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Abstract 
This thesis presents research that extends cirrrent knowledge in the area of upper-limb 

prosthesis design and control. A study of myoelectric signals (MES)'s using both NHS and 

other equipment has resulted in identification of the signal source and 

transmission/detection issues. A globally comprehensive and up to date survey of 

myoelectric research has revealed new and long-term research paths. 

This thesis challenges the old model in interpreting the M E S signals by providing and 

collecting evidence to suggest a new approach to future investigation. The historical 

description of a stochastic, non-deterministic M E S has been shown by this research to be 

incomplete. An expanded, more detailed physiological description of the M E S has been 

presented as an improved MES model in Chapter 7 and demonstrates that it is possible to 

separate the deterministic and the stochastic elements of the MES. An original extensive 

list of variables underlines the deterministic nature of the MES. 

This research has used an original controlled mapping technique for surface M E S ' s that 

have revealed unique spectral features for muscle actions. The feature selection and 

analysis and pattem recognition of the M E S has been of fundamental importance to the 

advancement of prosthesis functionality. Spectral analysis of the M E S along with 

exponential averaging has produced signal identification of potential high reliability and 

high repeatability 

A phenomenon, "the Tissue Filter Function" (TFF), has been considered, in past research, 

as an undesirable consequence of the passage through tissue, of the muscle-generated 

signal. This TFF shows itself as a frequency shift between at least two signals that are 

observed at a single electrode site and has shown itself, in this work, to be a previously 

unused identification feature. 

A n original simplified geometry model of the hand has been devised which greatly 

improves prosthesis dexterity while minimising the requirement for the many degrees of 

freedom of the human hand. 

A n original approach proposed is the use of 3 to 4 distinct very narrow band-pass channels 

in the frequency-domain, signal transient-region as detected by multiple site electrodes (4 

or more sites proposed). This data is then in a form suitable to be presented to a Neural 

Network (NN) pattem recognition tool. This research has shown that the probability is high 

that the cross coupling between a set of (4) siuface electrodes will detect these frequency-

shifted signals throughout the 3-dimensional medium of an amputee upper forearm. 

S.Roberts Page iii Table of Contents 



TABLE OF CONTENTS 
COPYRIGHT STATEMENT i 

TTTLE PAGE ii 

ABSTRACT iii 

T A B L E OF CONTENTS iv 

LIST OF ILLUSTRATIONS xii 

LIST OF TABLES xiv 

ACKNOWEDGEMENTS xv 

AUTHORS DECLARATION xvi 

CHAPTER 1: INTRODUCTION 

1.1. Why develop an Upper-Limb prosthesis? 1 

1.2. Aims and obj ectives of this Research proj ect 2 

1.3. Literatiu-e review: development of upper limb prostheses 3 

1.3.1. Early history of prosthetics 3 

1.3.2. History of prostheticsl900 to 1950: 3 

1.3.3. Technical development 1950 to 1960 4 

1.3.4. Technical development 1960 to 1970 5 

1.3.5. Declining rate of improvement and stasis; Post 1970 to date 7 

1.3.6. Control-signal sources and limitations 10 

1. ) Piezoelectric 10 

2. ) Force sensitive resistors (FSR) 11 

3. ) Muscle sounds 11 

4. ) Implantable signal sensors 12 

1.4. Designing for the amputee: the engineering issues 13 

1.4.1. Kinematics 13 

1.4.2. Reaching action 15 

S. Roberts Page iv Table of Contents 



1.4.3. Current state of upper-limb prosthetics technology 16 

1.4.4. Actuator/drive methods 18 

1.4.5. A n artificial muscle 19 

1.5 Basic control methods: past and present 19 

1.5.1. The "2-site/2-state" 19 

1.5.2. The "one-site, 3-state" 20 

1.5.3. The "1-site, 2 state" 20 

1.5.4. Proportional control 20 

1.5.5. Hierarchical control 20 

1.5.6. The Southampton Hand 21 

1.6 Current research directions/ pattem recognition 22 

1.6.1. Early work 22 

1.6.2. M E S features 26 

1.6.3. Neural networks (NN) and the M E S 27 

1.7 Impediments to progress: political and technical 32 

1.8 A case for myoelectric prostheses 35 

1.8.1 A n electrical prosthesis 35 

1.9 Summary of Chapter 1 37 

1.10 Layout of thesis 40 

1.10.1 Research methodology 42 

1.10.2 Original work contribution 42 

1.11 References 43 

Chapter 2. Myoelectric signals 

2.1. Hand actions 49 

2.2. Forearm Muscle Anatomy and Physiology 51 

2.2.1. Anterior Flexors 53 

2.2.2. Posterior Extensors 55 

2.3. Myoelectric signal (MES) generation 63 

S.Roberts Page v Table of Contents 



2.4. Myoelectric signal (MES) investigation 67 

2.5. Muscle fibre types 69 

2.6. Electrode signal detection method 70 

2.6.1. Electrode materials 70 

2.6.2. Interfaces in the signal path 71 

2.6.3. Electrolytes 73 

2.6.4. Noise problems: Corruption of the E M G by noise 74 

2.6.5. M E S signal amplifier selecfion 76 

2.6.5.1. C M R R 77 

2.6.6. Signal reliability 78 

2.6.7. Bipolar filter fiinction 79 

2.7. Analysing the detected M E S 81 

2.7.1. Time domain analysis (TDA) 81 

2.7.2. Frequency domain analysis (FDA) 81 

2.7.3. Time-Frequency analysis (T-FA) 81 

2.7.4. Modelling the M U A P T 83 

2.7.5. Mathematical analysis 84 

2.8. What can we do with the M E S after detection? 87 

2.8.1. Recognition of signals / software dependency 87 

2.8.2. Software methods for user acceptability 88 

2.8.3. Time constraints for user acceptability 88 

2.8.4. The 200 ms. M E S generation period 88 

2.8.5. The 300ms. Capture period 89 

2.8.6. The 500ms. Response limit 89 

2.9. Summary 89 

2.10. References 93 

S.Roberts Page vi Table of Contents 



Chapter 3; Experimental Method 

3.1. Methods used to examine the M E S 95 

3.2. Time Domain Analysis of M E S 96 

3.3. Frequency Domain Analysis of M E S 96 

3.4. Selecting a Suitable M E S source 97 

3.5. Equipment used to detect the M E S 97 

3.6. The Hewlett Packard (HP) 3566A Spectrum Analyser 98 

3.7. Using the Digitimer Ltd. Neurolog N L l 8 0 Isolator Amplifier 

and NL125 Filter 99 

3.8. The Vickers Medical: Medilec Saphire 99 

3.9. Establishing the fi-equency range of the M E S as measured by 

the \Test Equipment 101 

3.10. The Liberty Mutual M Y O l 15 Electrodes 102 

3.11. Bandwidth comparison between the Liberty, the Neurolog and the Medilec 

103 

3.12. Does the equipment used show the true M E S Frequency Range 109 

3.13. Summary I l l 

3.14. References 114 

Chapter 4; Experimental Determination of the Relationship 

between Muscle action and Frequency 

4.1. Test Procedures used to search for a site with widely 

separated frequency characteristic 115 

4.2. List of 20 different control actions 116 

4.3. Active (isometric) grasp loading versus 

Passive (isotonic) movement Test results 117 

4.4. Results of testing other males at the same site 118 

4.5. Results and the need for a Theoretical Explanation: 

Implications for Universality 122 

4.6. Summary 126 

4.7. References 127 S. Roberts Page vii Table of Contents 

file:///Test


Chapter 5: MES Site-Mapping 

5.1. Frequency response for muscle/site actions 128 

5.2. Selection of core Muscle actions use for mapping 129 

5.2.1. List of 20 different control actions 129 

5.2.2. Core of actions as applied to Geometry Model 129 

5.3. Method of Mapping: Constant technique 130 

5.4. Reference site selection 131 

5.5. Site reference hst 132 

5.6. Determination of Candidates 135 

5.7. Volunteers used in the M E S research 136 

5.8. Summary 136 

Chapter 6; Analyses of Results 

6.1. Muscle actions versus frequency 142 

6.1.1. Test results for sites 142 

6.2. Site Mapping 146 

6.2.1. M E S Zones: Features, Overlap, Significance 146 

6.3. Gender Differences 147 

6.3.1. Male-Male 147 

6.3.2. Female-Female 147 

6.3.3. Male-Female 148 

6.4. Techniques for Bandwidth and Central-Frequency Representation 150 

6.4.1. Feature Assigmnent 149 

6.5. Using the Second Moment of Area as a Unique Combining Method 149 

6.6. Using second moment of area to represent bandwidth shift along X-axis.. 150 

6.7. Alternative Method: Assigning a code to each feature 153 

6.8. The relationship between the separated individual finger 

M E S actions and that of two or more combined M E S finger actions 154 

6.9. Decomposition of the M E S 158 

S. Roberts Page viii Table of Contents 



6.10. Standard Deviation analysis to determine 'best' location for an electrode for 
single and multielectrode configurations 187 

6.11. Deterministic versus Stochastic content 190 

6.12. Summary 190 

6.13. References 193 

Chapter 7 Discussion 

7.1. Deterministic or Stochastic Content 194 

7.2. An expanded model of the surface M E S 197 

7.3. A n extended physiological description of the M E S 198 

7.3.1. Maximum Voluntary Contraction (MVC) 202 

7.3.2. Fused-Tetanic contractions 205 

7.3.3. Fatigue Effect 205 

7.4. Factors contributing to variations in the frequency content of the M E S . . . .207 

7.4.1. Temperature of muscle fibres ,... .207 

7.4.2. Muscle interactivity 207 

7.4.3. Muscles at rest 208 

7.4.4. Muscle stretch receptors 208 

7.4.5. Training of the subject 209 

7.4.6. Conduction velocity 209 

7.5. Factors limiting the frequency content of the M E S 211 

7.5.1. Synaptic delay 211 

7.5.2. Refractory period 212 

7.5.3. Nodal regeneration 212 

7.5.4. Action potentials 212 

7.5.5. Filtering (Electiode, Tissue (TFF), C M R ) 212 

7.6. Relationship between the fibre type composition of a muscle and the value of the 
median and mean frequencies 213 

7.7. In brief 213 

7.8. What is still conjecture/unexplained? 214 

S. Roberts Page ix Table of Contents 



7.8.1. Fibre contributions to the M E S 214 

7.8.2. Training/recruitment strategy 215 

7.8.3. Gender differences 217 

7.8.4. Mapping 217 

7.9. Applications of results 218 

7.9.1. Pattem Recognition for control purposes 218 

7.9.2. Gender Differences 222 

7.9.3. Testing using standard Neural Networks 222 

7.9.4. Digital Filter methods 222 

7.9.5. Control algorithm 223 

7.9.6. Design of controller software 224 

7.10. Further research needed 225 

7.11. hnplication for other Biosignals 228 

7.12. References 228 

Chapter 8 Conclusions 

8.1. Summary 230 

8.2. Contributions to Knowledge 233 

8.3. Research Links 237 

APPENDICES 

List of abbreviations and definitions 238 

Anatomical positions/names 240 

Anatomical positions (pictures) 241 

Thiunb and finger positions for multi-fimctional prosthesis 242 

Muscles of forearm; anterior view 243 

Section of forearm 244 

S.Roberts Page x Table of Contents 



HP3566A Spectrum Analyser- averaging types 245 

Steeper prosthesis (photo) 246 

Otto Bock prosthesis (photo) 247 

Liberty Mutual M Y O l 15 electrodes (data/photos) 248 

BIBLIOGRAPHY 250-279 

PUBLICATIONS 280 

S.Roberts, P.Nurse, R.S. Bimis, & P.Robinson, "Myoelectric Prosthetic Upper-Limbs, 
Past and Present: a case for ftirther development." Medimec Conference 1995,Bristol, 6-9 
September 1995, pp 181-188, AMARC, University of Bristol. 280-289 

Radix, C.L., Roberts, S., Robinson, P., Nurse, P., Grosch, P., &. Bums, R.S., 'Tele-
prosthetic Systems for Paraplegics.' Proceedings of the International Workshop on Advanced 
Robotics & Intelligent Machines, University of Salford, Paper 7, April 1996. 

. ISSN 1363-2698 290-296 

P.Robinson, P.Nurse, S.Roberts, R. Richter, G. Bugmann, & R.S. Bums, "Single 
Site Myoelectric Control of a Complex Robot Hand", Proceedings of the International 
Workshop on Advanced Robots and Intelligent Machines", Paper No. 8, University of 

Salford, U K , March 1997 297-302 

Paul Robinson, Peter Nurse, Steven Roberts, Michel Barnes & Matthew Knight, 
'Teleoperation using Myoelectric Control," Proceedings of Intemational Federation of 
Robotics, edited by TEE, pp.66-70, Birmingham, April, 1998. 303-308 

MAPPING D I A G R A M S 309-357 

S. Roberts Page xi Table of Contents 



List of Illustrations 

FIGURE PAGE NO. 

1.1 Early examples of powered hands 3 
1.2 Early examples of powered hands 3 
1.3 The Vaduz Hand 5 
1.4 Stanford University/Jet Propulsion Lab Hand (1985) 8 
1.5 Utah University/MIT Hand (1986) 8 
1.6 Belgrade University/ USC Tomovic / Bekey Hand (1990) 9 
1.7 Ballistic response with trajectory-adjustment stages 14 
1.8 Natural hand action of thumb moving towards index finger 15 
1.9 Standard pincer grip and worm drive of a commercial prosthesis 16 
1.10 State diagram of the SAMS control scheme for the M A R C O S Hand 21 
1.11 The Southampton Hand 22 
2.1 Basic hand movement geometry as an operational 

and construction principle 49 
2.2 Simplified range of grasp actions for a prosthesis 50 
2.3 Flexor digitorum superficialis 51 
2.4 Flexor digitorum profimdus 51 
2.5 The finger tendon pulleys 58 
2.6 Extensor Muscles 59 
2.7 Flexor muscl es 60 
2.8 Muscles of the forearm involved in wrist, hand and digit action 61 
2.9 Muscles of the forearm involved in wrist, hand and digit action 62 
2.10 Twitch force response 65 
2.11 Muscle fibre electrical activity 65 
2.12 Neuromuscular junction (motor endplate) 66 
2.13 Motor imit action potential 67 
2.14 M U A P T as pulses with InterPulse Intervals (IPF s) 67 
2.15 M U A P T Train summation 68 
2.16 M E S construction fi-om M U A P trains 68 
2.17 Filter effects from Signal source to Observed M E S 71 
2.18 Frequency and Gain losses in M E S due to Tissue Filter Function (TFF) 72 
2.19 Amplifier / electrodes filter function 73 
2.20 Sound Spectrum produced by a whale over a 1.5 second duration 82 
2.21 DeLuca's model of the M E S as a summation of M U A P T ' s as detected by the 

electrode 83 
2.22 Area under the Rectified Motor Unit Action Potential (MUAP) 85 
2.23 Area under the square of a Motor Unit Action Potential (MUAP) 85 
2.24 Parameters of the summed M U A P T ' s as seen as Mean Rectified and R M S 

expressions and their relationship to their generated physiological origin 86 
3.1 M E S time domain recording of a flexion of the wrist taken 

over a period of 800 ms 95 
3.2 M E S time domain response of a flexion of the ring finger taken 

over a period of 150 ms 95 
3.3 Test equipment noise floor levels 101 
3.4 M Y O 115 amplifier test plot 102 
3.5 a) bandwidth test for Liberty dry versus Nicolet wet 105 

S. Roberts Page xii Table of Contents 



3.5 b) and c) bandwidth test for Liberty dry versus Nicolet wet 106 
3.5 d) and e) bandwidth test for Liberty dry versus Nicolet wet 107 
3.5 f) and g) bandwidth test for Liberty dry versus Nicolet wet 108 
3.6 Average M E S range for both wrist and ring finger flexion 109 
3.7 Medelec bandwidth for ring finger flexion 110 
3.8 Medelec bandwidth for wrist flexion 110 
4.1 Test for wrist flexion on 4 male volunteers 120 
4.2 Test for ring finger flexion on 4 male volunteers 121 
4.3 (a),(b),(c)'Direct line' signal pathways through the forearm tissue 

en route to the M Y O l 15 detector 125 
5.1 Photos of the author's arm with site markings 139 
5.2 Arm grid pattem showing View 1, View 2, View 3, and View 4 140 
5.3 Examples of arm mapping for a single muscle action 141 
6.1a Posterior deep view of arm muscles plus transparency 143 
6. lb Posterior superficial view of arm muscles plus transparency 143 
6.2a Middle finger extension map plus transparency 144 
6.2b Thumb extension map plus transparency 145 
6.3 Thumb extension spectral range for all 4 volunteers 149 
6.4 Second moment of area 151 
6.5 Bandwidth shapes 153 
6.6a Male 1: hand fully open map of View 1 155 
6.6b Male 1: cumulative results map of View 1 155 
6.6c Male 1: wrist extension map of View 1 156 
6.7 Male 1: figures 7,3,5,9,11, View 1, extension 157 
6.8 Male 1: individual actions versus combined. View 1 159 
6.9 Male 1: figures 7,3,5,9,11, View 1, flexion 160 
6.10 Male 1: individual actions versus combined. View 2 162 
6.12 Female 1: individual actions versus combined. View 1 163 
6.13 Female 1: figures 7,3,5,9,11, extension. View 1 164 
6.14 Female 1: individual actions versus combined. View 2 165 
6.15 Female 1: figures 7,3,5,9,11, extension. View 2 166 
6.16 Female 1: individual actions versus combined. View 1 167 
6.17 Female 1: figures 4,6,8,10,12, flexion. View 1, 168 
6.18 Female 1: individual actions versus combined. View 2 169 
6.19 Female 1: figures 4,6,8,10,12, flexion. View 2 170 
6.20 Male 2: individual actions versus combined. View 1 171 
6.21 Male 2: figures 7,3,5,9,11, extension. View 1, 172 
6.22 Male 2: individual actions versus combined. View 2 173 
6.23 Male 2: figures 7,3,5,9,11, extension. View 2, 174 
6.24 Male 2: individual actions versus combined. View 1 175 
6.25 Male 2: figures 4,6,8,10,12, flexion. View 1, 176 
6.26 Male 2: individual actions versus combined. View 2 177 
6.27 Male 2: figures 4,6,8,10,12, flexion. View 2, 178 
6.28 Female 2: individual actions versus combined. View 1 179 
6.29 Female 2: figures 7,3,5,9,11, extension. View 1, 170 
6.30 Female 2: individual actions versus combined. View 2 181 
6.31 Female 2: figures 7,3,5,9,11, extension. View 2, 182 
6.32 Female 2: individual actions versus combined. View 1 183 
6.33 Female 2; figures 4,6,8,10,12, flexion. View 1, 184 
6.34 Female 2: individual actions versus combined. View 2 185 
S. Roberts Page xiii Table of Contents 



6.35 Female 2: figures 4,6,8,10,12, flexion. View 2 186 
6.36 Standard Deviation values for Female 1 and male 2, view 1 and view 2 188 
6.37 Standard Deviation values for Male 1 and Female 2, view 1 and view 2 189 
7.1 Motor neuron and muscle fibre diameter comparison 194 
7.2 Typical muscle and nerve fibre action potential values 196 
7.3 Fibre-type recruitment/decruitment flowchart 201 
7.4 Maximum voluntary contraction (MVC) for small and large muscles 204 
7.5 Block diagram for two electrode channel Neural Network controller 224 

List of Tables 

T A B L E P A G E NO. 
5.1 Spectrum result from muscle action at a specific site (mixed) 132 
5.2 Spectrum result from muscle action at a specific site (ordered) 134 
6.1 'Thumb extension' M E S comparison of all 4 volimteers 148 
7.1 Frequency bins assigned Boolean representation for muscle actions 220 

S. Roberts Page xiv Table of Contents 



ACKNOWLEDGEMENTS 

Thanks to Supervisors Professor Roland Bums, Paul Robinson and Peter Nurse at the 
University of Plymouth for their encouragement, availability and assistance in finding 

equipment. 
Thanks to John Macaskill of Derriford Disablement Services Centre for his guidance in the 

world of prosthetics. 
and to Sunil Wilmalaratna for his neurological advice and use of the Derriford Hospital 

myographic equipment. 
Thanks to Neurolog and Medelec for the use of their equipment. 

Thanks to the University of Plymouth for funding this research project. 
Thanks also to Gerry and B i l l for their encouragement. 

S. Roberts Page XV Table of Contents 



Author's Declaration 

At no time during the registration for the degree of Doctor of Philosophy has the author been 

registered for any other University award. 

The original work presented in this thesis is solely that of the author 

This study was fmanced by the University of Plymouth 
Relevant scientific seminars and conferences were attended and others at which a paper was 

submitted. Contribution was made to other papers. 

Publications: 
S.Roberts, P.Nurse, R.S. Bums, & P.Robinson, Myoelectric Prosthetic Upper-Limbs, Past and 

Present: a case for fiirther development." Medimec Conference 1995,Bristol,6-9 September 1995, 
pp 181-188, AMARC, University of Bristol 

P.Robinson, P.Nurse, S.Roberts, R. Richter, G. Bugmann, & R.S. Bums, "Single Site MyoelecUic 
Control of a Complex Robot Hand", Proceedings of the Intemational Workshop on Advanced 

Robots and IntelUgent Machines", Paper No. 8, University of Salford, UK, March 1997. 

Radbc, C.L., Roberts, S., Robinson, P., Nurse, P., Grosch, P., & Bums, R.S., 'Tele-prosthetic 
Systems for Paraplegics', Proceedings of the Intemational Workshop on Advanced Robotics & 
hitelligent Machines, University of Salford, Paper 7, April 1996 . ISSN 1363-2698 

Paul Robinson, Peter Nurse, Steven Roberts, Michel Bames & Matthew Knight, "Teleoperation 
using Myoelectric Control", Proceedings of Intemational Federation of Robotics, edited by lEE, 

pp.66-70, Birmingham, April, 1998. 

Presentation and conferences attended 
Conttol Tech.95. Conttol Systems symposium, Liveipool, U.K., 11*-12* May 1995 

Intemational Conference on Rehabilitation Robotics, Bath 1997. 

Signed 

Date-

S. Roberts Page xvi Table of Contents 



Chapter 1 

Introduction 

Definition- Myoelectric: firom Myo (Latin) as in muscle: The electrical potential, as 

detected on the skin surface, generated by underlying muscle activity 

1.1 Why Develop a Myoelectric Upper-Limb Prosthesis? 

The sudden loss of an upper-limb is certainly a traumatic event. It is only with the loss of 

the ability to manipulate tools do we realise how the upper limbs allow us to link so readily 

with our environment. For a many the loss is not only in their livelihood, but also in their 

relationship to their world. To recormect with the enviromnent, using an artificial 

(prosthetic) limb that captures some of the former ability to manipulate, is a reasonable 

expectation for an amputee. 

Need for Research 

Numerous designs of an artificial upper limb have been developed by the academic 

community. None in the past 20 years, except the 'Southampton Hand', were designed to 

be used directly as a prosthesis, but were targeted at a role as a 'robotic manipulator'. 

Many have manipulative merit and embody potentially useful developments for the 

prosthetic community. The robotic designs still suffer an inability to transform directly into 

a device that could be worn by an actual amputee. Even i f the robotic designs were adapted 

to be worn as a prosthetic, there is the very fundamental issue of establishing a control 

strategy guided by the amputee that could operate a multifunctional prosthesis. The limited 

repertoire of control signals has essentially determined the pace of development in upper-

limb prosthetics. 

The myoelectric signal (MES) taken from the skin surface has been the preferred source of 

the control signals, but the information content of the M E S has not been fully exfracted. A 
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significant improvement in user-generated control actions is clearly needed. Such 

improvements will also enhance control in the field of robotic and teleprosthetic 

mechanisms. 

Sadly, as will be seen by the overview (in section 1.3.5), only the most primitive of 

fimctions are currently available with commercial prostheses. 

1.2 Aim and Objectives of this Research Project 

The majority of upper limb amputations are below elbow. The residual limb below the 

elbow retains considerable muscle mass that is capable of user generated, surface-

detectable. Myoelectric Signals (MES) that are representative of the intended muscle 

action. The aim of this research study has been to investigate, in depth, the nature of these 

M E S and extract more "intelligence" from the signals than is currently used in commercial 

prostheses. The objectives of the research are: 

• l)-to investigate the information content of a M E S . 

• 2)-to study the nature of the Tissue Filter Function (TFF) 

• 3)-to map and identify optimum upper limb (forearm) myoelectric sites 

• 4)-to analyse the mapped data for fi-equency content and other unique identifiers 

• 5)-to reconmiend the practical application of M E S analysis for control purposes 

• 6)-to provide a greater range of user-generated control signals. 

The long-term objective of the programme is the development of a more functional 

prosthetic hand with increased control action reliability. 

This remainder of this chapter will describe the historical development of upper limb 

prosthetic technology and the current "state" of the art. The issues affecting the 

development of an upper-limb prosthesis will be introduced and placed in an engineering, 

and socio-individual, and business-economic context. It is the intention for this context to 

illuminate the real and imagined barriers to progress. 
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1.3 Literature Review: Development of Upper Limb Prostheses 

1.3.1 Early History of Prosthetics 

Up until the 1970's, for an upper-limb amputee, the only serious option for a 

prosthetic hand/arm was that of a cable-operated device. In the past 25 years, 

development of the myoelectric arm/hand has been drawn inexorably along by 

developments in materials, robotics and semiconductor technology. The commercially 

available prosthesis has been limited to a matter of preference between cable-operated 

and myoelectric. 

As far back as 200 B.C. the historical record [1] tells us of an iron hand fitted to a 

Roman General. Undoubtedly one-offs of this type were custom built as hooks, claws, 

etc. throughout the following centuries. In 1509 an Iron Hand with gears for fingers 

and thumb was produced for the German knight Goetz Von Berlichingen. The surgeon 

Ambroise Pare (1510-1590) designed and built many prostheses. These devices used 

ratchets, levers, springs and gears. 

1.3.2 History of Prosthetics-1900 to 1950: 

Abb. 178 und 179 PreBluft Hand Abb. 180 und 181 Elektromagnetische Hand 
Figure 1.1 Early compressed gas powered Figure 1.2 Early electric hand component, 
hand. Perhaps the first powered prosthesis Perhaps the first electric hand mechanism. 
Component. 
From Ersatzglieder und Arbeitshilfen (Limb substitutes and Work Aids 1919). 
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The body-powered prosthetic hmb emerged in 1912 following the development of the 

'split-hook' by D.W. Dorrance [2] in San Jose, California and its control by a 

body/shoulder-powered harness. It was in 1915 in Germany {see Figure 1.1) that the 

first powered prosthetic hand (though pneumatic in operation) was to appear [3] 

Probably the first prosthetic hand powered by electricity (electromagnet) was in 

Germany in 1919. {see Figurel.2). Some of the earlier work used compressed gas 

(C02) power as the energy supply. These [9] were the Heidelburg Arm, Germany, 

(1948-72), IBM, (impractical), U.S., (1945) Hendon Arm, England (1963-69). It 

appears that the first myoelectric prosthetic hand was developed by a German 

engineer/physicist, R. Reiter [4,5] in the early 1940's with his work published in 1948. 

This vacuum tube amplified hand [6] was operated by electromagnet (Solenoid). From 

1946-1949, I B M (Alderson) in America worked on a six degree of freedom electric 

arm. Apart from weight, it suffered from a lack of control signal sources [9]. In 1948, 

work began on a pneumatic (C02) arm-prosthesis. (O. Hafiier) at Heidelberg Univ., 

Germany and continued in 1955 by E. Marquardt. In the same year a pneumatic, arm-

prosthesis was fitted at the University [7,8,9]. The idea of myoelectric control of a 

prosthetic hand surfaced throughout the 1940's and 1950's. In the U.S. (North Western 

University, Chicago) it was WW2 and the US military brought about the "Committee 

on Prosthetics Research and Developmenf (CPRD), which, under the National 

Research Council, drove much of the work in the U.S. over the following years. 

1.3.3 Technical Development -1950 to 1960 

The Germans, with their long historical record in prosthetics, produced the next significant 

development when E . Wilms and Kegel (following on from work during WW2) [10] in 

1951 produced the 'Vaduz Hand' {see Fig. 1.3) at Vaduz in Liechtenstein. The Vaduz hand 

[3] had remarkable similarities to the Otto Bock hands of today. The Vaduz hand used an 
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Figure 1.3 Vaduz (French) Hand. From 
Bulletin of Prosthetic Research, 1966. 

automatic gearing mechanism, which 

gave fast-closing/low-gripping-force and 

slow-closing/high-gripping-force with the 

user arm-muscle expansion driving a 

switch servomechanism [8]. The Vaduz 

j j i H ^ hand, sometimes known as the French 

hand, was available throughout the mid 

1960's[3,n] 

In 1955 Battye, Nightingale, and Whillis 

at Guy's Hospital, London produced one 

of the first myoelectrically (threshold) 

controlled prosthesis with one-degree of 

freedom [3] 

In London, England, in 1957, A. Bottomley, K. Wilson, A. Nighfingale [4,12,6] were 

developing myoelectric controls. Development of the germanium transistor and its use, by 

a Russian Engineer Kobrinski, at the Central Research Institute in Moscow, in the period 

1957-1960 [13], resulted in the first portable myoelectric hand prosthesis for clinical use. 

By 1960, the Russian Hand was being marketed in Canada and the U.K. [14]. 

1.3.4 Technical Development-1960 to 1970 

Bottomley and Cowell, in England (1964) [15], introduced proportional control of velocity 

and force in a split-hook device. In 1965 A. Bottomley, K. Wilson, A. Nightingale 

produced "The English Hand" using proportional control. 

In Yugoslavia, (1961), R. Tomovic was working on an adaptive hand and in 1968 

produced "The Belgrade Hand" [16,17]. The hand used slip detectors (a rotating ball) 
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located in the fingertips to indicate movement of an object (see Chapter 1). Though not 

clinically applied it was to be influential in the following years. 

R.N. Scott, one of the most experienced in the field of myoelectric control and active since 

1960 at the University of New Brunswick in Canada, produced the first North American 

myoelectric control mechanism. Scott has investigated sensory feedback to the amputee for 

control pmposes and work there is continuing on new and promising approaches to control 

methods using pattem recognition [4,18]. 

By 1965, a multi-fimction adaptive hand had evolved through researchers in Sweden. It 

was known later as the Sven Hand, Irom which fiirther Swedish work has evolved. The 

S V E N hand was a 4-degree of fi-eedom hand used in research and was offered in limited 

commercial form in Sweden in the early 1970's as the ES hand (Ee&Holmgren and 

Systemteknik). 

The Systemteknik Hand [9,15] grew out of the S V E N group and was the only small (less 

than lyr. old child) size model for many years. Production was later transferred to the 

H. Steeper Co. U.K. 

Otto Bock, the prosthetics manufacturer, was founded in 1919 in Berlin, Germany, and 

worked with pneiunatic hands in the early 1960's. From 1963 to 1965, Otto Bock 

(Orthopaedic Industries) collaborated with Viennatone [3], (Austrian hearing-aid company 

with electronics expertise [3,16]) and an Austrian gentieman Zeeman (inspired by his 

studies of the Russian hand in Moscow). Together they produced the "Viennatone Hand." 

This was the first "Westem" commercial hand. By 1965, the Otto Bock Orthopaedic 

Company had produced a commercially available, one-degree-of-fi-eedom, 

electromechanical, hand/arm, prosthesis (using the thumb moving in opposition to the 

index and middle fingers [3,8]). This is still the same operational action as found on all 

new prostheses by Otto Bock and other manufacturers. 
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The "Vieimatone hand" miderwent another incarnation through the efforts of the U.S. 

Veterans Administration Prosthetics Centre (VAPC) and was subsequently marketed in the 

U.S. by Fidelity for some years. 

At the (EMAIL) Centre, near Budrio, Italy, Professor Schmidl developed a driven-lead 

screw-and-nut operated hand prosthesis that provided a locking grasp. 

D. Childress at Northwestern University in Chicago in 1968 used the Vieimatone hand 

with his own myoelectric controller design to produce one of the first-ever self-contained, 

and self-suspended, below-elbow prostheses [3]. 

In England in 1966, J. Collins at Flugh Steeper Ltd. of London designed a simple adaptive 

prosthetic hand [19]. 

The Waseda hand, started in 1964 under Prof Ishiro Kato in Japan, followed on from work 

by Barrachino of France on a multi-fingered adaptive hand [8,9]. Their work resulted in the 

WTME hand in 1978. The hand used pressure sensors attached to the fingers that fed back 

the reaction force to amputees by electrocutaneous stimulation. This hand was made 

commercially available by the Imasen Company, Nagoya, Japan (Note: commercial 

information on this hand has been unavailable and suggests low acceptance within the 

prosthetics community). 

The human hand has more than 27 degrees of freedom (103, p354, 402). Multi-fingered 

"hands" with multiple degrees of freedom of movement became a focus of many research 

groups since the 1960's. The distinction between robotic manipulators and prosthetic hands 

became blurred as researchers tried to anthropomorphise these robotic devices. 

1.3.5 Declining Rate of Improvement and Stasis: Post 1970 to date 

By 1967 it had became possible to buy a powered prosthesis [4,20] but it was not until 

1980 that myoelectric prostheses became a clinical alternative. Steeper and Systemteknik 

collaborated for a few years before Steeper began production of its own product in the 

1980's [21]. Variety Village in Ontario, Canada, following work with Systemteknik, 
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introduced a new 

lightweight, children's 

hand [21]. Figure 1.4 

shows the experimental 

Stanford University/ JPL 

(Jet Propulsion Lab) hand 

(1985, Salisbury) [20], a 

3-fingered (each of 3 

degrees of freedom) hand 

operated by motor and 

cables. Figure 1.5 shows 

the Utah University/MIT 

(Mass. Institute of 

Technology) experimental, 

5-fingered hand, (1986, 

Jacobsen, Iversen, Knuti, 

Johnson) [22,23,24,25]. 

Figure 1.6 shows the 

Belgrade Univ. /USC Hand 

(University of Southern 

California) (Tomovic, 

Bekey, 1990) 

[16,26,27,28,29,30]. This 

was a five fingered device, 

with the fingers each 

Figure 1.4 Stanford University/ Jet Propulsion Lab hand 
(1985). 
From "Robot hands and the Mechanics of manipulation". 

la--'--".-

Figure 1.5 Utah University/MIT Hand. From 
'Design of the Utah University/MIT Dextrous Hand' 
Proceedings of the IEEE Int. Conf Rob. and Autom. 
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exhibiting a single 'curving' degree-of-freedom and the thumb with 2 degrees-of-freedom. 

Of these three hands, none is suitable for a prosthetic hand and have really been designed 

as end-effectors for robot/anthropomorphic arms. Considerable control cable, actuator 

mechanisms, electronics and computer software control are required to operate these end-

effectors. 

Figure 1.6 Belgrade University / USC Tomovic/ Bekey hand (1990). 
From "Dextrous Robot Hands",by Venkataram and Iberall, Springer-Verlag, (1990). 
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1.3.6 Control-Signal Sources and Limitations 

Following an amputation the amputee stump will have a residual mass of muscle that can 

be activated and made to cause a measurable movement of the skin surface. Just as the 

M E S is a "downstream response" of the user intended activity, so is the movement of the 

muscle and skin surface. 

This physical movement of the forearm stump surface produced by muscle movements can 

be measured and correlated to intended muscle actions using various movement detection 

sensors. Strain gauges, piezo materials, force-sensitive resistors, or Hall-effect movement 

detectors have been considered. These differing methods can be used singly, or in 

combination, to positively identify such signals. 

1.) Piezoelectric 

• The piezoelectric generator is a method that shows promise. In experimental work, at 

the University of Plymouth, small piezo sensors have been shown to be quite effective 

in producing a strong signal, in response to a muscle action that moves the skin surface. 

A movement sensor that has a small point/surface contact area of less than 10 mm^ is 

however more sensitive to the accuracy of placement position than is the M E S detector. 

This is due to the focus area of physical movement being smaller than the more diffuse 

M E S signal that propagates across a wider surface before fading. This may limit its 

practical implementation. Other limiting factors for the piezo are: 

• Vibration disturbances can induce jelly-like movement of the flesh/muscle and an 

unintended output response from the piezo sensors. This is a major problem. 

• The difficulty is considerable in moimting these sensors, keeping in mind the need for a 

fixed reference point/mounting position from which relative movements can be 

established. 
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As a consequence of investigations at the University of Plymouth into piezo sensors, an 

approach using a piezo material that can "mould" itself around a stump (like a flexible 

thick membrane/skin) was conceptualised to address the problems encountered. The 

surface deflection signals would be divided into a grid pattem that could be fed back as a 

large array of signals that can subsequently be processed for pattem recognition. 

2. ) Force Sensitive Resistors (FSR) 

As in the piezo material, the FSR is a candidate for detecting the surface movement, i f it is 

presented as a moulded surface around the muscle stmnp. One of the problems with FSR is 

their non-linear response and hysteresis tendency. To utilise the FSR signal with such 

limitations should be weighed against the experience of users and research. This suggests a 

preference for wide-band, discrete, control actions. 

3. ) Muscle Sounds 

Muscles have been shown to produce sounds [31,32,33,34] at the resonant frequency of the 

individual muscle. These sounds are in the 5 Hz to 250 Hz range and can be detected by an 

ordinary acoustic microphone. The peak energy/dominant fi-equency is found to be about 

25 Hz., with power decreasing as frequency increases (known as "pink noise", or "1/f 

noise," or "flicker noise") in which the noise has equal power per decade of frequency). 

Fast-twitch muscle fibres respond in about 40 ms. (or a l/25th of a second), due to the 

regeneration rate of the ATP (AdenosineTriphosphate) controlling the contraction of 

muscle. The 25 Hz vibration is likely to be along the long axis of the muscle. In all 

likelihood the muscle sound could be used as a discriminating source for prosthetic control. 

The problem, with muscle sounds, is they do not exist in isolation but are generated and 

exist within a sound-filled environment. The dominant 25 Hz peak sensitivity would be too 

often recreated by, and inseparable from, our environment. Differential amplification using 

two microphones as inputs (signals picked up simultaneously will be cancelled/ignored) 

could reduce exfraneous sound influence. Directional sensitivity and a clever algorithm 
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need to be developed before muscle sounds can be reliably utilised as a prosthetic control 

source [35] 

4. ) Implantable Signal Sensors 

Implanting of detection sensors for muscle, nerve, and sound-derived signal sources has a 

strong attraction for control of prostheses. In principle, the nearer one gets with a sensor to 

the source of the signal, the less signal information is lost. This is particularly true with 

myoelectric signals (MES) and Nerve signals. The nerve is of course the source of 

stimulation for a particular muscle or group of muscles. There are both biological and 

technical reasons [36,37] for the lack of progress along this front. These are: 

• The problem of invasive surgery: 

Patients may not be amenable to surgery. Surface mounted detection methods, of 

course, require no surgical procedures. 

• The problem of implant-reaction: 

The material used must be non-reactive with tissue and minimal in volume 

• The problem of powering the implant: 

1.) Non-inductive implants require power and signal lines that pass through the 

skin. These entry points can be a constant source of irritation /infection 

2.) Inductive implants draw their power supply and fransfer data by telemetry. The 

transmission requires inductive coils and associated circuitry on both sides of the skin. 

Efficient coupling to capture the energy is essential. In addition to the implant 

interference-iitmiunity requirement, interference with other electronic equipment (under 

the new E E C noise emissions regulations) could prove to be a problem. 

There are delicate micro-surgical requirements at the site of the muscle connections. The 

problem of a reliable, non-destructive, continuous attachment of the sensor to the actual 

site for signal extraction is compounded by the difficulty to restrain the movement of the 
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sensor mass and attachments. 

1.4 Designing for the Amputee: The Engineering Issues 

For the amputee the issues to be considered in developing an acceptable myoelectric 

prosthesis are broadly: 

• Weight, 

• Socket fit and comfort 

• Breathe ability of socket to skin interface 

• Load distribution of prosthesis to amputee stump 

• User-Signal-Interpretation (natural VS substituted) 

• Dexterity 

• Cost, 

• Cosmesis (appearance) [4,38]. 

Hardware specifications to be addressed are: 

• Energy Supply 

• Actuator/motor Control 

• Mechanical Construction and Maintenance [38] 

1.4.1 Kinematics 

Kinematics is the description of the relationship between positions, velocities, and 

accelerations of the links of an artificial manipulator. With kinematics, it is possible to 

calculate the position of one end of the system of links, relative to the other end. These 

links are generally developed from a starting reference position described as the base (the 

unmoving fixed reference point). 

With a robot arm, the repeatability of an action can be made quite reliable in response to a 

fixed software command. With the robot-base not moving, the links can be repeatedly 

directed to an object to be grasped, and the grasp action achieved. If the reference base 
S. Roberts Page 13 Chapter 1 



position is moved however, the program must be adjusted to account for that change or the 

grasp cannot be achieved as before. With the himian arm being in a constantly changing 

reference position, the use of kinematics to achieve a target, using only a programmed 

response describing the exact positions of the link positions, is clearly going to produce 

poor results. 

There is no evidence that the natural human movement activity is organised around a 

system of kinematics but there is evidence [39,40,41] to suggest limb movement is driven 

by a "ballistic response" method. With a "ballistic response", an arm is "fired" with the 

hand in the general direction of the target and the trajectory adjusted at intervals, en route. 

The first interval-adjustment occurs within close range of the target. In control theory, this 

would be a closed-loop control system with sensory (visual or haptic) feedback to calculate 

the error correction. The principle is demonstrated below (see Figure 1.7 below) as each 

arrow represents an adjusted trajectory stage. 

