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Abstract 

 

Merlin has broad tumor suppressor functions as its mutations have been identified in multiple 

benign tumors and malignant cancers. In all schwannomas, the majority of meningiomas and 

1/3 of ependymomas Merlin loss is causative. In Neurofibromatosis type 2, a dominantly 

inherited tumor disease due to the loss of Merlin, patients suffer from multiple nervous 

system tumors and die on average around age 40. Chemotherapy is not effective and tumor 

localization and multiplicity make surgery and radiosurgery challenging and morbidity is 

often considerable. Thus, a new therapeutic approach is needed for these tumors. Using a 

primary human in vitro model for Merlin-deficient tumors, we report that the 

Ras/Raf/MEK/ERK scaffold Kinase Suppressor of Ras 1 (KSR1) plays a vital role in 

promoting schwannomas development. We show that KSR1 overexpression is involved in 

many pathological phenotypes caused by Merlin loss, namely multipolar morphology, 

enhanced cell-matrix adhesion, focal adhesion and, most importantly, increased proliferation 

and survival. Our data demonstrate that KSR1 has a wider role than MEK1/2 in the 

development of schwannomas because adhesion is more dependent on KSR1 than MEK1/2. 

Immunoprecipitation analysis reveals that KSR1 is a novel binding partner of Merlin, which 

suppresses KSR1’s function by inhibiting the binding between KSR1 and c-Raf. Our 

proteomic analysis also demonstrates that KSR1 interacts with several Merlin downstream 

effectors, including E3 Ubiquitin Ligase CRL4DCAF1. Further functional study suggests that 

KSR1 and DCAF1 might co-operate to regulate schwannomas formation. Taken together, 

these findings suggest that KSR1 serves as a potential therapeutic target for Merlin-deficient 

tumors.       
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Introduction 

 

Merlin, which is encoded by the gene Neurofibromin 2, has broad tumor suppressor functions 

as its mutations have been identified in benign tumors and cancers including malignant 

mesotheliomas, glioblastoma and pancreatic cancers. Schwannomas are benign nerve sheath 

tumors composed of Schwann cells. This type of tumor is caused only by functional loss of 

Merlin. Schwannomas can be sporadic or familial as part of the genetic disease, 

neurofibromatosis type 2 (NF2), in which other nervous system tumors called meningiomas 

and ependymomas also occur (1). NF2 affects 1 in 40,000 individuals and 1 in 300 people 

will develop a tumor caused by Merlin loss during their lifetime (2).  

Previously, our work and other studies suggested that Merlin suppresses tumorigenesis at the 

plasma membrane and in the nucleus (3). At the membrane, Merlin inhibits multiple 

mitogenic signaling pathways, including the Mitogen-Activated Protein Kinase (MAPK) 

Raf/MEK/ERK, PI3K/AKT and Wnt/β-catenin pathways (4-6). In the nucleus, Merlin 

inhibits an E3 ubiquitin ligase CRL4DCAF1 by preventing recruitment of its substrates (7, 8). 

Using MEK1/2 inhibitors we have shown that the Raf/MEK/ERK pathway is the key 

pathway that promotes proliferation in schwannoma cells (6, 9). However, drug specificity, 

side effects and drug resistance can be severe problems when treating patients with MEK1/2 

inhibitors and therefore a more specific therapeutic target needs to be identified.  

Kinase Suppressor of Ras 1 (KSR1) functions as a specific scaffold protein for the 

Raf/MEK/ERK pathway (10). KSR1 translocates to the plasma membrane upon growth 

factor stimulation, where it forms a complex with activated MEK1/2, ERK1/2 and Raf, which 

also translocates to the plasma membrane through association with Ras-GTP (11). KSR1 is 

necessary for sustained ERK1/2 activation and cell cycle entry induced by platelet-derived 
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growth factor (PDGF) (12), which is an important growth factor for schwannoma cells (5, 6). 

There are many lines of evidence that support KSR1 as an attractive target for therapies 

against tumors. Firstly, KSR1 is upregulated in several types of cancers including human 

endometrial carcinoma (13) and oral squamous cell carcinoma (14).  Secondly, KSR1 

dominant negative mutants are able to reverse the phenotype of transgenic animals including 

C. elegans and D. melanogaster, harboring activated Ras alleles (15-18). Thirdly and most 

importantly, KSR-/- mice are normal in development but resistant to Ras-induced skin 

tumorigenesis (19).  

We use human primary schwannomas as a model to identify and validate potential 

therapeutic targets for Merlin-deficient tumors. Our present study shows that the suppression 

of KSR1 expression inhibits schwannoma growth by altering cell morphology, diminishing 

cell-matrix adhesion, decreasing proliferation and increasing apoptosis. The fact that 

adhesion is affected after KSR1 inhibition but not by MEK1/2 inhibitors indicates that KSR1 

has a wider role than MEK1/2 in the development of schwannomas. Importantly, 

Immunoprecipitation/Mass Spectrometry (IP/MS) followed by Ingenuity Pathway Analysis 

(IPA) shows that KSR1 is regulated by Merlin through shared binding partners, such as c-Raf 

and DCAF1. Taken together, our data show that KSR1 plays a vital role in the development 

of schwannomas and that its suppression can reduce several phenotypes typical for 

schwannoma progression. We thus propose KSR1 as a novel and likely safer therapeutic 

target than MEK1/2 in Merlin-deficient tumors.  

