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Abstract
This thesis presents research that extends current knowledge in the area of upper-limb
prosthesis design and control. A study of myoelectric signals (MES)’s using both NHS and
other equipment has resuited in identification of the signal source and
transmission/detection issues. A globally comprehensive and up to date survey of
myoelectric research has revealed new and long-term research paths.
This thesis challenges the old model in interpreting the MES signals by providing and
collecting evidence to suggest a new approach to future investigation. The historical
description of a stochastic, non-deterministic MES has been shown by this research to be
incomplete. An expanded, more detailed physiological description of the MES has been
presented as an improved MES model in Chapter 7 and demonstrates that it is possible to
separate the deterministic and the stochastic elements of the MES. An original extensive
Iist of variables underlines the deterministic nature of the MES.
This research has used an original controlled mapping technique for surface MES’s that
have revealed unique spectral features for muscle actions. The feature selection and
analysis and pattern recognition of the MES has been of fundamental importance to the
advancement of prosthesis functionality. Spectral analysis of the MES along with
exponential averaging has produced signal identification of potential high reliability and
high repeatability
A phenomenon, “the Tissue Filter Function” (TFF), has been considered, in past research,
as an undesirable consequence of the passage through tissue, of the muscle-generated
signal. This TFF shows itself as a frequency shift between at least two signals that are
observed at a single ele‘ctrode site and has shown ifself, in this work, to be a previously
unused identification feature.
An original simplified geometry model of the hand has been devised which greatly
improves prosthesis dexterity while minimising the requirement for the many degrees of
freedom of the human hand.
An original approach proposed is the use of 3 to 4 distinct very narrow band-pass channels
in the frequency-domain, signal transient-region as detected by multiple site electrodes (4
or more sites proposed). This data is then in a form suitable to be presented to a Neural
Network (NN) pattern recognition tool. This research has shown that the probability is high
that the cross coupling between a set of (4) surface electrodes will detect these frequency-

shifted signals throughout the 3-dimensional medium of an amputee upper forearm.
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Chapter 1

Introduction

Definition- Myoelectric: from Myo (Latin) as in muscle: The electrical potential, as

detected on the skin surface, generated by underlying muscle activity
1.1 Why Develop a Myoelectric Upper-Limb Prosthesis?

The sudden loss of an upper-limb is certainly a traumatic event. It is only with the loss of
the ability to manipulate tools do we realise how the upper limbs allow us to link so readily
with our environment. For a many the loss 1s not only in their livelihood, but also in their
relationship to their world. To reconnect with the environment, using an artificial
(prosthetic) limb that captures some of the former ability to manipulate, is a reasonable

expectation for an amputee.

Need for Research

Numerous designs of an artificial upper limb have been developed by the academic
community. None in the past 20 years, except the ‘Southampton Hand’, were designed to
be used directly as a prosthesis, but were targeted at a role as a ‘robotic manipulator’.
Many have manipulative merit and embody potentially useful developments for the
prosthetic community. The robotic designs still suffer an inability to transform directly into
a device that could be worn by an actual amputee. Even if the robotic designs were adapted
to be worn as a prosthetic, there is the very fundamental 1ssue of establishing a control
strategy guided by the amputee that could operate a multifunctional prosthesis. The limited
repertoire of control signals has essentially determined the pace of development in upper-
limb prosthetics.

The myoelectric signal (MES) taken from the skin surface has been the preferred source of

the control signals, but the information content of the MES has not been fully extracted. A
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significant improvement in user-generated control actions is clearly needed. Such
improvements will also enhance control in the field of robotic and teleprosthetic
mechanisms.

Sadly, as will be seen by the overview (in section 1.3.5), only the most primitive of

functions are currently available with commercial prostheses.

1.2 Aim and Objectives of this Research Project

The majority of upper limb amputations are below elbow. The residual limb below the
elbow retains considerable muscle mass that is capable of user generated, surface-
detectable, Myoelectric Signals (MES) that are representative of the intended muscle
action. The aim of this research study has been to investigate, in depth, the nature of these
MES and extract more “intelligence” from the signals than is currently used in commercial
prostheses. The objectives of the research are:

¢ ])-to investigate the information content of a MES.

e 2)-to study the nature of the Tissue Filter Function (TFF)

e 3)to map and identify optimum upper limb (forearm) myoelectric sites

¢ 4)-to analyse the mapped data for frequency content and other umique 1dentifiers

e 5)-to recommend the practical application of MES analysis for control purposes

e 6)-to provide a greater range of user-generated control signals.
The long-term objective of the programme is the development of a more functional
prosthetic hand with increased control action reliability.
This remainder of this chapter will describe the historical development of upper limb
prosthetic technology and the current “state” of the art. The issues affecting the
development of an upper-limb prosthesis will be introduced and placed in an engineering,
and socio-individual, and business-economic context. It is the intention for this context to
illuminate the real and imagined barrers to progress.
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1.3 Literature Review: Development of Upper Limb Prostheses

1.3.1 Early History of Prosthetics

Up until the 1970's, for an upper-limb amputee, the only serious option for a
prosthetic hand/arm was that of a cable-operated device. In the past 25 years,
development of the myoelectric arm/hand has been drawn inexorably along by
developments in materials, robotics and semiconductor technology. The commercially
available prosthesis has been limited to a matter of preference between cable-operated
and myoelectric.

As far back as 200 B.C. the historical record [1] tells us of an iron hand fitted to a
Roman General. Undoubtedly one-offs of this type were custom built as hooks, claws,
etc. throughout the following centuries. In 1509 an Iron Hand with gears for fingers
and thumb was produced for the German knight Goetz Von Berlichingen. The surgeon
Ambroise Pare (1510-1590) designed and built many prostheses. These devices used

ratchets, levers, springs and gears.

1.3.2 History of Prosthetics-1900 to 1950:

Abb. 178 und 179 PreBluft Hand Abb.180 und 181 Elektromagnetische Hand
Figure 1.1 Early compressed gas powered  Figure 1.2 Early electric hand component.

hand. Perhaps the first powered prosthesis  Perhaps the first electric hand mechanism.
Component.

From Ersatzglieder und Arbeitshilfen (Limb substitutes and Work Aids 1919).
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The body-powered prosthetic limb emerged in 1912 following the development of the
'split-hook’ by D.W. Dorrance [2] in San Jose, California and its control by a
body/shoulder-powered harness. It was in 1915 in Germany (see Figure 1.1} that the
first powered prosthetic hand (though pneumatic in operation) was to appear [3]
Probably the first prosthetic hand powered by electricity (electromagnet) was in
Germany in 1919. (see Figurel.2). Some of the earlier work used compressed gas
(CO2) power as the energy supply. These [9] were the Heidelburg Arm, Germany,
(1948-72), IBM, (impractical), U.S., (1945) Hendon Arm, England (1963-69). It
appears that the first myoelectric prosthetic hand was developed by a German
engineer/physicist, R. Reiter [4,5] in the early 1940's with his work published in 1948.
This vacuum tube amplified hand [6] was operated by electromagnet (Solenoid). From
1946-1949, IBM (Alderson) in America worked on a six degree of freedom electnic
arm. Apart from weight, it suffered from a lack of control signal sources [9]. In 19438,
work began on a pneumatic (CO2) arm-prosthesis. (O. Hafner) at Heidelberg Univ.,
Germany and continued in 1955 by E. Marquardt. In the same year a pneumatic, arm-

prosthesis was fitted at the University [7,8,9]. The idea of myoelectric control of a

prosthetic hand surfaced throughout the 1940's and 1950'. In the U.S. (North Western
University, Chicago) it was WW2 and the US military brought about the “Committee
on Prosthetics Research and Development” (CPRD), which, under the National
Research Council, drove much of the work in the U.S. over the following years.

1.3.3 Technical Development -1950 to 1960

The Germans, with their long historical record in prosthetics, produced the next significant
development when E. Wilms and Kegel (following on from work during WW2) [10] in
1951 produced the 'Vaduz Hand' (see Fig.1.3) at Vaduz in Liechtenstein. The Vaduz hand

[3] had remarkable similarities to the Otto Bock hands of today. The Vaduz hand used an
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automatic gearing mechanism, which
gave fast-closing/low-gripping-force and
slow-closing/high-gripping-force with the
user arm-muscle expansion driving a
switch servomechanism [8]. The Vaduz
hand, sometimes known as the French
hand, was available throughout the mid
1960's [3,11]

In 1955 Battye, Nightingale, and Whillis

at Guy's Hospital, London produced one

of the first myoelectrically (threshold)

Figure 1.3 Vaduz (French) Hand. From
Bulletin of Prosthetic Research, 1966. controlled prosthesis with one-degree of

freedom [3]

In London, England, in 1957, A. Bottomley, K. Wilson, A. Nightingale [4,12,6] were
developing myoelectric controls. Development of the germanium transistor and its use, by
a Russian Engineer Kobrinski, at the Central Research Institute in Moscow, in the period
1957-1960 [13], resulted in the first portable myoelectric hand prosthesis for clinical use.
By 1960, the Russian Hand was being marketed in Canada and the UK. [14].

1.3.4 Technical Development- 1960 to 1970

Bottomley and Cowell, in England (1964) [15], introduced proportional control of velocity
and force in a split-hook device. In 1965 A. Bottomley, K. Wilson, A. Nightingale
produced “The English Hand” using proportional control.

In Yugoslavia, (1961), R. Tomovic was working on an adaptive hand and in 1968

produced “The Belgrade Hand” [16,17]. The hand used slip detectors (a rotating ball)
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located in the fingertips to indicate movement of an object (see Chapter 1). Though not
clinically applied it was to be influential in the following years.

R.N. Scott, one of the most experienced in the field of myoelectric control and active since
1960 at the University of New Brunswick in Canada, produced the first North American
myoelectric control mechanism. Scott has investigated sensory feedback to the amputee for
control purposes and work there is continuing on new and promising approaches to control
methods using pattern recognition [4,18].

By 1965, a multi-function adaptive hand had evolved through researchers in Sweden. It
was known later as the Sven Hand, from which further Swedish work has evolved. The
SVEN hand was a 4-degree of freedom hand used in research and was offered in limited
commercial form in Sweden in the early 1970's as the ES hand (Ee&Holmgren and
Systemteknik).

The Systemteknik Hand [9,15] grew out of the SVEN group and was the only small (less
than 1yr. old child) size model for many years. Production was later transferred to the
H.Steeper Co. UK.

Otto Bock, the prosthetics manufacturer, was founded in 1919 in Berlin, Germany. and
worked with pneumatic hands in the early 1960's. From 1963 to 1965, Otto Bock
(Orthopaedic Industries) collaborated with Viennatone [3], (Austrian hearing-aid company
with electronics expertise [3,16]) and an Austrian gentleman Zeeman (inspired by his
studies of the Russian hand in Moscow). Together they produced the “Viennatone Hand.”
This was the first "Western" commercial hand. By 1965, the Otto Bock Orthopaedic
Company had produced a commercially available, one-degree-of-freedom,
electromechanical, hand/arm, prosthesis (using the thumb moving in opposition to the
index and middle fingers |3,8]). This is still the same operational action as found on all

new prostheses by Otto Bock and other manufacturers.
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The “Viennatone hand” underwent another incarnation through the efforts of the U.S.
Veterans Administration Prosthetics Centre (VAPC) and was subsequently marketed in the
U.S. by Fidelity for some years.

At the (INAIL) Centre, near Budrio, Italy, Professor Schmidl developed a driven-lead
screw-and-nut operated hand prosthesis that provided a locking grasp.

D. Childress at Northwestern University in Chicago in 1968 used the Viennatone hand
with his own myoelectric controller design to produce one of the first-ever self-contained,
and self-suspended, below-elbow prostheses [3].

In England in 1966, J. Collins at Hugh Steeper L.td. of London designed a simple adaptive
prosthetic hand [19].

The Waseda hand, started in 1964 under Prof. Ishiro Kato in Japan, followed on from work
by Barrachino of France on a multi-fingered adaptive hand [8,9]. Their work resulted in the
WIME hand in 1978. The hand used pressure sensors attached to the fingers that fed back
the reaction force to amputees by electrocutaneous stimulation. This hand was made
commercially available by the Imasen Company, Nagoya, Japan (Note: commercial
information on this hand has been unavailable and suggests low acceptance within the
prosthetics community).

The human hand has more than 27 degrees of freedom (103, p354, 402). Muiti-fingered
“hands” with multiple degrees of freedom of movement became a focus of many research
groups since the 1960's. The distinction between robotic manipulators and prosthetic hands

became blurred as researchers tried to anthropomorphise these robotic devices.

1.3.5 Declining Rate of Improvement and Stasis: Post 1970 to date
By 1967 it had became possible to buy a powered prosthesis [4,20] but it was not until

1980 that myoelectric prostheses became a clinical alternative. Steeper and Systemteknik
collaborated for a few years before Steeper began production of its own product in the

1980°s [21]. Variety Village in Ontario, Canada, following work with Systemteknik,
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introduced a new
lightweight, children’s
hand [21]. Figure 14
shows the experimental
Stanford University/ JPL
(Jet Propulsion Lab) hand

(1985, Salisbury) [20], a

3-fingered (each of 3

Figure 1.4 Stanford University/ Jet Propulsion Lab hand
(1985).
From “Robot hands and the Mechanics of manipulation”.

degrees of freedom) hand
operated by motor and
cables. Figure 1.5 shows
the Utah University/MIT
(Mass. Institute of
Technology) experimental,
5-fingered hand, (1986,
Jacobsen, Iversen, Knuti,
Johnson) [22,23,24,25].

Figure 1.6 shows the
Belgrade Univ. /USC Hand
(Umiversity of Southern
California) (Tomovic,
Bekey, 1990)

[16,26,27,28,29,30]. This

was a five fingered device,

Figure 1.5 Utah University/ MIT Hand. From
with the fingers each  ‘Design of the Utah University/MIT Dextrous Hand’
Proceedings of the IEEE Int. Conf. Rob. and Autom.
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exhibiting a single ‘curving’ degree-of-freedom and the thumb with 2 degrees-of-freedom.
Of these three hands, none is suitable for a prosthetic hand and have really been designed
as end-effectors for robot/anthropomorphic arms. Considerable control cable, actuator
mechanisms, electronics and computer software control are required to operate these end-

effectors.

Figure 1.6 Belgrade University / USC Tomovic/ Bekey hand (1990).
From “Dextrous Robot Hands”,by Venkataram and Iberall, Springer-Verlag, (1990).
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1.3.6 Control-Signal Sources and Limitations

Following an amputation the amputee stump will have a residual mass of muscle that can

be activated and made to cause a measurable movement of the skin surface. Just as the

MES is a “downstream response” of the user intended activity, so is the movement of the

muscle and skin surface.

This physical movement of the forearm stump surface produced by muscle movements can

be measured and correlated to intended muscle actions using various movement detection

sensors. Strain gauges, piezo matenals, force-sensitive resistors, or Hall-effect movement

detectors have been considered. These differing methods can be used singly, or mn

combination, to positively identify such signals.

1.) Piezoelectric

¢ The piezoelectric generator is a method that shows promise. In experimental work, at
the University of Plymouth, small piezo sensors have been shown to be quite effective
in producing a strong signal, in response to a muscle action that moves the skin surface.
A movement sensor that has a small point/surface contact area of less than 10 mm® is
however more sensitive to the accuracy of placement position than is the MES detector.
This 1s due to the focus area of physical movement being smaller than the more diffuse
MES signal that propagates across a wider surface before fading. This may limit its
practical implementation. Other limiting factors for the piezo are:

e Vibration disturbances can induce jelly-like movement of the flesh/muscle and an
unintended output response from the piezo sensors. This 1s a major problem.

¢ The difficulty is considerable in mounting these sensors, keeping in mind the need for a
fixed reference point/mounting position from which relative movements can be

established.
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As a consequence of investigations at the University of Plymouth into piezo sensors, an
approach using a piezo material that can “mould” itself around a stump (like a flexible
thick membrane/skin) was conceptualised to address the problems encountered. The
surface deflection signals would be divided into a grid pattern that could be fed back as a
large array of signals that can subsequently be processed for pattern recognition.

2.) Force Sensitive Resistors (FSR)

As in the piezo material, the FSR is a candidate for detecting the surface movement, if it is
presented as a moulded surface around the muscle stump. One of the problems with FSR is
their non-linear response and hysteresis tendency. To utilise the FSR signal with such
Irmitations should be weighed against the experience of users and research. This suggests a
preference for wide-band, discrete, control actions.

3.) Muscle Sounds

Muscles have been shown to produce sounds [31,32.33,34] at the resonant frequency of the
individual muscle. These sounds are in the 5 Hz to 250 Hz range and can be detected by an
ordinary acoustic microphone. The peak energy/dominant frequency is found to be about
25 Hz., with power decreasing as frequency increases (known as “pink noise”, or “1/f
noise,” or “flicker noise”) in which the noise has equal power per decade of frequency).
Fast-twitch muscle fibres respond in about 40 ms. (or a 1/25th of a second), due to the
regeneration rate of the ATP (AdenosineTriphosphate) controlling the contraction of
muscle. The 25 Hz vibration is likely to be along the long axis of the muscle. In all
likelihood the muscle sound could be used as a discriminating source for prosthetic control.
The problem, with muscle sounds, is they do not exist in isolation but are generated and
exist within a sound-filled environment. The dominant 25 Hz peak sensitivity would be too
often recreated by, and inseparable from, our environment. Differential amplification using
two microphones as inputs (signals picked up simultaneously will be cancelled/ignored)

could reduce extraneous sound influence. Directional sensitivity and a clever algorithm
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need to be developed before muscle sounds can be reliably utilised as a prosthetic control
source [35]
4.) Implantable Signal Sensors
Implanting of detection sensors for muscle, nerve, and sound-derived signal sources has a
strong attraction for control of prostheses. In principle, the nearer one gets with a sensor to
the source of the signal, the less signal information is lost. This is particularly true with
myoelectric signals (MES) and Nerve signals. The nerve is of course the source of
stimulation for a particular muscle or group of muscles. There are both biological and
technical reasons [36,37] for the lack of progress along this front. These are:
¢ The problem of invasive surgery:
Patients may not be amenable to surgery. Surface mounted detection methods, of
course, require no surgical procedures.
e The problem of implant-reaction:
The material used must be non-reactive with tissue and minimal in volume
e The problem of powering the implant:
1.) Non-inductive implants require power and signal lines that pass through the
skin. These entry points can be a constant source of irritation /infection
2.) Inductive implants draw their power supply and transfer data by telemetry. The
transmission requires inductive coils and associated circuitry on both sides of the skin.
Efficient coupling to capture the energy is essential. In addition to the implant
interference-immunity requirement, interference with other electronic equipment (under
the new EEC noise emissions regulations) could prove to be a problem.
There are delicate micro-surgical requirements at the site of the muscle connections. The
problem of a reliable, non-destructive, continuous attachment of the sensor to the actual

site for signal extraction is compounded by the difficulty to restrain the movement of the
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sensor mass and attachments.
1.4 Designing for the Amputee: The Engineering Issues

For the amputee the issues to be considered in developing an acceptable myoelectric
prosthesis are broadly:
e  Weight,

Socket fit and comfort

e Breathe ability of socket to skin interface
s load distribution of prosthesis to amputee stump
¢ User-Signal-Interpretation (natural VS substituted)

e Dexterity

Cost,

e Cosmesis (appearance) [4,38].
Hardware specifications to be addressed are:

e Energy Supply

e Actuator/motor Control

¢ Mechanical Construction and Maintenance [38]
1.4.1 Kinematics
Kinematics is the description of the relationship between positions, velocities, and
accelerations of the links of an artificial manipulator. With kinematics, it is possible to
calculate the position of one end of the system of links, relative to the other end. These
links are generally developed from a starting reference position described as the base (the
unmoving fixed reference point).
With a robot arm, the repeatability of an action can be made quite reliable in response to a
fixed software command. With the robot-base not moving, the links can be repeatedly

directed to an object to be grasped, and the grasp action achieved. If the reference base
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position is moved however, the program must be adjusted to account for that change or the
grasp cannot be achieved as before. With the human arm being in a constantly changing
reference position, the use of kinematics to achieve a target, using only a programmed
response describing the exact positions of the link positions, is clearly going to produce
poor results.

There is no evidence that the natural human movement activity is organised around a
system of kinematics but there is evidence [39,40,41] to suggest limb movement 1s driven
by a “ballistic response” method. With a “hallistic response”, an arm is “fired” with the
hand in the general direction of the target and the trajectory adjusted at intervals, en route.
The first interval-adjustment occurs within close range of the target. In control theory, this
would be a closed-loop control system with sensory (visual or haptic) feedback to calculate
the error comrection. The principle is demonstrated below (see Figure 1.7 below) as each

arrow represents an adjusted trajectory stage.

start —> —> > Earget )

Figure 1.7 A ballistic response with trajectory-adjustment stages

With this in mind the designed control system need only be concerned with being able to
return to known co-ordinate positions, e.g. relaxed /rest position for the hand, as starting
positions.
The actual grasping action can be achieved using either of two differing approaches:

1) The MES can direct the digits in a ballistic type action: with the feedback
pathways provided by human visual cues or hand/digit based electromic tactile sensors.

2) The MES can be used to trigger a staged grasp action: in which a complete hand
pattern is formed rather than an individual digit movement. The hand pattern would be

limited by force sensing
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1.4.2 Reaching Action

The natural action of the human hand, in a reaching and grasping action, requires that,
(using wvisual feedback), a reference point on the thumb or fingers be maintained with
respect to the intended target contact-point [42].

This reference point is then guided in a fixed position relative to and along an axis set
between the target and the wrist (or forearm) and on toward the target point on the object.
The 1important point here is the relationship between the position of the reference point and
the remaining digits with respect to the axis or midline of the path. The reference point
consistently remains much closer to the axis (midline) than do the remaining digits. As the
target object is approached, the remaining digits close upon the target and the reference
point is much less active in the closing action [43].

The example shown in Figure 1.8, in which the thumb is seen to move towards the target
and the index finger closes, should illustrate this natural tendency.

The natural movement relationship between user thumb and finger is such that the angular
speeds of closure between finger and thumb are not equal. The thumb is used as a point of

reference upon which the fingers close [42].

closing
action

FIG. 1.8 Natural hand action of thumb moving/closing
towards index finger
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1.4.3 Current State Of Upper-Limb Prosthetics Technology

Commercially available prosthetic devices have a very primitive grasping action limited to
movement in a single plane (one degree-of-freedom). This movement is nothing more than
a pincer-like action in which the thumb and coupled ring and middle finger share a
common pivot point and touch together in a three-jaw chuck configuration (see Figure

1.8).

slave
fingers

S

& 7 /
-~
epenfclose
action

FIG1.9 Standard pincer grasp action and simplified lead screw
drive of a commercial prosthetic hand.

aclive
finger

lead screw
with acme
thread

Nut with
internal acme

. thread
active

thumb

Figure 1.9 shows the operational action, within commercial prostheses, that has been the
standard for the past 25 years [44,45,46,47] (see also appendix page 241-242). Not only is the
grasp action very limited, but there is the problem of:

1). Exerting the correct grasp pressure that can hold a fragile object without

crushing

or 2). Preventing slippage due to gravity or low surface coefficient of friction of a held
object

or 3). Allowing for ability to release grip pressure in controlled increments

These are all aspects of the same problem of grasp force control.
The human hand is under intelligent supervision with very many and complex feedback

paths to accomplish these grasp control requirements.
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The need for reliable control signals to operate an artificial manipulator that can be
configured to different grasp functions (with slippage response), could describe the needs
of both the prosthetics and the robotics community.

A robotic arm operates in response to command signals generated within a highly
controlled environment and “envelope” range. The software is written to take into account
a very limited change in the environment of the working robot. The control algorithms
must assume certain constants in order for the control action to be effective. If the
reference base of the robot is not fixed or "knowable" (in some relative or calculable
manner), then the robot control algorithm cannot determine its position in space. The
results could be quite damaging to both the robot and the environment.

In a similar way, if the prosthetic hand is to be operated from a software control algorithm,
then it must have a reliable reference point. (i.e. a fixed “base” from which it can operate
and produce a desired grasp response). The prosthesis user however is constantly moving
around and changing orientation of the entire prosthesis. The “base” is consequently not
working in an environment known or knowable to the software. The prosthetic hand can
know the relative position between its functional parts and thus calculate its own
“kinematics” relative to one of those parts chosen as a reference “base”. Although the
amputee (the prosthesis "user") knows his/her spatial orientation and the position of objects
in the working environment, the prosthesis has no access to this knowledge, unless the
"user' can communicate that human knowledge to the prosthesis. This
"positional/environmental orientation” 1is, however, the most fundamental missing
feedback element for a safe and reliable control action. “Position” is but one of the missing
feedback elements that we take for granted in the intelligent control actions of the human
hand.

Therefore, if an amputee is to operate prosthesis, he/she must offer some assistance in the

"positional” control action of the prosthesis. This assistance is usually accomplished by the
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user moving (onenting) the entire body in such a way as to bring the prosthetic gripper into

a position in which an open or close action can begin. It is the loss of the fine control

feedback, along with the extremely limited actuator-action, which results in the

exaggerated, compensatory actions taken by the user.

So we see that for improved control of a prosthesis we need to have in place a feedback

mechanism that in a limited way can "complete the feedback loop” through the user.

1.4.4

Actuator/Drive Methods

The technology options for the substitution of muscle power have to date been shared out

amongst the following four types of drive methods

)

2)

3)

Hydraulic; In particular, these have found a home in industrial robotic operations.
The inevitable leakage of hydraulic o1l associated with hydraulic systems and their
need for line pressurisation and the extra weight associated with the hydraulic
supply, have prevented them from becoming a prosthetic option.

Pneumatic systems have definite weight advantages over both hydraulic and
electric motor drives [48]. For example, the electric hands, by Steeper and Otto
Bock, weigh approximately 230 grams and the pneumatic hand potentially at 100
grams. The complete pneumatic prosthesis (with disposable CO2 gas cylinder)
could weigh in at half the weight of a complete electric prosthesis. Hand opening
and closure times are potentially less than half of electric systems [48]. However, a
myoelectric interface would be necessary and might reduce the weight advantage.
More development needs to be carmed out in this area.

Motor/gearbox: The major prosthetic suppliers use this method (Otto Bock,
Steeper), in various configurations. The motor is located in the hand and produces a
single degree of freedom, open/ciose pincer-like (3-jaw chuck) action between

thumb and index and middle fingers (see Appendices).
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4) Motor/Cable:_Robotic Researchers have used this method (e.g. Stanford and

Utah/MIT) but actuator and cable weight need consideration.

1.4.5 An Artificial Muscle

Research needs to be done with synthetic polymers of solid structure that could be coerced
by a low voltage to cause a small but cumulative percentage change in their length. In
principle, synthetic polymers could approximate the function of natural muscles, and be
controlled as if they were natural muscles. To date no such synthetic muscle has been
developed. When this does occur, the issues of motor and gearbox weight, volume,
backlash, and inertia will be past history and a lighter, cheaper and more responsive
actuator system, that mimics the natural muscle, could be utilised. More recently, Soares,
1997, at the Univ. of Edinburgh has constructed an artificial muscle using a “shape
memory alloy”. Power consumption (heating) is very high with heating/cooling time
constants overly long and consequently not yet suited to battery operation. Successful

development to a practical prosthetic actuating mechanism will require more work [49].
1.5 Basic Control Methods: Past and Present

Myoelectric control requires one or more highly sensitive electrodes placed, on the skin of
the amputee stump, over the muscles (flexor and extensor for below-elbow amputees).
Here small electric potentials of the order of 1 to 100 microvolts corresponding to stump
muscle-activity are picked up on the skin surface and amplified for the purpose of
controlling the prosthetic hand action [50,51].

The following different control approaches have been taken.

1.5.1 The "2-site/2-state"

This is the most widespread control method. The stump muscle action is detected and any
MES voltage over a set threshold is picked up by the electrode. This triggers the hand
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opening action. As long as the threshold is exceeded, the hand continues to remain open.
Using the same threshold method at a different site, a signal from a different stump muscle
15 used to close the hand. However, the amputee needs to learn to produce these isolated
muscle movements from at least two sites on the stump. The forearm flexor and extensor
muscles are chosen for the control muscles and some training to use these muscles in

isolation is generally required.
1.5.2 The "one-site, 3-state"

This control method uses a single muscle site. A large muscle contraction opens the hand,
and a smaller contraction closes 1it. With no muscle contraction, the hand action stops in
place. A vanation on 1-SITE, 3-STATE is the use of "RATE-OF-CHANGE OF
SIGNAL" as the signal characteristic, as compared to the basic amplitude/threshold

activation.

1.5.3 The "1-site, 2 state"
This control method uses muscle action at a given threshold to open the hand, followed by

automatic hand closure when the signal is Iess than the threshold level.

1.5.4 Proportional Control
This control method gives a hand opening and closing response that varies with muscle

action intensity. The speed, torque, or position can be varied proportionally (though, as yet,

only one variable can be selected).

1.5.5 Hierarchical Control
This control method uses level and proportional control and semi-autonomous states of

hand-grasp (that may employ force and slippage sensing). The Southampton Hand is an
example of a hierarchical control system. The Southampton Hand with its Southampton
Adaptive Manipulation Scheme (SAMS) control uses a micro controller and sensors to free
the amputee from the task of “holding” an object yet still allows the user to override when

necessary (52,53) [for further details see:54,55,56,57,58,59,60,61,62,63].

S. Roberts Page 20 Chapter 1



Therefore, each electrode site can produce an on/off function with a single further intensity
variation as optional. Hierarchical systems [6] have further options within states but the
demand on the user is the necessity for the muscles to exert a precise control of signal
levels. This requires another level of skill and practice by the amputee and may not be

suitable for a broad range of prosthesis users.

1.5.6 The Southampton Hand
In England at Southampton University, the onginal Southampton Hand was built in 1969

[64]. The University has had an ongoing development of the hand since then with
contributions by J.Baits, E.Gatto, RW. Todd, J.Nightingale, R.D. Codd, D. Moore,
P.Chappell, M. Barkhordar and P. Kyberd. Collaboration between Southampton and
Oxford Orthopaedic Eng. Centre resulted, in 1992, with P. Kyberd producing a multiple
degree of freedom prosthetic hand. The control method (see Figure 1.10) used was their
SAMS (Southampton Adaptive Manipulation Scheme) [65,57]. This 3rd generation hand
was built upon the earlier control work and was tested on a single degree of freedom hand
(a Viennatone) and on their own 4 degree of freedom hand (see Figure.l.11) which has

since then undergone refinements into a two degree-of-freedom hand.

Figure 1.10  State diagram of the SAMS control scheme for the “MARCUS
Hand”. From IEEE Trans on Rehab. Eng., March, 1996.
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Figure 1.11  The Southampton Hand. A multi-degree-of-freedom
prosthesis using SAMS control.
From Meas. Science Technology, 4, 1993.

1.6 Current Research Directions/ Pattern Recognition

1.6.1 Early Work

The use of pattern recognition as a means to identify the amputee-generated MES has had
some considerable attention over the past 20 years. Using myoelectric control takes
advantage of the natural myoelectric patterns produced when making a particular hand
function. Myoplastic surgical techniques can preserve the original patterns by reducing
atrophy and retraction of muscles.

Information concerning intended limb function by the user is buried in the EMS signal. It
is the computational time, algorithmic-process, hardware-sensitivity, and user-repeatability
that need to be controlled for in a practical (commercial) system. Some of the earliest work
up to 1978 was examined by R Wirta [66] and focused on either using various parts of the
body or using various muscles (e.g. shoulder region) to generate the EMG signals. Some
success was shown at the time with the use of eight or more muscles to control an above

elbow prosthesis. The user concentration and skill was a critical factor in the level of
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success. The bulky electronics of the day did not offer any realistic advancement in
practical prosthetic implementation. Research in Sweden with the Swedish multifunctional
(six functions) hand prosthesis used multiple electrodes (six) over as many individual
muscle sites on a below eilbow-amputee as a basis for a “Phantom Limb” control process.
"The individual electrode pair signals were each amplified, rectified and smoothed. A
method was adopted to separate the pattern classes with mathematically defined
boundaries having the character of 2-dimensional surfaces. After analysis with a digital
computer a weighting factor was adopted and applied to the rectified MES signal from
each site and all sites then summed to produce an output for that channel [67,68,69].
In Japan, investigation into the spectral relationship to hand shape was undertaken. The
results when averaged over 10 subjects showed a series of spectral peaks (four) related to
particular hand shapes. This work has not been shown to be repeatable by the author, nor is
there found any mention in the literature of repeatable confirmation by other researchers.
The lack of technical details made available in the spectral detection process may account
for this [70].
The problem of identifying motion commands, by the application of statistical techmiques
to analyse the onginal MES signal for extraction of control signals, has been explored by
Graupe (et al). Graupe used Auto-Regressive (AR) modelling to represent the EMG
stationary time-senies, followed by AR analysis [71,72,73] of the myoelectric signal. This
gave adequate function discrimination using 8-bit signal processing and could have been
improved using (ARMA) Auto-Regressive-Moving-Average techniques, but for the
unacceptable increased cost in computing time, in response to user commands. The use of
just a few (1 to 3) electrodes distinguishes this method, as compared to those of other and
eartier works which used muitiple (up to six) electrode sites. Each site was an EMG
function connected with a limb or hand movement. Graupe investigated signals from a

single site for their time characteristics. The assumption was, that at a given surface
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location, the set of parameters of the mathematical relations of the voltage /time procession
of the MES, would be more or less the same for a given pattern of muscle activation.
Spacing of the electrodes was made purposely very wide to use the cross talk between
muscles activated over time (measured in short bursts of between 200ms. to 300 ms.). A
sequential least squares algorithm (SLS) was used as the identification method [74].
Doerschuk [75] (1983), considered that, assuming all muscles have different frequency
characteristics, and if the high frequency components in the MES were attenuated more
rapidly than were the low frequency, it should be possible to discriminate between signais
at the electrodes as a result of different muscle actions, due to the different distances of
those muscles from the electrode. The discnmination information was thus contained in the
cross correlation between different pairs of electrodes. Using 4 electrode pairs Doerschuk
then went on to extend, refine, and improve on the work of Graupe (later shown by Triolo
& Moskowitz [76] to be a subset of Doershuk’s work). Doerschuk found discriminating
on/off information in both the spatial and time correlation structure of the EMS (using a
4th order autoregressive (AR) model sampled at 2 kHz). Further developments came in
processing of multi-channel, time-series MES’s by Triolo and Moskowitz {77] which
showed that operating range, peak performance and percent correct classification of MES
increases with the number of channels used. Prewhitening methods also were used to
improve the S/N ratio of the force estimate.

Other work by Lee and Saridis [78,79] used the probability density function of
pattern/motion classes in the decision space of signal variance and zero crossings;
classification occurs in a multi-class, sequential, decision-procedure.

