi�cance E�ect Size
(Hz) CT CT value (d)

GR 2-10 0.032 0.003 0.044 0.006 3.65 <.001** 0.29
JR 2-10 0.039 0.005 0.065 0.007 6.35 <.001** 0.58
KJ 1-10 0.037 0.006 0.045 0.008 1.62 0.11 0.12

Pooled data 2-10 0.037 0.005 0.051 0.007 3.50 <.001** 0.17
** indicates signi�cant at .001 level CT =Contrast Threshold

Table 6.2: Table of di�erence between highest and lowest points for the functions at �gure 6.1.

to be at approximately 2Hz. However, notwithstanding the signi�cance of the di�erences, they,

nonetheless, exhibit small e�ect sizes for GR, and the pooled data and a medium e�ect size for

JR, suggesting that, at best, varying the alternation rate has only a small to medium e�ect on

observer performance and, at worst, has no e�ect at all.

6.4 Experiment 3b

6.4.1 Introduction

As in previous experiments, to enable inferences about the usefulness of animation or �icker in

mammogram reading, the observers were presented with images with a background which had a

1/f3 power spectrum, which has similar characteristics to those of real mammograms (Burgess

et al., 2001). As in Experiment 3a, the aim of the experiment was to determine what alternation

rate would be most e�ective for the identi�cation of a signal in one noise �eld of two noise �elds

presented as a pair but, in this case, using images with a background that had a 1/f3 power

spectrum.

6.4.2 Method

The apparatus, stimuli and procedures for Experiment 3b were identical to those used in Exper-

iment 3a except that a low-pass 1/f3 power law noise background was used. The same three

observers who participated in Experiment 3a were used in Experiment 3b.

6.4.3 Results and discussion

Contrast thresholds for detecting a Gaussian blob were measured as described in section 6.3.2.

Once again, each threshold represents a �t to at least 6 blocks of 60 trials = 360 points. The study

aimed to answer the question of what alternation rate is most e�ective for the identi�cation of a

signal in one noise �eld of two noise �elds presented as a pair but, in this case, using images with

a background that had a 1/f3 power spectrum.
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Figure 6.2: Plots of contrast threshold against alternation rate (Hz) for the animated condition
with a signal in power law noise for three observers. Error bars show 95% con�dence intervals.

Reference to Figure 6.2 shows how threshold contrast varied with variation of the alternation

rate. The slope of the function gives an indication of whether the observer is able to make use

of changes in alternation rate. The general picture emerging from Figure 6.2 is of a very gradual

decrease in contrast threshold as alternation rate decreases to a minimum of 2Hz for observers JR

and KJ and 1 Hz for GR.

Table 6.3 aims to show whether the di�erence between the lowest threshold contrast and the

highest threshold contrast is signi�cant, and hence, whether the change of alternation rate has a

signi�cant e�ect on the performance of the observer as measured by their contrast thresholds for

detecting the signal. To achieve this a t-test was conducted between between the alternation rate

with the highest contrast threshold and the alternation rate with the lowest contrast threshold. By
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Power Law Noise
Range Lowest SE Highest SE t Signi�cance E�ect Size
(Hz) CT CT value (d)

GR 1-6 0.018 0.003 0.021 0.002 1.74 0.08 0.17
JR 2-10 0.022 0.004 0.034 0.006 3.37 <.001** 0.31
KJ 2-10 0.016 0.002 0.022 0.004 2.79 0.006* 0.25

Pooled data 2-10 0.022 0.003 0.026 0.004 2.62 0.009* 0.22
* indicates signi�cant at .05 level; ** indicates signi�cant at .001 level

CT = Contrast Threshold

Table 6.3: Table of di�erences between highest and lowest points for the functions at �gure 6.2.

testing whether a signi�cant di�erence exists, it can be concluded whether the change of alternation

rate has a signi�cant e�ect on the performance.

For observer GR, the minimum measured contrast threshold is at 1Hz and the maximum at

6Hz, therefore a t-test is conducted between the threshold contrast values at 1Hz and 6Hz. For

observers JR, KJ and the pooled data the minimum measured contrast threshold is at 2Hz and

the maximum at 10Hz, therefore a t-test is conducted between the threshold contrast values at

2Hz and 10Hz.

Reference to Table 6.3 shows that JR, KJ and the pooled data show a signi�cant di�erence

between the highest and lowest contrast thresholds indicating that alternation rate has a signi�cant

e�ect on observer performance (t = 3.37, p < .001; t = 2.79, p = .006; and t = 2.62, p = .009

for observers JR, KJ and pooled data, respectively). GR does not show a signi�cant di�erence

(t = 1.74, p = .08). With the exception of observer GR, the optimum alternation rate appears

to be at approximately 2Hz, however, notwithstanding the signi�cance of the di�erences, they,

nonetheless, exhibit small to medium e�ect sizes, suggesting that, at best, varying the alternation

rate has only a small to medium e�ect on observer performance and, at worst, has no e�ect at all.

6.5 General Discussion

The aim of this study was to investigate what the optimum alternation rate was for detecting a

Gaussian blob in paired noise �elds presented in an alternating display format. The results show

that with both Gaussian white noise and power law noise backgrounds, varying the alternation

rate has a signi�cant but generally small to medium e�ect with an optimum alternation rate at

approximately 2Hz. However, in both backgrounds there was a single observer that did not appear

to bene�t from the variation in alternation rate.

The small to medium e�ect sizes may be considered to be a re�ection of the broad range of

frequencies proposed as being optimum as cited in the introduction. The results also validate our

own choice of alternation rate of 2 Hz as a suitable display rate, albeit, if only as a con�rmation
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that it is not signi�cantly worse than any of the other alternation rates between 1 Hz and 10 Hz.

On most observer plot functions, there did appear to be a directional change from a decreasing

trend of contrast threshold to an increasing trend at 2 Hz, although this step change was only

signi�cant in one observer (JR), and not present in all of the plots. However, it does lend some

support to the use of 2 Hz.

As previously discussed, the theoretical background would, perhaps, point to an optimum

alternation rate of between 4Hz and 8Hz (see Figure 1.19), and the applied research would suggest

a broad span of optimum alternation rates from 0.5Hz to 10Hz (Cook et al., 2000; Huang et al.,

2011; Sanders & McCormick, 1992; Spalek et al., 2009). It should be noted, however, that much

of the theoretical research and applied studies are, in general, referring to the detection of �icker,

rather than the detection of a �ickering signal in an alternating display. This may be a subtle

distinction but is, nevertheless, an important one. A radiologist is not aiming to detect whether

the display is �ickering, rather, they would be using the alternation of the two images of a pair

to identify di�erences between the images. Having identi�ed the di�erences, the radiologist then

needs to di�erentiate between di�erences that represent normal variations between the images

and di�erences that represent an abnormal variation, such as the appearance or growth of a

tumour. Whilst this experiment has shown only small to moderate di�erences in performance for

the detection of a Gaussian blob across a range of frequencies from 1-10Hz, the use of a Gaussian

blob and synthetic images may increase the di�culty of discriminating the signal from non-signal

di�erences and, thus, limit the performance of the observer. The use of real abnormalities and

trained radiologists may increase the ability to di�erentiate between non-signal (normal di�erences)

and signal (abnormal di�erences) resulting in improved performance and, perhaps, indicate a clear

optimum alternation frequency. Further research using trained radiologists with real mammograms

and real tumours is necessary to determine this.

Notwithstanding the possibility that real tumours could elicit a discrete optimum alternation

rate, the results from this experiment, with a small to medium e�ect seen in both Gaussian white

noise and power law noise, when varying the alternation rate from 1 Hz to 10 Hz, indicates that

using 2 Hz as the alternation rate may o�er marginal improvements in detection performance.

Despite this, the small to medium e�ect sizes suggest that the use of any other alternation rate,

within the range of 1-10Hz, would not constitute any great advantage or disadvantage for signal

detection over other frequencies within that range. It would be, therefore, worth considering other

advantages and disadvantages of each alternation rate, such as observer comfort, when selecting an

alternation rate, or, indeed, providing a variable alternation rate, between 1 Hz and 10 Hz, such

that the observer can adjust the rate to their own personal preference for comfort and e�ectiveness.
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Chapter 7

Experiment 4: Comparison of

Animated Presentation against

Traditional Mirror Symmetric

Presentation for the Detection of a

Synthetic Tumour in Real

Mammogram Backgrounds

7.1 Introduction

Experiment 1, using Gaussian white noise and power law noise backgrounds, has shown that

improvements in symmetry between an image pair presented side-by-side appear to confer little

or no bene�t to an observer who is trying to detect the presence of a signal in one of the images.

This may be an important �nding for breast radiology, where it is common practice to hang

image pairs in a mirror symmetric con�guration with the rationale that violation of the symmetric

pattern will assist with tumour detection (Andolina & Lillé, 2010; Bun, 2002; Harvey & March,

2013; Kopans, 2007; Sickles, 2007). Intuitively, it would be expected that such violations would

be readily detected and that as the level of symmetry improved this process of detection would
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become easier and performance would improve. The result of experiments using Gaussian white

noise and power law noise images show that improvements in the level of symmetry, as measured

by the inter-image correlation, are not matched by improvements in observer performance.