 

Results 

 

KSR1 is overexpressed in schwannoma cells 
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To test the relevance of KSR1 in Merlin-deficient tumors, we first compared the expression 

and localization of KSR1 between cultured human normal Schwann and Merlin-deficient 

schwannoma cells. Our data demonstrate that KSR1 expression is significantly increased at 

the mRNA (Fig. 1a，  N=3) and protein levels (Fig. 1b，  N=8). In addition, KSR1 shows 

increased localization to the plasma membrane and the nucleus (Fig. 1c) in schwannoma cells 

compared to Schwann cells. We further investigated expression and localization of KSR1 in 

15 tissue samples (5 schwannomas, 5 traumatic neuromas and 5 normal nerves). 

Immunohistochemical staining shows strong KSR1 expression in the positive control tonsil 

tissue and traumatic neuroma whilst there is no signal observed in the antibody-omitted 

negative control (Supplementary Fig. 1). Then, we stained KSR1 in normal peripheral nerves 

(NF2+/+) and schwannomas (NF2-/-).  In agreement with our in vitro data, we observed that 

KSR1 had a much higher expression in a schwannoma than in the adjacent nerve in a single 

section (Fig. 1d, left panel). We also stained KSR1 in a normal nerve and schwannoma 

separately (Fig. 1d, middle and right panels). Again, KSR1 is more highly expressed in 

schwannoma, where it shows both granular cytoplasmic and nuclear localization, than in 

normal nerves, where only very weak staining was detected. In addition stronger and wider 

spread staining were observed in schwannomas compared to traumatic neuromas (data not 

shown). Taken together, our in vitro and immunohistochemistry data demonstrate that the 

expression and the localization of KSR1 are negatively regulated by Merlin.    

 

KSR1 increases ERK1/2 but not JNK or AKT activity in schwannoma cells 

As schwannomas show increased KSR1 expression as well as an activated Raf/MEK/ERK 

pathway, we asked whether knockdown of KSR1 would affect the activation of ERK1/2 in 

schwannoma cells. Western blot analysis shows that the KSR1 protein was effectively 

knocked down in cells infected with lentiviruses encoding two different shRNA-KSR1 
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constructs, shRNA-A and shRNA-C, compared to a scrambled sh-control (Fig. 2a&b).  To 

confirm that KSR1 positively modulates the ERK1/2 pathway in schwannoma cells, we 

compared the growth factor medium (GFM)-induced transient activation of ERK1/2 among 

sh-control and KSR1 shRNA-A&C transduced cells. ERK1/2 activity (phosphorylation at 

Thr202/Tyr204) was significantly reduced after KSR1 knockdown compared to the sh-

control (Fig. 2c&d). In contrast, the phosphorylation of JNK at Thr183/Tyr185 and AKT at 

Ser473 was not significantly affected by knockdown of KSR1. In addition, MEK1/2 activity 

(Ser217/221) was reduced in KSR1 shRNA-C transduced cells (Supplementary Fig. 2C). 

These results suggest that KSR1 is a positive regulator and specific scaffold of the 

Raf/MEK/ERK pathway in human schwannoma cells and that its increased expression in 

schwannoma cells contributes to increased ERK1/2 activity.   

 

KSR1 regulates schwannoma cell morphology and adhesions  

Previously, we and others showed that Merlin-deficient human schwannomas exhibit 

increased cell-spreading, with cells changing from a bipolar to a multipolar shape (20, 21). 

As expected, Merlin has the ability to correct these morphological changes as infection with 

an adenovirus encoding NF2-GFP dramatically induced cell elongation, resulting in the 

bipolar cell number increasing up to 6 fold in 48 hours (Fig. 3c&e). Interestingly, we 

observed that KSR1 shRNA transduced schwannoma cells exhibit significant morphological 

changes after 7 days. There was a 2.5-fold increase in bipolar cells among shRNA-C 

knockdown cells, compared to controls where the majority of cells had a multipolar shape 

(Fig. 3a&d). Similar morphological changes have also been observed in schwannoma cells 

treated with Sorafenib (PDGFR/Raf inhibitor, 1 µM) and U0126 (MEK1/2 inhibitor, 20 µM) 

for 72 hours (Fig. 3b&d). These results suggest that the pathological changes in the 

cytoskeleton of Merlin-deficient schwannomas are partly regulated by the KSR1-
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Raf/MEK/ERK pathway. To test whether overexpression of KSR1 can directly promote 

pathological changes in normal Schwann cells similar to Merlin loss, we introduced wild-

type KSR1 or one of two KSR1 mutants (S443A and 4xA) into control Schwann cells. These 

mutants are insensitive to negative feedback from ERK1/2 and thus enhance and prolong 

ERK1/2 output compared to wild-type KSR1 (22, 23).  As shown in Fig. 3f&g, both KSR1 

mutants S443A and 4xA produce a greater increase in the number of multipolar cells than 

wild-type KSR1, demonstrating that the morphological changes are directly proportional to 

the biological activity of KSR1. Taken together, our data demonstrate that KSR1 is an 

essential player in regulating schwannoma cell spreading.  