The research mentioned to this point has interpreted the MES (a biosignal) as a stationary
signal purely for analytical convenience. As biosignals are inherently nonstationary (i.c.
time varying), a method that approaches the biosignal as a non-stationary model is more

realistic. Schack and Grieszbach [80,81,82] have taken the nonstationary approach and
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developed an ARMA model for the dynamic spectral-analysis of non-stationary,

biosignals. Comparative merits for the ARMA approach versus other methods for spectral

analysis point out the following different weaknesses:

e Short-term Fast Fourier Transform (FFT): (actually a quasi-stationary overlapping
segment method apphed to a non-stationary signal). Results are comparable to ARMA.
Limited by inherent uncertainties

¢ Filter methods: band-pass (with rectification and smoothing) give comparable results to
ARMA. Such methods can be limited in spectral parameters and points due to
weaknesses in analogue (stability, slope, physical-size) and digital (serial processor-
time) methods.

¢ Dynamic AR by Kalman-Fiiter algorithm: comparable results to ARMA algorithm and

1s time-consuming and restricted to AR (not ARMA) methods.

Other approaches that may have merit are:

e Instantaneous spectrum using Hilbert transforms:

e Dynamic spectrum using wavelet transforms

Although not directly related to myoelectric signal processing in the arm, a method
conceived by Simpson [83,84], known as “Extended Physiological Proprioception” (EPP),
can be considered as a pattern recognition method. The source of the signal (MES or
switch position) ;:vas located in other body regions. Simpson was concerned with above
elbow amputees and thalidomide children who had mobility of the shoulder joint but little
or no arm MES to work with. The position of the shoulder joint was translated to the
position of the prosthesis in space in a serial manner. A relationship has been demonstrated
to exist between shoulder joint-angles and elbow/wrist joint-angles [85]. Such a

relationship can be used as a basis for (above-elbow amputee) prosthesis control.
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1.6.2 MES Features

Research into myopathic and neuropathic/neurogenic processes has produced a2 number of
charactenstic “Features” regards the MES that specialist clinicians in the EMG field have
used to diagnose disorders e.g. ALS, Multiple Sclerosis, Muscular Dystrophy. The features
mostly related to the MES in the Time domain and that cover the basic signal time-features
are:

* maximum peak to peak amplitude

* maximum positive peak amplitude

e maximum positive slope

e maximum negative slope

e total number of signal tuming points

» total positive signal area

» total negative signal area

¢ total number of samples

« RMS

e total number of zero crossings
These mentioned features could be further analysed for:
Clustering, factor analysis, nearest neighbour network [86], shape irregularity [87]
Now all of these features have been generally applied to, and restricted to, the decomposed
signal detected by needie (inserted into the muscle) electrodes. Needle electrodes have a
much greater resolution of individual motor units and are the means by which Action
Potentials (AP’s) and Motor Umt Action Potentials (MUAP’s) are examined after
application of decomposition techniques [88,89,90,91]. The decomposition techniques are
required due to the regional mixing of MUAP’s. Surface electrodes suffer extremely poor
capability to resolve specific MUAP’s and are not used as such. The commercial
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availability of medical MES diagnostics has brought these methods into pattern-
recognition research, along with the use of time domain features, as a basis for pattern
recogmtion by artificial intelligence methods. Neural-networks, Fuzzy Logic, and Hidden
Markov models are a few of the different signal processing methods that can be applied in

this area. The Neural Network is the most popular of these candidates.
1.6.3 Neural Networks (NN) and the MES

Neural Networks have been known since the 1940°s but went into a decline in the late
1960’s following work by Minsky that claimed severe limitations with the then existing
architectures. The back-propagation algorithm by Rumelhart and McClelland in 1986
breathed fresh life into Neural Networks.

In 1988 Graupe, {92] having investigated control of prosthetics by pattern recognition
methods such as ARMA, saw the use of NN as a tool much more suitable to medical signal
processing. Medical signal-analysis problems are all too frequently, ill defined, non-linear,
and defy analysis (by all but the most extremely computationally-exhaustive processes).
Graupe suggested the use of a MES model to present to a Hopfield NN for decomposition
of the MES into MUAP’s and the NN control of a prosthesis. No implementation or test of
data was reported.

In Japan, Hiraiwa [93] (1989) et al proposed the use of a NN using back propagation to
control a prosthetic hand/arm. The input signals were stated as surface-detected from the
flexor digitorum superficialis (see Chapter 2 page 61) and spectrum analysed via Fast
Fourier Transform (FFT). The 10 inputs were taken from a 10-band division of the 63 Hz
to 500 Hz spectrum detected. A 7- element hidden layer was used. The output was through
a S-element layer. The 5 elements represented 5 finger/thumb actions: 1) flex all fingers 2)
flex only index finger, 3) flex only middle finger, 4) flex only thumb, 5) relax all fingers.

Their success rate after training claimed 20 recognitions out of 30.
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Examination of their diagrams suggests the researchers were not accurate in their
anatomical description, as the flexor digitorum superficialis was not actually located where
they show the electrode locations. What in fact they were detecting from the position
shown (wrnst joint) is a region of high tendon concentration with a general proximity to
several muscle sources including the thumb. This consideration then easily explains their
results as follows.

1). Flex all fingers: Success was 1 in 6. The distant flexor digitorum superficialis would
give only chance discrimination

2). Flex only index finger: Success was 5 in 6 as this action is stronger with the flexor
digitorum superficialis

4). Flex only thumb: Success was 5 in 6 as the site of the thumb flexors is very close.

NB: In the case of a hand being amputated, the thumb flexors would neot actually exist (to
produce these signals).

5). Relax all fingers: Success was 3 in 6. Not a good score, as the activity in the area
should have been minimal and easily recognised as a no signal level by an ANN. This
indicates poor generalisation by the NN.

In Japan, Ito et al [94] (1991) proposed a back-propagation Neural Network to control a 3
degree-of-freedom (DOF) prosthetic hand/arm. The NN input signals were from four
surface mounted dry electrodes mounted around the upper forearm. Each of the 4 signal
lines were passed through a 10th order digital Finite Impulse Response (FIR) filter, then
smoothed and rectified before presentation to the inputs of the NN. The 4 FIR filters were
set with centre frequencies at 70 Hz, 160 Hz, 360 Hz, (and another at an “x” Hz omitted in
the literature) respectively and each with a 40 Hz bandwidth per filter. The 4 FIR filters
(each with a specific band-pass range) each accepted the input MES from only one
electrode. The outputs from the NN controlled 6 prosthetic limb actions:

1). WRIST flexion, 2). WRIST Extension,
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3). HAND Pronation, 4). HAND Supination,
5). HAND: open 6). HAND close.

Training was done using 10 stored data sets of 200 ms. intervals. The Networks learned
very rapidly (under 30 iterations) and produced greater than 90% recognition success. An
on-line network retraining/updating algorithm was also developed to account for the
observed changes in time of the training/ use data. This was done using two paraliel
transputers. The 6 actions over 3 degrees of freedom could have been accomplished using
a hierarchical control structure without the NN, but the clear advantage of the NN was its
ability to use natural movements of the human arm. Computational requirements were high
however. There are no reports of further work to be found.

At the Umiversity of New Brunswick (UNB) in Canada, Kelly, Parker, and Scott [95,96]
(1990), proposed the use of NN to control a prosthetic arm/hand. They chose to use the
MES feature set developed by Graupe and to detect these features using a Hopfield Neural
Network. The network proved to be 2 to 3 times as fast as the SLS algorithm applied by
Graupe. The Time-domain feature set was extracted using one pair of surface electrodes at
a single site and then used to train a Multilayer Perceptron (MLP) Neural Network. The
feature set was taken from a set of 4 arm functions and, once trained, the Network was
successful (no specific % rate was given) in recognising those 4 functions. The notable
point was that no training of subjects was given prior to data acquisition. This is a notable
advance compared to past pattern recognition methods in which extensive, exhaustive
training for the subjects was necessary. Kelly et al concluded that a better set of feature
sets to delineate the regions of a 2-dimensional feature space could yield an even greater
number of control actions. Due to the large computational effort required, this single
channel control approach did not evolve beyond the laboratory. The UNB work was
carried on by Hudgins, Parker, and Scott [97] (1991) with the development of an extended

time-domain feature set using the following MES features:
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¢ mean absolute value (MAV) in 5 consecutive 40 ms. segments,

o difference in MAV (the slope) between adjacent time segments,

* number of zero-crossings, in 5 consecutive 40 ms. segments

¢ the number of slope sign changes, (turns) in 5 consecutive 40 ms. segments

¢ the waveform length (complexity), in 5 consecutive 40 ms. segments

* the mean value of each of the mentioned features over all segments

Noticeable about Hudgins work is the recognition that the MES contains a deterministic
component during the initial stages of contraction i.e. the tramsient. Previous work by
others have assumed no useful information was to be found in the transient and work had
focused on the steady state signal (post transient state) components. A surface-mounted,
one-clectrode pair arranged on the upper arm (with widely separated electrodes) was used
with intention to capture the signals from all muscles in the upper arm. The 4 actions
monitored were: elbow flexion, elbow extension, outward humeral rotation, and inward
humeral rotation. Network recognition success results for 5 subjects tested were: 40%
success (for 4 subjects) to 85% success (for one subject).

The delay between user action at the muscle site and control action response was under
250 ms. This time response is within the acceptable benchmark (300-ms. Range) for a
user-acceptable, practical, prosthesis.

Hudgins again (1993) [98] carried on with the deterministic component of the MES found
in the (transient) initial onset stage (within the first 300 ms. of the MES). Using essentially
the same feature sets as in 1991, Hudgins spread these features over a 30 pattern input
layer through an 8 node hidden and 4 output back-propagation NN. Successful network
recognition this time was 91.2% for normal-limbed subjects and 85.5% for amputee
subjects. As the tests were taken without any subject training-session, it may be that it is

possible for the amputees to improve on these rates. Displacement of the electrodes from
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initial site positioning resulted in a slight (close to 2%) decrease in classification
performance. No attempt was made to determine the optimal electrode sites and
considering the large number of possible electrode positions and the retraining of the
network for each position this is not surprising. However, a method needs to be developed
for this “optimum” eventuality. Hudgins concludes, “It is the “cross talk” detected at the
clectrodes that is producing the myoclassification”. Yet, this “cross talk” is what the
commercial prosthetic manufacturers have always considered as “noise” At the UNB
O’Neill [99] (1994) investigated the spectral features of the MES for normal vs. amputee
muscles and found a shift in frequency between remnaﬁt (amputee) and intact (non-
amputee) muscles. No conclusive predictor could be established however. Further work
appears to be needed on the subject. It was suggested that the investigation of the
deterministic component of the MES could also encompass the spectral content. Kermanm,
Badie, Hashemi, and Wheeler [100] described new features being assessed for their MUAP
identification abilities.

Control of atm movements by Neural Networks, using orthoses or Functional Electrical
Stimulation (FES), has seen a number of papers across the Biomedical and Robotics field.
An extensive overview compiled by MacKenzie and Tberall {101] (1994), describe many
approaches [102,103,104,105,106,107] taken to investigate the optimal NN control system.
Of course, the capture of reliable input signals to these processors is assumed as available,
which is still not yet the case. A foundation of considerable effort has been expended in
investigating both the formation/operation [108] of the human motor-control system, and
the potential of Neural Networks. Opportunities can readily be seen for their application to
the control of prosthetic limbs and teleprostheses (109)

An extension of the research undertaken in this thesis has been carried forward at the
University of Plymouth with the development of a computer simulated hand operated by a

NN responding to recorded myoelectric signals (119).(see also this thesis page 297)
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1.7 Impediments to Progress: Political and Technical

Consider the question:® Why do the commercial manufacturers not develop these
additional control abilities into a more functional prosthesis.” The answer is complex
and many faceted.

There are only a handful of upper-limb prosthetics manufacturers in the world. There are
only two dominant players in Europe; H. Steeper UK. (now Rehabilitation Services
Limited, RSL Steeper) and Otto Bock (Germany). The U.K. has a National Health Service
(NHS) that offers the same level of quality in prosthetics that a private hospital could offer.
Consequently, there is no incentive for any amputees/patients to look for improvements in
the private sector. They can get the best available product at no charge from the NHS. The
NHS places a cost ceiling on commercial prosthetics and Otto Bock and Steeper fit into an
agreed system.

If current users of the standard prosthesis were offered the option of a vastly more
functional prosthesis, (that they could command in a manner similar to a natural limb),
they would all line up at the door casting aside their old prosthesis on their way in. This
does not make good commercial sense for an existing and profitable supply line. The
setting up of prosthetic centres, the training of professional prostheticians, the parts
distribution network, tooling costs and the commercial manufacturing facilities for the
prosthetic components, form a considerable inertia to overcome. There is therefore a
“status quo” in commercial manufacturing.

In order for existing commercial manufacturers to shift towards more technologically
advanced prostheses, any new technology would be required to slot into the existing
manufacturing and distribution network. The risk factor for the new technology would

need to be reduced to the level of the “simple and tried and true”.
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An analogy to consider here would be the model “T” Ford. The car was simple, basic and

travelled from “A to B”. If demand had been limited and there were only two

manufacturers of such cars, both producing only a slight variation of the basic model “T™,

would the “T” still be the current benchmark model?

It is ne coincidence that virtually all advances in the frontiers of prosthetic control and

design have been outside the commercial sector and in the academic research environment.

To initiate new technology requires a realistic and not idealist assessment of how the

private enterprise system is motivated. Consider the following:

Idealistic: If you make a clever gadget everyone will want to buy it and it will sell
1tself!

Realistic: Market potential is limited by the available funding from either NHS type
public bodies (UK.), or Insurance based private bodies (U.S.A). The regions of
highest demand for prostheses are in the least developed war-torn regions where
affected persons are the least able to afford the technology.

Idealistic: Market the technology as low risk/high return potential

Realistic: The “Catch 22” of getting started. In order to manufacture and market an
advanced prosthesis you need to have a designed and tested product. In order to design
and test an advanced prosthesis you need to be a manufacturing cell with an available
test market. Manufacturer and designer both need to be interwoven. Consider the
tunnel-vision banker-mentality: "When can you see a positive cash flow?” Bankers
(like politicians) are not generally long-term thinkers.

Idealistic. The shareholders will be willing to take a cutback in profits/dividends in

order to secure a more dominant position in the marketplace
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Realistic. The shareholder will not be accessed, consulted or presented with any
proposal that affects their rate of return because that rate of return affects the directors
short-term prospects.

Idealistic. The extensive technology and expertise available within the company could
be directed and focused on a. high-tech research program.

Realistic: The existing company staffs have developed, only within their manufacturing
skills environment in the company, and been optimised for their efficiency as
manufacturers. There is 2 minimal research culture. Prosthesis equipment makers are
manufacturing oriented and not research based. Budget restrictions could hinder any
progress. Universities, (in contrast), have a wide range of frontline researchers and
research facilities that can be shared and efficiently utilised. Inter institutional, inter
academic communication and shared knowledge via lectures and conferences is part of
the academic culture. In contrast, when the company is funding the academic research,
it attempts to stifle both the outflow of research findings and the academic feedback
system from fear of losing the competitive edge. This desire to wrap up their monetary
investment in a shroud of secrecy can sometimes cripple the research progress and
cause unnecessary duplication of work.

Idealistic; The company has so much expertise and years of experience in the
prosthetics field that they must be aware of any past or current technology relevant to
their field.

Realistic: Most company staffs are too busy in the day to day manufacturing of their
existing range of products. They rely on serendipity and token-gesture, company
representatives (more interested in selling their own products than in academic

parlance) at conferences to inform themselves of any changes in wind direction. The
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notion of sharing and explonng new ideas with another company (the competition) is
alien to the company culture
If there are any residual hopes for the potential for novel thinking in the commercial sector
then consider the statement (98) “Hudgins concludes that it is the “cross talk”, detected at
the electrodes, that is producing the myoclassification and yet this “cross talk™ is what the

commercial prosthetic manufacturers have always considered as “noise™!!

1.8 A Case for Myoelectric Prostheses:

Investigations [111,112] into usage of conventional cable-operated hand/hooks versus

myoelectric prostheses indicate a need for both forms of prostheses, as they both serve

different needs as summarised in the following points.

* The cable-operated device is more suitable for heavy jobs requining lifting or for using
in work environments unsuitable for a myoelectric device.

e The myoelectric prosthesis is well suited to those amputees primarily having jobs that
involve office work, supervision, or public contact work: i.e. primarily light activities in

a clean environment,

1.8.1 An Electrical Prosthesis:
Advantages:

1) A superior pinch-force of 15 to 25 pounds (65 to 110 Newtons) versus 7 to 8 pounds (30
to 35 Newtons) for cable-operated.

2). Lack of need for a harness

3) Greater cosmetic appeal

4). Wider operating work space/ envelope

5). Hand movement is independent of the body position
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6). High level (above-elbow) amputees require less effort (versus cable)

7) Sensory feedback from motor vibration (e.g. stalling sound) in prosthesis is used by
amputees and is a possible area for further research.

8) Greater scope exists for the development of increased complexity of thumb/finger/wrist

opening action. Cable harness can only issue an open/close command.

Disadvantages

1) Higher cost versus cable operated.

2) More maintenance and specialised maintenance centres.

3) Durability is less than cable-operated harness.

4) Hand shape can restrict some tasks (though this applies equally to cable-operated).

5) Battery recharging required. The myoelectric device will suffer an energy supply
problem in very cold weather due to the phenomenon of battery power being proportional
to temperature.

6) Weight is greater and speed/action generally slower than cable operated.

7) Weight leverage (weight distribution high at distal/hand end) at socket stump interface
cause stresses/discomfort on the stump.

Some commeon reasons being given for the myoelectric prosthesis not to be used by
amputees are [111]:

* too heavy,

s t0o slow,

* not durable enough.

The issue of cable versus electric prosthesis needs to be viewed as to what is suitable

within lifestyle and activity constraints.
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Other Considerations

Humid/hot conditions: or strenuous work can cause high levels of sweating within the
myoelectric (and to a lesser extent in the cable-operated) prosthesis, with subsequent
effects on the electrode response and prosthetic fit and comfort. Manufacturers have yet to
effectively address this problem with appropriate ventilation and/or design of the prosthetic
fit and matenals.

Durability: This can be improved with better materials for cosmesis and moving parts.
However, durability has to be fairly assessed with regards to any technological device
concerning purpose and fupction.

With regards to Sensory Feedback, those who placed light load demands on a myoelectric
prosthesis rated it as giving good feedback {113] and those requiring heavy demands rated
feedback as poor.

Reductions in Weight and relocation of weight in prostheses can still be viable areas for
research and development. Speed of operation, (hand opening/closing), have recently been
addressed with improved commercial versions, but much room for improvement is still

possible.
1.9 Summary of Chapter 1

A rapid journey through time brought us to the development of the ‘Vaduz Hand’ in 1951
and one of the earliest myoelectric controls were developed in England in 1955. From then
on things began to slow down in terms of technological innovation By 1960 the Russians
had developed their own myoelectric version of the Vaduz Hand and began marketing it in
North America. In 1963, the Germans (Otto Bock) made a version of the Russian Hand
and called it the Viennatone Hand. By 1965, they had an improved version and the product
has not changed significantly since then. In 1965, the Swedes developed the SVEN Hand,

which simplified into the Systemteknik hand, went to H. Steeper in the UK. and was the
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basis of the Steeper band from then on. The Americans copied the Viennatone Hand and
did little else.

As you can see, there was a great deal of prostheses inbreeding in the early 1960’s and
manufacturers began to carve out their patches with their inbred versions.

After this it was the academic community that undertook research; with the slant mostly
toward robot end effectors {Tomovic (1968), Waseda the WIME Hand (1964-1978),
Salisbury, the Stanford/JPL Hand (1985), Jacobsen the Utah/MIT Hand 1986, Bekey and
Tomovic, the USC Hand (1990)}. The human arm movement action has been shown to be
non-Kinematic in principle. No practical prostheses came as offshoots. Meanwhile the
academic community was exploring myoelectric control. R.N.Scott and the University of
New Brunswick has been pushing the bow wave since 1960 and much insight has been
inspi'red both within and outside their University walls. D. Childress at Northwestern
University in Chicago (USA) has been solidly pushing myoelectric control since 1968.
Over time, this academic persistence has been tempered by the electronics of the day.
Knowledge of muscle physiology has advanced and a mathematical approach has
developed (see Chapter 2). Various control signal sources (Myoelectric, FSR, Piezo,
Sounds, Implants) have been examined and their pros and cons outlined. Their many
shortcomings have left the control engineer with a need for signal reliability with a wider
control range. The hardware that constitutes the physical structure of the prosthesis has
been examined from the user perspective and found to be lacking. The types of actuators
(Hydraulic, Pneumatic Motor/gearbox or cable) have been examined and the author holds
out hope for an artificial muscle as the next generation advance in actuators. Control
systems that have used the myoelectric signals have been largely dependant on the gross
muscle signal developed at one site and varnations have used the signal to control either
open, close velocity or force (grasp pressure). The University of Southampton has been

pursuing the improvements of control using time domain MES with some success and have
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a ‘hierarchical’ control system that gives a prosthesis with increased functionality at the
cost of user control-complexity.

A number of academic research activities have inspired the development of control
signals, extracted from the MES, using the concept of pattern recognition. Auto regression,
SLS, and Neural Networks have been explored by others. Doerschuk (1983) suggested that
muscles have different frequency characteristics, and if the high frequency components in
the MES were attenuated more rapidly than were the low frequency, it should be possible
to discriminate between signals at the electrodes as a result of different muscle actions. It is
Doershuk that spotted the potential that is developed in this research. Pattern recognition
has met with some success but computation time and accuracy has been the underlying
weakness. Good ideas have foundered due to technological shortfalls and never then
carried forward (probably due to funding, other commitments or retirement).

The amputee just will not use a prosthesis that takes a long time to respond, is heavy
(weighed down with hardware) to wear, and is just as likely to poke them in the eye due to
an error in pattern recognition {(as humorously depicted by Peter Sellers in the film ‘Dr.
Strangelove’). The control potential in pattern recognition is there, but not (yet) developed
to maturity.

Finally, a case is made for the concept of the improved myoelectric prosthesis. Some
insight into the workings of the prosthesis manufacturing industry explains the slow rate of
progress and emphasises the current need for the academic community to move the

goalposts out of complacency and raise the level of play.

The first objective stated for this research program was:
1)-to investigate the information content of a MES.
This chapter has outlined the past historical discovery of the MES, and the story of slowly

revealed information content, as limited by the technology and anatomy/physiology of the
S. Roberts Page 39 Chapter 1



time. Academic research has pushed the boundaries and exposed a deterministic potential
in the MES. The application of intelligent systems will unravel more details in the
information content. We now have the background to avoid dead ends and the repetition of
completed past research activities. With this chapter, we now know the branches of the
discovery process of information content, but the author has yet to improve on that

knowledge.
1.10 Layout of Thesis

Chapter 2 will introduce the task of detecting/acquiring an effective and reliable command
signal for directing an improved prosthesis by probing the anatomical and physiological
origins of the myoelectric signal. By understanding the MES through it composition it will
be possible to detect a true signal from an artefact and to consider what intelligence can
reasonably be extracted. For those reasons outlined, the final choice of electrode sites will
be explained and apparent.

As in physics, biosignal research and detection has “been built upon the shoulders of giants
of past pioneers” in human physiology research. The literature is vast and extensive. In
order to know how to use technology to extract a biological signal; it is necessary to know
how past research through trial and error has developed. There is no excuse for repeating
techniques that have been thoroughly explored and extensively described. There is
however, an opportunity to draw upon the conclusions, suggestions and inferences that
such explorations have produced. The optimal electrode material may not necessarily be a
practical material and chapter 2 will explain and justify any compromises taken in the use
of electrodes used in this research.

A mathematical modelling of the signal and its detection will be introduced. Past models
will be examined and their strengths and weaknesses will become apparent. What is

possible to model and describe will be attempted and some past assumptions that can be
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shown to be incomplete will be explained. This incompleteness allows for the extraction of
more information that has in past been assumed possible by many in the field.

Software methods for signal methods will be discussed and the time constraints inherent in
a practical user acceptable prosthesis controller will be compared to the constraints of a the
frequency spectrum and signal processing equipment/software.

Chapter 3 will describe the experimental equipment used to examine the surface
Mpyoelectric Signal (MES). Time and frequency methods will be scrutinised for their
reliability, accuracy and utility. The various pieces of equipment chosen for detecting the
MES will be compared for pros and cons and a standard will be adopted.

Chapter 4 will examine the different muscle actions and the frequency characteristics
detected as a surface MES for those actions. The question of gender differences for these
muscle actions will be explored. The complexity of signal loss will be examined within the
context of the distance between muscle site and detector site.

Chapter 5 will introduce the need for MES site mapping. Each of the 4 adult volunteers (2
male, 2 female) will have their lower arms entirely mapped for the surface-detected MES,
for all of the 20 core muscle actions. Preliminary results for prospective common ¢lectrode
placement sites will be shown. This will stimulate interest for mapping to be completed.
Chapter 6 will examine the results of the mapping exercises with respect to Gender
differences. The 4 MES signal charactenistics that are detectable within the mapping
exercise will be shown how they can be brought together to produce a wider set of control
actions. The use of the “Second moment of area “will be introduced as a unique combining
method for applying to database mapping. The question of a deterministic VS stochastic
description for the MES will be revisited. The similarities and differences for various
muscle actions will be compared across the volunteers.

Chapter 7 will look more deeply at the question of the deterministic VS stochastic

question as a conflicting description of the MES. The results of the mapping exercise will
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expand more completely the understanding of the surface-detected MES as a combination
of both stochastic and deterministic elements. This apparent dichotomy will be resolved
into a more complete picture of the MES. The research results will show an expanded
control signals range and be placed against a background of Neural Networks as suitable

for applying to prosthesis control. A foundation for further research will be discussed.
1.10.1 Research Methodology

The opportunity to utilise the Tissue Filter Function (TFF) requires knowledge of the
manner in which the MES from selected muscles propagate through the tissue medium and
appear at the skin surface. It is known that the MES will demonstrate a different signature
on the skin surface as distance varies from the MES generator source. Just how the
contributions from various muscles found at any point on the skin surface offer a useful
control signal will be investigated. Any differences between males (within gender) and the
control signals produccd under controlled conditions will be recorded and analysed. The
same investigation will be undertaken to see if ‘between gender” differences require special
considerations for control signal purposes. A low frequency signal spectrum analyser wili
be coupled to moveable electrodes for the purpose of mapping/recording the surface of an

arm in response to muscle activity.
1.10.2 Original Work Contribution

Comprehensive contour mapping of the MES has never been undertaken before and the
results will generate a database from which hypotheses can be tested. The equipment
utilised was selected using the criteria laid out in Chapter 2. Full consideration was made
from a physiological, anatomical and electronics perspective(114). The historical
description of a stochastic, non-deterministic MES has been shown by this research to be
incomplete. This research has used an original controlled mapping technique for surface

MES?’s that has revealed unique spectral features for various muscle actions that cannot be
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accounted for by the Tissue Filter Function (TFF) alone. It is these unique features, plus
the use of the TFF, that is intended for an original approach proposed using 3 to 4 distinct
very narrow band pass channels in the frequency-domain, signal transient-region as
detected by multiple site electrodes (4 sites proposed). The intention is then for the signal
to be presented to a Neural Network (NN) pattern recognition tool. This research has
shown that the probability is high that the cross coupling between a multiple set (4) of
surface electrodes will detect these frequency shifted signals throughout the 3 dimensional
medium of an amputee upper forearm. Here the use of a “weighting factor” can be applied
to represent the spatial distances of these signals.

An original simplified geometry model of the hand has been devised which greatly
improves prosthesis dexterity while minimising the requirement for the many degrees of
freedom of the human hand. A novel approach to fabricating a multi electrode pickup has
been suggested to enable the mapping techniques to be fully utilised for multifunctional
control of a prosthesis. An original updated model of the MES, based upon a more in

depth consideration of the physiology of muscles and the nervous system, is presented.
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Chapter 2: Myoelectric Signals

2.1 Hand Actions

To appreciate the physiology of the hand, it may first be helpful to consider the dexterity
of the human hand and how we can describe its basic operational geometry. As mentioned

in section 1.3.5, the hand can be shown to act with over 25 degrees of freedom.

Consider the following:

If a “robot” designer were to start from a set of specifications that required a compact,
lightweight, manipulator with the same levels of portability, operational conditions,
dexterity and longevity/maintenance, (as the human hand) then, inevitably, that design
would supersede a purely hi-tech, material/mechanistic approach. It would converge upon

a hauntingly close, quasi-biological copy of what nature has produced over the millennia.
To provide these functions, the author decided that the basic movement geometry of the
band could be simplified into the following diagram (see Figure 2.1). Using this basic

geometry it will be possible to construct a hand with the essential hand movements.

SIDE VIEW SIDE VIEW
P —_1 _ P — _ ——
4 4 7
Ty Fant P ¥ c\ £ '
)| -y ~7 L - J) L7 o A
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Y FamY Py}
= -
- TOP VIEW — TOP VIEW

FIG. 2.1 Basic Hand Movement Geometry as an operational and constructional principle.
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The assignment of a binary value to each of the actions made available to the thumb and
first two digits can be seen to produce a basic range of grasp actions. Intermediate states
can be reached by the application of force-sensing limiters that limit progress between
states.

As long as a control action can be maintained by the amputee, the movement of the wrist
and digits, limited to the 10 actions (Figure.2.2), should cover a range of practical yet
feasible hand functions. The functional classification of hand grasp types (see Appendix)
can be reduced to a much smaller number of actions from which the major and minor
subdivisions can still be effectively produced. The limits placed upon the mechanical
design, in terms of dimensional flexibility, (no travel outside the confined anguiar settings)
are a necessary design compromise. Further increases in a closer approximation to the
human level of dexterity would exact an additional cost in; control lines, mechanical parts,
increased weight, computational time and complexity, and power requirements. The basic

range of grasp actions can be seen below in Figure 2.2 (see also Appendices p.237)

I REST
OO0K GRIP

v ' v v ¥

1 1 1 1 1

1] 0 0 0 0
ROTATE RAISE CLOSE CLOSE ROTATE
THUMB THUMB FINGER 1 FINGER 2 WRIST
DOWN l l l RIGHT
ROTATE LOWER OPEN OPEN ROTATE
THUMB THUMB FINGER 1 FINGER 2 WRIST

uUp LEFT

Figure 2.2 Simplified range of grasp actions for a myoelectric prosthesis
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2.2. Forearm Muscle Anatomy and Physiology

How is the MES produced and What does it represent?

Definition: MES: MyoElectric Signal

From a functional perspective, the action produced by a normal arm is not the result of a
single muscle action but is rather a combination of muscle actions, with major and minor
players taking part. [1,2,3]

In order to decipher the MES signal, we need first to know the extent and limitations of the
muscles available in the forearm and to know how those muscles contribute to the action
of both wrist and digits.

An example shown (Figure 2.3) (4, page 315) here is of the muscles that play a part in the
closing (flexion) and opening (extension) of the ringfinger What can also be seen is how
these muscles have a common origin in the elbow region. With an amputation occurring in
the mid forearm region, it can be seen that a large part of the muscle still remains and,
(assuming competent surgical methods were used to anchor the muscles), can be activated
by the amputee, producing detectable myoelectric signals (MES

The flexion (closing) of the ring finger (annularis) is brought about through the innervation

Figure 2.3Flexor digitorum superficialis. Figure 2.4 Flexor digitorum profundus
Adapted from ‘Human Anatomy and Physiology’ by D. Shier and J. Lewis, 8™ edition,
McGraw Hill, 1999.
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of both the flexor digitorum superficialis muscle (FDSm) and the flexor digitorum
profundus muscle (FDPm) (see Figure 2.3 a and 2.3b). Ring finger extension (opening) is
the result of the Extensor Digitorum muscle (see Figure 2.9, page 62)
Note: for a helpful Latin/English translation of the muscle names see appendix page2335
Apart from ring finger flexion the FDSm and FDPm also assist in wrist flexion (closing).
The FDSm is a muscle that overlies the FDPm (like the layers of a sandwich). The FDSm
is closer to the skin surface than the FDPm, but is itself overlain (see Figure 2.9, page 62)
by the flexor carpi radialis (a powerful flexor of the wrist) and flexor carpi ulnaris (a
powerful flexor of the wrist) muscles.
Note: It is an acknowledged, but habitually continued misnomer to classify the FDSm as a
superficial (surface) muscle). The FDSm flexes the middle phalange of the finger
(proximal interphalangeal joint), while the FDPm flexes the distal phalange. The FDPm,
supplied by the median and ulnar nerve, acts in gentle flexion and the FDSm, supplied by
the median nerve, comes into play for greater force or acceleration.
The wrist extension action (opening) is generally triggered from the site of the superficial
extensor group of muscles. This group comprises:

e the extensor digitorum (posterior interosseous nerve supply)

e the extensor carpi radialis brevis (posterior interosseous nerve supply which is a

branch of radial nerve) more involved in wrist extension than the longus
e and the extensor carpi radialis longus (radial nerve supply) more involved in the
releasing actions than brevis.

The above mentioned wrist flexion and extension actions have been introduced because

they are the muscles, above which are the surface electrode sites commonly chosen for the
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extraction of the two MES actions, (extension) open and (flexion) close, that typify the
commercially available myoelectrically operated prosthesis.

The following section on muscles and their action is a compilation from more than ten
separately authored texts on anatomy and physiology, plus the unabridged version of
Gray’s anatomy. It is as complete a classification as was possible to construct, yet some
arcas of disagreement exist. This research thesis has revealed that a less than complete
picture is available.

The forearm muscles are divided into two compartments (the ANTERIOR and the
POSTERIOR) by fascia sheets, and each compartment has ‘superficial’ (near to surface)
and ‘deep’ (below the superficial) layers. The compartmental muscles differ in both
location and function. The Anterior contains mostly wrist and finger flexors plus wrist
pronators and largely supplied by the median nerve. The Posterior contains wrist and
finger extensors along with wrist supinators, all supplied by the radial nerve. The forearm
muscles are referred to as the ‘extrinsic’ muscles of the hand, as they are behind the coarse
movements of the hand. The muscles that give the fine movement of the hand are in the

hand itself and are called the ‘intrinsic” muscles of the hand.

2.2.1: Anterior Flexors. These are involved in flexion of the fingers and wrist. The

two pronators of the wrist are the exceptions, still physically contained, in this anterior

compartment.
Superficial Muscles
o The flexor digitorum superficialis (FDSm): Actually forms an intermediate layer.

FDSm flexes the wrist (carpal), and proximal and middle phalanges of the fingers 2 to 5
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(proximal interphalangeal joint). Comes into play for acceleration or greater force
against resistance (not in gentle flexion). Its precise action varies according to what
other muscles are activated. The muscle has four independently active muscle slips to
operate the four fingers.

¢ The (overlying) palmaris fongus: (missing in 10% of the population) also assists in
wrist (carpal) flexion and is involved as an anchor in tension of the palm fascia.