In contrast to this, Experiment 2 tested an alternative display protocol: an animated display

format, where the two images from an image pair were displayed sequentially in the same location

in a continuous movie loop. In this format, increases in correlation did lead to an improvement in

observer performance suggesting that the animated presentation enabled real observers to decor-

relate the image pair and perform with a strategy similar to that of the ideal observer. This

�nding was established using noise backgrounds that initially consisted of Gaussian white noise, to

establish a theoretical basis for the experiment, followed by a background consisting of power law

noise. As discussed in section 1.6.4, power law noise was chosen for its statistical similarity to real

mammograms (Burgess et al., 2001) and the results of Experiment 2 intimated at the potential of

an animated movie presentation technique as an aid to mammogram readers and radiologists for

the detection of potential tumours in paired mammograms.

Whilst power law noise backgrounds are broadly considered to be good models for real mam-

mograms (Burgess et al., 2001; Reiser et al., 2013), and, therefore, suitable for theoretical research,

a number of studies, nevertheless, suggest that real mammograms may not behave entirely as pre-

dicted by power law noise models (Bochud et al., 1999, 2004; Burgess et al., 2001) (see sections

1.6.4 and 1.6.5 for a fuller discussion of this). Thus, having established a theoretical basis for an an-

imated display protocol using Gaussian white noise and power law noise, to validate its usefulness

in a clinical scenario, it is necessary that the protocol be tested using the stimuli encountered in

the clinical scenario. This study, therefore, took the next step towards the end goal of a full clinical

trial by using real mammogram images but with a synthetic tumour and naive (non-radiologists)

participants.

Thus, the aims of this study were to determine whether:

1. An animated movie presentation protocol would enable the real observer to utilise the cor-

relation present between the two images of real mammogram pairs to improve the observer's

performance for the detection of a synthetic tumour in one image of the pair.

2. An animated movie presentation protocol would confer an advantage over static presentation,

as measured by lower contrast thresholds, for the detection of a synthetic tumour in paired

mammograms.
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7.2 Theory

The theoretical basis remains the same as detailed in sections 4.2.1, which shows that, for an ideal

observer, performance will improve as the correlation between the two images of a pair increases.

For an image pair with power law noise backgrounds, the ideal observer will �rst pre-whiten each

noise �eld (Burgess, 2010, pp. 26-46; Bochud, 2013, pp. 153-164) prior to decorrelating the image

pair and cross-correlating with the signal template. For real mammogram backgrounds the theory

is the same as for power law noise backgrounds. Once again, the ideal observer will pre-whiten

each mammogram image prior to decorrelating the mammogram pair and then cross-correlating

each image with the signal template.

7.3 Method

7.3.1 Apparatus

The apparatus used in Experiment 4 was the same as for Experiment 1a with the exception that,

when viewing from a distance of 52 cm from the monitor screen, the dimensions of each image

display were 21 deg wide and 32.6 deg high.

7.3.2 Stimuli

The stimuli were real mammogram images with a superimposed Gaussian blob signal. The mam-

mogram images were supplied by Plymouth National Health Service Trust Derriford Hospital's

Primrose Unit and prepared for use in the experiment as described below.

7.3.2.1 Image preparation

Images were supplied from an image bank held by Derriford Hospital's Primrose Unit and all

images were anonymised by Primrose Unit sta� prior to release. All image preparation was carried

out using Irfan View for Windows 7, version 4.36, except where otherwise stated. One hundred case

folders were supplied, each case containing eight images, four each from two separate screenings,

referred to as prior and post screenings. Each screening contained the left mediolateral oblique

(MLO) image, the right MLO image, the left cranial-caudal (CC) image and the right CC image.

The images were relabeled to indicate the case number, the image view and the screening occa-

sion, e.g. 0001LMLO Prior was case 0001, left mediolateral oblique view and the prior screening.

0001RCC Post was case 0001, right cranial-caudal view and the post screening. When supplied,

the majority of images were 2082 x 2800 pixels with the remainder 2800 x 3518 pixels. The latter
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were cropped by removing extraneous black surround to give an X:Y axes aspect ratio of 0.74 (to

approximately match the X:Y ratio of the 2082 x 2800 pixel images), and then resized to 2082 x

2800 pixels.

Three cases were removed as unsuitable owing to the inclusion of large artefacts such as breast

implants or pacemakers and two more removed where the prior and post were clearly from di�erent

women. A further resizing was carried out to reduce the amount of black border and maximise the

actual breast image area in the display. As would be expected from a random sample of women,

the range of breast size varied over a wide range and, therefore, a compromise size of 1800 x 2800

pixels was chosen, giving good breast image display size whilst losing a small number of images

that had an actual breast image X dimension greater than 1800 pixels.

A clean-up of the images was then carried out using Irfan View image editing tools to remove

all extraneous information, such as measurement scales and image view markings, and any non-

breast tissue, such as torso below the breast. The images were also converted to greyscale. As

a result of the prior and post image sets having been taken, typically, three years apart using

di�erent scanners, there was usually a di�erence in mean grey level. To maximise the e�ectiveness

of the animated method of displaying the images and prevent the whole image from �ashing the

image grey levels were equalised using a bespoke normalisation programme written using the `R'

environment software. Normalisation, in this context, refers to the process of matching the mean

and variance of each image. In the `R' environment image pixel levels are represented by values from

zero to one, with zero being pure black and one being pure white, with shades of grey in between.

Normalisation was accomplished by �rstly standardising these original image pixel values of the

breast image (not including the black background) and then dividing these standardised values

by a common range denominator (to set the required standard deviation) plus the required mean,

truncating the resulting values at zero and one. Applying this process to each image ensured that

the images had equal mean grey levels and an equal variance.

Prior and post image pairs were registered using the BUnwarpJ plugin available as part of

the Fiji image processing package (Abramo� et al., 2004). BUnwarpJ is a 2D Image registration

method based on elastic deformations represented by B-splines. Identi�able landmarks, such as

the nipple and skin boundary, were utilised to improve the registration wherever possible. The

elastic deformation used to align the two images occasionally resulted in the appearance of black

segments on the image, corresponding to an unscanned area of that breast. These black segments

were removed by cropping the image pair at the pixel value corresponding to the limit of black

segment. The X:Y axes ratio was maintained throughout and the image resized back to 1800 x

2800 pixels on completion. As a measure of the level of correspondence between the two images
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following registration, the correlation between the prior and post breast images was measured using

a bespoke programme written using the `R' environment software. It is important to note that the

correlation measure was between non-zero grey levels in the two actual breast images and did not

include the black surround (which would falsely in�ate the correlation level). The post-registration

correlation values are recorded in Table 7.1.

The �nal stage of image preparation was to convert the images to bitmap format and resize

them to 494 x 768 pixels for use in the experiment programme. A bank of 183 CC image pairs

were used in the experiment with the same image bank used for both static and animated movie

display modes.

The images were displayed using 256 grey levels and in all of the experiments, to allow for the

circumstance that the blob may be randomly placed in a location that is close to 255 (i.e. pure

white), thus inhibiting an increase in grey levels resulting from the addition of blob, the actual

mean grey level was shifted down by a factor of 0.1 to create �headroom� for the blob. Thus the

mean grey level was 102 rather than 127.5. The mean grey level was used to calculate the grey

level for the blob as shown in equation 7.1.

Blob grey level = mean grey level × blob contrast (7.1)

The mean grey level in the vicinity of the blob (Imgrey) was measured by taking the mean

grey level of the pixels surrounding the blob and this was used to calculate the local contrast of

the blob as shown in equation 7.2.

Local contrast =
Blob grey level − Imgrey

Imgrey
(7.2)

The local contrast was then used to determine contrast thresholds for each correlation bin

(correlation bins are discussed in the results section on page 180) which were calculated from the

50% correct point of the pooled observers' psychometric function of proportion of yes responses

versus the local contrast of the blob, �tted using probit regression.

7.3.2.2 The signal

The signal was a Gaussian blob truncated at ± 3.5 standard deviations with a spatial SD of 2.34mm

(0.26 deg). The signal was added to one image of the pair in a random sequence of image plus

signal and image only and was randomly placed at any position within the breast region of the

image (signal known statistically (SKS)). The contrast of the signal, when present, had two levels

0.1 and 0.2 and the contrast level was randomly selected.
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Table 7.1: Post-registration correlation levels for the 183 image pairs used in Experiment 4.
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Figure 7.1: Example static display showing the prior and post CC mammogram views displayed
in a mirror symmetric format. A Gaussian blob signal is shown in the right hand image (arrowed).

7.3.3 Procedures

The images were displayed as prior and post pairs in either a static or movie display mode. For

the static display the image pair was displayed side-by-side in a mirror symmetric format and, if

present, the Gaussian blob signal was added to the right hand image (corresponding to the post

or later image) of the pair. The two images were separated by 0.22 deg. For the movie display

the images were presented as same orientation images in the same location, displayed sequentially

with a frame duration of 250 ms. and the Gaussian blob signal, if present, was added to the second

image (corresponding to the post or later image) of the pair. For both display modes each image

was displayed in a patch of 494 x 768 pixels subtending 21 deg on the X axis and 32.6 deg on the

Y axis. The image was surrounded by a black region.