In relation to increased spreading, schwannoma cells have increased formation of focal 

adhesions and enhanced adhesion to the extracellular matrix (20, 24, 25). Previously we 

demonstrated that the Raf/MEK/ERK pathway can play a role in cell-matrix adhesion in 

schwannoma cells (26). Therefore we asked whether this behavior could be modulated by 

KSR1. As expected, the sh-control transduced schwannoma cells showed strong focal 

adhesion staining around the cell edge (Fig. 3h). In the shRNA-A and C transduced cells, it 

appeared that Paxillin, which was used as focal adhesion marker, relocated from the cell edge 

to the cytosol and quantification showed that approximately 73-83% of focal adhesions were 

disassembled after suppression of KSR1 expression (Fig. 3i). The functional relevance of 

KSR1 in adhesion was further supported by adhesion assays (Fig. 3j). Compared to the sh-

control, shRNA-A and shRNA-C reduced the ability of schwannoma cells to adhere to a 

laminin-based extracellular matrix from 100% to 50.3% and 32.5%, respectively. 

Interestingly, the use of the MEK1/2 inhibitor U0126, which effectively reduced ERK1/2 

activity in schwannoma cells (data not shown), caused only a non-significant reduction in 

GFM-mediated adhesion (Fig. 3j). Therefore, our data suggest that KSR1 has a MEK1/2-

independent role in promoting adhesion in schwannomas. 
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KSR1 regulates schwannoma cell proliferation and apoptosis 

To further verify that KSR1 plays an important role in the development of Merlin-deficient 

tumors, we tested the requirement of KSR1 for the proliferation and apoptosis of 

schwannoma cells. Fig. 4a&b show that knockdown of KSR1 reduces cell proliferation (Ki67 

index) induced by GFM by up to 71.5% (shRNA-C). ShRNA-A had a slightly smaller but 

significant effect (61.7% reduction) on proliferation under the same conditions, likely due to 

the less efficient knockdown of KSR1, compared to shRNA-C (Fig. 2a). Furthermore, we 

show that knockdown of KSR1 is as effective as inhibition of MEK1/2 activity (U0126) in 

reducing tumor cell proliferation (Fig. 4b).  

Previous research suggests that KSR1 is highly responsive to PDGF stimulation (12), an 

integral growth factor for schwannoma proliferation, and therefore we tested KSR1’s role in 

the PDGF-induced proliferation of schwannoma (6). Ki67 staining and mitotic index 

quantification shows that knockdown of KSR1 significantly reduced proliferation by up to 

87% in KSR1 shRNA-C PDGF treated cells (Fig. 4c&d). In addition, PDGF-mediated 

transient activation of ERK1/2 was almost abolished by shRNA-C (Supplementary Fig. 2a).  

This suggests that KSR1 knockdown is effective at reducing PDGF-induced proliferation in 

schwannomas. 

Additionally we performed a time course for KSR1 shRNA and measured cell proliferation. 

Cells were transduced with shRNA-C for 2, 4 and 6 days without puromycin selection before 

Ki67 proliferation assays were carried out. The efficiency of knockdown of KSR1 was 

determined by WB in parallel. Indeed, the Ki67 staining in shRNA-C transduced cells had 

significant reductions starting from day 2 compared to sh-control (Fig. 4e). The reduction of 

proliferation was proportional to the knockdown efficiency of KSR1 over time (Fig. 4e and 

Supplementary Fig. 2b). In addition, we observed that MEK1/2 and ERK1/2 activity also 



10 
 

decreased over time (Supplementary Fig 2c). These observations confirm the scaffolding role 

of KSR1 and also suggest the importance of the Raf/MEK/ERK pathway in proliferation of 

schwannoma cells.      

It has been shown that KSR1–ERK1/2 signaling is a convergence point for anti-apoptotic 

pathways in cultured rat cortical neurons (27). Thus we tested the role of KSR1 in apoptosis 

of schwannoma cells. Schwannoma cells were infected with lentiviruses containing shRNA 

(control and KSR1 shRNAs) and selected with puromycin for 7 days, then starved for 24 

hours to trigger apoptosis. The apoptotic activity was measured by a robust and quantitative 

Caspase-Glo® 3/7 Assay. The results of the apoptotic assay show that knockdown of KSR1 

with shRNA-C can significantly increase apoptosis of schwannoma cells and that the 

combination of shRNA-A and C gave a stronger and more significant effect on apoptosis   

(Fig. 4f).  

 

KSR1 interacts with Merlin effectors  

It has been demonstrated that KSR1 exists in a large complex which includes, but is not 

limited to, components of the Raf/MEK/ERK cascade (28, 29). Merlin exerts its tumor 

suppressor role through its inhibition of multiple proteins from the membrane to nucleus (3). 

To understand the mechanism through which KSR1 is negatively regulated by Merlin and 

how KSR1 promotes adhesion and proliferation in Merlin-deficient cells, we compared the 

KSR1 and Merlin protein interaction complexes (interactomes) by quantitative IP/MS in 

HEK293T cells, which were previously used to study KSR1 and Merlin complexes (5, 28). 