¢ The flexor carpi ulnaris: (also overlying the FDSm), when used along with the
pﬁlman’s longus, and FDSm, is a strong flexor of the wrist and when used with the
extensor carpi ulnaris is an adductor of the hand. The flexor and extensor carpi ulnaris
work as synergists to prevent the hand abducting when the thumb is extended. It also
tenses/stabilizes the wrist in (minimus) little finger flexion.

¢ The flexor carpi radialis: (also overlying the FDSm) when used with flexor carpi
ulnaris and FDSm is a strong wrist flexor. When used with the radial extensors it is an
abductor of the hand.

e Pronator teres: acts with the Pronator Quadratus to pronate the forearm (by rotating
the radius on the ulna) and helps to flex the elbow. Acts only in rapid or forcible
pronation.

Deep Muscles (profund=deep)

¢ The Flexor Digitorum Profundus (FDPm): Overlain entirely by FDSm. The only
muscle that flexes the distal phalange of the finger. Assists in wrist (carpal) flexion. The
tendon to the index finger is usually capable of independent action whereas the other
three tendons act together. Acts alone in gentle digital flexion but works with FDSm for

greater force /acceleration requirements.
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* The Flexor Pollicis longus: a weak flexor of wrist and flexes the distal phalanx of the
thumb (pollex/pollicis). Partly overlain by the FDSm.

. 'fhe Pronator Quadratus: is the main pronator of the forearm, supplemented by the
pronator teres when there is a need for rapid or forceful pronation. Opposes the
separation of the distal ends of the radius and ulna when subject to external thrust
through the carpus.

The Median nerve supplies all these above-mentioned muscles. The only exceptions being

the Flexor Carpi Ulnaris supplied by the Ulnar nerve and the FDSm, which has the lateral

half served by the Median nerve but the medial half served by the Ulnar nerve.

This Anterior Flexor compartment is that group which is commercially chosen as a site for

extracting one of the two actions, (open and close) that typify the commercially available,

myoelectrically-operated prosthesis. The flexor signal is used to trigger one action (close)

of a myoelectric prosthesis.

2.2.2 . Posterior Extensors:
The other action (open) is generally triggered from the site of the posterior extensor
compartment of muscles. (see Figure 2.2) This group comprises:

Superficial muscles

¢ Brachioradialis is the most superficial muscle on the radial side of the forearm. Most
active during rapid flexion and extension of the elbow/forearm.

» The extensor digitorum (divided into 4 tendons) extends the wrist and extends and
flares (abducts) the fingers. Opens hand to relax or prepare a grip. The extensor

digitorum extends any single or all joints over which it passes i.e. wrist through to distal
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interphalangeal joints. The extensor digitorum includes the extensor digiti(orum)
minimi(us) which extends the little finger (minimus) and the wrist (carpus) along with
the extensor digitorum and also includes the extensor (digitorum) indic(us)es, a small
muscle near the wrist which helps to extend the index finger and the wrist.
The extensor carpi radialis longus: (in co-operation with the brevis) extends and
abducts the wrist. The longus is more active than the brevis when grasping or clenching
The extensor carpi radialis brevis: is shorter than and covered by the extensor carpi
radialis lengus. The brevis with the extensor carpi ulnaris extends the wrist. With the
flexor carpi radialis it abducts the wrist. Along with the longus steadies the wrist
during finger flexion.

The extensor carpi ulnaris adducts the wrist along with (see) the flexor carpi ulnaris.
With the extensor carpi radialis longus and brevis and the digital flexors it acts to
extend and fix the wrist in gripping or clenching the fist.

The anchoneous assists the tricepts muscle in elbow extension. May be responsible for
movement (abduction) of the ulna during pronation. N.B. This latter action has not been
adequately confirmed as stated in 38th ed. 1995 Grays Anatomy P. 624. This should be

assessable using the results from mapping

Deep muscles

These muscles are generally covered by the superficial group although certain of their

tendons and parts of the muscle outcrop just above the wrist.

* The Extensor Indices: a small muscle arising near the wrist that helps to extend the

index finger and the wrist.
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¢ The Abductor Pollicis Longus: acts with the abductor pollicis brevis to abduct the
thumb radially in the plane of the palm and extend the thumb at the carpometacarpal
joint.

¢ The Extensor Pollicis Brevis: extends the proximal phalanx and metacarpal of the
thumb.

¢ The Extensor Pollicis Longus: extends the distal phalanx of the thumb. Along with the
extensor pollicis brevis it extends the metacarpal and proximal phalanx. Further
movement results in adduction of the thumb and its lateral rotation.

The Supinator: which rotates the radius and works with the biceps brachii to supinate the

forearm. For slow unopposed supination it acts alone. For fast or forceful supination it acts

together with the biceps brachii. A heavy object, when lifted with the forearm pronated,

will use the powerful supinators, along with elbow flexion, to lift and rotate the object

along.

These are the 19 muscles to be found in the forearm, and many more again are found in the
hand. Together they produce 28 plus degrees of freedom in the hand and wrist.
The mechanical “Pulley Action” of the finger, as a result of the some of these muscles, can

be seen in Figure 2.5 [5]
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RELATIVE MOVEMENT IN MM
5P 165 OF FLEXOR TENDON THROUGH
SYNOVIAL SHEATH/PULLEY

means 26 mm. of tendon travel

at this point for full flexion
for the flexor digitoerum

zss_superficialis

23P

23 mm. travel for
f. d. profundaus

Figure. 2.5
pulleys and produce the ﬁnger bending action.
From: Grays Anatomy, 38", ed., 1995.

S. Roberts

The 4 figures above show how the finger tendons slide within the
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Figure 2.6 Extensor muscles of the forearm. The muscles in the centre column
above, are those that are found within the forearm (elbow to wrist) and involved in
the extension or wrist actions (seen in the column on the left). The colour code
applies to those muscles normally assigned as sited either superficial or deep.
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Figure 2.7 Flexor muscles of the forearm. The muscles in the centre column above,

are those that are found within the forearm (elbow to wrist) and involved in the flexion
actions. The colour code applies to those muscles normally assigned as sited either

superficial or deep. The differing nerve sources are seen in the right hand column.
S. Roberts
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Figure 2.8 Muscles of the forearm involved in wrist, hand, and digit action.
View (a) shows the deeper muscles, while View (b) shows the overlying superficial
muscles.

Adapted from “Principles of Anatomy and Physiology” by Tortora and Grabowski,
Wiley and Sons, 9" edition, 2000. ISBN 0-471-36692-7
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Figure 2.9 Muscles of the forearm involved in wrist, hand, and digit action.
View (a) shows the deeper muscles, while View (b) shows the overlying superficial
muscles.

Adapted from “Principles of Anatomy and Physiology” by Tortora and Grabowski,
Wiley and Sons, 9" edition, 2000. ISBN 0-471-36692-7
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2.3 Myoelectric Signal (MES) Generation

The muscle fibres (innervated by the spinal cord motor nerves that carry the commands
from the brain), generate the surface MES signals that are detected. The surface EMS is
the electrical manifestation of the neuromuscular activation associated with the contracting
muscle. The signal represents the potential generated by the ionic flow across the
membrane of the muscle fibres, which passes through the intervening tissues to reach the
detection surface of the electrode [6].

The muscle fibre (cell) is like a very fine thread of diameter 0.01 to 0.1 millimetres and a
length from a few millimetres to 30 centimetres. When innervated it will contract to about
2/3 of its length. These muscle fibres do not contract in isolation and one nerve fibre will
branch and innervate a group of muscle fibres within the muscle. This group of fibres is
called a "motor unit".

Even within one motor unit the moment in time at which fibre activation actually occurs
varies (minutely) due to the different individual lengths of the nerve fibre branches within
that group (motor unit). This is in addition to the random rate of release [7] within the
motor unit group, of the chemical transmitters (e.g. acetylcholine) at the individual
nerve/muscle-fibre (neuromuscular) junctions (synapses). It is the release of these
transmitters that ‘fires” the neuron [8,7].

The "InterPulse Interval" (IPI) refers to these ‘firing’ differences in the propagation
potentials separated in time among the muscle fibres of a motor unit. [9,7].

The IPI varies from discharge to discharge due to variations in synaptic delay {(accounted
for by: {(a) the amount of neurotransmaitter released, (b) rise time and excitability of the end

plate potential, and (c) the random nature of acetylcholine release). This varnability in
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firing response 1s known as "Jitter", Jitter has a standard deviation of about 20 us. Jitter is

usually expressed as either the mean of consecutive differences (MCD) of the IPI which
minimises the influence of slow trends, or as the mean sorted difference (MSD) which
eliminates the influence of the firing rate. Firing rate (or interdischarge interval (IDI)) is a
parameter that represents the inverse value of the InterPulse Interval (IPI) [see Figure 2.9].

The size of a motor unit, as a rule, is proportional to the "fineness" of the control action.
For a fine action such as eye movement the motor unit size is small, around 10 fibres /unit;
while for the larger lower limb muscles the motor unit size can be in the thousands of -
fibres/unit. To further complicate the matter the fibres of up to 30 different motor units
may occupy/interpenetrate the same region encompassed by one motor unit [7]. Buchthal,
using a 12 lead, multielectrode technique, looked at the human biceps brachii. He was able
to show that the fibres of each motor unit were localized in an approximately circular
region with an average diameter of 5 mm.; with some reaching a spread of 20 mm.[10].
The rate at which the motor units are recruited (recruitment strategy) for use also varies.
As a muscle is further brought into action, (e.g. more strength is demanded in lifting an
increasing load), then more motor units are increasingly recruited for use. The smallest
motor units are controlled by the most easily excitable (i.e. lowest stimulus threshold)
motor neurons. The neurons that activate the motor unit fibres do not transmit just a single
impulse with its twitch only response, but rather the neurons emit volleys or streams of
these impulses to the fibres. These volleys are composed of closely spaced impulses and as
a consequence the fibres are stimulated repeatedly before each one has time to fully relax.
This produces a “wave summation” that appears as a sustained state of muscle contraction

(tetanus).
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Figure 2.10  Shown here is a single twitch and its corresponding contractile force

response. When a second action potential follows on quickly, before the muscle has
relaxed, the result is a wave summation in which the overall contraction response is
greater. As more action potentials arrive, the result is a wave summation called
‘unfused tetanus’. As the frequency of the action potentials increases, the wave
summation becomes much smoother and is called a "fused tetanus.’ In a fused tetanus,
stimuli are of the order of 80 to 100 action pps, and the contraction is steady and

sustained.
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Figure 2.11 Muscle fibre electrical activity.
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Thus, one way to increase the strength

of contraction 1s to increase the
frequency of the exciting stimuli (see
Figure 2.10). This wave summation has
other considerations. When a muscle
has been at rest for an extended period
the characteristic activity will be
slightly different until the muscle has
been warmed up by activation. As the
muscle warms up (over a period of

several contractile responses) it works

more efficiently. A slightly stronger
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Figure 2.12  Neuromuscular junction (motor end plate Diagram

based on a 400x micrograph. From ‘Introduction to the All  of  these
Musculoskeletal System” by Rosse and Clawson, Harper and
Row, New York, 1970 characteristics

surrounding the firing action of the muscle fibres are detectable as features of the
myoelectric signal (MES).

Once the actual fibre has been innervated the response of the fibre and its representation as
a detected MES is shown in Figure 2.1/. The point on the fibre, at which the
neuromuscular junction occurs, known as the endplate region, is usually found near to the
middle of the muscle fibres. It is at this point where the fibre response spreads in opposite

directions along the length of the fibre (see Figure 2.12).
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2.4 Myoelectric Signal

(MES) Investigation

time . _ L
Only the action potential of individual

muscle fibres has been considered in

Figure 2.13  motor unit action potential
(MUAP)

whole is triggered into action and the depolarisations, of the individual motor unit fibres,

Figure 2.11. In fact the motor unit as a

overlap in time. The result is an overall space-time superimposition of the individual fibre
Action Potentials (AP) (see Figure 2.13) combined into one Motor Unit Action Potential
(MUAP) [11]. The MUAP time duration varies between 1 to 13 ms. In order to sustain a

muscle contraction the motor unit must be repeatedly fired. The resulting sequence of

&(t)

I I Y MUAPT MUAP’s is called a Motor Unit
& "J = Dirac delda Impulsos % U U'. U V t Action Potential Train
h{l) = Impulse response ; ““.‘
inter Pulse Intesval { tP1) (MUAPT) (seeFigure 2.14).
Figure 2.14 MUAPT as pulses with Interpulse )
Intervals (IPT’s) Many different and

intermingled MUAP’s are fired to bring about an intended muscle activity with the
resultant space-time superimposition of a number of MUAP’s seen by the electrodes at the
surface.

At each increment in time, there occurs 2 summation effect as the result of these many
changing vanables. The MES at the surface is the “blended” sum of the individual MUAP

trains (see Figure 2.15 and 2.16) [7].
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Figure 2.15  MES signal resulting from summation
of 25 MUAPT’s. Redrawn from ‘Muscles Alive’ by
Basmajian and De Luca, Williams and Wilkins, 1985.

mgtor units
a-motomeuron f

spikes MUAP trains

. motor neurons

Figure 2.16  MES construction from MUAP trains
(MUAPT’s). Redrawn from ‘Muscles Alive’ by
Basmajian and De Luca, Williams and Wilkins, 1985.

[13,14].
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Investigators  [12]  have
determined that the surface
MES appears to be a band
limited stochastic process
with a Gaussian amplitude
distribution (with a
bandwidth from D.C. to about
500 Hz). Different models of
the MES have come up with
variations on this “random
signal” theme. A model by
Deluca and Stulen describes
the MES as white Gaussian
noise passing through a linear
filter (signals representative
of MES spectrum are
synthesised by varying the

gain and filter coefficients
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2.5 Muscle Fibre Types

Fibres Are Categorised Into Three Types: [15]

Type I: The red (red in appearance) slow-twitch fibres. These are slow contracting
oxidative fibres with large amounts of myoglobin using aerobic pathways with fat as the
primary fuel. They split ATP at a slow rate and as a result the ‘contraction velocity’ is
slow. They are extremely fatigue resistant and can contract for prolonged periods. As they
are thin fibres, they produce less power than the thicker white fast-twitch fibres.

Type 2: The red fast-twitch fibres. These are intermediate in size between types 1 and 2,
and contain large amounts of myoglobin, and very many blood capillaries. They split ATP
at a fast rate and as a result, contraction velocity is fast. They are fatigue resistant but less
so than type 1 fibres. Aerobic capacity is the fibre capacity to do work in short bursts using
oxygen as a fuel.

Type 3: The white (white in appearance) fast-twitch fibres. These are double the diameter
of the red slow-twitch fibre, are fast contracting, and contract much more powerfully than
the red slow-twitch fibres. They have a low myoglobin content and few blood capiilaries
They do however contain large amounts of glycogen using anaerobic pathways to split
ATP at a fast rate so that they have a fast contraction velocity. As glycogen reserves
deplete rapidly followed by a lactic acid build-up these fibres have poor endurance and
fatigue easily. Note: Anaerobic capacity is the fibre capacity to do work 1n short bursts in
the absence of oxygen.

In each particular motor unit the fibres are all of the same type. Most muscles are of mixed

fibre types and some muscles are dominantly, but not exclusively, of one fibre type. Some
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people will have more of one type in some muscles than other persons might have and this
difference is genetically determined.

The contribution of the frequencies of these three fibre types to the overall MES has yet to
be determined. The pinkish or reddish appearance of the fibres is due to relatively large
amount of myoglobin and blood supplied to them by their extensive vascularization

The white fibres have a paler colour and are less vascularised.

2.6 Electrode Signal Detection Method

How Completely Can The MES Be Captured?

Electrodes used on the skin surface can be broadly classified as wet or dry electrodes. Wet
clectrodes are fixed into place by a temporary sticky gel that has good electrical
conduction properties. Dry electrodes have inferior stability for MES detection (see motion
artefact) and sensitivity to weak signals is slightly less. The great advantage to dry
electrodes is their use in locating the best location for a particular MES and their use in

this research in exploring and mapping the arm MES.

2.6.1 Electrode Materials

Silver-Silver-Chloride Electrodes: Used with a 0.9% saline solution these
electrodes have very low noise voltages developed between the pair of electrodes (half-
cell potential) and as a consequence are used by choice as reference electrodes in
electrochemistry.

Platinum-Black Electrode: A heavily chlorided silver-silver chloride electrode

followed by platinum deposition followed by chlonding once again results in an electrode
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with the combined best properties of the (low impedance of a few ohms at 20 Hz)
platinum-black (platinum on platinum) electrode and the (low equilibrium potential)
chlorided silver electrode.

The Silver-Black Electrode: If the silver chloride surface coating is then treated
with photographic developer for 3 minutes, a dramatic reduction (to levels between 1/20th
and 1/60th) in impedance, at all frequencies, is seen. The magnitude of the deposit will
vary with the required end use.

Bare metals and polished metals in particular, have the lowest electrode-electrolyte (EE)
series-equivalent capacitances. Thus roughened surfaces, an increase in the concentration
of the electrolyte {skin-salts, moisture) and an increase in temperature, all increase the

series-equivalent EE capacitance.

2.6.2 Interfaces in the Signal Path

Physiological signat
Tissues Electrode/Electrolyte Bipolar Electrode
Lowpass filter due to [ Interface —» Configuration
tissue anisotropy) (highpass fiiter) (Bandpass filter)

, Recording Media Armplifier
Observed Signal |¢—— (Bandpggs filter) [* (Bandpass Fitter) [

Figure 2.17  Filter effects from signal source to observed MES ).
Redrawn from ‘Muscles Alive’ by Basmajian and De Luca, Williams and Wilkins,
1985.
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Both the tissue and the electrode (see Figure 2.17) filter the EMS while in the process of

being detected. The characteristics of the observed EMS are a function of the apparatus

Frequency (Hz)
R ¥

[}

Gain (dB)

30

-40

-50 J

d = S0 mm. 20 0 d=5mm,

Figure 2.18  The Tissue Filter Function (TFF) is
represented here as a decrease in the detected gain (in dB)
of higher frequencies (over the range of 0-2000 Hz) as *d’
increases (distance in mm. from active fibre to detection
electrode). Redrawn from ‘Muscles Alive’ by Basmajian
and De Luca, Williams and Wilkins, 1985

- used to acquire the signal

as well as the electrical
current (signal) generated
by the membrane of the
muscle fibres, When using
surface  electrodes the
thickness of the fatty and
skin tissues behaves as a
low-pass filter, with gain
and bandwidth decreasing
approximately  inversely
proportional [11,16] to the

distance between signal

source and detection surface (see Figure 2.18). For maximum signal information, the

detection materials and technology need to be at their optimum. The orientation of the

detection surfaces with the length of the fibres is critical in order to avoid signal loss.

A bipolar (differential) amplifier configuration (when not D.C. coupled) behaves as a

band-pass filter. Note however that this is only if the differential inputs are balanced and

the filter characteristics of the electrode/electrolyte junction are equivalent (see Figure

2.19).
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FIGURE 2.19 Amplifier/electrodes filter function. As an op amp amplifies the

difference in signal magnitude between the + and — electrodes, no signal gain (a) will
result when the situation ‘D’ occurs. All multiples of ‘D’ will also be affected. Greatest
gain will occur at (b). (For explanation see Section 2.6.7) Redrawn from “Muscles
Alive’ by Basmajian and De Luca, Williams and Wilkins, 1985,
Bandwidth: The window of interest in the frequency domain determines the type of
amplifier to be used, i.e. A.C. or D.C. coupled amplifier. Amplifiers designed for D.C.
signals are required to minimise "drift" as a function of temperature.
The “voltage decrement function” describes how the amplitude of action potentials

decreases rapidly with distance e.g. the signal amplitude decreases by 75% at only 100

micrometres from the signal-generating source.

2.6.3 Electrolytes

Human sweat composition is more than 99% water (99.2 %- 99.7 %) and can be
considered to be a weak saline solution of concentration between 0.1% and 0.7%.
The surface of the skin, where an electrode is placed, is coated by a weak saline (sweat)

solution mixed with the oily secretion from the sebaceous glands. The sebaceous glands
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produce an oily substance that passes up the hair follicle to protectively coat the surface
hairs. These secretions coat the layer of dead cells (which is the point on the signal

pathway that gives the highest resistance to the signal).

2.6.4 Noise Problems: Corruption Of the MES by Noise

The myoelectric signal sample looks very much like electrical noise with the greatest
peaks relating to strong muscle force exertions. The most useful range of strong surface
detectable MES activity is from 20 HZ to 500 Hz. The MES detected is of the order of 1
microvolts to 100 microvolts peak to peak. Amplification of this very small signal is
necessarily required and it is of the utmost importance to avoid introducing electrical noise
into the amplification process [17,7,8]

Note: The RMS (root mean square) commonly used as a method of measuning a detected
signal, seriously accentuates the peak values at the expense of the lesser values: e.g. the
result of squaring a value of 2 is a doubling while squaring a value of 3 is a tripling. A
common solution is to find the mean absolute value by using a full-wave rectifier circuit
[18].

Mains noise: is the most intrusive noise source (50 Hz east of the Atlantic or 60 Hz west
of the Atlantic). This noise is generally the mains signal radiating throughout the
environment, emitted by domestic supplies from embedded or equipment wiring sources.
When using unshielded signal cables and/or imbalanced input impedances, these unwanted
mains signals might need to be removed with a notch filter.

Thermal noise: is generated by electrodes. This property is proportional to the square root
of the resistance of the detection surface. The problem may be reduced by cleaning the
electrode contacts and by using a large surface to minimise the resistance.
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Motion-Artifact noise: can produce signal bursts much greater in amplitude than the MES
(with subsequent malfunction of the prosthesis) [19].
Motion-artefact noise occurs in two locations:

1) At the electrode-tissue interface i.e. "relative movement” between the tissue
and the electrode. A lack of chemical equilibrium exists between any two differing
materials (each having dissimilar electrical properties) in contact with each other. This
inequilibrium generates a polarisation potential. Relative movement at the interface of
these materials will modulate the polarisation potential that produces an A.C. waveform,
though of a low frequency nature (less than 30 Hz). Another variation is "skin potential”.
Normally a voltage of about 20 millivolts exists across the layers of skin (believed to be a
result of the dead skin cells migrating towards the surface). This voltage varies as the skin
is stretched, such as when the limb is moved and the muscles contract beneath the skin.
Abrasion of the skin surface reduces this effect as the voltage across the skin layers is
shorted out [7,17].

2). Induced Leads Noise: is also generated at the leads coming off the electrodes
as the wire (lead) is moved through a magnetic field, such as the 50 Hz fields that
permeate rooms. The voltages generated can be of the order of several millivolts and can
thus seriously contaminate the MES. When the input impedance of the amplifier is very
high, this small, induced current can produce a high voltage across the amplifier-input
terminals [7]. Lead length must be kept as short as possible (located within 10 cm. of the
electrode) and not subject to movement. The necessity of this precaution is increased when

using amplifiers of input impedance greater than 10 megohm.
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Seebeck (thermoelectric) noise: When a closed conducting circuit comprised of two
conductors of dissimilar metals has a temperature difference between the metal junctions,
a thermocouple is created with high thermoelectric potential of about 35 microvolts
/degree C. Such a condition exists in a typical integrated circuit, with kovar (the standard
IC lead material), and copper tracks. Thus care must be taken to ensure that all

connections remain isothermal.

2.6.5 MES Signal Amplifier Selection

It 1s not recommended to use D.C. amplifiers for the following reasons:

1) The D.C. polarisation potential, found at the skin/electrode junction, might be greater
than or equal to the detected MES signal.

2) The lead wire may generate motion signals of low frequency, less than 20 Hz, and
present these for amplification.

3) Signal content below 20 Hz is unstable, highly variable, and not necessarily related to
desired signal activity.

Rau (1974) [7] reported that in order to improve MES signal detection, the suppression of
the influence of skin impedance is necessary. Variations in skin resistance and signal
pathways result in a decrease in the result of the recorded lower frequencies. In order to
decrease the Inaccuracy of skin resistance variations to about 5 per cent, the input
impedance of the amplifier needs to be a minimum of 10 times the maximum skin

impedance.
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2.6.5.1 CMRR (Common Mode Rejection Ratio)

In the real world, perfect noise cancellation does not occur due to both imperfect
subtraction in the amplifier (gain imbalance and non-linearities) and to the noise signal,
not necessarily being applied as common mode. The latter failure in noise reduction could
be the result of a non-uniform, physical structure (anisotropic or non-isotropic) in the
signal pathways or impedance characteristics of the pathways to each of the inputs. '

CMRR: This is the ratio of the common-mode voltage gain to the common-mode error

voltage gain. Common-mode gain (A _ ) is the ratio of the change in output voltage to the
change in common-mode input voltage (i.e. the input to output gain for voltages common
to both inputs). The differential gain, i.e. normal-mode gain (A ), is the gain between
input and output for voltages applied across the two inputs (differentially). Thus CMRR 1s

the ratio of (A ;) to (A _,). CMR is the logarithmic expression of the CMRR.

i.e. CMR =20 CMMR. e.g..a CMRR of 10,000 yields a CMR of 80 dB
As the CMR increases, the common-mode output error signal does not increase with gain.
This does not also mean that the error signal decreases with gain.
In an ideal set up, a high value of CMRR would produce a cancellation of noise signals
imposed upon the bipolar inputs of a differential amplifier [20].
1.e. Amplified signal: = GAIN (signal A - noise) - (signal B + noise)

= GAIN (signal (A-B))

In an instrumentation amplifier, degradation of common-mode rejection is caused by a
differential phase-shift due to differences in distributed stray capacitances. Shielded cables
are commonly used to minimise the pickup of noise, but the shielding increases input
capacitance. This in turn degrades the settling-time for signal changes. Any imbalance in
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the source resistance between the inverting and non-inverting inputs, when capacitively
loaded converts the common-mode voltage into a differential voltage. This can create
common-mode errors unless the shield 1s properly "driven". A.C. common-mode rejection
detertoration can be improved by "bootstrapping” the capacitances of the input cabling
thus minimising differential phase shift.

To preserve the high CMRR it is necessary to use the first stage of amplification as a unity
amplifier.

Note: Skin-electrode impedance ranges from 200 ohms to 2 Megohms (Rau, 1974) [7].

In order to decrease the inaccuracy of the measurements to 1% or less, the input
impedance of the amplifier needs to be at least SO times greater than the skin-electrode
impedance. This will assist in the flat measurement of the frequency response, at least
from 10HZ to 100 HZ.

An clectrode-electrolyte interface can be equated to a series resistance and capacitance
circuit, the values of which vary inversely with the square root of the frequency. i.e.

Zsoc—l-

¥

Comparing the resistance to the overall reactance shows them to be very nearly equal and

varying inversely with the square root of the frequency.

2.6.6 Signal Reliability

The reliabilify of the detected MES as a repeatable phenomenon is dependent upon a
number of factors. If the muscle is small and close to the surface, the electrodes may need
to be sited accurately to within a few millimetres. If the muscle is large or deep, then

electrode placement may vary by a few centimetres without affecting the MES. Amplitude
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variations in the MES may result due to skin impedance changes. Frequency shifts may
occur due to fatigue, amplifier bandwidth, timing of MES sampling, and the physiological

and anatomical differences between individuals.

2.6.7 Bipolar Filter Function (see Figure 2.19)

When an MES is generated, it passes through the skin layers. When detected at the skin
surface there is a different frequency response by the differential amplifier inputs
according to the actual distance between the surface electrodes. When the distance D (see
Figure 2.19) that separates the electrodes is the same as the wavelength of the myoelectric
signal, the response of the amplifier is at its minimum. This is because each of the op-amp
inputs experiences the same amplitude and thus acts as in common mode to the signal and
the signals cancel out. When the signal wavelengths are 2D, the signals at the two op amp
inputs are at opposite signs, and are thus at a maximal difference. The amplifier then gives
maximum amplification to such a signal. The resulting response of a differential amplifier
is thus clearly also a function of the physical distance between the two input electrodes.
Surface size of electrodes should be made i1deally as large as possible, but advantages of
large size diminish with diameters of greater than 5 mm. due to the loss of muscle
selectivity and an increase in crosstalk (i.e. the swept region may encompass more
muscles). A major question with respect to selectivity is how far apart to place the
electrodes i.e. the detection surfaces? The standard spacing recommended is 1.0 cm. for
surface electrodes. This is a compromise to ensure adequate high frequency response

without loss of selectivity of swept muscle area.
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The bandwidth (bw) of the detected MES signal increases as interdetection surface (D)

) 1
decreases. i.e. bw o —D—

An increase in interelectrode spacing and the associated reduced bandwidth results in an
increase in the signal-to-noise ratio. With increases in interdetection surface spacing comes
a greater susceptibility by the electrode to detecting measurable EMS amplitudes of
adjacent and/or deep muscles.

A rule of thumb for surface electrodes is that the electrodes will detect measurable signals
Jrom a distance equal to the interdetection surface spacing [7]. Note however, that the
anisotropy of the tissues beneath the electrode may produce signal cross-coupling at the

electrodes.

From the previous discussion we have now some recommendations for:

Desirable Amplifier Characteristics

¢ Qutput gain of approx. 500 to 1000

e Input impedance >10 Megohms in parailel with 5pf. capacitance.

¢ CMRR >130dB

e Less than 20 pA input bias current

e lessthan5 g v (RMS) noise floor. Valid EMS signals start at 10 zvto 20 uv

¢ 3dB Bandwidth (for surface electrodes): from 20 to 500 HZ

For general purposes the low frequency 3dB point should be set to 20 HZ and the high

frequency point should be set slightly higher than the highest frequency of interest.
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2.7 Analysing the Detected MES

2.7.1 Time Domain Analysis (TDA)

In the time domain the MES can be approached as:

e a specific deterministic signal [21]

a deterministic signal with random noise disturbances

¢ a stochastic signal

a stochastic signal with trends e.g. transients, biases
2.7.2 Frequency Domain Analysis (FDA)

In the frequency domain, the MES can be seen as a power density frequency spectrum

drawn from the time domain characteristics.
2.7.3 Time-Frequency Analysis (T-FA)

The most common signal analysis method, Time Domain Analysis (TDA), e.g the
oscilloscope, provides a measure of the signal amplitude as it changes in time.

This is a different story from the Frequency Domain Analysis (FDA) commonly
encountered where a signal i1s captured over a period of time and the (FDA) provides a
measure of the power contained in the frequencies that existed for the whole duration of
measurement. So time and frequency analysis do not fully describe what is happening in
the signal.

With Time-Frequency Analysis (T-FA) the purpose is to understand and describe the
“frequency content of a signal changing in time”. With T-FA we leam of the frequencies

that existed at each moment of time [22].
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Figure 2.20:  The Time-Frequency distribution of a whale sound over a 1.5-second
duration. The time-frequency plot shows how frequencies are ‘changing’ with time.
The energy density (power) spectrum shows the total summation of the individual
frequency components but doesn’t tell you at what moment they were produced
throughout the 1.5-second period. From: “Time-frequency signal analysis’, by B.

Boashash, (1992) ISBN 0-582-71286-6.

signal and not the frequencies that exist at a particular time. This can be seen readily in

Figure 2.20, which shows a representation of a 1.5 second duration sound produced by a

whale over a spectrum of 150 Hz to 350 Hz [22].

Muscle fibre conduction velocity, muscle fibre size and type, and motor umt firing

rate/recruitment strategy all influence the power spectral content of the MES.

During contractions of the muscle, as the force increases so does the recruitment of the

larger motor units composed of larger fibres. It is the changes in strategy used by the

central nervous system to recruit motor units that may be part of a detectable process that

can be used in feedback control of applied force in a myoelectric prosthesis. One method

used is the decomposition of the Interference Pattern (IP). The IP is the sum of the action

potentials produced by each active motor unit.
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Figure 2.21  De Luca’s model of the MES signal as a summation of  during a

MUAPT’s as detected by an electrode. Adapted from ‘Muscles Alive’

by Basmajian and De Luca, Williams and Wilkins, 1985. sustained
contraction. This frequency shift may be a result of the widening of the time domain

shapes of the MUAP's. Laboratory experiments have also noted a reduction in overall

signal amplitude during a sustained contraction {fatigue).

2.7.4 Modelling the MUAPT

De Luca, [7,11] modelled the MES signal as a linear, spatial, and temporal, summation of
the MUAPT’s, as detected by the electrode (see Figure 2.21). Figure 2.21 can now be seen
as a combining of the concepts introduced in Figures 2.12, 2.13, 2.14, 2.15, and 2.16. In
Figure 2.16 the MUAPT is decomposed into a sequence of Dirac delta impulses & (t),

which are then passed through a filter with impulse response 4(t) Each impulse marks the
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time occurrence of a MUAPT with filter output w«,(¢) where i indicates a particular

MUAPT.

As mentioned the random character of the MES has been observed and so we need to

consider this feature in any model.

2.7.5 Mathematical Analysis

Using DeLuca’s [7,11] notation we have:
a firing rate for a motor unit denoted as A (t, F)
where: t= time and F=force.
Thus the firing rate is considered to be a function of time and force.
Given an InterPulse Interval (IPY) histogram with a probability distribution function:

p. (x,LF)

the inverse of which will be the firing rate, we have: A(t,F)=[ _f,\s:pJr (x,t,F)dx]" (Equ. 1)

Now if we describe the (Filter Input) Dirac impulse train as: 8 (t) = Z&(r -t} (Equ.2)
k=1
where integer / denotes a particular MUAPT

Then we can describe the (Filter Output) MUAPT w,(f) as: #,(¢) = Zhi( t—t.) (Equ.3)
k=1

where =3 x, for [=123,.. n

¢, represents the time locations of the MUAP’s,
¢ is a real continuous random variable,

n the total number. of IPI’s in a MUAPT,
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x represents the IPI’s,
% and /i, k£, ! are integers which denote

>
?
t

specific events.
Figure 2.22  The signal in figure
2.13, is here rectified, to be shown

as t:.he arca uqder the motor unit MUAPT Mean rectified value: (E)
action potential

From this we can write an expression for the

BGu(LF)} = | A(.F)| bt -0 di (Equ. 4)

~

This value denotes force output of the muscle. where ¢ is a dummy variable,

and Mean-Squared value :
MS |u(LF)|= [ 4,0 FR (e-t)dt (Equ. 5)
Q

volts De Luca suggests that since A(1, F) is slowly time

varying the above expressions can be reduced to:

t
E{lu(t, )} = | 1h(OIA,(F) dt (Equ. 6)
Figure 2.23  The signal in °
figure 2.13 is here shown as ©
the area under the square and: MS |u,(¢,F)| = j | R2(OA(LF).dt (Equ. 7)
(whose square root is the RMS 0

~

In (Equ. 4) the term: | /(¢ — ;) | 1s dropped out and reduced to (¢) in (Equ. 7)

In each of the last two expressions the first term on the right side of the equation has
become a scaling value and is time independent. Thus we have a model of the MUAPT
reduced to an expression of the firing rate multiplied by a scaling factor (4°).