Start » - - ^ » ( | t a r g e t J) 

Figure 1.7 A ballistic response with trajectory-adjustment stages 

With this in mind the designed control system need only be concerned with being able to 

return to known co-ordinate positions, e.g. relaxed /rest position for the hand, as starting 

positions. 

The actual grasping action can be achieved using either of two differing approaches: 

1) The M E S can direct the digits in a ballistic type action: with the feedback 

pathways provided by human visual cues or hand/digit based electronic tactile sensors. 

2) The M E S can be used to trigger a staged grasp action: in which a complete hand 

pattem is formed rather than an individual digit movement. The hand pattem would be 

limited by force sensing 
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1.4.2 Reaching Action 

The natural action of the human hand, in a reaching and grasping action, requires that, 

(using visual feedback), a reference point on the thumb or fingers be maintained with 

respect to the intended target contact-point [42]. 

This reference point is then guided in a fixed position relative to and along an axis set 

between the target and the wrist (or forearm) and on toward the target point on the object. 

The important point here is the relationship between the position of the reference point and 

the remaining digits with respect to the axis or midline of the path. The reference point 

consistently remains much closer to the axis (midline) than do the remaining digits. As the 

target object is approached, the remaining digits close upon the target and the reference 

point is much less active in the closing action [43]. 

The example shown in Figure 1.8, in which the thumb is seen to move towards the target 

and the index finger closes, should illustrate this natural tendency. 

The natural movement relationship between user thumb and finger is such that the angular 

speeds of closure between finger and thumb are not equal. The thumb is used as a point of 

reference upon which the fingers close [42]. 

closuig 
, action 

FIG. 1.8 Natural hand action of thumb moving/closing 
towards index finger 
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1.4.3 Current State Of Upper-Limb Prosthetics Technology 

Commercially available prosthetic devices have a very primitive grasping action limited to 

movement in a single plane (one degree-of-freedom). This movement is nothing more than 

a pincer-like action in which the thumb and coupled ring and middle finger share a 

common pivot point and touch together in a three-jaw chuck configuration {see Figure 

1.8). 

t h u m b 

FIG 1.9 Standard pincer grasp action and simplified lead screw 
drive of a commercial prosthetic hand. 

Figure 1.9 shows the operational action, within commercial prostheses, that has been the 

standard for the past 25 years [44,45,46,47] (see also appendix page 241-242). Not only is the 

grasp action very limited, but there is the problem of 

1). Exerting the correct grasp pressure that can hold a fragile object without 

crushing 

or 2). Preventing slippage due to gravity or low surface coefficient of friction of a held 

object 

or 3). Allowing for ability to release grip pressure in controlled increments 

These are all aspects of the same problem of grasp force control. 

The human hand is under intelligent supervision with very many and complex feedback 

paths to accomplish these grasp control requirements. 
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The need for reliable control signals to operate an artificial manipulator that can be 

configured to different grasp functions (with slippage response), could describe the needs 

of both the prosthetics and the robotics community. 

A robotic arm operates in response to command signals generated within a highly 

controlled environment and "envelope" range. The software is written to take into account 

a very limited change in the environment of the working robot. The control algorithms 

must assimie certain constants in order for the control action to be effective. If the 

reference base of the robot is not fixed or "knowable" (in some relative or calculable 

maimer), then the robot control algorithm cannot determine its position in space. The 

results could be quite damaging to both the robot and the environment. 

In a similar way, i f the prosthetic hand is to be operated from a software control algorithm, 

then it must have a reliable reference point, (i.e. a fixed "base" from which it can operate 

and produce a desired grasp response). The prosthesis user however is constantly moving 

around and changing orientation of the entire prosthesis. The "base" is consequently not 

working in an environment known or knowable to the software. The prosthetic hand can 

know the relative position between its functional parts and thus calculate its own 

"kinematics" relative to one of those parts chosen as a reference "base". Although the 

amputee (the prosthesis "user") knows his/her spatial orientation and the position of objects 

in the working environment, the prosthesis has no access to this knowledge, unless the 

"user" can communicate that human knowledge to the prosthesis. This 

"positional/environmental orientation" is, however, the most fundamental missing 

feedback element for a safe and reliable control action. "Position" is but one of the missing 

feedback elements that we take for granted in the intelligent confrol actions of the human 

hand. 

Therefore, i f an amputee is to operate prosthesis, he/she must offer some assistance in the 

"positional" confrol action of the prosthesis. This assistance is usually accomplished by the 
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user moving (orienting) the entire body in such a way as to bring the prosthetic gripper into 

a position in which an open or close action can begin. It is the loss of the fine control 

feedback, along with the extremely limited actuator-action, which results in the 

exaggerated, compensatory actions taken by the user. 

So we see that for improved control of a prosthesis we need to have in place a feedback 

mechanism that in a limited way can "complete the feedback loop" through the user. 

1.4.4 Actuator/Drive Methods 

The technology options for the substitution of muscle power have to date been shared out 

amongst the following four types of drive methods 

1) Hydraulic: In particular, these have found a home in industrial robotic operations. 

The inevitable leakage of hydraulic oil associated with hydraulic systems and their 

need for line pressurisation and the extra weight associated with the hydraulic 

supply, have prevented them fi-om becoming a prosthetic option. 

2) Pneumatic systems have definite weight advantages over both hydraulic and 

electric motor drives [48]. For example, the electric hands, by Steeper and Otto 

Bock, weigh approximately 230 grams and the pneumatic hand potentially at 100 

grams. The complete pneumatic prosthesis (with disposable C02 gas cylinder) 

could weigh in at half the weight of a complete electric prosthesis. Hand opening 

and closure times are potentially less than half of electric systems [48]. However, a 

myoelectric interface would be necessary and might reduce the weight advantage. 

More development needs to be carried out in this area. 

3) Motor/gearbox: The major prosthetic suppliers use this method (Otto Bock, 

Steeper), in various configurations. The motor is located in the hand and produces a 

single degree of fi-eedom, open/close pincer-like (3-jaw chuck) action between 

thumb and index and middle fingers (see Appendices). 
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4) Motor/CabIe:_Robotic Researchers have used this method (e.g. Stanford and 

Utah/MIT) but actuator and cable weight need consideration. 

1.4.5 An Artificial Muscle 

Research needs to be done with synthetic polymers of solid structure that could be coerced 

by a low voltage to cause a small but cumulative percentage change in their length. In 

principle, synthetic polymers could approximate the function of natural muscles, and be 

controlled as i f they were natural muscles. To date no such synthetic muscle has been 

developed. When this does occur, the issues of motor and gearbox weight, volume, 

backlash, and inertia wil l be past history and a lighter, cheaper and more responsive 

actuator system, that mimics the natural muscle, could be utilised. More recently, Soares, 

1997, at the Univ. of Edinburgh has constructed an artificial muscle using a "shape 

memory alloy". Power consumption (heating) is very high with heating/cooling time 

constants overly long and consequently not yet suited to battery operation. Successfiil 

development to a practical prosthetic actuating mechanism wil l require more work [49]. 

1.5 Basic Control Methods: Past and Present 

Myoelectric control requires one or more highly sensitive electrodes placed, on the skin of 

the amputee stump, over the muscles (flexor and extensor for below-elbow amputees). 

Here small electric potentials of the order of 1 to 100 microvolts corresponding to stump 

muscle-activity are picked up on the skin surface and amplified for the purpose of 

controlling the prosthetic hand action [50,51]. 

The following different control approaches have been taken. 

1.5.1 The "2-site/2-state" 

This is the most widespread control method. The stump muscle action is detected and any 

M E S voltage over a set threshold is picked up by the electrode. This triggers the hand 
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opening action. As long as the threshold is exceeded, the hand continues to remain open. 

Using the same threshold method at a different site, a signal from a different stump muscle 

is used to close the hand. However, the amputee needs to learn to produce these isolated 

muscle movements from at least two sites on the stump. The forearm flexor and extensor 

muscles are chosen for the confrol muscles and some training to use these muscles in 

isolation is generally required. 

1.5.2 The "one-site, 3-state" 

This confrol method uses a single muscle site. A large muscle confraction opens the hand, 

and a smaller confraction closes it. With no muscle contraction, the hand action stops in 

place. A variation on 1-SITE, 3-STATE is the use of "RATE-OF-CHANGE OF 

SIGNAL" as the signal characteristic, as compared to the basic amplitude/threshold 

activation. 

1.5.3 The "1-site, 2 state" 

This control method uses muscle action at a given threshold to open the hand, followed by 

automatic hand closure when the signal is less than the threshold level. 

1.5.4 Proportional Control 

This control method gives a hand opening and closing response that varies with muscle 

action intensity. The speed, torque, or position can be varied proportionally (though, as yet, 

only one variable can be selected). 

1.5.5 Hierarchical Control 

This control method uses level and proportional confrol and semi-autonomous states of 

hand-grasp (that may employ force and slippage sensing). The Southampton Hand is an 

example of a hierarchical confrol system. The Southampton Hand with its Southampton 

Adaptive Manipulation Scheme (SAMS) confrol uses a micro confroller and sensors to free 

the amputee from the task of "holding" an object yet still allows the user to override when 

necessary (52,53) [for further details see:54,55,56,57,58,59,60,61,62,63]. 
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Therefore, each electrode site can produce an on/off function with a single further intensity 

variation as optional. Hierarchical systems [6] have further options within states but the 

demand on the user is the necessity for the muscles to exert a precise control of signal 

levels. This requires another level of skill and practice by the amputee and may not be 

suitable for a broad range of prosthesis users. 

1.5.6 The Southampton Hand 

In England at Southampton University, the original Southampton Hand was built in 1969 

[64]. The University has had an ongoing development of the hand since then with 

contributions by J.Baits, E.Gatto, R.W. Todd, J.Nightingale, R.D. Codd, D. Moore, 

P.Chappell, M . Barkhordar and P. Kyberd. Collaboration between Southampton and 

Oxford Orthopaedic Eng. Centre resulted, in 1992, with P. Kyberd producing a multiple 

degree of freedom prosthetic hand. The control method (see Figure 1.10) used was their 

SAMS (Southampton Adaptive Manipulation Scheme) [65,57]. This 3rd generation hand 

was built upon the earlier control work and was tested on a single degree of freedom hand 

(a Vieimatone) and on their own 4 degree of freedom hand {see Figure. 1.11) which has 

since then undergone refinements into a two degree-of-freedom hand. 

Retum 

Figure 1.10 State diagram of the S A M S confrol scheme for the " M A R C U S 
Hand". From IEEE Trans on Rehab. Eng., March, 1996. 
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Figure 1.11 The Southampton Hand. A multi-degree-of-freedom 
prosthesis using SAMS control. 

From Meas. Science Technology, 4, 1993. 

1.6 Current Research Directions/ Pattern Recognition 

1.6.1 Early Work 

The use of pattem recognition as a means to identify the amputee-generated M E S has had 

some considerable attention over the past 20 years. Using myoelectric control takes 

advantage of the natural myoelectric pattems produced when making a particular hand 

flinction. Myoplastic surgical techniques can preserve the original pattems by reducing 

atrophy and retraction of muscles. 

Information concerning intended limb fimction by the user is buried in the EMS signal. It 

is the computational time, algorithmic-process, hardware-sensitivity, and user-repeatability 

that need to be controlled for in a practical (commercial) system. Some of the earliest work 

up to 1978 was examined by R Wirta [66] and focused on either using various parts of the 

body or using various muscles (e.g. shoulder region) to generate the E M G signals. Some 

success was shown at the time with the use of eight or more muscles to control an above 

elbow prosthesis. The user concentration and skill was a critical factor in the level of 
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success. The bulky electronics of the day did not offer any realistic advancement in 

practical prosthetic implementation. Research in Sweden with the Swedish multifimctional 

(six functions) hand prosthesis used multiple electrodes (six) over as many individual 

muscle sites on a below elbow-amputee as a basis for a "Phantom Limb" control process. 

The individual electrode pair signals were each amplified, rectified and smoothed. A 

method was adopted to separate the pattem classes with mathematically defined 

boundaries having the character of 2-dimensional surfaces. After analysis with a digital 

computer a weighting factor was adopted and applied to the rectified M E S signal from 

each site and all sites then summed to produce an output for that chaimel [67,68,69]. 

In Japan, investigation into the spectral relationship to hand shape was undertaken. The 

results when averaged over 10 subjects showed a series of specfral peaks (four) related to 

particular hand shapes. This work has not been shown to be repeatable by the author, nor is 

there found any mention in the literature of repeatable confirmation by other researchers. 

The lack of technical details made available in the spectral detection process may accoimt 

for this [70]. 

The problem of identifying motion conmiands, by the application of statistical techniques 

to analyse the original M E S signal for extraction of confrol signals, has been explored by 

Graupe (et al). Graupe used Auto-Regressive (AR) modelling to represent the E M G 

stationary time-series, followed by A R analysis [71,72,73] of the myoelectric signal. This 

gave adequate function discrimination using 8-bit signal processing and could have been 

improved using (ARMA) Auto-Regressive-Moving-Average techniques, but for the 

unacceptable increased cost in computing time, in response to user commands. The use of 

just a few (1 to 3) elecfrodes distinguishes this method, as compared to those of other and 

earlier works which used multiple (up to six) elecfrode sites. Each site was an E M G 

function coimected with a limb or hand movement. Graupe investigated signals from a 

single site for their time characteristics. The assumption was, that at a given surface 
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location, the set of parameters of the mathematical relations of the voltage /time procession 

of the M E S , would be more or less the same for a given pattem of muscle activation. 

Spacing of the electrodes was made piuposely very wide to use the cross talk between 

muscles activated over time (measiu-ed in short bursts of between 200ms. to 300 ms.). A 

sequential least squares algorithm (SLS) was used as the identification method [74]. 

Doerschuk [75] (1983), considered that, assuming all muscles have different frequency 

characteristics, and i f the high frequency components in the M E S were attenuated more 

rapidly than were the low frequency, it should be possible to discriminate between signals 

at the elecfrodes as a result of different muscle actions, due to the different distances of 

those muscles from the elecfrode. The discrimination information was thus contained in the 

cross correlation between different pairs of electrodes. Using 4 electrode pairs Doerschuk 

then went on to extend, refine, and improve on the work of Graupe (later shown by Triolo 

& Moskowitz [76] to be a subset of Doershuk's work). Doerschuk found discriminating 

on/off information in both the spatial and time correlation stmcture of the E M S (using a 

4th order autoregressive (AR) model sampled at 2 kHz). Further developments came in 

processing of multi-channel, time-series MES ' s by Triolo and Moskowitz [77] which 

showed that operating range, peak performance and percent correct classification of M E S 

increases with the number of channels used. Prewhitening methods also were used to 

improve the S/N ratio of the force estimate. 

Other work by Lee and Saridis [78,79] used the probability density function of 

pattern/motion classes in the decision space of signal variance and zero crossings; 

classification occurs in a multi-class, sequential, decision-procedme. 

The research mentioned to this point has interpreted the M E S (a biosignal) as a stationary 

signal purely for analytical convenience. As biosignals are inherently nonstationary (i.e. 

time varying), a method that approaches the biosignal as a non-stationary model is more 

realistic. Schack and Grieszbach [80,81,82] have taken the nonstationary approach and 
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developed an A R M A model for the dynamic spectral-analysis of non-stationary, 

biosignals. Comparative merits for the A R M A approach versus other methods for spectral 

analysis point out the following different weaknesses: 

• Short-term Fast Foiuier Transform (FFT): (actually a quasi-stationary overlapping 

segment method applied to a non-stationary signal). Results are comparable to A R M A . 

Limited by inherent uncertainties 

• Filter methods: band-pass (with rectification and smoothing) give comparable results to 

A R M A . Such methods can be limited in spectral parameters and points due to 

weaknesses in analogue (stability, slope, physical-size) and digital (serial processor-

time) methods. 

• Dynamic A R by Kalman-Filter algorithm: comparable results to A R M A algorithm and 

is time-consuming and restricted to A R (not A R M A ) methods. 

Other approaches that may have merit are: 

• Instantaneous spectrum using Hilbert transforms: 

• Dynamic spectrum using wavelet transforms 

Although not directly related to myoelectric signal processing in the arm, a method 

conceived by Simpson [83,84], known as "Extended Physiological Proprioception" (EPP), 

can be considered as a pattem recognition method. The source of the signal (MES or 

switch position) was located in other body regions. Simpson was concemed with above 

elbow amputees and thalidomide children who had mobility of the shoulder joint but little 

or no arm M E S to work with. The position of the shoulder joint was translated to the 

position of the prosthesis in space in a serial maimer. A relationship has been demonstrated 

to exist between shoulder joint-angles and elbow/wrist joint-angles [85]. Such a 

relationship can be used as a basis for (above-elbow amputee) prosthesis control. 
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1.6.2 MES Features 

Research into myopathic and neuropathic/nem-ogenic processes has produced a number of 

characteristic "Features" regards the M E S that speciaHst chnicians in the E M G field have 

used to diagnose disorders e.g. A L S , Multiple Sclerosis, Muscular Dystrophy. The features 

mostly related to the M E S in the Time domain and that cover the basic signal time-features 

are: 

• maximum peak to peak amplitude 

• maximum positive peak amplitude 

• maximum positive slope 

• maximum negative slope 

• total number of signal turning points 

• total positive signal area 

• total negative signal area 

• total number of samples 

• RMS 

• total number of zero crossings 

These mentioned features could be fiuther analysed for: 

Clustering, factor analysis, nearest neighbour network [86], shape irregularity [87] 

Now all of these features have been generally applied to, and restricted to, the decomposed 

signal detected by needle (inserted into the muscle) electrodes. Needle electrodes have a 

much greater resolution of individual motor units and are the means by which Action 

Potentials (AP's) and Motor Unit Action Potentials (MUAP's) are examined after 

application of decomposition techniques [88,89,90,91]. The decomposition techniques are 

required due to the regional mixing of MUAP ' s . Surface electrodes suffer extremely poor 

capability to resolve specific M U A P ' s and are not used as such. The conmiercial 
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availability of medical M E S diagnostics has brought these methods into pattern-

recognition research, along with the use of time domain features, as a basis for pattem 

recognition by artificial intelligence methods. Neural-networks, Fuzzy Logic, and Hidden 

Markov models are a few of the different signal processing methods that can be applied in 

this area. The Neural Network is the most popular of these candidates. 

1.6.3 Neural Networks (NN) and the MES 

Neural Networks have been known since the 1940's but went into a decline in the late 

1960's following work by Minsky that claimed severe limitations with the then existing 

architectures. The back-propagation algorithm by Rumelhart and McClelland in 1986 

breathed fresh life into Neural Networks. 

In 1988 Graupe, [92] having investigated control of prosthetics by pattem recognition 

methods such as A R M A , saw the use of N N as a tool much more suitable to medical signal 

processing. Medical signal-analysis problems are all too frequently, i l l defined, non-linear, 

and defy analysis (by all but the most extremely computationally-exhaustive processes). 

Graupe suggested the use of a M E S model to present to a Hopfield N N for decomposition 

of the M E S into M U A P ' s and the N N control of a prosthesis. No implementation or test of 

data was reported. 

In Japan, Hiraiwa [93] (1989) et al proposed the use of a N N using back propagation to 

control a prosthetic hand/arm. The input signals were stated as surface-detected from the 

flexor digitorum superficialis (see Chapter 2 page 61) and spectrum analysed via Fast 

Fourier Transform (FFT). The 10 inputs were taken from a 10-band division of the 63 Hz 

to 500 Hz spectrum detected. A 7- element hidden layer was used. The output was through 

a 5-element layer. The 5 elements represented 5 finger/thimib actions: 1) flex all fingers 2) 

flex only index finger, 3) flex only middle finger, 4) flex only thumb, 5) relax all fingers. 

Their success rate after training claimed 20 recognitions out of 30. 
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Examination of their diagrams suggests the researchers were not accurate in their 

anatomical description, as the flexor digitorum superficialis was not actually located where 

they show the electrode locations. What in fact they were detecting from the position 

shown (wrist joint) is a region of high tendon concentration with a general proximity to 

several muscle sources including the thumb. This consideration then easily explains their 

results as follows. 

1) . Flex all fingers: Success was 1 in 6. The distant flexor digitorum superficialis would 

give only chance discrimination 

2) . Flex only index finger: Success was 5 in 6 as this action is sfronger with the flexor 

digitorum superficialis 

4) . Flex only thumb: Success was 5 in 6 as the site of the thumb flexors is very close. 

MB: In the case of a hand being amputated, the thumb flexors would not actually exist (to 

produce these signals). 

5) . Relax all fingers: Success was 3 in 6. Not a good score, as the activity in the area 

should have been minimal and easily recognised as a no signal level by an A N N . This 

indicates poor generalisation by the N N . 

In Japan, Ito et al [94] (1991) proposed a back-propagation Neural Network to control a 3 

degree-of-freedom (DOF) prosthetic hand/arm. The N N input signals were from four 

surface mounted dry electrodes mounted around the upper forearm. Each of the 4 signal 

lines were passed through a 10th order digital Finite Impulse Response (FIR) filter, then 

smoothed and rectified before presentation to the inputs of the N N . The 4 FIR filters were 

set with cenfre frequencies at 70 Hz, 160 Hz, 360 Hz, (and another at an "x" Hz omitted in 

the literature) respectively and each with a 40 Hz bandwidth per fiher. The 4 FIR filters 

(each with a specific band-pass range) each accepted the input M E S from only one 

elecfrode. The outputs from the N N confrolled 6 prosthetic limb actions: 

1). WRIST flexion, 2). WRIST Extension, 
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3). H A N D Pronation, 4). H A N D Supination, 

5). H A N D : open 6). H A N D close. 

Training was done using 10 stored data sets of 200 ms. intervals. The Networks learned 

very rapidly (under 30 iterations) and produced greater than 90% recognition success. A n 

on-line network retraining/updating algorithm was also developed to account for the 

observed changes in time of the training/ use data. This was done using two parallel 

transputers. The 6 actions over 3 degrees of freedom could have been accomplished using 

a hierarchical confrol structure without the N N , but the clear advantage of the N N was its 

ability to use natiu-al movements of the human arm. Computational requirements were high 

however. There are no reports of further work to be found. 

At the University of New Brunswick (UNB) in Canada, Kelly, Parker, and Scott [95,96] 

(1990), proposed the use of N N to confrol a prosthetic arm/hand. They chose to use the 

M E S feature set developed by Graupe and to detect these features using a Hopfield Neural 

Network. The network proved to be 2 to 3 times as fast as the SLS algorithm applied by 

Graupe. The Time-domain feature set was extracted using one pair of surface elecfrodes at 

a single site and then used to frain a Multilayer Percepfron (MLP) Neural Network. The 

feature set was taken from a set of 4 arm fimctions and, once frained, the Network was 

successfiil (no specific % rate was given) in recognising those 4 functions. The notable 

point was that no training of subjects was given prior to data acquisition. This is a notable 

advance compared to past pattem recognition methods in which extensive, exhaustive 

fraining for the subjects was necessary. Kelly et al concluded that a better set of feature 

sets to delineate the regions of a 2-dimensional feature space could yield an even greater 

number of confrol actions. Due to the large computational effort required, this single 

chaimel confrol approach did not evolve beyond the laboratory. The U N B work was 

carried on by Hudgins, Parker, and Scott [97] (1991) with the development of an extended 

time-domain feature set using the following M E S features: 
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• mean absolute value ( M A V ) in 5 consecutive 40 ms. segments, 

• difference in M A V (the slope) between adjacent time segments, 

• number of zero-crossings, in 5 consecutive 40 ms. segments 

• the number of slope sign changes, (turns) in 5 consecutive 40 ms. segments 

• the waveform length (complexity), in 5 consecutive 40 ms. segments 

• the mean value of each of the mentioned features over all segments 

Noticeable about Hudgins work is the recognition that the M E S contains a deterministic 

component during the initial stages of contraction i.e. the transient. Previous work by 

others have assumed no useful information was to be found in the transient and work had 

focused on the steady state signal (post transient state) components. A surface-mounted, 

one-electrode pair arranged on the upper arm (with widely separated electrodes) was used 

with intention to capture the signals from all muscles in the upper arm. The 4 actions 

monitored were: elbow flexion, elbow extension, outward humeral rotation, and inward 

hmneral rotation. Network recognition success results for 5 subjects tested were: 40% 

success (for 4 subjects) to 85% success (for one subject). 

The delay between user action at the muscle site and control action response was under 

250 ms. This time response is within the acceptable benchmark (300-ms. Range) for a 

user-acceptable, practical, prosthesis. 

Hudgins again (1993) [98] carried on with the deterministic component of the M E S found 

in the (transient) initial onset stage (within the first 300 ms. of the MES). Using essentially 

the same feature sets as in 1991, Hudgins spread these features over a 30 pattem input 

layer through an 8 node hidden and 4 output back-propagation N N . Successful network 

recognition this time was 91.2% for normal-limbed subjects and 85.5% for amputee 

subjects. As the tests were taken without any subject training-session, it may be that it is 

possible for the amputees to improve on these rates. Displacement of the electrodes from 
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imtial site positioning resulted in a slight (close to 2%) decrease in classification 

performance. No attempt was made to determine the optimal electrode sites and 

considering the large number of possible electrode positions and the retraining of the 

network for each position this is not surprising. However, a method needs to be developed 

for this "optimum" eventuality. Hudgins concludes, "It is the "cross talk" detected at the 

electrodes that is producing the myoclassification". Yet, this "cross talk" is what the 

commercial prosthetic manufacturers have always considered as "noise"! At the U N B 

O'Neil l [99] (1994) investigated the spectral features of the M E S for normal vs. amputee 

muscles and foimd a shift in frequency between renmant (amputee) and intact (non-

amputee) muscles. No conclusive predictor could be established however. Further work 

appears to be needed on the subject. It was suggested that the investigation of the 

deterministic component of the M E S could also encompass the specfral content. Kermani, 

Badie, Hashemi, and Wheeler [100] described new features being assessed for their M U A P 

identification abilities. 

Confrol of arm movements by Neural Networks, using orthoses or Functional Electrical 

Stimulation (FES), has seen a number of papers across the Biomedical and Robotics field. 

A n extensive overview compiled by MacKenzie and Iberall [101] (1994), describe many 

approaches [102,103,104,105,106,107] taken to investigate the optimal N N confrol system. 

Of course, the capture of reliable input signals to these processors is assumed as available, 

which is still not yet the case. A foundation of considerable effort has been expended in 

investigating both the formation/operation [108] of the human motor-control system, and 

the potential of Neural Networks. Opportunities can readily be seen for their application to 

the confrol of prosthetic hmbs and teleprostheses (109) 

A n extension of the research undertaken in this thesis has been carried forward at the 

University of Pl)anouth with the development of a computer simulated hand operated by a 

N N responding to recorded myoelectric signals (110).(see also this thesis page 297) 
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1.7 Impediments to Progress: Political and Technical 

Consider the question:" Why do the commercial manufacturers not develop these 

additional control abilities into a more functional prosthesis." The answer is complex 

and many faceted. 

There are only a handfijl of upper-limb prosthetics manufacturers in the world. There are 

only two dominant players in Europe; H . Steeper U.K. (now Rehabilitation Services 

Limited, RSL Steeper) and Otto Bock (Germany/ The U.K. has a National Health Service 

(NHS) that offers the same level of quality in prosthetics that a private hospital could offer. 

Consequently, there is no incentive for any amputees/patients to look for improvements in 

the private sector. They can get the best available product at no charge from the NHS. The 

NHS places a cost ceiling on commercial prosthetics and Otto Bock and Steeper fit into an 

agreed system. 

If current users of the standard prosthesis were offered the option of a vastly more 

functional prosthesis, (that they could command in a manner similar to a natural limb), 

they would all line up at the door casting aside their old prosthesis on their way in. This 

does not make good corrmiercial sense for an existing and profitable supply line. The 

setting up of prosthetic cenfres, the fraining of professional prostheticians, the parts 

distribution network, tooling costs and the commercial manufacturing facilities for the 

prosthetic components, form a considerable inertia to overcome. There is therefore a 

"status quo" in commercial manufacturing. 

In order for existing commercial manufacturers to shift towards more technologically 

advanced prostheses, any new technology would be required to slot into the existing 

manufacturing and distribution network. The risk factor for the new technology would 

need to be reduced to the level of the "simple and tried and true". 
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An analogy to consider here would be the model " T " Ford. The car was simple, basic and 

travelled from " A to B" . If demand had been limited and there were only two 

manufacturers of such cars, both producing only a slight variation of the basic model "T", 

would the "T" still be the current benchmark model? 

It is no coincidence that virtually all advances in the frontiers of prosthetic confrol and 

design have been outside the commercial sector and in the academic research environment. 

To initiate new technology requfres a realistic and not idealist assessment of how the 

private enterprise system is motivated. Consider the following: 

• Idealistic: If you make a clever gadget everyone will want to buy it and it wil l sell 

itself! 

• Realistic: Market potential is limited by the available fimding from either NHS type 

public bodies (U.K.), or Insurance based private bodies (U.S.A.). The regions of 

highest demand for prostheses are in the least developed war-tom regions where 

affected persons are the least able to afford the technology. 

• Idealistic: Market the technology as low risk/high return potential 

• Realistic: The "Catch 22" of getting started. In order to manufacture and market an 

advanced prosthesis you need to have a designed and tested product. In order to design 

and test an advanced prosthesis you need to be a manufacturing cell with an available 

test market. Manufacturer and designer both need to be interwoven. Consider the 

turmel-vision banker-mentality: "When can you see a positive cash flow?" Bankers 

(like politicians) are not generally long-term thinkers. 

• Idealistic: The shareholders will be willing to take a cutback in profits/dividends in 

order to secure a more dominant position in the marketplace 
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• Realistic: The shareholder wil l not be accessed, consulted or presented with any 

proposal that affects their rate of return because that rate of return affects the directors 

short-term prospects. 

• Idealistic: The extensive technology and expertise available within the company could 

be directed and focused on a. high-tech research program. 

• Realistic: The existing company staffs have developed, only within their manufacturing 

skills environment in the company, and been optimised for their efficiency as 

manufacturers. There is a minimal research culture. Prosthesis equipment makers are 

manufacturing oriented and not research based. Budget restrictions could hinder any 

progress. Universities, (in contrast), have a wide range of frontline researchers and 

research facilities that can be shared and efficiently utilised. Inter institutional, inter 

academic coimnunication and shared knowledge via lectures and conferences is part of 

the academic cultiu-e. In contrast, when the company is funding the academic research, 

it attempts to stifle both the outflow of research findings and the academic feedback 

system from fear of losing the competitive edge. This desire to wrap up their monetary 

investment in a shroud of secrecy can sometimes cripple the research progress and 

cause unnecessary duplication of work. 

• Idealistic: The company has so much expertise and years of experience in the 

prosthetics field that they must be aware of any past or current technology relevant to 

their field. 

• Realistic: Most company staffs are too busy in the day to day manufacturing of their 

existing range of products. They rely on serendipity and token-gesture, company 

representatives (more interested in selling their own products than in academic 

parlance) at conferences to inform themselves of any changes in wind direction. The 
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notion of sharing and exploring new ideas with another company (the competition) is 

alien to the company culture 

If there are any residual hopes for the potential for novel thinking in the commercial sector 

then consider the statement (98) "Hudgins concludes that it is the "cross talk", detected at 

the electrodes, that is producing the myoclassification and yet this "cross talk" is what the 

commercial prosthetic manufactm-ers have always considered as "noise"!! 

1.8 A Case for Myoelectric Prostheses: 

Investigations [111,112] into usage of conventional cable-operated hand/hooks versus 

myoelectric prostheses indicate a need for both forms of prostheses, as they both serve 

different needs as summarised in the following points. 

• The cable-operated device is more suitable for heavy jobs requiring lifting or for using 

in work environments unsuitable for a myoelectric device. 

• The myoelectric prosthesis is well suited to those amputees primarily having jobs that 

involve office work, supervision, or public contact work: i.e. primarily light activities in 

a clean environment. 

1.8.1 An Electrical Prosthesis: 
Advantages: 

1) A superior pinch-force of 15 to 25 pounds (65 to 110 Newtons) versus 7 to 8 pounds (30 

to 35 Newtons) for cable-operated. 

2) . Lack of need for a harness 

3) Greater cosmetic appeal 

4) . Wider operating work space/ envelope 

5) . Hand movement is independent of the body position 
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6) . High level (above-elbow) amputees require less effort (versus cable) 

7) Sensory feedback fi-om motor vibration (e.g. stalling sound) in prosthesis is used by 

amputees and is a possible area for further research. 

8) Greater scope exists for the development of increased complexity of thumb/finger/wrist 

opening action. Cable harness can only issue an open/close command. 

Disadvantages 

1) Higher cost versus cable operated. 

2) More maintenance and specialised maintenance centres. 

3) Durability is less than cable-operated harness. 

4) Hand shape can restrict some tasks (though this applies equally to cable-operated). 

5) Battery recharging required. The myoelectric device wil l suffer an energy supply 

problem in very cold weather due to the phenomenon of battery power being proportional 

to temperature. 

6) Weight is greater and speed/action generally slower than cable operated. 

7) Weight leverage (weight distribution high at distal/hand end) at socket stump interface 

cause stresses/discomfort on the stump. 

Some common reasons being given for the myoelectric prosthesis not to be used by 

amputees are [111]: 

• too heavy, 

• too slow, 

• not durable enough. 

The issue of cable versus electric prosthesis needs to be viewed as to what is suitable 

within lifestyle and activity constraints. 
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Other Considerations 

Humid/hot conditions: or strenuous work can cause high levels of sweating within the 

myoelectric (and to a lesser extent in the cable-operated) prosthesis, with subsequent 

effects on the electrode response and prosthetic fit and comfort. Manufacturers have yet to 

effectively address this problem with appropriate ventilation and/or design of the prosthetic 

fit and materials. 

Durability: This can be improved with better materials for cosmesis and moving parts. 

However, durability has to be fairly assessed with regards to any technological device 

concerning purpose and function. 

With regards to Sensory Feedback, those who placed light load demands on a myoelectric 

prosthesis rated it as giving good feedback [113] and those requiring heavy demands rated 

feedback as poor. 

Reductions in Weight and relocation of weight in prostheses can still be viable areas for 

research and development. Speed of operation, (hand opening/closing), have recently been 

addressed with improved commercial versions, but much room for improvement is still 

possible. 

1.9 Summary of Chapter 1 

A rapid joimiey through time brought us to the development of the 'Vaduz Hand' in 1951 

and one of the earliest myoelectric controls were developed in England in 1955. From then 

on things began to slow down in terms of technological irmovation By 1960 the Russians 

had developed their own myoelectric version of the Vaduz Hand and began marketing it in 

North America. In 1963, the Germans (Otto Bock) made a version of the Russian Hand 

and called it the Viennatone Hand. By 1965, they had an improved version and the product 

has not changed significantly since then. In 1965, the Swedes developed the S V E N Hand, 

which simplified into the Systemteknik hand, went to H . Steeper in the U.K. and was the 
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basis of the Steeper hand from then on. The Americans copied the Vieimatone Hand and 

did httle else. 

As you can see, there was a great deal of prostheses inbreeding in the early 1960's and 

manufacturers began to carve out their patches with their inbred versions. 

After this it was the academic commimity that undertook research; with the slant mostly 

toward robot end effectors {Tomovic (1968), Waseda the W I M E Hand (1964-1978), 

Salisbury, the Stanford/JPL Hand (1985), Jacobsen the Utah/MIT Hand 1986, Bekey and 

Tomovic, the USC Hand (1990)}. The human arm movement action has been shown to be 

non-Kinematic in principle. No practical prostheses came as offshoots. Meanwhile the 

academic community was exploring myoelectric confrol. R.N.Scott and the University of 

New Brunswick has been pushing the bow wave since 1960 and much insight has been 

inspfred both within and outside their University walls. D. Childress at Northwestern 

University in Chicago (USA) has been solidly pushing myoelectric control since 1968. 

Over time, this academic persistence has been tempered by the elecfronics of the day. 

Knowledge of muscle physiology has advanced and a mathematical approach has 

developed (see Chapter 2). Various confrol signal sources (Myoelectric, FSR, Piezo, 

Sounds, Implants) have been examined and thefr pros and cons outlined. Their many 

shortcomings have left the confrol engineer with a need for signal reliability with a wider 

confrol range. The hardware that constitutes the physical structure of the prosthesis has 

been examined from the user perspective and found to be lacking. The types of actuators 

(Hydraulic, Pneiunatic Motor/gearbox or cable) have been examined and the author holds 

out hope for an artificial muscle as the next generation advance in actuators. Confrol 

systems that have used the myoelectric signals have been largely dependant on the gross 

muscle signal developed at one site and variations have used the signal to confrol either 

open, close velocity or force (grasp pressure). The University of Southampton has been 

pursuing the improvements of confrol using time domain M E S with some success and have 
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a 'hierarchical' control system that gives a prosthesis with increased fimctionality at the 

cost of user control-complexity. 

A number of academic research activities have inspired the development of control 

signals, extracted from the M E S , using the concept of pattem recognition. Auto regression, 

SLS, and Neural Networks have been explored by others. Doerschuk (1983) suggested that 

muscles have different fi-equency characteristics, and i f the high frequency components in 

the M E S were attenuated more rapidly than were the low frequency, it should be possible 

to discriminate between signals at the elecfrodes as a result of different muscle actions. It is 

Doershuk that spotted the potential that is developed in this research. Pattem recognition 

has met with some success but computation time and accuracy has been the underlying 

weakness. Good ideas have foundered due to technological shortfalls and never then 

carried forward (probably due to fimding, other commitments or retirement). 

The amputee just will not use a prosthesis that takes a long time to respond, is heavy 

(weighed down with hardware) to wear, and is just as likely to poke them in the eye due to 

an error in pattem recognition (as humorously depicted by Peter Sellers in the film 'Dr. 

Sfrangelove'). The confrol potential in pattem recognition is there, but not (yet) developed 

to maturity. 

Finally, a case is made for the concept of the improved myoelectric prosthesis. Some 

insight into the workings of the prosthesis manufacturing industry explains the slow rate of 

progress and emphasises the current need for the academic community to move the 

goalposts out of complacency and raise the level of play. 

The first objective stated for this research program was: 

lyto investigate the information content of a MES. 

This chapter has outlined the past historical discovery of the M E S , and the story of slowly 

revealed information content, as limited by the technology and anatomy/physiology of the 
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time. Academic research has pushed the boundaries and exposed a deterministic potential 

in the MES. The application of intelligent systems wil l unravel more details in the 

information content. We now have the background to avoid dead ends and the repetition of 

completed past research activities. With this chapter, we now know the branches of the 

discovery process of information content; but the author has yet to improve on that 

knowledge. 

1.10 Layout of Thesis 

Chapter 2 will introduce the task of detecting/acquiring an effective and reliable conmiand 

signal for directing an improved prosthesis by probing the anatomical and physiological 

origins of the myoelectric signal. By understanding the M E S through it composition it wil l 

be possible to detect a true signal from an artefact and to consider what intelligence can 

reasonably be exfracted. For those reasons outiined, the final choice of elecfrode sites wil l 

be explained and apparent. 

As in physics, biosignal research and detection has "been built upon the shoulders of giants 

of past pioneers" in human physiology research. The literature is vast and extensive. In 

order to know how to use technology to exfract a biological signal; it is necessary to know 

how past research through trial and error has developed. There is no excuse for repeating 

techniques that have been thoroughly explored and extensively described. There is 

however, an opportunity to draw upon the conclusions, suggestions and inferences that 

such explorations have produced. The optimal elecfrode material may not necessarily be a 

practical material and chapter 2 wil l explain and justify any compromises taken in the use 

of elecfrodes used in this research. 

A mathematical modelling of the signal and its detection will be infroduced. Past models 

will be examined and their strengths and weaknesses wil l become apparent. What is 

possible to model and describe will be attempted and some past assumptions that can be 
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shown to be incomplete will be explained. This incompleteness allows for the extraction of 

more information that has in past been assumed possible by many in the field. 

Software methods for signal methods will be discussed and the time constraints inherent in 

a practical user acceptable prosthesis controller wil l be compared to the constraints of a the 

frequency spectrum and signal processing equipment/software. 

Chapter 3 will describe the experimental equipment used to examine the surface 

Myoelectric Signal (MES). Time and frequency methods wil l be scrutinised for their 

reliability, accuracy and utility. The various pieces of equipment chosen for detecting the 

M E S will be compared for pros and cons and a standard wil l be adopted. 

Chapter 4 will examine the different muscle actions and the frequency characteristics 

detected as a surface M E S for those actions. The question of gender differences for these 

muscle actions will be explored. The complexity of signal loss will be examined within the 

context of the distance between muscle site and detector site. 

Chapter 5 will introduce the need for M E S site mapping. Each of the 4 adult volunteers (2 

male, 2 female) will have their lower arms entirely mapped for the surface-detected M E S , 

for all of the 20 core muscle actions. Preliminary results for prospective common electrode 

placement sites will be shown. This wil l stimulate interest for mapping to be completed. 

Chapter 6 will examine the results of the mapping exercises with respect to Gender 

differences. The 4 M E S signal characteristics that are detectable within the mapping 

exercise wil l be shown how they can be brought together to produce a wider set of control 

actions. The use of the "Second moment of area "wil l be introduced as a unique combining 

method for applying to database mapping. The question of a deterministic V S stochastic 

description for the M E S wil l be revisited. The similarities and differences for various 

muscle actions will be compared across the volunteers. 

Chapter 7 will look more deeply at the question of the deterministic VS stochastic 

question as a conflicting description of the MES. The results of the mapping exercise wil l 
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expand more completely the miderstanding of the surface-detected M E S as a combination 

of both stochastic and deterministic elements. This apparent dichotomy wil l be resolved 

into a more complete picture of the M E S . The research results wil l show an expanded 

control signals range and be placed against a background of Neural Networks as suitable 

for applying to prosthesis control. A foundation for fiuther research will be discussed. 