The proteomic analysis identified 156 interactors for Merlin (Supplementary Table 1) and 

224 interactors for KSR1 (Supplementary Table 2). Many well-known binding partners were 

identified for Merlin, e.g., AMOTL1/2 from the Angiomotin family, and DCAF1 (also called 

VPRBP) from the CRL4 E3 ligase complex. As expected, MEK2 was found to be the 
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strongest binding partner for KSR1. MEK1, ERK2 (MAPK1) and 14-3-3 (YWHA) were also 

identified in the KSR1 interactome. C-Raf was identified in the KSR1 IP samples, albeit 

below the threshold in fold changes between IP and control samples that we applied for 

identifying specific interaction partners. This may be due to the known weak and transient 

binding between KSR1 and Raf. Interestingly, 32 overlapping proteins were identified 

between the Merlin and KSR1 interactomes (Fig. 5a). Cellular localization analysis in Qiagen 

IPA identified that 44% of the overlapped proteins are localized in the nucleus, 41% in the 

cytoplasm, 6% at the plasma membrane, 3% in the extracellular space and 6% with an 

unidentified location (Fig. 5a). The top 10 shared binding partners included Angiomotin at 

the plasma membrane and DCAF1 and DDB1, two important components of the CRL4 E3 

ligase complex, within the nucleus (Supplementary Table 3). To further examine the meaning 

and networking of overlapped interactors, we performed a protein-protein interaction network 

analysis with the IPA. The IPA networking analysis highlighted previous findings with the 

identification of a complex including DCAF1, DDB1, histone deacetylase 1 (HDAC1), 

AKAP8-like protein and Emerin linked to Histone H3 and Actin (Fig. 5b). To further 

enhance our understanding of Merlin and KSR1 complexes, we analyzed and compared the 

composition of Merlin and KSR1 complexes in terms of different biological functions 

(morphology, cellular movement, DNA replication/recombination/repair, cell cycle, gene 

expression, cell death/survival and proliferation) (Fig. 5c). These comparisons identified 

strong connection points between KSR1 and Merlin’s major downstream effectors, e.g., 

Angiomotin and DCAF1. Importantly, both Merlin and KSR1 could interact with 

Angiomotin, tubulin 4A and cytoskeleton associated protein 5 to regulate morphology.  In 

agreement with the adhesion assays in Fig. 3i&j, we observed that 32 binding partners 

(13.6% of total binding partners) of KSR1 have roles in cellular movement. Among them, 

poly ADP-ribose polymerase 1 (PARP1) and melanocortin 1 receptor interact with both 
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KSR1 and Merlin. Interestingly, PARP1, DCAF1/VprBP and HDAC1 were identified as 3 

important interactors between KSR1 and Merlin protein complexes as they appeared in many 

biological functions from DNA replication to cell death and proliferation. In support of our 

hypothesis that KSR1 has a crucial role in Merlin-deficient tumors, we found that 24 out of 

32 (75%) shared interactors between Merlin and KSR1 are involved in cancer (Fig. 5c & 

Supplementary Table 3).  

 

KSR1 is inhibited by Merlin and co-operates with DCAF1 to regulate schwannoma 

formation 

In IP/MS, we were not able to identify endogenous Merlin in the KSR1 complex or vice 

versa. We think this might be due to the low expression of endogenous KSR1 and Merlin 

proteins. Therefore, we tested whether overexpressed KSR1 and Merlin interact directly in 

HEK293T cells. Co-IP data confirmed that indeed, KSR1 forms a complex with Merlin 

regardless of its Serine 518 phosphorylation status, which is important for Merlin’s tumor 

suppressor role (Fig. 6a). Overexpressed Merlin wildtype could immunoprecipitate 

endogenous KSR1 (supplementary Fig. 3a). KSR1 N-terminal truncated mutation has 

stronger binding ability with Merlin protein, compared to KSR1 c-terminal (supplementary 

Fig. 3b). The interaction between KSR1 and MEK1/2 was not affected by introducing 

Merlin-S518A/D, or Merlin wild-type into the KSR1 complex (Fig. 6a, supplementary Fig. 

3c). However, the binding of proto-oncogene c-Raf and phospho-MEK1/2 to KSR1 was 

reduced after introducing active Merlin-S518A, but not Merlin-S518D, into the KSR1 

complex (Fig. 6a). This result suggests that active Merlin might inhibit KSR1’s activity by 

reducing the chance of forming a KSR1-Raf/MEK/ERK complex by physically blocking 

KSR1 from contacting c-Raf and therefore inhibiting the activity of MEK1/2 (Fig. 6a). 
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Therefore, a more productive KSR1-Raf/MEK/ERK complex can be formed in Merlin-

deficient tumors.  

Our proteomic evidence in HEK293T cells showed that KSR1 protein interacts with several 

components of the CRL4DCAF1 E3 ligase complex including DCAF1, Cullin4A/B and DDB1 

proteins. To confirm the binding between KSR1 and DCAF1, we carried out Co-

immunoprecipitation analysis of overexpressed murine KSR1 protein in HEK293T cells. This 

experiment confirms that KSR1 interacts strongly with endogenous DCAF1 and MEK1/2 

(Fig. 6b). Using a polyclonal antibody against DCAF1, we immunoprecipitated endogenous 

DCAF1 and its binding partners. Western blot analysis confirmed that recombinant KSR1 

and endogenous Merlin can be detected in the DCAF1-complex (Fig. 6c).  To understand the 

relationship between DCAF1 and KSR1 and its clinical relevance, we further investigated the 

localization of DCAF1 and KSR1 in primary human schwannoma cells. Figure 6d shows that 

