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Abstract 30 

 31 

Studies of Hsp expression have shown correlation across thermal clines, though more often 32 

across altitudinal gradients, and less so across large latitudinal gradients. Here we investigate 33 

the response of three heat shock proteins to thermal stress, in populations from the northern 34 

range limit (Åland Islands, Finland) and the low elevation southern range limit (Catalunya, 35 

Spain) of the Glanville fritillary butterfly, Melitaea cinxia. Hsp 20.4 and Hsp 90 36 

demonstrated dramatic up-regulation at higher temperatures, however there were no 37 

significant expression differences between the two populations. Hsp 21.4 showed no 38 

significant up-regulation in response to increased temperatures, however it did exhibit a 39 

significant constitutive difference between populations, with insects from Catalunya having 40 

4-6-fold higher levels than those from the Åland Islands. Interestingly, the key metabolic 41 

enzyme and cell cycle modulator glyceraldehyde-3-phosphate dehydrogenase (G3PDH), 42 

which was originally selected as a control gene, was consistently expressed 1.5-2-fold higher 43 

across all temperature treatments in Finnish compared to Spanish butterflies. Differences in 44 

putatively homeostatic Hsp 21.4 and G3PDH suggest that the analyzed populations might 45 

exhibit differences in energetic homeostasis. This type of data has potential to provide 46 

greater understanding of the mechanisms underlying adaptation of poikilotherms to regional 47 

climate and to help predict how they may be affected by a changing climate. 48 

 49 

Introduction 50 

 51 

Heat shock proteins (Hsps) are molecular chaperones well-known as stabilizers of protein 52 

integrity under stressful conditions but also important as folding catalysts for protein 53 

maturation under non-stressful conditions (Feder & Hofmann, 1999). Levels of Hsps are 54 

often useful indicators of heat stress, as their induction represents the earliest step in an 55 

organism’s response to environmental stress (Kültz 2005). In addition, Hsps are 56 

evolutionarily ubiquitous: the majority of species studied have Hsp genes that exhibit 57 

varying patterns of expression, which often correlate with resistance to stress, and with 58 

the stress levels naturally experienced by each species (Feder & Hofmann 1999). Hsp 59 

expression patterns can also vary within a species (Tomanek, 2010; Otsuka et. al., 1997, 60 
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Brown et. al., 1995), with respect to both temporal and spatial differences in 61 

environmental stress. Consequently, transcriptomic analyses, such as quantification of 62 

Hsp expression levels, have been proposed as a standard metric for quantifying stress 63 

responses within and among natural populations (Evans & Hofmann 2012). 64 

 65 

The genes encoding Hsps are highly conserved, and are often named after the molecular 66 

weight of the protein (e.g. Hsp70). Much work on Hsps has focused on insects (King & 67 

MacRae, 2015), in particular Drosophila (e.g. Sorensen et. al., 2005; Krebs & Holbrook, 68 

2001) and Hsp70 (Krebs & Feder, 1997; Benedict et. al., 1993), since this is the primary 69 

inducible Hsp found in Drosophila (Krebs & Bettencourt, 1999). Hsp70 plays a role in a 70 

number of stress responses, including tolerance of hyperthermia (Wischmeyer et. al., 71 

1997), tolerance of hypoxia (Heads et. al., 1995) and regulation of heat shock response 72 

(Solomon et. al., 1991). Hsp90 performs similar functions. The larger Hsp families 73 

(Hsp100, Hsp90, Hsp70 and Hsp60) tend to have more highly conserved sequences, and 74 

are some of the most highly conserved protein families known (Waters et al., 2008). 75 

Small heat shock proteins, with molecular weights ranging from 12 to 42 kDa, tend to be 76 

more diverse than large Hsps, but their functions appear to be similar (Basha et al., 2012; 77 

Li et. al., 2009).  78 

 79 

Both constitutive and inducible forms of Hsp 70 play a role in thermotolerance, and 80 

temporal fluctuations in Hsp expression represent plastic responses of individuals to their 81 

immediate environments. For example, beetles collected at the warmest time of day 82 

contained higher levels of Hsp70 than those collected at cooler times (Dahlhoff & Rank 83 