De Luca presented the Mean Rectified and the RMS model expressions particularly well,

as shown in Figure 2.24
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Figure 2.24  Parameters of the summed [MUAPT’s as seen as mean rectified and
RMS expressions and the relationship to their generated physiological origins.

Note: no inclusion for filter effects and dynamic changes has been introduced.
From ‘Muscles Alive’ by Basmajian and De Luca, Williams and Wilkins, 1985

where: Synchronisation is represented by the ¢;(r) term
m (¢, F)refers to the observable EMG signal
v denotes the Number of MUAPT’s that are cross-correlated
7 the normalised contraction time
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@ the normalised force
A(7, @) generalised firing rate
A (7) mean rectified filter impulse response (see also Equ. 6)

h%(7) mean squared filter impulse response (see also Equ. 7)

J (¢, F) a non-positive term for cancellation due to superposition of opposite phases
The MUAPT model cannot be directly observed (except for using decomposition
techniques, great difficulty is encountered in observing the individual fibre potentials
within the MUAPT) as every motor unit is interwoven in the muscle region with many
other motor units. Any portion of the muscle may contain fibres belonging to 20 to 50
motor units!! The situation at the surface recording site just gets more complex as
superposition of MUAPTS occurs; along with signal cancellation at points where opposite
phases (positive and negative signal excursions) occur, encroaching cross-talk of muscles,
filter effects of tissue, electrodes, instrumentation and extraneous noise sources. It is after
this journey that we finally observe what we refer to as the MyoElectric Signal (MES).
This mathematical model 1s a crude simplification of the generation of an MES and no
spectral qualities can be fully described. No provision has been made for fibre type. Other
much less well-detailed mathematical descriptions have been presented by other authors

and as such have practical shortcomings.

2.8 What Can We Do With the MES after Detection?

2.8.1 Recognition of Signals / Software Dependency

The random element of the MES necessitates that, for signal recognition to be successful,

some intelligence (expert knowledge) and probabilistic processes are incorporated into the
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recognition algorithm. It is the apparently non-deterministic appearance of the surface

MES that, in the past, has restricted the MES to its common Mean-Rectified-only usage.
2.8.2 Software Methods for User Acceptability

It will be necessary to detect the onset of an intended MES and then quickly sample the
signal using the exponential averaging process (or a modified version). To miss the onset
or transient of the signal, will record a signal of less-well defined frequency and of lower
amplitude.

The basis for transient detection will require a continuous sampling process of at least 1
KHz (assuming a 450 Hz maximum bandwidth), with sampled data continuously being
updated in a small memory block and retrieved for further processing when an MES
(signal strength threshold) is detected. At this stage, the sampled data is passed on for
digital filtering, followed by presentation to a Neural Network. There a decision is made as
the probability of an intended user action and the consequent execution of that action by

the prosthesis.

2.8.3 Time Constraints for User Acceptability

2.8.4 The 200 ms. MES Signal Generation Period

This 200 milliseconds (ms.) time slot is the window in time in which all user generated
MES information/frequencies (that are to be utilised to direct a user intended prosthetic
action) must be produced. This allows any slow moving frequencies, down to 5 Hz, (200

ms. duration), to be captured for feature purposes.
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2.8.5 The 300 ms. Capture Period

Research has determined that a 300 ms delay (where: delay = measurement + processing +
action) between user muscle action and prosthetic response is acceptable for a practical
sampled data system. With only a few averages of the continuously sampled signal a small
delay in response to the user action occurs. This delay will be well within a 200 ms delay
period. The task will be to keep all computing time before response, to within the
acceptable range.

2.8.6 The 500 ms. Response Limit

Prosthesis reaction times have been shown to be very important if the amputee is to
successfully adopt the usage of any prosthesis. Too slow a response and the amputee will
abandon the prosthesis in frustration. A half second (500 ms.}) maximum has been
observed by the prosthetics community as the user acceptable limit for a delay between
muscle activation and prosthesis activation. The inertia of the mechanical prosthesis must

then be included in the delay calculations.

2.9 Summary

As stated in Chapter 1 the objectives of the research are:
* 1)-to investigate the information content of 2a MES.
e 2)-to study the nature of the Tissue Filter Function (TFF)
e 3)to map and identify optimum upper {imb (forearm) myoelectric sites

e 4)-to analyse the mapped data for frequency content and other unique identifiers
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5)-to recommend the practical application of the MES analysis for control

purposes

6)-to provide a greater range of user-generated control signals.

This chapter has made progress on objective:

I)-to investigate the information content of a MES: The physiology of muscle
activity has been introduced and the Motor Unit Action Potential (MUAP) can be
seen as a unit of measure used in past research along with its stochastic
description. The importance of accurate and optimal capture of the MES has been
emphasised. The pathway of the MES and its interface with recording/detection
instruments is examined and conditions defined. Noise problems are identified for
constderation. The useable bandwidth is identified from past research and will be
checked in chapter 3. The limitations of separate Time and Frequency analysis are
presented and the preference indicated for a combined Time-Frequency approach
(Figure 2.20). The most common mathematical model description is introduced
and 1ts weaknesses pointed out. The anatomical exarination explains how the two
fundamental actions of the forearm muscles (flexion or extension) can be grouped
within a superficial layer (sited just below the skin surface) or a deep layer (sited
below the superficial layer). The taxonomy tends to further describe the flexors
(flexion) as contained in the antenior compartment of the lower limb and the
extensors extension) as contained in the posterior compartment of the lower limb.
This compartmentalisation 1s for convenience only, and should not be assumed as

exclusive; as the detected surface MES from both flexion and extension activity
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can be found to overlap and interpermeate the other ‘compartment’ surface
regions. Muscles are not exclusively all superficial or all deep, but are
proportionally so. See Figures 2.6-2.7 pages 59-60 for a helpful classification of
all upper limb actions. This list was put together by the author from a number of
sources (all experts but not all in expert agreement) and represents the generally
agreed upon functions. The juxtaposition of the muscles within the forearm is
important in determining the MES pathway to the surface detection-electrodes.
The critical question of complete detection of the MES so that all information can
be gathered for analysis is dealt with in depth. Electrode technology for optimal
sensitivity 1s explained and the need for vigilance and design for minimising the
intrusion of unwanted signal noise is detailed. The design criteria for an
appropriate detection amplifier are specified. (This will be seen to be met in
chapter 3). The MES generation was described from the scale of the individual
muscle fibre and the action potential (AP) generated when fired by the arrival of a
nerve impulse to the collected mass of these fibres into what we call the muscle.
The motor units are seen to innervate varying sized groups of fibres, according to
the needs and demands placed on the muscle, at any particular point in time. The
nature of the neurotransmitter activity is seen as a random process, as is the firing
of the fibres, because of the varying signal pathway lengths within the motor units.
Invasive signal detection at the muscle fibre site is seen as highly complex but
limited in perspective. A large number of invasive electrodes would be needed to
gather a full picture of the signal activity in any muscle at any one time (due to

rapid signal loss over short distances, (1.e. one cannot see the forest for the trees).
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However, it is also shown through the summing action of the Motor unit Action
potential Train (MUAPT), how the detailed information about the small-scale

signal generation is lost.

e 2)-to study the nature of the Tissue Filter Function (TFF). The TFF is expanded

upon and graphically represented in Figure 2.18.

e 3)-to map and identify optimum upper limb (forearm) myoelectric sites: by
breaking down the actions of the hand into a basic simplified structure from which
a practical range of useful hand actions can be established and those actions and
associated MES explored on the arm surface. A simplified geometry of hand
movements was developed with a feasible range of 12 hand actions that could
cover most mampulative needs. With this as a control signal target, the discussion
moved on to see the human hand action, through the muscles of the upper limb,

could provide an anatomical parallel to the simplified geometry and actions.

e 4)to analyse the mapped data for frequency content and other unique identifiers:
The three types of muscle fibres are described. These fibres have different
contraction rates and different muscles have different ‘mixes’ of these fibre types,
according to the ‘type’ of activity expected of the muscle, either in stamina, power,
or speed. The relationship between the detected MES and the fibre types has been
undeveloped in the literature and will be later developed by the author. Time-
domain, frequency-domain, and time-frequency-domain analysis are briefly
examined for their merits. The relatively long duration of the MES window (from

a few hundred milliseconds to several seconds) is compared to that of a whale
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sound over a similar interval. This is intended to illustrate the problem with
assuming the adequate capture of sufficient signal information that would lead to
the full reconstruction of the original signal. Time domain is seen to be two-
dimensional, and power spectrum also, a two dimensional measure. it is only when
seen as time-frequency that the full dimensionality of the signal can be
appreciated. Anything less is at best only a partial capture and the whale sound
would never be known. A gatheﬁng together of the fibre action potential and its
transformation into a MUAPT and finally the detected surface MES is given a
mathematical synthesis (model). The necessary simplicity of the model is
mentioned and improvements are seen within the constraints of timing,

detectability, cross talk, filter effects and instrumentation.

* 5)-to recommend the practical application of the MES analysis for control
purposes: The MES is presented as a candidate for pattern recognition by a neural
network. Practical time constraints for determining the user (amputee) take-up
requirements for a functioﬁal prosthesis, is seen against the summed time constant
of, signal generation (200 ms.), capture (300 ms.), and mechanical inertia response

{500 ms.).

e 6)to provide a greater range of user-generated control signals: A simplified
geometry of hand movements was developed with a feasible range of 12 hand

actions that could cover most manipulative needs.
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Chapter 3: Experimental Method

3.1 Methods used to examine the Surface MES

There are few clearly distinguishable features to be seen when recording the EMS over an

active muscle for a random 1-second (1000ms.) period.
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Figure 3.1 MES time-domain recording of a
flexion of the wrist taken over a period of 800 ms.

Figure 3.1 shows the MES time-
domain response recording of a
flexion of the wrist. The recording
was taken over a period of 800 ms.
The wrist flexion MES is the most
common signal-source used to
trigger/drive commercial

myoelectric prostheses.

Figure 3.2 shows the MES time-domain response to flexion of the ring finger taken over a

period of 150 ms.
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Figure 3.2 MES time-domain recording of a
flexion of the ring finger taken over 150 ms.
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Time-domain Figures 3.1 and 3.2
were recorded by the author using the
Liberty Electrode MYOI115, general-
purpose a/d converter, DADIiSP
software, and presented using Excel

5.0. Sampling rate was 1 KHz.
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3.2 Time-Domain Analysis of MES signals

The commercially available prosthetic hands are only set to look at the gross muscle
activity as seen in Figure 3./. The signal is bridge rectified to change the alternating
components mnto a D.C. signal, and then integrated (summed) to produce a gross signal

voltage. All frequency information is thus lost.
3.3 Frequency-Domain analysis of MES signals

The surface working MES frequency range, for skeletal muscle such as that found in the
forearm, is from 30 to 500 Hz. Generated activity at less than 30 Hz does exist but tends to
be obscured by movement-artefact signals [1] and is best left out of the spectrum.
Movement-artefact occurs when the electrodes move relative to the skin surface. The rapid
loss of contact followed by a reestablishment of contact induces an extrernely large signal
at the electrodes that swamps the actual MES. The frequency induced is quite low i.e. in
the 10 to 30 HZ range. As mentioned in Chapter 2 the unwanted mains frequency at 50 Hz
(UK) may be readily picked up by the MES transducer. MES surface activity above 500
Hz also exists, but due to the filter action of the tissue (see Chapter 2), is of rapidly
declining amplitude. Hence, it may be ignored for most practical investigations that relate
to surface MES. In accordance with accepted Nyquist rate sampling requirements for the
accurate capture and digitally reconstruction of an analogue signal, the higher bandwidth
frequency of 450 Hz was always set at a sampling rate of no less than 1KHz. on the HP

3566A analyser.
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3.4 Selecting a Suitable MES Source

For convenience, the signals off a non-amputee arm were examined. Past research suggests
the results should be as equally valid as if an amputee were used [2].

Before applying the electrodes to the surface (of the skin), the skin was thoroughly
cleaned of oils, dirt, and loose, dead skin. An alcohol swab was followed by a proprietary

skin cleaner/abrasive.
3.5 Equipment used to detect the MES

For these MES investigations, frequency analysis equipment from the following
manufacturer was used.
Hewlett Packard, 3566A Low-Frequency Spectrum Analyser

For these investigations, EMG equipment from the following two different manufacturers
was used.

1.) Digitimer 1.td., Neurolog NL180 isolator and NL 125 filter [3] (See manufacturer
for details)

2.) Vickers Medical, Medelec Sapphire (See manufacturer for details)[4]
For these invgsti gations, detection electrodes of two types were utilised (from two different
suppliers).
1.) Dry-Type
Liberty Mutual: MYQ115 with 54dB gain, (See Appendices p. 244 for details [5]).
2.) Wet- Type
Nicolet: (019-400400) disposable silver/silver-chloride electrodes
Note: other suppliers of wet type electrodes were tested at a later period (as they became
available) but no differences in frequency response were found. Final choice of wet type

suppliers came down to the following differences:

cost, size, flexibility, durability, reusability and skin-reaction (allergy).
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3.6 The Hewlett Packard (HP) 3566A

Low Frequency Spectrum Analyser

The Hewlett Packard 3566A Low-Frequency Spectrum Analyser comes with 2 Windows-
based software interface running on a 486 DX33 PC through an IEEE communications
bus. The following two types of electrodes (commercial products) were tested with the HP
3566A

e Disposable silver/silver chloride electrodes (Nicolet -019-400400)

o Liberty Electrode MYO115

After activation of the flexor muscle group, subsequent signal pickup, amplification by the
Liberty electrodes, frequency analysis and video presentation, the visual appearance of the
myoelectric signal (MES) in its real-time spectral response appears to be devoid of clearly
defined and repeatable spectral characteristics. In fact, the same muscle activity appears to
elicit a different frequency response each time over the given range

However, by using the HP 3566A/3567A software averaging (Exponential or Peak Hold)
on the MES, a definite difference between two activities, ring finger action and wrist
flexion, can be detected at the same electrode site (see Figure 3.6).

Note: Exponential or Peak Hold averaging are two types of ‘window’ function that
analyse the MES time slice in different ways. It was the exponential averaging that was
chosen as a basis for the later mapping of the arms,

For a discussion on the HP 3566A/3567A methods of averaging, see Appendices page 240.

There is an upward shift in the frequency response — i.e. an increase in the high frequency
response along with a decrease in the low frequency response, — for wrist flexion versus
ring finger flexion, showing clearly different and repeatable frequency peaks (Figure 3.6).

These peaks can be used with digital filters to identify the different actions.
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3.7 Using the Digitimer Ltd., Neurolog NLI180 Isolator

Amplifier and NL 125 Filter

The Neurolog equipment uses the standard Nicolet EMG silver-chloride stick-on

electrodes using an approximately consistent electrodes spacing of 1 to 2 cm. As

mentioned in Chapter 2 the ideal spacing is approx. 1 cm for the greatest bandwidth
detection. Considerable experimentation over a range of sites on the arms using different
muscles, showed measured bandwidth variations such as:

* No discernible difference with up to Scm separation at some sites on the arm
(associated with the thicker, fatty areas of the arm)

e Significant bandwidth vanations according to the orientation of the electrodes (i.e. a
90 degree change in orientation of the electrodes) with respect to the axis of the arm
(observable as the electrodes moved away from the source)

* Significant bandwidth variations according to orientation of the muscle fibres with
respect to the axis of the arm and electrodes e.g. the wrist contains a muscle
(quadratus) that 1s oniented 90 degrees to the long axis of the arm (unlike the more
typical orientation of muscles that run very nearly paraliel to the long axis of the arm)

Note: These variations were also found on all subsequent combinations of EMG equipment

and electrodes.

These variations lend support to the view that a considerable loss of any generated higher-

frequency signal takes place, prior to electrode detection, due to the tissue filter effect.

3.8 The Vickers Medical: Medelec Saphire

The Medelec equipment has potentially very low noise levels (see Figure 3.3 above) as

shown on two separate test files that shows basic S/N levels superior to both the MYO115
S.Roberts 99 Chapter 3




and Neurolog equipment. The noise that did appear was due to the proximity of the mains
power leads to local equipment. Care had to be taken, when setting up a signal detection
environment, to optimise the position of signal wires (relative to mains and noise sources).
Without this extra care, the noise levels were of the same order as the MYO115.
Theoretically, the lower noise levels may be a result of the superior noise characteristics of
silver chloride versus stainless steel electrodes.

The Medelec equipment produced an observed frequency bandwidth slightly wider than
the MYO115. This is probably due to an improved (flatter) Medelec amplifier response
(operational over a 0.1 Hz to 10 kHz bandwidth) rather than due to the sensitivity of the
silver chloride electrodes. Neurolog also used the silver chloride electrodes but did not
show a sigmficant improvement in bandwidth. Due to the impossibility of generating
identical signals (to be seen by the different equipment) it was not possible to exactly
quantify the bandwidth improvement, but a slight improvement in response (between the
Medelec and the Liberty), in the range 450 Hz to 600 Hz, of up to 50% was seen. It needs
to be noted that this gives only a marginal, overall, frequency-improvement due to the very
low energy content in this region of the spectrum i.e. 50% more of a small amount overall
is still a small amount. Once again, experiments in changing the inter-electrode distance
over a range up 5cm. did not produce an improvement in bandwidth and again suggests
that the loss of generated bandwidth takes place prior to detection at the electrode/skin

interface
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3.9 Establishing the Frequency Range of the MES as

measured by the Test equipment

The Neurolog equipment has a stated bandwidth of DC to 20 kHz. Using Nicolet
electrodes, the Neurolog produced a response that, over the entire measured bandwidth,
was no better than the Liberty MYOI115 (the Liberty was observed to be less than the
Medelec). Without the built-in 5S0HZ filter switched on, the Neurolog response was noisy
around 50 Hz and was noticeably noisier than the Medelec and Liberty, (though at a
diminishing rate with increasing harmonic multiples of 50 Hz). The noise plots in Figure
3.3 below show these levels. The higher noise level near 40 mv. would seriously

contaminate the overall detected MES, but the lower level of 6 mv. would not intrude

significantly.
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3.10 The Liberty Mutual MYOQO115 Electrodes
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Figure 3.4 MYQ115 amplifier test plot. of both the interface and the

The response of the amplifier can be seen to be
non-linear but emphasizes the important 20-450
Hz range. Test results were obtained using a
signal generator with fixed output level applied
to the MYO115 over the 0 to 1IKHz range

amplifier response capability. To
investigate this a variable frequency
generator with a fixed output voltage
was applied, via a potential divider, to the inputs of the MYO115 to mimic the low voltage
(50 to 1000 microvolts) [6] of the expected skin surface MES. The output signal was
logged and graphically shown in Figure 3.4.

The Liberty electrodes, with its built-in amplifier, can be seen to have a non-ideal (non-
flat) amplifier frequency-response, which fades away rapidly after peaking at 300 Hz, thus
frequencies less than 500 Hz are proportionally lost in practical terms. The design of the
MYO115 1s a compromise: trading a completely flat response for range-specific, reduced-
noise, and sensitivity. The MYQO115 has an electrode spacing of 1.5 cm. (centre to centre)
and dome shaped electrode diameters of 4mm. (of which 2mm. to 3mm.of the dome
diameter can be assumed as the effective surface to skin contact area). The bipolar filter
function as mentioned on page 58, chapter2, can be estimated to produce a drop-off in the
detected frequencies beginning at approximately 350 to 400 Hz This estimate is
extrapolated from theoretical values taken from De Luca [6] showing a drop-off at 5 KHz
at a spacing of 0.5 cm., and a drop-off at 500 Hz for a spacing of 1 cm and Lindstrom [7]

showing a drop-off at 175 Hz for a 2 cm. spacing. This 350 400 Hz limit is an acceptable
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limitation as the experiments done with the other clectrode types at close spacing still
showed the actual detectable signal to be far too low to be of use as the 400 Hz mark was
reached.

The frequency response of the Liberty electrode was found to be however only marginally
less effective than systems with the more ideal silver chloride electrodes and stand-alone
amplifiers. As the amplifiers for MES detection are capacitively coupled to the electrode
surfaces, there is an inherent filtering effect; decoupling any D.C. signals that develop on
the skin surface (thus removing any problems of signal baseline drift). Capacitive coupling
also reduces the lower frequency signals (movement artefact and 50 Hz mains noise). If the
design specifications are set for an amplifier to respond minimally to the frequencies below
60Hz and tail off response above 400 Hz, then you have a MYO115! This is a practical
design for the surface electrode environment and general frequency demands placed upon

it

3.11 Bandwidth Comparison between the Liberty the Neurolog

and the Medelec

Figure 3.5: shows the results of a test to compare the bandwidth vanation between the
Liberty (dry) electrodes (channel 1) VS the Digitimer Neurolog with Nicolet wet
electrodes (channel 2). Bandwidth is measured in 10 Hz increments from 30 to 400 Hz.
The test input signal chosen was a live “wrist flexion” action, due to its previously
determined occupation of the higher frequencies region of the overall MES bandwidth.
Due to the impossibility of placing both sets of electrodes in exactly the same position for
exactly the same live signal, the wet electrodes were placed in line with, but just outside of,

the liberty dry electrodes (see diagram). The intermediate amplification of the surface MES
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signal occurred separately in the Liberty and in the Neurolog amplifiers before presentation
to the HP analyser. It must be assumed that a slight difference in position will give a
slightly altered result. As mentioned earlier the author detected far less bandwidth change
when varying the spacing of the wet electrodes than expected from the reports of other
researchers and from electrode theory. The slight variation between tests is a normal result
of vanation over time in any selected muscle action. The signal was transformed into the
frequency domain using a ‘Hanning Window’ on the HP 3566A and two types of
averaging techniques were applied. The Peak Hold averaging used 40 sample blocks, and
the Exponential averaging used 4 sample blocks. A series of additional, (16 in all) repeated
tests were performed, yielding confirming results. The simuilarity in the results, suggest the
onset of the transient signal is most probably the important area of interest in the detected
signal. See Appendix (page 240) for explanation on averaging technigues for the HP
3566A. Given the closeness in the results from the two detection methods, (when
simultaneously detecting a similar signal), combined with the ease of use in a practical
environment, a preference for the Liberty (dry) electrodes was indicated for a lengthy
mapping research program. Note: The amplifier output of the Liberty is double that of the
Neurolog.

It should be realised that the Medelec equipment was on loan from the company and has its
own internal wiring and did not allow its amplifier output to be directly presented to the
HP analyser for comparison with the Liberty and Neurolog amplifiers. It did however

allow for data files to be stored on floppy disk and these are shown in Figures 3.7 and 3.8
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Figure 3.5:  Test to compare the bandwidth variation between the Liberty
(dry) electrodes (channel 1) VS the Digitimer Neurolog with Nicolet wet
electrodes (channel 2).

Bandwidth is measured in 10 Hz increments from 30 to 400 Hz. Shown above
is the output using the HP3566A Spectrum Analyser.

The following Figures 3.4 bc.defg, are further tests for bandwidth using
different Window averaging techniques.
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3.12 Does the equipment used show the True MES Frequency
Range?

Whatever the frequency content of a signal generated at the actual muscle site, by the time
that signal passes through the varying thickness of tissue en route to the skin surface, a loss
of frequency content 1s inevitable. The expenimental work undertaken here has shown the
extremes of the available MES bandwidth available for detection at the skin surface are
from 10 Hz to 800 Hz. The potentiaily useable bandwidth is however from 30 Hz to 500
Hz. The region from 350 Hz to 500 Hz can be very marginal with respect to useable
information due to the very low energy content of the signal. As a result, the range for
useable MES frequency detection 1s focused within the 30 Hz to 350 Hz frequency range.
These results obtained by the author for bandwidth are in full agreement with previous
findings in the research literature.

There is an upward shift in the frequency response (Figure 3.5) for wrist flexion versus
ring finger flexion, showing clearly different and repeatable frequency peaks. These peaks

can be used with digital filters to identify the different actions.

AAmplitude RING FINGER WRIST FLEXION
FLEXION

mvolt \ .
\

frequency
Hz

I |
100 200 300

0 400

Figure 3.6 Average MES range (spectral shape) for both wrist
and ring-finger flexion, showing the distinct differences in the
occupied frequency spectrum for the actions.
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Figure 3.7 above shows the ring finger flexion bandwidth using data recorded by the
Medelec Saphire. Data is clustered from 30 Hz to 158 Hz at varying amplitudes from
20 to 45 mv.

Medelec
i
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Figure 3.8 above shows the wrist flexion bandwidth using data recorded by the
Medelec Saphire. Data is clustered from 90 Hz to 400 Hz at varying amplitudes from
40 to 65 mv. Contour mapping was chosen to best represent the changing frequency
and voltage values. The ring finger action is clearly represented by a different portion
of the frequency spectrum.

The above Figures 3.7 and 3.8 show a group of 13 wrist flexion actions and 13 ring finger
flexion actions recorded by the Medelec Saphire using the Nicolet (wet) electrodes. The
two different actions were recorded at the same site on the arm of the author. Contour
mapping was chosen to best represent the changing frequency and voltage values. The ring
finger action (compared to the wrist flexion action) is clearly represented by a different
portion of the frequency spectrum. The Nicolet (wet) electrodes, in combination with the
Medelec amplifier, pushes the useable bandwidth response to approximately 450 Hz
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compared to the approximate 375 Hz of the MYO115 (dry) electrodes. This represents an
improvement of between 50 to 75 Hz. What must be realised however is the extra 75 HZ is
not representing a significant energy portion of the detected spectrum and is significant in
only approximately 10% to 20% of detected actions. This should however not underrate
the importance of a optimising the detection capabilities of the EMG equipment available
for research and medical uses. The MYO115 has great versatility but improvements could
be made to its amplifier response by pushing the gain at higher frequencies and cutting
back the gain at middle frequencies while retaining the existing response at lower

frequencies.
3.13 Summary

.As stated in chapter 1, the objectives of the research are:

e 1)-to investigate the information content of a MES.
* 2)-to study the nature of the Tissue Filter Function (TFF)
¢ 3)-to map and identify optimum upper limb (forearm) myoelectric sites
e 4)-to analyse the mapped data for frequency content and other unique identifiers
e 5)-to recommend the practical application of MES analysis for control purposes
¢ 6)-to provide a greater range of user-generated control signals

This chapter has made progress on the following 3 objectives:
e [)-to investigate the information content of a MES:
s 4)-to analyse the mapped data for frequency content and other unique identifiers:

e 5)to recommend the practical application of the MES analysis for control

purposes.

And is summarised as follows:
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The useable bandwidth for MES detection can now be confirmed from 30 to 350 Hz. Out
side of this range the signals are too weak to contribute any practical information. This is
however not a fixed barrier but rather a compromise by the equipment manufacturers
chosen (MYO115) and high end bandwidth (>350 Hz) extensions of 20% could be seen
with improved design. The lower bandwidth (<30Hz) limitations are also due to amplifier
design but also would probably suffer from ‘movement artefact’ and become prone to false
signals.

MES-detection equipment artefacts/shortcomings, and their use in various environments,
are very important in MES analysis and conclusions.

The setting up and testing of the different sources of MES equipment 1n the experimental
lab environment suggests that without due care it is easily possible to encounter serious
noise problems that will corrupt the MES. Bringing a Nicolet electrode lead near a
computer monitor, results in a sudden influx of noise superimposed onto the detected
signal. When trailing the leads too closely to a mains-lead source the 50Hz noise will often
appear. The use of a frequency analyser was found to be essentiai to monitor for mains and
other noise encroachment while making data recordings and testing for true MES
detection. Shielding the electrode wires from noise pickup and the proximity to and
between electronic equipment {monitors are especially included) are the minimum standard
procedures. |

Signal-amplifier equipment needs to be appropriate to the task: and should be matched to
the intended bandwidth response.

Electrodes must also be suitable and matched to the frequency requirements. The choice of
wet or dry electrodes will be based upon maximising either frequency response (wet) or the

ability to be easily adjusted (dry).
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If an extended session is undertaken with a volunteer for mapping large areas of the skin

surface, then the use of dry electrodes will be the serious choice for the following reasons:

The wet-type of electrode has only a limited number of times that it can be applied
to the skin surface before the adhesive becomes ineffective and the signal detection
quality 1s compromised (usually no more than 5 to 8 uses)

The skin surface must be cleaned of natural oils and sweat before applying the wet
lead to prevent rapid contamination of the adhesive surface and subsequent loss of
adhesion. The loss of adhesion and subsequent signal loss may be further
complicated if the skin is covered with dense or thick hair.

The volunteer will be unhappy with the hairs from their skin being ripped out (still
stuck to the wet-electrodes) while the adhesive is fresh. The alternative is to shave
the arm of the volunteer (which may well be met with equal resentment or refusal).
The author kept his own left arm shaved and marked with indelible ink for 6
months (see Figure). I, page 139) while undergoing extended exploratory work.
The wet electrode approach is arduously slow compared to the easy movement of
the dry electrodes. The cost of time and patience to volunteers is much higher than
with the dry-type. The dry types are much more suited to exploring the skin surface
for subtle changes.

The actual resultant frequency response achieved from using the wet type is only
marginally better (approx. 10 to 15 % extension with the higher frequency range),
but most importantly, is of equal performance over the range common to both
types of electrode.

Noise-floor levels are very low with the dry-type (see Figure 3.3), due to the
shorter lead length. To achieve the same noise-floor levels with the wet-type with

the associated long leads, is much more demanding of the equipment proximity in
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the experimental environment. The “twisted-pair” design of the dry-type leads
(between the MYO115 and the signal processor) reduces the tendency to mains
noise pickup. The wet-types are not set-up to be used as a “twisted pair”.

¢ The dry-type electrodes have a much higher initial financial cost (approx. $300.
U.S.), but over the course of testing {mapping) a few patients/volunteers this extra
cost would be recouped, due to the short lifetime of the wet-types set against the

long lifetime of the dry types.
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CHAPTER 4
Experimental Determination of the Relationship

between Muscle Action and Frequency

What different frequency characteristics for differing muscle-actions are observed at one

site?

4.1 Test Procedure Used to Search for a Site with Widely

Separated Frequency Characteristics

For reasons discussed in Chapter 3 the author decided to use the MYO115 (dry) as the
standard electrodes for the remainder of the research activity. The MYO115 electrodes
were connected to the HP frequency analyser and applied to the left forearm of the author.
The left arm was selected based on convenience as the author is right-handed and having
the right hand/arm free to write etc. while the left is connected up has obvious practical
merts. All subsequent volunteers were tested using the left arms for the sake of
consistency. Using the known anatomical location of muscles of the forearm,the electrodes
were placed first directly over the site of the strongest signal corresponding to a particular
muscle-action. The same muscle action was repeated and the electrodes were moved
radially away from the site centre until the detected signal reduced to a negligible value.
The values were noted and another muscte that had produced a strong signal source close
to the previous muscle action was activated, followed by moving the electrodes radially

away untll, once agam, reduced to a negligible value. An examination of all possible

S Roberts 115 Chapter 4




below-elbow and above wrist, muscle actions was undertaken and the following basic list

of hand and wrist control actions was derived (see list below).

4.2 List of 20 different control actions

1. wrist rotation (counter clockwise) left  11. hitle finger extension

2. wrist rotation (clockwise) right 12. little finger flexion

3. thumb extension 13. wrist extension

4. thumb flexion 14. wrist flexion

5. index finger extension 15. wrist abduction

6. index finger flexion 16. wrist adduction

7. middle finger extension 17. hand grasp (clenched fist)

8. middle finger flexion 18. relax hand (rest position)

9. ring finger extension 19. hand fully open (all fingers extended)
10. ring finger flexion 20. 3-finger chuck grasp

The spectrum was observed for each of the above actions.

The observed signal spectrum for each action varied according to source (muscle)
proximity and no one site was suitable to detect a response from all 20 actions on the list.
This methodical approach identified an initial, though of limited potential, area of promise
for single site detection of multiple actions. In the area of promise it was found that two
different muscle actions (wrist flexion and ring finger flexion), occupied (visually)
different portions of the selected (30 Hz to 350 Hz) spectrum

(see Chapter 3 Figures 3.5,3.6,3.7).

See Chapter 5 page 132 for test results

The above range, of 20 possible actions, requires that each unit of surface area on the

forearm be tested 20 times for all 20 actions, in order to determine if any other mulitiple
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muscle action detection sites were to be found. The preferred altemnative approach would
be to test the entire forearm for one action followed by another full arm test for each of the
remaining actions. This allows a standardised position for both volunteer and test set up.
The action to be repeated can be predetermined and practised by the volunteer (subject) for
velocity, acceleration and duration. This will prove to be an important methodology when
considering the physiological basis of muscle action (motor unit recruitment procedures).
As previously mentioned in Chapter 2, the fatigue effect begins to shift the MES (towards
the lower frequencies but with an increase in gain in those lower frequencies) after
approximately 2 seconds of sustained hard contraction. The early indicators suggest that
the most significant, muscle identifying characteristics, are to be found in the transient
(imtial portion) of the MES. This will be considered later, in some depth, in the analysis in

Chapter 6.

4.3 Active (Isometric) Grasp (Loading) Vs Passive (Isotonic)

Movement Test Results

(for definition of Isometric vs Isotonic see Appendix List of definitions)

Some early exploration (by the author) into the comparison between the surface detected
MES of a finger flexion in both unloaded and loaded conditions, showed the MES
magnitude to be greater under loaded conditions but the associated spectrum to be largely
unchanged despite the loading. Muscle actions were not required to be sustained for long
periods during data collection. No muscle fatigue was observed due to the nature of the test
procedure. This ‘muscle fatigue’ issue was not exhaustively searched over a varying range
of loads and could be an associated factor in the commonly reported observation with past
researchers of a “fatigue effect” [1,2] 1.e. changing spectral characteristics over time with a

shift toward lower fregquencies accompanied by an increase in amplitude of the MES. As
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the muscles used by an amputee are indirectly involved in generating the prosthesis control
signals, the amputee need only vary the muscle tension over a given (small) range for the
prosthesis to vary the (amplified) grip strength. As long as the muscle contraction is
retained above a preset level the desired hand position or “state” of the prosthesis could be
retained for a sustained action. As the ‘fatigue effect’ starts, and shifts toward a lower
frequency, the control action could be retained as long as the MES summation contains the
same spectral energy. The same threshold triggering circuit (a simple peak detector can be
modified to have an additional summing action) that monitors the MES for an intended
control action (by ignonng sub-threshold MES levels) can be used to retain the control
action. This area could be further investigated as an additional control action to be included

in any MES detection algorithm.