1.10.1 Research Methodology 

The opportunity to utilise the Tissue Filter Function (TFF) requires knowledge of the 

maimer in which the M E S from selected muscles propagate through the tissue medium and 

appear at the skin surface. It is known that the M E S wi l l demonsfrate a different signature 

on the skin surface as distance varies from the M E S generator source. Just how the 

contributions from various muscles found at any point on the skin surface offer a usefiil 

confrol signal will be investigated. Any differences between males (within gender) and the 

control signals produced under confrolled conditions wil l be recorded and analysed. The 

same investigation wil l be imdertaken to see if'between gender' differences require special 

considerations for confrol signal purposes. A low frequency signal spectrum analyser wi l l 

be coupled to moveable elecfrodes for the purpose of mapping/recording the surface of an 

arm in response to muscle activity. 

1.10.2 Original Work Contribution 

Comprehensive contour mapping of the M E S has never been undertaken before and the 

results will generate a database from which hypotheses can be tested. The equipment 

utilised was selected using the criteria laid out in Chapter 2. Full consideration was made 

from a physiological, anatomical and elecfronics perspective(114). The historical 

description of a stochastic, non-deterministic M E S has been shown by this research to be 

incomplete. This research has used an original confrolled mapping technique for siuface 

MES ' s that has revealed unique specfral features for various muscle actions that cannot be 
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accounted for by the Tissue Filter Function (TFF) alone. It is these unique features, plus 

the use of the TFF, that is intended for an original approach proposed using 3 to 4 distinct 

very narrow band pass channels in the frequency-domain, signal fransient-region as 

detected by multiple site elecfrodes (4 sites proposed). The intention is then for the signal 

to be presented to a Neural Network (NN) pattem recognition tool. This research has 

shown that the probability is high that the cross coupling between a multiple set (4) of 

surface elecfrodes will detect these frequency shifted signals throughout the 3 dimensional 

medium of an amputee upper forearm. Here the use of a "weighting factor" can be applied 

to represent the spatial distances of these signals. 

An original simplified geometry model of the hand has been devised which greatly 

improves prosthesis dexterity while minimising the requirement for the many degrees of 

freedom of the human hand. A novel approach to fabricating a multi elecfrode pickup has 

been suggested to enable the mapping techniques to be fidly utilised for multifimctional 

confrol of a prosthesis. A n original updated model of the M E S , based upon a more in 

depth consideration of the physiology of muscles and the nervous system, is presented. 
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Chapter 2: Myoelectric Signals 

2.1 Hand Actions 

To appreciate the physiology of the hand, it may first be helpful to consider the dexterity 

of the human hand and how we can describe its basic operational geometry. As mentioned 

in section 1.3.5, the hand can be shown to act with over 25 degrees of freedom. 

Consider the following. 

If a "robot" designer were to start from a set of specifications that required a compact, 

lightweight, manipulator with the same levels of portability, operational conditions, 

dexterity and longevity/maintenance, (as the human hand) then, inevitably, that design 

would supersede a purely hi-tech, material/mechanistic approach. It would converge upon 

a hauntingly close, quasi-biological copy of what nature has produced over the millennia. 

To provide these functions, the author decided that the basic movement geometry of the 

hand could be simplified into the following diagram {see Figure 2.1). Using this basic 

geometry it wi l l be possible to construct a hand with the essential hand movements. 

FIG. 2.1 Basic Hand Movement Geometry as an operational and constructional principle. 
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The assignment of a binary value to each of the actions made available to the thumb and 

first two digits can be seen to produce a basic range of grasp actions. Intermediate states 

can be reached by the application of force-sensing limiters that limit progress between 

states. 

As long as a control action can be maintained by the amputee, the movement of the wrist 

and digits, limited to the 10 actions (Figure. 2.2), should cover a range of practical yet 

feasible hand fimctions. The functional classification of hand grasp types (see Appendix) 

can be reduced to a much smaller number of actions from which the major and minor 

subdivisions can still be effectively produced. The limits placed upon the mechanical 

design, in terms of dimensional flexibility, (no fravel outside the confined angular settings) 

are a necessary design compromise. Further increases in a closer approximation to the 

human level of dexterity would exact an additional cost in; confrol lines, mechanical parts, 

increased weight, computational time and complexity, and power requirements. The basic 

range of grasp actions can be seen below in Figure 2.2 (see also Appendices p.23 7) 

ROTATE 
THUMB 
DOWN 

I 
ROTATE 
THUMB 

UP 

RAISE 
THUMB 

LOWER 
THUMB 

REST 
(IBIGOKGRIP^ 

I 
CLOSE 

FINGER 1 

OPEN 
FINGER 1 

CLOSE 
FINGER 2 

OPEN 
FINGER 2 

V 1 
1 1 1 1 1 

0 0 0 0 0 

1 
ROTATE 
WRIST 
RIGHT 

ROTATE 
WRIST 
LEFT 

Figure 2.2 Simplified range of grasp actions for a myoelectric prosthesis 
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2.2. Forearm Muscle Anatomy and Physiology 

How is the M E S produced and What does it represent? 

Definition: M E S : MyoElectric Signal 

From a functional perspective, the action produced by a normal arm is not the result of a 

single muscle action but is rather a combination of muscle actions, with major and minor 

players taking part. [1,2̂ ] 

In order to decipher the M E S signal, we need first to know the extent and limitations of the 

muscles available in the forearm and to know how those muscles contribute to the action 

of both wrist and digits. 

A n example shown (Figure 2.3) (4, page 315) here is of the muscles that play a part in the 

closing (flexion) and opening (extension) of the ringfmger What can also be seen is how 

these muscles have a common origin in the elbow region. With an amputation occurring in 

the mid forearm region, it can be seen that a large part of the muscle still remains and, 

(assuming competent surgical methods were used to anchor the muscles), can be activated 

by the amputee, producing detectable myoelectric signals (MES 

The flexion (closing) of the ring finger (annularis) is brought about through the irmervation 

Figure 2.3Flexor digitorum superficialis. Figure 2.4 Flexor digitorum profundus 
Adapted from 'Human Anatomy and Physiology' by D. Shier and J. Lewis, 8* edition, 
McGraw Hi l l , 1999. 
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of both the flexor digitorum superficialis muscle (FDSm) and the flexor digitorum 

profundus muscle (FDPm) (see Figure 2.3 a and2.3b). Ring finger extension (opening) is 

the result of the Extensor Digitorum muscle {see Figure 2.9, page 62) 

Note: for a helpful Latin/English translation of the muscle names see appendix page235 

Apart from ring finger flexion the FDSm and FDPm also assist in wrist flexion (closing). 

The FDSm is a muscle that overlies the FDPm (like the layers of a sandwich). The FDSm 

is closer to the skin surface than the FDPm, but is itself overlain {see Figure 2.9, page 62) 

by the flexor carpi radialis (a powerflil flexor of the wrist) and flexor carpi ulnaris (a 

powerful flexor of the wrist) muscles. 

Note: It is an acknowledged, but habitually continued misnomer to classify the FDSm as a 

superficial (siuface) muscle). The FDSm flexes the middle phalange of the finger 

(proximal interphalangeal joint), while the FDPm flexes the distal phalange. The FDPm, 

supplied by the median and ulnar nerve, acts in gentle flexion and the FDSm, supplied by 

the median nerve, comes into play for greater force or acceleration. 

The wrist extension action (opening) is generally triggered from the site of the superficial 

extensor group of muscles. This group comprises: 

• the extensor digitorum (posterior interosseous nerve supply) 

• the extensor carpi radialis brevis (posterior interosseous nerve supply which is a 

branch of radial nerve) more involved in wrist extension than the longus 

• and the extensor carpi radialis longus (radial nerve supply) more involved in the 

releasing actions than brevis. 

The above mentioned wrist flexion and extension actions have been infroduced because 

they are the muscles, above which are the surface elecfrode sites conmionly chosen for the 

S. Roberts 52 Chapter 2 



extraction of the two M E S actions, (extension) open and (flexion) close, that typify the 

commercially available myoelectrically operated prosthesis. 

The following section on muscles and their action is a compilation fi-om more than ten 

separately authored texts on anatomy and physiology, plus the unabridged version of 

Gray's anatomy. It is as complete a classification as was possible to construct, yet some 

areas of disagreement exist. This research thesis has revealed that a less than complete 

picture is available. 

The forearm muscles are divided into two compartments (the ANTERIOR and the 

POSTERIOR) by fascia sheets, and each compartment has 'superficial' (near to siuface) 

and 'deep' (below the superficial) layers. The compartmental muscles differ in both 

location and fimction. The Anterior contains mostiy wrist and finger flexors plus wrist 

pronators and largely supplied by the median nerve. The Posterior contains wrist and 

finger extensors along with wrist supinators, all supplied by the radial nerve. The forearm 

muscles are referred to as the 'extrinsic' muscles of the hand, as they are behind the coarse 

movements of the hand The muscles that give the fine movement of the hand are in the 

hand itself and are called the 'intrinsic' muscles of the hand. 

2.2.1: Anterior Flexors. These are involved in flexion of the fingers and wrist. The 

two pronators of the wrist are the exceptions, still physically contained, in this anterior 

compartment. 

Superficial Muscles 

• The flexor digitorum superficialis (FDSm): Actually forms an intermediate layer. 

FDSm flexes the wrist (carpal), and proximal and middle phalanges of the fingers 2 to 5 
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(proximal interphalangeal joint). Comes into play for acceleration or greater force 

against resistance (not in gentle flexion). Its precise action varies according to what 

other muscles are activated. The muscle has four independently active muscle slips to 

operate the four fingers. 

• The (overlying) palmaris longus: (missing in 10% of the population) also assists in 

wrist (carpal) flexion and is involved as an anchor in tension of the palm fascia. 

• The flexor carpi ulnaris: (also overlying the FDSm), when used along with the 

palmaris longus, and FDSm, is a strong flexor of the wrist and when used with the 

extensor carpi ulnaris is an adductor of the hand. The flexor and extensor carpi ulnaris 

work as synergists to prevent the hand abducting when the thumb is extended. It also 

tenses/stabilizes the wrist in (minimus) little finger flexion. 

• The flexor carpi radialis: (also overlying the FDSm) when used with flexor carpi 

ulnaris and FDSm is a strong wrist flexor. When used with the radial extensors it is an 

abductor of the hand. 

• Pronator teres: acts with the Pronator Quadratus to pronate the forearm (by rotating 

the radius on the ulna) and helps to flex the elbow. Acts only in rapid or forcible 

pronation. 

Deep Muscles (profund=deep) 

• The Flexor Digitorum Profundus (FDPm): Overlain entirely by FDSm. The only 

muscle that flexes the distal phalange of the finger. Assists in wrist (carpal) flexion. The 

tendon to the index finger is usually capable of independent action whereas the other 

three tendons act together. Acts alone in gentle digital flexion but works with FDSm for 

greater force /acceleration requirements. 
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• The Flexor Pollicis longus: a weak flexor of wrist and flexes the distal phalanx of the 

thumb (pollex/poUicis). Partiy overlain by the FDSm. 

• The Pronator Quadratus: is the main pronator of the forearm, supplemented by the 

pronator teres when there is a need for rapid or forcefiil pronation. Opposes the 

separation of the distal ends of the radius and ulna when subject to external thrust 

through the carpus. 

The Median nerve supplies all these above-mentioned muscles. The only exceptions being 

the Flexor Carpi Ulnaris supplied by the Ulnar nerve and the FDSm, which has the lateral 

half served by the Median nerve but the medial half served by the Ulnar nerve. 

This Anterior Flexor compartment is that group which is commercially chosen as a site for 

extracting one of the two actions, (open and close) that typify the commercially available, 

myoelectrically-operated prosthesis. The flexor signal is used to trigger one action (close) 

of a myoelectric prosthesis. 

2.2.2 . Posterior Extensors: 

The other action (open) is generally triggered from the site of the posterior extensor 

compartment of muscles, (see Figure 2.2) This group comprises: 

Superficial muscles 

• Brachioradialis is the most superficial muscle on the radial side of the forearm. Most 

active during rapid flexion and extension of the elbow/forearm. 

• The extensor digitorum (divided into 4 tendons) extends the wrist and extends and 

flares (abducts) the fingers. Opens hand to relax or prepare a grip. The extensor 

digitorum extends any single or all joints over which it passes i.e. wrist through to distal 
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interphalangeal joints. The extensor digitorum includes the extensor digiti(oruni) 

niininii(us) which extends the little finger (minimus) and the wrist (carpus) along with 

the extensor digitorum and also includes the extensor (digitorum) indic(us)es, a small 

muscle near the wrist which helps to extend the index finger and the wrist. 

• The extensor carpi radialis longus: (in co-operation with the brevis) extends and 

abducts the wrist. The longus is more active than the brevis when grasping or clenching 

• The extensor carpi radialis brevis: is shorter than and covered by the extensor carpi 

radialis longus. The brevis with the extensor carpi ulnaris extends the wrist. With the 

flexor carpi radialis it abducts the wrist. Along with the longus steadies the wrist 

during finger flexion. 

• The extensor carpi ulnaris adducts the wrist along with (see) the flexor carpi ulnaris. 

With the extensor carpi radialis longus and brevis and the digital flexors it acts to 

extend and fix the wrist in gripping or clenching the fist. 

• The anchoneous assists the tricepts muscle in elbow extension. May be responsible for 

movement (abduction) of the ulna during pronation. N.B. This latter action has not been 

adequately confirmed as stated in 38th ed. 1995 Grays Anatomy P. 624. This should be 

assessable using the results from mapping 

Deep muscles 

These muscles are generally covered by the superficial group although certain of their 

tendons and parts of the muscle outcrop just above the wrist. 

• The Extensor Indices: a small muscle arising near the wrist that helps to extend the 

index finger and the wrist. 
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• The Abductor Pollicis Longus: acts with the abductor pollicis brevis to abduct the 

thumb radially in the plane of the palm and extend the thiunb at the carpometacarpal 

joint. 

• The Extensor Pollicis Brevis: extends the proximal phalanx and metacarpal of the 

thumb. 

• The Extensor Pollicis Longus: extends the distal phalanx of the thumb. Along with the 

extensor pollicis brevis it extends the metacarpal and proximal phalanx. Further 

movement results in adduction of the thumb and its lateral rotation. 

The Supinator: which rotates the radius and works with the biceps brachii to supinate the 

forearm. For slow unopposed supination it acts alone. For fast or forceful supination it acts 

together with the biceps brachii. A heavy object, when lifted with the forearm pronated, 

will use the powerfiil supinators, along with elbow flexion, to lift and rotate the object 

along. 

These are the 19 muscles to be found in the forearm, and many more again are found in the 

hand. Together they produce 28 plus degrees of freedom in the hand and wrist. 

The mechanical "Pulley Action" of the finger, as a result of the some of these muscles, can 

be seen in Figure 2.5 [5] 
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RELATIVE MOVEMENT IN M M 

Annu l a r pulleys 

Figure. 2.5 The 4 figures above show how the finger tendons slide within the 
pulleys and produce the finger bending action. 
From: Grays Anatomy, 38*̂ . ed., 1995. 
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Figure 2.6 Extensor muscles of the forearm. The muscles in the centre column 
above, are those that are found within the forearm (elbow to wrist) and involved in 
the extension or wrist actions (seen in the column on the left). The colour code 
applies to those muscles normally assigned as sited either superficial or deep. 
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Figure 2.7 Flexor muscles of the forearm. The muscles in the centre column above, 
are those that are found within the forearm (elbow to wrist) and involved in the flexion 
actions. The colour code applies to those muscles normally assigned as sited either 
superficial or deep. The differing nerve sources are seen in the right hand column. 
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Figure 2.8 Muscles of the forearm involved in wrist, hand, and digit action. 
View (a) shows the deeper muscles, while View (b) shows the overlying superficial 
muscles. 
Adapted from "Principles of Anatomy and Physiology" by Tortora and Grabowski, 
Wiley and Sons, 9* edition, 2000. ISBN 0-471-36692-7 
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Figure 2.9 Muscles of the forearm involved in wrist, hand, and digit action. 
View (a) shows the deeper muscles, while View (b) shows the overlying superficial 
muscles. 
Adapted from "Principles of Anatomy and Physiology" by Tortora and Grabowski, 
Wiley and Sons, 9* edition, 2000. ISBN 0-471-36692-7 
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2.3 Myoelectric Signal (MES) Generation 

The muscle fibres (irmervated by the spinal cord motor nerves that carry the commands 

from the brain), generate the surface M E S signals that are detected. The surface E M S is 

the electrical manifestation of the neuromuscular activation associated with the contracting 

muscle. The signal represents the potential generated by the ionic flow across the 

membrane of the muscle fibres, which passes through the intervening tissues to reach the 

detection surface of the electrode [6]. 

The muscle fibre (cell) is like a very fine thread of diameter 0.01 to 0.1 millimetres and a 

length from a few millimefres to 30 centimefres. When innervated it will confract to about 

2/3 of its length. These muscle fibres do not confract in isolation and one nerve fibre wil l 

branch and innervate a group of muscle fibres within the muscle. This group of fibres is 

called a "motor unit". 

Even within one motor unit the moment in time at which fibre activation actually occurs 

varies (minutely) due to the different individual lengths of the nerve fibre branches within 

that group (motor unit). This is in addition to the random rate of release [7] within the 

motor unit group, of the chemical fransmitters (e.g. acetylcholine) at the individual 

nerve/muscle-fibre (neuromuscular) junctions (synapses). It is the release of these 

fransmitters that 'fires' the neuron [8,7]. 

The "InterPulse Interval" (IPI) refers to these 'firing' differences in the propagation 

potentials separated in time among the muscle fibres of a motor unit. [9,7]. 

The IPI varies from discharge to discharge due to variations in synaptic delay (accounted 

for by: (a) the amount of neurotransmitter released, (b) rise time and excitability of the end 

plate potential, and (c) the random nature of acetylcholine release). This variability in 
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firing response is known as "Jitter". Jitter has a standard deviation of about 20 s. Jitter is 

usually expressed as either the mean of consecutive differences (MCD) of the IPI which 

minimises the influence of slow trends, or as the mean sorted difference (MSD) which 

eliminates the influence of the firing rate. Firing rate (or interdischarge interval (DDI)) is a 

parameter that represents the inverse value of the InterPulse Interval ( M ) [see Figure 2.9]. 

The size of a motor unit, as a rule, is proportional to the "fineness" of the control action. 

For a fine action such as eye movement the motor unit size is small, around 10 fibres /unit; 

while for the larger lower limb muscles the motor imit size can be in the thousands of -

fibres/unit. To further complicate the matter the fibres of up to 30 different motor units 

may occupy/interpenetrate the same region encompassed by one motor unit [7]. Buchthal, 

using a 12 lead, multielectrode technique, looked at the human biceps brachii. He was able 

to show that the fibres of each motor unit were localized in an approximately circular 

region with an average diameter of 5 nrni.; with some reaching a spread of 20 mm. [10]. 

The rate at which the motor units are recruited (recruitment strategy) for use also varies. 

As a muscle is fiuther brought into action, (e.g. more strength is demanded in lifting an 

increasing load), then more motor units are increasingly recruited for use. The smallest 

motor units are controlled by the most easily excitable (i.e. lowest stimulus threshold) 

motor neurons. The neurons that activate the motor imit fibres do not transmit just a single 

impulse with its twitch only response, but rather the neurons emit volleys or streams of 

these impulses to the fibres. These volleys are composed of closely spaced impulses and as 

a consequence the fibres are stimulated repeatedly before each one has time to fully relax. 

This produces a "wave summation" that appears as a sustained state of muscle contraction 

(tetanus). 
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Figure 2.10 Shown here is a single twitch and its corresponding contractile force 
response. When a second action potential follows on quickly, before the muscle has 
relaxed, the result is a wave summation in which the overall contraction response is 
greater. As more action potentials arrive, the result is a wave summation called 
'unfused tetanus'. As the frequency of the action potentials increases, the wave 
summation becomes much smoother and is called a 'fused tetanus.' In a fused tetanus, 
stimuli are of the order of 80 to 100 action pps, and the contraction is steady and 
sustained. 
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Figure 2.11 Muscle fibre electrical activity. 

Thus, one way to increase the strength 

of contraction is to increase the 

frequency of the exciting stimuli (see 

Figure 2.10). This wave summation has 

other considerations. When a muscle 

has been at rest for an extended period 

the characteristic activity will be 

slightly different until the muscle has 

been warmed up by activation. As the 

muscle warms up (over a period of 

several contractile responses) it works 

more efficiently. A slightly stronger 
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Figure 2.12 Neuromuscular junction (motor end plate Diagram 
based on a 400x micrograph. From 'Introduction to the 
Musculoskeletal System' by Rosse and Clawson, Harper and 
Row, New York, 1970 

produced in each 

subsequent 

contraction (over 

that period of 

several contractile 

responses) in 

response to an 

otherwise equally 

applied stimulus. 

This is called 

"Treppe" or the 

staircase effect. 

A l l of these 

characteristics 

surroimding the firing action of the muscle fibres are detectable as features of the 

myoelectric signal (MES). 

Once the actual fibre has been iimervated the response of the fibre and its representation as 

a detected MES is shown in Figure 2.1L The point on the fibre, at which the 

neiuomuscular jtmction occiu"s, known as the endplate region, is usually found near to the 

middle of the muscle fibres. It is at this point where the fibre resfX)nse spreads in opposite 

directions along the length of the fibre {see Figure 2.12). 
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t i m e 

2.4 Myoelectric Signal 

(MES) Investigation 

Only the action potential of individual 

muscle fibres has been considered in 

Figure 2.13 motor unit action potential ^ . t » ; t r ^ *u /»?rTAr.v rigure 2.11. In fact the motor unit as a (MUAP) 

whole is triggered into action and the depolarisations, of the individual motor unit fibres, 

overlap in time. The result is an overall space-time superimposition of the individual fibre 

Action Potentials (AP) (see Figure 2.13) combined into one Motor Urut Action Potential 

(MUAP) [11]. The M U A P time duration varies between 1 to 13 ms. In order to sustain a 

muscle contraction the motor unit must be repeatedly fired. The resulting sequence of 
<y(t) 

II 11 "̂ '̂  M U A P ' s is called a Motor Unit 
Action Potential Train t ' 

^ (t) a Dirac delda Impulses 
h (I) = Impulse response ' 

Inter Pulse Interval (IPI) (MUAPT) (seeFigure 2.14). 

Figure 2.14 M U A P T as pulses with Interpulse 

Intervals (IPI's) Many different and 

intermingled M U A P ' s are fired to bring about an intended muscle activity with the 

resultant space-time superimposition of a niunber of M U A P ' s seen by the electrodes at the 

surface. 

At each increment in time, there occurs a smnmation effect as the result of these many 

changing variables. The M E S at the surface is the "blended" sum of the individual M U A P 

trains (̂ ee Figure 2.15 and 2.16) [7]. 
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Figure 2.15 M E S signal resulting from simmiation 
of 25 M U A P T ' s . Redrawn from 'Muscles Alive ' by 
Basmajian and De Luca, Williams and Wilkins, 1985. 
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Figure 2.16 M E S construction from M U A P frains 
(MUAPT's). Redrawn from 'Muscles Alive ' by 
Basmajian and De Luca, Williams and Wilkins, 1985. 

Investigators [12] have 

determined that the surface 

AdES appears to be a band 

limited stochastic process 

with a Gaussian amplitude 

distribution (with a 

bandwidth from D.C. to about 

500 Hz). Different models of 

the M E S have come up with 

variations on this "random 

signal" theme. A model by 

Deluca and Stulen describes 

the M E S as white Gaussian 

noise passing through a linear 

filter (signals representative 

of M E S spectrum are 

synthesised by varying the 

gain and filter coefficients 

[13,14]. 
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2.5 Muscle Fibre Types 

Fibres Are Categorised Into Three Types: [15] 

Type 1: The red (red in appearance) slow-twitch fibres. These are slow contracting 

oxidative fibres with large amounts of myoglobin using aerobic pathways with fat as the 

primary fuel. They split ATP at a slow rate and as a result the 'contraction velocity' is 

slow. They are extremely fatigue resistant and can contract for prolonged periods. As they 

are thin fibres, they produce less power than the thicker white fast-twitch fibres. 

Type 2: The red fast-twitch fibres. These are intermediate in size between types 1 and 2, 

and contain large amoimts of myoglobin, and very many blood capillaries. They split A T P 

at a fast rate and as a result, contraction velocity is fast. They are fatigue resistant but less 

so than type 1 fibres. Aerobic capacity is the fibre capacity to do work in short bursts using 

oxygen as a fuel. 

Type 3: The white (white in appearance) fast-twitch fibres. These are double the diameter 

of the red slow-twitch fibre, are fast contracting, and contract much more powerfully than 

the red slow-twitch fibres. They have a low myoglobin content and few blood capillaries 

They do however contain large amounts of glycogen using anaerobic pathways to split 

ATP at a fast rate so that they have a fast contraction velocity. As glycogen reserves 

deplete rapidly followed by a lactic acid build-up these fibres have poor endurance and 

fatigue easily. Note: Anaerobic capacity is the fibre capacity to do work in short bursts in 

the absence of oxygen. 

In each particular motor unit the fibres are all of the same type. Most muscles are of mixed 

fibre types and some muscles are dominantly, but not exclusively, of one fibre type. Some 
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people will have more of one type in some muscles than other persons might have and this 

difference is genetically determined. 

The contribution of the frequencies of these three fibre types to the overall M E S has yet to 

be determined. The pinkish or reddish appearance of the fibres is due to relatively large 

amount of myoglobin and blood supplied to them by their extensive vascularization 

The white fibres have a paler colour and are less vascularised. 

2.6 Electrode Signal Detection Method 

How Completely Can The MES Be Captured? 

Electrodes used on the skin surface can be broadly classified as wet or dry electrodes. Wet 

electrodes are fixed into place by a temporary sticky gel that has good electrical 

conduction properties. Dry electrodes have inferior stability for M E S detection (see motion 

artefact) and sensitivity to weak signals is slightly less. The great advantage to dry 

electrodes is their use in locating the best location for a particular M E S and their use in 

this research in exploring and mapping the arm MES. 

2.6.1 Electrode Materials 

Silver-Silver-Chloride Electrodes: Used with a 0.9% saline solution these 

electrodes have very low noise voltages developed between the pair of electrodes (half-

cell potential) and as a consequence are used by choice as reference electrodes in 

electrochemistry. 

Platinum-Black Electrode: A heavily chlorided silver-silver chloride electrode 

followed by platinimi deposition followed by chloriding once again results in an electrode 
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with the combined best properties of the (low impedance of a few ohms at 20 Hz) 

platinmn-black (platinmn on platinmn) electrode and the (low equilibrimn potential) 

chlorided silver electrode. 

The Silver-Black Electrode: If the silver chloride surface coating is then treated 

with photographic developer for 3 minutes, a dramatic reduction (to levels between l/20th 

and l/60th) in impedance, at all frequencies, is seen. The magnitude of the deposit wi l l 

vary with the required end use. 

Bare metals and polished metals in particular, have the lowest electrode-electrolyte (EE) 

series-eqmvalent capacitances. Thus roughened surfaces, an increase in the concentration 

of the electrolyte (skin-salts, moisture) and an increase in temperature, all increase the 

series-equivalent E E capacitance. 

2.6.2 Interfaces in the Signal Path 

Physiological signal 

Tissues 
Lowpass filter due to 
tissue anisotropy) 

Electrode/Electrolyte 
Interface 

(highpass filter) 

Bipolar Electrode 
Configuration 

(Bandpass filter) 

Observed Signal 
Recording Media 
(Bandpass filter) 

Anplifier 
(Bandpass Filter) 

Figure 2.17 Filter effects from signal source to observed M E S ). 
Redrawn from 'Muscles Alive' by Basmajian and De Luca, Williams and Wilkins, 
1985. 
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Both the tissue and the electrode (see Figure 2.17) filter the E M S while in the process of 

being detected. The characteristics of the observed E M S are a fimction of the apparatus 

used to acquire the signal 

as well as the electrical 

current (signal) generated 

by the membrane of the 

muscle fibres. When using 

surface electrodes the 

thickness of the fatty and 

skin tissues behaves as a 

low-pass filter, with gain 

and bandwidth decreasing 

approximately inversely 

proportional [11,16] to the 

distance between signal 

soiu-ce and detection surface (see Figure 2.18). For maximum signal information, the 

detection materials and technology need to be at their optimum. The orientation of the 

detection surfaces with the length of the fibres is critical in order to avoid signal loss. 

A bipolar (differential) amplifier configuration (when not D.C. coupled) behaves as a 

band-pass filter. Note however that this is only i f the differential inputs are balanced and 

the filter characteristics of the electrode/electiolyte junction are equivalent (see Figure 

2.19). 

Frequency (Hz) 
S 10 20 50 too 200 500 tOOO 2000 
• • I 1 1 1 1 1 1 

Figure 2.18 The Tissue Filter Function (TFF) is 
represented here as a decrease in the detected gain (in dB) 
of higher frequencies (over the range of 0-2000 Hz) as ' d ' 
increases (distance in mm. from active fibre to detection 
electrode). Redrawn from 'Muscles Alive ' by Basmajian 
and De Luca, Williams and Wilkins, 1985 
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FIGURE 2.19 Amplifier/electrodes filter fimction. As an op amp amplifies the 
difference in signal magnitude between the + and - electrodes, no signal gain (a) wi l l 
result when the situation ' D ' occurs. A l l multiples of ' D ' wi l l also be affected. Greatest 
gain will occur at (b). (For explanation see Section 2.6.7) Redrawn from 'Muscles 
Alive ' by Basmajian and De Luca, Williams and Wilkins, 1985. 

Bandwidth: The window of interest in the frequency domain determines the type of 

amplifier to be used, i.e. A .C . or D.C. coupled amplifier. Amplifiers designed for D.C. 

signals are required to minimise "drift" as a function of temperature. 

The "voltage decrement fimction" describes how the amplitude of action potentials 

decreases rapidly with distance e.g. the signal amplitude decreases by 75% at only 100 

micromefres from the signal-generating source. 

2.6.3 Electrolytes 

Human sweat composition is more than 99% water (99.2 %- 99.7 %) and can be 

considered to be a weak saline solution of concenfration between 0.1% and 0.7%. 

The surface of the skin, where an elecfrode is placed, is coated by a weak saline (sweat) 

solution mixed with the oily secretion from the sebaceous glands. The sebaceous glands 
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produce an oily substance that passes up the hair follicle to protectively coat the sinface 

hairs. These secretions coat the layer of dead cells (which is the point on the signal 

pathway that gives the highest resistance to the signal). 

2.6.4 Noise Problems: Corruption Of the MES by Noise 

The myoelectric signal sample looks very much like electrical noise with the greatest 

peaks relating to strong muscle force exertions. The most useful range of strong surface 

detectable M E S activity is from 20 H Z to 500 Hz. The M E S detected is of the order of 1 

microvolts to 100 microvolts peak to peak. Amplification of this very small signal is 

necessarily required and it is of the utmost importance to avoid infroducing electrical noise 

into the amplification process [17,7,8] 

Note: The R M S (root mean square) commonly used as a method of measuring a detected 

signal, seriously accentuates the peak values at the expense of the lesser values: e.g. the 

result of squaring a value of 2 is a doubling while squaring a value of 3 is a tripling. A 

common solution is to find the mean absolute value by using a fiill-wave rectifier circuit 

[18]-

Mains noise: is the most intrusive noise source (50 Hz east of the Atiantic or 60 Hz west 

of the Atiantic). This noise is generally the mains signal radiating throughout the 

environment, emitted by domestic supplies from embedded or equipment wiring sources. 

When using unshielded signal cables and/or imbalanced input impedances, these unwanted 

mains signals might need to be removed with a notch filter. 

Thermal noise: is generated by elecfrodes. This property is proportional to the square root 

of the resistance of the detection surface. The problem may be reduced by cleaning the 

elecfrode contacts and by using a large surface to minimise the resistance. 
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Motion-Artifact noise: can produce signal bursts much greater in amplitude than the M E S 

(with subsequent malfunction of the prosthesis) [19]. 

Motion-artefact noise occiu-s in two locations: 

1) At the electrode-tissue interface i.e. "relative movement" between the tissue 

and the electrode. A lack of chemical equilibrium exists between any two differing 

materials (each having dissimilar electrical properties) in contact with each other. This 

inequilibrium generates a polarisation potential. Relative movement at the interface of 

these materials will modulate the polarisation potential that produces an A.C . waveform, 

though of a low frequency natm-e (less than 30 Hz). Another variation is "skin potential". 

Normally a voltage of about 20 millivolts exists across the layers of skin (believed to be a 

result of the dead skin cells migrating towards the surface). This voltage varies as the skin 

is stretched, such as when the limb is moved and the muscles contract beneath the skin. 

Abrasion of the skin surface reduces this effect as the voltage across the skin layers is 

shorted out [7,17]. 

2) . Induced Leads Noise: is also generated at the leads coming off the electrodes 

as the wire (lead) is moved through a magnetic field, such as the 50 Hz fields that 

permeate rooms. The voltages generated can be of the order of several milhvolts and can 

thus seriously contaminate the MES. When the input impedance of the amplifier is very 

high, this small, induced ciurent can produce a high voltage across the amplifier-input 

terminals [7]. Lead length must be kept as short as possible (located within 10 cm. of the 

electrode) and not subject to movement. The necessity of this precaution is increased when 

using amplifiers of input impedance greater than 10 megohm. 
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Seebeck (thermoelectric) noise: When a closed conducting circuit comprised of two 

conductors of dissimilar metals has a temperature difference between the metal junctions, 

a thermocouple is created with high thermoelectric potential of about 35 microvolts 

/degree C. Such a condition exists in a typical integrated circuit, with kovar (the standard 

IC lead material), and copper tracks. Thus care must be taken to ensure that all 

cormections remain isothermal. 

2.6.5 MES Signal Amplifier Selection 

It is not recommended to use D.C. amphfiers for the following reasons: 

1) The D.C. polarisation potential, found at the skin/electrode junction, might be greater 

than or equal to the detected M E S signal. 

2) The lead wire may generate motion signals of low frequency, less than 20 Hz, and 

present these for amplification. 

3) Signal content below 20 Hz is unstable, highly variable, and not necessarily related to 

desired signal activity. 

Rau (1974) [7] reported that in order to improve M E S signal detection, the suppression of 

the influence of skin impedance is necessary. Variations in skin resistance and signal 

pathways result in a decrease in the result of the recorded lower frequencies. In order to 

decrease the inaccuracy of skin resistance variations to about 5 per cent, the input 

impedance of the amplifier needs to be a minimmn of 10 times the maximum skin 

impedance. 

S. Roberts 76 Chapter 2 



2.6.5.1 CMRR (Common Mode Rejection Ratio) 

In the real world, perfect noise cancellation does not occur due to both imperfect 

subtraction in the amplifier (gain imbalance and non-linearities) and to the noise signal, 

not necessarily being applied as common mode. The latter failure in noise reduction could 

be the result of a non-uniform, physical structure (anisotropic or non-isotropic) in the 

signal pathways or impedance characteristics of the pathways to each of the inputs. 

C M R R : This is the ratio of the common-mode voltage gain to the common-mode error 

voltage gain. Common-mode gain ( A ^ ) is the ratio of the change in output voltage to the 

change in conunon-mode input voltage (i.e. the input to output gain for voltages conmion 

to both inputs). The differential gain, i.e. normal-mode gain (A^) , is the gain between 

input and output for voltages applied across the two inputs (differentially). Thus C M R R is 

the ratio of ( A ^ ) to ( A ^ ) . C M R is the logarithmic expression of the CMRR. 

i.e. C M R = 20 C M M R . e.g..a C M R R of 10,000 yields a C M R of 80 dB 

As the C M R increases, the common-mode output error signal does not increase with gain. 

This does not also mean that the error signal decreases with gain. 

In an ideal set up, a high value of C M R R would produce a cancellation of noise signals 

imposed upon the bipolar inputs of a differential amplifier [20]. 

i.e. Amplified signal: = G A I N (signal A - noise) - (signal B + noise) 

= G A I N (signal (A-B)) 

In an instrumentation amplifier, degradation of common-mode rejection is caused by a 

differential phase-shift due to differences in distributed stray capacitances. Shielded cables 

are commonly used to minimise the pickup of noise, but the shielding increases input 

capacitance. This in tum degrades the settling-time for signal changes. Any imbalance in 
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the source resistance between the inverting and non-inverting inputs, when capacitively 

loaded converts the common-mode voltage into a differential voltage. This can create 

common-mode errors unless the shield is properly "driven". A .C . common-mode rejection 

deterioration can be improved by "bootstrapping" the capacitances of the input cabling 

thus minimising differential phase shift. 

To preserve the high C M R R it is necessary to use the first stage of amplification as a imity 

amplifier. 

Note: Skin-electrode impedance ranges fi-om 200 ohms to 2 Megohms (Rau, 1974) [7]. 

In order to decrease the inaccuracy of the measurements to 1% or less, the input 

impedance of the amplifier needs to be at least 50 times greater than the skin-electrode 

impedance. This will assist in the flat measurement of the fi-equency response, at least 

fi-om lOHZ to 100 HZ. 

A n electrode-electrolyte interface can be equated to a series resistance and capacitance 

circuit, the values of which vary inversely with the square root of the frequency, i.e. 

V7 
Comparing the resistance to the overall reactance shows them to be very nearly equal and 

varying inversely with the square root of the frequency. 

2.6.6 Signal Reliability 

The reliability of the detected M E S as a repeatable phenomenon is dependent upon a 

number of factors. If the muscle is small and close to the surface, the elecfrodes may need 

to be sited accurately to within a few millimefres. If the muscle is large or deep, then 

elecfrode placement may vary by a few centimefres without affecting the MES. Amplitude 
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variations in the M E S may result due to skin impedance changes. Frequency shifts may 

occur due to fatigue, amplifier bandwidth, timing of M E S sampling, and the physiological 

and anatomical differences between individuals. 

2.6.7 Bipolar Filter Function (see Figure 2.19) 

When an M E S is generated, it passes through the skin layers. When detected at the skin 

surface there is a different frequency response by the differential amplifier inputs 

according to the actual distance between the surface electrodes. When the distance D (see 

Figure 2.19) that separates the electrodes is the same as the wavelength of the myoelectric 

signal, the response of the amplifier is at its minimum. This is because each of the op-amp 

inputs experiences the same amplitude and thus acts as in common mode to the signal and 

the signals cancel out. When the signal wavelengths are 2D, the signals at the two op amp 

inputs are at opposite signs, and are thus at a maximal difference. The amplifier then gives 

maximum amplification to such a signal. The resulting response of a differentia] amplifier 

is thus clearly also a fimction of the physical distance between the two input electrodes. 

Surface size of electrodes should be made ideally as large as possible, but advantages of 

large size diminish with diameters of greater than 5 mm. due to the loss of muscle 

selectivity and an increase in crosstalk (i.e. the swept region may encompass more 

muscles). A major question with respect to selectivity is how far apart to place the 

electrodes i.e. the detection surfaces? The standard spacing recommended is 1.0 cm. for 

surface electrodes. This is a compromise to ensure adequate high frequency response 

without loss of selectivity of swept muscle area. 
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The bandwidth (bw) of the detected M E S signal increases as interdetection surface (D) 

decreases, i.e. bw oc — 
D 

A n increase in interelectrode spacing and the associated reduced bandwidth results in an 

increase in the signal-to-noise ratio. With increases in interdetection surface spacing comes 

a greater susceptibility by the electrode to detecting measurable E M S amplitudes of 

adjacent and/or deep muscles. 

A rule of thumb for surface electrodes is that the electrodes will detect measurable signals 

from a distance equal to the interdetection surface spacing [7]. Note however, that the 

anisotropy of the tissues beneath the electrode may produce signal cross-coupling at the 

electrodes. 

From the previous discussion we have now some reconmiendations for: 

Desirable Amplifier Characteristics 

• Output gain of approx. 500 to 1000 

• Input impedance >10 Megohms in parallel with 5pf. capacitance. 

• CMRR>130dB 

• Less than 20 pA input bias current 

• Less than 5 fiv (RMS) noise floor. Valid E M S signals start at 10 // v to 20 fiv 

• 3dB Bandwidth (for surface electrodes): from 20 to 500 HZ 

For general purposes the low frequency 3dB point should be set to 20 HZ and the high 

frequency point should be set slightly higher than the highest frequency of interest. 
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2.7 Analysing the Detected M E S 

2.7.1 Time Domain Analysis (TDA) 

In the time domain the M E S can be approached as: 

• a specific deterministic signal [21] 

• a deterministic signal with random noise disturbances 

• a stochastic signal 

• a stochastic signal with trends e.g. transients, biases 

2.7.2 Frequency Domain Analysis (FDA) 

In the fi-equency domain, the M E S can be seen as a power density fi-equency spectrum 

drawn from the time domain characteristics. 

2.7.3 Time-Frequency Analysis (T-FA) 

The most common signal analysis method. Time Domain Analysis (TDA), e.g. the 

oscilloscope, provides a measure of the signal amplitude as it changes in time. 

This is a different story from the Frequency Domain Analysis (FDA) commonly 

encountered where a signal is captured over a period of time and the (FDA) provides a 

measure of the power contained in the frequencies that existed for the whole duration of 

measurement. So time and frequency analysis do not fiiUy describe what is happening in 

the signal. 