2000). Sorensen et al. (2009) found that fruit flies that could not induce heat shock 84 

proteins were incapable of finding food stations on hot days, while wildtype conspecifics 85 

could. Studies such as these are important for establishing an ecological context for Hsp 86 

expression. Nikinmaa et al. (2008) found geographical differences in constitutive 87 

expression of Hsp 70 in the frog Rana temporaria. Sorensen et al. (20092) found variation 88 

in constitutive levels of Hsp expression as well as a temperature-induced increase in 89 

expression levels in the same species. Studies of Nucella snails found that higher 90 

expression of Hsps was correlated with increased thermotolerance, and that the level of 91 
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total rather than stress-inducible Hsp 70 was a better predictor of thermal tolerance (Sorte 92 

& Hoffmann 2005).  93 

 94 

Much research has demonstrated clinal variation in stress resistance and life history traits 95 

(Angilletta et. al., 2003; Hoffmann et. al., 2003; Sorensen et. al., 20092). Because of the 96 

roles that Hsps play in mediating thermal tolerance, their expression is expected to 97 

feature in local adaptation to climate. Expected correlations between Hsps and thermal 98 

environment have indeed been observed in clines based on elevation for Drosophila 99 

buzzatii (Sorensen et. al., 2005), the copper butterfly Lycaena tityrus (Karl et. al., 2008) 100 

and the montane beetle Chrysomela aeneicollis (Dahlhoff & Rank, 2000). However, 101 

studies of thermal clines occurring across large latitudinal gradients have only 102 

occasionally found correlations with latitude (e.g. in the mussel Mytilus galloprovincialis, 103 

Dutton & Hofmann, 2009). These studies have also not produced as conclusive results as 104 

those completed on smaller scales (e.g. microclimatic variation in temperature) and the 105 

results have often been complex and affected by other unknown factors (Sorensen et. al., 106 

2009). Therefore, further investigation of latitudinal variation of Hsp expression presents 107 

an interesting avenue of study.  108 

 109 

Variation of physiological traits across thermal clines is expected to be most pronounced 110 

in species with large geographical ranges and low rates of dispersal. The species studied 111 

here, the melitaeine butterfly Melitaea cinxia, fits this description. This study investigates 112 

Hsp expression in populations of M. cinxia sampled from its latitudinal range limits at 113 

low elevation. The expectation is that butterflies at the southern range limit, being more 114 

often exposed to extreme heat events, may have either higher levels of constitutive Hsp 115 

expression, and/or stronger Hsp induction in response to thermal stress.  116 

 117 

Methods 118 

 119 

Study system 120 

 121 
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This study covers the latitudinal range of M. cinxia at low elevation, which stretches from 122 

41.5°N in Catalunya, Spain to 60.4°N in the Åland islands, Finland (Lafranchis, 2004).  123 

Isolated montane populations in Spain and Morocco, which were not included in the 124 

work, extend the range southwards to around 35°N. At all study sites the insects spend 125 

winter as partly-developed larvae. In early spring, these thermophilic larvae begin to bask 126 

in sunshine and feed on new leaves of their hosts, Plantago lanceolata in Catalunya, and 127 

both P. lanceolata and Veronica spicata in Finland (Van Nouhuys et al. 2003). 128 

 129 

In Catalunya, post-diapause larvae and adult butterflies are typically active in April and 130 

May. In the Åland Islands, post-diapause larvae and adult butterflies are typically active 131 

in May and June. Since the insects are active at different seasons in different latitudes, it 132 

is possible that each life stage may experience similar climatic conditions across the 133 

range.  To examine this possibility, we obtained the monthly mean maximum 134 

temperatures and highest maximum temperatures for both study areas for the period 135 