The experiment used a rating scale paradigm and on each trial the observer was presented with

the stimuli, as shown in Figure 7.1 (static) and Figure 7.2 (movie). Each presentation mode (static

or movie) was presented in one 60 trial block and within one session the presentation modes were

run in random order. At the start of each session, the observer was presented with an image of

the target signal as a reminder or to familiarise the observer with the signal and they were briefed

on the response scale.
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Figure 7.2: Example two frame animated movie sequence showing prior and post displays displayed
sequentially in the same location.
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The response scale was rated from 1-4 indicating the observer's con�dence that the signal was

present or not and a key to the scale was shown on the keypad. A response of 1 indicated a low

con�dence that the lesion was present and 4 indicated a high con�dence that the lesion was present

with responses of 2 and 3 representing intermediate levels of con�dence. The observer was given

a number of practice runs to become familiar with the procedure and the signal characteristics

to facilitate a SKS protocol. On each trial, the observer was presented with the display, and the

observer chose the response scale indicating their con�dence that the signal was present or not.

The display remained on the screen until a response was given. Feedback for wrong responses was

indicated by a pulsed central red square. Each observer conducted a minimum of four sessions,

where each session included blocks of trials using both display modes in random order and took

approximately 30 minutes to complete.

7.3.4 Observers

Thirty two observers participated in the experiment, however, only the data from 24 observers

was used as data from eight observers was discarded. This was because these observers had only

used the extreme values in the response rating scale. All except one were inexperienced observers

but received training prior to commencing the study. GR was the author and an experienced

psychophysical observer. No observer had any background in radiology or medical physics. All

observers had normal or corrected-to-normal vision.

7.4 Results and Discussion

This study had two aims:

1. To determine whether animated movie presentation would enable the real observer to decor-

relate real mammogram pairs and, therefore, use the correlation present between the images.

2. To determine whether animated movie presentation would confer an advantage over mirror

symmetric presentation, as measured by lower contrast thresholds, for the detection of a

synthetic tumour in paired mammograms.

I will now examine the evidence for these in turn:
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Static Movie
Bin number Mean correlation Correlation range Number of trials Number of trials

1 0.722 0.647-0.762 825 819
2 0.784 0.763-0.794 827 835
3 0.804 0.796-0.810 1023 990
4 0.819 0.813-0.823 650 748
5 0.837 0.830-0.841 742 772
6 0.844 0.8411-0.849 823 919
7 0.855 0.850-0.862 830 807
8 0.875 0.863-0.887 840 833
9 0.895 0.889-0.903 800 791
10 0.918 0.904-0.972 800 766

Table 7.2: Correlation bins showing mean correlation, correlation range and number of trials within
each bin.

7.4.1 Does animated presentation enable the real observer to decorre-

late real mammogram pairs and, therefore, use the correlation

present between the images?

For the �rst aim of the study contrast thresholds were measured as a function of the correlation

between the two mammograms of a pair presented to the observer. The correlation was a measure of

the level of correspondence between the two mammograms of the pair, with higher correspondence

having higher correlation levels. As each mammogram pair had a correlation unique to that pair,

the correlation levels were partitioned into 10 bins with approximately equal numbers of trials in

each bin. The mean correlation, correlation range and number of trials in each bin is shown in

Table 7.2.

The responses were segregated into yes (ratings 3 and 4) or no (ratings 1 and 2) and the probit

regression used these binary values. Each threshold represents a �t to at least 742 trials, with the

number of trials per bin shown in Table 7.2.

If the observers are able to use the correlation between the mammograms, as used by the

ideal observer, then we would expect, as shown in section 4.2.1, to see the contrast threshold

decline as correlation increases in proportion to
√

1− ρ where ρ is the correlation between the two

mammograms of the pair. Figure 7.3 shows this not to be the case with almost �at functions for

both static and movie presentation modes.

For each presentation mode, we can determine the rate of change of contrast threshold as

correlation varies and hence, measure how e�ectively each mode enables the real observer to use

the correlation between the two noise �elds, by �tting the model:

Contrast Threshold = constant+ b
√

1− ρ (7.3)
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Figure 7.3: Contrast threshold as a function of correlation for the static(open circles) and movie
(�lled circles) conditions for the detection of a signal in mammogram pairs using the pooled data
from 24 participants and 10 correlation bins. Error bars show 95% con�dence intervals.

The coe�cient b measures the degree to which an observer's performance is improved by the

correlation between the two noise �elds and �tting the model shown in Equation 7.3 using the

data from the static and movie presentation modes con�rms the conclusion drawn from Figure 7.3.

Both functions are �at and show no signi�cant change across the range of correlations presented

(static: b = −0.04, p = 0.47 and movie: b = 0.04, p = 0.68). The results, therefore, show that

neither static or movie presentation enables the observer to make use of the correlation between

the image pair, however, note that a restricted range of correlations was used (0.7 - 0.9) and the

results may di�er with a larger range.
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Static Movie t-test
Bin Mn corr LCL Ct UCL LCL Ct UCL t p
1 0.722 0.096 0.108 0.125 0.098 0.112 0.130 0.34 0.73
2 0.784 0.115 0.133 0.158 0.117 0.135 0.161 0.13 0.90
3 0.804 0.132 0.152 0.179 0.122 0.140 0.164 0.73 0.47
4 0.819 0.115 0.135 0.163 0.149 0.181 0.229 1.93 0.06
5 0.837 0.118 0.138 0.167 0.144 0.172 0.214 1.56 0.12
6 0.844 0.106 0.122 0.144 0.113 0.129 0.151 0.48 0.63
7 0.855 0.104 0.118 0.137 0.108 0.125 0.148 0.53 0.60
8 0.875 0.111 0.127 0.148 0.123 0.144 0.173 1.06 0.29
9 0.895 0.110 0.127 0.151 0.101 0.116 0.136 0.85 0.40
10 0.918 0.110 0.127 0.150 0.095 0.109 0.128 1.39 0.17

Table 7.3: Contrast thresholds (Ct) with 95% con�dence limits for each correlation bin for the
detection of a blob in mirror symmetric static and animated movie displays. The t-test columns
show the t statistic and p value for the di�erence between contrast thresholds for static and movie
displays for each bin.

7.4.2 Does animated presentation confer an advantage for over mirror

symmetric presentation, as measured by lower contrast thresholds,

for the detection of a synthetic tumour in paired mammograms?

Reference to Figure 7.3 and the results of section 7.4.1 clearly show that animated movie pre-

sentation does not confer an advantage, in terms of lower threshold contrast levels, over mirror

symmetric static presentation for the detection of a synthetic blob in paired mammogram displays.

Table 7.3 con�rms this, showing the contrast thresholds with 95% con�dence limits for each corre-

lation bin for the detection of a blob in static and movie displays and the level of signi�cance for

the di�erence between the contrast thresholds for static and movie displays for each bin. Reference

to Table 7.3 show that there is no signi�cant di�erence between the contrast thresholds for static

and movie displays across the full range of mean correlations.

Further analysis was conducted using the receiver operating characteristic (ROC) methodology.

ROCs are a widely used method for comparing the performance of two imaging modalities and will

be used here to compare the performance of the static displays and the movie displays. Each image

was rated for the observer's con�dence of the lesion being present with the response scale rated

from 1-4. A response of 1 indicated a low con�dence that the lesion was present and 4 indicated

a high con�dence that the lesion was present with responses of 2 and 3 representing intermediate

levels of con�dence.

The study design uses multiple readers viewing multiple cases, usually referred to as a multiple-

reader multiple-case (MRMC) study design, and this has been suggested to be the best practice

methodology for assessing competing viewing modes (Wagner et al., 2002). The ROC curve is the

plot of the true positive rate (the proportion of correctly classi�ed positive observations or sensi-

182



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate (1−specificity)

Tr
ue

 p
os

iti
ve

 r
at

e 
(s

en
si

tiv
ity

)

Movie

Static

Figure 7.4: Comparison of detection performance for the static display (open circles) and the movie
display (�lled circles). Note that both curves are essentially the same and superimposed upon each
other.

tivity) versus the false positive rate (the proportion of incorrectly classi�ed negative observations

or one minus the speci�city) plotted for each con�dence level. The area under the ROC curve

(AUC) is used as the measure of performance and an AUC =1 indicates perfect performance and

an AUC = 0.5 indicates performance at chance level.

Figure 7.4 shows the detection performance for the static display and for the movie display.

The AUC, calculated in �R� using the ��ux� package and �auc� command, for the static display was

0.62 (standard error = 0.0037, 95% CI [0.62, 0.63]) and for the movie display 0.62 (standard error

= 0.0034, 95% CI [0.62, 0.63]) indicating no signi�cant di�erence between the observers' perfor-

mance using static and movie displays for the detection of a Gaussian blob in a real mammogram

background.