KSR1 and DCAF1 co-localize in the nucleus (Z-stack staining). The nuclear localization of 

KSR1 and DCAF1 in schwannoma cells is further confirmed by a fractionation biochemical 

approach, in which HDAC1 was used as the nuclear marker and GAPDH served as the 

cytoplasmic marker (Fig. 6e). Considering that DCAF1 is the receptor for CRL4 E3 ligase, 

we then asked whether KSR1 is a potential substrate of DCAF1 for degradation. However the 

suppression of DCAF1 by shRNA (Fig. 6f) did not alter the protein level of KSR1, indicating 

that it is unlikely that KSR1 degradation is mediated by CRL4DCAF1. Based on the previously 

identified oncogenic roles of DCAF1 and KSR1, we then tested whether DCAF1 and KSR1 

could co-operate to regulate proliferation in schwannoma cells. As expected, single 

knockdown of DCAF1 or KSR1 suppressed schwannoma cell proliferation. Importantly, 

double knockdown of KSR1 and DCAF1 showed significant and additive inhibition of 

schwannoma proliferation when compared to sh-control or single knockdown with sh-KSR1 

or sh-DCAF1 (Fig. 6g). These results suggest that KSR1 co-operates with DCAF1 but it is 
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not negatively regulated by DCAF1 in Merlin-deficient cells. In addition, it has been shown 

that DCAF1 functions upstream of adhesion pathways, as suppression of DCAF1 in mouse 

schwannoma cells down-regulated several adhesion genes including integrin subunit Itga6, 

integrin counter-receptor Vcam1, and the integrin linked kinase llk (8). Therefore, Merlin 

suppresses proliferation and adhesion, at least partly, through inhibiting KSR1 and DCAF1.  

 

Discussion 

In this report we show that the Raf/MEK/ERK scaffold protein KSR1 promotes Merlin-

deficient tumors using human primary schwannoma as a model. KSR1 expression is 

increased and the protein is enriched at the plasma membrane and in the nucleus, which is 

likely responsible for many of the pathological phenotypes caused by Merlin loss. Proteomic 

analysis of Merlin and KSR1 complexes suggested that KSR1 interacts with several effectors 

of Merlin including DCAF1 and Angiomotin. Importantly, introducing Merlin into the KSR1 

complex has a direct impact on the stability of the KSR1 complex by disturbing the binding 

between KSR1 and c-Raf. Finally, our results indicate that KSR1-promoted schwannoma 

proliferation is targetable and linked to the E3 ubiquitin ligase complex CRL4DCAF1.  

It has been suggested that the nuclear localization of KSR1 is regulated by phosphorylation 

and MEK1/2 binding (30). Our data shows that KSR1 localizes to the nucleus in addition to 

the plasma membrane in human schwannoma cells. In addition, our previous in vivo and in 

vitro study showed that phosphorylated MEK1/2 and ERK1/2 were localized in the nuclei of 

schwannomas (9, 31). Therefore we propose that KSR1 might function together with 

activated MEK1/2 and ERK1/2 in the nucleus, promoting schwannoma proliferation. Our 

proteomic data further suggests that KSR1 might have an unexpected nuclear function, 

because a large proportion of KSR1’s binding partners are localized in the nucleus. Protein-

protein network analysis with IPA revealed that together with DCAF1, nuclear KSR1 might 
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function upstream of HDAC1. In addition, HDAC6 and NAD+-dependent protein deacetylase 

Sirtuin 1 (Sirt1) were detected in the KSR1-complex. The link between KSR1 and Sirt1 has 

been suggested in a breast cancer cell line, as KSR1 modulated p53 deacetylation and 

transcriptional activity via a DBC1-Sirt1 interaction (32). In agreement with these 

observations, we recently demonstrated that Merlin positively regulates p53/MDM2 signaling 

using our schwannoma model (33). Further investigation is needed to understand the 

regulation of deacetylation by nuclear KSR1 and how that regulation contributes to the 

development of Merlin-deficient tumors.  

In agreement with a previous report (28), we identified an interaction between KSR1 and the 

E3 ubiquitin ligase CRL4DCAF1 in HEK293T cells and schwannomas. Previously, Li et al. (8) 

had demonstrated that Merlin suppresses tumorigenesis by entering the nucleus and inhibiting 

the E3 ubiquitin ligase, CRL4DCAF1, by preventing its substrate recruitment. Additionally, it 

has been shown that CRL4DCAF1 promotes YAP and TEAD-dependent transcription by 

ubiquitylating and thereby inhibiting Lats1/2 (7). In light of this, we asked whether KSR1 is 

the substrate of CRL4DCAF1 for degradation. However, shRNA knockdown of DCAF1 could 

not increase the level of KSR1, demonstrating that KSR1 is not degraded by the ubiquitin E3 

ligase CRL4DCAF1. Further experiments will be helpful to clarify whether KSR1 is mono-

ubiquitinated by CRL4DCAF1 or if the interaction has additional, ubiquitin-independent 

functions. Interestingly, Stebbing et al. demonstrated that KSR1 can have a tumor 

suppressive role in breast cancer by regulating BRCA1 ubiquitination and degradation(34). 