1980-2013 (figure 1). The Figure shows that variation in phenology is insufficient to 136 

maintain a common climate experience between northern and southern populations for 137 

either larvae or adults. 138 

 139 

Gene selection and primer design  140 

 141 

Hsp and control genes were selected using the transcriptome for M. cinxia available at 142 

http://cinxiabase.vmhost.psu.edu/TextSearch2.html. A search for “hsp” brought up a 143 

number of potential sequences, and those that matched other Lepidoptera were selected 144 

as potential candidate genes. Sequences annotated as Hsps were verified using BLAST 145 

(Altschul, 1997) against the non-redundant (“nr”) Genbank database (NCBI). Primers 146 

were designed to target 150bp of these sequences using Primer3 147 

(http://primer3.sourceforge.net/). Three potential control genes were selected from those 148 

frequently used in other studies (de Kok et. al., 2005). 149 

 150 

Primer validation 151 

 152 
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Primer validation followed the protocol described by Kenkel et al. (2011). The specificity 153 

of each primer pair for its target gene was tested using gel electrophoresis and melt curve 154 

analysis of the amplification product obtained with M. cinxia cDNA as a template. Primer 155 

efficiencies were determined by amplifying a series of two-fold dilutions of M. cinxia 156 

cDNA covering two orders of magnitude of template amount (5ng to 0.078ng RNA 157 

equivalent per PCR reaction). These reactions were all conducted in duplicate. CP values 158 

for each dilution series were then plotted against the log2[cDNA], and the slope 159 

determined for each primer set (supplementary Table 1). The primer-specific 160 

amplification efficiency (E, amplification factor per PCR cycle) was then derived from 161 

the slope of the regression (E = 2-(1/slope)) (Pfaffl, 2001). The qPCR assays accepted for 162 

this study exhibited PCR efficiencies within the range 1.91-2.03 (R² values ranging from 163 

0.98-0.999). In order to test for primer specificity and genomic DNA contamination, a 164 

negative control was run, lacking reverse transcriptase. No amplification was observed 165 

here. G3PDH (Glyceraldehyde-3-Phosphate Dehydrogenase), elF5B (Elongation 166 

Initiation Factor 5B) and Beta Actin were selected as potential control genes, the stability 167 

of which was validated using GeNorm (Vandesompele et al 2002). Hsp 20.4, Hsp 21.4 168 

and Hsp 90 were selected as the target genes of interest.  169 

 170 

Background on experimental design 171 

 172 

A number of pilot experiments were conducted using different temperature regimes 173 

similar to those used in other studies (Sorensen et. al., 2005; Karl et. al., 2008; Shen et. 174 

al., 2011). The eventual experimental temperatures of 22°C, 38°C and 42°C were 175 

selected based on these pilot experiments, as well as on maximum temperatures to which 176 

the species is currently exposed (figure 1). While the experimental temperatures are 177 

higher than those to which the species is currently exposed in the field, it is important to 178 

note that the black M. cinxia larvae achieve significantly higher body temperatures when 179 

basking in the sun, relative to ambient temperature (Kuussaari, 1998). The lights in the 180 

growth chamber fail to mimic this effect. Therefore, in this experiment we chose ambient 181 

temperatures in the growth chamber to mimic the body temperatures of the caterpillars 182 

basking in the sun, rather than natural ambient air temperatures. 183 
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 184 

Larvae for the experiments were obtained by field-gathering adults, eggs, or very young 185 

(pre-diapause) larvae.  All larvae were raised under controlled lab conditions for the 186 

majority of their life cycle; from pre-diapause through both diapause and post-diapause 187 

development.  However, it remains possible that their experience prior to being collected 188 

may have influenced their performance, since thermal environments of ectotherms 189 

experienced early in the life cycle may have effects later on, and thus may be expected to 190 

affect traits such as Hsp expression (Atkinson & Sibly, 1997; Hoffmann et. al., 2003).  191 

 192 

Experimental design 193 

 194 

Eggs from the two populations were collected from adult butterflies caught in the field, 195 

and caterpillars were then raised to diapause in the lab and kept over winter at 4°C. 196 