7.5 General Discussion

This study aimed to investigate whether the real observers using animated movie presentation were

able to decorrelate real mammogram pairs and, therefore, use the correlation present between the

images and, whether this would confer an advantage over mirror symmetric static presentation,

as measured by lower contrast thresholds, for the detection of a synthetic tumour in paired mam-
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mograms. Experiments 2a and 2b, using either Gaussian white noise backgrounds or synthetic

mammograms with power law noise backgrounds, demonstrated that observers using animated

movie displays were able to make use of the correlation between image pairs to facilitate lower

detection thresholds for a blob in one image of the pair. Observers using mirror symmetric static

displays were shown to be unable to bene�t in the same way to improvements in correlation be-

tween the two images of the pair. The results of the current experiment clearly show that, with real

mammogram backgrounds, the observers using animated movie displays are unable to use the cor-

relation between the images and, consequently, movie presentation does not confer any advantage

over static presentation for the detection of a synthetic tumour in paired mammograms.

This raises the question of why animation was e�ective in Experiments 2a and 2b but not in

the current experiment. The most obvious di�erence between the experiments is the use of real

mammogram backgrounds and it is possible that the loss of e�ect for animation is as a result

of the di�erent properties of mammograms when compared to Gaussian white noise and power

law noise. A reduction in e�ciency for the detection of a signal in mammogram backgrounds in

comparison to power law noise backgrounds was expected due to the impact on search e�ectiveness

as well as increases in both false positives and negatives resulting from the anatomic structure of

real mammograms (as discussed in section 1.6.5). However, it was not anticipated that this would

have the qualitative e�ect of negating the observer's ability to use the correlation between the two

images as well as a quantitative e�ect on their detection e�ciency.

Notwithstanding the di�erences highlighted between synthetic and real mammograms, there

were also a number of di�erences in the experimental set up between this experiment and previous

experiments and it is possible that the e�ect of animation was lost as a result of experimental

changes rather than because of the properties of real mammograms. The study protocol used in

previous experiments was a 2AFC task and the current experiment used a yes/no rating scale task.

Previous experiments also used 256 x 256 pixel image squares solely consisting of the background

noise with no boundaries or discontinuities. The real mammogram image size was determined by

the shape of the breast and the limitations of the laboratory display resulting in an image size

of 494 x 768 pixels. The real image contained a whole breast, of varying dimensions, with the

remainder of the image being black background, thereby introducing boundaries into the image.

The use of square regions is not unusual in mammography research (examples are: Burgess et al.

(2001); Burgess & Judy (2007); Myers et al. (1985); Reiser et al. (2013)), however these images

usually represent one tissue type (or synthetic representation of one tissue type) within each image

and across a set of images used in an experiment. A whole breast image, however, can contain

a range of tissue types including fatty tissue and �broglandular tissue as well as other anatomic
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features such as the pectoral muscle in MLO views and the make up of the breast structure will

vary from image to image.

Another di�erence between the experiments is the size of the signal used. A Gaussian blob has

been used as the signal throughout all of the experiments, however, in previous experiments the

blob was truncated at ±3 standard deviations with a spatial standard deviation of 0.43 degrees.

This produced a signal subtending 2.57 degrees and measuring 23 mm. In the current experiment

the blob size was chosen to re�ect a realistic tumour size and was truncated at ±3.5 standard

deviations with a spatial standard deviation of 0.26 degrees producing a signal that subtended

1.13 degrees and measured 10.3 mm.

The changes in experimental protocol were carefully considered to move towards increased

realism and to more closely re�ect the clinical scenario and there is no evidence to suggest that

any of the changes would result in a loss of e�ect for the animated movie displays. As with the

change from power law noise backgrounds to mammogram backgrounds, a reduction in e�ciency as

a result of the experimental changes could have been anticipated, however, it is di�cult to see how

these changes could lead to the loss of e�ect for animation. Despite this, before drawing conclusions

about the incompatibility of real mammograms for use in animated displays, it would be sensible to

rule out all other possible causes for the loss of e�ect, however unlikely they may appear. Further

research is, therefore, required to investigate the e�ectiveness of animation in power law noise

and real mammogram backgrounds ensuring that the experimental set up is identical for both

background types to rule out the potential confounds discussed above and this will be the aim of

the next experiment of this thesis.
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Chapter 8

Experiment 5: An Investigation into

the use of Animated Presentation for

the Detection of a Synthetic Tumour

in Real Mammograms and Power

Law Noise Backgrounds

8.1 Introduction

Experiment 2a and Experiment 2b, using either Gaussian white noise backgrounds or synthetic

mammograms with power law noise backgrounds, demonstrated that observers using animated

displays were able to make use of the correlation between image pairs to facilitate lower detection

thresholds for a blob in one image of the pair. Experiment 4 investigated the use of animated

displays with real mammogram backgrounds, however, the results of Experiment 4 showed that,

with real mammogram backgrounds, the observers were unable to use the correlation between

the images and did not, consequently, show any advantage in performance, as measured by lower

threshold contrasts, over static presentation for the detection of a synthetic tumour in paired

mammograms.

It is possible that the properties of real mammograms are not compatible with the use of an

animated display technique, as discussed in section 7.5, however, section 7.5 also discussed a number
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of potential confounds related to the experimental methodology of Experiment 4. These included

the study protocol, which in the earlier experiments was a 2AFC task whereas in Experiment 4,

a yes/no rating scale task was used. The size and appearance of the images was also changed

with earlier experiments using solid square images of 256 x 256 pixels but Experiment 4 used real

mammogram images with an image size of 494 x 768 pixels, determined by the shape of the breast.

The real images also contained a whole breast, of varying dimensions, with the remainder of the

image being black background. The size of the signal was also changed, primarily to produce a

more realistic size for the real images used in Experiment 4.

Whilst there is no evidence to suggest that any of the changes discussed above would result

in a loss of e�ect for the animated displays, this experiment will aim to rule out these potential

confounds by comparing the e�ect of using an animated display with power law noise images and

real mammogram backgrounds in an experimental set up that ensures that the same conditions

are used for both backgrounds. Thus, this experiment will use a common image size of 500 x

500 pixels, a common blob type and size and a common experimental protocol such that a direct

comparison of observer performance with power law noise backgrounds and real image backgrounds

can be made. The aim of this experiment will, therefore, be to compare observer performance for

the detection of a Gaussian blob in paired images with either a power law noise background or

a real mammogram background using either mirror symmetric displays, which will be referred to

as static displays or animated displays, which we will refer to as movie displays, over a range of

correlation values to determine whether the observers are able to utilise the correlation present

between the images.

8.2 Method

8.2.1 Apparatus

The apparatus used in Experiment 5 was the same as for Experiment 1a with the exception that,

when viewing from a distance of 52 cm from the monitor screen, the dimensions of each image

display were 13.3 deg square.

8.2.2 Images

Two types of image were used; real mammogram image sections extracted from the images supplied

by Derriford Hospital's Primrose Unit image bank and power law noise images with low pass 1/f3

power spectrum. Both types of image were prepared to ensure that, apart from the background

type (real mammogram or power law noise), they were, as far as could be controlled, identical.
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Nominal correlation Correlation range
0.5 0.45 to 0.549
0.6 0.55 to 0.649
0.7 0.65 to 0.749
0.8 0.75 to 0.849
0.9 0.85 to 0.949

Table 8.1: Nominal correlation value of image pairs and range of correlation values within each
band as used in Experiment 5.

8.2.2.1 Image preparation

Real mammogram images The real mammogram images were supplied from an image bank

held by Derriford Hospital's Primrose Unit and all images were anonymised by Primrose Unit

sta� prior to release. Image preparation, including registration of image pairs, was carried out as

described in section 7.3.2.1, except the measurement of correlation between the images and the

conversion to 494 x 768 pixel bitmap images was not carried out for this experiment. Thus, at this

juncture, a large bank of whole breast image pairs, cleaned up and registered were available for

further preparation.

This experiment used square sections of the paired images and, to produce these, 1000 x 1000

pixel regions were cropped from random areas of the prepared images with the corresponding 1000

x 1000 regions cropped from the other image of the pair. Care was taken to ensure that the image

consisted wholly of breast tissue with no breast boundary or background included. Inclusion of

the black background would falsely in�ate the correlation between the images and inclusion of skin

boundaries would provide potential confounds when comparing against power law noise images

with no boundaries. Once resized to 1000 x 1000 pixels, the Pearson correlation between the

image pairs was measured and recorded and the images were grouped into �ve correlation bands

as shown in Table 8.1.

Sixty images from each correlation band were selected for use, giving a total of 300 image pairs.

The �nal stage of image preparation was to convert the images to bitmap format and resize them

to 500 x 500 pixels for use in the experiment programme. Thus, a bank of 300 real mammogram

image pairs were used in the experiment with the same image bank used for both static and movie

display modes.

Power law noise images The power law noise images were generated by frequency domain

�ltering of Gaussian white noise to give a low pass, 1/f3 power law noise image. The image pairs

were generated as 500 x 500 pixel images and, once again, 300 image pairs were selected with 5

inter-image correlation levels. The nominal correlation levels were 0.5, 0.6, 0.7, 0.8 and 0.9 with

actual inter-image correlation within ±0.01 of the nominal value. For example, the 0.5 image pairs
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contained images with inter-image correlation between the range of 0.49 to 0.51.