4.4 Results of Testing of Other Males at the Same Site

The test site results of the ring finger and wrist flexion could have been specific to the test
person involved and not apply in general to any other person. To check for this possibility
a further 3 adult male staff volunteers, and the author, were tested under the same
conditions i.e. same site, equipment, and same actions. A quick search of the same forearm
area on each volunteer located an optimum site. Careful but not precise positioning was
adequate. All four men showed the same separation and spectral range as in the first
experiment. A slight modification was introduced to this test. The ring finger was flexed
but brought to rest against the thumb. The thumb was not used in the earlier tests in
Chapter 3 and the implications of the co-activity of the thumb was not apparent at the time
as no thumb MES activity was detected at the site. The thumb did introduce an apparent
enhanced spectrum selectivity (more defailed repeatability in the results). The results are
shown for wrist flexion in Figure 4.1 with a centre peak frequency of 160 Hz and for ring

finger flexion with centre peak frequency of 95 Hz in Figure 4.2. The data on these male
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volunteers is clear and unambiguous and suggests peer group replication would quickly

confirm these observations. No reference has been found in the literature with regards to

this observation.

The following three possibilities exist regards the anatomical and physiological structure of

the four test males.

(1) The test males differ significantly in anatomical layout. This would not lead to a
site of common response, not yield the observed results as mentioned above, and
would not lead to any deterministic features in the detected MES.

(2) The test males do not differ significantly in anatomical layout The qualitative
and quantitative location, layout, and proximity of the two different muscle actions
(wrist flexion and ring finger flexion), for all the individual test males are
approximately the same. This anatomical sameness, along with a concession to a
deterministic, non-random contribution to the outcome of the MES, would yield the
observed results as mentioned above

(3) The anatomical sameness of option (2) is further refined by the Tissue Filter
Function (TFF) and all muscles involved in the two actions, contribute (summate)

proportionally to the MES outcome.

The similarity 1n results, by the four male volunteers, suggests further questions regards

determinism and universality need to be posed and answered. What, if any, differences in

anatomical structure, contribute to the explanation for the spectral similarities and

differences between the muscle actions (wrist flexion and ring finger flexion} for the group

of test males?
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Figure 4.1 (a),(b),(c),(d); the four figures above are the test for wrist flexion on 4 male
volunteers. The ability of the 4 males to cluster around a centre frequency of
approximately 160 Hz is remarkable.
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Figure 4.2 (2),(b),(c),(d); The four figures above are the test for ring finger flexion on
4 male volunteers. The centre frequency @ approximately 95 Hz is again closely
followed.
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4.5 Results and the Need for a Theoretical Explanation

Implications for Universality

The results of the four test males were a possible indicator of a deterministic element (at
least seen at the level of the surface MES) that was not just local (to one person), but
extended to include another level (the class of adult males). Once again, the tests were not
exhaustive across a large population but further work with other males failed to refute the
phenomenon.

The following questions arise:

‘Af what point, on its journey to the surface, does the initial random nature of the muscle

fibre Action Potential (AP) convert to an apparent determinism in the surface MES?

‘Is the precise activity of the hand, the result of a feedback loop established by the
neuromuscular motor control system, to overcome and compensate for, the random firing
of muscle fibres at its most basic level?

e If so then the motor control system has evolved without a fining pattern/plan
directed to its motor unit recruitment requirements and is functioning on an
extension of a continuous low level feedback compensation (such as our “upright
balance’ control system) on a millisecond by millisecond decision basis. This
would then imply that the deterministic pattern seen at the surface MES is an
illusion’. (But a nonetheless, potentially-useful, illusion!!) To resolve this issue
requires further research and a full mapping and juxtaposition of signals, muscles
and actions.

Are the test results indicators of deterministic behaviour (i.e. are the muscles producing a

spectral response different in composition from that of adjacent or other muscles.)?
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¢ From the known anatomical structure of the forearm, the presumption is that,

unless the MES 1s derived from a single muscle source, the MES is a composite
signal and comes from a combination of surface muscles and deep muscles. This is
true for only some muscles however. Referring back to Chapter 2 Figure 2.6 and
2.7, (the chart on all known forearm muscles and their actions within the forearm)
we find that for some actions (5 out of the 16 actions) there is only a superficial
muscle or group of muscles involved and for some actions (4 out of the 16 actions)
there is only a deep muscle or group of muscles involved. This has implications for
one of the explanatory candidates: the ‘Tissue Filter Function’ (TFF).

The results of the male tests raise two scenarios regarding spectral signatures:

1. If the surface detected MES shows a constant and broad bandwidth:

A spectral change would be seen only as the tissue thickness to source distance was varied.

This would demonstrate a common “tissue filter effect” generating consistent and

repeatable spectral results. This change would manifest as a loss of high frequency

information at the detection site.

2. If the surface detected MES does not show a constant and broad bandwidth:

In addition to the “tissue filter effect,” any observed spectral differences would be the

result of the muscles generating significantly different (and thus unique) spectral

signatures. This would indicate an element of deterministic behaviour in addition to the

tissue filter effect.

With these two unresolved scenarios in mind, Figure 4.3 illustrates the range of logical

possibilities offered by two signal sources.

Figures 4.3 (a)(b)(c) show how two MES sources can be seen at the skin surface of the

arm by a MYO115. The doubled ended arrow above the MYO1135 represents its movement

between surface sites C and D for detecting the source signal from either site A or site B.
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These spectrum sources, As and Bs, are shown at three different possible sites and depths,
1.e. (a)(b)(c), relative to the detecting surfaces C and D. Comparison of these three figures
shows how caution needs to be applied when making assumptions, about a detected MES
spectrum, at sites C and D. After examining the effects of different pathways we are left
with the following two outcomes:

¢ The various locations within the arm can yield similar surface spectral results at C
and D, despite actual spectral differences at sources A and B

¢ The various locations within the arm can yield different surface spectral results at
C and D, despite actual spectral similarities at sources A and B.

The large range of logical possibilities shown at the right of the figures suggests the need
for further research into a more definitive theoretical explanation.

Note: For simplicity, the pathways from sources A and B to detectors B and D are shown
as straight lines. It is not known however, just to what extent in each particular event, the
pathway is an actual straight line. 1t is the varying conductivity of the pathway, 1.e. through
the varying tissues layers, that determines the attenuation and phase lead or phase lag of
the signals as they arrive and converge at any point of detection,

Additionally, in an actual muscle the signal source would not be a single point source as
shown but would be more diffuse, due to the anatomical spread of the motor units when

activated.
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@) | Myo115 AtC: if Ad=Bd then As<Bs
if Ad <Bd then As<<Bs
if Ad>Bd then As=Bs
or As>> Bs

\ AtD: ifAd=Bd then As>Bs

Al
source if Ad < Bd then As=Bs

arm or As<Bs
where: distance AC =BD if Ad> Bd then As>> Bs
AD=BC
F— — >
(b) MYO115 At C: if Ad=Bd then As=Bs
T if Ad <Bd then As <Bs
C - /q) if Ad> Bd then As > Bs
. N4 . AtD:if Ad=Bd then As>Bs
source if Ad < Bd then As= Bs
A or As << Bs
source  arm ‘ if Ad > Bd then As>> Bs
where: distance AC = BC=BD = AB
- (¢) | MYO115 At C: if Ad=Bd then As <Bs

if Ad <Bd then As <<Bs
if Ad > Bd then As > Bs

At D: if Ad=Bd then As <Bs
| if Ad <Bd then As <<Bs
sour& arm if Ad > Bd then As = Bs

where; distance. 2AC=BC and AD< BD

Figure 4.3(a), (b), (c): Sources A and B represent two separate muscles/sites in the
arm. The arrows show the “direct tine’ signal pathways through the tissue en route
to the MYO115 detector.

As, Bs = generated spectral source Ad, Bd, = detected (measured) signal
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4.6 Summary

This chapter posed the question: What different frequency characteristics for differing
muscle-actions are observed at one site?
This chapter has only been able to open the can of worms, but not analyse the details of the
contents as yet.
Chapter 1 posed the following objectives of the research

¢ 1)-to investigate the information content of a MES.

e 2)-to study the nature of the Tissue Filter Function (TTF)

e 3)-to map and identify optimum upper Iimb (forearm) myoelectric sites

¢ 4)-to analyse the mapped data for frequency content and other unique identifiers
Objective 1)- has been tackled but has introduced more questions than answers. The
mformation is there and the author has brought some to the surface with the revealed
differences in the wrist and ring finger response at one site. The author has not yet defined

the breadth of that information nor detailed the source.

Objective 2)- the Tissue Filter Function (TFF) has been suggested as an explanation for the
results described with Objective 1) but uncertainty prevails as to what extent the TFF can
be applied as an explanation. A logical structure for the TFF has been developed to
describe the full range of complex pathways (see Figure 4.3) and the proportional
contribution of varying path lengths. If further research, of specific control commands,
reveals pathway details of the different muscles involved, actual path lengths, the tissue
layers involved, the surface MES detected, and the source MES given a probable value,
then the TFF contribution can be determined and separated from any deterministic element

in the surface MES.
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Objective 3)-to map and identify optimum upper limb (forearm) myoelectric sites

Some progress has been made here with the detection of the one site offering two well-
defined unique muscle actions and the discovery of a corresponding site with replicability
of function on other males. The author’s refinement of all hand activity into 16 individual
and 4 combined muscle commands is presented as a target for mapping the surface MES.

The techmque for mapping 1s established and ready for full implementation.

Objective 4)-to analyse the mapped data for frequency content and other umque identifiers
The limited data gathering has supplied more questions than answers and different
Window averaging techniques have suggested the important information is found early in
the transient signal More work on the transient is required along with the full

implementation of the mapping.

4.7 References:

: Basmajian, J and DeLuca, C. (1985). Muscles Alive, Their Functions Revealed by
Electromyography, 5th Edition. Baltimore: Williams & Wilkins, pp 204

H. Lindstrom, R. I. Magnusson, (1977). “Interpretation of Myoelectric Power Spectra: A
model and its applications’, Proc.of [EEE, Vol 65, No. 5, May, pp 656.
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CHAPTER S: MES Site-Mapping

5.1

Frequency Response for Muscle /Site Actions

Can we determine a common frequency response for muscle /site actions?

The previous chapter introduced the possibility of an element of deterministic behaviour in

the detected MES. To investigate this possibility, further detailed measurements were

required.

This Chapter describes the method used to determine how to extract a “map” of the MES

available on the arm of a user of prosthetics. The use of 2 non-amputee can be validated

(see Chapter 3 page 113) and predicated upon the following:

past myoelectric research that has been carried out has rarely required the use of an
actual amputee. This has been due to the practical availability of amputees and the
ethical 1ssues involved.

an amputee may well have a residual limb in which the original muscles may be in
a different state of completeness compared to another amputee. Many amputees in
the past have not been subject to a standardised type of surgical amputation
technique that results in the muscles being attached in a manner in order to
maintain their optimal activity and muscle tone. This situation has now been
changed and standard methods introduced.

except for the shortening of certain muscles in the arm, there is no difference in the
physiological function of the detected MES, thus a non amputee, in principle, can
provide a signal that is appropriate for research purposes

the use of a non amputee establishes a baseline standard of all possible muscle

actions that can be detected by the MES equipment. This is the most crucial issue in
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the authors opinion, in order to proceed with the search for improved MES control

signals.

5.2 Selection of Core of Muscle Actions Used for Mapping

The following list (also in chapter 4, page 116) was used by all volunteers to generate the

recorded MES database.

5.2.1 List of 20 different control actions

1. wrist rotation {counter clockwise) left 11. little finger extension

2. wrist rotation (clockwise) right 12. little finger flexion

3. thumb extension 13. wrist extension

4. thumb flexion 14. wrist flexion

5. index finger extension 15. wrist abduction

6. index finger flexion 16. wrist adduction

7. muddle finger extension 17. 3-finger chuck grasp

8. middle finger flexion 18. relax hand (rest position)

9. ring finger extension 19. hand fully open (all fingers extended)
10. ring finger flexion 20. hand grasp (clenched fist)

5.2.2 Core Of Actions As Applied To Geometry Model

The above list can be seen to be longer than the basic geometry model (chapter 2, page 50,
Figure 2.1). If the commands can be extracted from the MES, the resulting control action
will far exceed the minimum requirements for an advanced prosthetic hand (Chapter 2,

page 50, Figure 2.2).
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5.3 Method of Mapping: Constant Technique

An extensive mapping of the arm of a team member (the author) was undertaken for 20
distinctive (see above list) muscle actions that could be used for control purposes. For
purposes of consistent and controllable access to measuring corresponding areas across the
range of team members, a standard-unit grid-section was drawn (non-washable ink) upon
the skin surface of the arm. A photo showing the grid on the author can be seen in
Chapter 5, 5.1, page 139.

Method:

e A]] 20 actions were separately mapped.

¢ One action was repeated over the entire surface as the electrodes were moved
methodically over a “grid pattern™ marked on the arm surface. The grid-pattern
divided each forearm view into one medial (midline) plane with five transverse
subdivisions. The resulting grid created a total of 20 grid-sectors over the complete
forearm.

e The view of the arm was divided (on paper) into four separate overlapping view
positions.

e The data was recorded (written) directly onto the paper image corresponding to the
recorded position on the arm.

e For every grid position, a particular action was repeated and observed at least 5
times before the value was recorded. Each action, ¢.g. ring finger flexion, was
recorded by an observer, visually determining the 3dB bandwidth of the spectrum
and the amplitude of the MES at the lower 3dB point.

e This visual method was necessary (the functional shortcomings of the HP spectrum

analyser necessitated this procedure) due both to:
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1. The stochastic and thus imprecise influences in the generated MES
and 2. The timing difficulties in synchronising the generated MES with the
sampling rate and screen update rate of the HP analyser.
¢ The signal noise floor was consistently excluded as a significant contribution to the

observations, by being directly observable, and thus controllable at all times.

The following four arm views can be seen on Figure 5.2 (page 140)

View 1:Superior (lateral) View of Pronated Forearm

View 2:Superior View of Supinated Forearm (Volar Aspect)

View 3:Medial View of Flexed Forearm

View 4:Lateral View of Pronated Forearm (elbow flexed at 90 degrees)

All four views were mapped/determined for the author (male 1). In the interests of
efficiency and keeping the collected data to a more manageable and compact form the
other 3 volunteers were mapped using only Views 1 and 2. This did not result in any

significant loss of data as views 3 and 4 have overlapping elements with views 1 and 2.

5.4 Reference Site Selection

On the four views, it will be seen that there are reference areas given alphabetical tags.
These are the initial areas that were determined on the author (male 1) to be sites of
particular MES interest. These sites were strong signal areas for one of the 20 core actions,
were a site for showing exclusivity between core actions, or were of notable spectral
distinction. These sites were also marked on the author using indelible ink as the mapping
and investigation took place over a period of many months. The marked sites allowed
recording activity to be carmed over between research/recording sessions. Factors such as
daily temperature variations, fatigue, environmental changes could also be given some

consideration with respect to the consistency (over time) of muscle action versus recorded
S. Roberts 131 Chapter 5




data. These sites were also included as marker areas in mapping all four volunteers to act
as both a comparative site between all four subjects and to facilitative the taking of
readings and subsequent locating of them on the paper-based grid.

A breakdown of the inital reference sites and their particular meaning with respect to the

author only can be seen on the following “Site reference list.”

5.5 Site Reference List

Note: Low, Medium, and High “Shift”: refers to the mid point of a power spectrum
measured over a bandwidth from 30 Hz to 500 Hz, corresponding to an occupation by the
power spectrum of a predominantly Lower, Middle, or Higher proportion of that
bandwidth. The observable 3dB bandwidth “shifts” up and down (along) the baseline

bandwidth. The following labelled sites in Table 5.1 can be seen on Figure 5.2.

Table 5.1
Site | Action Spectrum Result
A wrist extension Low shift
A index finger extension Low shift
A thumb flexion Medium shift
B Index finger flexion: Medium shift: 70 to 158 Hz peak @
110 Hz
B: Middle finger flexion Low shift50 to 90 Hz peak @ 78 Hz
B Ring finger flexion peak @ 48 Hz
C Index finger flexion Low shift
D Index finger flexion High Shift
E Thumb extension Low shift: peak @ 90 Hz
E Thumb flexion High shift: 174 10 230 Hz ]
F Wrist rotation left (counter clockwise) | High shift: 86 to 270 Hz
F Wrist rotation (left and right) same frequencies (54 to 110 Hz)
F, See diagram/notes on wrist rotation!!
F, Middle finger extension 54t0 110 Hz
F2 Wrist rotation left (counter clockwise) | 54 to 110 Hz
F2 Middle finger extension 62 to 166 Hz
G Wrist rotation left (counter clockwise) | High shift: 62 to 294 Hz
G, Middle finger extension 86t0 198 Hz
H Wrist rotation left (counter clockwise) | Medium shift: 62 to 246 Hz
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Table 5.1 continued

H Middle finger extension High shift peak: 62 to 206 Hz

J Thumb flexion High shift

K Thumb flexion Low shift

M Thumb flexion High shift peak 174 to 230 Hz

M Thumb extension Low shift peak @ 90 Hz
Note: As thumb extension action goes | from medium to high shift. This could
from proximal to distal (i.e. the result | give a direct correlation of user fine
of an increase in muscle force). The thumb mauscle control to the prosthetic
frequency increases thumb action control.

N Thumb extension Medium shaft

N Index finger extension Low shift

0 Wrist rotation right (clockwise) High shift

P Wrist rotation right {clockwise) Low shift

P Middle finger flexion Low to Medium shift peak @ 110Hz

r Thumb flexion Medium shift: 94 to 206 Hz

Q Thumb flexion Low shift (weak signal)

R Thumb extension Low shift: 54 to 150 Hz

R Index finger extension Low shift: 54 to 206 Hz

S Thumb extension Low shift

S Index finger extension High shift

T Thumb extension High shift

U= Thumb flexion High shuft: 174 to 230 Hz

U= Thumb extension Low shift peak @ 90 Hz

W Middle finger flexion Low shift: 90 to 166 Hz

W Index finger flexion Medium/High shift: 90 to 174 Hz

W Thumb flexion Low shift: 54 110 Hz

X Wrist flexion Medium/High shift; 86 to 238 Hz

Y Wrist flexion High shift: 126 to 326 Hz

Z Wrist flexion Low shift: 86 to 206 Hz

5 Ring finger flexion Low shift: 38 to 78 Hz

1 Ring finger flexion Low shift: 46 to 86 Hz

2 Ring finger flexion Medium shift: 54 to 126 Hz

3 Ring finger flexion Low shift: 38 to 94 Hz

4 Ring finger flexion High shift: 54 to 198 Hz

6 Ring finger flexion Medium shift: 78 to 182 Hz

Note: Sites 5,1,2,3,4,6 are in a line along the arm axis and show a clear downward shift in
frequency for the same muscle action as distance increases from 6 to 4 ,3,2,1.5,

Patterns of spectrumn shifts began to emerge. The data was then rearranged to emphasize
those shifts and to see what else emerged (see Table 5.1). The author’s markings and arm

(seer in Table 5.1 and Figure 5.2) are shown in photos Figure 5.1. views 1,2 and 3).
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Table 5.2

Thumb flexion

High shift peak @ 174 to 230 Hz

Site | Action Spectrum Result
B Ring finger flexion peak @ 48 Hz
5 Ring finger flexion Low shift: 38 to 78 Hz
1 Ring finger flexion Low shift: 46 to 86 Hz
3 Ring finger flexion Low shift: 38 to 94 Hz
2 Ring finger flexion Medium shift: 54 to 126 Hz
6 Ring finger flexion Medium shift; 78 to 182 Hz
4 Ring finger flexion High shift: 54 t0 198 Hz
Ring finger extension (none located)
B Middle finger flexion Low shift: 50 to 90 Hz, peak @ 78 Hz
W Middle finger flexion Low shift: 90 to 166 Hz
P Middie finger flexion Low to Medium shift, peak @ 110Hz
| Y Middle finger extension 5410 110 Hz
F2 Middle finger extension 62 to 166 Hz
G, Middle finger extension 86 to 198 Hz
H Middle finger extension High shift: 62 to 206 Hz
C Index finger flexion Low shift
B Index finger flexion Medium shift: 70 to 158 Hz, peak @ 110 Hz
W Index finger flexion Medium to High shift: 90 to 174 Hz
D Index finger flexion High Shift
A Index finger extension Low shift
N Index finger extension Low shift
R Index finger extension Low shift: 54 10 206 Hz
S Index finger extension High shift
Q Thumb flexion Low shift (weak signal)
K Thumb flexion Low shift
W Thumb flexion Low shift: 54 t0 110 Hz
A Thumb flexion Medium shift
P Thumb flexion Medium shift: 94 to 206 Hz
E Thumb flexion High shift 174 to 230 Hz
J Thumb flexion High shift
M
U=

M | Thumb flexion

High shift: 174 to 230 Hz
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Table 5.2 continued

E Thumb extension Low shift: peak @ 90 Hz

R Thumb extension Low shift: 54 to 150 Hz

S Thumb extension Low shift

= Thumb extension Low shift peak @ 90 Hz

M Thumb extension Low shift, peak @ 90 Hz
Note: As thumb extension action | frequency increases from medium to high
goes from proximal to distal (i.e. | shift. This could give a direct correlation of
the result of an increase in user fine thumb muscle control to the
muscle force). The _prosthetic thumb action control,

N Thumb extension Medium shift

T Thumb extension High shift

Z Wrist flexion Low shift: 86 to 206 Hz

X Wrist flexion Medium to high shift; 86 to 238 Hz

Y Wrist flexion High shift: 126 to 326 Hz

A Wrist extension, Low shift

F Wrist rotation left (counter High shift: 86 to 270 Hz
clockwise)

F2 Wrist rotation left (counter 5410 110 Hz
clockwise) o
Wrist rotation left (counter High shift: 62 to 294 Hz
clockwise)

H Wrist rotatton left (counter Medium shift: 62 to 246 Hz
clockwise)

F, Wrist rotation (Ieft and right) same frequencies (54 to 110 Hz)

F; See diagram/notes on wrist
rotation!!

P Wrist rotation right (clockwise) | Low shift

0O Wrist rotation _right (clockwise) | High shift

5.6 Determination of Candidates

The decision to use non-amputee candidates arose due to practical considerations. The

ready availability of adult volunteers within the University compared to accessing,

organizing, and sorting the suitable amputees over a wide local catchment area. The

decision was made to bring in amputee volunteers only at a much later period in order to

test the research results. Two male and two female volunteers were decided upon as an

initial test group.
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5.7 Volunteers used in the MES research

Male 1 (author): Description: musculature, age, fitness

Medium height (5ft. 10 in), light-build, 47 years of age, muscular but not athletic, no
adverse physical health problems

Male 2: Pescription: musculature, age, fitness

Medium height (6ft.), medium build, 29 years of age, athletic-build, no adverse physical
health problems

Female 1: Description: musculature, age, fitness

Medium height (5 ft.5 in.), light build, 32 years of age, light-build (non-active non-
sportsperson), no adverse physical health problems

Female 2: Description: musculature, age, fitness

Medium height (5 ft. 8 in.), light/medium-bwld, 38 years of age, athletic-build (active

sportsperson), no adverse physical health problems

5.8 Summary

. As stated in chapter 1, the objectives of the research are:
* 1)-to investigate the information content of a MES.
s 2)-to study the nature of the Tissue Filter Function (TFF)
¢ 3)-to map and identify optimum upper limb (forearm) myoelectric sites
* 4)-to analyse the mapped data for frequency content and other unique identifiers
¢ 5)-to recommend the practical application of MES analysis for control purposes

e 6)-to provide a greater range of user-generated control signals.
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e 1)-to investigate the information content of a MES: see objective (4) below

e 2)-to study the nature of the Tissue Filter Function (TFF): The data shows clear
spectral shifts for each muscle action category and suggests a spectral link with
muscle action and distance from a reference point. This may be a result of the
Tissue Filter Function (TFF) and/or it may be a unique signature of the muscle or a
part of that muscle. Not all digits functions were located on the forearm so the
need for a completely methodical mapping and filling in of the database was the
next candidate for action. The early stages of this site reference list were the
forerunner to the later implemented arm “site mapping’

¢ 3)to map and identify optimum upper limb (forearm) myoelectric sites: A
standard method of mapping by grid was established. The 20 actions were mapped
onto a grid of 20 sections. Those 20 sections are spread over 4 arm views (see
Figure 5.2) author mapped his arm according to that standard. The HP spectrum
analyser was able to display the MES spectrum as the signals armved to its inputs
but was not up to the demands of capturing the MES onset, simultaneously record
the 3dB bandwidth and save the sample to file in any reliable process. So for
expedience the author chose to use a visual method of recognising the MES
bandwidth and manually recording the results on the grid views. This proved
successful in the limited mapping of the arms but the full detailed data would have
allowed further analysis of the signals with respect to bandwidth, slope, shape,
zero crossings etc. (see chapter 6 section 6.7 page 152). An example of the
mapping method grid results can be seen in Figure 5.3.

e 4)-to analyse the mapped data for frequency content and other unique identifiers:
Table 5.2 shows the 20 muscle actions and the shifts in frequency content as the

detection electrodes are moved in the local “hot spots’ associated with each action.
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The clearest example of frequency signature selectivity was position ‘M’, with a
very finely varying signal available for thumb control. Three additional volunteers
for arm mapping were 1dentified and the same mapping method was applied to 3
further volunteers to ascertain the extent of similarity or differences within and
across gender.

¢ 5)to recommend the practical application of MES analysis for control purpose:
The case for using a non-amputee was presented and considered sound. A core of
20 basic muscle actions was decided as control signal actions. An initial
exploratory investigation followed on the arm of the author. Results of the site
reference list are presented in tables 5.1 and 5.2.

e 6)-to provide a greater range of user-generated control signals: The list of 20
different control actions was shown to provide one or more unique sites on the arm
for MES detection purposes. This verifies a feasible supply of an extensive range
of contro! signals for a multi-function prosthetic arm. The signals are there; only a

practical collection method needs to be developed.
The results have been further developed into a more readily assessable form, with the data

entered into a database (Microsoft Excel) and presented in a visual 3-dimensional format.

See Chapter 6 “Second Moment of Area”.
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Figure 5.1 The arm of the author (male 1) showing all 4 views and detected sites of
interest. The H and L markings show sites of High and Low frequency shifts and the
colour code is a marker for a particular muscle action. The initial site found for wrist
and ring finger flexion is arrowed on View 3.
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SUPERIOR VIEW OF SUPINATED FOREARM
(VOLAR ASPECT)

VIEW 3

_ LATERAL ASPECT OF PRONATED FOREARM
® [ PELBOW FLEXED @ 90 DEG.

Figure 5.2: The grid pattern of the 4 views of the arm showing detected muscle action
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VIEW 3

MEDIAL VIEW (ASPECT) OF FLEXED FOREARM

MALE 1
54-148
[OmV. VIEW 3
65;',‘;{,5,' 62-158
o mvy,

54-142 5;—!?4

. mu.
5m. B P J

RING FINGER FLEXION |

VIEW 3

MEDIAL VIEW (ASPECT) OF FLEXED FOREARM
= ;4_
sige | 330 TEmr s . MALE 1
S : VIEW 3

2mv.

54-230 70-238 30-326
4‘nv ?2 f:o 6 mv. & mv.

b mv ? mV
WRIST FLEXION

Figure 5.3 An example of ‘mapping’ the arm for a single muscle action.
In this case the ring finger flexion and wrist flexion action have been
mapped.

Legend: Violet = strong signal, Brown= medium signal, Green = weak
signal
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CHAPTER 6: Analyses of Results

6.1 Mhuscle Action VS Frequency

What relationship can be drawn between frequency and muscle action?

6.1.1 Test results for sites

The results of the first male generating all 20 actions, show, for each action a clearly
defined strongest MES (Hot Spot) region in close proximity to the muscles associated with
the MES source. The strongest region has a gradual reduction in signal strength as the
electrodes are moved further away from the strongest point. The detected MES undergoes
a shift in frequency content that appears both representative of a loss of frequency as
distance increases (filter effect) and also shows a different “Hot Spot™ spectrum starting
point.

If the MES source showed a different, “Hot Spot “ spectrum (asswming same source tissue-
depth) for each of the different muscle actions then the results would show a strong support
for declaring an at least partly deterministic MES source.

If the MES source showed the same, “Hot Spot “ spectrum (assuming same source tissue-
depth) for each of the different muscle actions then the results would show a strong support
for declaring a non-deterministic, stochastic MES source.

A preliminary assessment of the results does not support a non-deterministic conclusion.
The frequency spectrum does not fully undergo the expected “filter effect” with distance
but shows an initial high frequency loss from the hot spot epicentre but retains the same

frequency spread as the overall MES amplitude decreases.
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Consider the comparison of two separate muscles, one overlying the other. (see [Figures

6.1a and 6.1b). The (superficial muscle), the extensor digitorum (used for middle digit
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Figure 6.1b (above) shows the muscles
closer to the surface. The transparency
shows the selected muscle involved in
middle digit extension.

Figure 6.1a (above) shows the deeper laying
muscles. The transparency shows the
selected muscles involved in the thumb
extension action

Figure 6.1 adapted and redrawn from ‘Principles of Anatomy and Physiology’ by
Tortora and Grabowski, Wiley & Sons, ninth edition, page 349, 2000.
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Figure 6.2a (above) shows the mapped arm 4for the middle finger extension action.
The transparency superimposes the extensor digitorum muscle normally assigned as
responsible. The author cannot reconcile the position of the extensor digitorum

according to the textbooks, with the activity areas detected on the maps! The same
areas however were seen also to be active on the other three volunteers. See appendix.
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‘Figure 6.2b (above) shows the mapped arm areas for the thumb extension action.
Much closer agreement with textbook muscle positions drawn on the overlaid
transparency can be seen. The brown regions (F2, F, G, G2, H) are seen as active yet do
not correspond to the formally assigned region for middle finger extension, but do
correspond to the flexor carpi ulnaris and flexor digitorum profundus which are both
involved in wrist flexion, or in this case, wrist stabilization. Thus the wrist has been
stabilized while the middle finger is extended. This same supportive action is also
found in the middle finger extension views for the other three volunteers (see
appendix). There appears to be more muscles involved in a supportive role (synergists
and fixators) in any desired action than has formally been assigned in the textbooks.
The arm mapping shows itself to be invaluable in determining the contributions made
by various complementary muscles in achieving a desired muscle action. Further
extensive analysis of the mapped areas would reveal complex interdependency of the
muscles in order to achieve desired actions.
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extension) overlying the (deep muscle) the extensor pollicis longus (used for thumb
extension). The superficial muscle is seen to have a spectrum of 54 to 110 Hz while the
deeper to have a 54 to 142 Hz at the same surface grid site. If the theory of a constant (non
deterministic) muscle spectrum were the whole picture then the inverse of these spectral-
comparison figures should be the case (i.e. the underlying muscle should show a reduced
high frequency component compared to the overlying muscle).

It was stated that for a non-deterministic signal the “average” spectrum should be
approximately uniform for all MES sources. Therefore the average spectral signal loss for
a deeper muscle should lose proportionally more of its higher frequencies as it passes
through a greater thickness of tissue than the overlying muscle, yet the spectrum actually
shows the inverse situation to be the case. There is necessarily a degree of uncertainty as to
the exact details of the signal path, but in principle, these results show a strong suggestion
for a differing spectral signature being available for control action by selected muscles.

The selective nature of Neural Networks certainly offers a tantalising option.

6.2 SITE MAPPING

“What common MES features or repeatability, if any, can be found between samples from
the general population?”

This question of repeatability introduces what has been given only minimal attention by
past researchers; “How thoroughly do we need to look at the distribution of the surface
MES over the arm?”

The repeatability issue was confronted with the “site mapping” of the three additional

volunteers (one male and two female) and a comparison of their results.
6.2.1 MES Zones: Features, Overlap, and Significance

For each muscle action, the MES (as detected on the surface) shows a strong “Hot Spot”

with a trend to a radial reduction in amplitude as distance increases. The radial reduction in
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spectral content is less predictable and the effect is more the result of a combination of the
length, size and shape of the muscle used, the varying consistency of the intervening tissue,
and the source MES spectrum.

When looking at each grid area that was mapped, the overlap of MES generated by the 20
different muscle actions varies from no interactive overlap to a compléx interaction
depending upon the muscles used. As a single muscle action (e.g. finger movement) is
increased to a hand grasp or fully-open action the number of muscles brought into play
increases, with a resultant expansion of the areas of surface activity and a

blending/complexity of the detected MES.

6.3 Gender differences
6.3.1 Male-Male

Given a similar musculature and fat thickness/density, the MES comparisons between the
two tested males gave a broad agreement in principle. Enough differences were shown to
conclude that training a general Neural Network (NN) to be applied to a class of “all
males”- would not produce an optimal result. For a practical application, a NN training
should take place for each user. A general NN for the single electrode/single site can be
used to detect the wnst/ring finger actions with good success but reliability decreases
rapidly as demands for additional actions are applied.

6.3.2 Female-Female

The 2 females tested were of quite different muscular development. One was an active
sporisperson (squash etc.) and the other a comparatively less active, non-sportsperson. This
is a significant consideration when discussing these females but also applies across gender
as well. One female had developed or utilised certain muscles that can be used for an
action in preference to others that also could have been used. Consequently when

comparing the amplitude peaks between the 2 females there was a significant difference
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between some actions regarding the site amplitudes observed, rather than the sites as such.,
This is a further consideration against attempting to develop a general NN program.

6.3.3 Male-Female

The 2 females chosen probably gave a good span of the female range in general but still
show a strong similarity between their general sites and features and those of the males.

As a demonstration of both gender similarities and an indication of a deterministic element
to the detected muscle MES, the “thumb extension” MES of all four volunteers was
compared (Table 6.1). There are two widely separated muscles involved in the action (see
Figures 6.1 and 6.2). Corresponding sites (on all four adults) show similar spectral features
for the one muscle site but different spectral features for the other site.

Site 2 shows a higher frequency component over Site 1 for both males and females. This is
an early indicator of both gender similarities and of a non-random deterministic element in

the MES.

TABLE 6.1 Spectrum (in Hz) for ‘thumb extension” MES comparison of all 4

volunteers. Comparison of the two sites are shown on Figure 6.3.

Site 1 Site 2
(female 1) 62-150 78-182
(male 2) 54-166 46-182
(female 2) 86-174, 70-214
(male 1) 62-182, 62-230

The female sportsperson was so similar to the male pair that arguments for a physiological
difference between males and females regards general structure of muscle layout were
without basis. Differences detected seem to be derived from individual muscle
developmental skills. Of course, these tests were not exhaustive and make no claim for
statistical significance. The author would welcome the resources to undertake such an

exhaustive study.
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Figure 6.3:  Thumb extension action

Table 6.1 refers to these 4 diagrams. Site 1 shows a
similar spectral range for all 4 volunteers.  Site 2 also shows
a similar spectral range for all 4 volunteers.
The spectral ranges for sites 1 and 2 are distinctly different
however, and suggests a different spectral characteristic for
sites 1 and 2.

S.Roberts 149

Chapter 6



6.4 Techniques for Bandwidth and Central-Frequency
Representation

6.4.1 Feature assignment

How do the 4 MES signal characteristics of- (1) Amplitude, (2) Central Frequency,

(3) Bandwidth, and (4) Spectral Shape, combine as a unique MLES label?