Caterpillars from six Catalunya families and seven Åland Island families were then taken 197 

out of diapause in the spring, and allowed to feed on Plantago lanceolata at room 198 

temperature (figure 1). In their final instar, three groups of N=3 caterpillars were sampled 199 

from each family. Each group was subjected to one of the following temperature regimes 200 

in a climate controlled growth chamber with artificial lights and freshly cut leaves: 201 

 202 

1 hour at 22°C, followed by 1 hour recovery at room temperature (22°C) (control) 203 

1 hour at 38°C, followed by 1 hour recovery at room temperature (22°C)  204 

1 hour at 42°C, followed by 1 hour recovery at room temperature (22°C)  205 

 206 

Out of the 6 families from Catalunya, 2 families had only 2 caterpillars. For these 207 

families, only the 22°C and 42°C treatments were used. 208 

 209 

Following the recovery period, caterpillars were cut in half, and each half placed in a 210 

separate vial of RNAlater (Ambion). The head region was kept at room temperature and 211 

used for RNA isolation. The other half was stored at -80°C.   212 

 213 

RNA isolation  214 
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 215 

RNA was extracted from the samples using RNAqueous 4PCR kits (Ambion). The 216 

concentration of RNA was then quantified using the Nanodrop 2000 (Thermo-Fisher). 217 

RNA quality was assessed through gel electrophoresis, and evaluated based on the 218 

presence of ribosomal RNA bands. After DNAse treatment the concentration of RNA 219 

was again estimated, and another electrophoresis gel run to check the integrity of the 220 

RNA and confirm the disappearance of the genomic DNA band. 221 

 222 

cDNA synthesis 223 

 224 

Synthesis of first strand cDNA was conducted using the SmartScribe Reverse 225 

Transcriptase kit (Takara-Clontech). 50ng of RNA from each sample was brought to 4µl 226 

total volume using milliQ H2O. 1µl of 6µM of an oligo-dT-containing primer (5’-227 

CGCAGTCGGTACTTTTTTTTTTTTV-3’) was added to each of the above sample 228 

dilutions, incubated at 65°C for 3 minutes, and then 5µl of a master mix (0.5µl H2O, 1µl 229 

dNTPs, 1µl DTT, 2µl 5xBuffer and 0.5µl SSII Reverse Transcriptase) was added to each 230 

sample. A no-RT control was also synthesized for each sample, under the same 231 

conditions described above but lacking the reverse transcriptase, and instead containing 232 

1µl of H2O. All samples were then incubated at 42°C for 1 hour, followed by 65°C for 3 233 

minutes. Finally, each of the samples was diluted to contain a cDNA equivalent of 1ng/µl 234 

of RNA, by adding milliQ H2O.  235 

 236 

Quantitative PCR 237 

 238 

qPCR reactions were conducted using the LightCycler 480 (Roche). All qPCR reactions 239 

were conducted in duplicate. 1ng of each cDNA template was mixed with 4.5µl of H2O 240 

and 7.5µl of 2x SYBRgreen Master Mix (Roche). This mixture was then added to the 241 

well plate (LightCycler 480 multiwell plate 384, white, Roche), and 2µl of 1.5µM F+R 242 

primer was added to each well. No-RT controls were checked for genomic DNA 243 

contamination by amplification with G3PDH. The well plate was then covered by sealing 244 

film (Roche), spun down, and run in the LightCycler 480 under the following program: 1 245 
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x pre-incubation (95°C for 5 min), 45 x amplification (95°C for 30 sec, 60°C for 40 sec, 246 

72°C for 40 sec), 1 x melting curve (95°C for 5 sec, 65°C for 1 min, slow ramping up to 247 

97°C), 1 x cooling (40°C for 10 sec).  248 

 249 

Statistical Analysis 250 

 251 

The analysis of qPCR data was performed in R (R Development Core Team, 2008) using 252 

package MCMC.qpcr (Matz et al., 2013). Briefly, the analysis involves fitting a single 253 