8.2.3 The signal

The signal was a Gaussian blob truncated at ±3.0 standard deviations with a spatial SD of 8.75mm

(0.96 deg). The signal was added to one image of the pair in a random sequence of image plus

signal and image only and was randomly placed centrally within the image (signal known exactly

(SKE)). The contrast of the signal, when present, was �xed within each run at 0.01, 0.015, 0.02,

or 0.025, as discussed in section 8.2.4. The same signal was used for all display modes and image

types.

8.2.4 Procedures

The real mammogram or power law noise image pairs were displayed in either a static or movie

display mode, thus giving a set of four presentation modes:

1. Power law noise static.

2. Power law noise movie.

3. Mammogram static.

4. Mammogram movie.

For the static displays the image pair was displayed side-by-side in a mirror symmetric format

and, if present, the Gaussian blob signal was added to the right hand image of the pair. The two

images were separated by 0.22 deg. For the movie displays the images were presented as the same

orientation images in the same location, displayed sequentially with a frame duration of 250 ms.

and the Gaussian blob signal, if present, was added to the second image of the pair. For both

display modes each image was displayed in a patch of 500 x 500 pixels subtending 13.3 deg square.

The image was surrounded by a black region.

The experiment used a yes/no paradigm and on each trial the observer was presented with the

stimuli, as shown in Figure 8.1 (power law noise static), Figure 8.2 (power law noise movie), Figure

8.3 (mammogram static) and Figure 8.4 (mammogram movie). Each one of the four presentation

modes was presented in a 60 trial block and within one session the presentation modes were run

in random order. At the start of each session, the observer was presented with an image of the

target signal as a reminder or to familiarise the observer with the signal and they were briefed on

the task.
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Figure 8.1: Example static display with synthetic mammogram image pair with low-pass 1/f3

power spectrum noise. The inter-image correlation shown is 0.9. A Gaussian blob having contrast
well above threshold is shown on the right.

Figure 8.2: Example movie display with synthetic mammogram image pair with low-pass 1/f3

power spectrum noise. The inter-image correlation shown is 0.9. A Gaussian blob having contrast
well above threshold is shown on the top image for clarity.
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Figure 8.3: Example static display with real mammogram image pair. The inter-image correlation
shown is 0.7. A Gaussian blob, having contrast well above threshold, is shown on the right.

Figure 8.4: Example movie display with real mammogram image pair. A Gaussian blob having
contrast well above threshold is shown on the top image for clarity.
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A number of pilot trials were carried out to enable the participants to become familiar with the

task and to establish the signal contrast to be used for the trials. Contrasts of 0.025, 0.02, 0.015

and 0.01 were piloted to establish the contrast that enabled the observer to achieve a detectability

index of d
′
approximately equal to 1 with real mammogram images at an inter-image correlation of

0.5. Once established, the observer used the same contrast level throughout all of the trials and a

contrast of 0.02 was found to be appropriate for 12 observers with one observer (GR - the thesis

author and experienced psychophysical observer) using a contrast of 0.01.

To re-familiarise the participants with the task, on the �rst trial of each run, the signal was

always present and the observers were instructed to identify it and select �yes� with a right mouse

click. Throughout the testing, no time limit was speci�ed for the observers to make their decisions,

however, they were instructed not to dwell too long and make a guess if unsure. The display

remained on the screen until a response was given and, apart from the �rst trial, the signal was

randomly present or absent. The observer's task was to click the right mouse button for �yes

- signal present� and the left mouse button for �no - signal absent�. Incorrect responses were

indicated by a pulsed enlargement of the central red square. The observers were instructed to

always complete full sets of trials (i.e. power law noise static, power law noise movie, mammogram

static, mammogram movie), which were presented in random order. Each participant completed

a minimum of 20 full sets over an average of 10 visits.

8.2.5 Observers

Thirteen observers participated in the experiment. All except one were inexperienced observers

but received training prior to commencing the study. GR was the author and an experienced

psychophysical observer. No observer had any background in radiology or medical physics. All

observers had normal or corrected-to-normal vision.

8.3 Results and Discussion

This study aimed to compare observer performance for the detection of a Gaussian blob in paired

images with either a power law noise background or a real mammogram background using either

mirror symmetric static displays or animated movie displays over a range of correlation values to

determine whether the observers are able to utilise the correlation present between the images.

Performance was measured using the detectability index d
′
calculated as follows:

d
′

= z(Hit rate)− z(False alarm rate) (8.1)
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(Macmillan & Creelman, 2005, p. 9)

where:

d
′

= detectability index

z = z score

And:

Hit rate =
H

NH
(8.2)

False alarm rate =
F

NF
(8.3)

where:

H = number of hits

NH= number of signal trials

F = number of false alarms

NF = number of noise trials

The variance for d
′
can be calculated as follows

var
(
d
′
)

=
H (1−H)

NH (ΦH)
2 +

F (1− F )

NF (ΦF )
2 (8.4)

(Macmillan & Creelman, 2005, p. 271)

where;

Φ = height of normal density function

The data from the 13 users was pooled and d
′
and its standard error for each correlation band

were calculated using equations 8.1 and 8.4. The results are plotted in Figure 8.5.

Figure 8.5 shows a clear di�erence in the performance of real observers for the detection of

a Gaussian blob signal with power law noise backgrounds in comparison to real mammogram

backgrounds. Two features are apparent. Firstly, there is a qualitative di�erence in performance

for the observers using movie displays with a power law noise background when compared to

an observer using movie displays with a mammogram background. With the power law noise

background, it is clear that the observer is able to use the correlation between the images to

improve performance, whereas, with real mammogram backgrounds, the observer is not and, as

a result, shows no improvement in performance as correlation increases. The second feature is a

quantitative di�erence between the performance levels achieved with power law noise backgrounds,

which are signi�cantly higher than those achieved with real mammogram backgrounds.

Dealing with the qualitative issue �rst. If the observers are able to make use of the correlation
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Figure 8.5: d
′
plotted as a function of inter-image correlation for the detection of a Gaussian blob

signal in paired noise images for animated movie displays (circles) and mirrored static displays
(triangles) using the pooled data from 13 participants. The top image shows the data plotted for
power law noise backgrounds and the bottom image shows the data plotted for real mammogram
backgrounds. Error bars showing 95% con�dence intervals have been plotted but are not visible
as they are smaller than the symbols. Fits of Equation 8.6 are shown.
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between the image pairs (as per the ideal observer), then their performance, as measured by d
′
,will

increase as the correlation between the images increases. Reference to the section 1.7.1 shows that

the performance of the ideal decorrelating observer will be given by the equation:

d
′

=

√
2E

(1− ρ)σ2
(8.5)

(Kay, 1998, p. 112)

Where:

d
′

= Signal detection theory measure of performance.

E = Signal energy.

ρ = Inter image correlation between the two images of a pair.

σ2 = Noise variance

The signal energy and noise variance are held constant throughout the experiment and, there-

fore, for a real observer:

d
′

= a+
k√

1− ρ
(8.6)

where:

d
′

= detectability index

ρ = inter-image correlation

a = constant

k = constant

The constant a sets the performance of the observer for an inter-image correlation equal to

zero and the constant k determines the observers use of the inter-image correlation. A positive

value of k would indicate that the observer is able to make use of the correlation, whereas a value

of k equal to zero would show that they were unable to use the correlation. The ideal observer

would have a value of k equal to 1. For the pooled observer's data, using movie displays with

power law noise, there was a signi�cant positive slope (k = 0.54, p = .006) indicating that the

observer was able to use the correlation between the power law noise pairs. By contrast, for the

pooled observer's data, using movie displays with real mammogram backgrounds, the slope was

not signi�cantly di�erent from zero (k = 0.13, p = .06) indicating that the observer was not able

to use the correlation between real mammogram pairs. For the pooled observer's data using static

displays, the slope was not signi�cantly di�erent from zero with power law noise backgrounds

(k = 0.14, p = .16) or with real mammogram backgrounds (k = 0.12, p = .09) indicating that the
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observers were not able to use the correlation when using static displays with either power law

noise pairs or real mammogram pairs.

The second issue related to the quantitative di�erence between the pooled observer's perfor-

mance with a power law noise background in comparison to a real mammogram background. The

d
′
values and their standard errors for each condition at correlation of 0.5 are summarised in

Table 8.2. A correlation of 0.5 was chosen as this re�ects the correlation at which the perfor-

mance achieved using each mode is closest. Reference to Table 8.2 shows that performance is

signi�cantly lower with real mammogram backgrounds than with power law noise backgrounds for

movie displays (t = 12.91, p < .001) and for static displays (t = 7.84, p < .001) at a correlation of

0.5.

Display type Background type d
′

SE t p

Movie
Power law noise 1.53 0.048

12.91 <.001
Real mammogram 0.70 0.043

Static
Power law noise 1.31 0.045

7.84 <.001
Real mammogram 0.82 0.044

Table 8.2: Pooled observer's performance values for animated movie and mirror symmetric static
displays with power law noise and mammogram backgrounds at a correlation of 0.5. The �nal two
columns show the t values and signi�cance levels for the di�erence between the d

′
values in power

law noise and real mammogram backgrounds for the movie and static displays.