Here we show that KSR1 co-operates with the Raf/MEK/ERK pathway and ubiquitin E3 

ligase CRL4DCAF1 to promote schwannoma proliferation. Therefore the role of KSR1 in 

cancer likely is tissue specific and/or dependent on the crosstalk between KSR1 and different 

ubiquitin E3 ligases.      
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To understand KSR1’s role in normal cells and Merlin-deficient tumors, we summarized our 

working model in Figure 7. In normal cells, Merlin reduces the expression of KSR1 and 

restricts its localization to the cytoplasm. Merlin might also directly disturb the KSR1-

Raf/MEK/ERK complex through physical interaction. In the nucleus, Merlin binds directly to 

the E3 ligase receptor DCAF1 and inhibits its target recruitment. Normal (Schwann) cells are 

therefore maintained in the quiescent state and exhibit a bipolar shape with highly organized 

F-actin and fewer cell-matrix and focal adhesions. In Merlin-deficient tumor cells, KSR1 

expression is increased and KSR1 translocates to the plasma membrane, where it assembles 

the Raf/MEK/ERK complex upon receiving the mitogenic signal mediated by PDGF and 

integrin. In turn, the activated ERK1/2 pathway facilitates the assembly of focal adhesions 

and the reorganization of the F-actin-linked cytoskeleton to establish the multipolar shape of 

the tumor cells. In addition, KSR1 has a MEK1/2-independent role in regulating adhesions. 

KSR1 together with activated MEK1/2 and ERK1/2 shuttles into the nucleus and binds to 

CRL4DCAF1 to potentially regulate HDAC1 and nuclear F-actin. CRL4DCAF1 drives oncogenic 

gene expression and therefore enhances the level of integrin and PDGFR providing sustained 

activation of the KSR1-ERK1/2 pathway. As a result, an active loop is established, which 

leads to increased adhesion, proliferation and survival of tumor cells. 

Taken together, we have demonstrated that Merlin inhibits KSR1 activity by reducing KSR1 

expression, restricting its localization, and disturbing its binding with c-Raf. Our data also 

show that KSR1 is important for the development of Merlin-deficient tumors. KSR1 has a 

MEK1/2-dependent role in tumor cell proliferation and a MEK1/2-independent role in 

adhesion. KSR1 interacts with important regulators in Merlin-deficient tumors and might co-

operate with DCAF1 to regulate tumor formation. Therefore, targeting KSR1 represents a 

more promising strategy than MEK1/2 inhibition and hits more tumor targets relevant in 

tumorigenesis of Merlin-deficient tumors.  
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Materials and Methods 

 

Primary Cells and Cell Line 

Human schwannomas cells were provided by NF2 patients after informed consent. Schwann 

cells from healthy nerve donors were used in this research. Isolation and culturing were 

carried out as previously described (21) and approved by local ethics committees. HEK293T 

cells were cultured under standard conditions.  

 

RT-PCR 
 
RT-PCR was previously described (35). KSR1 primers (GGGGAGCACAAGGAGGACT 

and GCGTGCAGGGGAATACAGG) were used. Band densities were quantified using 

FluorS-Multi-Imager and Quantity One. 

 

Vectors and Transfection 

Plasmids pcDNA3-pyo-mKSR1 wild-type, S443A and 4xA (11, 22), pcDNA3.2-V5-Merlin-

S518A/D (5) were described previously. All transfections for schwannoma cells were carried 

out with LipofectamineTM 2000 (Invitrogen). Fugene® 6 (Roche) was used for transfection of 

HEK293T cells.  

 

shRNA Knockdown 

A set of pLKO.1-shRNA plasmid encoding a short hairpin RNA (shRNA) with scrambled 

sequence or sequences targeting human KSR1 (NM_014238), was purchased from Open 

Biosystems. Two shRNA clones, TRCN0000006226 and TRCN0000006229, were chosen 
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for lentivirus production. Sh-DCAF1 and shRNA transduction in schwannoma cells were 

described previously (8).   

 

Immunoprecipitation and Immunoblotting  

HEK293T cells were transiently transfected with pcDNA3-Pyo-mKSR1-wt. Cells were lysed 

with low salt Triton X-100 lysis buffer described by McKay & Morrison (36). Detailed 

method of co-IP is described in the supplementary information. Western blot analysis was 

carried out as previously described (5). Fractionation assay was previously described(8).  

 

Immunocytochemistry and immunohistochemistry 

Immunocytochemistry analysis was carried out as previously described (5).  

Formalin-fixed paraffin-embedded tissue samples from 5 schwannomas and 5 normal nerve 

biopsies were used. Detailed method of immunohistochemistry is described in the 

supplementary information. 

 

Functional assays:  Proliferation, Adhesion and Apoptosis 

Proliferation assay was described previously (5). Adhesion assay was described by Utermark 

et al. (25).  In brief, cells were detached and centrifuged, the pellet re-suspended in GFM 

medium. Equal cell numbers per condition were seeded into poly-L-lysine/laminin treated 

plates. After 3 h incubation at 37°C, cells were rinsed twice with PBS to wash away loose 

cells. Adherent cells were fixed in 4% paraformaldehyde (Sigma-Aldrich) and subsequently 

counted under an Olympus phase contrast microscope. Cell apoptosis was determined with 

the Caspase-Glo ®3/7 Assay kit (Promega) according to the manufacture’s instruction.  

 
LC-MS/MS and IPA  
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Detailed methods of LC-MS/MS and Qiagen IPA data analysis are described in the 

supplementary information. A fold change of 1.75 was used as cut-off to select the binding 

partners in the final dataset.  