The spectral shape (e.g. the peak frequency, “q” (or sharpness), and slope variations)) was
also seen to be a very distinctive characteristic and would have required very data
intensive, time consuming, averaging and recording for each observation. Time
considerations did not allow for this but with appropnate equipment should prove a fruitful
research activity that would complement the current research. Neural Networks (NN) can
be employed to recognise that part of the MES spectrum that corresponds to the “shape
without actually doing a lengthy analysis. This would be intended for practical applications
and the theoretical origin of the “shape” would not be revealed but rather embedded in the

hidden layers of the NN structure

6.5 Using the Second Moment of Area as a Unique Combining
Method

The results of the site mapping needed to be entered into a database and analysed. The
normal 3-dimensional representations could not account for the 4 variables [(1) Amplitude,
(2) Central Frequency, (3) Bandwidth, and (4) Spectral Shape], obtained as the data resuits.
A method was required to compress the 4 vanables inte 3 variables for graphical
representation. The Second Moment of Area using the Parallel Axis Theorem was chosen
as a medium to represent a frequency bandwidth envelope shifting along an X-(frequency)
axis. For simplicity the 4" variable (Spectral shape) is considered here as symmetrical and
set to unity (as data for this variable was not recorded) It can be considered as
asymmetrical by multiplying by a plus or a minus factor. The following diagram (Figure
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6.4) shows a box along an X-axis. This box represents a frequency bandwidth along a
frequency X-axis with magnitude represented by the Y-axis:
(1) b = Amplitude, (2) h = Central Frequency,

(3) d = Bandwidth, (4) +/-= Spectral Shape]

6.6: Using Second Moment of Area to represent Bandwidth
Shift along x-axis

A Where: A=bxd
b = v=voltage

Y |.=+p1 d = bandwidth = ( high-low )

= v (high-low )
b | . he { (hzghz— low) . low}

= [ N.B. x-axis viewed as frequency
y-axis viewed as voltage

Figure 6.4 Using second moment of area to represent bandwidth shift along x-axis

Formula: Parallel Axis Theorem
bd? d?
Iyy= + AR = A —+ h*
¥ 12 (12 J

I yy is a value that represents:

the signal bandwidth plus its combined Y axis voltage and position along the X axis

. _ 3 : 2
Iyy= [V(h’gh fow) } + {v(high —low)x (f’__‘g_’f%_{?ﬂ + lowJ } equation (6.1)

12

Observations of influences (changing values of variables) inherent in the formula need to
be considered as limiting the absolute reliability as a measure of the 3 variables of:
Central frequency,  Amplitude, and Bandwidth

along the X-axis

Consider the following note re: equation (6.1)

Note: The value Iyy increases as bandwidth (d) increases: Iyy a d°
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The value lyy increases as amplitude (b) increases: Iyy a b
The value lyy increases as central frequency (h) increases: lyy a h’
The value Iyy increases as area (A) increases: iyy a b x d

Hence lyy is very sensitive to changes in d and h and relatively insensitive to changes in b.

The shortcomings of the formula given in equation (6.1) occurs when:
As amplitude (b) increases and drives output value Iyy upwards
so can the distance (h) increase and drive value lyy upwards

so can the bandwidth (d) increase and drive the value Iyy upwards

We then have the situation where:
A large change in amplitude (b) yields an output Iyy that: -

Is equal to a small change in bandwidth (d)

Is equal to a small change in central frequency (h)
This degrades the ‘absolute value’ ment of the Parallel Axis Theorem in establishing a
single value that represents the 3 variables of:

Central frequency, Amplitude, and Bandwidth

along the X-axis

And we are left with a generalized representation that is, still however, a valuable indicator

for our purposes.
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6.7 Alternative Method: Assigning A Code To Each Feature

A fig.a A fig.b
=
-«
- -
mhﬂ!!ﬂm‘dlh \ s
| —> k 408 banduidth " >
A fig.e A figd
I > >
g6 1 23 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Figure 6.5 ‘Spectral Shapes’ a selected few of the many possible “spectral shapes’
that can be measured as an MES response

The above (Figure 6.5) shows a selected few of the many possible “Spectral shapes’ that
can be measured as an MES response. The following descriptors can be used to apply a
unique identifying code number to the detected MES. These codes can be used as input

numbers to the inputs of a Neural Network

eg L trigger threshold value =0to9
2: peak amplitude (@central frequency of peak 1) =0to 9
3 central frequency (@ peak amplitude of peak 1) =0t09
4; bandwidth = [3dB(high)~- 3dB(low)) =0to09
5: slopes ratio ( length of slopes: as ratio of slope 1 to slope2)
[i] =0t09
15

where: F; = slope 1 = frequency change from threshold trigger to peak amplitude
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F»= slope 2 =frequency change from peak amplitude to below threshold trigger
Thus an MES with:- trigger threshold value =3
peak amplitude =7
central frequency =3
bandwidth =7
slopes ratio =1
could be represented as being of coded value=373 71
This 5 digit input code, (representing identifiable characteristics of the generated MES),
could then be presented to the 5 input nodes of the Neural Network. The output nodes

would be coded to trigger the desired hand actions.

6.8 The Relationship between the Separated Individual finger
MES actions and that of Two or more combined MES finger

actions.

The hand fully open action activates (extends) all five digits on the hand. The use of all
five extension actions i.e. thumb extension, index finger extension, middle finger
extension, ring finger extension, and little finger extension should produce an overali result
that closely approximates the summing of all five actions. As the second moment of area is
a description of the bandwidth and its position along the frequency axis, we would expect
to see a summing action of the second moments where the individual finger actions
overlap. Figures 6.7 (7,3,5,9,11}(on page 157) are the individual finger actions involved in
extending the hand (wrist), and are summed below (Figure 6.6b) to become the figure
‘Cumulative Result of Test’. Compare that with Figure 6.6a (19: Hand fully open). A close

correlation with proportional distribution over the mapped surface ¢an be seen between
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Figures 6.6a and 6.6b. As can be seen, compared with the ‘hand fully open’ data, the scale
of values (magnitude) along the vertical Z-axis is greatest with the cumulative results

Any true additive or subtractive frequency interaction requires that the phase of the signal
be taken into account. If two specific frequencies were ‘exactly in-phase’ we would get a
wholly summing action at the amplifier terminals. If the specific frequency were wholly
‘out-of-phase’ we would get a nulling action at the amplifier terminals. Due to the varying
pathways that the signals take from their sources to the point of measure (and thus a
different time taken for each signal action) we cannot expect to see a pure summing action.

Rather we should expect an overall unique interaction that yields a portion of the

interacting MES regions.

= ; MALE 1
T @ ; i
Se @ cumulative
%) E -]
3 E - 158%8 results of
——— 80000 test:19=
[ ] Seﬂe51 | 60000
'mSeries2 40000 7+3+5+9+11
i 20000 |
O Series3 0
B Seriesd position y !
m Series5.  View] 7 8

ietgatad i 9
Figure 6.6b pason iR

The diagram labelled ‘cumulative result of tests’ in Figure 6.6b shows such a result. What

does stand out as different is the S5 (purple) row of data as generated in Figure 6.7 (3:

thumb extension).
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Note how the region of the thumb extension has lower recorded strengths on Figure 6.6a
(hand fully open) compared to /igure 6.7(*3:thumb extension’). This discrepancy appears,
to have three possible sources (1) different muscle actions involved in thumb abduction
and that involved in thumb extension (2) due to the cumulative results action having less
vigour applied to the thumb (no data is available as separately recorded thumb abduction)
and, (3) as we have seen in Figure 6.2b how the action for thumb extension involves a
synergist and/or fixator contribution by other muscles to restrain the wrist region. The
contribution of these other muscles may well be diminished for the hand to be fully open.

As long as the amputee (source of the MES) can reproduce this unique pattern consistently,

then for practical purposes the pattern will be a useful control signal.

= 13 MALE 1
T e - -
CEwm wrist extension
S o @
CEw 40000
%o
R -
|m Series1 I ‘
| |m Series2| s2 ‘
' i s3
o SeriesS‘ 0! |
| 84 '
|@ Series4; 1 2 2 - position y
'm Series5 | View 1 ) _5 7 8 |
 Figure 6.6¢ i ¢ 1 |

The ;rist Véxtension -ﬁ gure ﬁt;ove (Figure 6.6¢) shows l_uz)w different a;e the ma;;ped iV[ES
features generally utilised as an ‘open’ trigger-signal for the commonly available
prostheses. Figures 6.6 (a,b,c) show how the action of wrist, hand, and finger extension,
offer such a rich and varied range of detectable features.

The relationship between the unified muscle action and the summed constituent muscle

actions was explored for further clarification.
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Figure 6.7 (male 1) encompasses the above sub-figures 7,3,5,9,11 The
z-axis has been standardized at a common value.
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The following figures (Figure 6.8 to 6.35) show the results from all 4 volunteers for 2

separate actions covering both ‘View 1’ and *View 2°,

1) hand fully open’ was set against both the action of wrist extension and the ‘cumulative

results’ of the constituent actions.

2) *hand grasp’ (clenched fist) was set against both the action of wrist flexion and the

‘cumulative results’ of the constituent actions

6.9 Decomposition of the MES

Decomposition (using invasive needle electrodes, see chapter 1 ,page 26) of the MES has
been undertaken with respect to the time and morphological aspects of the individual
MUAP’s, and the result of the decompositions has proven of benefit to the diagnosis and
clinical assessment of neurological disorders. The control by the central nervous system of
the motor units, (and the peripheral nervous system) can be assessed, and used to clinically
quantify upper motor neuron diseases [1]. This approach by De Luca does not attempt to
examine the surfiace spectral composition. The actual success of decomposing the
frequency content of the surface detected MES can only be of very limited scope. As
mentioned in the previous section (6.8) the surface electrodes cannot extract the phase
relationship of the individual sources of any given detected frequency over the working
bandwidth due to the varying distance and consequent time origins of the muscles sites. If
examining the surface MES gives any indication of a particular muscle being activated, it
~ will be from indirect methods in most cases and not those from the MUAP analysis of

traditional decomposition techniques.
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Figures 4,6,8,10,12 are the individual finger actions involved in flexing the hand and are
summed below to become the Cumulative Result figure. Compare that with figure 20
(clenched fist). A close correlation with proportional distribution over the mapped surface
can be seen between the two latter figures. As will be seen the scale of values (magnitude)
along the Z-axis is greater with the cumulative results compared with the clenched fist).

T Ea 20: ‘
5 E ; hand grasp
80w ;gggg = (clenched fist)]
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' m Series1| 20000 17 | ¥4 4+6+8+10+12
| Series2 0 b =
D Series3 1 g5 Pos ”

; Series4 5 2 @

) position x ® 10
| Series5

What does stand out as different is the S5 (purple) row of data as generated in the figure “4:
thumb flexion’. ). This discrepancy appears, to have three possible sources (1) different
muscle actions involved in thumb/little finger opposition and that involved in thumb
flexion (2) due to the cumulative results action having less vigour applied to the thumb (no
data is available as separately recorded thumb and thumb/little finger opposition, (3) as we
have seen in figure 6.2b how the action for thumb flexion involves a synergist and/or
fixator contribution by other muscles to restrain the wrist region. The contribution of these
other muscles may well be diminished for the hand to be fully closed. The wrist flexion
graph below shows how different are the mapped MES features generally utilised as an
‘open’, trigger-signal for the commonly available prostheses. These three figures show

how the action of wrist, hand, and finger flexion, offer such a rich and varied range of
detectable features.
n]
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Figure 6.8 (male 1): The Relationship between the Separated Individual finger
MES actions and that of Two or More Combined MES finger Actions
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Figure 6.9 (male 1) encompasses the above sub-figures 7,3,5,9,11 .The z-axis has
been standardized at a common value (except 10: ring finger flexion).View 1
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Figures 4,6,8,10,12 are the individual finger actions involved in flexing the hand and are
summed above to become the Cumulative Result Test figure. Compare that with figure 20
(clenched fist). A close correlation with proportional distribution over the mapped surface
can be seen between the two figures. As will be seen the scale of values (magnitude) along
the Z-axis is greater with the cumulative results compared with the clenched fist).
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Again as in View 1, what does stand out as different are the rows of data generated in the
figure ‘4: thumb flexion’, that are missing in the ‘figure 20:(clenched fist)” This
discrepancy appears to be (current hypothesis) an example of the different muscle actions
involved in thumb/little finger opposition and that involved in thumb flexion. No data is
available as separately recorded thumb/little finger opposition. More analysis may clarify
this point.

The “wrist flexion” graph below shows how different are the mapped MES features/regions
(compared to the two figures above) generally utilised as an ‘open’, trigger-signal for the
commonly available prostheses. These three figures show how the action of wrist, hand,
and finger flexion, offer such a rich and varied range of detectable features.
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Figure 6.10 The Relationship between the Separated Individual finger MES actions
and that of Two or More Combined MES finger Actions (male 1):View 2
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Figure 6.11 encompasses the above sub-figures 4,6,8,10,12 . The z-axis has been
standardized at a common value (except 10: ring finger flexion): (male 1) View 2
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Figures 7,3,5,9,11 are the individual finger actions involved in extending the hand and are
summed below to become the Cumulative Result figure. Compare that with figure 19
(Hand fully open). A close correlation can be seen between the two upper figures.
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Figure 6.12 The Relationship between the Separated Individual finger MES
actions and that of Two or More Combined MES finger Actions (female 1) View 1
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The “hand fully open’ above includes all the digits; none of which are in contact
opposition. No correlation on the surface plane can be seen between figures 19:hand fully
open’ and ‘cumulative result of test 19 = 3+5+7+9+11". It is possible that the missing data,
(for “figure 5:index finger extension), may fill in some of the open S3, S4 region in the
cumulative result figure.

The “wrist extension’ action can be seen to be positionally unrelated to the other two
figures above and supports the position shown on all other volunteers that the commonly
used wrist action is unrelated to other actions detectable for MES control purposes.
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Figure 6. 14 The Relationship between the Separated Individual finger MES actions
and that of Two or More Combined MES finger Actions: Figures 3,5,7,9,11 are the

279373

individual finger actions involved in the hand (female 1): View 2
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Figure 6.15  encompasses the above sub-figures 7,3,5.9.11 The z-axis has been
standardized at a common value (except 10: ring finger flexion)(female 1) View 2
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The "clenched fist” above includes all the digits; of which none are in contact opposition. The ‘three finger

chuck grasp” below has the digits in contact opposition.

Test 20 = 4+6+8+10+12 is the sum of the thumb and finger flexion activities respectively. These three
activities are those same digits as used in the ‘hand grasp’ above. No precision reconstruction of the
composite action is achieved through comparison with the addition of the constituent elements. It was
however noted that only figure 4 of the group 4+6+8 had any activity showing on the surface plane. Further
examination of the opposite surface plane (View 2, Volar Aspect of supinated forearm) may show relevant

activity.
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The ‘wrist flexion’ action can be seen to be strong in contrast to other actions by this volunteer. This in
accord with a generally weak grip and is in contrast to the other female volunteer. It does show how caution
needs to be taken when setting up generalities about inner and cross gender MES’s.
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Figure 6. 16 : The Relationship between the Separated Individual finger MES actions

and that of Two or More Combined MES finger Actions.
individual finger actions involved in flexing the hand
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Figures 4,6,8,10,12 are the
(female 1) View 1
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Figure 6.17  Figures 4,6,8,10,12 are the individual finger actions involved in
flexing the hand (female 1) View 1

S. Roberts 168 Chapter 6




second
moment
of area

| (clenched fist)

| Series1 30000
, 20000
m Series2 10000
O Series3| 0+
B Series4
® Series5 pEstion A © 7 8 g 10
x5 o |
s @ cumulative |
2 2% 40000 w “ result of
B 30000 {7 y | Test: 20=
| Series i%ggg i | : 4+6+8+10+12
® Series2| p ¥ | ] : - |
O Series3 | g5 Positiony ‘
@ Series4 | 7 8
z iti ° 10
o SeriesS position x ‘

The “clenched fist” above includes all the digits; of which none are in contact opposition.
The “three finger chuck grasp’ below has the digits in contact opposition.

Test 20 = 4+6+8+10+12 are the sum of the thumb and finger flexion activities
respectively. These activities are those same digits as used in the ‘hand grasp’ above. No
reconstruction of the composite action is achieved through comparison with the addition of
the constituent elements. There is a correlation for the constituent elements of the group
figure 4+6+8 with the figure for the ‘three-finger chuck grasp’.

The “wrist flexion’ action can be seen to be strong in contrast to other actions by this
volunteer. This in accord with a generally weak grip and is in contrast to the other female
volunteer (female 2). It does show how caution needs to be taken when setting up
generalities about inner and cross gender MES’s.
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Figure 6.18 : The Relationship between the Separated Individual finger MES actions
and that of Two or More Combined MES finger Actions: Figures 4,6,8,10,12 are the
individual finger actions involved in flexing the hand (female 1) View 2
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Figure 6.19  Figures 4,6,8,10,12 are the individual finger actions involved in
flexing the hand (female 1) View 2
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Figure 6.20 The relationship between the separated individual finger MES actions and
that of two or more combined MES finger actions. Figures 7,3,5,9,11 are the individual
finger actions involved in extending the hand and are summed above to become the
‘Cumulative Result’ figure. Compare that with figure 19 (Hand fully open). A close
correlation can be seen between the two upper figures (male 2) View 1
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Figure 6.21: Figures 7,3,5,9,11 are the individual finger actions involved in
extending the hand. (male 2) View 1
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No correlation is shown between Figure 19:Hand fully open above and the cumulative test
result.

A negligible response (below) for wrist extension suggests that separate muscles activity is
involved w.r.t. hand fully open activity.
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Figure 6.22  The relationship between the separated individual finger MES
actions and that of two or more combined MES finger actions (male 2)View 2
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Figure 6.23: Figures 7,3,5,9,11 are the individual finger actions involved in
extending the hand. (male 2) View 2
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The clenched fist above shows a very strong response in two distinct regions (light and
dark blue) that does not show up as expected in the cumulative result. Most notable is the
missing thumb response shifted from position 8and 9, (light blue) into position 5,6,and 7.
Little finger flexion shows a very much greater response when used in the clenched fist.
These results suggest that the volunteer (male 2) has a strongly developed clenched fist
response and has a thumb response that differs for the individual thumb flexion response
from those found in the clenched fist and 3-finger chuck grasp. The volunteer (Jim) may
well be using the thumb flexion and thumb/ little finger opposition actions (see figure in
appendix) with fine discrimination. Comparison needs to be made against View 2 for the
same responses!! Once again the graph, (cumulative result of 20 =4+6+8), has data missing
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Figure 6.24: The relationship between the separated individual finger MES
actions and that of two or more combined MES finger actions.(male 2):View 1
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Figure 6.25  Figures 4,6,8,10,12 are the individual finger actions involved in
flexing the hand (male 2): View 1
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The clenched fist above shows a very strong response in purple regions 6,7.8. Little finger
flexion shows strong response in these regions when used in the clenched fist. These

results suggest that the volunteer (male 2) has a strongly developed clenched fist response.
Compare with other volunteers.
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Wrist flexion (Figure 14 below), shows a strong response overall and is by far the most
powerful overall action on this planar surface.
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Figure 6.26 The Relationship between the Separated Individual finger MES
actions and that of Two or More Combined MES finger Actions (male 2) View 2
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Figure 6.27  Figures 4,6,8,10,12 are the individual finger actions involved in
flexing the hand male 2: View 2
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The crude but commonly used wrist extension action is shown below for comparison with
the above figures. The wrist extension clearly occupies a different planar region compared
to the figure “Hand Fully Open’. Comparison needs to be made with the “View 2’ results to
see if there is any introduction of wrist extension activity into the above figures.
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Figure 6.28  The Relationship between the Separated Individual finger MES
actions and that of Two or More Combined MES finger Actions

Figures 3,5,7,9,11 are the individual finger actions involved in extending the hand
and are summed above to become the Cumulative Result figure. Compare that with
figure 19 (Hand Fully Open). A close correlation can be seen between the two upper
figures. (female 2): View 1
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Figure 6.29  Figures 3,5,7,9,11 are the individual finger actions involved in
extending the hand. (female 2): View 1
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Test 19 = 3+5+7+9+11 is the sum of all thumb and finger extension actions respectively.
No precision reconstruction of the composite action is achieved through the addition of the
constituent elements. The same areas of activity can be seen to be involved. Thumb
activity is the major constituent element.

The crude but commonly used wrist extension action can be seen below. There appears to
be no contribution detected, on the measured plane, from any unintended wrist extension
activity by the volunteer.

N.B. This clearly suggests that, for these thumb and finger actions, a unique muscle usage
occurs that is unconnected to those of the wrist extension response.
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Figure 6.30: The Relationship between the Separated Individual finger MES actions
and that of Two or More Combined MES finger Actions  (female 2): View 2
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Figure 6.31  Figures 3,5,7,9,11 are the individual finger actions involved
in extending the hand. (female 2):  View 2
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The clenched fist” above includes all the digits; of which none are in contact opposition.

Test 17 = 4+6+8 are the sum of the thumb, index, and middle finger flexion activities respectively.
These three activities are those same digits as used in the ‘three finger chuck grasp’ below. No
precision reconstruction of the composite action is achieved through the addition of the constituent
elements. The same areas of activity can be seen to be involved. Though not intended the ring
finger activity (intrudes into) i.e. is partially brought into play in the ‘the finger chuck grasp’ below
and correlates closely to a partial activity of the ‘ring finger flexion’ in Figure 10 (page 184):This
agrees with the observed difficulty of separating out the ring finger action by the volunteer. In this
way, it can be seen how the constituent MES elements accumulate and can be used for fine control
of a prosthesis.

The ‘the finger chuck grasp’ below has the digits in contact opposition.

The crude but commonly (commercially) used wrist flexion action can be seen below.
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Figure 6.32: The Relationship between the Separated Individual finger MES actions
and that of Two or More Combined MES finger Actions. (female 2): View 1
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Figure 6.33  Figures 4,6,8,10,12 are the individual finger actions involved in
flexing the hand. (female 2): View 1
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Figures 4,6,8,10,12 (next page) are the individual finger actions involved in flexing the
hand and are summed to become the Cumulative Result figure. Compare that with figure
20 (Hand Grasp (clenched fist)). No precise (or similar) reconstruction of the composite
action is achieved through the addition of the constituent elements. This may be solely as a

result of data missing for completing that region.
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No conclusion with respect to additive actions can be assumed as a result of the missing

data for figure 20.

The commonly used wrist flexion response below shows however as a completely separate
region to the other 3 figures presented. This demonstrates how little of the available

information is ever used with conventional prosthetic controllers.
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Figure 6.34: The Relationship between the Separated Individual finger MES actions
and that of Two or More Combined MES finger Actions  (female 2) View 2
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Figure 6.35  Figures 4,6,8,10,12 are the individual finger actions involved in
flexing the hand. (female2) View 2
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Figures 6.6 to 6.35 examined the relationship between the addition of the individual digit
actions and the combined hand actions. Following these studies it is clear that the overall
interaction of individual muscle actions describes the combined effect. This demonstrates a
deterministic nature in the observed results. The differences that do exist are largely due to
the inclusion of synergistic muscles as they stabilize a joint. The most frequently
encountered stabilizing action being around the wrist joint. Individual muscle action
variations occur between various volunteers as a result of preferred techniques and

developmental differences (sporting vs. non-sporting).

6.10 Standard Deviation Analysis To Determine ‘Best’ Location
For An Electrode For Single And Multi Electrode

Configurations

Extensive analysis has been done on the grid mapping results and the translations into an
Excel database has allowed the standard deviation to be assessed. The results summary for
the two male and two female volunteers can be seen on figures 6.36 and 6.37. The grid
points with the tallest towers represent the most active grid points for all 20 mapped
actions. The inclusion of composite actions such as ‘clenched fist” in the standard deviation
calculation tend to reduce the sharpness of the overall contour features. If desired the
composite actions could be subtracted from the calculation in order to find sites for control
signals that respond only to individual digit actions. The accuracy of response to user
intended muscle activity would be directly proportional to the number of grid sites
individually monitored by electrodes. The method can be incorporated into any future

amputee mapping activity.
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Figure 6.36  The above shows the standard deviation values for view1 and
view 2 of volunteers female 1 and male 2 The grid points with the tallest towers
represent the most active grid points for all 20 mapped actions. The accuracy of
response to ‘user intended muscle activity” would be directly proportional to the
number of grid sites monitored by electrodes. It can be seen that individual
electrode site selection would produce optimal results for each person.
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Figure 6.37  The above shows the standard deviation values for viewl and view 2
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the most active grid points for all 20 mapped actions. The accuracy of response to
‘user intended muscle activity’ would be directly proportional to the number of grid
sites monitored by electrodes. It can be seen that individual electrode site selection
would produce optimal results for each person.
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6.11 Deterministic Vs Stochastic Content

The question as to whether the surface MES has a deterministic or stochastic content needs
to be re-examined and rephrased as to whether it has both a deterministic and a stochastic
content.

At the lowest level of the individual muscle motor units, the very nature of the firing
signals along the neural pathway and varying branch lengths, fatigue, recruitment etc. (see
chapter 2 on physiology of muscle and mathematical/theoretical description by De Luca)
does not show promise of an isolatable deterministic frequency characteristic.

However, the investigation undertaken at the University of Plymouth by the author has
revealed, at the level of the surface MES, an element of deterministic behaviour is

detectable.

6.12 Summary

As stated in chapter 1, the objectives of the research are:
e 1)-to investigate the information content of a MES.
¢ 2)-to study the nature of the Tissue Filter Function (TFF)
e 3)-to map and identify optimum upper limb (forearm)} myoelectric sites
* 4)-to analyse the mapped data for frequency content and other unique identifiers
* 5)-to recommend the practical application of MES analysis for control purposes
¢ 6)-to provide a greater range of user-generated control signals
This chapter has made progress on objectives:
1)-to investigate the information content of a MES.
For a non-deterministic signal the “average” spectrum should be approximately uniform

for all MES sources yet this has not been the observed result.
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If the MES source showed a different, “Hot Spot “ spectrum (assuming same source
tissue-depth) for each of the different muscle actions then the results would show a strong
support for declaring an at least partly deterministic MES source. Results do show a

different “Hot Spot” spectrum starting point for different muscles.

2)-to study the nature of the Tissue Filter Function (TFF)
In Section 6.1.2 the results of the first male (male 1) generating all 20 actions, show, for

each action the detected MES undergoes a shift in frequency content that appears
representative of a loss of frequency as distance increases (filter effect). The frequency
spectrum does not fully undergo the expected “filter effect” with distance but shows an
initial high frequency loss from the hot spot epicentre but retains the same frequency

spread as the overall MES amplitude decreases.

Therefore the average spectral signal loss for a deeper muscle should lose proportionally
more of its higher frequencies as it passes through a greater thickness of tissue than the

overlying muscle,

3)-to map and identify optimum upper limb (forearm) myoelectric sites

The appendix contains the mapped results for all 4 volunteers

The optimum sites have been selected for electrode placement using standard deviation
results. These values can be used to improve the multifunctionality of a prosthesis by
simply increasing the number of detection electrodes applied to the hierarchy of preferred

sites.
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4)-to analyse the mapped data for frequency content and other unique identifiers

As a demonstration of both gender similarities and an indication of a deterministic element
to the detected muscle MES, the “thumb extension” MES of all four volunteers was
compared (Table 6.1). There are two widely separated muscles involved in the action (see
Jigures 6.1 and 6.2). Corresponding sites (on all four adults) show similar spectral features

for the one muscle site but different spectral features for the other site.

5)-to recommend the practical application of MES analysis for control purposes: Using
Second Moment of Area to represent Bandwidth Shift along x-axis allowed for the use of
the 4 variables [(1) Amplitude, (2) Central Frequency, (3) Bandwidth, and (4) Bandwidth
Shape to be represented as a value and to represent the surface of the arm as a grid of
potential electrode sites. The use of standard deviation analysis allowed the final electrode
site selection fo be optimised. An alternative method of ‘assigning a code to each feature’

was also formalised for representing spectral features.

6)-to provide a greater range of user-generated control signals: Section 6.8 investigated the
relationship between the separated individual finger MES actions and that of two or more
combined MES finger actions. The examination of figures 6.6(a,b,c,), (page 155-156)
show how the summing action of individual muscle actions is not necessarily likely to
produce the same mapping feature as combined action requinng the simultaneous
activation of the individual muscles. There are certainly some areas of commonality and in
some Instances the summing action is remarkably close to the expected combined result,
but for control purposes, the nature of synergist and fixators muscles needs to be taken into

account.
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Finally, with the demonstration of a deterministic element in the MES, one might ask for
an underlymg explanation as to just how the different muscles might exhibit a vanation in
frequency spectrum. Chapter 7 brings together a list of vanables that are involved in the
creation of the spectral features of the MES. The variables outlined in Chapter 7 not only
suggest an unique signature might be detected but actually argue, by the sheer number of

variables, how could anything else but a variation be expected!

6.13 References:
1 De Luca. C. J,, (1993). Precision Decomposition of EMG signals’, Methods in Clinical
Neurophysiology, Vol. 4, March, Page 15.
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CHAPTER 7: Discussion

7.1 Deterministic or Stochastic Content?

What has been explained?

Historically the surface MES has been assumed to be of stochastic content (De Luca [14]).
This has now been shown to be (only partially valid for the MES at the point of origin only
(the level of the wire electrode detection of the action potential (MUAP of individual
motor units), due to (a) the very nature of the synaptic crossing points along the neural
pathway and (b) the varying motoneuron branch lengths).

The human neuromuscular system has been studied for more than a century and the
following section will draw together past research and current research at the University of

Plymouth to clarify the deterministic nature of the MES.

SUB-BRANCH
DF AXON
BLOOD

CAPILLARY SYNAPTIC END BULB

MUSCLE
FIBRE

MOTOR [N g : . BRANCH OF
NEURON e MOTOR NEURON

MUSCLE
FIBRE
o =3 : @ 1650x

FIGURE 7.1 Motor Neuron branching onto and around muscle

fibres. Diameter of fibres vary from 10 to 100 micrometres
Adapted from 'Principles of Anatomy and Physiology', Tortora and

Grabowski, ninth edition, 2000

There has been an extensive volume of research literature in which MES detection has
been undertaken using inserted needle/wire electrodes. These wire electrodes are often the
equivalent of an extremely fine hypodermic needle. The full cross-sectional electrode
diameter (of a 4 wire 3 channel discriminating electrode) would be approximately 300 to

400 micrometers (1). Finer wire electrodes are also used (25 to 75 micrometer diameter)
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but they have limited discnminatory capabilities. Mature muscle fibres range from 10 to

100 micrometers in diameter (1 micrometer = 1 micron = 0.001 mm= 1/25000 inch) with a
typical length of 100 mm. These fibres lie parallel to and very close to each other. At this
point, it will be appropriate to look at a photomicrograph of a region of typical muscle
fibres and the innervation by a motoneuron (see Figure 7.1).

The usual method, in using these wire electredes, is to insert them directly into the central
body of the particular muscle to be studied. As the fibre is often innervated by the nerve at
the midpoint of the fibre, this would be the region of highest nerve fibre concentration
amongst the muscle ﬁBres. Remember, these are ‘live’ volunteers with no means for the
researcher to ‘see’ the fibres at the end of the needle electrode. It is important to consider:

e the scale of movement of the electrode with respect to the fibre (300 to 400
micrometers electrode and 10 to 100 micrometer fibres),

e the interwoven network of the nerve fibres wandering throughout the central
muscle fibres to create the dispersed territory of a single motor unit,

e the interwoven nature of the different motor units (with each other).

The likelihood of being able to tell the action potential of the nerve as it enters the fibre,
from the action potential of the muscle fibre as it traverses the fibre length is called into
question (see Figure 7.2). Considering that the shapes of the two action potentials are very
similar and the resting membrane potential of a neuron fibre is (-90mv.increasing to +30
my. at peak) versus (—70 mv. increasing to +30 mv. at peak) for a muscle fibre (2), we see
how difficult it will be:

a)} To discnminate at the common signal feature boundary where nerve and muscle
fibre potential have common appearances
b) To be sure of the electrode tip position, where the transition zone between the nerve

and muscle fibre junction is an order of magnitude smailer than the electrode tip
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c) To separate, (when seen as the surface detected MES), the muscle fibre action
potential from the nerve fibre action potential (as they near to simultaneously,

overlap, combine and pass through tissue layers).
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Figure 7.2 Typical action potential values. Note similarity of muscle and nerve

fibre voltage ranges. Time scale differs by approximately 2:1.
Adapted from, ‘Physiology’, Berne and Levy, Mosby Year Book, 1993 edition.
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For the requirements of research into motor units using needle electrodes, the points
mentioned in a) and b) above will not be of crippling consequence as long as researchers
use decomposition techniques to remove signals they deem not to be part of the motor unit.
This can be done, but the options are:

¢ long and laborious human eye methods (99% success)

e or computationally expensive methods (only 80% success) (1).
For the sake of research into surface MES the consequences of (c) above are very
significant. The surface MES is then a composite of both neuron and muscle fibre activity
of similar AP magnitudes (for explanation see section 7.46, pages 209-211).
[f we go back to the physiological/mathematical model of De Luca (chapter 2 page 83) we
see a summing of the motor unit action potential trains (MUAPTS) as they approach the

skin surface prior to electrode detection.
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It is the summing and overlap in time of these MUAPTS according to De Luca that
represent the MES at this stage.

The author proposes that the MUAPTS are only relevant and only have a ‘reality’ if
detection is done by a needle electrode. The very nature of needle electrodes is to ‘look
for’ MUAPTS as generated by close-proximity motor units. One needle electrode will see
a small picture in the region of the muscle fibre. If we took a very large number of needle
electrodes and evenly populated the gross muscle with them and were able to observe them
as a decomposed (using decomposition techniques) instantaneous time slice, we would see
a slice of the time-frequency graph. Combining these slices over the duration of a muscle
action would give the complete time frequency graph of the muscle action.

We only ever see a small window on the skin surface using surface electrodes. All those
action potentials (AP’s) have interacted with other AP’s locally and en route in a2 way very
different from that seen at any needle electrode site. The AP’s are not behaving as obedient
members of a stationary MUAP. The AP’s strike out on their radiative path and will
combine with each other (rot with other needie detected MUAPTYS), interact with the tissue
(TFF), and arrive with subtle differences (depending upon the path taken) at each surface

point.
7.2 An Expanded Model of the Surface MES

It is the author’s opinion that it is incorrect to describe the (needle-electrode detected)
MUAPT’s as the summed elements that comprise the surface MES. The story is much
more complex.