8.4 Discussion

The aim of this experiment was to compare observer performance for the detection of a Gaussian

blob in paired images with either a power law noise background or a real mammogram background

using either mirror symmetric static displays or animated movie displays over a range of correlation

values to determine whether the observers are able to utilise the correlation present between the

images. It is clear from the results that the observers using movie displays with power law noise

backgrounds are able to make use of the correlation between the images to aid in the detection

of a Gaussian blob signal in one of the images. However, it is equally clear that when using

movie displays with real mammogram backgrounds, they are not able to make the same use of the

correlation. Having ensured that the potentially confounding factors relating to the experimental

set up, as discussed in Experiment 4, had been negated by using the same conditions for both

power law noise backgrounds and for real mammogram backgrounds, the results would suggest

that the properties of real mammogram images, in relation to the use of correlation di�er from

those of power law noise images. These di�erences will be explored further in section 8.4.1.
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8.4.1 Investigating the relationship between the local correlation and

global correlation of an image

When faced with the problem of detecting a signal in paired noise �elds, the ideal observer would

�rst decorrelate (or pre-whiten) the two images of the pair to remove redundant information. (Note

that this stage of decorrelation is taking place between the images, not within each image. The

theoretical approach of the ideal observer, outlined in sections 4.2.1 and 4.3.2, suggests that for

power law noise or real mammogram images, the ideal observer will �rst pre-whiten within each

image to reduce each image to white noise, before decorrelating between the two images).

Redundant information, in the context of signal detection in paired synthetic or real mam-

mogram images, relates to features of the images that are common to both images and, as a

result, the values of those corresponding pixels between the two images will be highly correlated.

Decorrelating the image pair will, therefore, remove the redundant information. Greater similarity

between the two images will result in a higher correlation between the images and the removal

of more redundant information, making the signal easier to detect. Referring to the theory in

section 4.2.1, we would expect the ideal observer's performance, as measured by d
′
, to improve as

correlation increases in proportion to 1√
1−ρ , where ρ is the correlation between the two images of

the pair. The ideal observer would have a positive slope equal to 1 and the results show that for

real observers, when detecting a signal in paired power law noise backgrounds, performance using

movie displays also shows a signi�cant positive slope (slope = 0.54, p = .006), indicating that these

observers were able to use the correlation between the images, albeit with a lower e�ciency than

the ideal observer.

This is not the case for real observers when detecting a signal in real mammogram backgrounds

using movie displays, with no signi�cant increase in performance as correlation increased, exhibiting

a slope that was not signi�cantly di�erent from zero (slope = 0.13, p = .06), indicating that these

observers were not able to use the correlation between real mammogram pairs.

The question raised by this was; why do observers detecting signals in power law noise appear to

use the inter-image correlation, whereas, observers detecting signals in real mammograms do not?

This led to the question of what correlation does the visual system see? The correlation reported

is the global inter-image correlation for the two 500 x 500 pixel images, however, when detecting

a signal in a localised region it was hypothesised that, because of the limited visual angle of the

fovea, the visual system would use a more limited area and would utilise this local correlation. The

fovea subtends about 1.7 degrees of visual angle, thus at the viewing distance of 520mm the fovea

would subtend roughly an area of 60 pixels in diameter.

It had been assumed that the inter-image correlation would be scale invariant; that is, it would
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Step number Image size in pixels
1 500 x 500
2 294 x 294
3 173 x 173
4 102 x 102
5 60 x 60
6 35 x 35
7 21 x 21

Table 8.3: Pixel x pixel dimensions for each image size step as used in section 8.4.1.

remain constant across di�erent scales and, therefore, the correlation between two corresponding

localised regions would be equal to the global correlation of the image pair. If the correlation of real

mammograms behaved in a non-scale invariant manner this may explain the failure of observers

to utilise the correlation and show any improvement in performance as correlation increased. This

investigation, therefore, aimed to measure the inter-image correlation for power law noise image

pairs and real mammogram pairs across a range of decreasingly small regions of the original images

to determine whether the inter-image correlation is scale invariant.

8.4.1.1 Method

For the images used in this investigation, an area of approximately 60 pixels in diameter would

fall on the fovea and the signal used in this experiment was a Gaussian blob truncated at ±3.0

standard deviations with a spatial SD of 8.75mm (0.96 deg), representing a blob diameter of 36

pixels, with only a proportion of this visible at low contrast levels. The range of image region sizes

chosen, therefore, ranged from the maximum image size of 500 x 500 pixels down to images which

were a 21 x 21 pixel region of the original image, reducing in equal steps by a ratio of 1 : 1.7 to

give a reasonable number of region sizes. The region sizes are shown in Table 8.3.

The images used for this investigation were the same 300 real mammogram image pairs used

in the main part of this experiment (see section 8.2.2.1 for details of preparation) and 300 power

law noise images, generated as 500 x 500 pixel images as described in section 8.2.2.1. The mean

correlation for the real mammogram images was 0.70 and, therefore, the starting correlation for

the power law noise pairs was chosen also as 0.70.

8.4.1.2 Results

The Pearson correlation was measured between each image pair at each region size and the mean

correlation recorded and plotted against the region size with the region size plotted on a logarithmic

scale for clarity, as shown in Figure 8.6.

Figure 8.6 shows how the inter-image correlation remains virtually constant for power law
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Figure 8.6: Plot of the inter-image correlation against the size of the image region (measured in
pixels) for power law noise regions (open circles) and for real mammogram regions (�lled circles).

noise image pairs as the size of the region reduces, with a 21 x 21 pixel region displaying the

same correlation as the full size image from which it has been cut. This is not the case for real

mammogram pairs, where the correlation is seen to fall o� linearly as the logarithm of the region

size is reduced.

8.4.1.3 Conclusion

This investigation aimed to measure the inter-image correlation for power law noise image pairs

and real mammogram pairs across a range of decreasingly small regions of the original images, to

determine whether the inter-image correlation is scale invariant. The results are clear; for inter-

image correlation, power law noise backgrounds behave in a scale invariant manner, whereas real

mammograms do not.

It is suggested that the observer will use only the local background immediately around the

signal to be detected and, thus, it is the localised inter-image correlation that is utilised in the

decorrelation (or pre-whitening) process. Referring to Figure 8.6, for real mammogram image pairs

the correlation between the localised regions surrounding the signal is likely to be approximately

0.2, a level of correlation shown in Experiment 2 to be only marginally more bene�cial to observers

using movie displays over those using static displays. The results, therefore, may explain the failure
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to exhibit improved performance using movie displays to assist in the detection of a signal in real

mammogram backgrounds, as seen in Experiment 4 and in this experiment.

Before discussing the use of correlation in the two types of images, however, the signi�cant quan-

titative di�erence between the pooled observer's performance with power law noise backgrounds in

comparison to their performance with real mammogram backgrounds will be brie�y discussed. A

number of factors serve to impair an observer's performance in real mammograms in comparison to

synthetic images (see section 1.6.5). Anatomical noise, as discussed in section 1.6.5, tends to be the

most limiting feature in real mammograms, not only a�ecting the way observers search the image

for abnormalities but also mimicking abnormalities, causing false positive responses and masking or

camou�aging abnormalities, leading to false negative responses (Samei et al., 2000, pp. 660-678).

A combination of these e�ects would serve to weaken an observer's ability to correctly identify a

tumour and would explain the quantitative di�erence in performance seen between observers using

power law noise backgrounds and those using real mammogram backgrounds.

8.5 General Discussion

The aim of this experiment was to compare observer performance for the detection of a Gaussian

blob in paired images with either a power law noise background or a real mammogram background

using either mirror symmetric static displays or animated movie displays over a range of correlation

values to determine whether the observers are able to utilise the correlation present between the

images. It was found that static displays did not facilitate the use of the correlation between the

two images of a pair for either background type, with no evidence of improvements in performance

as correlation increased. For observers using movie displays, however, it was found that with

power law noise images they were able to utilise the correlation between the images of a pair and

show improved performance as correlation increased, whereas, with real mammograms, they were

not. Thus, summarising, observers using movie displays with paired power law noise backgrounds

were able to decorrelate the two noise patches of the pair, whereas with movie displays and real

mammogram noise backgrounds and with static displays and both types of noise background they

were not.

A subsequent investigation was carried out into why, with movie displays, the observers were

able to decorrelate the background noise patches when they consisted of power law noise but not

able to do so when the background noise patches were real mammograms. It was hypothesised that

the observers would decorrelate a local region around the blob, being limited to the visual angle

subtended by the fovea. This subsequent investigation, therefore, aimed to measure the inter-
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image correlation for power law noise image pairs and real mammogram pairs across a range of

decreasingly small regions of the original images to determine whether the inter-image correlation

is constant regardless of image size.