With Time-Frequency Analysis (T-FA) the purpose is to understand and describe the 

"frequency content of a signal changing in time". With T-FA we learn of the frequencies 

that existed at each moment of time [22]. 
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150 175 200 225 250 275 300 325 350 
F R E Q U E N C Y (Hz) 

p o w e r s p e c t r u m 

The common tool 

for frequency 

domain conversion, 

the Fourier 

Transform, tells of 

the frequencies that 

existed for the total 

duration of the 

Figure 2.20: The Time-Frequency distribution of a whale soimd over a 1.5-second 
duration. The time-frequency plot shows how frequencies are 'changing' with time. 
The energy density (power) spectrum shows the total summation of the individual 
frequency components but doesn't tell you at what moment they were produced 
throughout the 1.5-second period. From: 'Time-frequency signal analysis', by B. 
Boashash, (1992) ISBN 0-582-71286-6. 

signal and not the frequencies that exist at a particular time. This can be seen readily in 

Figure 2.20, which shows a representation of a 1.5 second duration sound produced by a 

whale over a spectrum of 150 Hz to 350 Hz [22]. 

Muscle fibre conduction velocity, muscle fibre size and type, and motor unit firing 

rate/recruitment sfrategy all influence the power specfral content of the MES. 

During confractions of the muscle, as the force increases so does the recruitment of the 

larger motor units composed of larger fibres. It is the changes in sfrategy used by the 

cenfral nervous system to recruit motor units that may be part of a detectable process that 

can be used in feedback confrol of applied force in a myoelecfric prosthesis. One method 

used is the decomposition of the Interference Pattem (IP). The IP is the sum of the action 

potentials produced by each active motor unit. 
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Figure 2.21 De Luca's model of the M E S signal as a summation of 
M U A P T ' s as detected by an electrode. Adapted from 'Muscles Alive ' 
by Basmajian and De Luca, Williams and Wilkins, 1985. 

One well-

known 

observation 

with regards 

to the spectral 

content of the 

M E S is that 

of the shift 

toward lower 

frequencies 

during a 

sustained 

contraction. This frequency shift may be a result of the widening of the time domain 

shapes of the MUAP's . Laboratory experiments have also noted a reduction in overall 

signal amplitude during a sustained contraction (fatigue). 

2.7.4 Modelling the MUAPT 

De Luca, [7,11] modelled the M E S signal as a linear, spatial, and temporal, summation of 

the M U A P T ' s , as detected by the electrode (see Figure 2.21). Figure 2.21 can now be seen 

as a combining of the concepts introduced in Figures 2.12, 2.13, 2.14, 2.15, and 2.16. In 

Figure 2.16 ihe M U A P T is decomposed into a sequence of Dirac delta impulses 5 (t), 

which are then passed through a filter with impulse response /2,(r) Each impulse marks the 
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time occurrence of a M U A P T with filter output where / indicates a particular 

MUAPT. 

As mentioned the random character of the M E S has been observed and so we need to 

consider this feature in any model. 

2.7.5 Mathematical Analysis 

Using DeLuca's [7,11] notation we have: 

a firing rate for a motor imit denoted as k (t, F) 

where: t= time and F=force. 

Thus the firing rate is considered to be a fimction of time and force. 

Given an InterPulse Interval (IPI) histogram with a probability distribution fimction: 

+00 

the inverse of which will be the firing rate, we have: I (t,F) = [ jjc/?^ (x,t,F) dx ] ' ' (Equ. 1) 
-OO 

n 

Now if we describe the (Filter Input) Dirac impulse train as: 5i(t) = ^d{t-t^) (Equ. 2) 
k=\ 

where integer / denotes a particular M U A P T 

n 

Then we can describe the (Filter Output) M U A P T u.^t) as: u^{t) = ^h^{t - ) (Equ. 3) 
k=\ 

where ^/t = X/-i'̂ ' ^'^^ 1,2,3,... n 

represents the time locations of the M U A P ' s , 

r is a real continuous random variable, 

n the total number, of IPI's in a M U A P T , 
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volts X represents the IPFs, 

and / , k, I are integers which denote 

specific events. 

Figure 2.22 The signal in figure p^^^ expression for the 
2.13, IS here rectified, to be shown 
as the area under the motor unit 
action potential 

E { l " , ( ^ O I } = 1 Ut,F)\Mt-t)\dt 

M U A P T Mean rectified value: (E) 

(Equ. 4) 

This value denotes force output of the muscle. where r is a dunmiy variable, 

and Mean-Squared value: 

M S | « , ( / , F ) | = J X,{t,F)hl{t-t)dt 
0 

(Equ. 5) 

volts A De Luca suggests that since l ( t , F) is slowly time 

:^ varying the above expressions can be reduced to: 

00 

E{ |« , ( / ,F ) |} = | \h,it)\X,{t,F) dt (Equ. 6) 

Figure 2.23 The signal in ° 
figure 2.13 is here shown as 
the area under the square and: M S | w,(^F) | = f | h^{t)X,{t,F). dt (Equ. 7) 
(whose square root is the R M S o 

A A 

In (Equ. 4) the term: \h^{t-t)\ is dropped out and reduced to (r) in (Equ. 7) 

In each of the last two expressions the first term on the right side of the equation has 

become a scaling value and is time independent. Thus we have a model of the MUAPT 

reduced to an expression of the firing rate multiplied by a scaling factor (/ẑ  ). 

De Luca presented the Mean Rectified and the R M S model expressions particularly well, 

as shown in Figure 2.24 
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Figure 2.24 Parameters of the summed |MUAPT's as seen as mean rectified and 
R M S expressions and the relationship to their generated physiological origins. 
Note: no inclusion for filter effects and dynamic changes has been introduced. 

From 'Muscles Alive ' by Basmajian and De Luca, Williams and Wilkins, 1985 

where: Synchronisation is represented by the CI{T) term 

m refers to the observable E M G signal 

V denotes the Number of M U A P T ' s that are cross-correlated 

T the normalised contraction time 
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(p the normalised force 

K.'t:',(p) generalised firing rate 

/z^(r) mean rectified filter impulse response (see also Equ. 6) 

/zf (r) mean squared filter impulse response (see also Equ. 7) 

l{t,F)di non-positive term for cancellation due to superposition of opposite phases 

The M U A P T model carmot be directly observed (except for using decomposition 

techniques, great difficulty is encountered in observing the individual fibre potentials 

within the M U A P T ) as every motor unit is interwoven in the muscle region with many 

other motor units. Any portion of the muscle may contain fibres belonging to 20 to 50 

motor units!! The situation at the surface recording site just gets more complex as 

superposition of M U A P T S occurs; along with signal cancellation at points where opposite 

phases (positive and negative signal excursions) occur, encroaching cross-talk of muscles, 

filter effects of tissue, electrodes, instrumentation and extraneous noise sources. It is after 

this journey that we finally observe what we refer to as the MyoElectric Signal (MES). 

This mathematical model is a crude simplification of the generation of an M E S and no 

spectral qualities can be fully described No provision has been made for fibre type. Other 

much less well-detailed mathematical descriptions have been presented by other authors 

and as such have practical shortcomings. 

2.8 What Can We Do With the MES after Detection? 

2.8.1 Recognition of Signals / Software Dependency 

The random element of the M E S necessitates that, for signal recognition to be successful, 

some intelligence (expert knowledge) and probabilistic processes are incorporated into the 

S. Roberts 87 Chapter 2 



recognition algorithm. It is the apparently non-deterministic appearance of the surface 

M E S that, in the past, has restricted the M E S to its common Mean-Rectified-only usage. 

2.8.2 Software Methods for User Acceptability 

It will be necessary to detect the onset of an intended M E S and then quickly sample the 

signal using the exponential averaging process (or a modified version). To miss the onset 

or transient of the signal, will record a signal of less-well defined frequency and of lower 

amplitude. 

The basis for transient detection wil l require a continuous sampling process of at least I 

K H z (assuming a 450 Hz maximiun bandwidth), with sampled data continuously being 

updated in a small memory block and retrieved for fiirther processing when an M E S 

(signal strength threshold) is detected. At this stage, the sampled data is passed on for 

digital filtering, followed by presentation to a Neural Network. There a decision is made as 

the probability of an intended user action and the consequent execution of that action by 

the prosthesis. 

2.8.3 Time Constraints for User Acceptability 

2.8.4 The 200 ms. MES Signal Generation Period 

This 200 milliseconds (ms.) time slot is the window in time in which all user generated 

M E S information/frequencies (that are to be utilised to direct a user intended prosthetic 

action) must be produced. This allows any slow moving frequencies, down to 5 Hz, (200 

ms. duration), to be captured for feature purposes. 
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2.8.5 The 300 ms. Capture Period 

Research has determined that a 300 ms delay (where: delay = measurement + processing + 

action) between user muscle action and prosthetic response is acceptable for a practical 

sampled data system. With only a few averages of the continuously sampled signal a small 

delay in response to the user action occurs. This delay wil l be well within a 200 ms delay 

period. The task will be to keep all computing time before response, to within the 

acceptable range. 

2.8.6 The 500 ms. Response Limit 

Prosthesis reaction times have been shown to be very important i f the amputee is to 

successfully adopt the usage of any prosthesis. Too slow a response and the amputee wil l 

abandon the prosthesis in frustration. A half second (500 ms.) maximum has been 

observed by the prosthetics community as the user acceptable limit for a delay between 

muscle activation and prosthesis activation. The inertia of the mechanical prosthesis must 

then be included in the delay calculations. 

2.9 Summary 

As stated in Chapter 1 the objectives of the research are; 

• l)-to investigate the information content of a M E S . 

• 2)-to study the nature of the Tissue Filter Function (TFF) 

• 3)-to map and identify optimimi upper limb (forearm) myoelectric sites 

• 4)-to analyse the mapped data for frequency content and other unique identifiers 
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• 5)-to recommend the practical application of the M E S analysis for control 

purposes 

• 6)-to provide a greater range of user-generated control signals. 

This chapter has made progress on objective: 

• l)-to investigate the information content of a M E S : The physiology of muscle 

activity has been introduced and the Motor Unit Action Potential (MUAP) can be 

seen as a unit of measure used in past research along with its stochastic 

description. The importance of accurate and optimal capture of the M E S has been 

emphasised. The pathway of the M E S and its interface with recording/detection 

instruments is examined and conditions defined. Noise problems are identified for 

consideration. The useable bandwidth is identified from past research and wil l be 

checked in chapter 3. The limitations of separate Time and Frequency analysis are 

presented and the preference indicated for a combined Time-Frequency approach 

(Figure 2.20). The most common mathematical model description is introduced 

and its weaknesses pointed out. The anatomical examination explains how the two 

fundamental actions of the forearm muscles (flexion or extension) can be grouped 

within a superficial layer (sited just below the skin surface) or a deep layer (sited 

below the superficial layer). The taxonomy tends to fiirther describe the flexors 

(flexion) as contained in the anterior compartment of the lower limb and the 

extensors extension) as contained in the posterior compartment of the lower limb. 

This compartmentahsation is for convenience only, and should not be assumed as 

exclusive; as the detected surface M E S from both flexion and extension activity 
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can be found to overlap and interpermeate the other 'compartment' siuface 

regions. Muscles are not exclusively all superficial or all deep, but are 

proportionally so. See Figures 2.6-2.7 pages 59-60 for a helpful classification of 

all upper limb actions. This list was put together by the author firom a number of 

sources (all experts but not all in expert agreement) and represents the generally 

agreed upon functions. The juxtaposition of the muscles within the forearm is 

important in determining the M E S pathway to the surface detection-electrodes. 

The critical question of complete detection of the M E S so that all information can 

be gathered for analysis is dealt with in depth. Electrode technology for optimal 

sensitivity is explained and the need for vigilance and design for minimising the 

intrusion of unwanted signal noise is detailed. The design criteria for an 

appropriate detection amplifier are specified. (This will be seen to be met in 

chapter 3). The M E S generation was described from the scale of the individual 

muscle fibre and the action potential (AP) generated when fired by the arrival of a 

nerve impulse to the collected mass of these fibres into what we call the muscle. 

The motor units are seen to irmervate varying sized groups of fibres, according to 

the needs and demands placed on the muscle, at any particular point in time. The 

nature of the neurofransmitter activity is seen as a random process, as is the firing 

of the fibres, because of the varying signal pathway lengths within the motor units. 

Invasive signal detection at the muscle fibre site is seen as highly complex but 

limited in perspective. A large number of invasive elecfrodes would be needed to 

gather a full picture of the signal activity in any muscle at any one time (due to 

rapid signal loss over short distances, (i.e. one cannot see the forest for the frees). 
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However, it is also shown through the summing action of the Motor imit Action 

potential Train (MUAPT), how the detailed information about the small-scale 

signal generation is lost. 

• 2)-to study the nature of the Tissue Filter Function (TFF). The TFF is expanded 

upon and graphically represented in Figure 2.18. 

• 3)-to map and identify optimum upper limb (forearm) myoelectric sites: by 

breaking down the actions of the hand into a basic simplified structure from which 

a practical range of useful hand actions can be established and those actions and 

associated M E S explored on the arm surface. A simplified geometry of hand 

movements was developed with a feasible range of 12 hand actions that could 

cover most manipulative needs. With this as a confrol signal target, the discussion 

moved on to see the human hand action, through the muscles of the upper limb, 

could provide an anatomical parallel to the simplified geometry and actions. 

• 4)-to analyse the mapped data for frequency content and other unique identifiers: 

The three types of muscle fibres are described. These fibres have different 

confraction rates and different muscles have different 'mixes' of these fibre types, 

according to the 'type' of activity expected of the muscle, either in stamina, power, 

or speed The relationship between the detected M E S and the fibre types has been 

undeveloped in the literature and will be later developed by the author. Time-

domain, frequency-domain, and time-frequency-domain analysis are briefly 

examined for their merits. The relatively long duration of the M E S window (from 

a few hundred milliseconds to several seconds) is compared to that of a whale 
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sound over a similar interval. This is intended to illustrate the problem with 

assuming the adequate capture of sufficient signal information that would lead to 

the fiill reconstruction of the original signal. Time domain is seen to be two-

dimensional, and power spectrum also, a two dimensional measure. It is only when 

seen as time-frequency that the fiill dimensionality of the signal can be 

appreciated. Anything less is at best only a partial capture and the whale sound 

would never be known. A gathering together of the fibre action potential and its 

fransformation into a M U A P T and finally the detected surface MES is given a 

mathematical synthesis (model). The necessary simplicity of the model is 

mentioned and improvements are seen within the consfraints of timing, 

detectability, cross talk, filter effects and instrumentation. 

• 5)-to recommend the practical application of the M E S analysis for confrol 

purposes: The M E S is presented as a candidate for pattem recognition by a neural 

network. Practical time consfraints for determining the user (amputee) take-up 

requirements for a fimctional prosthesis, is seen against the summed time constant 

of, signal generation (200 ms.), capture (300 ms.), and mechanical inertia response 

(500 ms.). 

• 6)-to provide a greater range of user-generated confrol signals: A simplified 

geometry of hand movements was developed with a feasible range of 12 hand 

actions that could cover most manipulative needs. 
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Chapter 3: Experimental Method 

3.1 Methods used to examine the Surface M E S 

There are few clearly distinguishable features to be seen when recording the E M S over an 

active muscle for a random 1-second (1000ms.) period. 

Figure 3.1 shows the M E S time-Q5 
04 
Q3 
Q2 
Q1 

• 

-0.3 

volts 
S e r i e s 1 
w r i s t f lexio n 

wristO 

Figure 3.1 M E S time-domain recording of a 
flexion of the wrist taken over a period of 800 ms. 

domain response recording of a 

flexion of the wrist. The recording 

was taken over a period of 800 ms. 

The wrist flexion MES is the most 

common signal-source used to 

trigger/drive commercial 

myoelectric prostheses. 

Figure 3.2 shows the MES time-domain response to flexion of the ring finger taken over a 

period of 150 ms. 

Time-domain Figures 3.1 and 3.2 

were recorded by the author using the 

Liberty Electrode M Y O l 15, general-

is? leaisnaa purpose a/d converter, DADiSP 

time msec 
software, and presented using Excel 

5.0. Sampling rate was 1 KHz. 

Figure 3.2 M E S time-domain recording of a 
flexion of the ring finger taken over 150 ms. 
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3.2 Time-Domain Analysis of M E S signals 

The commercially available prosthetic hands are only set to look at the gross muscle 

activity as seen in Figure 3.1. The signal is bridge rectified to change the alternating 

components into a D.C. signal, and then integrated (summed) to produce a gross signal 

voltage. A l l frequency information is thus lost. 

3.3 Frequency-Domain analysis of MES signals 

The surface working M E S frequency range, for skeletal muscle such as that found in the 

forearm, is from 30 to 500 Hz. Generated activity at less than 30 Hz does exist but tends to 

be obscured by movement-artefact signals [1] and is best left out of the spectrum. 

Movement-artefact occurs when the elecfrodes move relative to the skin surface. The rapid 

loss of contact followed by a reestablishment of contact induces an exfremely large signal 

at the elecfrodes that swamps the actual M E S . The frequency induced is quite low i.e. in 

the 10 to 30 HZ range. As mentioned in Chapter 2 the unwanted mains frequency at 50 Hz 

(UK) may be readily picked up by the M E S fransducer. M E S surface activity above 500 

Hz also exists, but due to the filter action of the tissue (see Chapter 2), is of rapidly 

declining amplitude. Hence, it may be ignored for most practical investigations that relate 

to surface MES. In accordance with accepted Nyquist rate sampling requirements for the 

accurate capture and digitally reconstruction of an analogue signal, the higher bandwidth 

frequency of 450 Hz was always set at a sampling rate of no less than lECHz. on the HP 

3566A analyser. 
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3.4 Selecting a Suitable M E S Source 

For convenience, the signals off a non-amputee arm were examined. Past research suggests 

the results should be as equally valid as i f an amputee were used [2]. 

Before applying the electrodes to the surface (of the skin), the skin was thoroughly 

cleaned of oils, dirt, and loose, dead skin. A n alcohol swab was followed by a proprietary 

skin cleaner/abrasive. 

3.5 Equipment used to detect the M E S 

For these M E S investigations, frequency analysis equipment from the following 

manufacturer was used. 

Hewlett Packard, 3566A Low-Frequency Spectrum Analyser 

For these investigations, E M G equipment from the following two different manufacturers 

was used. 

1. ) Digitimer Ltd., Neurolog N L l 80 isolator and N L 125 filter [3] (See manufacturer 
for details) 

2. ) Vickers Medical, Medelec Sapphfre (See manufacturer for details)[4] 

For these investigations, detection elecfrodes of two types were utilised (from two different 

suppliers). 

1. ) Dry-Type 

Liberty Mutual: M Y O l 15 with 54dB gain, (See Appendices p. 244 for details [5]). 

2. ) Wet- Type 

Nicolet: (019-400400) disposable silver/silver-chloride elecfrodes 

Note: other suppliers of wet type elecfrodes were tested at a later period (as they became 

available) but no differences in frequency response were found. Final choice of wet type 

suppliers came down to the following differences: 

cost, size, flexibility, durability, reusability and skin-reaction (allergy). 
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3.6 The Hewlett Packard (HP) 3566A 

Low Frequency Spectrum Analyser 

The Hewlett Packard 3566A Low-Frequency Spectrum Analyser comes with a Windows-

based software interface nmning on a 486 DX33 PC through an IEEE conmiunications 

bus. The following two types of electrodes (commercial products) were tested with the HP 

3566A 

• Disposable silver/silver chloride electrodes (Nicolet -019-400400) 

• Liberty Electrode M Y O l 15 

After activation of the flexor muscle group, subsequent signal pickup, amplification by the 

Liberty electrodes, frequency analysis and video presentation, the visual appearance of the 

myoelectric signal (MES) in its real-time spectral response appears to be devoid of clearly 

defined and repeatable spectral characteristics. In fact, the same muscle activity appears to 

elicit a different frequency response each time over the given range 

However, by using the HP 3566A/3567A software averaging (Exponential or Peak Hold) 

on the M E S , a definite difference between two activities, ring finger action and wrist 

flexion, can be detected at the same elecfrode site {see Figure 3.6). 

Note: Exponential or Peak Hold averaging are two types of 'window' fimction that 

analyse the M E S time slice in different ways. It was the exponential averaging that was 

chosen as a basis for the later mapping of the arms. 

For a discussion on the HP 3566A/3567A methods of averaging, see Appendices page 240. 

There is an upward shift in the frequency response - i.e. an increase in the high frequency 

response along with a decrease in the low frequency response, - for wrist flexion versus 

ring finger flexion, showing clearly different and repeatable frequency peaks (Figure 3.6). 

These peaks can be used with digital filters to identify the different actions. 
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3.7 Using the Digitimer Ltd., Neurolog NL180 Isolator 

Amplifier and N L 125 Filter 

The Neurolog equipment uses the standard Nicolet E M G silver-chloride stick-on 

electrodes using an approximately consistent electrodes spacing of 1 to 2 cm. As 

mentioned in Chapter 2 the ideal spacing is approx. 1 cm for the greatest bandwidth 

detection. Considerable experimentation over a range of sites on the arms using different 

muscles, showed measured bandwidth variations such as: 

• No discernible difference with up to 5cm separation at some sites on the arm 

(associated with the thicker, fatty areas of the arm) 

• Significant bandwidth variations according to the orientation of the electrodes (i.e. a 

90 degree change in orientation of the electrodes) with respect to the axis of the arm 

(observable as the electrodes moved away from the source) 

• Significant bandwidth variations according to orientation of the muscle fibres with 

respect to the axis of the arm and electrodes e.g. the wrist contains a muscle 

(quadratus) that is oriented 90 degrees to the long axis of the arm (unlike the more 

typical orientation of muscles that run very nearly parallel to the long axis of the arm) 

Note: These variations were also foimd on all subsequent combinations of E M G equipment 

and electrodes. 

These variations lend support to the view that a considerable loss of any generated higher-

frequency signal takes place, prior to electrode detection, due to the tissue filter effect. 

3.8 The Vickers Medical: Medelec Saphire 

The Medelec equipment has potentially very low noise levels (see Figure 3.3 above) as 

shown on two separate test files that shows basic S/N levels superior to both the M Y O l 15 
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and Neurolog equipment. The noise that did appear was due to the proximity of the mains 

power leads to local equipment. Care had to be taken, when setting up a signal detection 

enviroTunent, to optimise the position of signal wires (relative to mains and noise sources). 

Without this extra care, the noise levels were of the same order as the M Y O l 15. 

Theoretically, the lower noise levels may be a result of the superior noise characteristics of 

silver chloride versus stainless steel electrodes. 

The Medelec equipment produced an observed frequency bandwidth slightly wider than 

the M Y O l 15. This is probably due to an improved (flatter) Medelec amplifier response 

(operational over a 0.1 Hz to 10 kHz bandwidth) rather than due to the sensitivity of the 

silver chloride elecfrodes. Neurolog also used the silver chloride elecfrodes but did not 

show a significant improvement in bandwidth. Due to the impossibility of generating 

identical signals (to be seen by the different equipment) it was not possible to exactly 

quantify the bandwidth improvement, but a slight improvement in response (between the 

Medelec and the Liberty), in the range 450 Hz to 600 Hz, of up to 50% was seen. It needs 

to be noted that this gives only a marginal, overall, frequency-improvement due to the very 

low energy content in this region of the spectrum i.e. 50% more of a small amount overall 

is still a small amoimt. Once again, experiments in changing the inter-elecfrode distance 

over a range up 5cm. did not produce an improvement in bandwidth and again suggests 

that the loss of generated bandwidth takes place prior to detection at the elecfrode/skin 

interface 
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3.9 Establishing the Frequency Range of the M E S as 

measured by the Test equipment 

The Neurolog equipment has a stated bandwidth of DC to 20 kHz. Using Nicolet 

electrodes, the Neurolog produced a response that, over the entire measured bandwidth, 

was no better than the Liberty M Y O l 15 (the Liberty was observed to be less than the 

Medelec). Without the built-in 50HZ filter switched on, the Neurolog response was noisy 

around 50 Hz and was noticeably noisier than the Medelec and Liberty, (though at a 

diminishing rate with increasing harmonic multiples of 50 Hz). The noise plots in Figure 

3.3 below show these levels. The higher noise level near 40 mv. would seriously 

contaminate the overall detected M E S , but the lower level of 6 mv. would not intrude 

significantly. 
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Figure 3.3: Test equipment noise-
floor levels for: 

• the Liberty MYO 115 electrodes 
connected to HP analyser, 

• the Neiuolog Amp/Nicolet 
electrodes connected to HP 
analyser, 

• and Medilec Amp/Nicolet 
electrodes connected to HP 
analyser. 
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3.10 The Liberty Mutual MY0115 Electrodes 

200 400 600 800 1000 

The importance of establishing 

experimentally just what frequencies 

are available to be picked up at the 

skin surface, requires a close look at 

the frequency response capabilities 

T - , . ~. A ^ A ^ . - M i c I X - . . . . w of both the interface and the Figure 3.4 M Y O l 15 amplifier test plot. 
The response of the amplifier can be seen to be ^ j ^ ^ ^ ^ ^^^^ abilitv To 

non-linear but emphasizes the important 20-450 ^ response capa i ity. o 
Hz range. Test results were obtained using a ^ ^ ^t^- • n ^ 

, . uu4r J * ^1 i i j investigate this a vanable frequency signal generator with fixed output level applied i J 
to the M Y O l 15 over the 0 to IKFlz range ^ j * * u 

* generator with a fixed output voltage 

was applied, via a potential divider, to the inputs of the M Y O l 15 to mimic the low voltage 

(50 to 1000 microvolts) [6] of the expected skin surface MES. The output signal was 

logged and graphically shown in Figure 2.4. 

The Liberty electrodes, with its built-in amplifier, can be seen to have a non-ideal (non-

flat) amplifier frequency-response, which fades away rapidly after peaking at 300 Hz, thus 

frequencies less than 500 Hz are proportionally lost in practical terms. The design of the 

M Y O l 15 is a compromise: frading a completely flat response for range-specific, reduced-

noise, and sensitivity. The M Y O l 15 has an elecfrode spacing of 1.5 cm. (centre to centre) 

and dome shaped elecfrode diameters of 4mm. (of which 2mm. to 3mm. of the dome 

diameter can be assumed as the effective surface to skin contact area). The bipolar filter 

fimction as mentioned on page 58, chapter2, can be estimated to produce a drop-off in the 

detected frequencies beginning at approximately 350 to 400 Hz. This estimate is 

exfrapolated from theoretical values taken from De Luca [6] showing a drop-off at 5 K H z 

at a spacing of 0.5 cm., and a drop-off at 500 Hz for a spacing of 1 cm and Lindsfrom [7] 

showing a drop-off at 175 Hz for a 2 cm. spacing. This 350 400 Hz limit is an acceptable 
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limitation as the experiments done with the other electrode types at close spacing still 

showed the actual detectable signal to be far too low to be of use as the 400 Hz mark was 

reached. 

The frequency response of the Liberty elecfrode was found to be however only marginally 

less effective than systems with the more ideal silver chloride elecfrodes and stand-alone 

amplifiers. As the amplifiers for M E S detection are capacitively coupled to the elecfrode 

smfaces, there is an inherent filtering effect; decoupling any D.C. signals that develop on 

the skin surface (thus removing any problems of signal baseline drift). Capacitive coupling 

also reduces the lower frequency signals (movement artefact and 50 Hz mains noise), ff the 

design specifications are set for an amplifier to respond minimally to the frequencies below 

60Hz and tail off response above 400 Hz, then you have a M Y O l 15! This is a practical 

design for the surface elecfrode environment and general frequency demands placed upon 

it. 

3.11 Bandwidth Comparison between the Liberty the Neurolog 

and the Medelec 

Figure 3.5: shows the results of a test to compare the bandwidth variation between the 

Liberty (dry) elecfrodes (channel 1) VS the Digitimer Neurolog with Nicolet wet 

elecfrodes (channel 2). Bandwidth is measured in 10 Hz increments from 30 to 400 Hz. 

The test input signal chosen was a live 'wrist flexion' action, due to its previously 

determined occupation of the higher frequencies region of the overall M E S bandwidth. 

Due to the impossibility of placing both sets of elecfrodes in exactly the same position for 

exactly the same live signal, the wet elecfrodes were placed in line with, but just outside of, 

the liberty dry elecfrodes (see diagram). The intermediate amplification of the siuiace M E S 
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signal occurred separately in the Liberty and in the Neurolog amplifiers before presentation 

to the HP analyser. It must be assumed that a slight difference in position will give a 

slightly altered result. As mentioned earlier the author detected far less bandwidth change 

when varying the spacing of the wet electrodes than expected from the reports of other 

researchers and from elecfrode theory. The slight variation between tests is a normal result 

of variation over time in any selected muscle action. The signal was fransformed into the 

frequency domain using a 'Harming Window' on the HP 3566A and two types of 

averaging techniques were applied. The Peak Hold averaging used 40 sample blocks, and 

the Exponential averaging used 4 sample blocks. A series of additional, (16 in all) repeated 

tests were performed, yielding confirming results. The similarity in the results, suggest the 

onset of the fransient signal is most probably the important area of interest in the detected 

signal. See Appendix (page 240) for explanation on averaging techniques for the HP 

3566A. Given the closeness in the results from the two detection methods, (when 

simultaneously detecting a similar signal), combined with the ease of use in a practical 

envirormient, a preference for the Liberty (dry) elecfrodes was indicated for a lengthy 

mapping research program. Note: The amphfier output of the Liberty is double that of the 

Neurolog. 

It should be realised that the Medelec equipment was on loan from the company and has its 

own internal wiring and did not allow its amplifier output to be directiy presented to the 

HP analyser for comparison with the Liberty and Neurolog amplifiers. It did however 

allow for data files to be stored on floppy disk and these are shown in Figures 3.7 and 3.8 
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Figure 3.5: Test to compare the bandwidth variation between the Liberty 
(dry) electrodes (chaimel 1) V S the Digitimer Neurolog with Nicolet wet 
electrodes (channel 2). 
Bandwidth is measured in 10 Hz increments from 30 to 400 Hz. Shown above 
is the output using the HP3566A Spectrum Analyser. 
The following Figures 3.4 b,c,d,e,f,g, are ftuther tests for bandwidth using 
different Window averaging techniques. 
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Figures 3.5. b and 3.5 c Test for bandwidth using Liberty (dry) 
and Neurolog (wet) electrodes. 
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3.12 Does the equipment used show the True M E S Frequency 

Range? 

Whatever the frequency content of a signal generated at the actual muscle site, by the time 

that signal passes through the varying thickness of tissue en route to the skin surface, a loss 

of frequency content is inevitable. The experimental work undertaken here has shown the 

exfremes of the available M E S bandwddth available for detection at the skin surface are 

from 10 Hz to 800 Hz. The potentially useable bandwidth is however from 30 Hz to 500 

Hz. The region from 350 Hz to 500 Hz can be very marginal with respect to useable 

information due to the very low energy content of the signal. As a result, the range for 

useable M E S frequency detection is focused within the 30 Hz to 350 Hz frequency range. 

These results obtained by the author for bandwidth are in fijll agreement with previous 

findings in the research literature. 

There is an upward shift in the frequency response {Figure 3.5) for wrist flexion versus 

ring finger flexion, showing clearly different and repeatable frequency peaks. These peaks 

can be used with digital filters to identify the different actions. 

i lAmplit 
mvoltjk-

ude RING FINGEI 
FLEXION 

I WRIST FLEXION 

frequency 

( 1 . . . . . ... 
* 100 200 300 ^ 400 

Figure 3.6 Average M E S range (specfral shape) for both wrist 
and ring-finger flexion, showing the distinct differences in the 
occupied frequency spectrum for the actions. 
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Figure 3.7 above shows the ring finger flexion bandwidth using data recorded by the 
Medelec Saphire. Data is clustered fi-om 30 Hz to 158 Hz at varying amplitudes from 
20 to 45 mv. 

Figure 3.8 above shows the wrist flexion bandwidth using data recorded by the 
Medelec Saphire. Data is clustered from 90 Hz to 400 Hz at varying amplitudes from 
40 to 65 mv. Contour mapping was chosen to best represent the changing frequency 
and voltage values. The ring finger action is clearly represented by a different p>ortion 
of the frequency spectrum. 

The above Figures 3.7 and 3.8 show a group of 13 wrist flexion actions and 13 ring finger 

flexion actions recorded by the Medelec Saphire using the Nicolet (wet) elecfrodes. The 

two different actions were recorded at the same site on the arm of the author. Contour 

mapping was chosen to best represent the changing frequency and voltage values. The ring 

finger action (compared to the wrist flexion action) is clearly represented by a different 

portion of the frequency spectrum. The Nicolet (wet) elecfrodes, in combination with the 

Medelec amplifier, pushes the useable bandwidth response to approximately 450 Hz 
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compared to the approximate 375 Hz of the M Y O l 15 (dry) electrodes. This represents an 

improvement of between 50 to 75 Hz. What must be realised however is the extra 75 H Z is 

not representing a significant energy portion of the detected spectrum and is significant in 

only approximately 10% to 20% of detected actions. This should however not underrate 

the importance of a optimising the detection capabilities of the E M G equipment available 

for research and medical uses. The M Y O l 15 has great versatility but improvements could 

be made to its amplifier response by pushing the gain at higher frequencies and cutting 

back the gain at middle fi-equencies while retaining the existing response at lower 

frequencies. 

3.13 Summary 

.As stated in chapter 1, the objectives of the research are: 

• l)-to investigate the information content of a MES. 

• 2)-to study the nature of the Tissue Filter Function (TFF) 

• 3)-to map and identify optimum upper limb (forearm) myoelectric sites 

• 4)-to analyse the mapped data for frequency content and other unique identifiers 

• 5)-to recommend the practical application of M E S analysis for confrol purposes 

• 6)-to provide a greater range of user-generated confrol signals 

This chapter has made progress on the following 3 objectives: 

• l)-to investigate the information content of a MES: 

• 4)-to analyse the mapped data for frequency content and other unique identifiers: 

• 5)-to recommend the practical application of the M E S analysis for confrol 

purposes. 

And is sunmiarised as follows: 
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The useable bandwidth for M E S detection can now be confirmed from 30 to 350 Hz. Out 

side of this range the signals are too weak to contribute any practical information. This is 

however not a fixed barrier but rather a compromise by the equipment manufacturers 

chosen ( M Y O l 15) and high end bandwidth (>350 Hz) extensions of 20% could be seen 

with improved design. The lower bandwidth (<30Hz) limitations are also due to amplifier 

design but also would probably suffer from 'movement artefact' and become prone to false 

signals. 

MES-detection equipment artefacts/shortcomings, and their use in various enviromnents, 

are very important in M E S analysis and conclusions. 

The setting up and testing of the different sources of M E S equipment in the experimental 

lab envirormient suggests that without due care it is easily possible to encounter serious 

noise problems that will corrupt the MES. Bringing a Nicolet electrode lead near a 

computer monitor, results in a sudden influx of noise superimposed onto the detected 

signal. When trailing the leads too closely to a mains-lead source the 50Hz noise will often 

appear. The use of a fi-equency analyser was fovmd to be essential to monitor for mains and 

other noise encroachment while making data recordings and testing for true M E S 

detection. Shielding the electrode wires from noise pickup and the proximity to and 

between elecfronic equipment (monitors are especially included) are the minimmn standard 

procedures. 

Signal-amplifier equipment needs to be appropriate to the task: and should be matched to 

the intended bandwidth response. 

Elecfrodes must also be suitable and matched to the frequency requfrements. The choice of 

wet or dry elecfrodes wil l be based upon maximising either frequency response (wet) or the 

ability to be easily adjusted (dry). 
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If an extended session is undertaken with a volunteer for mapping large areas of the skin 

surface, then the use of dry electrodes will be the serious choice for the following reasons: 

• The wet-type of electrode has only a limited number of times that it can be apphed 

to the skin surface before the adhesive becomes ineffective and the signal detection 

quality is compromised (usually no more than 5 to 8 uses) 

• The skin surface must be cleaned of natural oils and sweat before applying the wet 

lead to prevent rapid contamination of the adhesive siuiace and subsequent loss of 

adhesion. The loss of adhesion and subsequent signal loss may be fiuther 

complicated i f the skin is covered with dense or thick hair. 

• The volunteer will be unhappy with the hairs from their skin being ripped out (still 

stuck to the wet-elecfrodes) while the adhesive is fresh. The alternative is to shave 

the arm of the volunteer (which may well be met with equal resentment or refiisal). 

The author kept his own left arm shaved and marked with indelible ink for 6 

months {see FigureS. 1, page 139) while undergoing extended exploratory work. 

• The wet elecfrode approach is arduously slow compared to the easy movement of 

the dry elecfrodes. The cost of time and patience to volunteers is much higher than 

with the dry-type. The dry types are much more suited to exploring the skin surface 

for subtie changes. 

• The actual resultant frequency response achieved from using the wet type is only 

marginally better (approx. 10 to 15 % extension with the higher frequency range), 

but most importantiy, is of equal performance over the range conunon to both 

types of elecfrode. 

• Noise-floor levels are very low with the dry-tyjie {see Figure 3.3), due to the 

shorter lead length. To achieve the same noise-floor levels with the wet-type with 

the associated long leads, is much more demanding of the equipment proximity in 
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the experimental environment. The "twisted-pair" design of the dry-type leads 

(between the M Y O l 15 and the signal processor) reduces the tendency to mains 

noise pickup. The wet-types are not set-up to be used as a "twisted pair". 

• The dry-type electrodes have a much higher initial financial cost (approx. $300. 

U.S.), but over the coiu-se of testing (mapping) a few patients/volunteers this extra 

cost would be recouped, due to the short lifetime of the wet-types set against the 

long lifetime of the dry types. 
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CHAPTER 4 

Experimental Determination of the Relationship 

between Muscle Action and Frequency 
What differentfrequency characteristics for differing muscle-actions are observed at one 

site? 

4.1 Test Procedure Used to Search for a Site with Widely 

Separated Frequency Characteristics 

For reasons discussed in Chapter 3 the author decided to use the M Y O l 15 (dry) as the 

standard electrodes for the remainder of the research activity. The M Y O l 15 electrodes 

were coimected to the HP frequency analyser and applied to the left forearm of the author. 

The left arm was selected based on convenience as the author is right-handed and having 

the right hand/arm fi-ee to write etc. while the left is coimected up has obvious practical 

merits. A l l subsequent volunteers were tested using the left arms for the sake of 

consistency. Using the known anatomical location of muscles of the forearm,the electrodes 

were placed first directly over the site of the strongest signal corresponding to a particular 

muscle-action. The same muscle action was repeated and the electrodes were moved 

radially away ftom the site centre until the detected signal reduced to a negligible value. 

The values were noted and another muscle that had produced a strong signal source close 

to the previous muscle action was activated, followed by moving the electrodes radially 

away until, once again, reduced to a negligible value. A n examination of all possible 
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below-elbow and above wrist, muscle actions was undertaken and the following basic list 

of hand and wrist control actions was derived (see list below). 

4.2 List of 20 different control actions 

1. wrist rotation (counter clockwise) left 11. little finger extension 

2. wrist rotation (clockwise) right 12. httle finger flexion 

3. thumb extension 13. wrist extension 

4. thumb flexion 14. wrist flexion 

5. index finger extension 15. wrist abduction 

6. index finger flexion 16. wrist adduction 

7. middle finger extension 17. hand grasp (clenched fist) 

8. middle finger flexion 18. relax hand (rest position) 

9. ring finger extension 19. hand fiilly open (all fingers extended) 

10. ring finger flexion 20. 3-finger chuck grasp 

The spectrum was observed for each of the above actions. 

The observed signal spectrum for each action varied according to source (muscle) 

proximity and no one site was suitable to detect a response fi-om all 20 actions on the list. 

This methodical approach identified an initial, though of limited potential, area of promise 

for single site detection of multiple actions. In the area of promise it was found that two 

different muscle actions (wrist flexion and ring finger flexion), occupied (visually) 

different portions of the selected (30 Hz to 350 Hz) spectrum 

[see Chapter 3 Figures 3.5,3.6,3.7). 

See Chapter 5 page 132 for test results 

The above range, of 20 possible actions, requires that each umt of surface area on the 

forearm be tested 20 times for all 20 actions, in order to determine i f any other multiple 
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muscle action detection sites were to be found. The preferred alternative approach would 

be to test the entire forearm for one action followed by another full arm test for each of the 

remaining actions. This allows a standardised position for both volunteer and test set up. 

The action to be repeated can be predetermined and practised by the volunteer (subject) for 

velocity, acceleration and duration. This will prove to be an important methodology when 

considering the physiological basis of muscle action (motor imit recruitment procedures). 

As previously mentioned in Chapter 2, the fatigue effect begins to shift the M E S (towards 

the lower frequencies but with an increase in gain in those lower frequencies) after 

approximately 2 seconds of sustained hard confraction. The early indicators suggest that 

the most significant, muscle identifying characteristics, are to be found in the fransient 

(initial portion) of the MES. This will be considered later, in some depth, in the analysis in 

Chapter 6. 

4.3 Active (Isometric) Grasp (Loading) Vs Passive (Isotonic) 

Movement Test Results 

(for definition of Isometric vs Isotonic see Appendix List of definitions) 

Some early exploration (by the author) into the comparison between the surface detected 

M E S of a finger flexion in both unloaded and loaded conditions, showed the M E S 

magnitude to be greater under loaded conditions but the associated spectrum to be largely 

unchanged despite the loading. Muscle actions were not required to be sustained for long 

periods during data collection. No muscle fatigue was observed due to the nature of the test 

procedure. This 'muscle fatigue' issue was not exhaustively searched over a varying range 

of loads and could be an associated factor in the commonly reported observation with past 

researchers of a "fatigue effecf' [1,2] i.e. changing specfral characteristics over time with a 

shift toward lower frequencies accompanied by an increase in amplitude of the M E S . As 
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the muscles used by an amputee are indirectly involved in generating the prosthesis control 

signals, the amputee need only vary the muscle tension over a given (small) range for the 

prosthesis to vary the (amplified) grip strength. As long as the muscle contraction is 

retained above a preset level the desired hand position or "state" of the prosthesis could be 

retained for a sustained action. As the 'fatigue effect' starts, and shifts toward a lower 

frequency, the control action could be retained as long as the M E S summation contains the 

same spectral energy. The same threshold triggering circuit (a simple peak detector can be 

modified to have an additional summing action) that monitors the M E S for an intended 

control action (by ignoring sub-threshold M E S levels) can be used to retain the control 

action. This area could be fiirther investigated as an additional contiol action to be included 

in any M E S detection algorithm. 