De Luca (1), (pages 78-84) proposed the power density spectrum for the MES, up to 40
Hz, could be accounted for by the motor unit Inter Pulse Intervals (IP1’s) (see Chapter 2).
Beyond 40 Hz, De Luca only describes the spectrum-as the results (shape) of an impulse

response through a black box filter. It should be noted here that De Luca used an
S.Roberts 197 Chapter 7




averaging/statistical assessment of the reciprocal of the IPI, to come up with a motor-unit

firing rate (1).
7.3 An Extended Physiological description of the Surface MES

The following is the author’s updated MES model using current knowledge of the
physiological features that need to be an essential basis for incorporating into a description
of the surface MES. The features are briefly stated, then given a short mathematical
description. The mathematical statement is then developed into a flowchart (see Figure
7.3).

Muscle fibres are organised as Motor units

Let the force of the muscle contraction be (F¢)

Let motor anit firing rate be A,

(Fc) will determine the number of motor units brought into use (to achicve that composite
force) As the force of the muscle contraction increases, the firing rate of the motor unit
increases (1)

As Fc increases, l, increases

Small motor units are recruited first and largest motor units recruited last. (2)

The earliest recruited motor units also have the smallest nerve fibre diameters i.e. are
recruited in order of increasing motor axon fibre size. (2)(page 116)

The higher the recruitment threshold of the motor unit, the less the motor unit increases its

firing rate with increasing force (3)

Let motor unit recruitment threshold = T¢

As Fc increases, T increases and the rate of change of A —0
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Following recruitment a motor-unit firing-rate increases slightly with increasing force

before levelling off (constant) at a ‘preferred firing rate’ (lp) (4)

As Fc increases, A, increases and Ap — 7\.p
The “preferred rate’ increases slightly with increasing recruitment threshold.
As Tr increases, 7\1, increases

As force level decreases the firing rate decreases to 30 to 40 % of the preferred rate before

becoming inactive (4)
As Fe decreases lp — 0.35 )Lp,mit

At faster rares of force increase, motor units were recruited at lower force levels but with
higher initial firing rates. (5)

There appears to be more variability in firing rate recruitment between different (named)
muscles, than within the motor units in any particular muscle. (1)(page 146)

Let set of muscles = {M; M; M;...}
variability of A; within M, = variability of A, within M, etc. (1)

Motor units near the surface of the muscle have higher recruitment thresholds than those
deeper in the muscle. (6). The author considers this tends to suggest that the larger motor
units are located at or near to the muscle surface. Relative location of fibre types
throughout the muscle w.r.t. the recording electrodes i.e. surface, central, or deep, will
affect the location of instantaneous centres of activity)

High threshold motor units tend to have shorter contraction times( T¢ )

and twitch durations ( tp ) (2)

Motor units are only of one type of fibre (i.e. not mixed) (2)

fibre types: ( slow-twitch or fast-twitch type)
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Note: It is not actually correct to state that fibres are of only the two types (see Chapter 2,
page 68). There 1s a third intermediate (in both fatigue resistance and speed) type of fibre.
For clarity, this intermediate type is omitted, (a reduction in terms) and does not affect the
function of the model. Rather, it serves to facilitate understanding and emphasize the
relationships

Mus = small motor unit= low threshold unit (long contraction times, long twitch)

Mu, = large motor unit = high threshold unit (short contraction times, short twitch)

Fast twitch fibres are generally recruited at higher force levels. Fast-twitch fibres are larger
in diameter and have higher amplitude AP’s than slow-twitch fibres. Larger radius fibres

have larger conduction velocities. A doubling of fibre radius will increase conduction
velocity of by a factor‘/i . This should be reflected as an increase in detected MES
frequency of ~V2 (2) (page 51).

i.e. Arof u(fibF) ~ V2 [Ar of u(fibS)]

Where p(fibF) = fast twitch fibre

Where p(fibS) = slow twitch fibre

Decruitment of motor units: De Luca found force reversal not to be the orderly inverse
activity of recruitment (1)(page 154). Rather, with decruitment, the eariier recruited
smaller, slow-twitch-fibre motor units decreased their firing rates before the latter-recruited
larger, fast-twitch units. (1)

At decruitment, Ar of u(fibS) decreases before Ar of u(fibF)

Why this occurs is not well understood and conjecture by De Luca follows a selective
sensitivity to excitation and inhibition in the motor neuron pool resulting in ordered firing

rate reversals. (1)
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Let set of muscles w (F,) increases variability of A = within M, #
variability of ithi etc.
|7= {M],MQ‘ M.} | r ity of A wit in M,

Mug = small motor unit

| B

Where p(fibg) = slow twitch fibre

1

As F. increases, ?Ll increases
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|

My, = large motor unit

] §

Where p(fibg) = fast twitch fibre

L !

As F. increases, 7Lr increases

3
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as F. decreases, A " decreases and A
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Figure 7.3 above shows the recruitment/decruitment process involving the changing
relationships between muscle size, motor unit size, firing rate, and fibre type. The
overall variability between and within different muscles allows for differences to
‘emerge’ as the surface MES.
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7.3.1 Maximum Voluntary Contraction (MVC)

Most research agrees that the firing rate increments, at least up to the level of 50% of
MVC (1)

where Fc max = Maximum Voluntary Contraction (MVC)

F. max

for Fc < ) ).,r increases and F¢ a?&,

Less agreement occurs as MVC approaches 70-80 %. (this may well be due to the lack of
consistency between research groups, with muscle and muscle-region selection). Most
research shows a levelling off and other research (a minority) shows an increase in firing
rate all the way up to 100% MVC. There is some consensus with the force and firing rates

being linearly related (1)(page 142,151)
for Fc < 0.8 Fc max, rate of change of A; - 0 and Fc « A,

In general, small muscles with fewer motor units ¢e.g. hand, first dorsal interosseous has
120) recruit all motor units below 50% MVC and from 50 to 100% MVC, rely primarily
on firing rate to modulate their force. Rates reach as high as 60 pps. (1)(page 167)

For first dorsal interosseous:

F. max

When Fc < ,}\,,—>60pps

By recruiting during the first 50% MVC the “unit force increment’ is one half the increase
compared if recruitment extended to 100 % MVC. (1) (page 166)
Let & F¢ = unit force increment

F. max

ForFc < , 0 Fc =9 Fc max

i.e. given a total available pool of motor units to recruit, the strategy of recruiting all the
motor units by 50% MVC means that each recruited motor unit has only one half of its
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share of the F demand placed upon it compared to the strategy of continuing recruitment
up to 100% MVC (1)( page 167)

This gives fine control of force (0.8% increase per unit), as is required of small muscles
(e.g. first dorsal interosseous has 120 motor units). For larger muscles with more motor
unifs (e.g. upper arm, biceps brachii has 770 units), overall force is greater and spread over
many more units. Unmt force increment 1s small with unit increments of 0.12%. (1)( page
166) Large muscles, where recruitment occurs throughout the full force range, rely
primarily on recruitment to modulate their force. Thus we have:

Fe max o k.= 008 Fe

for small muscles (Ms): for Fc <

F. max

for large muscles (My): forFe < ,0Fc=.0012 Fe

Let My(full) = full motor unit recruitment

MVC

For Ms with Mug, full recruitment (My(full)) occurs at

MVC

and 4,,F. > 5

For Mg, Fe o { M, (TOT), F, < MVC

where: M, (TOT) = Number of motor units recruited at that moment in time
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F. max= maximum Voluntary contraction (MVC)

- A

: the firing rate increments, at least up to the level of 50% of MVC

: A., mncreases and Fe al,

F. max

for Fe<

|

for F.. < 0.8 F, max, rate of change of A, — 0 and F o A

Figure 7.4 above shows the different motor unit recruitment and firing rate strategy
between small muscles and large muscles. The additional variable of different ratios
of fibre types (slow and fast twitch) associated with small to large motor units within
the extremes of muscle size, emphasize the potential for characteristic features to be
found associated with muscle actions and the surface detected MES.
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7.3.2 Fused-Tetanic Contractions

To produce fused-tetanic contractions requires higher firing rates (8)(page 286).

Fc max =3 all Mug+ ¥ all My

where: F¢ max = Maximum Voluntary Contraction (MVC)

With agonist/antagonist activity in a muscle action, when the firing rate is increased in one

it is decreased in the other. (2)

Aspn(-) lr increases, . (+) Xr decreases

1
1O A Hag) A,

where p (-) = antagonist muscle

where p (+) = agonist muscle

This implies that the nervous system ‘sees’ (commands) the opposing muscles as one unit
with reciprocal levels of excitation and inhibition. (1)(page 153). Although firing rate of
motor units increase with force, there is also a slowing of the firing rates of previously
recruited motor units (1). De Luca conjectures this 1s a means by which the nervous system
smoothes the force increase, (as larger motor units are brought into play).

7.3.3 Fatigue Effect:

The fatigue effect can be described as follows: During sustained muscular contractions, the
observed spectrum has a tendency to decrease independently of the force output of the
muscle. A ‘decrease in bandwidth occurs with a frequency shift from higher to lower
frequencies (observed near the beginning of a sustained contraction), accompanied by an
increase in the amplitude of the lower frequencies (observed near the end of a sustained

contraction).
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The author proposes the fatigue effect has a simple explanatory basis due to the decreasing
contribution of the [fast-firing rates, (fast-fatiguing)] fast-twitch motor units as they fail
(fatigue), with no alteration in the contribution from slow-twitch [slow-firing rates of the
(slow-fatiguing)] fibres (7). This has been probably understood by those in the field of
physiology but not formally presented. Though not included in the previous model
description, it is can be assumed that the intermediate type of fibre can be briefly
considered as an intermediate phase in the transition of the signal frequency content from
high to low.

Fatigue effect of force of contraction = Fcpg

At 100% MVC, Fc ¥ Fopg

At 100% MVC, Fc o [ A, of p(fibs) + A, of u(fibr).]

At Fers , Fe of (A, of p(fibs) + A, of u(fibg) ], but A, of p(fibr)— 0

low frequency BW = BW, = > (fibs)

high frequency BW = BWy; = 2 n(fibs)

Total Bandwidth = BWr=[ BW, + BWq ]

Total Bandwidth = BWrt = [Zu(fibs) + Zu(fibg))

At 100% MVC, Total Bandwidth = BWy = [Xu(fibs) + Zn(fibs) ]

Before Fepe , BWT @ —g-(-fibi-)— lLe. BW=>1
#( fibg)

At Fery , Total Bandwidth = BWy = [Su(fibs) + Tu(fibe) ]

o 2 e Bwe
H( fibs) T
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7.4 Factors Contributing to Variations in the Frequency
Content of the MES

7.4.1 Temperature of Muscle Fibres: the conduction velocity of a muscle fibre is

proportionally related to temperature. A muscle tested for spectral content in a cool lab
compared to the muscle used for pattern recognition within a covered prosthesis may vary
a few percent. (1)(page 218)

Let V¢ = velocity of conduction (of muséle fibre)

Let T = temperature of muscle

Ve Ty

7.4.2 Muscle Interactivity

Agonist and Antagonist muscles interact through what can be descnibed as a ‘triphasic
pattern’. (1){page 225-226). This triphasic pattern could be modelled as a feedback control
loop which responds to the following directives:

1) An initial burst of agonist activity/limb acceleration with concurrent silence of
the antagonist muscle, is followed by

2) A reduction of agonist activity with a concurrent burst of antagonist activity
resulting in imb deceleration, is followed by

3) Further agonist/antagonist activity as the limb stabilises.
With ballistic movements (of a limb), the antagonist activity appears to be influenced by
the subject’s movement strategy. For full deceleration (stopping) of the muscle action, the
strategy varies from antagonist relaxation (for no time constraints) to antagonist activation
{for rapid deceleration). For both power grip and precision grip, almost all the finger and
hand muscles of the hand and forearm are brought into play (1)(page 28). The extent of

this can be seen with the mapping work done by the author.
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7.4.3 Muscles At Rest: at complete rest there is no detectable neuromuscular

(electrical) activity. When muscles at complete rest are passively stretched, there is still no

activity in both flexor and extensor, regardiess of speed of movement.
7.4.4 Muscle Stretch Receptors: are used for Proprioception (the sense of joint

position and movement). Spinal reflex control of skeletal muscles 1s mediated through the
feedback mechanisms of the muscle-based muscle spindle and tendon-based Golgi tendon
(force sensing) organs. (2){(page 198-203) The spindles have a very complex activity and
involve both motor and sensory activity for their function. The spindle actually use
modified small muscle fibres (parallel to and nested amongst the normal muscle fibres) as
driven units that activate integral stretch receptors that feedback information about the
level of stretch (the engineening equivalent of a strain gauge) in the muscle body. Spindles
are most abundant in slow-twitch fibres. Spindles come in two types; one gives feedback
on dynamic (rate of change in length) and the other on static (length only) responses.
Contraction of the fibre/spindle (decrease in muscle length) decreases the discharge rate
(frequency) and relaxation increases the discharge rate. The output of the spindle and Golgi
sensors drives (through fibre branching) both the reflex response and the higher levels in
the cerebellum and informs the cortex. (2) The end result is that the alpha motorneurons
operating the opposing muscle sets, are excited and inhibited as appropriate. The type A
fibre (which is the same myelinated type used for skeletal muscle fibres) is also used for
spindle and Golgi sensing (8)(page 395). Type A fibres have diameters between 5 to 20
micrometers and conduction velocities of 12 to 130 metres /second.

De Luca interprets the proportional firing rate increases with increasing force as implying
that an increased general excitation to the muscle motoneuron pool increases the firing
rates of all the active motor units. (1){page 151). De Luca descnbes this as the ‘common

drive’ in which the nervous system acts as a modulator of inhibition and excitation upon
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the motoneuron pool. The lack of any appreciable time-shift in the correlation function of
changes in firing rates indicates that the modulation occurs essentially simultaneously and
in similar amounts per motor unit. (1)

7.4.5 Training of the Subject:

De Luca considered that training had no effect on the MES generation but other branches
of physiology suggest otherwise. The effect of training of the subject is to control the
‘interaction’ of the muscles rather than the control strategy of individual motor units.
Before training, (training on raythmic extension and flexion of the elbow), there is wasteful
activity of the antagonist muscles interacting to moderate the agonist activity (co
activation). After training there is progressive inhibition of the antagonist activity until,
with advanced training, full inhibition is reached. Co-activation activity is observed to
reduce as infants mature. The nervous system is subject to feedback to modify the
‘reciprocal inhibition” control scheme of muscle activity, Co activation of
agonist/antagonist muscles is found in infants, in isometric activities, in requirements for a
joint to be stiff, rapid deceleration of muscles controlling a joint, in unskilled movements
(prior to training) and in spastic patients.

7.4.6 Conduction Velocity: of both nerve and muscle fibres. If the conduction

velocity of a fibre changes the depolarisation event (that produces the wave shape) and the
AP takes a different time to traverse a fixed distance along the fibre (and consequently to
pass the detection electrodes) the detected AP will have an altered time duration. Any
signal that follows the relationship: (velocity = frequency x wavelength) will see a change
in frequency such that a drop in (conduction) velocity produces a drop in frequency and a
rise in (conduction) velocity produces a rise in frequency (assuming no change in the
wavelength). A change in the ‘rise time’ of the signal will be seen as a change in the

frequency. The slower conduction velocities and thus smaller axons were found associated
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with the lower threshold motor units (9). De Luca confirmed this behaviour and suggests
this relationship indicates a highly ordered process that remains invariant with muscle-
force, rate, and training (1)(page 158). There is a difference in the conduction velocity of
myelinated and unmyelinated nerve fibres (2). The distance, (known as the length
constant), that a signal can be transmitted along an unmyelinated nerve or muscle fibre, is
between 1 and 3 mm. before the signal has been attenuated to 37% of its starting value
(2)(page 51). A myelinated fibre has approx. 100 times less capacitance in the signal path
seen by an action potential. This translates as large decrease in the CR time constant of the
fibre and consequently as an increase in the conduction velocity of the nerve fibre (2). The
myelinated fibre differs by the wrapping of a Schwann cell membrane (insulating myelin)
around and along the length of the fibre. This membrane/sheath around the fibre is broken
periodically every 1-2 mm. by a 1-micrometre gap. These gaps, called ‘Nodes of Ranvier’,
separate one Schwann cell from the next along the fibre. In myelinated fibres, conduction
occurs by ‘saltatory conduction’ because the impulse ‘jumps’ from one node of Ranvier to
the next node of Ranvier. This jump occurs because the action potential is
reproduced/regenerated only at the nodes of Ranvier (where there is no myelin sheath)
because the internodal section of the fibre is covered by a wrap of 50 or so layers of
Schwann cell membrane that reduces the membrane depolarisation to 1or 2 mv. and thus is
insufficient to reach the threshold value for AP propagation (2)(page 52-53). The author
suggests this process of nodal regeneration creates short periodic (as seen if travelling
along the fibre) puises up to 1 KHz (limited by the refractory period of the AP pulse) and
are necessarily a component of the surface MES.

ua (fib) = type A nerve fibre (large diameter) have a refractory period of about 0.4 ms and

can produce up to 1000 pps (1 kHz)
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ug (fib) = type B nerve fibre (small diameter) have a refractory period of about 4.0 ms and
can produce up to 250 pps (250 Hz).

Nerve impulses normally range from 10 Hz to 1 kHz

High frequency firing rate bursts (60 —120 pps) are encountered in muscles with the
fast-twitch, larger motor units.

firing rate recruitment (biceps brachii) at the lowest force levels is 7 to 12 pulses per
second (pps.) to a maximum of 20 pps.(6) Other sources put the maximum at 65 pps to 100

pps for the smaller muscles (1)}(page 140

7.5 Factors Limiting the Frequency Content of the MES

7.5.1 Synaptic Delay is about 0.5 ms. or 2 kHz (2, p.62) and is consequently only
significant in assigning the ‘origins’ of the surface-detected MES above 1 kHz. Synaptic
delay could will contribute to detected frequencies greater than 1 kHz. This limitation to
frequencies greater than 1 kl{z needs to be included in any model of the MES. The
inclusion over the full range of frequencies in the MES model by De Luca (Chapter 2) and
presentation as a basis for ascribing an inherently stochastic element within the ‘firing rate’
of the MES model cannot be justified. It has only limited influence in blurring
synchronization between motor unit AP’s and their subsequent detected temporal overlap.

7.5.2 Refractory Period (def: the period of time during which an excitable cell

cannot generate another action potential) of nerve fibres and muscle fibres influences the
maximum possible frequency of the AP’s along their lengths.

Nerve fibres have a refractory period of 0.4 to 4.0 ms. (8)(page 394). This yields
an upper limit for inclusion in the MES of 250 to 1000 Hz. Nerve fibres however will
contribute a frequency component along the fibre (at the nodes of Ranvier) through the

tissue to the surface MES. The controlling alpha motor neuron pool in the spinal chord,
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Penipheral nervous System (PNS) (with its inhibitory or excitatory action) will determine
which motor units will be activated. This implies that, over time, individual training can
introduce a level of additional control in the production of the frequency characteristics of
the MES.

Skeletal muscle fibres have a refractory period of 5 ms. (8)(page 286). This yields
a limit of 200 Hz on single AP’s but due to the phenomenon of summation activity
(resulting in “fused tetanus’) the frequency of fibre response may well be higher. This is as

yet unquantified, but could add up to 50% to the 200 Hz limit.

7.5.3 Nodal Regeneration creates short periodic signal pulses up to 1 KHz at gaps
called “Nodes of Ranvier’ along the nerve fibre.

7.5.4 Action Potentials always have the same size in a given nerve or muscle fibre

(8)(page 285). As the nervous system uses frequency as the means of recruiting and
controlling the muscles fibres at the neuromuscular junction, it should be expected to find a

remnant of that frequency recruitment as an MES signature.
7.5.5 Filtering: (Electrode, Tissue (TFF), CMR)

The surface MES is composed of the fibre AP’s interacting with and attenuated by the
tissue encountered en route. This is necessarily a ‘low-pass’ filtering action and is
primarily manifested as a loss of higher frequency signals (TFF). There is also some ‘low-
pass’ loss of signal at the skin surface/electrode interface and some preferential
amplification due to CMR (see Chapter 2 page 76).

Shape of muscle i.e. long, short, parallel or angled fibres will affect the surface MES if the
electrodes are not aligned parallel to the direction of the fibres.

Noise from outside the muscle; e.g. mains noise 50 Hz and harmonics.

Electrode interdetection surface spacing:(Chapter 2 page 78) If notable spectral dips and

peaks are seen and the electrode interdetection surface spacing is known, it is possible to
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determine the fibre conduction velocity. This assumes that all contributing fibres have the
same conduction velocities, and that is not always the case. Zero crossings of MES: are
approximately linearly dependent (10) upon the force of contraction during relatively low
muscle efforts. (Note: this 1s probably related to the signal transient, as the lowest levels of
contractile force are triggered within the time span of the transient, (see University of New

Brunswick usage, Chapter 1, page 30).

7.6 Relationship between the Fibre Type Compesition of a

Muscle and the Value of the Median and Mean Frequencies

De Luca suggests that several different research groups have indicated that there may be a
relationship between the fibre type composition of a muscle and the value of the median
and mean frequencies. Note: the median frequency is the frequency point where the power
spectrum is divided into two regions of equal power, the mean frequency is the average
frequency over the spectrum, and the mode frequency is the frequency of the most common
frequency value of the spectrum (1)(page 222). The author sees this ‘fibre spectral

contribution’ as a possible extension for further ‘mapping’ activity.

7.7 In Brief:

The author concludes that the MES therefore must be composed of the superimposition in
time of the generated AP’s derived from the progressive recruitment of motor units (of a
given fibre composition of different frequency types) from both nerve and muscle fibres,
and will result in an ‘emergence’ of either a unique or a common pattern at the skin

surface.
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7.8 Whatis still Conjecture/Unexplained?

The basis of the deterministic element found in the MES is a combination of a fundamental
difference in the MES signal generated by different muscles (muscle antagonist/agonist
groups) at differing sites, onientations, and depths (TFF). The Tissue Filter Function (TFF)
has not been fully investigated, for its utilitarian potential, in the past, and has probably
been the assigned recipient for any unexplained anomalies. The TFF failed to account for
the overlaying of muscle signals that yield surface spectra that are the converse of what
would be expected if the Filter Effect were to be the invoked as the explanation.

This opens up the field to suggestions that the muscles (considered as a larger unit) are
contributing either selective frequency generation or selective combination, only detectable
(emergent) at a higher, composite level and not apparent at the lower source level (see
Lindstrom [11]). Various muscle actions investigated have shown surface MES clustering
at low, medium, and high ranges of the measured spectrum. With the peak amplitudes for a
variety of selected muscle actions centring at various points over the observed spectrum,
yet with similar qualitative and quantitative tissue overlay of the muscle site, there is a
need to develop a more detailed explanation for the observed muscle ‘signatures’. The
research at the University of Plymouth has presented sufficient evidence to further develop
the underlying structure of these signatures.

7.8.1 Fibre contributions to the MES

As mentioned in Chapter 2, page 68, the muscles are composed of various combinations of
the 3 different types of muscle fibre. Although the skeletal muscles are a mixture of all 3
fibre-types, the fibres of any one motor unit are all of the same type. Their various
proportions depend on the usual activity of the muscle. These fibres have differing ‘twitch’

response rates of contraction velocity [12]. Muscles of the arms also have a proportion of
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fast-twitch white fibres with fast contraction velocities. What is not known are the fibre-
type proportions in each muscle and the cross-gender and individual variations.

An area for useful research would be to correlate the detected ratios of fibre types in a
given muscle with a detected spectral response over a range of contraction forces.

The contraction-velocity is directly a result of the fibre-action-potential as it propagates
along the fibre. A fast contraction velocity requires a fast, fibre-action-potential. A fast
action potential implies a shorter time for the fibre to depolarise and re-polarise (during
which time the sodium and potassium channels are involved in driving the fibre
contraction (see Muscle physiology {12]). This shorter time gives a steeper edge to the
action potential and thus gives the signal a higher frequency. If only a weak contraction is
needed to perform a task, only slow twitch red fibres motor units are activated. If a
stronger contraction is required, the motor units of fast-twitch red fibres are brought into
activation. If maximum contraction is required, additional motor units of fast-twitch white

fibres are brought into play.
7.8.2 Training/Recruitment strategy

The motor unit choice is determined in the brain and spinal chord. The number of different
skeletal fibres in the muscle does not change over time (excepting atrophy and disease
conditions) but the characteristics of those present can be altered. Endurance exercises
(running) cause a gradual transformation of fast-twitch white fibres into fast-twitch red
fibres, but with no significant increase in muscle mass. Exercises where short bursts of
great strength (weightlifting) are required, produce an increase 1n the size and strength of
the fast-twitch white fibres and an overall increase in muscle mass. This would suggest a
difference should be seen between the athletic and non-athletic muscle spectral

characteristics (as is the case between the two female volunteers).
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Consider the action of the wrist flexion and ning finger flexion as found in our research. It
can be seen that the ring finger flexion has a spectral envelope that occupies a lower
frequency range than the wrist flexion envelope. The ring finger flexion is a strong
candidate for the weak contraction task undertaken by the slow-twitch fibres and the wrist
flexion is a candidate for the additional activation of the fast-twitch red fibres.

The author proposes that recruitment strategy gives a physiological basis for some of the
frequency characteristics of detected MES in our research. Fibre type is then a level of
recruitment strategy (as it has been mentioned that motor units are largely populated by
one type of fibre only). Person [13] reported that recruitment order has been found to be
stable for a given movement task but not stable when the movement task for that muscle
was changed. It appears, to the author, that the brain can send an imtiating, task-specific,
pattern for motor unit recruitment order. The organisation of neurons in the Central
Nervous system (CNS) is known to be in definite patterns called ‘neuronal pools’
(thousands or even millions of neurons per pool) all of which are of different patterns.
These patterns are known to control the skeletal muscles.

There are other frequency-determining features, such as muscle size. As muscle size
increases there is an associated increased size in the number of motor units. The number of
motor fibres innervated by a motoneuron is proportional to its size. Smaller, lower
threshold motor units (activated by smaller motorneurons) are recruited first by the smaller
nerves [14]. Given that the motor unit does not fire at absolutely constant intervals,
discharges of the motor unit ha;ie been measured (De Luca [14]) as the ‘average firing
rate’ (see definitions in appendix). This firing rate has been shown to increase quasi-
linearly (with some complex adjustments) over the range of contraction force, with the

threshold of recruitment [15].
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Muscle size has an effect on the power spectrum. Increasing values of muscle size increase
the observed energy in the low frequency region [11]. Small muscles generally have fewer
fibres per motor unit and generate higher amounts of high-frequency activity for a given

contraction force, than muscles with larger motor units [11].

7.8.3 Gender Differences

Given a similar musculature and fat thickness/density, the MES comparisons between the
two tested males gave a broad agreement in principle. The two females chosen probably
gave a good span of the female range in general but still show a strong similarity between
their general sites and features and those of the males. The female sportsperson was so
similar to the male pair that arguments for a physiological difference between males and
females regards general structure of muscle layout were without basis. Differences

detected seem to be derived from individual muscle developmental skills.
7.8.4 Mapping

In the ‘thumb extension’ action, there are two widely separated muscles involved”
Corresponding sites on all four volunteers (on all four adults) show similar spectral
features for the one muscle site but different spectral features for the other site. MES (see
Figures 6.1 and 6.2 and Table 6.1). This needs to be statistically investigated with a larger
database of people and other muscle sites similarly examined for deterministic features,

The author proposes that the localised muscle may be responding to a recruitment strategy
that is itself a frequency generated characteristic of the neural pathway or earlier origins in
the brain/ central nervous systemn. The neural signals interaction with differing masses of
fast twitch and slow twitch muscle fibre types, at different muscle sites, has been proffered.
It would be necessary to carry out simultaneous signal analysis on both the neural pathway

(at muscle insertion points) and subsequent muscle firing responses. The neural pathway
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detection, by necessity, would be an invasive technique and the muscle response would be

a surface detection method

The author considers: because innervation of the muscle body by the nerve occurs at the

middle of the fibre, the greatest chance of detecting the muscle-onfy AP would appear to be

furthest away from the centre of the muscle. This should manifest as a reduction in spectral

frequency as the surface electrodes move further away from the muscle centre. Results of

the research at the University of Plymouth show the MES source with a different, “Hot

Spot “ spectrum (assuming same source tissue-depth) for each of the different muscle

actions. The results show a strong support for declaring an at least partly deterministic

MES source,

The MES source did not show the same, “Hot Spot “ spectrum (assuming same source

tissue-depth) for each of the different muscle actions, and consequently, the results do not

show a strong support for declaring a non-deterministic, stochastic MES source.

The investigation undertaken does not support a wholly non-deterministic conclusion for

the MES at the skin surface.

At the skin surface, the MES has both a random and a deterministic content detectable on

two counts

L The MES can be examined as to its original frequency content 1.e. bandwidth.
The random contribution is partly a result of the superimposition of the
generated motor umt (muscle and nerve fibre) AP’s and partly a result of the
inherent imperfection over time in the “firing rate’. The deterministic content is
the ‘emergent’ property of the imperfect ‘firing rate’ in combination with the
varying proportions of motor units and fibre types.
2. The *Tissue Filter Function” has introduced a means by which the MES and its

subsequent overall frequency loss can be measured.
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7.9 Applications of Results

7.9.1 Pattern Recognition for Control Purposes

Suitability for Interface with Neural Networks
The use of an Artificial Neural Network program as an appropriate pattern recognition
technique for biosignals has attracted considerable interest both past, active, and pending.
The author sees the need to monitor, as an original proposition, 3 to 4 distinct very narrow
bandwidth regions on each signal channel so that discnmination can occur for the
frequency shift. Using frequency analysis, the ability to discriminate between hand actions
has been shown. Clearly different and repeatable frequency peaks can be used in
conjunction with digital filters to 1dentify the different actions. Thus, it 1s possible to use
one electrode at a single site to detect two (or more) different signals, each signal having
differing amplitudes in the frequency “bins”. This increases the number of control actions
{(on/off) available at a single site from 2 to 4.
Using the Medilec equipment test results (solely due to their slightly enhanced bandwidth)
an examination of the test results (see chapter 7 page 110) indicated that a minimum set of
2 digital pass band filters with an intermediate sharp cut-off charactenstic wall distinguish
these user actions (i.e. ring finger flexion versus wrist flexion), with pass band frequencies:
one (@ 78 Hz and one at either 158 Hz or 222 Hz. respectively.
At a stroke, this doubles the number of control actions over a standard prosthetic hand.
The choice of digital filters comes as a consideration of their much greater flexibility. In
order to accommodate a wider range of actions and to include the inputs from 4 rather than
just 1 electrode, the following range of filters has been selected. The separation of these
filters by a band of 32 or 64 Hz was based upon repeated testing to give adequate filter
separation but with a sufficient number of discrimination points across the useable

bandwidth. If it is possible to introduce other control sites simultaneously, this will
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increase the number of control actions proportionally, i.e. 4 sites, gives 16 control actions.
In addition, cross correlation between electrode signals will provide further information,
increasing the available control sources.
These filters could operate at the following centre frequencies:
78Hz, 94Hz, 110Hz, 126Hz, 158Hz, 222Hz, 270Hz, 318Hz
The Boolean Notation (Table 7.1) would approximately describe the user action for:-

1.) nng finger flexion

2.) wst flexion

3.) index finger flexion

4.) wrist extension

5.) middle finger extension

1.)Ring Finger Flexion:

78Hz o 94 Hz o 1104z o 126Hz o 158Hz o 222Hz o 270Hz « 318Hz

2.)YWrist Flexion

78Hz ¢94 Hz ¢ 110 Hz @« 126 Hz o 158 Hz ¢ 222Hz ¢ 270Hz # 318 Hz

3.)Index Finger Flexion {fast action)

78 Hz «94 Hz ¢ 110 Hz ¢ 126 Hz ¢ 158Hz o 222Hz o 270Hz o 318H:z

4.)Wrist Extension

78 Hz #94 Hz ¢ 110 Hz # 126 Hz o 158 Hz ¢ 222Hz ¢ 270Hz 3184

5.)Middle Finger Extension

78 Hz @ 94Hz o 110Hz 126 Hz » 158Hz o 222Hz ¢ 270Hz o 318H=

Table 7.1 above shows the Boolean notation for each frequency ‘bin’ or filter. A
different Boolean description is applicable to each different muscle action. This will
give a different control signal from each muscle action for the purposes of prosthesis
control.
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These 5 actions were recorded at one site by one electrode. The first actions [1.) and 2.)]
were clearly distinct and reliable. Actions 3.) 4.) 5.) were sufficiently different to be
considered as useable signals. Unlike actions 1.) and 2.), the muscle source for the latter
actions were not located close to the electrode site and consequently the signals were of a
comparatively reduced, (<50%) amplitude.

The number of frequency bins above is large (eight) and probably only half that number
(four) would suffice to be useful for channelling the detected MES to the inputs of a Neural
Network/

The task will be to keep all computing time before response, to within the acceptable 300-
ms.-delay range (where delay = measurement + processing + action).

It will be necessary to detect the onset of an intended MES and then quickly sample the
signal using the exponential averaging process (see appendix) or a modified version. To
‘overshoot’ and miss the onset or transient of the signal, will record a signal of less-well
defined frequency and of lower amplitude. This was a problem noticed when using the HP
analyser. The HP did not allow for a user specified sampling frequency nor did it have a
rehable (though operational) transient onset detector.

The basis for transient detection will require a continuous sampling process of at least 1
KHz (assuming a 450 Hz maximum bandwidth), with sampled data continuously being
updated in a small memory block and retrieved for further processing when an MES
(signal strength threshold) is detected. At this stage, the sampled data is passed on for
digital filtering followed by presentation to a Neural Network where a decision is made as
the probability of an intended user action and consequent execution of that action by the

prosthesis.
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7.9.2 Gender Differences

Enough differences between males/males/females were shown to conclude that training
for a general Neural Network (NN) -to be applied to a class of ‘all males’ or “all females’-
would not produce an optimal result. For a practical application, a NN training should take
place for each user. A general NN for the single electrode/single site can be used to detect
the wrist/ring finger actions with good success but reliability decreases rapidly as demands
for additional actions are applied. One female had developed or utilised certain muscles
that can be used for an action (in preference to others that also could have been used).
Consequently when comparing the amplitude peaks between the 2 females there was a
significant difference between some actions regarding the site amplitudes observed, rather
than the sites as such. This is a further consideration against attempting to develop a
general NN program.

The number of detecting electrodes placed on the amputee increases dramatically the
number, reliability and repeatability of detectable hand/finger actions.

As a demonstration of both gender similarities and as an indication of a deterministic
element to the detected muscle MES, the “thumb extension” MES of all four volunteers
was compared (Table 6.1). There are two widely separated muscles involved in the action
(see Figures 6.1 and 6.2). Corresponding sites (on all four adults) show similar spectral

features for the one muscle site but different spectral features for the other site.

7.9.3 Testing Using Standard Neural Nets

The choice of Neural Network Topology /software for the pattern recognition will be a
Multi-Layer Perceptron (MLP)

7.9.4 Digital Filter Methods

Advantages

The selected frequency pass bands will be realised using digital methods for 2 reasons:
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1). Weight and space: The digital filter can be practically created with a steep pass band
to stop band transition region, in software, without incurring the physical components of an
analogue filter. The analogue filter, at the high orders required for a sharp filter edge
(greater than 10th order) would add undesirable penalties of weight and space to the
prosthesis.