Bayesian linear mixed model to the complete set of qPCR measurements (corrected for 254 

amplification efficiency) using a Markov chain Monte Carlo (MCMC) procedure and 255 

inferring the expression changes for all genes from the joint posterior distribution of 256 

parameters. The statistical significance of these changes is evaluated by estimating the 257 

empirical two-tailed p-value (PMCMC), which is twice the fraction of sampled parameter 258 

values that cross zero with respect to the mean. Although this analysis is able to 259 

disentangle variation due to template loading from biologically relevant gene expression 260 

changes without relying on control genes, its power is substantially enhanced when 261 

control genes are specified. The modeling was therefore performed using the "classic" 262 

model that follows the established multi-gene normalization procedure (Vandesompele et 263 

al., 2002).  264 

 265 

Results 266 

 267 

Gene selection and normalization 268 

 269 

Hsp70 was initially chosen as the primary target gene for comparison with other studies. 270 

However, all primer pairs designed for the homologous sequence from M. cinxia (Contig 271 

56282) failed to yield specific amplification products (i.e. multiple peaks were observed 272 

in the melt curve analysis). In addition, primer efficiencies were outside the acceptable 273 

range. As a result, Hsp20.4, Hsp21.4 and Hsp90 were selected as target genes. Of the 274 

putative control genes, GeNorm analysis suggested that G3PDH (Glyceraldehyde-3-275 

Phosphate Dehydrogenase) is not stable enough to serve as a control (GeNorm M=1.57). 276 
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This result was confirmed by “naive” (control-free) Bayesian analysis using MCMC.qpcr 277 

package, which indicated that G3PDH is differentially expressed among populations. We 278 

therefore used only Beta Actin and eIF5B (Elongation Initiation Factor 5B) as control 279 

genes for Bayesian modeling (GeNorm M=0.99), while analyzing G3PDH as a response 280 

gene along with the Hsps. All CP values for the no-RT controls were >35, indicating that 281 

genomic DNA contamination was negligible. 282 

 283 

Gene expression 284 

 285 

Gene expression changes are summarized in figure 2 and table 1. Hsp21.4 exhibited 286 

significant constitutive difference between populations, being expressed 3.3-fold higher 287 

in the Catalunya population. The other two Hsps exhibited the same trend, although the 288 

between-population differences for these two genes were not statistically significant. 289 

Hsp20.4 demonstrated dramatic up-regulation at 380C (63 fold) and 420C (32 fold) 290 

relative to the 220C control. Hsp90 also demonstrated up-regulation at 380C (7.6 fold) 291 

and 420C (5 fold) relative to the 220C control. Hsp21.4 showed no significant response to 292 

treatment. There was no significant difference between 380C and 420C for any of the 293 

Hsps, although all three of them exhibited a trend towards diminished expression at 420C 294 

(relative to 380C). G3PDH was expressed constitutively higher in Finland by 1.9-fold, 295 

and did not respond significantly to heat stress. No interaction terms between population 296 

and temperature treatment were statistically significant for any of the genes.  297 

 298 

Discussion 299 

 300 

With changes in climate projected to increase in the coming years (IPCC, 2013), there is 301 

a growing need to gain a better mechanistic understanding of how different species and 302 

populations may respond. Trait-based vulnerability assessments of species, including 303 

thermal tolerance, are becoming increasingly valuable (Advani, 2014). To this end, 304 

interest in the molecular and physiological functions of Hsps has increased (Karl et. al., 305 

2009). Studies such as that presented here are now beginning to venture out to non-model 306 

organisms in ecological contexts relevant to climate change biology. Looking at how 307 
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species adapt to climate variation in space is a good way to evaluate how they might 308 

respond to similar changes in time (La Sorte et al., 2009). This study investigated the 309 

response of three heat shock proteins to thermal stress, in populations from the northern 310 

range limit (Åland Islands, Finland) and the southern range limit (Catalunya, Spain) of 311 