4.4 Results of Testing of Other Males at the Same Site 

The test site results of the ring finger and wrist flexion could have been specific to the test 

person involved and not apply in general to any other person. To check for this possibility 

a fiirther 3 adiilt male staff volunteers, and the author, were tested under the same 

conditions i.e. same site, equipment, and same actions. A quick search of the same forearm 

area on each volunteer located an optimum site. Careful but not precise positioning was 

adequate. A l l four men showed the same separation and spectral range as in the first 

experiment. A slight modification was introduced to this test. The ring finger was flexed 

but brought to rest against the thiunb. The thumb was not used in the earlier tests in 

Chapter 3 and the implications of the co-activity of the thumb was not apparent at the time 

as no thumb M E S activity was detected at the site. The thumb did intioduce an apparent 

enhanced spectrum selectivity (more detailed repeatability in the results). The results are 

shown for wrist flexion in Figure 4.1 with a centie peak frequency of 160 Hz and for ring 

finger flexion with cenfre peak frequency of 95 Hz in Figure 4.2. The data on these male 
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volunteers is clear and unambiguous and suggests peer group replication would quickly 

confirm these observations. No reference has been found in the literature with regards to 

this observation. 

The following three possibilities exist regards the anatomical and physiological structure of 

the four test males. 

• (1) The test males differ significantly in anatomical layout. This would not lead to a 

site of common response, not yield the observed results as mentioned above, and 

would not lead to any deterministic features in the detected MES. 

• (2) The test males do not differ significantly in anatomical layout The qualitative 

and quantitative location, layout, and proximity of the two different muscle actions 

(wrist flexion and ring finger flexion), for all the individual test males are 

approximately the same. This anatomical sameness, along with a concession to a 

deterministic, non-random contribution to the outcome of the M E S , would )deld the 

observed results as mentioned above 

• (3) The anatomical sameness of option (2) is further refined by the Tissue Filter 

Function (TFF) and all muscles involved in the two actions, contribute (simmiate) 

proportionally to the M E S outcome. 

The similarity in results, by the four male volunteers, suggests further questions regards 

determinism and universality need to be posed and answered. What, i f any, differences in 

anatomical structure, contribute to the explanation for the spectral similarities and 

differences between the muscle actions (wrist flexion and ring finger flexion) for the group 

of test males? 
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Figure 4.1 (a),(b),(c),(d); the four figures above are the test for wrist flexion on 4 male 
volunteers. The ability of the 4 males to cluster around a centre frequency of 
approximately 160 Hz is remarkable. 

S.Roberts 120 Chapter 4 



10 0m 

12.5nv 
/ d i v 

Mag 

rms 

V 

Start=O.OHz Span=lZ.800kHz Line3«401 
Power Spectrgro Chan 1 

l U : I I 
30 •«» 
X:160Hz 

»•>> L i n Hzr~ 
Y:40.9617mV 

7:04AM 
No Ovlp Hanning 

Avg=50 J»ge itr" /"nT 

MALE 1 

3 0m 

3.75m 
/ d i v 

Mag 

Power Spectrum 

/\! 

.tort 
X : 9 6 H 2 

Power Spectrum 

'i^ L i n Hz4~. 
Y:25.315mV 

Avg-50 J e C . f t " '99S-

MALE 2 
a 

2.5m 

/ d i v -

Mag: 

.2 

30 
X:160Hz 

Power Spectrum 

L i n Ha 
Y:ll.6009mV 

Avg-50 2>ec- >»-~ ("MS-

MALE 3 

6.25m 

/ d i v 

Mag 

V 

Aya-=50 Dec If"" r99S' 

MALE 4 

30 too l o o i " o L i n HZ««" «»» t o o 7 ~ •<>» 9 0 0 Ik 
X:96Hz Y:34.414mV 

Figure 4.2 (a),(b),(c),(d); The four figures above are the test for ring finger flexion on 
4 male volunteers. The centre fi-equency @ approximately 95 Hz is again closely 
followed. 
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4.5 Results and the Need for a Theoretical Explanation 

Implications for Universality 

The results of the four test males were a possible indicator of a deterministic element (at 

least seen at the level of the surface MES) that was not just local (to one person), but 

extended to include another level (the class of adult males). Once again, the tests were not 

exhaustive across a large population but fiuther work with other males failed to refiite the 

phenomenon. 

The following questions arise: 

' A / what point, on its Journey to the surface, does the initial random nature of the muscle 

fibre Action Potential (AP) convert to an apparent determinism in the surface MES'7 

'Is the precise activity of the hand, the result of a feedback loop established by the 

neuromuscular motor control system, to overcome and compensate for, the random firing 

of muscle fibres at its most basic level! 

• If so then the motor control system has evolved without a firing pattern/plan 

directed to its motor unit recruitment requirements and is fimctioning on an 

extension of a continuous low level feedback compensation (such as our 'upright 

balance' control system) on a millisecond by millisecond decision basis. This 

would then imply that the deterministic pattem seen at the surface M E S is an 

illusion'. (But a nonetheless, potentially-usefiil, illusion!!) To resolve this issue 

requires fiirther research and a fiill mapping and juxtaposition of signals, muscles 

and actions. 

Are the test results indicators of deterministic behaviour (i.e. are the muscles producing a 

spectral response different in composition from that of adjacent or other muscles.)? 
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• From the known anatomical structure of the forearm, the presumption is that, 

imless the M E S is derived from a single muscle source, the M E S is a composite 

signal and comes from a combination of siu^face muscles and deep muscles. This is 

true for only some muscles however. Referring back to Chapter 2 Figure 2.6 and 

2.7, (the chart on all known forearm muscles and their actions within the forearm) 

we find that for some actions (5 out of the 16 actions) there is only a superficial 

muscle or group of muscles involved and for some actions (4 out of the 16 actions) 

there is only a deep muscle or group of muscles involved. This has implications for 

one of the explanatory candidates: the 'Tissue Filter Function' (TFF). 

The results of the male tests raise two scenarios regarding specfral signatures: 

1. If the surface detected M E S shows a constant and broad bandwidth: 

A specfral change would be seen only as the tissue thickness to source distance was varied. 

This would demonsfrate a conmion "tissue filter effecf generating consistent and 

repeatable specfral results. This change would manifest as a loss of high frequency 

information at the detection site. 

2. If the surface detected M E S does not show a constant and broad bandwidth: 

In addition to the "tissue filter effect," any observed specfral differences would be the 

result of the muscles generating significantly different (and thus unique) specfral 

signatures. This would indicate an element of deterministic behaviour in addition to the 

tissue filter effect. 

With these two unresolved scenarios in mind. Figure 4.3 illusfrates the range of logical 

possibilities offered by two signal sources. 

Figures 4.3 (a)(b)(c) show how two M E S sources can be seen at the skin surface of the 

arm by a M Y O l 15. The doubled ended arrow above the M Y O l 15 represents its movement 

between surface sites C and D for detecting the source signal from either site A or site B. 
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These spectrum sources. As and Bs, are shown at three different possible sites and depths, 

i.e. (a)(b)(c), relative to the detecting surfaces C and D. Comparison of these three figures 

shows how caution needs to be applied when making assumptions, about a detected M E S 

spectrum, at sites C and D. After examining the effects of different pathways we are left 

with the following two outcomes: 

• The various locations within the arm can yield similar surface spectral results at C 

and D, despite actual spectral differences at sources A and B 

• The various locations within the arm can yield different surface spectial results at 

C and D, despite actual spectral similarities at sources A and B. 

The large range of logical possibilities shown at the right of the figures suggests the need 

for finther research into a more definitive theoretical explanation. 

Note: For simplicity, the pathways from sources A and B to detectors B and D are shown 

as sfraight lines. It is not known however, just to what extent in each particular event, the 

pathway is an actual sfraight line. It is the varying conductivity of the pathway, i.e. through 

the varying tissues layers, that determines the attenuation and phase lead or phase lag of 

the signals as they arrive and converge at any point of detection. 

Additionally, in an actual muscle the signal source would not be a single point source as 

shown but would be more diffuse, due to the anatomical spread of the motor units when 

activated. 
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where: distance AC = BD 
AD = BC 

At C: if Ad = Bd then As < Bs 
if Ad<Bd t h e n A s « B s 

if Ad>Bd then As = Bs 
or As » Bs 

AtD: ifAd = Bd thenAs>Bs 
ifAd<Bd thenAs = Bs 

or As<Bs 
ifAd>Bd t h e n A s » B s 

At C: if Ad = Bd then As = Bs 
If Ad < Bd then As < Bs 
if Ad>Bd then A$>Bs 

At D: if Ad = Bd then As > Bs 
if Ad<Bd then As = Bs 

or As « B s 
ifAd>Bd t h e n A s » B s 

where: distance AC = BC = BD = AB 

AtC: ifAd = Bd thenAs<Bs 
ifAd<Bd t h e n A s « B s 
ifAd>Bd tbenAs>Bs 

AtD: ifAd = Bd thcnAs<Bs 
ifAd<Bd t h e n A s « B s 
ifAd>Bd thenAs = Bs 

where: distance 2AC = BC and AD<BD 

Figure 4.3(a), (b), (c): Sources A and B represent two separate muscles/sites in the 
arm. The arrows show the 'direct line' signal pathways through the tissue en route 
to the M Y O l 15 detector. 
As, Bs = generated spectral source Ad, Bd, = detected (measured) signal 
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4.6 Summary 

This chapter posed the question: What different frequency characteristics for differing 

muscle-actions are observed at one site? 

This chapter has only been able to open the can of worms, but not analyse the details of the 

contents as yet. 

Chapter 1 posed the following objectives of the research 

• 1 )-to investigate the information content of a MES. 

• 2)-to study the nature of the Tissue Filter Function (TTF) 

• 3)-to map and identify optimum upper limb (forearm) myoelectric sites 

• 4)-to analyse the mapped data for frequency content and other unique identifiers 

Objective 1)- has been tackled but has introduced more questions than answers. The 

information is there and the author has brought some to the surface with the revealed 

differences in the wrist and ring finger response at one site. The author has not yet defined 

the breadth of that information nor detailed the soiu-ce. 

Objective 2)- the Tissue Filter Function (TFF) has been suggested as an explanation for the 

results described with Objective 1) but uncertainty prevails as to what extent the TFF can 

be applied as an explanation. A logical structure for the TFF has been developed to 

describe the fiill range of complex pathways (see Figure 4.3) and the proportional 

contribution of varying path lengths. If further research, of specific control commands, 

reveals pathway details of the different muscles involved, actual path lengths, the tissue 

layers involved, the surface M E S detected, and the source M E S given a probable value, 

then the TFF contribution can be determined and separated from any deterministic element 

in the surface M E S . 
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Objective 3)-to map and identify optimmn upper limb (forearm) myoelectiic sites 

Some progress has been made here with the detection of the one site offering two well-

defined unique muscle actions and the discovery of a corresponding site with replicability 

of fimction on other males. The author's refinement of all hand activity into 16 individual 

and 4 combined muscle commands is presented as a target for mapping the siuface M E S . 

The technique for mapping is established and ready for fiill implementation. 

Objective 4)-to analyse the mapped data for frequency content and other unique identifiers 

The limited data gathering has supplied more questions than answers and different 

Window averaging techniques have suggested the important information is found early in 

the fransient signal. More work on the fransient is required along with the full 

implementation of the mapping. 

4.7 References: 

Basmajian, J and DeLuca, C. (1985). Muscles Alive, Their Functions Revealed by 
Elecfromyography, 5th Edition. Baltimore: Williams & Wilkins, pp 204 
2 

H. .Lindsfrom, R. I. Magnusson, (1977). 'Interpretation of Myoelectric Power Specfra: A 
model and its applications', Procof IEEE, Vol 65, No. 5, May, pp 656. 
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CHAPTER 5: MES Site-Mapping 

5.1 Frequency Response for Muscle /Site Actions 

Can we determine a common frequency response for muscle /site actions? 

The previous chapter introduced the possibility of an element of deterministic behaviour in 

the detected M E S . To investigate this possibility, fiuther detailed measurements were 

required. 

This Chapter describes the method used to determine how to extract a "map" of the M E S 

available on the arm of a user of prosthetics. The use of a non-amputee can be validated 

(see Chapter 3 page 113) and predicated upon the following: 

• past myoelectric research that has been carried out has rarely required the use of an 

actual amputee. This has been due to the practical availability of amputees and the 

ethical issues involved. 

• an amputee may well have a residual limb in which the original muscles may be in 

a different state of completeness compared to another amputee. Many amputees in 

the past have not been subject to a standardised type of surgical amputation 

technique that results in the muscles being attached in a manner in order to 

maintain their optimal activity and muscle tone. This situation has now been 

changed and standard methods introduced. 

• except for the shortening of certain muscles in the arm, there is no difference in the 

physiological function of the detected M E S , thus a non amputee, in principle, can 

provide a signal that is appropriate for research purposes 

• the use of a non amputee establishes a baseline standard of all possible muscle 

actions that can be detected by the M E S equipment. This is the most cmcial issue in 
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the authors opinion, in order to proceed with the search for improved M E S control 

signals. 

5.2 Selection of Core of Muscle Actions Used for Mapping 

The following list (also in chapter 4, page 116) was used by all volunteers to generate the 

recorded M E S database. 

5.2.1 List of 20 different control actions 

1. wrist rotation (counter clockwise) left 11. little finger extension 

2. wrist rotation (clockwise) right 12. little finger flexion 

3. thumb extension 13. wrist extension 

4. thumb flexion 

5. index finger extension 

6. index finger flexion 

7. middle finger extension 

8. middle finger flexion 

9. ring finger extension 

10. ring finger flexion 

14. wrist flexion 

15. wrist abduction 

16. wrist adduction 

17. 3-finger chuck grasp 

18. relax hand (rest position) 

19. hand fully open (all fingers extended) 

20. hand grasp (clenched fist) 

5.2.2 Core Of Actions As Applied To Geometry Model 

The above list can be seen to be longer than the basic geometry model {chapter 2, page 50, 

Figure 2.1). If the conmiands can be extracted fi-om the M E S , the resulting control action 

will far exceed the minimimi requirements for an advanced prosthetic hand (Chapter 2, 

page 50, Figure 2.2). 
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5.3 Method of Mapping: Constant Technique 

A n extensive mapping of the arm of a team member (the author) was undertaken for 20 

distinctive (see above hst) muscle actions that could be used for control purposes. For 

purposes of consistent and controllable access to measuring corresponding areas across the 

range of team members, a standard-unit grid-section was drawn (non-washable ink) upon 

the skin surface of the arm. A photo showing the grid on the author can be seen in 

Chapter 5, 5.1, page 139. 

Method: 

• A l l 20 actions were separately mapped. 

• One action was repeated over the entire surface as the electrodes were moved 

methodically over a "grid pattem" marked on the arm surface. The grid-pattern 

divided each forearm view into one medial (midline) plane with five transverse 

subdivisions. The resulting grid created a total of 20 grid-sectors over the complete 

forearm. 

• The view of the arm was divided (on paper) into four separate overlapping view 

positions. 

• The data was recorded (written) directly onto the paper image corresponding to the 

recorded position on the arm. 

• For every grid position, a particular action was repeated and observed at least 5 

times before the value was recorded. Each action, e.g. ring finger flexion, was 

recorded by an observer, visually determining the 3dB bandwidth of the spectrum 

and the amplitude of the M E S at the lower 3dB point. 

• This visual method was necessary (the functional shortcomings of the HP spectrum 

analyser necessitated this procedure) due both to: 
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1. The stochastic and thus imprecise influences in the generated M E S 

and 2. The timing difficulties in synchronising the generated MES with the 

sampling rate and screen update rate of the HP analyser. 

• The signal noise floor was consistently excluded as a significant contribution to the 

observations, by being directiy observable, and thus controllable at all times. 

The following four arm views can be seen on Figure 5.2 (page 140) 

View 1: Superior (lateral) View of Pronated Forearm 

View 2: Superior View of Supinated Forearm (Volar Aspect) 

View3:Medial View of Flexed Forearm 

View 4:Lateral View of Pronated Forearm (elbow flexed at 90 degrees) 

A l l four views were mapped/determined for the author (male 1). In the interests of 

efficiency and keeping the collected data to a more manageable and compact form the 

other 3 volunteers were mapped using only Views 1 and 2. This did not result in any 

significant loss of data as views 3 and 4 have overlapping elements with views 1 and 2. 

5.4 Reference Site Selection 

On the four views, it will be seen that there are reference areas given alphabetical tags. 

These are the initial areas that were determined on the author (male 1) to be sites of 

particular M E S interest. These sites were stiong signal areas for one of the 20 core actions, 

were a site for showing exclusivity between core actions, or were of notable spectral 

distinction. These sites were also marked on the author using indelible ink as the mapping 

and investigation took place over a period of many months. The marked sites allowed 

recording activity to be carried over between research/recording sessions. Factors such as 

daily temperature variations, fatigue, enviromnental changes could also be given some 

consideration with respect to the consistency (over time) of muscle action versus recorded 
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data. These sites were also included as marker areas in mapping all four volunteers to act 

as both a comparative site between all four subjects and to facilitative the taking of 

readings and subsequent locating of them on the paper-based grid. 

A breakdown of the initial reference sites and their particular meaning with respect to the 

author only can be seen on the following "Site reference list." 

5.5 Site Reference List 

Note: Low, Medium, and High "Shift": refers to the mid point of a power spectrum 

measured over a bandwidth from 30 Hz to 500 Hz, corresponding to an occupation by the 

power spectnun of a predominantly Lower, Middle, or Higher proportion of that 

bandwidth. The observable 3dB bandwidth "shifts" up and down (along) the baseline 

bandwidth. The following labelled sites in Table 5.1 can be seen on Figure 5.2. 

Table 5.1 
Site Action Spectrum Result 

A wrist extension Low shift 
A index finger extension Low shift 
A thumb flexion Mediiun shift 
B Index finger flexion: Medium shift: 70 to 158 Hz peak @ 

110 Hz 
B: Middle finger flexion Low shift50 to 90 Hz peak @ 78 Hz 
B Ring finger flexion peak @ 48 Hz 
C Index finger flexion Low shift 
D Index finger flexion M g h Shift 
E Thumb extension Low shift: peak @ 90 Hz 
E Thumb flexion High shift: 174 to 230 Hz 
F Wrist rotation left (counter clockwise) High shift: 86 to 270 Hz 
F, Wrist rotation (left and right) same frequencies (54 to 110 Hz) 
Fi See diagram/notes on wrist rotation!! 
Fi Middle finger extension 54 to 110 Hz 
F2 Wrist rotation left (counter clockwise) 54 to 110 Hz 
F2 Middle finger extension 62 to 166 Hz 
G Wrist rotation left (coimter clockwise) High shift: 62 to 294 Hz 
G2 Middle finger extension 86 to 198 Hz 
H Wrist rotation left (counter clockwise) Medium shift: 62 to 246 Hz 
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Table 5.1 continued 
H Middle finger extension High shift peak: 62 to 206 Hz 
J Thumb flexion High shift 
K Thumb flexion Low shift 
M Thumb flexion High shift peak 174 to 230 Hz 
M Thumb extension Low shift peak @ 90 Hz 

Note: As thumb extension action goes from medium to high shift. This could 
fi-om proximal to distal (i.e. the result give a direct correlation of user fine 
of an increase in muscle force). The thumb muscle confrol to the prosthetic 
frequency increases thumb action confrol. 

N Thumb extension Medium shift 
N Index finger extension Low shift 
O Wrist rotation right (clockwise) High shift 
P Wrist rotation right (clockwise) Low shift 

P Middle finger flexion Low to Medium shift peak @ 1 lOHz 
P Thumb flexion Medium shift: 94 to 206 Hz 
Q Thumb flexion Low shift (weak signal) 
R Thumb extension Low shift: 54 to 150 Hz 
R Index finger extension Low shift: 54 to 206 Hz 
S Thumb extension Low shift 
S Index finger extension High shift 
T Thumb extension High shift 
U=M Thumb flexion High shift: 174 to 230 Hz 
U=M Thumb extension Low shift peak @ 90 Hz 
W Middle finger flexion Low shift: 90 to 166 Hz 
w Index finger flexion Medium/High shift: 90 to 174 Hz 
w Thumb flexion Low shift: 54 110 Hz 
X Wrist flexion Medium/High shift: 86 to 238 Hz 
Y Wrist flexion High shift: 126 to 326 Hz 
Z Wrist flexion Low shift: 86 to 206 Hz 
5 Ring finger flexion Low shift: 38 to 78 Hz 
1 Ring finger flexion Low shift: 46 to 86 Hz 
2 Ring finger flexion Medium shift: 54 to 126 Hz 
3 Ring fmger flexion Low shift: 38 to 94 Hz 
4 Ring finger flexion High shift: 54 to 198 Hz 
6 Ring finger flexion Medium shift: 78 to 182 Hz 

Note: Sites 5,1,2,3,4,6 are in a line along the arm axis and show a clear downward shift in 

frequency for the same muscle action as distance increases from 6 to 4,3,2,1,5, 

Pattems of spectrum shifts began to emerge. The data was then rearranged to emphasize 

those shifts and to see what else emerged (see Table 5.1). The author's markings and arm 

{seen in Table 5.1 and Figure 5.2) are shown in photos Figure 5.1. views 1,2 and 3). 

S.Roberts 133 Chapters 



Table 5.2 
Site Action Spectrum Result 

B Ring finger flexion peak @ 48 Hz 
5 Ring finger flexion Low shift: 38 to 78 Hz 
1 Ring finger flexion Low shift: 46 to 86 Hz 
3 Ring finger flexion Low shift: 38 to 94 Hz 
2 Ring finger flexion Medium shift: 54 to 126 Hz 
6 Ring finger flexion Medium shift; 78 to 182 Hz 
4 Ring finger flexion High shift: 54 to 198 Hz 

Ring finger extension (none located) 

B Middle finger flexion Low shift: 50 to 90 Hz, peak @ 78 Hz 
W Middle finger flexion Low shift: 90 to 166 Hz 
P Middle finger flexion Low to Medium shift, peak @ 1 lOHz 

F i Middle finger extension 54 to 110 Hz 
F2 Middle finger extension 62 to 166 Hz 
G2 Middle finger extension 86 to 198 Hz 
H Middle finger extension High shift: 62 to 206 Hz 

C Index finger flexion Low shift 
B Index finger flexion Medium shift: 70 to 158 Hz, peak @ 110 Hz 
W Index finger flexion Medium to High shift: 90 to 174 Hz 
D Index finger flexion High Shift 

A Index finger extension Low shift 
N Index finger extension Low shift 
R Index finger extension Low shift: 54 to 206 Hz 
S Index finger extension High shift 

0 Thumb flexion Low shift (weak signal) 
K Thumb flexion Low shift 
W Thumb flexion Low shift: 54 to 110 Hz 
A Thumb flexion Medium shift 
P Thumb flexion Medium shift: 94 to 206 Hz 
E Thumb flexion High shift 174 to 230 Hz 
J Thumb flexion High shift 
M Thumb flexion High shift peak @ 174 to 230 Hz 
U = M Thumb flexion High shift: 174 to 230 Hz 
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Table 5.2 continued 
E Thumb extension Low shift: peak @ 90 Hz 
R Thumb extension Low shift: 54 to 150 Hz 
S Thumb extension Low shift 
U=M Thumb extension Low shift peak 90 Hz 
M Thumb extension Low shift, peak @ 90 Hz 

Note: As thumb extension action 
goes from proximal to distal (i.e. 
the result of an increase in 
muscle force). The 

frequency increases from medium to high 
shift. This could give a direct correlation of 
user fine thumb muscle confrol to the 
prosthetic thumb action confrol. 

N Thmnb extension Medium shift 
T Thumb extension High shift 

Z Wrist flexion Low shift: 86 to 206 Hz 
X Wrist flexion Medium to high shift: 86 to 238 Hz 
Y Wrist flexion High shift; 126 to 326 Hz 

A Wrist extension. Low shift 

F Wrist rotation left (counter 
clockwise) 

High shift; 86 to 270 Hz 

F2 Wrist rotation left (counter 
clockwise) 

54 to 110 Hz 

G Wrist rotation left (counter 
clockwise) 

High shift; 62 to 294 Hz 

H Wrist rotation left (counter 
clockwise) 

Medium shift: 62 to 246 Hz 

F, Wrist rotation (left and right) same frequencies (54 to 110 Hz) 
Fi See diagram/notes on wrist 

rotation!! 

P Wrist rotation right (clockwise) Low shift 
O Wrist rotation right (clockwise) High shift 

5.6 Determination of Candidates 

The decision to use non-amputee candidates arose due to practical considerations. The 

ready availability of adult volunteers within the University compared to accessing, 

organizing, and sorting the suitable amputees over a wide local catchment area. The 

decision was made to bring in amputee volimteers only at a much later period in order to 

test the research results. Two male and two female volunteers were decided upon as an 

initial test group. 
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5.7 Volunteers used in the M E S research 

Male 1 (author): Description: musculature, age, fitness 

Medium height (5ft. 10 in), light-build, 47 years of age, muscular but not athletic, no 

adverse physical health problems 

Male 2: Description: musculature, age, fitness 

Medium height (6ft.), mediiun build, 29 years of age, athletic-build, no adverse physical 

health problems 

Female 1: Description: musculature, age, fitness 

Medium height (5 ft.5 in.), light build, 32 years of age, light-build (non-active non-

sportsperson), no adverse physical health problems 

Female 2: Description: musculature, age, fitness 

Medium height (5 ft. 8 in.), light/medium-build, 38 years of age, athletic-build (active 

sportsperson), no adverse physical health problems 

5.8 Summary 

. As stated in chapter 1, the objectives of the research are: 

• l)-to investigate the information content of a MES. 

• 2)-to study the nature of the Tissue Filter Function (TFF) 

• 3)-to map and identify optimum upper limb (forearm) myoelectric sites 

• 4)-to analyse the mapped data for frequency content and other unique identifiers 

• 5)-to recommend the practical application of M E S analysis for confrol purposes 

• 6)-to provide a greater range of user-generated confrol signals. 
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• l)-to investigate the information content of a M E S : see objective (4) below 

• 2)-to study the nature of the Tissue Filter Function (TFF): The data shows clear 

spectral shifts for each muscle action category and suggests a spectral link with 

muscle action and distance firom a reference point. This may be a result of the 

Tissue Filter Function (TFF) and/or it may be a unique signature of the muscle or a 

part of that muscle. Not all digits fimctions were located on the forearm so the 

need for a completely methodical mapping and filling in of the database was the 

next candidate for action. The early stages of this site reference list were the 

forerurmer to the later implemented arm 'site mapping' 

• 3)-to map and identify optimum upper limb (forearm) myoelectric sites: A 

standard method of mapping by grid was established. The 20 actions were mapped 

onto a grid of 20 sections. Those 20 sections are spread over 4 arm views {see 

Figure 5.2) author mapped his arm according to that standard. The HP spectrum 

analyser was able to display the M E S spectrum as the signals arrived to its inputs 

but was not up to the demands of capturing the M E S onset, simultaneously record 

the 3dB bandwidth and save the sample to file in any reliable process. So for 

expedience the author chose to use a visual method of recognising the M E S 

bandwidth and manually recording the results on the grid views. This proved 

successfiil in the limited mapping of the arms but the fiill detailed data would have 

allowed fiirther analysis of the signals with respect to bandwidth, slope, shape, 

zero crossings etc. (see chapter 6 section 6.7 page 152). A n example of the 

mapping method grid results can be seen in Figure 5.3. 

• 4)-to analyse the mapped data for frequency content and other unique identifiers: 

Table 5.2 shows the 20 muscle actions and the shifts in frequency content as the 

detection elecfrodes are moved in the local 'hot spots' associated with each action. 
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The clearest example of frequency signature selectivity was position ' M ' , with a 

very finely varying signal available for thumb confrol. Three additional volunteers 

for arm mapping were identified and the same mapping method was applied to 3 

further volunteers to ascertain the extent of similarity or differences within and 

across gender. 

• 5)-to recommend the practical application of M E S analysis for confrol purpose: 

The case for using a non-amputee was presented and considered sound. A core of 

20 basic muscle actions was decided as confrol signal actions. A n initial 

exploratory investigation followed on the arm of the author. Results of the site 

reference list are presented in tables 5.1 and 5.2. 

• 6)-to provide a greater range of user-generated confrol signals: The list of 20 

different confrol actions was shown to provide one or more unique sites on the arm 

for M E S detection purposes. This verifies a feasible supply of an extensive range 

of confrol signals for a multi-fimction prosthetic arm. The signals are there; only a 

practical collection method needs to be developed. 

The results have been fiuther developed into a more readily assessable form, with the data 

entered into a database (Microsoft Excel) and presented in a visual 3-dimensional format. 

See Chapter 6 "Second Moment of Area". 
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Figure 5.1 The arm of the author (male 1) showing all 4 views and detected sites of 
interest. The H and L markings show sites of High and Low frequency shifts and the 
colour code is a marker for a particular muscle action. The initial site found for wrist 
and ring finger flexion is arrowed on View 3. 
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SUPERIOR VIEW OF PRONATED FOREARM 

SUPERIOR VIEW OF SUPINATED FOREARM 
(VOLAR ASPECT) 

MEDIAL VIEW (ASPECT) OF FLEXED FOREARM 

^ ^ ^ ^ 
VIEW 3 

LATERAL ASPECT OF PRONATED FOREARM 
(D f P ELBOW FLEXED @ 90 DEG. 

i t / ' l i ' L U i y^i 

Figure 5.2: The grid pattem of the 4 views of the arm showing detected muscle action 
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VIEW 3 

MEDIAL VIEW (ASPECT) OF FLEXED FOREARM 

MALE 1 

RING FINGER FLEXION 

VIEW 3 

MEDIAL VIEW (ASPECT) OF FLEXED FOREARM 

54-I8Z 
62-Z30 74-230 5-4-230 

MALE 1 
VIEW 3 

7m V-

9 mv. 

WRIST FLEXION 

Figure 5.3 An example of 'mapping' the arm for a single muscle action. 
In this case the ring finger flexion and wrist flexion action have been 
mapped. 
Legend: Violet = strong signal, Brown= medium signal. Green = weak 
signal 
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CHAPTER 6: Analyses of Results 

6.1 Muscle Action VS Frequency 

What relationship can be drawn between frequency and muscle action? 

6.1.1 Test results for sites 

The results of the first male generating all 20 actions, show, for each action a clearly 

defined strongest M E S (Hot Spot) region in close proximity to the muscles associated with 

the M E S source. The strongest region has a gradual reduction in signal strength as the 

electrodes are moved further away firom the strongest point. The detected M E S undergoes 

a shift in frequency content that appears both representative of a loss of frequency as 

distance increases (filter effect) and also shows a different "Hot Spot" spectrum starting 

point. 

If the M E S source showed a different, "Hot Spot" spectrum (assuming same source tissue-

depth) for each of the different muscle actions then the results would show a sfrong support 

for declaring an at least partiy deterministic M E S source. 

If the M E S source showed the same, "Hot Spot" spectrum (assuming same source tissue-

depth) for each of the different muscle actions then the results would show a sfrong support 

for declaring a non-deterministic, stochastic M E S source. 

A preliminary assessment of the results does not support a non-deterministic conclusion. 

The frequency spectrum does not fully undergo the expected "filter effect" with distance 

but shows an initial high frequency loss from the hot spot epicenfre but retains the same 

frequency spread as the overall M E S amplitude decreases. 
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Consider the comparison of two separate muscles, one overlying the other, (see Figures 

6. la and 6. lb). The (superficial muscle), the extensor digitorum (used for middle digit 
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Figure 6.1b (above) shows the muscles 
closer to the surface. The transparency 
shows the selected muscle involved in 
middle digit extension. 

Figure 6.1 adapted and redrawn from 'Principles of Anatomy and Physiology' by 
Tortora and Grabowski, Wilev & Sons, ninth edition, page 349, 2000. 
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Figure 6.1a (above) shows the deeper laying 
muscles. The transparency shows the 
selected muscles involved in the thumb 
extension action 



t>3 

Figure 6.2a (above) shows the mapped arm 4for the middle finger extension action. 
The transparency superimposes the extensor digitorum muscle normally assigned as 
responsible. The author cannot reconcile the position of the extensor digitorum 
according to the textbooks, with the activity areas detected on the maps! The same 
areas however were seen also to be active on the other three volunteers. See appendix. 
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Figure 6.2b (above) shows the mapped arm areas for the thumb extension action. 
Much closer agreement with textbook muscle positions drawn on the overlaid 
transparency can be seen. The brown regions (F2, F, G, G2, H) are seen as active yet do 
not correspond to the formally assigned region for middle finger extension, but do 
correspond to the flexor carpi ulnaris and flexor digitorum profundus which are both 
involved in wrist flexion, or in this case, wrist stabilization. Thus the wrist has been 
stabilized while the middle finger is extended. This same supportive action is also 
found in the middle finger extension views for the other three volunteers (see 
appendix). There appears to be more muscles involved in a supportive role (synergists 
and fixators) in any desired action than has formally been assigned in the textbooks. 
The arm mapping shows itself to be invaluable in determining the contributions made 
by various complementary muscles in achieving a desired muscle action. Further 
extensive analysis of the mapped areas would reveal complex interdeptendency of the 
muscles in order to achieve desired actions. 
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extension) overlying the (deep muscle) the extensor pollicis longus (used for thmnb 

extension). The superficial muscle is seen to have a spectrum of 54 to 110 Hz while the 

deeper to have a 54 to 142 Hz at the same siuface grid site. If the theory of a constant (non 

deterministic) muscle spectrum were the whole picture then the inverse of these spectral-

comparison figures should be the case (i.e. the underlying muscle should show a reduced 

high fi-equency component compared to the overlying muscle). 

It was stated that for a non-deterministic signal the "average" spectrum should be 

approximately uniform for all M E S sources. Therefore the average spectral signal loss for 

a deeper muscle should lose proportionally more of its higher fi-equencies as it passes 

through a greater thickness of tissue than the overlying muscle, yet the spectrum actually 

shows the inverse situation to be the case. There is necessarily a degree of uncertainty as to 

the exact details of the signal path, but in principle, these results show a strong suggestion 

for a differing spectral signature being available for control action by selected muscles. 

The selective nature of Neural Networks certainly offers a tantalising option. 

6.2 SITE MAPPING 

"What common M E S features or repeatability, i f any, can be found between samples fi-om 

the general population?" 

This question of repeatability introduces what has been given only minimal attention by 

past researchers: "How thoroughly do we need to look at the distribution of the surface 

MES over tiie arm?" 

The repeatability issue was confronted with the "site mapping" of the three additional 

volunteers (one male and two female) and a comparison of their results. 

6.2.1 MES Zones: Features, Overlap, and Significance 

For each muscle action, the M E S (as detected on the surface) shows a strong "Hot Spot" 

with a trend to a radial reduction in amplitude as distance increases. The radial reduction in 
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spectral content is less predictable and the effect is more the result of a combination of the 

length, size and shape of the muscle used, the varying consistency of the intervening tissue, 

and the source M E S spectrum. 

When looking at each grid area that was mapped, the overlap of M E S generated by the 20 

different muscle actions varies from no interactive overlap to a complex interaction 

depending upon the muscles used. As a single muscle action (e.g. finger movement) is 

increased to a hand grasp or fiilly-open action the number of muscles brought into play 

increases, with a resultant expansion of the areas of surface activity and a 

blending/complexity of the detected M E S . 

6.3 Gender differences 

6.3.1 Male-Male 

Given a similar musculature and fat thickness/density, the M E S comparisons between the 

two tested males gave a broad agreement in principle. Enough differences were shown to 

conclude that training a general Neural Network (NN) to be applied to a class of "all 

males"- would not produce an optimal result. For a practical application, a N N training 

should take place for each user. A general N N for the single elecfrode/single site can be 

used to detect the wrist/ring finger actions with good success but reliability decreases 

rapidly as demands for additional actions are applied. 

6.3.2 Female-Female 

The 2 females tested were of quite different muscular development. One was an active 

sportsperson (squash etc.) and the other a comparatively less active, non-sportsperson. This 

is a significant consideration when discussing these females but also applies across gender 

as well. One female had developed or utilised certain muscles that can be used for an 

action in preference to others that also could have been used. Consequently when 

comparing the amplitude peaks between the 2 females there was a significant difference 
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between some actions regarding the site amplitudes observed, rather than the sites as such. 

This is a further consideration against attempting to develop a general N N program. 

6.3.3 Male-Female 

The 2 females chosen probably gave a good span of the female range in general but still 

show a strong similarity between their general sites and features and those of the males. 

As a demonstration of both gender similarities and an indication of a deterministic element 

to the detected muscle M E S , the "thumb extension" M E S of all foiu" volunteers was 

compared (Table 6.1). There are two widely separated muscles involved in the action {see 

Figures 6.1 and 6.2). Corresponding sites (on all foiu" adults) show similar spectral features 

for the one muscle site but different spectral features for the other site. 

Site 2 shows a higher fi-equency component over Site 1 for both males and females. This is 

an early indicator of both gender similarities and of a non-random deterministic element in 

the MES. 

TABLE 6.1 Spectrum (in Hz) for 'thumb extension' M E S comparison of all 4 

volunteers. Comparison of the two sites are shown on Figure 6.3. 

Site 1 Site 2 

(female 1) 62-150 78-182 

(male 2) 54-166 46-182 

(female 2) 86-174, 70-214 

(male 1) 62-182, 62-230 

The female sportsperson was so similar to the male pair that arguments for a physiological 

difference between males and females regards general structure of muscle layout were 

without basis. Differences detected seem to be derived from individual muscle 

developmental skills. Of course, these tests were not exhaustive and make no claim for 

statistical significance. The author would welcome the resources to undertake such an 

exhaustive study. 
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SUPERIOR VIEW OF PRONATED F O R E A R M 

SUPERIOR VIEW OF PRONATED FOP'^ * 
MALE 1 

SUPERIOR VIEW OF PRONATED FOREARIV 
FEMALE 2 

••1 i I i 

SUPERIOR VIEW OF PRONATED FOREARM 
MALE 2 

Figure 6.3: Thumb extension action 
Table 6.1 refers to these 4 diagrams. Site 1 shows a 

similar sp)ectral range for all 4 volunteers. Site 2 also shows 
a similar spectral range for all 4 volunteers. 
The spectral ranges for sites 1 and 2 are distinctly different 
however, and suggests a different spectral characteristic for 
sites 1 and 2. 
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6.4 Techniques for Bandwidth and Central-Frequency 
Representation 

6.4.1 Feature assignment 

How do the 4 MES signal characteristics of: (1) Amplitude, (2) Central Frequency, 

(3) Bandwidth, and (4) Spectral Shape, combine as a unique MES label? 

The spectral shape (e.g. the peak frequency, "q" (or sharpness), and slope variations)) was 

also seen to be a very distinctive characteristic and would have required very data 

intensive, time consuming, averaging and recording for each observation. Time 

considerations did not allow for this but with appropriate equipment should prove a fruitful 

research activity that would complement the current research. Neural Networks (NN) can 

be employed to recognise that part of the M E S spectrum that corresponds to the "shape " 

without actually doing a lengthy analysis. This would be intended for practical applications 

and the theoretical origin of the "shape" would not be revealed but rather embedded in the 

hidden layers of the N N structure 

6.5 Using the Second Moment of Area as a Unique Combining 
Method 

The results of the site mapping needed to be entered into a database and analysed. The 

normal 3-dimensional representations could not account for the 4 variables [(1) Amplitude, 

(2) Central Frequency, (3) Bandwidth, and (4) Spectral Shape], obtained as the data results. 

A method was required to compress the 4 variables into 3 variables for graphical 

representation. The Second Moment of Area using the Parallel Axis Theorem was chosen 

as a medium to represent a frequency bandwidth envelope shifting along an X-(frequency) 

axis. For simplicity the 4* variable (Specfral shape) is considered here as symmetrical and 

set to unity (as data for this variable was not recorded) It can be considered as 

asymmetrical by multiplying by a plus or a minus factor. The following diagram (Figure 
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6.4) shows a box along an X-axis. This box represents a frequency bandwidth along a 

frequency X-axis with magnitude represented by the Y-axis: 

(1) b = Amplitude, (2) h = Central Frequency, 

(3) d = Bandwidth, (4) +/-= Spectral Shape] 

6.6: Using Second Moment of Area to represent Bandwidth 
Shift along x-axis 

Where: A = bxd 
b = v = voltage 
d = bandwidth = (high-low) 

= V ( high-low) 
(high - low) 

h^ • + low 

N.B. X-axis viewed as frequency 
y-axis viewed as voltage 

Figure 6.4 Using second moment of area to represent bandwidth shift along x-axis 

Formula: Parallel Axis Theorem 

lyy = 
bd^ 
12 

+ Ah^ =A 
^d^ 

12 
+ h' 

lyy ka value that represents: 

the signal bandwidth plus its combined Y axis voltage and position along the X axis 

lyy = 
v(high - lowY 

12 + 
^ high + low 

v(high - low) X + low equation (6.1) 

Observations of influences (changing values of variables) inherent in the formula need to 

be considered as limiting the absolute reliability as a measure of the 3 variables o f 

Central frequency. Amplitude, and Bandwidth 

along the X-axis 

Consider the following note re: equation (6.1) 

Note: The value lyy increases as bandwidth (d) increases: lyy a d^ 
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The value lyy increases as amplitude (b) increases: lyy a b 

The value lyy increases as central frequency (h) increases: lyy a h^ 

The value lyy increases as area (A) increases: iyy a b x d 

Hence lyy is very sensitive to changes in d and h and relatively insensitive to changes in b. 