2). Flexibility: It is unlikely that a single set of optimal filter pass bands would exist for
any group of amputees; due to individual differences in stump shape, surgical technique
involved and residual muscle depth/mass/atrophy. With digital filters, pass bands can be
adjusted very quickly and reliably. As phase is not an issue then an IR filter could be used.
With an analogue filter, the adjustments would prove very much more time consuming and
less reliable regards the outcome.

Disadvantages

Of course, the penalty cost of a digital filter is in the processing time incurred and, in this

respect only, the analogue filter will then be a first choice.
7.9.5 Control Algorithm (see Figure 7.5 block diagram)

When the gross signal breaches a set threshold voltage the sensor or control system triggers
a response to open the hand (if it is the extensor muscles activated). Any further variations
above that threshold are either ignored or used to activate another function, such as grnip
force variation (reduction) or grip opening velocity vanation. When the gross signal drops
below that threshold the actions either (a) fock into the states achieved or (b) return to a
previous or resting state.

Activity at the electrode site, above a set threshold, will then produce the desired hand
action and variations in levels in excess of that threshold produce velocity or force

variations according to the chosen control system. Below-threshold values again produce
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lock or ‘return-to-state’ responses. Therefore, each electrode site can produce more than

one on/off function with a single further intensity variation as optional.

i’ o - o
| electrode 1

] » buffer » filter

JA/D— Neural
level detect Network

| L]
| et microcontroller

actuator 3

actuator 1
actuator 2 «

Figure 7.5: Block diagram of a two-channel electrode MES detector with microcontroller
and software based filter and neural network. Controller outputs to the finger actuators.

7.9.6 Design of Controller Software
The controller software will need to consider:
e when the signal is valid,

e operate on the signal (averaging),

e filter the signal into ‘bins,’

e compare with Neural Network,

e decide what action to take,

e how fast to move ,

o what force limits to apply,

e maintain position or go to next position or to return to rest position
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7.10 Further Research Needed

The “Tissue Filter Function”(TFF) makes itself evident in the frequency domain analysis
of which, in the past, little effort has been directed. The TFF is like a message from the
MES that says; “I am a signal that has come further than the others and as a consequence
have lost my high frequency components according to the distance I have travelled (see
Figure 2.18, page 71). When two or more signal sources of sufficient strength interact at a
single electrode site, this TFF shows itself as a frequency shift, between those signals that
are observed. Given that: (a) the signal sources of interest are identifiable by sufficiently
distinctive features at sites close to their origins), the observed shift at the combined site
will occur to all signals as a function of the distance between electrode and muscle signal
origin. The proposal is that the cross talk between a multiple set (4) of surface electrodes
will detect these frequency-shifted signals throughout the 3 dimensional medium of an
amputee upper forearm. Here the use of a “weighting factor™ is proposed to represent the
individual spatial distances/attenuation of these signals. To develop this requires the
simultaneous use of two or more electrodes and appropriate recording equipment.

As mentioned (see Chapter 1 page 28), in Japan in 1991, Ito used a back propagation NN
on the frequency domain conversion of the MES detected by a 4-electrode configuration.
Ito divided the overall detected frequency bandwidth into 4 frequency band pass regibns.
Ito took each electrode signal through a single frequency band-pass region (filter) i.e. each
electrode looked at only one portion of the MES spectrum. Ito ignored the initial transient
and monitored a 2 second portion of the steady state signal for NN training data. High
computational costs (2 transputers were used) and long time delays were noted. He used
on-line training to try to counter the “fatigue” effects upon the signal. Recognition with the

trained NN was notably high (90 %).
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The use of the NN as a pattern recognition tool will substantially differ from Ito in a
number of ways. Ito used the steady state and the author’s use will be in the brief, transient
region. [to used one filter /signal per electrode channel. The author proposes, 3 to 4 distinct
very narrow bandwidth regions on each signal channel so that the discimination can utilise
the frequency shift due to the Tissue Filter Function (TFF) and the ‘weighting factor’. It is
likely that the aforementioned “weighting factors™ will be represented in the weighting
action nedes in a Neural Network.

Research has determined that a 300 ms delay (where delay = measurement + processing +
action) between user muscle action and prosthetic response is acceptable for a practical
sampled data system. Delay times in excess of 300 ms. become increasingly less
acceptable to the amputee. With only a few averages of the continuously sampled signal a
small delay in response to the user action occurs. The research undertaken at the University
of Plymouth has shown that only the transient MES is necessary for a control signal
derived from a muscle action from the user (amputee). This delay will be well within a
200ms delay period. The task will be to keep all computing time before response, to within
the acceptable range.

It will be necessary to detect the onset of an intended MES and then quickly sample the
signal using the exponential averaging (see appendices, p.240) process (or a modified
version). To miss the onset or transient of the signal, will record a signal of less-well
defined frequency and of lower amplitude. This was a problem noticed when using the HP
analyser. The HP did not allow for a user specified sampling frequency nor did it have a
reliable (though operational) transient onset detector.

The basis for transient detection will require a continuous sampling process of at least 1
KHz (assuming a 450 Hz maximum bandwidth), with sampled data continuously being
updated in a small memory block and retrieved for further processing when an MES
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{(signal strength threshold) is detected. At this stage, the sampled data is passed on for
digital filtenng followed by presentation to a Neural Network where a decision is made as
the probability of an intended user action and consequent execution of that action by the
prosthesis.

The use of the Liberty MYOI115 research electrode made this whole research program
possible. The use of adhesive type electrodes would have been very difficult and much
more time consuming and arduous for the volunteers (imagine the effects of slowly
moving a pair of electrodes along an arm and replacing them every five uses/ 6 inches of
travel after the adhesive weakens). The use of invasive wire or needle electrodes would
have been difficult in the extreme. To achieve a full mapping would have required a
volunteer willing to be used as a pincushion. The development of an improved Liberty
electrode, with a wider bandwidth and low noise, would be an automatic increase in
number of the control actions available to any future controller using these research results.
The future direction of microelectronics will inevitably reduce the size and weight of the
controllers necessary for multiple action prosthetic hands. These controllers, although an
important and complex design exercise are well within the scope of basic consumer
manufacturing products. The power supply will be minimal to run the controller. The next
real power hungry barrier will be the actual working prosthetic arm.

The ultimate solution for a lost limb would be to do as the Salamander and grow a new
limb from the remains of the residual limb. This may well become a reality in the not so
distant future but we are probably at least one or two decades away from that happening..
Untii then, the ‘really-improved’ prosthesis can be developed based upon the ‘mapping’
work undertaken in this thesis. This next generation prosthesis will result from the
development of a structural prosthesis with the actual surface of the prosthesis/ skin
contact area being a thin and flexible, all-encompassing multiple-electrode grid array,
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which provides a full mapping of whatever residual arm is presented. The same silicon (or
similar) technology that gives us very thin and flexible photovoltaic power supplies or
plastic ‘smart cards’ can be harmessed to create a flexible membrane grid of transistors and
electrodes that input to a Programmable Logic Array (PLA) or constantly scanned by a
dedicated processor that is also part of the membrane. The use of the single pick up and
single site will be superseded by the vastly improved performance and versatility of the

grid based multi electrode detector.

7.11 Implications for other Biosignals

Other biological signal sources may well respond favourably to the application of these
signal separation techniques. The non-invasive approach of the MYO115 electrode allows
the searching out of muscle regions and identification of ‘hot spots’, overlapping muscles,
under and overactive muscles. The mobility of the MYO115 and the frequency dimension
introduces an additional means for the diagnosis of muscle related diseases or disorders.
Most of the existing equipment, for Myoelectrograph (MEG) and Electroencephalograph
(EEG) use, is designed to analyse in the ‘time domain’. All low-level skeletal/postural
equilibrium muscles are in a near-constant state of use, producing signals that may well be
obscuring or interfering with weaker target signals. By evaluating the surface MES in a
region surrounding the target area it may be possible to ‘weed out’ and examine the

residual signal for neuropathological and myopathological diagnostic purposes.
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CHAPTER 8: Conclusions

8.1 Summary

As stated 1n Chapter 1, the objectives of the research are:

» 1)-to investigate the information content of a MES.

¢ 2)-to study the nature of the Tissue Filter Function (TFF)

¢ 3)-to map and identify optimum upper limb (forearm) myoelectric sites

¢ 4)-to analyse the mapped data for frequency content and other unique identifiers

¢ 5)-to recommend the practical application of MES analysis for control purposes

e 6)-to provide a greater range of user-generated control signals
Progress has been made on objectives:

1)-to investigate the information content of a MES.

In Chapter 7, section 7.1 past research using needle electrodes to detect MUAPT’s has
been shown to be not appropriate as a means to describe the surface MES. The AP’s are
not seen at the surface as MUAPT’s but as superimposed components of mixed AP’s.
We only ever see a small window on the skin surface using surface electrodes. All those
action potentials (AP’s) have interacted with other AP’s locally and en route in a way very
different from that seen at any needle electrode site. The AP’s are not behaving as obedient
members of a stationary MUAP. The AP’s strike out on their radiative path and will
combine with each other (not with other needle detected MUAPTS), interact with the tissue
(TFF), and arrive with subtle differences (depending upon the path taken) at each surface
point.
An expanded model of the surface MES has been presented that includes updated

knowledge of the physiology of muscles.
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The MES has been shown to have both a random and a deterministic content. The MES
can be examined as to its original frequency content ie. bandwidth. The random
contribution is partly a result of the superimposition of the generated motor unit (muscle
and nerve fibre} AP’s and partly a result of the inherent delays over time in the
measurement of the ‘firing rate’ associated with each motor unit. The deterministic content
is the ‘emergent’ property of the varying proportions of motor units and fibre types (unique

to each muscle) and their associated “firing rates’.

2)-to study the nature of the Tissue Filter Function (TFF)
The TEF has been assigned as a major contributor in previous chapters. Chapter 7 has
given a value to the range of signals generated at the level of the nerve and muscle fibre
(up to 1 kHz ) and the TFF has to be credited with responsibility for the attenuation of
these frequencies en route to the surface. Without the TFF intervention the MES would be
extended from 300 to 1000 Hz and be composed of significant components of the

superimposed muscle-fibre AP’s plus the higher control frequencies of the nerve fibres.

3)-to map and identify optimum upper limb (forearm) myoelectric sites
Chapter 6 applied a Standard deviation analysis to the mapped grid pattern for all 20
muscle-actions. This makes it possible to select the optimum site for electrode placement.
The analysis in Chapter 7, sections 7.1 to (7.8 inclusive), demonstrates an underlying
determinism in MES generation. Along with training, sufficient malleability in the nervous

system exists to enhance the selected sites over time.
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4)-to analyse the mapped data for frequency content and other unique identifiers

The mapping technique of Chapter 5 contributed the bulk of information and Chapter 6
analysed those results for frequency content and unique identifiers. More analysis of those
mapped results (outside of the available research time) would yield more identifiable
features for the individual volunteers involved. The model developed in Chapter 7 section
7.2 suggests a possibility of searching the mapped data for fibre type contributions would
yield an identifying character for each muscle. The author considers it better to approach
the fibre type research with a fresh-targeted approach (including needle type electrodes). It
would be necessary to carry out simultaneous signal analysis on both the neural pathway
(at muscle msertion points) and subsequent muscle firing responses. The neural pathway
detection, by necessity, would be an invasive technique and the muscle response would be
a surface detection method. The companson of surface MES to site-generated signals

would allow fibre composition to be estimated with a high degree of certainty.

3)-to recommend the practical application of MES analysis for control purposes

Chapter 4 offered the first definite improvements in control signal detection with the wrist
and ning finger actions. This has been extended in Chapter 7, table 7.1, with 3 additional
detected muscle actions. The results of mapping in Chapters 5 and 6 offered further
features detected and a means of selecting for optimal electrode site location. Chapter 7
outlines how Neural Networks can be utilised to interact with the values of frequency bins

(through which the amputee signal is passed).

6)-to provide a greater range of user-generated control signals
Signal spectra can direct the output activity of a multifunctional prosthesis. Signal strength
(magnitude) is easily utilizable as an additional control function of either prosthesis finger-
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closure speed or applied gripping power. The limitations of current prosthetic arm

technology is emphasised. A foundation for further research is discussed.

8.2 Contributions to Knowledge

1):

This thesis presents a coherent set of design criteria for the construction and

control of a myoelectric upper-limb prosthesis. These criteria are drawn from the prosthetic

community including:

2):

a) user requirements both structural, functional and aesthetic user requirements with a
time limit on system response i.e. < 500 ms. (all too often overlooked by research
groups focused on signal analysis). Looking at signals of 2 or 5 or 20 seconds duration
1s only beneficial if the analysis yields information for control purposes that can
equally be extracted in <300 ms.

b) A novel movement geometry and set of 20 commands for the arm to follow.

¢) In Chapter 1, Figures 2.6 and 2.7 (pages 39-60) are the author’s original
compilation of the muscles related to the 20 commands presented in a comprehensible

way, for the use of the prosthetic design engineer

Arm Mapping results have:
a) revealed the overall interaction of individual muscle actions describes the combined
effect. This demonstrates a deterministic nature in the observed results. The differences
that do exist are largely due to the inclusion of synergistic muscles as they stabilize a
joint.
b) established the need for due care and attention with electrode positioning on the arm
for optimising any frequency analysis techniques (unlike the more acceptable rough

and ready placement with RMS/smoothing time-domain analysis)
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e ¢) revealed the misleading conclusions leading to ‘MES stochasticity’ by past
researchers who have assumed a more casual method of electrode placement for signal
extraction. This has led to the lack of interest in exploring the ‘Tissue Filter Function’
(TFF) and the positioning of the sites of nerve to muscle fibre ’innervation zones’. The
use of these latter two factors is important in understanding the ‘“MES hot spots’ shown
on the mapping results.

» d) given options and a direction to signal acquisition methods with:
e a single-site/single electrode approach will require the frequency analysis
breakdown of the site generated MES into multiple control signals
e additional electrode sites wall further expand the range and reliabihity of control
signals. This 1s exemplified in the suggested novel use of 3 to 4 control-site,
surface electrodes with each control site signal fed into its own narrow-band
filter fed into a common Neural Network and decoded for control signals. The
control sites would be placed using the, grid-based, best-site Standard Deviation
assessment method.
¢ the authors suggested use of grid-based, novel multiple electrode arrays and
assure a reliable, full range of control signals available for the following two
approaches
1. an RMS signal value assessed over the full grid including the
antagonist/synergistic muscle inputs. These grid values will feed into a
Neural Network.
il. a frequency analysis signal value assessed over the full grid including
the antagonistic/synergistic muscle inputs. These grid values will feed

into a Neural Network.
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* e) The use of a bnief user-generated signal that can be referred to as the ‘signal-
transient’ has shown the user MES command signal can be generated within the
time constraints for user acceptance. This research confirms the University of New
Brunswick findings of useful signal information found in the “signal transient” and
extends the utility of those findings. The signal transient is further examined in the’

Improved model of the MES’ by the author.

3.): Improved MES Recruitment Model and surface detected MES model: an
updated model of the surface MES is developed from anatomical, physiological and
neuro/muscular research sources. The model is presented on a flowchart of
recruitment/decruitment activity. This model draws heavily on the involvement of muscle
fibre types in recruitment. The mode! draws upon all contributions of past MES research,
observed phenomena, and recent physiological and anatomical advances. The model
details have been scattered throughout the various fields but not previously presented in a
unified form. This involvement of fibre-types is in full agreement with all past research
material and gives a solid basis for the assertion of deterministic behaviour in surface
detected MES, as it is accepted knowledge of the varying fibre-type composition of
athletes muscles according to their performance demands.
e.g.  long distance= endurance =slow fibres dominate
short dash (burst activity) = fast fatigue = fast fibres dominate
Because of the previous disorder even recent researchers have spoken tentatively

and with qualifications of their conclusions, citing seemingly unresolved past models.
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4): Reinterpretation of the applicability of the J. Bamajian/ C. De Luca MUAPT

model of the surface detected MES:

The MUAPT model has been assumed and accepted (by default) by researchers as a model
for the surface MES. The author has shown this to be over simplified and misleading. The
MUAPT is only a local phenomenon defined by the detecting needle electrode while the
surface detected MES is time slice of individual fibre AP’s (not MUAPTS). The artificial
nature of the MUAPT is defined by those AP’s that have a common (+/- 10% to 25%)
finng rate as detected at that (needle) point. The decrement function (losses) of the AP is
such that the signal loses 75 % of its peak-to-peak value if the signal is moved by 100
micrometers. (De Luca page 40 ‘Muscles Alive’). As the motor unit can extend over
regions of diameter from 5 mm. to 20 mm. and up to 30 different motor units may exist
within that smaller region the MUAPT can truly be seen of limited use (except to
investigate myopathies). There are many papers written describing how to decompose the
needle signal into its MUAP entities usually gleaned from, at best, 10 to 20 members per
MUAP. As the surface MES is up to 500 Hz and the needle electrodes see up to 2 KHz,
then a Jot of summation is going on unseen/unknown. The Bamajian/ De Luca MUAPT
model of the surface MES has led to many researchers {rying to shoehom their results to fit

the MUAPT model with consequent lost momentum in their research endeavours.

5):  Inclusion of Nerve Impulse contribution to the MES: The contribution of the
nerve impulse signal has not been included in the MES in the past despite its similar
magnitude and proximity to the muscle fibre signal. It has been the focus of past
researchers, on extracting a group of MUAP’s (using needle electrodes), to exclude as
noise these higher frequency (up to 1kHz) signals or include their superimposition without
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knowing their origin. The nerve fibres produce AP’s of similar magnitude at the

demyelinated * ‘Nodes of Ranvier’ along the nerve fibre.

6): the author suggests the outcome of the spectral research/grid mapping lends support

to the suitability of the MES to interface with a Neural Network for control purposes.

8.3 Research Links

The research at the University of Plymouth was illuminated by the old computer adage
“Rubbish in, Rubbish out”. It will be of no value to have designed an all singing and
dancing prosthesis that can move in mimicry of the human hand and not be able to drive it
effectively due to a shortage of MES derived control signals. That barrier is now lifted
considerably and the opportunity exists now to achieve that mimicry. The last remaining
barrier then will be to reduce the operating weight of such a complex articulating hand.
Existing complex hands are driven by individual motor/gearbox mechanisms. Each finger
requires a minimum of one motor/gearbox drive per finger. These drives are power hungry
and far and above the most power hungry element in any prosthesis. Although the
development of improved battery supplies will lengthen time between battery changes for
the prosthesis user, the weight issue may well be a limiting factor in the take-up and take-
off of the improved controller. What is needed is a radically different form of drive
actuator that operates more closely in action to the human muscle /tendon drive system.
What is needed is an artificial muscle that can be coerced to lengthen and shorten in
response to an applied electrical control signal. Research has been going on in this field for
many years and the advances have been slow, but may soon be abie to offer prosthetics

that final piece of the’ bionic’ jigsaw.
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LIST OF ABBREVIATIONS AND DEFINITIONS

AGONIST MUSCLE: the prime mover muscle that initiates a desired contraction

ANTAGONIST MUSCLE: a muscle that actively provides a negative contribution to a
net torque around a joint (e.g. an extensor may varyingly relax to assist the net torque
(around a joint) action of an excited flexor)

AEROBIC CAPACITY: Fibre capacity to do work in short bursts using oxygen as a fuel.

ANAEROBIC CAPACITY: Fibre capacity to do work in short bursts in the absence of
oxygen as a fuel.
AVERAGE FIRING RATE: Represents the reciprocal value of the average IPI

BIPOLAR ELECTRODE: One that consists of two detection surfaces.

COSMESIS: cosmetic appearance of prosthesis. Usually desired as most closely
approximating a natural imb

DECOMPOSITION: The analytic process whereby individual MUAP's are extracted
from the electromyographic signal. This usually undertaken by invasive techniques close to
the site of the motor units.

(EMG) ELECTROMYOGRAPHIC SIGNAL: The name given to the total signal
detected by an electrode. It is the algebraic summation of all MUAPT's from alt active
motor units within the pick-up area of the electrode.

INSTANTANEOUS FIRING RATE: Represents the reciprocal value of the IP1

(IPT) INTERPULSE INTERVAL: The time between adjacent discharges of a motor unit.
It is a semi random quantity,

ISOMETRIC CONTRACTION: A muscle contraction during which the length of the
contracting muscle remains constant or there is 2 minimal shortening. Tension on the
muscle increases, pulling on another structure, but there is no movement of that structure
produced.

ISOTONIC (ANISOMETRIC) CONTRACTION: A muscle contraction in which
tension remains constant but the muscle shortens and pulls on another structure to produce
movement

MYOQELECTRIC: from the Latin Myo; as in muscle. The electrical potential, as detected
on the skin surface, generated by underlymg muscle activity

(MES) MYOELECTRIC SIGNAL: An alternative nomenclature for the
electromyographic signal (EMG).
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(MAP): (MUSCLE-FIBRE ACTION POTENTIAL OR MOTOR ACTION
POTENTIAL

The name given to the detected waveform resulting from the depolarisation wave as it
propagates in both directions along each muscle fibre from its motor end plate.

(MU) MOTOR UNIT: The term used to describe the single smallest controllable
muscular unit. The motor unit consists of a single alpha-motor neuron, its neuromuscuiar
junction and the muscle fibres it innervates (as few as 3, as many as 2000).

(MUAP) MOTOR UNIT ACTION POTENTIAL: The name given to the detected
waveform consisting of the spatiotemporal summation of individual muscle fibre action
potentials originating from muscle fibres in the vicinity of a given electrode or electrode
patr.

(MUAPT) MOTOR UNIT ACTION POTENTIAL TRAIN: The name givento a
repetitive sequence of MUAP's from a given motor unit.

PHASE: In electromyography, phase refers to the net excursion of the amplitude of a
signal in either the positive or negative direction. This differs from the electronics
definition where phase refers to the time difference between two waveforms of the same
frequency.

SHAPE: The characteristics of a signal that remains unaltered with linear scaling in either
the amplitude or time domains. An example of such charactenstics is the phases of an
action potential. '

SYNERGIST MUSCLE: a muscle that actively provides an additive contribution (to the
agonist muscle ) to a particular contraction function (net torque around a joint)

TWITCH RESPONSE (CONTRACTION): is the rapid jerky response of the muscle
fibre to a single stimulus

TISSUE FILTER FUNCTION (TFF): The capacitive reactance (Xc) of the tissues (skin,
fat, tendons, vascular pathways, etc.) and its attenuating effect on the higher frequencies of
the MES. The attenuating effect is that of a ‘low-pass filter’, with lower frequencies passed
and higher frequencies attenuated.

UNIPOLAR ELECTRODE: electrode set up that consists of only one detection surface.
WAVEFORM: The term that descnbes all aspects of the excursion of the potential,

voltage, or current associated with a signal as a function of time. It incorporates all the
notions of shape, amplitude, and time duration.
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Anatomical Position and Anatomical Names

When 1n the anatomical position, the subject stands erect facing the observer, the upper
extremities are placed at the sides, and the pal/ms of the hand are turmed forward.

Directional Terms

Adduction: movement of a bone toward the midline
Abduction: movement of a bone away from the midline
Distal: farther from the attachment of an extremity to the trunk or a structure;
farther from the point of origin
Proximal: nearer to the attachment of an extremity, to the trunk or a structure;
nearer to the point of origin
Superficial: toward or on the surface of the body
Superficialis: closer to surface
Deep: away from the surface of the body
Profundus: deep
Pronation: a movement of the flexed forearm
in which the palm of the hand is turned down (posteriorly) (inferior)
Supination: a movement of the flexed forearm
in which the palm of the hand is turned up (anteriorly) (superior)
Flexion: an decrease in the angle between the the anterior surfaces of articulating bones
Extension: an increase in the angle between the the anterior surfaces of articulating bones
Hyperextension: continuation of extension beyond the anatomical position
(see definition above of ‘anatomical position”)
Note; although the term ‘hyperextension’ should be technically used for

accuracy in describing the flexion actions involved in this research, it is often in practise
abbreviated to simply ‘extension’ and is widespread in use on the area of prosthetics.

Posterior (dorsal) view: nearer to or at the back of the body, e.g. back of hand
Anterior (ventral) view: nearer to or at the front of the body, front (patm) of hand
Lateral View: further from the midline of the body

Medial View: nearer to the midline of the body

Tendon: a cord of connective tissue that attaches the muscie to bone

Muscle Names:

‘maximus’ : means largest ‘Minimus’; means smallest
‘Longus’: means long ‘brevis™: means short
‘Biceps’ means two origins  “Triceps’ means three origins Quadriceps means four

ulnarus: of the ulna
radialis: of the radius
palma; of the palm
carpus: of the wrist
indicis: of the index
digit: of the finger
pollicis: of the thumb
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ANATOMICAL POSITIONS FOR THE UPPER LIMB

FLEXION

NSION OPPOSITION

supination «——» pronation

Flexion

g

Rotation

Wrist
Actions

W

Extension

Paim
_anterior

The Palm posterior has been rotated into
the supination position. The Palm anterior
Irolmcd into the pronation position.

Hyperextension

Thumb actions

ADDUCTION ABDUCTION CIRCUMDUCTION
Finger actions
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GRASP PATTERNS

A

REST
(HOOK GRIP)

HOOK or SNAP

' ¥ ! B! !

1 1 1 1

0 0 0 0 0

ROTATE} | pAISE CLOSE CLOSE ROTATE
THUMB | | tHUMB | | FINGER 1 FINGER2 | | WRIST

urp RIGHT
ROTATE| | LOWER OPEN OPEN ROTATE
THUMB| | THUMB| | FINGER1 | | FINGER2 | | WRIST
DOWN _ LEFT
y,/?x

g it §
T

‘LATERAL

Conversion of thumb and finger positions into variable
grasp patterns represented by a coded 5 digit state
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BRACHIALIS

MEDIAL EPICONDOYLE
OF HUMERUS

SUPINATOR

, FLEXOR DIGITORUM
F-- | PROFUNDUS
iy
| _PRONATOR TERES
(«€uT)

FLEXOR DIGITORUM
SUPERFICIALIS

| S| FLEXOR POLLLICIS
| LONGLUS

h l ABDUCTOR POLLICIS

I LONGUS

kA

i

PRONATOR QUADRATLS

ANTERIOR SUPERFICIAL VIEW

PL = PALMARIS LONGUS
P11 =PRONATOR TERES
FOCR =FLEXOR CARPI RADIALIS
FDS = FLEXOR DIGITORUM
SUPERFICIALIS
FOCU = FLEXOR CARPI ULNARIS

BICEPS BRACHH
BRACHIALIS

MEDIAN NERVE

PRONATOR TERES

BRACHIORADIALIS

k

PALMARIS LONGLS,|
FLEXOR CARP1 __ S
RADIALIS

FLEXOR CARPI
ULNARIS ‘)

A
FLEXOR DIGITORUM
SUPERFICIALIS

FLEXOR POLLLICIS |
LONGUS i
ABDUCTOR POLLICIS |
LONGUS

PRONATOR QUADRATLS

FLEXOR RETINACLLU

METACARPALS

TENDON OF FLEXOR
DIGITORUM SUPERFICIALIS

TENDON OF FLEXOR
DIGITORUM PROFUNDUS

7

ANTERIOR DEP VIEW

Anterior view of the muscles of the forearm used in wrist, hand and digit action.

View (a). shows the deeper muscles, while

View (b) shows the overlying superficial muscles.

Adapted from “Principles of Anatomy and Physiology’ by Tortora and Grabowski, Wiley and Sons 9"

Edition, 2000. ISBN 0-471-36692-7
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Plane of
section Extensor digitorum m.

Extensor carpi
ulnaris m.

Abductor pollicis longus m.

Flexor pollicis longus m-
Extensor pollicis
Radius longus m.
Extensor carpi Ulna
radialis brevis m.
Flexor digitorum
Extensor carpi profundus m.
radialis longus m.
Ulnar n.
Pronator teres m.
Ulnar a.
Brachioradialis m.
Flexor carpi ulnaris m.
Radial n.
Median n.
Radial a.
Flexor digitorum

Flexor carpi radialis m. superficialis m.

Anterior

{} Palmaris longus m.

Cross-section of the mid forearm showing the overlapping of the muscles within the muscle

compartments.
Adapted from ‘Hole’s Human anatomy and Physiology’, McGraw Hill 1999 page 316, ISBN 0-697-

34193-3.
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AVERAGING WITH THE HP3566A/3567A

PEAK HOLD AVERAGING : With peak hold the analyzer takes data until it reaches the specified number
of averages. The analyzer compares each frequency line in the measured frequency span with the
comresponding frequency line from the previous data. Only the largest value for each frequency is saved.
PEAK CONTINLUOUS: Same as peak hold averaging except that the analyzer takes data continuously (until
told to stop).

STABLE AVERAGING: weights old and new data records equally to yield the arithmetic mean for the
number of averages selected The measurement stops after the selected number of averages has been
calculated. This is the most cornmon averaging type.

EXPONENTIAL AVERAGING: Unlike stable averaging, exponential averaging weights new data more
than old data This is useful for tracking data that changes over time. The number of averages you select
determines the weighting of old versus new data, not the total number of averages calculated. Measurement is
continuous until paused or aborted.

The analyzer sets the number of averages chosen to the nearest power of 2 that is a closest value (to the
chosen number of averages).

To calculate the exponential average the analyser uses the following formula:-

N-1

Lovew+ 2L o1
N

where; N is a weighting factor {(number of averages).

When starting an exponential average, the analyzer sets N equal to 1 for the first analysis, and so on until N
equals the number of averages you specified.

Example: If number of averages selected = 32, the exp. average would be:-

—l—~><New+§—1>< old
32

32

Thus as N increases the influence of the Newest data sample value decreases and the influence of the older
sample dominates the results (increases).

If number of averages selected = 4,the exp. average would be:-

l><}\few+z><0ld
4 4

Thus as N is decreased, the newest (most recent) data sample dominates the results.
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STEEPER

The Steeper Myo hand offers the
user ultimate electric control in a
lightweight hand. Weighing from
just 231g, the hand provides a fast
and compliant grip combined with
reliable electronics housed within a
foam cosmesis.

A choice of Proportional or
Threshold control can be supplied
to cater to the needs of most users.
Available in a range of 5 sizes, the
hands may be fitted with either
PVC or silicone cosmetic gloves to
complete the cosmesis.

The Steeper Group of Companies

The Steeper model: The above year 2000 prosthetic hand is representative of the
standard technology that has hardly changed since the ‘Vaduz Hand’ of the 1960°s
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o Bock

ORTHOPAEDIC (U.K.) LIMITED

A Lo ny of the Ortto Bock Group
12, Parsonage Road - knglefield Green
Epgham Surrey TW 20-0]W
l'elephone (07 84) 43 88 41 - Telefax (07 84] 43 84 69

o Bock - 6465

The new Otto Bock System Electric Hand.
With proportional Dynamic Mode Control.

Myoelectric upper limb prostheses can be
more functional than ever thanks to the
latest advance in microchip control
circuitry. |he Dynamic Mode Control
consists of two independent systems
which proportionally control both grip
force and speed.

Special circuitry insures thar the strength
of the muscle signal directly controls grip
speed and force, which immediately adapt

(o any Sign l} ! E].{ll‘,’,t“«.

The System Electric Hand with yellow anodized finish will be available from September 1994

Finger speed ranges from 15- 130 mm
per second. The faster finger speed, casy
to-learn function, and optimal levels of
proportional grip force and speed offer
the patient an casily controlled,
physiological grasp.

The energy saving 8E39=4 and BE38=4
Otto Bock System Electric Hands arc
compatible with the 13E125 or 13E6GR

Proportional Electrodes

The OttoBock model: The above year 2000 prosthetic hand is representative of the
same standard of technology that has hardly changed since the ‘Vaduz Hand’ of the

1960’s
S. Roberts
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LIBERTY (Ve

=
MUTUALEg/

Prosthetics Group
71 Frankland Road
Hopkinton, MA 01748

Product

Bulletin

EMG Research
Electrodes

4 Gain Settings Customized to
Your Specs

A High Common-Mode Rejection
Excellent Input Impedance

> &

Static Voltage Protection tc
2,000V

ommitted to serving the EMG needs of the

research community, Liberty has developed a
unique EMG research electrode. Known as the
MYO115, this new electrode has a case measuring
just 1'/1eL x "/16W x ¥16H inches (26.5L x 17.2W x
4.8H mm). It attaches to your system via a standard
6-foot (2 m) length of ultraflex cable 0.087 inches
(2.2 mm) in diameter.

The MYO115 uses abipolar, differential amplifier to
provide myoelectric signals in the same form as they
appear on the skin. The common-mode rejection
ratio (CMRR) is greater than 90dB, and the input
impedance exceeds 10"Q2. Power consumption aver-
ages only 6mW, and the electrode is protected from
electrostatic discharge (ESD) up to 2,000V. We will
customize the MYO115’s gain settings to your speci-
fications at no extra charge. If you're not sure what
the optimal gain setting is, we can offer technical
assistance in determining the proper level. In addi-
tion, our staff can assist you in selecting the appropri-
ate circuitry or power supply for your intended use.

S. Roberts

Phone: (508) 435-9061 « Fax: (508) 435-8360 » Orders Only: (800) 437-0024
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ORDERING INFORMATION

MYO 115 — EMG Research Electrode

White Wire: Signal Output
Green Wire: Ground or Common

Black Wire: Supply (-)
Red Wire: Supply (+)

TECHNICAL SPECIFICATIONS
Supply Voltage................... Dual Supply £3 to 18V
Supply Rejection ...............>70dB
Power Consumption ..........BmW (avg.}
Input Protection.................. ESD 2,000V
Input Impedance ................ >10"Q
Input CMRA ........cecerrvinncee >90dB
Input Range .........ccocevvnmenee 0.510 1,500 uV
NOB®.........co e rrereceecenienes O TRV RMS
Frequency Response......... Bandpass 3dB
@ ©0 and 500 Hz
10 veraenenss =900 10 6,000
(customer specified)
ELECTRODE CASE DIMENSIONS

Length.......cccieiieriecnninnae. 116" (26.5 mm)

Width ... "he' (17.2 mm)
HOOIM e 3s" (4.8 mm)
TO ORDER ASK FOR:

MYO 115....ccnnscerecnssannnrs EMG Research Electrodes

LIBERTY( My |

MUTUALE? >

¥ RESEARCH

CENTER

Prosthetics Group

71 Frankland Road
Hopkinton, MA 01748
Phone: (508) 435-9061
Fax: (508) 435-8389
Orders Only. (800) 437-0024

in Canada Corvact: (vematonal PRO Distridufion Centrs inc.. FLAL#S, Fredericton, NLB. E38 4X5. Phone or Fax [308) 450-8878

Printed 1 U.S A

S. Roberts
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