The real mammogram images were found not to be scale invariant, with the correlation decreas-

ing as the size of the region taken from the image reduced. The observers using movie displays

with real mammograms would, therefore, be e�ectively attempting to decorrelate the localised

areas where the correlation would, referring to Figure 8.6, be expected to be approximately 0.2.

This could, therefore, explain the failure of the observers to decorrelate the image pairs.

The non-scale invariant nature of real mammograms suggests that the global correlation of the

whole image is not a good indicator of whether a movie display technique would be e�ective. It

should not be concluded from this, however, that a movie display is not viable for use with real

mammograms, rather, that a di�erent measure, possibly based on local correlation, is necessary.

Although mammograms are widely modelled as 1/f3 noise (Burgess & Judy, 2007; Burgess et al.,

2001; Reiser et al., 2013), it is clear that they are not truly 1/f3, because such noise is scale

invariant whereas mammograms are not.

For this thesis, the Pearson correlation between the whole breast area of each image (the global

correlation) has been used as the measure of the level of correspondence between the two images of

a pair. The Pearson correlation is a widely used measure (Bozek et al., 2011b; Celaya-Padilaa et al.,

2013; Chiou et al., 2007; Guo et al., 2006) and, in a comparison of 12 di�erent similarity measures,

Filev et al. (2005) found that, along with the cosine coe�cient and Goodman and Kruskal's Gamma

coe�cient, Pearson correlation gave the best indication of the alignment of corresponding masses

on paired mammograms. Indeed, the results seen in this thesis, with power law noise, provide

further support for the use of Pearson correlation as a similarity measure. If the contrast threshold

for the detection of a blob is used as a measure of e�ectiveness of a display technique, with lower

contrast thresholds indicative of better performance, then the relationship between correlation and

the contrast threshold for detection seen in Experiment 2a and Experiment 2b shows that the inter

image correlation is a good predictor of performance.

Notwithstanding this, the global nature of the Pearson correlation used in this thesis does

not re�ect the localised correlations that we now believe to be important for the e�ective use of

an animated display technique. Indeed, the registration method used to maximise the Pearson

correlation between the images of a pair, as used in this thesis, may not be suitable for aligning

localised regions of the breast to maximise these local correlations. The registration algorithm

that has been used was BUnwarpJ, a 2D image registration method based on elastic deformations

using identi�able landmarks, such as the nipple and skin boundary, which e�ectively aligns the
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major features of the image but may be less e�ective at bringing the corresponding areas of the

parenchyma into closer correlation. An alternative registration method, perhaps based on localised

regions of the breast, may improve local correlation between corresponding areas and, thus, enable

the e�ective use of an animated movie display technique with real mammograms.

A number of regional registration techniques have been tested, such as exempli�ed by Timp

et al. (2005), who identi�ed localised search regions and used three registration measures, Pearson

correlation, mass likelihood and a distance measure, to improve the registration quality. They

veri�ed the e�ectiveness of their registration technique by demonstrating an improved detection

rate for masses when compared to other methods (Timp et al., 2005). Similarly, Hadjiiski et al.

(2001) included a local alignment step, registering localised regions and matching to the closest

region in the other image, once again, improving lesion detection rates and Sanjay-Gopal et al.

(1998) have developed an automated regional registration technique to improve lesion detection on

mammograms. The studies cited here have measured the e�ectiveness of registration by conducting

detection trials, but do not report the localised correlation measures. To further the research

developed in this thesis, however, the Pearson correlation values of corresponding local regions will

be required to investigate the hypothesis that the human visual system uses these local correlation

values to decorrelate the corresponding localised regions of image pairs to assist in the detection

of the blob signal. To achieve this, further research into registration techniques, identifying the

method that best improves local correlation values is required.

Experiment 2a and Experiment 2b clearly demonstrate the e�ectiveness of animation, as used

in the movie display mode, as a tool to enable the observer to utilise the correlation between the

images and, as a result, facilitate lower detection thresholds. The failure of animated displays

to replicate this with real mammograms does not negate this but indicates that the global inter-

image correlation of a real mammogram pair does not re�ect the local inter-image correlation of

the regions subtended by the fovea. Whilst currently available registration techniques can increase

global correlation levels, these techniques do not enhance the correlation between localised regions

of the images and, therefore, do not improve the e�ectiveness of an animated display. For animated

displays to be of bene�t with real mammograms, it will be necessary to develop a registration

technique biased towards regional or local registration, such that the correlation between the

corresponding localised areas of the breast parenchyma is maximised. If this can be achieved, it is

believed that animated displays could prove to be an e�ective display mode with real mammogram

images that will support lower detection thresholds and earlier detection of tumours.
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Chapter 9

General Discussion and Conclusions

The aim of this thesis was to investigate whether an animated display technique could be an e�ec-

tive methodology for the detection of a tumour in a paired mammogram display. A psychophysical

approach was used to address this goal, �rst establishing a theoretical benchmark that could be

tested in progressively more realistic scenarios. The theoretical benchmark was determined through

the use of the concept of the ideal observer, a theoretical device that achieves optimal performance

for a designated task (Geisler, 2011; Green & Swets, 1966, p. 151), thus establishing the optimum

strategy against which the subsequent human observers' results could be compared. To minimise

the possibility that the results may be confounded by extraneous variables, such as may be intro-

duced by the use of real mammogram images or unknown signals, the research was �rst conducted

using Gaussian white noise backgrounds with a Gaussian blob signal in a signal known exactly

protocol; referred to by Kay (1998, p. 94) as the �. . . simple versus simple hypothesis. . . �, before

progressing to power law noise backgrounds and mammogram backgrounds and variable signal

positions.

The ideal observer strategy for the detection of a signal known exactly in paired Gaussian white

noise backgrounds was calculated and checked through simulations. The ideal strategy was found

to be the decorrelation (or pre-whitening) of the paired noise �elds, thus enabling the observer

to discount redundant information (Hyvärinen et al., 2009, p. 126), before cross-correlating the

stimulus with a template of the signal (Burgess & Ghandeharian, 1984a). Redundant information

relates to pixel values of the images that are common to, or related in, both images and, as a

result, the values of those corresponding pixels between the two images will be highly correlated.

Decorrelating the image pair will, therefore, remove the redundant information. Greater similarity

between the two images will result in higher correlation between the images and the removal of

more redundant information, making the signal easier to detect; thus as the level of correlation
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increases, the contrast threshold for the detection of the blob signal will decrease. With a power

law or real mammogram background, the ideal strategy was shown to be to �rst pre-whiten within

each image before decorrelating between the images and cross-correlating the resulting stimuli with

a template of the signal.

Whilst the ultimate goal was the investigation of an animated display mode, Experiment 1

�rst tested the e�ectiveness of the traditional side-by-side, mirror symmetric displays, currently

the most widely used reading protocol adopted by breast radiologists (Haygood & Dogan, 2013;

Kopans, 2007, p. 367). This provided a comparison against which the performance of animated

displays could be compared and, also, investigated the widely held, but seemingly anecdotal, belief

that the use of mirror symmetry would assist the radiologist in the detection of abnormalities.

The results of Experiment 1 showed that human observers using side-by-side, mirror symmetric

displays were not able to use the optimum strategy of decorrelating the paired noise �elds and cross

correlating the resulting stimuli with, at best, only moderate reductions in contrast threshold as

the correlation increased. Most observers showed no improvement as correlation increased and

mirror symmetric displays were found to not elicit signi�cantly di�erent contrast thresholds across

the range of correlation from repeat symmetrical displays. This was not an unexpected �nding

and a similar result to Pomplun (1998) who found no bene�t of mirror symmetric presentation

over repeat presentation for the detection of the target in one noise �eld of the symmetric pair. A

number of other studies relating to the ability of the human visual system to detect violations of

mirror symmetry also raised doubts about how e�ective mirror symmetric displays would be for

the detection of a signal in one half of the symmetric pattern. These included Bruce & Morgan

(1975), who showed that violations were weakly detected when they were distant from the mid-

line, a �nding echoed by Barlow & Reeves (1979) and Jenkins (1982). Symmetry detection by the

human visual system has also been shown to be weaker in more complex images (Huang & Pashler,

2002; Rainville & Kingdom, 2002; Tapiovaara, 1990) and, additionally, to be relatively insensitive

to minor violations of the symmetric pattern (Tjan & Liu, 2005), both conditions re�ecting the

images and the synthetic tumour used in the experiments in this thesis.

The research cited here may explain the failure of the human observers to bene�t from the

symmetric presentation of paired images seen in Experiment 1, however, this failure may be un-

derpinned by the inability to make use of the correlation between the image pairs when they are

presented side by side, in either mirror symmetric format or repeat symmetric format. The results

of Experiment 1 certainly suggest an inability to decorrelate the image pairs and this is supported

by the results of studies by Ahumada & Beard (1997) and Watson et al. (1997), neither of whom

found any bene�t for the detection of a signal in image pairs with a correlation of one between
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the images over that achieved with image pairs with a correlation of zero. Although the results

in the study by Burgess & Colborne (1988) possibly do lend support to the notion that their

observers were able to decorrelate the image pairs, reporting a di�erence in performance between

paired images, displayed side-by-side, with no correlation and perfect correlation (i.e. no symmetry

and perfect symmetry), no signi�cance levels or con�dence limits were given and it is, therefore,

di�cult to draw �rm conclusions from this.