The shortcomings of the formula given in equation (6.1) occm-s when: 

As amplitude (b) increases and drives output value lyy upwards 

so can the distance (h) increase and drive value lyy upwards 

so can the bandwidth (d) increase and drive the value lyy upwards 

We then have the situation where: 

A large change in amplitude (b) yields an output lyy that: -

Is equal to a small change in bandwidth (d) 

Is equal to a small change in central frequency (h) 

This degrades the 'absolute value' merit of the Parallel Axis Theorem in establishing a 

single value that represents the 3 variables o f 

Cenfral frequency. Amplitude, and Bandwidth 

along the X-axis 

And we are left with a generalized representation that is, still however, a valuable indicator 

for our purposes. 
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6.7 Alternative Method: Assigning A Code To Each Feature 

Figure 6.5 'Spectral Shapes' a selected few of the many possible 'spectral shapes' 
that can be measured as an MES response 

The above {Figure 6.5) shows a selected few of the many possible 'Spectral shapes' that 

can be measured as an M E S response. The following descriptors can be used to apply a 

unique identifying code number to the detected MES. These codes can be used as input 

numbers to the inputs of a Neural Network 

e.g. 1: trigger threshold value 

2: peak amplitude (@central frequency of peak 1) 

3: central frequency (@ peak amplitude of peak 1) 

4: bandwidth = ]^dB(high)-3dB{low)] 

5: slopes ratio (length of slopes: as ratio of slope 1 to slope2) 

= 0 t o 9 

= 0 t o 9 

= 0 t o 9 

= 0 t o 9 

= 0 t o 9 

where: F] = slope 1 = frequency change from threshold trigger to peak amplitude 
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F2= slope 2 =frequency change from peak amplifride to below threshold trigger 

Thus an M E S with:- trigger threshold value 3 

peak amplitude 7 

central frequency 3 

bandwidth 7 

slopes ratio 1 

could be represented as being of coded value = 3 73 7 1 

This 5 digit input code, (representing identifiable characteristics of the generated M E S ) , 

could then be presented to the 5 input nodes of the Neural Network. The output nodes 

would be coded to frigger the desired hand actions. 

6.8 The Relationship between the Separated Individual finger 

MES actions and that of Two or more combined MES finger 

actions. 

The hand fiiUy open action activates (extends) all five digits on the hand. The use of all 

five extension actions i.e. thumb extension, index finger extension, middle finger 

extension, ring finger extension, and little finger extension should produce an overall result 

that closely approximates the summing of all five actions. As the second moment of area is 

a description of the bandwidth and its position along the frequency axis, we would expect 

to see a siunming action of the second moments where the individual finger actions 

overlap. Figures 6.7 (7,3,5,9,1 l)(onpage 157) are the individual finger actions involved in 

extending the hand (wrist), and are summed below {Figure 6.6b) to become the figure 

'Cumulative Result of Test'. Compare that with Figure 6.6a {19: Hand fully open). A close 

correlation with proportional distribution over the mapped surface can be seen between 
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Figures 6.6a and 6.6b. As can be seen, compared with the 'hand fully open' data, the scale 

of values (magnitude) along the vertical Z-axis is greatest with the cumulative results 

Any true additive or subtractive frequency interaction requires that the phase of the signal 

be taken into account. If two specific frequencies were 'exactly in-phase' we would get a 

wholly summing action at the amplifier terminals. If the specific frequency were wholly 

'out-of-phase' we would get a nulling action at the amplifier terminals. Due to the varying 

pathways that the signals take from their sources to the point of measure (and thus a 

different time taken for each signal action) we cannot expect to see a pure summing action. 

Rather we should expect an overall unique interaction that yields a portion of the 

interacting MES regions. 

•o C «B 
C <]> p 

8 E 15 

• Seriesi 

• Series2 

• Series3 

B Series4 

• SerjesS 

120000 
100000 
80000 
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0 

Viewl 
Figure 6.6b 

M A L E 1 
c u m u l a t i v e 

r e s u l t s o f 
test : 19= 

7+3+5+9+11 

S4 
position y 

The diagram labelled 'cumulative result of tests' in Figure 6.6b shows such a result. What 

does stand out as different is the S5 (purple) row of data as generated in Figure 6.7 (3: 

thumb extension). 
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Note how the region of the thumb extension has lower recorded strengths on Figure 6.6a 

(hand fully open) compared to Figure <5.7('3:thumb extension'). This discrepancy appears, 

to have three possible sources (1) different muscle actions involved in thumb abduction 

and that involved in thumb extension (2) due to the cumulative results action having less 

vigour applied to the thumb (no data is available as separately recorded thumb abduction) 

and, (3) as we have seen in Figure 6.2b how the action for thumb extension involves a 

synergist and/or fixator contribution by other muscles to restrain the wrist region. The 

contribution of these other muscles may well be diminished for the hand to be fully open. 

As long as the amputee (source of the MES) can reproduce this unique pattem consistently, 

then for practical purposes the pattem will be a useful control signal. 

Figure 6.6c position x 9 io 

The wrist extension figure above {Figure 6.6c) shows how different are the mapped M E S 

features generally utilised as an 'open' trigger-signal for the commonly available 

prostheses. Figures 6.6 ( a,b,c) show how the action of wrist, hand, and finger extension, 

offer such a rich and varied range of detectable features. 

The relationship between the unified muscle action and the summed constituent muscle 

actions was explored for further clarification. 

S.Roberts 156 Chapter 6 



h 
0 • 
E 

6 0 0 0 

4 0 0 0 
S e r i e s i 
S e r i e s 2 
S e r i e s S 
S e r i e s 4 
S e r i e s 5 

2 0 0 0 

7: 
m i d d l e f i n g e r 

e x t e n s i o n 

W S 3 

S 5 p o s i t i o n y 

H i - 5 0 0 0 0 

1 0 0 0 0 0 

• S e r i e s i 
• S e r i e s 2 
1=1 S e r i e s 3 
• S e r i e s 4 
• S e r i e s S 

3: 
t h u m b 

e x t e n s i o n 

S I 

3 3 

S 5 p o s i t i o n y 

S e r i e s i 
S e r i e s 2 
S e r i e s S 
S e r i e s 4 
S e r i e s S 

9: 
r i n g finger 
e x t e n s i o n 

- ^ ^ jgf. r 3 3 

S 5 p o s i t i o n y 

9 1 0 

n : 
2 E ' 4 0 0 0 0 
• o • 

« g 3 0 0 0 0 

2 0 0 0 0 • S e r i e s 1 
• S e r i e s 2 l ° 0 0 0 

a S e r i e s 3| O 

• S e r i e s ^ ! 
• S e r i e s ^ 

1 1 : 
l i t t le f i n g e r 
e x t e n s i o n 

p o s i t i o n X 

Figure 6.7 (male 1) encompasses the above sub-figures 7,3,5,9,11 The 
z-axis has been standardized at a common value. 
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The following figures (Figure 6.8 to 6.35) show the results from all 4 volunteers for 2 

separate actions covering both 'View 1' and 'View 2', 

1) hand fiilly open' was set against both the action of wrist extension and the 'cumulative 

results' of the constituent actions. 

2 ) 'hand grasp' (clenched fist) was set against both the action of wrist flexion and the 

'cumulative results' of the constituent actions 

6.9 Decomposition of the M E S 

Decomposition (using invasive needle elecfrodes, see chapter l,page 26) of the M E S has 

been undertaken with respect to the time and morphological aspects of the individual 

M U A P ' s , and the result of the decompositions has proven of benefit to the diagnosis and 

clinical assessment of neurological disorders. The confrol by the central nervous system of 

the motor units, (and the peripheral nervous system) can be assessed, and used to clinically 

quantify upper motor neuron diseases [1]. This approach by De Luca does not attempt to 

examine the surface specfral composition. The actual success of decomposing the 

frequency content of the surface detected M E S can only be of very limited scope. As 

mentioned in the previous section (6.8) the surface elecfrodes carmot extract the phase 

relationship of the individual sources of any given detected frequency over the working 

bandwidth due to the varying distance and consequent time origins of the muscles sites. If 

examining the surface M E S gives any indication of a particular muscle being activated, it 

will be from indirect methods in most cases and not those from the M U A P analysis of 

traditional decomposition techniques. 
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Figiires 4,6,8,10,12 are the individual finger actions involved in flexing the hand and are 
summed below to become the Cumulative Result figure. Compare that with figure 20 
(clenched fist). A close correlation with proportional distribution over the mapped surface 
can be seen between the two latter figirres. As will be seen the scale of values (magnitude) 
along the Z-axis is greater with the cumulative results compared with the clenched fist). 

What does stand out as different is the S5 (purple) row of data as generated in the figure '4: 
thumb flexion'. ). This discrepancy appears, to have three possible sources (1) different 
muscle actions involved in thumb/little finger opposition and that involved in thumb 
flexion (2) due to the cumulative results action having less vigour applied to the thumb (no 
data is available as separately recorded thumb and thumb/little finger opposition, (3) as we 
have seen in figure 6.2b how the action for thumb flexion involves a synergist and/or 
fixator contribution by other muscles to restiain the wrist region. The contribution of these 
other muscles may well be diminished for the hand to be fully closed. The wrist flexion 
graph below shows how different are the mapped MES features generally utilised as an 
'open', trigger-signal for the commonly available prostheses. These three figures show 
how the action of wrist, hand, and finger flexion, offer such a rich and varied range of 
detectable features. 

Figure 6.8 (male 1): The Relationship between the Separated Individual finger 
MES actions and that of Two or More Combined MES finger Actions 
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Figure 6.9 (male 1) encompasses the above sub-figures 7,3,5,9,11 .The z-axis has 
been standardized at a common value (except 10: ring finger flexion). View 1 
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Figures 4,6,8,10,12 are the individual finger actions involved in flexing the hand and are 
summed above to become the Cumulative Result Test figure. Compare that with figure 20 
(clenched fist). A close correlation with proportional distribution over the mapped surface 
can be seen between the two figures. As will be seen the scale of values (magnitude) along 
the Z-axis is greater with the cumulative results compared with the clenched fist). ' 
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Again as in View 1, what does stand out as different are the rows of data generated in the 
figure '4: thumb flexion', that are missing in the 'figure 20:(clenched fist)' This 
discrepancy appears to be (current hypothesis) an example of the different muscle actions 
involved in thumb/little finger opposition and that involved in thumb flexion. No data is 
available as separately recorded thumb/little fmger opiX)sition. More analysis may clarify 
this point. 
The 'wrist flexion' graph below shows how different are the mapped MES features/regions 
(compared to the two figures above) generally utilised as an 'open', trigger-signal for the 
commonly available prostheses. These three figures show how the action of wrist, hand, 
and finger flexion, offer such a rich and varied range of detectable features. 

Figure 6.10 The Relationship between the Separated Individual finger MES actions 
and that of Two or More Combined MES finger Actions (male l) :View 2 
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Figure 6.11 encompasses the above sub-figures 4,6,8,10,12 . The z-axis has been 
standardized at a common value (except 10: ring finger flexion): (male 1) View 2 
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Figures 7,3,5,9,11 are the individual finger actions involved in extending the hand and are 
summed below to become the Cumulative Result figure. Compare that with figure 19 
(Hand fiilly open). A close correlation can be seen between the two upper figures. 
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Figure 6.12 The Relationship between the Separated Individual finger MES 
actions and that of Two or More Combined M E S finger Actions (female 1) View 1 
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Figure 6.13 encompasses the above sub-figures 7,3,5,9,11 . The z-axis has been 
standardized at a common value (except 10: ring finger flexion)(female 1) View 1 

S Roberts 164 Chapter 6 



The 'hand fully open' above includes all the digits; none of which are in contact 
opposition. No correlation on the surface plane can be seen between figures '19:hand fully 
open' and 'cumulative result of test 19 = 3+5+7+9+11'. It is possible that the missing data, 
(for 'figure 5:index finger extension), may fill in some of the open S3, S4 region in the 
cumulative result figure. 
The 'wrist extension' action can be seen to be positionally unrelated to the other two 
figures above and supports the position shown on all other volunteers that the commonly 
used wrist action is unrelated to other actions detectable for MES control purposes. 

Figure 6. 14 The Relationship between the Separated Individual finger MES actions 
and that of Two or More Combined M E S finger Actions: Figures 3,5,7,9,11 are the 
individual finger actions involved in the hand (female 1): View 2 
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Figure 6.15 encompasses the above sub-figures 7,3,5,9,11 The z-axis has been 
standardized at a common value (except 10: ring finger flexion)(female 1) View 2 
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The 'clenched fist' above includes all the digits; of which none are in contact opposition. The 'three finger 
chuck grasp' below has the digits in contact opposition. 
Test 20 = 4+6+8+10+12 is the sum of the thumb and finger flexion activities respectively. These three 
activities are those same digits as used in the 'hand grasp' above. No precision reconstruction of the 
composite action is achieved through comparison with the addition of the constituent elements. It was 
however noted that only figure 4 of the group 4+6+8 had any activity showing on the surface plane. Further 
examination of the opposite surface plane (View 2, Volar Aspect of supinated forearm) may show relevant 
activity. 
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The 'wrist flexion' action can be seen to be strong in contrast to other actions by this volunteer. This in 
accord with a generally weak grip and is in contrast to the other female volunteer. It does show how caution 
needs to be taken when setting up generalities about inner and cross gender MES's. 
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Figure 6. 16 : The Relationship between the Separated Individual finger MES actions 
and that of Two or More Combined M E S finger Actions. Figures 4,6,8,10,12 are the 
individual finger actions involved in flexing the hand (female 1) View 1 
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Figure 6.17 Figures 4,6,8,10,12 are the individual finger actions involved in 
flexing the hand (female 1) View 1 
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The 'clenched fist' above includes all the digits; of which none are in contact opposition. 
The 'three finger chuck grasp' below has the digits in contact opposition. 
Test 20 = 4+6+8+10+12 are the sum of the thumb and finger flexion activities 
respectively. These activities are those same digits as used in the 'hand grasp' above. No 
reconstruction of the composite action is achieved through comparison with the addition of 
the constituent elements. There is a correlation for the constituent elements of the group 
figure 4+6+8 with the figure for the 'three-finger chuck grasp'. 
The 'wrist flexion' action can be seen to be strong in contrast to other actions by this 
volunteer. This in accord with a generally weak grip and is in contrast to the other female 
volunteer (female 2). It does show how caution needs to be taken when setting up 
generalities about inner and cross gender MES's . 

C « V 
O C ™ 
u c n 
a, o *-
« E o 

• Seriesi 

• Serles2 

• SeriesS 

ei Serles4 

• SeriesS 

40000 
30000 
20000 
10000 

0 

• O c a S * £ S E n 

« E 

• Seriesi 

• Serles2 

• SeriesS 

B Series4 

• SeriesS 

17: 
three finger 
chuck grasp 

14: 
wrist flexion 

Figure 6.18 : The Relationship between the Separated Individual finger MES actions 
and that of Two or More Combined M E S finger Actions; Figures 4,6,8,10,12 are the 
individixal finger actions involved in flexing the hand (female 1) View 2 
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Figure 6.19 Figures 4,6,8,10,12 are the individual finger actions involved in 
flexing the hand (female 1) View 2 
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Figure 6.20 The relationship between the separated individual finger M E S actions and 
that of two or more combined MES finger actions. Figures 7,3,5,9,11 are the individual 
finger actions involved in extending the hand and are summed above to become the 
'Cumulative Result' figure. Compare that with figure 19 (Hand fully open). A close 
correlation can be seen between the two upper figures (male 2) View 1 
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Figure 6.21: Figures 7,3,5,9,11 are the individual finger actions involved in 
extending the hand. (male 2) View 1 
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No correlation is shown between Figure 19:Hand fully open above and the cumulative test 
result. 

A negligible response (below) for wrist extension suggests that separate muscles activity is 
involved w.r.t. hand fully op>en activity. 
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Figure 6.22 The relationship between the separated individual finger M E S 
actions and that of two or more combined MES finger actions (male 2)View 2 
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Figure 6.23: Figures 7,3,5,9,11 are the individual finger actions involved in 
extending the hand. (male 2) View 2 
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The clenched fist above shows a very strong response in two distinct regions (light and 
dark blue) that does not show up as expected in the cumulative result. Most notable is the 
missing thumb response shifted from position Sand 9, (light blue) into position 5,6,and 7. 
Little finger flexion shows a very much greater response when used in the clenched fist. 
These results suggest that the volunteer (male 2) has a strongly developed clenched fist 
response and has a thumb response that differs for the individual thumb flexion response 
from those found in the clenched fist and 3-finger chuck grasp. The volunteer (Jim) may 
well be using the thumb flexion and thumb/ little finger opposition actions (see figure in 
appendix) with fine discrimination. Comparison needs to be made against View 2 for the 
same responses!! Once again the graph, (cumulative result of 20 =4+6+8), has data missing 
from the' middle finger flexion' action. 
It is possible that positions 3,4 in red and dark blue are representative of the missing data. 

Figure 6.24: The relationship between the separated individual finger MES 
actions and that of two or more combined M E S finger actions.(male 2):View 1 
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Figure 6.25 Figures 4,6,8,10,12 are the individual finger actions involved in 
flexing the hand (male 2): View 1 
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The clenched fist above shows a very strong response in purple regions 6,7,8. Little finger 
flexion shows strong response in these regions when used in the clenched fist. These 
results suggest that the volunteer (male 2) has a strongly developed clenched fist response. 
Compare with other volunteers. 

Wrist flexion (Figure 14 below), shows a strong response overall and is by far the most 
powerful overall action on this planar surface. 
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Figure 6.26 The Relationship between the Separated Individual finger MES 
actions and that of Two or More Combined MES finger Actions (male 2) View 2 
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Figure 6.27 Figures 4,6,8,10,12 are tlie individual finger actions involved in 
flexing the hand male 2: View 2 
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The crude but commonly used wrist extension action is shown below for comparison with 
the above figures. The wrist extension clearly occupies a different planar region compared 
to the figure 'Hand Fully Open'. Comparison needs to be made with the 'View 2' results to 
see i f there is any introduction of wrist extension activity into the above figures. 

Figure 6.28 The Relationship between the Separated Individual finger M E S 
actions and that of Two or More Combined M E S finger Actions 
Figures 3,5,7,9,11 are the individual finger actions involved in extending the hand 
and are summed above to become the Cumulative Result figure. Compare that with 
figure 19 (Hand Fully Open). A close correlation can be seen between the two upper 
figures. (female 2): View 1 
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Figure 6.29 Figures 3,5,7,9,11 are the individual fmger actions involved in 
extending the hand. (female 2): View 1 
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Test 19 = 3+5+7+9+11 is the sum of all thumb and fmger extension actions respectively. 
No precision reconstruction of the composite action is achieved through the addition of the 
constituent elements. The same areas of activity can be seen to be involved. Thumb 
activity is the major constituent element. 
The crude but commonly used wrist extension action can be seen below. There appears to 
be no contribution detected, on the measured plane, from any unintended wrist extension 
activity by the volunteer. 
N.B. This clearly suggests that, for these thumb and finger actions, a unique muscle usage 
occurs that is uncormected to those of the wrist extension response. 
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Figure 6.30: The Relationship between the Separated Individual finger MES actions 
and that of Two or More Combined M E S finger Actions (female 2): View 2 
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Figure 6.31 Figures 3,5,7,9,11 are the individual fmger actions involved 
in extending the hand. (female 2): View 2 
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The 'clenched fist' above includes all the digits; of which none are in contact opposition. 
Test 17 = 4+6+8 are the sum of the thumb, index, and middle finger flexion activities respectively. 
These three activities are those same digits as used in the 'three fmger chuck grasp' below. No 
precision reconstruction of the composite action is achieved through the addition of the constituent 
elements. The same areas of activity can be seen to be involved. Though not intended the ring 
finger activity (intmdes into) i.e. is partially brought into play in the 'the finger chuck grasp' below 
and correlates closely to a partial activity of the 'ring finger flexion' in Figure 10 (page 184):This 
agrees with the observed difficulty of separating out the ring finger action by the volunteer. In this 
way, it can be seen how the constituent MES elements accumulate and can be used for fine control 
of a prosthesis. 
The 'the finger chuck grasp' below has the digits in contact opposition. 
The crude but commonly (commercially) used wrist flexion action can be seen below. 
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Figure 6.32: The Relationship between the Separated Individual finger MES actions 
and that of Two or More Combined M E S finger Actions, (female 2): View 1 
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Figure 6.33 Figures 4,6,8,10,12 are the individual finger actions involved in 
flexing the hand. (female 2): View 1 
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Figures 4,6,8,10,12 (next page) are the individual finger actions involved in flexing the 
hand and are summed to become the Cumulative Result figure. Compare that with figure 
20 (Hand Grasp (clenched fist)). No precise (or similar) reconstruction of the composite 
action is achieved through the addition of the constituent elements. This may be solely as a 
result of data missing for completing that region. 
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No conclusion with respect to additive actions can be assumed as a result of the missing 
data for figure 20. 
The commonly used wrist flexion response below shows however as a completely separate 
region to the other 3 figures presented. This demonstrates how little of the available 
information is ever used with conventional prosthetic controllers. 
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Figure 6.34: The Relationship between the Separated Individual finger M E S actions 
and that of Two or More Combined M E S finger Actions (female 2) View 2 
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Figure 6.35 Figiues 4,6,8,10,12 are the individual finger actions involved in 
flexing the hand. (female 2) View 2 
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Figures 6.6 to 6.35 examined the relationship between the addition of the individual digit 

actions and the combined hand actions. Following these studies it is clear that the overall 

interaction of individual muscle actions describes the combined effect. This demonstrates a 

deterministic nature in the observed results. The differences that do exist are largely due to 

the inclusion of synergistic muscles as they stabilize a joint. The most frequently 

encountered stabilizing action being around the wrist joint. Individual muscle action 

variations occiu^ between various volunteers as a result of preferred techniques and 

developmental differences (sporting vs. non-sporting). 

6.10 Standard Deviation Analysis To Determine 'Best' Location 

For An Electrode For Single And Multi Electrode 

Configurations 

Extensive analysis has been done on the grid mapping results and the translations into an 

Excel database has allowed the standard deviation to be assessed. The results summary for 

the two male and two female volunteers can be seen on figures 6.36 and 6.37. The grid 

points with the tallest towers represent the most active grid points for all 20 mapped 

actions. The inclusion of composite actions such as 'clenched fist' in the standard deviation 

calculation tend to reduce the sharpness of the overall contour features. If desired the 

composite actions could be subtracted from the calculation in order to find sites for control 

signals that respond only to individual digit actions. The accuracy of response to user 

intended muscle activity would be directly proportional to the number of grid sites 

individually monitored by electrodes. The method can be incorporated into any future 

amputee mapping activity. 
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Figure 6.36 The above shows the standard deviation values for viewl and 
view 2 of volunteers female 1 and male 2 The grid points with the tallest towers 
represent the most active grid fX)ints for all 20 mapped actions. The accuracy of 
response to 'user intended muscle activity' would be directly proportional to the 
number of grid sites monitored by electrodes. It can be seen that individual 
electrode site selection would produce optimal results for each person. 

S Roberts 188 Chapter 6 



MALE 1 

V I E W 1 

MALE 1 
V I E W 

Standaj 

p o s i t i o n 

r30000 
2 5 0 0 0 T) ^ 0 C 

2 0 0 O 0 in m 0 
1 5 0 0 0 b 
1 0 0 0 0 1 0 0 0 0 
5 0 0 0 • S e r i e s 1 

0 • S e r i e s 2 

• S e r i e s S 

IB S e r i e s 4 

• S e r i e s S 

p o s i t i o n 

m 

T 30000 c 
> O 

20000 •J TJ 

10000 N 
U Seriesi 

0 • Series2 
a Series3 
• Series4 
• SeriesS 

Figure 6.37 The above shows the standard deviation values for viewl and view 2 
of volunteers male 1 and female 2. The grid points with the tallest towers represent 
the most active grid points for all 20 mapped actions. The accuracy of response to 
'user intended muscle activity' would be directly proportional to the number of grid 
sites monitored by electrodes. It can be seen that individual electrode site selection 
would produce optimal results for each person. 
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6.11 Deterministic Vs Stochastic Content 

The question as to whether the surface M E S has a deterministic or stochastic content needs 

to be re-examined and rephrased as to whether it has both a deterministic and a stochastic 

content. 

At the lowest level of the individual muscle motor units, the very nature of the firing 

signals along the neural pathway and varying branch lengths, fatigue, recruitment etc. (see 

chapter 2 on physiology of muscle and mathematical/theoretical description by De Luca) 

does not show promise of an isolatable deterministic frequency characteristic. 

However, the investigation undertaken at the University of Plymouth by the author has 

revealed, at the level of the siuface M E S , an element of deterministic behaviour is 

detectable. 

6.12 Summary 

As stated in chapter 1, the objectives of the research are: 

• l)-to investigate the information content of a M E S . 

• 2)-to study the nature of the Tissue Filter Function (TFF) 

• 3)-to map and identify optimum upper limb (forearm) myoelectric sites 

• 4)-to analyse the mapped data for frequency content and other imique identifiers 

• 5)-to recommend the practical application of M E S analysis for confrol purposes 

• 6)-to provide a greater range of user-generated control signals 

This chapter has made progress on objectives: 

l)-to investigate the information content of a M E S . 

For a non-deterministic signal the "average" spectrum should be approximately uniform 

for all M E S sources yet this has not been the observed result. 
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If the M E S source showed a different, "Hot Spot " spectrum (assuming same source 

tissue-depth) for each of the different muscle actions then the results would show a strong 

support for declaring an at least partly deterministic M E S source. Results do show a 

different "Hot Spof' spectrum starting point for different muscles. 

2) -to study the natiu-e of the Tissue Filter Function (TFF) 

In Section 6.1.2 the results of the first male (male 1) generating all 20 actions, show, for 

each action the detected M E S undergoes a shift in frequency content that appears 

representative of a loss of frequency as distance increases (filter effect). The frequency 

spectrum does not fiiUy undergo the expected "filter effect" with distance but shows an 

initial high fi-equency loss from the hot spot epicentre but retains the same frequency 

spread as the overall M E S amplitude decreases. 

Therefore the average spectral signal loss for a deeper muscle should lose proportionally 

more of its higher frequencies as it passes through a greater thickness of tissue than the 

overlying muscle, 

3) -to map and identify optimum upper limb (forearm) myoelectric sites 

The appendix contains the mapped results for all 4 volunteers 

The optimum sites have been selected for electrode placement using standard deviation 

results. These values can be used to improve the multifvmctionality of a prosthesis by 

simply increasing the number of detection electrodes applied to the hierarchy of preferred 

sites. 
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4) -to analyse the mapped data for frequency content and other unique identifiers 

As a demonstration of both gender similarities and an indication of a detemiinistic element 

to the detected muscle MES, the "thumb extension" M E S of all four volunteers was 

compared (Table 6.1). There are two widely separated muscles involved in the action (see 

figures 6.1 and 6.2). Corresponding sites (on all four adults) show similar specfral features 

for the one muscle site but different spectral features for the other site. 

5) -to recommend the practical application of M E S analysis for confrol purposes: Using 

Second Moment of Area to represent Bandwidth Shift along x-axis allowed for the use of 

the 4 variables [(1) Amplitude, (2) Central Frequency, (3) Bandwidth, and (4) Bandwidth 

Shape to be represented as a value and to represent the surface of the arm as a grid of 

potential elecfrode sites. The use of standard deviation analysis allowed the final elecfrode 

site selection to be optimised. A n alternative method of 'assigning a code to each feature' 

was also formalised for representing spectral features. 

6) -to provide a greater range of user-generated confrol signals: Section 6.8 investigated the 

relationship between the separated individual finger M E S actions and that of two or more 

combined M E S finger actions. The examination of figures 6.6(a,b,c,), (page 155-156) 

show how the summing action of individual muscle actions is not necessarily likely to 

produce the same mapping feature as combined action requiring the simultaneous 

activation of the individual muscles. There are certainly some areas of commonality and in 

some instances the summing action is remarkably close to the expected combined result, 

but for confrol purposes, the nature of synergist and fixators muscles needs to be taken into 

accoimt. 
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Finally, with the demonstration of a deterministic element in the MES, one might ask for 

an miderlying explanation as to just how the different muscles might exhibit a variation in 

frequency spectrum. Chapter 7 brings together a list of variables that are involved in the 

creation of the spectral features of the M E S . The variables outlined in Chapter 7 not only 

suggest an imique signature might be detected but actually argue, by the sheer number of 

variables, how could anything else but a variation be expected! 

6.13 References: 
1 De Luca. C. J., (1993). Precision Decomposition of E M G signals'. Methods in Clinical 

Neurophysiology, Vol. 4, March, Page 15. 
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CHAPTER 7: Discussion 

7.1 Deterministic or Stochastic Content? 

What has been explained? 

Historically the surface MES has been assumed to be of stochastic content (De Luca 114]). 

This has now been shown to be (only partially valid for the M E S at the point of origin only 

(the level of the wire electrode detection of the action potential (MUAP of individual 

motor units), due to (a) the very nature of the synaptic crossing points along the neural 

pathway and (b) the varying motoneuron branch lengths). 

The human neuromuscular system has been studied for more than a century and the 

following section will draw together past research and current research at the University of 

Plymouth to clarify the deterministic nature of the M E S . 

FIGURE 7.1 Motor Neuron branching onto and around muscle 
fibres. Diameter of fibres vary from 10 to 100 micrometres 
Adapted from 'Principles of Anatomy and Physiology', Tortora and 
Grabowski, ninth edition, 2000 

There has been an extensive volume of research literature in which MES detection has 

been undertaken using inserted needle/wire electrodes. These wire electrodes are often the 

equivalent of an extremely fine hypodermic needle. The full cross-sectional electrode 

diameter (of a 4 wire 3 channel discriminating electrode) would be approximately 300 to 

400 micrometers (1). Finer wire electrodes are also used (25 to 75 micrometer diameter) 
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but they have Hmited discriminatory capabihties. Mature muscle fibres range from 10 to 

100 micrometers in diameter (1 micrometer = 1 micron = 0.001 mm= 1/25000 inch) with a 

typical length of 100 mm. These fibres lie parallel to and very close to each other. At this 

point, it will be appropriate to look at a photomicrograph of a region of typical muscle 

fibres and the innervation by a motoneuron {see Figure 7. /). 

The usual method, in using these wire elecfrodes, is to insert them directly into the central 

body of the particular muscle to be studied. As the fibre is often innervated by the nerve at 

the midpoint of the fibre, this would be the region of highest nerve fibre concentration 

amongst the muscle fibres. Remember, these are ' l ive' volunteers with no means for the 

researcher to 'see' the fibres at the end of the needle elecfrode. It is important to consider: 

• the scale of movement of the elecfrode with respect to the fibre (300 to 400 

micrometers elecfrode and 10 to 100 micrometer fibres), 

• the interwoven network of the nerve fibres wandering throughout the central 

muscle fibres to create the dispersed territory of a single motor imit, 

• the interwoven nature of the different motor imits (with each other). 

The likelihood of being able to tell the action potential of the nerve as it enters the fibre, 

from the action potential of the muscle fibre as it traverses the fibre length is called into 

question {see Figure 7.2). Considering that the shapes of the two action potentials are very 

similar and the resting membrane potential of a neuron fibre is (-90mv.increasing to +30 

mv. at peak) versus (-70 mv. increasing to +30 mv. at peak) for a muscle fibre (2), we see 

how difficult it will be: 

a) To discriminate at the common signal feature boundary where nerve and muscle 

fibre potential have common appearances 

b) To be sure of the elecfrode tip position, where the fransition zone between the nerve 

and muscle fibre junction is an order of magnitude smaller than the electrode tip 
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c) To separate, (when seen as the surface detected MES), the muscle fibre action 

potential from the nerve fibre action potential (as they near to simultaneously, 

overlap, combine and pass through tissue layers). 

Figure 7.2 Typical action potential values. Note similarity of muscle and nerve 
fibre voltage ranges. Time scale differs by approximately 2:1. 

Adapted from, 'Physiology', Berne and Levy, Mosby Year Book, 1993 edition. 

For the requirements of research into motor units using needle elecfrodes, the points 

mentioned in a) and b) above will not be of crippling consequence as long as researchers 

use decomposition techniques to remove signals they deem not to be part of the motor unit. 

This can be done, but the options are: 

• long and laborious human eye methods (99% success) 

• or computationally expensive methods (only 80% success) (1). 

For the sake of research into surface M E S the consequences of (c) above are very 

significant. The surface M E S is then a composite of both neuron and muscle fibre activity 

of similar AP magnitudes (for explanation see section 7.46, pages 209-211). 

If we go back to the physiological/mathematical model of De Luca (chapter 2 page 83) we 

see a summing of the motor unit action potential trains (MUAPTS) as they approach the 

skin surface prior to elecfrode detection. 
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It is the summing and overlap in time of these M U A P T S according to De Luca that 

represent the M E S at this stage. 

The author proposes that the M U A P T S are only relevant and only have a 'reality' i f 

detection is done by a needle electrode. The very nature of needle electrodes is to 'look 

for' M U A P T S as generated by close-proximity motor units. One needle electrode will see 

a small picture in the region of the muscle fibre. If we took a very large number of needle 

electrodes and evenly populated the gross muscle with them and were able to observe them 

as a decomposed (using decomposition techniques) instantaneous time slice, we would see 

a slice of the time-fi-equency graph. Combining these slices over the duration of a muscle 

action would give the complete time frequency graph of the muscle action. 

We only ever see a small window on the skin smface using siuface elecfrodes. A l l those 

action potentials (AP's) have interacted with other AP 's locally and en route in a way very 

different from that seen at any needle elecfrode site. The AP 's are not behaving as obedient 

members of a stationary M U A P . The AP 's strike out on their radiative path and will 

combine with each other {not with other needle detected MUAPTS), interact with the tissue 

(TFF), and arrive vnth subtle differences (depending upon the path taken) at each surface 

point. 

7.2 An Expanded Model of the Surface MES 

It is the author's opinion that it is incorrect to describe the (needle-elecfrode detected) 

M U A P T ' s as the summed elements that comprise the surface M E S . The story is much 

more complex. 

De Luca (1), (pages 78-84) proposed the power density spectrum for the M E S , up to 40 

Hz, could be accounted for by the motor unit Inter Pulse Intervals (IPI's) (see Chapter 2). 

Beyond 40 Hz, De Luca only describes the spectrum as the results (shape) of an impulse 

response through a black box filter. It should be noted here that De Luca used an 
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averaging/statistical assessment of the reciprocal of the IPI, to come up with a motor-unit 

firing rate (1). 

7.3 An Extended Physiological description of the Surface M E S 

The following is the author's updated M E S model using current knowledge of the 

physiological features that need to be an essential basis for incorporating into a description 

of the surface MES. The features are briefly stated, then given a short mathematical 

description. The mathematical statement is then developed into a flowchart (see Figure 

7.3). 

Muscle fibres are organised as Motor units 

Let the force of the muscle contraction be (Fc) 

Let motor unit firing rate be Xj-

(Fc) wil l determine the number of motor units brought into use (to achieve that composite 

force) As the force of the muscle contraction increases, the firing rate of the motor unit 

increases (1) 

As Fc increases, Xr increases 

Small motor units are recruited first and largest motor units recruited last. (2) 

The earliest recruited motor units also have the smallest nerve fibre diameters i.e. are 

recruited in order of increasing motor axon fibre size. (2)(page 116) 

The higher the recruitment threshold of the motor unit, the less the motor unit increases its 

firing rate with increasing force (3) 

Let motor unit recruitment threshold = Tf 

As Fc increases, Tf increases and the rate of change of ->0 
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Following recruitment a motor-unit firing-rate increases slightly with increasing force 

The 'preferred rate' increases slightly with increasing recruitment threshold. 

As Tf increases, Ap increases 

As force level decreases the firing rate decreases to 30 to 40 % of the preferred rate before 

becoming inactive (4) 

At faster rates of force increase, motor units were recruited at lower force levels but with 

higher initial firing rates. (5) 

There appears to be more variability in firing rate recruitment between different (named) 

muscles, than within the motor units in any particular muscle. (l)(page 146) 

Let set of muscles = {Mi, M 2 , M 3 , . . . } 

variability of A -̂ within M i ^ variability of A -̂ within M 2 etc. (1) 

Motor units near the surface of the muscle have higher recruitment thresholds than those 

deeper in the muscle. (6). The author considers this tends to suggest that the larger motor 

units are located at or near to the muscle surface. Relative location of fibre types 

throughout the muscle w.r.t. the recording electrodes i.e. surface, central, or deep, wil l 

affect the location of instantaneous centres of activity) 

High threshold motor imits tend to have shorter contraction times( Tc ) 

and twitch durations ( to ) (2) 

Motor units are only of one type of fibre (i.e. not mixed) (2) 

fibre types: (slow-twitch or fast-twitch type) 
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Note: It is not actually correct to state that fibres are of only the two types (see Chapter 2, 

page 68). There is a third intermediate (in both fatigue resistance and speed) type of fibre. 

For clarity, this intermediate type is omitted, (a reduction in terms) and does not affect the 

fimction of the model. Rather, it serves to facilitate understanding and emphasize the 

relationships 

Mus = small motor unit= low threshold unit (long contraction times, long twitch) 

M U L = large motor unit = high threshold unit (short contraction times, short twitch) 

Fast twitch fibres are generally recruited at higher force levels. Fast-twitch fibres are larger 

in diameter and have higher amplitude AP ' s than slow-twitch fibres. Larger radius fibres 

have larger conduction velocities. A doubling of fibre radius wil l increase conduction 

velocity of by a factor ^2 jhjs should be reflected as an increase in detected M E S 

frequency of (2) (page 51). 

i.e. >.rofp(fibF)« V2 [Arofp(fibS)] 

Where p(fibF) = fast twitch fibre 

Where ^(fibS) = slow twitch fibre 

Decruitment of motor units: De Luca found force reversal not to be the orderly inverse 

activity of recruitment (l)(page 154). Rather, with decruitment, the earlier recruited 

smaller, slow-twitch-fibre motor units decreased their firing rates before the latter-recruited 

larger, fast-twitch units. (1) 

At decruitment, XT of ^(fibS) decreases before A,r of ^(fibF) 

Why this occurs is not well understood and conjecture by De Luca follows a selective 

sensitivity to excitation and inhibition in the motor neuron pool resulting in ordered firing 

rate reversals. (1) 
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Let set of muscles 
= {M, M2 Mj...} 

recruitment 
ofMuo 

recruitment 
ofMi^ 

decruitment 
ofMi^ 

decruitment 
ofMuc 

(Fj,) increases 

I 
variability of A,, within M, 
variability of A,̂  within M2 etc. 

Muj = small motor unit 

1 . 
Where ̂ (fibs) = stow twitch fibre 

As F̂> increases, A,̂  increases 

asF(, increases, A .̂ increases and A -vX, 

X 
MUL = large motor unit 

1-
Where nCfibp) = fast twitch fibre 

I 
As Fc increases, increases 

increases, A.̂ . increases and A, 

AsFc decreases A„ —> 0.35 A„-
p pjnit 

asFf; decreases, A .̂ decreases and A 

As F(, decreases, A .̂ decreases 

AsFp decreases A „ ^ 0.35 A,„.;, ^ _p p^it 

as F(; decre^es, A^ decreases and A^ -> A^ 

As FQ decreases, A^ decreases 

At decruitment: 
Mi^ decruite before Mug 
But, Arofu(fibs) 
decreases beftre %T of 
Kfibp) 

Figiu-e 7.3 above shows the recruitment/decruitment process involving the changing 
relationships between muscle size, motor unit size, firing rate, and fibre type. The 
overall variability between and within different muscles allows for differences to 
'emerge' as the surface MES. 
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7.3.1 Maximum Voluntary Contraction (MVC) 

Most research agrees that the firing rate increments, at least up to the level of 50% of 

M V C ( l ) 

where Fc max = Maximum Voluntary Contraction (MVC) 

for Fc < ^ ^ increases and Fc a A^-

Less agreement occurs as M V C approaches 70-80 %. (this may well be due to the lack of 

consistency between research groups, with muscle and muscle-region selection). Most 

research shows a levelling off and other research (a minority) shows an increase in firing 

rate all the way up to 100% M V C . There is some consensus with the force and firing rates 

being linearly related (l)(page 142,151) 

for Fc < 0.8 Fc max, rate of change of A T - » 0 and Fc « Ar 

In general, small muscles with fewer motor units fe.g. hand, first dorsal interosseous has 

120) recruit all motor units below 50% M V C and from 50 to 100% M V C , rely primarily 

on firing rate to modulate their force. Rates reach as high as 60 pps. (l)(page 167) 

For first dorsal interosseous: 

When Fc < A , -> 60 pps 

By recruiting during the first 50% M V C the 'unit force increment' is one half the increase 

compared i f recruitment extended to 100 % M V C . (1) (page 166) 

Let 6 Fc = unit force increment 

_ ^ Fc max - „ _ ^ 
F o r F c < - ^ - ^ — , 5 F c = 5Fcmax 

i.e. given a total available pool of motor units to recruit, the strategy of recruiting all the 

motor units by 50% M V C means that each recruited motor unit has only one half of its 
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share of the Fc demand placed upon it compared to the strategy of continuing recruitment 

up to 100% M V C (1)( page 167) 

This gives fine control of force (0.8% increase per unit), as is required of small muscles 

(e.g. first dorsal interosseous has 120 motor units). For larger muscles vsath more motor 

units (e.g. upper arm, biceps brachii has 770 units), overall force is greater and spread over 

many more units. Unit force increment is small with unit increments of 0.12%. (1)( page 

166) Large muscles, where recruitment occurs throughout the fiill force range, rely 

primarily on recruitment to modulate their force. Thus we have: 

for small muscles (Ms): for Fc < I ^ E ^ L , 5 Fc = .008 Fc 

for large muscles (ML) : for Fc < , 5 Fc = .0012 Fc 

Let Mu(fuii) = full motor unit recruitment 

M V C 
For Ms with Mus, full recruitment (Mu(fiiii)) occurs at 

M V C . , ^ M V C 
F o r M s , F c a { Mu(TOTX F^ < and >^,F, 

2 

where: M ^ , (TOT) = Number of motor units recruited at that moment in time 
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Fp max = maxmaum Voluntary contraction (MVC) 

the firing rate increments, at least up to the level of 50% of MVC 

^ ^ F„ max 1 . , ^ 1 tor Fc < -^^-^—, \ mcreases and Fc aA,̂  

For large muscles 
recruitment continues 
from 70 to 100% MVC 

for Fj, < 0.8 Fj, max, rate of change of —> 0 and F̂ , x A.̂  

I 
for small muscles(M^): forFc <, 5Fc= .008Fc 

I 
for large muscles (M,): for F ,̂ <, 5 = 0012 

T 
For Ms with Mus, fill! recruitment (MiXfaii)) occurs at MVC 

For Ms , Fc a { M„(TOT), F,, < and A^,F^ > MVC 

Small muscles with 
fewer motor units recruit 
all motor units below 
50% MVC 

Small muscles with 
fewer motor units rely 
primarily on firing rate 
from50tolOO%MVC 

Figiue 7.4 above shows the different motor unit recruitment and firing rate strategy 
between small muscles and large muscles. The additional variable of different ratios 
of fibre types (slow and fast twitch) associated with small to large motor units within 
the extremes of muscle size, emphasize the potential for characteristic features to be 
found associated with muscle actions and the surface detected MES. 
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7.3.2 Fused-Tetanic Contractions 

To produce fused-tetanic contractions requires higher firing rates (8)(page 286). 