Statistical analysis  

Two-sided Student’s t-test was used in this study. Each experiment was repeated at least three 

times using at least three independent batches of cells from different individuals and 

represented as mean±s.e.m. P<0.05 was considered to be statistically significant. Sample size 

(n) was indicated in figure legend.  
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Figure Legends 

 

Figure 1. KSR1 is overexpressed in schwannomas. Expression of KSR1 at the mRNA 

level in schwannoma cells (NF2-/-) and normal Schwann cells (NF2+/+) (a) and the protein 

level (b) Glucose-6-phosphate dehydrogenase (G6PDH) was used as control for RT-PCR. 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) served as loading control for Western 

blot analysis. Error bars represent the mean ±SEM. Statistical data analysis was carried out 

using Student’s t-test (* p<0.05; ** p<0.01, n=3 for RT-PCR; n=8 for western blotting). (c) 

Schwann and schwannoma cells were transfected with pcDNA3-pyo-mKSR1 and then 
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stained with anti-KSR1 (red). DAPI (blue) was used as the nuclear marker. Scale bar = 10 

µm. White arrows indicate nuclear regions. (d) Immunohistochemical staining of KSR1 in 

schwannomas and controls (n=15). Left panel, KSR1 staining in schwannoma tissue and 

adjacent nerves in a single section, scale bar = 200 µm. Middle and right panel, staining of 

KSR1 in schwannomas tissue and normal nerves in separated sections, scale bar = 50 µm. 

 

Figure 2. Knockdown of KSR1 reduces ERK1/2 activity in schwannoma cells. (a) 

Western Blot was used to confirm the knockdown efficiency of KSR1. Schwannoma cells 

were infected with lentivirus based sh-control (scrambled, blue), KSR1 shRNA-A (red) and C 

(green), and selected with puromycin for 10 days. (b) Quantification of KSR1 knockdown. 

(c) The phosphorylation and total protein levels of ERK1/2, JNK1/2 and AKT were 

compared by western blot among sh-control, shRNA-A and shRNA-C. (d) Quantification of 

the activity of ERK1/2, JNK and AKT pathways after being corrected with their total protein 

counterpart and loading control GAPDH. Error bars represent the mean ±SEM. Statistical 

data analysis was carried out using Student’s t-test (ns: p>0.05; * p<0.05; ** p<0.01; *** 

p<0.001, n=3). 

 

 Figure 3.  KSR1 regulates morphology, focal adhesion and adhesion of schwannoma 

cells. (a) Morphological changes of KSR1 shRNA (A and C), compared to sh-control, 7 days 

after transduction & selection. (b) Morphological changes in schwannoma cells treated with 

Sorafenib (PDGFR/Raf inhibitor, 1 μM) and U0126 (MEK1/2 inhibitor, 20 μM) for 72 hours, 

compared to DMSO control. Schwannoma cells (NF2-/-) were stained with Alexa Fluor® 

488 Phalloidin (F-actin, cytoskeleton marker) and DAPI (nuclear marker). (c) Schwannoma 

cells were infected with adenovirus encoding NF2-GFP and GFP alone (48 hours). The 

morphology was compared by GFP staining. (d&e) Quantification of the increase in bipolar 
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cells (manually counted) after treatment with shRNA–A, shRNA–C, Sorafenib, U0126, and 

NF2-GFP (Merlin reintroduction), compared to their controls. (f) Schwann cells (NF+/+) 

were transfected with mKSR1-WT, and KSR1 feedback-deficient mutants, mKSR1S443A 

and 4xA for 48 hours and stained with anti-KSR1 antibody (red) and DAPI (blue). The 

multipolar cells were counted manually and shown in (g). (h) sh-control and KSR1 shRNA-A 

and C infected schwannoma cells were stained with focal adhesion (FA) marker Paxillin (red) 

and DAPI (blue). (i) Quantification of focal adhesion (manually counted Paxillin stained FA 

sites).  (J) Adhesion assay (detached cell) on sh-control and KSR shRNA-A and C 

transduced/selected (7 days), or DMSO/U0126 (20 μM) treated schwannoma cells. Error bars 

represent the mean ±SEM. Statistical data analysis was carried out using Student’s t-test 

(non-significant, ns, p>0.05; * p<0.05; ** p<0.01; *** p<0.001, n=3). Scale bar = 10 μm.  

 

Figure 4. Knockdown of KSR1 reduces proliferation but enhances apoptosis. (a) 

Schwannoma cells were starved for 24 hours and then cultured in GFM for 72 hours. Ki67 

was used as proliferation maker. Pink staining shows Ki67-positive cells. (b) Quantification 

of the Ki67 index after knockdown of KSR1 and treatments with DMSO/ U0126 (20 µM) in 

schwannoma (NF2-/-) cells. (c) Schwannoma cells were starved for 24hours then cultured in 

medium containing PDGF (100 ng/ml) for 72 hours. Ki67 and DPAI staining were compared 

among cells infected with sh-control and KSR1 shRNA-A and shRNA-C. (d) Quantification 

of (C). (e) Ki67 proliferation assay was performed on schwannoma cells infected with sh-

control, KSR1 shRNA-c on 2, or 4 or 6 days. (f) Schwannoma cells were infected with sh-

control, shKSR-C or shKSR-A+C. Caspase-Glo® 3/7 Apoptosis assay was performed. Error 

bars represent the mean ±SEM. Statistical data analysis was carried out using Student’s t-test 

(ns: p>0.05; * p<0.05; ** p<0.01; *** p<0.001, n=3).  
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Figure 5. KSR1 has multiple protein-protein interactions with Merlin and is strongly 

associated with cancer. 293T cells with overexpressed pyo tagged mKSR1 and Merlin were 

used to immunoprecipitate their complexes, respectively.  For KSR IP, non-transfected cells 

were used as controls. For Merlin, control IP was performed with normal rabbit IgG. Proteins 

were isolated and identified by LC-MS/MS and quantified by label free quantification (LFQ).  