Numerous clinical studies have shown the bene�t of using paired images in mammography,

particularly paired images taken some time interval apart (Callaway et al., 1997; Frankel et al.,

1995; Roelofs et al., 2007; Sickles, 2007; Sumkin et al., 2003; Thurfjell et al., 2000; White et al.,

1994)), however, the conclusion drawn from Experiment 1 is that displaying paired images side-by-

side, in either a mirror symmetric or repeat symmetric format, does not enable the human observer

to bene�t from the correlation between the images and does not facilitate the optimum use of the

information available within the images. As a result, we, therefore, suggest that mirror symmetric

displays do not represent the optimum viewing modality for paired image displays such as those

frequently encountered in mammography; they are no better, or worse, than repeat symmetric

displays. An optimal display mode would be one that enables the human observer to operate

with a strategy similar to that of the ideal observer, to allow the human observer to utilise the

correlation between the images and, hence, improve detection performance.

One option is the use of an animated display mode and the aim of Experiment 2 was to

investigate whether the use of animated presentation would enable human observers to use the

correlation present between the images and decorrelate the paired noise �elds in the same way

as the ideal observer. The results of Experiment 2 showed that animated displays did provide a

display mode that enabled human observers to use the correlation between the images of a pair

to improve their performance, operating with a similar strategy to that of the ideal observer. The

results illustrate the sensitivity of the human visual system to moving and �ickering stimuli, as

highlighted by Adelson & Bergen (1986); Franconeri et al. (2005); Spalek et al. (2009); Watson

(1986). Mammogram pairs can achieve a high level of correlation that, in certain circumstances

can be increased by image registration, thus making a decorrelation strategy an ideal approach

for removing redundant information and facilitating easier detection of any potential tumour.

Thus, animated displays make a viable and attractive proposition for use in mammography and

the ability to utilise the correlation between paired images could be the mechanism underpinning

the successful use of image toggling techniques (Hasegawa et al., 2008; Honda et al., 2014; van

Engeland et al., 2003). The need for high levels of correlation is illustrated by Hasegawa et al.

(2008) and Honda et al. (2014) who emphasised the requirement for accurate registration to enable
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toggling between images to be an e�ective method for �nding abnormalities in mammograms. It is

interesting to note that the toggling techniques employed by Hasegawa et al. (2008); Honda et al.

(2014); van Engeland et al. (2003) did not specify an optimum rate of toggling and this was under

the control of the observer.

The results of Experiment 3 are, therefore, pertinent, showing that varying the rate of alter-

nation had a weak e�ect with Gaussian white noise and power law noise backgrounds, with an

optimum alternation rate at approximately 2Hz. Thus, the use of a variable alternation rate,

under the control of the radiologist, should not compromise the improved performance achievable

through the use of animated displays but would enable the radiologist to alternate the images at a

rate that they �nd comfortable and also permit the freezing of the images to allow the radiologist

to focus in on features of particular interest. This feature would o�er a valuable additional tool

in the radiologist's armoury, using an animated movie display mode to facilitate improved detec-

tion of di�erences between paired mammograms, that may represent a tumour, and freezing the

display to examine the di�erences identi�ed in closer detail, thus facilitating improved detection

and discrimination. Of course, at this juncture, this claim is unsubstantiated and would require

further research with real mammograms and radiologists to investigate this.

It is clear that for a decorrelation strategy the inter image correlation is the primary factor in

determining the performance of an observer when attempting to detect a signal in paired noise

�elds, such as encountered in mammography, and this is clearly seen from the results of Experiment

2. Thus, Experiment 4 used registered mammogram pairs and aimed to demonstrate the e�ective-

ness of an animated display technique for the detection of a synthetic tumour in real mammogram

backgrounds. With registration improving the global correlation levels to a range between 0.65 and

0.97, with a mean correlation value of 0.84, it was expected that animated displays would facilitate

lower detection thresholds than those achieved using the mirror symmetric displays. The results

of Experiment 4, however, showed this not to be the case with no di�erence found in performance

levels for the two display modes. It was surmised that this may be an indication that the properties

of real mammograms di�ered from those of power law noise images, in some way, as yet unknown,

that rendered an animated display mode unsuitable. This, however, was considered unlikely, par-

ticularly considering the success seen with toggled displays (Hasegawa et al., 2008; Honda et al.,

2014; van Engeland et al., 2003), and a number of issues were also raised against the experimental

set up that may have contributed to the failure to see an e�ect with animated displays. Further

research was, therefore, carried out in Experiment 5, with all the known confounding variables

eradicated enabling a direct comparison of observer performance for the detection of a synthetic

signal embedded in real mammogram backgrounds and power law noise backgrounds.
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The aims of Experiment 5 were, therefore, to compare observer performance for the detection of

a Gaussian blob in paired images with either a power law noise background or a real mammogram

background using either mirror symmetric static displays or animated movie displays over a range

of correlation values to determine whether the observers are able to utilise the correlation present

between the images. The results were clear; as expected, observers were not able to use the

correlation between the images to improve their performance with the images presented side-

by-side, in a mirror symmetric static display with either power law noise backgrounds or real

mammogram backgrounds. For both background types, with static displays, varying the correlation

had no e�ect on observer performance.

The picture was very di�erent, however, when power law noise images were presented as an-

imated movie displays. Increasing the correlation between the images of a pair now enabled the

observers to signi�cantly improve their performance, replicating the results seen in Experiment 2.

The observers were utilising the correlation present between the images, using a similar strategy

to the ideal observer of decorrelation to reduce redundant information within the image pair and

enable easier detection of the signal. The introduction of real mammogram backgrounds, however,

was seen to negate the e�ect of animated movie displays and observers using movie displays with

real mammogram backgrounds were not able to use the correlation between the images to improve

their performance. As with the static displays, varying the correlation had no e�ect on observer

performance.

This was an intriguing �nding, prompting a search for the property associated with real mam-

mograms that caused the e�ect of animation to disappear and, with an awareness of the impor-

tance of the inter-image correlation for a decorrelation or di�erencing strategy, concentrating on

this property. It was theorised that the important correlation value was the correlation between

corresponding localised areas in the two mammograms of the pair, the size of which possibly re-

�ecting the visual angle subtended by the fovea. This investigation revealed that, when measuring

the local correlation between corresponding regions of the image pairs for decreasingly small win-

dows of the original images, power law noise images exhibited scale invariance, with a constant

correlation level as the window size decreased, whereas real mammogram pairs did not, exhibiting

a decreasing correlation level as the window size decreased. For real mammograms, using the mean

values for the set of images, a correlation value of 0.84 for the whole image (the global correlation)

decreased to approximately 0.2 when the window size was reduced to a size re�ecting the visual

angle subtended by the fovea. If the premise that the ability of human observers to decorrelate

between two images of a pair is limited by the visual range of the fovea, this would explain the fail-

ure of observers to use the correlation between images and the failure to observe an improvement
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in performance as correlation increased.

The results of Experiment 5 indicate that, for animated movie displays to be a viable alterna-

tive to mirror symmetric static displays in clinical mammography, it is necessary to identify, or

develop, a registration algorithm that emphasises the local correlation values and this should be

the focus of future research. A number of possible techniques that focus on regional or localised

registration have been researched (Hadjiiski et al., 2001; Sanjay-Gopal et al., 1998; Timp et al.,

2005), however, none of these techniques have been aimed towards the use of animated display

technology. Future research should, therefore, concentrate on the investigation and development

of registration algorithms that enhance the correlation levels of corresponding localised regions in

paired mammograms. It is unclear, at this stage, what measure of registration e�cacy would be

used; clearly, global Pearson correlation is not a suitable candidate, however, a number of other

possibilities exist such as mutual information, Euclidean distance measures or visual inspection

(Guo et al., 2006). Certainly, one measure of the e�ectiveness of a registration technique, could

re�ect the experiments used in this thesis, measuring the performance of human observers using

an animated display for the detection of a signal in paired noise backgrounds. Higher performance

levels would indicate better registration and other candidate measures could be compared to the

performance scores of the human observers to determine an appropriate measure. For some im-

ages, however, it may not be possible to resolve the problem through better registration. It may be

the case that even perfectly registered images will exhibit low correlation levels, both globally and

locally, due to di�erences resulting from circumstances such as breast tissue changing over time,

di�ering levels of compression within the scanner and variation in the angle of x-ray delivery.

9.0.1 Conclusion

It is clear that animated displays do enable the human observers to utilise the correlation be-

tween images and, as a result, improve their performance for the detection of signals in paired

noise backgrounds and it is equally clear that mirror symmetric displays, as traditionally used in

mammography, do not. Although this �nding is tempered by the subsequent �nding that, when

using real mammograms, the registration methods used in this thesis did not provide the localised

correlation levels necessary to exploit this powerful tool, this �nding, nevertheless, represents an

important opportunity to develop imaging techniques that could lead to improved cancer detection

and diagnosis and to improved outcomes for those a�ected by this disease.
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