Fc max = Z all Mus + E all M U L 

where: Fc max = Maximum Voluntary Contraction (MVC) 

With agonist/antagonist activity in a muscle action, when the firing rate is increased in one 

it is decreased in the other. (2) 

As p (-) Xj- increases, n (+) Xj; decreases 

p (-) A T CJC ^ 

where p (-) = antagonist muscle 

where p (+) = agonist muscle 

This implies that the nervous system 'sees' (commands) the opposing muscles as one unit 

with reciprocal levels of excitation and inhibition. (l)(page 153). Although firing rate of 

motor imits increase with force, there is also a slowing of the firing rates of previously 

recruited motor units (1). De Luca conjectures this is a means by which the nervous system 

smoothes the force increase, (as larger motor units are brought into play). 

7.3.3 Fatigue Effect: 

The fatigue effect can be described as follows: During sustained muscular contractions, the 

observed spectrum has a tendency to decrease independently of the force output of the 

muscle. A decrease in bandwidth occurs with a frequency shift from higher to lower 

frequencies (observed near the begirming of a sustained contraction), accompanied by an 

increase in the amplitude of the lower fi-equencies (observed near the end of a sustained 

contraction). 
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The author proposes the fatigue effect has a simple explanatory basis due to the decreasing 

contribution of the [fast-firing rates, (fast-fatiguing)] fast-twitch motor units as they fail 

(fatigue), with no alteration in the contribution from slow-twitch [slow-firing rates of the 

(slow-fatiguing)] fibres (7). This has been probably understood by those in the field of 

physiology but not formally presented. Though not included in the previous model 

description, it is can be assmned that the intermediate type of fibre can be briefly 

considered as an intermediate phase in the transition of the signal frequency content from 

high to low. 

Fatigue effect of force of contraction = FCFE 

At 100% M V C , Fc 4-FCFE 

At 100% M V C , Fc a [ Ar o f p(fibs) + K of Kfibp).] 

At FCFE , Fc a[ (K of M(fibs) + K of ^(fibF) ], but of ^ ( f i b F ) ^ 0 

low frequency B W = B W L = Ep(fibs) 

high frequency B W = B W H = Ep(fibF) 

Total Bandwidth = B W T = [ B W L + B W H ] 

Total Bandwidth = B W T = [Zp(fibs) + Zp(fibF).] 

At 100% M V C , Total Bandwidth = B W T = [Zn(fibs) + Zp(fibF)] 

Before FCFE , B W T a iMhA. i.e. B W > 1 

At FCFE , Total Bandwidth = B W T = [Zp(fibs) + Ep(fibF).l 

B W a i.e. BW.< 1 
Hi fibs) 

S.Roberts 206 Chapter 7 



7.4 Factors Contributing to Variations in the Frequency 

Content of the MES 

7.4.1 Temperature of Muscle Fibres: the conduction velocity of a muscle fibre is 

proportionally related to temperature. A muscle tested for spectral content in a cool lab 

compared to the muscle used for pattem recognition within a covered prosthesis may vary 

a few percent. (l)(page 218) 

Let Vc = velocity of conduction (of muscle fibre) 

Let T M = temperature of muscle 

V C C ^ T M 

7.4.2 Muscle Interactivity 

Agonist and Antagonist muscles interact through what can be described as a 'triphasic 

pattern'. (l)(page 225-226). This triphasic pattem could be modelled as a feedback control 

loop which responds to the following directives: 

1) A n initial burst of agonist activity/limb acceleration with concurrent silence of 

the antagonist muscle, is followed by 

2) A reduction of agonist activity with a concurrent burst of antagonist activity 

resulting in limb deceleration, is followed by 

3) Further agonist/antagonist activity as the limb stabilises. 

With ballistic movements (of a limb), the antagonist activity appears to be influenced by 

the subject's movement strategy. For full deceleration (stopping) of the muscle action, the 

strategy varies from antagonist relaxation (for no time consfraints) to antagonist activation 

(for rapid deceleration). For both power grip and precision grip, almost all the finger and 

hand muscles of the hand and forearm are brought into play (l)(page 28). The extent of 

this can be seen with the mapping work done by the author. 
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7.4.3 Muscles At Rest: at complete rest there is no detectable neuromuscular 

(electrical) activity. When muscles at complete rest are passively stretched, there is still no 

activity in both flexor and extensor, regardless of speed of movement. 

7.4.4 Muscle Stretch Receptors: are used for Proprioception (the sense of joint 

position and movement). Spinal reflex control of skeletal muscles is mediated through the 

feedback mechanisms of the muscle-based muscle spindle and tendon-based Golgi tendon 

(force sensing) organs. (2)(page 198-203) The spindles have a very complex activity and 

involve both motor and sensory activity for their function. The spindle actually use 

modified small muscle fibres (parallel to and nested amongst the normal muscle fibres) as 

driven units that activate integral stretch receptors that feedback information about the 

level of stretch (the engineering equivalent of a strain gauge) in the muscle body. Spindles 

are most abundant in slow-twitch fibres. Spindles come in two types; one gives feedback 

on dynamic (rate of change in length) and the other on static (length only) responses. 

Contraction of the fibre/spindle (decrease in muscle length) decreases the discharge rate 

(frequency) and relaxation increases the discharge rate. The output of the spindle and Golgi 

sensors drives (through fibre branching) both the reflex response and the higher levels in 

the cerebellum and informs the cortex. (2) The end result is that the alpha motomeurons 

operating the opposing muscle sets, are excited and inhibited as appropriate. The type A 

fibre (which is the same myelinated type used for skeletal muscle fibres) is also used for 

spindle and Golgi sensing (8)(page 395). Type A fibres have diameters between 5 to 20 

micrometers and conduction velocities of 12 to 130 mefres /second. 

De Luca interprets the proportional firing rate increases with increasing force as implying 

that an increased general excitation to the muscle motoneuron pool increases the firing 

rates of all the active motor units. (l)(page 151). De Luca describes this as the 'common 

drive' in which the nervous system acts as a modulator of inhibition and excitation upon 
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the motoneuron pool. The lack of any appreciable time-shift in the correlation function of 

changes in firing rates indicates that the modulation occurs essentially simultaneously and 

in similar amounts per motor unit. (1) 

7.4.5 Training of the Subject: 

De Luca considered that training had no effect on the M E S generation but other branches 

of physiology suggest otherwise. The effect of training of the subject is to control the 

'interaction' of the muscles rather than the control strategy of individual motor imits. 

Before training, (training on rhythmic extension and flexion of the elbow), there is wastefiil 

activity of the antagonist muscles interacting to moderate the agonist activity (co 

activation). After training there is progressive inhibition of the antagonist activity until, 

with advanced training, fiiU inhibition is reached. Co-activation activity is observed to 

reduce as infants mature. The nervous system is subject to feedback to modify the 

'reciprocal inhibition' control scheme of muscle activity. Co activation of 

agonist/antagonist muscles is found in infants, in isometric activities, in requirements for a 

joint to be stiff, rapid deceleration of muscles controlling a joint, in unskilled movements 

(prior to training) and in spastic patients. 

7.4.6 Conduction Velocity: of both nerve and muscle fibres. If the conduction 

velocity of a fibre changes the depolarisation event (that produces the wave shape) and the 

AP takes a different time to traverse a fixed distance along the fibre (and consequently to 

pass the detection electrodes) the detected A P wil l have an altered time duration. Any 

signal that follows the relationship: (velocity = frequency x wavelength) will see a change 

in fi-equency such that a drop in (conduction) velocity produces a drop in frequency and a 

rise in (conduction) velocity produces a rise in frequency (assuming no change in the 

wavelength). A change in the 'rise time' of the signal will be seen as a change in the 

frequency. The slower conduction velocities and thus smaller axons were found associated 
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with the lower threshold motor imits (9). De Luca confirmed this behaviour and suggests 

this relationship indicates a highly ordered process that remains invariant with muscle-

force, rate, and training (l)(page 158). There is a difference in the conduction velocity of 

myelinated and immyelinated nerve fibres (2). The distance, (known as the length 

constant), that a signal can be transmitted along an immyelinated nerve or muscle fibre, is 

between 1 and 3 mm. before the signal has been attenuated to 3 7 % of its starting value 

(2)(page 51). A myelinated fibre has approx. 100 times less capacitance in the signal path 

seen by an action potential. This translates as large decrease in the CR time constant of the 

fibre and consequently as an increase in the conduction velocity of the nerve fibre (2). The 

myelinated fibre differs by the wrapping of a Schwaim cell membrane (insulating myelin) 

around and along the length of the fibre. This membrane/sheath around the fibre is broken 

periodically every 1-2 mm. by a 1-micrometre gap. These gaps, called 'Nodes of Ranvier', 

separate one Schwarm cell fi-om the next along the fibre. In myelinated fibres, conduction 

occurs by 'saltatory conduction' because the impulse 'jumps' firom one node of Ranvier to 

the next node of Ranvier. This jump occurs because the action potential is 

reproduced/regenerated only at the nodes of Ranvier (where there is no myelin sheath) 

because the intemodal section of the fibre is covered by a wrap of 5 0 or so layers of 

Schwaim cell membrane that reduces the membrane depolarisation to lor 2 mv. and thus is 

insufficient to reach the threshold value for A P propagation (2)(page 52-53). The author 

suggests this process of nodal regeneration creates short periodic (as seen i f travelling 

along the fibre) pulses up to 1 K H z (limited by the refractory period of the A P pulse) and 

are necessarily a component of the surface M E S . 

P A (fib) = type A nerve fibre (large diameter) have a refi-actory period of about 0.4 ms and 

can produce up to 1000 pps (1 kHz) 
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fiB (fib) = type B nerve fibre (small diameter) have a refi-actory period of about 4.0 ms and 

can produce up to 250 pps (250 Hz). 

Nerve impulses normally range fi-om 10 Hz to 1 kHz 

High fi-equency firing rate bursts (60 -120 pps) are encoimtered in muscles with the 

fast-twitch, larger motor imits. 

firing rate recruitment (biceps brachii) at the lowest force levels is 7 to 12 pulses per 

second (pps.) to a maximum of 20 pps.(6) Other sources put the maximum at 65 pps to 100 

pps for the smaller muscles (l)(page 140 

7.5 Factors Limiting the Frequency Content of the MES 

7.5.1 Synaptic Delay is about 0.5 ms. or 2 kHz (2, p.62) and is consequently only 

significant in assigning the 'origins' of the surface-detected M E S above 1 kHz. Synaptic 

delay could will contribute to detected frequencies greater than 1 kHz. This limitation to 

fi-equencies greater than 1 kHz needs to be included in any model of the M E S . The 

inclusion over the fiiU range of fi-equencies in the M E S model by De Luca (Chapter 2) and 

presentation as a basis for ascribing an inherently stochastic element within the 'firing rate' 

of the M E S model carmot be justified. It has only limited influence in blurring 

synchronization between motor unit AP 's and their subsequent detected temporal overlap. 

7.5.2 Refractory Period {def: the period of time during which an excitable cell 

cannot generate another action potential) of nerve fibres and muscle fibres influences the 

maximiun possible frequency of the AP ' s along their lengths. 

Nerve fibres have a refractory period of 0.4 to 4.0 ms. (8)(page 394). This 5aelds 

an upper limit for inclusion in the M E S of 250 to 1000 Hz. Nerve fibres however wil l 

contribute a frequency component along the fibre (at the nodes of Ranvier) through the 

tissue to the surface M E S . The confrolling alpha motor neuron pool in the spinal chord, 

S.Roberts 211 Chapter? 



Peripheral nervous System (PNS) (with its inhibitory or excitatory action) will determine 

which motor units will be activated. This implies that, over time, individual training can 

introduce a level of additional control in the production of the frequency characteristics of 

the MES. 

Skeletal muscle fibres have a refractory period of 5 ms. (8)(page 286). This yields 

a limit of 200 Hz on single AP's but due to the phenomenon of simimation activity 

(resulting in 'fiised tetanus') the frequency of fibre response may well be higher. This is as 

yet unquantified, but could add up to 50% to the 200 Hz limit. 

7.5.3 Nodal Regeneration creates short periodic signal pulses up to 1 K H z at gaps 

called 'Nodes of Ranvier' along the nerve fibre. 

7.5.4 Action Potentials always have the same size in a given nerve or muscle fibre 

(8)(page 285). As the nervous system uses frequency as the means of recruiting and 

confrolling the muscles fibres at the neuromuscular junction, it should be expected to find a 

remnant of that frequency recruitment as an M E S signature. 

7.5.5 Filtering: (Electrode, Tissue (TFF), CMR) 

The surface M E S is composed of the fibre AP 's interacting with and attenuated by the 

tissue encountered en route. This is necessarily a 'low-pass' filtering action and is 

primarily manifested as a loss of higher frequency signals (TFF). There is also some 'low-

pass' loss of signal at the skin surface/elecfrode interface and some preferential 

amplification due to C M R (see Chapter 2 page 76). 

Shape of muscle i.e. long, short, parallel or angled fibres will affect the surface M E S i f the 

elecfrodes are not aligned parallel to the direction of the fibres. 

Noise from outside the muscle; e.g. mains noise 50 Hz and harmonics. 

Electrode interdetection surface spacing:(Chapter 2 page 78) If notable specfral dips and 

peaks are seen and the elecfrode interdetection surface spacing is known, it is possible to 
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determine the fibre conduction velocity. This assimies that all contributing fibres have the 

same conduction velocities, and that is not always the case. Zero crossings of M E S : are 

approximately linearly dependent (10) upon the force of contraction during relatively low 

muscle efforts. (Note: this is probably related to the signal transient, as the lowest levels of 

contractile force are triggered within the time span of the transient, (see University of New 

Brunswick usage. Chapter 1, page 30). 

7.6 Relationship between the Fibre Type Composition of a 

Muscle and the Value of the Median and Mean Frequencies 

De Luca suggests that several different research groups have indicated that there may be a 

relationship between the fibre type composition of a muscle and the value of the median 

and mean frequencies. Note: the median frequency is the frequency point where the power 

spectrum is divided into two regions of equal power, the mean frequency is the average 

frequency over the spectrum, and the mode frequency is the frequency of the most common 

frequency value of the spectrum (l)(page 222). The author sees this 'fibre specfral 

contribution' as a possible extension for fiuther 'mapping' activity. 

7.7 In Brief: 

The author concludes that the M E S therefore must be composed of the superimposition in 

time of the generated AP 's derived from the progressive recruitment of motor units (of a 

given fibre composition of different frequency types) from both nerve and muscle fibres, 

and will result in an 'emergence' of either a unique or a common pattem at the skin 

surface. 
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7.8 What is still Conjecture/Unexplained? 

The basis of the deterministic element fomid in the M E S is a combination of a fimdamental 

difference in the M E S signal generated by different muscles (muscle antagonist/agonist 

groups) at differing sites, orientations, and depths (TFF). The Tissue Filter Function (TFF) 

has not been fully investigated, for its utilitarian potential, in the past, and has probably 

been the assigned recipient for any unexplained anomalies. The TFF failed to account for 

the overlaying of muscle signals that yield siuTace spectra that are the converse of what 

would be expected i f the Filter Effect were to be the invoked as the explanation. 

This opens up the field to suggestions that the muscles (considered as a larger unit) are 

contributing either selective frequency generation or selective combination, only detectable 

(emergent) at a higher, composite level and not apparent at the lower source level (see 

Lindstrom [11]). Various muscle actions investigated have shown surface M E S clustering 

at low, medium, and high ranges of the measured spectrum. With the peak amplitudes for a 

variety of selected muscle actions centring at various points over the observed spectrum, 

yet with similar qualitative and quantitative tissue overlay of the muscle site, there is a 

need to develop a more detailed explanation for the observed muscle 'signatures'. The 

research at the University of Plymouth has presented sufficient evidence to fiulher develop 

the underlying structure of these signatures. 

7.8.1 Fibre contributions to the IVIES 

As mentioned in Chapter 2, page 68, the muscles are composed of various combinations of 

the 3 different types of muscle fibre. Although the skeletal muscles are a mixture of all 3 

fibre-types, the fibres of any one motor unit are all of the same type. Their various 

proportions depend on the usual activity of the muscle. These fibres have differing 'twitch' 

response rates of contraction velocity [12]. Muscles of the arms also have a proportion of 
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fast-twitch white fibres with fast contraction velocities. What is not known are the fibre-

type proportions in each muscle and the cross-gender and individual variations. 

A n area for useful research would be to correlate the detected ratios of fibre types in a 

given muscle with a detected spectral response over a range of contraction forces. 

The contraction-velocity is directly a result of the fibre-action-potential as it propagates 

along the fibre. A fast contraction velocity requires a fast, fibre-action-potential. A fast 

action potential implies a shorter time for the fibre to depolarise and re-polarise (during 

which time the sodium and potassium chaimels are involved in driving the fibre 

contraction (see Muscle physiology [12]). This shorter time gives a steeper edge to the 

action potential and thus gives the signal a higher frequency. If only a weak confraction is 

needed to perform a task, only slow twitch red fibres motor units are activated. If a 

sfronger contraction is required, the motor units of fast-twitch red fibres are brought into 

activation. If maximum contraction is required, additional motor units of fast-twitch white 

fibres are brought into play. 

7.8.2 Training^ecruitment strategy 

The motor unit choice is determined in the brain and spinal chord. The number of different 

skeletal fibres in the muscle does not change over time (excepting afrophy and disease 

conditions) but the characteristics of those present can be altered. Endurance exercises 

(running) cause a gradual fransformation of fast-twitch white fibres into fast-twitch red 

fibres, but with no significant increase in muscle mass. Exercises where short bursts of 

great sfrength (weightlifting) are required, produce an increase in the size and sfrength of 

the fast-twitch white fibres and an overall increase in muscle mass. This would suggest a 

difference should be seen between the athletic and non-athletic muscle specfral 

characteristics (as is the case between the two female volunteers). 
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Consider the action of the wrist flexion and ring finger flexion as found in our research. It 

can be seen that the ring finger flexion has a spectral envelope that occupies a lower 

fi-equency range than the wrist flexion envelope. The ring finger flexion is a strong 

candidate for the weak contraction task undertaken by the slow-twitch fibres and the wrist 

flexion is a candidate for the additional activation of the fast-twitch red fibres. 

The author proposes that recruitment strategy gives a physiological basis for some of the 

frequency characteristics of detected M E S in our research. Fibre type is then a level of 

recruitment strategy (as it has been mentioned that motor units are largely populated by 

one type of fibre only). Person [13] reported that recruitment order has been found to be 

stable for a given movement task but not stable when the movement task for that muscle 

was changed. It appears, to the author, that the brain can send an initiating, task-specific, 

pattem for motor unit recmitment order. The organisation of neurons in the Cential 

Nervous system (CNS) is known to be in definite pattems called 'neuronal pools' 

(thousands or even millions of neurons per pool) all of which are of different pattems. 

These pattems are known to contiol the skeletal muscles. 

There are other frequency-determining features, such as muscle size. As muscle size 

increases there is an associated increased size in the number of motor units. The number of 

motor fibres iimervated by a motoneuron is proportional to its size. Smaller, lower 

threshold motor units (activated by smaller motomeurons) are recmited first by the smaller 

nerves [14]. Given that the motor unit does not fire at absolutely constant intervals, 

discharges of the motor unit have been measured (De Luca [14]) as the 'average firing 

rate' (see definitions in appendix). This firing rate has been shown to increase quasi-

linearly (with some complex adjustments) over the range of contraction force, with the 

threshold of recmitment [15]. 
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Muscle size has an effect on the power spectrum. Increasing values of muscle size increase 

the observed energy in the low frequency region [11]. Small muscles generally have fewer 

fibres per motor unit and generate higher amounts of high-frequency activity for a given 

confraction force, than muscles with larger motor units [11]. 

7.8.3 Gender Differences 

Given a similar musculature and fat thickness/density, the M E S comparisons between the 

two tested males gave a broad agreement in principle. The two females chosen probably 

gave a good span of the female range in general but still show a sfrong similarity between 

their general sites and features and those of the males. The female sportsperson was so 

similar to the male pair that arguments for a physiological difference between males and 

females regards general structure of muscle layout were without basis. Differences 

detected seem to be derived from individual muscle developmental skills. 

7.8.4 Mapping 

In the 'thumb extension' action, there are two widely separated muscles involved" 

Corresponding sites on all four volunteers (on all fom" adults) show similar spectral 

features for the one muscle site but different spectral features for the other site. M E S {see 

Figures 6.1 and 6.2 and Table 6.1). This needs to be statistically investigated with a larger 

database of people and other muscle sites similarly examined for deterministic features. 

The author proposes that the localised muscle may be responding to a recruitment sfrategy 

that is itself a frequency generated characteristic of the neural pathway or earlier origins in 

the brain/ cenfral nervous system. The neural signals interaction with differing masses of 

fast twitch and slow twitch muscle fibre types, at different muscle sites, has been proffered. 

It would be necessary to carry out simultaneous signal analysis on both the neural pathway 

(at muscle insertion points) and subsequent muscle firing responses. The neural pathway 
S.Roberts 217 Chapter 7 



detection, by necessity, would be an invasive technique and the muscle response would be 

a surface detection method 

The author considers: because iimervation of the muscle body by the nerve occurs at the 

middle of the fibre, the greatest chance of detecting the muscle-only A P would appear to be 

furthest away fî om the centre of the muscle. This should manifest as a reduction in spectral 

frequency as the siuface electrodes move further away from the muscle centre. Results of 

the research at the University of Plymouth show the M E S source with a different, "Hot 

Spot " spectrum (assuming same source tissue-depth) for each of the different muscle 

actions. The results show a strong support for declaring an at least partly deterministic 

M E S source. 

The M E S source did not show the same, "Hot Spot " spectrum (assuming same source 

tissue-depth) for each of the different muscle actions, and consequently, the results do not 

show a strong support for declaring a non-deterministic, stochastic M E S source. 

The investigation undertaken does not support a wholly non-deterministic conclusion for 

the M E S at the skin surface. 

At the skin surface, the M E S has both a random and a deterministic content detectable on 

two counts 

1. The M E S can be examined as to its original frequency content i.e. bandwidth. 

The random contribution is partly a result of the superimposition of the 

generated motor unit (muscle and nerve fibre) AP 's and partly a result of the 

inherent imperfection over time in the 'firing rate'. The deterministic content is 

the 'emergent' property of the imperfect 'firing rate' in combination with the 

varying proportions of motor units and fibre types. 

2. The 'Tissue Filter Function' has infroduced a means by which the M E S and its 

subsequent overall frequency loss can be measured. 
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7.9 Applications of Results 

7.9.1 Pattern Recognition for Control Purposes 

Suitability for Interface with Neural Networks 

The use of an Artificial Neural Network program as an appropriate pattem recognition 

technique for biosignals has attracted considerable interest both past, active, and pending. 

The author sees the need to monitor, as an original proposition, 3 to 4 distinct very narrow 

bandwidth regions on each signal chaimel so that discrimination can occur for the 

frequency shift. Using frequency analysis, the ability to discriminate between hand actions 

has been shown. Clearly different and repeatable frequency peaks can be used in 

conjunction with digital filters to identify the different actions. Thus, it is possible to use 

one elecfrode at a single site to detect two (or more) different signals, each signal having 

differing amplitudes in the frequency "bins". This increases the niunber of confrol actions 

(on/off) available at a single site from 2 to 4. 

Using the Medilec equipment test results (solely due to their slightly enhanced bandwidth) 

an examination of the test results (see chapter 7 page 110) indicated that a minimum set of 

2 digital pass band filters with an intermediate sharp cut-off characteristic will distinguish 

these user actions (i.e. ring finger flexion versus wrist flexion), with pass band frequencies: 

one @ 78 Hz and one at either 158 Hz or 222 Hz. respectively. 

At a sfroke, this doubles the number of confrol actions over a standard prosthetic hand. 

The choice of digital filters comes as a consideration of their much greater flexibility. In 

order to accommodate a wider range of actions and to include the inputs from 4 rather than 

just 1 elecfrode, the following range of filters has been selected. The separation of these 

filters by a band of 32 or 64 Hz was based upon repeated testing to give adequate filter 

separation but with a sufficient number of discrimination points across the useable 

bandwidth. If it is possible to infroduce other confrol sites simultaneously, this wil l 
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increase the number of control actions proportionally, i.e. 4 sites, gives 16 control actions. 

In addition, cross correlation between electrode signals wil l provide further information, 

increasing the available control sources. 

These filters could operate at the following centre fi-equencies: 

78 Hz, 94 Hz, 110 Hz, 126 Hz, 158 Hz, 222Hz, 270Hz, 318 Hz 

The Boolean Notation (Table 7.1) would approximately describe the user action for:-

1. ) ring finger flexion 

2. ) wrist flexion 

3. ) index finger flexion 

4. ) wrist extension 

5. ) middle finger extension 

1. )Ring Finger Ftexion: 

78 Hz • 94 Hz • UOHz • 126^ • \5SHz • 222Hz • 270//z • 318//z 

2. >Wrist Flexion 

7SHz • 94 Hz • 110 Hz • 126 Hz • 158 Hz • 222Hz • 270Hz • 318 Hz 

3. )lDdex Finger Flexion (fast action) 

78 Hz-94 Hz •110 Hz • 126 Hz • 158//z • 222Hz • 270Hz • 3lSHz 

4. )Wrist Extension 

78 Hz -94 Hz - H O Hz •126 Hz • 158 Hz •222Hz •270Hz • 3UHz 

5. >Middle Finger Extcasion 

78 Hz • 94Hz • 110^ • 126 Hz • l5SHz • 222Hz • 270Hz • 318/fe 

Table 7.1 above shows the Boolean notation for each frequency 'bin' or filter. A 
different Boolean description is applicable to each different muscle action. This vsill 
give a different control signal from each muscle action for the purposes of prosthesis 
control. 
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These 5 actions were recorded at one site by one electrode. The first actions [1.) and 2.)] 

were clearly distinct and reliable. Actions 3.) 4.) 5.) were sufficiently different to be 

considered as useable signals. Unlike actions 1.) and 2.), the muscle source for the latter 

actions were not located close to the electrode site and consequently the signals were of a 

comparatively reduced, (<50%) amplitude. 

The number of frequency bins above is large (eight) and probably only half that number 

(four) would suffice to be usefiil for channelling the detected M E S to the inputs of a Neural 

Network/ 

The task wil l be to keep all computing time before response, to within the acceptable 300-

ms.-delay range (where delay = measurement + processing + action). 

It will be necessary to detect the onset of an intended M E S and then quickly sample the 

signal using the exponential averaging process (see appendix) or a modified version. To 

'overshoot' and miss the onset or fransient of the signal, wil l record a signal of less-well 

defined frequency and of lower amplitude. This was a problem noticed when using the HP 

analyser The HP did not allow for a user specified sampling frequency nor did it have a 

reliable (though operational) fransient onset detector. 

The basis for fransient detection wil l require a continuous sampling process of at least 1 

K H z (assuming a 450 Hz maximum bandwidth), with sampled data continuously being 

updated in a small memory block and retrieved for fiuther processing when an M E S 

(signal sfrength threshold) is detected. At this stage, the sampled data is passed on for 

digital filtering followed by presentation to a Neural Network where a decision is made as 

the probability of an intended user action and consequent execution of that action by the 

prosthesis. 
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7.9.2 Gender Differences 

Enough differences between males/males/females were shown to conclude that training 

for a general Neural Network (NN) -to be applied to a class of 'all males' or 'al l females'-

would not produce an optimal result. For a practical application, a N N training should take 

place for each user. A general N N for the single electrode/single site can be used to detect 

the wrist/ring finger actions with good success but reliability decreases rapidly as demands 

for additional actions are applied. One female had developed or utilised certain muscles 

that can be used for an action (in preference to others that also could have been used). 

Consequently when comparing the amplitude peaks between the 2 females there was a 

significant difference between some actions regarding the site amplitudes observed, rather 

than the sites as such. This is a further consideration against attempting to develop a 

general N N program. 

The number of detecting electrodes placed on the amputee increases dramatically the 

number, reliability and repeatability of detectable hand/finger actions. 

As a demonstration of both gender similarities and as an indication of a deterministic 

element to the detected muscle M E S , the "thumb extension" M E S of all four volunteers 

was compared (Table 6.1). There are two widely separated muscles involved in the action 

(see Figures 6.1 and 6.2). Corresponding sites (on all fom- adults) show similar spectral 

featiu-es for the one muscle site but different spectral features for the other site. 

7.9.3 Testing Using Standard Neural Nets 

The choice of Neural Network Topology /software for the pattem recognition wil l be a 

Multi-Layer Perceptron (MLP) 

7.9.4 Digital Filter Methods 

Advantages 

The selected frequency pass bands will be realised using digital methods for 2 reasons: 
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1) . Weight and space: The digital filter can be practically created with a steep pass band 

to stop band transition region, in software, without incurring the physical components of an 

analogue filter. The analogue filter, at the high orders required for a sharp filter edge 

(greater than 10th order) would add undesirable penalties of weight and space to the 

prosthesis. 

2) . Flexibility: It is imlikely that a single set of optimal filter pass bands would exist for 

any group of amputees; due to individual differences in stump shape, surgical technique 

involved and residual muscle depth/mass/atrophy. With digital filters, pass bands can be 

adjusted very quickly and reliably. As phase is not an issue then an E R filter could be used. 

With an analogue filter, the adjustments would prove very much more time consuming and 

less reliable regards the outcome. 

Disadvantages 

Of course, the penalty cost of a digital filter is in the processing time incurred and, in this 

respect only, the analogue filter wil l then be a first choice. 

7.9.5 Control Algorithm (see Figure 7.5 block diagram) 

When the gross signal breaches a set threshold voltage the sensor or control system triggers 

a response to open the hand (if it is the extensor muscles activated). Any further variations 

above that threshold are either ignored or used to activate another fimction, such as grip 

force variation (reduction) or grip opening velocity variation. When the gross signal drops 

below that threshold the actions either (a) lock into the states achieved or (b) return to a 

previous or resting state. 

Activity at the electrode site, above a set threshold, wil l then produce the desired hand 

action and variations in levels in excess of that threshold produce velocity or force 

variations according to the chosen control system. Below-threshold values again produce 
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lock or 'retum-to-state' responses. Therefore, each electrode site can produce more than 

one on/off function with a single further intensity variation as optional. 

electrode 1 

• buffer > filter 

^A/D Neural 
Network level detect 

electrode 2 microcontroller 

actuator 3 • 
actuator 1 • 

actuator 2 • 

Figure 7.5: Block diagram of a two-channel electrode M E S detector with microcontroller 
and software based filter and neural network. Controller outputs to the finger actuators. 

7.9.6 Design of Controller Software 

The controller software will need to consider: 

• when the signal is valid, 

• operate on the signal (averaging), 

• filter the signal into 'bins,' 

• compare with Neural Network, 

• decide what action to take, 

• how fast to move , 

• what force limits to apply, 

• maintain position or go to next position or to retum to rest position 
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7.10 Further Research Needed 

The "Tissue Fiher Function"(TFF) makes itself evident in the frequency domain analysis 

of which, in the past, little effort has been directed. The TFF is like a message from the 

MES that says; "I am a signal that has come fiirther than the others and as a consequence 

have lost my high frequency components according to the distance I have fravelled {see 

Figure 2.18, page 71). When two or more signal sources of sufficient sfrength interact at a 

single elecfrode site, this TFF shows itself as a frequency shift, between those signals that 

are observed. Given that: (a) the signal som-ces of interest are identifiable by sufficiently 

distincfive features at sites close to their origins), the observed shift at the combined site 

will occur to all signals as a fimction of the distance between elecfrode and muscle signal 

origin. The proposal is that the cross talk between a multiple set (4) of siuface elecfrodes 

will detect these frequency-shifted signals throughout the 3 dimensional medium of an 

amputee upper forearm. Here the use of a "weighting factor" is proposed to represent the 

individual spatial distances/attenuation of these signals. To develop this requires the 

simultaneous use of two or more elecfrodes and appropriate recording equipment. 

As mentioned (see Chapter 1 page 28), in Japan in 1991, Ito used a back propagation N N 

on the frequency domain conversion of the M E S detected by a 4-elecfrode configuration. 

Ito divided the overall detected frequency bandwidth into 4 frequency band pass regions. 

Ito took each elecfrode signal through a single frequency band-pass region (filter) i.e. each 

elecfrode looked at only one portion of the M E S spectrum. Ito ignored the initial transient 

and monitored a 2 second portion of the steady state signal for N N fraining data. High 

computational costs (2 fransputers were used) and long time delays were noted. He used 

on-line fraining to try to counter the "fatigue" effects upon the signal. Recognition with the 

frained N N was notably high (90 %). 
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The use of the N N as a pattem recognition tool will substantially differ from Ito in a 

number of ways. Ito used the steady state and the author's use will be in the brief, fransient 

region. Ito used one filter /signal per elecfrode charmel. The author proposes, 3 to 4 distinct 

very narrow bandwidth regions on each signal chaimel so that the discrimination can utilise 

the frequency shift due to the Tissue Filter Function (TFF) and the 'weighting factor'. It is 

likely that the aforementioned "weighting factors" will be represented in the weighting 

action nodes in a Neiu-al Network. 

Research has determined that a 300 ms delay (where delay = measurement + processing + 

action) between user muscle action and prosthetic response is acceptable for a practical 

sampled data system. Delay times in excess of 300 ms. become increasingly less 

acceptable to the amputee. With only a few averages of the continuously sampled signal a 

small delay in response to the user action occurs. The research undertaken at the University 

of Plymouth has shown that only the fransient M E S is necessary for a control signal 

derived from a muscle action from the user (amputee). This delay will be well within a 

200ms delay period. The task will be to keep all computing time before response, to within 

the acceptable range. 

It will be necessary to detect the onset of an intended M E S and then quickly sample the 

signal using the exponential averaging (see appendices, p.240) process (or a modified 

version). To miss the onset or transient of the signal, will record a signal of less-well 

defined frequency and of lower amplitude. This was a problem noticed when using the HP 

analyser. The HP did not allow for a user specified sampling frequency nor did it have a 

reliable (though operational) transient onset detector. 

The basis for fransient detection wil l require a continuous sampling process of at least 1 

K H z (assuming a 450 Hz maximiun bandwidth), with sampled data continuously being 

updated in a small memory block and retrieved for further processing when an M E S 
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(signal strength threshold) is detected. At this stage, the sampled data is passed on for 

digital filtering followed by presentation to a Neural Network where a decision is made as 

the probability of an intended user action and consequent execution of that action by the 

prosthesis. 

The use of the Liberty M Y O l 15 research electrode made this whole research program 

possible. The use of adhesive type electrodes would have been very difficult and much 

more time consimiing and arduous for the volunteers (imagine the effects of slowly 

moving a pair of electrodes along an arm and replacing them every five uses/ 6 inches of 

travel after the adhesive weakens). The use of invasive wire or needle electrodes would 

have been difficult in the extreme. To achieve a fiill mapping would have required a 

volunteer willing to be used as a pincushion. The development of an improved Liberty 

electrode, with a wider bandwidth and low noise, would be an automatic increase in 

number of the control actions available to any futiu-e controller using these research results. 

The future direction of microelectronics wil l inevitably reduce the size and weight of the 

controllers necessary for multiple action prosthetic hands. These controllers, although an 

important and complex design exercise are well within the scope of basic consumer 

manufacturing products. The power supply wil l be minimal to run the controller. The next 

real power himgry barrier wil l be the actual working prosthetic arm. 

The ultimate solution for a lost limb would be to do as the Salamander and grow a new 

limb firom the remains of the residual limb. This may well become a reality in the not so 

distant fiiture but we are probably at least one or two decades away firom that happening.. 

Until then, the 'really-improved' prosthesis can be developed based upon the 'mapping' 

work undertaken in this thesis. This next generation prosthesis wil l result from the 

development of a structural prosthesis with the actual siuface of the prosthesis/ skin 

contact area being a thin and flexible, all-encompassing multiple-elecfrode grid array, 
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which provides a full mapping of whatever residual arm is presented. The same silicon (or 

similar) technology that gives us very thin and flexible photovoltaic power supplies or 

plastic 'smart cards' can be harnessed to create a flexible membrane grid of transistors and 

electrodes that input to a Programmable Logic Array (PLA) or constantly scarmed by a 

dedicated processor that is also part of the membrane. The use of the single pick up and 

single site will be superseded by the vastly improved performance and versatility of the 

grid based multi electrode detector. 

7.11 Implications for other Biosignals 

Other biological signal sources may well respond favourably to the application of these 

signal separation techniques. The non-invasive approach of the M Y O l 15 electrode allows 

the searching out of muscle regions and identification of 'hot spots', overlapping muscles, 

under and overactive muscles. The mobility of the M Y O l 15 and the frequency dimension 

introduces an additional means for the diagnosis of muscle related diseases or disorders. 

Most of the existing equipment, for Myoelectrograph (MEG) and Electroencephalograph 

(EEG) use, is designed to analyse in the 'time domain'. A l l low-level skeletal/postural 

equilibriimi muscles are in a near-constant state of use, producing signals that may well be 

obscuring or interfering with weaker target signals. By evaluating the surface M E S in a 

region surrounding the target area it may be possible to 'weed out' and examine the 

residual signal for neuropathological and myopathological diagnostic piuposes. 
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CHAPTER 8: Conclusions 

8.1 Summary 

As stated in Chapter 1, the objectives of the research are: 

• l)-to investigate the information content of a M E S . 

• 2)-to study the nature of the Tissue Filter Function (TFF) 

• 3)-to map and identify optimum upper limb (forearm) myoelectric sites 

• 4)-to analyse the mapped data for frequency content and other unique identifiers 

• 5)-to recommend the practical application of M E S analysis for control purposes 

• 6)-to provide a greater range of user-generated control signals 

Progress has been made on objectives; 

l)-to investigate the information content of a MES. 

In Chapter 7, section 7.1 past research using needle electrodes to detect M U A P T ' s has 

been shown to be not appropriate as a means to describe the surface M E S . The AP ' s are 

not seen at the surface as M U A P T ' s but as superimposed components of mixed AP's . 

We only ever see a small window on the skin surface using surface electrodes. A l l those 

action potentials (AP's) have interacted with other AP's locally and en route in a way very 

different from that seen at any needle electrode site. The AP's are not behaving as obedient 

members of a stationary M U A P . The AP 's strike out on their radiative path and wil l 

combine with each other {not with other needle detected MUAPTS), interact with the tissue 

(TFF), and arrive with subtle differences (depending upon the path taken) at each surface 

point. 

An expanded model of the surface M E S has been presented that includes updated 

knowledge of the physiology of muscles. 
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The M E S has been shown to have both a random and a deterministic content. The M E S 

can be examined as to its original frequency content i.e. bandwidth. The random 

contribution is partly a result of the superimposition of the generated motor unit (muscle 

and nerve fibre) AP 's and partly a result of the inherent delays over time in the 

measurement of the 'firing rate' associated with each motor unit. The deterministic content 

is the 'emergent' property of the varying proportions of motor units and fibre types (unique 

to each muscle) and their associated 'firing rates'. 

2) -to study the nature of the Tissue Filter Function (TFF) 

The TFF has been assigned as a major contributor in previous chapters. Chapter 7 has 

given a value to the range of signals generated at the level of the nerve and muscle fibre 

(up to 1 kHz ) and the TFF has to be credited with responsibility for the attenuation of 

these frequencies en route to the surface. Without the TFF intervention the MES would be 

extended from 300 to 1000 Hz. and be composed of significant components of the 

superimposed muscle-fibre AP's plus the higher control frequencies of the nerve fibres. 