Melitaea cinxia. 312 

 313 

Summary Hsp expression  314 

 315 

Working with the oriental leafworm moth (Spodoptera litura), Shen et. al. (2011) found  316 

upregulation on the order of 67-fold in Hsp20.4 when exposed to 40°C for 1 hour.  We 317 

have a similar result for both Hsp20.4 and Hsp90, in which elevated temperature 318 

treatments induced significantly higher gene expression relative to the 22°C treatment, 319 

confirming the role of these proteins in heat stress response in M. cinxia caterpillars. It is 320 

also interesting to note that all Hsps analyzed here tended to decline (though not 321 

significantly) at 42°C compared to 38°C (Table 1, Figure 2), suggesting that Hsp 322 

synthesis itself may be limited by thermal stress (Tomanek, 2002). 323 

 324 

Working with the silkworm, Bombyx mori, Li et. al. (2009) found that Hsp21.4 was not 325 

induced by thermal stress, and was expressed constitutively under non-stressful 326 

conditions in fat body and other tissues. The authors speculate that Hsp21.4 may not be 327 

involved in the heat shock response, and may instead be involved in basic metabolic 328 

processes in insects. Shen et. al. (2011) also suggest that Hsp21.4 may have no direct 329 

relationship with thermal response. While the function of the small Hsps is not yet fully 330 

understood, they have been shown to be involved in the organization of cytoskeletons and 331 

the protection of insects during diapause (Rinehart & Denlinger, 2000; Yocum et al., 332 

1998).  In the current study we also found that Hsp21.4 showed no significant 333 

upregulation in response to increased temperatures.  However, the population effect was 334 

significant for Hsp 21.4. Catalunya had a 3.3-fold higher constitutive expression than the 335 

Åland Islands, suggesting that there may, after all, be a role for this protein in protection 336 

from thermal stress.  337 

 338 
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Possible divergence in energetic homeostasis  339 

 340 

It is notable that the genes that did show significant between-population differences in 341 

our experiment (Hsp 21.4 and G3PDH) were not the ones that responded to high 342 

temperature treatments. G3PDH has a well-established function in energy metabolism 343 

(glycolysis and gluconeogenesis) but also in arresting cell cycle under conditions of low 344 

metabolism (Seidler 2013). Hsp21.4 has also been hypothesized to serve general 345 

homeostatic function in insects (Li et al., 2009). Their constitutive between-population 346 

difference might therefore reflect differences in metabolism and its effect on growth.  347 

Although such metabolic adjustments are not necessarily related to adaptation to local 348 

conditions, previous results suggest such a possibility. For example, polymorphism in 349 

another glycolytic enzyme, phosphoglucose isomerase (pgi), is strongly associated with 350 

fitness and performance in the same species of butterfly that we studied (Hanski & 351 

Saccheri, 2006; Haag et al., 2005), and correlates with temperature in several other 352 

organisms (Hoffmann, 1981; Watt, 1991). Other glycolytic enzymes have been reported 353 

to vary adaptively along latitudinal gradients (Lin & Somero, 1995b; Place & Powers, 354 

1978).  355 

 356 

Are heat-shock proteins involved in adaptation to local temperature? 357 

 358 

Studies of Hsp expression across geographic clines in insects have found variable results. 359 

Sorensen et. al. (2005) working with Drosophila buzzatii found no differences in Hsp70 360 

expression between populations from different altitudes tested at 36.5°C. However, at a 361 

higher temperature of 38°C there was a positive relationship between gene expression 362 

and altitude. Likewise, working with three different Drosophila species, Krebs (1999) 363 

found that the more heat tolerant desert species (D. mojavensis) expressed Hsp70 at 364 

higher temperatures than the other, more cold adapted species (D. melanogaster and D. 365 

simulans). These results support the hypothesis that adaptation to high temperature is 366 

manifested not as adjustment of the constitutive Hsp expression level, but as diminished 367 

response to heat in heat-adapted populations (Sorensen et. al., 2001). The idea here is that 368 
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heat-adapted populations are more tolerant of sub-lethal heat exposure, and thus express 369 

lower amounts of stress proteins.  370 

 371 

It has also been predicted that organisms from low-stress environments might exhibit 372 

reduced (rather than elevated) stress response compared to organisms from high stress 373 

environments (Feder & Hofmann, 1999) because of lack of selection for stress-induced 374 

plasticity. Some experiments support this theory as well. For example, in the Copper 375 

butterfly (Lycaena tityrus) high altitude individuals exhibited much weaker Hsp70 376 

induction in response to heat than low-altitude individuals (Karl et al. 2009).  377 