The protein fold change in LFQ ratios between the IP and control group of 1.75 was used as a 

threshold to identify protein-binding partners. (a) The Venn diagram depicts overlap of 

interactors discovered in the interactomes of Merlin (blue) and KSR1 (red), respectively. The 

pie chart shows that the majority of shared interactors are localized to the nucleus and 

cytoplasm. (b) A list of the top 10 shared interactors, including VPRBP/DCAF1, DDB1 and 

AMOT for Merlin and KSR1. (c) The involvement of Merlin and KSR1 in the developmental 

disorder, hereditary disorder and cell cycle network. The uncolored nodes in the interaction 

network identify the molecules absent in the Merlin-KSR1 shared interactor datasets, and the 

colored nodes identify the molecules that were found to be enriched in both interactomes. 

The subnetwork of VPRBP, DDB1, HDAC1, EMD, AKP8L and CHMP1A is highlighted in 

a red circle. (d) IPA biological function results illustrate the enrichment in KSR1 (red) and 

Merlin (blue) interactomes. The shared interactors were used as representative genes/proteins. 

The figure was generated through the use of Ingenuity Pathway Analysis (Ingenuity® 

Systems, www.ingenuity.com).  

 

Figure 6. KSR1 function is inhibited by Merlin but links to DCAF1. (a) mKSR1-WT and 

Merlin mutants S518A&S518D were co-expressed in 293T cells. The KSR1 complex was 

immunoprecipitated with Pyo/Glu-Glu Affinity Matrix and blotted with anti-KSR1, anti-

Merlin, anti-MEK1/2 and anti-c-Raf antibodies. (b) Cell lysates of untransfected or mKSR1-

WT transfected 293T cells were immunoprecipitated with Pyo/Glu-Glu Affinity Matrix then 
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blotted with anti-KSR1, anti-DCAF1, and anti-MEK1/2 antibodies. (c) Co-IP was performed 

with anti-DCAF1 antibody in a 293T KSR1 stable line. IgG rabbit served as a control for co-

IP.  DCAF1, KSR1 and Merlin were detected with specific antibodies. (d) Schwannoma cells 

were transfected with mKSR1-WT and stained with anti-DCAF1 rabbit (green) and anti-

KSR1 mouse (red). The co-localization of KSR1 and DCAF1 are shown in the merged (scale 

bar = 20 μm) and Z-stack picture was taken to confirm colocalisation. (e) Fractionation of 

KSR1, DCAF1, HDAC1 (nuclear marker) and GAPDH (cytoplasmic marker). (f) 

Schwannoma cells were infected with shRNA control or shRNA against DCAF1. The protein 

level of KSR1 and DCAF1 were detected, and GAPDH served as control. (g) Schwannoma 

cells were transduced with sh-control, single shRNA against either KSR1 (sh-KSR1) or 

DCAF1 (sh-DCAF1) or double knockdown of KSR1 and DCAF1 (sh-KSR1+DCAF1), the 

proliferation assays were then carried out. Error bars represent the mean ±SEM. Statistical 

data analysis was carried out using Student’s t-test (ns: p>0.05; * p<0.05; ** p<0.01; *** 

p<0.001, n=3).  

 

Figure 7. Hypothetical model of KSR1 regulations in normal and Merlin-deficient 

tumor cells. In normal cells, Merlin inhibits KSR1 by restricting its localization at the 

cytoplasm and disturbs the binding of KSR1 and c-Raf. Merlin also limits the availability of 

integrin and tyrosine kinase receptors, such as PDGF receptors. In the nucleus, Merlin binds 

directly to the E3 ligase receptor DCAF1 and inhibits its target recruitment. Normal 

(Schwann) cells are therefore maintained in the quiescent state and exhibit a bipolar shape 

with highly organized F-actin and disassembled cell-matrix and focal adhesions. In the 

Merlin-deficient tumor cells, overexpressed KSR1 assembles the Raf/MEK/ERK complex 

upon receiving the mitogenic signal mediated by PDGF and integrin and facilitates the 

regulation of focal adhesions and the reorganization of F-actin linked cytoskeleton. KSR1 has 
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MEK1/2-independent role in regulating adhesion. KSR1 together with activated MEK1/2 and 

ERK1/2 shuttles into the nucleus and binds to CRL4DCAF1 to potentially regulate HDAC1 and 

nuclear F-actin. CRL4DCAF1 drives oncogenic gene expression and therefore enhances the 

adhesion, proliferation and survival of tumor cells. ECM, extracellular matrix, Paxi: Paxillin.      

 
