3) -to map and identify optimum upper limb (forearm) myoelectric sites 

Chapter 6 applied a Standard deviation analysis to the mapped grid pattern for all 20 

muscle-actions. This makes it possible to select the optimum site for electrode placement. 

The analysis in Chapter 7, sections 7.1 to (7.8 inclusive), demonstrates an underlying 

determinism in M E S generation. Along with training, sufficient malleability in the nervous 

system exists to enhance the selected sites over time. 
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4)-to analyse the mapped data for frequency content and other unique identiflers 

The mapping technique of Chapter 5 contributed the bulk of information and Chapter 6 

analysed those results for frequency content and unique identifiers. More analysis of those 

mapped results (outside of the available research time) would yield more identifiable 

features for the individual volunteers involved. The model developed in Chapter 7 section 

7.2 suggests a possibility of searching the mapped data for fibre type contributions would 

yield an identifying character for each muscle. The author considers it better to approach 

the fibre type research with a fresh-targeted approach (including needle type elecfrodes). It 

would be necessary to carry out simultaneous signal analysis on both the neural pathway 

(at muscle insertion points) and subsequent muscle firing responses. The neural pathway 

detection, by necessity, would be an invasive technique and the muscle response would be 

a surface detection method. The comparison of surface M E S to site-generated signals 

would allow fibre composition to be estimated with a high degree of certainty. 

Syto recommend the practical application of MES analysis for control purposes 

Chapter 4 offered the first definite improvements in confrol signal detection with the wrist 

and ring finger actions. This has been extended in Chapter 7, table 7.1, with 3 additional 

detected muscle actions. The results of mapping in Chapters 5 and 6 offered further 

features detected and a means of selecting for optimal elecfrode site location. Chapter 7 

outlines how Neural Networks can be utilised to interact with the values of frequency bins 

(through which the amputee signal is passed). 

6)-to provide a greater range of user-generated control signals 

Signal spectra can direct the output activity of a multifimctional prosthesis. Signal sfrength 

(magnitude) is easily utilizable as an additional confrol function of either prosthesis finger-
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closure speed or applied gripping power. The limitations of current prosthetic arm 

technology is emphasised. A foundation for further research is discussed. 

8.2 Contributions to Knowledge 

1) : This thesis presents a coherent set of design criteria for the construction and 

control of a myoelectric upper-limb prosthesis. These criteria are drawn from the prosthetic 

community including: 

• a) user requirements both structural, fimctional and aesthetic user requirements with a 

time limit on system response i.e. < 500 ms. (all too often overlooked by research 

groups focused on signal analysis). Looking at signals of 2 or 5 or 20 seconds duration 

is only beneficial i f the analysis yields information for control purposes that can 

equally be extracted in <300 ms. 

• b) A novel movement geometry and set of 20 commands for the arm to follow. 

• c) In Chapter 1, Figures 2.6 and 2.7 (pages 59-60) are the author's original 

compilation of the muscles related to the 20 commands presented in a comprehensible 

way, for the use of the prosthetic design engineer 

2) : Arm Mapping results have: 

• a) revealed the overall interaction of individual muscle actions describes the combined 

effect. This demonstrates a deterministic natiu-e in the observed results. The differences 

that do exist are largely due to the inclusion of synergistic muscles as they stabilize a 

joint. 

• b) established the need for due care and attention with electrode positioning on the arm 

for optimising any frequency analysis techniques (unlike the more acceptable rough 

and ready placement with RMS/smoothing time-domain analysis) 
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• c) revealed the misleading conclusions leading to ' M E S stochasticity' by past 

researchers who have assumed a more casual method of electrode placement for signal 

extraction. This has led to the lack of interest in exploring the 'Tissue Filter Function' 

(TFF) and the positioning of the sites of nerve to muscle fibre 'innervation zones'. The 

use of these latter two factors is important in understanding the ' M E S hot spots' shown 

on the mapping results. 

• d) given options and a direction to signal acquisition methods with: 

• a single-site/single electrode approach will require the frequency analysis 

breakdown of the site generated M E S into multiple confrol signals 

• additional elecfrode sites will ftuther expand the range and reliability of confrol 

signals. This is exemplified in the suggested novel use of 3 to 4 confrol-site, 

surface elecfrodes with each confrol site signal fed into its own narrow-band 

filter fed into a common Neural Network and decoded for confrol signals. The 

confrol sites would be placed using the, grid-based, best-site Standard Deviation 

assessment method. 

• the authors suggested use of grid-based, novel multiple electrode arrays and 

assure a reliable, fiiU range of control signals available for the following two 

approaches 

i . an RMS signal value assessed over the fiiU grid including the 

antagonist/synergistic muscle inputs. These grid values will feed into a 

Neural Network. 

i i . a frequency analysis signal value assessed over the fiiU grid including 

the antagonistic/synergistic muscle inputs. These grid values wil l feed 

into a Neural Network. 

S.Roberts 234 Chapter 8 



• e) The use of a brief user-generated signal that can be referred to as the 'signal-

transient' has shown the user M E S command signal can be generated within the 

time constraints for user acceptance. This research confirms the University of New 

Brunswick findings of useful signal information found in the 'signal transient' and 

extends the utility of those findings. The signal transient is flmher examined in the' 

Improved model of the M E S ' by the author. 

3.): Improved MES Recruitment Model and surface detected MES model: an 

updated model of the surface M E S is developed fi-om anatomical, physiological and 

neuro/muscular research sources. The model is presented on a flowchart of 

recruitmentydecruitment activity. This model draws heavily on the involvement of muscle 

fibre types in recruitment. The model draws upon all contributions of past MES research, 

observed phenomena, and recent physiological and anatomical advances. The model 

details have been scattered throughout the various fields but not previously presented in a 

unified form. This involvement of fibre-types is in full agreement with all past research 

material and gives a solid basis for the assertion of deterministic behaviour in surface 

detected M E S , as it is accepted knowledge of the varying fibre-type composition of 

athletes muscles according to their performance demands. 

e.g. long distance= endiu-ance =slow fibres dominate 

short dash (burst activity) = fast fatigue = fast fibres dominate 

Because of the previous disorder even recent researchers have spoken tentatively 

and with qualifications of their conclusions, citing seemingly um-esolved past models. 
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4) : Reinterpretation of the applicability of the J. Bamajian/ C. De Luca MDAPT 

model of the surface detected MES: 

The M U A P T model has been assumed and accepted (by default) by researchers as a model 

for the surface M E S . The author has shown this to be over simplified and misleading. The 

M U A P T is only a local phenomenon defined by the detecting needle electrode while the 

surface detected M E S is time slice of individual fibre AP's (not MUAPTS). The artificial 

nature of the M U A P T is defined by those AP's that have a common (+/-10% to 25%) 

firing rate as detected at that (needle) point. The decrement fimction (losses) of the A P is 

such that the signal loses 75 % of its peak-to-peak value i f the signal is moved by 100 

micrometers. (De Luca page 40 'Muscles Alive'). As the motor unit can extend over 

regions of diameter from 5 mm. to 20 mm. and up to 30 different motor uiuts may exist 

within that smaller region the M U A P T can truly be seen of limited use (except to 

investigate myopathies). There are many papers written describing how to decompose the 

needle signal into its M U A P entities usually gleaned from, at best, 10 to 20 members per 

M U A P . As the surface M E S is up to 500 Hz and the needle elecfrodes see up to 2 K H z , 

then a lot of summation is going on unseen/unknown. The Bamajian/ De Luca M U A P T 

model of the surface M E S has led to many researchers trying to shoehorn their results to fit 

the M U A P T model with consequent lost momentum in their research endeavours. 

5) : Inclusion of Nerve Impulse contribution to the MES: The contribution of the 

nerve impulse signal has not been included in the M E S in the past despite its similar 

magnitude and proximity to the muscle fibre signal. It has been the focus of past 

researchers, on exfracfing a group of M U A P ' s (using needle elecfrodes), to exclude as 

noise these higher frequency (up to IkHz) signals or include their superimposition without 
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knowing their origin. The nerve fibres produce AP 's of similar magnitude at the 

demyelinated ' 'Nodes of Ranvier' along the nerve fibre. 

6): the author suggests the outcome of the spectral research/grid mapping lends support 

to the suitability of the M E S to interface with a Neural Network for control purposes. 

8.3 Research L i n k s 

The research at the University of Plymouth was illuminated by the old computer adage 

"Rubbish in. Rubbish out". It wil l be of no value to have designed an all singing and 

dancing prosthesis that can move in mimicry of the human hand and not be able to drive it 

effectively due to a shortage of M E S derived control signals. That barrier is now lifted 

considerably and the opportunity exists now to achieve that mimicry. The last remaining 

barrier then will be to reduce the operating weight of such a complex articulating hand. 

Existing complex hands are driven by individual motor/gearbox mechanisms. Each finger 

requires a minimum of one motor/gearbox drive per finger. These drives are power hungry 

and far and above the most power hungry element in any prosthesis. Although the 

development of improved battery supplies wil l lengthen time between battery changes for 

the prosthesis user, the weight issue may well be a limiting factor in the take-up and take

off of the improved controller What is needed is a radically different form of drive 

actuator that operates more closely in action to the human muscle /tendon drive system. 

What is needed is an artificial muscle that can be coerced to lengthen and shorten in 

response to an applied electrical confrol signal. Research has been going on in this field for 

many years and the advances have been slow, but may soon be able to offer prosthetics 

that final piece of the' bionic' jigsaw. 
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LIST OF ABBREVIATIONS AND DEFINITIONS 
AGONIST MUSCLE: the prime mover muscle that initiates a desired contraction 

ANTAGONIST MUSCLE: a muscle that actively provides a negative contribution to a 
net torque around a joint (e.g. an extensor may varyingly relax to assist the net torque 
(around a joint) action of an excited flexor) 
AEROBIC CAPACITY: Fibre capacity to do work in short bursts using oxygen as a fiiel. 

ANAEROBIC CAPACITY: Fibre capacity to do work in short bursts in tiie absence of 
oxygen as a fiiel. 
AVERAGE FIRING RATE: Represents the reciprocal value of the average IPI 

BIPOLAR ELECTRODE: One that consists of two detection surfaces. 

COSMESIS: cosmetic appearance of prosthesis. Usually desired as most closely 
approximating a natural limb 

DECOMPOSITION: The analytic process whereby individual MUAP's are extracted 
from the elecfromyographic signal. This usually undertaken by invasive techniques close to 
the site of the motor units. 

(EMG) ELECTROMYOGRAPHIC SIGNAL: The name given to the total signal 
detected by an elecfrode. It is the algebraic summation of all MUAPT's from all active 
motor units within the pick-up area of the elecfrode. 

INSTANTANEOUS FIRING RATE: Represents tiie reciprocal value of the IPI 

(IPI) INTERPULSE INTERVAL: The time between adjacent discharges of a motor unit. 
It is a semi random quantity. 

ISOMETRIC CONTRACTION: A muscle confraction during which tiie length of the 
confracting muscle remains constant or there is a minimal shortening. Tension on the 
muscle increases, pulling on another structure, but there is no movement of that structure 
produced. 

ISOTONIC (ANISOMETRIC) CONTRACTION: A muscle confraction in which 
tension remains constant but the muscle shortens and pulls on another structure to produce 
movement 

MYOELECTRIC: from the Latin Myo; as in muscle. The electrical potential, as detected 
on the skin surface, generated by underlying muscle activity 

(MES) MYOELECTRIC SIGNAL: A n alternative nomenclature for the 
elecfromyographic signal (EMG). 
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(MAP): (MUSCLE-FIBRE ACTION POTENTIAL OR MOTOR ACTION 
POTENTIAL 
The name given to the detected waveform resulting from the depolarisation wave as it 
propagates in both directions along each muscle fibre fi-om its motor end plate. 

(MU) MOTOR UNIT: The term used to describe the single smallest controllable 
muscular unit. The motor unit consists of a single alpha-motor neuron, its neuromuscular 
junction and the muscle fibres it iimervates (as few as 3, as many as 2000). 

(MUAP) MOTOR UNIT ACTION POTENTIAL: The name given to the detected 
waveform consisting of the spatiotemporal sununation of individual muscle fibre action 
potentials originating from muscle fibres in the vicinity of a given elecfrode or elecfrode 
pair. 

(MUAPT) MOTOR UNTT ACTION POTENTIAL TRAIN: The name given to a 
repetitive sequence of MUAP's from a given motor unit. 

PHASE: In elecfromyography, phase refers to the net excursion of the amplitude of a 
signal in either the positive or negative direction. This differs from the electronics 
definition where phase refers to the time difference between two waveforms of the same 
frequency. 

SHAPE: The characteristics of a signal that remains unaltered with linear scaling in either 
the amplitude or time domains. A n example of such characteristics is the phases of an 
action potential. 
SYNERGIST MUSCLE: a muscle that actively provides an additive contribution (to the 
agonist muscle) to a particular confraction function (net torque around a joint) 

TWITCH RESPONSE (CONTRACTION): is the rapid jerky response of the muscle 
fibre to a single stimulus 

TISSUE FILTER FUNCTION (TFF): The capacitive reactance (Xc) of the tissues (skin, 
fat, tendons, vascular pathways, etc.) and its attenuating effect on the higher frequencies of 
the MES. The attenuating effect is that of a 'low-pass filter', with lower frequencies passed 
and higher frequencies attenuated. 

UNIPOLAR ELECTRODE: elecfrode set up tiiat consists of only one detection surface. 

WAVEFORM: The term that describes all aspects of the excursion of the potential, 
voltage, or current associated with a signal as a function of time. It incorporates all the 
notions of shape, amplitude, and time duration. 
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Anatomical Position and Anatomical Names 

When in the anatomical position, the subject stands erect facing the observer, the upper 
extremities are placed at the sides, and the palms of the hand are turned forward. 

Directional Terms 

Adduction: movement of a bone toward the midline 
Abduction: movement of a bone away from the midline 
Distal: farther from the attachment of an exfremity to the trunk or a structure; 

farther from the point of origin 
Proximal: nearer to the attachment of an extremity, to the trunk or a structure; 

nearer to the point of origin 
Superficial: toward or on the surface of the body 
Superficialis: closer to surface 
Deep: away from the surface of the body 
Profiindus: deep 
Pronation; a movement of the flexed forearm 

in which the palm of the hand is turned down (posteriorly) (inferior) 
Supination: a movement of the flexed forearm 

in which the palm of the hand is turned up (anteriorly) (superior) 
Flexion: an decrease in the angle between the the anterior surfaces of articulating bones 
Extension: an increase in the angle between the the anterior surfaces of articulating bones 
Hyperextension: continuation of extension beyond the anatomical position 

(see definition above of 'anatomical position') 
Note; although the term 'hyperextension' should be technically used for 

accuracy in describing the flexion actions involved in this research, it is often in practise 
abbreviated to simply 'extension' and is widespread in use on the area of prosthetics. 
Posterior (dorsal) view: nearer to or at the back of the body, e.g. back of hand 
Anterior (ventral) view: nearer to or at the front of tiie body, front (palm) of hand 
Lateral View: fiirther from the midline of the body 
Medial View: nearer to the midline of the body 
Tendon: a cord of connective tissue that attaches the muscle to bone 
Muscle Names; 

'maximus' : means largest 'Minimus'; means smallest 
'Longus': means long 'brevis': means short 

'Biceps' means two origins 'Triceps' means three origins Quadriceps means four 
ulnarus: of the ulna 
radialis: of the radius 
palma; of the palm 
carpus: of the wrist 
indicis: of the index 
digit; of the finger 
pollicis: of the thumb 
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ANATOMICAL POSITIONS FOR T H E UPPER LIMB 

s u p i n a t i o n m • p r o n a t i o n 

ABDUCTION 

E X T E N S ON OPPOSITION 

The Palm posterior has been rotated into 
the supination position The Palm anterior 
rotated into the pronation position 

Flexion 

W r i s t 

A c t i o n s 

Hyperextension 

T h u m b a c t i o n s 

A D D U C T I O N A B D U C T I O N C I R C U M D U C T I O N 
F i n g e r a c t i o n s 
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GRASP PATTERNS 

0 

ROTATE 
THUMB 

UP 

ROTATE 
THUMB 
DOWN 

REST 
(HOOK GRIP) 

0 

L A T E R A L 

HOOK or SNAP 

0 

1 

0 0 

RAISE CLOSE CLOSE 
THUMB FINGER 1 FINGER 2 

ROTATE 
WRIST 
RIGHT 

LOWER OPEN OPEN 
THUMB FINGER 1 FINGER 2 

ROTATE 
WRIST 
LEFT 

Conversion of thumb and finger positions into variable 
grasp patterns represented by a coded 5 digit state 
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BRACHIALIS 

SI PINATOB 

l ' ' l , i : . \UKI>IC;ilC)Kl!M 
• p R O F l N D l S 

_PRONATOR TERKS 
(CIT) 

Fl.F.XOR DIC;lTORI!M 
SIPF-RFICIALIS 

BICF.PS BRAC'HIl 

M K D I A I , I : P I ( O . M W V I . K 

O F I I I V I E R I S 

FIT.XOR POI I.I.K IS 
O N C I S 

A B D I C T O R POM.ICIS 
L O N G l S 

PRONATOR O l ' A D R A T l S 

FLEXOR R K T I N A r i l l U M 

M E T A C A R P A L S 

BR.\(TIIAL1S 

MEDIA IN NERVE 

PRONATOR TERES 

BRACIIIORADE'VLIS 

PALMARIS L O N G l S. 

F L E X O R CARPI 
KADIALIS 

F L E X O R CARPI 
I L N A R I S 

FLEXOR DIGITORl iM 
Sl 'PERFICIALIS 

FLEXOR POLI I.ICIS V 
L O N G I S 

A B D I C T O R POLLICIS 
L O N G I S 

PRONATOR Q l i A D R A T l ' S \ 

FLEXOR RETINACT L I M 

M E T A C A R P A L S 

TENDON OF F L E X O R 
DIGITORtVI SI PERFICIAL 

TENDON OF FLEXOR 
DICITORl M P R O F l N D I S 

P L » PALMARES L O N G l S 
PI - P R O N A I O R l E R E S 

EC R= FLEXOR C ARPI RADIALIS 
FDS= F L E X O R DIGITORIM 

Sl 'PERFTCIALlS 
FCT = F L E X O R CARPI 1 LNARIS 

A N T E R I O R S l i P E R F I C I A L V I E W 
A N T E R I O R D E E P V I E W 

Anterior view of the muscles of the forearm used in wrist, hand and digit action. 
View (a), shows the deeper muscles, while 
View (b) shows the overlying superficial muscles 
Adapted from 'Principles of Anatomy and Physiology' by Tortora and Grabowski, Wiley and Sons 9* 
Edition, 2000. ISBN o-471-36692-7 
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Plane of 
section 

A b d u c t o r p o l l i c i s l o n g u s m 

F l e x o r p o l l i c i s l o n g u s m r 

R a d i u s 

E x t e n s o r c a r p i 
r a d i a l i s b r e v i s m . 

E x t e n s o r c a r p i 
r a d i a l i s l o n g u s m . 

P r o n a t o r t e r e s m . 

B r a c h i o r a d i a l i s m . 

R a d i a l n . 

R a d i a l a . 

F l e x o r c a r p i r a d i a l i s m . 

E x t e n s o r d i g i t o r u m m . 

E x t e n s o r c a r p i 
u l n a r i s m . 

E x t e n s o r p o l l i c i s 
l o n g u s m. 

U l n a 

F l e x o r d i g i t o r u m 
p r o f u n d u s m . 

U l n a r n . 

U l n a r a . 

F l e x o r c a r p i u l n a r i s m . 

M e d i a n n . 

F l e x o r d i g i t o r u m 
s u p e r f i c i a l i s m . 

P a l m a r i s l o n g u s m . 

Cross-section of the mid forearm showing the overlapping of the muscles within the muscle 
compartments 
Adapted from 'Hole's Human anatomy and Physiology', McGraw Hill 1999 page 316, ISBN 0-697-
34193-3. 
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A V E R A G I N G W I T H T H E H P 3 S 6 6 A / 3 S 6 7 A 

PEAK HOLD AVERAGING : With peak hold the analyzer takes data until it reaches the specified number 
of averages. The analyzer compares each fi-equency line in the measured fi-equency span with the 
corresponding fi-equency line fi-om the previous data. Only the largest value for each fi-equency is saved. 
PEAK CONTINUOUS: Same as peak hold averaging except that the analyzer takes data continuously (until 
told to stop). 
STABLE AVERAGING: weights old and new data records equally to yield the arithmetic mean for the 
number of averages selected The measurement stops after the selected number of averages has been 
calculated. This is the most common averaging type. 
EXPONENTIAL AVERAGING: Unlike stable averaging, exponential averaging weights new data more 
than old data. This is useful for tracking data that changes over time. The number of averages you select 
determines the weighting of old versus new data, not the total number of averages calculated. Measurement is 
continuous until paused or aborted. 
The analyzer sets the number of averages chosen to the nearest power of 2 that is a closest value (to the 
chosen number of averages). 
To calculate the exponential average the analyser uses the following formula:-

1 N-l 
— X New-\ X Old 
N N 
where: N is a weighting factor (number of averages). 
When starting an exponential average, the analyzer sets N equal to 1 for the first analysis, and so on until N 
equals the number of averages you specified. 
Example: If number of averages selected = 32, the exp. average would be:-

1 Ar 31 ^ . ^ xNew + — X Old 
32 32 
Thus as N increases the influence of the Newest data sample value decreases and the influence of the older 
sample dominates the resuhs (increases). 
If number of averages selected = 4,the exp. average would be:-

— X New + — X Old 
4 4 
Thus as N is decreased, the newest (most recent) data sample dominates the results. 
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ELECTRIC 

H A N D 

The Steeper Myo hand offers the 
user ultimate electric control in a 
lightweight hand. Weighing from 
just 231 g, the hand provides a fast 
and compliant grip combined with 
reliable electronics housed within a 
foam cosmesis. 

A choice of Proportional or 
Threshold control can be supplied 
to cater to the needs of most users. 
Available in a range of 5 sizes, the 
hands may be fitted with either 
PVC or silicone cosmetic gloves to 
complete the cosmesis. 

The Steeper Group of Companies 

The Steeper model: The above year 2000 prosthetic hand is representative of the 
standard technology that has hardly changed since the 'Vaduz Hand' of the 1960's 
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The new Otto Bock System Electric Hand. 
With proportional Dynamic Mode ControL 

O R T H O P A E D I C ( U . K . ) L I M I T E D 

A company of the Orro Rock Group 
32, Parsonage Road - hnglefieid Grern 
C g b a m . S u r r e y T W 2 0 - O J W 
Tdephone (07 8 4 ) « 88 41 • Tddax (07 84) 43 84 69 

K. Ono BoiH. 646S! .14.94 (jH/UK 

The System Electric Hand with yellow anodizedfinish will be available from Stptembrr 1994. 

M)^oelecrric upper limb prostheses can be 

more ftmcrional than ever thanks ro the 

latest advance in microchip control 

circuitry. 1 he Dynamic Mode Control 

consists of two independent systems 

which proportionally control botli grip 

force and speed. 

Special circuitrj' insures rhat the strength 

of the muscle signal directly comrols grip 

speed and force, which immediately adapt 

to any signal chatigcs. 

Finger speed ranges from 15 - 130 mm 

per second. The faster fmger speed, easy-

to-learn function, and optimal levels of 

proportional grip force and speed olTer 

the patient an easily controlled, 

physiological grasp. 

The energy saving 8E39=4 and 8E38=4 

Otto Bock System Electric Hands arc 

compatible with the l3El25or 13FX)8 

Proportional Electrodes, 

P R O V F N Q II A I I T V - P R A C 1 1 C A L S O L L T I O N S 

The OttoBock model: The above year 2000 prosthetic hand is representative of the 
same standard of technology that has hardly changed since the 'Vaduz Hand' of the 
1960's 
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RESEARCH 
CENTER 

P r o s t h e t i c s G r o u p 
71 F r a n k l a n d R o a d 

Hopl<inton. M A 01748 

P r o d u c t 
B u l l e t i n EMG Research 

Electrodes 
A Ga in Settings Customized to 

Your S p e c s 

• High C o m m o n - M o d e Rejection 

• Excellent Input Impedance 

• Static Voltage Protection tc 
2,000 V 

C ommitted to serving the EMG needs of the 
research community, Liberty has developed a 

muque EMG research electrode. Known as the 
MY0115, this new electrode has a case measuring 
just VhiL X '7i«W X Vi6H inches (26.5L x 17.2W x 
4.8H mm). It attaches to your system via a standard 
6-foot (2 m) length of ultraflex cable 0.087 inches 
(2.2 mm) in diameter. 

The MYO 11S uses a bipolar, differential amplifier to 
provide myoelectric signals in the same form as they 
appear on the skin. The common-mode rejection 
ratio (CMRR) is greater than 90dB, and the input 
impedance exceeds 10'*fl. Power consumption aver
ages only 6mW, and the electrode is protected from 
electrostatic discharge (ESD) up to 2,000V. We will 
customize the MYOl 15'sgain settings to your speci
fications at no extra charge. If you*re not sure what 
the optinial gain setting is, we can offer technical 
assistance in determining the proper level. In addi
tion, our staff can assist you in selecting the appropri
ate circuitry or power supply for youi intended use. 

Phone: (508)436-9061 - Fax: (50Q43&8368* Orders O i V - (BOO) 437-0024 
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MYO 115 - EMG Research Electrode 
WMteWire: SignaJ Output 
Green Wire: Ground or Common 
Brack Wire: Supply (-) 
Red Wire: Supply (+) 

O R D E R I N G I N F O R M A T I O N 

TECHNICAL SPECIRCATIONS 
Supply Voltage . . .Dual Supply t a to ±BV 
Supply Rejoction ..,,>70dB 

....6mW(avg.) 
Input ProieoJion . . .ESD S2,000V 
Input Impedance _.>io»n 
Input CMRR ....>90tlB 
Input Range ....0.5to1.500»lV 
Noise O.IMV RMS 
Fraqtwncy RMponse.. . . .... Bandpass 3dB 

O SO ai id 500 Hz 
Gain . . . . -500 to 6,000 

(customer specified) 

ELECTRODE C A S E DIMENSIONS 
IV i . ' (26.5 mm) 

Widlfl .... "/,•• (175 mm) 
Heigiht , ....'/,." (4.8 mm) 

TO ORDER A S K FOR: 
MYO 115 EMG Reeearc^ E l e c t r o d M 

MUTUALI^J;' 
R E S E A R C H 
C E N T E R 

Prosthetics Group 
71 FranMand Road 

HopMnton, MA 01748 
Phone: (508) 435-9061 

Fax: (508) 435-8369 
Orders Ony. (800)437-0024 

In Cvixli CoTTKt: 'rtni«tBnUPSOCIMiMnCannlnc..lUUC, 
acnu.S* 

rn««>«ll ,WJ. ES4XS. PIM>MarFte|90Q4aB«7a 
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Comp. March, 239-243, 1992. 

28 MALMTVUO, J. A, V. Technical Note - "Distribution Of M.E.G, Detector Sensitivity: An 
Application Of Redprocity." Med. & Biol. Eng. & Comput. Vol. 18, 
May, 365-370. 1980. 

29 

S. Roberts 275 Appendices 



S O U T H A M P T O N UNIVERSITY 

] KYBERD, P. J. 
CHAPPELL, P. H. 

"A Force Sensor For Automatic Manipulation Based On The Hall 
Effect." Meas, Science & Tech. Vol. 4, 281-287, 1993. 

2 KYBERD. P, J. 
HOLLAND, O.E. 
BAGWELL. P. 
CHAPPELL, PH. 
TREGIDGO. R 

"Testing Of A Hierarchically Controlled Myoelectric 
Hand "MIIMIMIMIIIIIIIMMIIIIIIinMIIMIIIIIMIIIIM 

3 BAGWELL, P.J. 
CHAPPEIL, PH. 

"Real Time Microcontroller Implementation of an Adaptive 
Myoelectric Filter." Med. Eng. Phys. Vol. 17. No. 2, March, 151-160, 
1995. 

4 KYBERD. P.J. 
HOLLAND, O.E. 
CHAPPF,TL.P.H. 
SMITHS. 
TRFDIDGO.R. 
BAGWELL, P. 
SNAITHM. 

"Marcus: A Two Degree Of Freedom Hand Prosthesis With 
Hierarchical Grip Control." leee Trans. On Rehab. Eng. Vol. 3, No. 1, 
March, 70-76, 1995. 

5 KYBERD, P. 
TREGIDGO, R. 
SACHETTL R. 
SCHMIDL, H. 
SNAITH M. 
HOLLAND, M. 
MARCHESE, S. 
BERGAMASCO, M. 
SCTFNZIA, M. 
BAGWFTT.P, 
CHAPPELL, P. 

"The Marcus Intelligent Hand Prosthesis." Rehab. Book, 98-
102 mmiiiMiMiiiiiiiiMiMiMiiiMmiffimiiiiiiMifi 

6 CHAPPELL. PH. 
KYBERD P.J. 

"Prehensile Control of a Hand Prosthesis by a 
microcontroller."Journal ofBiom. Eng. V.14, p.363-367, Sept. 1991. 

7 BAITS J.C. 
TODD, R. 
NIGHllNGALE. J.M 

"The feasibility of an adaptive control scheme for artificial 
prehension. "Dept. of Elec. & Electr. Eng. Univ. Southampton, July, 
1968. 

8 KYBERD. P.J 
MUSTAPHA, N 
CARNEGIE, F 
CHAPPELL, PH. 

"A clinical experience with a hierarchically controlled myoelectric 
hand prosthesis with vibro-tactile feedback". Prosth. & Orth. Int. Vol. 
17. 56-64. 1993. 

9 CHAPPEL. PH. 
NIGHTINGALE. J. 
KYBERD. P.J. 
BARKHORDAR, M. 

" Control of A Single D^ee of Fredom Artificial Hand." Journal of 
Biora. Eng. Vol. 9. July. 273-277, 1987. 

10 CODD RD. (1975). (1975)"Development and Evaluation of Adaptive Control for a Hand 
Prosthesis." PHD Thesis,University of Southampton 

11 KYBERD. P.J. 
CHAPELL, PH. 

" A Force Sensor For Automatic Manipulation Based On The Hall 
Effect." Meas. Sci. & Technol. Vol. 4, 281-287. 1993. 

12 KYBERD. P.J. 
CHAPPELL. P.H 

"Object Slip-Detection During Manipulation Using A Derived Force 
Vector." Mechatronics. Vol. 2, No. 1, 1-13. 1992. 

13 KYBERD. P. J 
CHAPPELL, PH. 
NICaniNGALE. J.M. 

"Sensory Control Of A Muhifiinction Hand Prosthesis." Biosensors 3. 
347-357, 1987-1988. 

14 KYBERD. P.J. 

CHAPPELL. PH.. 

"Characterization Of An Optical And Acoustic Touch And Slip Sensor 
For Autonomous Manipulation. "Meas. Sci. Technol. Vol. 969-975, 
17-23. 1992. 

15 KYBERD. P.J. "The Southampton Hand: An Intelligent Myoelectric Prosthesis." Jnl. 

S. Roberts 276 Appendices 



CHAPPELL, PH. OfRehab. Research & Develop. Vol. 31. No. 4. Nov. 326-334.1994. 
16 NIGHTINGALE, J.M. "Microprocessor control of an Artificial Arm." Jnl. of Microcomp. 

Apps. 8, 167-173, 1985. 
17 CODD R.D.(1975). (1975)"Development and Evaluation of Adaptive Control for a Hand 

Prosthesis." PHD Theas,University of Southampton 

S. Roberts 277 Appendices 



U N I V E R S I T Y O F N E W B R U N S W I C K 

1 HUDGINS. B. 
PARKER,?. 
SCOTT, R. 

"A Neural Network Classifier For Multifiinction Myoelectric Control." 
13th Int. Conf. leee, Orlando. Florida. Vol. 13. No. 3. 1454-1455, 
1991. 

2 ENGLEHART, K. B. 
PARKER, P. A. 

"Single Motor Unit Myoelectric Signal Analysis With Nonstationary 
Data." leee Trans. On Biomed. Eng. Vol. 41, No, 2, Feb. 168-180. 
1994. 

3 LOVELY, D.F. 
BUCK, C.S. 
scon. K N . 

"Improved Battery Saving Device for Use with Myoelectric Control 
Systems." Med. & Biol, Eng. & Comp. Vol. 24, March, 203-205, 
1986. 

4 KELLY, M F, 
PARKER PA. 
SCOTT, R.N. 

"The Application Of Neural Networks To Myoelectric Signal Analysis: 
A Preliminary Study." leee Trans. On Biomed, Eng. Vol. 37. No. 3, 
March, 221-230. 1990. 

5 KELLY. M.F. 
PARKER, PA. 
SCOTT, R.N. 

"Myoelectric Signal Analysis using Neural Networics." ( Univ. of New 
Brunswick. Canada.) IEEE Eng. in Med. & Biol. Mag. March, 61-64, 
1990. 

6 O'NEILL, PA. 
MORIN, E L . 
SCOTT, RN. 

"Myoelectric Signal Characteristics fi-om Muscles in Residual Upper 
Limbs." IEEE Trans, on Rehab. Eng. Vol. 2, No. 4. Dec. 266-270. 
1994. 

7 HUDGINS. B. 
PARKER R 
SCOTT. R.N. 

"A New Strategy for Multifijnction Myoelectric Control." TEFF Trans. 
Biomed. Eng. Vol. 40, No. 1, Jan, 82-94. 1993. 

8 LOVELY. D.F. 
SCOl r, R.N. 

"Split Power Rails for Battery Operated Equipment: Design 
Alterations." Med, & Biol. Eng. & Comp. Vol. 24, May. 325-328, 
1986. 

9 SCOTT, R.N. 
RICHARD, P.D. 

"Battery Saving Circuit for Children's Prostheses." Vol. 20, March, 
251-252, 1982. 

10 EVANS. H.B. 
PAN,Z. 
PARKER PA, 
SCOTT, R.N. 

"Signal Processing For Proportional Myoelectric Control," leee Trans. 
Biomed. Eng. Vol. 31. No. 2, Feb. 207-211, 1984. 

11 MORIN, E. 
PARKER, PA. 
scorr, R.N. 

"Operator Error Ina Level-Coded Myoelectric Control Channel." leee 
Trans. On Biom. Eng. Vol. 40. No. 6. June, 558-562,1993. 

12 LOVELY, D.F. 
HUDGINS, B.S. 
SCOTT, R.N. 

"Implantable Myoelectric Control System with Sensory Feedback." 
Med. & Biol. Eng. & Comp. Vol. 23. Jan. 87-89. 1985. 

13 SCOTT, R.N. 
BRITTAIN, R.H 
CALDWELL, R. 
CAMERON, A. 
DUNFDELD. V. 

"Sensory Feedback System Compatible with Myoelectric Control." 
Med. & Biol. Eng. & Comp. Vol, 18, Jan, 65-69, 1980. 

14 SCOTT, R.N. 
PARKER, PA. 

"Myoelectric Prostheses: State Of The Art." Jnl. Of Med. Eng. & 
Tech. Vol. 12, No. 4,143-151, 1988, 

15 ZHANG. Y.T. 
PARKER, PA. 
SCOl 1, R.N. 

"Control Performance Characteristics Of Myelectric Signals With 
Additive Interface," Med, & BioL Eng, & Comp, Jan. 84-88,1991, 

16 
17 SCOTT, R.N. 

PARKER PA. 
PACIGA, I.E.. 

"Operator Error in Multistate myoelectric control systems," Med, & 
Biol, Eng, & Comp. May, 296-301, 1978. 

18 SCOTT, R.N. "Feedback in myoelectric prostheses." clinical orthopaedics and related 
research I!!!!!!!!!!!!!!!!!!!!!! 

19 PARKER, R A. "Statistics of the myoelectric signal fix>m monopolar and bipolar 

S. Roberts 278 Appendices 



SCOTT, R.N. electrodes." Med & biol. Eng. & comp. Vol. 11, Sept. 591-596.1973. 
20 PACIGA, J. E. 

RICHARD, PJD. 
SCOTT, R.N. 

"Error rate in five-state myoelectric control systems." Med. & biol 
eng. & comp. Vol. 18. 287-190, 1980. 

21 KURUGANTI, U. 
HUDGINS, B. 
s c o n , R N. 

"two-channel ehancement of a multifiinction control system." IEEE 
trans, on biomed, eng. vol. 42, no. 1, jan. 109-111,1995. 

22 PARKER P. A 
STULLER, J. A. 
SCOTT, R.N. 

"signal processing for the multistate myoelectric channel." Proc. of the 
IEEE. vol. 65, no. 5, May, 662-663, 1977. 

23 RICHARD, P.D. 
GANDER R E 
PARKER PA. 
SCOTT, R.N. 

"Muhistate Myoelectric Control; The Feasibility Of 5-State Control." 
Jnl. OfRehab. Res. & Dev. Vol. 20, 84-86. 1983. 

24 BASHA, T. 
SCOTT, R.N. 
PARKER PA. PAR 
B.S. 

"deterministic components in the myoelectric signal." Med. & Biol. 
Eng. & Comp. March. 233-235. 1994. 

25 SCOTT, R.N. 
PARKER PA. 
DUNFIELD, V.A. 

"Myoelectric Control." leee Electronics Monographs. Peter Peregrins 
Ltd, U.K. Pp. 141-168, 1974. Isbn 0901223514. 

79 BRODY, G. 
SCOTT, R.N. 

"A Model For Myoelectric Signal Generation." Med, & Biol, Eng, Jan, 
29-41, 1974, 

84 PARKER P. 
SCOTT, R.N, 

"Myoelectric Control Of Prostheses," Crc Critical Reviews In Biomed. 
Eng, Vol. 13, 283-310, 1986. 

92 SCOTT, R.N. 
BRITTAIN, R. 
CALDWELL, R. 
CAMERON, A. 
DUNFIELD, V. 

"Sensory-Feedback System Compatable with Myoelectric Control." 
Med. & Biol. Eng. & Comp. Vol. 18. January. 65-69, 1980. 

136 GODIN, D.T. 
PARKER, PA. 
SCOTT, R.N. 

"Noise Characteristics Of Stainless Steel Surface Electrodes." Med, & 
Biol. Eng, & Comp. Vol. 29, Nov. 585-590, 1991. 

198 SCOTT, R.N. "Technical Note - Myoelectric Energy Spectra." Med. & Biol. Eng. & 
Comp, Vol, 5, Sept 303-305, 1966. 

21 GODIN. D.T 
PARKER, PA. 
SCOTT, R.N. 

"Noise Characteristics Of Stainless-Steel Surface Electrodes." Med, & 
Biol, Eng, & Comp. Nov. 585-590, 1991. (Univ. Of New Brunswick, 
Canada.) 

S. Roberts 279 Appendices 



lUPERIOR V I E W O F F K O I N A I E D FOREARM 

(COUNTER CLOCKWISE) LEFT 

L A T E R A L ASPECT OF PRONATED F O R E A R M 
E L B O W F L E X E D @ 90 DEG. 

M A L E 2 VIEW 4 

S U P E R I O R V I E W O F S U P I N A T E D F O R E A R ^ i l . 
( V O L A R A S P E C T ) 

WRIST ROTATION 
(CLOCKWISE) RIGHT 

SUPERIOR vil!W OF PUONATEb FOREARM 
M A L E l 

VIEW 1 

WRIST ROTATION 
(CLOCKWISE) RIGHT 

S.Roberts 309 Appendices 
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M A L E 2 VIEWl 
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M A L E 2 

VIEW 1 I 
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SUPERIOR VIEW OF PRONATED F O R E A R M 
VIEW 1 
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SUPERIOR VIEW OF PRONATED FOREARM 
M A L E 2 

VIEW 1 17 

RING FINGER EXTENSION 

S.Roberts 3 1 2 Appendices 



L A T E R A L ASPECT OF PRONATED F O R E A R M 
ELBOW FLEXED 90 DEG, 
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V I E W 4 
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M E D I A L VIEW (ASPECT) OF F L E X E D F O R E A R M 

MALE 2 

R I N G F I N G E R F L E X I O N 
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MALE 2 VIEW 2 
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VIEDIAL VIEW (ASPECT) OF F L E X E D F O R E A R M 

L I T T L E F I N G E R E X T E N S I O N 
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SUPERIOR VIEW OF PRONATED FOREARM 

WRIST EXTENSION 
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ELBOW F L E X E D (a) 90 DEG. 
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SUPERIOR VIEW OF PRONATED FOREARM 

28 

S U P E R I O R V I E W O F S U P I N A T E D F O R E A R M 
( V O L A R A S P E C T ) 

29 

W R I S T F L E X I O N 

S.Roberts 3 1 5 Appendices 



SUPERIOR VIEW OF SUPINATED F O l ^ A R M 
(VOLAR ASPECT) 
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SUPERIOR VIEW OF SUPINATED F O R E A R M . 
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SUPERIOR VIEW OF PRONATED FOREARM 
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VIEWl 
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VIEW 2 
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LATERAL ASPECT OF PRONATED FOREARM 
ELBOW FLEXED (Si 90 DEC. FEMALE 2 

VIEW 4 
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VIEW 2 
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VIEW 3 
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VIEW 2 
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SUPERIOR VIEW OF PRONATED F O R E A R M 
F E M A L E 2 

VIEW 1 
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VIEW 1 
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VIEW 2 
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LATERAL ASPECT OF PRONATED FOREARM 
ELBOW FLEXED @ 90 DEG. FEMALE 1 

VIEW 4 

MIDDLE FINGER EXTENSION 
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