 378 

Finally, at least in some cases the adaptation to a different temperature regime might 379 

involve adjustments of constitutive level of Hsp expression: for example, chrysomelid 380 

beetles from low altitudes have been shown to constitutively express more Hsp70 than 381 

those from high altitudes (Dahlhoff & Rank, 1998). 382 

 383 

Our results do not support the hypotheses implying differential Hsp response, as we 384 

detected no difference in response magnitude between populations (figure 2). A tendency 385 

of both heat-responsive Hsps (Hsp20.4 and Hsp90) to be constitutively expressed at a 386 

higher level in animals from the warmer location (Catalunya, figure 2) could be 387 

interpreted in favor of the constitutive adjustment hypothesis; however, these trends were 388 

not statistically significant.  389 

 390 

Conclusion 391 

 392 

While there is still no consensus on how different thermal tolerances across the species 393 

range are determined at the gene expression level, correlations between physiological 394 

traits and environmental stresses offer clues to future responses of organisms to global 395 

change. Studies such as this provide insight into how organisms cope with exposure to 396 

acute heat stress, and give us an idea of the range over which a physiological stress 397 

response is observed. From these data we may then understand the critical threshold for 398 
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such organisms, and gain some insight into how poikilothermic species, such as M. 399 

cinxia, may be affected by climate change.  400 
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Figure 1: Map showing the study populations, monthly mean maximum temperatures (1981-
2013) during the post-diapause larval stage/adult butterfly flight season and highest observed 
temperatures (Source: National Climatic Data Center, National Oceanic and Atmospheric 
Administration (NOAA). 

 



Figure 2: Gene expression changes 

 

 



Table 1: Summary of MCMCglmm models for gene expression differences observed 
between different populations and between different temperature treatments. Significant 
differences are shaded in grey.   
Gene Population/Treatment Fold Change* P(MCMC)** 
Hsp20.4 Catalunya:Finland 1.5 0.2 
 T38:T22 63.1 <0.001 
 T42:T22 32 <0.001 
 T42:T38 -2 0.5 
Hsp21.4 Catalunya:Finland 3.3 0.023 
 T38:T22 2.2 0.31 
 T42:T22 -1.8 0.39 
 T42:T38 -3.8 0.39 
Hsp90 Catalunya:Finland 1.9 0.15 
 T38:T22 7.6 <0.001 
 T42:T22 5 <0.001 
 T42:T38 -1.5 0.34 
G3pdh Catalunya:Finland -1.9 0.04 
 T38:T22 -1.4 0.49 
 T42:T22 1 0.96 
 T42:T38 1.4 0.54 
* negative values imply  fold-change of the listed amplitude in the opposite 
direction 
** empirical two-tailed p-value derived from the results of MCMC sampling 

 



Supplementary Table 1: Primer efficiencies (2-(1/slope)) for Hsp 20.4, Hsp 21.4, Hsp 90, 
G3PDH, elf5B and Beta Actin used for all qPCR reactions 
 

Gene 
 

Trial 
 

Slope 
 

R² 
 

Primer 
Efficiency 

Hsp20.4 1 -1.066 0.998  
 2 -1.017 0.997  
 Average slope -1.0415  1.95 

Hsp21.4 1 -1.01 0.99  
 2 -1.03 0.99  
 Average slope -1.02  1.97 

Hsp90 1 -0.954 0.989  
 2 -0.998 0.993  
 Average slope -0.976  2.03 

G3PDH 1 -0.96 0.98  
 2 -1.03 0.99  
 Average slope -0.995  2.01 

elF5B 1 -1.021 0.997  
 2 -1.026 0.999  
 Average slope -1.0235  1.97 

Beta Actin 1 -1.1 0.98  
  2 -1.05 0.99  
  Average slope -1.075  1.91 

 
 


